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Preface

A handbook, according to the dictionary, is a book capable of being conveniently car-
ried as a ready reference. Springer has created the Springer series of handbooks on
important scientific and technical subjects, and we are happy that they have included
acoustics in this category.

We published the Springer Handbook of Acoustics in 2007, and it has had good
acceptance and is widely used and referenced. But in the intervening years, much re-
search has occurred in the field of acoustics, and it is time for a second edition. Several
authors have revised their chapters to include new material, and we have added two
new chapters on Microphone Arrays and on Acoustic Emission.

Acoustics, the science of sound, is a rather broad subject to be covered in a single
handbook. It embodies many different academic disciplines, such as physics, mechan-
ical and electrical engineering, mathematics, speech and hearing sciences, music, and
architecture. There are many technical areas in acoustics; the Acoustical Society of
America, for example, includes 14 technical committees representing different areas
of acoustics. It is impossible to cover all of these areas in a single handbook. We have
tried to include as many as possible of the hot topics in this interdisciplinary field, in-
cluding basic science and technological applications. We apologize to the reader whose
favorite topics are not included.

We have grouped the 30 chapters in the book into seven parts: Propagation of
Sound; Physical and Nonlinear Acoustics; Architectural Acoustics; Hearing and Signal
Processing; Music, Speech, and Electroacoustics; Biological and Medical Acoustics;
Structural Acoustics and Noise; and Engineering Acoustics. The chapters are of vary-
ing length. They also reflect the individual writing styles of the various authors, all of
whom are authorities in their fields. Although an attempt was made to keep the math-
ematical level of the chapters as even as possible, readers will note that some chapters
are more mathematical than others; this is unavoidable and in fact lends some degree
of richness to the book.

We are indebted to many persons, especially Werner Skolaut, the manager of the
Springer Handbooks, and to the editorial board for their advice, and especially to Fan
Ho Ying and the staff at Springer for handling the revised manuscripts. Each chapter
was reviewed by authoritative reviewers, and we are grateful to them for their services.
But most of all we thank the authors, all of whom are busy people but devoted much
time to carefully preparing their chapters.

Stanford, November 2013 Thomas D. Rossing
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Introduction t1. Introduction to Acoustics

Thomas D. Rossing

This brief introduction may help to persuade
the reader that acoustics covers a wide range of
interesting topics. It is impossible to cover all
these topics in a single handbook, but we have
attempted to include a sampling of hot topics
that represent current acoustical research, both
fundamental and applied.

Acoustics is the science of sound. It deals with
the production of sound, the propagation of sound
from the source to the receiver, and the detection
and perception of sound. The word sound is often
used to describe two different things: an auditory
sensation in the ear, and the disturbance in
a medium that can cause this sensation. By making
this distinction, the age-old question If a tree falls
in a forest and no one is there to hear it, does it
make a sound? can be answered.
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1.1 Acoustics: The Science of Sound

Acoustics has become a broad interdisciplinary field
encompassing the academic disciplines of physics, en-
gineering, psychology, speech, audiology, music, archi-
tecture, physiology, neuroscience, and others. Among
the branches of acoustics are architectural acoustics,
physical acoustics, musical acoustics, psychoacoustics,
electroacoustics, noise control, shock and vibration, un-
derwater acoustics, speech, physiological acoustics, etc.

Sound can be produced by a number of different
processes, which include the following.

Vibrating bodies: when a drumhead or a noisy ma-
chine vibrates, it displaces air and causes the local air
pressure to fluctuate.

Changing airflow: when we speak or sing, our vo-
cal folds open and close to let through puffs of air. In
a siren, holes on a rapidly rotating plate alternately pass
and block air, resulting in a loud sound.

Time-dependent heat sources: an electrical spark
produces a crackle; an explosion produces a bang
due to the expansion of air caused by rapid heat-
ing. Thunder results from rapid heating by a bolt of
lightning.

Supersonic flow: shock waves result when a super-
sonic airplane or a speeding bullet forces air to flow
faster than the speed of sound.

1.2 Sounds We Hear

The range of sound intensity and the range of fre-
quency to which the human auditory system responds

is quite remarkable. The intensity ratio between the
sounds that bring pain to our ears and the weakest
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2 Introduction

sounds we can hear is more than 1012. The frequency
ratio between the highest and lowest frequencies we
can hear is nearly 103, or more than nine octaves (each
octave representing a doubling of frequency). Human
vision is also quite remarkable, but the frequency range
does not begin to compare to that of human hearing.
The frequency range of vision is a little less than one
octave (about 4 × 1014 –7 × 1014 Hz). Within this one oc-
tave range we can identify more than 7 million colors.
Given that the frequency range of the ear is nine times
greater, one can imagine how many sound colors might
be possible.

Humans and other animals use sound to commu-
nicate, and so it is not surprising that human hearing
is most sensitive over the frequency range covered by
human speech. This is no doubt a logical outcome of
natural selection. This same match is found throughout

much of the animal kingdom. Simple observations show
that small animals generally use high frequencies for
communication while large animals use low frequen-
cies. In Chap. 19, it is shown that song frequency f
scales with animal mass M roughly as f ∝ M−1/3.

The least amount of sound energy we can hear is of
the order of 10−20 J (cf. sensitivity of the eye: about one
quantum of light in the middle of the visible spectrum
≈ 4 × 10−19 J). The upper limit of the sound pressure
that can be generated is set approximately by atmo-
spheric pressure. Such an ultimate sound wave would
have a sound pressure level of about 191 dB. In practice,
of course, nonlinear effects set in well below this level
and limit the maximum pressure. A large-amplitude
sound wave will change waveform and finally break into
a shock, approaching a sawtooth waveform. Nonlinear
effects are discussed in Chap. 8.

1.3 Sounds We Cannot Hear: Ultrasound and Infrasound

Sound waves below the frequency of human hearing are
called infrasound, while sound waves with frequency
above the range of human hearing are called ultrasound.
These sounds have many interesting properties, and are
being widely studied. Ultrasound is very important in
medical and industrial imaging. It also forms the ba-
sis of a growing number of medical procedures, both
diagnostic and therapeutic (Chap. 21). Ultrasound has
many applications in scientific research, especially in
the study of solids and fluids (Chap. 6).

Frequencies as high as 500 MHz have been gener-
ated, with a wavelength of about 0.6 μm in air. This
is on the order of the wavelength of light and within
an order of magnitude of the mean free path of air
molecules. A gas ceases to behave like a continuum
when the wavelength of sound becomes of the order
of the mean free path, and this sets an upper limit on
the frequency of sound that can propagate. In solids
the assumption of continuum extends down to the in-
termolecular spacing of approximately 0.1 nm, with
a limiting frequency of about 1012 Hz. The ultimate
limit is actually reached when the wavelength is twice

the spacing of the unit cell of a crystal, where the
propagation of multiply scattered sound resembles the
diffusion of heat [1.1].

Natural phenomena are prodigious generators of
infrasound. When Krakatoa exploded, windows were
shattered hundreds of miles away by the infrasonic
wave. The ringing of both the Earth and the atmosphere
continued for hours. The sudden shock wave of an ex-
plosion propels a complex infrasonic signal far beyond
the shattered perimeter. Earthquakes generate intense
infrasonic waves. The faster moving P (primary) waves
arrive at distant locations tens of seconds before the
destructive S (secondary) waves. (The P waves carry in-
formation; the S waves carry energy.) Certain animals
and fish can sense these infrasonic precursors and react
with fear and anxiety.

A growing amount of astronomical evidence indi-
cates that primordial sound waves at exceedingly low
frequency propagated in the universe during its first
380 000 years while it was a plasma of charged particles
and thus opaque to electromagnetic radiation. Sound is
therefore older than light.

1.4 Sounds We Would Rather Not Hear: Environmental Noise Control

Noise has been receiving increasing recognition as one
of our critical environmental pollution problems. Like

air and water pollution, noise pollution increases with
population density; in our urban areas, it is a serious
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Introduction to Acoustics 1.6 Sound of the Human Voice: Speech and Singing 3

threat to our quality of life. Noise-induced hearing loss
is a major health problem for millions of people em-
ployed in noisy environments. Besides actual hearing
loss, humans are affected in many other ways by high
levels of noise. Interference with speech, interruption of
sleep, and other physiological and psychological effects
of noise have been the subject of considerable study.
Noise control is discussed in Chap. 23. The propagation
of sound in air in Chap. 4, and building acoustics is the
subject of Chap. 11.

Fortunately for the environment, even the noisiest
machines convert only a small part of their total energy
into sound. A jet aircraft, for example, may produce

a kilowatt of acoustic power, but this is less than 0.02%
of its mechanical output. Automobiles emit approxi-
mately 0.001% of their power as sound. Nevertheless,
the shear number of machines operating in our society
makes it crucial that we minimize their sound output
and take measures to prevent the sound from propagat-
ing throughout our environment. Although reducing the
emitted noise is best done at the source, it is possible,
to some extent, to block the transmission of this noise
from the source to the receiver. Reduction of classroom
noise, which impedes learning in so many schools, is
receiving increased attention from government officials
as well as from acousticians [1.2].

1.5 Aesthetic Sound: Music

Music may be defined as an art form using sequences
and clusters of sounds. Music is carried to the listener
by sound waves. The science of musical sound is often
called musical acoustics and is discussed in Chap. 15.

Musical acoustics deals with the production of
sound by musical instruments, the transmission of mu-
sic from the performer to the listener, and the perception
and cognition of sound by the listener. Understanding
the production of sound by musical instruments requires
understanding how they vibrate and how they radiate
sound. Transmission of sound from the performer to
the listener involves a study of concert hall acoustics
(covered in Chaps. 9 and 10) and the recording and

reproduction of musical sound (covered in Chap. 15).
Perception of musical sound is based on psychoacous-
tics, which is discussed in Chap. 13.

Electronic musical instruments have become in-
creasingly important in contemporary music. Comput-
ers have made possible artificial musical intelligence,
the synthesis of new musical sounds and the accurate
and flexible re-creation of traditional musical sounds by
artificial means. Not only do computers talk and sing
and play music, they listen to us doing the same, and our
interactions with computers are becoming more like our
interactions with each other. Electronic and computer
music is discussed in Chap. 17.

1.6 Sound of the Human Voice: Speech and Singing

It is difficult to overstate the importance of the hu-
man voice. Of all the members of the animal kingdom,
we alone have the power of articulate speech. Speech
is our chief means of communication. In addition,
the human voice is our oldest musical instrument.
Speech and singing, the closely related functions of
the human voice, are discussed in a unified way in
Chap. 16.

In the simplest model of speech production, the vo-
cal folds act as the source and the vocal tract as a filter
of the source sound. According to this model, the spec-
trum envelope of speech sound can be thought of as the
product of two components:

Speech sound = source spectrum × filter function.

The nearly triangular waveform of the air flow from
the glottis has a spectrum of harmonics that dimin-
ish in amplitude roughly as 1/n2 (i. e., at a rate of
−12 dB/octave). The formants or resonances of the vo-
cal tract create the various vowel sounds. The vocal tract
can be shaped by movements of the tongue, the lips, and
the soft palate to tune the formants and articulate the
various speech sounds.

Sung vowels are fundamentally the same as spoken
vowels, although singers do make vowel modifications
in order to improve the musical tone, especially in their
high range. In order to produce tones over a wide range
of pitch, singers use muscular action in the larynx,
which leads to different registers.
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Much research has been directed at computer recog-
nition and synthesis of speech. Goals of such research
include voice-controlled word processors, voice control

of computers and other machines, data entry by voice,
etc. In general it is more difficult for a computer to
understand language than to speak it.

1.7 How We Hear: Physiological and Psychological Acoustics

The human auditory system is complex in structure and
remarkable in function. Not only does it respond to
a wide range of stimuli, but it precisely identifies the
pitch, timbre, and direction of a sound. Some of the
hearing function is done in the organ we call the ear;
some of it is done in the central nervous system as well.

Physiological acoustics, which is discussed in
Chap. 12, focuses its attention mainly on the peripheral
auditory system, especially the cochlea. The dynamic
behavior of the cochlea is a subject of great interest.
It is now known that the maximum response along the
basilar membrane of the cochlea has a sharper peak in
a living ear than in a dead one.

Resting on the basilar membrane is the delicate and
complex organ of Corti, which contains several rows of
hair cells to which are attached auditory nerve fibers.
The inner hair cells are mainly responsible for transmit-
ting signals to the auditory nerve fibers, while the more-
numerous outer hair cells act as biological amplifiers. It
is estimated that the outer hair cells add about 40 dB of
amplification to very weak signals, so that hearing sen-
sitivity decreases by a considerable amount when these
delicate cells are destroyed by overexposure to noise.

Our knowledge of the cochlea has now progressed
to a point where it is possible to construct and implant
electronic devices in the cochlea that stimulate the au-
ditory nerve. A cochlear implant is an electronic device
that restores partial hearing in many deaf people [1.3]. It
is surgically implanted in the inner ear and activated by

a device worn outside the ear. An implant has four basic
parts: a microphone, a speech processor and transmit-
ter, a receiver inside the ear, and electrodes that transmit
impulses to the auditory nerve and thence to the brain.

Psychoacoustics (psychological acoustics), the sub-
ject of Chap. 13, deals with the relationships between
the physical characteristics of sounds and their percep-
tual attributes, such as loudness, pitch, and timbre.

The threshold of hearing depends upon frequency,
the lowest being around 3–4 kHz, where the ear canal
has a resonance, and rising considerably at low fre-
quency. Temporal resolution, such as the ability to
detect brief gaps between stimuli or to detect modu-
lation of a sound, is a subject of considerable interest,
as is the ability to localize the sound source. Sound lo-
calization depends upon detecting differences in arrival
time and differences in intensity at our two ears, as well
as spectral cues that help us to localize a source in the
median plane.

Most sound that reaches our ears comes from sev-
eral different sources. The extent to which we can
perceive each source separately is sometimes called seg-
regation. One important cue for perceptual separation of
nearly simultaneous sounds is onset and offset disparity.
Another is spectrum change with time. When we lis-
ten to rapid sequence of sounds, they may be grouped
together (fusion) or they may be perceived as differ-
ent streams (fission). It is difficult to judge the temporal
order of sounds that are perceived in different streams.

1.8 Architectural Acoustics

To many lay people, an acoustician is a person who
designs concert halls. That is an important part of
architectural acoustics, to be sure, but this field incor-
porates much more. Architectural acousticians seek to
understand and to optimize the sound environment in
rooms and buildings of all types, including those used
for work, residential living, education, and leisure. In
fact, some of the earliest attempts to optimize sound
transmission were practised in the design of ancient am-

phitheaters, and the acoustical design of outdoor spaces
for concerts and drama still challenge architects.

In a room, most of the sound waves that reach
the listener’s ear have been reflected by one or more
surfaces of the room or by objects in the room. In a typ-
ical room, sound waves undergo dozens of reflections
before they become inaudible. It is not surprising, there-
fore, that the acoustical properties of rooms play an
important role in determining the nature of the sound
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Introduction to Acoustics 1.9 Harnessing Sound: Physical and Engineering Acoustics 5

heard by a listener. Minimizing extraneous noise is
an important part of the acoustical design of rooms
and buildings of all kinds. Chapter 9 presents the
principles of room acoustics and applies them to per-
formance and assembly halls, including theaters and
lecture halls, opera halls, concert halls, worship halls,
and auditoria.

The subject of concert hall acoustics is almost cer-
tain to provoke a lively discussion by both performers
and serious listeners. Musicians recognize the impor-
tance of the concert hall in communication between
performer and listener. Opinions of new halls tend to
polarize toward extremes of very good or very bad. In
considering concert and opera halls, it is important to
seek a common language for musicians and acousticians
in order to understand how objective measurements re-
late to subjective qualities [1.4,5]. Chapter 10 discusses

subjective preference theory and how it relates to con-
cert hall design.

Two acoustical concerns in buildings are providing
the occupants with privacy and with a quiet environ-
ment, which means dealing with noise sources within
the building as well as noise transmitted from outside.
The most common noise sources in buildings, other than
the inhabitants, are related to heating, ventilating, and
air conditioning (HVAC) systems, plumbing systems,
and electrical systems. Quieting can best be done at the
source, but transmission of noise throughout the build-
ing must also be prevented. The most common external
noise sources that affect buildings are those associated
with transportation, such as motor vehicles, trains, and
airplanes. There is no substitute for massive walls, al-
though doors and windows must receive attention as
well. Building acoustics is discussed in Chap. 11.

1.9 Harnessing Sound: Physical and Engineering Acoustics

It is sometimes said that physicists study nature, en-
gineers attempt to improve it. Physical acoustics and
engineering acoustics are two very important areas
of acoustics. Physical acousticians investigate a wide
range of scientific phenomena, including the propaga-
tion of sound in solids, liquids, and gases, and the
way sound interacts with the media through which it
propagates. The study of ultrasound and infrasound are
especially interesting. Physical acoustics is discussed in
Chap. 6.

Acoustic techniques have been widely used to
study the structural and thermodynamic properties of
materials at very low temperatures. Studying the prop-
agation of ultrasound in metals, dielectric crystals,
amorphous solids, and magnetic materials has yielded
valuable information about their elastic, structural and
other properties. Especially interesting has been the
propagation of sound in superfluid helium. Second
sound, an unusual type of temperature wave, was dis-
covered in 1944, and since that time so-called third
sound, fourth sound, and fifth sound have been de-
scribed [1.6].

Nonlinear effects in sound are an important part
of physical acoustics. Nonlinear effects of interest
include waveform distortion, shock-wave formation, in-
teractions of sound with sound, acoustic streaming,
cavitation, and acoustic levitation. Nonlinearity leads
to distortion of the sinusoidal waveform of a sound
wave so that it becomes nearly triangular as the

shock wave forms. On the other hand, local distur-
bances, called solitons, retain their shape over large
distances.

The study of the interaction of sound and light,
called acoustooptics, is an interesting field in physical
acoustics that has led to several practical devices. In an
acoustooptic modulator, for example, sound waves form
a sort of moving optical diffraction grating that diffracts
and modulates a laser beam.

Sonoluminescence is the name given to a process
by which intense sound waves can generate light. The
light is emitted by bubbles in a liquid excited by sound.
The observed spectra of emitted light seem to indicate
temperatures hotter than the surface of the sun. Some
experimental evidence indicates that nuclear fusion may
take place in bubbles in deuterated acetone irradiated
with intense ultrasound.

Topics of interest in engineering acoustics cover
a wide range and include: transducers and arrays, un-
derwater acoustic systems, acoustical instrumentation,
audio engineering, acoustical holography and acoustical
imaging, ultrasound, and infrasound. Several of these
topics are covered in Chaps. 22–27. Much effort has
been directed into engineering increasingly small trans-
ducers to produce and detect sound. Microphones are
being fabricated on silicon chips as parts of integrated
circuits. Chapter 29 discusses different types of micro-
phone arrays, such as plane arrays, spherical arrays, and
scanning arrays. Chapter 30 discusses acoustic emis-
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6 Introduction

sion, a nondestructive inspection method and a valuable
tool in materials research.

The interaction of sound and heat, called thermoa-
coustics, is an interesting field that applies principles
of physical acoustics to engineering systems. The ther-
moacoustic effect is the conversion of sound energy

to heat or visa versa. In thermoacoustic processes,
acoustic power can pump heat from a region of low
temperature to a region of higher temperature. This
can be used to construct heat engines or refrigerators
with no moving parts. Thermoacoustics is discussed in
Chap. 7.

1.10 Medical Acoustics

Two uses of sound that physicians have employed
for many years are auscultation, listening to the body
with a stethoscope, and percussion, sound genera-
tion by the striking the chest or abdomen to assess
transmission or resonance. The most exciting new de-
velopments in medical acoustics, however, involve the
use of ultrasound, both diagnostic imaging and thera-
peutic applications.

There has been a steady improvement in the qual-
ity of diagnostic ultrasound imaging. Two important
commercial developments have been the advent of
real-time three-dimensional (3-D) imaging and the de-
velopment of hand-held scanners. Surgeons can now
carry out procedures without requiring optical access.
Although measurements on isolated tissue samples
show that acoustic attenuation and backscatter correlate
with pathology, implementing algorithms to obtain this

information on a clinical scanner is challenging at the
present time.

The therapeutic use of ultrasound has blossomed in
recent years. Shock-wave lithotripsy is the predominant
surgical operation for the treatment of kidney stones.
Shock waves also appear to be effective at helping
heal broken bones. High-intensity focused ultrasound
is used to heat tissue selectivity so that cells can be
destroyed in a local region. Ultrasonic devices appear
to hold promise for treating glaucoma, fighting cancer,
and controlling internal bleeding. Advanced therapies,
such as puncturing holes in the heart, promoting local-
ized drug delivery, and even carrying out brain surgery
through an intact skull appear to be feasible with ultra-
sound [1.7].

Other applications of medical ultrasound are in-
cluded in Chap. 21.

1.11 Sounds of the Sea

Oceans cover more than 70% of the Earth’s surface.
Sound waves are widely used to explore the oceans,
because they travel much better in sea water than light
waves. Likewise, sound waves are used, by humans and
dolphins alike, to communicate under water, because
they travel much better than radio waves. Acoustical
oceanography has many military, as well as commercial
applications. Much of our understanding of underwater
sound propagation is a result of research conducted dur-
ing and following World War II. Underwater acoustics
is discussed in Chap. 5.

The speed of sound in water, which is about
1500 m/s, increases with increasing static pressure
by about 1 part per million per kilopascal, or about
1% per 1000 m of depth, assuming temperature re-
mains constant. The variation with temperature is an
increase of about 2% per ◦C temperature rise. Refrac-
tion of sound, due to these changes in speed, along
with reflection at the surface and the bottom, lead
to waveguides at various ocean depths. During World

War II, a deep channel was discovered in which sound
waves could travel distances in excess of 3000 km. This
phenomenon gave rise to the deep channel or sound
fixing and ranging (SOFAR) channel, which could be
used to locate, by acoustic means, airmen downed at
sea.

One of the most important applications of underwa-
ter acoustics is sound navigation and ranging (SONAR).
The purpose of most sonar systems is to detect and
localize a target, such as submarines, mines, fish, or
surface ships. Other SONARs are designed to measure
some quantity, such as the ocean depth or the speed of
ocean currents.

An interesting phenomenon called cavitation occurs
when sound waves of high intensity propagate through
water. When the rarefaction tension phase of the sound
wave is great enough, the medium ruptures and cavita-
tion bubbles appear. Cavitation bubbles can be produced
by the tips of high-speed propellers. Bubbles affect the
speed of sound as well as its attenuation [1.7, 8].
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A Brief Histor2. A Brief History of Acoustics

Thomas D. Rossing

Although there are certainly some good histori-
cal treatments of acoustics in the literature, it still
seems appropriate to begin a handbook of acous-
tics with a brief history of the subject. We begin
by mentioning some important experiments that
took place before the 19th century. Acoustics in
the 19th century is characterized by describing the
work of seven outstanding acousticians: Tyndall,
von Helmholtz, Rayleigh, Stokes, Bell, Edison, and
Koenig. Of course this sampling omits the mention
of many other outstanding investigators.

To represent acoustics during the 20th century,
we have selected eight areas of acoustics, again
not trying to be all-inclusive. We select the eight
areas represented by the first eight technical ar-
eas in the Acoustical Society of America. These are
architectural acoustics, physical acoustics, engi-
neering acoustics, structural acoustics, underwater
acoustics, physiological and psychological acous-
tics, speech, and musical acoustics. We apologize
to readers whose main interest is in another area
of acoustics. It is, after all, a broad interdisciplinary
field.
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2.1 Acoustics in Ancient Times

Acoustics is the science of sound. Although sound
waves are nearly as old as the universe, the scientific
study of sound is generally considered to have its ori-
gin in ancient Greece. The word acoustics is derived
from the Greek word akouein, to hear, although Sauveur
appears to have been the first person to apply the term
acoustics to the science of sound in 1701 [2.1].

Pythagoras, who established mathematics in Greek
culture during the sixth century BC, studied vibrating
strings and musical sounds. He apparently discovered
that dividing the length of a vibrating string into simple
ratios produced consonant musical intervals. Accord-
ing to legend, he also observed how the pitch of the
string changed with tension and the tones generated
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12 Part A Propagation of Sound

by striking musical glasses, but these are probably just
legends [2.2].

Although the Greeks were certainly aware of the im-
portance of good acoustical design in their many fine
theaters, the Roman architect Vitruvius was the first to
write about it in his monumental De Architectura, which

includes a remarkable understanding and analysis of
theater acoustics:

We must choose a site in which the voice may fall
smoothly, and not be returned by reflection so as to
convey an indistinct meaning to the ear.

2.2 Early Experiments on Vibrating Strings, Membranes and Plates

Much of early acoustical investigations were closely
tied to musical acoustics. Galileo reviewed the relation-
ship of the pitch of a string to its vibrating length, and
he related the number of vibrations per unit time to
pitch. Joseph Sauveur made more-thorough studies of
frequency in relation to pitch. The English mathemati-
cian Brook Taylor provided a dynamical solution for the
frequency of a vibrating string based on the assumed
curve for the shape of the string when vibrating in its
fundamental mode. Daniel Bernoulli set up a partial dif-
ferential equation for the vibrating string and obtained
solutions which d’Alembert interpreted as waves travel-
ing in both directions along the string [2.3].

The first solution of the problem of vibrating mem-
branes was apparently the work of S. D. Poisson, and
the circular membrane was handled by R. F. A. Clebsch.
Vibrating plates are somewhat more complex than vi-
brating membranes. In 1787 E. F. F. Chladni described
his method of using sand sprinkled on vibrating plates to
show nodal lines [2.4]. He observed that the addition of
one nodal circle raised the frequency of a circular plate

Fig. 2.1 Chladni patterns on a circular plate. The first four have two, three, four, and five nodal lines but no nodal circles;
the second four have one or two nodal circles

by about the same amount as adding two nodal diam-
eters, a relationship that Lord Rayleigh called Chladni’s
law. Sophie Germain wrote a fourth-order equation to
describe plate vibrations, and thus won a prize provided
by the French emperor Napoleon, although Kirchhoff
later gave a more accurate treatment of the boundary
conditions. Rayleigh, of course, treated both membranes
and plates in his celebrated book Theory of Sound [2.5].

Chladni generated his vibration patterns by strewing
sand on the plate, which then collected along the nodal
lines. Later he noticed that fine shavings from the hair of
his violin bow did not follow the sand to the nodes, but
instead collected at the antinodes. Savart noted the same
behavior for fine lycopodium powder [2.6]. Michael
Faraday explained this as being due to acoustic stream-
ing [2.7]. Mary Waller published several papers and
a book on Chladni patterns, in which she noted that
particle diameter should exceed 100 μm in order to col-
lect at the nodes [2.8]. Chladni figures of some of the
many vibrational modes of a circular plate are shown in
Fig. 2.1.

2.3 Speed of Sound in Air

From earliest times, there was agreement that sound is
propagated from one place to another by some activ-
ity of the air. Aristotle understood that there is actual
motion of air, and apparently deduced that air is com-

pressed. The Jesuit priest Athanasius Kircher was one
of the first to observe the sound in a vacuum cham-
ber, and since he could hear the bell he concluded that
air was not necessary for the propagation of sound.
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Robert Boyle, however, repeated the experiment with
a much improved pump and noted the much-observed
decrease in sound intensity as the air is pumped out. We
now know that sound propagates quite well in rarified
air, and that the decrease in intensity at low pressure
is mainly due to the impedance mismatch between the
source and the medium as well as the impedance mis-
match at the walls of the container.

As early as 1635, Gassendi measured the speed of
sound using firearms and assuming that the light of the
flash is transmitted instantaneously. His value came out
to be 478 m/s. Gassendi noted that the speed of sound
did not depend on the pitch of the sound, contrary to the
view of Aristotle, who had taught that high notes are
transmitted faster than low notes. In a more careful ex-
periment, Mersenne determined the speed of sound to
be 450 m/s [2.9]. In 1650, G. A. Borelli and V. Viviani
of the Accademia del Cimento of Florence obtained
a value of 350 m/s for the speed of sound [2.10]. An-
other Italian, G. L. Bianconi, showed that the speed of
sound in air increases with temperature [2.11].

The first attempt to calculate the speed of sound
through air was apparently made by Sir Isaac Newton.

He assumed that, when a pulse is propagated through
a fluid, the particles of the fluid move in simple har-
monic motion, and that if this is true for one particle,
it must be true for all adjacent ones. The result is that
the speed of sound is equal to the square root of the ra-
tio of the atmospheric pressure to the density of the air.
This leads to values that are considerably less than those
measured by Newton (at Trinity College in Cambridge)
and others.

In 1816, Pierre Simon Laplace suggested that in
Newton’s and Lagrange’s calculations an error had been
made in using for the volume elasticity of the air the
pressure itself, which is equivalent to assuming the elas-
tic motions of the air particles take place at constant
temperature. In view of the rapidity of the motions, it
seemed more reasonable to assume that the compres-
sions and rarefactions follow the adiabatic law. The
adiabatic elasticity is greater than the isothermal elas-
ticity by a factor γ , which is the ratio of the specific
heat at constant pressure to that at constant volume. The
speed of sound should thus be given by c = (γ p/ρ)1/2,
where p is the pressure and ρ is the density. This gives
much better agreement with experimental values [2.3].

2.4 Speed of Sound in Liquids and Solids

The first serious attempt to measure the speed of sound
in liquid was probably that of the Swiss physicist Daniel
Colladon, who in 1826 conducted studies in Lake
Geneva. In 1825, the Academy of Sciences in Paris had
announced as the prize competition for 1826 the meas-
urement of the compressibility of the principal liquids.
Colladon measured the static compressibility of several
liquids, and he decided to check the accuracy of his
measurements by measuring the speed of sound, which
depends on the compressibility. The compressibility of
water computed from the speed of sound turned out to
be very close to the statically measured values [2.12].
Oh yes, he won the prize from the Academy.

In 1808, the French physicist J. B. Biot measured the
speed of sound in a 1000 m long iron water pipe in Paris
by direct timing of the sound travel [2.13]. He com-
pared the arrival times of the sound through the metal
and through the air and determined that the speed is
much greater in the metal. Chladni had earlier studied
the speed of sound in solids by noting the pitch ema-
nating from a struck solid bar, just as we do today. He
deduced that the speed of sound in tin is about 7.5 times
greater than in air, while in copper it was about 12 times
greater. Biot’s values for the speed in metals agreed well
with Chladni’s.

2.5 Determining Frequency

Much of the early research on sound was tied to mu-
sical sound. Vibrating strings, membranes, plates, and
air columns were the bases of various musical instru-
ments. Music emphasized the importance of ratios for
the different tones. A string could be divided into halves

or thirds or fourths to give harmonious pitches. It was
also known that pitch is related to frequency. Marin
Mersenne (1588–1648) was apparently the first to de-
termine the frequency corresponding to a given pitch.
By working with a long rope, he was able determine the
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frequency of a standing wave on the length, mass, and
tension of the rope. He then used a short wire under ten-
sion and from his rope formula he was able to compute
the frequency of oscillation [2.14]. The relationship
between pitch and frequency was later improved by
Joseph Sauveur, who counted beats between two low-
pitched organ pipes differing in pitch by a semitone.
Sauveur [2.1] deduced that

the relation between sounds of low and high pitch is
exemplified in the ratio of the numbers of vibrations
which they both make in the same time.

He recognized that two sounds differing a musical fifth
have frequencies in the ratio of 3 : 2. We have already
commented that Sauveur was the first to apply the term
acoustics to the science of sound [2.1]:

I have come then to the opinion that there is a sci-
ence superior to music, and I call it acoustics; it has
for its object sound in general, whereas music has
for its objects sounds agreeable to the ear.

Tuning forks were widely used for determining
pitch by the 19th century. Johann Scheibler (1777–
1837) developed a tuning-fork tonometer which con-
sisted of some 56 tuning forks. One was adjusted to
the pitch of A above middle C, and another was ad-
justed by ear to be one octave lower. The others were
then adjusted to differ successively by four vibrations
per second above the lower A. Thus, he divided the oc-
tave into 55 intervals, each of about four vibrations per
second. He then measured the number of beats in each
interval, the sum total of such beats giving him the ab-
solute frequency. He determined the frequency of the
lower A to be 220 vibrations per second and the upper
A to be 440 vibrations per second [2.15].

Felix Savart (1791–1841) used a rapidly rotating
toothed wheel with 600 teeth to produce sounds of high
frequency. He estimated the upper frequency threshold
of hearing to be 24 000 vibrations per second. Charles
Wheatstone (1802–1875) pioneered the use of rapidly
rotating mirrors to study periodic events. This technique
was later used by Rudolph Koenig and others to study
speech sounds.

2.6 Acoustics in the 19th Century

Acoustics really blossomed in the 19th century. It is
impossible to describe but a fraction of the significant
work in acoustics during this century. We will try to
provide a skeleton, at least, by mentioning the work of
a few scientists. Especially noteworthy is the work of
Tyndall, von Helmholtz, and Rayleigh, so we begin with
them.

2.6.1 Tyndall

John Tyndall was born in County Carlow, Ireland in
1820. His parents were unable to finance any advanced
education. After working at various jobs, he traveled
to Marburg, Germany where he obtained a doctorate.
He was appointed Professor of Natural Philosophy at
the Royal Institution in London, where he displayed his
skills in popular lecturing. In 1872 he made a lecture
tour in the United States, which was a great success. His
first lectures were on heat, and in 1863 these lectures
were published under the title Heat as a Mode of Motion.

In 1867 he published his book On Sound with seven
chapters. Later he added chapters on the transmission
of sound through the atmosphere and on combinations
of musical tones. In two chapters on vibrations of rods,
plates, and bells, he notes that longitudinal vibrations

produced by rubbing a rod lengthwise with a cloth or
leather treated with rosin excited vibrations of higher
frequency than the transverse vibrations. He discusses
the determination of the waveform of musical sounds.
By shining an intense beam of light on a mirror attached
to a tuning fork and then to a slowly rotating mirror, as
Lissajous had done, he spread out the waveform of the
oscillations.

Tyndall is well remembered for his work on the
effect of fog on transmission of sound through the
atmosphere. He had succeeded Faraday as scientific ad-
visor to the Elder Brethren of Trinity House, which
supervised lighthouses and pilots in England. When
fog obscures the lights of lighthouses, ships depend on
whistles, bells, sirens, and even gunfire for navigation
warnings. In 1873 Tyndall began a systematic study
of sound propagation over water in various weather
conditions in the straits of Dover. He noted great incon-
sistencies in the propagation.

2.6.2 Helmholtz

Hermann von Helmholtz was educated in medicine. He
had wanted to study physics, but his father could not
afford to support him, and the Prussian government of-
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fered financial support for students of medicine who
would sign up for an extended period of service with
the military. He was assigned a post in Potsdam, where
he was able to set up his own laboratory in physics
and physiology. The brilliance of his work led to can-
celation of his remaining years of army duty and to his
appointment as Professor of Physiology at Königsberg.
He gave up the practice of medicine and wrote papers
on physiology, color perception, and electricity. His first
important paper in acoustics appears to have been his
On Combination Tones, published in 1856 [2.16].

His book On Sensations of Tone (1862) combines
his knowledge of both physiology and physics and mu-
sic as well. He worked with little more than a stringed
instrument, tuning forks, his siren, and his famous res-
onators to show that pitch is due to the fundamental
frequency but the quality of a musical sound is due to
the presence of upper partials. He showed how the ear
can separate out the various components of a complex
tone. He concluded that the quality of a tone depends
solely on the number and relative strength of its partial
tone and not on their relative phase.

In order to study vibrations of violin stings and
speech sounds, von Helmholtz invented a vibration
microscope, which displayed Lissajous patterns of vi-
bration. One lens of the microscope is attached to the
prong of a tuning fork, so a fixed spot appears to move
up and down. A spot of luminous paint is then ap-
plied to the string, and a bow is drawn horizontally
across the vertical string. The point on the horizontally
vibrating violin string forms a Lissajous pattern as it
moves. By viewing patterns for a bowed violin string,
von Helmholtz was able to determine the actual mo-
tion of the string, and such motion is still referred to
as Helmholtz motion.

Much of Helmholtz’s book is devoted to discussion
of hearing. Using a double siren, he studied difference
tones and combination tones. He determined that be-
yond about 30 beats per second, the listener no longer
hears individual beats but the tone becomes jarring or
rough. He postulated that individual nerve fibers acted
as vibrating strings, each resonating at a different fre-
quency. Noting that skilled musicians

can distinguish with certainty a difference in pitch
arising from half a vibration in a second in the dou-
bly accented octave,

he concluded that some 1000 different pitches might be
distinguished in the octave between 50 and 100 cycles
per second, and since there are 4500 nerve fibers in the

cochlea, this represented about one fiber for each two
cents of musical interval. He admitted, however

that we cannot precisely ascertain what parts of the
ear actually vibrate sympathetically with individual
tones.

2.6.3 Rayleigh

Rayleigh was a giant. He contributed to so many areas
of physics, and his contributions to acoustics were mon-
umental. His book Theory of Sound still has an honored
place on the desk of every acoustician (alongside von
Helmholtz’s book, perhaps). In addition to his book, he
published some 128 papers on acoustics. He anticipated
so many interesting things. I have sometimes made the
statement that every time I have a good idea about sound
Rayleigh steals it and puts it into his book.

John William Strutt, who was to become the third
Baron Rayleigh, was born at the family estate in Ter-
ling England in 1842. (Milk from the Rayleigh estate
has supplied many families in London to this day.) He
enrolled at Eton, but illness caused him to drop out,
and he completed his schooling at a small academy in
Torquay before entering Trinity College, Cambridge.
His ill health may have been a blessing for the rest of
the world. After nearly dying of rheumatic fever, he
took a long cruise up the Nile river, during which he
concentrated on writing his Science of Sound.

Soon after he returned to England, his father died
and he became the third Baron Rayleigh and inherited
title to the estate at Terling, where he set up a laboratory.
When James Clerk Maxwell died in 1879, Rayleigh was
offered the position as Cavendish Professor of Physics
at Cambridge. He accepted it, in large measure because
there was an agricultural depression at the time and
his farm tenants were having difficulties in making rent
payments [2.15].

Rayleigh’s book and his papers cover such a wide
range of topics in acoustics that it would be impracti-
cal to attempt to describe them here. His brilliant use
of mathematics set the standard for subsequent writings
on acoustics. The first volume of his book develops the
theory of vibrations and its applications to strings, bars,
membranes, and plates, while the second volume begins
with aerial vibrations and the propagation of waves in
fluids.

Rayleigh combined experimental work with theory
in a very skillful way. Needing a way to determine
the intensity of a sound source, he noted that a light
disk suspended in a beam of sound tended to line up
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with its plane perpendicular to the direction of the
fluid motion. The torque on the disk is proportional
to the sound intensity. By suspending a light mirror in
a sound field, the sound intensity could be determined
by means of a sensitive optical lever. The arrangement,
known as a Rayleigh disk, is still used to measure sound
intensity.

Another acoustical phenomenon that bears his name
is the propagation of Rayleigh waves on the plane sur-
face of an elastic solid. Rayleigh waves are observed
on both large and small scales. Most of the shaking felt
from an earthquake is due to Rayleigh waves, which can
be much larger than the seismic waves. Surface acoustic
wave (SAW) filters and sensors make use of Rayleigh
waves.

2.6.4 George Stokes

George Gabriel Stokes was born in County Sligo, Ire-
land in 1819. His father was a Protestant minister, and
all of his brothers became priests. He was educated
at Bristol College and Pembroke College, Cambridge.
In 1841 he graduated as senior wrangler (the top First
Class degree) in the mathematical tripos and he was the
first Smith’s prize man. He was awarded a Fellowship
at Pembroke College and later appointed Lucasian pro-
fessor of mathematics at Cambridge. The position paid
rather poorly, however, so he accepted an additional po-
sition as professor of physics at the Government School
of Mines in London.

William Hopkins, his Cambridge tutor, advised him
to undertake research into hydrodynamics, and in 1842
he published a paper On the steady motion of incom-
pressible fluids. In 1845 he published his classic paper
On the theories of the internal friction of fluids in mo-
tion, which presents a three-dimensional equation of
motion of a viscous fluid that has come to be known
as the Stokes–Navier equation. Although he discov-
ered that Navier, Poisson, and Saint-Venant had also
considered the problem, he felt that his results were
obtained with sufficiently different assumptions to jus-
tify publication. The Stokes–Navier equation of motion
of a viscous, compressible fluid is still the starting
point for much of the theory of sound propagation in
fluids.

2.6.5 Alexander Graham Bell

Alexander Graham Bell was born in Edinburgh, Scot-
land in 1847. He taught music and elocution in Scotland

before moving to Canada with his parents in 1868, and
in 1871 he moved to Boston as a teacher of the deaf.
In his spare time he worked on the harmonic telegraph,
a device that would allow two or more electrical signals
to be transmitted on the same wire. Throughout his life,
Bell had been interested in the education of deaf people,
which interest lead him to invent the microphone and,
in 1876, his electrical speech machine, which we now
call a telephone. He was encouraged to work steadily on
this invention by Joseph Henry, secretary of the Smith-
sonian Institution and a highly respected physicist and
inventor.

Bell’s telephone was a great financial, as well as
technical success. Bell set up a laboratory on his es-
tate near Braddock, Nova Scotia and continued to
improve the telephone as well as to work on other
inventions. The magnetic transmitter was replaced by
Thomas Edison’s carbon microphone, the rights to
which he obtained as a result of mergers and patent
lawsuits [2.15].

2.6.6 Thomas Edison

The same year that Bell was born in Scotland (1847),
Thomas A. Edison, the great inventor, was born in Mi-
lan, Ohio. At the age of 14 he published his own small
newspaper, probably the first newspaper to be sold on
trains. Also aged 14 he contracted scarlet fever which
destroyed most of his hearing. His first invention was an
improved stock-ticker for which he was paid $40 000.
Shortly after setting up a laboratory in Menlo Park,
New Jersey, he invented (in 1877) the first phonograph.
This was followed (in 1879) by the incandescent elec-
tric light bulb and a few years later by the Vitascope,
which led to the first silent motion pictures. Other inven-
tions included the dictaphone, mimeograph and storage
battery.

The first published article on the phonograph ap-
peared in Scientific American in 1877 after Edition
visited the New York offices of the journal and
demonstrated his machine. Later he demonstrated his
machine in Washington for President Hayes, members
of Congress and other notables. Many others made im-
provements to Edison’s talking machine, but the credit
still goes to Edison for first showing that the human
voice could be recorded for posterity.

In its founding year (1929), the Acoustical Society
of America (ASA) made Thomas Edison an honorary
fellow, an honor which was not again bestowed during
the 20 years that followed.
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Fig. 2.2 Koenig’s manometric flame apparatus. The image
of the oscillating flame is seen in the rotating mirror (after
[2.17])

2.6.7 Rudolph Koenig

Rudolph Koenig was born in Koenigsberg (now Kalin-
ingrad), Russia in 1832 and attended the university
there at a time when von Helmholtz was a Professor of
Physiology there. A few years after taking his degree,
Koenig moved to Paris where he studied violin mak-
ing under Villaume. He started his own business making
acoustical apparatus, which he did with great care and
talent. He devoted more than 40 years to making the best
acoustical equipment of his day, many items of which
are still in working order in museums and acoustics lab-
oratories. Koenig, who never married, lived in the small
front room of his Paris apartment, which was also his
office and stock room, while the building and testing of
instruments was done in the back rooms by Koenig and

a few assistants. We will attempt to describe but a few
of his acoustical instruments, but they have been well
documented by Greenslade [2.17], Beyer [2.18], and
others. The two largest collections of Koenig appara-
tus in North America are at the Smithsonian Institution
and the University of Toronto.

Koenig made tuning forks of all sizes. A large 64 Hz
fork formed the basis for a tuning-fork clock. A set of
forks covering a range of frequencies in small steps was
called a tonometer by Johann Scheibler. For his own
use, Koenig made a tonometer consisting of 154 forks
ranging in frequency from 16 to 21 845 Hz. Many tun-
ing forks were mounted on hollow wooden resonators.
He made both cylindrical and spherical Helmholtz res-
onators of all sizes.

To his contemporaries, Koenig was probably best
known for his invention (1862) of the manometric flame
apparatus, shown in Fig. 2.2, which allowed the visu-
alization of acoustic signals. The manometric capsule
is divided into two parts by a thin flexible membrane.
Sounds waves are collected by a funnel, pass down the
rubber tube, and cause the membrane to vibrate. Vibra-
tions of the membrane cause a periodic change in the
supply of gas to the burner, so the flame oscillates up
and down at the frequency of the sound. The oscillating
flame is viewed in the rotating mirror.

Koenig made apparatus for both the Fourier analy-
sis and the synthesis of sound. At the 1876 exhibition,
the instrument was used to show eight harmonics of
a sung vowel. The Fourier analyzer included eight
Helmholtz resonators, tuned to eight harmonics, which
fed eight manometric flames. The coefficients of the
various sinusoidal terms related to the heights of the
eight flame images. The Helmholtz resonators could be
tuned to different frequencies. The Fourier synthesizer
had 10 electromagnetically-driven tuning forks and 10
Helmholtz resonators. A hole in each resonator could be
opened or closed by means of keys [2.17].

2.7 The 20th Century

history of acoustics in the 20th century could be
presented in several ways. In his definitive history,
Beyer [2.15] devotes one chapter to each quarter cen-
tury, perhaps the most sensible way to organize the
subject. One could divide the century at the year
1929, the year the Acoustical Society of America was
founded. One of the events in connection with the 75th
anniversary of this society was the publication of a snap-

shot history of the Society written by representatives
from the 15 technical committees and edited by Henry
Bass and William Cavanaugh [2.19]. Since we make no
pretense of covering all areas of acoustics nor of report-
ing all acoustical developments in the 20th century, we
will merely select a few significant areas of acoustics
and try to discuss briefly some significant developments
in these. For want of other criteria, we have selected
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the nine areas of acoustics that correspond to the first
eight technical committees in the Acoustical Society of
America.

2.7.1 Architectural Acoustics

Wallace Clement Sabine (1868–1919) is generally con-
sidered to be the father of architectural acoustics. He
was the first to make quantitative measurements on
the acoustics of rooms. His discovery that the product
of total absorption and the duration of residual sound
is a constant still forms the basis of sound control in
rooms. His pioneering work was not done entirely by
choice, however. As a 27-year old professor at Har-
vard University, he was assigned by the President to
determine corrective measures for the lecture room at
Harvard’s Fogg Art Museum. As he begins his famous
paper on reverberation [2.20]:

The following investigation was not undertaken at
first by choice but devolved on the writer in 1895
through instructions from the Corporation of Har-
vard University to propose changes for remedying
the acoustical difficulties in the lecture-room of the
Fogg Art Museum, a building that had just been
completed.

Sabine determined the reverberation time in the
Fogg lecture room by using an organ pipe and a chrono-
graph. He found the reverberation time in the empty
room to be 5.62 seconds. Then he started adding seat
cushions from the Sanders Theater and measuring the
resulting reverberation times. He developed an empiri-
cal formula T = 0.164 V/A, where T is reverberation
time, V is volume (in cubic feet) and A is the aver-
age absorption coefficient times the total area (in square
feet) of the walls, ceiling and floor. This formula is still
called the Sabine reverberation formula.

Following his success with the Fogg lecture room,
Sabine was asked to come up with acoustical specifi-
cations for the New Boston Music Hall, now known
as Symphony Hall, which would ensure hearing superb
music from every seat. Sabine answered with a shoebox
shape for the building to keep out street noise. Then,
using his mathematical formula for reverberation time,
Sabine carefully adjusted the spacing between the rows
of seats, the slant of the walls, the shape of the stage,
and materials used in the walls to produce the exquisite
sound heard today at Symphony Hall (Fig. 2.3).

Vern Knudsen (1893–1974), physicist at University
of California Los Angeles (UCLA) and third president

Fig. 2.3 Interior of Symphony Hall in Boston whose
acoustical design by Wallace Clement Sabine set a standard
for concert halls

of the Acoustical Society of America, was one of many
persons who contributed to architectural acoustics in the
first half of the 20th century. His collaboration with
Hans Kneser of Germany led to an understanding of
molecular relaxation phenomena in gases and liquids.
In 1932 he published a book on Architectural Acoustics
[2.21], and in 1950, a book Architectural Designing in
Acoustics with Cyril Harris [2.22], which summarized
most of what was known about the subject by the middle
of the century.

In the mid 1940s Richard Bolt, a physicist at
the Massachusetts Institute of Technology (MIT), was
asked by the United Nations (UN) to design the acous-
tics for one of the UN’s new buildings. Realizing the
work that was ahead of him, he asked Leo Beranek to
join him. At the same time they hired another MIT pro-
fessor, Robert Newman, to help with the work with the
United Nations; together they formed the firm of Bolt,
Beranek, and Newman (BBN), which was to become
one of the foremost architectural consulting firms in the
world. This firm has provided acoustical consultation
for a number of notable concert halls, including Avery
Fisher Hall in New York, the Koussevitzky Music Shed
at Tanglewood, Davies Symphony Hall in San Fran-
cisco, Roy Thompson Hall in Toronto, and the Center
for the Performing Arts in Tokyo [2.23]. They are also
well known for their efforts in pioneering the Arpanet,
forerunner of the Internet.
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Recipients of the Wallace Clement Sabine award
for accomplishments in architectural acoustics, in-
clude Vern Knudsen, Floyd Watson, Leo Beranek,
Erwin Meyer, Hale Sabine, Lothar Cremer, Cyril Har-
ris, Thomas Northwood, Richard Waterhouse, Harold
Marshall, Russell Johnson, Alfred Warnock, William
Cavanaugh, John S. Bradley, and Christopher Jaffe. The
silver medal in architectural acoustics was awarded to
Theodore Schultz. The work of each of these distin-
guished acousticians could be a chapter in the history
of acoustics but space does not allow it.

2.7.2 Physical Acoustics

Although all of acoustics, the science of sound, incorpo-
rates the laws of physics, we usually think of physical
acoustics as being concerned with fundamental acoustic
wave propagation phenomena, including transmission,
reflection, refraction, interference, diffraction, scatter-
ing, absorption, dispersion of sound and the use of
acoustics to study physical properties of matter and to
produce changes in these properties. The foundations
for physical acoustics were laid by such 19th century
giants as von Helmholtz, Rayleigh, Tyndall, Stokes,
Kirchhoff, and others.

Ultrasonic waves, sound waves with frequencies
above the range of human hearing, have attracted the
attention of many physicists and engineers in the 20th
century. An early source of ultrasound was the Gal-
ton whistle, used by Francis Galton to study the upper
threshold of hearing in animals. More powerful sources
of ultrasound followed the discovery of the piezoelec-
tric effect in crystals by Jacques and Pierre Curie. They
found that applying an electric field to the plates of cer-
tain natural crystals such as quartz produced changes
in thickness. Later in the century, highly efficient ce-
ramic piezoelectric transducers were used to produce
high-intensity ultrasound in solids, liquids, and gases.

Probably the most important use of ultrasound
nowadays is in ultrasonic imaging, in medicine (sono-
grams) as well as in the ocean (sonar). Ultrasonic waves
are used in many medical diagnostic procedures. They
are directed toward a patient’s body and reflected when
they reach boundaries between tissues of different den-
sities. These reflected waves are detected and displayed
on a monitor. Ultrasound can also be used to detect ma-
lignancies and hemorrhaging in various organs. It is also
used to monitor real-time movement of heart valves and
large blood vessels. Air, bone, and other calcified tissues
absorb most of the ultrasound beam; therefore this tech-
nique cannot be used to examine the bones or the lungs.

The father of sonar (sound navigation and ranging)
was Paul Langevin, who used active echo ranging sonar
at about 45 kHz to detect mines during World War I.
Sonar is used to explore the ocean and study marine
life in addition to its many military applications [2.24].
New types of sonar include synthetic aperture sonar
for high-resolution imaging using a moving hydrophone
array and computed angle-of-arrival transient imaging
(CAATI).

Infrasonic waves, which have frequencies below
the range of human hearing, have been less frequently
studied than ultrasonic waves. Natural phenomena are
prodigious generators of infrasound. When the volcano
Krakatoa exploded, windows were shattered hundreds
of miles away by the infrasonic wave. The ringing of
both earth and atmosphere continued for hours. It is be-
lieved that infrasound actually formed the upper pitch
of this natural volcanic explosion, tones unmeasurably
deep forming the actual central harmonic of the event.
Infrasound from large meteoroids that enter our atmo-
sphere have very large amplitudes, even great enough to
break glass windows [2.25]. Ultralow-pitch earthquake
sounds are keenly felt by animals and sensitive humans.
Quakes occur in distinct stages. Long before the final
breaking release of built-up earth tensions, there are nu-
merous and succinct precursory shocks. Deep shocks
produce strong infrasonic impulses up to the surface, the
result of massive heaving ground strata. Certain animals
(fish) can actually hear infrasonic precursors.

Aeroacoustics, a branch of physical acoustics, is the
study of sound generated by (or in) flowing fluids. The
mechanism for sound or noise generation may be due to
turbulence in flows, resonant effects in cavities or wave-
guides, vibration of boundaries of structures etc. A flow
may alter the propagation of sound and boundaries can
lead to scattering; both features play a significant part
in altering the noise received at a particular observation
point. A notable pioneer in aeroacoustics was Sir James
Lighthill (1924–1998), whose analyses of the sounds
generated in a fluid by turbulence have had appreciable
importance in the study of nonlinear acoustics. He iden-
tified quadrupole sound sources in the inhomogeneities
of turbulence as a major source of the noise from jet
aircraft engines, for example [2.26].

There are several sources of nonlinearity when
sound propagates through gases, liquids, or solids. At
least since the time of Stokes, it has been known that in
fluids compressions propagate slightly faster than rar-
efactions, which leads to distortion of the wave front
and even to the formation of shock waves. Richard
Fay (1891–1964) noted that the waveform takes on the
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shape of a sawtooth. In 1935 Eugene Fubini–Ghiron
demonstrated that the pressure amplitude in a nondis-
sipative fluid is proportional to an infinite series in the
harmonics of the original signal [2.15]. Several books
treat nonlinear sound propagation, including those by
Beyer [2.27] and by Hamilton and Blackstock [2.28].

Measurements of sound propagation in liquid he-
lium have led to our basic understanding of cryogenics
and also to several surprises. The attenuation of sound
shows a sharp peak near the so-called lambda point at
which helium takes on superfluid properties. This be-
havior was explained by Lev Landau (1908–1968) and
others. Second sound, the propagation of waves consist-
ing of periodic oscillations of temperature and entropy,
was discovered in 1944 by V. O. Peshkov. Third sound,
a surface wave of the superfluid component was re-
ported in 1958, whereas fourth sound was discovered
in 1962 by K. A. Shapiro and Isadore Rudnick. Fifth
sound, a thermal wave, has also been reported, as has
zero sound [2.15].

While there a number of ways in which light can in-
teract with sound, the term optoacoustics typically refers
to sound produced by high-intensity light from a laser.
The optoacoustic (or photoacoustic) effect is charac-
terized by the generation of sound through interaction
of electromagnetic radiation with matter. Absorption of
single laser pulses in a sample can effectively gener-
ate optoacoustic waves through the thermoelastic effect.
After absorption of a short pulse the heated region ther-
mally expands, creating a mechanical disturbance that
propagates into the surrounding medium as a sound
wave. The waves are recorded at the surface of the sam-
ple with broadband ultrasound transducers.

Sonoluminescence uses sound to produce light.
Sonoluminescence, the emission of light by bubbles in
a liquid excited by sound, was discovered by H. Frenzel
and H. Schultes in 1934, but was not considered very
interesting at the time. A major breakthrough occurred
when Felipe Gaitan and his colleagues were able to pro-
duce single-bubble sonoluminescence, in which a single
bubble, trapped in a standing acoustic wave, emits light
with each pulsation [2.29].

The wavelength of the emitted light is very short,
with the spectrum extending well into the ultraviolet.
The observed spectrum of emitted light seems to indi-
cate a temperature in the bubble of at least 10 000 ◦C,
and possibly a temperature in excess of one million de-
grees C. Such a high temperature makes the study of
sonoluminescence especially interesting for the possi-
bility that it might be a means to achieve thermonuclear
fusion. If the bubble is hot enough, and the pressures in

it high enough, fusion reactions like those that occur in
the Sun could be produced within these tiny bubbles.

When sound travels in small channels, oscillating
heat also flows to and from the channel walls, lead-
ing to a rich variety of thermoacoustic effects. In 1980,
Nicholas Rott developed the mathematics describing
acoustic oscillations in a gas in a channel with an
axial temperature gradient, a problem investigated by
Rayleigh and Kirchhoff without much success [2.30].
Applying Rott’s mathematics, Hofler et al. invented
a standing-wave thermoacoustic refrigerator in which
the coupled oscillations of gas motion, temperature, and
heat transfer in the sound wave are phased so that heat is
absorbed at low temperature and waste heat is rejected
at higher temperature [2.31].

Recipients of the ASA silver medal in physical
acoustics since it was first awarded in 1975 have in-
cluded Isadore Rudnick, Martin Greenspan, Herbert
McSkimin, David Blackstock, Mack Breazeale, Allan
Pierce, Julian Maynard, Robert Apfel, Gregory Swift,
Philip Marston, Henry Bass, Peter Westervelt, and An-
drea Prosperetti.

2.7.3 Engineering Acoustics

It is virtually impossible to amplify sound waves. Elec-
trical signals, on the other hand, are relatively easy
to amplify. Thus a practical system for amplifying
sound includes input and output transducers, together
with the electronic amplifier. Transducers have occu-
pied a central role in engineering acoustics during the
20th century.

The transducers in a sound amplifying system are
microphones and loudspeakers. The first microphones
were Bell’s magnetic transmitter and the loosely packed
carbon microphones of Edison and Berliner. A great
step forward in 1917 was the invention of the con-
denser microphone by Edward Wente (1889–1972). In
1962, James West and Gerhard Sessler invented the foil
electret or electret condenser microphone, which has
become the most ubiquitous microphone in use. It can
be found in everything from telephones to children’s
toys to medical devices. Nearly 90% of the approxi-
mately one billion microphones manufactured annually
are electret designs.

Ernst W. Siemens was the first to describe the dy-
namic or moving-coil loudspeaker, with a circular coil
of wire in a magnetic field and supported so that it
could move axially. John Stroh first described the con-
ical paper diaphragm that terminated at the rim of the
speaker in a section that was flat except for corruga-
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tions. In 1925, Chester W. Rice and Edward W. Kellogg
at General Electric established the basic principle
of the direct-radiator loudspeaker with a small coil-
driven mass-controlled diaphragm in a baffle with
a broad mid-frequency range of uniform response. In
1926, Radio Corporation of America (RCA) used this
design in the Radiola line of alternating current (AC)-
powered radios. In 1943 James Lansing introduced the
Altec-Lansing 604 duplex radiator which combined an
efficient 15 inch woofer with a high-frequency compres-
sion driver and horn [2.32].

In 1946, Paul Klipsch introduced the Klipschorn,
a corner-folded horn that made use of the room bound-
aries themselves to achieve efficient radiation at low
frequency. In the early 1940s, the Jensen company
popularized the vented box or bass reflex loudspeaker
enclosure. In 1951, specific loudspeaker driver pa-
rameters and appropriate enclosure alignments were
described by Neville Thiele and later refined by Richard
Small. Thiele–Small parameters are now routinely
published by loudspeaker manufacturers and used by
professionals and amateurs alike to design vented en-
closures [2.33].

The Audio Engineering Society was formed in
1948, the same year the microgroove 33 1/3 rpm long-
play vinyl record (LP) was introduced by Columbia
Records. The founding of this new society had the
unfortunate effect of distancing engineers primarily
interested in audio from the rest of the acoustics engi-
neering community.

Natural piezoelectric crystals were used to generate
sound waves for underwater signaling and for ultra-
sonic research. In 1917 Paul Langevin obtained a large
crystal of natural quartz from which 10 × 10 × 1.6 cm
slices could be cut. He constructed a transmitter that
sent out a beam powerful enough to kill fish in its
near field [2.15]. After World Wart II, materials, such
as potassium dihydrogen phosphate (KDP), ammonium
dihydrogen phosphate (ADP) and barium titanate re-
placed natural quartz in transducers. There are several
piezoelectric ceramic compositions in common use to-
day: barium titanate, lead zirconate titanate (PZT) and
modified iterations such as lead lanthanum zirconate ti-
tanate (PLZT), lead metaniobate and lead magnesium
niobate (PMN, including electrostrictive formulations).
The PZT compositions are the most widely used in
applications involving light shutters, micro-positioning
devices, speakers and medical array transducers.

Recipients of the ASA silver medal in engineering
acoustics have included Harry Olson, Hugh Knowles,
Benjamin Bauer, Per Bruel, Vincent Salmon, Albert

Bodine, Joshua Greenspon, Alan Powell, James West,
Richard Lyon, John Bouyoucos, Allan Zuckerwar, and
Gary Elko. Interdisciplinary medals have gone to Victor
Anderson, Steven Garrett, and Gerhard Sessler.

2.7.4 Structural Acoustics

The vibrations of solid structures was discussed at
some length by Rayleigh, Love, Timoshenko, Clebsch,
Airey, Lamb, and others during the 19th and early 20th
centuries. Nonlinear vibrations were considered by G.
Duffing in 1918. R. N. Arnold and G. B. Warburton
solved the complete boundary-value problem of the free
vibration of a finite cylindrical shell. Significant ad-
vances have been made in our understanding of the
radiation, scattering, and response of fluid-loaded elas-
tic plates by G. Maidanik, E. Kerwin, M. Junger, and
D. Feit.

Statistical energy analysis (SEA), championed by
Richard Lyon and Gideon Maidanik, had its begin-
nings in the early 1960s. In the 1980s, Christian Soize
developed the fuzzy structure theory to predict the
mid-frequency dynamic response of a master structure
coupled with a large number of complex secondary sub-
systems. The structural and geometric details of the
latter are not well defined and therefore labeled as fuzzy.

A number of good books have been written
on the vibrations of simple and complex structures.
Especially noteworthy, in my opinion, are books
by Cremer et al. [2.34], Junger and Feit [2.35],
Leissa [2.36], [2.37], and Skudrzyk [2.38]. Statistical
energy analysis is described by Lyon [2.39]. Near-
field acoustic holography, developed by Jay Maynard
and Earl Williams, use pressure measurements in the
near field of a vibrating object to determine its source
distribution on the vibrating surface [2.40]. A near-
field acoustic hologram of a rectangular plate driven at
a point is shown in Fig. 2.4.

Fig. 2.4 Near-field hologram of pressure near a rectangu-
lar plate driven at 1858 Hz at a point (courtesy of Earl
Williams)
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The ASA has awarded its Trent–Crede medal,
which recognizes accomplishment in shock and vibra-
tion, to Carl Vigness, Raymond Mindlin, Elias Klein,
J. P. Den Hartog, Stephen Crandall, John Snowdon,
Eric Ungar, Miguel Junger, Gideon Maidanik, Preston
Smith, David Feit, Sabih Hayek, Jerry Ginsberg, and
Peter Stepanishen.

2.7.5 Underwater Acoustics

The science of underwater technology in the 20th cen-
tury is based on the remarkable tools of transduction
that the 19th century gave us. It was partly motivated
by the two world wars and the cold war and the threats
raised by submarines and underwater mines. Two non-
military commercial fields that have been important
driving forces in underwater acoustics are geophysical
prospecting and fishing. The extraction of oil from the
seafloor now supplies 25% of our total supply [2.41].

Essential to understanding underwater sound propa-
gation is detailed knowledge about the speed of sound in
the sea. In 1924, Heck and Service published tables on
the dependence of sound speed on temperature, salinity,
and pressure [2.42]. Summer conditions, with strong so-
lar heating and a warm atmosphere, give rise to sound
speeds that are higher near the surface and decrease
with depth, while winter conditions, with cooling of the
surface, reverses the temperature gradient. Thus, sound
waves will bend downward under summer conditions
and upward in the winter.

Submarine detection can be either passive (listen-
ing to the sounds made by the submarine) or active
(transmiting a signal and listen for the echo). Well into
the 1950s, both the United States and United King-
dom chose active high-frequency systems since passive
systems at that time were limited by the ship’s ra-
diated noise and the self noise of the arrays. During
World War II, underwater acoustics research results
were secret, but at the end of the war, the National De-
fense Research Council (NDRC) published the results.
The Sub-Surface Warfare Division alone produced 22
volumes [2.41]. Later the NDRC was disbanded and
projects were transferred to the Navy (some reports
have been published by IEEE).

The absorption in seawater was found to be much
higher than predicted by classical theory. O. B. Wil-
son and R. W. Leonard concluded that this was due to
the relaxation frequency of magnesium sulfate, which
is present in low concentration in the sea [2.43]. Ernest
Yeager and Fred Fisher found that boric acid in small
concentrations exhibits a relaxation frequency near

1 kHz. In 1950 the papers of Tolstoy and Clay discussed
propagation in shallow water. At the Scripps Institu-
tion of Oceanography Fred Fisher and Vernon Simmons
made resonance measurements of seawater in a 200 l
glass sphere over a wide range of frequencies and tem-
perature, confirming the earlier results and improving
the empirical absorption equation [2.41].

Ambient noise in the sea is due to a variety
of causes, such as ships, marine mammals, snapping
shrimp, and dynamic processes in the sea itself. Early
measurements of ambient noise, made under Vern
Knudsen, came to be known as the Knudsen curves.
Wittenborn made measurements with two hydrophones,
one in the sound channel and the other below it.
A comparison of the noise levels showed about a 20 dB
difference over the low-frequency band but little dif-
ference at high frequency. It has been suggested that
a source of low-frequency noise is the collective oscil-
lation of bubble clouds.

The ASA pioneers medal in underwater acoustics
has been awarded to Harvey Hayes, Albert Wood, War-
ren Horton, Frederick Hunt, Harold Saxton, Carl Eckart,
Claude Horton, Arthur Williams, Fred Spiess, Robert
Urick, Ivan Tolstoy, Homer Bucker, William Kuperman,
Darrell Jackson, Frederick Tappert, Henrik Schmidt,
William Carey, and George Frisk.

2.7.6 Physiological
and Psychological Acoustics

Physiological acoustics deals with the peripheral au-
ditory system, including the cochlear mechanism,
stimulus encoding in the auditory nerve, and models of
auditory discrimination.

This field of acoustics probably owes more to Georg
von Békésy (1899–1972) than any other person. Born in
Budapest, he worked for the Hungarian Telephone Co.,
the University of Budapest, the Karolinska Institute in
Stockholm, Harvard University, and the University of
Hawaii. In 1962 he was awarded the Nobel prize in
physiology and medicine for his research on the ear.
He determined the static and dynamic properties of the
basilar membrane, and he built a mechanical model of
the cochlea. He was probably the first person to observe
eddy currents in the fluid of the cochlea. Josef Zwislocki
(1922–) reasoned that the existence of such fluid mo-
tions would inevitably lead to nonlinearities, although
Helmholtz had pretty much assumed that the inner ear
was a linear system [2.44].

In 1971 William Rhode succeeded in making meas-
urements on a live cochlea for the first time. Using the
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Mössbauer effect to measure the velocity of the basilar
membrane, he made a significant discovery. The fre-
quency tuning was far sharper than that reported for
dead cochleae. Moreover, the response was highly non-
linear, with the gain increasing by orders of magnitude
at low sound levels. There is an active amplifier in the
cochlea that boosts faint sounds, leading to a strongly
compressive response of the basilar membrane. The
work of Peter Dallos, Bill Brownell, and others identi-
fied the outer hair cells as the cochlear amplifiers [2.45].

It is possible, by inserting a tiny electrode into the
auditory nerve, to pick up the electrical signals traveling
in a single fiber of the auditory nerve from the cochlea to
the brain. Each auditory nerve fiber responds over a cer-
tain range of frequency and pressure. Nelson Kiang and
others have determined that tuning curves of each fiber
show a maximum in sensitivity. Within several hours af-
ter death, the basilar membrane response decreases, the
frequency of maximum response shifts down, and the
response curve broadens.

Psychological acoustics or psychoacoustics deals
with subjective attributes of sound, such as loudness,
pitch, and timbre and how they relate to physically
measurable quantities such as the sound level, fre-
quency, and spectrum of the stimulus.

At the Bell Telephone laboratories, Harvey Fletcher,
first president of the Acoustical Society of America, and
W. A. Munson determined contours of equal loudness
by having listeners compare a large number of tones to
pure tones of 1000 Hz. These contours of equal loud-
ness came to be labeled by an appropriate number of
phons. S. S. Stevens is responsible for the loudness scale
of sones and for ways to calculate the loudness in sones.
His proposal to express pitch in mels did not become as
widely adopted, however, probably because musicians
and others prefer to express pitch in terms of the musical
scale.

The threshold for detecting pure tones is mostly de-
termined by the sound transmission through the outer
and middle ear; to a first approximation the inner
ear (the cochlea) is equally sensitive to all frequen-
cies, except the very highest and lowest. In 1951,
J. C. R. Licklider (1915–1990), who is well known for
his work on developing the Internet, put the results
of several hearing surveys together [2.46]. Masking of
one tone by another was discussed in a classic paper
by Wegel and Lane who showed that low-frequency
tones can mask higher-frequency tones better than the
reverse [2.47].

Two major theories of pitch perception gradually
developed on the basis of experiments in many labo-
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Fig. 2.5 Speech spectrogram of a simple sentence (I can see you)
recorded on a sound spectrograph

ratories. They are usually referred to as the place (or
frequency) theory and the periodicity (or time) theory.
By observing wavelike motions of the basilar mem-
brane caused by sound stimulation, Békésy provided
support for the place theory. In the late 1930s, however,
J. F. Schouten and his colleagues performed pitch-shift
experiments that provided support for the periodicity
theory of pitch. Modern theories of pitch perception
often combine elements of both of these [2.48].

Recipients of the ASA von Békésy medal have
been Jozef Zwislocki, Peter Dallos, Murray Sachs,
William Rhode, and Charles Liberman, while the sil-
ver medal in psychological and physiological acoustics
has been awarded to Lloyd Jeffress, Ernest Wever, Eber-
hard Zwicker, David Green, Nathaniel Durlach, Neal
Viemeister, Brian Moore, Steven Colburn, and William
Yost.

2.7.7 Speech

The production, transmission, and perception of speech
have always played an important role in acoustics. Har-
vey Fletcher published his book Speech and Hearing in
1929, the same year as the first meeting of the Acousti-
cal Society of America. The first issue of the Journal
of the Acoustical Society of America included papers
on speech by G. Oscar Russell, Vern Knudsen, Norman
French and Walter Koenig, Jr.

In 1939, Homer Dudley invented the vocoder, a sys-
tem in which speech was analyzed into component parts
consisting of the pitch fundamental frequency of the
voice, the noise, and the intensities of the speech in
a series of band-pass filters. This machine, which was
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demonstrated at New York World’s Fair, could speak
simple phrases.

An instrument that is particularly useful for speech
analysis is the sound spectrograph, originally developed
at the Bell Telephone laboratories around 1945. This in-
strument records a sound-level frequency–time plot for
a brief sample of speech on which the sound level is rep-
resent by the degree of blackness in a two-dimensional
time–frequency graph, as shown in Fig. 2.5. Digital ver-
sions of the sound spectrograph are used these days, but
the display format is similar to the original machine.

Phonetic aspects of speech research blossomed at
the Bell Telephone laboratories and elsewhere in the
1950s. Gordon Peterson and his colleagues produced
several studies of vowels. Gunnar Fant published a com-
plete survey of the field in Acoustic Theory of Speech
Production [2.49]. The pattern playback, developed at
Haskins Laboratories, dominated early research using
synthetic speech in the United States. James Flanagan
(1925–) demonstrated the significance of the use of
our understanding of fluid dynamics in analyzing the
behavior of the glottis. Kenneth Stevens and Arthur
House noted that the bursts of air from the glottis had
a triangular waveform that led to a rich spectrum of
harmonics.

Speech synthesis and automatic recognition of
speech have been important topics in speech research.
Dennis Klatt (1938–1988) developed a system for syn-
thesizing speech, and shortly before his death he gave
the first completely intelligible synthesized speech pa-
per presented to the ASA [2.50]. Fry and Denes [2.51]
constructed a system in which speech was fed into an
acoustic recognizer that compares

the changing spectrum of the speech wave with
certain reference patterns and indicates the occur-
rence of the phoneme whose reference pattern best
matches that of the incoming wave.

Recipients of the ASA silver medal in speech com-
munication have included Franklin Cooper, Gunnar
Fant, Kenneth Stevens, Dennis Klatt, Arthur House, Pe-
ter Ladefoged, Patricia Kuhl, Katherine Harris, Ingo
Titze, Winifred Strange, David Pisone.

2.7.8 Musical Acoustics

Musical acoustics deals with the production of mu-
sical sound, its transmission to the listener, and its
perception. Thus this interdisciplinary field overlaps
architectural acoustics, engineering acoustics, and psy-

choacoustics. The study of the singing voice also
overlaps the study of speech. In recent years, the sci-
entific study of musical performance has also been
included in musical acoustics.

Because the transmission and perception of sound
have already been discussed, we will concentrate on the
production of musical sound by musical instruments,
including the human voice. It is convenient to classify
musical instruments into families in accordance with the
way they produce sound: string, wind, percussion, and
electronic.

Bowed string instruments were probably the first
to attract the attention of scientific researchers. The
modern violin was developed largely in Italy in the
16th century by Gaspara da Salo and the Amati fam-
ily. In the 18th century, Antonio Stradivari, a pupil of
Nicolo Amati, and Guiseppi Guarneri created instru-
ments with great brilliance that have set the standard
for violin makers since that time. Outstanding contri-
butions to our understanding of violin acoustics have
been made by Felix Savart, Hermann von Helmholtz,
Lord Rayleigh, C. V. Raman, Frederick Saunders, and
Lothar Cremer, all of whom also distinguished them-
selves in fields other than violin acoustics. In more
recent times, the work of Professor Saunders has been
continued by members of the Catgut Acoustical So-
ciety, led by Carleen Hutchins. This work has made
good use of modern tools such as computers, holo-
graphic interferometers, and fast Fourier transform
(FFT) analyzers. One noteworthy product of modern
violin research has been the development of an octet
of scaled violins, covering the full range of musical
performance.

The piano, invented by Bartolomeo Cristofori in
1709, is one of the most versatile of all musical instru-
ments. One of the foremost piano researcher of our time
is Harold Conklin. After he retired from the Baldwin Pi-
ano Co, he published a series of three papers in JASA
(J. Acoustical Society of America) that could serve as
a textbook for piano researchers [2.52]. Gabriel Wein-
reich explained the behavior of coupled piano strings
and the aftersound which results from this coupling.
Others who have contributed substantially to our un-
derstanding of piano acoustics are Anders Askenfelt,
Eric Jansson, Juergen Meyer, Klaus Wogram, Ingolf
Bork, Donald Hall, Isao Nakamura, Hideo Suzuki, and
Nicholas Giordano. Many other string instruments have
been studied scientifically, but space does not allow
a discussion of their history here.

Pioneers in the study of wind instruments included
Arthur Benade (1925–1987), John Backus (1911–
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1988), and John Coltman (1915–). Backus, a research
physicist, studied both brass and woodwind instru-
ments, especially the nonlinear flow control properties
of woodwind reeds. He improved the capillary method
for measuring input impedance of air columns, and he
developed synthetic reeds for woodwind instruments.
Benade’s extensive work led to greater understand-
ing of mode conversion in flared horns, a model of
woodwind instrument bores based on the acoustics of
a lattice of tone holes, characterization of wind instru-
ments in terms of cutoff frequencies, and radiation from
brass and woodwind instruments. His two books Horns,
Strings and Harmony and Fundamentals of Musical
Acoustics have both been reprinted by Dover Books.
Coltman, a physicist and executive at the Westinghouse
Electric Corporation, devoted much of his spare time to
the study of the musical, historical, and acoustical as-
pects of the flute and organ pipes. He collected more
than 200 instruments of the flute family, which he used
in his studies. More recently, flutes, organ pipes, and
other wind instruments have been studied by Neville
Fletcher and his colleagues in Australia.

The human voice is our oldest musical instrument,
and its acoustics has been extensively studied by Johan
Sundberg and colleagues in Stockholm. A unified dis-
cussion of speech and the singing voice appears in this
handbook.

The acoustics of percussion instruments from many
different countries have been studied by Thomas Ross-
ing and his students, and many of them are described

in his book Science of Percussion Instruments [2.53] as
well as in his published papers.

Electronic music technology was made possible
with the invention of the vacuum tube early in the 20th
century. In 1919 Leon Theremin invented the aethero-
phone (later called the Theremin), an instrument whose
vacuum-tube oscillators can be controlled by the prox-
imity of the player’s hands to two antennae. In 1928,
Maurice Martenot built the Ondes Martenot. In 1935
Laurens Hammond used magnetic tone-wheel genera-
tors as the basis for his electromechanical organ, which
became a very popular instrument. Analog music syn-
thesizers became popular around the middle of the 20th
century. In the mid 1960s, Robert Moog and Donald
Buchla built successful voltage-controlled music syn-
thesizers which gave way to a revolution in the way
composers could easily synthesize new sounds. Grad-
ually, however, analog music synthesizers gave way to
digital techniques making use of digital computers. Al-
though many people contributed to the development of
computer music, Max Mathews is often called the fa-
ther of computer music, since he developed the MUSIC
I program that begat many successful music synthesis
programs and blossomed into a rich resource for musi-
cal expression [2.54].

The ASA has awarded its silver medal in mu-
sical acoustics to Carleen Hutchins, Arthur Benade,
John Backus, Max Mathews, Thomas Rossing, Neville
Fletcher, Johan Sundberg, Gabriel Weinreich, William
Strong.

2.8 Conclusion

This brief summary of acoustics history has only
scratched the surface. Many fine books on the subject
appear in the list of references, and readers are urged

to explore the subject further. The science of sound is
a fascinating subject that draws from many different
disciplines.
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Basic Linear A3. Basic Linear Acoustics

Alan D. Pierce

This chapter deals with the physical and mathe-
matical aspects of sound when the disturbances
are, in some sense, small. Acoustics is usually con-
cerned with small-amplitude phenomena, and
consequently a linear description is usually appli-
cable. Disturbances are governed by the properties
of the medium in which they occur, and the gov-
erning equations are the equations of continuum
mechanics, which apply equally to gases, liquids,
and solids. These include the mass, momentum,
and energy equations, as well as thermodynamic
principles. The viscosity and thermal conduction
enter into the versions of these equations that ap-
ply to fluids. Fluids of typical great interest are
air and sea water, and consequently this chap-
ter includes a summary of their relevant acoustic
properties. The foundation is also laid for the
consideration of acoustic waves in elastic solids,
suspensions, bubbly liquids, and porous media.

This is a long chapter, and a great number
of what one might term classical acoustics topics
are included, especially topics that one might
encounter in an introductory course in acoustics:
the wave theory of sound, the wave equation,
reflection of sound, transmission from one media
to another, propagation through ducts, radiation
from various types of sources, and the diffraction
of sound.
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List of symbols
BV bulk modulus at constant entropy
c speed of sound
cp specific heat at constant pressure
cv specific heat at constant volume
D/Dt convective time derivative
D rate of energy dissipation per unit volume
ei unit vector in the direction of increasing xi
f frequency, cycles per second

f force per unit volume
f1, f2 volume fractions
g acceleration associated with gravity
h absolute humidity, fraction of molecules

that are water
H(ω) transfer function
I acoustic intensity (energy flux)
k wavenumber
L Lagrangian density
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M average molecular weight
n unit vector normal to a surface
p pressure
p̂(ω) Fourier transform of p(t), complex ampli-

tude
q heat flux vector
Q quality factor
R0 universal gas constant
Re real part
s entropy per unit mass
S surface, surface area
t traction vector, force per unit area
T absolute temperature
T kinetic energy per unit volume
u internal energy per unit mass
u locally averaged displacement field of solid

matter
U locally averaged displacement field of fluid

matter
U strain energy per unit volume
v fluid velocity
V volume
w acoustic energy density
α attenuation coefficient
β coefficient of thermal expansion
γ specific heat ratio
δij Kronecker delta
δ(t) delta function

∂ partial differentiation operator
ε expansion parameter
εij component of the strain tensor
ζ location of pole in the complex plane
η loss factor
θI angle of incidence
κ coefficient of thermal conduction
λ wavelength
λL Lamè constant for a solid
μ (shear) viscosity
μB bulk viscosity
μL Lamè constant for a solid
ν Poisson’s ratio
ξ internal variable in irreversible thermody-

namics
ξ j component of the displacement field
π ratio of circle circumference to diameter
ρ density, mass per unit volume
σij component of the stress tensor
τB characteristic time in the Biot model
τν relaxation time associated with ν-th pro-

cess
φ phase constant
Φ scalar potential
χ(x) nominal phase change in propagation dis-

tance x
Ψ vector potential
ω angular frequency, radians per second

3.1 Overview

Small-amplitude phenomena can be described to a good
approximation in terms of linear algebraic and linear
differential equations. Because acoustic phenomenon
are typically of small amplitude, the analysis that ac-
companies most applications of acoustics consequently
draws upon a linearized theory, briefly referred to as
linear acoustics.

One reason why one chooses to view acoustics as
a linear phenomenon, unless there are strong indications
of the importance of nonlinear behavior, is the intrin-
sic conceptual simplicity brought about by the principle
of superposition, which can be loosely described by the
relation

L(a f1+b f2) = aL( f1)+bL( f2) , (3.1)

where f1 and f2 are two causes and L( f ) is the set
of possible mathematical or computational steps that
predicts the effect of the cause f , such steps being de-

scribable so that they are the same for any such cause.
The quantities a and b are arbitrary numbers. Doubling
a cause doubles the effect, and the effect of a sum of two
causes is the sum of the effects of each of the separate
causes.

Thus, for example, a complicated sound field caused
by several sources can be regarded as a sum of fields,
each of which is caused by an individual source. More-
over, if there is assurance that the governing equations
have time-independent coefficients, then the concept of
frequency has great utility. Waves of each frequency
propagate independently, so one can analyze the gen-
eration and propagation of each frequency separately,
and then combine the results.

Nevertheless, linear acoustics should always be re-
garded as an approximation, and the understanding of
nonlinear aspects of acoustics is of increasing impor-
tance in modern applications. Consequently, part of
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the task of the present chapter is to explain in what
sense linear acoustics is an approximation. An exten-
sive discussion of the extent to which the linearization
approximation is valid is not attempted, but a discussion
is given of the manner in which the linear equations re-
sult from nonlinear equations that are regarded as more
nearly exact.

The historical origins [3.1] of linear acoustics reach
back to antiquity, to Pythagoras and Aristotle [3.2], both

of whom are associated with ancient Greece, and also to
persons associated with other ancient civilizations. The
mathematical theory began with Mersenne, Galileo, and
Newton, and developed into its more familiar form dur-
ing the time of Euler and Lagrange [3.3]. Prominent
contributors during the 19-th century include Poisson,
Laplace, Cauchy, Green, Stokes, Helmholtz, Kirchhoff,
and Rayleigh. The latter’s book [3.4], The Theory of
Sound, is still widely read and quoted today.

3.2 Equations of Continuum Mechanics

Sound can propagate through liquids, gases, and solids.
It can also propagate through composite media such as
suspensions, mixtures, and porous media. In any portion
of a medium that is of uniform composition, the general
equations that are assumed to apply are those that are
associated with the theory of continuum mechanics.

3.2.1 Mass, Momentum,
and Energy Equations

The primary equations governing sound are those that
account for the conservation of mass and energy, and
for changes in momentum. These may be written in the
form of either partial differential equations or integral
equations. The former is the customary starting point
for the derivation of approximate equations for lin-
ear acoustics. Extensive discussions of the equations of
continuum mechanics can be found in texts by Thomp-
son [3.5], Fung [3.6], Shapiro [3.7], Batchelor [3.8],
Truesdell [3.9]), and Landau and Lifshitz [3.10], and in
the encyclopedia article by Truesdell and Toupin [3.11].

The conservation of mass is described by the partial
differential equation,

∂ρ

∂t
+∇ · (ρv) = 0 , (3.2)

where ρ is the (possibly position- and time-dependent)
mass density (mass per unit volume of the material), and
v is the local and instantaneous particle velocity, defined
so that ρv ·n is the net mass flowing per unit time per
unit area across an arbitrary stationary surface within
the material whose local unit outward normal vector
is n.

The generalization of Newton’s second law to a con-
tinuum is described by Cauchy’s equation of motion,
which is written in Cartesian coordinates as

ρ
Dv

Dt
=
∑

ij

ei
∂σij

∂x j
+ gρ . (3.3)

Here the Eulerian description is used, with each field
variable regarded as a function of actual spatial position
coordinates and time. (The alternate description is the
Lagrangian description, where the field variables are re-
garded as functions of the coordinates that the material
being described would have in some reference config-
uration.) The σij are the Cartesian components of the
stress tensor. The quantities ei are the unit vectors in
a Cartesian coordinate system. These stress tensor com-
ponents are such that

t =
∑

i, j

eiσijn j (3.4)

is the traction vector, the surface force per unit area on
any given surface with local unit outward normal n.

The second term on the right of (3.3) is a body-force
term associated with gravity, with g representing the
vector acceleration due to gravity. In some instances, it
may be appropriate (as in the case of analyses of trans-
duction) to include body-force terms associated with
external electromagnetic fields, but such are excluded
from consideration in the present chapter.

The time derivative operator on the left side of (3.3)
is Stokes’ total time derivative operator [3.12],

D

Dt
= ∂

∂t
+v ·∇ , (3.5)

with the two terms corresponding to: (i) the time deriva-
tive as would be seen by an observer at rest, and (ii) the
convective time derivative. This total time derivative
applied to the particle velocity field yields the par-
ticle acceleration field, so the right side of (3.3) is the
apparent force per unit volume on an element of the
continuum.

The stress tensor’s Cartesian component σij is, in
accordance with (3.4), the i-th component of the sur-
face force per unit area on a segment of the (internal
and hypothetical) surface of a small element of the con-
tinuum, when the unit outward normal to the surface is
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Fig. 3.1 Sketches supporting the identification of ρv·n as
mass flowing per unit area and per unit time through a sur-
face whose unit outward normal is n. All the matter in
the slanted cylinder’s volume flows through the area ΔS
in time Δt

in the j-th direction. This surface force is caused by in-
teractions with the neighboring particles just outside the
surface or by the transfer of momentum due to diffusion
of molecules across the surface.

The stress-force term on the right side of (3.3)
results from the surface-force definition of the stress
components and from a version of the divergence the-
orem, so that the stress-related force per unit volume is

fstress → 1

V

∫

S

t(n)dS → 1

V

∫

S

∑

ij

eiσijn j dS

→ 1

V

∫

V

∑

ij

ei
∂σij

∂x j
dV →

∑

ij

ei
∂σij

∂x j
. (3.6)

Here V is an arbitrary but small volume enclosing the
point of interest, and S is the surface enclosing that vol-
ume; the quantity n is the unit outward normal vector to
the surface.

tn

ΔS

σxx

t

σyx

σzx

x

z

y

Fig. 3.2 Traction vector on a surface whose unit normal n
is in the +x-direction

σyy(y+Δy)

σxy(y+Δy)

σyx(x+Δx)

σxx(x+Δx)

σxx(x)

σyx(x)

σxy(y)

σyy(y)

Δx

Δy

Fig. 3.3 Two-dimensional sketch supporting the identifica-
tion of the force per unit volume associated with stress in
terms of partial derivatives of the stress components

Considerations of the net torque that such surface
forces would exert on a small element, and the require-
ment that the angular acceleration of the element be
finite in the limit of very small element dimensions,
leads to the conclusion,

σij = σ ji , (3.7)

so the stress tensor is symmetric.
The equations described above are supplemented by

an energy conservation relation,

ρ
D

Dt

( 1
2v

2+u
)=

∑

ij

∂

∂x j

(
σijvi

)+ρg ·v−∇ ·q ,

(3.8)
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which involves the internal energy u per unit mass and
the heat flux vector q. The latter has the interpretation
that its dot product with any unit normal vector repre-
sents the heat energy flowing per unit time and per unit
area across any internal surface with the corresponding
unit normal. An alternate version,

ρ
Du

Dt
=
∑

ij

σij
∂vi

∂x j
−∇ ·q , (3.9)

of the energy equation results when the vector dot prod-
uct of v with (3.3) is subtracted from (3.8). (In carrying
through the derivation, one recognizes that v · (ρDv/Dt)
is (1/2)ρDv2/Dt.)

3.2.2 Newtonian Fluids
and the Shear Viscosity

The above equations apply to both fluids and solids. Ad-
ditional equations needed to complete the set must take
into account the properties of the material that make
up the continuum. Air and water, for example, are flu-
ids, and their viscous behavior corresponds to that for
newtonian fluids, so that the stress tensor is given by

σij = σnδij +μφij , (3.10)

which involves the rate-of-shear tensor,

φij = ∂vi

∂x j
+ ∂v j

∂xi
− 2

3
∇ · vδij , (3.11)

which is defined so that the sum of its diagonal ele-
ments is zero. The quantity σn that appears in (3.10) is
the average normal stress component, and μ is the shear
viscosity, while δij is the Kronecker delta, equal to unity
if the two indices are equal and otherwise equal to zero.

3.2.3 Equilibrium Thermodynamics

Further specification of the equations governing sound
requires some assumptions concerning the extent to
which equilibrium or near-equilibrium thermodynamics
applies to acoustic disturbances. In the simplest ide-
alization, which neglects relaxation processes, one as-
sumes that the thermodynamic variables describing the
perturbations are related just as for quasi-equilibrium
processes, so one can use an equation of state of the
form

s = s(u, ρ−1) , (3.12)

which has the corresponding differential relation [3.13],

T ds = du+ pdρ−1 , (3.13)

in accordance with the second law of thermodynamics.
Here s is the entropy per unit mass, T is the absolute
temperature, and p is the absolute pressure. The recipro-
cal of the density, which appears in the above relations,
is recognized as the specific volume. (Here the adjective
specific means per unit mass.)

For the case of an ideal gas with temperature-
independent specific heats, which is a common ideal-
ization for air, the function in (3.12) is given by

s = R0

M
ln
(

u1/(γ−1)ρ−1
)
+ s0 . (3.14)

Here s0 is independent of u and ρ−1, while M is the
average molecular weight (average molecular mass in
atomic mass units), and R0 is the universal gas constant
(equal to Boltzmann’s constant divided by the mass in
an atomic mass unit), equal to 8314 J/kg K. The quan-
tity γ is the specific heat ratio, equal to approximately
7/5 for diatomic gases, to 5/3 for monatomic gases, and
to 9/7 for polyatomic gases whose molecules are not
collinear. For air (which is primarily a mixture of di-
atomic oxygen, diatomic nitrogen, with approximately
1% monatomic argon), γ is 1.4 and M is 29.0. (The
expression given here for entropy neglects the contribu-
tion of internal vibrations of diatomic molecules, which
cause the specific heats and γ to depend slightly on tem-
perature. When one seeks to explain the absorption of
sound in air, a nonequilibrium entropy [3.14] is used
which depends on the fractions of O2 and N2 molecules
that are in their first excited vibrational states, in addi-
tion to the quantities u and ρ−1.)

For other substances, a knowledge of the first and
second derivatives of s, evaluated at some representa-
tive thermodynamic state, is sufficient for most linear
acoustics applications.

3.2.4 Bulk Viscosity
and Thermal Conductivity

The average normal stress must equal the negative of the
thermodynamic pressure that enters into (3.13), when
the fluid is in equilibrium. Consideration of the re-
quirement that the equations be the same regardless of
the choice of directions of the coordinate axes, plus
the assumption of a newtonian fluid, lead to the rela-
tion [3.12],

σn =−p+μB∇ · v , (3.15)

which involves the bulk viscosity μB. Also, the Fourier
model for heat conduction [3.15] requires that the heat
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flux vector q be proportional to the gradient of the tem-
perature,

q =−κ∇T , (3.16)

where κ is the coefficient of thermal conduction.

Transport Properties of Air
Regarding the values of the viscosities and the thermal
conductivity that enter into the above expressions, the
values for air are approximated [3.16–18] by

μS = μ0

(
T

T0

)3/2 T0+TS

T +TS
, (3.17)

μB = 0.6μS , (3.18)

κ = κ0

(
T

T0

)3/2 T0+TA e−TB/T0

T +TA e−TB/T
. (3.19)

Here TS is 110.4 K, TA is 245.4 K, TB is 27.6 K,
T0 is 300 K, μ0 is 1.846 × 10−5 kg/(ms), and κ0 is
2.624 × 10−2 W/(mK).

Transport Properties of Water
The corresponding values of the viscosities and the ther-
mal conductivity of water depend only on temperature
and are given by [3.19, 20]

μS = 1.002 × 10−3 e−0.0248ΔT , (3.20)

μB = 3μS , (3.21)

κ = 0.597+0.0017ΔT −7.5 × 10−6(ΔT )2 .

(3.22)

The quantities that appear in these equations are under-
stood to be in MKS units, and ΔT is the temperature
relative to 283.16 K (10 ◦C).

3.2.5 Navier–Stokes–Fourier Equations

The assumptions represented by (3.12, 13, 15), and
(3.16) cause the governing continuum mechanics equa-
tions for a fluid to reduce to

∂ρ

∂t
+∇ · (ρv) = 0 , (3.23)

ρ
Dv

Dt
=−∇ p+∇ (μB∇ · v)

+
∑

ij

ei
∂

∂x j
(μφij )+ gρ , (3.24)

ρT
Ds

Dt
= 1

2μ
∑

ij

φ2
ij +μB (∇ · v)2+∇ · (κ∇T ) ,

(3.25)

which are known as the Navier–Stokes–Fourier equa-
tions for compressible flow.

3.2.6 Thermodynamic Coefficients

An implication of the existence of an equation of state
of the form of (3.12) is that any thermodynamic variable
can be regarded as a function of any other two (inde-
pendent) thermodynamic variables. The pressure p, for
example, can be regarded as a function of ρ and T , or of
s and ρ. In the expression of differential relations, such
as that which gives dp as a linear combination of ds
and dρ, it is helpful to express the coefficients in terms
of a relatively small number of commonly tabulated
quantities. A standard set of such includes:

1. The square of the sound speed,

c2 =
(
∂p

∂ρ

)

s
, (3.26)

2. The bulk modulus at constant entropy,

BV = ρc2 = ρ
(
∂p

∂ρ

)

s
, (3.27)

3. The specific heat at constant pressure,

cp = T

(
∂s

∂T

)

p
, (3.28)

4. The specific heat at constant volume,

cv = T

(
∂s

∂T

)

ρ

, (3.29)

5. The coefficient of thermal expansion,

β = ρ
(
∂(1/ρ)

∂T

)

p
. (3.30)

(The subscripts on the partial derivatives indicate the
independent thermodynamic quantity that is kept fixed
during the differentiation.) The subscript V on BV is in-
cluded here to remind one that the modulus is associated
with changes in volume. For a fixed mass of fluid the
decrease in volume per unit volume per unit increase in
pressure is the bulk compressibility, and the reciprocal
of this is the bulk modulus.

The coefficients that are given here are related by
the thermodynamic identity,

γ −1 = Tβ2c2/cp , (3.31)

where γ is the specific heat ratio,

γ = cp

cv
. (3.32)
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In terms of the thermodynamic coefficients defined
above, the differential relations of principal interest in
acoustics are

dρ = 1

c2
dp−

(
ρβT

cp

)
ds , (3.33)

dT =
(

Tβ

ρcp

)
dp+

(
T

cp

)
ds . (3.34)

Thermodynamic Coefficients for an Ideal Gas
For an ideal gas, which is the common idealization for
air, it follows from (3.12) and (3.13) (with the abbrevi-
ation R for R0/M) that the thermodynamic coefficients
are given by

c2 = γ RT = γ p

ρ
, (3.35)

cp = γ R

γ −1
, (3.36)

cv = R

γ −1
, (3.37)

β = 1

T
. (3.38)

For air, R is 287 J/kg K and γ is 1.4, so cp and cv are
1005 J/kg K and 718 J/kg K. A temperature of 293.16 K
and a pressure of 105 Pa yield a sound speed of 343 m/s
and a density ρ of 1.19 kg/m3.

Thermodynamic Properties of Water
For pure water [3.21], the sound speed is approximately
given in MKS units by

c = 1447+4.0ΔT +1.6 × 10−6 p . (3.39)

Here c is in meters per second, ΔT is temperature rel-
ative to 283.16 K (10 ◦C), and p is absolute pressure in
pascals. The pressure and temperature dependence of
the density [3.19] is approximately given by

ρ ≈ 999.7+0.048 × 10−5 p

−0.088ΔT −0.007(ΔT )2 . (3.40)

The coefficient of thermal expansion is given by

β ≈ (8.8+0.022 × 10−5 p+1.4ΔT ) × 10−5 , (3.41)

and the coefficient of specific heat at constant pressure
is approximately given by

cp ≈ 4192−0.40 × 10−5 p−1.6ΔT . (3.42)

The specific heat ratio is very close to unity, the devia-
tion being described by

γ −1

γ
≈ 0.0011

(
1+ ΔT

6
+0.0024 × 10−5 p

)2

.

(3.43)

The values for sea water are somewhat different, be-
cause of the presence of dissolved salts. An approximate
expression for the speed of sound in sea water [3.22] is
given by

c ≈ 1490+3.6ΔT +1.6 × 10−6 p+1.3ΔS . (3.44)

Here ΔS is the deviation of the salinity in parts per
thousand from a nominal value of 35.

3.2.7 Ideal Compressible Fluids

If viscosity and thermal conductivity are neglected at
the outset, then the Navier–Stokes equation (3.24) re-
duces to

ρ
Dv

Dt
=−∇ p+ gρ , (3.45)

which is known as the Euler equation. The energy equa-
tion (3.25) reduces to the isentropic flow condition

Ds

Dt
= 0 . (3.46)

Moreover, the latter in conjunction with the differential
equation of state (3.33) yields

Dp

Dt
= c2 Dρ

Dt
. (3.47)

The latter combines with the conservation of mass rela-
tion (3.2) to yield

Dp

Dt
+ρc2∇ · v= 0 , (3.48)

where ρc2 is recognized as the bulk modulus BV.
In many applications of acoustics, it is these equa-

tions that are used as a starting point.

3.2.8 Suspensions and Bubbly Liquids

Approximate equations of the same general form as
those for an ideal fluid result for fluids that have small
particles of a different material suspended in them. Let
the fluid itself have ambient density ρ1 and let the mater-
ial of the suspended particles have ambient density ρ2.

The fractions of the overall volume that are occu-
pied by the two materials are denoted by f1 and f2, so
that f1+ f2 = 1. Thus, a volume V contains a mass

M = ρ1 f1V +ρ2 f2V . (3.49)
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The equivalent density M/V is consequently

ρeq = ρ1 f1+ρ2 f2 . (3.50)

The equivalent bulk modulus is deduced by consid-
ering the decrease −ΔV of such a volume due to an
increment Δp of pressure with the assumption that the
pressure is uniform throughout the volume, so that

−ΔV = V1
Δp

BV,1
+V2

Δp

BV,2
, (3.51)

where V1 = f1V and V2 = f2V are the volumes occu-
pied by the two materials. The equivalent bulk modulus
consequently satisfies the relation

1

BV,eq
= f1

BV,1
+ f2

BV,2
. (3.52)

The bulk modulus for any material is the density times
the sound speed squared, so the effective sound speed
for the mixture satisfies the relation

1

ρeqc2
eq
= f1

ρ1c2
1

+ f2

ρ2c2
2

, (3.53)

whereby

1

c2
eq
=
(

f1

ρ1c2
1

+ f2

ρ2c2
2

)
(ρ1 f1+ρ2 f2) . (3.54)

The latter relation, rewritten in an equivalent form, is
sometimes referred to as Wood’s equation [3.23], and
can be traced back to a paper by Mallock [3.24].

Fig. 3.4 Sketch of a fluid with embedded particles sus-
pended within it

3.2.9 Elastic Solids

For analyses of acoustic wave propagation in solids
(including crystals), the idealization of a linear elas-
tic solid [3.6, 25–28] is often used. The solid particle
displacements are regarded as sufficiently small that
convective time derivatives can be neglected, so the
Cauchy equation, given previously by (3.3), reduces,
with the omission of the invariably negligible gravity
term, to an equation, whose i-th Cartesian component is

ρ
∂2ξi

∂t2
=

3∑

j=1

∂σij

∂x j
. (3.55)

Here ρ is the density; ξi (x, t) is the i-th Cartesian com-
ponent of the displacement of the particle nominally at
x. This displacement is measured relative to the par-
ticle’s ambient position. Also, the ambient stress is
presumed sufficiently small or slowly varying with po-
sition that it is sufficient to take the stress components
that appear in Cauchy’s equation as being those asso-
ciated with the disturbance. These should vanish when
there is no strain associated with the disturbance.

The stress tensor components σij are ordinarily
taken to be linearly dependent on the (linear) strain
components,

εij = 1

2

(
∂ξi

∂x j
+ ∂ξ j

∂xi

)
, (3.56)

so that

σij =
∑

kl

Kijklεkl . (3.57)

The number of required distinct elastic coefficients
is limited for various reasons. One is that the stress
tensor is symmetric and another is that the strain ten-
sor is symmetric. Also, if the quasistatic work required
to achieve a given state of deformation is independent
of the detailed history of the deformation, then there
must be a strain-energy density function U that, in the
limit of small deformations, is a bilinear function of
the strains. There are only six different strain com-
ponents and the number of their distinct products is
6+5+4+3+2+1 = 21, and such is the maximum
number of coefficients that one might need. Any intrin-
sic symmetry, such as exists in various types of crystals,
will reduce this number further [3.29].

Strain Energy
The increment of work done during a deformation by
stress components on a small element of a solid that is
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initially a small box (Δx by Δy by Δz) is

δ[Work] =
∑

i

σii

(
∂

∂xi
δξi

)
ΔxΔyΔz

+
∑

i �= j

σij

(
∂

∂x j
δξi

)
ΔxΔyΔz , (3.58)

where here σij is interpreted as the i-th component of
the force per unit area on a surface whose outward nor-
mal is in the direction of increasing x j . With use of the
symmetry of the stress tensor and of the definition of the
strain tensor components, one obtains the incremental
strain energy per unit volume as

δU =
∑

ij

σijδεij . (3.59)

If the reference state, where U = 0, is taken as that in
which the strain is zero, and given that each stress com-
ponent is a linear combination of the strain components,
then the above integrates to

U =
∑

ij

1

2
σijεij . (3.60)

Here the stresses are understood to be given in terms of
the strains by an appropriate stress–strain relation of the
general form of (3.57).

Because of the symmetry of both the stress tensor
and the strain tensor, the internal energy U per unit
can be regarded as a function of only the six distinct
strain components: εxx , εyy, εzz , εxy, εyz , and εxz . Con-
sequently, with such an understanding, it follows from
the differential relation (3.59) that

∂U

∂εxx
= σxx ; ∂U

∂εxy
= 2σxy , (3.61)

with analogous relations for derivatives with respect to
the other distinct strain components.

Isotropic Solids
If the properties of the solid are such that they are
independent of the orientation of the axes of the Carte-
sian coordinate system, then the solid is said to be
isotropic. This idealization is usually regarded as good
if the solid is made up of a random assemblage of
many small grains. The tiny grains are possibly crys-
talline with directional properties, but the orientation
of the grains is random, so that an element composed
of a large number of grains has no directional ori-
entation. For such an isotropic solid the number of

y

x

�(x)

x+ �(x)

x

Fig. 3.5 Displacement field vector ξ in a solid. A material
point normally at x is displaced to x+ ξ(x)

different coefficients in the stress–strain relation (3.57)
is only two, and the relation can be taken in the general
form

σij = 2μLεij +λLδij

3∑

k=1

εkk . (3.62)

This involves two material constants, termed the
Lamè constants, and here denoted by λL and μL
(the latter being the same as the shear modulus
G).

Equivalently, one can express the strain components
in terms of the stress components by the inverse of the
above set of relations. The generic form is sometimes
written

εij = 1+ν
E
σij − ν

E

∑

k

σkkδij , (3.63)

where E is the elastic modulus and ν is Poisson’s ra-
tio. The relation of these two constants to the Lamè
constants is such that

λL = νE

(1+ν)(1−2ν)
, (3.64)

μL = G = E

2(1+ν) . (3.65)

In undergraduate texts on the mechanics of materials,
the relations (3.63) are often written out separately
for the diagonal and off-diagonal strain elements, so

Part
A

3
.2



Basic Linear Acoustics 3.3 Equations of Linear Acoustics 39

Table 3.1 Representative numbers for the elastic properties of various materials. (A comprehensive data set, giving values
appropriate to specific details concerning the circumstances and the nature of the specimens, can be found at the web site
for MatWeb, Material Property Data)

Material E (Pa) ν λL (Pa) μL (Pa) ρ (kg/m3)

Aluminum 7.0 × 1010 0.33 5.1 × 1010 2.6 × 1010 2.8 × 103

Brass 10.5 × 1010 0.34 8.3 × 1010 3.9 × 1010 8.4 × 103

Copper 12.0 × 1010 0.34 9.5 × 1010 4.5 × 1010 8.9 × 103

Iron 12.0 × 1010 0.25 4.8 × 1010 4.8 × 1010 7.2 × 103

Lead 1.4 × 1010 0.43 3.2 × 1010 0.5 × 1010 11.3 × 103

Steel 20.0 × 1010 0.28 9.9 × 1010 7.8 × 1010 7.8 × 103

Titanium 11.0 × 1010 0.34 8.7 × 1010 4.1 × 1010 4.5 × 103

that,

εxx = 1

E
[σxx −ν(σyy +σzz)] , (3.66)

γxy = 2εxy = 1

G
σxy , (3.67)

with analogous relations for the other strain compo-
nents. The nomenclature γxy is used for what is often
termed the shear strain, this being twice as large as that
shear strain that is defined as a component of a strain
tensor.

The strain energy density U of an isotropic solid
results from (3.60) and (3.62), the result being

U = μL

∑

ij

ε2
ij +

1

2
λL

(
∑

k

εkk

)2

. (3.68)

In the idealized and simplified model of acoustic
propagation in solids, the conservation of mass and en-
ergy is not explicitly invoked. The density that appears
on the right side of (3.55) is regarded as time indepen-
dent, and as that appropriate for the undisturbed state of
the solid.

3.3 Equations of Linear Acoustics

The equations that one ordinarily deals with in acoustics
are linear in the field amplitudes, where the fields of in-
terest are quantities that depend on position and time.
The basic governing equations are partial differential
equations.

3.3.1 The Linearization Process

Sound results from a time-varying perturbation of the
dynamic and thermodynamic variables that describe the
medium. For sound in fluids (liquids and gases), the
quantities appropriate to the ambient medium (i. e., the
medium in the absence of a disturbance) are customarily
represented [3.30] by the subscript 0, and the perturba-
tions are represented by a prime on the corresponding
symbol. Thus one expresses the total pressure as

p = p0+ p′ , (3.69)

with corresponding expressions for fluctuations in spe-
cific entropy, fluid velocity, and density. The linear

equations that govern acoustical disturbances are then
determined by the first-order terms in the expansion of
the governing nonlinear equations in the primed vari-
ables. The zeroth-order terms cancel out completely
because the ambient variables should themselves cor-
respond to a valid state of motion of the medium. Thus,
for example, the linearized version of the conservation
of mass relation in (3.2) is

∂ρ′

∂t
+∇ · (v0ρ

′ +v′ρ0) = 0 . (3.70)

The possible forms of the linear equations differ
in complexity according to what is assumed about the
medium’s ambient state and according to what dis-
sipative terms are included in the original governing
equations. In the establishment of a rationale for using
simplified models, it is helpful to think in terms of the
order of magnitudes and characteristic scales of the co-
efficients in more nearly comprehensive models. If the
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spatial region of interest has bounding dimensions that
are smaller than any scale length over which the ambi-
ent variables vary by a respectable fraction, then it may
be appropriate to idealize the coefficients in the govern-
ing equations as if the ambient medium were spatially
uniform or homogeneous. Similarly, if the character-
istic wave periods or propagation times are much less
than characteristic time scales for the ambient medium,
then it may be appropriate to idealize the coefficients
as being time independent. Examination of orders of
magnitudes of terms suggests that the ambient veloc-
ity may be neglected if it is much less than the sound
speed c. The first-order perturbation to the gravitational
force term can ordinarily be neglected [3.31] if the pre-
viously stated conditions are met and if the quantity
g/c is sufficiently smaller than any characteristic fre-
quency of the disturbance. Analogous inferences can
be made about the thermal conductivity and viscosity.
However, the latter may be important [3.32] in the in-
teraction of acoustic waves in fluids with adjacent solid
bodies.

A discussion of the restrictions on using linear equa-
tions and of neglecting second- and higher-order terms
in the primed variables is outside the scope of the
present chapter, but it should be noted that one regards
p′ as small [3.30] if it is substantially less than ρ0c2,
and |v′| as small if it is much less than c, where c is the
sound speed defined via (3.26). It is not necessary that
p′ be much less than p0, and it is certainly not necessary
that |v′| be less than |v0|.
3.3.2 Linearized Equations

for an Ideal Fluid

The customary equations for linear acoustics neglect
dissipation processes and consequently can be derived
from the equations for flow of a compressible ideal
fluid, given in (3.45) through (3.48). If one neglects
gravity at the outset, and assumes the ambient fluid ve-
locity is zero, then the ambient pressure is constant. In
such a case, (3.48) leads after linearization to

∂p

∂t
+ρc2∇ · v= 0 , (3.71)

and the Euler equation (3.45) leads to

ρ
∂v

∂t
=−∇ p . (3.72)

Here a common notational convention is used to delete
primes and subscripts. The density ρ here is understood
to be the ambient density ρ0, while p and v are under-

stood to be the acoustically induced perturbations to the
pressure and fluid velocity.

These two coupled equations for p and v remain ap-
plicable when the ambient density and sound speed vary
with position.

3.3.3 The Wave Equation

A single partial differential equation for the acoustic
part of the pressure results when one takes the time
derivative of (3.71) and then uses (3.72) to reexpress the
time derivative of the fluid velocity in terms of pressure.
The resulting equation, as derived by Bergmann [3.31]
for the case when the density varies with position, is

∇ ·
(

1

ρ
∇ p

)
− 1

ρc2

∂2 p

∂t2
= 0 . (3.73)

If the ambient density is independent of position, then
this reduces to

∇2 p− 1

c2

∂2 p

∂t2
= 0 , (3.74)

which dates back to Euler and which is what is ordinar-
ily termed the wave equation of linear acoustics. Often
this is written as

�2 p = 0 , (3.75)

in terms of the d’Alembertian operator defined by

�2 =∇2− c−2∂2/∂t2 . (3.76)

3.3.4 Wave Equations
for Isotropic Elastic Solids

When the ambient density and the Lamé constants
are independent of position, the Cauchy equation and
the stress–strain relations described by (3.55, 56), and
(3.62) can be combined to the single vector equation,

∂2ξ

∂t2
= (c2

1− c2
2

)∇(∇ · ξ)+ c2
2∇2ξ , (3.77)

which is equivalently written as

∂2ξ

∂t2
= c2

1∇(∇ · ξ)− c2
2∇× (∇ × ξ) . (3.78)

Here the quantities c1 and c2 are defined by

c2
1 =

λL+2μL

ρ
, (3.79)

c2
2 =

μL

ρ
. (3.80)
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Because any vector field may be decomposed into
a sum of two fields, one with zero curl and the other with
zero divergence, one can set the displacement vector ξ

to

ξ = ∇Φ+∇ ×Ψ (3.81)

in terms of a scalar and a vector potential. This ex-
pression will satisfy (3.77) identically, provided the two
potentials separately satisfy

∇2Φ− 1

c2
1

∂2Φ

∂t2
= 0 , (3.82)

∇2Ψ − 1

c2
2

∂2Ψ

∂t2
= 0 . (3.83)

Both of these equations are of the form of the simple
wave equation of (3.74). The first corresponds to longi-
tudinal wave propagation, and the second corresponds
to shear wave propagation. The quantities c1 and c2 are
referred to as the dilatational and shear wave speeds,
respectively.

If the displacement field is irrotational, so that the
curl of the displacement vector is zero (as is so for
sound in fluids), then each component of the displace-
ment field satisfies (3.82). If the displacement field is
solenoidal, so that its divergence is zero, then each com-
ponent of the displacement satisfies (3.83).

3.3.5 Linearized Equations
for a Viscous Fluid

For the restricted but relatively widely applicable case
when the Navier–Stokes–Fourier equations are pre-
sumed to hold and the characteristic scales of the
ambient medium and the disturbance are such that
the ambient flow is negligible, and the coefficients
are idealizable as constants, the linear equations have
the form appropriate for a disturbance in a homoge-
neous, time-independent, non-moving medium, these
equations being

∂ρ′

∂t
+ρ0∇ ·v′ = 0 , (3.84)

ρ0
∂v′

∂t
=−∇ p′ +

(
1

3
μ+μB

)
∇ (∇ ·v′)

+μ∇2v′ , (3.85)

ρ0T0
∂s′

∂t
= κ∇2T ′ , (3.86)

ρ′ = 1

c2
p′ −

(
ρβT

cp

)

0

s′ , (3.87)

T ′ =
(

Tβ

ρcp

)

0

p′ +
(

T

cp

)

0

s′ . (3.88)

The primes on the perturbation field variables are
needed here to distinguish them from the corresponding
ambient quantities.

3.3.6 Acoustic, Entropy,
and Vorticity Modes

In general, any solution of the linearized equations
for a fluid with viscosity and thermal conductivity
can be regarded [3.30, 32–34] as a sum of three ba-
sic types of solutions. The common terminology for
these is: (i) the acoustic mode, (ii) the entropy mode,
and (iii) the vorticity mode. Thus, with appropri-
ate subscripts denoting the various fundamental mode
types, one writes the fluid velocity perturbation in the
form,

v′ = vac+vent+vvor , (3.89)

with similar decompositions for the other field vari-
ables. The decomposition is intended to be such that,
for waves of constant frequency, each field variable’s
contribution from any given mode satisfies a par-
tial differential equation that is second order (rather
than of some higher order as might be derived from
(3.84)–(3.88)) in the spatial derivatives. That such a de-
composition is possible follows from a theorem [3.35,
36] that any solution of a partial differential equation
of, for example, the form,

(∇2+λ1
)(∇2+λ2

)(∇2+λ3
)
ψ = 0 , (3.90)

can be written as a sum,

ψ = ψ1+ψ2+ψ3 , (3.91)

where the individual terms each satisfy second-order
differential equations of the form,

(∇2+λi
)
ψi = 0 . (3.92)

This decomposition is possible providing no two of
the λi are equal. (In regard to (3.90), one should note
that each of the three operator factors is a second-order
differential operator, so the overall equation is a sixth-
order partial differential equation. One significance of
the theorem is that one has replaced the seemingly
formidable problem of solving a sixth-order partial dif-
ferential equation by that of solving three second-order
partial differential equations.)

Linear acoustics is primarily concerned with solu-
tions of the equations that govern the acoustic mode,
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while conduction heat transfer is primarily concerned
with solutions of the equations that govern the en-
tropy mode. However, the simultaneous consideration
of all three solutions is often necessary when one
seeks to satisfy boundary conditions at solid surfaces.
The decomposition becomes relatively simple when the
characteristic angular frequency is sufficiently small
that

ω
 ρc2

(4/3)μ+μB
, (3.93)

ω
 ρc2cp

κ
. (3.94)

These conditions are invariably well met in all ap-
plications of interest. For air the right sides of the
two inequalities correspond to frequencies of the order
of 109 Hz, while for water they correspond to fre-
quencies of the order of 1012 Hz. If the inequalities
are not satisfied, it is also possible that the Navier–
Stokes–Fourier model is not appropriate, since the
latter presumes that the variations are sufficiently slow
that the medium can be regarded as being in quasi-
thermodynamic equilibrium.

The acoustic mode and the entropy mode are both
characterized by the vorticity (curl of the fluid ve-
locity) being identically zero. (This characterization is
consistent with the theorem that any vector field can
be decomposed into a sum of a field with zero di-
vergence and a field with zero curl.) In the limit of
zero viscosity and zero thermal conductivity (which is
a limit consistent with (3.93) and (3.94)), the acous-
tic mode is characterized by zero entropy perturbations,
while the entropy mode is a time-independent entropy
perturbation, with zero pressure perturbation. These
identifications allow the approximate equations govern-
ing the various modes to be developed in the limit for
which the inequalities are valid. In carrying out the
development, it is convenient to use an expansion pa-
rameter defined by,

ε = ωμ

ρ0c2
, (3.95)

where ω is a characteristic angular frequency, or equiv-
alently, the reciprocal of a characteristic time for the
perturbation. In the ordering, ε is regarded as small,
μB/μ and κ/μcp are regarded as of order unity, and
all time derivative operators are regarded as of or-
der ω.

Acoustic Mode
To zeroth order in ε, the acoustic mode is what re-
sults when the thermal conductivity and the viscosities
are identically zero and the entropy perturbation is also
zero. In such a case, the relations (3.71) and (3.72) are
valid and one obtains the wave equation of (3.74). All
of the field variables in the acoustic mode satisfy this
wave equation to zeroth order in ε. This is so because
the governing equations have constant coefficients.

When one wishes to take into account the cor-
rections that result to first order in ε, the entropy
perturbation is no longer regarded as identically zero,
but its magnitude can be deduced by replacing the T ′
that appears in (3.86) by only the first term in the sum
of (3.88), the substitution being represented by

Tac = T0β

ρ0cp
pac . (3.96)

To the same order of approximation one may use the
zeroth-order wave equation (3.74) to express the right
side of (3.86) in terms of a second-order time derivative
of the acoustic-mode pressure. The resulting equation
can then be integrated once in time with the constant
of integration set to zero because the acoustic mode’s
entropy perturbation must vanish when the correspond-
ing pressure perturbation is identically zero. Thus one
obtains the acoustic-mode entropy as

sac ≈ κβ

ρ2
0c2cp

∂pac

∂t
, (3.97)

correct to first order in ε.
This expression for the entropy perturbation is sub-

stituted into (3.87) and the resulting expression for ρac
is substituted into the conservation of mass relation,
represented by (3.84), so that one obtains

∂pac

∂t
− (γ −1)κ

ρ0c2cp

∂2 pac

∂t2
+ρ0c2∇ ·vac = 0 . (3.98)

The vorticity in the acoustic mode is zero,

∇ ×vac = 0 , (3.99)

so the momentum balance equation (3.85) simplifies to
one where the right side is a gradient. Then with an
appropriate substitution for the divergence of the fluid
velocity from (3.84), one finds that the momentum bal-
ance equation to first order in ε takes the form

ρ0
∂vac

∂t
=−∇

{
pac+ 1

ρ0c2
[(4/3)μ+μB]∂pac

∂t

}
.

(3.100)
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The latter and (3.84), in a manner similar to that in
which the wave equation of (3.73) is derived, yield the
dissipative wave equation represented by

∇2 pac− 1

c2

∂2 pac

∂t2
+ 2δcl

c4

∂3 pac

∂t3
= 0 . (3.101)

The quantity δcl, defined by

δcl = 1

2ρ0

[
(4/3)μ+μB+ (γ −1)(κ/cp)

]
, (3.102)

is a constant that characterizes the classical dissipation
in the acoustic mode.

Entropy Mode
For the entropy mode, the pressure perturbation van-
ishes to zeroth order in ε, while the entropy perturbation
does not. Thus for this mode, (3.87) and (3.88) approx-
imate in zeroth order to

ρent =−
(
ρβT

cp

)

0

sent , (3.103)

Tent =
(

T

cp

)

0

sent . (3.104)

The latter when substituted into the energy equation
(3.86) yields the diffusion equation of conduction heat
transfer,

∂sent

∂t
= κ

ρ0cp
∇2sent . (3.105)

All of the entropy-mode field variables, including Tent,
satisfy this diffusion equation to lowest order in ε.

The mass conservation equation, with an analogous
substitution from (3.103) and another substitution from
(3.88), integrates to

vent = βT0κ

ρ0c2
p
∇sent , (3.106)

so there is a weak fluid flow caused by entropy or
temperature gradients in the entropy mode. The substi-
tution of this expression for the fluid velocity into the
linearized Navier–Stokes equation (3.85) subsequently
yields a lowest-order expression for the entropy-mode
contribution to the pressure perturbation, this being

pent = βT0

cp
[(4/3)μ+μB− (κ/cp)]∂sent

∂t
. (3.107)

Vorticity Mode
For the vorticity mode, the divergence of the fluid ve-
locity is identically zero,

∇ ·vvor = 0 . (3.108)

The mass conservation equation (3.84) and the ther-
modynamic relations, (3.87) and (3.88), consequently
require that all of the thermodynamic field quantities
with subscript ‘vor’ are zero. The Navier–Stokes equa-
tion (3.85) accordingly requires that each component of
the fluid velocity associated with this mode satisfy the
vorticity diffusion equation

ρ0
∂vvor

∂t
= μ∇2vvor . (3.109)

3.3.7 Boundary Conditions at Interfaces

For the model of a fluid without viscosity or thermal
conduction, such as is governed by (3.71)–(3.75), the
appropriate boundary conditions at an interface are that
the normal component of the fluid velocity be continu-
ous and that the pressure be continuous;

v1·n12 = v2·n12 ; p1 = p2 . (3.110)

At a rigid nonmoving surface, the normal component
must consequently vanish,

v ·n= 0 , (3.111)

but no restrictions are placed on the tangential com-
ponent of the velocity. The model also places no
requirements on the value of the temperature at a solid
surface.

When viscosity is taken into account, no matter
how small it may be, the model demands additional
boundary conditions. An additional condition invariably
imposed is that the tangential components of the veloc-
ity also be continuous, the rationale [3.37] being that
a fluid should not slip any more freely with respect to
an interface than it does with itself; this lack of slip is
invariably observed [3.38] when the motion is exam-
ined sufficiently close to an interface. Similarly, when
thermal conduction is taken into account, the rational
interpretation of the model requires that the tempera-
ture be continuous at an interface. Newton’s third law
requires that the shear stresses exerted across an in-
terface be continuous, and the conservation of energy
requires that the normal component of the heat flux be
continuous.
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S (t +Δ t)

S (t)

vS Δ t

v Δ t nS

xS(t)

O

The apparent paradox, that tiny but nonzero val-
ues of the viscosity and thermal conductivity should
drastically alter the basic nature of the boundary
conditions at an interface, is resolved by acoustic
boundary-layer theory. Under normal circumstances,
disturbances associated with sound are almost entirely
in the acoustic mode except in oscillating acoustic
boundary layers near interfaces. In these boundary lay-
ers, a portion of the disturbance is in the entropy
and vorticity modes. These modes make insignifi-
cant contributions to the total perturbation pressure

Fig. 3.6 Graphical proof that the normal component of
fluid velocity should be continuous at any interface. The
interface surface is denoted by S(t), and xS(t) is the loca-
tion of any material particle on either side of the interface,
but located just at the interface. Both it and the particle on
the other side of the interface that neighbors it at time t
will continue to stay on the interface, although they may
be displaced tangentially �

and normal velocity component, but have tempera-
ture and tangential velocity components, respectively,
that are comparable to those of the acoustic mode.
The boundary and continuity conditions can be satis-
fied by the sum of the three mode fields, but not by
the acoustic mode field alone. However, the entropy
and vorticity mode fields typically die out rapidly with
distance from an interface. The characteristic decay
lengths [3.30] when the disturbance has an angular fre-
quency ω are

�vor =
(

2μ

ωρ

)1/2

, (3.112)

�ent =
(

2κ

ωρcp

)1/2

. (3.113)

Given that the parameter ε in (3.95) is much less
than unity, these lengths are much shorter than a char-
acteristic wavelength. If they are, in addition, much
shorter than the dimensions of the space to which the
acoustic field is confined, then the acoustic bound-
ary layer has a minor effect on the acoustic field
outside the boundary layer. However, because dissipa-
tion of energy can occur within such boundary layers,
the existence of a boundary layer can have a long-
term accumulative effect. This can be manifested by
the larger attenuation of sound waves propagating in
pipes [3.39] and in the finite Q (quality factors) of
resonators.

3.4 Variational Formulations

Occasionally, the starting point for acoustical analy-
sis is not a set of partial differential equations, such
as those described in the previous section, but in-
stead a variational principle. The attraction of such
an alternate approach is that it is a convenient de-
parture point for making approximations. The most
fundamental of the variational principles is the ver-

sion of Hamilton’s principle [3.40, 41] that applies to
a continuum.

3.4.1 Hamilton’s Principle

The standard version is that where the displacement
field ξ(x, t) is taken as the field variable. The medium is
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assumed to have no ambient motion, and viscosity and
thermal conduction are ignored.

At any given instant and near any given point there
is a kinetic energy density taken as

T = 1

2
ρ
∑

i

(
∂ξi

∂t

)2

. (3.114)

This is the kinetic energy per unit volume; the quantity
ρ is understood to be the ambient density, this being
an appropriate approximation given that the principle
should be consistent with a linear formulation.

The second density of interest is the strain energy
density, U, which is presumed to be a bilinear function
of the displacement field components and of their spa-
tial derivatives. For an isotropic linear elastic solid, this
is given by (3.68), which can be equivalently written,
making use of the definition of the strain components,
as

U = 1

4
μL

∑

ij

(
∂ξi

∂x j
+ ∂ξ j

∂xi

)2

+ 1

2
λL (∇ · ξ)2 .

(3.115)

For the case of a compressible fluid, the stress tensor is
given by

σij =−pδij = ρc2∇ · ξδij . (3.116)

Here p is the pressure associated with the disturbance,
and the second version follows from the time integration
of (3.71). The general expression (3.60) consequently
yields

U = 1

2
ρc2 (∇ · ξ)2 (3.117)

for the strain energy density in a fluid.
There are other examples that can be considered

for which there are different expressions for the strain
energy density.

Given the kinetic and strain energy densities, one
constructs a Lagrangian density,

L = T−U . (3.118)

Hamilton’s principle then takes the form

δ

∫∫∫∫
Ldx dy dz dt = 0 . (3.119)

Here the integration is over an arbitrary volume and
arbitrary time interval. The symbol δ implies a varia-
tion from the exact solution of the problem of interest.
In such a variation, the local and instantaneous value

ξ(x, t) is considered to deviate by an infinitesimal
amount δξ(x, t).

The variation of the Lagrangian is calculated in the
same manner as one determines differentials using the
chain rule of differentiation. One subsequently uses the
fact that a variation of a derivative is the derivative of
a variation. One then integrates by parts, whenever nec-
essary, so that one eventually obtains, an equation of the
form

∫∫∫∫ ∑

i

[expression]iδξi dx dy dz dt

+[boundary terms] = 0 . (3.120)

Here the boundary terms result from the integrations by
parts, and they involve values of the variations at the
boundaries (integration limits) of the fourfold integra-
tion domain. If one takes the variations to be zero at
these boundaries, but otherwise arbitrary within the do-
main, one concludes that the coefficient expressions of
the δξi within the integrand must be identically zero
when the displacement field is the correct solution.
Consequently, one infers that the displacement field
components must satisfy

[expression]i = 0 . (3.121)

The detailed derivation yields the above with the form

∂L

∂ξi
− ∂

∂t

(
∂L

∂(∂ξi/∂t)

)
−
∑

j

∂

∂x j

(
∂L

∂(∂ξi/∂x j )

)

+
∑

jk

∂2

∂x j∂xk

(
∂L

∂(∂2ξi/∂x j∂xk)

)
− . . .= 0 .

(3.122)

This, along with its counterparts for the other dis-
placement components, is sometimes referred to as the
Lagrange–Euler equation(s). The terms that are required
correspond to those spatial derivatives on which the
strain energy density U depends.

For the case of an isotropic solid, the Lagrange–
Euler equations correspond to those of (3.77), which
is equivalently written, given that the Lamé coefficients
are independent of position, as

ρ
∂2ξ

∂t2
= ρ(c2

1− c2
2

)∇ (∇ · ξ)+ρc2
2∇2ξ . (3.123)

For a fluid, the analogous result is

ρ
∂2ξ

∂t2
=∇(ρc2∇ · ξ) . (3.124)
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The more familiar Bergmann version (3.73) of the
wave equation results from this if one divides both
sides by ρ, then takes the divergence, and subsequently
sets

p =−ρc2∇ · ξ . (3.125)

Here the variational principle automatically yields a
wave equation that is suitable for inhomogeneous me-
dia, where ρ and c vary with position.

3.4.2 Biot’s Formulation for Porous Media

A commonly used model for waves in porous media
follows from a formulation developed by Biot [3.42],
with a version of Hamilton’s principle used in the for-
mulation. The medium consists of a solid matrix that
is connected, so that it can resist shear stresses, and
within which are small pores filled with a compressible
fluid.

Two displacement fields are envisioned, one asso-
ciated with the local average displacement U of the
fluid matter, the other associated with the average dis-
placement u of the solid matter. The average here is
understood to be an average over scales large compared
to representative pore sizes or grain sizes, but yet small
compared to whatever lengths are of dominant inter-
est. Because nonlinear effects are believed minor, the
kinetic and strain energies per unit volume, again aver-
aged over such length scales, are taken to be quadratic in
the displacement fields and their derivatives. The overall
medium is presumed to be isotropic, so the two energy
densities must be unchanged under coordinate rotations.
These innocuous assumptions lead to the general ex-

Solid

Solid

SolidSolid

Fluid

Fluid

Fluid

Fig. 3.7 Sketch of a portion of a porous medium in which
a compressible fluid fills the pores within a solid matrix.
Grains that touch each other are in welded contact, insofar
as small-amplitude disturbances are concerned

pressions

T = 1

2
ρ11
∂u
∂t
· ∂u
∂t
+ρ12

∂U
∂t

· ∂u
∂t
+ 1

2
ρ22
∂U
∂t

· ∂U
∂t
,

(3.126)

U = 1

4
N
∑

ij

(
∂ui

∂x j
+ ∂u j

∂xi

)2

+ 1

2
A (∇ ·u)2

+Q (∇ ·u) (∇ ·U)+ 1

2
R (∇ ·U)2 . (3.127)

where there are seven, possibly position-dependent,
constants. The above form assumes that there is no po-
tential energy associated with shear deformation in the
fluid and that there is no potential energy associated
with the relative displacements of the solid and the fluid.
The quantities U and u here, which are displacements,
should not be confused with velocities, although these
symbols are used for velocities in much of the litera-
ture. They are used here for displacements, because they
were used as such by Biot in his original paper.

Because the two energy densities must be nonneg-
ative, the constants that appear here are constrained so
that

ρ11 ≥ 0 ; ρ22 ≥ 0 ; ρ11ρ22−ρ2
12 ≥ 0 , (3.128)

N ≥ 0 ; A+2N ≥ 0 ; R ≥ 0 ;
(A+2N)R−Q2 ≥ 0 . (3.129)

The coupling constants, ρ12 and Q, can in principle
be either positive or negative, but their magnitudes are
constrained by the equations above.

It is presumed that this idealization for the energy
densities will apply best at low frequencies, and one
can conceive of a possible low-frequency disturbance
where the solid and the fluid move locally together,
with the locking being caused by the viscosity in the
fluid and by the boundary condition that displacements
at interfaces must be continuous. In such circumstances
the considerations that lead to the composite density of
(3.50) should apply, so one should have

ρ11+2ρ12+ρ22 = ρeq = fsρs+ ffρf . (3.130)

Here fs and ff are the volume fractions of the mater-
ial that are solid and fluid, respectively. The latter is
referred to as the porosity.

In general, the various constants have to be inferred
from experiment, and it is difficult to deduce them from
first principles. An extensive discussion of these con-
stants with some representative values can be found in
the monograph by Stoll [3.43].
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Because the friction associated with the motion of
the fluid with respect to the solid matrix is inherently
nonconservative (i. e., energy is lost), the original ver-
sion (3.119) of Hamilton’s principle does not apply. The
applicable extension includes a term that represents the
time integral of the virtual work done by nonconserva-
tive forces during a variation. If such nonconservative
forces are taken to be distributed over the volume, with
the forces per unit volume on the fluid denoted by F

and those on the solid denoted by f, then the modified
version of Hamilton’s principle is

∫∫∫∫
(δL+F · δU + f·δu) dx dy dz dt = 0.

(3.131)

Moreover, one infers that

F=−f , (3.132)

since the virtual work associated with friction between
the solid matrix and the fluid must vanish if the two are
moved together.

The Lagrange–Euler equations that result from the
above variational principle are

∂

∂t

(
∂L

∂ (∂Ui/∂t)

)
+
∑

j

∂

∂x j

(
∂L

∂
(
∂Ui/∂x j

)
)
= Fi ,

(3.133)

∂

∂t

(
∂L

∂ (∂ui/∂t)

)
+
∑

j

∂

∂x j

(
∂L

∂
(
∂ui/∂x j

)
)
= fi .

(3.134)

Biot, in his original exposition, took the internal
distributed forces to be proportional to the relative ve-
locities, reminiscent of dashpots, so that

Fi =−fi =−b

(
∂Ui

∂t
− ∂ui

∂t

)
. (3.135)

Here the quantity b can be regarded as the apparent
dashpot constant per unit volume. This form is such that
the derived equations, in the limit of vanishingly small
frequencies, are consistent with Darcy’s law [3.44] for
steady fluid flow through a porous medium.

The equations that result from this formulation,
when written out explicitly, are

∂2

∂t2 (ρ11u+ρ12U)−∇(A′∇ · u+Q∇ ·U)

+∇ × [N (∇ × u)] = b
∂

∂t
(U −u) , (3.136)

∂2

∂t2 (ρ12u+ρ22U)−∇ (Q∇ ·u+ R∇ ·U)

=−b
∂

∂t
(U −u) , (3.137)

with the abbreviation A′ = A+2N . Here, and in what
follows, it is assumed that the various material constants
are independent of position, although some of the de-
rived equations may be valid to a good approximation
even when this is not the case.

3.4.3 Disturbance Modes in a Biot Medium

Disturbances that satisfy the equations derived in the
previous section can be represented as a superposition
of three basic modal disturbances. These are here de-
noted as the acoustic mode, the Darcy mode, and the
shear mode, and one writes

u = uac+uD+ush , (3.138)

U =Uac+UD+Ush . (3.139)

At low frequencies, the motion in the acoustic mode and
in the shear mode is nearly such that the fluid and solid
displacements are the same,

Uac ≈ uac ; Ush ≈ ush . (3.140)

The lowest-order (in frequency divided by the dashpot
parameter b) approximation results from taking the sum
of (3.136) and (3.137) and then setting u =U , yielding

ρeq
∂2

∂t2
U −∇(BV,B∇ ·U)+∇ × [GB (∇×U)] = 0 ,

(3.141)

with the abbreviations

ρeq = ρ11+2ρ12+ρ22 , (3.142)

BV,B = A+2N +2Q+ R , (3.143)

GB = N , (3.144)

for the apparent density, bulk modulus, and shear mod-
ulus of the Biot medium. The same equation results for
the solid displacement field u in this approximation.

Acoustic Mode
For the acoustic mode, the curl of each displacement
field is zero, so

ρeq
∂2

∂t2
U −∇ (BV,B∇ ·U)= 0 . (3.145)

One can identify an apparent pressure disturbance asso-
ciated with this mode, so that

pac ≈−BV,B∇·U , (3.146)
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and this will satisfy the wave equation

∇2 pac− 1

c2
ac

∂2 pac

∂t2
= 0 , (3.147)

where

c2
ac =

BV,B

ρeq
(3.148)

is the square of the apparent sound speed for distur-
bances carried by the acoustic mode.

The equations just derived can be improved by an
iteration procedure to take into account that the dashpot
constant has a finite (rather than an infinite) value. To
the next order of approximation, one obtains

∇2Uac− 1

c2
ac

∂2

∂t2
Uac =− τB

c2
ac

∂3

∂t3
Uac . (3.149)

This wave equation with an added (dissipative) term
holds for each component of Uac and of uac, as well
as for the pressure pac. The time constant τB which
appears here is given by

τB = D2

bB2
V,Bρeq

, (3.150)

where

D = (ρ11+ρ12)(R+Q)

− (ρ22+ρ12)(A+2N +Q) (3.151)

is a parameter that characterizes the mismatch between
the material properties of the fluid and the solid. The
appearance of the dissipative term in the wave equa-
tion is associated with the imperfect locking of the two
displacement fields, so that

Uac−uac ≈ D

bBV,B

∂uac

∂t
. (3.152)

One should note that (3.149) is of the same general
mathematical form as the dissipative wave equation
(3.101).

Shear mode
For the shear mode, the divergence of each displace-
ment field is zero, so (3.141) reduces to

ρeq
∂2

∂t2
U +∇ × [GB (∇ × U)] = 0 , (3.153)

where this holds to lowest order for both Ush and ush,
these being equal in this approximation. A mathemati-
cal identity for the curl of a curl reduces this to

∇2ush− 1

c2
sh

∂2ush

∂t2
= 0 , (3.154)

where

c2
sh =

GB

ρeq
. (3.155)

An iteration process that takes into account that the
two displacement fields are not exactly the same yields

ush−Ush ≈ ρ22+ρ12

b

∂Ush

∂t
, (3.156)

with the result that the wave equation above is replaced
by a dissipative wave equation

∇2ush− 1

c2
sh

∂2ush

∂t2
=− (ρ22+ρ12)2

GBb

∂3ush

∂t3
.

(3.157)

Darcy Mode
For the Darcy mode, the curl of both displacement fields
is zero,

∇ × UD = 0 ; ∇ × uD = 0 . (3.158)

The inertia term in both (3.136) and (3.137) is negligible
to a lowest approximation, and the compatibility of the
two equations requires

(A′ +Q)uD =−(R+Q)UD , (3.159)

so that the fluid and the solid move in opposite direc-
tions.

Given the above observation and the neglect of the
inertia terms, either of (3.136) and (3.137) reduces to
the diffusion equation

∇2UD = κD
∂UD

∂t
, (3.160)

with the same equation also being satisfied by uD. Here

κD = bBV,B

A′R−Q2
(3.161)

is a constant whose reciprocal characterizes the ten-
dency of the medium to allow diffusion of fluid through
the solid matrix. This is independent of any of the iner-
tial densities, and it is always positive.
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3.5 Waves of Constant Frequency

One of the principal terms used in describing sound
is that of frequency. Although certainly not all acous-
tic disturbances are purely sinusoidal oscillations of
a quantity (such as pressure or displacement) that os-
cillates with constant frequency about a mean value, it
is usually possible to characterize (at least to an order
of magnitude) any such disturbance by one or a lim-
ited number of representative frequencies, these being
the reciprocals of the characteristic time scales. Such
a description is highly useful, because it gives one some
insight into what detailed physical effects are relevant
and of what instrumentation is applicable. The simplest
sort of acoustic signal would be one where a quantity
such as the fluctuating part p of the pressure is oscillat-
ing with time t as

p = A cos(ωt−φ) . (3.162)

Here the amplitude A and phase constant φ are inde-
pendent of t (but possibly dependent on position). The
quantity ω is called the angular frequency and has the
units of radians divided by time (for example, rad/s or
simply s−1, when the unit of time is the second). The
number f of repetitions per unit time is what one nor-
mally refers to as the frequency (without a modifier),
such that ω= 2π f . The value of f in hertz (abbreviated
to Hz) is the frequency in cycles (repetitions) per sec-
ond. The period T = 1/ f is the time interval between
repetitions.

The human ear responds [3.45] almost exclusively
to frequencies between roughly 20 Hz and 20 kHz.
Consequently, sounds composed of frequencies below
20 Hz are said to be infrasonic; those composed of fre-
quencies above 20 kHz are said to be ultrasonic. The
scope of acoustics, given its general definition as a phys-
ical phenomenon, is not limited to audible frequencies.

3.5.1 Spectral Density

The term frequency spectrum is often used in relation
to sound. Often the use is somewhat loose, but there are
circumstances for which the terminology can be made
precise. If the fluctuating physical quantity p associ-
ated with the acoustic disturbance is a sum of sinusoidal
disturbances, the n-th being pn = An cos(2π fnt−φn)
and having frequency fn , no two frequencies being the
same, then the set of mean squared amplitudes can be
taken as a description of the spectrum of the signal.
Also, if the sound is made up of many different frequen-
cies, then one can use the time-averaged sum of the p2

n

that correspond to those frequencies within a given
specified frequency band as a measure of the strength of
the signal within that frequency band. This sum divided
by the width of the frequency band often approaches
a quasi-limit as the bandwidth becomes small, but with
the number of included terms still being moderately
large, and with this quasi-limit being a definite smooth
function of the center frequency of the band. This quasi-
limit is called the spectral density p2

f of the signal. Al-
though an idealized quantity, it can often be repetitively
measured to relatively high accuracy; instrumentation
for the measurement of spectral densities or of integrals
of spectral densities over specified (such as octaves)
frequency bands is widely available commercially.

The utility of the spectral density concept rests on
the principle of superposition and on a version of Par-
seval’s theorem, which states that, when the signal is
a sum of discrete frequency components, then if aver-
ages are taken over a sufficiently long time interval,

(p2)av =
∑

n

(
p2

n

)
av . (3.163)

Consequently, in the quasi-limit corresponding to the
spectral density description, one has the mean squared
pressure expressed as an integral over spectral density,

(p2)av =
∞∫

0

p2
f ( f )d f . (3.164)

The spectral density at a given frequency times a narrow
bandwidth centered at that frequency is interpreted as
the contribution to the mean squared acoustic pressure
from that frequency band.

If the signal is a linear response to a source (or ex-
citation) characterized by some time variation s(t) with
spectral density s2

f ( f ), then the spectral density of the
response is

p2
f ( f ) = |Hps(2π f )|2s2

f ( f ) , (3.165)

where the proportionality factor |Hps(2π f )|2 is the
square of the absolute magnitude of a transfer func-
tion that is independent of the excitation, but which
does depend on frequency. For any given frequency,
this transfer function can be determined from the re-
sponse to a known sinusoidal excitation with the same
frequency. Thus the analysis for constant-frequency ex-
citation is fundamental, even when the situation of
interest may involve broadband excitation.
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3.5.2 Fourier Transforms

Analogous arguments can be made for transient ex-
citation and transient signals, where time-dependent
quantities are represented by integrals over Fourier
transforms, so that

p(t) =
∞∫

−∞
p̂(ω)e−iωt dω , (3.166)

with

p̂(ω) = 1

2π

∞∫

−∞
p(t)eiωt dt . (3.167)

Here p̂(ω) is termed the Fourier transform of p(t), and
p(t) is conversely termed the inverse Fourier transform
of p̂(ω). Definitions of the Fourier transform vary in the
acoustics literature. What is used here is what is com-
monly used for analyses of wave propagation problems.
Whatever definition is used must be accompanied by
a definition of the inverse Fourier transform, so that the
inverse Fourier transform produces the original func-
tion. In all such cases, given that p(t) and ω are real,
one has

p̂(−ω) = p̂(ω)∗ , (3.168)

where the asterisk denotes the complex conjugate. Thus,
the magnitude of the Fourier transform need only be
known for positive frequencies. The phase changes sign
when one changes the sign of the frequency.

Parseval’s theorem for Fourier transforms is

∞∫

−∞
p2(t)dt = 4π

∞∫

0

| p̂(ω)|2 dω , (3.169)

so that 4π| p̂(ω)|2 Δω can be regarded as to the contri-
bution to the time integral of p2(t) from a narrow band
of (positive) frequencies of width Δω.

3.5.3 Complex Number Representation

Insofar as the governing equations are linear with co-
efficients independent of time, disturbances that vary
sinusoidally with time can propagate without change
of frequency. Such sinusoidally varying disturbances of
constant frequency have the same repetition period (the
reciprocal of the frequency) at every point, but the phase
will in general vary from point to point.

When one considers a disturbance of fixed fre-
quency or one frequency component of a multifre-
quency disturbance, it is convenient to use a complex
number representation, such that each field amplitude is
written [3.4, 46]

p = Re( p̂e−iωt) . (3.170)

Here p̂ is called the complex amplitude of the acoustic
pressure and in general varies with position. (The use of
the e−iωt time dependence is traditional among acous-
tics professionals who are primarily concerned with the
wave aspects of acoustics. In the vibrations literature,
one often finds instead a postulated ejωt time depen-
dence. The use of j as the square root of −1 instead of
i is a carryover from the analysis of oscillations in elec-
trical circuits, where i is reserved for electrical current.)

If one inserts expressions such as (3.170) into
a homogeneous linear ordinary or partial differential
equation with real time-independent coefficients, the re-
sult can always be written in the form

Re
(
Φ e−iωt)= 0 , (3.171)

where the quantity Φ is an expression depending on the
complex amplitudes and their spatial derivatives, but not
depending on time. The requirement that (3.171) should
hold for all values of time consequently can be satisfied
if and only if

Φ = 0 . (3.172)

Moreover, the form of the expression Φ can be read-
ily obtained from the original equation with a simple
prescription: replace all field variables by their com-
plex amplitudes and replace all time derivatives using
the substitution

∂

∂t
→−iω . (3.173)

Thus, for example, the linear acoustic equations given
by (3.71) and (3.72) reduce to

−iω p̂+ρc2∇ · v̂= 0 , (3.174)

−iωρv̂=−∇ p̂ . (3.175)

The wave equation in (3.74) reduces (with k = ω/c de-
noting the wavenumber) to

∇2 p̂+ k2 p̂ = 0 , (3.176)

which is the Helmholtz equation [3.47] for the complex
pressure amplitude.
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3.5.4 Time Averages of Products

When dealing with waves of constant frequency, one of-
ten makes use of averages over a wave period of the
product of two quantities that oscillate with the same
frequency. Let

p = Re
(

p̂e−iωt) ; v= Re
(
v̂e−iωt) (3.177)

be two such quantities. Then the time average of their
product is

[p(t)v(t)]av = | p̂||v̂|[cos(ωt−φp) cos(ωt−φv)]av ,

(3.178)

where φp and φv are the phases of p̂ and v̂.
The trigonometric identity

cos(A) cos(B) = 1

2
[cos(A+ B)+ cos(A− B)] ,

(3.179)

with appropriate identifications for A and B, yields
a term which averages out to zero and a term which is
independent of time. Thus one has

[
p(t)v(t)

]
av =

1

2
| p̂||v̂| cos(φp−φv) , (3.180)

or, equivalently

[p(t)v(t)]av = 1

2
| p̂||v̂|Re(ei(φp−φv)) , (3.181)

which in turn can be written

[p(t)v(t)]av = 1

2
Re( p̂v̂∗) . (3.182)

The asterisk here denotes the complex conjugate. Be-
cause the real part of a complex conjugate is the same
as the real part of the original complex number, it is
immaterial whether one takes the complex conjugate
of p̂ or v̂, but one takes the complex conjugate of only
one.

3.6 Plane Waves

A solution of the wave equation that plays a central role
in many acoustical concepts is that of a plane traveling
wave.

3.6.1 Plane Waves in Fluids

The mathematical representation of a plane wave is
such that all acoustic field quantities vary with time
and with one Cartesian coordinate. That coordinate is
taken here as x; consequently, all the acoustic quanti-
ties are independent of y and z. The Laplacian reduces
to a second partial derivative with respect to x and the
d’Alembertian can be expressed as the product of two
first-order operators, so that the wave equation takes the
form

(
∂

∂x
− 1

c

∂

∂t

)(
∂

∂x
+ 1

c

∂

∂t

)
p = 0 . (3.183)

The solution of this equation is a sum of two expres-
sions, each of which is such that operation by one or
the other of the two factors in (3.183) yields zero. Such
a solution is represented by

p(x, t) = f (x− ct)+ g(x+ ct) , (3.184)

where f and g are two arbitrary functions. The argu-
ment combination x−ct of the first term is such that the
function f with that argument represents a plane wave
traveling forward in the+x-direction at a velocity c. The

second term in (3.184) similarly represents a plane wave
traveling backwards in the −x-direction, also at a ve-
locity c. For a traveling plane wave, not only the shape,
but also the amplitude is conserved during propagation.
A typical situation for which wave propagation can be
adequately described by traveling plane waves is that of
low-frequency sound propagation in a duct. Diverging or
converging (focused) waves can often be approximately
regarded as planar within regions of restricted extent.

The fluid velocity that corresponds to the plane
wave solution above has y and z components that are
identically zero, but the x-component, in accordance
with (3.71) and (3.72), is

vx = 1

ρc
f (x− ct)− 1

ρc
g(x+ ct) . (3.185)

f

s

f

s

s'

s''

c(t2– t1)
t = t2

t = t1

Fig. 3.8 Waveform propagating in the +s-direction with
constant speed c. Shown are plots of the function f (s− ct)
versus s at two successive values of the time t
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y

x

c

n

Fig. 3.9 Plane wave propagating in the direction of the unit
vector n

The general rule that emerges from this is that, for
a plane wave propagating in the direction corresponding
to unit vector n, the acoustic part of the pressure is

p = f (n · x− ct) (3.186)

for some generic function f of the indicated argument,
while the acoustically induced fluid velocity is

v= n
ρc

p . (3.187)

Because the fluid velocity is in the same direction as that
of the wave propagation, such waves are said to be lon-
gitudinal. (Electromagnetic plane waves in free space,
in contrast, are transverse. Both the electric field vector
and the magnetic field vector are perpendicular to the
direction of propagation.)

For a plane wave traveling along the +x-axis at
a velocity c, the form of (3.186) implies that one can
represent a constant-frequency acoustic pressure distur-
bance by the expression

p = |P| cos [k(x− ct)+φ0] = Re(P eik(x−ct)) ,

(3.188)

with the angular frequency identified as

ω= ck . (3.189)

Alternately, if the complex amplitude representation of
(3.170) is used, one writes the complex amplitude of the
acoustic pressure as

p̂ = P eikx , (3.190)

where P is a complex number related to the constants
that appear in (3.188) as

P = |P|eiφ0 . (3.191)

Restored Rarefacted Displaced Compressed Undisturbed

p

s

Fig. 3.10 Fluid velocity and pressure in a one-cycle sinu-
soidal pulse propagating in the +x-direction

Here |P| is the amplitude of the disturbance, φ0 is
a phase constant, and k is a constant termed the
wavenumber. The wavelength λ is the increment in
propagation distance x required to change the argument
of the cosine by 2π radians, so

k = 2π

λ
. (3.192)

Also, the increment in t required to change the argument
by 2π is the period T , which is the reciprocal of the
frequency f , so one has

λ= c

f
. (3.193)

3.6.2 Plane Waves in Solids

Plane acoustic waves in isotropic elastic solids [3.26]
have properties similar to those of waves in fluids. Di-
latational (or longitudinal) plane waves are such that the
curl of the displacement field vanishes, so the displace-
ment vector must be parallel to the direction of propa-
gation. (Dilation means expansion and is the antonym
of compression. Dilatational plane waves could equally
well be termed compressional plane waves. Seismolo-
gists refer to dilational waves as P-waves, where the
letter P stands for primary. They refer to shear waves
as S-waves, where the letter S stands for secondary.)
A comparison of (3.82) with the wave equation (3.74)
indicates that such a wave must propagate with a speed
c1 determined by (3.79). Thus, a wave propagating in
the+x-direction has no y and z components of displace-
ment, and has an x-component described by

ξx = F(x− c1t) , (3.194)

where F is an arbitrary function. The stress components
can be deduced from (3.56, 57, 79, 80). These equations,
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as well as symmetry considerations, require for a di-
latational wave propagating in the x-direction, that the
off-diagonal elements of the stress tensor vanish. The
diagonal elements are given by

σxx = ρc2
1 F′(x− c1t) , (3.195)

σyy = σzz = ρ
(
c2

1−2c2
2

)
F′(x− c1t) . (3.196)

Here the primes denote derivatives with respect to the
total argument.

The divergence of the displacement field in a shear
wave is zero, so a plane shear wave must cause a dis-
placement perpendicular to the direction of propagation.

Shear waves are therefore transverse waves. Equa-
tion (3.83), when considered in a manner similar to that
described above for the wave equation for waves in flu-
ids, leads to the conclusion that plane shear waves must
propagate with a speed c2. A plane shear wave polarized
in the y-direction and propagating in the x-direction will
have only a y-component of displacement, given by

ξy = F(x− c2t) . (3.197)

The only nonzero stress components are the shear
stresses

σyx = ρc2
2 F′(x− c2t) = σxy . (3.198)

3.7 Attenuation of Sound

Plane waves of constant frequency propagating through
bulk materials have amplitudes that typically decrease
exponentially with increasing propagation distance,
such that the magnitude of the complex pressure am-
plitude varies as

| p̂(x)| = | p̂(0)|e−αx . (3.199)

The quantity α is the plane wave attenuation coefficient
and has units of nepers per meter (Np/m); it is an in-
trinsic frequency-dependent property of the material.
This exponential decrease of amplitude is called atten-
uation or absorption of sound and is associated with
the transfer of acoustic energy to the internal energy of
the material. (If | p̂|2 decreases to a tenth of its original
value, it is said to have decreased by 10 decibels (dB), so
an attenuation constant of α nepers per meter is equiva-
lent to an attenuation constant of [20/(ln 10)]α decibels
per meter, or 8.6859α decibels per meter.)

3.7.1 Classical Absorption

The attenuation of sound due to the classical processes
of viscous energy absorption and thermal conduction
is derivable [3.33] from the dissipative wave equa-
tion (3.101) given previously for the acoustics mode.
Dissipative processes enter into this equation through
a parameter δcl, which is defined by (3.102). To de-
termine the attenuation of waves governed by such
a dissipative wave equation, one sets the perturbation
pressure equal to

pac = P e−iωt eikx , (3.200)

where P is independent of position and k is a com-
plex number. Such a substitution, with reasoning such
as that which leads from (3.171) to (3.172), yields an al-
gebraic equation that can be nontrivially (amplitude not
identically zero) satisfied only if k satisfies the relation

k2 = ω
2

c2
+ i

2δclω
3

c3
. (3.201)

The root that corresponds to waves propagating in the
+x-direction is that which evolves to (3.189) in the limit
of no absorption, and for which the real part of k is
positive. Thus to first order in δcl, one has the complex
wavenumber

k = ω
c
+ i
δclω

2

c3
. (3.202)

The attenuation coefficient is the imaginary part of this,
in accordance with (3.199), so

αcl = δclω
2

c3
. (3.203)

This is termed the classical attenuation coefficient for
acoustic waves in fluids and is designated by the sub-
script “cl”. The distinguishing characteristic of this
classical attenuation coefficient is its quadratic increase
with increasing frequency.

The same type of frequency dependence is obeyed
by the acoustic and shear wave modes for the Biot
model of porous media in the limit of low frequencies.
From (3.149) one derives

αac = τB

2cac
ω2 , (3.204)
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and, from (3.157), one derives

αsh = csh(ρ22+ρ12)2

2GBb
ω2 . (3.205)

3.7.2 Relaxation Processes

For many substances, including air, sea water, biologi-
cal tissues, marine sediments, and rocks, the variation
of the absorption coefficient with frequency is not
quadratic [3.48–50], and the classical model is in-
sufficient to predict the magnitude of the absorption
coefficient. The substitution of a different value of the
bulk viscosity is insufficient to remove the discrepancy,
because this would still yield the quadratic frequency
dependence. The successful theory to account for such
discrepancies in air and sea water and other fluids is
in terms of relaxation processes. The physical nature
of the relaxation processes vary from fluid to fluid, but
a general theory in terms of irreversible thermodynam-
ics [3.51–53] yields appropriate equations.

The equation of state for the instantaneous (rather
than equilibrium) entropy is written as

s = s(u, ρ−1, ξ) , (3.206)

where ξ represents one or more internal variables. The
differential relation of (3.13) is replaced by

T ds = du+ pdρ−1+
∑

ν

Aν dξν , (3.207)

where the affinities Aν are defined by this equation.
These vanish when the fluid is in equilibrium with
a given specified internal energy and density. The pres-
sure p here is the same as enters into the expression
(3.15) for the average normal stress, and the T is the
same as enters into the Fourier law (3.16) of heat
conduction. The mass conservation law (3.2) and the
Navier–Stokes equation (3.24) remain unchanged, but
the energy equation, expressed in (3.25) in terms of
entropy, is replaced by the entropy balance equation

ρ
Ds

Dt
+∇ · q

T
= σs . (3.208)

Here the quantity σs, which indicates the rate of irre-
versible entropy production per unit volume, is given
by

Tσs =μB(∇·v)2+ 1
2μ
∑

ij

φ2
ij +

κ

T
(∇T )2

+ρ
∑

ν

Aν
Dξν
Dt

. (3.209)

One needs in addition relations that specify how
the internal variables ξν relax to their equilibrium
values. The simplest assumption, and one which is
substantiated for air and sea water, is that these relax
independently according to the rule [3.54]

Dξν
Dt

=− 1

τν

(
ξν− ξν,eq

)
. (3.210)

The relaxation times τν that appear here are positive and
independent of the internal variables.

When the linearization process is applied to the non-
linear equations for the model just described of a fluid
with internal relaxation, one obtains the set of equations

∂ρ′

∂t
+ρ0∇·v′ = 0 , (3.211)

ρ0
∂v′

∂t
=−∇ p′ + (1/3μ+μB)

×∇(∇·v′)+μ∇2v′ , (3.212)

ρ0T0
∂s′

∂t
= κ∇2T ′ , (3.213)

ρ′ = 1

c2
p′ −

(
ρβT

cp

)

0

s′

+
∑

ν

(
ξ ′ν− ξ ′ν,eq

)
aν , (3.214)

T ′ =
(

Tβ

ρcp

)

0

p′ +
(

T

cp

)

0

s′

+
∑

ν

(
ξ ′ν− ξ ′ν,eq

)
bν , (3.215)

∂ξ ′ν
∂t

=− 1

τν

(
ξ ′ν− ξ ′ν,eq

)
, (3.216)

ξ ′ν,eq = mνs
′ +nν p′ . (3.217)

Here aν , bν, mν , and nν are constants whose values
depend on the ambient equilibrium state.

For absorption of sound, the interest is in the acous-
tic mode, and so approximations corresponding to those
discussed in the context of (3.93) through (3.101) can
also be made here. The quantities aν and bν are treated
as small, so that one obtains, to first order in ε and in
these quantities, a wave equation of the form

∇2 pac− 1

c2

∂2

∂t2

(
pac− 2δcl

c2

∂pac

∂t

−2
∑

ν

(Δc)ν
c
τν
∂pν
∂t

)
= 0 .

(3.218)
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The auxiliary internal variables that enter here satisfy
the supplemental relaxation equations

∂pν
∂t

=− 1

τν
(pν− pac) . (3.219)

Here the notation is such that the pν are given in terms
of previously introduced quantities by

pν = ξ ′ν/nν . (3.220)

The sound speed increments that appear in (3.218) rep-
resent the combinations

(Δc)ν = 1/2aνnνc
2 . (3.221)

Equations (3.218) and (3.219) are independent of
the explicit physical interpretation of the relaxation pro-
cesses. Insofar as acoustic propagation is concerned,
any relaxation process is characterized by two pa-
rameters, the relaxation time τν and the sound speed
increment (Δc)ν . The various parameters that enter into
the irreversible thermodynamics formulation of (3.214)
through (3.216) affect the propagation of sound only as
they enter into the values of the relaxation times and of
the sound speed increments. The replacement of inter-
nal variables by quantities pν with the units of pressure
implies no assumption as to the precise nature of the
relaxation process. (An alternate formulation for a par-
allel class of relaxation processes concerns structural
relaxation [3.55]. The substance can locally have more
than one state, each of which has a different compress-
ibility. The internal variables are associated with the
deviations of the probabilities of the system being in
each of the states from the probabilities that would exist
were the system in quasistatic equilibrium. The equa-
tions that result are mathematically the same as (3.218)
and (3.219).)

The attenuation of plane waves governed by (3.218)
and (3.219) is determined when one inserts substitutions
of the form of (3.200) for pac and the pν . The relaxation
equations yield the relations

p̂ν = 1

1− iωτν
p̂ac . (3.222)

These, when inserted into the complex amplitude
version of (3.218), yield the dispersion relation

k2 = ω
2

c2

(
1+ i

2ωδcl

c2
+
∑

ν

2(Δc)ν
c

iωτν
1− iωτν

)
.

(3.223)

To first order in the small parameters, δcl and (Δc)ν , this
yields the complex wavenumber

k = ω
c

(
1+ i

ωδcl

c2
+
∑

ν

(Δc)ν
c

iωτν
1− iωτν

)
, (3.224)

(αv λ)/(αv λ)m
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Fig. 3.11 Attenuation per wavelength (in terms of char-
acteristic parameters) for propagation in a medium with
a single relaxation process. Here the wavelength λ is
2πc/ω, and the ratio f/ fν of frequency to relaxation fre-
quency is ωτν . The curve as constructed is independent of
c and (Δc)ν

which corresponds to waves propagating in the +x-
direction. The attenuation coefficient, determined by the
imaginary part of (3.224), can be written

α= αcl+
∑

ν

αν . (3.225)

The first term is the classical attenuation determined by
(3.203). The remaining terms correspond to the incre-
mental attenuations produced by the separate relaxation
processes, these being

αν = (Δc)ν
c2

ω2τν

1+ (ωτν)2
. (3.226)

Any such term increases quadratically with frequency
at low frequencies, as would be the case for classi-
cal absorption (with an increased bulk viscosity), but it
approaches a constant value at high frequencies.

The labeling of the quantities (Δc)ν as sound speed
increments follows from an examination of the real part
of the complex wavenumber, given by

kR = ω
c

(
1−

∑

ν

(Δc)ν
c

(ωτν)2

1+ (ωτν)2

)
. (3.227)

The ratio of ω to kR is identified as the phase veloc-
ity vph of the wave. In the limit of low frequencies, the
phase velocity predicted by (3.227) is the quantity c,
which is the sound speed for a quasi-equilibrium pro-
cess. In the limit of high frequencies, however, to first
order in the (Δc)ν , the phase velocity approaches the
limit

vph → c+
∑

ν

(Δc)ν . (3.228)
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Phase velocity

f /fv

0.06 4020100.1 0.2 0.4 0.6 1 2 4 6

Δcv

Frozen

Equilibrium

Fig. 3.12 Change in phase velocity as a function of
frequency for propagation in a medium with a single re-
laxation process. The asymptote at zero frequency is the
equilibrium sound speed c, and that in the limit of infinite
frequency is the frozen sound speed c+Δcν

Consequently, each (Δc)ν corresponds to the net in-
crease in phase velocity of the sound wave that occurs
when the frequency is increased from a value small
compared to the relaxation frequency to one large
compared to the relaxation frequency. Here the term re-
laxation frequency is used to denote the reciprocal of
the product of 2π with the relaxation time.

3.7.3 Continuously Distributed Relaxations

It is sometimes argued that, for heterogeneous media
such as biological tissue and rocks, the attenuation is
due to a statistical distribution of relaxation times, so
that the sum in (3.224) should be replaced by an inte-
gral, yielding

k = ω
c

(
1+ i

ωδcl

c2
+ 1

c

∞∫

0

d(Δc)

dτ

iωτ

1− iωτ
dτ

)
,

(3.229)

and so that the attenuation constant due to the relaxation
processes becomes

∑

ν

αν→ 1

c2

∞∫

0

d(Δc)

dτ

ω2τ

1+ (ωτ)2
dτ . (3.230)

Here, the quantity
d(Δc)

dτ
Δτ (3.231)

is interpreted as the additional increment in phase veloc-
ity at high frequencies due to all the relaxation processes
whose relaxation times are in the interval Δτ .

Such a continuous distribution of relaxation pro-
cesses is intrinsically capable of explaining a variety
of experimentally observed frequency dependencies of
α(ω). A simple example is that where

d(Δc)

dτ
= K

τq
, (3.232)

with K being a constant independent of τ , and with
q being a specified exponent, with 0< q < 2. In such
a case the integral in (3.230) becomes

1

c2

∞∫

0

d(Δc)

dτ

ω2τ

1+ (ωτ)2
dτ = K

c2
ωq

∞∫

0

u1−q

1+u2
du

(3.233)

giving a power-law dependence on ω that varies as ωq .
Although the hypothesis of (3.232) is probably unrealis-
tic over all ranges of relaxation time τ , its being nearly
satisfied over an extensive range of such times could
yield predictions that would explain a power-law depen-
dence. (The integral that appears here is just a numerical
constant, which is finite provided 0< q < 2. The inte-
gral emerges when one changes the integration variable
from τ to u = ωτ .)

The corresponding increment in the reciprocal
1/vph = kR/ω of the phase velocity vph is

Δ

(
1

vph

)
=− 1

c2

∞∫

0

d(Δc)

dτ

ω2τ2

1+ (ωτ)2
dτ . (3.234)

Insertion of (3.232) into this yields

Δ

(
1

vph

)
=− K

c2
ωq−1

∞∫

0

u2−q

1+u2
du , (3.235)

which varies with ω as ωq−1. In this case, however, the
integral exists only if 1< q< 3, so the overall analysis
has credibility only if 1< q< 2.

3.7.4 Kramers–Krönig Relations

In attempts to explain or predict the frequency depen-
dence of attenuation and phase velocity in materials,
some help is found from the principle of causal-
ity [3.56]. Suppose one has a plane wave traveling in the
+x-direction and that, at x = 0, the acoustic pressure is
a transient given by

p(0, t)=
∞∫

−∞
p̂(ω)e−iωt dω= 2Re

∞∫

0

p̂(ω)e−iωt dω .

(3.236)

Part
A

3
.7



Basic Linear Acoustics 3.7 Attenuation of Sound 57

Then the transient at a distant positive value of x is
given by

p(x, t) = 2Re

∞∫

0

p̂(ω)e−iωt eikx dω , (3.237)

where k = k(ω) is the complex wavenumber, the imagi-
nary part of which is the attenuation coefficient.

The causality argument is now made that, if p(0, t)
vanishes at all times before some time t0 in the past, then
so should p(x, t). One defines k(ω) for negative values
of frequency so that

k(−ω) =−k∗(ω) . (3.238)

This requires that the real and imaginary parts of the
complex wavenumber be such that

kR(−ω) =−kR(ω) ; kI(−ω) = kI(ω) , (3.239)

so that the real part is odd, and the imaginary part is even
in ω. This extension to negative frequencies allows one
to write (3.237) in the form

p(x, t) =
∞∫

−∞
p̂(ω)e−iωt eikx dω . (3.240)

The theory of complex variables assures one that this
integral will indeed vanish for sufficiently early times
if: (i) one can regard the integrand as being defined
for complex values of ω, and (ii) one can regard the
integrand as having certain general properties in the up-
per half of the complex ω plane. In particular, it must
be analytic (no poles, no branch cuts, no points where
a power series does not exist) in this upper half of the
comp;ex plane. Another condition is that, when t has
a sufficiently negative value, the integrand goes to zero
as |ω| →∞ in the upper half-plane. The possibility of
the latter can be tested with the question of whether

Re [−iωt+ ikx)] →−∞ as ω→ i∞ ,

(3.241)

with t< 0 and x > 0. In any event, for all these condi-
tions to be met, the complex wavenumber k(ω), consid-
ered as a complex function of the complex variable ω,
has to be analytic in the upper half-plane. One cannot
say at the outset, without having a well-defined causal
mathematical model, just how it behaves at infinity, but
various experimental data suggests it approaches a poly-
nomial with a leading exponent of not more than two.
Also, analysis on specific cases suggests it is always
such that k/ω is analytic and, moreover, finite at ω= 0.

Contour Integral Identity
Given these general properties of the complex wave-
number, one considers the contour integral

IA(ζ1, ζ2, ζ3, ζ4)

=
∮

k/ω

(ω− ζ1)(ω− ζ2)(ω− ζ3)(ω− ζ4)
dω ,

(3.242)

where the contour is closed, the integration proceeds in
the counterclockwise sense, the contour is entirely in
the upper half plane, and where the contour encloses
the four poles at ζ1, ζ2, etc., all of which are in the upper
half-plane.

(The number of poles that one includes is some-
what arbitrary, and four is a judicious compromise for
the present chapter. The original [3.57, 58] analysis di-
rected toward acoustical applications included only two,
but this led to divergent integrals when the result was
applied to certain experimental laws that had been ex-
trapolated to high frequencies. The more poles one
includes, the less dependent is the prediction on de-
tails of extrapolations to frequencies outside the range
of experimental data.)

The integral can be deformed to one which pro-
ceeds along the real axis from −∞ to ∞ and which
is then completed by a semicircle of infinite radius that
encloses the upper half-plane. Because of the supposed
behavior of k at ∞ in the upper half-plane, the latter
integral is zero and one has

IA(ζ1, ζ2, ζ3, ζ4)

=
∞∫

−∞

k/ω

(ω− ζ1)(ω− ζ2)(ω− ζ3)(ω− ζ4)
dω .

(3.243)

wI

–ω2 –ω1 ω1 ω2 ωR

�4 � 2 �1 �3

η

Fig. 3.13 Contour integral in the complex frequency plane
used in the derivation of one version of the Kramers–
Krönig relations
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Furthermore, the residue theorem yields

IA(ζ1, ζ2, ζ3, ζ4)

= 2πi(k/ω)1

(ζ1− ζ2)(ζ1− ζ3)(ζ1− ζ4)

+ 2πi(k/ω)2

(ζ2− ζ1)(ζ2− ζ3)(ζ2− ζ4)

+ 2πi(k/ω)3

(ζ3− ζ1)(ζ3− ζ2)(ζ3− ζ4)

+ 2πi(k/ω)4

(ζ4− ζ1)(ζ4− ζ2)(ζ4− ζ3)
, (3.244)

where (k/ω)1 is k/ω evaluated at ω= ζ1, etc.
To take advantage of the symmetry properties

(3.239), one sets

ζ1 = ω1+ iη , ζ3 =−ω1+ iη ;
ζ2 = ω2+ iη ; ζ4 =−ω2+ iη , (3.245)

so that the poles occur in pairs, symmetric about the
imaginary axis. One next lets the small positive param-
eter η go to zero, and recognizes that

lim
ε→0

lim
η→0

ω1+ε∫

ω1−ε

f (ω)

ω−ω1− iη
dω= πi f (ω1) . (3.246)

Thus in this limit, the integral (3.243) becomes repre-
sented as a principal value plus a set of four narrow gap
terms that that are recognized as one half of the right
side of (3.244). The resulting mathematical identity is

Pr

∞∫

−∞

k/ω

(ω2−ω2
1)(ω2−ω2

2)
dω= iπ

ω2
1−ω2

2

×

(
k(ω1)+ k(−ω1)

2ω2
1

− k(ω2)+ k(−ω2)

2ω2
2

)
. (3.247)

Real Part Within the Integrand
When one uses the symmetry properties (3.239), the
above reduces to

2 Pr

∞∫

0

kR(ω)

ω(ω2−ω2
1)(ω2−ω2

2)
dω

=− π

ω2
1−ω2

2

(
kI(ω1)

ω2
1

− kI(ω2)

ω2
2

)
. (3.248)

The significant thing about this result and the key to its
potential usefulness is that the left side involves only
the real part of k(ω) and the right side only the imag-
inary. Thus if one knew the real part completely and

knew the imaginary part for only one frequency, one
could find the imaginary part for any other frequency
with the relation

kI(ω)

ω2
=kI(ω1)

ω2
1

+ 2(ω2
1−ω2)

π

× Pr

∞∫

0

kR(ω′)
ω′
(
ω′2−ω2

1

)
(ω′2−ω2)

dω′ .

(3.249)

Here the notation is slightly altered: ω′ is the dummy
variable of integration, ω1 is the value of the angular
frequency at which one presumably already knows kI,
and ω is that angular frequency for which the value is
predicted by the right side. Relations such as this which
allow predictions of one part of k(ω) from another part
are known as Kramers–Krönig relations.

Other Kramers–Krönig relations can be obtained
from (3.247) with a suitable replacement for k/ω in the
integrand and/or taking limits with ω1 or ω2 approach-
ing either 0 or ∞. One can also add or subtract simple
functions to the integrand where the resulting extra in-
tegrals are known. For example, if one sets k/ω to unity
in (3.247) one obtains the identity

Pr

∞∫

0

dω′(
ω′2−ω2

1

)
(ω′2−ω2)

= 0 . (3.250)

Thus, (3.249) can be equivalently written

kI(ω)

ω2
=kI(ω1)

ω2
1

+ 2
(
ω2

1−ω2
)

π

× Pr

∞∫

0

[kR(ω′)/ω′]− [kR(ω′)/ω′]0(
ω′2−ω2

1

)
(ω′2−ω2)

dω′ ,

(3.251)

where the subscript 0 indicates that the quantity is eval-
uated in the limit of zero frequency. A further step is to
take the limit as ω1 → 0, so that one obtains

kI(ω)

ω2
=
[

kI(ω)

ω2

]

0
− 2ω2

π

× Pr

∞∫

0

[kR(ω′)/ω′]− [kR(ω′)/ω′]0
ω′2(ω′2−ω2)

dω′ .

(3.252)

The numerator in the integrand is recognized as the
difference in the reciprocals of the phase velocities, at
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ω= ω′ and at ω = 0. The validity of the equality re-
quires the integrand to be sufficiently well behaved near
ω′ = 0, and this is consistent with kR being odd in ω
and representable locally as a power series. Validity also
requires that kI/ω

2 be finite at ω= 0, which is consis-
tent with the relaxation models mentioned in the section
below. The existence of the integral also places a restric-
tion on the asymptotic dependence of kR as ω→∞.

A possible consequence of the last relation is that

lim
ω→∞

(
kI(ω)

ω2

)

=
(

kI(ω)

ω2

)

0

+ 2

π

∞∫

0

[kR(ω′)/ω′]− [kR(ω′)/ω′]0
ω′2

dω′ . (3.253)

The validity of this requires that the integral exists,
which is so if the phase velocity approaches a constant
at high frequency. An implication is that the attenua-
tion must approach a constant multiplied by ω2 at high
frequency, where the constant is smaller than that at
low frequency if the phase velocity at high frequency
is higher than that at low frequency.

Imaginary Part Within the Integrand
Analogous results, only with the integration over the
imaginary part of k, result when k/ω is replaced by k
in (3.247). Doing so yields

2 Pr

∞∫

0

kI(ω)(
ω2−ω2

1

)(
ω2−ω2

2

) dω

= π

ω2
1−ω2

2

(
kR(ω1)

ω1
− kR(ω2)

ω2

)
, (3.254)

which in turn yields

kR(ω)

ω
= kR(ω1)

ω1
− 2(ω2

1−ω2)

π

× Pr

∞∫

0

kI(ω′)
(ω′2−ω2

1)(ω′2−ω2)
dω′ . (3.255)

Then, taking of the limit ω1 → 0, one obtains

kR(ω)

ω

=
(

kR(ω)

ω

)

0
+ 2ω2

π
Pr

∞∫

0

kI(ω′)
ω′2(ω′2−ω2)

dω′ .

(3.256)

This latter expression requires that kI/ω
2 be integrable

near ω= 0.

Attenuation Proportional to Frequency
Some experimental data for various materials suggest
that, for those materials, kI is directly proportional to ω
over a wide range of frequencies. The relation (3.256) is
inapplicable if one seeks the corresponding expression
for phase velocity. Instead, one uses (3.255), treating ω1
as a parameter. If one inserts

kI(ω) = Kω (3.257)

into (3.255), the resulting integral can be performed
analytically, with the result

kR(ω)

ω
= kR(ω1)

ω1
− 2

π
K ln

(
ω

ω1

)
. (3.258)

(The simplest procedure for deriving this is to replace
the infinite upper limit by a large finite number and
then separate the integrand using the method of partial
fractions. After evaluation of the individual terms, one
takes the limit as the upper limit goes to infinity, and
discovers appropriate cancelations.) The properties of
the logarithm are such that the above indicates that the
quantity

kR(ω)

ω
+ 2

π
K ln(ω) = constant (3.259)

is independent of ω. This deduction is independent of
the choice of ω1, but the analysis does not tell one what
the constant should be. A concise restating of the result
is that there is some positive number ω0, such that

kR(ω)

ω
= 2

π
K ln

(ω0

ω

)
. (3.260)

The result is presumably valid at best only over the
range of frequencies for which (3.257) is valid. Since
negative phase velocities are unlikely, it must also be
such that the parameter ω0 is above this range. This ap-
proximate result also predicts a zero phase velocity in
the limit of zero frequency, and this is also likely to be
unrealistic. But there may nevertheless be some range of
frequencies for which both (3.257) and (3.260) would
give a good fit to experimental data.

3.7.5 Attenuation of Sound in Air

In air, the relaxation processes that affect sound attenu-
ation are those associated with the (quantized) internal
vibrations of the diatomic molecules O2 and N2. The
ratio of the numbers of molecules in the ground and
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first excited vibrational states is a function of temper-
ature when the gas is in thermodynamic equilibrium,
but during an acoustic disturbance the redistribution of
molecules to what is appropriate to the concurrent gas
temperature is not instantaneous. The knowledge that
the relaxation processes are vibrational relaxation pro-
cesses and that only the ground and first excited states
are appreciably involved allows the sound speed incre-
ments to be determined from first principles. One need
only determine the difference in sound speeds result-
ing from the two assumptions: (i) that the distribution
of vibrational energy is frozen, and (ii) that the vibra-
tional energy is always distributed as for a gas in total
thermodynamic equilibrium. The resulting sound speed
increments [3.14] are

(Δc)ν
c

= (γ −1)2

2γ

nν
n

(
T∗
ν

T

)2

e−T∗
ν /T , (3.261)

where n is the total number of molecules per unit
volume and nν is the number of molecules of the
type corresponding to the designation parameter ν. The
quantity T is the absolute temperature, and T∗

ν is a char-
acteristic temperature, equal to the energy jump ΔE
between the two vibrational states divided by Boltz-
mann’s constant. The value of T ∗

1 (corresponding to O2
relaxation) is 2239 K, and the value of T ∗

2 (correspond-
ing to N2 relaxation) is 3352 K. For air the fraction n1/n
of molecules that are O2 is 0.21, while the fraction n2/n
of molecules that are N2 is 0.78. At a representative
temperature of 20 ◦C, the calculated value of (Δc)1 is
0.11 m/s, while that for (Δc)2 is 0.023 m/s.

Because relaxation in a gas is caused by two-body
collisions, the relaxation times at a given absolute tem-
perature must vary inversely with the absolute pressure.
The relatively small (and highly variable) number of
water-vapor molecules in the air has a significant effect
on the relaxation times because collisions of diatomic
molecules with H2O molecules are much more likely
to cause a transition between one internal vibrational
quantum state and another. Semi-empirical expressions
for the two relaxation times for air are given [3.59, 60]
by

pref

p

1

2πτ1
= 24+4.04 × 106h

(
0.02+100h

0.391+100h

)
,

(3.262)

pref

p

1

2πτ2
=
(

Tref

T

)1/2

(9+2.8 × 104h e−F)

(3.263)

F = 4.17

[(
Tref

T

)1/3

−1

]
. (3.264)

The subscript 1 corresponds to O2 relaxation, and the
subscript 2 corresponds to N2 relaxation. The quantity
h here is the fraction of the air molecules that are H2O
molecules; the reference temperature is 293.16 K; and
the reference pressure is 105 Pa. The value of h can be
determined from the commonly reported relative hu-
midity (RH, expressed as a percentage) and the vapor
pressure of water at the local temperature according to
the defining relation

h = 10−2(RH)
pvp(T )

p
. (3.265)

However, as indicated in (3.262) and (3.263), the
physics of the relaxation process depends on the abso-
lute humidity and has no direct involvement with the
value of the vapor pressure of water. A table of the
vapor pressure of water may be found in various ref-
erences; some representative values in pascals are 872,

Relaxation frequency (Hz)

Fraction of air molecules that are H2O, h
10–5 10–1
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10

10–4 10–3 10–2

0.5 1 2.5 5 10 25 50 100
Relative humidity RH at 20C

0.5 1 2.5 5 10 25 50 100
Relative humidity RH at 5C

(O2)
1/2πτ1

(N2, 20)
1/2 πτ2

Fig. 3.14 Relaxation frequencies of air as a function of
absolute humidity. The pressure is 1.0 atmosphere
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Absorption coefficient α (Np/m)

Frequency f (Hz)
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α

Fig. 3.15 Attenuation of sound in air as a function of fre-
quency (log–log plot). The slopes of the initial portions of
the dashed lines correspond to a quadratic dependence on
frequency

1228, 1705, 2338, 4243, and 7376 Pa at temperatures of
5, 10, 15, 20, 30, and 40 ◦C, respectively.

Because of the two relaxation frequencies, the fre-
quency dependence of the attenuation coefficient for
sound in air has three distinct regions. At very low
frequencies, where the frequency is much lower than
that associated with molecular nitrogen, the attenu-
ation associated with vibrational relaxation of nitro-
gen molecules dominates. The dependence is nearly
quadratic in frequency, with an apparent bulk viscosity
that is associated with the nitrogen relaxation. In an in-
termediate region, where the frequency is substantially
larger than that associated with nitrogen relaxation, but
still substantially less than that associated with oxygen
relaxation, the dependence is again quadratic in fre-
quency, but the coefficient is smaller, and the apparent
bulk viscosity is that associated with oxygen relaxation.
Then in the higher-frequency range, substantially above
both relaxation frequencies, the quadratic frequency de-
pendence is again evident, but with an even smaller

coefficient, the attenuation being the same as that cor-
responding to classical processes, and with the intrinsic
bulk viscosity associated with molecular rotation. Nev-
ertheless, even through the coefficient of the square of
the frequency drops over two intervals, the overall trend
is that the attenuation constant always increases with
increasing frequency.

3.7.6 Attenuation of Sound in Sea Water

The relaxation processes contributing to the attenua-
tion of sound are associated with dissolved boric acid
B(OH)3 (subscript 1) and magnesium sulfate MgSO4
(subscript 2). From approximate formulas derived by
Fisher and Simmons [3.61] from a combination of ex-
periment and theory one extracts the identifications

δcl

c3
= 1.42 × 10−15 F(TC)G(Patm) , (3.266)

with

F(TC) = 1−4.24 × 10−2TC+8.53 × 10−4T 2
C

−6.23 × 10−6T 3
C , (3.267)

G(Patm) = 1−3.84 × 10−4 Patm+7.57 × 10−8 P2
atm ,

(3.268)

(Δc)1

c2
= 1.64 × 10−9(1+2.29 × 10−2TC

−5.07 × 10−4T 2
C

) S

35
, (3.269)

(Δc)2

c2
= 8.94 × 10−9 (1+0.0134TC)

×
(
1−10.3 × 10−4 Patm

+3.7 × 10−7 P2
atm

) S

35
, (3.270)

1

2πτ1
= 1320 T e−1700/T , (3.271)

1

2πτ2
= 15.5 × 106T e−3052/T . (3.272)

Here TC is temperature in ◦C, T is absolute temperature,
while Patm is the absolute pressure in atmospheres; S is
the salinity in parts per thousand (which is typically of
the order of 35 for sea water). All of the quantities on
the left sides of these equations are in MKS units.
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3.8 Acoustic Intensity and Power

A complete set of linear acoustic equations, regard-
less of the idealization incorporated into its formulation,
usually yields a corollary [3.30, 62]

∂w

∂t
+∇·I =−D , (3.273)

where the terms are quadratic in the acoustic field
amplitudes, the quantity w contains one term that is
identifiable as a kinetic energy of fluid motion per unit
volume, and the quantity D is either zero or positive.

3.8.1 Energy Conservation Interpretation

The relation (3.273) is interpreted as a statement of en-
ergy conservation. The quantity w is the energy density,
or energy per unit volume associated with the wave
disturbance, while the vector quantity I is an intensity
vector or energy flux vector. Its interpretation is such
that its dot product with any unit vector represents the
energy flowing per unit area and time across a surface
whose normal is in that designated direction. The quan-
tity D is interpreted as the energy that is dissipated per
unit time and volume.

This interpretation of an equation such as (3.273)
as a conservation law follows when one integrates both
sides over an arbitrary fixed volume V within the fluid
and reexpresses the volume integral of the divergence of
I by a surface integral by means of the divergence theo-
rem (alternately referred to as Gauss’s theorem). Doing
this yields

∂

∂t

∫∫∫

V

wdV +
∫∫

S

I·ndS =−
∫∫∫

V

DdV ,

(3.274)

���wdV

�

V
S

n
I

Dissipated
energy

Fig. 3.16 Hypothetical volume inside a fluid, within which
the acoustic energy is being dissipated and out of which
acoustic energy is flowing

where n is the unit normal vector pointing out of the
surface S enclosing V . This relation states that the net
rate of increase of acoustical energy within the volume
must equal the acoustic power flowing into the volume
across its confining surface minus the energy that is
being dissipated per unit time within the volume.

3.8.2 Acoustic Energy Density and Intensity

For the ideal case, when there is no ambient velocity and
when viscosity and thermal conduction are neglected,
the energy corollary results from (3.71) and (3.72). The
derivation begins with one’s taking the dot product of
the fluid velocity v with (3.72), and then using vector
identities and (3.71) to reexpress the right side as the
sum of a divergence and a time derivative. The result
yields the identification of the energy density as

w= 1

2
ρv2+ 1

2

1

ρc2
p2 , (3.275)

and yields the identification of the acoustic intensity as

I = pv . (3.276)

For this ideal case, there is no dissipative term on the
right side. The corollary of (3.273) remains valid even
if the ambient density and sound speed vary from point
to point.

The first term in the expression for w is recognized
as the acoustic kinetic energy per unit volume, and the
second term is identified as the potential energy per unit
volume due to compression of the fluid.

Intensity Carried by Plane Waves
For a plane wave, it follows from (3.186) and
(3.187) that the kinetic and potential energies are the
same [3.63], and that the energy density is given by

w= 1

ρc2
p2 . (3.277)

The intensity becomes

I = n
p2

ρc
. (3.278)

For such a case, the intensity and the energy density are
related by

I = cnw . (3.279)

This yields the interpretation that the energy in a sound
wave is moving in the direction of propagation with the
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Basic Linear Acoustics 3.8 Acoustic Intensity and Power 63

sound speed. Consequently, the sound speed can be re-
garded as an energy propagation velocity. (This is in
accord with the fact that sound waves in this idealiza-
tion are nondispersive, so the group and phase velocities
are the same.)

3.8.3 Acoustic Power

Many sound fields can be idealized as being steady, such
that long-time averages are insensitive to the duration
and the center time of the averaging interval. Constant-
frequency sounds and continuous noises fall into this
category.

In the special case of constant-frequency sounds,
when complex amplitudes are used to described the
acoustic field, the general theorem (3.182) for averag-
ing over products of quantities oscillating with the same
frequency applies, and one finds

wav = 1

4
ρv̂ · v̂∗ + 1

4

1

ρc2

∣∣ p̂
∣∣2 , (3.280)

Iav = 1

2
Re
{

p̂∗v̂
}
. (3.281)

For steady sounds, the time derivative of the acoustic
energy density will average to zero over a sufficiently
long time period, so the acoustic energy corollary of
(3.273), in the absence of dissipation, yields the time-
averaged relation

∇·Iav = 0 . (3.282)

This implies that the time-averaged vector intensity
field is solenoidal (zero divergence) in regions that do
not contain acoustic sources. This same relation holds
for any frequency component of the acoustic field or
for the net contribution to the field from any given
frequency band. In the following discussion, the inten-
sity Iav is understood to refer to such a time average for
some specified frequency band.

The relation (3.282) yields the integral relation

∫

S

Iav · n dS = 0 , (3.283)

which is interpreted as a statement that the net acoustic
power flowing out of any region not containing sources
must be zero when averaged over time and for any given
frequency band.

a) nout

S

n V

n

S1 S2

b)

S2 S3

S1

Sentire

c)

Fig. 3.17 Surfaces enclosing one or more sources. The inte-
gration of the time-averaged acoustic intensity component
in the direction of the unit outward normal over any such
surface yields the time average of the total power generated
with the volume enclosed by the surface

For a closed surface that encloses one or more
sources, such that the governing linear acoustic equa-
tions do not apply at every point within the volume, the
reasoning above allows one to define the time-averaged
net acoustic power of these sources as

Pav =
∫

S

Iav ·n dS , (3.284)

where the surface S encloses the sources. It follows from
(3.283) that the acoustic power of a source computed in
such a manner will be the same for any two choices of
the surface S, provided that both surfaces enclose the
same source and no other sources. The value of the inte-
gral is independent of the size and of the shape of S. This
result is of fundamental importance for the measurement
of source power. Instrumentation to measure the time-
averaged intensity directly has become widely available
in recent years and is often used in determining the prin-
cipal noise sources in complicated environments.

3.8.4 Rate of Energy Dissipation

Under circumstances in which viscosity, thermal con-
duction, and internal relaxation are to be taken into
account, the linear acoustic equations for the acous-
tic mode, which yield the dissipative wave equation
of (3.218) and the relaxation equations described by
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64 Part A Propagation of Sound

(3.219), yield [3.14] an energy corollary of the form
of (3.273). To a satisfactory approximation the energy
density and intensity remain as given by (3.275) and
(3.276). The energy dissipation per unit volume is no
longer zero, but is instead

Dav = 2
δcl

ρc4

(
∂p

∂t

)2

+2
∑

ν

(Δc)ν
ρc3

τν

(
∂pν
∂t

)2

.

(3.285)

For constant-frequency plane waves propagating in
the x-direction, the time average of the time derivative
of the energy density is zero, and the time averages of I
and D will both be quadratic in the wave amplitude | p̂|.
The identification of the attenuation coefficient α must
then be such that

Dav = 2αIav . (3.286)

The magnitude of the acoustic intensity decreases with
propagation distance x as

Iav(x) = Iav(0)e−2αx . (3.287)

This identification of the attenuation coefficient is con-
sistent with that given in (3.225).

3.8.5 Energy Corollary for Elastic Waves

An energy conservation corollary of the form of (3.273)
also holds for sound in solids. The appropriate identifi-
cations for the energy density w and the components Ii
of the intensity are

w= 1

2
ρ
∑

i

(
∂ξi

∂t

)2

+ 1

2

∑

i, j

εijσij (3.288)

Ii =−
∑

j

σij
∂ξ j

∂t
. (3.289)

3.9 Impedance

Complex ratios of acoustic variables are often intrin-
sic quantities independent of the detailed nature of the
acoustic disturbance.

3.9.1 Mechanical Impedance

The ratio of the complex amplitude of a sinusoidally
varying force to the complex amplitude of the result-
ing velocity at a point on a vibrating object is called
the mechanical impedance at that point. It is a complex
number and usually a function of frequency. Other def-
initions [3.64] of impedance are also in widespread use
in acoustics.

3.9.2 Specific Acoustic Impedance

The specific acoustic impedance or unit-area acoustic
impedance ZS(ω) for a surface is defined as

ZS(ω) = p̂

v̂in
, (3.290)

where v̂in is the component of the fluid velocity directed
into the surface under consideration. Typically, the spe-
cific acoustic impedance, often referred to briefly as the
impedance without any adjective, is used to describe the
acoustic properties of materials. In many cases, surfaces
of materials abutting fluids can be characterized as lo-
cally reacting, so that ZS is independent of the detailed
nature of the acoustic pressure field. In particular, the

locally reacting hypothesis implies that the velocity of
the material at the surface is unaffected by pressures
other than in the immediate vicinity of the point of inter-
est. At a nominally motionless and passively responding
surface, and when the hypothesis is valid, the appropri-
ate boundary condition on the complex amplitude p̂ that
satisfies the Helmholtz equation is given by

iωρ p̂ =−ZS∇ p̂ ·n , (3.291)

where n is the unit normal vector pointing out of the
material into the fluid. A surface that is perfectly rigid
has |ZS| =∞. The other extreme, where ZS = 0, cor-
responds to the ideal case of a pressure release surface.
This is, for example, what is normally assumed for the
upper surface of the ocean in underwater sound. Since
a passive surface absorbs energy from the sound field,
the time-averaged intensity component into the surface
should be positive or zero. This observation leads to the
requirement that the real part (specific acoustic resis-
tance) of the impedance should always be nonnegative.
The imaginary part (specific acoustic reactance) may be
either positive or negative.

3.9.3 Characteristic Impedance

For extended substances, a related definition is that of
characteristic impedance Zchar, defined as the ratio of p̂
to the complex amplitude v̂ of the fluid velocity in the
direction of propagation when a plane wave is propagat-
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Basic Linear Acoustics 3.10 Reflection and Transmission 65

ing through the substance. As indicated by (3.187), this
characteristic impedance, when the fluid is lossless, is
ρc, regardless of frequency and position in the field. In
the general case when the propagation is dispersive and
there is a plane wave attenuation, one has

Zchar = ρω
k
, (3.292)

where k(ω) is the complex wavenumber.
The MKS units [(kg/m−3)(m/s)] of specific acous-

tic impedance are referred to as MKS rayl (after
Rayleigh). The characteristic impedance of air under
standard conditions is approximately 400 MKS rayls,
and that of water is approximately 1.5 × 106 MKS rayl.

3.9.4 Radiation Impedance

The radiation impedance Zrad is defined as p̂/v̂n, where
v̂n corresponds to the outward normal component of
velocity at a vibrating surface. (Specific examples in-
volving spherical waves are given in a subsequent
section of this chapter.)

Given the definition of the radiation impedance, the
time-averaged power flow per unit area of surface out of
the surface is

Irad = 1

2
Re
(

p̂v̂∗n
)= 1

2
|v̂n|2Re

(
Zrad

)

= 1

2
| p̂|2Re

(
1

Zrad

)
. (3.293)

The total power radiated is the integral of this over the
surface of the body.

3.9.5 Acoustic Impedance

The term acoustic impedance ZA is reserved [3.64] for
the ratio of p̂ to the volume velocity complex ampli-
tude. Here volume velocity is the net volume of fluid
flowing past a specified surface element per unit time in
a specified directional sense. One may speak, for exam-
ple, of the acoustic impedance of an orifice in a wall,
of the acoustic impedance at the mouth of a Helmholtz
resonator, and of the acoustic impedance at the end of
a pipe.

3.10 Reflection and Transmission

When sound impinges on a surface, some sound is re-
flected and some is transmitted and possibly absorbed
within or on the the other side of the surface. To under-
stand the processes that occur, it is often an appropriate
idealization to take the incident wave as a plane wave
and to consider the surface as flat.

3.10.1 Reflection at a Plane Surface

When a plane wave reflects at a surface with finite spe-
cific acoustic impedance ZS, a reflected wave is formed
such that the angle of incidence θI equals the angle of
reflection (law of mirrors). Here both angles are reck-
oned from the line normal to the surface and correspond
to the directions of the two waves. If one takes the y-
axis as pointing out of the surface and the surface as
coinciding with the y = 0 plane, then an incident plane
wave propagating obliquely in the +x-direction will
have a complex pressure amplitude

p̂in = f̂ eikx x e−iky y , (3.294)

where f̂ is a constant. (For transient reflection, the
quantity f̂ can be taken as the Fourier transform of
the incident pressure pulse at the origin.) The two in-

dicated wavenumber components are kx = k sin θI and
ky = k cos θI.

The reflected wave has a complex pressure ampli-
tude given by

p̂reΛ =R(θI, ω) f̂ eikx x eiky y , (3.295)

where the quantity R(θI, ω) is the pressure amplitude
reflection coefficient.

nI

nR

θ I

y

x

Fig. 3.18 Reflection of a plane wave at a planar surface
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66 Part A Propagation of Sound

Analysis that makes use of the boundary condition
(3.291) leads to the identification

R(θI, ω) = ξ(ω) cos θI−1

ξ(ω) cos θI+1
(3.296)

for the reflection coefficient, with the abbreviation

ξ(ω) = ZS

ρc
, (3.297)

which represents the ratio of the specific acous-
tic impedance of the surface to the characteristic
impedance of the medium.

3.10.2 Reflection at an Interface

The above relations also apply, with an appropriate
identification of the quantity ZS, to sound reflec-
tion [3.65] at an interface between two fluids with
different sound speeds and densities. Translational sym-
metry requires that the disturbance in the second fluid
have the same apparent phase velocity (ω/kx ) (trace
velocity) along the x-axis as does the disturbance in
the first fluid. This requirement is known as the trace
velocity matching principle [3.4, 30] and leads to the
observation that kx is the same in both fluids. One dis-
tinguishes two possibilities: the trace velocity is higher
than the sound speed c2 or lower than c2.

For the first possibility, one has the inequality

c2 <
c1

sin θI
, (3.298)

and a propagating plane wave (transmitted wave) is
excited in the second fluid, with complex pressure am-

nI

nII

ρI,cI

ρII,cII

θI

y

x

θII

Fig. 3.19 Reflection of a plane wave at an interface be-
tween two fluids

plitude

p̂trans = T(ω, θI) f̂ eikx x eik2 y cos θII , (3.299)

where k2 = ω/c2 is the wavenumber in the second fluid
and θII (angle of refraction) is the angle at which the
transmitted wave is propagating. The trace velocity
matching principle leads to Snell’s law,

sin θI

c1
= sin θII

c2
. (3.300)

The change in propagation direction from θI to θII is the
phenomenon of refraction.

The requirement that the pressure be continuous
across the interface yields the relation

1+R = T , (3.301)

while the continuity of the normal component of the
fluid velocity yields

cos θI

ρ1c1
(1−R)= cos θII

ρ2c2
T . (3.302)

From these one derives the reflection coefficient

R = ZII− ZI

ZII+ ZI
, (3.303)

which involves the two impedances defined by

ZI = ρ1c1

cos θI
, (3.304)

ZII = ρ2c2

cos θII
. (3.305)

The other possibility, which is the opposite of that in
(3.298), can only occur when c2 > c1 and, moreover,
only if θI is greater than the critical angle

θcr = arcsin(c1/c2) . (3.306)

In this circumstance, an inhomogeneous plane wave,
propagating in the x-direction, but dying out expo-
nentially in the +y-direction, is excited in the second
medium. Instead of (3.299), one has the transmitted
pressure given by

p̂trans = T(ω, θI) f̂ eikx x e−βk2 y , (3.307)

with

β = [(c2/c1)2 sin2 θI−1]1/2 . (3.308)

The previously stated equations governing the reflec-
tion and transmission coefficients are still applicable,
provided one replaces cos θII by iβ. This causes the
magnitude of the reflection coefficient R to become
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Basic Linear Acoustics 3.10 Reflection and Transmission 67

unity, so the time-averaged incident energy is totally re-
flected. Acoustic energy is present in the second fluid,
but its time average over a wave period stays constant
once the steady state is reached.

3.10.3 Theory of the Impedance Tube

Impedance tubes are commonly used in the measure-
ment of specific acoustic impedances; the underlying
theory [3.66, 67] is based for the most part on (3.295),
(3.296), and (3.297) above. The incident and the re-
flected waves propagate along the axis of a cylindrical
tube with the sample surface at one end. A loudspeaker
at the other end creates a sinusoidal pressure distur-
bance that propagates down the tube. Reflections from
the end covered with the test material create an incom-
plete standing-wave pattern inside the tube.

The wavelength of the sound emitted by the source
can be adjusted, but it should be kept substantially
larger than the pipe diameter, so that the plane wave
assumption holds. With kx identified as being 0, the
complex amplitude that corresponds to the sum of the
incident and reflected waves has an absolute magnitude
given by

| p̂| = | f̂ ||1+Re2iky| , (3.309)

where y is now the distance in front of the sample. The
second factor varies with y and repeats at intervals of
a half-wavelength, and varies from a minimum value of
1−|R| to a maximum value of 1+|R|. Consequently,

(p2)av, max

(p2)av, min

Incident

Reflected
y

y

Sample

(p2)av

ymax, 1ymin, 1ymax, 2

Fig. 3.20 Incident and reflected waves inside an impedance
tube. The time-averaged pressure within the tube has min-
imum and maximum values whose ratio depends on the
impedance of the sample at the end. Another measured pa-
rameter is the distance back from the sample at which the
first maximum occurs

the ratio of the peak acoustic pressure amplitude | p̂|max
(which occurs at one y-position) to the minimum acous-
tic pressure amplitude | p̂|min (which occurs at a position
a quarter-wavelength away) determines the magnitude
of the reflection coefficient via the relation

| p̂|min

| p̂|max
= 1−|R|

1+|R| . (3.310)

The phase δ of the reflection coefficient can be
determined with use of the observation that the peak
amplitudes occur at y-values where δ+2ky is an integer
multiple of 2π, while the minimum amplitudes occur
where it is π plus an integer multiple of 2π. Once the
magnitude and phase of the reflection coefficient are de-
termined, the specific acoustic impedance can be found
from (3.296) and (3.297).

3.10.4 Transmission Through Walls
and Slabs

The analysis of transmission of sound through a wall or
a partition [3.68] is often based on the idealization that
the wall is of unlimited extent.

If the incoming plane wave has an angle of inci-
dence θI and if the fluid on the opposite side of the
wall has the same sound speed, then the trace velocity
matching principle requires that the transmitted wave be
propagating in the same direction.

A common assumption when the fluid is air is that
the compression in the wall is negligible, so the wall is
treated as a slab that has a uniform velocity vsl through-
out its thickness. The slab moves under the influence
of the incident, reflected, and transmitted sound fields
according to the relation (corresponding to Newton’s

nI

pfront

θI

vfront vback

pback

Fig. 3.21 Transmission of an incident plane wave through
a thin flexible slab
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second law) given by

msl
∂vsl

∂t
= pfront− pback+bending term , (3.311)

where msl is the mass per unit surface area of the slab.
The front side is here taken as the side facing the

incident wave; the transmitted wave propagates away
from the back side. The bending term (discussed fur-
ther below) accounts for any tendency of the slab to
resist bending. If the slab is regarded as nonporous then
the normal component of the fluid velocity both at the
front and the back is regarded the same as the slab ve-
locity itself. If it is taken as porous [3.69,70] then these
continuity equations are replaced by the relations

vfront−vsl = vback−vsl = 1

Rf
(pfront− pback) ,

(3.312)

where Rf is the specific flow resistance. The latter can
be measured in steady flow for specific materials. For
a homogeneous material, it is given by the product of
the slab thickness h and the flow resistivity, the latter
being a commonly tabulated property of porous mater-
ials. (The law represented by (3.312) is the thin slab,
or blanket, counterpart of the Darcy’s law mentioned
in a preceding section, where Biot’s model of porous
media is discussed.)

In general, when one considers the reflection at and
transmission through a slab, one can define a slab spe-
cific impedance Zsl such that, with regard to complex
amplitudes,

p̂front− p̂back = Zslv̂front = Zslv̂back , (3.313)

where Zsl depends on the angular frequency ω and the
trace velocity vtr = c/ sin θI of the incident wave over
the surface of the slab. The value of the slab specific
impedance can be derived using considerations such as
those that correspond to (3.312) and (3.313). In terms of
the slab specific impedance, the transmission coefficient
T is

T =
(

1+ 1

2

Zsl

ρc
cos θI

)−1

. (3.314)

The fraction τ of incident power that is transmitted is
|T|2.

3.10.5 Transmission Through Limp Plates

If the slab can be idealized as a limp plate (no resistance
to bending) and not porous, the slab specific impedance

Zsl is −iωmsl and one obtains

τ =
[
1+

(
ωmsl

2ρc

)2

cos2 θI

]−1 ≈
(

2ρc

ωmsl cos θI

)2

(3.315)

for the fraction of incident power that is transmitted.
The latter version, which typically holds at moderate to
high audible frequencies, predicts that τ decreases by
a factor of 4 when the slab mass msl per unit area is in-
creased by a factor of 2. In the noise control literature,
this behavior is sometimes referred to as the mass law.

3.10.6 Transmission
Through Porous Blankets

For a porous blanket that has a specific flow resistance
Rf the specific slab impedance becomes

Zsl =
(

1

Rf
− 1

iωmsl

)−1

, (3.316)

and the resulting fraction of incident power that is trans-
mitted can be found with a substitution into (3.314),
with τ equated to |T|2.

3.10.7 Transmission Through Elastic Plates

If the slab is idealized as a Bernoulli–Euler plate with
elastic modulus E, Poisson’s ratio ν, and thickness h,
the bending term in (3.311) has a complex amplitude
given by

bending term =− Bplk4
x v̂sl

(−iω)
, (3.317)

where

Bpl = 1

12

Eh3

(1−ν2)
(3.318)

is the plate bending modulus. The slab specific
impedance is consequently given by

Zsl =−iωmsl

[
1−

(
f

fc

)2

sin4 θI

]
, (3.319)

where

fc = c2

2π

(
msl

Bpl

)1/2

(3.320)

gives the coincidence frequency, the frequency at which
the phase velocity of freely propagating bending waves
in the plate equals the speed of sound in the fluid.
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Although the simple result of (3.319) predicts that
the fraction of incident power transmitted is unity at
a frequency of fc/ sin2 θI, the presence of damping pro-
cesses in the plate causes the fraction of incident power
transmitted always to be less than unity. A simple way
of taking this into account makes use of a loss fac-
tor η (assumed to be much less than unity) for the
plate, which corresponds to the fraction of stored elas-
tic energy that is dissipated through damping processes
during one radian (a cycle period divided by 2π). Be-
cause twice the loss factor times the natural frequency
is the time coefficient for exponential time decay of the
amplitude when the system is vibrating in any natural
mode, the former can be regarded as the negative of the
imaginary part of a complex frequency. Then, because
the natural frequency squared is always proportional to
the elastic modulus, and because the loss factor is invari-
ably small, the loss factor can be formally introduced

into the mathematical model by the replacement of the
real elastic modulus by the complex number (1− iη)E.
When this is done, one finds

Zsl = ωηmpl

(
f

fc

)2

sin4 θI− iωmsl

×

[
1−

(
f

fc

)2

sin4 θI

]
(3.321)

for the slab impedance that is to be inserted into (3.314).
The extra term ordinarily has very little effect on the
fraction of incident power that is transmitted except
when the (normally dominant) imaginary term is close
to zero. When the frequency f is fc/ sin2 θI, one finds
the value of τ to be

τ =
(

1+ 1

2

ωηmpl

ρc
cos θI

)−2

, (3.322)

rather than identically unity.

3.11 Spherical Waves

In many circumstances of interest, applicable idealiza-
tions are waves that locally resemble waves spreading
out radially from sources or from scatterers. The mathe-
matical description of such waves has some similarities
to plane waves, but important distinctions arise. The
present section is concerned with a number of impor-
tant situations where the appropriate coordinates are
spherical coordinates.

3.11.1 Spherically Symmetric Outgoing
Waves

For a spherically symmetric wave spreading out radially
from a source in an unbounded medium, the symmetry
implies that the acoustic field variables are a function of
only the radial coordinate r and of time t. The Laplacian
reduces then to

∇2 p = ∂
2 p

∂r2
+ 2

r

∂p

∂r
= 1

r

∂2(r p)

∂r2
, (3.323)

so the wave equation of (3.74) takes the form

∂2(r p)

∂r2
− 1

c2

∂2(r p)

∂t2
= 0 . (3.324)

The solution of this is

p(r, t) = f (r− ct)

r
+ g(r+ ct)

r
. (3.325)

Causality considerations (no sound before the
source is turned on) lead to the conclusion that the

second term on the right side of (3.325) is not an ap-
propriate solution of the wave equation when the source
is concentrated near the origin. The expression

p(r, t) = f (r− ct)

r
, (3.326)

θ
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zL

xL

yL

r

z

Source
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y

x

Fig. 3.22 Spherical coordinates. The common situation is
when the source is at the origin and the listener (sound
receiver) has coordinates (r, θ, φ)
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which describes the acoustic pressure in an outgoing
spherically symmetric wave, has the property that lis-
teners at different radii will receive (with a time shift
corresponding to the propagation time) waveforms of
the same shape, but of different amplitudes. The factor
of 1/r is characteristic of spherical spreading and im-
plies that the peak waveform amplitudes in a spherical
wave decrease with radial distance as 1/r.

Spherical waves of constant frequency have com-
plex amplitudes governed by the Helmholtz equation
(3.176), with the Laplacian given as stated in (3.323).
The complex pressure amplitude corresponding to
(3.326) has the form

p = A
eikr

r
. (3.327)

The fluid velocity associated with an outgoing
spherical wave is purely radial and has the form

vr = 1

ρc

[
−r−2 F(r− ct)+ r−1 f (r− ct)

]
. (3.328)

Here the function F is such that its derivative is the
function f that appears in (3.326). Because the first term
(a near-field term) decreases as the square rather than
the first power of the reciprocal of the radial distance,
the fluid velocity asymptotically approaches

vr → p

ρc
, (3.329)

which is the same as the plane wave relation of (3.187).
For outgoing spherical waves of constant frequency,

the complex amplitude of the fluid velocity is

v̂r = 1

ρc

(
1− 1

ikr

)
p̂ . (3.330)

In this expression, there is a term that is in phase with
the pressure and another term that is 90◦ (π/2) out of
phase with it.

The time-averaged intensity for spherical waves, in
accord with (3.281), is

Iav = 1

2
Re
(

p̂v̂∗r
)
. (3.331)

The expression for vr given above allows this to be
simplified to

Iav = 1

2

1

ρc
| p̂|2 . (3.332)

Then, with the expression (3.327) inserted for p̂, one
obtains

Iav = 1

2

1

ρc

|A|2
r2

. (3.333)

The result confirms that the time-averaged intensity
falls off as the square of the radial distance. This be-
havior is what is termed spherical spreading.

The spherical spreading law also follows from en-
ergy conservation considerations. The time-averaged
power flowing through a spherical surface of radius r is
the area 4πr2 of the surface times the time-averaged in-
tensity. This power should be independent of the radius
r since there is no external energy input or attenuation
that is included in the considered model, so the intensity
must fall off as 1/r2.

3.11.2 Radially Oscillating Sphere

The classic example of a source that generates outgoing
spherical waves is an impenetrable sphere whose ra-
dius rsp(t) oscillates with time with some given velocity
amplitude vo, so that

rsp(t) = a+ vo

ω
sin(ωt) . (3.334)

Here a is the nominal radius of the sphere, and vo/ω

is the amplitude of the deviations of the actual radius
from that value. For the linear acoustics idealization to
be valid, it is required that this deviation be substantially
less than a, so that

vo 
 ωa . (3.335)

The boundary condition on the fluid dynamic equa-
tions should ideally be

vr = vo cos(ωt) at r = rsp(t) , (3.336)

a

r

vS(t)

Fig. 3.23 Parameters used for the discussion of constant
frequency sound radiated by a radially oscillating sphere
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Basic Linear Acoustics 3.11 Spherical Waves 71

but, also in keeping with the linear acoustics idealiza-
tion, it is replaced by

vr = vo cos(ωt) at r = a . (3.337)

The corresponding boundary condition on the complex
amplitude is

v̂r = vo at r = a . (3.338)

If the complex amplitude of the acoustic part of the
pressure is taken of the general form of (3.327) then
the radial fluid velocity, in accord with (3.330), has the
complex amplitude

v̂r = 1

ρc

(
1− 1

ikr

)
A

eikr

r
. (3.339)

The approximate boundary condition (3.338) conse-
quently allows one to identify the constant A as

A = vo

(
ika2ρc

ika−1

)
e−ika , (3.340)

so that the acoustical part of the pressure has the com-
plex ampitude

p̂ = vo

(
ikaρc

ika−1

)(a

r

)
e−ik[r−a] . (3.341)

Radiation Impedance
The ratio of the complex amplitude of the pressure to
that of the fluid velocity in the outward direction at
a point on a vibrating surface is termed the specific radi-
ation impedance (specific here meaning per unit area),
so that

Zrad = p̂

v̂n
, (3.342)

where v̂n is the component of the complex amplitude
of the fluid velocity in the outward normal direction.
For the case of the radially oscillating sphere of nominal
radius a, the analysis above yields

Zrad = ρc

(
ika

ika−1

)
. (3.343)

Usually, this is referred to simply as the radiation
impedance, without the qualifying adjective specific.

The time-averaged power radiated by an oscillating
body, in accord with (3.281), is

Pav = 1

2

∫
Re
(

p̂∗v̂n
)

dS , (3.344)

where the integral extends over the surface. Given the
definition of the radiation impedance, this can be written
in either of the equivalent forms

Pav = 1

2

∫
| p̂|2Re

(
1

Zrad

)
dS

= 1

2

∫
|v̂n|2Re (Zrad) dS . (3.345)

For the case of the radially oscillating sphere, the
quantity v̂n is vo, and

Re (Zrad)= ρc

(
k2a2

1+ k2a2

)
. (3.346)

The latter increases monotonically from 0 to 1 as the
frequency increases from 0 to ∞. The surface area of
the sphere is 4πa2, so the time-averaged acoustic power
is

Pav = (2πa2)(ρc)v2
o

(
k2a2

1+ k2a2

)
. (3.347)

3.11.3 Transversely Oscillating Sphere

Another basic example for which the natural descrip-
tion is in terms of spherical coordinates is that of a rigid
sphere oscillating back and forth in the z-direction about
the origin.

The velocity of an arbitrary point on the surface of
the sphere can be taken as vcez cos(ωt), where vc is the
velocity amplitude of the oscillation and ez is the unit
vector in the direction of increasing z. Consistent with

θ

a

r

z

x

θ
vr

vC

vC

Fig. 3.24 Parameters used for the discussion of constant-
frequency sound radiated by a transversely oscillating
sphere
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72 Part A Propagation of Sound

the desire to use a linear approximation, one approxi-
mates the unit normal vector for a given point on the
surface of the sphere to be the same as when the sphere
is centered at the origin, so that n ≈ er, where the lat-
ter is the unit vector in the radial direction. The normal
component of the fluid velocity is then approximately

vn = vc (ez · er) cos(ωt) . (3.348)

The dot product is cos θ, where θ is the polar angle.
One also makes the approximation that the bound-

ary condition is to be imposed, not at the actual
(moving) location of the point on the surface, but at the
place in space where that point is when the sphere is
centered at the origin. All these considerations lead to
the linear acoustics boundary condition

v̂r = vc cos θ at r = a (3.349)

for the complex amplitude of the fluid velocity.
The feature distinguishing this boundary condition

from that for the radially oscillating sphere is the factor
cos θ. The plausible conjecture that both v̂r and p̂ con-
tinue to have the same θ dependence for all values of r
is correct in this case, and one can look for a solution
of the Helmholtz equation that has such a dependence,
such as

p̂ = B
∂

∂z

(
eikr

r

)
= B cos θ

d

dr

(
eikr

r

)
. (3.350)

The first part of this relation follows because a deriva-
tive of a solution with respect to any Cartesian
coordinate is also a solution and because, as demon-
strated in a previous part of this section, eikr/r is
a solution. The second part follows because r2 = z2+
x2 + y2, so ∂r/∂z = z/r = cos θ. The quantity B is
a complex numerical constant that remains to be deter-
mined.

The radial component of Euler’s equation (3.175)
for the constant-frequency case requires that

−iωρv̂r =−∂ p̂

∂r
, (3.351)

where on the right side the differentiation is to be car-
ried out at constant θ. Given the expression (3.350), the
corresponding relation for the radial component of the
fluid velocity is consequently

v̂r = B

iωρ
cos θ

d2

dr2

(
eikr

r

)
. (3.352)

The boundary condition at r = a is satisfied if one takes
B to have a value such that

vc = B

iωρ

[
d2

dr2

(
eikr

r

)]

r=a
. (3.353)

The indicated algebra yields

B =−
(

iωρa3vc

2+2ika+ k2a2

)
e−ika , (3.354)

so the complex amplitude of the acoustic part of the
pressure becomes

p̂ =ρcvc
k2a2

2+2ika+ k2a2

(
1− 1

ikr

)(a

r

)

× e−ik[r−a] cos θ , (3.355)

while the radial component of the fluid velocity is

v̂r = vc

(
2+2ikr+ k2r2

2+2ika+ k2a2

)(
a3

r3

)
e−ik[r−a] cos θ .

(3.356)

The radiation impedance is

Zrad = ρc

(
k2a2+ ika

2+2ika+ k2a2

)
. (3.357)

Various simplifications result when considers limit-
ing cases for the values of kr and ka. A case of common
interest is when ka 
 1 (small sphere) and kr � 1 (far
field), so that

p̂ =
(
ω2ρvca3

c

)
eikr

r
cos θ . (3.358)

3.11.4 Axially Symmetric Solutions

The example discussed in the previous subsection of
radiation from a transversely oscillating sphere is one
of a class of solutions of the linear acoustic equations
where the field quantities depend on the spherical co-
ordinates r and θ but not on the azimuthal angle φ. The
Helmholtz equation for such circumstances has the form

1

r2

∂

∂r

(
r2 ∂ p̂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ p̂

∂θ

)
+ k2 p̂ = 0 .

(3.359)

A common technique is to build up solutions of this
equation using the principle of superposition, with the
individual terms being factored solutions of the form

p̂� = P�(cos θ)R�(kr) , (3.360)

where � is an integer that distinguishes the various par-
ticular separated solutions. Insertion of this product into
the Helmholtz equation leads to the conclusion that each
factor must satisfy an appropriate ordinary differential
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equation, the two differential equations being (with η
replacing kr)

1

sin θ

d

dθ

(
sin θ

dP�
dθ

)
+λ�P� = 0 , (3.361)

d

dη

(
η2 dR�

dη

)
−λ�R�+η2

R� = 0 . (3.362)

Here λ� is a constant, termed the separation con-
stant. Equivalently, with P� regarded as a function of
ξ = cos θ, the first of these two differential equations
can be written

d

dξ

[(
1− ξ2

) dP�
dξ

]
+λ�P� = 0 . (3.363)

Legendre Polynomials
Usually, one desires solutions that are finite at both
θ = 0 and θ = π, or at ξ = 1 and ξ =−1, but the solu-
tions for the θ-dependent factor are usually singular at
one of the other of these two end points. However, for
special values (eigenvalues) of the separation constant
λ�, there exist particular solutions (eigenfunctions) that
are finite at both points. To determine these functions,
one postulates a series solution of the form

P�(ξ) =
∞∑

n=0

a�,nξ
n , (3.364)

and derives the recursion relation

n(n−1)a�,n = [(n−1)(n−2)−λ�] a�,n−2 .

(3.365)

The series diverges as ξ→±1 unless it only has a finite
number of terms, and such may be so if for some n the
quantity in brackets on the right side is zero. The general
choice of the separation constant that allows this is

λ� = �(�+1) , (3.366)

where � is an integer, so that the recursion relation be-
comes

n(n−1)a�,n = [(n−�−2)(n+�−1)] a�,n−2 .

(3.367)

However, a�,0 and a�,1 can be chosen independently and
the recursion relation can only terminate one of the two
possible infinite series. Consequently, one must choose

a�,1 = 0 if � even ;
a�,0 = 0 if � odd . (3.368)

If � is even the terms correspond to n = 0, n = 2, n = 4,
up to n = �, while if � is odd the terms correspond to n =

1, n = 3, up to n = �. The customary normalization is
that P�(1) = 1, and the polynomials that are derived are
termed the Legendre polynomials. A general expression
that results from examination of the recursion relation
for the coefficients is

P�(ξ) = a�,�

(
ξ�− �(�−1)

2(2�−1)
ξ�−2

+ �(�−2)(�−1)(�−3)

(2)(4)(2�−1)(2�−3)
ξ�−4+ . . .

)
,

(3.369)

where the last term has ξ raised to either the power of
1 or 0, depending on whether � is odd or even. Equiva-
lently, if one sets,

a�,� = K�
(2�)!

2�(�!)2
, (3.370)

where K� is to be selected, the series has the relatively
simple form

P�(ξ) = K�

M(�)∑

m=0

(−1)m (2�−2m)!
2�m!(�−m)!(�−2m)! ξ

�−2m

= K�

M(�)∑

m=0

b�,mξ
�−2m . (3.371)

Here M(�) = �/2 if � is even, and M(�) = (�−1)/2 if
� is odd, so M(0) = 0, M(1) = 0, M(2) = 1, M(3) = 1,
M(4) = 2, etc.

The coefficients b�,m as defined here satisfy the re-
lation

(�+1)b�+1,m = (2�+1)b�,m −�b�−1,m−1 , (3.372)

as can be verified by algebraic manipulation. A conse-
quence of this relation is

(�+1)
P�+1(ξ)

K�+1
= (2�+1)ξ

P�(ξ)

K�
−� P�−1(ξ)

K�−1
,

(3.373)

when �≥ 1.
The customary normalization is to take P�(1) = 1.

The series for �= 0 and �= 1 are each of only one term,
and the normalization requirement leads to K0 = 1 and
K1 = 1. The relation (3.373) indicates that the normal-
ization requirement will result, via induction, for all
successive � if one takes K� = 1 for all �. With this def-
inition, the relation (3.373) yields the recursion relation
among polynomials of different orders

(�+1)P�+1(ξ) = (2�+1)ξP�(ξ)−�P�−1(ξ) .

(3.374)
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Fig. 3.25 Legendre polynomials for various orders

The latter holds for �≥ 1. With this, for example, given
that P0(ξ) = 1 and that P1(ξ) = ξ , one derives

(2)P2(ξ) = (3)ξξ− (1)(1) . (3.375)

The first few of these polynomials are

P0(ξ) = 1 , (3.376)

P1(ξ) = ξ , (3.377)

P2(ξ) = 1

2
(3ξ2−1) , (3.378)

P3(ξ) = 1

2
(5ξ3−3ξ) , (3.379)

P4(ξ) = 1

8
(35ξ4−30ξ2+3) , (3.380)

P5(ξ) = 1

8
(63ξ5−70ξ3+15ξ) , (3.381)

with the customary identification of ξ = cos θ.
An alternate statement for the series expression

(3.371), given K� = 1, is the Rodrigues relation,

P�(ξ) = 1

2��!
d�

dξ�
(ξ2−1)� . (3.382)

This can be verified by using the binomial expansion

(ξ2−1)� = (−1)�
�∑

n=1

(−1)n �!
n!(�−n)!ξ

2n , (3.383)

so that

d�

dξ�
(ξ2−1)� =(−1)�

�∑

n=�−M

(−1)n �!
n!(�−n)!

×
(2n)!

(2n−�)!ξ
2n−� , (3.384)

or, with the change of summation index to m = �−n,

d�

dξ�
(ξ2−1)� =

M(�)∑

m=0

(−1)m �!
m!(�−m)!

×
(2�−2m)!
(�−2m)! ξ

�−2m = �!2�P�(ξ) .

(3.385)

Another derivable property of these functions is that
they are orthogonal in the sense that

π∫

0

P�(cos θ)P�′ (cos θ) sin θ dθ = 0 if � �= �′ .

(3.386)

This is demonstated by taking the differential equations
(3.361) satisfied by P� and P�′ , multiplying the first
by P�′ sin θ, multiplying the second by P�(θ) sin θ, then
subtracting the second from the first, with a subsequent
integration over θ from 0 to π. Given that λ� �= λ�′ and
that the two polynomials are finite at the integration
limits, the conclusion is as stated above.

If the two indices are equal, the chosen normaliza-
tion, whereby P�(1) = 1, leads to

π∫

0

[P�(cos θ)]2 sin θ dθ = 2

2�+1
. (3.387)

The general derivation of this makes use of the Ro-
drigues relation (3.382) and of multiple integrations by
parts. To carry through the derivation, one must first ver-
ify, for arbitrary nonnegative integers s and t, and with
s< t, that

d

dξs
(ξ2−1)t = 0 at ξ =±1 , (3.388)

which is accomplished by use of the chain rule of differ-
ential calculus. With the use of this relation and of the
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Rodrigues relation, one has

1∫

−1

[P�(ξ)]
2 dξ

=
(

1

2��!
)2

(−1)�
1∫

−1

(ξ2−1)�

×
d2�

dξ2�
(ξ2−1)� dξ (3.389)

=
(

1

2��!
)2

(2�)!
1∫

−1

(1− ξ2)� dξ

=
(

1

2��!
)2

(2�)!2
π/2∫

0

sin θ2�+1 dθ . (3.390)

The trigonometric integral I� in the latter expression is
evaluated using the trigonometric identity

d

dθ
(sin2� θ cos θ) =− sin2�+1 θ

+2�(sin2�−2 θ)(1− sin2 θ) ,
(3.391)

the integral of which yields the recursion relation

I� = 2�

(2�+1)
I�−1 , (3.392)

and from this one infers

I� = (2��!)2

(2�+1)! I0 . (3.393)

The integral for �= 0 is unity, so one has

1∫

−1

[P�(ξ)]
2 dξ =

(
1

2��!
)2

(2�)!2
(

(2��!)2

(2�+1)!
)

= 2

2�+1
. (3.394)

Spherical Bessel Functions
The ordinary differential equation (3.362) for the factor
R�(η) takes the form

d

dη

(
η2 dR�

dη

)
−�(�+1)R�+η2

R� = 0 , (3.395)

with the identification for the separation constant that
results from the requirement that the θ-dependent fac-

tor be finite at θ = 0 and θ = π. For �= 0, a possible
solution is

R0 = A0
eiη

η
, (3.396)

as can be verified by direct substitution, with A0 being
any constant. Since there is no corresponding θ depen-
dence this is the same as the solution (3.327) for an
outgoing spherical wave.

For arbitrary positive integer �, a possible solution
is

h(1)
� (η) =−iη�

(
−1

η

d

dη

)� eiη

η
, (3.397)

so that, in particular,

h(1)
0 (η) =−i

eiη

η
;

h(1)
1 (η) = i

d

dη

eiη

η
=−

(
1+ i

η

)
eiη

η
. (3.398)

Alternately, both the real and imaginary parts should be
solutions, so if one writes

h(1)
� (η) = j�(η)+ iy�(η) , (3.399)

then

j�(η) = η�
(
−1

η

d

dη

)� sin η

η
, (3.400)

y�(η) =−η�
(
−1

η

d

dη

)� cos η

η
, (3.401)
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Fig. 3.26 Spherical Bessel functions for various orders
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Fig. 3.27 Spherical Neumann functions for various orders

are each solutions. The function h(1)
� (η) is referred to

as the spherical Hankel function of the �-th order and
first kind (the second kind has i replaced by −i), while
j�(η) is the spherical Bessel function of the �-th order,
and y�(η) is the spherical Neumann function of the �-th
order.

A proof that h(1)
� (η), as defined above, satisfies

the ordinary differential equation for the corresponding
value of � proceeds by induction. The assertion is true
for �= 0 and it is easily demonstrated also to be true
for �= 1, and the definition (3.397) yields the recursion
relation

h(1)
�+1(η) = �

η
h(1)
� − d

dη
h(1)
� . (3.402)

The differential equation for h(1)
� and what results from

taking the derivative of that equation gives one the rela-
tions,

d2

dη2
h(1)
� + 2

η

d

dη
h(1)
� +

(
1− �(�+1)

η2

)
h(1)
� = 0 ,

(3.403)

d2

dη2

h(1)
�

η
+ 2

η

d

dη

h(1)
�

η
+ 2

η2

d

dη
h(1)
�

+
(

1− �(�+1)

η2

)
h(1)
�

η
= 0 , (3.404)

d2

dη2

dh(1)
�

dη
+ 2

η

d

dη

dh(1)
�

dη
− 2

η2

d

dη
h(1)
�

+ 2

η3
�(�+1)h(1)

� +
(

1− �(�+1)

η2

)
dh(1)
�

dη
= 0 .

(3.405)

Multiplication of the second of these by �, then subtract-
ing the third, subsequently making use of the recursion
relation, yields

d2

dη2
h(1)
�+1+

2

η

d

dη
h(1)
�+1+

2(�+1)

η2

d

dη
h(1)
�

− 2

η3
�(�+1)h(1)

� +
(

1− �(�+1)

η2

)
h(1)
�+1 = 0 .

(3.406)

A further substitution that makes use of the recursion
relation yields

d2

dη2
h(1)
�+1+

2

η

d

dη
h(1)
�+1−

2(�+1)

η2
h(1)
�+1

+
(

1− �(�+1)

η2

)
h(1)
�+1 = 0 , (3.407)

or, equivalently,

d2

dη2
h(1)
�+1+

2

η

d

dη
h(1)
�+1

+
(

1− (�+1)(�+2)

η2

)
h(1)
�+1 = 0 , (3.408)

which is the differential equation that one desires h(1)
�+1

to satisfy; it is the �+1 counterpart of (3.403).
Another recursion relation derivable from (3.397) is

(�+1)h(1)
�+1 =−(2�+1)

d

dη
h(1)
� +�h(1)

�−1 . (3.409)

Limiting approximate expressions for the spherical
Hankel function and the spherical Bessel function are
derivable from the definition (3.397). For η
 1, one
has

h(1)
0 (η) ≈− i

η
; h(1)

� (η) ≈−i
1 ·3 ·5 · · · (2�−1)

η�+1
,

(3.410)

j0(η) ≈ 1− 1

6
η2 ; j�(η) ≈ η�

1 ·3 ·5 · · · (2�+1)
.

(3.411)

(The second term in the expansion for j0 is needed in
the event that one desires a nonzero first approximation
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Basic Linear Acoustics 3.11 Spherical Waves 77

for the derivative.) In the asymptotic limit, when η� 1,
one has

h(1)
� (η) → (−i)�+1 eiη

η
. (3.412)

As is evident from the eiη = eikr factor that appears
here, the spherical Hankel function of the first kind cor-
responds to a radially outgoing wave, given that one is
using the e−iωt time dependence. Its complex conju-
gate, the spherical Hankel function of the second kind,
corresponds to a radially incoming wave.

Plane Wave Expansion
A mathematical identity concerning the expansion of
a plane wave in terms of Legendre polynomials and
spherical Bessel functions results from consideration of

eikr cos θ =
∞∑

�=0

I�(kr)P�(cos θ) . (3.413)

Because the Legendre polynomials are a complete set,
such an expansion is possible and expected to converge.
The coefficients I�(kr) are determined with the use of
the orthogonality conditions, (3.386) and (3.387), to be
given by

I�(η) = 2�+1

2

π∫

0

eiη cos θ P�(cos θ) sin θ dθ

= 2�+1

2

1∫

−1

eiηξ P�(ξ)dξ . (3.414)

The integral above evaluates, for �= 0, to

I0(η) = 1

2

1

iη
(eiη− e−iη) = j�(η) , (3.415)

and, for �= 1, to

I1(η) = 3

2

d

d(iη)

(
1

iη
(eiη− e−iη)

)

= 3i

(
sin η

η2
− cos η

η

)
= 3i j1(η) . (3.416)

To proceed to larger values of �, one makes use of the
recursion relations, (3.374) and (3.409), and infers the
general relation

I�(η) = (2�+1)i� j�(η) . (3.417)

This relation certainly holds for �= 0 and �= 1, and
a general proof for arbitrary integer � follows by induc-

tion. One assumes the relation is true for �−1 and �,
and considers

I�+1(η)

= 2�+3

2

1∫

−1

eiηξ P�+1(ξ)dξ (3.418)

= (2�+3)(2�+1)

2(�+1)

1∫

−1

eiηξξP�(ξ)dξ

− (2�+3)�

2(�+1)

1∫

−1

eiηξ P�−1(ξ)dξ (3.419)

= (2�+3)

(�+1)
(−i)

d

dη
I�

− (2�+3)�

(�+1)(2�−1)
I�−1 (3.420)

where the second version results from the recursion
relation (3.374). Then, with the appropriate insertions
from (3.417), one has

I�+1(η) = (2�+3)i�+1

×

[
− (2�+1)

(�+1)

d

dη
j�(η)

+ �

(�+1)
j�−1(η)

]
. (3.421)

The recursion relation (3.409) replaces the quantity in
brackets by j�+1, so one obtains

I�+1(η) = (2�+3)i�+1 j�+1(ξ) , (3.422)

which is the �+1 counterpart of (3.417). Thus the ap-
propriate plane wave expansion is identified as

eikr cos θ =
∞∑

�=0

(2�+1)i� j�(kr)P�(cos θ) . (3.423)

3.11.5 Scattering by a Rigid Sphere

An application of the functions introduced above is the
scattering of an incident plane wave by a rigid sphere
(radius a). One sets the complex amplitude of the acous-
tic part of the pressure to

p̂ = P̂inc eikz + p̂sc . (3.424)

The first term represents the incident wave, which has
an amplitude P̂inc, constant frequency ω and which is
proceeding in the +z-direction. The second term rep-
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78 Part A Propagation of Sound

resents the scattered wave. This term is required to be
made up of waves that propagate out from the sphere,
which is centered at the origin. With some generality,
one can use the principle of superposition and set

p̂sc = P̂inc

∑

�=0

A�P�(cos θ)h(1)
� (kr) , (3.425)

with the factors in the terms in the sum representing
the Legendre polynomials and spherical Hankel func-
tions. The individual terms in the sum are sometimes
referred to as partial waves. The analytical task is to
determine the coefficients A�. (The expression above
applies to scattering from any axisymmetric body, in-
cluding spheroids and penetrable objects, where the
properties might vary with r and θ. The discussion here,
however, is limited to that of the rigid sphere.)

With the plane wave expansion (3.423) inserted for
the direct wave, the sum of incident and scattered waves
takes the form

p̂ = P̂inc

∞∑

�=0

[
(2�+1)i� j�(kr)+ A�h

(1)
� (kr)

]

× P�(cos θ) . (3.426)

the boundary condition imposed by the rigidity of the
sphere is that v̂r = 0 at r = a, or equivalently that
∂ p̂/∂r = 0 at r = a. With the aid of the radial com-
ponent of the Euler equation (3.175) and of the linear
independence of the various Legendre polynomials, this
yields

d

dr

[
(2�+1)i� j�(kr)+ A�h

(1)
� (kr)

]= 0

at r = a . (3.427)

The desired coefficients are consequently

A� =−(2�+1)i�
[ d

dr j�(kr)
]

r=a[ d
dr h(1)

� (kr)
]
r=a

. (3.428)

Far-Field Scattering
In the limit of large kr, the asymptotic expression
(3.412) for the spherical Hankel function can be used,
and the scattered wave takes the asymptotic form

p̂sc → P̂inc f (θ)
eikr

kr
, (3.429)

where

f (θ) =
∞∑

�=0

(−i)�+1 A�P�(cos θ) (3.430)

is a complex dimensionless function of only the angle θ.

This asymptotic form holds for scattering from any
axisymmetric object of bounded extent. In the more
general case when the object is not axisymmetric, one
should regard the function f as being also a function of
the azimuthal angle φ, so that

f (θ) → f (θ, φ) . (3.431)

The prediction in all cases is that the far-field scattered
wave resembles an outgoing spherical wave, but with an
amplitude that depends on the direction of propagation.

The far-field intensity associated with the scattered
wave is asymptotically entirely in the radial direction,
and in accord with (3.281), its time average is given by

Isc = 1

2

1

ρc
| p̂sc|2 , (3.432)

or,

Isc = 1

2

|P̂inc|2
ρc

| f (θ, φ)|2 1

k2r2
. (3.433)

The differential scattering cross section is the power
scattered per unit solid angle and per unit incident in-

(ka)2 0.5 (ka)2

120 90

60

30
0

ka << 1 ka = 2

0.40.2

0.4 0.8

60 30

0180

ka = 4

1.2

0.4 0.8
0180

ka = 6

1.2 1.6 2.0

Limit, ka 

Fig. 3.28 Angular distribution of plane wave scattering by
a rigid sphere of radius a. The quantity (dσ/dΩ)1/2/a is
plotted versus the polar angle θ
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Basic Linear Acoustics 3.12 Cylindrical Waves 79

tensity, and is consequently given by

dσ

dΩ
= r2 Isc

Iinc
= 1

k2
| f (θ, φ)|2 . (3.434)

(Here the notation is such that σ corresponds to the
cross-sectional area, andΩ corresponds to the solid an-
gle in steradians, with the total solid angle in a sphere
being 4π steradians.)

The total scattering cross section is the total scat-
tered power divided by the incident intensity, so that

σ = Psc

Iinc
=
∫

dσ

dΩ
dΩ = Psc

Iinc

=
2π∫

0

π∫

0

1

k2
| f (θ, φ)|2 sin θ dθ dφ . (3.435)

For the case of an axially symmetric scatterer, this re-
duces to

σ = 2π

k2

π∫

0

| f (θ, φ)|2 sin θ dθ

= 2π

k2

∑

�

∑

�′
(−i)�−�′ A�A�′

π∫

0

P�P�′ sin θ dθ .

(3.436)

The orthogonality of the Legendre polynomials reduces
this to

σ = 4π

k2

∑

�

1

(2�+1)
|A�|2 , (3.437)

so the powers scattered by the individual partial waves
are additive, even though there may be an intricate in-
terference pattern in the angular directionality.

Rayleigh Scattering
When the object causing the scattering is much smaller
than a wavelength, considerable simplification results,
and the characteristic features that result are associated
with the term Rayleigh scattering. In the case of scatter-
ing by a rigid sphere, only the �= 0 and �= 1 terms
are significant, and both have comparable influence.
The small-ka approximations for the spherical Bessel
function and the spherical Hankel function yield

A0 ≈ i
1

3
(ka)3 ; A1 ≈ i(ka)3 . (3.438)

Then with the appropriate identifications of the spher-
ical Hankel function and the Legendre polynomial for
�= 0 and �= 1, one obtains

p̂sc =−P̂inc
k2a3

3

[
1− 3

2
cos θ

(
1+ i

kr

)] eikr

r
.

(3.439)

The corresponding expressions for the differential
scattering cross section and the total cross section are

dσ

dΩ
= k4a6

9

(
1− 3

2
cos θ

)2

, (3.440)

σ = 7

9
(ka)4πa2 . (3.441)

A feature of this expression is the characteristically
strong dependence on frequency. The amplitude of the
scattered wave varies as the square of the frequency, and
the far-field intensity and scattering cross sections vary
as the fourth power of the frequency. This type of fre-
quency dependence is invariably true for all types of
small scatterers (a notable exception being when the
scatterer has an internal resonance at the incident fre-
quency) and is the distinguishing feature of Rayleigh
scattering.

3.12 Cylindrical Waves

The present section is concerned with a number of im-
portant situations where the appropriate coordinates are
the cylindrical coordinates (w, φ, z).

3.12.1 Cylindrically Symmetric Outgoing
Waves

For cylindrically symmetric waves, there is no de-
pendence on the azimuthal angle φ or on the axial
coordinate z, so the Laplacian in cylindrical coordinates

reduces to

∇2ψ = 1

w

∂

∂w

(
w
∂ψ

∂w

)

= ∂
2ψ

∂w2
+ 1

w

∂ψ

∂w

= 1√
w

∂2(
√
wψ)

∂w2
+
√
wψ

4w5/2
, (3.442)
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�L

zL

wL

z

Listener

y

x

Fig. 3.29 Cylindrical coordinates. A hypothetical listener
point has cylindrical coordinates wL, φL, and zL

wherew is here the radial distance from the z-axis. Con-
sequently, the wave equation of (3.74) takes the form

∂2(
√
wp)

∂w2
− 1

c2

∂2(
√
wp)

∂t2
+
√
wp

4w2
= 0 , (3.443)

and the Helmholtz equation of (3.176) takes the form

d2 p̂

dw2
+ 1

w

d p̂

dw
+ k2 p̂ = 0 . (3.444)

General Transient Solution
A heuristic construction of an outgoing wave solution of
(3.443) begins with an infinite line array of identical and
synchronous point sources, equally spaced along the z-
axis, and each giving rise to an identical spherical wave.
Such waves differ, however, at any given distant point
in that the radial distance R from the source depends on
the z-coordinate z0 of the source, so that

R =
[
w2+ (z− z0)2

]1/2
. (3.445)

With the taking of an appropriate limit as the source
separation interval goes to zero, one finds the general
solution for an outgoing cylindrical wave to be

p(r, t) =
∞∫

−∞

f [t− (R/c)]
R

dz0 . (3.446)

Here the function f (t) is arbitrary. The argument
t− (R/c) of this function in the integrand is the retarded
time, the time at which the incremental contribution was
generated. With some effort, one can show that the in-
tegral in (3.446) is independent of z, and that it satisfies
the cylindrical wave equation (3.443). A consequence of
the above result is that outgoing cylindrical waves must
have a tail. Even if the function f (t) were to be zero ex-
cept within a narrow time interval, the integral will give
a nonzero value for times arbitrarily later than the time
when the signal is first received. This is in contrast to
the case for outgoing spherical waves, where there may
be no tail.

If the distance w is sufficiently great, the resulting
waveform will be such that it will be frozen in shape,
and will decrease in amplitude as the inverse of the
square root of w. The last term in (3.443) becomes in-
significant and the appropriate limiting approximation
is of the form

p(w, t) = 1√
w

F
[
t− (w/c)

]
. (3.447)

The function F(t) that appears here is related to the f (t)
that appears in (3.446). The relationship (derived further

z0

w

z

y

x

θ

R
(x, y, z)

Fig. 3.30 Parameters involved in the construction of
a cylindrical wave as a linear superposition of spherical
waves from a continuous smear of simultaneous spheri-
cal sources spaced along a line. The quantity z0 represents
a source point along the z-axis, and R is the distance from
that source point to a given listener point
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below) is

F(t) = (2c)1/2

t∫

−∞

f (τ)

(t− τ)1/2
dτ . (3.448)

Since f (t) is arbitrary, one can equally well regard F(t)
as arbitrary. The expression (3.447) is readily seen to be
an appropriate approximate solution of (3.442), since
that wave equation implies that

√
wp should satisfy the

equation for plane waves when w is large.

Constant-Frequency Solution
The corresponding cylindrical wave solution for the
Helmholtz equation is obtained by setting

f (t) → A e−iωt , (3.449)

so that

p̂(r) = A

∞∫

−∞

eikR

R
dz0 , (3.450)

or, equivalently,

p̂(r) = iπAH (1)
0 (kw) . (3.451)

Here A is an arbitrary constant and the quantity H (1)
0 (η)

is the Hankel function of the first kind and zeroth order,

H (1)
0 (η) = 1

iπ

∞∫

−∞

ei[η2+ζ2]1/2

[η2+ ζ2]1/2 dζ . (3.452)

3.12.2 Bessel and Hankel Functions

The Hankel function that appears above is discussed
extensively in the literature, and corresponds to an out-
going wave. The differential equation that it satisfies is
obtained from the Helmholtz equation for cylindrical
waves by setting kw= η, so that

(
d2

dη2
+ 1

η

d

dη
+1

)
H (1)

0 (η) = 0 . (3.453)

This is a special case (with ν = 0) of the second-order
differential equation

[
d2

dη2
+ 1

η

d

dη
+
(

1− ν
2

η2

)]
Jν(η) = 0 , (3.454)

whose general solution is

Jν(η) = a Jν(η)+bYν(η) . (3.455)

Here Jν(η) and Yν(η) are the Bessel function and the
Neumann function. The second, frequently denoted by
Nν(η), is sometimes referred to as Weber’s function.
The Hankel functions of the first and second kinds are
given by

H (1)
ν (η) = Jν(η)+ iYν(η) ;

H (2)
ν (η) = Jν(η)− iYν(η) . (3.456)

Both Jν(η) and Yν(η) are real when ν and η are real
and positive, so the two Hankel functions are a complex
conjugate pair under such circumstances.

An alternate mathematical representation for the
Hankel function H (1)

0 that is more amenable to numeri-
cal computation is

H (1)
0 (η) = 2

π

π/2∫

0

eiη cosφ dφ+ 2

iπ

∞∫

0

e−η sinh s ds ,

(3.457)

and from this one identifies expressions for the Bessel
and Neumann functions as

J0(η) = 2

π

π/2∫

0

cos (η cosφ) dφ , (3.458)

Y0(η) = 2

π

π/2∫

0

sin (η cosφ) dφ− 2

π

∞∫

0

e−η sinh s ds .

(3.459)

In the limit of small η, the function H (1)
0 has a loga-

rithmic singularity, and is approximately given by

H (1)
0 (η) ≈ 1− 1

4
η2− 2i

π

[
ln(2/η)−γ ] , (3.460)

where

γ =
1∫

0

1− e−s

s
ds−

∞∫

1

e−s

s
ds = 0.5772157 . . .

(3.461)

is the Euler–Mascheroni constant. In the limit of large
η, the corresponding limiting expression is

lim
η→∞ H (1)

0 (η) =
(

2

πη

)1/2

e−iπ/4 eiη . (3.462)

An expression valid for all positive ν and positive η
is

H (1)
ν (η) = 1

πi

∞+iπ∫

−∞
eη sinhα−να dα . (3.463)
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αI

αR

π

Fig. 3.31 Contour integral used for the definition of the
Hankel function of the first kind

The latter is a contour integral, where a possible contour
is from −∞ along the negative real axis to the origin,
then up the imaginary axis to iπ, then parallel to the
positive real axis with the imaginary part held fixed to
iπ out to ∞+ iπ. The convergence along the latter leg
is guaranteed because

sinh(s+ iπ) =− sinh(s) . (3.464)

Thus, when written out explicitly for the contour just
described, it becomes

H (1)
ν (η) = 1

πi

∞∫

0

e−η sinh s+νs ds

+ 1

π

π∫

0

eiη sin θ−iνθ dθ

+ e−iνπ

πi

∞∫

0

e−η sinh s−νs ds . (3.465)

For ν = 0, this reduces to the expression (3.457). That
the above is indeed a solution of the ordinary differen-
tial equation (3.454) follows from substitution of the
contour integral expression into the differential equa-
tion multiplied by η2, followed by differentiation under
the integral sign, so that one has

1

πi

∞+iπ∫

−∞
(η2 sinh2 α+η sinhα+η2−ν2)

× eη sinhα−να dα

= 1

πi

∞+iπ∫

−∞

d

dα
[(η coshα+ν)eη sinhα−να]dα= 0.

(3.466)

The latter equality follows because the quantity being
differentiated in the integrand vanishes at both ends of
the integration contour.

αI

αR

π

π/4
π/4

Fig. 3.32 Contour integral along the path of steepest
descents, used in the derivation of the asymptotic expres-
sion for the Hankel function

For arbitrary positive ν, the corresponding limiting
expression at large η for the Hankel function can be
derived using the method of steepest descents. The sad-
dle point αsp for the integrand in (3.463) occurs on the
imaginary axis where coshα = ν/η, which is close to
α = iπ/2, so that the exponent near the saddle point is
approximately

η sinhα−να≈ i(η−νπ/2)+ i
1

2
η(α−αsp)2 .

(3.467)

The path of steepest descent crosses the imaginary
axis proceeding obliquely upwards at an angle of π/4,
so the resulting asymptotic expression is

lim
η→∞ H (1)

ν (η) =
(

2

πη

)1/2

e−i[(ν/2)+(1/4)])π eiη .

(3.468)

The corresponding limiting expressions for Jν(η)
and Yν(η) result from taking the real and imaginary parts
of this. The above reduces to (3.462) when ν = 0. This
asymptotic behavior, plus the requirement that the func-
tion satisfy the ordinary differential equation (3.454), is

1 η

1.0

0.5

0

–0.5

2 3 4 5 60

(π/2η)1/2

3π/4 7π/4

–(π/2η)1/2

1–η2/4
J0(η)

Fig. 3.33 Graph of the Bessel function of the zeroth order,
shown along with common approximations used for small
and large values of the argument
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1 η

0.5

0

–0.5

–1.0

–1.5

2 3 4 5 60

(π/2η)1/2

π/4 5π/4

–(π/2η)1/2

Y0(η)

– 2
π ln     –γ2

η

Fig. 3.34 Graph of the Neumann function of the zeroth or-
der, shown along with common approximations used for
small and large values of the argument

sufficient to define the Hankel function uniquely. The
definition (3.463) is also such that it is consistent with
the requirement that the real part (the Bessel function)
be finite for real positive ν.

For small values of the argument η and for nonzero
integer n these functions have the limiting expressions

Jn(η) → 1

n!
(η

2

)n
, (3.469)

Yn(η) →− (n−1)!
π

(
2

η

)n

. (3.470)

These expressions also apply for noninteger positive in-
dex ν providing that one replaces n! → Γ (ν+1) and
(n−1)! → Γ (ν), with the use of the Gamma function.
The expression for the Neumann function obtained in
this way is not appropriate in the limit ν→ 0, as the
Gamma function has a singularity when its argument is
zero. Instead, one must use the logarithmic expression
given by the imaginary part of (3.460).

The definition given above of the Hankel functions
for arbitrary index ν yields the recursion relations

d

dη
H (1)

0 (η) =−H (1)
1 (η) , (3.471)

d

dη
H (1)
ν (η) = H (1)

ν−1(η)− ν
η

H (1)
ν (η) . (3.472)

Analogous recursion relations hold for the Bessel and
Neumann functions.

Factored Solutions
One principal use of the Hankel functions and the
Bessel functions of arbitrary order is in the synthesis
of solutions of the Helmholtz equation in cylindrical

coordinates,

∂2 p̂

∂w2
+ 1

w

∂ p̂

∂w
+ 1

w2

∂2 p̂

∂φ2
+ ∂

2 p̂

∂z2
+ k2 p̂ = 0 . (3.473)

One uses factored solutions of the form

p̂ =W(w)Φ(φ)Z(z) . (3.474)

If one takes the latter two factors to satisfy the ordinary
differential equations

d2

dφ2
Φ+ν2Φ = 0 , (3.475)

d2

dz2
Z+α2Z= 0 , (3.476)

then the ordinary differential equation that results for
the radial-coordinate-dependent factor is

d2W

dw2
+ 1

w

dW

dw
− ν2

w2
W+ (k2−α2)W = 0 .

(3.477)

The latter is recognized as the ordinary differential
equation satisfied by Bessel functions and Hankel func-
tions of the ν-th order, so possible solutions are

W = H (1)
ν [(k2−α2)1/2w] ;
Jν[(k2−α2)1/2w] ;
Yν[(k2−α2)1/2w] . (3.478)

One can use combinations of such factored solutions
for the synthesis of solutions of basic problems such as
the scattering of a plane wave by a rigid cylinder. The
solution is analogous to that discussed in a preceding
section for scattering by a rigid sphere. For such prob-
lems in cylindrical coordinates, the applicable plane
wave expansion theorem is

eikw cosφ =
∞∑

n=0

2εn cos(nφ)Jn(kw) , (3.479)

where

εn =
⎡

⎣ 1

π

2π∫

0

cos2(nφ)dφ

⎤

⎦
−1

(3.480)

is 1/2 if n = 0 and 1 if n ≥ 0. This expansion formula
results because of the orthogonality of the trigonometric
functions and because

Jn(kw) = 1

2π

2π∫

0

eikw cosφ cos(nφ)dφ . (3.481)
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84 Part A Propagation of Sound

Cylindrical Waves at Large Distances
The asymptotic expression (3.462) indicates that, at suf-
ficiently largew, the solution of the Helmholtz equation
for outgoing cylindrical waves can be represented by

p̂ = B√
w

eikw , (3.482)

where B is a constant which is related to the A intro-
duced previously through

B = iπ

(
2

πk

)1/2

e−iπ/4 A . (3.483)

Consequently, the relation between the functions F(t)
and f (t) that appear in (3.446) and (3.447) must be such
that

F(t) = 2(2πc)1/2Re

∞∫

0

1

ω1/2
eiπ/4 f̂ (ω)e−iωt dω ,

(3.484)

where f̂ (ω) is the Fourier transform of f (t). To do
the requisite integration, one inserts the counterpart of
(3.167) for f̂ (ω) and then interchanges the order of in-
tegration. The result,

F(t) = (2c)1/2

t∫

−∞

f (τ)

(t− τ)1/2
dτ , (3.485)

is what was previously given in (3.448).

Fluid Velocity for Cylindrical Waves
The fluid velocity induced by outgoing cylindrical
waves is not as simply related to the corresponding
acoustic pressure as that induced by a plane wave, al-
though symmetry directs that the velocity must be in
the appropriate radial direction when the propagation
is cylindrically symmetric. For the constant-frequency
case, when p̂ is given by

p̂ = CH (1)
0 (kw) , (3.486)

the radial component in cylindrical coordinates of the
linearized Euler equation (3.175) requires

v̂w = C

iωρ

d

dw
H (1)

0 (kw) . (3.487)

At small distances, when (3.460) applies, one has

v̂w ≈ C

iωρ

2i

π

1

w
= 2C

πωρ

1

w
. (3.488)

This dependence on 1/w is characteristic of cylindri-
cally spreading flow from a line source. The complex
amplitude, −iωdm̂/d�, of the mass efflux rate, the mass
of fluid flowing out per unit axial length per unit time of
the source, is 2πwρ times the above, so that

−iω
dm̂

d�
= 4C

ω
. (3.489)

This gives one a physical interpretation of the constant
C, so that −4iC is the complex amplitude of the second
derivative with respect to time of the mass that has been
expelled from a small cylinder surrounding the source
per unit length of cylinder.

In the limit of large w, the asymptotic relation for
the Hankel function is applicable, so that

d

dw
H (1)

0 ≈ ikH (1)
0 (kw) , (3.490)

One consequently recovers the plane wave relation

v̂w = 1

ρc
p̂ . (3.491)

Since this holds for Fourier transforms and since ρc is
independent of frequency, it should hold for transient
cylindrical waves. (Here largew implies large compared
to a characteristic wavelength, or compared to c divided
by a characteristic angular frequency.)

The previous discussion concerning acoustic inten-
sity implies that the intensity of an outgoing cylindrical
wave should decrease with w as 1/w so that the power
flow through any cylindrical surface around the z-axis
should stay constant. This has to remain so, even when
one expresses the field in terms of Hankel functions, so
one would expect those functions to have some mathe-
matical property that guarantees this. To show that this
is indeed the case, one expresses the intensity for the
constant-frequency case as

Iw,av =
[
Re( p̂e−iωt)Re(v̂w e−iωt)

]
av

= 1

2
Re( p̂∗v̂w) , (3.492)

in accordance with (3.182).
Then, with the explicit substitution of the expres-

sions involving Bessel functions one obtains

Ir,av = |C|2
2ρc

Re[(J0− iY0)(Y ′
0− iJ ′0)]

= |C|2
2ρc

W(J0, Y0) , (3.493)

where

W(J0, Y0) = J0Y ′
0−Y0 J ′0 (3.494)
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Basic Linear Acoustics 3.12 Cylindrical Waves 85

is the Wronskian for the Bessel and Neumann functions.
Here the primes denote differentiation with respect to
the argument η= kw of the indicated function. One can
derive from the differential equation (3.453) that these
two functions independently satisfy the Wronskian re-
lation

ηW(J0, Y0) = constant , (3.495)

and this is so regardless of the specialized definitions of
the two functions. The constant can be evaluated from
values and derivatives at any given point. In particular,
one can use the asymptotic expressions, and the derived
constant is 2/π. Thus one has

Iw,av = 1

π

|C|2
ρcw

= 1

ρcw

1

16π

∣∣∣∣ω
2 dm̂

d�

∣∣∣∣
2

. (3.496)

3.12.3 Radially Oscillating Cylinder

A classic example for the radiation of cylindrical waves
is that where a cylinder has nominal radius a, and an
instantaneous radius

wcyl(t) = a+ vo

ω
sin(ωt) . (3.497)

Here vo/ω is the amplitude of the deviations of the ac-
tual radius from the nominal value a. For the linear
acoustics idealization to be valid, it is required that this
deviation be substantially less than a, so that

vo 
 ωa . (3.498)

The boundary condition on the fluid dynamic equations
should ideally be

vw = vo cos(ωt) at w= wcyl(t) , (3.499)

but (also in keeping with the linear acoustics idealiza-
tion) it is replaced by

vw = vo cos(ωt) at w= a . (3.500)

The corresponding boundary condition on the complex
amplitude is

v̂w = vo at w= a . (3.501)

If one takes the complex amplitude of the acoustic pres-
sure to be of the form

p̂ = A H (1)
0 (kw) , (3.502)

where A is a complex number to be determined, then
the radial component of the fluid velocity is

v̂w = A

iωρ

d

dw
H (1)

0 (kw) . (3.503)

The imposing of the boundary condition determines the
value of A and one obtains

p̂ = iωρvo
H (1)

0 (kw)
[ d

dwH (1)
0 (kw)

]
w=a

. (3.504)

3.12.4 Transversely Oscillating Cylinder

If the cylinder is rigid and oscillating back and forth
in the x-direction, the analysis is similar to that for
the transversely oscillating sphere. The complex ampli-
tude of the acoustic part of the pressure should have the
general form

p̂ = B
d

dx
H (1)

0 (kw) = B cosφ
d

dw
H (1)

0 (kw) ,

(3.505)

where B is to be determined from the boundary condi-
tion. The latter can also be written

p̂ =−kB cosφH (1)
1 (kw) , (3.506)

in accord with the recursion relation (3.471). The latter
version is of the standard form for a factored solution of
the Helmholtz equation in cylindrical coordinates.

Euler’s equation gives the radial component of the
fluid velocity as

v̂w = 1

iωρ
B cosφ

d2

dw2
H (1)

0 (kw) . (3.507)

The appropriate approximate boundary condition is that

v̂w = vc cosφ at w= a . (3.508)

This allows one to identify

B = iωρvc[ d2

dw2 H (1)
0 (kw)

]
w=a

. (3.509)
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86 Part A Propagation of Sound

3.13 Simple Sources of Sound

Whatever generates an acoustic wave is termed
a source. In acoustical analysis, sources are incor-
porated into the governing equations through either
boundary conditions or source terms.

3.13.1 Volume Sources

Sources that are some distance from bounding surfaces
and that are small compared to a wavelength can fre-
quently be described by source terms. The simplest such
source would be one that causes a net amount of mass
of fluid to flow out of or into a fixed surface that en-
cases it. The example of a radially oscillating sphere,
discussed in a preceding section, is a classic example of
such a source, and the surface through which the mass
is flowing can be taken as a fixed spherical surface just
outside the actual moving surface of the sphere. This
mass passing out per unit time divided by the ambient
density ρ is a quantity QS(t) termed the source strength
function or the source volume velocity. If such a source
is concentrated at a point x0, then the appropriate inho-
mogeneous wave equation which would replace (3.74)
would be

∇2 p− 1

c2

∂2 p

∂t2
=−ρQ̇S(t)δ(x− x0) , (3.510)

where δ(x) is the Dirac delta function, which has a vol-
ume integral of unity and that is concentrated at the
point where its argument vanishes.

The solution of the above inhomogeneous wave
equation for an isolated source at the origin (ro = 0) in
an unbounded region is

p = ρ

4πr
Q̇S[t− (r/c)] = S[t− (r/c)]

r
, (3.511)

where

S(t) = ρ

4π

d

dt
QS(t) (3.512)

is called the monopole strength. The replacement of the
argument by the retarded time t− (r/c) accounts for the
transit time lag r/c for the sound to propagate from the
source to the listener.

For a radially oscillating small sphere, QS(t) can be
taken as the time derivative of the instantaneous volume
within the sphere. Thus the radiated acoustic pressure
is proportional to the volume acceleration, the second
derivative with respect to time of the sphere’s volume,
so that

p = ρ

4πr

(
d2V

dt2

)

t→t−(r/c)
. (3.513)

This rule holds for bodies that are not necessarily spher-
ically shaped, provided the largest dimensions are small
compared to a characteristic wavelength and provided
the acoustic pressure is measured at a sufficiently large
distance from the source.

3.13.2 Small Piston in a Rigid Baffle

Another example of a volume source is that of a very
small (relative to a wavelength) piston mounted in an
infinite rigid baffle. If the piston has area A and outward
normal velocity vn(t), then symmetry (or, equivalently,
the inclusion of an image source) requires that the radi-
ated sound be the same as from an isolated source with
twice the volume velocity of the piston, so one has

p = ρ

2πr
Av̇n

[
t− (r/c)

]
. (3.514)

3.13.3 Multiple and Distributed Sources

For assemblies of sources, each concentrated at a point,
the generalization of (3.510) is to replace the right side
by a sum of individual source terms; the solution to this
inhomogeneous wave equation is given by

p =
∑

n

S
[
t− (Rn/c)

]

Rn
, (3.515)

where Rn is the distance of the listener from the n-th
source.

When the source is continuously distributed in
space, the point-source term is replaced by a smoothly
varying function, so the inhomogeneous wave equation
is now of the form

∇2 p− 1

c2

∂2 p

∂t2
=−ρq̇S(x, t)=−4πs(x, t) . (3.516)

a

w

z

Fig. 3.35 Small piston source in a rigid baffle
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Basic Linear Acoustics 3.13 Simple Sources of Sound 87

The function qS is termed the source strength density
(source strength per unit volume). For an unbounded
medium, the solution of this latter equation is given by
the definite integral

p(x, t) =
∫∫∫

1

R
s(x0, t− (R/c))dV0 , (3.517)

where the volume integration ranges over source posi-
tion x0, and where R = |x− x0| is the distance between
the listener and source positions.

3.13.4 Piston of Finite Size in a Rigid Baffle

The concept of multiple sources and the mathematical
description above allows an extension of (3.514) to the
case when a finite piston is oscillating in a rigid baf-
fle. An area element ΔA located on the z = 0 plane at
(x0, y0) acts as a volume source where the time rate of
change of the volume is 2vn(x0, y0, t)ΔA. Here, as in
(3.514), the factor of two results from the requirement
that the contribution from this source element should
give no increment of normal velocity on the surface out-
side of the area element. The normal velocity vn is here
the outward velocity of the piston, which is the velocity
in the+z-direction, and is that appropriate to the surface
point (x0, y0).

Superposition of the contribution from all the area
elements subsequently yields, for the acoustic pressure

x

z

y

vn(x, y, t)

Fig. 3.36 Quantities involved in the integration to deter-
mine sound radiation from a planar surface in a state of
nonuniform vibration

in the radiated wave,

p = ρ

2π

∫∫
v̇n
[
x0, y0, t− (R/c)

]

R
dx0 dy0 ,

(3.518)

where

R = [(x− x0)2+ (y− y0)2+ z2]1/2 (3.519)

is the distance from the surface point (x0, y0, 0) to the
listener point (x, y, z). The integration extends over the
portion of the surface that is moving.

If the surface is moving at a constant angular fre-
quency ω, so that

vn (x0, y0, t)= Re
[
v̂n(x0, y0)e−iωt] , (3.520)

then (3.518) yields the complex amplitude of the radi-
ated pressure field as

p̂ = −iωρ

2π

∫∫
v̂n(x0, y0)

eikR

R
dx0 dy0 , (3.521)

with k = ω/c.
Appropriate formulas for the far field when the pis-

ton is of limited extent and centered at the origin result
when the quantity R in the denominator is replaced by r
and when it is replaced by (with the use of the binomial
expansion)

R ≈ r− x

r
x0− y

r
y0 (3.522)

in the exponent. Here r is the radial distance in spherical
coordinates, and one can take

x

r
= sin θ cosφ ; y

r
= sin θ sinφ , (3.523)

with θ as the polar angle and φ as the azimuthal solu-
tion. In this far-field limit, the acoustic pressure takes
the form

p̂ → F(θ, φ)
eikr

r
, (3.524)

where the directivity function is given by

F(θ, φ) = −iωρ

2π

∫∫
v̂n(x0, y0)e−ikx0 sin θ cosφ

× e−iky0 sin θ sinφ dx0 dy0 .

(3.525)

The integrals (3.521) and (3.525) can be evaluated
in terms of standard special functions when the piston
is rigid and of a simple shape.
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88 Part A Propagation of Sound

Rectangular Piston
If the piston is rectangular, with dimensions a and b,
and centered at the origin, the far-field pattern is given
by

F(θ, φ) =−iωρv0

2π
ab

sin
[
(1/2)a sin θ cosφ

]

(1/2)a sin θ cosφ

×
sin
[
(1/2)b sin θ sinφ

]

(1/2)b sin θ sinφ
. (3.526)

Circular Piston
If the piston is circular of radius a, the corresponding
expression is independent of the azimuthal angle and
given by

F(θ) = −iωρv0

2π

a∫

0

2π∫

0

e−ikw0 sin θ cosφ0 dφ0w0 dw0 .

(3.527)

0.2 0.4 0.6 0.8

Ir (θ)
Ir (0) θ

ka = 0

0.2 0.4 0.6 0.8

Ir (θ)
Ir (0) θ

ka = 2

0.2 0.4 0.6 0.8

Ir (θ)
Ir (0)

θ

ka = 4

Node at 73.3;
0.001 at 90

0.4 0.6 0.8

ka = 8

Nodes at 28.6
and 72.2;
0.017 at 39.6;
0.003 at 90

a) b)

c) d)

Fig. 3.37 Far-field radiation patterns of a vibrating circu-
lar piston in an otherwise rigid baffle for various values of
ka. The quantity plotted is the intensity at a large radial dis-
tance r relative to that when the polar angle θ is zero, which
is [2J1(ξ)/ξ]2, with ξ = ka sin θ

The integral over the azimuthal angle on the piston
yields a Bessel function, so one has

F(θ) =−iωρv0

a∫

0

J0(kw0 sin θ)w0 dw0 . (3.528)

The recursion relation (3.472) implies that

d

dη
J1(η) = J0(η)− 1

η
J1(η) , (3.529)

so

ηJ0(η) = η d

dη
J1(η)+ J1(η) = d

dη
(ηJ1(η)) .

(3.530)

Consequently the integration in (3.528) can be per-
formed in terms of the Bessel function of the first order,
with the result

F(θ) =−iωρv0a2
(

J1(ka sin θ)

ka sin θ

)
. (3.531)

3.13.5 Thermoacoustic Sources

The differential equation (3.516) arises when one sud-
denly adds heat to a fluid [3.71,72], as with a laser or by
combustion, so that the entropy s per unit mass changes
according to the thermodynamic relation

ρTDs/Dt = h , (3.532)

so that, to first order, the equation of state (3.87) yields

∂p′

∂t
= c2 ∂ρ

′

∂t
+ c2β

cp
h . (3.533)

Here h is the heat added per unit time and unit volume,
β is the volume expansion coefficient defined by (3.30),
and cp is the specific heat at constant pressure.

Equation (3.533) changes the basic linear acoustic
equations (3.71) and (3.72) to

∂p

∂t
+ρc2∇ · v= c2β

cp
h , (3.534)

ρ0
∂v

∂t
+∇ p = 0 , (3.535)

so the energy conservation corollary of (3.273) becomes

∂w

∂t
+∇ · I = β

ρcp
ph , (3.536)

and the wave equation becomes

∇2 p− 1

c2

∂2 p

∂t2
=− β

cp

∂h

∂t
. (3.537)
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Basic Linear Acoustics 3.13 Simple Sources of Sound 89

The appropriate identification for the monopole strength
density function s(x, t) in the integral expression of
(3.517) is consequently given by

s(x, t) = 1

4π

β

cp

∂h

∂t
. (3.538)

3.13.6 Green’s Functions

The idealization of a point source of constant fre-
quency is of basic importance in formulating solutions
to complicated acoustic radiation problems. The result-
ing complex pressure amplitude of the field resulting
from such a single source can be expressed as a constant
times a Green’s function, where the Green’s func-
tion is a solution of the inhomogeneous Helmholtz
equation

(∇2+ k2)G(x|x0) =−4πδ(x− x0) . (3.539)

(The inclusion of the factor 4π on the right is done in
much of the literature, but not universally; its objec-
tive here is that the mathematical form of the Green’s
function be simpler.) If the medium surrounding the
source is unbounded, then the Green’s function is
the free-space (no external boundaries) Green’s func-
tion, which can be identified from (3.511) to have the
form

G(x|x0) = 1

R
eikR , (3.540)

Listener

RI

y

z

R

(x0,y0,z0,)(x0,y0,–z0,)

Rigid
surface

Image Source

(x,y,z,)

Fig. 3.38 Parameters involved in the construction of the
Green’s function corresponding to a point source outside
a perfectly reflecting (rigid) wall. The quantity R is the di-
rect distance from the source, and RI is the distance from
the image source

where R is the distance between the source and ob-
servation (listener) point. When external boundary
conditions are imposed on the Green’s function that
satisfies (3.539), then the Green’s function will have
a form different from that of the free-space Green’s
function. However, in all such cases, the Green’s
function will approach 1/R plus a bounded func-
tion when the listener position approaches the source
point.

An example of a Green’s function that is not the
free-space Green’s function is that which corresponds
to a point source on one side of an infinitely-extended
rigid plane. If the source point is at (x0, y0, z0) where
z0 > 0, and if the rigid plane is the z = 0 plane,
then

G(x|x0) = 1

R
eikR + 1

Ri
eikRi , (3.541)

where

Ri = [(x− x0)
2+ (y− y0)

2+ (z+ z0)
2]1/2 .

(3.542)

Because this Green’s function is even in y, it automat-
ically satisfies the boundary conditions that its normal
derivative vanish at the rigid boundary.

3.13.7 Multipole Series

Radiation fields from sources of limited spatial extent
in unbounded environments can be described either in
terms of multipoles or spherical harmonics. That such
descriptions are feasible can be demonstrated with the
aid of the constant-frequency version of (3.517)

p̂(x) =
∫

ŝ(x0)
eikR

R
dV0 , (3.543)

which is the solution of the inhomogeneous Helmholtz
equation with a continuous distribution of monopole
sources taken into account.

The multipole series results from this when one ex-
pands R−1 eikR in a power series in the coordinates of
the source position x0 and then integrates term by term.
Up to second order one obtains

p̂ = Ŝ
eikr

r
−

3∑

ν=1

D̂ν
∂

∂xν

eikr

r

+
3∑

μ,ν=1

Q̂μν
∂2

∂xμ∂xν

eikr

r
, (3.544)
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90 Part A Propagation of Sound

where the coefficients are expressed by

Ŝ =
∫

ŝ(x)dV , (3.545)

D̂ν =−
∫

xν ŝ(x)dV , (3.546)

Q̂μν = 1

2!
∫

xμxν ŝ(x)dV . (3.547)

The three terms in (3.544) are said to be the
monopole, dipole, and quadrupole terms, respectively.
The coefficients Ŝ, D̂ν , and Q̂μν are similarly labeled.
The Dν are the components of a dipole moment vec-
tor, while the Qμν are the components of a quadrupole
moment tensor. The general validity [3.73, 74] of such
a description extends beyond the manner of derivation
and is not restricted to sound generated by a continuous
source distribution embedded in the fluid. It applies in
particular to the sound radiated by a vibrating body of
arbitrary shape.

3.13.8 Acoustically Compact Sources

If the source is acoustically compact, so that its largest
dimension is much shorter than a wavelength, the mul-
tipole series converges rapidly, so one typically only
need retain the first nonzero term. Sources exist whose
net monopole strength is zero, and sources also exist
whose dipole moment vector components are all zero
as well. Consequently, compact sources are frequently
classed as monopole, dipole, and quadrupole sources.
The prototype of a monopole source is a body of oscil-
lating volume. One for a dipole source is a rigid solid
undergoing translational oscillations; another would be
a vibrating plate or shell whose thickness changes neg-
ligibly. In the former case, the detailed theory shows
that in the limit of sufficiently low frequency, the dipole
moment vector is given by

D̂ν = F̂ν+mdâC,ν , (3.548)

where F̂ν is associated with the force which the mov-
ing body exerts on the surrounding fluid and where âC,ν
is associated with the acceleration of the geometric cen-
ter of the body. The quantity md is the mass of fluid
displaced by the body.

The simplest example of a dipole source is that of
a rigid sphere transversely oscillating along the z-axis
about the origin. (This is discussed in general terms in
a preceding section of this chapter.) If the radius of the
sphere is a and if ka 
 1, then the force and accelera-
tion have only a z-component, and the force amplitude

is given by

F̂z = 1

2
mdâC,z . (3.549)

The dipole moment when the center velocity has ampli-
tude v̂C is consequently of the form

D̂z =−3

2
iω[(4/3)ρπa3]v̂C . (3.550)

Taking into account that the derivative of r with re-
spect to z is cos θ, one finds the acoustic field from
(3.544) to be given by

p̂ =−D̂z cos θ
d

dr

eikr

r
. (3.551)

When kr � 1, this approaches the limiting form

p̂ →−ikDz cos θ
eikr

r
. (3.552)

The far-field intensity, in accord with (3.276), has a time
average of | p̂|2/(2ρc) and is directed in the radial di-
rection in this asymptotic limit. The drop of intensity
as 1/r2 with increasing radial distance is the same as
for spherical spreading, but the intensity varies with
direction as cos2 θ.

Vibrating bodies that radiate as quadrupole sources
(and which therefore have no dipole radiation) usually
do so because of symmetry. Vibrating bells [3.75] and
tuning forks are typically quadrupole radiators.

A dipole source can be represented by two sim-
ilar monopole sources, 180◦ out of phase with each
other, and very close together. Since they are radiating
out of phase, there is no total mass flow input into the
medium. Such a dipole source will have a net acoustic
power output substantially lower than that of either of
the component monopoles when radiating individually.
Similarly, a quadrupole can be formed by two identi-
cal but oppositely directed dipoles brought very close
together. If the two dipoles have a common axis, then
a longitudinal quadrupole results; when they are side
by side, a lateral quadrupole results. In either case, the
quadrupole radiation is much weaker than would be that
from either dipole when radiating separately.

3.13.9 Spherical Harmonics

The closely related description of source radiation in
terms of spherical harmonics results from (3.543) when
one inserts the expansion [3.76–78]

eikR

R
=

∞∑

�=0

(2�+1) j�(kr0)h(1)
� (kr)P�(cosΘ) ,

(3.553)
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where j� is the spherical Bessel function and h(1)
� is the

spherical Hankel function of order � and of the first
kind. (The expansion here assumes r > r0; otherwise,
one interchanges r and r0 in the above.) The quantity
P�(cosΘ) is the Legendre function of order �, while Θ
is the angle between the directions of x and x0. Alter-
nately, one uses the expansion

P�(cosΘ)=
�∑

m=−�

(�−|m|)!
(�+|m|)!Y

m
� (θ, φ)Y−m

� (θ0, φ0) ,

(3.554)

where the spherical harmonics are defined by

Ym
� (θ, φ) = eimφP|m|

� (cos θ) . (3.555)

Here the functions P|m|
� (cos θ) are the associated

Legendre functions. (The value of P0(cosΘ) is identi-
cally 1.)

If such an expansion is inserted into (3.543) and if r
is understood to be sufficiently large that there are no
sources beyond that radius, one has the relation

p̂(r, θ, φ) = a00h(1)
0 (kr)

+
∞∑

�=1

�∑

m=−�
a�mh(1)

� (kr)Ym
� (θ, φ) ,

(3.556)

with coefficients given by

a�m = ik(2�+1)
(�−|m|)!
(�+|m|)!

×
∫

ŝ(r0, θ0, φ0) j�(kr0)Y−m
� (θ0, φ0)dV0 .

(3.557)

These volume integrations are to be carried out in spher-
ical coordinates. The general result of (3.557) holds for
any source of limited extent; any such wave field in
an unbounded medium must have such an expansion
in terms of spherical Hankel functions and spherical
harmonics.

The spherical Hankel functions have the asymptotic
(large-r) form

h(1)
� (kr) → (−i)(�+1) eikr

kr
, (3.558)

so the acoustic radiation field must asymptotically ap-
proach

p̂ → F̂(θ, φ)
eikr

r
, (3.559)

where the function F̂(θ, φ) is a function of θ and φ
that has an expansion in terms of spherical harmonics.
In this asymptotic limit, the acoustic intensity is in the
radial direction and given by

Ir,av = 1

2

|F̂|2
ρcr2

. (3.560)

For fixed θ and φ, the time-averaged intensity must
asymptotically decrease as 1/r2. The coefficient of 1/r2

in the above describes the far-field radiation pattern of
the source, having the units of watts per steradian.

Although the two types of expansions, multipoles
and spherical harmonics, are related, the relationship is
not trivial. The quadrupole term in (3.544), for exam-
ple, cannot be equated to the sum of the �= 2 terms
in (3.556). It is possible to have spherically symmetric
quadrupole radiation, so an �= 0 term would have to be
included.

3.14 Integral Equations in Acoustics

There are many common circumstances where the de-
termination of acoustic fields and their properties is
approached via the solution of integral equations rather
than of partial differential equations.

3.14.1 The Helmholtz–Kirchhoff Integral

For the analysis of radiation of sound from a vibrating
body of limited extent in an unbounded region, there is
an applicable integral corollary of the Helmholtz equa-
tion of (3.176) which dates back to 19th century works
of Helmholtz [3.47] and Kirchhoff [3.79].

One considers a closed surface S where the out-
ward normal component of the particle velocity has
complex amplitude v̂n(xS) and complex pressure ampli-
tude p̂S(xS) at a point xS on the surface. For notational
convenience, one introduces a quantity defined by

f̂S =−iωρv̂n , (3.561)

where v̂n(xS) is the normal component n(xS) · v̂(xS) of
the complex fluid velocity vector amplitude v̂(x) at the
surface. One can regard f̂S as a convenient grouping of
symbols, either as a constant multiplied by the normal
velocity, or as a constant multiplied by the normal ac-
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Surface S

nS

Interior region

Volume V

Exterior region

Fig. 3.39 Arbitrary surface in an arbitrary state of vibra-
tion at constant frequency, with unit normal nS

celeration, or as the normal component of the apparent
body force, per unit volume, exerted on the fluid at the
surface point xS. Because of the latter identification, the
use of the symbol f is appropriate. The subscript S is
used to denote values appropriate to the surface.

Then, given that there are no sources outside the
surface, a mathematical derivation, involving the dif-
ferential equation of (3.539) for the free-space Green’s
function of (3.540), involving the Helmholtz equation,
and involving the divergence theorem, yields

p̂(x) =M(x, p̂S, f̂S) (3.562)

for the complex pressure amplitude p̂ at a point x out-
side the surface. Here the right side is given by the
expression

M = 1

4π

∫ {
f̂S(x′S)G(x|x′S)

+ p̂S(x′S)n(x′S) · [∇′G(x|x′)]x′=x′S

}
dS′ .

(3.563)

In the integrand of this expression, the point x′S (after the
evaluation of any requisite normal derivatives) is under-
stood to range over the surface S, with the point x held
fixed during the integration. The unit outward normal
vector n(x′S) points out of the enclosed volume V at the
surface point x′S.

In (3.563), the integral M is a function of the point
x, but a functional (function of a function) of the func-
tion arguments p̂S and f̂S.

3.14.2 Integral Equations for Surface Fields

The functions p̂S and f̂S cannot be independently pre-
scribed on the surface S. Specifying either one is

S''

S'

R

σ
r

�

�

εn

Origin

Fig. 3.40 Sketch illustrating the methodology for the
derivation of an integral equation from the Helmholtz–
Kelvin relation. The exterior point at ξ = ζ+nε is
gradually allowed to approach an arbitrary point ζ on the
surface, and the integration is represented as a sum of in-
tegrals over S′ and S′′. One considers the parameters ε and
σ as small, but with σ � ε, first takes the limit as ε→ 0,
then takes the limit as σ→ 0

a sufficient inner boundary condition on the Helmholtz
equation. The corollary of (3.562) applies only if both
functions correspond to a physically realizable radia-
tion field outside the surface S. If this is so and if
the point x is formally set to a point inside the en-
closed volume, then analogous mathematics involving
the properties of the Green’s function leads to the de-
duction [3.80, 81]

M(xinside, p̂S, f̂S) = 0 , (3.564)

which is a general relation between the surface value
functions p̂S and f̂S, holding for any choice of the
point x inside the enclosed volume.

Equation (3.562) allows one to derive two additional
relations (distinguished by the subscripts I and II) be-
tween the surface values of p̂S and f̂S. One results when
the off-surface point x is allowed to approach an arbi-
trary but fixed surface point xS. For one of the terms in
the integral defining the quantity M, the limit as x ap-
proaches xS of the integral is not the same as the integral
over the limit of the integrand as x approaches xS. With
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this subtlety taken into account, one obtains

p̂S(xS)−LI(xS, p̂S) = HI(xS, f̂S) , (3.565)

where the two linear operators LI and HI are

LI(xS, p̂S)

= 1

2π

∫
p̂(x′S)n(x′S)[∇′G(xS|x′)]x′=x′S dS′ ,

(3.566)

HI(xS, f̂S)

= 1

2π

∫
f̂ (x′S)G(x′S|xS)dS′ . (3.567)

These linear operators operate on the surface values
of p̂S and f̂S, respectively, with the result in each
case being a function of the position of the surface
point xS.

The second type of surface relationship [3.82] is ob-
tained by taking the gradient of both sides of (3.562),
subsequently setting x to xS+ εn(xS), where xS is an
arbitrary point on the surface, taking the dot product
with n(xS), then taking the limit as ε goes to zero. The
order of the processes, doing the integration and tak-
ing the limit, cannot be blindly interchanged, and some
mathematical manipulations making use of the proper-
ties of the Green’s function are necessary before one
can obtain a relation in which all integrations are per-
formed after all necessary limits are taken. The result

is

−LII(xS, p̂S) = f̂S(xS)+HII(xS, f̂S) , (3.568)

where the relevant operators are as given by

LII(x, p̂S) = [n(xS) ×∇] · 1

2π

∫
[n(x′S) ×∇′ p̂S(x′S)]

× G(xS|x′S)dS′ + k2

2π

×
∫

n(xS) ·n(x′S) p̂S(x′S)G(xS|x′S)dS′ ,

(3.569)

HII(xS, f̂S) = 1

2π

∫
f̂S(x′S)n(xS)

× [∇G(x|x′S)]x=xS dS′ . (3.570)

With regard to (3.569), one should note that the opera-
tor n(xS) ×∇ involves only derivatives tangential to the
surface, so that the integral on which it acts needs only
be evaluated at surface points xS.

A variety of numerical techniques have been used
and discussed in recent literature to solve either (3.564),
(3.565), or (3.568), or some combination [3.83] of these
for the surface pressure p̂S, given the surface force func-
tion f̂S. Once this is done, the radiation field at any
external point x is found by numerical integration of the
corollary integral relation of (3.562).

3.15 Waveguides, Ducts, and Resonators

External boundaries can channel sound propagation,
and in some cases can create a buildup of acoustic en-
ergy within a confined space.

3.15.1 Guided Modes in a Duct

Pipes or ducts act as guides of acoustic waves, and
the net flow of energy, other than that associated with
wall dissipation, is along the direction of the duct. The
general theory of guided waves applies and leads to
a representation in terms of guided modes.

If the duct axis is the x-axis and the duct cross sec-
tion is independent of x, the guided mode series [3.4,84]
has the form

p̂ =
∑

n

Xn(x)Ψn(y, z) , (3.571)

where the Ψn(y, z) are eigenfunctions of the equation
(
∂2

∂y2
+ ∂2

∂z2

)
Ψn +α2

nΨn = 0 , (3.572)

with the α2
n being the corresponding eigenvalues. The

appropriate boundary condition, if the duct walls are
idealized as being perfectly rigid, is that the normal
component of the gradient of Ψn vanishes at the walls.
Typically, the Ψn are required to conform to some nor-
malization condition, such as

∫
Ψ 2

n dA = A , (3.573)

where A is the duct cross-sectional area.
The general theory leads to the conclusion that one

can always find a complete set of Ψn , which with the
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y

z

x
y0

z0

Fig. 3.41 Generic sketch of a duct that carries guided
sound waves

rigid wall boundary condition imposed, are such that the
cross-sectional eigenfunctions are orthogonal, so that

∫
ΨnΨm dA = 0 (3.574)

if n and m correspond to different guided modes. The
eigenvalues α2

n , moreover, are all real and nonnegative.
However, for cross sections that have some type of sym-
metry, it may be that more than one linearly independent
eigenfunction Ψn (modes characterized by different val-
ues of the index n) correspond to the same numerical
value of α2

n . In such cases the eigenvalue is said to be
degenerate.

The variation of guided mode amplitudes with
source excitation is ordinarily incorporated into the
axial wave functions Xn(x), which satisfy the one-
dimensional Helmholtz equation

d2 Xn

dx2
+ (k2−α2)Xn = 0 . (3.575)

Here k = ω/s is the free-space wavenumber. The form
of the solution depends on whether α2

n is greater or less
than k2. If α2

n < k2, the mode is said to be a propagating
mode and the solution for Xn is given by

Xn = An eikn x + Bn e−ikn x , (3.576)

where the kn , defined by

kn = (k2−α2
n)1/2 , (3.577)

are the modal wavenumbers. However, if the value of
α2

n is greater than k2, the mode is evanescent (not prop-

vx x
w vwa

Fig. 3.42 Cylindrical duct

agating), and one has

Xn = An e−βn x + Bn eβn x , (3.578)

where βn is given by

βn =
(
α2

n − k2
)1/2

. (3.579)

Unless the termination of the duct is relatively close to
the source, waves that grow exponentially with distance
from the source are not meaningful, so only the term
that corresponds to exponentially dying waves is ordi-
narily kept in the description of sound fields in ducts.

3.15.2 Cylindrical Ducts

For a duct with circular cross section and radius a, the
index n is replaced by an index set (q,m, s), and the
eigenfunctions Ψn are described by

Ψn = Kqm Jm

(ηqmw

a

){ cos mφ

sin mφ

}
. (3.580)

Here either the cosine (s = 1) or the sine (s =−1) cor-
responds to an eigenfunction. The quantities Kqm are
normalization constants, and the Jm are Bessel func-
tions of order m. The corresponding eigenvalues are
given by

αn = ηqm/a , (3.581)

where the ηqm are the zeros of ηJ ′m(η), arranged in as-
cending order with the index q ranging upwards from
1. The smaller roots [3.85] for the axisymmetric modes
are η1,0 = 0.00, η2,0 = 3.83171, and η3,0 = 7.01559,
while those corresponding to m = 1 are η1,1 = 1.84118,
η2,1 = 5.33144, and η3,1 = 8.53632.

3.15.3 Low-Frequency Model for Ducts

In many situations of interest, the frequency of the
acoustic disturbance is so low that only one guided
mode can propagate, and all other modes are evanes-
cent. Given that the walls can be idealized as rigid, there
is always one mode that can propagate, this being the
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U(x)

x

Fig. 3.43 Volume velocity in a duct

plane wave mode for which the eigenvalue α0 is iden-
tically zero. The other modes will all be evanescent if
the value of k is less than the corresponding αn for each
such mode. This would be so if the frequency is less
than the lowest cutoff frequency for any of the nonpla-
nar modes. For the circular duct case discussed above,
for example, this would require that the inequality,

f <
1.84118

2π

c

a
, (3.582)

be satisfied.
When the single-guided-mode assumption is valid,

and even if the duct cross-sectional area should vary
with distance along the duct, the acoustic field equa-
tions can be replaced to a good approximation by the
acoustic transmission-line equations,

∂p

∂t
+ ρc2

A

∂U

∂x
= 0 , (3.583)

ρ
∂U

∂t
=−A

∂p

∂x
. (3.584)

Here U , equal to Avx , is the volume velocity, the vol-
ume of fluid passing through the duct per unit time.

One of the implications of the low-frequency model
described by (3.583) and (3.584) is that the volume
velocity and the pressure are both continuous, even
when the duct has a sudden change in cross-sectional
area. The pressure continuity assumption is not neces-
sarily a good approximation, but becomes better with
decreasing frequency. An improved model (continuous
volume-velocity two-port) takes the volume velocities
on both sides of the junction as being equal, and sets
the difference of the complex amplitudes of the up-
stream and downstream pressures just ahead and after
the junction to

p̂ahead− p̂after = Z JÛjunction , (3.585)

where the junction’s acoustic impedance Z J is taken
in the simplest approximation as −iωMA,J , and where

pahead Ujunction pafter

Fig. 3.44 Two dissimilar ducts with a junction modeled as
a continuous volume velocity two-port. The difference in
pressures is related to the volume velocity by the junction
impedance

MA,J is a real number independent of frequency that
is called the acoustic inertance of the junction. Ap-
proximate expressions for this acoustic inertance can be
found in the literature [3.78,86–88]; a simple rule is that
it is ordinarily less than 8ρ/3Amin, where Amin is the
smaller of the two cross-sectional areas. One may note,
moreover, that Z J goes to zero when the frequency goes
to zero.

When an incident wave is incident at a junction,
reflected and transmitted waves are created in the two
ducts. The pressure amplitude reflection and transmis-
sion coefficients are given by

R = Z J +ρc/A2−ρc/A1

Z J +ρc/A2+ρc/A1
, (3.586)

T = 2ρc/A2

Z J +ρc/A2+ρc/A1
. (3.587)

At sufficiently low frequencies, these are further ap-
proximated by replacing Z J by zero.

3.15.4 Sound Attenuation in Ducts

The presence of the duct walls affects the attenuation
of sound and usually causes the attenuation coefficient
to be much higher than for plane waves in open space.

xLP (x)
A (x)

Fig. 3.45 Geometrical parameters pertaining to acoustic
attenuation in a duct. The total length LP around the
perimeter gives the transverse extent of the dissipative
boundary layer at the duct wall
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A simple theory for predicting this attenuation uses the
concepts of acoustic, entropy, and vorticity modes, as
is indicated by the decomposition of (3.89) in a previ-
ous section of this chapter. The entropy and vorticity
mode fields exist in an acoustic boundary layer near
the duct walls and are such that they combine with the
acoustic mode field to satisfy the appropriate boundary
conditions at the walls.

With viscosity and thermal conduction thus taken
into account in the acoustic boundary layer, and with
the assumption that the duct walls are much better heat
conductors than the fluid itself, the approximate atten-
uation coefficient for the plane wave guided mode is
given by [3.89]

α= αwalls

=
(
ω

8ρc2

)1/2 [
μ1/2+ (γ −1)(κ/cp)1/2] LP

A
,

(3.588)

where LP is the length of the perimeter of the duct cross
section.

A related effect [3.90] is that sound travels slightly
slower in ducts than in an open environment. The com-
plex wavenumber corresponding to propagation down
the axis of the tube is approximately

k ≈ ω
c
+ (1+ i)αwalls , (3.589)

and the phase velocity is consequently approximately

vph = ω

kR
≈ c− c2αwalls

ω
. (3.590)

For a weakly attenuated and weakly dispersive wave,
the group velocity [3.74], the speed at which energy
travels, is approximately

vgr ≈
(

dkR

dω

)−1

, (3.591)

so, for the present situation,

vgr ≈ c− c2αwalls

2ω
. (3.592)

Thus both the phase velocity and the group velocity are
less than the nominal speed of sound.

3.15.5 Mufflers and Acoustic Filters

The analysis of mufflers [3.91, 92] is often based on the
idealization that their acoustic transmission character-
istics are independent of sound amplitudes, so they act

as linear devices. The muffler is regarded as an inser-
tion into a duct, which reflects waves back toward the
source and which alters the transmission of sound be-
yond the muffler. The properties of the muffler vary with
frequency, so the theory analyzes the muffler’s effects
on individual frequency components. The frequency is
assumed to be sufficiently low that only the plane wave
mode propagates in the inlet and outlet ducts. Because
of the assumed linear behavior of the muffler, and the
single-mode assumption, the muffler conforms to the
model of a linear two-port, the ports being the inlet
and outlet. The model leads to the prediction that one
may characterize the muffler at any given frequency by
a matrix, such that

(
p̂in

p̂out

)
=
(

K11 K12

K21 K22

)(
Ûin

Ûout

)
, (3.593)

where the coefficients Kij represent the acoustical prop-
erties of the muffler. Reciprocity [3.30] requires that the
determinant of the matrix be unity. Also, for a symmet-
ric muffler, K12 and K21 must be identical.

It is ordinarily a good approximation that the waves
reflected at the entrance of the muffler back to the source
are significantly attenuated, so that they have negligible
amplitude when they return to the muffler. Similarly, the
assumption that the waves transmitted beyond the muf-
fler do not return to the muffler (anechoic termination)

G H

Fig. 3.46 Sketch of a prototype muffler configuration.
Point G is a point on the input side of the muffler, and
point H is on the output side. The noise source is upstream
on the input side, and the tailpipe is downstream on the
output side
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is ordinarily valid. With these assumptions, the inser-
tion of the muffler causes the mean squared pressure
downstream of the muffler to drop by a factor

τ =
(

1

4
|K11+K22+ ρc

A
K21+ A

ρc
K12|2

)−1

,

(3.594)

where A is the cross section of the duct ahead of and
behind the muffler.

Acoustic mufflers can be divided into two broad
categories: reactive mufflers and dissipative mufflers.
In a reactive muffler, the basic property of the muffler
is that it reflects a substantial fraction of the incident
acoustic energy back toward the source. The dissipation
of energy within the muffler itself plays a minor role;
the reflection is caused primarily by the geometrical
characteristics of the muffler. In a dissipative muffler,
however, a low transmission of sound is achieved by in-
ternal dissipation of acoustic energy within the muffler.
Absorbing material along the walls is ordinarily used to
achieve this dissipation.

3.15.6 Non-Reflecting Dissipative Mufflers

When a segment of pipe of cross section A and length L
is covered with a duct lining material that attenuates the
amplitude of traveling plane waves by a factor of e−αL ,

In OutLiner

L

Fig. 3.47 Sketch of a nonreflective dissipative muffler

AMG HA

L

Fig. 3.48 Sketch of an expansion chamber muffler

the muffler’s K -matrix is given by

K =
(

cos(kL + iαL) −i ρc
A sin(kL + iαL)

−i A
ρc sin(kL + iαL) cos(kL + iαL)

)
,

(3.595)

so the fractional drop in mean squared pressure reduces
to

τ = e−2αL . (3.596)

3.15.7 Expansion Chamber Muffler

The simplest reactive muffler is the expansion chamber,
which consists of a duct of length L and cross section
AM connected at both ends to a pipe of smaller cross
section AP.

The K -matrix for such a muffler is found directly
from (3.595) by setting α to zero (no dissipation in the
chamber), but replacing A by AM. The corresponding
result for the fractional drop in mean squared pressure
is

τ =
[

cos2 kL + 1

4
(m+m−1)2 sin2 kl

]−1

, (3.597)

where m is the expansion ratio AM/AP. The rela-
tive reduction in mean square pressure is thus periodic
with frequency. A maximum reduction occurs when the
length L is an odd multiple of quarter-wavelengths. The
greatest reduction in mean squared pressure is when τ
has its minimum value, which is that given by

τ = 4

(m+m−1)2
. (3.598)

3.15.8 Helmholtz Resonators

An idealized acoustical system [3.47,93] that is the pro-
totype of commonly encountered resonance phenomena

Uinto

pout

V

pin

A

l'

l

Fig. 3.49 Sketch of a Helmholtz resonator, showing the
characteristic parameters involved in the analysis
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consists of a cavity of volume V with a neck of length �
and cross-sectional area A.

In the limit where the acoustic frequency is suffi-
ciently low that the wavelength is much larger than any
dimension of the resonator, the compressible fluid in the
resonator acts as a spring with spring constant

ksp = ρc2 A2

V
, (3.599)

and the fluid in the neck behaves as a lumped mass of
magnitude

m = ρA�′ . (3.600)

Here �′ is � plus the end corrections for the two ends of
the neck. If � is somewhat larger than the neck radius
a, and if both ends are terminated by a flange, then the
two end corrections are each 0.82a. (The determination
of end corrections has an extensive history; a discus-
sion can be found in the text by the author [3.30].) The
resonance frequency ωr, in radians per second, of the
resonator is given by

ωr = 2π fr = (ksp/m)1/2 = (MACA)−1/2 , (3.601)

where

MA = ρ�′/S (3.602)

gives the acoustic inertance of the neck and

CA = V/ρc2 (3.603)

gives the acoustic compliance of the cavity. The ratio of
the complex pressure amplitude just outside the mouth
of the neck to the complex volume velocity amplitude
of flow into the neck is the acoustic impedance ZHR of
the Helmholtz resonator and given, with the neglect of
damping, by

ZHR =−iωMA+ 1

−iωCA
, (3.604)

which vanishes at the resonance frequency.
If a Helmholtz resonator is inserted as a side branch

into the wall of a duct, it acts as a reactive muffler that
has a high insertion loss near the resonance frequency
of the resonator. The analysis assumes that the acous-
tic pressures in the duct just before and just after the

x

UHR

U (0+)U (0–)

p (0–) = p (0+)

Fig. 3.50 Helmholtz resonator as a side-branch in a duct

resonator are the same as the pressure at the mouth of
the resonator. Also, the acoustical analog of Kirchhoff’s
circuit law for currents applies, so that the volume ve-
locity flowing in the duct ahead of the resonator equals
the sum of the volume velocities flowing into the res-
onator and through the duct just after the resonator.
These relations, with (3.604), allow one to work out ex-
pressions for the amplitude reflection and transmission
coefficients at the resonator, the latter being given by

T = 2ZHR

2ZHR+ρc/AD
. (3.605)

The fraction of incident power that is transmitted is
consequently given by

τ =
(

1+ 1

4β2( f/ fr− fr/ f )2

)−1

, (3.606)

where β is determined by

β2 = (MA/CA)(AD/ρc)3 . (3.607)

The fraction transmitted is formally zero at the reso-
nance frequency, but if β is large compared with unity,
the bandwidth over which the drop in transmitted power
is small is narrow compared with fr.

3.16 Ray Acoustics

When the medium is slowly varying over distances
comparable to a wavelength and if the propagation dis-

tances are substantially greater than a wavelength, it is
often convenient to regard acoustic fields as being car-
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Basic Linear Acoustics 3.16 Ray Acoustics 99

ried along rays. These can be regarded as lines or paths
in space.

3.16.1 Wavefront Propagation

A wavefront is a hypothetical surface in space over
which distinct waveform features are simultaneously re-
ceived. The theory of plane wave propagation predicts
that wavefronts move locally with speed c when viewed
in a coordinate system in which the ambient medium
appears at rest. If the ambient medium is moving with
velocity v, the wave velocity cn seen by someone mov-
ing with the fluid becomes v+cn in a coordinate system
at rest. Here n is the unit vector normal to the wavefront;
it coincides with the direction of propagation if the co-
ordinate system is moving with the local ambient fluid
velocity v. A ray can be defined [3.94] as the time tra-
jectory of a point that is always on the same wavefront,
and for which the velocity is

vray = v+nc . (3.608)

To determine ray paths without explicit knowledge of
wavefronts, it is appropriate to consider a function τ(x),
which gives the time at which the wavefront of inter-
est passes the point x. Its gradient s is termed the wave
slowness vector and is related to the local wavefront

n (x)

x

τ (x) = t1 +  t

τ (x) = t1

Fig. 3.51 Sketch illustrating the concept of a wavefront
as a surface along which characteristic waveform features
are simultaneously received. The time a given waveform
passes a point x is τ(x) and the unit normal in the direction
of propagation is n(x)

Shadow
zone

Listener

Fig. 3.52 Multipaths and shadow zones. The situation de-
picted is when the sound speed decreases with distance
above the ground so that rays are refracted upward

normal by the equations

s = n
c+v ·n , (3.609)

n= cs
Ω
, (3.610)

where the quantityΩ is defined by

Ω = 1−v · s . (3.611)

Given the concepts of ray position and the slowness
vector, a purely kinematical derivation leads to the ray-
tracing equations

dx
dt

= c2s
Ω

+v , (3.612)

ds
dt
=−Ω

c
∇c− (s · ∇)v− s × (∇ × v) . (3.613)

Simpler versions result when there is no ambient flow,
or when the ambient variables vary with only one co-
ordinate. If the ambient variables are independent of
position, then the ray paths are straight lines.

The above equations are often used for analysis of
propagation through inhomogeneous media (moving or
nonmoving) when the ambient variables do not vary sig-
nificantly over distances of the order of a wavelength,
even though they may do so over the total propagation
distance. The rays that connect the source and listener
locations are termed the eigenrays for that situation. If
there is more than one eigenray, one has multipath re-
ception. If there is no eigenray, then the listener is in
a shadow zone.

3.16.2 Reflected and Diffracted Rays

This theory is readily extended to take into account solid
boundaries and interfaces. When an incident ray strikes
a solid boundary, a reflected ray is generated whose
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100 Part A Propagation of Sound

direction is determined by the trace velocity matching
principle, such that angle of incidence equals angle of
reflection. At an interface a transmitted ray is also gen-
erated, whose direction is predicted by Snell’s law.

An extension of the theory known as the geometrical
theory of diffraction and due primarily to Keller [3.95]
allows for the possibility that diffracting edges can be
a source of diffracted rays which have a multiplicity of
directions. The allowable diffracted rays must have the
same trace velocity along the diffracting edge as does
the incident ray.

The ray paths connecting the source and listener sat-
isfy Fermat’s principle [3.96], that the travel time along
an actual eigenray is stationary relative to other geo-
metrically admissible paths. Keller’s geometrical theory
of diffraction [3.95] extends this principle to include
paths which have discontinuous directions and which
may have portions that lie on solid surfaces.

3.16.3 Inhomogeneous Moving Media

Determination of the amplitude variation along ray
paths requires a more explicit use of the equations of lin-
ear acoustics. If there is no ambient fluid velocity then
an appropriate wave equation is (3.73). When there is
also an ambient flow present then an appropriate gener-
alization [3.97, 98] for the acoustic mode is

1

ρ
∇ · (ρ∇Φ)−Dt

(
1

c2
DtΦ

)
= 0 . (3.614)

Here Dt, defined by

Dt = ∂

∂t
+v · ∇ (3.615)

is the time derivative following the ambient flow. The
dependent variable Φ is related to the acoustic pressure
perturbation by

p =−ρDtΦ . (3.616)

This wave equation is derived from the linear acous-
tics equations for circumstances when the ambient
variables vary slowly with position and time and ne-
glects terms of second order in 1/ωT and c/ωL , where
ω is a characteristic frequency of the disturbance, T
is a characteristic time scale for temporal variations of
the ambient quantities, and L is a characteristic length
scale for spatial variations of these approximations.
The nature of the entailed approximations is consistent
with the notion that geometrical acoustics is a high-
frequency approximation and yields results that are the

same in the high-frequency limit as would be derived
from the complete set of linear acoustic equations.

3.16.4 The Eikonal Approximation

The equations of geometrical acoustics follow [3.99]
from (3.614), if one sets the potential function Φ equal
to the expression

Φ(x, t) = Ψ (x)F(t− τ) . (3.617)

Here the function F is assumed to be a rapidly varying
function of its argument. The quantities Ψ and τ vary
only with position. (It is assumed here that the ambient
variables do not vary with time.)

When such a substitution is made, one obtains terms
that involve the second, first, and zeroth derivatives of
the function F. The geometrical acoustics or eikonal
approximation results when one requires that the coef-
ficients of F′′ and F′ both vanish identically, and thus
assumes that the terms involving undifferentiated F are
of lesser importance in the high-frequency limit. The
setting to zero of the coefficient of the second derivative
yields

(1−v · ∇τ)2 = c2 (∇τ)2 , (3.618)

which is termed the eikonal equation [3.100, 101]. The
setting to zero of the coefficient of the first derivative
yields

∇ ·
{
ρΨ 2

c2

[
c2∇τ+ (1−v · ∇τ)v

]}
= 0 , (3.619)

which is termed the transport equation. The convenient
property of these equations is that they are independent
of the nature of the waveform function F.

The eikonal equation, which is a nonlinear first-
order partial differential equation for the eikonal τ(x)
can be solved by Cauchy’s method of characteristics,
with s =∇τ . What results are the ray-tracing equations
(3.612) and (3.613). However, the time variable t is re-
placed by the eikonal τ . The manner in which these
equations solve the eikonal equation is such that if τ
and its gradient s are known at any given point then the
ray-tracing equations determine these same quantities at
all other points on the ray that passes through this initial
point. The initial value of s must conform to the eikonal
equation itself, as is stated in (3.618). If this is so, then
the ray-tracing equations insure that it conforms to the
same equation, with the appropriate ambient variables,
all along the ray.

Solution of the transport equation, given by (3.619),
is facilitated by the concept of a ray tube. One conceives
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Basic Linear Acoustics 3.16 Ray Acoustics 101

A(x0)

x0

x

A(x)

Fig. 3.53 Sketch of a ray tube. Here x0 and x are two points
on the central ray

of a family of adjacent rays which comprise a narrow
tube of cross-sectional area A, this area varying with
distance � along the path of the central ray of the tube.
Then the transport equation reduces to

d

d�

(
A
ρΨ 2

c2
Ωvray

)
= 0 , (3.620)

so the quantity in brackets is constant along the ray
tube.

Alternately, the relation of (3.616) implies that the
acoustic pressure is locally given to an equivalent ap-
proximation by

p = P(x) f (t− τ) , (3.621)

where f is the derivative of F, and P is related to Ψ by

P =−ρΩΨ . (3.622)

Then the transport equation (3.619) requires that

B = A P2vray

ρc2Ω
(3.623)

be constant along a ray tube, so that

dB

d�
= 0 . (3.624)

This quantity B is often referred to as the Blokhintzev
invariant.

If there is no ambient flow then the constancy of
B along a ray tube can be regarded as a statement that
the average acoustic power flowing along the ray tube
is constant, for a constant-frequency disturbance, or in
general that the power appears constant along a trajec-

r2

r1

l

Fig. 3.54 Rectilinear propagation of sound. The wavefront
at any point has two principal radii of curvature, which
change with the propagation distance. In the case shown,
the wavefront at the left is such that it is convex, with two
different focal lengths, r1 and r2, these being the two radii
of curvature. Over a short propagation distance �, these
reduce to r1−� and r2−�

tory moving with the ray velocity. The interpretation
when there is an ambient flow is that the wave action
is conserved [3.102].

Geometrical acoustics (insofar as amplitude pre-
diction is concerned) breaks down at caustics, which
are surfaces along which the ray tube areas vanish.
Modified versions [3.103,104] involving Airy functions
and higher transcendental functions, of the geometrical
acoustics theory have been derived which overcome this
limitation.

3.16.5 Rectilinear Propagation
of Amplitudes

A simple but important limiting case of geometrical
acoustics is for propagation in homogeneous non-
moving media. The rays are then straight lines and
perpendicular to wavefronts. A given wavefront has two
principal radii of curvature, RI and RII. With the con-
vention that these are positive when the wavefront is
concave in the corresponding direction of principal cur-
vature, and negative when it is convex, the curvature
radii increase by a distance � when the wave propagates
through that distance. The ray tube area is proportional
to the product of the two curvature radii, so the acoustic
pressure varies with distance � along the ray as

p =
(

RI RII

(RI+�)(RII+�)
)1/2

f [t− (�/c)] . (3.625)

Here RI and RII are the two principal radii of curva-
ture when � is zero. The relations (3.326) and (3.447)
for spherical and cylindrical spreading are both limiting
cases of this expression.
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102 Part A Propagation of Sound

3.17 Diffraction

The bending of sound around corners or around objects
into shadow zones is typically referred to as diffrac-
tion. The prototype for problems of diffraction around
an edge is that of a plane wave impinging on a rigid
half-plane (knife edge). The problem was solved exactly
by Sommerfeld [3.105], and the solution has subse-
quently been rederived by a variety of other methods.
The present chapter considers a generalization of this
problem where a point source is near a rigid wedge. The
Sommerfeld problem emerges as a limiting case.

3.17.1 Posing of the Diffraction Problem

The geometry adopted here is such that the right sur-
face of the wedge occupies the region where y = 0 and
x > 0; the diffracting edge is the z-axis. A cylindrical
coordinate system is used where w is the radial dis-
tance from the z axis and where φ is the polar angle
measured counterclockwise from the x-axis. The other
surface of the wedge is at φ = β, where β > π. The
region occupied by the wedge has an interior angle of
2π−β.

One seeks solutions of the inhomogeneous wave
equation

∇2 p− 1

c2

∂2 p

∂t2
=−4πS(t)δ(x− x0) (3.626)

for the region

0< φ < β ; w≥ 0 ; −∞< z <∞ . (3.627)

Listener

x



w

y

�

s

Fig. 3.55 Coordinate system and angles associated with
the diffraction of sound by a wedge

The point source is located at w= wS, φ = φS, and z =
0. It is assumed that the source is on the back side, so
that φS > π. (A person on the front face of the wedge
should not be able to see the source.)

The quantity S(t) is the time-dependent source
strength, so that the transient acoustic pressure field near
the source has a singular part given by

p ≈ S
[
t− (RD/c)

]

RD
, (3.628)

where RD is the direct distance from the source,

RD =
[
(w cosφ−wS cosφS)2

+(w sinφ−wS sinφS)2+ z2
]1/2

, (3.629)

or

RD =
[
w2+w2

S−2wwS cos(φ−φS)+ z2
]1/2

.

(3.630)

Boundary conditions imposed by the rigid surfaces of
the wedge are

∂p

∂φ
= 0 at φ = 0 and at φ = β . (3.631)

There is also the requirement that the field at large radial
distance w should represent an outgoing wave.

3.17.2 Rays and Spatial Regions

For the problem just posed, one can distinguish three
regions, one where both a direct wave and a reflected

s – π

Direct + diffracted

Diffracted

Direct
+ diffracted
+ reflected

 = 

Fig. 3.56 Spatial regions associated with sound diffraction
by a wedge
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Basic Linear Acoustics 3.17 Diffraction 103

wave are possible, one where only the direct wave is
possible, and one where neither the direct wave nor the
reflected wave is possible. The borders of these two
regions are the angles φA and φB, where

φA = φS−π ; φB = 2β−φS−π . (3.632)

Reflected Wave Possible
In this region, characterized by the largest values of the
azimuthal angle φ, the restriction is

β > φ > φB . (3.633)

For such azimuthal angles, one can have an incident ray
that hits the back side (φ = β) of the wedge, reflects
according to the law of mirrors, and then passes through
the listener point. This reflected wave come from the
image source location at φ = 2β−φS, w= wS, z = 0.
The path distance for this reflected wave arrival is

RR =
[
w2+w2

S

−2wwS cos(φ+φS−2β)+ z2
]1/2

. (3.634)

The requirement that defines the border of this region is
that any hypothetical straight line from the image source
to the listener must pass through the back side of the
wedge. Equivalently stated, there must be a reflection
point on the back face of the wedge itself.

In this region, the geometrical acoustics (GA) por-
tion of the acoustic pressure field is given by

pGA = S
[
t− (RD/c)

]

RD
+ S

[
t− (RR/c)

]

RR
. (3.635)

Along the plane where φ = φB, the reflected path dis-
tance becomes

RR → L as φ→ φB , (3.636)

where

L =
[
(w+w0)2+ z2

]1/2
. (3.637)

The discontinuity in the geometrical acoustics portion
caused by the dropping of the reflected wave is conse-
quently

pGA(φB+ ε)− pGA(φB− ε) = S
[
t− (L/c)

]

L
.

(3.638)

Here the dependence of interest is that on the angu-
lar coordinate φ; the quantity ε is an arbitrarily small
positive number.

Direct Wave, No Reflected Wave
This is the region of intermediate values of the az-
imuthal angle φ, where

φB > φ > φA , (3.639)

and the listener can still see the source directly, but the
listener cannot see the reflection of the source on the
backside of the wedge. There is a direct wave, but no
reflected wave.

Here the geometrical acoustics (GA) portion of the
acoustic pressure field is given by

pGA = S
[
t− (RD/c)

]

RD
. (3.640)

At the lower angular boundary φA of this region the
direct wave propagation distance becomes

RD → L as φ→ φA , (3.641)

where L is the same length as defined above in (3.637).
The discontinuity in the geometrical acoustics por-

tion caused by the dropping of the incident wave is
consequently

pGA(φA+ ε)− pGA(φA− ε) = S
[
t− (L/c)

]

L
,

(3.642)

which is the same expression as for the discontinuity at
φB.

No Direct Wave, No Reflected Wave
In this region, where

φA > φ > 0 , (3.643)

the listener is in the true shadow zone and there is no
geometrical acoustics contribution, so

pGA = 0 . (3.644)

3.17.3 Residual Diffracted Wave

The complete solution to the problem as posed above,
for a point source outside a rigid wedge, is expressed
with some generality as

p = pGA+ pdiffr . (3.645)

The geometrical acoustics portion is as defined above;
in one region it is a direct wave plus a reflected wave; in
a second region it is only a direct wave; in a third region
(shadow region) it is identically zero. The diffracted

Part
A

3
.1

7



104 Part A Propagation of Sound

wave is what is needed so that the sum will be a so-
lution of the wave equation that satisfies the appropriate
boundary conditions.

Whatever the diffracted wave is, it must have a dis-
continuous nature at the radial planes φ = φA and
φ = φB. This is because pGA is discontinuous at these
two values of φ and because the total solution should be
continuous. Thus, one must require

pdiffr(φB+ ε)− pdiffr(φB− ε) =− S
[
t− (L/c)

]

L
,

(3.646)

pdiffr(φA+ ε)− pdiffr(φA− ε) =− S
[
t− (L/c)

]

L
.

(3.647)

Also, except in close vicinity to these radial planes, the
diffracted wave should spread out at large w as an out-
going wave. One may anticipate that, at large values

Plane containing
source and edge

γ

Listener

Plane containing
listener and edge

Diffracted
wavefront

rz

γ

rS

zE

L

Fig. 3.57 Sketch supporting the geometrical interpretation
of the parameter L as the diffracted ray length. The seg-
ment from source to edge makes the same angle γ with the
edge as does the segment from edge to listener, and the sum
of the two segment lengths is L

of w, the amplitude decreases with w as 1/
√
w, as in

cylindrical spreading.

Diffracted Path Length
In the actual solution given further below for the
diffracted wave, a predominant role is played by the pa-
rameter L given by (3.637). This can be interpreted as
the net distance from the source to the listener along the
shortest path that touches the diffracting edge. This path
can alternately be called the diffracted ray.

Such a path must touch the edge at a point where
each of the two segments make the same angle with the
edge. This is equivalent to a statement of Keller’s law of
geometrical diffraction [3.95]. Here, when the listener is
at z = zL, the source is at z = 0, and the edge is the z-
axis, the z-coordinate where the diffracted path leaves
the edge is [wS/(wS+wL)]zL. Thus one has

L =
[
w2

S(wS+wL)2+w2
0z2

L

]1/2

wS+wL

+
[
w2

L(wS+wL)2+w2
Lz2

L

]1/2

wS+wL
. (3.648)

The first term corresponds to the segment that goes from
the source to the edge, while the second corresponds to
the segment that goes from the edge to the listener. All
this simplifies to

L = [(wS+w)2+ z2]1/2 . (3.649)

Here the listener z-coordinate is taken simply to be z,
and its radial coordinate is taken simply to be w. The
time interval L/c is the shortest time that it takes for
a signal to go from the source to the listener via the
edge.

As is evident from the discussion above of the dis-
continuities in the geometrical acoustics portion of the
field, this diffracted wave path is the same as the re-
flected wave path on the radial plane φ = φB and is the
same as the direct wave path on the radial plane φ= φA.

There is another characteristic length that enters into
the solution, this being

Q = [(wS−w)2+ z2]1/2 . (3.650)

It is a shorter length than L and is the distance from the
source to a hypothetical point that has the same coordi-
nates as that of the listener, except that the φ coordinate
is the same as that of the source. These two quantities
are related, so that

L2−Q2 = 4wSw , (3.651)
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Basic Linear Acoustics 3.17 Diffraction 105

which is independent of the z-coordinate separation of
the source and listener.

Satisfaction of Boundary Conditions
A function that satisfies the appropriate boundary con-
ditions (3.631) can be built up from the functions

sin(νxq) and cos(νxq); q = 1, 2, 3, 4,

(3.652)

where

ν = π
β
, (3.653)

x1 = π+φ+φS = φ−φB+2β ,

x2 = π−φ−φS =−φ−φA ,

x3 = π+φ−φS = φ−φA ,

x4 = π−φ+φS = 2β−φB−φ . (3.654)

The trigonometric functions that appear above are not
periodic with period 2π in the angles φ and φS, so the
definition must be restricted to ranges of these quantities
between 0 and β.

The satisfaction of the boundary conditions at φ= 0
and φ = β is achieved by any function of the general
form

4∑

q=1

Ψ (cos xq, sin xq) , (3.655)

where the function Ψ is an arbitrary function of two ar-
guments. To demonstrate that the boundary condition at
φ = 0 is satisfied, it is sufficient to regard the function
Ψ (cos xq, sin xq) as only a function of xq . One derives

⎛

⎝ d

dφ

4∑

q=1

Ψ (xq)

⎞

⎠

φ=0

= {νΨ ′[ν(π+φS)]−Ψ ′[ν(π−φS)]
+Ψ ′[ν(π−φS)]−Ψ ′[ν(π+φS)]}= 0 . (3.656)

The first and fourth terms cancel, and the second and
third terms cancel.

The boundary condition at φ = β, however, re-
quires explicit recognition that the postulated function
Ψ depends on xq only through the two trigonometric
functions. Both are periodic in φ with period 2β, be-
cause νβ = π. Moreover, the sum of the first and fourth
terms is periodic with period β, and the same is so for
the sum of the second and third terms. The entire sum
has this periodicity, so if the derivative with respect to φ
vanishes at φ = 0, it also has to vanish at φ = β.

Discontinuities in the Diffraction Term
Two of the individual xq defined above are such that
cos(νxq) is unity at one or the other of the two radial
planes φ = φA and φ = φB. One notes that

cos(νx3) = 1 at φ = φA , (3.657)

cos(νx1) = 1 at φ = φB . (3.658)

Near the radial plane φ = φA = φS−π, one has

x3 = φ−φA; cos(νx3) ≈ 1− 1

2
(ν2)(φ−φA)2 ;

sin(νx3) ≈ (ν)(φ−φA) . (3.659)

Similarly, near the radial plane φ = φB = 2β−φS−π,

x1 = 2β+φ−φB; cos(νx1) ≈ 1− 1

2
(ν2)(φ−φB)2;

sin(νx1) ≈ (ν)(φ−φB) . (3.660)

This behavior allows one to construct a discontinu-
ous function of the generic form

U(φ) =
4∑

q=1

∞∫

L

M(ξ) sin(νxq)

F(ξ)− cos(νxq)
dξ , (3.661)

where M(ξ) and F(ξ) are some specified functions of
the dummy integration variable, such that F ≥ 1, and
F = 1 at only one value of ξ . This allows one to com-
pute the discontinuity at φA, for example, as

U(φA+ ε)−U(φA− ε)

= 2νε

∞∫

L

M(ξ)

F(ξ)−1+ 1
2ν

2ε2
dξ , (3.662)

where it is understood that one is to take the limit
of ε→ 0. The dominant contribution to the integra-
tion should come from the value of ξ at which F = 1.
There are various possibilities where this limit is finite
and nonzero. The one of immediate interest is where
F(L) = 1, where the derivative is positive at ξ = L , and
where M is singular as 1/(ξ− L)1/2 near ξ = L . For
these circumstances the limit is

lim
ε→0

[U(φA+ ε)−U(φA− ε)]

= 4π

(
1

2F′

)1/2

L
[(ξ− L)1/2 M]L (3.663)

where the subscript L implies that the indicated quantity
is to be evaluated at ξ = L .
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106 Part A Propagation of Sound

3.17.4 Solution for Diffracted Waves

The details [3.30,106–111] that lead to the solution vary
somewhat in the literature and are invariably intricate.
The procedure typically involves extensive application
of the theory of the functions of a complex variable.
The following takes some intermediate results from the
derivation in the present author’s text [3.30] and uses
the results derived above to establish the plausibility of
the solution.

The diffracted field at any point depends linearly on
the time history of the source strength, and the short-
est time for source to travel as a diffracted wave from
source to listener is L/c, so the principles of causality
and linearity allow one to write, with all generality, the
diffracted wave as

pdiffr =− 1

β

∞∫

L

S

(
t− ξ

c

)
Kν(ξ)dξ , (3.664)

where the function Kν(ξ) depends on the positions of
the source and listener, as well as on the angular width
of the wedge. The factor −1/β in front of the integral is
for mathematical convenience.

The boundary conditions at the rigid wedge are sat-
isfied if one takes the dependence on φ and φS to be of
the form of (3.655). The proper jumps will be possible if
one takes the general dependence on the trigonometric
functions to be as suggested in (3.661). The appropriate
identification (substantiated further below) is

Kν = 1

(ξ2−Q2)1/2

1

(ξ2− L2)1/2

×
4∑

q=1

sin(νxq)

cosh νs− cos(νxq)
. (3.665)

The quantity s is a function of ξ , defined as

s = 2 tanh−1
(
ξ2− L2

ξ2−Q2

)1/2

, (3.666)

so that

ξ2 = L2+ (L2−Q2) sinh2(s/2) , (3.667)

cosh νs

= 1

2

[(
(ξ2−Q2)1/2− (ξ2− L2)1/2

(ξ2−Q2)1/2+ (ξ2− L2)1/2

)ν

+
(

(ξ2−Q2)1/2+ (ξ2− L2)1/2

(ξ2−Q2)1/2− (ξ2− L2)1/2

)ν]
.

(3.668)

That this solution has the proper jump behavior at
φA and φB follows because, for ξ near L ,

− 1

β

1

(ξ2−Q2)1/2

1

(ξ2− L2)1/2

→−
(

1

β(L2−Q2)1/2(2L)1/2

)
1

(ξ− L)1/2
,

(3.669)

cosh νs → 1+ 4ν2 L

L2−Q2
(ξ− L) . (3.670)

The result in (3.663) consequently yields

pdiffr(φA+ ε)− pdiffr(φA− ε)
=−

(
4π

β(L2−Q2)1/2(2L)1/2

)(
(L2−Q2)1/2

2ν(2L)1/2

)

× S
[
t− (L/c)

]=− S
[
t− (L/c)

]

L
, (3.671)

which is the same as required in (3.647).
(The solution has here been shown to satisfy the

boundary conditions and the jump conditions. An ex-
plicit proof that the total solution satisfies the wave
equation can be found in the text by the author [3.30].)

3.17.5 Impulse Solution

An elegant feature of the above transient solution is that
no integration is required for the case when the source
function is a delta function (impulse source). If

S(t) → Aδ(t) , (3.672)

then the integration properties of the delta function yield

pdiffr →− Ac

β
H(ct− L)

1

(c2t2−Q2)1/2

×
1

(c2t2− L2)1/2

4∑

q=1

sin(νxq)

cosh νs− cos(νxq)
,

(3.673)

where cosh νs is as given by (3.668), but with ξ replaced
by ct. The function H(ct− L) is the unit step function,
equal to zero when its argument is negative and equal to
unity when its argument is positive.

(In recent literature, an equivalent version of this so-
lution is occasionally referred to as the Biot–Tolstoy so-
lution [3.111], although its first derivation was by Fried-
lander [3.110]. In retrospect, it is a simple deduction
from the constant-frequency solution given by Mac-
Donald [3.106], Whipple [3.107], Bromwich [3.108],

Part
A

3
.1

7



Basic Linear Acoustics 3.17 Diffraction 107

and Carslaw [3.109]. In the modern era with digital
computers, where the numerical calculation of Fourier
transforms is virtually instantaneous and routine, an ex-
plicit analytical solution for the impulse response is
often a good starting point for determining diffraction
of waves of constant frequency.)

3.17.6 Constant-Frequency Diffraction

The transient solution (3.664) above yields the solution
for when the source is of constant frequency. One makes
the substitution

S(t) → Ŝe−iωt , (3.674)

and obtains

p̂diffr =− Ŝ

β

∞∫

L

eikξKν(ξ) dξ . (3.675)

The integral that appears here can be reduced to stan-
dard functions in various limits. A convenient first step
is to change the integration variable to the parameter s,
so that

ξ2 = L2+ (L2−Q2) sinh2(s/2) , (3.676)

dξ

[ξ2−Q2]1/2[ξ2− L2]1/2 =
ds

2ξ
, (3.677)

and so that the range of integration on s is from 0 to ∞.
One notes that the integrand is even in s, so that it is
convenient to extend the integration from −∞ to ∞,
and then divide by two. Also, one can use trigonometric
identities to combine the x1 term with the x2 term and
to combine the x3 term with the x4 term. All this yields
the result

p̂diffr = Ŝ sin νπ

2β

∑

+,−

∞∫

−∞

eikξ

ξ
Fν(s, φ±φS)ds ,

(3.678)

where

Fν(s, φ) = Uν(φ)− J(νs) cos νφ

J2(νs)+2J(νs)V 2
ν (φ)+U2

ν (φ)
,

(3.679)

with the abbreviations

J(νs) = cosh νs−1 , (3.680)

Uν(φ) = cos νπ− cos νφ , (3.681)

Vν(φ) = (1− cos νφ cos νπ)1/2 . (3.682)

The requisite integrals exist, except when either Uν(φ+
φS) or Uν(φ−φS) should be zero. The angles at which
one or the other occurs correspond to boundaries be-
tween different regions of the diffracted field.

3.17.7 Uniform Asymptotic Solution

Although the integration in (3.678) can readily be
completed numerically, considerable insight and useful
formulas arise when one considers the limit when both
the source and the listener are many wavelengths from
the edge. One argues that the dominant contribution to
the integration comes from values of s that are close to
0 (where the phase of the exponential is stationary), so
one approximates

ξ→ L + (L2−Q2)

8L
s2 = L + π

2k
Γ 2s2 ,

(3.683)

eikξ

ξ
→ eikL

L
ei(π/2)Γ 2s2

, (3.684)

J(νs) = cosh νs−1 → ν2

2
s2 , (3.685)

Fν(s, φ) → Uν(φ)

U2
ν (φ)+ν2V 2

ν (φ)s2
,

= 1

2νVν(φ)

(
1

Mν(φ)+ is
+ 1

Mν(φ)− is

)
.

(3.686)

The expression (3.686) uses the abbreviation

Mν(φ) = Uν(φ)

νVν(φ)
= cos νπ− cos νφ

ν (1− cos νφ cos νπ)1/2
,

(3.687)

while (3.684) uses the abbreviation

Γ 2 = k
(L2−Q2)

4πL
= kwwS

πL
, (3.688)

where the latter version follows from the definitions
(3.649) and (3.650).

One also notes that the symmetry in the exponential
factor allows one to identify

∞∫

−∞

ei(π/2)Γ 2s2

Mν+ is
ds =

∞∫

−∞

ei(π/2)Γ 2s2

Mν− is
ds , (3.689)

so the number of required integral terms is halved.
A further step is to change the the integration variable to

u = (π/2)1/2Γ e−iπ/4s . (3.690)
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108 Part A Propagation of Sound

All this results in the uniform asymptotic expression

p̂diffr =Ŝ
eikL

L

eiπ/4

√
2

∑

+,−

sin νπ

Vν(φ±φS)

× AD [ΓMν(φ±φS)] (3.691)

for the diffracted wave. Here one makes use of the def-
inition

AD(X) = 1

π21/2

∞∫

−∞

e−u2
du

(π/2)1/2 X− e−iπ/4 u
,

(3.692)

of a complex-valued function of a single real variable.
The properties of this function are discussed in detail
below.

3.17.8 Special Functions for Diffraction

The diffraction integral (3.692) is a ubiquitous feature
in diffraction theories. It changes sign,

AD(−X) =−AD(X) , (3.693)

when its argument X changes sign (as can be demon-
strated by changing the integration variable to −u after
changing the sign of X). The function is complex, so
one can write in general

AD(X) = sign(X)
[

f (|X|)− ig(|X|)] , (3.694)

where the functions f and g (referred to as the auxil-
iary Fresnel functions) represent the real and negative
imaginary parts of AD(|X|).

To relate AD(X) to the often encountered Fres-
nel integrals, one makes use of the identity (with
ζ = (π/2)1/2|X| being positive)

1

ζ − e−iπ/4 u
= e−iπ/4

∞∫

0

exp[i(ζ eiπ/4−u)q]dq .

(3.695)

Then, one has
∞∫

−∞

e−u2
du

ζ − e−iπ/4 u

= e−iπ/4 e−iζ2

∞∫

0

e−y2

⎛

⎝
∞∫

−∞
e−(u+iq/2)2

du

⎞

⎠ dq ,

(3.696)

with the abbreviation y = q/2+ e−iπ/4ζ . The inner in-
tegral over u yields

√
π, and one sets

∞∫

0

e−y2
dq = 2

∞∫

ζ e−iπ/4

e−y2
dy

= 2

0∫

ζ e−iπ/4

e−y2
dy+2

∞∫

0

e−y2
dy .

(3.697)

The second term in the latter expression is
√
π, and in

the first term one changes the variable of integration to
t = (2/π)1/2 y eiπ/4, so that

0∫

ζ e−iπ/4

e−y2
dy =− (π/2)1/2 e−iπ/4

×

(2/π)1/2ζ∫

0

ei(π/2)t2
dt . (3.698)

The analytical steps outlined above lead to the result

AD(X) = (1− i)

2
e−i[π/2]X2

× {sign(X)− (1− i) [C(X)+ iS(X)]} ,
(3.699)

0.6

0.5

0.4

0.3

0.2

0.1

0
2.00 1.61.20.80.4

Diffraction functions

Dimensionless parameter X

f(X )

g(X ) (π 2X 3)–1

(πX )–1

Fig. 3.58 Real and imaginary parts of the diffraction inte-
gral. Also shown are the appropriate asymptotic forms that
are applicable at large arguments
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Basic Linear Acoustics 3.17 Diffraction 109

where C(X) and S(X) are the Fresnel integrals

C(X) =
X∫

0

cos
(π

2
t2
)

dt ; (3.700)

S(X) =
X∫

0

sin
(π

2
t2
)

dt . (3.701)

In accordance with (3.693), the above representation of
AD(X) is an odd function of X, the two Fresnel integrals
themselves being odd in X. The discontinuity in AD(X)
is readily identified from this representation as

AD(0+ ε)− AD(0− ε) = 1− i ; (3.702)

The behavior of the two auxiliary Fresnel functions at
small to moderate values of |X| can be determined by
expanding the terms in (3.699) in a power series in X,
so that one identifies

f (|X|) ≈ 1

2
− π

4
X2+ π

3
|X|3− . . . , (3.703)

g(|X|) ≈ 1

2
−|X|+ π

2
X2− . . . . (3.704)

To determine the behavior at large values of |X|, it is
expedient to return to the expression (3.692) and expand
the integrand in powers of 1/X and then integrate term
by term. Doing this yields

f (|X|) → 1

π|X| −
3

π3|X|5 + . . . , (3.705)

g(|X|) → 1

π2|X|3 −
15

π4|X|7 + . . . . (3.706)

These are asymptotic series, so one should retain at
most only those terms which are of decreasing value.
The leading terms are a good approximation for |X|> 2.

3.17.9 Plane Wave Diffraction

The preceding analysis, for when the source is a point
source at a finite distance from the edge, can be adapted
to the case when one idealizes the incident wave as
a plane wave, propagating in the direction of the unit
vector

ninc = nxex +nyey +nzez , (3.707)

which points from a distant source (cylindrical coor-
dinates wS, φS, zS) toward the coordinate origin, so

that

nx = −wS cosφS
(
w2

S+ z2
S

)1/2 ; ny = −wS sinφS
(
w2

S+ z2
S

)1/2 ;

nz = −zS
(
w2

S+ z2
S

)1/2 . (3.708)

Without any loss of generality, one can consider zS to
be negative, so that nz is positive. Then at the point
on the edge where z = 0, the direct wave makes an
angle

γ = cos−1

(
−zS

(
w2

S+ z2
S

)1/2

)
(3.709)

with the edge of the wedge, and this definition
yields

sin γ = wS
(
w2

S+ z2
S

)1/2 ; cos γ = nz . (3.710)

One lets p̂inc be the complex amplitude of the in-
cident wave at the origin (the point on the edge where
z = 0), so that

Ŝ
1

(
w2

S+ z2
S

)1/2 ei
(
w2

S+z2
S

)1/2

→ p̂inc , (3.711)

and one holds this quantity constant while letting (w2
S+

z2
S)1/2 become arbitrarily large. Then, with appropriate

use of Taylor series (or binomial series) expansions, one
has

RD → (
w2

S+ z2
S

)1/2−w sin γ cos(φ−φS)+z cos γ ,

(3.712)

RR →
(
w2

S+ z2
S

)1/2−w sin γ cos(φ+φS−2β)

+ z cos γ , (3.713)

L → (
w2

S+ z2
S

)1/2+w sin γ + z cos γ , (3.714)

Γ →
(

kw sin γ

π

)1/2

. (3.715)

In this limit, the geometrical acoustics portion of the
solution, for waves of constant frequency, is given by
one of the following three expressions. In the region β >
φ > φB, one has

p̂GA = p̂inc eiknz z(eiknx x eikny y

+ e−ikw sin γ cos(φ+φS−2β)) , (3.716)

where the two terms correspond to the incident wave
and the reflected wave. In the region φB > φ > φA, one
has

p̂GA = p̂inc eiknz z eiknx x eikny y , (3.717)
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110 Part A Propagation of Sound

which is the incident wave only. Then, in the shadow
region, where φA > φ > 0, one has

p̂GA = 0 , (3.718)

and there is neither an incident wave nor a reflected
wave.

The diffracted wave, in this plane wave limit, be-
comes

p̂diffr = p̂inc eikz cos γ eikw sin γ eiπ/4

√
2

×
∑

+,−

sin νπ

Vν(φ±φS)
AD [ΓMν(φ±φS)] ,

(3.719)

where Γ is now understood to be given by (3.715). This
result is, as before, for the case when the listener is
many wavelengths from the edge, so that the parameter
Γ is large compared with unity.

3.17.10 Small-Angle Diffraction

Simple approximate formulas emerge from the above
general results when one limits one’s attention to the
diffracted field near the edge of the shadow zone bound-
ary.

The incident wave is taken as having its direction
lying in the (x, y) plane and one introduces rotated co-
ordinates (x′, y′), so that the y′-axis is in the direction
of the incident sound, with the coordinate origin re-
maining at the edge of the wedge. One regards y′ as

Incident
plane wave

y'

s – π –

Wedge

Shadow

x'

s – π

 



Fig. 3.59 Geometry and parameters used in discussion of
small-angle diffraction of a plane wave by a rigid wedge

being large compared to a wavelength. The magnitude
|x′| is regarded as substantially smaller than y′, but not
necessarily small compared to a wavelength.

In the plane wave diffraction expression (3.719) the
angle γ is π/2, and the only term of possible signifi-
cance is that corresponding to the minus sign, so one
has

p̂diffr = p̂inc eikw eiπ/4

√
2

sin νπ

Vν(φ−φS)
× AD [ΓMν(φ−φS)] . (3.720)

Also, because |x′| is small compared with y′, one can
assume that |φS−π−φ| is small compared with unity,
so that

cos ν(φ−φS) ≈ cos νπ+ (ν sin νπ) (φ−φS+π) ,
(3.721)

Vν(φ−φS) ≈ sin νπ , (3.722)

Mν(φ−φS) ≈ φS−π−φ ≈ x′

y′
. (3.723)

Further approximations that are consistent with this
small-angle diffraction model are to set w→ y′ in the
expression for Γ , but to set

w→ y′ + 1

2

(x′)2

y′
(3.724)

in the exponent. The second term is needed if one needs
to take into account any phase shift relative to that of
the incident wave.

The approximations just described lead to the ex-
pression

p̂diffr = p̂inc eiky′ 1+ i

2
e(π/2)X2

AD(X) , (3.725)

with

X =
(

k

πy′

)
x′ . (3.726)

A remarkable feature of this result is that it is inde-
pendent of the wedge angle β. It applies in the same
approximate sense equally for diffraction by a thin
screen and by a right-angled corner.

The total acoustic field in this region just above and
just where the shadow zone begins can be found by
adding the incident wave for x′ < 0. In the shadow zone
there is no incident wave, and one accounts for this by
using a step function H(−X). Thus the total field is
approximated by

p̂GA+ p̂diffr → pinc eiky′

×

[
H(−X)+ (1+ i)

2
ei(π/2)X2

AD(X)

]
. (3.727)
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Basic Linear Acoustics 3.18 Parabolic Equation Methods 111

Fig. 3.60 Characteristic diffraction pattern as a function of
the diffraction parameter X. The function is the absolute
magnitude of the complex amplitude of the received acous-
tic pressure, incident plus diffracted, relative to that of the
incident wave

One can now substitute into this the expression (3.699),
with the result

p̂GA+ p̂diffr = p̂inc eiky
(

1− i

2

)

×

{[
1

2
−C(X)

]
+ i

[
1

2
− S(X)

]}
,

(3.728)

or, equivalently,

p̂GA+ p̂diffr = p̂inc eiky
(

1− i

2

) ∞∫

X

ei(π/2)u2
du .

(3.729)

The definitions of the diffraction integral and of the
Fresnel integrals are such that, in the latter expressions,
one does not need a step function.

The expressions just given, or their equivalents, are
what are most commonly used in assessments of diffrac-
tion. The plot of the magnitude squared, relative to that
of the incident wave,

∣∣∣∣
p̂GA+ p̂diffr

p̂inc

∣∣∣∣
2

= 1

2

∣∣∣∣∣∣

∞∫

X

ei(π/2)u2
du

∣∣∣∣∣∣

2

, (3.730)

shows a monotonic decay in the shadow region (X > 0)
and a series of diminishing ripples about unity in the il-
luminated region (X < 0). The peaks are interpreted as
resulting from constructive interference of the incident
and diffracted waves. The valleys result from destruc-
tive interference.

3.17.11 Thin-Screen Diffraction

For the general case of plane wave diffraction, not nec-
essarily at small angles, a relatively simple limiting case

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
2.0–4.0 1.00–1.0–2.0–3.0

Characteristic diffraction pattern

Diffraction parameter X

is when the wedge is a thin screen, so that β = 2π and
the wedge index ν is 1/2. Additional simplicity results
for the case where the incident wave’s direction ninc is
perpendicular to the edge, so that γ = π/2. In this lim-
iting case, sin νπ = 1 and cos νπ = 0, so, with reference
to (3.682), one finds Vν(φ±φS)= 1, and with reference
to (3.687), one finds

Mν(φ±φS) =−2 cos
1

2
(φ±φS) . (3.731)

Then, with use of the fact that AD(X) is odd in X, one
obtains

p̂diffr =− p̂inc ei(kw+π/4)

√
2

×
∑

+,−
AD

[(
4kw

π

)1/2

cos
1

2
(φ±φS)

]
.

(3.732)

Although derived here for the asymptotic limit when kw
is large, this result is actually exact and holds for all
values of w. It was derived originally by Sommerfeld in
1896 [3.105].

3.18 Parabolic Equation Methods

It is often useful in propagation analyses to replace the
Helmholtz equation or its counterpart for inhomoge-
neous media by a partial differential equation that is first

order, rather than second order, in the coordinate that
corresponds to the primary direction of propagation.
Approximations that achieve this are known gener-
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112 Part A Propagation of Sound

ally as parabolic equation approximations and stem
from early work by Fock [3.112] and Tappert [3.113].
Their chief advantage is that the resulting equation is
no longer elliptic, but parabolic, so it is no longer
necessary to check whether a radiation condition is sat-
isfied at large propagation distances. This is especially
convenient for numerical computation, for the result-
ing algorithms march out systematically in propagation
distance, without having to look far ahead for the deter-
mination of the field at a subsequent point.

A simple example of a parabolic equation ap-
proximation is that of two-dimensional propagation in
a medium where the sound speed and density vary
primarily with the coordinate y, but weakly with x.
A wave of constant angular frequency ω is propagat-
ing primarily in the x-direction but is affected by the y
variations of the ambient medium, and by the presence
of interfaces that are nearly parallel to the x-direction.
The propagation is consequently governed by the two-
dimensional reduced wave equation,

∂

∂x

(
1

ρ

∂ p̂

∂x

)
+ ∂

∂y

(
1

ρ

∂ p̂

∂y

)
+ ω2

ρc2
p̂ = 0 (3.733)

which can be obtained from (3.73) by use of the com-
plex amplitude convention.

In the parabolic approximation, the exact solution p̂
of (3.733), with a radiation condition imposed, is repre-
sented by

p̂(x, y) = eiχ(x) F(x, y) , (3.734)

where

χ(x) =
x∫

0

k0 dx . (3.735)

Here k0(x) is a judiciously chosen reference wavenum-
ber (possibly dependent on the primary coordinate x).
The crux of the method is that the function F(x, y) is
taken to satisfy an approximate partial differential equa-
tion (parabolic equation (PE)) that differs from what
would result were (3.734) inserted into (3.733) with no
discarded terms.

The underlying assumption is that the x-dependence
of the complex pressure amplitude is mostly accounted
for by the exponential factor, so the characteristic scale
for variation of the amplitude factor F with the co-
ordinate x is much greater than the reciprocal of k0.
Consequently second derivatives of F with respect to
x can be neglected in the derived differential equation.
The y derivatives of the ambient variables are also ne-
glected. The resulting approximate equation is given
by

∂

∂x

(
k0

ρ
F

)
+ k0

ρ

∂F

∂x
= i

∂

∂y

(
1

ρ

∂F

∂y

)

+ i
k2

0

ρ
(n2−1)F , (3.736)

where n, the apparent index of refraction, is an abbrevia-
tion for k−1

0 ω/c. If the reference wavenumber k0 is
selected to be independent of x, then (3.736) reduces
to

2k0
∂F

∂x
= iρ

∂

∂y

(
1

ρ

∂F

∂y

)
+ ik2

0(n2−1)F . (3.737)

Although the computational results must depend on the
selection of the reference wavenumber k0, results for
various specific cases tend to indicate that the sensitivity
to such a selection is not great.
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Sound Propag4. Sound Propagation in the Atmosphere

Keith Attenborough

Propagation of sound close to the ground outdoors
involves geometric spreading, air absorption, in-
teraction with the ground, barriers, vegetation and
refraction associated with wind and temperature
gradients. After a brief survey of historical aspects
of the study of outdoor sound and its applications,
this chapter details the physical principles asso-
ciated with various propagation effects, reviews
data that demonstrate them and methods for
predicting them. The discussion is concerned pri-
marily with the relatively short ranges and spectra
of interest when predicting and assessing com-
munity noise rather than the frequencies and long
ranges of concern, for example, in infrasonic global
monitoring or used for remote sensing of the at-
mosphere. Specific phenomena that are discussed
include spreading losses, atmospheric absorption,
diffraction by barriers and buildings, interaction
of sound with the ground (ground waves, surface
waves, ground impedance associated with porosity
and roughness, and elasticity effects), propaga-
tion through crops, shrubs and trees, wind and
temperature gradient effects, shadow zones and
incoherence due to atmospheric turbulence. The
chapter concludes by suggesting a few areas that
require further research.
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4.1 A Short History of Outdoor Acoustics

Early experiments on outdoor sound were concerned
with the speed of sound [4.1]. Sound from explosions

and the firing of large guns contains substantial low-
frequency content (< 100 Hz) and is able to travel for
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considerable distances outdoors. The Franciscan friar,
Marin Mersenne (1588–1648), suggested timing the in-
terval between seeing the flash and hearing the report
of guns fired at a known distance. William Derham
(1657–1735), the rector of a small church near Lon-
don, observed and recorded the influence of wind and
temperature on sound speed. Also Derham noted the
difference in the sound of church bells at the same dis-
tance over newly fallen snow and over a hard frozen
surface.

Before enough was known for the military exploita-
tion of outdoor acoustics, there were many unwitting
influences of propagation conditions on the course of
battle [4.2]. In June 1666, Samuel Pepys noted that the
sounds of a naval engagement between the British and

Dutch fleets were heard clearly at some spots but not at
others a similar distance away or closer [4.3]. During
the First World War, acoustic shadow zones, similar to
those observed by Pepys, were observed during the bat-
tle of Antwerp. Observers also noted that battle sounds
from France only reached England during the summer
months whereas they were best heard in Germany dur-
ing the winter. After the war there was great interest
in these observations among the scientific community.
Large amounts of ammunition were detonated through-
out England and the public was asked to listen for
sounds of explosions. Despite the continuing interest in
atmospheric acoustics after World War 1, the advent of
the submarine encouraged greater efforts in underwater
acoustics research during and after World War 2.

4.2 Applications of Outdoor Acoustics

Although much current interest in sound propagation in
the atmosphere relates to the prediction and control of
noise from land and air transport and from industrial
sources, outdoor acoustics has continued to have exten-
sive military applications in source acquisition, ranging
and identification [4.4]. Acoustic disturbances in the at-
mosphere give rise to solid particle motion in porous
ground, induced by local pressure variations as well as
air-particle motion in the pores. There is a distinction
between the seismic disturbances associated with direct
seismic excitation of the ground and solid-particle mo-
tion in the ground induced by airborne sounds. This has
enabled the design of systems that distinguish between
airborne and ground-borne sources and the application
of acoustical techniques to the detection of buried land
mines [4.5]. The many other applications of studies of
outdoor sound propagation include aspects of animal
bioacoustics [4.6] and acoustic remote sounding of the
atmosphere [4.7].

Atmospheric sound propagation close to the ground
is sensitive to the acoustical properties of the ground
surface as well as to meteorological conditions. Most
natural ground surfaces are porous. The surface poros-
ity allows sound to penetrate and hence to be absorbed
and delayed through friction and thermal exchanges.
There is interference between sound traveling directly
between source and receiver and sound reflected from
the ground. This interference, known as the ground
effect [4.8, 9], is similar to the Lloyd’s mirror effect
in optics but is not directly analogous. Usually, the
propagation of light may be described by rays. At the
lower end of the audible frequency range (20–500 Hz)

and near grazing incidence to the ground, the con-
sequences of the curvature of the expanding sound
waves from a finite source are significant. Conse-
quently, ray-based modeling is not appropriate and it
is necessary to use full-wave techniques. Moreover,
there are few outdoor surfaces that are mirror-like
to incident sound waves. Most ground surfaces cause
changes in phase as well as amplitude during re-
flection. Apart from the relevance to outdoor noise
prediction, the sensitivity of outdoor sound propa-
gation to ground surface properties has suggested
acoustical techniques for determining soil physical
properties such as porosity and air permeability [4.10–
12]. These are relatively noninvasive compared with
other methods.

The last two decades have seen considerable ad-
vances in numerical and analytical methods for outdoor
sound prediction [4.13]. Details of these are beyond
the scope of this work but many are described in
the excellent text by Salomons [4.14] and a 2003 re-
view [4.15]. Among the numerical methods borrowed
and adapted from underwater acoustics are the fast
field program (FFP) and that based on the parabolic
equation (PE). The parabolic equation method enables
predictions that allow for changes in atmospheric and
ground conditions with range whereas the FFP intrin-
sically does not. On the other hand the PE method is
essentially a one-way transmission method which does
not allow for back scattering. Methods for predicting
outdoor noise are undergoing considerable assess-
ment and change in Europe as a result of European
Commission (EC) directive [4.16] and the associ-
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ated requirements for noise mapping. A sophisticated
scheme for this purpose is NORD2000 [4.17]. European
projects HARMONOISE [4.18] and IMAGINE [4.19]
have developed a comprehensive source-independent

scheme for outdoor sound prediction. As in NORD2000
various relatively simple formulae, predicting the ef-
fect of topography for example, have been derived and
tested against numerical predictions.

4.3 Spreading Losses

Distance alone will result in wavefront spreading. In the
simplest case of a sound source radiating equally in all
directions, the intensity I [W−2] at a distance rm from
the source of power P [W], is given by

I = P

4πr2
, (4.1)

This represents the power per unit area on a spherical
wavefront of radius r. In logarithmic form the relation-
ship between sound pressure level Lp and sound power
LW, may be written

Lp = LW−20 log r−11 dB . (4.2)

From a point sound source, this means a reduction of
20 log 2 dB, i. e., 6 dB, per distance doubling in all direc-
tions (a point source is omnidirectional). Most sources
appear to be point sources when the receiver is at a suf-
ficient distance from them. If the source is directional
then (4.2) is modified by inclusion of the directivity
index DI .

Lp = LW+DI −20 log r−11dB . (4.3)

The directivity index is 10 log DF dB where DF is
the directivity factor, given by the ratio of the ac-
tual intensity in a given direction to the intensity of
an omnidirectional source of the same power output.
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Fig. 4.1 Comparison of attenuation due to geometrical
spreading from point, infinite line and finite line sources

Such directivity is either inherent or location-induced.
A simple case of location-induced directivity arises if
the point source, which would usually create spherical
wavefronts of sound, is placed on a perfectly reflect-
ing flat plane. Radiation from the source is thereby
restricted to a hemisphere. The directivity factor for
a point source on a perfectly reflecting plane is 2 and
the directivity index is 3 dB. For a point source at the
junction of a vertical perfectly reflecting wall with a hor-
izontal perfectly reflecting plane, the directivity factor
is 4 and the directivity index is 6 dB. It should be noted
that these adjustments ignore phase effects and assume
incoherent reflection [4.20].

From an infinite line source, the wavefronts are
cylindrical, so wavefront spreading means a reduc-
tion of 3 dB per distance doubling. Highway traffic
may be approximated by a line of incoherent point
sources on an acoustically hard surface. If a line
source of length l consists of contiguous omnidirec-
tional incoherent elements of length dx and source
strength P dx, the intensity at a location halfway along
the line and at a perpendicular distance d from it, so
that dx = rdθ/ cos θ, where r is the distance from any
element at angle θ from the perpendicular, is given by

I =
l/2∫

−l/2

P

2πr2
dx = P

2πd

[
2 tan−1

(
l

2d

)]
,

This results in

Lp = LW−10 log d−8

+10 log

[
2 tan−1

(
l

2d

)]
dB . (4.4)

Figure 4.1 shows that the attenuation due to wavefront
spreading from the finite line source behaves as that
from an infinite line (cylindrical spreading) at distances
much less than the length of the source and as that from
a point source (spherical spreading) at distances greater
than the length of the source.
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4.4 Atmospheric Absorption

A proportion of sound energy is converted to heat as
it travels through the air. There are heat conduction,
shear viscosity and molecular relaxation losses [4.21].
The resulting air absorption becomes significant at high
frequencies and at long range so air acts as a low-pass
filter at long range. For a plane wave, the pressure p at
distance x from a position where the pressure is p0 is
given by

p = p0 e−αx/2 . (4.5)

The attenuation coefficient α for air absorption depends
on frequency, humidity, temperature and pressure and
may be calculated using (4.6) through (4.8) [4.22].

α= f 2

⎡

⎢⎢⎣

⎛

⎜⎜⎝
1.84 × 10−11

(
T0
T

) 1
2 ps

p0

⎞

⎟⎟⎠

+
(

T0

T

)2.5
(

0.10680e−3352/T fr,N

f 2+ f 2
r,N

+0.01278e−2239.1/T fr,O

f 2+ f 2
r,O

)
Np

m atm

⎤

⎥⎥⎦ , (4.6)

where fr,N and fr,O are relaxation frequencies as-
sociated with the vibration of nitrogen and oxygen
molecules respectively and are given by

fr,N = ps

ps0

(
T0

T

) 1
2

×
(

9+280He−4.17
[
(T0/T )1/3−1

])
, (4.7)

fr,O = ps

ps0

(
24.0+4.04 × 104 H

0.02+H

0.391+H

)
,

(4.8)

where f is the frequency. T is the absolute tempera-
ture of the atmosphere in Kelvin, T0 = 293.15 K is
the reference value of T (20 ◦C), H is the percentage
molar concentration of water vapor in the atmosphere
= ρsatrh p0/ps, rh is the relative humidity (%); ps is the
local atmospheric pressure and p0 is the reference at-
mospheric pressure (1 atm = 1.01325 × 105 Pa); ρsat =
10Csat , where Csat = −6.8346(T0/T )1.261 + 4.6151.
These formulae give estimates of the absorption of pure
tones to an accuracy of ±10% for 0.05< H< 5, 253<
T< 323, p0 < 200 kPa.

Outdoor air absorption varies through the day and
the year [4.23, 24].

Absolute humidity H is an important factor in the
diurnal variation and usually peaks in the afternoon.
Usually the diurnal variations are greatest in the sum-
mer. It should be noted that the use of (arithmetic) mean
values of atmospheric absorption may lead to over-
estimates of attenuation when attempting to establish
worst-case exposures for the purposes of environmental
noise impact assessment. Investigations of local climate
statistics, say hourly means over one year, should lead to
more accurate estimates of the lowest absorption values.

4.5 Diffraction and Barriers

Purpose-built noise barriers have become a very com-
mon feature of the urban landscape of Europe, the Far
East and America. In the USA, over 1200 miles of noise
barriers were constructed in 2001 alone. The majority
of barriers are installed in the vicinity of transportation
and industrial noise sources to shield nearby residen-
tial properties. Noise barriers are cost effective only for
the protection of large areas including several build-
ings and are rarely used for the protection of individual
properties. Noise barriers of usual height are generally
ineffective in protecting the upper levels of multi-storey
dwellings. Over many years environmental noise bar-

riers have been the subject of extensive studies, the
results of which have been consolidated in the form
of national and international standards and prediction
models [4.25–27]. Extensive guides to the acoustic and
visual design of noise barriers are available [4.28, 29].
Some issues remain to be resolved relating to the degra-
dation of the noise-barrier performance in the presence
of wind and temperature gradients, the influence of lo-
calized atmospheric turbulence, temporal effects from
moving traffic, the influence of local vegetation, the
aesthetic quality of barriers and their environmental
impact.
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4.5.1 Single-Edge Diffraction

A noise barrier works by blocking the direct path
from the noise source to the receiver. The noise then
reaches the receiver only via diffraction around the
barrier edges. The calculation of barrier attenuation
is therefore mainly dependent on the solution of the
diffraction problem. Exact integral solutions of the
diffraction problem were available as early as the late
19th [4.30] and early 20th century [4.31]. For practical
calculations however it is necessary to use approxi-
mations to the exact solutions. Usually this involves
assuming that the source and receiver are more than
a wavelength from the barrier and the receiver is in the
shadow zone,which is valid in almost all applications
of noise barriers. The Kirchhoff–Fresnel approxima-
tion [4.32], in terms of the Fresnel numbers for thin
rigid screens (4.10), and the geometrical theory of
diffraction [4.33] for wedges and thick barriers have
been used for deriving practical formulae for barrier
calculations. For a rigid wedge barrier, the solution pro-
vided by Hadden and Pierce [4.34] is relatively easy to
calculate and highly accurate. A line integral solution,
based on the Kirchhoff–Fresnel approximation [4.35]
describes the diffracted pressure from a distribution of
sources along the barrier edge and has been extended
to deal with barriers with jagged edges [4.36]. There is
also a time-domain model [4.37].

As long as the transmission loss through the barrier
material is sufficiently high, the performance of a bar-
rier is dictated by the geometry (Fig. 4.2).

The total sound field in the vicinity of a semi-infinite
half plane depends on the relative position of source,
receiver, and the thin plane. The total sound field pT
in each of three regions shown in Fig. 4.2 is given as
follows:

In front of the barrier: pT = pi+ pr+ pd , (4.9a)

Above the barrier: pT = pi+ pd , (4.9b)

In the shadow zone: pT = pd . (4.9c)

The Fresnel numbers of the source and image source are
denoted, respectively, by N1 and N2, and are defined as
follows:

N1 = R′ − R1

λ/2
= k

π

(
R′ − R1

)
, (4.10a)

and N2 = R′ − R2

λ/2
= k

π

(
R′ − R2

)
. (4.10b)

where R′ = rs+ rr is the shortest source–edge–receiver
path.

The attenuation (Att) of the screen, sometimes
known as the insertion loss IL, is often used to assess
the acoustics performance of the barrier. It is defined as
follows,

Att = IL = 20 lg

(∣∣∣∣
pw

pw/o

∣∣∣∣

)
dB , (4.11)

where pw and pw/o is the total sound field with or with-
out the presence of the barrier. Note that the barrier
attenuation is equal to the insertion loss only in the
absence of ground effect.

Maekawa [4.38] has provided a chart that expresses
the attenuation of a thin rigid barrier based on the
Fresnel number N1 associated with the source. The
chart was derived empirically from extensive labora-
tory experimental data but use of the Fresnel number
was suggested by the Kirchhoff–Fresnel diffraction the-
ory. Maekawa’s chart extends into the illuminated zone
where N1 is taken to be negative. Maekawa’s chart
has been proved to be very successful and has be-
come the de facto standard empirical method for barrier
calculations. Many of the barrier calculation methods
embodied in national and international standards [4.25,
39] stem from this chart. There have been many at-
tempts to fit the chart with simple formulae. One of the
simplest formulae [4.40] is

Att = 10 lg(3+20N) dB . (4.12)

The Maekawa curve can be represented mathemati-
cally by [4.41]

Att = 5+20 lg

√
2πN1

tanh
√

2πN1
. (4.13)

Receiver

Source Image
source

pi+pr+pd

pi+pd

pd

rs R1

R 2

rr

Fig. 4.2 Diffraction of sound by a thin barrier
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An improved version of this result, using both Fresnel
Numbers (4.10), is [4.42]

Att = Atts+Attb+Attsb+Attsp , (4.14a)

where Atts = 20 lg

√
2πN1

tanh
√

2πN1
−1 , (4.14b)

Attb = 20 lg

[
1+ tanh

(
0.6 lg

N2

N1

)]
,

(4.14c)

Attsb =
(

6 tanh
√

N2−2−Attb
)

×
(

1− tanh
√

10N1

)
, (4.14d)

Attsp =−10 lg
1

(R′/R1)
2+ (R′/R1)

. (4.14e)

The term Atts is a function of N1, which is a measure
of the relative position of the receiver from the source.
The second term depends on the ratio of N2/N1, which
depends on the proximity of either the source or the
receiver to the half plane. The third term is only sig-
nificant when N1 is small and depends on the proximity
of the receiver to the shadow boundary. The last term,
a function of the ratio R′/R1, accounts for the diffrac-
tion effect due to spherical incident waves.

4.5.2 Effects of the Ground
on Barrier Performance

Equations (4.12–4.14) only predict the amplitude of
sound and do not include wave interference effects.
Such interference effects result from the contributions
from different diffracted wave paths in the presence of
ground (see also Sect. 4.6).

Consider a source Sg located at the left side of the
barrier, a receiver Rg at the right side of the barrier and
E is the diffraction point on the barrier edge (Fig. 4.3).

Barrier

Impedance ground

Sg

Si

Rg

Ri

E

Fig. 4.3 Diffraction by a barrier on impedance ground

The sound reflected from the ground surface can
be described by an image of the source Si. On the re-
ceiver side, sound waves will also be reflected from the
ground. This effect can be considered in terms of an
image of the receiver Ri. The pressure at the receiver
is the sum of four terms that correspond to the sound
paths Sg ERg, Si ERg, Sg ERi and Si ERi. If the surface
is a perfectly reflecting ground, the total sound field is
the sum of the diffracted fields of these four paths,

PT = P1+ P2+ P3+ P4 , (4.15)

where

P1 = P
(
Sg, Rg, E

)
,

P2 = P
(
Si, Rg, E

)
,

P3 = P
(
Sg, Ri, E

)
,

P4 = P (Si, Ri, E) .

P(S, R, E) is the diffracted sound field due to a thin bar-
rier for given positions of source S, receiver R and the
point of diffraction at the barrier edge E. If the ground
has finite impedance (such as grass or a porous road sur-
face) then the pressure corresponding to rays reflected
from these surfaces should be multiplied by the appro-
priate spherical wave reflection coefficient(s) to allow
for the change in phase and amplitude of the wave on
reflection as follows,

PT = P1+Qs P2+QR P3+Qs QR P4 , (4.16)

where Qs and QR are the spherical wave reflection
coefficients for the source and receiver side respec-
tively. The spherical wave reflection coefficients can be
calculated for different types of ground surfaces and
source/receiver geometries (Sect. 4.6).

Usually, for a given source and receiver position, the
acoustic performance of the barrier on the ground is as-
sessed by use of either the excess attenuation (EA) or
the insertion loss (IL). They are defined as follows,

EA = SPL f− SPLb , (4.17)

IL = SPLg− SPLb , (4.18)

where SPL f is the free field noise level, SPLg is the
noise level with the ground present and SPLb is the
noise level with the barrier and ground present. Note
that, in the absence of a reflecting ground, the numeri-
cal value of EA (which was called Att previously) is the
same as IL. If the calculation is carried out in terms of
amplitude only, then the attenuation Attn for each sound
path can be directly determined from the appropriate
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Fresnel number Fn for that path. The excess attenuation
of the barrier on a rigid ground is then given by

AT = 10 lg

(
10

−
∣∣∣Att1

10

∣∣∣+10
−
∣∣∣Att2

10

∣∣∣

+10
−
∣∣∣Att3

10

∣∣∣+10
−
∣∣∣Att4

10

∣∣∣
)
. (4.19)

The attenuation for each path can either be calculated
by empirical or analytical formulae depending on the
complexity of the model and the required accuracy.

A modified form of the empirical formula for the
calculation of barrier attenuation is [4.25]

IL = 10 log10

[
3+

(
C2
δ1

λ

)
C3 Kmet

]
, (4.20)

where C2 = 20 and includes the effect of ground re-
flections; C2 = 40 if ground reflections are taken into
account elsewhere; C3 is a factor to take into account
a double diffraction or finite barrier effect, C3 = 1 for
a single diffraction and δ1 = (rs+ rr)− R1 (Fig. 4.2).
The C3 expression for double diffraction is given
later.

The term Kmet in (4.15) is a correction factor for
average downwind meteorological effects, and is given
by

Kmet = e
− 1

2000

√
rsrrro

2δ1

for δ1 > 0 and Kmet = 1 for δ1 ≤ 0.
The formula reduces to the simple formula (4.12)

when the barrier is thin, there is no ground and if mete-
orological effects are ignored.

There is a simple approach capable of modeling
wave effects in which the phase of the wave at the re-
ceiver is calculated from the path length via the top of
the screen, assuming a phase change in the diffracted
wave of π/4 [4.43]. This phase change is assumed to be
constant for all source–barrier–receiver geometries. The
diffracted wave, for example, for the path Sg ERg would
thus be given by

P1 = Att1 e−i[k(r0+rr)+π/4] . (4.21)

This approach provides a reasonable approximation for
the many situations of interest where source and re-
ceiver are many wavelengths from the barrier and the
receiver is in the shadow zone.

For a thick barrier of width w, the International
Standards Organization (ISO) standard ISO 9613-2

[4.25] provides the following form of correction factor
C3 for use in (4.20)

C3 =

[
1+

(
5λ
w

)2
]

[
1
3 +

(
5λ
w

)2
] ,

where for double diffraction, δ1 = (rs+ rr+w)− R1 .
Note that this empirical method is for rigid barriers

of finite thickness and does not take absorptive surfaces
into account.

4.5.3 Diffraction by Finite-Length Barriers
and Buildings

All noise barriers have finite length and for certain con-
ditions sound diffracting around the vertical ends of
the barrier may be significant. This will also be the
case for sound diffracting around buildings. Figure 4.4
shows eight diffracted ray paths contributing to the total
field behind a finite-length barrier situated on finite-
impedance ground. In addition to the four normal ray
paths diffracted at the top edge of the barrier (Fig. 4.3),
four more diffracted ray paths result from the vertical
edges – two ray paths from each one. The two rays at ei-
ther side are, respectively, the direct diffracted ray and
the diffracted–reflected ray. Strictly, there are two fur-
ther ray paths at each side which involve two reflections
at the ground as well as diffraction at the vertical edge
but usually these are neglected.

The reflection angles of the two diffracted–reflected
rays are independent of the barrier position. They will
either reflect at the source side or on the receiver side
of the barrier, which are dependent on the relative posi-
tions of the source, receiver and barrier. The total field
is given by

PT = P1+Qs P2+QR P3+Qs QR P4+ P5

+QR P6+ P7+QR P8 , (4.22)

where P1–P4 are those given earlier for the diffraction
at the top edge of the barrier.

Although accurate diffraction formulas may be used
to compute Pi (i = 1, . . . , 8), a simpler approach is to
assume that each diffracted ray has a constant phase
shift of π/4 regardless of the position of source, receiver
and diffraction point.

To predict the attenuation due to a single building,
the double diffraction calculations mentioned earlier
could be used. For a source or receiver situated in
a built-up area, ISO 9613-2 [4.25] proposes an em-
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pirical method for calculating the combined effects of
screening and multiple reflections. The net attenuation
Abuild dB (< 10 dB) is given by

Abuild = Abuild,1+ Abuild,2 (4.23)

Abuild,1 = 0.1Bd0 ,

Abuild,2 =−10 log
[
1− p

100

]
,

where B is the area density ratio of buildings (total
plan area/total ground area) and d0 is the length of
the refracted path from source to receiver that passes
through buildings. Abuild,2 is intended to be used only
where there are well defined but discontinuous rows of
buildings near to a road or railway and, p is the per-
centage of the length of facades relative to the total
length of the road or railway. As with barrier attenua-
tion, the attenuation due to buildings is to be included
only when it is predicted to be greater than that due to
ground effect. The ISO scheme offers also a frequency
dependent attenuation coefficient (dB/m) for propaga-
tion of industrial noise through an array of buildings

Source

Receiver

Ground
reflection

Fig. 4.4 Ray paths around a finite-length barrier or build-
ing on the ground

on an industrial site. It should be noted that there are
considerable current efforts devoted to studying sound
propagation through buildings and along streets but this
work is not surveyed here.

4.6 Ground Effects

Ground effects (for elevated source and receiver) are the
result of interference between sound traveling directly
from source to receiver and sound reflected from the
ground when both source and receiver are close to the
ground. Sometimes the phenomenon is called ground
absorption but, since the interaction of outdoor sound
with the ground involves interference, there can be en-
hancement associated with constructive interference as
well as attenuation resulting from destructive interfer-
ence. If source and receiver are close to nonporous
concrete or asphalt, the sound pressure is doubled more
or less over a wide range of audible frequencies. Such
ground surfaces are described as acoustically hard.
Over acoustically-hard surfaces the frequencies of the
destructive interferences may be calculated from

fn = (2n+1)
c

2
(R2− R1) , n = 0, 1, 2, . . . (4.24)

where R2 and R1 are the lengths of the ground-reflected
and direct ray paths from source to receiver respectively.

A moving vehicle such as a passenger car can
be represented by two point sources of sound; one
at 0.01 m height corresponds to the tire/road contact
source and the other at 0.3 m height corresponds to
the engine source [4.18]. The A-weighted sound power

spectrum for a car moving at 70 km/h peaks near 1 kHz.
For a listener located at 1.5 m height and at a horizon-
tal distance of 10 m from the car, the f0 = 1.9 kHz and
there would be doubling of sound pressure, i. e. an in-
crease in the sound level due to the car of 6 dB up to
this frequency. However at a 4 m high receiver and for
the engine source f0 = 760 Hz and the destructive in-
terference would have a significant effect on the car
noise spectrum. Indeed hard ground is predicted to in-
crease the engine level by only 3 dB rather than 6 dB
at the higher receiver. The corresponding values of f0
for the tire/road source are 5.7 kHz for the 1.5 m high
receiver and 2.4 kHz for the 4 m high receiver. Over
porous surfaces, such as soil, sand and snow, the de-
structive interferences occur at lower frequencies than
over hard ground since incident sound is able to pene-
trate the pores and the surface reflection is changed in
amplitude and phase. The presence of vegetation tends
to make the surface layer of ground including the root
zone more porous but has to be relatively tall and dense
to influence sound levels (Sect. 4.7). On the other hand
frequent mowing or rolling causes the surface of grass
covered ground to be compacted and therefore more
acoustically-hard. Snow is significantly more porous
than soil and sand. The layer of partly decayed matter
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on the floor of a forest is also highly porous. Porous
ground surfaces are sometimes called acoustically soft.

4.6.1 Boundary Conditions at the Ground

For most environmental noise predictions the solid par-
ticulate framework in porous ground may be considered
to be rigid, so only one wave type, i. e., the wave
penetrating the pores, need be considered. With this
assumption, the speed of sound in the ground (c1) is
typically much smaller than that (c) in the air, i. e.,
c � c1. The propagation of sound in the air gaps
between the solid particles of which the ground is
composed, is impeded by viscous friction. This in
turn means that the index of refraction in the ground
n1 = c/c1 � 1 and any incoming sound ray is refracted
towards the normal as it propagates from air into the
ground. This type of ground surface is called locally
reacting because the air–ground interaction is indepen-
dent of the angle of incidence of the incoming waves.
The acoustical properties of locally reacting ground
may be represented simply by its relative normal-
incidence surface impedance (Z), or its inverse (the
relative admittance β) and the ground is said to form
a finite-impedance boundary. A perfectly hard ground
has infinite impedance (zero admittance). A perfectly
soft ground has zero impedance (infinite admittance). If
the ground is not locally reacting, i. e., it is externally
reacting, the impedance condition is replaced by two
separate conditions governing the continuity of pres-
sure and the continuity of the normal component of air
particle velocity.

4.6.2 Attenuation of Spherical Acoustic
Waves over the Ground

The idealized case of a point (omnidirectional) source
of sound at height zs and a receiver at height z, separated
by a horizontal distance r above a finite-impedance
plane (admittance β) is shown in Fig. 4.5.

Between source and receiver, a direct sound path
of length R1 and a ground-reflected path of length R2
are identified. With the restrictions of long range
(r ≈ R2), high frequency (kr � 1, k (z+ zs)� 1, where
k = ω/c and ω = 2π f , f being frequency) and with
both the source and receiver located close (r � z+ zs)
to a relatively hard ground surface (|β|big 
 1), the total
sound field at (x, y, z) can be determined from

p(x, y, z) = e−ikR1

4πR1
+ e−ikR2

4πR2
+Φp+φs , (4.25)

Receiver

Source

R1

R 2

θ

Fig. 4.5 Sound propagation from a point source to a re-
ceiver above a ground surface

where

Φp ≈ 2i
√
π

(
1

2
kR2

)1/2

β e−w2
erfc(iw)

e−ikR2

4πR2

(4.26)

and w, sometimes called the numerical distance, is
given by

w≈ 1

2
(1− i)

√
kR2(cos θ+β) . (4.27)

φs represents a surface wave and is small compared
with Φp under most circumstances. It is included in
careful computations of the complementary error func-
tion erfc(x) [4.44]. In all of the above a time dependence
of eiωt is understood.

After rearrangement, the sound field due to a point
monopole source above a locally reacting ground be-
comes

p(x, y, z) = e−ikR1

4πR1
+ [Rp+

(
1− Rp

)
F(w)

]

×
e−ikR2

4πR2
, (4.28)

where F(w), sometimes called the boundary loss factor,
is given by

F(w) = 1− i
√
πw exp(−w2)erfc(iw) (4.29)

and describes the interaction of a spherical wavefront
with a ground of finite impedance [4.45]. The term in
the square bracket of (4.28) may be interpreted as the
spherical wave reflection coefficient

Q = Rp+
(
1− Rp

)
F(w) , (4.30)

which can be seen to involve the plane wave reflection
coefficient Rp and a correction (the second term of Q),
which allows for the fact that the wavefronts are spheri-
cal rather than plane. The contribution of the wavefront
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curvature correction to the total sound field has been
called the ground wave, in analogy with the correspond-
ing term in the theory of amplitude-modulated (AM)
radio reception [4.46]. It represents a contribution from
the vicinity of the image of the source in the ground
plane. If the wavefront is plane (R2 →∞) then |w| →
∞ and F → 0. If the surface is acoustically hard, then
|β| → 0, which implies |w| → 0 and F → 1. If β = 0,
corresponding to a perfect reflector, the sound field
consists of two terms: a direct-wave contribution and
a wave from the image source corresponding to specular
reflection and the total sound field may be written

p(x, y, z) = e−ikR1

4πR1
+ e−ikR2

4πR2
.

This has a first minimum corresponding to destructive
interference between the direct and ground-reflected
components as given by (4.24), i. e. when k (R2− R1)=
π, or f = c/2 (R2− R1). Normally, for source and re-
ceiver close to the ground, this destructive interference
is at too high a frequency to be of importance in out-
door sound prediction. The higher the frequency of the
first minimum in the ground effect, the more likely that
it will be destroyed by turbulence (Sect. 4.8).

For |β| 
 1 but at grazing incidence (θ = π/2), so
that Rp =−1 and

p(x, y, z) = 2F(w)e−ikr

r
, (4.31)

the numerical distance w is given by

w= 1

2
(1− i)β

√
kr . (4.32)

If the plane wave reflection coefficient had been used
instead of the spherical wave reflection coefficient for
grazing incidence, it would have led to the prediction of
zero sound field when both source and receiver are on
the ground. Equations (4.28)–(4.30) comprise the most
widely used analytical solution for predicting sound
field above a locally reacting ground in a homogeneous
atmosphere. There are many other accurate asymptotic
and numerical solutions available but no significant nu-
merical differences between various predictions have
been revealed for practical geometries and typical out-
door ground surfaces.

4.6.3 Surface Waves

Although, numerically, it is part of the calculation of
the complementary error function (4.29), physically
the surface wave is a separate contribution propagat-
ing close to and parallel to the porous ground surface.

It produces elliptical motion of air particles as a result
of combining motion parallel to the surface with that
normal to the surface in and out of the pores. The sur-
face wave decays with the inverse square root of range
rather than inversely with range as is true for other com-
ponents. At grazing incidence on an impedance plane,
with normalized admittance β = βr + iβx , the condition
for the existence of the surface wave is

1

β2
x
>

1

β2
r
+1 . (4.33)

For a surface with large impedance, i. e., where |β|→ 0,
the condition is simply that the imaginary part of
the ground impedance (the reactance) is greater than
the real part (the resistance). This type of surface
impedance is possessed by cellular or lattice layers
placed on smooth, hard surfaces. Surface waves due
to a point source have been generated and studied
extensively over such surfaces in laboratory experi-
ments [4.47–49]. The outdoor ground type most likely
to produce a measurable surface wave is a thin layer
of snow over a frozen ground. By using blank pistol
shots in experiments over snow, Albert [4.50] has con-
firmed the existence of the predicted type of surface
wave outdoors.

There are some cases where it is not possible to
model the ground surface as an impedance plane, i. e.,
n1 is not sufficiently high to warrant the assumption
that n1 � 1. In this case, the refraction of the sound
wave depends on the angle of incidence as sound en-
ters the porous medium. This means that the apparent
impedance depends not only on the physical proper-
ties of the ground surface but also, critically, on the
angle of incidence. It is possible to define an effective
admittance, βe defined by

βe = ς1

√
n2

1− sin2 θ , (4.34)

where ς1 = ρ/ρ1 is the ratio of air density to the (com-
plex) density of the rigid, porous ground.

This allows use of the same results as before but
with the admittance replaced by the effective admittance
for a semi-infinite non-locally reacting ground [4.51].
There are some situations where there is a highly porous
surface layer above a relatively nonporous substrate.
This is the case with forest floors consisting of partly
decomposed litter layers above soil with a relatively
high flow resistivity, with freshly fallen snow on a hard
ground or with porous asphalt laid on a nonporous sub-
strate. The minimum depth dm for such a multiple layer
ground to be treated as a semi-infinite externally react-
ing ground to satisfy the above condition depends on
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the acoustical properties of the ground and the angle of
incidence. We can consider two limiting cases. If the
propagation constant within the surface layer is denoted
by k1 = kr − ikx , and for normal incidence, where θ = 0,
the required condition is simply

dm >
6

kx
. (4.35)

For grazing incidence where θ = π/2, the required con-
dition is

dm > 6

⎛

⎝

√(
k2

r − k2
x −1

)2

4
+ k2

r k2
x

−k2
r − k2

x −1

2

⎞

⎠

1
2

. (4.36)

It is possible to derive an expression for the effective
admittance of ground with an arbitrary number of lay-
ers. However, sound waves can seldom penetrate more
than a few centimeters in most outdoor ground sur-
faces. Lower layers contribute little to the total sound
field above the ground and, normally, consideration of
ground structures consisting of more than two layers is
not required for predicting outdoor sound. Nevertheless,
the assumption of a double-layer structure [4.51] has
been found to enable improved agreement with data ob-
tained over snow [4.52]. It has been shown rigorously
that, in cases where the surface impedance depends on
angle, replacing the normal surface impedance by the
grazing incidence value is sufficiently accurate for pre-
dicting outdoor sound [4.53].

4.6.4 Acoustic Impedance
of Ground Surfaces

For most applications of outdoor acoustics, porous
ground may be considered to have a rigid, rather than
elastic, frame. The most important characteristic of
a porous ground surface that affects its acoustical char-
acter is its flow resistivity. Soil scientists tend to refer to
air permeability, which is proportional to the inverse of
flow resistivity. Flow resistivity is a measure of the ease
with which air can move into and out of the ground.
It represents the ratio of the applied pressure gradi-
ent to the induced volume flow rate per unit thickness
of material and has units of Pa s m−2. If the ground
surface has a high flow resistivity, it means that it is dif-
ficult for air to flow through the surface. Flow resistivity
increases as porosity decreases. For example, conven-
tional hot-rolled asphalt has a very high flow resistivity

(10 000 000 Pa s m−2) and negligible porosity, whereas
drainage asphalt has a volume porosity of up to 0.25
and a relatively low flow resistivity (< 30 000 Pa s m−2).
Soils have volume porosities of between 10% and 40%.
A wet compacted silt may have a porosity as low as 0.1
and a rather high flow resistivity (4 000 000 Pa s m−2).
Newly fallen snow has a porosity of around 60% and
a fairly low flow resistivity (< 10 000 Pa s m−2). The
thickness of the surface porous layer and whether or
not it has acoustically hard substrate are also important
factors.

A widely used model [4.54] for the acoustical prop-
erties of outdoor surfaces involves a single parameter,
the effective flow resistivity σe, to characterize the
ground. According to this single-parameter model, the
propagation constant k and normalized characteristic
impedance Z are given by

k

k1
=
[
1+0.0978 ( f/σe)

−0.700

−i0.189 ( f/σe)
−0.595

]
, (4.37a)

Z = ρ1c1

ρc
= 1+0.0571 ( f/σe)

−0.754

− i0.087 ( f/σe)
−0.732 . (4.37b)

This model may be used for a locally reacting ground
as well as for an extended reaction surface. On the other
hand, there is considerable evidence that (4.37a) tends
to overestimate the attenuation within a porous material
with high flow resistivity. On occasion better agreement
with grassland data has been obtained by assuming that
the ground surface is that of a hard-backed porous layer
of thickness d [4.55] such that the surface impedance ZS
is given by

ZS = Z coth(ikd) . (4.37c)

The result of using (4.37) is a two-parameter
impedance model, the second parameter being the layer
thickness. A model based on an exponential change
in porosity with depth has been suggested [4.56–58].
Although this model is suitable only for high flow re-
sistivity, i. e., a locally reacting ground, it has enabled
better agreement with measured data for the acousti-
cal properties of many outdoor ground surfaces than
(4.37) [4.59]. The two adjustable parameters are the
effective flow resistivity (σe) and the effective rate of
change of porosity with depth (αe). The impedance of
the ground surface is predicted by

Z = 0.436(1− i)
√
σe

f
−19.74i

αe

f
. (4.38)
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More-sophisticated theoretical models for the
acoustical properties of rigid, porous materials intro-
duce porosity, the tortuosity (or twistiness) of the
pores, factors related to pore shape [4.60] and multi-
ple layering. Models that introduce viscous and thermal
characteristic dimensions of pores [4.61] are based on
a formulation by Johnson et al. [4.62]. Recently, it has
been shown possible to obtain explicit relationships be-
tween the characteristic dimensions and grain size by
assuming a specific microstructure of identical stacked
spheres [4.63]. Other developments allowing for a log-
normal pore-size distribution, while assuming pores of
identical shape [4.60, 64], are based on the work of Ya-
mamoto and Turgut [4.65]. As mentioned previously,
sometimes it is important to include multiple layer-
ing as well. Standard methods for obtaining ground
impedance are based on short-range measurements of
excess attenuation [4.66, 67]. Values of parameters de-
duced from data according to (4.37) and (4.38) and
other models show that there can be a wide range of
parameter values for grassland and that better fits to
short range data than obtained with (4.37) are possible
for many grass-covered and other ground surfaces using
two- or three-parameter models [4.59].

4.6.5 Impedance Discontinuity

Many outdoor sound propagation situations involve at
least one significant change in the ground impedance.
A typical example is sound propagation from a road
where the road traffic source is over an acoustically-
hard surface such as hot-rolled asphalt but the receiver

Za

R1

R2
Rd

Zb

Receiver

Source

Fig. 4.6 Sound propagation from a point source to a re-
ceiver above a ground surface containing an impedance
discontinuity

2-lane
urban road

hard

3.5 m x m 50 – x m

40 m

1 m 1.5 m
4 m

Corn

Fig. 4.7 Schematic of geometry used to calculate soft ground ef-
fects or crop effects (Sect. 4.7)

might be above grassland adjacent to the road. The form
of solution proposed by De Jong et al. [4.68] is partic-
ularly useful for a single impedance discontinuity. It is
an empirical combination of the formulas for diffraction
of spherical waves at a rigid half plane (Sect. 4.5.1) and
the field due to a point source over an impedance plane
described by the spherical wave reflection coefficient
calculation (Eqns. (4.28)–(4.29)) and, hence, it offers
a relatively straightforward computation. According to
the De Jong model, the excess attenuation over the
single discontinuity between portions of ground with
impedance Za and Zb, respectively, the source being
over Za, is given by

EA = 20 log

∣∣∣∣
P

P1

∣∣∣∣ , (4.39)

where

P

Pa
= 1+ Ra

R2
Qa,b exp[ik(Rb− Ra)](Qb−Qa)

×
exp

(−iπ
4

)
√
π

Ra

Rd
{Fda ± Fdb exp[ik(Rb− Ra)]} .

(4.40)

Qa,b is replaced by Qa, the spherical wave reflec-
tion coefficient for the portion of the ground with
impedance Za (4.30) and the positive sign in the
curly brackets is used when the point of specular re-
flection falls on that portion of ground. Conversely
Qa,b is replaced by Qb, the spherical wave reflec-
tion coefficient for the portion of the ground with
impedance Zb, and the negative sign in the curly brack-
ets is used when the point of specular reflection falls
on that portion of ground. Fda ≡ F

[√
k (Rd − Ra)

]

and Fdb ≡ F
[√

k (Rd − Rb)
]

are Fresnel integrals of
the form F(x) ≡ ∫∞x exp(iw)2 dw and the path lengths
are defined in Fig. 4.6. Rd is the source-discontinuity-
receiver path.

Using appropriate parameter values, impedance
models and (4.40) it is possible to calculate the poten-
tial effects on the attenuation of road traffic noise of
replacing acoustically-hard ground by acoustically-soft
ground.

In the situation shown in Fig. 4.7 with 1.5 and 4 m
high receivers 50 m from the nearest traffic noise source
on a two lane urban road (95% light vehicles and 5%
heavy vehicles traveling at 50 km/h with sound power
spectra calculated according to [4.18]), replacing a 45 m
wide area of hard ground by any soft ground is pre-
dicted to decrease levels by at least 5 dB at the lower
receiver and by between 1 and 3.5 dB at the higher
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Table 4.1 Predicted urban road noise reductions (dB) at a horizontal distance of 50 m from the nearside traffic lane due
to 45 m wide strips of soft ground (two types) compared with hard ground (Fig. 4.7)

Surface Distance to Receiver height

treatment 1.5 m 4 m

x (m) Lane 1 Lane 2 Combined Lane 1 Lane 2 Combined

Sports-field 0 6.2 6.2 6.2 3.6 2.8 3.2

2.5 6.1 5.9 6.0 2.8 2.1 2.4

5 5.8 5.6 5.7 2.1 1.4 1.7

Long grass 0 9.5 9.0 9.3 5.6 3.8 4.6

2.5 8.9 8.3 8.6 4.0 2.5 3.2

5 8.2 7.4 7.8 2.6 1.5 2.0

Table 4.2 Fitted impedance model parameters for two
ground types (Table 4.1) (after [4.59])

Surface Porosity Flow resistivity (kPa s m−2)

Sports-field 0.22 664.0

Long grass 0.36 104.0

receiver (Table 4.1). Significant variation in the noise
reduction is predicted associated with different fitted
ground parameters (Table 4.2). Use of low rather than
high flow resistivity grassland is predicted to give 3 dB
greater sound level reductions at the 1.5 m high receiver
as long as the soft ground extends from 2.5 m from the
road edge to the receiver. The relatively high flow resis-
tivity of a sportsfield for example may be the result of
compaction through frequent rolling and mowing. How-
ever the noise reductions predicted for all soft ground
types are similar if the width of hard ground before the
start of the soft ground is increased to 5 m and if the
receiver height is 4 m.

4.6.6 Effects of Small-Scale Roughness

Some surface impedance spectra derived directly from
measurements of complex excess attenuation over un-
cultivated grassland [4.69] indicate that the surface
impedance tends to zero above 3 kHz. The effects of in-
coherent scatter from a randomly rough porous surface
may explain these measurements [4.70]. Using a boss
approach, an approximate effective admittance for graz-
ing incidence on a hard surface containing randomly
distributed two-dimensional (2-D) roughness normal to
the roughness axes, may be written [4.71]

β ≈
(

3V 2k3b

2

)(
1+ δ

2

2

)
+ iVk(δ−1) , (4.41)

where V is the roughness volume per unit area of sur-
face (equivalent to mean roughness height), b is the

mean center-to-center spacing, δ is an interaction factor
depending on the roughness shape and packing density
and k is the wave number. An interesting consequence
of (4.41) is that a surface that would be acoustically
hard if smooth has, effectively, a finite impedance at
grazing incidence when rough. The real part of the ad-
mittance allows for incoherent scatter from the surface
and varies with the cube of the frequency and the square
of the roughness volume per unit area. The same ap-
proach can be extended to give the effective normalized
surface admittance of a porous surface containing 2-D
roughness [4.70, 72]. For a randomly rough porous sur-
face near grazing incidence [4.73] it is possible to obtain
the following approximation

Zr ≈ Zs−
( 〈H〉Rs

γρ0c0

)(
2

ν
−1

)
, [Re(Zr) ≥ 0] ,

(4.42)

where ν = 1+ 2
3π〈H〉, 〈H〉 is the root mean square

roughness height and Zs is the impedance of the
porous surface if it were smooth. This can be used
with an impedance model or measured smooth surface
impedance to predict the effect of surface roughness for
long wavelengths.

Figure 4.8 shows the results of laboratory measure-
ments of excess attenuation (4.40) spectra obtained with
(point) source height of 0.07 m, receiver height 0.07 m
separated by 0.7 m over an acoustically-hard glass sheet
over rough surfaces formed (Fig. 4.8a) by adding be-
tween 1 and 15 semi-elliptical wooden strips (0.008 m
height, 0.02 m width) with center-to-center spacing of
5 cm starting with the first placed at the specular reflec-
tion point and subsequent strips placed symmetrically
about this point (Fig. 4.8b) by five random arrange-
ments of 15 wooden 15 triangular strips (0.015 m high
and 0.03 m wide) with mean center-to-center spacing of
5 cm [4.74].
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Fig. 4.8a,b Excess attenuation spectra measured with (point) source height of 0.07 m, receiver height 0.07 m separated
by 0.7 m over an acoustically-hard glass sheet over rough surfaces formed (a) by adding between 1 and 15 semi-elliptical
wooden strips (0.008 m height, 0.02 m width) with center-to-center spacing of 5 cm and (b) by five random arrange-
ments of 15 wooden 15 triangular strips (0.015 m high and 0.03 m wide) with mean center-to-center spacing of 5 cm
(after [4.75])

The presence of only one semi-elliptical strip at the
specular reflection point is sufficient to shift the de-
structive interference obtained over the smooth glass
sheet from 12.4 to 11 kHz. The addition of further iden-
tical strips symmetrically about this point causes the
destructive interference to be reduced further and up
to three excess attenuation maxima (shown as minima)
to appear. In contrast for the same geometry, randomly
placed strips give rise to relatively broad interference
patterns (Fig. 4.8b).

Cultivation practices can have important influences
on ground effect since they change the surface prop-
erties. Aylor [4.76] noted a significant change in the
excess attenuation at a range of 50 m over a soil after
disking without any noticeable change in the mete-
orological conditions. Another cultivation practice is
sub-soiling, which is intended to break up soil com-
paction 300 mm or more beneath the ground surface
caused, for example, by the repeated passage of heavy
vehicles. It is achieved by creating cracks in the com-
pacted layer by means of a single- or double-bladed
tine with sharpened leading edges. Sub-soiling only
has a small effect on the surface profile of the ground.
Plowing turns the soil surface over to a depth of about
0.15 m. Measurements taken over cultivated surfaces
before and after sub-soiling and plowing have been
shown to be consistent with the predicted effects of the
resulting changes in surface roughness and flow resis-
tivity [4.70, 74].

4.6.7 Examples of Ground Attenuation
Under Weakly Refracting Conditions

Pioneering studies of the combined influences of ground
surface and meteorological conditions [4.77, 78] were
carried out using a fixed Rolls Royce Avon jet en-
gine as a source at two airfields. The wind speeds and
temperatures were monitored at two heights and there-
fore it was possible to deduce something about the
wind and temperature gradients during the measure-
ments. However, perhaps because the role of turbulence
was not appreciated (Sect. 4.8.3), the magnitude of
turbulence was not monitored. This was the first re-
search to note and quantify the change in ground
effect with type of surface. Examples of the resulting
data, quoted as the difference between sound pres-
sure levels at 19 m (the reference location) and more
distant locations corrected for the decrease expected
from spherical spreading and air absorption, are shown
in Fig. 4.9. During slightly downwind conditions with
low wind speed (< 2 m s−1) and small temperature
gradients (< 0.01 ◦C/m), the ground attenuation over
grass-covered ground at Hatfield, although still a ma-
jor propagation factor of more than 15 dB near 400 Hz,
was less than that over the other grass-covered ground at
Radlett and its maximum value occurred at a higher fre-
quency. Snowfall during the period of the measurements
also enabled observation of the large change resulting
from the presence of snow at low frequencies, i. e., over
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Fig. 4.9 Parkin and Scholes data for the level difference
between microphones at a height of 1.5 m and at distances
of 19 m and 347 m from a fixed jet engine source (nozzle-
center height 1.82 m) corrected for wavefront spreading
and air absorption. � and ♦ represent data over air-
fields (grass covered) at Radlett and Hatfield respectively
with a positive vector wind between source and receiver
of 1.27 m/s (5 ft/s); × represent data obtained over ap-
proximately 0.15 m thick (6–9 inch) snow at Hatfield and
a positive vector wind of 1.52 m/s (6 ft/s) (after [4.77,78])

20 dB attenuation in the 63 and 125 Hz third-octave
bands.

Noise measurements have been made to distances
of 3 km during aircraft engine run-ups with the aim of
defining noise contours in the vicinity of airports [4.79].

Measurements were made for a range of power
settings during several summer days under weakly re-
fracting weather conditions (wind speed < 5 m/s, tem-
perature 20–25 ◦C). 7–10 measurements were made at
every measurement station (in accordance with Inter-
national Civil Aviation Organization (ICAO) annex 16
requirements) and the results have been averaged. Ex-
ample results are shown in Fig. 4.10. It can be shown
that these data are consistent with nearly acoustically
neutral, i. e., zero gradient of the sound of speed, con-
ditions. Note that at 3 km, the measured levels are more
than 30 dB less than would be expected from wavefront
spreading and air absorption only.

Up to distances of 500–700 m from the engine, the
data suggest attenuation rates near to the concrete or
spherical spreading plus air absorption predictions. Be-
yond 700 m the measured attenuation rate is nearer to
the soil prediction or between the soil and grass pre-
dictions. These results are consistent with the fact that

60
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1000100

Sound level difference (dB(A) re 100m)

Distance (m)

Spreading & air absorption
Concrete
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Grass
Measurements

Fig. 4.10 Measured differences between the A-weighted
sound level at 100 m and those measured at ranges up to
3 km during an Il-86 aircraft’s engine test in the direction of
maximum jet noise generation (≈ 40◦ from exhaust axis)
and predictions for levels due to a point source at the en-
gine center height assuming spherical spreading plus air
absorption and various types of ground (after [4.79])

the run-ups took place over the concrete surface of an
apron and further away (i. e., between 500–700 m in
various directions) the ground surface was soil and/or
grass.

4.6.8 Effects of Ground Elasticity

Noise from sonic booms, blasting operations and
heavy weapons shooting create low-frequency impul-
sive sound waves that propagate over long distances.
The latter can create a major environmental problem for
military training fields. Such impulsive sound sources
tend to disturb neighbors more through the vibration
and rattling induced in buildings, than by the direct
audible sound itself [4.80, 81]. Human perception of
whole-body vibration includes frequencies down to
1 Hz [4.82]. Moreover, the fundamental natural frequen-
cies of buildings are in the range 1–10 Hz. Planning
tools to predict and control such activities must there-
fore be able to handle sound propagation down to these
low frequencies.

Despite their valuable role in many sound-propa-
gation predictions, locally reacting ground impedance
models have the intrinsic theoretical shortcoming that
they fail to account for air-to-ground coupling through
interaction between the atmospheric sound wave and
elastic waves in the ground. This occurs particularly

Part
A

4
.6

–5

0

5

10

15

20

25
1 × 1041 × 10310010

Corrected level difference (dB re 19 m)

Frequency (Hz)



132 Part A Propagation of Sound

at low frequencies. Indeed air–ground coupled surface
waves at low frequencies have been of considerable
interest in geophysics, both because of the measured
ground-roll caused by intense acoustic sources and the
possible use of air sources in ground layering studies.
Theoretical analyses have been carried out for spherical
wave incidence on a ground consisting either of a fluid
or solid layer above a fluid or solid half-space [4.83].
However, to describe the phenomenon of acoustic-to-
seismic coupling accurately it has been found that the
ground must be modeled as an elastic porous mater-
ial [4.84, 85]. The resulting theory is relevant not only
to predicting the ground vibration induced by low-
frequency acoustic sources but also, as we shall see,
in predicting the propagation of low-frequency sound
above the ground.

The classical theory for a porous and elastic medium
predicts the existence of three wave types in the porous
medium: two dilatational waves and one rotational
wave. In a material consisting of a dense solid frame
with a low-density fluid saturating the pores, the first
kind of dilatational wave has a velocity very similar
to the dilatational wave (or geophysical P wave) trav-
eling in the drained frame. The attenuation of the first
dilatational wave type is however, higher than that of
the P wave in the drained frame. The extra attenuation
comes from the viscous forces in the pore fluid acting
on the pore walls. This wave has negligible dispersion
and the attenuation is proportional to the square of the
frequency, as is the case for the rotational wave. The
viscous coupling leads to some of the energy in this
propagating wave being carried into the pore fluid as
the second type of dilatational wave.

In air-saturated soils, the second dilatational wave
has a much lower velocity than the first and is often
called the slow wave, while the dilatational wave of
the first kind being called the fast wave. The attenua-
tion of the slow wave stems from viscous forces acting
on the pore walls and from thermal exchange with the
pore walls. Its rigid-frame limit is very similar to the
wave that travels through the fluid in the pores of a rigid,
porous solid [4.86]. It should be remarked that the slow
wave is the only wave type considered in the previous
discussions of ground effect. When the slow wave is ex-
cited, most of the energy in this wave type is carried
in the pore fluid. However, the viscous coupling at the
pore walls leads to some propagation within the solid
frame. At low frequencies, it has the nature of a dif-
fusion process rather than a wave, being analogous to
heat conduction. The attenuation for the slow wave is
higher than that of the first in most materials and, at

low frequencies, the real and imaginary parts of the
propagation constant are nearly equal.

The rotational wave has a very similar velocity to
the rotational wave carried in the drained frame (or
the S wave of geophysics). Again there is some extra
attenuation due to the viscous forces associated with
differential movement between solid and pore fluid. The
fluid is unable to support rotational waves, but is driven
by the solid.

The propagation of each wave type is determined by
many parameters relating to the elastic properties of the
solid and fluid components. Considerable efforts have
been made to identify these parameters and determine
appropriate forms for specific materials.

In the formulation described here, only equations
describing the two dilatational waves are introduced.
The coupled equations governing the propagation of
dilatational waves can be written as [4.87]

∇2(He−Cξ) = ∂2

∂t2 (ρe−ρfξ) , (4.43)

∇2(Ce−Mξ) = ∂2

∂t2 (ρfe−mξ)− η
k

δξ

δt
F(λ) ,

(4.44)

where e=∇ ·u is the dilatation or volumetric strain vec-
tor of the skeletal frame; ξ =Ω∇ · (u−U) is the relative
dilatation vector between the frame and the fluid; u is
the displacement of the frame, U is the displacement
of the fluid, F(λ) is the viscosity correction function,
ρ is the total density of the medium, ρf is the fluid
density, μ is the dynamic fluid viscosity and k is the
permeability.

The second term on the right-hand side of (4.44),
μ
k
∂ξ
∂t F(λ), allows for damping through viscous drag as

the fluid and matrix move relative to one another; m
is a dimensionless parameter that accounts for the fact
that not all the fluid moves in the direction of macro-
scopic pressure gradient as not all the pores run normal
to the surface and is given by m = τρf

Ω
, where τ is the

tortuosity andΩ is the porosity.
H , C and M are elastic constants that can be ex-

pressed in terms of the bulk moduli Ks, Kf and Kb of
the grains, fluid and frame, respectively and the shear
modulus μ of the frame [4.61].

Assuming that e and ξ vary as eiωt , ∂/∂t can be
replaced by iω and (4.43) can be written [4.86] as

∇2(Ce−Mξ) =−ω [ρ f e−ρ(ω)ξ
]
, (4.45)

where ρ(ω) = τρf
Ω
− iμ
ωk F(λ) is the dynamic fluid den-

sity. The original formulation of F(λ) (and hence of
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ρ(ω)) was a generalization from the specific forms
corresponding to slit-like and cylindrical forms but as-
suming pores with identical shape. Expressions are also
available for triangular and rectangular pore shapes
and for more arbitrary microstructures [4.60, 61, 64].
If plane waves of the form e = A exp [−i(lx−ωt)] and
ξ = B exp [−i(lx−ωt)] are assumed, then the disper-
sion equations for the propagation constants may be
derived. These are

A
(

l2 H−ω2ρ
)
+ B

(
ω2ρf− l2C

)
= 0 , (4.46)

and

A
(

l2C−ω2ρf

)
+ B

[
mω2− l2 M− iωF(λ)

η

k

]
= 0 .

(4.47)

A nontrivial solution of (4.46) and (4.47) exists only
if the determinant of the coefficient vanishes, giving

∣∣∣∣∣
l2 H−ω2ρ ω2ρf− l2C

l2C−ω2ρf mω2− l2 M− iωF(λ) ηk

∣∣∣∣∣= 0 .

(4.48)

There are two complex roots of this equation from
which both the attenuation and phase velocities of the
two dilatational waves are calculated.

At the interface between different porous elastic
media there are six boundary conditions that may be
applied. These are:

1. Continuity of total normal stress
2. Continuity of normal displacement
3. Continuity of fluid pressure
4. Continuity of tangential stress
5. Continuity of normal fluid displacement
6. Continuity of tangential frame displacement.

At an interface between a fluid and the poro-elastic
layer (such as the surface of the ground) the first four
boundary conditions apply.

The resulting equations and those for a greater
number of porous and elastic layers are solved numeri-
cally [4.61].

The spectrum of the ratio between the normal com-
ponent of the soil particle velocity at the surface of the
ground and the incident sound pressure, the acoustic-to-
seismic coupling ratio or transfer function, is strongly
influenced by discontinuities in the elastic wave proper-
ties within the ground. At frequencies corresponding to
peaks in the transfer function, there are local maxima in
the transfer of sound energy into the soil [4.84]. These

are associated with constructive interference between
down- and up-going waves within each soil layer. Con-
sequently there is a relationship between near-surface
layering in soil and the peaks or layer resonances
that appear in the measured acoustic-to-seismic transfer
function spectrum: the lower the frequency of the peak
in the spectrum, the deeper the associated layer. Fig-
ure 4.11 shows example measurements and predictions
of the acoustic-to-seismic transfer function spectrum at
the soil surface [4.12]. The measurements were made
using a loudspeaker sound source and a microphone
positioned close to the surface, vertically above a geo-
phone buried just below the surface of a soil that had
a loose surface layer. Seismic refraction survey mea-
surements at the same site were used to determine the
wave speeds. The predictions have been made by us-
ing a computer code known as the fast field program
for layered air–ground systems (FFLAGS) that models
sound propagation in a system of fluid layers and porous
elastic layers [4.85].

This numerical theory (FFLAGS) may be used also
to predict the ground impedance at low frequencies.
In Fig. 4.12, the predictions for the surface impedance
at a grazing angle of 0.018◦ are shown as a function of
frequency for the layered porous and elastic system de-
scribed by Table 4.3 and compared with those for a rigid
porous ground with the same surface flow resistivity and
porosity.

The influence of ground elasticity is to reduce the
magnitude of the impedance considerably below 50 Hz.

Fig. 4.11 Measured and predicted acoustic-to-seismic cou-
pling ratio for a layered soil (range 3.0 m, source height
0.45 m)
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Table 4.3 Ground profile and parameters used in the calculations for Figs. 4.12 and 4.13

Layer Flow resistivity
(kPa s m−2)

Porosity Thickness
(m)

P-wave speed
(m/s)

S-wave speed
(m/s)

Damping

1 1 740 0.3 0.5 560 230 0.04

2 1 740 0.3 1.0 220 98 0.02

3 1 740 000 0.01 150 1500 850 0.001

4 1 740 000 0.01 150 1500 354 0.001

5 1 740 000 0.01 Half-space 1500 450 0.001
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Fig. 4.12 Predicted surface impedance at a grazing angle of
0.018◦ for poro-elastic and rigid porous ground (four-layer
system, Table 4.3)

Potentially this is significant for predictions of low-
frequency noise, e.g., blast noise, at long range.

Figure 4.12 shows that the surface impedance of
this four-layer poro-elastic system varies between graz-
ing angles of 5.7◦ and 0.57◦ but remains more or
less constant for smaller grazing angles. The pre-
dictions show two resonances. The lowest-frequency
resonance is the most angle dependent. The peak in
the real part changes from 2 Hz at 5.7◦ to 8 Hz at
0.057◦. On the other hand the higher-frequency reso-
nance peak near 25 Hz remains relatively unchanged
with range.

The peak at the lower frequency may be associated
with the predicted coincidence between the Rayleigh
wave speed in the ground and the speed of sound
in air (Fig. 4.14). Compared with the near pressure
doubling predicted by classical ground impedance mod-
els, the predicted reduction of ground impedance at
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Fig. 4.13 Normalized surface impedance predicted for the
four-layer structure, speed of sound in air = 329 m/s (cor-
responding to an air temperature of −4 ◦C) for grazing
angles between 0.018◦ and 5.7◦

low frequencies above layered elastic ground can be
interpreted as the result of coupling of a significant frac-
tion of the incident sound energy into ground-borne
Rayleigh waves.

Numerical theory has also been used to explore the
consequences of this coupling for the excess attenuation
of low-frequency sound above ground [4.88].

Figure 4.15 shows the excess attenuation spectra
predicted for source height 2 m, receiver height 0.1 m
and horizontal range of 6.3 km over a layered ground
profile corresponding to Table 4.3 (assumed a speed
of sound in air of 329 m/s) and by classical the-
ory for a point source above an impedance (locally
reacting) plane (4.22) using the impedance calcu-
lated for a 0.018◦ grazing angle (Zeff, broken lines
in Fig. 4.15).

The predictions show a significant extra attenuation
for 2–10 Hz. The predictions also indicate that, for an
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Fig. 4.14 Rayleigh-wave dispersion curve predicted for the
system described by Table 4.3

assumed speed of sound in air of 329 m/s, and, apart
from an enhancement near 2 Hz, the excess attenuation
spectrum might be predicted tolerably well by using
modified classical theory instead of a full poro-elastic
layer calculation.
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Fig. 4.15 Excess attenuation spectra predicted for source
height 2 m, receiver height 0.1 m and horizontal range of
6.3 km by FFLAGS (assumed speed of sound in air of
329 m/s) and by classical theory using impedance calcu-
lated for 0.018◦ grazing angle

It is difficult to measure the surface impedance of
the ground at low frequencies [4.89, 90]. Consequently
the predictions of significant ground elasticity effects
have been validated only by using data for acoustic-to-
seismic coupling, i. e., by measurements of the ratio of
ground surface particle velocity relative to the incident
sound pressure [4.88].

4.7 Attenuation Through Vegetation

Aylor [4.76, 91] has measured sound transmission loss
(horizontal level difference spectra) through various
crops, bushes and trees including (corn) maize, hem-
lock, red pine, hardwood brush and dense reeds in
water. Many of his measurements used a loudspeaker
source and receiving microphone heights lower than
the height of the vegetation. In addition to ground ef-
fect, Aylor found extra attenuation of sound at higher
frequencies (> 1 kHz) associated with the presence of
foliage. The extra attenuation is the result of a combi-
nation of (reverberant) multiple scattering, viscous and
thermal dissipation at leaf surfaces and sound-induced
vibrations of leaves. The viscous and thermal losses are
proportional to FL

√
f where F/m is the foliage area

per unit volume (sometimes called Leaf Area Density),
L [m] is the length of the propagation path and f [Hz] is

frequency. The losses due to (reverberant) multiple scat-
tering depend on the scattering parameter ka where k is
the wavenumber and a is the mean leaf width. The atten-
uation (Att) in dB/m due to vegetation may be predicted
from

Att√
(FL)

= A[1− exp(c−b(ka))] , ka ≥ c

b
.

(4.49)

A, b and c are constants. Values of 3, 0.5 and 0.3 re-
spectively fit Aylor’s data. The lower limit on ka avoids
negative values of attenuation.

Measurements of horizontal level difference spec-
tra have been made in a field of winter wheat at Butt’s
Close experimental farm in Woburn Sands, Bedford-
shire, UK. The plants were about 1 m tall. A continuous,
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Fig. 4.16 (a) Cleared area in a winter wheat crop at
Woburn; (b) measured spectrum of the difference in levels
received by receivers at 1 and 10 m from the loudspeaker
source (solid blue line); predicted ground effect alone –
broken red line; ground effect plus incoherence plus mul-
tiple scattering by stems – broken black line; ground effect
plus incoherence plus multiple scattering by stems plus vis-
cous and thermal attenuation ((4.49) with F = 20/m and
a = 0.008 m) – black solid line

broadband sound was generated by a Tannoy driver at-
tached to a 0.6 m long brass tube such that the end of
the tube acts as a point source. The height of the source
was 0.3 m. Microphones were placed at horizontal dis-
tances of 1.0, 3.0, 5.0, 7.5 and 10.0 m from the source
and also 0.3 m above the ground. The first of the mi-
crophones has been used as a reference and a set of
horizontal level difference spectra (the transfer func-
tion between microphone at a given distance and that
positioned 1 m from the source) were obtained and cor-
rected for the geometrical spreading (i. e., by adding
20 log(R2/R1)).

Short-range level difference measurements were
made also over an area of 1.5 m2 which was carefully
cleared of crops to determine the acoustic impedance
of the ground surface (Fig. 4.16a). The parallel slit
pore model of ground impedance [4.59] with a poros-
ity of 0.37 and flow resistivity of between 200 and
250 kPa s m−2 was found to enable a good fit of the
short-range spectra measured in the cleared area up to
3 kHz. The winter wheat stems from the cleared area
were counted and their diameters were measured. The
number of stems in a square meter was 414. The mean
stem diameter was 2.6 mm and the standard deviation
was 0.8 mm. The attenuation due to multiple scatter-
ing by stems in dB/m has been added to the predicted
normalized level difference due to ground effect. The
comparisons between predictions and data (Fig. 4.16.)
indicate that, although (reverberant) multiple scattering
by the stems can account for part of the extra attenua-
tion above 3 kHz at 10 m range in the wheat crop, it does
not account for all of it. Additional attenuation may be
due to viscous and thermal effects in the leaves of the
winter wheat plants. Since information about the leaf
sizes on the winter wheat crop is not available, values
of F (20/m) and a (0.008 m) in (4.49) have been ad-
justed to fit the data (with A = 3, b = 0.5 and c = 0.3).
The total predicted attenuation is a good fit to data. Use
of higher values of F (30/m) and a (0.012 m) in (4.49)
instead of calculating the multiple scattering by stems
enables a simpler and more or less as good a fit. This
leads a relatively straightforward way of calculating the
attenuation of traffic noise due to an area of crops.

Calculations of reductions in noise from a two lane
urban road (95% light vehicles, 5% heavy vehicles,
mean speed 50 km/h, with sound power spectra ac-
cording to [4.18]) have been made for the geometry
shown in Fig. 4.7 with x = 5 m by adding attenuation
(calculated from (4.49)) along the path lengths between
sources and receiver that pass through 1 m high dense
corn (F = 6.3/m, a = 0.0784 m) to ground effect for
a soft ground (4.28) while allowing for the discontin-

Table 4.4 Predicted two-lane urban road noise reduc-
tion (dB) due to ground effect and dense corn on an
arable ground (Nordtest #7: porosity 0.5, flow resistivity
106 kPa s m−2) (after [4.59]) for the geometry shown in
Fig. 4.7 with x = 5 m

Receiver height
(m)

Ground effect
alone

Ground effect plus
crop attenuation

1.5 8.0 15.5

4 2.1 7.0
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Fig. 4.17 (a) Measured attenuation through alternate bands of Norway spruce and oak (planted in 1946) with hawthorn,
roses and honeysuckle undergrowth; visibility less than 24 m. (b) Linear fits to attenuation above 1 kHz in mixed conifers
(squares), mixed deciduous summer (circles) and spruce monoculture (diamonds). Also shown is the foliage attenuation
predicted according to ISO 9613-2 (after [4.25])

uous impedance between the road and the soft ground
containing crops according to (4.38). Example predic-
tions shown in Table 4.4 suggest a potential contribution
of crops to the total attenuation of 7.5 dB at a 1.5 m high
receiver and about 5 dB at a 4 m high receiver.

Conventional wisdom is that trees have no practi-
cal part to play in reducing noise along the propagation
path between source and receiver. This belief stems
from the fact that there are too many holes in a belt
of trees to offer a significant barrier. Yet, there is in-
creasing evidence that dense tree plantings, particularly
with foliage to ground level, can offer significant re-
ductions as a consequence of similar mechanisms to
that contribute to attenuation by crop-covered ground.
Moreover dense periodic plantings could exploit sonic
crystal effects [4.92], i. e., stop bands produced by three
dimensional (3-D) arrays or regularly-spaced cylinders.
After deliberate introduction of defects such arrays can
be used to direct sound away from receivers. A ma-
ture forest or woodland has three types of influence on
sound. First is the ground effect. This is particularly
significant if there is a thick litter layer of partially de-
composing vegetation on the forest floor, so that the
ground surface consists of a thick highly porous layer
with rather low flow resistivity. This results in a pri-
mary excess attenuation maximum at lower frequencies
than observed over typical grassland, similar to that
over snow. Secondly the trunks and branches scatter
the sound out of the path between source and receiver.
Thirdly the foliage attenuates the sound by viscous fric-

tion. To predict the total attenuation through woodland,
Price et al. [4.93] simply added the predicted contri-
butions to attenuation for large cylinders (representing
trunks), small cylinders (representing foliage), and the
ground. The predictions are in qualitative agreement
with their measurements, but it is necessary to adjust
several parameters to obtain quantitative agreement.
Price et al. found that foliage has the greatest effect
above 1 kHz and the foliage attenuation increased in ap-
proximately a linear fashion with frequency. Figure 4.17
shows a typical variation of attenuation with frequency
and linear fits to the foliage attenuation.

Often the insertion loss of tree belts alongside high-
ways is considered relative to that over open grassland.
A Danish study found relative attenuation of 3 dB in
the A-weighted Leq due to traffic noise for tree belts
15–41 m wide [4.94]. Data obtained in the UK [4.95]
indicates a maximum reduction of the A-weighted L10
level due to traffic noise of 6 dB through 30 m of dense
spruce compared with the same depth of grassland. This
study also found that the effectiveness of the vegetation
was greatest closest to the road. A relative reduction of
5 dB in the A-weighted L10 level was found after 10 m
of vegetation.

Through 100 m of red pine forest, Heisler et al. [4.96]
have found 8 dB reduction in the A-weighted Leq due to
road traffic compared with open grassland. The edge of
the forest was 10 m from the edge of the highway and the
trees occupied a gradual downward slope from the road-
way extending about 325 m in each direction along the
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highway from the study site. Compared with open grass-
land Huisman [4.97] has predicted an extra 10 dB(A)
attenuation of road traffic noise through 100 m of pine
forest. He has remarked also that, whereas downward-
refracting conditions lead to higher sound levels over
grassland, the levels in woodland are comparatively un-
affected. This suggests that extra attenuation obtained
through the use of trees should be relatively robust to
changing meteorology.

Defrance et al. [4.98] have compared results from
both numerical calculations and outdoor measurements
for different meteorological situations. A numerical
parabolic equation code has been developed [4.99] and
adapted to road traffic noise situations [4.100] where
road line sources are modeled as series of equivalent
point sources of height 0.5 m. The data showed a reduc-
tion in A-weighted Leq due to the trees of 3 dB during
downward-refracting conditions, 2 dB during homoge-
neous conditions and 1 dB during upward-refracting
conditions. The numerical predictions suggest that in
downward-refracting conditions the extra attenuation
due to the forest is 2–6 dB(A) with the receiver at
least 100 m away from the road. In upward-refracting
conditions, the numerical model predicts that the for-
est may increase the received sound levels somewhat
at large distances but this is of less importance since
levels at larger distances tend to be relatively low any-
way. In homogeneous conditions, it is predicted that
sound propagation through the forest is affected only by
scattering by trunks and foliage. Defrance et al. [4.98]
have concluded that a forest strip of at least 100 m wide
appears to be a useful natural acoustical barrier. Nev-
ertheless both the data and numerical simulations were
compared to sound levels without the trees present, i. e.,
over ground from which the trees had simply been re-
moved. This means that the ground effect both with and
without trees would have been similar. This is rarely
likely to be the case. A similar numerical model has
been developed [4.101] including allowance for ground
effect, wind speed gradient through foliage and as-
suming effective wave numbers deduced from multiple
scattering theory for the scattering effects of trunks,
branches and foliage. The model predicts that the large

wind speed gradient in the foliage tends to refract sound
towards the ground and has an important effect partic-
ularly during upwind conditions. However, neither of
the PE models [4.99,101] include back-scatter or turbu-
lence effects. The neglect of the back-scatter is inherent
to the PE, which is a one-way prediction method. While
this is not a serious problem for propagation over flat
ground because the back-scatter is small, nor over an
impermeable barrier because the back-scattered field,
though strong, does not propagate through the barrier,
back scatter is likely to be significant for a forest. In-
deed acoustic reflections from the edges of forests are
readily detectable [4.102].

The potential of regularly spaced trees for
noise reduction has been investigated using nursery
trees [4.103]. Typically trees would have to be planted
unrealistically close together to offer a substantial at-
tenuation. On the other hand regular arrangements of
trees at realistic planting densities can give rise to
sonic crystal effects which can contribute extra at-
tenuation. The finite difference time domain (FDTD)
numerical method has been used to simulate the acous-
tical performance of tree belts including ground, tree
trunks, understorey and foliage [4.104]. Unlike a con-
ventional noise barrier, which reduces the contribution
of ground effect as a result of the increased mean sound
path height above the ground, the stop bands due to
a ground-mounted sonic crystal add to the destructive
interference due to ground effect. It has been predicted
that a practically-realisable 15 m wide tree belt consist-
ing of trees of at least 22 cm diameter with a lattice
constant of 2 m could give an overall attenuation for
passenger car noise of at least 6 dB of which 3 dB is
contributed by the soft ground effect. On this basis
a 15 m wide vegetation belt could compete with the traf-
fic noise insertion loss of a thin, classical noise barrier
(on grassland) with a height of between 1 and 1.5 m
in a non-refracting atmosphere. Some perturbation of
a regular arrangement has been found to be beneficial
with regard to sound transmission loss through an array
of cylinders on a soft ground surface since it can reduce
pass bands without affecting (or even enhancing) stop
bands [4.105].

4.8 Wind and Temperature Gradient Effects on Outdoor Sound

The atmosphere is constantly in motion as a conse-
quence of wind shear and uneven heating of the Earth’s
surface (Fig. 4.18).

Any turbulent flow of a fluid across a rough solid
surface generates a boundary layer. Most interest, from
the point of view of community noise prediction, fo-
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cuses on the lower part of the meteorological boundary
layer called the surface layer. In the surface layer, turbu-
lent fluxes vary by less than 10% of their magnitude but
the wind speed and temperature gradients are largest.
In typical daytime conditions the surface layer extends
over 50–100 m. Usually, it is thinner at night. Turbu-
lence may be modeled in terms of a series of moving
eddies or turbules with a distribution of sizes.

In most meteorological conditions, the speed of
sound changes with height above the ground. Usually,
temperature decreases with height (the adiabatic lapse
condition). In the absence of wind, this causes sound
waves to bend, or refract, upwards. Wind speed adds or
subtracts from sound speed. When the source is down-
wind of the receiver the sound has to propagate upwind.
As height increases, the wind speed increases and the
amount being subtracted from the speed of sound in-
creases, leading to a negative gradient in the speed of
sound. Downwind, sound refracts downwards. Wind ef-
fects tend to dominate over temperature effects when
both are present. Temperature inversions, in which air
temperature increases up to the inversion height, cause
sound waves to be refracted downwards below that
height. Under inversion conditions, or downwind, sound
levels decrease less rapidly than would be expected
from wavefront spreading alone.

In general, the relationship between the speed of
sound profile c(z), temperature profile T (z) and wind
speed profile u(z) in the direction of sound propagation
is given by

c(z) = c(0)

√
T (z)+273.15

273.15
+u(z) , (4.50)

where T is in ◦C and u is in m/s.

4.8.1 Inversions and Shadow Zones

If the air temperature first increases up to some height
before conforming to the usual decrease with height,
then there is an inversion. Sound from sources be-
neath the inversion height will tend to be refracted
towards the ground. This is a favorable condition for
sound propagation and may lead to higher levels than
would be the case under acoustically neutral condi-
tions. This will also be true for receivers downwind of
a source. In terms of rays between source and receiver
it is necessary to take into account any ground reflec-
tions. However, rather than use plane wave reflection
coefficients to describe these ground reflections, a bet-
ter approximation is to use spherical wave reflection
coefficients (Sect. 4.6.2).

1 km

0 m
100 m

Free troposphere

Boundary layer

Surface layer

GroundθU

Fig. 4.18 Schematic representation of the daytime atmo-
spheric boundary layer and turbulent eddy structures. The
curve on the left shows the mean wind speed (U) and
the potential temperature profiles (θ = T +γdz, where
γd = 0.098 ◦C/km is the dry adiabatic lapse rate, T is the
temperature and z is the height)

There are distinct advantages in assuming a linear
effective speed of sound profile in ray tracing and ig-
noring the vector wind since this assumption leads to
circular ray paths and relatively tractable analytical so-
lutions. With this assumption, the effective speed of
sound c can be written,

c(z) = c0(1+ ζ z) , (4.51)

where ζ is the normalized sound velocity gradient
(dc/dz)/c0 and z is the height above ground. If it also
assumed that the source–receiver distance and the effec-
tive speed of sound gradient are sufficiently small that
there is only a single ray bounce, i. e., a single ground
reflection between the source and receiver, it is possible
to use a simple adaptation of the formula (4.28), replac-
ing the geometrical ray paths defining the direct and
reflected path lengths by curved ones. Consequently, the
sound field is approximated by

p =
[
exp(−ik0ξ1)+Q exp(−ik0ξ2)

]

4πd
, (4.52a)

where Q is the appropriate spherical wave reflection
coefficient, d is the horizontal separation between the
source and receiver, and ξ1 and ξ2 are, respectively,
the acoustical path lengths of the direct and reflected
waves. These acoustical path lengths can be determined
by [4.106]

ξ1 =
φ>∫

φ<

dφ

ς sinφ
= ς−1 loge

[
tan φ>2
tan φ<2

]
(4.52b)
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and

ξ2 =
θ>∫

θ<

dθ

ς sin θ

= ς−1 loge

[
tan θ>2 tan2 θ0

2

tan θ<2

]
, (4.52c)

where φ(z) and θ(z) are the polar angles (measured from
the positive z-axis) of the direct and reflected waves.

The subscripts > and < denote the corresponding
parameters evaluated at z> and z< respectively, z> ≡
max(zs, zr ) and z< ≡ min(zs, zr ).

The computation of φ(z) and θ(z) requires the cor-
responding polar angles (φ0 and θ0) at z = 0 [4.107].
Once the polar angles are determined at z = 0, φ(z) and
θ(z) at other heights can be found by using Snell’s law

sinϑ = (1+ςz) sinϑ0 ,

where ϑ = φ or θ. Substitution of these angles
into (4.52b) and (4.52c) and, in turn, into (4.52a) makes
it possible to calculate the sound field in the presence of
a linear sound-velocity gradient.

For downward refraction, additional rays will cause
a discontinuity in the predicted sound level because of
the inherent approximation used in ray tracing. It is pos-
sible to determine the critical range rc at which there are
two additional ray arrivals. For ς > 0, this critical range
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4

2

0
0 2 4 6 8 10

Critical single-bounce range (km)

Normalized sound speed gradient (5 m–1)

3.5m

1m

10m

Fig. 4.19 Maximum ranges for which the single-bounce
assumption is valid for a linear speed of sound gradient
based on (4.53) and assuming equal source and receiver
heights: 1 m (solid line); 3.5 m (broken line) and 10 m (dot–
dash line)

is given by

rc=

{[√
(ςz>)2+2ςz>+

√
(ςz<)2+2ςz<

]2/3
}3/2

ς

+

{[√
(ςz>)2+2ςz>−

√
(ςz<)2+2ςz<

]2/3
}3/2

ς
.

(4.53)

Figure 4.19 shows that, for source and receiver at
1 m height, if predictions are confined to a horizontal
separation of less than 1 km and a normalized speed
of sound gradient of less than 0.0001 m−1 (correspond-
ing, for example, to a wind speed gradient of less than
0.1 s−1) then, it is reasonable to assume a single ground
bounce in ray tracing. The critical range for the single-
bounce assumption increases as the source and receiver
heights increase.

A negative sound gradient means upward refraction
and the creation of a sound shadow at a distance from
the source that depends on the gradient. The presence
of a shadow zone means that the sound level decreases
faster than would be expected from distance alone.
A combination of a slightly negative temperature gra-
dient, strong upwind propagation and air absorption has
been observed, in carefully monitored experiments, to
reduce sound levels, 640 m from a 6 m-high source over
relatively hard ground, by up to 20 dB more than ex-
pected from spherical spreading [4.108]. Since shadow
zones can be areas in which there is significant excess
attenuation, it is important to be able to locate their
boundaries even if only approximately.

For upward-refracting conditions, ray tracing is
incorrect when the receiver is in the shadow and penum-
bra zones. The shadow boundary can be determined
from geometrical considerations. For a given source and
receiver heights, the critical range r ′c is determined as

r ′c=
√

(ς ′z>)2+2ς ′z>+
√
ς ′2z<(2z>−z<)+2ς ′z<
ς ′

,

(4.54)

where

ς ′ = |ς|
1−|ς|z> .

Figure 4.20 shows that, for source and receiver
heights of 1 m and a normalized speed of sound gra-
dient of 0.0001 m−1, the distance to the shadow zone
boundary is about 300 m. As expected the distance to
the shadow-zone boundary is predicted to increase as
the source and receiver heights are increased.
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Fig. 4.20 Distances to shadow-zone boundaries for linear
speed of sound gradient based on (4.54) assuming equal
source and receiver heights: 1 m (solid line); 3.5 m (broken
line) and 10 m (dot–dash line)

A good approximation of (4.54), for the distance to
the shadow zone, when the source is close to the ground
and ζ is small, is

rc =
[

2c0

− dc
dz

]1/2 (√
hs+

√
hr

)
, (4.55)

where hs and hr are the heights of source and re-
ceiver respectively and dc/dz must be negative for
a temperature-induced shadow zone.

Conditions of weak refraction may be said to ex-
ist where, under downward-refracting conditions, the
ground-reflected ray undergoes only a single bounce
and, under upward-refracting conditions, the receiver is
within the illuminated zone.

When wind is present, the combined effects of tem-
perature lapse and wind will tend to enhance the shadow
zone upwind of the source, since wind speed tends to in-
crease with height. Downwind of the source, however,
the wind will counteract the effect of temperature lapse,
and the shadow zone will be destroyed. In any case, an
acoustic shadow zone is never as complete as an optical
one would be, as a result of diffraction and turbulence.
In the presence of wind with a wind speed gradient of
du/dz, the formula for the distance to the shadow-zone
boundary is given by

rc =
[

2c0
du
dz cosβ− dc

dz

]1/2 (√
hs+

√
hr

)
, (4.56)

where β is the angle between the direction of the wind
and the line between source and receiver.

Note that there will be a value of the angle β, (say
βc), given by

du

dz
cosβc = dc

dz
or

βc = cos−1

(
dc
dz
du
dz

)
(4.57)

at and beyond which there will not be a shadow zone.
This represents the critical angle at which the effect of
wind counteracts that of the temperature gradient.

4.8.2 Meteorological Classes
for Outdoor Sound Propagation

There is a considerable body of knowledge about me-
teorological influences on air quality in general and the
dispersion of plumes from stacks in particular. Plume
behavior depends on vertical temperature gradients and
hence on the degree of mixing in the atmosphere.
Vertical temperature gradients decrease with increas-
ing wind. The stability of the atmosphere in respect
to plume dispersion is described in terms of Pasquill
classes. This classification is based on incoming solar
radiation, time of day and wind speed. There are six
Pasquill classes (A–F) defined in Table 4.5.

Data are recorded in this form by meteorological
stations and so, at first sight, it is a convenient classi-
fication system for noise prediction.

Class A represents a very unstable atmosphere with
strong vertical air transport, i. e., mixing. Class F rep-
resents a very stable atmosphere with weak vertical
transport. Class D represents a meteorologically neutral
atmosphere. Such an atmosphere has a logarithmic wind
speed profile and a temperature gradient corresponding
to the normal decrease with height (adiabatic lapse rate).
A meteorologically neutral atmosphere occurs for high
wind speeds and large values of cloud cover. This means
that a meteorologically neutral atmosphere may be far
from acoustically neutral. Typically, the atmosphere is
unstable by day and stable by night. This means that
classes A–D might be appropriate classes by day and
D–F by night. With practice, it is possible to estimate
Pasquill stability categories in the field, for a particular
time and season, from a visual estimate of the degree of
cloud cover.

The Pasquill classification of meteorological con-
ditions has been adopted as a classification system for
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Table 4.5 Pasquill (meteorological) stability categories

Wind speeda Daytime 1 h before sunset Nighttime

(m/s) Incoming solar radiation (mW/cm2) or after sunrise cloud cover (octas)

> 60 30–60 < 30 Overcast 0–3 4–7 8

≤ 1.5 A A–B B C D F or Gb F D

2.0–2.5 A–B B C C D F E D

3.0–4.5 B B–C C C D E D D

5.0–6.0 C C–D D D D D D D

> 6.0 D D D D D D D D
a Measured to the nearest 0.5 m/s at 11 m height
b Category G is an additional category restricted to nighttime with less than 1 octa of cloud and a wind speed of less than 0.5 m/s

Table 4.6 CONCAWE meteorological classes for noise prediction

Meteorological Pasquill stability category and wind speed (m/s)

category Positive is towards receiver

A, B C, D, E F, G

1 v <−3.0 – –

2 −3.0< v <−0.5 v <−3.0 –

3 −0.5< v <+0.5 −3.0< v <−0.5 v <−3.0

4a +0.5< v <+3.0 −0.5< v <+0.5 −3.0< v <−0.5

5 v >+3.0 +0.5< v <+3.0 −0.5< v <+0.5

6 – v >+3.0 +0.5< v <+3.0
a Category with assumed zero meteorological influence

Table 4.7 Values of the meteorological corrections for CONCAWE categories 1 and 6

Octave band center frequency (Hz) 63 125 250 500 1000 2000 4000

Category 1 8.9 6.7 4.9 10.0 12.2 7.3 8.8

Category 6 −2.3 −4.2 −6.5 −7.2 −4.9 −4.3 −7.4

noise-prediction schemes [4.39, 109]. However, it is
clear from Table 4.5, that the meteorologically neutral
category (C), while being fairly common in a tem-
perate climate, includes a wide range of wind speeds
and is therefore not very suitable as a category for
noise prediction. In the CONservation of Clean Air and
Water in Europe (CONCAWE) scheme [4.109], this
problem is addressed by defining six noise-prediction
categories based on Pasquill categories (representing
the temperature gradient) and wind speed. There are
18 subcategories depending on wind speed. These are
defined in Table 4.6.

CONCAWE category 4 is specified as that in
which there is zero meteorological influence. So
CONCAWE category 4 is equivalent to acoustically
neutral conditions.

The CONCAWE scheme requires octave band anal-
ysis. Meteorological corrections in this scheme are
based primarily on analysis of data from Parkin and

Scholes [4.77, 78] together with measurements made at
several industrial sites. The excess attenuation in each
octave band for each category tends to approach asymp-
totic limits with increasing distance. Values at 2 km for
CONCAWE categories 1 (strong wind from receiver to
source, hence upward refraction) and 6 (strong down-
ward refraction) are listed in Table 4.7.

Wind speed and temperature gradients are not in-
dependent. For example, very large temperature and
wind speed gradients cannot coexist. Strong turbulence
associated with high wind speeds does not allow the
development of marked thermal stratification.

Table 4.8 shows a rough estimate of the probabil-
ity of occurrence of various combinations of wind and
temperature gradients (TG) [4.108].

With regard to sound propagation, the component
of the wind vector in the direction between source and
receiver is most important. So the wind categories (W)
must take this into account. Moreover, it is possible to
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Table 4.8 Estimated probability of occurrence of various combinations of wind and temperature gradient

Temperature gradient Zero wind Strong wind Very strong wind

Very large negative temperature gradient Frequent Occasional Rare or never

Large negative temperature gradient Frequent Occasional Occasional

Zero temperature gradient Occasional Frequent Frequent

Large positive temperature gradient Frequent Occasional Occasional

Very large positive temperature gradient Frequent Occasional Rare or never

Table 4.9 Meteorological classes for noise prediction based on qualitative descriptions

W1 Strong wind (> 3–5 m/s) from receiver to source

W2 Moderate wind (≈ 1–3 m/s) from receiver to source, or strong wind at 45◦

W3 No wind, or any cross wind

W4 Moderate wind (≈ 1–3 m/s) from source to receiver, or strong wind at 45◦

W5 Strong wind (> 3–5 m/s) from source to receiver

TG1 Strong negative: daytime with strong radiation (high sun, little cloud cover), dry surface and little wind

TG2 Moderate negative: as T1 but one condition missing

TG3 Near isothermal: early morning or late afternoon (e.g., one hour after sunrise or before sunset)

TG5 Moderate positive: nighttime with overcast sky or substantial wind

TG6 Strong positive: nighttime with clear sky and little or no wind

Table 4.10 Qualitative estimates of the impact of meteorological condition on noise levels

W1 W2 W3 W4 W5

TG1 – Large attenuation Small attenuation Small attenuation –

TG2 Large attenuation Small attenuation Small attenuation Zero meteorological
influence

Small enhancement

TG3 Small attenuation Small attenuation Zero meteorological
influence

Small enhancement Small enhancement

TG4 Small attenuation Zero meteorological
influence

Small enhancement Small enhancement Large enhancement

TG5 – Small enhancement Small enhancement Large enhancement –

give more detailed but qualitative descriptions of each
of the meteorological categories (W and TG, see Ta-
ble 4.9). As mentioned earlier, TG4 corresponds to
the unlikely condition of an acoustically-neutral atmo-
sphere so does not have a table entry.

In Table 4.10, the revised categories are identi-
fied with qualitative predictions of their effects on
noise levels. The classes are not symmetrical around
zero meteorological influence. Typically there are more
meteorological condition combinations that lead to at-
tenuation than lead to enhancement. Moreover, the
increases in noise level (say 1–5 dB) are smaller than
the decreases (say 5–20 dB).

Using the values at 500 Hz as a rough guide for
the likely corrections on overall A-weighted broadband
levels it is noticeable that the CONCAWE meteorolog-
ical corrections are not symmetrical around zero. The

CONCAWE scheme suggests meteorological variations
of between 10 dB less than the acoustically neutral level
for strong upward refraction between source and re-
ceiver and 7 dB more than the acoustically neutral level
for strong downward refraction between the source and
receiver.

4.8.3 Typical Speed of Sound Profiles

Outdoor sound prediction requires information on wind
speed, direction and temperature as a function of height
near to the propagation path. These determine the speed
of sound profile. Ideally, the heights at which the
meteorological data are collected should reflect the ap-
plication. If this information is not available, then there
are alternative procedures. It is possible, for example,
to generate an approximate speed of sound profile from
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Fig. 4.21 Two downward-refracting speed of speed of
sound profiles relative to the sound speed at the ground
obtained from similarity theory. The continuous curve
is approximately logarithmic corresponding to a large
Obukhov length and to a cloudy, windy night. The bro-
ken curve corresponds to a small Obukhov length as on
a calm clear night and is predominantly linear away from
the ground

temperature and wind speed at a given height using the
Monin–Obukhov similarity theory [4.110] and to input
this directly into a prediction scheme.

According to this theory, the wind speed component
(m/s) in the source–receiver direction and temperature
(◦C) at height z are calculated from the values at ground
level and other parameters as follows

u(z) = u∗
k

[
ln

(
z+ zM

zM

)
+ψM

( z

L

)]
, (4.58)

T (z) = T0+ T∗
k

[
ln

(
z+ zH

zH

)
+ψH

( z

L

)]
+Γ z ,

(4.59)

where the parameters are defined in Table 4.11.
For a neutral atmosphere, 1/L = 0 and ψM =

ψH = 0.
The associated speed of sound profile, c(z), is cal-

culated from (4.34).
Note that the resulting profiles are valid in the sur-

face or boundary layer only but not at zero height. In
fact, the profiles given by the above equations, some-
times called Businger–Dyer profiles [4.111], have been
found to give good agreement with measured profiles up
to 100 m. This height range is relevant to sound prop-
agation over distances up to 10 km [4.112]. However

improved profiles are available that are valid to greater
heights. For example [4.113],

ψM = ψH =−7 ln
z

L
− 4.25

z
L

+ 0.5
( z

L

)2 −0.852 for z > 0.5L .

(4.60)

Often zM and zH are taken to be equal. The rough-
ness length varies, for example, between 0.0002 (still
water) and 0.1 (grass). More generally, the roughness
length can be estimated from the Davenport classifica-
tion [4.114].

Figure 4.21 gives examples of speed of sound (dif-
ference) profiles (c(z)− c(0)) generated from (4.58)
through (4.60) using

1. zM = zH = 0.02, u∗ = 0.34, T∗ = 0.0212, Tav = 10,
T0 = 6, (giving L = 390.64),

2. zM = zH = 0.02, u∗ = 0.15, T∗ = 0.1371, Tav = 10,
T0 = 6, (giving L = 11.76),

and Γ =−0.01. These parameters are intended to cor-
respond to a cloudy windy night and a calm, clear night
respectively [4.97].

Salomons et al. [4.115] have suggested a method to
obtain the remaining unknown parameters, u∗, T∗, and
L from the relationship

L = u2∗
kgT∗

(4.61)

and the Pasquill category (P).
From empirical meteorological tables, approximate

relationships between the Pasquill class P the wind
speed u10 at a reference height of 10 m and the frac-
tional cloud cover Nc have been obtained. The latter
determines the incoming solar radiation and therefore
the heating of the ground. The former is a guide to the
degree of mixing. The approximate relationship is

P (u10, Nc)=1+3
[
1+exp (3.5−0.5u10−0.5Nc)

]−1

during the day

=6−2
[
1+exp (12−2u10−2Nc)

]−1

during the night . (4.62)

A proposed relationship between the Obukhov
length L [m] as a function of P and roughness
length z0 < 0.5 m is:

1

L (P, z0)
= B1(P) log(z0)+ B2(P) , (4.63a)
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Table 4.11 Definitions of parameters used in equations

u∗ Friction velocity (m/s) (depends on surface roughness)

zM Momentum roughness length (depends on surface roughness)

zH Heat roughness length (depends on surface roughness)

T∗ Scaling temperature K The precise value of this is not important for sound propagation.
A convenient value is 283 K

k Von Karman constant (= 0.41)

T0 Temperature (◦C) at zero height Again it is convenient to use 283 K

Γ Adiabatic correction factor = −0.01 ◦C/m for dry air.
Moisture affects this value but the difference is small

L Obukhov length (m) > 0 → stable, < 0 → unstable =± u2∗
kgT∗ (Tav +273.15), the thickness of the surface or

boundary layer is given by 2 L m

Tav Average temperature (◦C) It is convenient to use Tav = 10 so that (Tav +273.15)= θ0

ψM Diabatic momentum profile correction (mixing)
function

=−2 ln
(
(1+χM)

2

)
−ln

((
1+χ2

M

)

2

)
+2 arctan(χM)−π/2 if L < 0

= 5 z
L if L > 0

ψH Diabatic heat profile correction (mixing) function =−2 ln
(
(1+χH)

2

)
if L < 0

= 5 z
L if L > 0 or for z ≤ 0.5L

χM Inverse diabatic influence or function for momentum = (1− 16z
L

)0.25

χH Inverse diabatic influence function for momentum = (1− 16z
L

)0.5

where

B1(P) = 0.0436−0.0017P−0.0023P2 (4.63b)

and

B2(P) = min(0, 0.045P−0.125) for 1 ≤ P ≤ 4

max(0, 0.025P−0.125) for 4 ≤ P ≤ 6 .
(4.63c)

Alternatively, values of B1 and B2 may be obtained
from Table 4.12.

Equations (4.63) give

L = L (u10, Nc, z0) . (4.64)

Also u10 is given by (4.42) with z = 10 m, i. e.,

u(z) = u∗
k

[
ln

(
10+ zM

zM

)
+ψM

(
10

L

)]
. (4.65)

Table 4.12 Values of the constants B1 and B2 for the six
Pasquill classes

Pasquill
class

A B C D E F

B1 0.04 0.03 0.02 0 −0.02 −0.05

B2 −0.08 −0.035 0 0 0 0.025

Equations (4.43), (4.44) and (4.65) may be solved
for u∗, T∗, and L . Hence it is possible to calculate ψM,
ψH, u(z) and T (z).

Figure 4.22 shows the results of this procedure for
a ground with a roughness length of 0.1 m and two
upwind and downwind daytime classes defined by the
parameters listed in the caption.

As a consequence of atmospheric turbulence, in-
stantaneous profiles of temperature and wind speed
show considerable variations with both time and posi-
tion. These variations are eliminated considerably by
averaging over a period of the order of 10 minutes.
The Monin–Obukhov or Businger–Dyer models give
good descriptions of the averaged profiles over longer
periods.

The Pasquill category C profiles shown in Fig. 4.18
are approximated closely by logarithmic curves of the
form

c(z) = c(0)+b ln

[
z

z0
+1

]
, (4.66)

where the parameter b (> 0 for downward refraction
and < 0 for upward refraction) is a measure of the
strength of the atmospheric refraction. Such logarith-
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Fig. 4.22 Two daytime speed of sound profiles (upwind –
dashed and dotted; downwind – solid and dash-dot) deter-
mined from the parameters listed in Table 4.12

mic speed of sound profiles are realistic for open ground
areas without obstacles particularly in the daytime.

A better fit to nighttime profiles is obtained with
power laws of the form

c(z) = c(0)+b

(
z

z0

)α
, (4.67)

where α= 0.4(P−4)1/4.
The temperature term in the effective speed of sound

profile given by (4.66) can be approximated by truncat-
ing a Taylor expansion after the first term to give

c(z) = c [T0]+ 1

2

√
κR

T0
[T (z)−T0]+u(z) . (4.68)

When combined with (4.46) this leads to a linear
dependence on temperature and a logarithmic depen-
dence on wind speed with height. By comparing with
12 months of meteorological data obtained at a 50 m-
high meteorological tower in Germany, Heimann and
Salomons [4.116] found that (4.48) is a reasonably ac-
curate approximation to vertical profiles of effective
speed of sound even in unstable conditions and in sit-
uations where Monin–Obukhov theory is not valid. By
making a series of sound level predictions (using the
parabolic equation method) for different meteorological
conditions it was found that a minimum of 25 mete-
orological classes is necessary to ensure 2 dB or less
deviation in the estimated annual average sound level
from the reference case with 121 categories.

There are simpler, linear-segment profiles deduced
from a wide range of meteorological data that may
be used to represent worst-case noise conditions, i. e.,
best conditions for propagation. The first of these pro-
files may be calculated from a temperature gradient of
+15 ◦C/km from the surface to 300 m and 8 ◦C/km
above that, assuming a surface temperature of 20 ◦C.
This type of profile can occur during the daytime or at
night downwind due to wind shear in the atmosphere or
a very high temperature inversion. If this is considered
too extreme, or too rare a condition, then a second pos-
sibility is a shallow inversion, which occurs regularly
at night. A typical depth is 200 m. The profile may be
calculated from a temperature gradient of +20 ◦C/km
from the surface to 200 m and −8 ◦C/km above that
assuming a surface temperature of 20 ◦C.

The prediction of outdoor sound propagation also
requires information about turbulence.

4.8.4 Atmospheric Turbulence Effects

Shadow zones due to atmospheric refraction are pen-
etrated by sound scattered by turbulence and this sets
a limit of the order of 20–25 dB to the reduction of
sound levels within the sound shadow [4.117, 118].

Sound propagating through a turbulent atmosphere
will fluctuate both in amplitude and phase as a result
of fluctuations in the refractive index caused by fluctua-
tions in temperature and wind velocity. When predicting
outdoor sound, it is usual to refer to these fluctuations in
wind velocity and temperature rather than the cause of
the turbulence. The amplitude of fluctuations in sound
level caused by turbulence initially increase with in-
creasing distance of propagation, sound frequency and
strength of turbulence but reach a limiting value fairly
quickly. This means that the fluctuation in overall sound
levels from distant sources (e.g., line of sight from an
aircraft at a few km) may have a standard deviation of
no more than about 6 dB [4.118].

There are two types of atmospheric instability re-
sponsible for the generation of turbulent kinetic energy:
shear and buoyancy. Shear instabilities are associated
with mechanical turbulence. High-wind conditions and
a small temperature difference between the air and
ground are the primary causes of mechanical turbu-
lence. Buoyancy or convective turbulence is associated
with thermal instabilities. Such turbulence prevails
when the ground is much warmer than the overlying air,
such as, for example, on a sunny day. The irregularities
in the temperature and wind fields are directly related to
the scattering of sound waves in the atmosphere.
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Fluid particles in turbulent flow often move in
loops (Fig. 4.18) corresponding to swirls or eddies. Tur-
bulence can be visualized as a continuous distribution of
eddies in time and space. The largest eddies can extend
to the height of the boundary layer, i. e., up to 1–2 km
on a sunny afternoon. However, the outer scale of usual
interest in community noise prediction is of the order of
meters. In the size range of interest, sometimes called
the inertial subrange, the kinetic energy in the larger
eddies is transferred continuously to smaller ones. As
the eddy size becomes smaller, virtually all of the en-
ergy is dissipated into heat. The length scale at which at
which viscous dissipation processes begin to dominate
for atmospheric turbulence is about 1.4 mm.

The size of eddies of most importance to sound
propagation, for example in the shadow zone, may be
estimated by considering Bragg diffraction [4.119]. For
a sound with wavelength λ being scattered through
angle θ (Fig. 4.23), the important scattering structures
have a spatial periodicity D satisfying

λ= 2D sin
θ

2
. (4.69)

At a frequency of 500 Hz and a scattering angle of 10◦,
this predicts a size of 4 m.

When acoustic waves propagate nearly horizontally,
the (overall) variance in the effective index of refrac-
tion

〈
μ2
〉

is related approximately to those in velocity
and temperature by [4.120]

〈
μ2
〉
=
〈
u′2
〉

c2
0

cos2 φ+
〈
v′2
〉

c2
0

sin2 φ

+
〈
u′T

〉

c0
cosφ+

〈
T 2
〉

4T 2
0

, (4.70)

Scattered

Incident

θScattering region

D

Fig. 4.23 Bragg diffraction condition for acoustic scatter-
ing from turbulence

where T , u′ and v′ are the fluctuations in tempera-
ture, horizontal wind speed parallel to the mean wind
and horizontal wind speed perpendicular to the mean
wind, respectively. φ is the angle between the wind
and the wavefront normal. Use of similarity theory
gives [4.121]

〈
μ2
〉
= 5u2∗

c2
0

+ 2.5u∗T∗
c0T0

cosφ+ T 2∗
T 2

0

, (4.71)

where u∗ and T∗ are the friction velocity and scaling
temperature (=−Q/u∗, Q being the surface tempera-
ture flux), respectively.

Typically, during the daytime, the velocity term in
the effective index of refraction variance always dom-
inates over the temperature term. This is true, even on
sunny days, when turbulence is generated by buoyancy
rather than shear. Strong buoyant instabilities produce
vigorous motion of the air. Situations where temper-
ature fluctuations have a more significant effect on
acoustic scattering than velocity fluctuations occur most
often during clear, still nights.

Although the second term (the covariance term)
in (4.47) may be at least as important as the tempera-
ture term [4.121], it is often ignored for the purpose of
predicting acoustic propagation. Estimations of the fluc-
tuations in terms of u∗ and T∗ and the Monin–Obukhov
length L are given by [4.122], for L > 0 (stable condi-
tions, e.g., at night)

√〈
u′2
〉
= σu = 2.4u∗ ,

√〈
v′2
〉
= σv = 1.9u∗ ,

√〈
T 2
〉= σT = 1.5T∗

for L < 0 (unstable conditions, e.g., daytime)

σu =
(

12−0.5
z

L

)1/3
u∗ ,

σv = 0.8
(

12−0.5
z

L

)1/3
u∗ ,

σT = 2
(

1−18
z

L

)−1/2
T∗ .

For line-of-sight propagation, the mean squared
fluctuation in the phase of plane sound waves (some-
times called the strength parameter) is given by [4.123]

Φ2 = 2
〈
μ2
〉

k2
0 X L ,

where X is the range and L is the inertial length scale
of the turbulence. Alternatively, the variance in the
log-amplitude fluctuations in a plane sound wave prop-
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Fig. 4.24 A von Karman spectrum of turbulence and two
Gaussian spectra chosen to match it at low wave numbers
and over a narrow range of high wave numbers, respec-
tively

agating through turbulence is given by [4.124]

〈
χ2
〉
= k2

0 X

4

(
LT
σ2

T

T 2
0

+ Lv
σ2
v

c2
0

)
,

where LT , σ2
T and Lv, σ2

v are integral length scales
and variances of temperature and velocity fluctuations
respectively.

There are several models for the size distribution of
turbulent eddies. In the Gaussian model of turbulence
statistics, the energy spectrum φn(K ) of the index of
refraction is given by

φn (K)=
〈
μ2
〉 L2

4π
exp

(
−K2L2

4

)
, (4.72)

where L is a single length scale (integral or outer
length scale) proportional to the correlation length (in-
ner length scale) �G, i. e.,

L = �G

√
π

2
.

The Gaussian model has some utility in theoretical
models of sound propagation through turbulence since
it allows many results to be obtained in simple analyti-
cal form. However, as shown below, it provides a poor
overall description of the spectrum of atmospheric tur-
bulence [4.123].

In the von Karman spectrum, known to work reason-
ably well for turbulence with high Reynolds number, the
spectrum of the variance in index of refraction is given

by

φn(K ) =
〈
μ2
〉 L

π
(
1+K2�2

K

) , (4.73)

where L = �K
√
πΓ (5/6)/Γ (1/3).

Figure 4.24 compares the spectral function (Kφ(K )/〈
μ2
〉
) given by the von Karman spectrum for

〈
μ2
〉 =

10−2 and �K = 1 m with two spectral functions cal-
culated assuming a Gaussian turbulence spectrum,
respectively for

〈
μ2
〉= 0.818 × 10−2 and �G = 0.93 m

and
〈
μ2
〉= 0.2 × 10−2 and �G = 0.1 m. The variance and

inner length scale for the first Gaussian spectrum have
been chosen to match the von Karman spectrum exactly
for the low wave numbers (larger eddy sizes). It also
offers a reasonable representation near to the spectral
peak. Past the spectral peak and at high wave numbers,
the first Gaussian spectrum decays far too rapidly. The
second Gaussian spectrum clearly matches the von Kar-
man spectrum over a narrow range of smaller eddy
sizes. If this happens to be the wave number range of
interest in scattering from turbulence, then the Gaussian
spectrum may be satisfactory.

Many calculations of turbulence effects on outdoor
sound have relied on estimated or best-fit values rather
than measured values of turbulence parameters. Under
these circumstances, there is no reason to assume spec-
tral models other than the Gaussian one.

Typically, the high-wave-number part of the spec-
trum is the main contributor to turbulence effects on
sound propagation. This explains why the assumption
of a Gaussian spectrum results in best-fit parameter val-
ues that are rather less than those that are measured.

Turbulence destroys the coherence between direct
and ground-reflected sound and consequently reduces
the destructive interference in the ground effect. Equa-
tion (4.22) may be modified [4.125] to obtain the
mean-squared pressure at a receiver in a turbulent but
acoustically neutral (no refraction) atmosphere

〈
p2
〉
= 1

R2
1

+ |Q|2
R2

2

+ 2|Q|
R1 R2

cos [k (R2− R1)+ θ] T , (4.74)

where θ is the phase of the reflection coefficient, (Q =
|Q|e−iθ ), and T is the coherence factor determined by
the turbulence effect.

Hence the sound pressure level P is given by

P = 10 log10

(
p2
)
. (4.75)
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Fig. 4.25 Excess attenuation versus frequency for a source
and receiver above an impedance ground in an acoustically
neutral atmosphere predicted by (4.50)–(4.56) for three
values of 〈μ2〉 between 0 and 10−6. The assumed source
and receiver heights are 1.8 and 1.5 m, respectively, and the
assumed separation is 600 m. A two-parameter impedance
model (4.32) has been used with values of 300 000 N s m−4

and 0.0 m−1

For a Gaussian turbulence spectrum, the coherence
factor T is given by [4.126]

T = e−σ2(1−ρ) , (4.76)

where σ2 is the variance of the phase fluctuation along
a path and ρ is the phase covariance between adjacent
paths (e.g. direct and reflected)

σ2 = A
√
π
〈
μ2
〉

k2 RL0 , (4.77)

of the index of refraction, and L0 is the outer (inertial)
scale of turbulence.

The coefficient A is given by

A = 0.5 , R> kL2
0 , (4.78a)

A = 1.0 , R< kL2
0 . (4.78b)

The parameters 〈μ2〉 and L0 may be determined
from field measurements or estimated.

The phase covariance is given by

ρ =
√
π

2

L0

h
erf

(
h

L0

)
, (4.79)
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Fig. 4.26 (a) Data for the propagation of a 424 Hz tone
as a function of range out to 1.5 km (after [4.127]) com-
pared to FFP predictions with and without turbulence
(after [4.126]) and (b) broadband data to 2500 Hz for four
26 s averages (lines) of the spectra of the horizontal level
differences between sound level measurements at 6.4 m
high receivers, 152.4 and 762 m from a fixed jet engine
source (nozzle exit centered at 2.16 m height) compared
to FFP predictions with (diamonds) and without (crosses)
turbulence (after [4.126])

where h is the maximum transverse path separation and
erf(x) is the error function defined by

erf(x) = 2√
π

x∫

0

e−t2
dt , (4.80)
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For a sound field consisting only of direct and reflected
paths (which will be true at short ranges) in the absence
of refraction, the parameter h is given by

1

h
= 1

2

(
1

hs
+ 1

hr

)
, (4.81)

where hs and hr are the source and receiver heights re-
spectively. Daigle [4.128] uses half this value to obtain
better agreement with data.

When h → 0, then ρ→ 1 and T → 1. This is the
case near grazing incidence.

For h → large, then T →maximum. This will be the
case for a greatly elevated source and/or receiver. The
mean-squared refractive index may be calculated from
the measured instantaneous variation of wind speed and
temperature with time at the receiver. Specifically

〈
μ2
〉
= σ

2
w cos2 α

C2
0

+ σ2
T

4T 2
0

,

where σ2
w is the variance of the wind velocity, σ2

T is the
variance of the temperature fluctuations, α is the wind
vector direction, and C0 and T0 are the ambient sound
speed and temperature, respectively. Typical values of
best-fit mean-squared refractive index are between 10−6

for calm conditions and 10−4 for strong turbulence.
A typical value of L0 is 1 m but in general a value equal
to the source height should be used.

Figure 4.25 shows example results of compu-
tations of excess attenuation spectra using (4.74)
through (4.80). Note that increasing turbulence reduces
the depth of the main ground-effect dip.

Figures 4.26a, b show comparisons between meas-
ured data [4.129] and theoretical predictions using
a full-wave numerical solution (FFP) with and without
turbulence [4.126]. The data in Fig. 4.26a were obtained
with a loudspeaker source [4.130] in strong upwind
conditions modeled by the logarithmic speed of sound
gradient [4.127]

c(z) = 340.0−2.0 ln
( z

6 × 10−3

)
, (4.82)

where z is the height in m.
Those in Fig. 4.26b were obtained with a fixed jet

engine source during conditions with a negative tem-
perature gradient (modeled by two linear segments)
and a wind speed that was more or less constant with
height at 4 m s−1 in the direction between receivers and
source.

The agreement obtained between the predictions
from the FFP including turbulence and the data, while
not perfect, represents a large improvement over the re-
sults of calculations without turbulence and, in the case
of Fig. 4.26a, is similar to that obtained with predictions
given by the parabolic equation method [4.127].

4.9 Concluding Remarks

There are several areas of outdoor acoustics in which
further research is needed. This concluding section dis-
cusses current trends and lists some objectives that are
yet to be fulfilled.

4.9.1 Modeling the Interaction
of Meteorological
and Topographical Effects

Trends in research concerned with atmospheric and to-
pographical effects and with the interaction between
meteorology and topography [4.129, 131, 132] include
the combination of mesoscale meteorological models
with acoustic propagation models. The steady improve-
ment in readily available computational power has
encouraged the development of computationally in-
tensive finite-difference time-domain (FDTD) models,
which are based on numerical solutions of Euler’s equa-
tions [4.133,134] and models combining computational

fluid dynamics (CFD) and FDTD [4.135]. Work re-
mains to be done on the acoustical effects of barriers
and hills in the presence of wind- and temperature-
gradients. Noise barrier performance is degraded when
wind blows from source to receiver, i. e. in conditions
of downward refraction. Just behind the barrier, the
air flow is blocked and the resulting relatively wind-
less region causes compression of the streamlines above
the barrier leading to additional downward refraction.
The acoustic shadow region behind the barrier becomes
smaller and the barrier efficiency is decreased. Barriers
also give rise to extra turbulence leading to additional
sound scattering into the shadow zone. Typically this
is important only deep inside the shadow zone. One
method of reducing barrier-induced downward refrac-
tion effects is to add a row of tress on the receiver side
of the barrier [4.136]. In principle, vegetation on berms
may also have a useful effect. However many berms are
relatively streamlined compared to a conventional noise
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fence. The effects of vegetation need to be confirmed by
outdoor measurements.

4.9.2 Low-Frequency Interaction
with the Ground

Predictions of significant ground elasticity effects have
been validated only by data for acoustic-to-seismic cou-
pling, i. e., by measurements of the ratio of ground
surface particle velocity relative to the incident sound
pressure. Nevertheless given the significant predicted
effects of layered ground elasticity on low-frequency
propagation above ground it remains of interest to make
further efforts to measure them.

4.9.3 Rough-Surface Effects

The potential for increasing the attenuation of sound
over an acoustically-hard ground by deliberate introduc-
tion of various forms of roughness has been explored so
far only to a limited extent [4.67]. It will be of interest
to investigate the extent to which the frequency depen-
dence of the resulting ground effect can be tailored for
example by making the roughness elements acoustically
resonant.

Coastal communities are regularly exposed to air-
craft noise. To reduce the noise impact of sonic booms
from civil supersonic flights, it is likely that, wherever
possible, the aircraft will pass through the sound barrier
over the sea. This means that prediction of aircraft noise
in general, and sonic boom characteristics in particular,
in coastal areas will be important and will involve prop-
agation over the sea as well as the land. Given that the
specific impedance of seawater is greater than that of
air by four orders of magnitude, the sea surface may be
considered to be acoustically hard. However, it is likely

that sound propagation is modified during near-grazing
propagation above a rough sea surface. Such propaga-
tion is likely to be of interest also when predicting sound
propagation from near-ground explosions and from
offshore wind turbines. Although the sea surface is con-
tinuously in motion associated with winds and currents,
so that the scattered field is not constant, a sonic boom
or blast waveform is sufficiently short compared with
the period of the sea surface motion that the roughness
may be considered to be static. As long as the incident
acoustic wavelengths are large compared with the water
wave heights and periods, the effect of the diffraction
of sound waves by roughness may be modeled by an
effective impedance. This is a convenient way to incor-
porate the acoustical properties of a rough sea surface
into sonic boom and blast sound propagation models.
Some modeling work has been carried out on this ba-
sis [4.137]. However it remains to be validated by data.

4.9.4 Predicting Outdoor Noise

Most current prediction schemes for outdoor sources
such as transportation and industrial plant are empirical.
To some extent, this is a reflection of the complex-
ity arising from the variety of source properties, path
configurations and receiver locations. On the other
hand, apart from distinctions between source types and
properties, the propagation factors are common. As
discussed in this chapter, there has been considerable
progress in modeling outdoor sound. The increasing
computational power that is available for routine use
makes several of the semi-analytical results and recent
numerical codes of more practical value. Consequently,
it can be expected that a trend towards schemes that
implement a common propagation package but employ
differing source descriptors [4.18] will continue.
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Underwater A5. Underwater Acoustics

William A. Kuperman, Philippe Roux

It is well established that sound waves, com-
pared to electromagnetic waves, propagate long
distances in the ocean. Hence, in the ocean as
opposed to air or a vacuum, one uses sound nav-
igation and ranging (SONAR) instead of radar,
acoustic communication instead of radio, and
acoustic imaging and tomography instead of mi-
crowave or optical imaging or X-ray tomography.
Underwater acoustics is the science of sound in
water (most commonly in the ocean) and encom-
passes not only the study of sound propagation,
but also the masking of sound signals by in-
terfering phenomenon and signal processing for
extracting these signals from interference. This
chapter we will present the basics physics of ocean
acoustics and then discuss applications.
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During the two World Wars, both shallow and deep-
water acoustics studies were pursued, but during the
Cold War, emphasis shifted sharply to deep water. The
post-World War II (WWII) history of antisubmarine
warfare (ASW) actually started in 1943 with Ewing
and Worzel discovering the deep sound channel (DSC)
caused by a minimum in the temperature-dependent

sound speed. (Brekhovskikh of the Soviet Union also
discovered it independently, but later.) This minimum
has been mapped (dotted line in Fig. 5.1), and typ-
ically varies from the cold surface at the poles to
a depth of about 1300 m at the equator. Since sound
refracts toward lower sound speeds, the DSC produces
a refraction-generated waveguide (gray lines) contained
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Fig. 5.1 Schematic of a long-range passive detection of a submarine in polar waters by a surveillance system in a tem-
perate region (after [5.1])

within the ocean, such that sound paths oscillate about
the sound speed minimum and can propagate thousands
of kilometers.

Exploiting the DSC, the US Navy created the
multi-billion dollar sound ocean surveillance system
(SOSUS) network to monitor Soviet ballistic-missile
nuclear submarines. Acoustic antennas were placed on
ocean mountains or continental rises whose height ex-
tended into the DSC. These antennas were hard-wired
to land stations using reliable undersea telephone ca-
ble technology. Submarines typically go down to depths
of a few hundred meters. With many submarines loi-
tering in polar waters, they were coupling into the
DSC at shallower depths. Detections were made on
very narrow-band radiation caused by imperfect, ro-
tating machinery such as propellers. The advantage of
detecting a set of narrow-band lines is that most of the
broadband ocean noise can be filtered out. Though it
was a Cold War, the multi-decade success of SOSUS
was, in effect, a major Naval victory. The system was
compromised by a spy episode, when the nature of the
system was revealed. The result was a Soviet subma-
rine quietening program and over the years, the Soviet
fleet became quieter, reducing the long-range capabil-

ity of the SOSUS system. The end of the Cold War
led to an emphasis on the issue of detecting very quiet
diesel–electric submarines in the noisy, shallow water
that encompasses about 5% of the World’s oceans on
the continental shelves, roughly the region from the
beach to the shelfbreak at about ≈ 200 m depth. How-
ever, there are also signs of a rekindling of interest in
deep-water problems.

Parallel to these military developments, the field of
ocean acoustics also grew for commercial, environmen-
tal and other purposes. Since the ocean environment
has a large effect on acoustic propagation and there-
fore SONAR performance, acoustic methods to map
and otherwise study the ocean were developed. As ac-
tive SONARs were being put forward as a solution for
the detection of quiet submarines, there was a growing
need to study the effects of sound on marine mammals.
Commercially, acoustic methods for fish finding and
counting were developed as well as bottom-mapping
techniques, the latter being having both commercial
and military applications. All in all, ocean acoustics
research and development has blossomed in the last
half-century and many standard monographs and text-
books are now available ([5.2–10]).
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5.1 Ocean Acoustic Environment

The acoustic properties of the ocean, such as the paths
along which sound from a localized source travel, are
mainly dependent on the ocean sound speed structure,
which in turn is dependent on the oceanographic envi-
ronment. The combination of water column and bottom
properties leads to a set of generic sound-propagation
paths descriptive of most propagation phenomena in the
ocean.

5.1.1 Ocean Environment

Sound speed in the ocean water column is a function
of temperature, salinity and ambient pressure. Since the
ambient pressure is a function of depth, it is customary
to express the sound speed (c) in m/s as an empirical
function of temperature (T ) in degrees centigrade, salin-
ity (S) in parts per thousand and depth (z) in meters, for
example [5.7, 11, 12]

c =1449.2+4.6T −0.055T 2+0.00029T 3

+ (1.34−0.01T ) (S−35)+0.016z . (5.1)
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Fig. 5.2 Generic sound-speed profiles. The profiles reflect
the tendencies that sound speed varies directly with tem-
perature and hydrostatic pressure. Near-surface mixing can
lead to almost isovelocity in that region. In polar waters,
the coldest region is at the surface

Figure 5.2 shows a typical set of sound speed pro-
files indicating the greatest variability near the surface.
In a warmer season (or warmer part of the day,
sometimes referred to as the afternoon effect), the
temperature increases near the surface and hence the
sound speed increases toward the sea surface. In
nonpolar regions where mixing near the surface due
to wind and wave activity is important, a mixed
layer of almost constant temperature is often created.
In this isothermal layer the sound speed increases
with depth because of the increasing ambient pres-
sure, the last term in (5.1). This is the surface duct
region. Below the mixed layer is the thermocline
where the temperature and hence the sound speed
decreases with depth. Below the thermocline, the tem-
perature is constant and the sound speed increases
because of increasing ambient pressure. Therefore,
between the deep isothermal region and the mixed
layer, there is a depth at minimum sound speed re-
ferred to as the axis of the deep sound channel.
However, in polar regions, the water is coldest near
the surface so that the minimum sound speed is at
the surface. Figure 5.3 is a contour display of the
sound speed structure of the North and South Atlantic
with the deep sound channel axis indicated by the
heavy dashed line. Note that the deep sound chan-
nel becomes shallower toward the poles. Aside from
sound speed effects, the ocean volume is absorptive
and causes attenuation that increases with acoustic
frequency.

Shallower water such as that in continental shelf
and slope regions is not deep enough for the depth-
pressure term in (5.1) to be significant. Thus the winter
profile tends to isovelocity, simply because of mixing,
whereas the summer profile has a higher sound speed
near the surface due to heating; both are schematically
represented in Fig. 5.4.

The sound speed structure regulates the interaction
of sound with the boundaries. The ocean is bounded
above by air, which is a nearly perfect reflector; how-
ever, the sea surface is often rough, causing sound to
scatter in directions away from the specular reflecting
angle. The ocean bottom is typically a complicated,
rough, layered structure supporting elastic waves. Its
geoacoustic properties are summarized by density, com-
pressional and shear speed, and attenuation profiles.
The two basic interfaces, air/sea and sea/bottom, can be
thought of as the boundaries of an acoustic waveguide
whose internal index of refraction is determined by the
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Fig. 5.3 Sound-speed contours at 5 m/s intervals taken from the North and South Atlantic along 30.50◦ W. The dashed line
indicates the axis of the deep sound channel (after [5.13]). The sound channel is deepest near the equator and comes to the surface
at the poles

fundamental oceanographic parameters represented in
the sound speed equation (5.2).

Due to the density stratification of the water column,
the interior of the ocean supports a variety of waves,
just as the ocean surface does. One particularly impor-
tant type of wave in both shallow water and deep water
is the internal gravity wave (IW) [5.14]. This wave type
is bounded in frequency between the inertial frequency,
f = 2Ω sin θ, where Ω is the rotation frequency of the
earth and θ is the latitude, and the highest buoyancy
frequency (or Brunt–Vaisala frequency) Nmax(z), where
N2(z) =−(g/ρ)dρ/dz, and ρ(z) is the density of the
fluid as a function of depth z. The inertial frequency
varies from two cycles per day at the poles to zero cycles
per day at the equator, and the maximum buoyancy fre-
quency is usually on the order of 5–10 cycles per hour.
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Fig. 5.4 Typical summer and winter shallow-water sound-
speed profiles. Warming causes the high-speed region near
the surface in the summer. Without strong heating, mixing
tends to make the shallow-water region isovelocity in the
winter

Two categories of IWs are found in stratified coastal
waters: linear and nonlinear waves. The linear waves,
found virtually everywhere, obey a standard linear wave
equation for the displacement of the surfaces of constant
density (isopycnal surfaces). The nonlinear IWs, which
are generated under somewhat more specialized circum-
stances than the linear waves (and thus are not always
present), can obey a family of nonlinear wave equations.
The most useful and illustrative of them is the familiar
Korteweg–deVries equation (KdV), which governs the
horizontal components of the nonlinear internal waves.
The vertical component of the nonlinear internal waves
obeys a normal-mode equation.

5.1.2 Basic Acoustic Propagation Paths

Sound propagation in the ocean can be qualitatively
broken down into three classes: very-short-range, deep-
water and shallow-water propagation.

Very-Short-Range Propagation
The pressure amplitude from a point source in free
space falls off with range r as r−1; this geometric loss
is called spherical spreading. Most sources of interest
in the deep ocean are closer to the surface than to the
bottom. Hence, the two main short-range paths are the
direct path and the surface reflected path. When these
two paths interfere, they produce a spatial distribution
of sound often referred to as a Lloyd mirror pattern,
as shown in insert of Fig. 5.5. Also, with reference to
Fig. 5.5, note that the transmission loss is a decibel mea-
sure of the decay with distance of acoustic intensity
from a source relative to its value at unit distance (see
Appendix), the latter being proportional to the square of
the acoustic amplitude.
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Long-Range Propagation Paths
Figure 5.6 is a schematic of propagation paths in the
ocean resulting from the sound-speed profiles (indicated
by the dashed line) described above in Fig. 5.2. These
paths can be understood from Snell’s law,

cos θ(z)

c(z)
= constant , (5.2)

which relates the ray angle θ(z) with respect to the
horizontal, to the local sound speed c(z) at depth z.
The equation requires that, the higher the sound speed,
the smaller the angle with the horizontal, meaning that
sound bends away from regions of high sound speed;
or said another way, sound bends toward regions of low
sound speed. Therefore, paths 1, 2, and 3 are the sim-
plest to explain since they are paths that oscillate about
the local sound speed minima. For example, path 3 de-
picted by a ray leaving a source near the deep sound
channel axis at a small horizontal angle propagates in
the deep sound channel. This path, in temperate lat-
itudes where the sound speed minimum is far from
the surface, permits propagation over distances of thou-
sands of kilometers.

The upper turning point of this path typically inter-
acts with the thermocline, which is a region of strong
internal wave activity. Path 4, which is at slightly
steeper angles and is usually excited by a near-surface
source, is convergence zone propagation, a spatially
periodic (35–65 km) refocusing phenomenon produc-
ing zones of high intensity near the surface due to the
upward refracting nature of the deep sound-speed pro-
file. Regions between these zones are referred to as
shadow regions. Referring back to Fig. 5.2, there may be
a depth in the deep isothermal layer at which the sound
speed is the same as it is at the surface. This depth is
called the critical depth and is the lower limit of the
deep sound channel. If the critical depth is in the water
column, the environment supports long-distance prop-
agation without bottom interaction whereas if there is
no critical depth in the water column, the ocean bottom
is the lower boundary of the deep sound channel. The
bottom bounce path 5 is also a periodic phenomenon
but with a shorter cycle distance and shorter propaga-
tion distance because of losses when sound is reflected
from the ocean bottom. Finally, note that when bottom
baths are described in the general context of the spectral
properties of waveguide propagation, they are described
in terms of the continuous horizontal wavenumber re-
gion as explained in the discussion associated with
Fig. 5.32a.
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Fig. 5.5 The insert shows the geometry of the Lloyd’s mirror ef-
fect. The plots show a comparison of Lloyd’s mirror (full line)
to spherical spreading (dashed line). Transmission losses are plot-
ted in decibels corresponding to losses of 10 log r2 and 10 log r4,
respectively, as explained in Sect. 5.1.3

Shallow Water and Waveguide Propagation
In general the ocean can be thought of as an acoustic
waveguide [5.1]; this waveguide physics is particularly
evident in shallow water (inshore out to the continen-
tal slope, typically to depths of a few hundred meters).
Snell’s law applied to the summer profile in Fig. 5.4 pro-
duces rays which bend more toward the bottom than
winter profiles in which the rays tend to be straight.
This implies two effects with respect to the ocean bot-
tom: (1) for a given range, there are more bounces off
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Fig. 5.6 Schematic representation of various types of sound propa-
gation in the ocean. An intuitive guide is that Snell’s law has sound
turning toward lower-speed regions. That alone explains all the re-
fractive paths: 1, 2, 3 and 4. It will also explain any curvature
associated with paths 5 and 6. Thus, the summer profile would have
path 6 curving downward (this curvature is not shown in the fig-
ure) while the deep sound-speed profile below the minimum curves
upward (4)

Part
A

5
.1



162 Part A Propagation of Sound

��

��

�) �"

��

�� ����
���	����$�

5

�"�"
�)�)

�

�

2

8

<

&�:�����

���

�

�

�"

�� �

�

���� �) ��
�����

Fig. 5.7a–c Ocean waveguide propagation. (a) Long-distance prop-
agation occurs within the critical angle cone of 2θc. (b) For the
example shown, the condition for constructive interference is that
the phase change along BCDE be a multiple of 2π. (c) The con-
structive interference can be interpreted as discrete modes traveling
in the waveguide, each with their own horizontal wavenumber

the ocean bottom in summer than in the winter, and
(2) the ray angles intercepting the bottom are steeper
in the summer than in the winter. A qualitative under-
standing of the reflection properties of the ocean bottom
should therefore be very revealing of sound propaga-
tion in summer versus winter. Basically, near-grazing
incidence is much less lossy than larger, more-vertical
angles of incidence. Since summer propagation paths
have more bounces, each of which are at steeper angles

than winter paths, summer shallow-water propagation
is lossier than winter. This result is tempered by rough
winter surface conditions that generate large scattering
losses at the higher frequencies.

For simplicity we consider an isovelocity waveguide
bounded above by the air–water interface and below
by a two-fluid interface that is classically defined as
a Pekeris waveguide. From Sect. 5.2.3, we have perfect
reflection with a 180◦ phase change at the surface and
for grazing angles lower than the bottom critical angle,
there will also be perfect bottom reflection. There-
fore, as schematically indicated in Fig. 5.7a, ray paths
within a cone of 2θc will propagate unattenuated down
the waveguide. Because the up- and down-going rays
have equal amplitudes, preferred angles will exist for
which constructive interference occurs. These particu-
lar angles are associated with the normal modes of the
waveguide, as formally derived from the wave equation
in the Sect. 5.4. However, it is instructive to understand
the geometric origin of the waveguide modal structure.
Figure 5.7b is a schematic of a ray reflected from the
bottom and then the surface of a Pekeris waveguide.
Consider a ray along the path ACDF and its wavefront,
which is perpendicular to the ray. The two down-going
rays of equal amplitude, AC and DF, will constructively
interfere if points B and E have a phase difference of
a multiple of 2π (and similarly for up-going rays). The
phase change at the two boundaries must be included.
There is a discrete set of angles up to the critical angle
for which this constructive interference takes place and,
hence, for which sound propagates. This discrete set, in
terms of wave physics, are called the normal modes of
the waveguide, illustrated in Fig. 5.7c. They correspond
to the ray schematic of Fig. 5.7a. Mode propagation is
further discussed in the Sect. 5.4.4.

5.1.3 Geometric Spreading Loss

The energy per unit time emitted by a sound source
is flowing through a larger area with increasing range.
Intensity is the power flux through a unit area, which
translates to the energy flow per unit time through a unit
area. The simplest example of geometric loss is spheri-
cal spreading for a point source in free space where the
area increases as r2, where r is the range from the point
source. So spherical spreading results in an intensity de-
cay proportional to r−2. Since intensity is proportional
to the square of the pressure amplitude, the fluctuations
in pressure induced by the sound p, decay as r−1. For
range-independent ducted propagation, that is, where
rays are refracted or reflected back towards the horizon-
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tal direction, there is no loss associated with the vertical
dimension. In this case, the spreading surface is the area
of the cylinder whose axis is in the vertical direction
passing through the source 2πrH , where H is the depth
of the duct (waveguide), and is constant. Geometric loss
in the near-field Lloyd-mirror regime requires consid-
eration of interfering beams from direct and surface

reflected paths. To summarize, the geometric spread-
ing laws for the pressure field (recall that intensity is
proportional to the square of the pressure.) are:

• Spherical spreading loss: p ∝ r−1 ;• Cylindrical spreading loss: p ∝ r−1/2 ;• Lloyd-mirror loss: p ∝ r−2 .

5.2 Physical Mechanisms

The physical mechanisms associated with the genera-
tion, reception, attenuation and scattering of sound in
the ocean are discussed in this section.

5.2.1 Transducers

A transducer converts some sort of energy to sound
(source) or converts sound energy (receiver) to an
electrical signal [5.15]. In underwater acoustics piezo-
electric and magnetostrictive transducers are commonly
used; the former connects electric polarization to me-
chanical strain and the latter connects the magnetization
of a ferromagnetic material to mechanical strain. Piezo-
electric transducers represent more than 90% of the
sound sources used in the ocean. Magnetostrictive trans-
ducers are more expensive, have poor efficiency and
a narrow frequency bandwidth. However, they allow
large vibration amplitudes and are relevant to low-
frequency high-power applications. In addition there
are: electrodynamic transducers in which sound pres-
sure oscillations move a current-carrying coil through
a magnetic field causing a back emf, and electrostatic
transducers in which charged electrodes moving in
a sound field change the capacitance of the system. Ex-
plosives, air guns, electric discharges, and lasers are also
used as wide-band sources.

Hydrophones, underwater acoustic receivers, are
commonly piezoelectric devices with good sensitiv-
ity and low internal noise levels. Hydrophones usually
work on large frequency bandwidths since they do not
need to be adjusted to a resonant frequency. They are
associated with low-level electronics such as preampli-
fiers and filters.

Because the field of transducers is large by itself,
we concentrate in this section on some very practical
issues that are immediately necessary to either convert
received voltage levels to pressure levels or transmit-
ter excitation to pressure levels. Practical issues about
transducers and hydrophones deal with the understand-
ing of specification sheets given by the manufacturer.

Among those, we will describe, based on a practical
example, the definition and the use of the following
quantities:

• Transmitting voltage response• Open-circuit receiving response• Transmitting and receiving beam patterns at specific
frequencies• Impedance and/or admittance versus frequency• Resonant frequency, maximum voltage and maxi-
mum source level (for a transducer).

Figure 5.8 is a specification sheet provided by the
ITC (Internationsal Transducer Corp.) for a deep-water
omnidirectional transducer. Figure 5.8a corresponds to
the transmitting sensitivity versus frequency. The units
are in dB re μPa/V@1m, which means that, at the res-
onant frequency 11.5 kHz for example, the transducer
excited with a 1 V amplitude transmits at one meter
a pressure pt such that 20 log10

( pt
1×10−6

)= 149 dB, i. e.
pt ≈ 28.2 Pa. Similarly, Fig. 5.8b shows the receiving
sensitivity versus frequency. The units are now in dB
re1V/μPa which means that, at 11.5 kHz for exam-
ple, the transducer converts a 1 μPa amplitude field into
a voltage Vr such that 20 log10

( Vr
1

) = −186 dB, i. e.
Vr ≈ 5 × 10−10 V. Figure 5.8c shows the admittance ver-
sus frequency. The complex admittance Y is the inverse
of the complex impedance Z. The real part of the admit-
tance is called the conductance G; the imaginary part is
the susceptance B. Those curves directly yield the cal-
culation of the electrical impedance of the transducer.
For example, the impedance of ITC-1007 at the reso-
nant frequency is |Z| = 1/(

√
G2+ B2) ≈ 115 Ω. When

used as a source, the transducer electrical impedance
has to match the output impedance of the power am-
plifier to allow for a good power transfer through the
transducer. In the case where the impedances do not
match, a customized matching box will be necessary.
Knowing the electrical impedance |Z| and the input
power I = 10 000 W, the maximum voltage can be
determined as Umax =√|Z| I ≈ 1072 V. According to
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Fig. 5.8a–d Typical specification sheet of a powerful underwater acoustic transponder (top left). (a) Transmitting voltage
response. (b) Receiving voltage response. (c) Real (full line) and imaginary part (dashed line) of the water admittance Y .
(d) Directionality pattern at one frequency (Courtesy of International Transducer Corp.)

the transmitting voltage response, this corresponds to
a source level of nearly 210 dB re μPa at the resonant
frequency. Finally, Fig. 5.8d represents the direction-
ality pattern at a given frequency. It shows that the
ITC-1007 is omnidirectional at 10 kHz.

When transducers have to be coupled to a power am-
plifier or another electronic device, it may be useful to
model the transducer as an electronic circuit (Fig. 5.9a).
The frequency dependence of the conductance G and
susceptance B (Fig. 5.8c) yield the components of the
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equivalent circuit, as shown in Fig. 5.9b. Similarly, an
important parameter is the quality factor Q, which
measures the ratio between the mechanical energy
transmitted by the transducer and the energy dissipated
(Fig. 5.10). Finally, the equivalent circuit leads to the
measure of the electroacoustic power efficiency k2 that
corresponds to the ratio of the output acoustic power
and the input electric power.

Hydrophones are usually described with the same
characteristics as transducers but they are only designed
to work in reception. To this goal, hydrophones are
usually connected to a preamplifier with high input
impedance to avoid any loss in the signal reception.
A typical hydrophone exhibits a flat receiving response
on a large bandwidth far away from its resonance
frequency (Fig. 5.11a). As expected, the sensitivity of
a hydrophone is much higher than the sensitivity of
a transducer. Low electronic noise below the ocean
ambient-noise level is also an important characteristic
for hydrophones (Fig. 5.11b). Finally, hydrophones are
typically designed to be omnidirectional (Fig. 5.11c).

5.2.2 Volume Attenuation

Attenuation is characterized by an exponential decay
of the sound field. If A0 is the root-mean-square (rms)
amplitude of the sound field at unit distance from the
source, then the attenuation of the sound field causes
the amplitude to decay with distance along the path r

A = A0 exp(−αr) , (5.3)

where the unit of α is Nepers/distance. The attenuation
coefficient can be expressed in decibels per unit distance
by the conversion α′ = 8.686α. Volume attenuation in-
creases with frequency and the frequency dependence
of attenuation can be roughly divided into four regimes
as displayed in Fig. 5.12. In region I, leakage out of the
sound channel is believed to be the main cause of atten-
uation. The main mechanisms associated with regions II
and III are boric acid and magnesium sulfate chemical
relaxation. Region IV is dominated by the shear and
bulk viscosity associated with fresh water. A summary
of the approximate frequency dependence ( f in kHz) of
attenuation (in units of dB/km) is given by

α′(dB/km) = 3.3 × 10−3+ 0.11 f 2

1+ f 2

+ 43 f 2

4100+ f 2
+2.98 × 10−4 f 2 ,

(5.4)

C0

Fig. 5.9 (a) Representation of the transducer as an electronic circuit
around the resonant frequency. The resistor R0 corresponds to the
dielectric loss in the transducer and is commonly supposed infinite.
C0 is the transducer capacity, L and C are the mass and rigidity
of the material, respectively. R includes both the mechanic loss
and the energy mechanically transmitted by the transducer. (b) The
values of C0, L , C and R are obtained from the positions of the
points F, M and P in the real–imaginary admittance curve given in
the specification sheet

with the terms sequentially associated with regions I–IV
in Fig. 5.12.

In Fig. 5.6, the losses associated with path 3 only
include volume attenuation and scattering because this
path does not involve boundary interactions. The vol-
ume scattering can be biological in origin or arise from
interaction with internal wave activity in the vicinity

Abs (Y) (mmhos)

Fig. 5.10 Frequency dependence of the admittance curve
that allows the calculation of the quality factor Q = fr/Δ f
of the transducer at the resonant frequency fr. Ym is the
maximum of the admittance
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Fig. 5.11a–c Typical specification sheet of a hydrophone (top). (a) Receiving frequency response. (b) Spectral noise level
of the hydrophone to be compared to the ocean ambient noise level. (c) Directionality pattern at one frequency (Courtesy
of International Transducer Corp.)

of the upper part of the deep sound channel where
paths are refracted before they interact with the sur-
face. Both of these effects are small at low frequencies.
This same internal wave region is also on the lower
boundary of the surface duct, allowing scattering out
of the surface duct, thereby also constituting a loss
mechanism for the surface duct. This mechanism also
leaks sound into the deep sound channel, a region that
without scattering would be a shadow zone for a sur-
face duct source. This type of scattering from internal

waves is also a source of fluctuation of the sound
field.

5.2.3 Bottom Loss

The structure of the ocean bottom affects those acoustic
paths which interact with it. This bottom interaction is
summarized by bottom reflectivity, the amplitude ratio
of reflected and incident plane waves at the ocean–
bottom interface as a function of grazing angle, θ
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Fig. 5.12 Regions of the different dominant attenuation
processes for sound propagating in seawater (after [5.16]).
The attenuation is given in dB per kilometer

(Fig. 5.13a). For a simple bottom, which can be repre-
sented by a semi-infinite half-space with constant sound
speed c2 and density ρ2, the reflectivity is given by

R(θ) = ρ2k1z −ρ1k2z

ρ2k1z +ρ1k2z
, (5.5)

with the subscripts 1 and 2 denoting the water and ocean
bottom, respectively; the wavenumbers are given by

kiz = (ω/ci ) sin θi = k sin θi ; i = 1, 2 . (5.6)

The incident and transmitted grazing angles are related
by Snell’s law,

c2 cos θ1 = c1 cos θ2 , (5.7)

and the incident grazing angle θ1 is also equal to the
angle of the reflected plane wave.

For this simple water–bottom interface for which
we take c2 > c1, there exists a critical grazing angle θc
below which there is perfect reflection,

cos θc = c1

c2
. (5.8)

For a lossy bottom, there is no perfect reflection, as
also indicated in a typical reflection curve in Fig. 5.13b.
These results are approximately frequency indepen-

i

i

i

i

Fig. 5.13a,b The reflection and transmission process.
Grazing angles are defined relative to the horizontal.
(a) A plane wave is incident on an interface separating
two media with densities and sound speeds ρ, c. R(θ) and
T (θ) are reflection and transmission coefficients. Snell’s
law is a statement that k⊥, the horizontal component of the
wave vector, is the same for all three waves. (b) Rayleigh
reflection curve R(θ) as a function of the grazing angle in-
dicating critical angle θc. The dashed curve shows that, if
the second medium is lossy, there is no perfect reflection
below the critical angle. Note that for the non-lossy bot-
tom, there is complete reflection below the critical angle,
but with a phase change

dent. However, for a layered bottom, the reflectivity
has a complicated frequency dependence. It should be
pointed out that, if the density of the second medium
vanishes, the reflectivity reduces to the pressure release
case of R(θ) =−1.

5.2.4 Scattering and Reverberation

Scattering caused by rough boundaries or volume het-
erogeneities is a mechanism for loss (attenuation),
reverberant interference and fluctuation. Attenuation
from volume scattering is addressed in Sect. 5.2.2. In
most cases, it is the mean or coherent (or specular) part
of the acoustic field which is of interest for a SONAR or
communications application and scattering causes part
of the acoustic field to be randomized. Rough surface
scattering out of the specular direction can be thought
of as an attenuation of the mean acoustic field and typ-
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ically increases with increasing frequency. A formula
often used to describe reflectivity from a rough bound-
ary is

R′(θ) = R(θ) exp

(
−Γ

2

2

)
, (5.9)

where R(θ) is the reflection coefficient of the smooth
interface and Γ is the Rayleigh roughness parameter
defined as Γ ≡ 2kσ sin θ where k = 2π/λ, λ is the
acoustic wavelength, and σ is the rms roughness
height [5.18–20].

The scattered field is often referred to as reverber-
ation. Surface, bottom or volume scattering strength,
SS,B,V is a simple parameterization of the production
of reverberation and is defined as the ratio in decibels
of the sound scattered by a unit surface area or volume
referenced to a unit distance Iscat to the incident plane
wave intensity Iinc

SS,B,V = 10 log
Iscat

Iinc
. (5.10)

The Chapman–Harris [5.21] curves predicts the ocean
surface scattering strength in the 400–6400 Hz region,

SS = 3.3β log
θ

30
−42.4 logβ+2.6 ;

β = 107(w f 1/3)−0.58, (5.11)
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Fig. 5.14 (a) Day and (b) night scattering strength measurements
using an explosive source as a function of frequency (after [5.17]).
The spectra measured at various times after the explosion are
labeled with the depth of the nearest scatterer that could have con-
tributed to the reverberation. The ordinate corresponds to SV in
(5.13)

where θ is the grazing angle in degrees, w the wind
speed in m/s and f the frequency in Hz. Ocean surface
scattering is further discussed in [5.22].

The simple characterization of bottom backscatter-
ing strength utilizes Lambert’s rule for diffuse scattering,

SB = A+10 log sin2 θ , (5.12)

where the first term is determined empirically. Under
the assumption that all incident energy is scattered into
the water column with no transmission into the bottom,
A is −5 dB. Typical realistic values for A [5.23] which
have been measured are−17 dB for the large basalt mid-
Atlantic ridge cliffs and −27 dB for sediment ponds.

The volume scattering strength is typically reduced
to a surface scattering strength by taking SV as an av-
erage volume scattering strength within some layer at
a particular depth; then the corresponding surface scat-
tering strength is

SS = SV+10 log H , (5.13)

where H is the layer thickness. The column or in-
tegrated scattering strength is defined as the case for
which H is the total water depth.

Volume scattering usually decreases with depth
(about 5 dB per 300 m) with the exception of the deep
scattering layer. For frequencies less than 10 kHz, fish
with air-filled swim bladders are the main scatterers.
Above 20 kHz, zooplankton or smaller animals that feed
upon phytoplankton and the associated biological chain
are the scatterers. The deep scattering layer (DSL) is
deeper in the day than in the night, changing most
rapidly during sunset and sunrise. This layer produces
a strong scattering increase of 5–15 dB within 100 m
of the surface at night and virtually no scattering in the
daytime at the surface since it migrates down to hun-
dreds of meters. Since higher pressure compresses the
fish swim bladder, the backscattering acoustic resonance
(Sect. 5.2.6) tends to be at a higher frequency during the
day when the DSL migrates to greater depths. Exam-
ples of day and night scattering strengths are shown in
Fig. 5.14.

Finally, as explained in Sect. 5.2.6, near-surface
bubbles and bubble clouds can be thought of as either
volume or surface scattering mechanisms acting in con-
cert with the rough surface. Bubbles have resonances
(typically greater than 10 kHz) and at these resonances,
scattering is strongly enhanced. Bubble clouds have
collective properties; among these properties is that
a bubbly mixture, as specified by its void fraction (to-
tal bubble gas volume divided by water volume) has
a considerable lower sound speed than water.
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5.2.5 Ambient Noise

There are essentially two types of ocean acoustic noise:
manmade and natural. Generally, shipping is the most
important source of manmade noise, though noise from
offshore oil rigs is becoming increasingly prevalent.
See also Table 5.2 in the Marine Mammal section for
specific examples of manmade noise. Typically, natural
noise dominates at low frequencies (below 10 Hz) and
high frequencies (above a few hundred Hz). Shipping
fills in the region between ten and a few hundred Hz
and this component is increasing over time [5.25, 26].
A summary of the spectrum of noise is shown in
Fig. 5.15. The higher-frequency noise is usually pa-
rameterized according to the sea state (also Beaufort
number) and/or wind. Table 5.1 summarizes the de-
scription of the sea state.

The sound-speed profile affects the vertical and an-
gular distribution of noise in the deep ocean. When

Table 5.1 Descriptor of the ocean sea surface (after [5.24])

Sea criteria Beau- Wind speed 12 h wind Fully arisen sea Sea-

fort range mean Wave Wave Fetchb,c state

scale knots knots heighta,b heighta,b Durationb,c naut. miles scale

(m/s) (m/s) ft (m) ft (m) h (km)

Mirror-like 0 < 1 0

(< 0.5)

Ripples 1–3 2

1 (0.5–1.7) (1.1) 0.5

Small wavelets 4–6 5 < 1 < 1

2 (1.8–3.3) (2.5) (< 0.30) (< 0.30) 1

Large wavelets, 7–10 8.5 1–2 1–2 < 10

scattered whitecaps 3 (3.4–5.4) (4.4) (0.30–0.61) (0.30–0.61) < 2.5 (< 19) 2

Small waves, 11–16 13.5 2–5 2–6 10–40

frequent whitecaps 4 (5.5–8.4) (6.9) (0.61–1.5) (0.61–1.8) 2.5–6.5 (19–74) 3

Moderate waves, 17–21 19 5–8 6–10 40–100

many whitecaps 5 (8.5–11.1) (9.8) (1.5–2.4) (1.8–3.0) 6.5–11 (74–185) 4

Large waves,

whitecapes every- 22–27 24.5 8–12 10–17 100–200

where, spray 6 (11.2–14.1) (12.6) (2.4–3.7) (3.0–5.2) 11–18 (185–370) 5

Heaped-up sea,

blown spray, 28–33 30.5 12–17 17–26 200–400

streaks 7 (14.2–17.2) (15.7) (3.7–5.2) (5.2–7.9) 18–29 (370–740) 6

Moderately high, 34–40 37 17–24 26–39 400–700

long waves, spindrift 8 (17.3–20.8) (19.0) (5.2–7.3) (7.9–11.9) 29–42 (740–1300) 7

Notes:
a The average height of the highest one-third of the waves (significant wave height)
b Estimated from data given in US Navy Hydrographic Office (Washington, D.C.) publications HO 604 (1951) and HO 603 (1955)
c The minimum fetch and duration of the wind needed to generate a fully arisen sea

there is a critical depth (Sect. 5.1.2), sound from sur-
face sources travels long distances without interacting
with the ocean bottom, but a receiver below this critical
depth should sense less surface noise because propa-
gation involves interaction with lossy boundaries, the
surface and/or bottom. This is illustrated in Fig. 5.16a,b
which shows a deep-water environment with measured
ambient noise. Figure 5.16c is an example of vertical
directionality of noise which also follows the propaga-
tion physics discussed above. The shallower depth is at
the axis of the deep sound channel while the other is at
the critical depth. The pattern is narrower at the critical
depth where the sound paths tend to be horizontal since
the rays are turning around at the lower boundary of the
deep sound channel.

In a range-independent ocean, Snell’s law predicts
a horizontal noise notch at depths where the speed
of sound is less than the near-surface sound speed.
Returning to (5.2) and reading off the sound speeds
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Fig. 5.15 Composite of ambient noise spectra (after [5.24])

from Fig. 5.16 at the surface (c =1530 m/s) and say,
300 m (1500 m/s) , a horizontal ray (θ = 0) launched
from the ocean surface would have an angle with re-
spect to the horizontal of about 11◦ at 300 m depth.
All other rays would arrive with greater vertical an-
gles. Hence we expect this horizontal notch. However,
the horizontal notch is often not seen at shipping noise
frequencies. That is because shipping tends to be con-
centrated in continental-shelf regions and propagation
down a continental slope converts high-angle rays to
lower angles at each bounce. There are also deep-sound-
channel shoaling effects that result in the same trend in
angle conversion.

The vertical directionality of noise in shallow wa-
ter has a simple environmental dependence [5.27]. For
example, in the summer with a downward refracting
profile, the same discussion as above leads to a horizon-

tal noise notch. However the vertical directionality of
noise from the surface in the winter tends to be driven by
bottom properties. Thus, if the bottom is not very lossy,
surface sources exciting low-order modes can come
from large distances (and hence large areas). These
paths are close to the horizontal and noise will then tend
to have a strong horizontal component. On the other
hand, a very lossy bottom will prevent long-range prop-
agating paths from contributing to the noise field and
the noise will tend to be local and subsequently vertical.

5.2.6 Bubbles and Bubbly Media

Bubbles not only occur naturally in the ocean, but the
swim bladders of fish can also be thought of as bub-
bles. The physics of bubbles is a large area of activity
in acoustics [5.7, 28]. Here we will confine ourselves to
some aspects relevant to ocean acoustics. First we dis-
cuss some properties of bubbles in terms of resonators,
scatterers and then go on to some aspects of bubbly
media and scattering from bubbles.

Bubble scattering follows two regimes depending
on the magnitude of the bubble radius oscillations in
response to the incident fluctuating pressure field [5.29]:

1. For small pressure amplitudes, the response is lin-
ear. The first step in any linear analysis is the
identification of the resonance frequency of an os-
cillating bubble and the measurement of the bubble
scattering cross section.

2. Due to nonlinear terms in the governing equations,
the response of a bubble will be affected by non-
linearities as the amplitude of the pressure field is
increased. In this case, the bubble may continue to
oscillate stably (stable acoustic cavitation) gener-
ating (sub)harmonics in the scattered field. Under
other circumstances, the change in bubble size dur-
ing a single cycle of oscillation becomes so large
that the bubble undergoes a cycle of explosive cavi-
tation growth and violent collapse. Such a response
is termed transient acoustic cavitation and is distin-
guished from stable acoustic cavitation by the fact
that the bubble radius changes by several orders of
magnitude during each cycle.

The Bubble as a Scatterer
The calculation of the natural acoustic resonance of an
oscillating bubble in the linear regime requires consid-
erable algebra combining: (1) the equation of motion,
(2) mass conservation, and (3) continuity relations at
the bubble surface. These developments go beyond the

Part
A

5
.2



Underwater Acoustics 5.2 Physical Mechanisms 171

scope of this chapter. In the following, we simply sum-
marize the final results, which are the expression of
the bubble natural acoustic resonance ω2

0, and the ex-
pression for the scattered field from an acoustic bubble
under an incident pressure field at frequency ω.

The acoustic resonance in the linear regime of a sin-
gle bubble of radius a is

ω2
0 =

[
3γ p0

ρwa2
+ (3γ −1)

2T

ρwa3

]
, (5.14)

where p0 is the ambient pressure outside the bub-
ble, T is surface tension (tensile force/length in units
N/m), ρw is the density of water and γ is the ratio
of specific heats. Neglecting surface tension in (5.14)
for bubble sizes larger than 1 μm and considering the
acoustic expansion/compression process to be adiabatic
(c2

air = γ p0/ρair), we obtain the approximate expression

ω0 = 1

a

√
3c2

airρair

ρw
, (5.15)

and for cair � 340 m/s, we get f0 � 3
a with a in m and

f0 in Hz.
We now consider an incident plane wave at fre-

quency ω in the regime ka = ωa/c = 2πa/λ
 1. The
far-field expression for the spatial part of the radiated
acoustic field pr is

pr(r) =− a

r
pi exp

[
− iω

c
(r−a)

]

×

[
1− ω

2
0

ω2

(
1− iωa

c

)]−1

. (5.16)

First, we note that in the high-frequency limit, we re-
cover pr(r, t) =− a

r pi
(
t− r−a

c

)
that was given by the

boundary conditions at the bubble surface.
To understand the effect of the resonance frequency,

consider two cases. The first case is ω� ω0 for which
we obtain

pr(r) =−a

r
pi e−

iω
c (r−a) , (5.17)

whereas for the case ω= ω0 we get

pr(r) =− ic

ωr
pi e−

iω
c (r−a) =− iλ

2πr
pi e−

iω
c (r−a) .

(5.18)

Comparing the two equations, (5.18) appears to be the
field radiating from a sphere of radius λ/2π which is
much larger than a. For example, neglecting surface
tension, at 1 atm, ω0a ≈ 20 so that λ≈ 500a. This reso-
nance effect is also quite apparent when considering the
scattering cross section of the bubble.
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Fig. 5.16a–c Noise in the deep ocean. (a) Sound-speed profile and
(b) noise level as a function of depth in the Pacific (after [5.30]).
(c) The vertical directionality of noise at the axis of the deep sound
channel and at the critical depth in the Pacific (after [5.31])

The scattering cross section σs is the ratio of the
total scattered power (intensity × area = pressure ×
velocity × enclosing area) to the incident plane-wave
intensity (given by p2

i /2ρwc, with the factor of 1/2
coming from averaging over a cycle) and therefore has
the units of area. We perform this calculation in the far
field using (5.16) to obtain

σs = 4πa2

[
1− ω2

0
ω2

(
1− iωa

c

)]2

ω=ω0−→ λ2

π
, (5.19)

which is consistent with a surface area associated with
the discussion below (5.18). The resonance makes the
bubble appear larger in surface area than its dimension.
On the other hand, for the case ω
 ω0, we have

σs = 4πa2
(
ω

ω0

)4

, (5.20)
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Fig. 5.17 (a) Wave breaking on the shore; (b) magnified view of individual bubbles within the plumes taken a second or
so after wave breaking. The void fraction of air in these plumes is a few percent and bubbles range in size from less than
50 μm to a few mm radius. Bubble plumes found beneath breaking waves in 15–20 m/s winds in the open ocean have
a similar size distribution (Courtesy of Grant Deane, Scripps Institution of Oceanography)

which is Rayleigh scattering. The analogous mech-
anism in electromagnetics explains why the sky is
blue: blue has a higher frequency than red so it is
scattered more. The above derivations only included ra-
diation damping and we have not included lossy effects
caused by thermal conductivity and shear viscosity.
Looking at, for example (5.16), we can think of the
radiation damping constant to be δr = ka or, in other
words, at resonance σs = 4πa2/δ2

r . Finally, we men-
tion that the extinction cross section is the sum of
the scattering cross section and the absorption cross
section. The damping coefficients for thermal conduc-
tivity and shear viscosity are typically experimentally
determined.

Bubbly Media
The region immediately below the surface of the ocean
is a bubbly medium (Fig. 5.17). The existence of bub-
bles changes the effective compressibility of the water.
We define a volume fraction of bubble (also called the
void fraction) μ so that the density of the mixture is
simply ρm = μρb+ (1−μ)ρw where the subscripts b
and w refer to a bubble and water, respectively. We
consider low frequencies with respect to resonance
and we use the compressibility, the inverse of the
bulk modulus B = ρ(δp/δρ

)
, since it is additive and

permits us to write down the compressibility of the
mixture,

Km = μKb+ (1−μ)Kw → 1

Bm

= μ 1

Bb
+ (1−μ)

1

Bw
. (5.21)

Using the above discussion relating sound speed and the
adiabatic bulk modulus for the air bubble with γ = 1.4
(the bulk modulus of water is 2.3 × 109 Pa) we then ob-
tain:

1

ρmc2
m
= μ

1.4pb
+ (1−μ)

ρwc2
w

→ c2
m

=
(

1.4pb

μρwc2
w+1.4pb(1−μ)

)
c2
w , (5.22)

where we have taken ρm ≈ ρw. Substituting some typi-
cal numbers, we use atmospheric pressure, pb ≈105 Pa,
ρw ≈103 kg/m3, cw =1500 m/s and we consider two
void fractions: μ of 0.0001 and 0.001 (large). The
corresponding sound speeds in the bubbly mixture
are about 930 m/s and 370 m/s, respectively. A small
amount a bubbles significantly changes the com-
pressibility of the medium and therefore drastically
changes the sound speeds. In reality, the speed of
sound through the bubbly medium varies with fre-
quency since compressibility is the ratio of the frac-
tional change in volume to the incident pressure. The
volume change is related to the bubble surface dis-
placement and hence to velocity or radiated pressure
as per (5.16). Therefore, the bubble compressibility
is actually frequency dependent and a more rigor-
ous treatment of propagation in bubbly media would
show the dispersion of the speed through the bubbly
medium.

When sound propagates through a bubbly medium,
the scattering will also cause attenuation due to scat-
tering and absorption. As stated above, the extinction
cross section, σe, is a measure of this phenomenon. For
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a bubbly medium (and for the simple case of single-
sized bubbles), an acoustic beam will be altered by the
absorption and scattering out of the beam. For an inci-
dent plane wave of intensity I0, the power removed by
each bubble is I0σe so that the rate of change of inten-
sity as the beam travels through a bubble medium of N

bubbles per unit volume is

dI

dx
=−I0σe N → I = I0 exp (−σe Nx) . (5.23)

Therefore, a bubbly medium changes the sound speed,
absorbs sound, and is dispersive.

5.3 SONAR and the SONAR Equation

A major application of underwater acoustics is SONAR
system technology. The performance of SONAR is of-
ten approximately described by the SONAR equation.
The methodology of the SONAR equation is analogous
to an accounting procedure involving acoustic signal,
interference and system characteristics. Figure 5.18 pro-
vides a schematic of passive and active SONARs.

5.3.1 Detection Threshold and Receiver
Operating Characteristics Curves

The detection threshold (DT) [5.16] is a decibel num-
ber that essentially incorporates the SONAR system’s
(which includes the operator) ability to decide that a de-
tection is made or not made. The detection process
includes the following probabilities:

• the probability of detection (PD): the probability
that a signal is detected if it is present;• 1-PD: the probability the signal will not be detected
if it is present;• the probability of false alarm (PFA): the probability
that a signal is detected when it is not present;• 1-PFA: the probability that the signal will not be
detected when it is not present.

In practical terms, since the signal and noise are fluc-
tuating, the detection is made (over a time interval)
when the fluctuating sum of the signal and noise ex-
ceeds a threshold that is determined from empirically
derived probability density functions (PDFs) of noise
and signal plus noise. For example, the case that the
noise alone rises above the threshold contributes to the
PFA. Therefore, the process for determining a detec-
tion threshold level will depend on the PD and PFA.
Typically numbers might be a PD of 0.5 and PFA of
0.0001. The probabilities will themselves be a function
of the relation between the signal and noise statistics, as
represented by their mean and variance. The detection
index d succinctly characterizes this relation in that it

indicates how easy it is to observe a signal in noise,

d = (Msn−Mn)
2

σ2
n

, (5.24)

where Msn is the mean of the signal plus noise, Mn is
the noise mean and σ2

n is the noise variance. Figure 5.19
shows schematically the implications of the detection
index where the relative proximity of the two proba-
bility density functions (PDFs) determine the detection

+����

)�		���

Fig. 5.18 Passive and active SONAR for submarine detection. Pas-
sive: the submarine on the right tries to detect sounds (blue) from
the other submarine using a towed array (antenna). These sounds
are distorted by the shallow-water environment and are embedded
in ocean surface noise (green) and surface shipping noise (red).
Active: the ship on the right sends out a pulse (red) and an echo
(blue), distorted by the shallow-water environment, is returned to
the ship SONAR which tries to distinguish it from backscattered
reverberation (yellow) and ocean noise (green) (after [5.1])
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Fig. 5.19 Probability density functions (PDF) of noise and
signal+noise. Various probabilities as explained in the text
are related to specific regions under the curves. Thus, the
probability of detection (PD) is the light-shaded area un-
der the signal+noise PDF curve that is to the right of DT,
the detection threshold (thick vertical line). Similarly, the
probability of false alarm is the dark shaded area under the
noise PDF curve that is to the right of DT

statistics. We first note that the PD is the area under the
signal-plus-noise curve to the right of the DT and the
PFA is the area under the noise curve to the right of the
DT. Then, for example, if the mean of the signal-plus-
noise PDF was further to the right (higher signal-to-noise
ratio (SNR)), the detection index and PD would be larger.

We could then move the DT to the right, changing
the PD, but the PFA would be smaller. Receiver operat-
ing characteristics (ROC) curves are plots of PD versus
PFA parameterized by d (Fig. 5.19). Figure 5.20 gives
a typical example of using this methodology and refer
the reader to the SONAR literature [5.16] for a more
complete treatment. A square-law detector is commonly
used for a passive system dealing with unknown signal.
In that case, it has been shown that the detection index
for a small-SNR, narrow-band signal in Gaussian noise
is given by

d = ωt

(
S

N

)2

, (5.25)

where ω, t, S and N are the bandwidth (taken to be
larger than the width of the spectral line of the signal),
integration time, signal power and noise power in the
bandwidth, respectively. If 1 Hz is the noise bandwidth
reference, the detection index is d = ωt (S/N0), where
N0 is the noise in a 1 Hz band. This gives a relation
between the signal-to-noise ratio at the output of an en-

ergy detector of a narrow-band signal in Gaussian noise
to the detection index

SNR = 5 log

(
d

ωt

)
≡ DT , (5.26)

where the equivalence symbol is for a detection criteria
of a specified PD, PFA.

In reality, there are correction factors for the detec-
tion threshold related to the length of observations used
to make a decision, human factors, and others that we
omit from this discussion. Since the criteria are speci-
fied through the ROC curves, we can now estimate the
DT for specific cases. We simply go to the the ROC
curves for a selected PD versus PFA and read off the de-
tection index, from which we can compute the detection
threshold. For example, from Fig. 5.20, for a PD of 50%
and a PFA of 0.01%, the detection index is d = 16. Us-
ing unit bandwidth and integration time, the detection
threshold is DT= 5 log 16 = 6 dB. This methodology
is an example of the meaning of the DT term in the
SONAR equation below, though the relationship be-
tween DT and d is different depending on the type of
receiver and SONAR.

5.3.2 Passive SONAR Equation

A passive SONAR system uses the radiated sound from
a target to detect and locate the target. A radiating ob-
ject of source level (SL) (all units are in decibels) is
received at a hydrophone of a SONAR system at a lower
signal level S because of the transmission loss (TL) it
suffers (e.g., cylindrical spreading plus attenuation or
a TL computed from one of the propagation models of
Sect. 5.4),

S = SL−TL . (5.27)

The noise, N at a single hydrophone is subtracted from
(5.27) to obtain the signal-to-noise ratio at a single hy-
drophone,

SNR = SL−TL−N . (5.28)

Typically a SONAR system consists of an array or
antenna of hydrophones which provides signal-to-
noise enhancement through a beam-forming process
(Sect. 5.6). This process is quantified in decibels by the
array gain (AG) (see Sect. 5.6.2) that is added to the
single-hydrophone SNR to give the SNR at the output
of the beam-former (BF),

SNRBF = SL−TL−N+AG . (5.29)
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As discussed, because detection involves additional fac-
tors including SONAR operator ability, it is necessary
to specify a detection threshold, DT level above the
SNRBF at which there is a 50% (by convention) prob-
ability of detection. The difference between these two
quantities is called the signal excess (SE),

SE = SL−TL−N+AG−DT . (5.30)

This decibel bookkeeping leads to an important SONAR
engineering descriptor called the figure of merit (FOM)
which is the transmission loss that gives a zero signal
excess,

FOM = SL−N+AG−DT . (5.31)

The FOM encompasses the various parameters a
SONAR engineer must deal with: expected source level,
the noise environment, array gain and the detection
threshold. Conversely since the FOM is a transmission
loss, one can use the output of a propagation model (or
if appropriate, a simple geometric loss plus attenuation)
to estimate the minimum range at which a 50% proba-
bility of detection can be expected. This range changes
with oceanographic conditions and is often referred to
as the range of the day in navy SONAR applications. Fi-
nally, we mention that formal detection theory involves
a criterion involving the probability of detection PD ver-
sus probability of false alarm PFA. Plots of PD versus
PFA as parameterized by, say SNR, are called receiver
operating characteristic (ROC) curves [5.16]. Clearly,
for a PFA of 1, the probability of detection goes to unity.

5.3.3 Active SONAR Equation

A monostatic active SONAR transmits a pulse to a tar-
get and its echo is detected at a receiver co-located with
the transmitter. A bistatic active SONAR has the receiver
in a different location than the transmitter. The main dif-
ferences between the passive and active cases are the
addition of a target strength (TS) term; reverberation (re-
verberation level, RL) is usually the dominant source of
interference, as opposed to noise; and the transmission
loss is over two paths: transmitter to target and target
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Fig. 5.20 Example of ROC curves. For a given signal plus noise,
different threshold settings correspond to different PD and PFA.
The ROC curves summarizes the relation between PD and PFA for
different thresholds as parameterized through the detection index
(after [5.16])

to receiver. In the monostatic case, the transmission loss
is 2TL, where TL is the one-way transmission loss, and
in the bistatic case, the transmission loss is the sum (in
dB) over paths from the transmitter to the target and the
target to the receiver, TL1+TL2. The concept of the de-
tection threshold is useful for both passive and active
SONARs. Hence, for signal excess, we have

SE = SL−TL1+TS−TL2

− (RL+N)+AG−DT . (5.32)

The corresponding FOM for an active system is defined
for the maximum allowable two-way transmission loss
with TS = 0 dB.

5.4 Sound Propagation Models

The wave equation describing sound propagation is
derived from the equations of hydrodynamics and its co-
efficients and boundary conditions are descriptive of the

ocean environment. There are essentially four types of
models (computer solutions to the wave equation [5.4])
to describe sound propagation in the sea: ray theory,
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the spectral method or fast field program (FFP), nor-
mal mode (NM) and parabolic equation (PE). All of
these models allow for the fact that the ocean envi-
ronment varies with depth. A model that also takes
into account horizontal variations in the environment
(i. e., sloping bottom or spatially variable oceanogra-
phy) is termed range-dependent. For high frequencies
(a few kilohertz or above), ray theory is the most practi-
cal. The other three model types are more applicable
and useable at lower frequencies (below 1 kHz). Be-
tween these frequencies, one can choose either, noting
that the wave solution is the most accurate and should
probably be used in all cases where the the calculation
is still feasible and/or practical. The models discussed
here are essentially two-dimensional models since the
index of refraction has much stronger dependence on
depth than on horizontal distance. Nevertheless, bot-
tom topography and strong ocean features can cause
horizontal refraction (out of the range–depth plane).
Ray models are most easily extendable to include this
added complexity. Full three-dimensional wave models
are extremely computationally intensive. A compro-
mise that often works for weakly three-dimensional
problems is the N × 2D approximation that combines
two-dimensional solutions along radials to produce
a three-dimensional solution.

5.4.1 The Wave Equation
and Boundary Conditions

The wave equation for the pressure p in cylindri-
cal coordinates with the range coordinates denoted by
r = (x, y) and the depth coordinate denoted by z (taken
positive downward) for a source-free region is

∇2 p(r, z, t)− 1

c2(r, z)

∂2 p(r, z, t)

∂t2
= 0 , (5.33)

where c(r, z) is the sound speed in the wave-
propagating medium.

It is convenient to solve (5.33) in the frequency
domain by assuming a solution with a frequency depen-
dence of exp(−iωt) to obtain the Helmholtz equation
(K ≡ ω/c),

∇2 p(r, z)+K2 p(r, z) = 0 (5.34)

with

K2(r, z) = ω2

c2(r, z)
. (5.35)

The range-dependent environment manifests itself as
the coefficient K2(r, z) of the partial differential equa-
tion for the appropriate sound speed profile. The

range-dependent bottom type and topography appears
as boundary conditions. In underwater acoustics both
fluid and elastic (shear-supporting sediments and bot-
tom strata) media are of interest. For simplicity we only
consider fluid media below. This is most often a good
approximation to describing the bottom near the bottom
interface since the material typically has a low shear
speed which can be inserted into the fluid equation so-
lution by a perturbation procedure [5.32].

The most common plane-interface boundary con-
ditions encountered in underwater acoustics are the
pressure release condition at the ocean surface,

p = 0 , (5.36)

and at the ocean–bottom interface, continuity of pres-
sure

p1 = p2 , (5.37)

and vertical particle velocity

1

ρ1

∂p1

∂z
= 1

ρ2

∂p2

∂z
, (5.38)

where the ρi are the densities of the two media. These
latter boundary conditions applied to the plane-wave
fields in Fig. 5.13a yield the Rayleigh reflection coef-
ficient given by (5.5).

The Helmholtz equation for an acoustic field from
a point source is

∇2G(r, z)+K2(r, z)G(r, z)=−δ2(r−rs)δ(z− zs) ,

(5.39)

where the subscript ‘s’ denotes the source coordinates.
The acoustic field from a point source, G(r) is either ob-
tained by solving the boundary-value problem of (5.39)
(spectral method or normal modes) or by approximat-
ing (5.39) using an initial-value problem (ray theory,
parabolic equation).

5.4.2 Ray Theory

Ray theory is a geometrical, high-frequency approxi-
mate solution to (5.39) of the form

G(R) = A(R) exp[iS(R)] , (5.40)

where the exponential term allows for rapid variations
as a function of range and A(R) is a more slowly
varying envelope that incorporates both geometrical
spreading and loss mechanisms. The geometrical ap-
proximation is that the amplitude varies slowly with
range (i. e., (1/A)∇2 A 
 K2) so that (5.34) yields the
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eikonal equation

(∇S)2 = K2 . (5.41)

The ray trajectories are perpendicular to surfaces of
constant phase (wavefronts), S, and may be expressed
mathematically as follows

d

dl

(
K

dR
dl

)
=∇K , (5.42)

where l is the arc length along the direction of the ray
and R is the displacement vector to a point on the ray.
The direction of average flux (energy) follows that of
the trajectories and the amplitude of the field at any
point can be obtained from the density of rays.

The ray theory method is computationally rapid and
extends to range-dependent problems. Furthermore, the
ray traces give a physical picture of the acoustic paths.
It is helpful in describing how sound redistributes itself
when propagating long distances over paths that include
shallow and deep environments and/or mid-latitude to
polar regions. The disadvantage of conventional ray
theory is that it does not include diffraction, includ-
ing effects that describe the low-frequency dependence
(degree of trapping) of ducted propagation.

5.4.3 Wavenumber Representation
or Spectral Solution

The wave equation can be solved efficiently with spec-
tral methods when the ocean environment does not vary
with range. The term fast field program (FFP) had been
used because the spectral methods became practical
with the advent of the fast Fourier transform (FFT).
Assume a solution of (5.39) of the form

G(r, z) = 1

2π

∫
d2kg(k, z, zs) exp[ik · (r− rs)] ,

(5.43)

which then leads to the equation for the depth-
dependent Green’s function g(k, z, zs),

d2g

dz2
+
[

K2(z)− k2
]

g =− 1

2π
δ(z− zs) . (5.44)

Furthermore, we assume azimuthal symmetry, kr > 2π
and rs = 0 so that (5.43) reduces to

G (r, z)=exp (−iπ/4)

(2πr)1/2

×

+∞∫

−∞
dkk1/2g(k, z, zs) exp(ikr) . (5.45)

This integral is then evaluated using the fast Fourier
transform algorithm. Although the method was initially
labeled fast field it is fairly slow because of the time re-
quired to calculate the Green’s functions (solve (5.44)).
However, it has advantages when one wishes to cal-
culate the near-field region or to include shear-wave
effects in elastic media; it is also often used as a bench-
mark for other less exact techniques. With a great deal
of additional computational effort, this method is ex-
tendable to range-dependent environments.

5.4.4 Normal-Mode Model

Rather than solve (5.44) for each g for the complete
set of ks (typically thousands of times), one can utilize
a normal-mode expansion of the form

g(k, z) =
∑

an(k)un(z) , (5.46)

where the quantities un are eigenfunctions of the fol-
lowing eigenvalue problem

d2un

dz2
+
[

K 2(z)− k2
n

]
un(z) = 0 . (5.47)

The eigenfunctions un are zero at z = 0, satisfy the lo-
cal boundary conditions descriptive of the ocean bottom
properties and satisfy a radiation condition for z →∞.
For pressure, they form an orthonormal set in a Hilbert
space with weighting function ρ−1(z), the local density.
The range of discrete eigenvalues corresponding to the
poles in the integrand of (5.45) is given by the condition

min[K (z)]< kn <max[K (z)] . (5.48)

These discrete eigenvalues correspond to discrete an-
gles within the critical angle cone in Fig. 5.7a as
discussed in Sect. 5.1.2. The eigenvalues kn typically
have a small imaginary part αn , which serves as the
modal attenuation representative of all the losses in the
ocean environment. Solving (5.39) using the normal-
mode expansion given by (5.46) yields (for the source
at the origin).

G(r, z) = i

4ρ(zs)

∑

n

un(zs)un(z)H1
0 (knr) . (5.49)

The asymptotic form of the Hankel function can be
used in the above equation to obtain the well-known
normal-mode representation of a waveguide in cylindri-
cal coordinates

G(r, z) = i

(8πr)1/2ρ(zs)
exp(−iπ/4)

×
∑

n

un(zs)un(z)

k1/2
n

exp(iknr) . (5.50)
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Equation (5.50) is a far-field solution of the wave equa-
tion and neglects the continuous spectrum of modes
(kn <min[K (z)] of (5.48)). For the purposes of illus-
trating the various portions of the acoustic field, we note
that kn is a horizontal wavenumber so that a ray angle
associated with a mode with respect to the horizontal
can be taken to be θ = cos−1[kn/K (z)]. For a simple
waveguide the maximum sound speed is the bottom
sound speed corresponding to min[K (z)]. At this value
of K (z), we have from Snell’s law θ = θc, the bottom
critical angle. In effect, if we look at a ray picture of
the modes, the continuous portion of the mode spectrum
corresponds to rays with grazing angles greater than the
bottom critical angle of Fig. 5.13b and therefore out-
side the cone of Fig. 5.7a. This portion undergoes severe
loss. Hence, we note that the continuous spectrum is the
near (vertical) field and the discrete spectrum is the far
(more-horizontal, profile-dependent) field falling within
the cone in Fig. 5.7a.

The advantages of the normal-mode procedure are
that: the solution is available for all source and receiver
configurations once the eigenvalue problem is solved; it
is easily extended in moderately range-dependent con-
ditions using the adiabatic approximation; it can be
applied (with more effort) to extremely range-dependent
environments using coupled-mode theory. However, it
does not include a full representation of the near field.

Adiabatic Mode Theory
All of the range-independent normal-mode calculation
method developed for environmental ocean acoustic
modeling applications can be adapted to mildly range-
dependent conditions using adiabatic mode theory. The
underlying assumption is that individual propagating
normal modes adapt to the local environment, but do
not scatter or couple into each other. The coefficients
of the mode expansion, an in (5.46), now become mild
functions of range, i. e., an(k)→ an(k, r). This modifies
(5.45) as follows

G(r, z) = iρ(zs)

(8πr)1/2
exp(−iπ/4)

×
∑

n

un(zs)vn(z)

k1/2
n

exp(iknr) , (5.51)

where the range-averaged wavenumber (eigenvalue) is

kn = 1

r

r∫

0

kn(r ′)dr ′ , (5.52)

and the kn(r ′) are obtained at each range segment from
the eigenvalue problem (5.47) evaluated for the envi-

ronment at that particular range along the path. The
quantities un and vn are the sets of modes at the source
and the field positions, respectively.

Simply stated, the adiabatic mode theory leads to
a description of sound propagation such that the acous-
tic field is a function of the modal structure at both the
source and the receiver and some average propagation
conditions between the two. Thus, for example, when
sound emanates from a shallow region where only two
discrete modes exist and propagates into a deeper re-
gion with the same bottom (same critical angle), the two
modes from the shallow region adapt to the form of the
first two modes in the deep region. However, the deep
region can support many more modes; intuitively, we
therefore expect the resulting two modes in the deep re-
gion will take up a smaller, more-horizontal part of the
cone of Fig. 5.7a than they take up in the shallow re-
gion. This means that sound rays going from shallow to
deep regions tend to become more horizontal, which is
consistent with a ray picture of down-slope propagation.
Finally, fully coupled mode theory for range-dependent
environments has been developed but requires intensive
computation.

Mode Dispersion in a Waveguide
Acoustical propagation in simple free space is nondis-
persive. That is, all plane waves travel with speeds
independent of frequency. Further, their group and
phase speeds are the same as the medium sound speed.
However, geometric dispersion is a property of wave-
guide propagation.

We consider a shallow-water waveguide of the Pe-
keris type, i. e., a homogeneous water column overlying
a homogeneous and denser fluid bottom. A waveguide
of this type supports modal propagation, where each
modes is characterized by a depth-dependent modal am-
plitude un(z) and a horizontally projected propagating
wavenumber kn . Each mode is characterized by a group
velocity vgn and a phase velocity vϕn , which are related
through the formula

1

vgn
= vϕn

∞∫

0

u2
n (z)

ρ (z) c2 (z)
dz . (5.53)

In the case of a perfect waveguide with a constant sound
speed c and no penetration in the bottom, (5.53) takes
the simplest form vgnvpn = c2. The difference in group
velocities between modes results in modal dispersion in
a waveguide (Fig. 5.21).

In shallow water, lower-order modes usually travel
faster than higher-order modes (Figs. 5.22 and 5.23).
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In deep water, where the deep sound channel behaves
as a waveguide, the fastest modes are the higher-order
modes (Fig. 5.24), a property of refraction-dominated
modal propagation. Since modal wavenumbers kn are
frequency dependent, the modes can be plotted in
a frequency–wavenumber space that is the Fourier
transform of the time-range representation of the dis-
persed field in Fig. 5.25. As already seen in Fig. 5.21,
Fig. 5.26 shows that modes have a cut-off frequency and
that there exist a finite number of propagating modes at
a given frequency.

Dispersion and The Waveguide Invariant [5.3]
There is actually a fairly robust parameter, the wave-
guide invariant, that describes dispersion over a (some-
times large) interval of a group of modes. The wave-
guide invariant β has two important interpretations; first,
it is related the local change in the modal group velocity
with respect to the change in phase velocity,

1

β
=−∂Sg

∂Sp
, (5.54)

where Sg and Sp and group and phase slowness, where
slowness is the inverse of speed.

It turns out that β often has a rather robust value for
certain circumstances. For example, it is unity for many
shallow-water situations that are dominated by bottom
reflection; on the other hand it is negative for refraction-
dominated propagation.

Figure 5.27 shows a calculation for a Pacific deep-
water case. Note from the definition that β is negative
up to a phase speed of about 1540; this region is one of
refraction such as deep sound channel and convergence
zone propagation. Beyond 1540, β is positive; this is the
bottom bounce region dominated by reflections rather
than refraction.

The invariant also relates the change in range in the
locations of the interference peaks of a transmission loss
curve to a change in frequency

Δr

r
= 1

β

Δω

ω
. (5.55)

In Fig. 5.28, we show a set of TL curves for dif-
ferent frequencies; the interference peaks are shifted
according to the invariant formula. Another way of rep-
resenting this shift is through the striations, where TL
is the third dimension of a frequency–range plot as
shown in Fig. 5.29, which was derived from shallow-
water transmission loss data. If one represents range
as the product of the velocity of the radiator and time,
then, the range axis can be replaced by time and one has
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Fig. 5.21 Frequency dependence of the group speed (lower curves
1–6) and phase speed (upper curves 1–6) of modes 1–6 in a Pekeris
waveguide with a 100 m water depth, a bottom sound speed cb and
density of 1600 m/s and 1800 kg/m3. Sound speed in water cω is
constant and equal to 1500 m/s. The bold vertical lines show the
cut-off frequencies of modes 4–6, respectively

a frequency–time plot, often called a spectrogram. The
TL curve is a slice through the spectrogram for a given
frequency and time converted to the appropriate range.
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Fig. 5.22a,b Acoustic dispersion in a shallow water waveguide.
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and the receiver depth at 60 m. Waveguide parameters are the same
as in Fig. 5.21
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ter a R = 20 km propagation in a shallow-water waveguide. The
waveguide characteristics are the same as in Fig. 5.21. Source depth
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Doppler Shift in a Waveguide
The theory of Doppler shifts involving either a moving
source and/or receiver is well known in acoustics, par-
ticularly in free space. However, in a waveguide, even if
we limit ourselves to horizontal motion, the results are
slightly more complex. The individual paths associated
with modal propagation, as per Fig. 5.7a, all have finite
and different angles with respect to the horizontal. Thus,
each mode has a different Doppler shift. The waveguide
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Fig. 5.24 Depth-versus-time representation of the field intensity af-
ter a R = 2000 km propagation in a deep-water waveguide. We used
the Munk profile as a depth-dependent sound-speed profile. Source
depth is 900 m, source frequency is 22.5 Hz with a 15 Hz band-
width. The color scale is in dB with a 0 dB source level amplitude
at the source

theory for both source and/or receiver has been worked
out (see [5.33], in which there is also a review of the
pertinent literature). We return to (5.50) for a harmonic
source of angular frequency ω, which therefore results
in an additional, identical (when there is no motion) fac-
tor for each term of e−iωt in the time domain. We now
consider a source with a frequency spectrum S(ω). For
constant, horizontal velocities, the normal-mode field
results in the receiver reference frame are still valid

ψ(r0+vrt, z, ω) = i

4ρ(zs)

×
∑

n

S(Ωn)un(zs)un(z)H1
0 (knr),

(5.56)

but with Doppler shifted modal wavenumbers

kn → kn

(
1+ vr

vgn
cos θr

)
, (5.57)

and Doppler-shifted frequencies (now for each modal
term in the summation) of

Ωn = ω− kn (vs cos θs−vr cos θr) , (5.58)

where vgn is the group velocity of the n-th mode,
vs cos θs is the radial speed of the source, and vr cos θr
is the radial speed of the receiver. Here, radial refers to
the projection of the velocities onto the horizontal line
between the source and receiver. Note that this latter ex-
pression, when multiplied through by the wavenumber,
shows that the frequency shift is proportional to the ra-
tio of speeds to the modal phase speed, as opposed to
the wavenumber shift which involves the group speed.

5.4.5 Parabolic Equation (PE) Model

The PE method was introduced into ocean acoustics and
made viable with the development of the Tappert split-
step algorithm, which utilized fast Fourier transforms at
each range step [5.6]. Subsequent numerical develop-
ments greatly expanded the applicability and accuracy
of the parabolic equation method.

Standard PE Split-Step Algorithm
The PE method is presently the most practical and all-
encompassing wave-theoretic range-dependent propa-
gation model. In its simplest form, it is a far-field
narrow-angle (≈±20◦) with respect to the horizontal –
adequate for many underwater propagation problems –
approximations to the wave equation. Assuming az-
imuthal symmetry about a source, we express the
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solution of (5.34) in cylindrical coordinates in a source-
free region in the form

p(r, z) = ψ(r, z)H(r) , (5.59)

and we define K2(r, z) ≡ K2
0n2, n therefore being an

index of refraction c0/c, where c0 is a reference sound
speed. Substituting (5.59) into (5.34) and taking K 2

0 as
the separation constant we end up with a Bessel equa-
tion for H that has a Hankel function as the outgoing
solution. If we use the asymptotic form of the Hankel
function, H1

0 (K0r), and invoke the paraxial (narrow-
angle) approximation,

∂2ψ

∂r2

 2K0

∂ψ

∂r
, (5.60)

we obtain the parabolic equation (in r),

∂2ψ

∂z2
+2iK0

∂ψ

∂r
+K2

0(n2−1)ψ = 0 , (5.61)

where we note that n is a function of range and depth.
We use a marching solution to solve the parabolic
equation. There has been an assortment of numerical
solutions but the one that still remains a standard is the
so-called split-step range-marching algorithm,

ψ (r+Δr, z)= exp

[
iK0

2
(n2−1)Δr

]
F−1

×

{[
exp

(
− iΔr

2K0
s2
)]

F [ψ(r, z)]

}
.

(5.62)
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Fig. 5.25 Range-versus-time representation of the field intensity for
the same waveguide and source–receiver depth as in Fig. 5.21. The
figure clearly shows that modes travel at different speed. The re-
tarded time t is t− R/cω. The color scale is in dB with a 0 dB
reference at range 5 km

The Fourier transforms F, are performed using FFTs.
Equation (5.62) is the solution for n constant, but the
error introduced when n (profile or bathymetry) varies
with range and depth can be made arbitrarily small by
increasing the transform size and decreasing the range-
step size. It is possible to modify the split-step algorithm
to increase its accuracy with respect to higher-angle
propagation.
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Fig. 5.28 Transmission loss versus range from 130 to 170 Hz cal-
culated by OASES (Ocean Acoustic Seismic Exploration Synthesis)
for an environment composed of a 200 m homogeneous fluid layer
overlying a homogeneous, absorbing fluid half-space. The fluid
layer has a 1450 m/s sound speed, whereas the bottom half-space
has a sound speed of 1500 m/s and an attenuation of 10 dB/λ. The
curves for increasing frequencies are progressively offset in 1 dB
steps. The source and receiver depths are 20 and 100 m, respectively

Generalized or Higher-Order PE Methods
Methods of solving the parabolic equation, including
extensions to higher-angle propagation, elastic media,
and direct time-domain solutions including nonlinear
effects have recently appeared (for example, see [5.34]).
In particular, accurate high-angle solutions are im-
portant when the environment supports acoustic paths

Fig. 5.27 Group speed versus phase speed in the Pacific
Deep water case. The curves are for different frequencies
starting with the lowest frequency 60 Hz being on top. Low
phase velocity corresponds to low mode number �

that become more vertical such as when the bottom
has a very high speed and hence, large critical angle
with respect to the horizontal. In addition, for elastic
propagation, the compressional and shear waves span
a wide angle interval. Finally, Fourier synthesis for
pulse modeling requires high accurate in phase and the
high-angle PEs are more accurate in phase, even at low
angles.

Equation (5.61) with the second-order range deriva-
tive which was neglected because of (5.60) can be
written in operator notation as

[
P2+2iK0 P+K2

0(Q2−1)
]
ψ = 0 , (5.63)

where

P ≡ ∂

∂r
, Q ≡

√
n2+ 1

K2
0

∂2

∂z2
. (5.64)

Factoring (5.64) assuming weak range dependence and
retaining only the factor associated with outgoing prop-
agation yields a one-way equation

Pψ = iK0(Q−1)ψ , (5.65)

which is a generalization of the parabolic equation be-
yond the narrow-angle approximation associated with
(5.60). If we define Q =√

1+q and expand Q in a Tay-
lor series as a function of q, the standard PE method is
recovered by Q ≈ 1+0.5q. The wide-angle PE to arbi-
trary accuracy in angle, phase, etc. can be obtained from
a Padé series representation of the Q operator,

Q ≡√1+q = 1+
n∑

j=1

a j,nq

1+b j,nq
+O(q2n+1) ,

(5.66)

where n is the number of terms in the Padé expansion
and

a j,n = 2

2n+1
sin2

(
jπ

2n+1

)
b j,n

= cos2
(

jπ

2n+1

)
. (5.67)

The solution of (5.65) using Eqs. (5.66) and (5.67) has
been implemented using finite-difference techniques for
fluid and elastic media.
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5.4.6 Propagation and Transmission Loss

Propagation loss (PL) and transmission loss (TL) are
decibel (see Appendix) quantities that are either meas-
ured or derived from propagation models. They rep-
resent the loss in intensity of the acoustic field as
a function of range as referenced to some location. For
modeling, we typically use the intensity at one meter
range from the source using the assumption of spherical
spreading over that one meter. Hence, if P is the output
of a propagation code, the propagation loss is

PL = 20 log

∣∣∣∣
P

p0(r = 1)

∣∣∣∣≡−TL , (5.68)

where p0 is the pressure of the source in free space.
Transmission loss is a positive quantity.

Often, one sees references to coherent and in-
coherent propagation loss, which can be confusing.
Deterministic physics has all acoustic propagation as
coherent. If the medium has some randomness, than
phase information is lost by some sort of averaging
process. This leads to the idea of incoherent propa-
gation. In normal-mode theory, the results is that the
cross terms involving differences of modal wavenum-
bers do not contribute and the propagation curve
is therefore smooth, without the interference pattern
(Fig. 5.30c). Clearly such a calculation is easy with
modes, but there is no equivalent simple way for
the other wave models other than actually to intro-
duce randomness. Figure 5.30 shows an application
of this incoherent sum of modes. In shallow water
an incoherent sum of modes is more or less equiva-
lent to frequency smoothing, over, for example a third
of an octave. The environment shown in Fig. 5.30a
corresponds to experimental data contours of third-
octave transmission loss as a function of frequency
and range shown in Fig. 5.30b. Normal-mode model
runs are shown in Fig. 5.30c, in which the modes are
summed incoherently. Figure 5.30d is a model result
of the same type of mode computations, but over the
whole frequency spectrum; note the excellent agree-
ment. This kind of analysis can be iteratively used
to estimate the environment. Figures 5.30b and 5.30d
are referred to an optimum frequency curves in the
sense that 300–400 Hz appears to be the optimum fre-
quency of propagation. For example, a vertical slice
at 60 km indicates that the minimum loss is in that
frequency interval. The curves in Fig. 5.30c are hor-
izontal slices of the contour plot in Fig. 5.30d. The
optimum frequency comes from the combination of
high loss into the bottom at low frequency because
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Fig. 5.29 A data example of spectrogram of a broadband moving
source. The striations are the peaks in the interference pattern of the
transmission loss. The time axis is converted to range if one knows
the path and speed of the source (after [5.35])

of increased penetration into the lossy bottom and
high losses at high frequency caused by scattering and
other water volume attenuation effects that tend to have
a frequency-squared dependence. Hence, the existence
of an intermediate frequency at which bottom loss is
small and frequency-squared dependence is not yet
dominant.

Finally we note that there is also an incoherent sum
of rays in which ray intensities and not amplitudes with
phases are summed. This is not the equivalent of an in-
coherent sum of mode. For example, an incoherent sum
of modes does not produce convergence zones while
incoherent rays show convergence-zone properties.

5.4.7 Fourier Synthesis
of Frequency-Domain Solutions

Using a Fourier transform, the frequency-domain solu-
tion p(r, z, ω) of the wave equation can be transformed
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Fig. 5.30a–d Optimum frequency curves for a shallow-water environment. (a) The shallow-water environment. Source
and receiver depths are marked by the arrows. (b) Contour of third-octave transmission loss data over frequency and
range. (c) Incoherent normal-mode transmission loss. (d) Contour of incoherent transmission loss looking very much like
the data in (b)

into the time-dependent solution p(r, z, t). We have

p (r, z, t)= 1

2π

+∞∫

−∞
S(ω)p (r, z, ω) e−iωt dω .

(5.69)

S(ω) is the source spectrum defined as

S(ω) =
+∞∫

−∞
s(t)eiωt dt , (5.70)

where s(t) is the pulse source for which the time-
domain solution p(r, z, t) is investigated. Before (5.69)

can be used, the transfer function p(r, z, ω) has to
be determined from one of the frequency-domain (or
continuous-wave (CW)) propagation models described
above at a number of discrete frequencies within the fre-
quency band of interest. This means the ocean response
to a pulse s(t) is obtained by combining the conve-
nient and computationally efficient CW codes (spectral
integrals, normal-mode or parabolic equations) with
a Fourier synthesis approach. Even if this last step is
conceptually simple, there are several numerical issues
that have to be addressed like frequency and time win-
dowing, and aliasing.

The first step in evaluating the frequency integral by
means of a (fast) Fourier transform is to reduce the in-
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tegration interval. The source pulse s(t) being known,
a frequency interval (ωmin, ωmax) is determined, outside
which the source does not emit any significant energy.
Moreover, the final time-domain solution p(r, z, t) be-
ing real, we know that p (r, z,−ω)= p (r, z, ω). This
reduces the integration performed in (5.69) to the inter-
val [ωmin, ωmax]

p (r, z, t)= Re

⎡

⎣ 1

π

ωmax∫

ωmin

S(ω)p (r, z, ω) e−iωt dω

⎤

⎦ .

(5.71)

Now, the set of discrete frequencies on which the inte-
gration has to be performed on the interval [ωmin, ωmax]
depends on both the choice of the sampling frequency
Fs of the signal and some a priori knowledge of the
time spread T of the final solution p(r, z, t). First, the
sampling frequency Fs has to satisfy the Nyquist cri-
terium Fs > 2 fmax = (ωmax/π). Typically, to allow for
a reasonably looking graphical signal display, an appro-
priate value is Fs = 8 fmax. Second, the time window
T of the signal after propagation through the ocean
should be taken as short as possible. However, this
time window must be chosen in accordance with the
waveguide physics. A conservative way to estimate the
time spread is to consider that T is bounded by the
slowest and fastest available speeds for the particular

environment:

T = tmax− tmin ≥ R

(
1

cmin
− 1

cmax

)
, (5.72)

where R is the propagation range. With the proper
choice of T and Fs, we construct an N-point time vec-
tor t = [0 : 1

Fs
: T ], with N = FsT +1 and a frequency

vector ω
2π = [0 : Fs

N : Fs(1− 1
N )]. The time vector t cor-

responds to the time axis on which the time-dependent
solution p(r, z, t) will be computed from the frequency
bins of the frequency vector ω inside the interval
[ωmin, ωmax]. Before computing the Fourier transform,
it is necessary to add a retarded time to the integral
exp(−itminω) so that the time vector t starts at the earli-
est possible arrival t = tmin+

[
0 : 1

Fs
: T
]
. From (5.80),

a reasonable choice for tmin is tmin = (R/cmax ). It fol-
lows:

p(r, z, t)= Re
{

IFFT
[
S(ω)p(r, z, ω)e−iωtmin

]ωmax
ωmin

}
,

(5.73)

where the inverse fast Fourier transform (IFFT) is per-
formed on the frequency vector ω in the interval [ωmin,
ωmax]. We do not discuss here the numerous (fast)
Fourier transform algorithms, which can be found in
signal processing or numerical methods books. Typi-
cal results of this broadband modeling are presented in
Figs. 5.22–5.25.

5.5 Quantitative Description of Propagation

All of the models described above attempt to describe
reality and to solve in one way or another the Helmholtz
equation. They therefore should be consistent and there
is much insight to be gained from understanding this
consistency. The models ultimately compute propa-
gation loss which is taken as the decibel ratio (see
Appendix) of the pressure at the field point to a refer-
ence pressure, typically one meter from the source.

Figure 5.31 shows convergence-zone-type propaga-
tion for a simplified profile. The ray trace in Fig. 5.31b
shows the cyclic focusing discussed in Sect. 5.1.2.
The same profile is used to calculate normal modes,
shown in Fig. 5.31c which, when summed according to
(5.50) referenced to 1 m, exhibits the same cyclic pat-
tern as the ray picture. Figure 5.31d shows both the
normal-mode (wave theory) and ray theory result. Ray
theory exhibits sharply bounded shadow regions as ex-
pected whereas the normal-mode theory, which includes

diffraction, shows that the acoustic field does exist in
the shadow regions and the convergence zones have
structure.

Normal-mode models sum the discrete modes that
roughly correspond to angles of propagation within
the cone of Fig. 5.7a. The spectral method can include
the full field, discrete plus continuous, the latter corre-
sponding to larger angles. The discussion below (5.50)
defines these angles in terms of horizontal wavenum-
bers, and the eigenvalues of the normal-mode problem
are a discrete set of horizontal wavenumbers. Hence
the integrand (Green’s function) of the spectral method
has peaks at the eigenvalues associated with the nor-
mal modes. These peeks are shown on the right of
Fig. 5.32a. The smoother portion of the spectrum is
the continuous part, corresponding to the larger an-
gles. Therefore, the consistency we expect between the
normal-mode and the spectral method and the physics
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Fig. 5.31a–d Consistency between ray theory and normal mode theory. (a) Sound-speed profile, (b) ray trace, (c) normal
modes, (d) propagation calculations. The shadow zones in (d) are much sharper for ray theory which does not include
diffraction effects

of Fig. 5.7 is that the continuous portion of the spec-
tral solution decays rapidly with range so that there
should be complete agreement at long range between
the normal-mode and spectral solutions. The Lloyd’s
mirror effect, a near-field effect, should also be exhib-
ited in the spectral solution but not the normal-mode
solution. These aspects are apparent in Fig. 5.32b. The
PE solution is in good agreement with the other so-
lutions but with some phase error associated with the
average wavenumber that must be chosen in the split-
step method. The PE solution, which contains part of
the continuous spectrum including the Lloyd’s mirror
beams, is more accurate than the normal-mode solution
at short range; however, the generalized PE can be made
arbitrarily accurate at short range by including more
expansion terms in (5.66).

Range-dependent results are shown in Fig. 5.33.
A ray trace, a ray trace field result, a PE result and data
are plotted together for a range-dependent sound-speed
profile environment. The models agree with the data in
general, with the exception that the ray results predict
too sharp a leading edge for the convergence zone.

Up-slope propagation is modeled with the PE in
Fig. 5.34. As the field propagates up-slope, sound is
dumped into the bottom in what appears to be discrete
beams. The flat region has three modes and each is cut
off successively as sound propagates into the shallower
water. The ray picture also has a consistent explanation
for this phenomenon. The rays for each mode become
steeper as they propagate up-slope. When the ray an-
gle exceeds the critical angle the sound is significantly
transmitted into the bottom.

Part
A

5
.5



Underwater Acoustics 5.6 SONAR Array Processing 187

5.6 SONAR Array Processing

Signal processing is common to many fields [5.36–38].
In this section we emphasize applications to underwater
acoustics, mainly concentrating on spatial processing
of pressure fields. We note, though, that there is also
growing interest in processing vector fields such as
acoustic displacement, velocity or acceleration [5.39].
Further, the array processing discussed below for pas-
sive SONARs is also applicable to active SONAR signal
processing. Spatial sampling of a sound field is usu-
ally done by an array of transducers, although the
synthetic aperture array, in which a sensor is moved
through space to obtain measurements in both the time
and space domains, is an important exception. Spa-
tial sampling is analogous to temporal sampling with
the sampling interval replaced by the sensor spacing.
The Nyquist criterion requires that the sensor spac-
ing be at least twice the spatial wavenumber of the
measured sound field. Finally, we note that recently
work of processing ambient noise fields have proven to
yield information about the ocean environment [5.40,
41].

5.6.1 Linear Plane-Wave Beam-Forming
and Spatio-Temporal Sampling

The simplest example of array processing is phase shad-
ing in the frequency domain (or time delay in the
time domain) to search for the bearing of a plane-
wave signal. This procedure is referred to as plane wave
beam-forming, or delay and sum beam-forming in the
time domain. For simplicity we consider a liner array
and we take θ as the bearing angle associated with the
plane-wave signal as shown in Fig. 5.35a.

Frequency-Domain Processing
A plane wave can be represented as

s(θ) = exp(ik · r) , (5.74)

where we have suppressed the time dependence
exp(−iωt) and k = |k| = (ω/c). The field is summed in
phase if the receiving element (hydrophone or micro-
phone) inputs at position d is multiplied by the complex
conjugate of the plane-wave phase factor,

ω∗i = exp(−iks ·di ) = exp [−id(k sin θs)] , (5.75)

where θs is a scanning angle. This process will have
a maximum when the scanning angle equals the incident
angle of the signal.

The output of this beam-forming process is denoted
B(θs), but often it is the power output of the beam-
former that is of interest:

B(θs) =
∣∣∣∣∣

m∑

i=1

ω∗i (θs) [si (θ)+ni ]

∣∣∣∣∣

2

=
m∑

i, j=1

ω∗i (θs)
(
sij +nij

)
ω j (θs) , (5.76)
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Fig. 5.32a,b Relationship between spectral (FFP), normal-mode
(NM) and split-step parabolic-equation model (PE) computations.
(a) FFP Green’s function from (5.44). (b) Normal-mode, spectral
(FFP) and PE propagation results showing some agreement in the
near field and complete agreement in the far field. Higher-order PE
methods will give identical results to the FFP
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Fig. 5.33a,b Model and data comparison for a range-dependent
case. (a) Profiles and ray trace for a case of a surface duct disap-
pearing. (b) 250 Hz PE and 2 kHz ray-trace comparisons with data.
Again, the diffraction-less ray theory shows more abrupt change in
field

where si and ni are the signal and noise at the i-th
receiving element and where sij +nij are elements of
a cross-spectral density matrix which, when obtained
from data, would involve Fourier transforms and en-
semble averages as mentioned in the discussion below
(5.78) augmented by Fig. 5.35b. In writing down the
right-hand side of (5.76), the signal and noise fields
were assumed to be mutually incoherent.

We can write the above expression in matrix no-
tation where the boldface lower-case letters denote
vectors and boldface upper-case letters denote matrices.
Define a steering column vector w whose i-th element
is wi and a cross-spectral density matrix (CSDM) K of

the signal and noise with elements Kij = sij +nij since
the signal and noise are assumed to be independent.
Equation (5.76) can be rewritten as

B(θs) = w†(θs)K (θtrue)w(θs) ≡ w†Kw , (5.77)

where † denotes the complex transpose. The CSDM or
the covariance of the field is composed of uncorrelated
signal and noise covariances,

K = Ks+Kn . (5.78)

The data across the array as represented in the matrix K
contains the information that the source is in the direc-
tion θtrue. Sometimes w(θs) is referred to as a replica and
this beam-forming process is viewed as matching the re-
ceived data across the array with a replica. The type of
beam-former represented by (5.77) is called a linear or
Bartlett beam-former.

For the sample covariance estimation we assume
we have an array with N sensors located at di ,
i = 1, 2, · · · , N and a narrow-band model as illustrated
in Fig. 5.35b. These covariances are estimated by seg-
menting the received data, ri (t) into snapshots using
a sampling window, W(t), that is unity in the interval
[0, Tw],

Rl
i ( f ) =

Tl+Tw∫

Tl

ri (t)W(t−Tl)e−i2π ft dt , (5.79)

where here the notation uses frequency f , rather than
angular frequency ω. In most beam-forming algorithms
the data vectors are averaged to form the sample covari-
ance matrix

K̂ ( f ) = 1

L

L∑

l=1

Rl( f )Rl( f )H , (5.80)

where L is the number of snapshots.

Time-Domain Processing
Time delaying a signal is the time-domain analog to
phase shading of the signal in the frequency domain. In
general, the time domain is a viable alternative to fre-
quency analysis when processing coherent broadband
signals such as temporal impulse. Time-delay beam-
forming is then the frequency equivalent of the phase
beam-forming described in Sect. 5.6.1. Indeed, it can
be derived formally by taking the Fourier transform of
the beam-forming process with the result that the beam-
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former output is

b(θ, t) =
∞∫

−∞
B(θ, ω) exp(iωt)dω

=
∞∫

−∞

∑

i

Ri (ω) exp

(
−i
ω

ci
di sin θ

)

× exp(iωt)dω

=
∑

i

Ri (t− di

ci
sin θ) , (5.81)

where Ri (t) is the time domain data, di the location
and ci the sound speed at the i-th phone. Physically
speaking, the delay τi = (di/ci ) sin θ is, to a first approx-
imation, the time delay associated with the phase shift
in the frequency-domain array processing. A more rig-
orous approach in the case of a strong depth dependence
of the sound-speed profile leads to

τi =
di∫

d0

√
1

c2(z)
− cos2(θ)

c2(d0)
dz , (5.82)

where d0 is the depth of a reference hydrophone on the
array. Note that, in the case of a uniform sound speed
profile over the array, the above processes are plane-
wave beam-forming.

Examples of the practical use of time-domain versus
frequency-domain beam-forming are discussed below.
Consider an incident field on a 20-element vertical
array made of seven pulses arriving at different an-
gles in a noisy waveguide environment (Fig. 5.36). The
SNR ratio does not allow an accurate detection and
identification of the echoes. Time-delay beam-forming
results applied on these broadband signals is presented
in Fig. 5.37. The SNR of the time-domain processing
is a combination of array gain and frequency-coherent
processing. In comparison, phase beam-forming per-
formed on the same data and averaged incoherently over
frequencies show a degraded detection of the incident
echoes (Fig. 5.38).

5.6.2 Some Beam-Former Properties

Figure 5.39 shows the output results of some frequency-
domain plane-wave beam-formers for the cases of one
and two incident signals. To be noted are the side-lobes
of the Bartlett processor and the high-resolution per-
formance of the adaptive processors (discussed in the
next section). Some of the general attributes of an array
beam-former are:
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Fig. 5.34 Relation between up-slope propagation (from PE calcu-
lation) showing individual mode cut-off and energy dumping in
the bottom, and a corresponding ray schematic. In this case, three
modes were excited in the flat region. The ray picture shows that
a ray becomes steeper as it bounces up slope and when its grazing
angle exceeds the critical angle, it is partially transmitted into the
bottom (and subsequently with more and more transmission with
each successive, higher angle bounce)

• The main response axis (MRA): generally, one nor-
malizes the beam pattern to have 0 dB, or unity gain
in the steered direction.• Beam width: an array with finite extent, or aperture,
must have a finite beam width centered about the
MRA, which is termed the main lobe.• Side-lobes: angular or wavenumber regions where
the array has a relatively strong response. Some-
times they can be comparable to the MRA, but in
a well-designed array, they are usually −20 dB or
lower, i. e., the response of the array is less than 0.1
of a signal in the direction of a side-lobe.• Wavenumber processing: rather than scan through
incident angles, one can scan through wavenum-
bers, k sin θs ≡ κs; scanning through all possi-
ble values of κs results in nonphysical angles
that correspond to waves not propagating at the
acoustic medium speed. Such waves can exist,
such as those associated with array vibrations.
The beams associated with these wavenumbers
are sometimes referred to as virtual beams. An
important aspect of these beams is that their
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Fig. 5.35a,b Array processing. (a) Geometry for plane-wave beam-
forming. (b) The data is transformed to the frequency domain in
which the plane-wave processing takes place. The cross-spectral-
density matrix (CSDM) is an outer product of the data vector for
a given frequency

side-lobes can be in the physical angle re-
gion, thereby interfering with acoustic propagating
signals.• Array gain: defined as the decibel ratio of the signal-
to-noise ratios of the array output to a single phone
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Fig. 5.36 Depth-versus-time representation of simulated broad-
band coherent data received on a vertical array in the presence of
ambient noise. The wavefronts corresponding to different sources
are nearly undistinguishable

output. If the noise field is isotropic, the array gain
is also termed the directionality index.

5.6.3 Adaptive Processing

There are high-resolution methods to suppress side-
lobes, usually referred to as adaptive methods since the
signal processing procedure constructs weight vectors
that depend on the received data itself. We briefly de-
scribe one of these procedures: the minimum-variance
distortionless processor (MV), sometimes also called
the maximum-likelihood method (MLM) directional
spectrum-estimation procedure.

We seek a weight vector wMV applied to the matrix
K such that its effect will be to minimize the output
of the beam-former (5.77) except in the look direc-
tion, where we want the signal to pass undistorted. The
weight vector is therefore chosen to minimize the func-
tional [5.38]. From (5.72)

F = wMV KwMV+α(wMVw−1) . (5.83)

The first term is the mean-square output of the array
and the second term incorporates the constraint of unity
gain by means of the Lagrangian multiplier α. Follow-
ing the method of Lagrange multipliers, we obtain the
MV weight vector,

wMV = K−1w

wK−1w
. (5.84)

This new weight vector depends on the received data as
represented by the cross-spectral density matrix; hence,
the method is adaptive. Substituting back into (5.77)
gives the output of our MV processor,

BMV(θs) = [w(θs)K−1(θtrue)w(θs)]−1 . (5.85)

The MV beam-former should have the same peak value
at θtrue as the Bartlett beam-former, (5.77) but with side-
lobes suppressed and a narrower main beam, indicating
that it is a high-resolution beam-former. Examples are
shown in Fig. 5.39. Of particular practical interest for
this type of processor is the estimation procedure as-
sociated with Fig. 5.35b and (5.80). One must take
sufficient snapshots to allow the stable inversion of the
CSDM. This requirement may conflict with source mo-
tion when the source moves through multiple beams
along the time interval needed to construct the CSDM.

5.6.4 Matched Field Processing, Phase
Conjugation and Time Reversal

Matched field processing (MFP) [5.42] is a gener-
alization of plane-wave beam-forming in which data
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Fig. 5.37 Angle-versus-time representation of the simu-
lated data in Fig. 5.36 after time-delay beam-forming. All
sources appear clearly above the noise with their corre-
sponding arrival angle �

on an array is correlated with replicas from a (wave-
guide) propagation model for candidate locations r̂, ẑ
(Fig. 5.40). Localization of a source is accomplished
with a resolution consistent with the modal structure
and SNR. The central difficulty with MFP is speci-
fying the coefficients and boundary conditions of the
acoustic wave equation for shallow water propagation,
i. e., knowing the ocean environment in order to gen-
erate the replicas. An alternative to performing this
model-based processing is phase conjugation (PC), in
the frequency domain or, time reversal (TR) in the time
domain, in which the conjugate or time-reversed data
is used as source excitations on a transmit array co-
located with the receive array (Fig. 5.41a) [5.43]. The
PC/TR process is equivalent to correlating the data with
the actual transfer function from the array to the orig-
inal source location. In other words, both MFP and
PC are signal processing analogs to the mechanical
lens adjustment feedback technique used in adaptive
optics: MFP uses data together with a model (note
the feedback arrow in Fig. 5.40) whereas PC/TR is an
active form of adaptive optics simply retransmitting
phase-conjugate/time-reversed signal through the same
medium (e.g., see result of Fig. 5.41). Though time re-
versal is thought of as as active process, it is presented
in this section because of its relation to passive MFP.

Ocean Time-Reversal Acoustics
Phase conjugation, first demonstrated in nonlinear op-
tics and its Fourier conjugate version, time reversal is
a process that has recently implemented in ultrasonic
laboratory acoustic experiments [5.44]. Implementation
of time reversal in the ocean for single elements [5.45]
and using a finite spatial aperture of sources, referred
to as a time-reversal mirror (TRM) [5.46], is now well
established.

The geometry of a time-reversal experiment is
shown in Fig. 5.41. Using the well-established theory of
PC and TRM in a waveguide, we just write down the re-
sult of the phase-conjugation and time-reversal process,
respectively, propagating toward the focal position

Ppc(r, z, ω) =
J∑

j=1

Gω(r, z, z j )G
∗
ω(R, z, zps)S∗(ω)

(5.86)
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Ptrm(r, z, t) = 1

(2π)2

J∑

j=1

∫∫
G(r, z, t′′; 0, z j , t

′)

× G(R, z j , t
′; 0, zps, 0)

× S(t ′′ − t+T )dt dt ′′ , (5.87)

where S is the source function, G∗
ω(R, z, zps) is the

frequency-domain Green’s function and G(R, z j , t′;
0, zps, 0) is the time-domain Green’s function (TDGF)
from the probe source at depth zps to each element of
the SRA at range R and depth z j . Emphasizing the
time-domain process, G(r, z, t′′; 0, z j , t′) is the TDGF
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Fig. 5.38 Comparison between coherent time-delay beam-forming
(in red) and incoherent frequency-domain beam-forming (in blue)
for the simulated data shown in Fig. 5.35. When data come from co-
herent broadband sources, time-domain bema-forming show better
performance than frequency analysis
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Fig. 5.39a,b Simulated beam-former outputs. (a) Single
sources at a bearing of 45◦. (b) Two sources with 6.3◦
angular separation. Solid line: linear processor (Bartlett).
Dashed line: minimum variance distortion-less processor
(MV) showing that the side-lobes are suppressed

from each element of the SRA back to range r and
depth z. The focused field at the probe source posi-
tion is Ptrm(R, zps, t). The summation is performed on
the J elements of the TRM. The signal S(t ′′ − t+T )
of duration τ is the time-reversed version of the origi-
nal probe source signal and the derivation of (5.87) uses
the causality requirement, T> 2τ , i. e., the time reversal
interval T must contain the total time of reception and
transmission at the SRA, 2τ .

Figure 5.41a–c shows the result of a TRM exper-
iment. The size of the focus is consistent with the
spatial structure of the highest-order mode surviving
the two-way propagation and can also be mathemati-
cally described by a virtual array of sources using image
theory in a waveguide.

Matched Field Processing
Linear matched field processing (MFP) can be thought
of as the passive signal-processing implementation of
phase conjugation. Referring to the phase-conjugation

process described by (5.86), rename S∗G∗ as the data at
each array element and call the data vector on the array
R(atrue), where atrue represents the (unknown) location
of the source (Fig. 5.35b). Now in phase conjugation,
G represents an actual propagation from the source
array. In MPF, we do the propagation numerically us-
ing one of the acoustic models, but rather than use
the actual Green’s function, we use a normalized ver-
sion of it called a replica: ω(a) = G(a)/|G(a)|, where
G(a) is a vector of Green’s functions of dimension of
the number of array elements that represents the prop-
agation from a candidate source position to the array
elements and is the magnitude of the vector over the
array elements. Taking the square of the PC process
with replica’s replacing the Green’s functions yields the
beam-former of the matched field processor

Bmf(a) = ωH (a)K (atrue)ω(a) , (5.88)

where a realization of the CSDM on the array is then
K (atrue = R(atrue)RH (atrue) and a sample CSDM is
built up as per (5.80).

MFP works because the unique spatial structure
of the field permits localization in range, depth and
azimuth depending on the array geometry and com-
plexity of the ocean environment. The process is shown
schematically in Fig. 5.40. MFP is usually implemented
by systematically placing a test point source at each
point of a search grid, computing the acoustic field
(replicas) at all the elements of the array and then
correlating this modeled field with the data from the
real point source, K (atrue) = RRH , whose location is
unknown. When the test point source is co-located
with the true point source, the correlation will be
a maximum. The scalar function Bmf(a) is also re-
ferred to as the ambiguity function (or surface) of the
matched field processor because it also contains am-
biguous peaks which are analogous to the side-lobes
of a conventional plane-wave beam-former. Side-lobe
suppression can often be accomplished by using the
adaptive beam-forming methods discussed in the plane-
wave section.

Adaptive processors are very sensitive to the ac-
curacy of the replica functions which, in turn, require
almost impossible knowledge of the environment.
Hence, much work has been done on developing robust
forms of adaptive processing such as the white-noise
constraint method and others [5.47, 48]. An example
of matched field processing performed incoherently on
eight tones between 50 Hz and 200 Hz is shown in
Fig. 5.42.
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Fig. 5.40 Matched field processing (MFP). Here, the example consists in localizing a singing whale in the ocean. If your
model of waveguide propagation is sufficiently accurate for this environment, then comparing the recorded sounds –
the whale’s data vector – one frequency at a time, for example, with replica data based on best guesses of the location
(r̂, ẑ) that the model provides, will eventually yield its location. The red peak in the data indicates the location of highest
correlation. The small, circled × represents a bad guess, which thus does not compare well with the measured data. The
feedback loop suggests a way to optimize the model: by fine-tuning the focus – the peak resolution in the plot – one can
readjust the model’s bases (for example, the sound-speed profile). That feedback describes a signal-processing version of
adaptive optics. Matched field processing can then be used to perform acoustic tomography in the ocean (after [5.49])

5.7 Active SONAR Processing

An active SONAR system transmits a pulse and ex-
tracts information from the echo it receives as opposed
to a passive SONAR system, which extracts information
from signals received from radiating sources. An ac-
tive SONAR system and its associated waveform is de-
signed to detect targets and estimate their range, Doppler
(speed) and bearing or to determine some properties of
the medium such as ocean bottom bathymetry, ocean
currents, winds, particulate concentration, etc. The spa-
tial processing methods already discussed are applicable
to the active problem so that in this section we empha-
size the temporal aspects of active signal processing.

5.7.1 Active SONAR Signal Processing

The basic elements of an active SONAR are: the
(waveform) transmitter, the channel through which
the signal, echo and interference propagates, and the
receiver [5.50]. The receiver consists of some sort
of matched filter, a square-law device, and possibly
a threshold device for the detector and range, Doppler
and bearing scanners for the estimator.

The matched filter maximizes the ratio of the peak
output signal power to the variance of the noise and
is implemented by correlating the received signal with
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the transmitted signal. A simple description of the re-
ceived signal, r(t), is that it is an attenuated, delayed,
and Doppler-shifted version of the transmitted signal
st(t),

r(t) → Re
[
αeiθ∼st(t−T )e2πi fct e2πi fdt +n(t)

]
,

(5.89)

where α is the attenuation transmission loss and tar-
get cross section, θ is a random phase from the range
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Fig. 5.41a–c Ocean acoustic time-reversal mirror (a) The
acoustic field from a probe source (PS) is received on
a source–receive array (SRA). (b) The signal received on
the SRA with the first mode arriving first. At the SRA the
signal is digitized, time-reversed and retransmitted. (c) The
time-reversed signal received on an array at the same range
as PS. The signal has been refocused at the probe source
position with a resolution determined by the highest-order
mode surviving the two-way process �

uncertainty compared to a wavelength, T is the range
delay time, fc is the center frequency of the transmitted
signal and fd is the Doppler shift caused by the target.
The correlation process will have an output related to
the following process,

C(a) =
∣∣∣∣
∫

r̃(t)s̃(t; a)dt

∣∣∣∣
2

, (5.90)

where s̃(t; a) is a replica of the transmitted signal
modified by a parameter set a which include the
propagation–reflection process, e.g., range delay and
Doppler rate. For the detection problem, the correla-
tion receiver is used to generate a sufficient statistic
which is the basis for a threshold comparison in mak-
ing a decision if a target is present. The performance of
the detector is described by receiving operating char-
acteristic (ROC) curves which plot the detection of
probability versus false-alarm probability, as parameter-
ized by a statistics of the signal and noise levels. The
parameters a set the range and Doppler value in the
particular resolution cell of concern. To estimate these
parameters, the correlation is done as a function of a.

For a matched filter operating in a background of
white noise detecting a point target in a given range–
Doppler resolution cell, the detection signal-to-noise
ratio depends on the average energy-to-noise ratio and
not on the shape of the signal. The waveform becomes

Fig. 5.42a,b Matched field processing example for a ver-
tical array in a shallow-water environment. Specific infor-
mation regarding the experiment can be found on the web
at http://www.mpl.ucsd.edu/swellex96/. (a) Bartlett result
with significant side-lobes only 3 dB down. (b) Adaptive
processor results shows considerable side-lobe suppres-
sion. The processor is actually a white-noise constrained
MVDP for which the diagonal of the CSDM is deliberately
loaded by a specific algorithm to stabilize the processor
to some uncertainty in the environment and/or array con-
figuration. The ambiguity surfaces in (a) and (b) are an
incoherent average over eight tones at 53, 85, 101, 117,
133, 149, 165, 181, and 197 Hz �
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a factor when there is a reverberant environment and
when one is concerned with estimating target range
and Doppler. A waveform’s potential for range and
Doppler resolution can be ascertained from the ambi-
guity function of the transmitted signal. This ambiguity
function is related to the correlation process of (5.90)
for a transmitted signal scanned as a function of range
and Doppler,

Θ(T̂ , Tt, f̂d, fdt )

∝
∣∣∣∣
∫

s̃(t−T )s̃t(t− T̂ )e2πi( fdt− f̂d)t dt

∣∣∣∣
2

, (5.91)

where Tt and fdt are the true target range (time) and
Doppler, and T̂ and f̂d are the scanning estimates of the
range and Doppler. Figure 5.43 are sketches of ambi-
guities functions of some typical waveforms. The range
resolution is determined by the reciprocal of the band-
width and the Doppler resolution by the reciprocal of
the duration. A coded or pseudo-random (PR) sequence
can attain good resolution of both by appearing as
long-duration noise with a wide bandwidth. Ambiguity
functions can be used to design desirable waveforms for
particular situations. However, one must also consider
the randomizing effect of the real ocean. The scattering
function describes how a transmitted signal statistically
redistributes its energy in the reverberant ocean envi-
ronment which causes multipath and Doppler spread. In
particular, in a reverberation-limited environment, only
increasing the transmitted power does not change the
signal-to-reverberation level. Signal design should min-
imize the overlap of the ambiguity function of the target
displaced to its range and Doppler and the scattering
function.

5.7.2 Underwater Acoustic Imaging

Imaging can be divided into categories concerned with
water column and bottom properties. Here we describe
several applications of active SONAR to imaging the
ocean.

Water Column Imaging. Backscatter from particulate
objects that move along with the water motion (such as
biological matter, bubbles sediments) contains velocity
information because of the Doppler shift. An acoustic
Doppler current profiler (ADCP) might typically con-
sist of three or four source–receivers pointed in slightly
different directions but generally up (from the bottom)
or down (from a ship). The multiple directions are for
resolving motion in different directions. The Doppler

��

�
�

�
�
�

��

�
�

�
�
�

��

�
� �

�
�

Fig. 5.43a–c Ambiguity function for several SONAR sig-
nals: (a) rectangular pulse; (b) coded pulses; (c) chirped FM
pulse

shift of the returning scattered field is simply −2 f (v/c)
(as opposed to the more-complicated long-range wave-
guide Doppler shift discussed in Sect. 5.4.4), where f
is the acoustic frequency, v is the radial velocity of the
scatterer (water motion), and c is the sound speed. With
three or four narrow-beam transducers, the current vec-
tor can be ascertained as a function of distance from
an ADCP by gating the received signal and associating
a distance with the time gated segment of the signal.
Water-column motion associated with internal waves
can be determined by this process also where essen-
tially one uses a kind of ADCP points in the horizontal
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Fig. 5.44 Depth–time representation of the East–West component
of water velocity over the Kaena ridge west of Oahu. The dominant
signal is the 12.4 h tide, which has downward propagating crests of
long vertical wavelength. The SONAR is at ≈390 m, where there is
a fine scar in the record. The scar at ≈ 550 m is the echo of the sea
floor at 1100 m, aliased back into the record (Courtesy Rob. Pinkel,
Scripps Institution of Oceanography)

direction. For elaborate images of currents and the inter-
nal wave motion (Fig. 5.44), the Doppler measurements
of backscattering off zooplankton are combined with
array-processing techniques used in bottom mapping as
discussed below.

Bottom Mapping. Because of many industrial ap-
plications, there exists a huge literature on multibeam
systems for bottom mapping. Among the material avail-
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Fig. 5.45a,b Surveying an irregular sea floor (a) with a wide-beam SONAR and (b) with a narrow-beam SONAR
(Courtesy L-3 Communications SeaBeam Instruments)

able on the web, we would like to refer to two complete
courses on submarine acoustic imaging methods avail-
able: (1) from the Ocean Mapping Group (University
of New Brunswick, Canada) at http://www.omg.unb.ca/
GGE/; (2) under a PDF format (Multibeam Sonar: The-
ory of Operation) from L3 Communication SeaBeam
Instruments at http://www.mbari.org/data/mbsystem/
formatdoc/. The scope of the paragraph below is to de-
scribe the basics and keywords associated with bottom
mapping in underwater acoustics.

Active SONARs are devices that emit sound with
specific waveforms and listen for the echoes from re-
mote objects in the water. Among many applications,
SONAR systems are used as echo-sounders for measur-
ing water depths by transmitting acoustic pulses from
the ocean surface and listening for their reflection (or
echo) from the sea floor. The time between transmission
of a pulse and the return of its echo is the time it takes
the sound to travel to the bottom and back. Knowing this
time and the speed of sound in water allows one to cal-
culate the range to the bottom. This technique has been
widely used to map much of the world’s water-covered
areas and has permitted ships to navigate safely through
the world’s oceans. The purpose of a large-scale bathy-
metric survey is to produce accurate depth measure-
ments for many neighboring points on the sea floor such
that an accurate picture of the geography of the bottom
can be established. To do this efficiently, two things are
required of the SONAR used: it must produce accurate
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depth measurements that correspond to well-defined lo-
cations on the sea floor (that is, specific latitudes and
longitudes); and it must be able to make large num-
bers of these measurements in a reasonable amount of
time. In addition, information derived from echo sound-
ing has aided in laying transoceanic telephone cables,
exploring and drilling for offshore oil, locating impor-
tant underwater mineral deposits, and improving our
understanding of the Earth’s geological processes.

The earliest, most basic and still most widely used
echo-sounding devices are single-beam echo sounders.
The purpose of these instruments is to make serial
measurements of the ocean depth at many locations.
Recorded depths can be combined with their physical lo-
cations to build a three-dimensional map of the ocean
floor. In general, single-beam depth sounders are set up
to make measurements from a vessel in motion. Until the
early 1960s most depth sounding used single-beam echo
sounders. These devices make a single depth measure-
ment with each acoustic pulse (or ping) and include both
wide- and narrow-beam systems (Fig. 5.45a,b). Rela-
tively inexpensive wide-beam sounders detect echoes
within a large solid angle under a vessel and are useful
for finding potential hazards for safe navigation. How-
ever, these devices are unable to provide much detailed
information about the sea bottom. On the other hand,
more-expensive narrow-beam sounders are capable of
providing high spatial resolution with the small solid
angle encompassed by their beam, but can cover only
a limited survey area with each ping. Neither system
provides a method for creating detailed maps of the sea
floor that minimizes ship time and is thus cost-effective.

A multibeam SONAR is an instrument that can map
more than one location on the ocean floor with a single
ping and with higher resolution than those of con-
ventional echo sounders. Effectively, the function of
a narrow single-beam echo sounder is performed at sev-
eral different locations on the bottom at once. These
bottom locations are arranged such that they map a con-
tiguous area of the bottom – usually a strip of points
in a direction perpendicular to the path of the survey
vessel (Fig. 5.46). Clearly, this is highly advantageous.
Multibeam SONARs can map complete scans of the
bottom in roughly the time it takes for the echo to re-
turn from the farthest angle. Because they are far more
complex, the cost of a multibeam SONAR can be many
times that of a single-beam SONAR. However, this cost
is more than compensated by the savings associated
with reduced ship operating time. As a consequence,
multibeam SONARs are the survey instrument of choice
in most mapping applications, particularly in deep
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Fig. 5.46 Bottom mapping with a multibeam SONAR system
(Courtesy L-3 Communications SeaBeam Instruments)

ocean environments where ship operating time is expen-
sive [5.51]. Multibeam SONARs often utilize the Mills
Cross technique which takes advantage of the high res-
olution obtained from two intersecting focusing regions
from a perpendicular linear source and receive array.

Instead of measuring the depth to the ocean bot-
tom, a side-scan SONAR reveals information about the
sea-floor composition by taking advantage of the dif-
ferent sound absorbing and reflecting characteristics of
different materials. Some types of material, such as
metals or recently extruded volcanic rock, are good
reflectors. Clay and silt, on the other hand, do not re-
flect sound well. Strong reflectors create strong echoes,
while weak reflectors create weaker echoes. Know-
ing these characteristics, you can use the strength of
acoustic returns to examine the composition of the
sea floor. Reporting the strength of echoes is essen-
tially what a side-scan SONAR is designed to do.
Combining bottom-composition information provided
by a side-scan SONAR with the depth information from
a range-finding SONRA can be a powerful tool for ex-
amining the characteristics of an ocean bottom.

The name side scan is used for historical reasons –
because these SONARs were originally built to be
sensitive to echo returns from bottom locations on ei-
ther side of a survey ship, instead of directly below,
as was the case for a traditional single-beam depth
sounder [5.52].

Side-scan SONAR employs much of the same hard-
ware and processes as conventional depth-sounding
SONAR. Pulses are transmitted by a projector (or array
of projectors), and hydrophones receive echoes of those
pulses from the ocean floor and pass them to a receiver
system. Where side-scan SONAR differs from a depth-
sounding system is in the way it processes these returns.
While a single-beam echo sounder is only concerned
with the time between transmission and the earliest re-
turn echo, this first returned echo only marks when
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things start to get interesting to a side-scan SONAR
(Fig. 5.47a). As it continues its spherical propagation,
the transmitted pulse still interacts with the bottom, thus
creating at the receiver a continuous series of weakening
echoes in time (Fig. 5.47b).

In the example presented in Fig. 5.47, the side-scan
SONAR detects a bottom feature (the box). From the
amplitude-versus-time plot, an observer can tell there is
a highly reflective feature on the bottom. From the time
difference between the first echo (which is presumed to
be due to the bottom directly below the SONAR system)
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Fig. 5.48 Schematic of a side-scan SONAR imaging the ocean
floor with successive pings (Courtesy L-3 Communications
SeaBeam Instruments)

Fig. 5.47 (a) Schematic of the spherical wavefronts scat-
tered by a detailed bottom. (b) Amplitude-versus-time
representation of the backscattered signal in a side-scan
SONAR system (Courtesy L-3 Communications SeaBeam
Instruments) �

and the echo of the reflective feature, the observer can
compute the range to the feature from the SONAR.

As a practical instrument, the simplistic side-scan
SONAR described above is not very useful. While
it provides the times of echoes, it does not provide
their direction. Most side-scan SONARs deal with this
problem by introducing some directionality into their
projected pulses, and, to some degree, their receivers.
This is done by using a line array of projectors to send
pulses. The long axis of the line array is oriented par-
allel to the direction of travel of the SONAR survey
vessel (often the arrays are towed behind the ship). In
practice, side-scan SONARs tend to mount both the line
array and hydrophones on a towfish, a device that is
towed in the water below the surface behind a survey
vessel (Fig. 5.48). As the survey vessel travels, the tow-
fish transmits and listens to the echoes of a series of
pulses. The echoes of each pulse are used to build up
amplitude-versus-time plots for each side of the ves-
sel. To adjust for the decline in the strength of echoes
due to attenuation, a time-varying gain is applied to the
amplitude values so that sea-floor features with sim-
ilar reflectivities have similar amplitudes. Eventually
the noise inherent in the system (which remains con-
stant) becomes comparable to the amplitude of the echo,
and the amplified trace becomes dominated by noise.
Recording of each trace is usually cut off before this
occurs so that the next ping can be transmitted.

Figure 5.49 shows an example of ship-wreck dis-
covery using side-scan SONAR data performed from an
automated underwater vehicle (AUV) in a 1500 m-deep
ocean.

Often one is interested in sub-bottom profiling that
requires high spatial and therefore temporal resolu-
tion to image closely spaced interfaces. Frequency-
modulated (FM) sweeps provide such high-resolution
high-intensity signals after matched filtering. Thus, for
example, a matched filter output of a 1 s FM sweep from
2–12 kHz would compresses the energy of the 1 s pulse
into one that has the temporal resolution of a 0.1 ms.
With such high resolution, reflection coefficients from
chirp SONARs can be related to sedimentary character-
istics [5.53, 54]. Figure 5.50 is an example of a chirp
SONAR output indicating very finely layered interfaces.
Figure 5.50a shows the range dependency of the seabed
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along the cross-shelf track taken by a chirp SONAR.
Sand ridges with less acoustic penetration occupy most
of the mid-shelf area with a few km spacing. In the outer-
shelf area, dipping layers over the distinct R reflector are
detected. The spikes in the water column at the mid-shelf
area are schools of fish near the bottom, which were
mostly seen during the surveys conducted in daylight.
Figure 5.50b shows the sub-bottom profile of the along-
shelf track with acoustic penetration as deep as 40 m.
Along-shelf track is relatively less range-dependent.
However, several scour marks (≈100 m wide, a few m
deep) are detected on the sea floor. These scour marks
are attributed to gouging by iceberg keels and the resul-
tant deformations of deeper sublayers is also displayed
[A. Turgut, personal communications].

5.7.3 Acoustic Telemetry

Because electromagnetic waves do not propagate in
the ocean, underwater acoustic data transmission have
many applications, including:

• Communication between two submarines or a sub-
marine and a support vessel• Communication between a ship and an automated
underwater vehicle (AUV) either to get data avail-
able without recovering the instruments or to control
the instruments onboard the AUV or the AUV itself• Data transmission to an automated system

Underwater acoustic communications [5.55] are typi-
cally achieved using digital signals. We usually distin-
guish between coherent and incoherent transmissions.
For example, incoherent transmissions might consist
of transmitting the symbols “0” and “1” at different
frequencies (frequency shift keying (FSK)), whereas
coherent transmissions might encode using different
phases of a given sinusoid (phase shift keying (PSK))
(Fig. 5.51).

Acoustic telemetry can be performed from one
source to one receiver in a single-input single-output
mode (SISO). To improve performance in terms of
data rate and error rate, acoustic networks are now
commonly used. In particular, recent works in underwa-
ter acoustic communications deal with multiple-input
multiple-output (MIMO) configurations (Fig. 5.52) in
shallow-water oceans [5.56].

The trend toward MIMO is justified by the fact that
the amount of information – known as the information
capacity, I – that can be sent between arrays of transmit-
ters and receivers is larger than in a SISO case. Indeed,
the SISO information capacity is given by Shannon’s

Fig. 5.49 Side-scan SONAR data obtained in 2001 from the
HUGIN 3000 AUVs of a ship sunk in the Gulf of Mexico dur-
ing World War II. C&C Technology Inc. (Courtesy of the National
D-Day Museum, New Orleans)

famous formula [5.57]

I = log2

(
1+ S

N

)
bits s−1Hz−1 , (5.92)

where S is the received signal power, N the noise power
and the Shannon capacity I is measured in bits per
second per Hertz of bandwidth available for transmis-
sion. Equation (5.92) states that the channel capacity
increases with the signal-to-noise ratio. In a MIMO con-
figuration with Mt transmitters and Mr receivers, (5.92)
is changed into [5.58]

I ∼ Mi log2

(
1+ SMr/Mt

N

)
bits s−1Hz−1 , (5.93)

with Mr ≥ Mt to be able to decode the Mt separate
transmitted signals. Sending Mt different bitstreams is
advantageous since it gives a factor of Mt outside the
log, linearly increasing the channel capacity I compared
to a logarithmic increase when playing on the output
power S.

Beside the optimized allocation of power between
the Mr and Mt receivers and transmitters (the so-called
water-filling approach [5.59]), other particular issues
in underwater acoustic telemetry deal with Doppler
tracking, channel estimation and signal-to-noise ratios.
Those combined parameters often result in a tradeoff
between data rate and error rate. For example, low fre-
quencies propagate further with better signal-to-noise
ratios and hence lower error rates but the data rate is
poor. High frequencies provide high data rates but suf-
fer from strong loss in the acoustic channel, potentially
resulting in large error rates.

Another difficulty has to do with multipath prop-
agation and/or reverberation in the ocean, causing
intersymbol interference (ISI) and scattering, also called
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Fig. 5.50a,b Sub-bottom profiles along (a) cross-shelf and (b) along-shelf tracks on the New Jersey shelf collected
by a hull-mounted chirp SONAR (2–12 kHz) during the shallow-water acoustic technology experiment (SWAT2000)
(Courtesy A. Turgut, Naval Research Laboratory)

the fading effect (Fig. 5.53). As a consequence, the per-
formance of a given system depends strongly on the
acoustic environment.

Figure 5.54 shows examples of experimental chan-
nel impulse responses recorded at different frequencies
in shallow-water waveguides. The difference in tempo-
ral dispersion (relative to the acoustic period) between
Fig. 5.54a and Fig. 5.54c shows that high-frequency
transmissions suffer from stronger ISI and shorter co-
herence time.
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Fig. 5.51 Example of signal space diagrams for coherent communi-
cations

In the presence of ISI, Eqs. (5.92, 93) can be gen-
eralized so that the channel capacity I still depends
on the signal-to-noise ratio S/N where the noise N
now includes ISI [5.60]. However, there exist many
ways to reduce propagation effects on the quality of
the acoustic transmission. One technological solution
is to use directional arrays/antenna. Another one is to
further code digital signals (code division multiple ac-
cess (CDMA) or turbo codes [5.61]) in order to detect
and potentially correct transmission errors. But, most
importantly, there are many powerful signal-processing
techniques derived from telecommunications to take
into account at the receiver of the channel impulse re-
sponse. An efficient one is adaptive equalization that
uses a time-dependent channel estimate in order to de-
code the next symbols from the previously decoded
one [5.62]. Other methods to deal with multipath com-
plexities use time-reversal methods, either alone or with
equalization methods [5.63–65].

5.7.4 Travel-Time Tomography

Tomography [5.9,66] generally refers to applying some
form of inverse theory to observations in order to in-
fer properties of the propagation medium. The received
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field from a source emitting a pulse will be spread in
time as a result of multiple paths, in which different
paths have different arrival times (Fig. 5.55). Hence the
arrival times are related to the acoustic sampling of the
medium. In contrast, standard medical X-ray tomogra-
phy utilizes the different attenuation of the paths rather
than arrival time for the inversion process. Since the
ocean sound speed is a function of temperature and
other oceanographic parameters, the arrival structure is
ultimately related to a map of these oceanographic para-
meters. Thus, measuring the fluctuations of the arrival
times through the experiments theoretically leads to the
knowledge of the spatial-temporal scale of the ocean
fluctuations.

Tomographic inversion in the ocean has typically
relied on these three points. First, only the arrival
time (and not the amplitude) of the multipath structure
is used as an observable (Table 5.2) [5.67]. En-
hanced time-of-arrival resolution is typically obtained
using pulse-compression techniques [5.68] as men-
tioned in the bottom-mapping section above. Depending
on the experimental configuration, a choice of com-
pression is to be made between M-sequences [5.69],
which are strongly Doppler sensitive but have low
temporal side-lobes and frequency-modulated chirps
that are Doppler insensitive with higher side-lobes
(Fig. 5.43). Second, the inversion is performed by com-
paring the experimental arrival times to those given by
a model (Fig. 5.56). Last, tomographic inversion algo-
rithm classically deals with a linearized problem. This
means that the model has to match the experimen-
tal data so that the inversion only deals with small
perturbations.

Thus, ocean tomography starts from a sound-speed
profile c(r) on which small perturbations are added
δc(r, t) 
 c. The ocean model c(r) has to be accurate
enough to relate without ambiguity an experimentally
measured travel time Ti to a model-deduced ray path
Γi . Typically, some baseline oceanographic information
is known so that one searches for departures from this
baseline information. The perturbation infers a change
of travel time δTi along the ray such that, in a first linear
approximation

δTi ≈
∫

Γi

−δc
c2

ds , (5.94)

where Γi correspond to the Fermat path of the unper-
turbed ray. An efficient implementation of the inversion
procedure utilizes a projection of the local sound-speed
fluctuations δc(r, t) on a set of chosen functions Ψk(r)

�����	" �����	)

Fig. 5.52 Experimental examples of eight quadrature amplitude
modulation (QAM) transmissions in a multiple-input multiple-
output configuration (MIMO) at 3.5 kHz in a 9 km-long, 120 m-
deep shallow-water ocean. The SNR is 30 dB on channel 1 and
2, the symbol duration is 1 ms (data rate is 8 kB/s per channel)
and bit error rate (BER) is 1 × 10−4 (Courtesy H.C. Song, Scripps
Institution of Oceanography)

that constitutes a basis of the ocean structure. We have
then

δc(r, t) =
N∑

k=1

pk(t)ψk(r) , (5.95)

where pk(t) is a set of unknown parameters. In its
most primitive form, the ocean can be discretized into
elementary cells, each cell being characterized by an
unknown sound-speed perturbation pk . Combining the
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Fig. 5.53 A coherent digital communication system must deal with
the intersymbol interference caused by dispersive multipath envi-
ronment of the ocean waveguide (top right). When a sequence of
phase-shifted symbols (in black) are sent, the resulting transmission
(in brown) is fading out because of symbol interference
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two above equations, it follows

δTi =
∫

Γi

−1

c2

N∑

k=1

pkψk(r)ds

=
N∑

k=1

pk

∫

Γi

−Ψk(r)

c2
ds =

N∑

k=1

pkGik . (5.96)

a) b)

Fig. 5.54a–c Examples of transfer functions recorded at
sea in different shallow-water environments at various fre-
quencies. (a) Central frequency = 3.5 kHz with a 1 kHz
bandwidth, 10 km range in a 120 m-deep waveguide.
(b) Central frequency = 6.5 kHz with a 2 kHz bandwidth,
4 km range in a 50 m-deep waveguide. (c) Central fre-
quency = 15 kHz with a 10 kHz bandwidth, 160 m range
in a 12 m-deep waveguide �

Allowing for some noise in the measurement and as-
suming a set of arrival times δTi , i ∈ [1,M], (5.94) can
be rewritten in an algebraic form [5.71]:

δT = G p+n . (5.97)

There exists many algorithms to obtain an estimate of
the parameters p̃ of the parameters p from the data
δT knowing the matrix G. For example, when N > M,
a least-mean-square estimator gives

p̃ = GT (GGT )−1δT . (5.98)

Considerations about pertinent functions Ψk(r) such as
empirical orthogonal functions (EOFs) and the optimal
inversion procedure can be found in the literature [5.72,
73].

Tomographic experiments have been performed to
greater than megameter ranges. For example, two ma-
jor experiments in the 1990s were performed by the
Thetis 2 group in the western Mediterranean over a sea-
sonal cycle [5.74] and by the North Pacific Acoustic
Laboratory (NPAL) in the North Pacific basin [5.75].
The NPAL experiment was directed at using travel-
time data obtained from a few acoustic sources and
receivers located throughout the North Pacific Ocean
to study temperature variations at large scale [5.76,
77]. The idea behind the project, known as acoustic
thermometry of ocean climate (ATOC), is that sound
travels slightly faster in warm water than in cold wa-
ter. Thus, precisely measuring the time it takes for
a sound signal to travel between two points reveals
the average temperature along the path. Sound trav-
els at about 1500 m/s in water, while typical changes
in the sound speed of the ocean as a result of tem-
perature changes are only 5–10 m/s. The tomography

Fig. 5.55 (a) Reference sound-speed profile C0(z). (b) cor-
responding ray traces. Table 5.2 identifies all plotted rays.
Note the shallow and deep turning groups of rays as well
as the axial ray (after [5.70]) (Courtesy Peter Worcester,
Scripps Institution of Oceanography) �
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technique is very sensitive, and experiments so far
have shown that temperatures in the ocean can be
measured to a precision of 0.01 ◦C, which is needed
to detect subtle variations and trends of the ocean
basin.

New trends in ocean tomography deal with full-
wave inversion involving the use of both travel times
and amplitudes of echoes for a better accuracy in
the inversion algorithm. In this case, a full-wave ker-
nel for acoustic propagation has to be used [5.78],
which includes the sensitivity of the whole Green’s
functions (both travel times and amplitudes) to sound
speed variations. In the case of high frequencies, the
application of the travel-time-sensitivity kernel to an
ocean acoustic waveguide gives a picture close to
the ray-theoretic one. However, in the low-frequency
case of interest in ocean acoustic tomography, there
are significant deviations. Low-frequency travel times
are sensitive to sound-speed changes in Fresnel-
zone-scale areas surrounding the eigen-rays, but not
on the eigen-rays themselves, where the sensitiv-
ity is zero. This diffraction phenomenon known as
the banana–doughnut [5.79] debate is still actively
discussed in the field of ocean and seismic tomogra-
phy [5.80].

Table 5.2 Identification of rays (after [5.70]). The identi-
fier is ±n(θs, θR, ẑ+, ẑ−), where positive (negative) rays
depart upward (downward) from the source, n is the to-
tal number of upper and lower turning points, θs is the
departure angle at the source, θR is the arrival angle at
the receiver, and ẑ+ and ẑ− are the upper and lower turn-
ing depths, respectively (Courtesy Peter Worcester, Scripps
Institution of Oceanography)

±n θs θR ẑ+ ẑ−

(deg) (deg) (m) (m)

1 8 11.6 11.6 126 3801
2 –8 –11.6 –11.7 125 3803
3 9 12.0 –12.0 99 3932
4 11 11.1 –11.1 617 3624
5 –11 –10.8 10.2 737 3303
6 12 9.7 9.7 776 3170
7 –12 –9.6 –9.7 780 3156
8 13 9.3 –9.3 809 3046
9 –13 –8.2 8.3 881 2746
10 14 7.9 8.0 901 2653
11 –14 –7.8 –7.9 905 2638
12 15 7.4 –7.5 925 2546
13 19 3.5 –3.8 1118 1790

20 1.2 1.7 1221 1507

5.8 Acoustics and Marine Animals

In the context of contemporary acoustics, marine ani-
mal life is typically divided into the categories of marine
mammals and non-marine mammals which include fish
and others sea animals. The acoustics dealing with fish
relates to either finding, counting and catching them.
The acoustics concerned with marine mammals is for
either studying their behavior or determining to what
extent manmade sounds are harmful to them.

5.8.1 Fisheries Acoustics

An extensive introduction to fisheries acoustics is [5.81]
and can be found online at http://www.fao.org/docrep/
X5818E/x5818e00.htm#Contents. For more-detailed
information, we recommend two special issues in [5.82,
83].

Following the development of SONAR systems,
acoustic technology has had a major impact on fishing
and on fisheries research. SONARs and echo sounders
are now used as standard tools to search for concen-
trations of fish or to assess for biomass stock. With

SONAR, it is possible to sample the water column much
faster than trawl fishing. Moreover, SONARs have
helped in our understanding of how fish are distributed
in the ocean and how they behave over time. Depending
on the fish density in the water column, echo-counting
or echo-integration [5.84] are used to evaluate the fish
biomass in the water column. Research on the signature
of the echo return for a specific fish [5.85] or for a fish
school [5.86, 87] is still an active area of research.

Fisheries acoustics experiments are performed with
SONAR in the same way as bottom profiling [5.88–
90]. The ship covers the area of interest by transect
lines [5.91] while the SONAR sends and receives acous-
tic pulses (pings) as often as allowed by the SONAR
system and the water depth (the signal from the previous
ping has to die out before the next ping is transmitted).
Typical SONAR frequencies are 38 kHz, 70 kHz, and
120 kHz. An echogram is a display of the instantaneous
received intensity along the ship track. The echograms
in Fig. 5.57a,b reveal individual fish echoes as well as
fish school backscattered signals.
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Fig. 5.56 Comparison of the predicted and measured arrival patterns (after [5.70]). The predicted arrival pattern was
calculated from C0(z) as shown in Fig. 5.55. Geometric arrivals are labeled ±n as in Table 5.2. The peaks connected by
dashed lines are the ray arrivals actually used (Courtesy Peter Worcester, Scripps Institution of Oceanography)

From a practical point of view, the relationship be-
tween an acoustic target and its received echo can be
understood from the SONAR equation. With the proce-
dure of Sect. 5.3.2 and 5.3.3, the echo level (in decibels)
of a given target is

EL = SL+RG+TS−2TL , (5.99)

where SL is the source level and TL is the geometri-
cal spreading loss in the medium. The target strength
TS is defined as TS = 10 log1 0(σ/4π), where σ is the
backscattering cross section of the target. The receiver
gain RG is often set up as a time-varied gain (TVG),
which compensates for the geometrical spreading loss.

In (5.99), the target is supposed to be on the acous-
tic axis of the transducer. In general, a single-beam
SONAR cannot distinguish between a small target on
the transducer axis and a big target off-axis. The two
echoes may have the same amplitude because the lower
TS for the small target will be compensated by the off-
axis power loss for the big target. One way to remove
this ambiguity is to use a dual-beam SONAR [5.92] (or
split-beam SONAR) that provides the position of the
target in the beam pattern.

Echo-integration consists of integrating in time (as
changed into depth from R = ct/2) the received inten-
sity coming from the fish along the ship transects [5.93].
This value is then converted to a biomass via the
backscattering cross section σ . In the case of a single
target (Fig. 5.57a), the intensity of the echo E1 is

E1 = σφ2(r)

[
exp(−2βr)

r4

]
, (5.100)

where φ2(R) is the depth-dependent (or time-varying)
gain; the term in bracket describes the geometrical
spreading (1/r4) and loss (exp(−2βr)) of the echo dur-
ing its round trip between the source and the receiver
and σ is the scattering cross section of the target aver-
aged over the bandwidth of the transmitted signal. In
(5.100) we did not include the effect of the beam pattern
and the sensitivity of the system in emission-reception.
These parameters depend on the type of SONAR used
and are often measured in situ from a calibration experi-
ment [5.94,95]. In the case of a distributed targets in the
water column [5.96,97] (Fig. 5.57b), the received inten-
sity Eh is integrated over a layer h at a depth r, which
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Fig. 5.57a,b Typical echogram obtained during an echo-
integration campaign using a single-beam SONAR on
the Gambie river. (a) Biomass made of individual fish.
(b) Biomass made of fish school (Courtesy Jean Guillard,
INRA) �

gives

Eh = hσnφ2(r)

[
exp(−2βr)

r2

]
, (5.101)

where n corresponds to the density of fish per unit vol-
ume in the layer h. Equation (5.101) is based on the
linearity principle assumption, which states that, on the
average over many pings, the intensity Eh is equal to
the sum of the intensity produced by each fish individu-
ally [5.98].

In the case of either a single or multiple targets,
the idea is to relate directly the echo-integrated result
E1 or Eh to the fish scattering amplitudes σ or nσ .
To that goal, the time-varying gain φ2(r) has to com-
pensate appropriately for the geometric and attenuation
loss. For a volume integration, φ2(r)= R2 exp(2βr), the
so-called 20 log r gain is used while a 40 log r gain is
applied in the case of individual echoes.

As a matter of fact, acoustic instruments, such as
echo sounders and SONAR, are unique as underwa-
ter sampling tools since they detect objects at ranges
of many hundreds of meters, independent of water
clarity and depth. However, until recently, these instru-
ments could only operate in two dimensions, providing
observational slices through the water column. New
trends in fisheries acoustics incorporate the use of multi-
beam SONAR – typically used in bottom mapping, see
Sect. 5.7.2 – which provides detailed data describing
the internal and external three-dimensional (3-D) struc-
ture of underwater objects such as fish schools [5.99]
(Fig. 5.58). Multibeam SONARs are now used in a wide
variety of fisheries research applications including:
(1) three-dimensional descriptions of school structure
and position in the water column [5.100]; knowledge
of schooling is vital for understanding many aspects of

Fig. 5.58a–d Images of a fish school of Sardinella aurita
from a multibeam SONAR. Arrows indicate vessel route.
(a) 3-D reconstruction of the school. Multibeam SONAR
receiving beams are shown at the front of the vessel. Re-
maining panels show cross sections of density in fish from:
(b) the horizontal plane, (c) the vertical plane along-ships,
(d) the vertical plane athwart ships. Red cross-hairs in-
dicate location of the other two cross sections (Courtesy
Francois Gerlotto, IRD) �
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fish (and fisheries) ecology [5.101]; (2) detailed inter-
nal images of fish schools, providing insights into the
organization of fish within a school, for example, indi-
cating the presence of large gaps or vacuoles and areas
of higher densities or nuclei (Fig. 5.58b,d) [5.102].

In general, one tries to convert the echo-integration
result into a biomass or fish density. This requires the
knowledge of the target strength TS or the equiva-
lent backscattering cross section σ of the target under
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investigation [5.103]. Several models attempt to de-
velop equations expressing σ/λ2 as a function of L/λ,
where L is the fish length. However, physiological and
behavioral differences between species make a more-
empirical approach necessary, which often is of the form

TS = 20 log L +b , (5.102)

where b depends on the acoustic frequency and the fish
species. For example, we have b = −71.3 dB for her-
ring and b= −67.4 dB for cod at 38 kHz, which makes
the cod scattering cross section twice that of herring for
the same fish length. In situ measurements of TS with
fish at sea [5.104,105] or in cages [5.106] have also been
attempted to classify fish species acoustically.

Similar works on size distribution assessment
have been performed at higher frequency (larger
than 500 kHz) on small fish or zooplankton using
multi-element arrays [5.107] and wide-band or multi-
frequency methods [5.108, 109]. The advantage of
combining the acoustic signature of fish at various fre-
quencies is to provide an accurate target sizing. When
multi-elements are used, then the position of each in-
dividual inside the acoustic beam is known. Using
simultaneously multi-element arrays and broadband ap-
proaches may also be the key for the unsolved problem
of species identification in fisheries acoustics.

In conclusion, SONAR systems and echo inte-
gration are now well-established techniques for the
measurement of fish abundance. They provide quick re-
sults and accurate information about the pelagic fish
distribution in the area covered by the ship during the
survey. The recent development of multibeam SONAR
has improved the reliability of the acoustic results and
now provides 3-D information about fish-school size
and shape. However, some important sources of er-
ror remain when performing echo-integration, among
which are:

1. The discrimination between fish echoes and un-
wanted target echoes

2. The difficulty of adequately sampling a large area in
a limited time

3. The problems related to the fish behavior (escaping
from the transect line, for example)

4. The physiological parameters that determine the fish
target strength.

5.8.2 Marine Mammal Acoustics

In order to put into perspective both the sound levels
that mammals emit and hear, we mention an assortment

of sounds and noise found in the ocean. Note that the
underwater acoustic decibel scale used is, as per the
Appendix, relative to 1 μPa. For source levels, one is
also referencing the sound level at 1 m. Lightening can
be as high has 260 dB and a seafloor volcanic erup-
tion can be as high as 255 dB. Heavy rain increases
the background noise by as much as 35 dB in a band
from a few hundred Hz to 20 kHz Snapping shrimp indi-
vidually can have broadband source levels greater than
185 dB while fish choruses can raise ambient noise lev-
els 20 dB in the range of 50–5000 Hz. Of course, the
Wenz curves in Fig. 5.15 show a distribution of natural
and manmade noise levels whereas specific examples of
manmade noise are given in Table 5.3.

Table 5.3 Examples of manmade noise

Ships underway Broadband source level
(dB re 1 μPa at 1 m)

Tug and barge (18 km/hour) 171

Supply ship (example: Kigoriak) 181

Large tanker 186

Icebreaking 193

Seismic survey Broadband source level
(dB re 1 μPa at 1 m)

Air-gun array (32 guns) 259 (peak)

Military SONARS Broadband source level
(dB re 1 μPa at 1 m)

AN/SQS-53C 235

(US Navy tactical mid-

frequency SONAR, center

frequencies 2.6 and 3.3 kHz)

AN/SQS-56 223

(US Navy tactical mid-

frequency sonar, center

frequencies 6.8 to 8.2 kHz)

Surveillance Towed Array Sen- 215 dB per projector, with up

sor System Low Frequency to 18 projectors in a vertical

Active (SURTASS-LFA) array operating simultan-

(100–500 Hz) eously

Ocean acoustic studies Broadband source level
(dB re 1 μPa at 1 m)

Heard island feasibility test 206 dB for a single projector,

(HIFT) with up to 5 projectors

(center frequency 57 Hz) in a vertical array operating

simultaneously

Acoustic thermometry of ocean 195

climate (ATOC)/North Pacific

acoustic laboratory (NPAL)

(center frequency 75 Hz)
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Fig. 5.59a–c Whale spectrogram power spectral density are in units of dB re 1 μPa2/Hz. The blue-whale broadband
signals denoted by (a), (b) and (c) are designated type A calls. The FM sweeps are type B calls. The multiple vertical
energy bands between 20 and 30 Hz have the appearance of fin-whale vocalizations (after [5.110])

Marine mammal sounds span the spectrum from
10–200 000 kHz. Examples are: blue (see spectrogram
in Fig. 5.59) and fin whales in the 20 Hz region with
source levels as high as 190 dB, Wedell seals in the
1–10 kHz region producing 193 dB levels; bottlenose
dolphin, 228 dB in a noisy background, sperm whale
clicks are the loudest recorded levels at 232 dB. A list of
typical levels is shown in Table 5.4. Most of the levels
listed are substantial and strongly suggest acoustics as
a modality for monitoring marine mammals. Thus, for
example, Fig. 5.60 shows the acoustically derived track
of a blue whale over 43 days and thousands of kilome-
ters as determined from SOSUS arrays (see Introduction
to this chapter) in the Atlantic Ocean.

The issues mostly dealt with in marine mammal
acoustics are: understanding the physiology and be-
havior associated with the production and reception of
sounds, and the effects that manmade sounds have on
marine mammals from actual physical harm to caus-
ing changes in behavior. Physical harm includes actual

Table 5.4 Marine-mammal sound levels

Source Broadband source level

(dB re 1 μPa at 1 m)

Sperm whale clicks 163–223

Beluga whale echo-location click 206–225 (peak to peak)

White-beaked dolphin 194–219 (peak to peak)

echo-location clicks

Spinner dolphin pulse bursts 108–115

Bottlenose dolphin whistles 125–173

Fin whale moans 155–186

Blue whate moans 155–188

Gray whale moans 142–185

Bowhead whale tonals, moans and 128–189

song

Humpback whale song 144–174

Humpback whale fluke and flipper 183–192

slap

Southern right whale pulsive call 172–187

Snapping shrimp 183–189 (peak to peak)
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damage (acoustic trauma) and permanent and tempo-
rary threshold shifts in hearing. A major ongoing effort

#
#

��
�	���

<��?����	�'=6�

�����
������	-������

������	�����������
����'�

<FS�����#"5T��"(T���'"%T!��B����
�����
1��	))A	)##,	7 �

"#

)#

(#

%#

,#

*#

/#

+#

9#

"##

, "# ", )#

"#

*#

)#

(#

%#

,#

Fig. 5.61 Broadband (10 Hz–100 kHz) acoustic data collected in the Santa Barbara Channel, illustrating spectra from
dolphin echolocation clicks (> 20 kHz) and whistles (5–15 kHz) as seen in a daily sonogram (Sept 22, 2005). Passages
of individual commercial ships are seen at mid and low frequencies (< 15 kHz) (Courtesy John Hildebrand, Scripps
Institution of Oceanography)

Fig. 5.60 Track of a blue whale in the Atlantic Ocean de-
termined by US Navy personnel operating SOSUS stations.
(Courtesy Clyde Nishimura, Naval Research Laboratory
and Chris Clark, Cornell University) �

is to determine the safe levels of manmade sounds.
Acoustics has now become an important research tool
in the marine mammal arena [5.111–116].

Tables 5.3 and 5.4 have been taken form Univer-
sity of Rhode web site: http://www.dosits.org/science/
ssea/2.htm with references to [5.24, 25, 117].

Advances in the bandwidth and data-storage ca-
pabilities of sea-floor autonomous acoustic recording
packages (ARPs) have enabled the study of odon-
tocete (toothed-whale) long-term acoustic behavior.
Figure 5.61 illustrates one day of broadband (10 Hz–
100 kHz) acoustic data collected in the Santa Bar-
bara Channel. The passage of vocalizing dolphins is
recorded by the aggregate spectra from their echolo-
cation clicks (> 20 kHz) and whistles (5–15 kHz).
Varying proportions of clicks and whistles are seen for
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each calling bout. These data allow for study of the
acoustic behavior under varying conditions (day–night)

and for the determination of the seasonal presence of
calling animals.

5.A Appendix: Units

The decibel (dB) is the dominant unit in underwater
acoustics and denotes a ratio of intensities (not pres-
sures) expressed in terms of a logarithmic (base 10)
scale. Two intensities, I1 and I2 have a ratio I1/I2 in
decibels of 10 log I1/I2 dB. Absolute intensities can
therefore be expressed by using a reference intensity.
The presently accepted reference intensity in under-
water acoustics is based on a reference pressure of
one micropascal. Therefore, taking I2 as the inten-
sity of a plane wave of pressure 1 μPa, a sound wave
having an intensity, of, say, one million times that
of a plane wave of rms pressure 1 μPa has a level
of 10 log(106/1) ≡ 60 dB re 1 μPa. Pressure (p) ratios
are expressed in dB re 1 μPa by taking 20 log p1/p2,
where it is understood that the reference originates

from the intensity of a plane wave of pressure equal
to 1 μPa.

The average intensity, I , of a plane wave with rms
pressure p in a medium of density ρ and sound speed c
is I = p2/ρc. In seawater, (ρc)water is 1.5 × 106 Pa sm−1

so that a plane wave of rms pressure 1 μPa has an inten-
sity of 6.76 × 10−19 W/m2.

For reference, we also mention the relevant units in
air, where the reference pressure is related, more or less,
to the minimum level of sound we can hear is. This is
a pressure level 26 dB higher than the water reference.
Further, since the intensity level associated with this ref-
erence is 10−12 W/m2. Therefore, one should be careful
when relating units between water and air, as the latter’s
reference intensity is higher.
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An overview of the fundamental concepts needed
for an understanding of physical acoustics is
provided. Basic derivations of the acoustic wave
equation are presented for both fluids and solids.
Fundamental wave concepts are discussed with
an emphasis on the acoustic case. Discussions
of different experiments and apparatus provide
examples of how physical acoustics can be applied
and of its diversity. Nonlinear acoustics is also
described.

6.1 Theoretical Overview............................. 217
6.1.1 Basic Wave Concepts ..................... 217
6.1.2 Properties of Waves ...................... 218
6.1.3 Wave Propagation in Fluids ........... 223
6.1.4 Wave Propagation in Solids ........... 225
6.1.5 Attenuation ................................. 227

6.2 Applications of Physical Acoustics........... 227
6.2.1 Crystalline Elastic Constants ........... 227
6.2.2 Resonant Ultrasound Spectroscopy

(RUS) .......................................... 228

6.2.3 Measurement Of Attenuation
(Classical Approach) ...................... 229

6.2.4 Acoustic Levitation ....................... 230
6.2.5 Sonoluminescence ....................... 230
6.2.6 Thermoacoustic Engines

(Refrigerators and Prime Movers) ... 231
6.2.7 Acoustic Detection of Land Mines ... 232
6.2.8 Medical Ultrasonography............... 233

6.3 Apparatus ............................................ 234
6.3.1 Examples of Apparatus ................. 234
6.3.2 Piezoelectricity and Transduction ... 234
6.3.3 Schlieren Imaging ........................ 236
6.3.4 Goniometer System ...................... 239
6.3.5 Capacitive Receiver ....................... 239

6.4 Surface Acoustic Waves.......................... 239

6.5 Nonlinear Acoustics .............................. 242
6.5.1 Nonlinearity of Fluids ................... 242
6.5.2 Nonlinearity of Solids ................... 243
6.5.3 Comparison of Fluids and Solids..... 244

References .................................................. 245

Physical acoustics involves the use of acoustic tech-
niques in the study of physical phenomena as well as
the use of other experimental techniques (optical, elec-
tronic, etc.) to study acoustic phenomena (including the
study of mechanical vibration and wave propagation in
solids, liquids, and gasses). The subject is so broad that
a single chapter cannot cover the entire subject. For ex-
ample, recently the 25th volume of a series of books
entitled Physical Acoustics was published [6.1]. Ma-
son [6.2] began the series in 1964. The intermediate
volumes are not repetitious, but deal with different as-
pects of physical acoustics. Even though all of physical
acoustics cannot be covered in this chapter, some exam-
ples will illustrate the role played by physical acoustics
in the development of physics.

Since much of physics involves the use and study
of waves, it is useful to begin by mentioning some dif-
ferent types of waves and their properties. The most

basic definition of a wave is a disturbance that prop-
agates through a medium. A simple analogy can be
made with a stack of dominoes that are lined up and
knocked over. As the first domino falls into the second,
it is knocked over into the third, which is knocked over
into the next one, and so on. In this way, the disturbance
travels down the entire chain of dominoes (which we
may think of as particles in a medium) even though no
particular domino has moved very far. Thus, we may
consider the motion of an individual domino, or the
motion of the disturbance which is traveling down the
entire chain of dominoes. This suggests that we de-
fine two concepts, the average particle velocity of the
individual dominoes and the wave velocity (of the dis-
turbance) down the chain of dominoes. Acoustic waves
behave in a similar manner. In physical acoustics it is
necessary to distinguish between particle velocity and
wave (or phase) velocity.
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There are two basic types of waves: longitudinal
waves, and transverse waves. These waves are defined
according to the direction of the particle motion in the
medium relative to the direction in which the wave trav-
els. Longitudinal waves are waves in which the particle
motion in the medium is in the same direction as the
wave is traveling. Transverse waves are those in which
the particle motion in the medium is at a right angle to
the direction of wave propagation. Figure 6.1 is a de-
piction of longitudinal and transverse waves. Another
less common type of wave, known as a torsional wave,
can also propagate in a medium. Torsional waves are
waves in which particles move in a circle in a plane
perpendicular to the direction of the wave propagation.
Figure 6.2 shows a commonly used apparatus for the
demonstration of torsional waves.

There also are more-complicated types of waves
that exist in acoustics. For example, surface waves
(Rayleigh waves, Scholte–Stonley waves, etc.) can
propagate along the boundary between two media. An-
other example of a more complicated type of wave
propagation is that of Lamb waves, which can propagate
along thin plates. A familiar example of Lamb waves are
the waves that propagate along a flag blowing in a wind.

In acoustics, waves are generally described by the
pressure variations that occur in the medium (solid or
fluid) due to the wave. As an acoustic wave passes
through the medium, it causes the pressure to vary as
the acoustic energy causes the distance between the
molecules or atoms of the fluid or solid to change pe-
riodically. The total pressure is given by

pT(x, t) = p0(x, t)+ p1(x, t) . (6.1)

Here p0 represents the ambient pressure of the fluid
and p1 represents the pressure fluctuation caused by
the acoustic field. Since pressure is defined as the force

t

Longitudinal wave

Amplitude Transverse wave

Period

Fig. 6.1 Longitudinal and transverse waves

per unit area, it has units of newtons per square meter
(N/m2). The official SI designation for pressure is the
pascal (1 Pa = 1 N/m2). Atmospheric pressure at sea
level is 1 atmosphere (atm) = 1.013 × 105 Pa. The types
of sounds we encounter cause pressure fluctuations in
the range from 10−3 –10 Pa.

One can also describe the strength of the sound wave
in terms of the energy that it carries. Experimentally,
one can measure the power in the acoustic wave, or the
amount of energy carried by the wave per unit time.
Rather than trying to measure the power at every point
in space, it is usual to measure the power only at the
location of the detector. So, a more convenient mea-
surement is the power density, also referred to as the
acoustic intensity I . In order to make a definition which
does not depend on the geometry of the detector, one
considers the power density only over an infinitesimal
area of size dA

I = dP

dA
, (6.2)

where dP is the portion of the acoustic power that
interacts with the area dA of the detector oriented
perpendicular to the direction of the oncoming acous-
tic wave. The units of acoustic intensity are watts per
square meter (W/m2).

The human ear can generally perceive sound pres-
sures over the range from about 20 μPa up to about
200 Pa (a very large dynamic range). Because the range
of typical acoustic pressures is so large, it is convenient
to work with a relative measurement scale rather than an
absolute measurement scale. These scales are expressed
using logarithms to compress the dynamic range. In
acoustics, the scale is defined so that every factor of ten
increase in the amount of energy carried by the wave is
represented as a change of 1 bel (named after Alexander
Graham Bell). However, the bel is often too large to be
useful. For this reason, one uses the decibel scale (1/10
of a bel). Therefore, one can write the sound intensity

Fig. 6.2 Apparatus for the demonstration of torsional
waves
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level (SIL) as the logarithm of two intensities:

SIL(dB) = 10 log

(
I

Iref

)
, (6.3)

where I is the intensity of the sound wave and Iref is
a reference intensity. (One should note that the bel, or
decibel, is not a unit in the typical sense; rather, it is
simply an indication of the relative sound level).

In order for scientists and engineers to commu-
nicate meaningfully, certain standard reference values
have been defined. For the intensity of a sound
wave in air, the reference intensity is defined to be
Iref = 10−12 W/m2.

In addition to measuring sound intensity levels, it is
also common to measure sound pressure levels (SPL).
The sound pressure level is defined as

SPL(dB) = 20 log

(
p

pref

)
, (6.4)

where p is the acoustic pressure and pref is a reference
pressure. (The factor of 20 comes from the fact that I
is proportional to p2.) For sound in air, the reference
pressure is defined as 20 μPa (2 × 10−5 Pa).

For sound in water, the reference is 1 μPa (histori-
cally other reference pressures, for example, 20 μPa and

0.1 Pa, have been defined). It is important to note that
sound pressure levels are meaningful only if the refer-
ence value is defined. It should also be noted that this
logarithmic method of defining the sound pressure level
makes it easy to compare two sound levels. It can be
shown that SPL2−SPL1 = 20 log

( p2
p1

)
; hence, an SPL

difference depends only on the two pressures and not on
the choice of reference pressure used.

Since both optical and acoustic phenomena involve
wave propagation, it is illustrative to contrast them. Op-
tical waves propagate as transverse waves. Acoustic
waves in a fluid are longitudinal; those in a solid can
be transverse or longitudinal. Under some conditions,
waves may propagate along interfaces between media;
such waves are generally referred to as surface waves.
Sometimes acoustic surface waves correspond with an
optical analogue. However, since the acoustic wave-
length is much larger than the optical wavelength, the
phenomenon may be much more noticeable in physical
acoustics experiments. Many physical processes pro-
duce acoustic disturbances directly. For this reason, the
study of the acoustic disturbance often gives informa-
tion about a physical process. The type of acoustic wave
should be examined to determine whether an optical
model is appropriate.

6.1 Theoretical Overview

6.1.1 Basic Wave Concepts

Although the domino analogy is useful for convey-
ing the idea of how a disturbance can travel through
a medium, real waves in physical systems are generally
more complicated. Consider a spring or slinky that is
stretched along its length. By rapidly compressing the
end of the spring, one can send a pulse of energy down
the length of the spring. This pulse would essentially be
a longitudinal wave pulse traveling down the length of
the spring. As the pulse traveled down the length, the
material of the spring would compress or bunch up in
the region of the pulse and stretch out on either side of
it. The compressed regions are known as condensations
and the stretched regions are known as rarefactions.

It is this compression that one could actually wit-
ness traveling down the length of the spring. No part of
the spring itself would move very far (just as no domino
moved very far), but the disturbance would travel down
the entire length of the spring. One could also repeat-
edly drive the end of the spring back and forth (along
its length). This would cause several pulses (each creat-

ing compressions with stretched regions around them)
to propagate along the length of the spring, with the mo-
tion of the spring material being along the direction of
the propagating disturbance. This would be a multipulse
longitudinal wave.

Now, let us consider an example of a transverse
wave, with particle motion perpendicular to the direc-
tion of propagation. Probably the simplest example is
a string with one end fastened to a wall and the op-
posite end driven at right angles to the direction along
which the string lies. This drive sends pulses down the
length of the string. The motion of the particles in the
string is at right angles to the motion of the disturbance,
but the disturbance itself (whether one pulse or sev-
eral) travels down the length of the string. Thus, one
sees a transverse wave traveling down the length of the
string.

Any such periodic pulsing of disturbances (whether
longitudinal or transverse) can be represented mathe-
matically as a combination of sine and/or cosine waves
through a process known as Fourier decomposition.
Thus, without loss of generality, one can illustrate ad-

Part
B

6
.1



218 Part B Physical and Nonlinear Acoustics

1

0.5

0

– 0.5

–1

2 4 6 8

A

λ

ν

Fig. 6.3 One cycle of a sinusoidal wave traveling to the
right

ditional wave concepts by considering a wave whose
shape is described mathematically by a sine wave.

Figure 6.3 shows one full cycle of a sinusoidal wave
which is moving to the right (as a sine-shaped wave
would propagate down a string, for example). The initial
wave at t = 0 and beginning at x = 0 can be described
mathematically. Let the wave be traveling along the
x-axis direction and let the particle displacement be oc-
curring along the y-axis direction. In general, the profile
or shape of the wave is described mathematically as

y(x) = A sin(kx+ϕ) , (6.5)

where A represents the maximum displacement of the
string (i. e., the particle displacement) in the y-direction
and k represents a scaling factor, the wave number.
The argument of the sine function in (6.5) is known as
the phase. For each value of x, the function y(x) has
a unique value, which leads to a specific y value (some-
times called a point of constant phase). The term ϕ is
known as the phase shift because it causes a shifting
of the wave profile along the x-axis (forward for a posi-
tive phase shift and backward for a negative phase shift).
Such a sine function varies between +A and −A, and
one full cycle of the wave has a length of λ= 2π

k . The
length λ is known as the wavelength, and the maximum
displacement A is known as the wave amplitude.

As this disturbance shape moves toward the right,
its position moves some distance Δx = x f − xo during
some time interval Δt, which means the disturbance is
traveling with some velocity c= Δx

Δt . Thus, the distance
the wave has traveled shows this profile both before
and after it has traveled the distance Δx (Fig. 6.3). The
traveling wave can be expressed as a function of both
position (which determines its profile) and time (which
determines the distance it has traveled). The equation

for a traveling wave, then, is given by

y(x, t) = A sin[k(x− ct)+ϕ] , (6.6)

where t = 0 gives the shape of the wave at t = 0 (which
here is assumed constant), and y(x, t) gives the shape
and position of the wave disturbance as it travels. Again,
A represents the amplitude, k represents the wave num-
ber, and ϕ represents the phase shift. Equation (6.6) is
applicable for all types of waves (longitudinal, trans-
verse, etc.) traveling in any type of medium (a spring,
a string, a fluid, a solid, etc.).

Thus far, we have introduced several important ba-
sic wave concepts including wave profile, phase, phase
shift, amplitude, wavelength, wave number, and wave
velocity. There is one additional basic concept of great
importance, the wave frequency. The frequency is de-
fined as the rate at which (the number of times per
second) a point of constant phase passes a point in
space. The most obvious points of constant phase to
consider are the maximum value (crest) or the mini-
mum value (trough) of the wave. One can think of the
concept of frequency less rigorously as the number of
pulses generated per second by the source causing the
wave. The velocity of the wave is the product of the
wavelength and the frequency.

One can note that, rather than consisting of just one
or a few pulses, (6.6) represents a continually varying
wave propagating down some medium. Such waves are
known as continuous waves. There is also a type of
wave that is a bit between a single pulse and an in-
finitely continuous wave. A wave that consists of a finite
number of cycles is known as a wave packet or a tone
burst. When dealing with a tone burst, the concepts of
phase velocity and group velocity are much more ev-
ident. Generally speaking, the center of the tone burst
travels at the phase velocity – the ends travel close to
the group velocity.

6.1.2 Properties of Waves

All waves can exhibit the following phenomena: re-
flection, refraction, interference and diffraction. (Trans-
verse waves can also exhibit a phenomenon known
as polarization, which allows oscillation in only one
plane.)

Reflection
The easiest way to understand reflection is to consider
the simple model of a transverse wave pulse traveling
down a taut string that is affixed at the opposite end (as
seen in Fig. 6.4. (A pulse is described here for purposes
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Wave velocity

The wave is inverted

Wave velocity

The wall exerts a downward force
in reaction to the wave

F

Fig. 6.4 Reflection of a wave from a fixed boundary

of clarity, but the results described apply to continu-
ous waves as well.) As the pulse reaches the end of the
string, the particles start to move upward, but they can-
not because the string is fastened to the pole. (This is
known as a fixed or rigid boundary.) The pole exerts
a force on the particles in the string, which causes the
pulse to rebound and travel in the opposite direction.
Since the force of the pole on the string in the y-
direction must be downward (to counteract the upward
motion of the particles), there is a 180◦ phase shift in the
wave. This is seen in the figure where the reflected pulse
has flipped upside down relative to the incident pulse.

Figure 6.5 shows a different type of boundary from
which a wave (or pulse) can reflect; in this case the
end of the string is on a massless ring that can slide
freely up and down the pole. (This situation is known as
a free boundary.) As the wave reaches the ring, it drives

Wave velocity

Wave velocity

The wave reflects
from a free boundary

Fig. 6.5 Reflection of a wave from a free boundary

the ring upwards. As the ring moves back down, a re-
flected wave, which travels in a direction opposite to
that of the incoming wave, is also generated. However,
there is no 180◦ phase shift upon reflection from a free
boundary.

Acoustic Impedance
Another important wave concept is that of wave
impedance, which is usually denoted by the variable Z.
When the reflection of the wave is not total, part of the
energy in the wave can be reflected and part transmit-
ted. For this reason, it is necessary to consider acoustic
waves at an interface between two media and to be able
to calculate how much of the energy is reflected and how
much is transmitted. The definition of media impedance
facilitates this. For acoustic waves, the impedance Z is
defined as the ratio of sound pressure to particle veloc-
ity. The units for impedance are the Rayl, so named in
honor of Lord Rayleigh. 1 Rayl = 1 Pa s/m.

Often one speaks of the characteristic impedance of
a medium (a fluid or solid); in this case one is referring
to the medium in the open space condition where there
are no obstructions to the wave which would cause the
wave to reflect or scatter. The characteristic impedance
of a material is usually denoted by Z0, and it can be
determined by the product of the mean density of the
medium ρ with the speed of sound in the medium. In
air, the characteristic impedance near room temperature
is about, 410 Rayl.

The acoustic impedance concept is particularly use-
ful. Consider a sound wave that passes from an initial
medium with one impedance into a second medium
with a different impedance. The efficiency of the en-
ergy transfer from one medium into the next is given by
the ratio of the two impedances. If the impedances (ρc)
are identical, their ratio will be 1; and all of the acoustic
energy will pass from the first medium into the second
across the interface between them. If the impedances of
the two media are different, some of the energy will be
reflected back into the initial medium when the sound
field interacts with the interface between the two me-
dia. Thus the impedance enables one to characterize
the acoustic transmission and reflection at the bound-
ary of the two materials. The difference in Z, which
leads to some of the energy being reflected back into
the initial medium, is often referred to as the impedance
mismatch. When the (usual) acoustic boundary condi-
tions apply and require that the particle velocity and
pressure be continuous across the interface between the
two media, one can calculate the percentage of the en-
ergy that is reflected back into the medium. This is given
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in fractional form by the reflection coefficient given by

R =
(

Z2− Z1

Z2+ Z1

)2

, (6.7)

where Z1 and Z2 are the impedances of the two media.
Since both values of Z must be positive, R must be less
than one. The fraction of the energy transmitted into the
second medium is given by T = 1− R because 100% of
the energy must be divided between T and R.

Refraction
Refraction is a change of the direction of wave propaga-
tion as the wave passes from one medium into another
across an interface. Bending occurs when the wave
speed is different in the two media. If there is an angle
between the normal to the plane of the boundary and the
incident wave, there is a brief time interval when part of
the wave is in the original medium (traveling at one ve-
locity) and part of the wave is in the second medium
(traveling at a different velocity). This causes the bend-
ing of the waves as they pass from the first medium to
the second. (There is no bending at normal incidence.)

Reflection and refraction can occur simultaneously
when a wave impinges on a boundary between two
media with different wave propagation speeds. Some
of the energy of the wave is reflected back into the
original medium, and some of the energy is trans-
mitted and refracted into the second medium. This
means that a wave incident on a boundary can gen-
erate two waves: a reflected wave and a transmitted
wave whose direction of propagation is determined by
Snell’s law.

a) b)Wave velocity

Waves are here but
transverse particle motion
is suppressed

Waves pass through each other
and continue propagating

Wave velocity

Wave velocity

Wave velocity

Destructive
interference

Wave velocity Wave velocity

Wave velocity

Wave velocity

Addition of
wave amplitudes

Constructive
interference

Waves pass through each other
and continue propagating

Fig. 6.6a,b Two waves passing through each other exhibiting (a) destructive and (b) constructive interference

All waves obey Snell’s law. For optical waves the
proper form of Snell’s law is:

n1 sin θ1 = n2 sin θ2 , (6.8)

where n1 and n2 are the refractive indices and θ1 and
θ2 are propagation directions. For acoustic waves the
proper form of Snell’s law is

sin θ1

v1
= sin θ2

v2
, (6.9)

where v1 is the wave velocity in medium 1 and v2 is the
wave velocity in medium 2. These two forms are very
similar since the refractive index is n = c/Cm, where
c is the velocity of light in a vacuum and Cm is the
velocity of light in the medium under consideration.

Interference
Spatial Interference. Interference is a phenomenon
that occurs when two (or more) waves add together.
Consider two identical transverse waves traveling to
the right (one after the other) down a string towards
a boundary at the end. When the first wave encoun-
ters the boundary, it reflects and travels in the leftward
direction. When it encounters the second, rightward
moving wave the two waves add together linearly (in
accordance with the principle of superposition). The
displacement amplitude at the point in space where two
waves combine is either greater than or less than the
displacement amplitude of each wave. If the resultant
wave has an amplitude that is smaller than that of ei-
ther of the original two waves, the two waves are said
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to have destructively interfered with one another. If the
combined wave has an amplitude that is greater than ei-
ther of its two constituent waves, then the two waves are
said to have constructively interfered with each other.
The maximum possible displacement of the combina-
tion is the sum of the maximum possible displacements
of the two waves (complete constructive interference);
the minimum possible displacement is zero (complete
destructive interference for waves of equal amplitude).
It is important to note that the waves interfere only as
they pass through one another. Figure 6.6 shows the two
special cases of complete destructive and complete con-
structive interference (for clarity only a portion of the
wave is drawn).

If a periodic wave is sent down the string and meets
a returning periodic wave traveling in the opposite di-
rection, the two waves interfere. This results in wave
superposition, i. e., the resulting amplitude at any point
and time is the sum of the amplitudes of the two waves.
If the returning wave is inverted (due to a fixed bound-
ary reflection) and if the length of the string is an
integral multiple of the half-wavelength corresponding
to the drive frequency, conditions for resonance are sat-
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Fig. 6.7a–c Standing waves in a string with nodes and
antinodes indicated. (a) The fundamental; (b) the second
harmonic; (c) the third harmonic

isfied. This resonance produces a standing wave. An
example of a standing wave is shown in Fig. 6.7. The
points of maximum displacement are known as the
standing-wave antinodes. The points of zero displace-
ment are known as the standing-wave nodes.

Resonance Behavior. Every vibrating system has some
characteristic frequency that allows the vibration ampli-
tude to reach a maximum. This characteristic frequency
is determined by the physical parameters (such as the
geometry) of the system. The frequency that causes
maximum amplitude of vibration is known as the res-
onant frequency, and a system driven at its resonant
frequency is said to be in resonance. Standing waves
are simply one type of resonance behavior.

Longitudinal acoustic waves can also exhibit res-
onance behavior. When the distance between a sound
emitter and a reflector is an integer number of half
wavelengths, the waves interfere and produce stand-
ing waves. This interference can be observed optically,
acousticly or electronically. By observing a large num-
ber of standing waves one can obtain an accurate value
of the wavelength, and hence an accurate value of the
wave velocity.

One of the simplest techniques for observing acous-
tic resonances in water, or any other transparent liquid,
is to illuminate the resonance chamber, then to focus
a microscope on it. The microscope field of view im-
ages the nodal lines that are spaced half an acoustic
wavelength apart. A screw that moves the microscope
perpendicular to the lines allows one to make very ac-
curate wavelength measurements, and hence accurate
sound velocity measurements.

Temporal Interference. So far we have considered the
interference of two waves that are combining in space
(this is referred to as spatial interference). It is also
possible for two waves to interfere because of a dif-
ference in frequency (which is referred to as temporal
interference). One interesting example of this is the phe-
nomenon of wave beating.

Consider two sinusoidal acoustic waves with
slightly different frequencies that arrive at the same
point in space. Without loss of generality, we can as-
sume that these two waves have the same amplitude.
The superposition principle informs us that the resultant
pressure caused by the two waves is the sum of the pres-
sure caused by each wave individually. Thus, we have
for the total pressure

pT(t) = A [cos (ω1t)+ cos (ω2t)] . (6.10)
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By making use of a standard trigonometric identity, this
can be rewritten as

pT(t) = 2A cos

(
(ω1−ω2)

2
t

)
cos

(
(ω1+ω2)

2
t

)
.

(6.11)

Since the difference in frequencies is small, the two
waves can be in phase, causing constructive interference
and reinforcing one another. Over some period of time,
the frequency difference causes the two waves to go
out of phase, causing destructive interference (when ω1t
eventually leads ω2t by 180◦). Eventually, the waves are
again in phase and, they constructively interfere again.
The amplitude of the combination will rise and fall in
a periodic fashion. This phenomenon is known as the
beating of the two waves. This beating phenomenon can
be described as a separate wave with an amplitude that
is slowly varying according to

p(t) = A0(t) cos(ωavgt) (6.12)

where

A0(t) = 2A cos

(
ω1−ω2

2
t

)
(6.13)

and

ωavg = (ω1+ω2)

2
. (6.14)

The cosine in the expression for A0(t) varies between
positive and negative 1, giving the largest amplitude in
each case. The period of oscillation of this amplitude
variation is given by

Tb = 2π

ω1−ω2
= 2π

ωb
= 1

fb
. (6.15)

The frequency fb of the amplitude variation is known as
the beat frequency. Figure 6.8 shows the superposition
of two waves that have two frequencies that are differ-
ent but close together. The beat frequency corresponds
to the difference between the two frequencies that are
beating.

The phenomenon of beating is often exploited by
musicians in tuning their instruments. By using a refer-
ence (such as a 440 Hz tuning fork that corresponds to
the A above middle C) one can check the tuning of the
instrument. If the A above middle C on the instrument
is out of tune by 2 Hz, the sounds from the tuning fork
and the note generate a 2 Hz beating sound when they
are played together. The instrument is then tuned until
the beating sound vanishes. Then the frequency of the
instrument is the same as that of the tuning fork. Once
the A is in tune, the other notes can be tuned relative to

f1 = 100 Hz

Beat frequency:  f2 –  f1 = 10 Hz

f2 = 110 Hz

f2 –  f1

Beat period

Fig. 6.8 The beating of two waves with slightly different
frequencies

the A by counting the beats per unit time when different
notes are played in various combinations.

Multi-frequency Sound
When sound consists of many frequencies (not ne-
cessarily all close together), one needs a means of
characterizing the sound level. One may use a weighted
average of the sound over all the frequencies present,
or one may use information about how much energy is
distributed over a particular range of frequencies. A se-
lected range of frequencies is known as a frequency
band. By means of filters (either acoustic or electri-
cal, depending on the application) one can isolate the
various frequency bands across the entire frequency
spectrum. One can then talk of the acoustic pressure due
to a particular frequency band. The band pressure level
(PL) is given by

PLband = 20 log10

(
pband

pref

)
(6.16)

where pband is the room-mean-square (rms) average
pressure of the sound in the frequency band range and
pref is the standard reference for sound in air, 20 μPa.
The average of the pressures of the frequency bands
over the complete spectrum is the average acoustic
signal. However, the presence of multiple frequencies
complicates the situation: one does not simply add the
frequency band pressures or the band pressure levels.
Instead, it is the p2 values which must be summed

p2
rms =

∑
p2

band (6.17)
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or

SPL = 10 log10

(
p2

rms

p2
ref

)
= 10 log10

∑(
pband

pref

)2

(6.18)

or, simplifying further

SPL = 10 log10

∑
(10)(PLband/10) . (6.19)

The octave is a common choice for the width of a fre-
quency band. With a one-octave filter, only frequencies
up to twice the lowest frequency of the filter are allowed
to pass. One should also note that, when an octave band
filter is labeled with its center frequency, this is deter-
mined by the geometric mean (not the arithmetic mean),
i. e.,

fcenter =
√

flow fhigh =
√

2 f 2
low =√2 flow . (6.20)

Coherent Signals
Two signals are coherent if there is a fixed relative
phase relation between them. Two loudspeakers driven
by the same source would be coherent. However, two
loudspeakers being driven by two compact-disc (CD)
players (even if each player was playing a copy of the
same CD) would not be coherent because there is no
connection causing a constant phase relationship. For
two incoherent sources, the total pressure is

p2
tot =

(
p1(rms)+ p2(rms)

)2 = p2
1(rms)+ p2

2(rms)

(6.21)

(where the 2p1(rms) p2(rms) term has averaged out to
zero). For coherent sources, however, the fixed phase
relationship allows for the possibility of destructive or
constructive interference. Therefore, the signal can vary
in amplitude between (p1(rms)+ p2(rms))2 and (p1(rms)−
p2(rms))2.

Diffraction
In optics it is usual to begin a discussion of diffraction
by pointing out grating effects. In acoustics one sel-
dom encounters grating effects. Instead, one encounters
changes in wave direction of propagation resulting from
diffraction. Thus, in acoustics it is necessary to begin on
a more fundamental level.

The phenomenon of diffraction is the bending of
a wave around an edge. The amount of bending that
occurs depends on the relative size of the wavelength
compared to the size of the edge (or aperture) with

which it interacts. When considering refraction or re-
flection it is often convenient to model the waves by
drawing a single ray in the direction of the wave’s prop-
agation. However, the ray approach does not provide
a means to model the bending caused by diffraction.
The bending of a wave by diffraction is the result of
wave interference. The more accurate approach, then, is
to determine the magnitude of each wave that is con-
tributing to the diffraction and to determine how it is
interfering with other waves to cause the diffraction
effect observed.

It is useful to note that diffraction effects can de-
pend on the shape of the wavefronts that encounter the
edge around which the diffraction is occurring. Near the
source the waves can have a very strong curvature rela-
tive to the wavelength. Far enough from the source the
curvature diminishes significantly (creating essentially
plane waves). Fresnel diffraction occurs when curved
wavefronts interact. Fraunhofer diffraction occurs when
planar wavefronts interact. In acoustics these two re-
gions are known as the near field (the Fresnel zone)
and the far field (the Fraunhofer zone), respectively. In
optics these two zones are distinguished by regions in
which two different integral approximations are valid.

6.1.3 Wave Propagation in Fluids

The propagation of an acoustic wave is described mathe-
matically by the acoustic wave equation. One can use the
approach of continuum mechanics to derive equations
appropriate to physical acoustics [6.3]. In the continuum
approach one postulates fields of density, stress, veloc-
ity, etc., all of which must satisfy basic conservation
laws. In addition, there are constitutive relations which
characterize the medium. For illustration, acoustic prop-
agation through a compressible fluid medium is consid-
ered first. As the acoustic disturbance passes through
a small area of the medium, the density of the medium
at that location fluctuates. As the crest of the acoustic
pressure wave passes through the region, the density in
that region increases; this compression is known as the
acoustic condensation. Conversely, when the trough of
the acoustic wave passes through the region, the density
of the medium at that location decreases; this expansion
is known as the acoustic rarefaction.

In a gas, the constitutive relationship needed to
characterize the pressure fluctuations is the ideal gas
equation of state, PV = n RT , where P is the pressure
of the gas, V is the volume of the gas, n is the number
of moles of the gas, R is the universal gas constant (R =
8.3145 J/mol K), and T is the temperature of the gas. In
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a given, small volume of the gas, there is a variation of
the density ρ from its equilibrium value ρ0 caused by
the change in pressure ΔP = P− P0 as the disturbance
passes through that volume. (Here P is the pressure at
any instant in time and P0 is the equilibrium pressure.)

In many situations, there are further constraints on
the system which simplify the constitutive relationship.
A gas may act as a heat reservoir. If the processes oc-
cur on a time scale that allows heat to be exchanged,
the gas is maintained at a constant temperature. In this
case, the constitutive relationship can be simplified and
expressed as P0V0 = PV = a constant. Since the num-
ber of gas molecules (and hence the mass) is constant,
we can express this as the isothermal condition

P

P0
= ρ

ρ0
, (6.22)

which relates the instantaneous pressure to the equilib-
rium pressure.

Most acoustic processes occur with no exchange
of heat energy between adjacent volumes of the gas.
Such processes are known as adiabatic or isentropic pro-
cesses. Under such conditions, the constitutive relation
is modified according to the adiabatic condition. For the
adiabatic compression of an ideal gas, it has been found
that the relationship

PV γ = P0V γ0 (6.23)

holds, where γ is the ratio of the specific heat of the
gas at constant pressure to the specific heat at constant
volume. This leads to an adiabatic constraint for the
acoustic process given by

P

P0
=
(
ρ

ρ0

)γ
. (6.24)

When dealing with a real gas, one can make use of
a Taylor expansion of the pressure variations caused by
the fluctuations in density

P = P0+
[
∂P

∂ρ

]

ρ0

(Δρ)

+ 1

2

[
∂2 P

∂ρ2

]

ρ0

(Δρ)2+ . . . , (6.25)

where

Δρ = (ρ−ρ0) . (6.26)

When the fluctuations in density are small, only the
first-order terms in Δρ are nonnegligible. In this case,
one can rearrange the above equation as

ΔP = P− P0 =
[
∂p

∂ρ

]

ρ0

Δρ = B
Δρ

ρ0
, (6.27)

where B = ρ0
[ ∂p
∂ρ

]
ρ0

is the adiabatic bulk modulus of
the gas. This equation describes the relationship be-
tween the pressure of the gas and its density during
an expansion or contraction. (When the fluctuations are
not small one has finite-amplitude (or nonlinear) effects
which are considered later.)

Let us now consider the physical motion of a fluid
as the acoustic wave passes through it. We begin with an
infinitesimal volume element dV that is fixed in space,
and we consider the motion of the particles as they pass
through this region. Since mass is conserved, the net
flux of mass entering or leaving this fixed volume must
correspond to a change in the density of the fluid con-
tained within that volume. This is expressed through the
continuity equation,

∂ρ

∂t
=−∇ · (ρu) . (6.28)

The rate of mass change in the region is

∂ρ

∂t
dV , (6.29)

and the net influx of mass into this region is given by

−∇ · (ρu) dV . (6.30)

Consider a volume element of fluid as it moves with
the fluid. This dV of fluid contains some infinitesimal
amount of mass, dm. The net force acting on this small
mass of fluid is given by Newton’s second law, dF =
a dm. It can be shown that Newton’s second law leads
to a relationship between the particle velocity and the
acoustic pressure. This relationship, given by

ρ0
∂u
∂t

=−∇ p , (6.31)

is known as the linear Euler equation.
By combining our adiabatic pressure condition with

the continuity equation and the linear Euler equation,
one can derive the acoustic wave equation. This equa-
tion takes the form

∇2 p = 1

c2

∂2 p

∂t2
, (6.32)

where c is the speed of the sound wave which is given
by

c =√B/ρ0 . (6.33)
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6.1.4 Wave Propagation in Solids

Similarly, one can consider the transmission of an
acoustic wave through a solid medium. As an example,
consider the one-dimensional case for propagation of an
acoustic wave through a long bar of length L and cross-
sectional area S. In place of the pressure, we consider
the stress applied to the medium, which is given by the
relationship

σ = F/S (6.34)

where σ is the stress, F is the force applied along the
length (L) of the bar, and S is the cross sectional area of
the bar.

A stress applied to a material causes a resultant com-
pression or expansion of the material. This response is
the strain ζ . Strain is defined by the relationship,

ζ =ΔL/Lo , (6.35)

where ΔL is the change in length of the bar, and Lo is
the original length of the bar.

Let us consider the actual motion of particles as an
acoustic wave passes through some small length of the
bar dx. This acoustic wave causes both a stress and
a strain. The Hooke’s law approximation, which can be
used for most materials and vibration amplitudes, pro-
vides the constitutive relationship that relates the stress
applied to the material with the resulting strain. Hooke’s
law states that stress is proportional to strain, or

σ =−Yζ . (6.36)

If we consider the strain over our small length dx, we
can write this as

F

S
=−Y

(
dL

dx

)
(6.37)

or

F =−YS

(
dL

dx

)
. (6.38)

The net force acting on our segment dx is given by

dF =−
(
∂F

∂x

)
dx = YS

(
∂2 L

∂x2

)
dx . (6.39)

Again, we can make use of Newton’s second law,
F = ma, and express this force in terms of the mass and
acceleration of our segment. The mass of the segment
of length dx is simply the density times the volume, or
dm = ρdV = ρS dx. Thus,

dF =
(
∂2L

dt2

)
dm = ρS

(
∂2 L

dt2

)
dx , (6.40)

where ∂2 L
dt2 is the acceleration of the particles along the

length dx as the acoustic wave stresses it. Equating our
two expressions for the net force acting on our segment,
dF,

∂2L

∂x2
= 1

c2

(
∂2 L

∂t2

)
, (6.41)

where

c =√Y/ρ (6.42)

is the speed at which the acoustic wave is traveling
through the bar. The form of the equation for the prop-
agation of an acoustic wave through a solid medium is
very similar to that for the propagation of an acoustic
wave through a fluid.

Both of the wave equations developed so far have
implicitly considered longitudinal compressions; for
example, the derivation of the wave equation for an
acoustic wave traveling down a thin bar assumed no
transverse components to the motion. However, if we
consider transverse motion, the resulting wave equation
is of the same form as that for longitudinal waves. For
longitudinal waves, the solution to the wave equation is
given by

L(x, t) = A cos(ωt± kx+φ) (longitudinal) , (6.43)

where L(x, t) represents the amount of compression or
rarefaction at some position x and time t. For transverse
waves, the solution to the wave equation is given by

y(x, t) = A cos(ωt± kx+φ) (transverse) , (6.44)

where y(x, t) represents the vibration orthogonal to the
direction of wave motion as a function of x and t. In
both cases, A is the vibration amplitude, k = 2π/λ is the
wave number, and φ is the phase shift (which depends
on the initial conditions of the system).

One can also consider an acoustic disturbance trav-
eling in two dimensions; let us first consider a thin,

dx
x

dy

y

Fig. 6.9 Definitions necessary for the representation of
a two-dimensional wave
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stretched membrane as seen in Fig. 6.9. Let σs be the
areal surface density (with units of kg/m2), and let Γ be
the tension per unit length. The transverse displacement
of an infinitesimally small area of the membrane dS will
now be a function of the spatial coordinates x and y
along the two dimensions and the time t. Let us define
the infinitesimal area dS = dx dy and the displacement
of dS as the acoustic disturbance passes through it to be
u(x, y, t). Newton’s second law can now be applied to
our areal element dS

[
(Γ ∂u/∂x)x+dx,y − (Γ ∂u/∂y)x,y

]
dy

+ [(Γ ∂u/∂y)x,y+dy − (Γ ∂u/∂x)x,y
]

dx

= Γ
(
∂2u

∂x2
+ ∂

2u

∂y2

)
dx dy (6.45)

and

Γ

(
∂2u

∂x2
+ ∂

2u

∂y2

)
dx dy = σs

∂2u

∂t2
dx dy (6.46)

or

∇2u =
(
∂2u

∂x2
+ ∂

2u

∂y2

)
= 1

c2

∂2u

∂t2
, (6.47)

where c =√
Γ /σs is the speed of the acoustic wave in

the membrane. Equation (6.47) now describes a two-
dimensional wave propagating along a membrane.

The extension of this idea to three dimensions
is fairly straightforward. As an acoustic wave passes
through a three-dimensional medium, it can cause pres-
sure fluctuations (leading to a volume change) in all
three dimensions. The displacement u is now a func-
tion four variables u = u(x, y, z, t). The volume change
of a cube is given by

ΔV =ΔxΔyΔz

(
1+ ∂u

∂x

)(
1+ ∂u

∂y

)(
1+ ∂u

∂z

)
,

(6.48)

ΔV ≈ΔxΔyΔz

(
1+ ∂u

∂x
+ ∂u
∂y

+ ∂u
∂z

)
, (6.49)

where the higher-order cross terms are negligibly small
and have been dropped. This can be rewritten as

ΔV =ΔxΔyΔz (1+∇ ·u) . (6.50)

If the mass is held constant, and only the volume
changes, the density change is given by

ρ0+ρ1 = ρ0

1+∇ ·u . (6.51)

But since the denominator is very close to unity, we
may rewrite this using the binomial expansion. Solving
for ρ1 we have

ρ1 ≈−ρ0∇ ·u . (6.52)

Again we can consider Newton’s second law; without
loss of generality, consider the force exerted along the
x-direction from the pressure due to the acoustic wave,
which is given by

Fx =
[

p(x, t)− p(x+Δx, t)
]
ΔyΔz , (6.53)

where ΔyΔz is the infinitesimal area upon which the
pressure exerts a force. We can rewrite this as

Fx =−ΔyΔz

[(
∂p

∂x

)
Δx

]
, (6.54)

where the results for Fy and Fz are similar. Combining
these, we can express the total force vector as

F =−∇ pΔxΔyΔz . (6.55)

Using the fact that the mass can be expressed in terms
of the density, we can rewrite this as

−∇ p = ρ0
∂2u
∂t2

. (6.56)

As in the case with fluids, we need a constitutive re-
lationship to finalize the expression. For most situations
in solids, the adiabatic conditions apply and the pressure
fluctuation is a function of the density only. Making use
of a Taylor expansion, we have

p ≈ p(ρ0)+ (ρ−ρ0)
dp

dρ
(6.57)

but since p = p0+ p1, we can note that

p1 = ρ1
∂p

∂ρ
. (6.58)

Using (6.52), we can eliminate ρ1 from (6.58) to yield

p1 =−ρ0

(
dp

dρ

)
∇ ·u . (6.59)

We can eliminate the divergence of the displace-
ment vector from this equation by taking the diver-
gence of (6.56) and the second time derivative of
(6.59). This gives two expressions that both equal
−ρ0∂

2 (∇ ·u) /dt2 and thus are equal to each other.
From this we can determine the full form of our wave
equation

∂2 p1

∂t2
= c2∇2 p1 , (6.60)
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where c is again the wave speed and is given by

c2 = dp

dρ
. (6.61)

It should be noted that the above considerations were for
an isotropic solid. In a crystalline medium, other com-
plications can arise. These will be noted in a subsequent
section.

6.1.5 Attenuation

In a real physical system, there are mechanisms by
which energy is dissipated. In a gas, the dissipation
comes from thermal and viscous effects. In a solid, dis-
sipation comes from interactions with dislocations in
the solid (holes, displaced atoms, interstitial atoms of
other materials, etc.) and grain boundaries between ad-
jacent parts of the solid, In practice, loss of energy over
one acoustic cycle is negligible. However, as sound trav-
els over a longer path, one expects these energy losses
to cause a significant decrease in amplitude. In some sit-
uations, these dissipation effects must be accounted for
in the solution of the wave equation.

The solution of the wave equation can be written in
exponential form,

A = A0 ei(k′x−ωt) . (6.62)

If one wishes to account for dissipation effects, one
can assume that the wave number k′ has an imaginary
component, i. e.

k′ = k+ iα , (6.63)

where k and α are both real and i =√−1. Using this
value of k′ for the new wave number we have

A = A0 ei(k′x−ωt) = A0 ei [(k+iα)x−ωt] . (6.64)

Simplifying, one has

A = A0 ei(kx−ωt)+i2αx = A0 ei(kx−ωt)−αx

= A0 e−αx ei(kx−ωt) , (6.65)

where α is known as the absorption coefficient. The
resulting equation is modulated by a decreasing expo-
nential function; i. e., an undriven acoustic wave passing
through a lossy medium is damped to zero amplitude
as x →∞.

6.2 Applications of Physical Acoustics

There are several interesting phenomena associated
with the application of physical acoustics. The first is
the wave velocity itself. Table 6.1 shows the wave veloc-
ity of sound in various fluids (both gases and liquids).
Table 6.2 shows the wave velocity of sound in vari-
ous solids (both metals and nonmetals). The velocity
increases as one goes from gases to liquids to solids.
The velocity variation from gases to liquids comes from
the fact that gas molecules must travel farther before
striking another gas molecule. In a liquid, molecules are
closer together, which means that sound travels faster.

Table 6.1 Typical values of the sound velocity in fluids (25 ◦C)

Gas Velocity (m/s) Liquid Velocity (m/s)

Air 331 Carbon tetrachloride (CCl4) 929

Carbon dioxide (CO2) 259 Ethanol (C2H6O) 1207

Hydrogen (H2) 1284 Ethylene glycol (C2H6O2) 1658

Methane (CH4) 430 Glycerol (C3H8O3) 1904

Oxygen (O2) 316 Mercury (Hg) 1450

Sulfur dioxide (SO2) 213 Water (distilled) 1498

Helium (H2) 1016 Water (sea) 1531

The change from liquids to solids is associated with
increase of binding strength as one goes from liquid
to solid. The rigidity of a solid leads to higher sound
velocity than is found in liquids.

6.2.1 Crystalline Elastic Constants

Another application of physical acoustics involves the
measurement of the crystalline elastic constants in a lat-
tice. In Sect. 6.1.2, we considered the propagation of an
acoustic field along a one-dimensional solid (in which
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Table 6.2 Typical values of the sound velocity in solids (25 ◦C)

Metals Longitudinal velocity (m/s) Shear (transverse) velocity (m/s)

Aluminum (rolled) 6420 3040

Beryllium 12 890 8880

Brass (0.70 Cu, 0.30 Zn) 4700 2110

Copper (rolled) 5010 2270

Iron 5960 3240

Tin (rolled) 3320 1670

Zinc (rolled) 4210 2440

Lead (rolled) 1960 610

Nonmetals Longitudinal velocity (m/s) Shear (transverse) velocity (m/s)

Fused silica 5968 3764

Glass (Pyrex) 5640 3280

Lucite 2680 1100

Rubber (gum) 1550 –

Nylon 2620 1070

the internal structure of the solid played no role in the
propagation of the wave). Real solids exist in three di-
mensions, and the acoustic field propagation depends
on the internal structure of the material. The nature
of the forces between the atoms (or molecules) that
make up the lattice cause the speed of sound to be dif-
ferent along different directions of propagation (since
the elastic force constants are different along the dif-
ferent directions). The measurement of crystal elastic
constants depends on the ability to make an accurate de-
termination of the wave velocity in different directions
in a crystalline lattice. This can be done by cutting (or
lapping) crystals in such a manner that parallel faces are
in the directions to be measured.

For an isotropic solid one can determine the com-
pressional modulus and the shear modulus from a single
sample since both compressional and shear waves can
be excited. For cubic crystals at least two orientations
are required since there are three elastic constants (and
still only two waves to be excited). For other crys-
talline symmetries a greater number of measurements
is required.

6.2.2 Resonant Ultrasound Spectroscopy
(RUS)

Recently a new technique for measuring crystalline
elastic constants, known as resonant ultrasound spec-
troscopy (RUS), has been developed [6.4]. Typically,
one uses a very small sample with a shape that has
known acoustic resonant modes (usually a small par-
allelepiped, though sometimes other geometries such as

cylinders are used). The sample is placed so that the
driving transducer makes a minimal contact with the
surface of the sample (the boundaries of the sample
must be pressure-free and (shearing) traction-free for
the technique to work). Figure 6.10 shows a photograph
of a small parallelepiped sample mounted in an RUS
apparatus.

After the sample is mounted, the transducer is swept
through a range of frequencies (usually from a few hertz
to a few kilohertz) and the response of the material is

Fig. 6.10 Sample mounted for an RUS measurement. Sam-
ple dimensions are 2.0 mm × 2.5 mm × 3.0 mm
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measured. Some resonances are caused by the geome-
try of the sample (just as a string of fixed length has
certain resonant frequencies determined by the length
of the string). In the RUS technique, some fairly sophis-
ticated software eliminates the geometrical resonances;
the remaining resonances are resonances of the inter-
nal lattice structure of the material. These resonances
are determined by the elastic constants. The RUS tech-
nique, then, is used to evaluate all elastic constants from
a single sample from the spectrum of resonant frequen-
cies produced by the various internal resonances.

Measurement of Attenuation
with the RUS Technique

The RUS technique is also useful for measuring the at-
tenuation coefficients of solid materials. The resonance
curves generated by the RUS experiment are plots of
the response amplitude of the solid as a function of in-
put frequency (for a constant input amplitude). Every
resonance curve has a parameter known as the Q of the
system. The Q value can be related to the maximum
amplitude 1/e value, which in turn can be related to the
attenuation coefficient. Thus, the resonance curves gen-
erated by the RUS experiment can be used to determine
the attenuation in the material at various frequencies.

6.2.3 Measurement Of Attenuation
(Classical Approach)

Measurement of attenuation at audible frequencies and
below is very difficult. Attenuation is usually meas-
ured at ultrasonic frequencies since the plane-wave
approximation can be satisfied. The traditional means
of measuring the acoustic attenuation requires the mea-
surement of the echo train of an acoustic tone burst as
it travels through the medium. Sound travels down the
length of the sample, reflects from the opposite bound-
ary and returns to its origin. During each round trip, it
travels a distance twice the length of the sample. The
transducer used to emit the sound now acts as a receiver
and measures the amplitude as it strikes the initial sur-
face. The sound then continues to reflect back and forth
through the sample. On each subsequent round trip, the
sound amplitude is diminished.

Measured amplitude values are then fit to an expo-
nential curve, and the value of the absorption coefficient
is determined from this fit. Actually, this experimental
arrangement measures the insertion loss of the system,
the losses associated with the transducer and the adhe-
sive used to bond the transducer to the sample as well
as the attenuation of sound in the sample. However,

the values of the insertion loss of the system and the
attenuation inside the sample are usually very close to
each other. If one needs the true attenuation in the sam-

a)

b)

c)

Fig. 6.11 (a) Fine rice on a plate; (b) as the plate is excited
acoustically the rice begins to migrate to the nodes; (c) the
Chladni pattern has formed
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ple, one can use various combinations of transducers to
account for the other losses in the system [6.5].

Losses in a sample can come from a number
of sources: viscosity, thermal conductivity, and mo-
lecular relaxation. Viscosity and thermal conductivity
are usually referred to as classical losses. They can
be calculated readily. Both are linearly dependent on
frequency. Relaxation is a frequency-dependent phe-
nomenon. The maximum value occurs when the sound
frequency is the same as the relaxation frequency, which
is determined by the characteristics of the medium.
Because of this complication, determination of the at-
tenuation to be expected can be difficult.

6.2.4 Acoustic Levitation

Acoustic levitation involves the use of acoustic vibra-
tions to move objects from one place to the other, or
to keep them fixed in space. Chladni produced an early
form of acoustic levitation to locate the nodal planes
in a vibrating plate. Chladni discovered that small par-
ticles on a plate were moved to the nodal planes by plate
vibrations. An example of Chladni figures is shown in
Fig. 6.11. Plate vibrations have caused powder to mi-
grate toward nodal planes, making them much more
obvious.

The use of radiation pressure to counterbalance
gravity (or buoyancy) has recently led to a number of
situations in which levitation is in evidence.

1. The force exerted on a small object by radiation
pressure can be used to counterbalance the pull of
gravity [6.6].

2. The radiation force exerted on a bubble in water
by a stationary ultrasonic wave has been used to
counteract the hydrostatic or buoyancy force on the
bubble. This balance of forces makes it possible
for the bubble to remain at the same point indefi-
nitely. Single-bubble sonoluminescence studies are
now possible [6.7].

3. Latex particles having a diameter of 270 μm or clus-
ters of frog eggs can be trapped in a potential well
generated by oppositely directed focused ultrasonic
beams. This makes it possible to move the trapped
objects at will. Such a system has been called acous-
tic tweezers by Wu [6.8].

6.2.5 Sonoluminescence

Sonoluminescence is the conversion of high-intensity
acoustic energy into light. Sonoluminescence was first

discovered in water in the early 1930s [6.9, 10]. How-
ever, interest in the phenomenon languished for several
decades.

In the late seventies, a new type of sonolumines-
cence was found to occur in solids [6.11, 12]. This
can occur when high-intensity Lamb waves are gener-
ated along a thin plate of ferroelectric material which
is driven at the frequency of mechanical resonance
in a partial vacuum (the phenomenon occurs at about
0.1 atm). The acoustic fields interact with dislocations
and defects in the solid which leads to the generation
of visible light in ferroelectric materials. Figure 6.12
shows a diagram of the experimental setup and a pho-
tograph of the light emitted during the excitation of
solid-state sonoluminescence.

In the early 1990s, sonoluminescence emissions
from the oscillations of a single bubble in water were
discovered [6.7]. With single-bubble sonoluminescence,
a single bubble is placed in a container of degassed water
(often injected by a syringe). Sound is used to push the
bubble to the center of the container and to set the bub-
ble into high-amplitude oscillation. The dynamic range

Lamb waves generated by the mechanical response
of the plate to the driving voltage at the electrodes

Amplifier

Electrode

Piezoelectric thin plate

Electrode

a)

b)

Fig. 6.12 (a) Block diagram of apparatus for solid-state
sonoluminescence and (b) photograph of light emitted
from a small, thin plate of LiNbO3
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for the bubble radius through an oscillation can be as
great as 50 μm to 5 μm through one oscillation [6.13–
15]. The light is emitted as the bubble goes through its
minimum radius. Typically, one requires high-amplitude
sound corresponding to a sound pressure level in excess
of 110 dB. The frequency of sound needed to drive the
bubble into sonoluminescence is in excess of 30 kHz,
which is just beyond the range of human hearing.

Another peculiar feature of the sonoluminescence
phenomenon is the regularity of the light emissions.
Rather than shining continuously, the light is emitted
as a series of extremely regular periodic flashes. This
was not realized in the initial sonoluminescence exper-
iments, because the rate at which the flashes appear
requires a frequency resolution available only in the best
detectors. The duration of the pulses is less than 50 ps.
The interval between pulses is roughly 35 μs. The time
between flashes varies by less than 40 ps.

The discovery of single-bubble sonoluminescence
has caused a resurgence of interest in the phenomenon.
The light emitted appears to be centered in the near-
ultraviolet and is apparently black body in nature
(unfortunately water absorbs much of the higher-
frequency light, so a complete characterization of the
spectrum is difficult to achieve). Adiabatic compression
of the bubble through its oscillation would suggest tem-
peratures of about 10 000 K (with pressures of about
10 000 atm). The temperatures corresponding to the ob-
served spectra are in excess of 70 000 K [6.13]. In fact,
they may even be much higher.

Since the measured spectrum suggests that the ac-
tual temperatures and pressures within the bubble may
be quite high, simple compression does not seem to
be an adequate model for the phenomenon. It is pos-
sible that the collapsing bubble induces a spherically
symmetric shockwave that is driven inward towards the
center of the bubble. These shocks could possibly drive
the temperatures and pressures in the interior of the bub-
ble high enough to generate the light. (Indeed, some
physicists have suggested that sonoluminescence might
enable the ignition of fusion reactions, though as of this
writing that remains speculation).

6.2.6 Thermoacoustic Engines
(Refrigerators and Prime Movers)

Another interesting application of physical acoustics
is that of thermoacoustics. Thermoacoustics involves
the conversion of acoustic energy into thermal energy
or the reverse process of converting thermal energy
into sound [6.16]. Figure 6.13 shows a photograph of

Fig. 6.13 A thermoacoustic engine

a thermoacoustic engine. To understand the processes
involved in thermoacoustics, let us consider a small
packet of gas in a tube which has a sound wave trav-
eling through it (thermoacoustic effects can occur with
either standing or progressive waves). As the compres-
sion of the wave passes through the region containing
the packet of gas, three effects occur:

1. The gas compresses adiabatically, its temperature
increases in accordance with Boyle’s law (due to
the compression), and the packet is displaced some
distance down the tube.

2. As the rarefaction phase of the wave passes through
the gas, this process reverses.

3. The wall of the tube acts as a heat reservoir. As
the packet of gas goes through the acoustic process,
it deposits heat at the wall during the compression
phase (the wall literally conducts the heat away from
the compressed packet of gas).

This process is happening down the entire length of the
tube; thus a temperature gradient is established down
the tube.

To create a useful thermoacoustic device, one must
increase the surface area of wall that the gas is in
contact with so that more heat is deposited down the
tube. This is accomplished by inserting a stack into the
tube. In the inside of the tube there are several equally
spaced plates which are also in contact with the exte-
rior walls of the tube. Each plate provides additional
surface area for the deposition of thermal energy and
increases the overall thermoacoustic effect. (The stack
must not impede the wave traveling down the tube, or
the thermoacoustic effect is minimized.) Modern stacks
use much more complicated geometries to improve the
efficiency of the thermoacoustic device (indeed the term
stack now is a misnomer, but the principle remains the
same). Figure 6.14 shows a photograph of a stack used
in a modern thermoacoustic engine. The stack shown in
Fig. 6.14 is made of a ceramic material.
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Fig. 6.14 A stack used in a thermoacoustic engine. Pores
allow the gas in the tube to move under the influence of the
acoustic wave while increasing the surface area for the gas
to deposit heat

A thermoacoustic device used in this way is a ther-
moacoustic refrigerator. The sound generated down the
tube (by a speaker or some other device) is literally
pumping heat energy from one end of the tube to the
other. Thus, one end of the tube gets hot and the other
cools down (the cool end is used for refrigeration).

The reverse of this thermoacoustic refrigeration pro-
cess can also occur. In this case, the tube ends are fitted
with heat exchangers (one exchanger is hot, one is cold).
The heat delivered to the tube by the heat exchang-
ers does work on the system and generates sound in
the tube. The frequency and amplitudes of the gener-
ated waves depend on the geometry of the tube and the
stacks. When a thermoacoustic engine is driven in this
way (converting heat into sound), it is known as a prime
mover.

Though much research to improve the efficiency of
thermoacoustic engines is ongoing, the currently ob-
tainable efficiencies are quite low compared to standard
refrigeration systems. Thermoacoustic engines, how-
ever, offer several advantages: they have no moving
parts to wear out, they are inexpensive to manufacture,
and they are highly reliable, which is useful if refriger-
ation is needed in inaccessible places.

One practical application for thermoacoustic en-
gines is often cited: the liquefaction of natural gas for
transport. This is accomplished by having two thermoa-
coustic engines, one working as a prime mover and the

other working as a refrigerator. A small portion of the
gas is ignited and burned to produce heat. The heat
is applied to the prime mover to generate sound. The
sound is directed into a second thermoacoustic engine
that acts as a refrigerator. The sound from the prime
mover pumps enough heat down the refrigerator to cool
the gas enough to liquefy it for storage. The topic of
thermoacoustics is discussed in greater detail in Chap. 7.

6.2.7 Acoustic Detection of Land Mines

Often, during wars and other armed conflicts, mine
fields are set up and later abandoned. Even today it
is not uncommon for mines originally planted during
World War II to be discovered still buried and active.
According to the humanitarian organization CARE, 70
people are killed each day by land mines, with the
vast majority being civilians. Since most antiperson-
nel mines manufactured today contain no metal parts,
electromagnetic-field-based metal detectors cannot lo-
cate them for removal. Acoustic detection of land mines
offers a potential solution for this problem.

The approach used in acoustic land-mine detec-
tion is conceptually simple but technically challenging.
Among the first efforts made at acoustic land-mine de-
tection were those of House and Pape [6.17]. They
sent sounds into the ground and examined the reflec-
tions from buried objects. Don and Rogers [6.18] and
Caulfield [6.19] improved the technique by including
a reference beam that provided information for com-
parison with the reflected signals. Unfortunately, this
technique yielded too many false positives to be prac-
tical because one could not distinguish between a mine
and some other buried object such as a rock or the root
of a tree.

Newer techniques involving the coupling of an
acoustic signal with a seismic vibration have been de-
veloped with much more success [6.20–24]. They make
use of remote sensing and analysis by computer. Re-
mote measurement of the acoustic field is done with
a laser Doppler vibrometer (LDV), which is a an opti-
cal device used to measure velocities and displacements
of vibrating bodies without physical contact. With this
technique, the ground is excited acousticly with lower
frequencies (usually on the order of a few hundred Hz).
The LDV is used to measure the vibration of the soil as
it responds to this driving force. If an object is buried
under the soil in the region of excitation, it alters the
resonance characteristics of the soil and introduces non-
linear effects. With appropriate digital signal processing
and analysis, one can develop a system capable of rec-
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ognizing different types of structures buried beneath the
soil. This reduces the number of false positives and
makes the system more efficient.

6.2.8 Medical Ultrasonography

For the general public, one of the most familiar ap-
plications of physical acoustics is that of medical
ultrasonography. Medical ultrasonography is a medical
diagnostic technique which can use sound information
to construct images for the visualization of the size,
structure and lesions of internal organs and other bod-
ily tissues. These images can be used for both diagnostic
and treatment purposes (for example enabling a surgeon
to visualize an area with a tumor during a biopsy). The
most familiar application of this technique is obstet-
ric ultrasonography, which uses the technique to image
and monitor the fetus during a pregnancy. An ultrasono-
graph of a fetus is shown in Fig. 6.15.

This technique relies on the fact that in different ma-
terials the speed of sound and acoustic impedance are
different. A collimated beam of high-frequency sound
is projected into the body of the person being examined.
The frequencies chosen will depend on the application.
For example, if the tissue is deeper within the body, the
sound must travel over a longer path and attenuation af-
fects can present difficulties. Using a lower ultrasonic
frequency reduces attenuation. Alternatively, if a higher
resolution is needed, a higher frequency is used. In
each position where the density of the tissue changes,
there is an acoustic impedance mismatch. Therefore, at
each interface between various types of tissues some of
the sound is reflected. By measuring the time between
echoes, one can determine the spatial position of the
various tissues.

If a single, stationary transducer is used; one gets
spatial information that lies along a straight line. Typi-
cally, the probe contains a phased array of transducers
that are used to generate image information from differ-
ent directions around the area of interest. The different
transducers in the probe send out acoustic pulses that
are reflected from the various tissues. As the acoustic
signals return, the transducers receive them and convert
the information into a digital, pictorial representation.
One must also match the impedances between the sur-
face of the probe and the body. The head of the probe
is usually soft rubber, and the contact between the
probe and the body is impedance-matched by a water-
based gel.

Fig. 6.15 Ultrasonograph of a fetus

To construct the image, each transducer (which
themselves are separated spatially somewhat) measures
the strength of the echo. This measurement indicates
how much sound has been lost due to attenuation
(different tissues have different attenuation values). Ad-
ditionally, each transducer measures the delay time
between echoes, which indicates the distance the sound
has traveled before encountering the interface causing
the echo (actually since the sound has made a round
trip during the echo the actual displacement between
the tissues is 1

2 of the total distance traveled). With this
information a two-dimensional image can be created.
In some versions of the technique, computers can be
used to generate a three-dimensional image from the
information as well.

A more esoteric form of ultrasonograpy, Doppler
ultrasonography, is also used. This technique requires
separate arrays of transducers, one for broadcasting
a continuous-wave acoustic signal and another for re-
ceiving it. By measuring a frequency shift caused by
the Doppler effect, the probe can detect structures mov-
ing towards or away from the probe. For example, as
a given volume of blood passes through the heart or
some other organ, its velocity and direction can be de-
termined and visualized. More-recent versions of this
technique make use of pulses rather than continuous
waves and can therefore use a single probe for both
broadcast and reception of the signal. This version of
the technique requires more-advanced analysis to de-
termine the frequency shift. This technique presents
advantages because the timing of the pulses and their
echoes can be measured to provide distance information
as well.
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6.3 Apparatus

Given the diverse nature of physical acoustics, any two
laboratories conducting physical acoustics experiments
might have considerably different types of equipment
and apparatus (for example, experiments dealing with
acoustic phenomena in water usually require tanks to
hold the water). As is the case in any physics labora-
tory, it is highly useful to have access to a functioning
machine shop and electronics shop for the design,
construction, and repair of equipment needed for the
physical acoustics experiment that is being conducted.
Additionally, a wide range of commercial equipment is
available for purchase and use in the lab setting.

6.3.1 Examples of Apparatus

Some typical equipment in an acoustic physics lab
might include some of the following:

• Loudspeakers;• Transducers (microphones/hydrophones);• Acoustic absorbers;• Function generators, for generating a variety of
acoustic signals including single-frequency sinus-
oids, swept-frequency sinusoids, pulses, tone bursts,
white or pink noise, etc.;• Electronics equipment such as multimeters, im-
pedance-matching networks, signal-gating equip-
ment, etc.;• Amplifiers (acoustic, broadband, Intermediate Fre-
quency (IF), lock-in);• Oscilloscopes. Today’s digital oscilloscopes (in-
cluding virtual oscilloscopes implemented on per-
sonal computers) can perform many functions
that previously required several different pieces
of equipment; for example, fast Fourier trans-
form (FFT) analysis previously required a separate
spectrum analyzer; waveform averaging previously
required a separate boxcar integrator, etc.);• Computers (both for control of apparatus and anal-
ysis of data).

For audible acoustic waves in air the frequency
range is typically 20–20 000 Hz. This corresponds to
a wavelength range of 16.5 m–16.5 mm. Since these
wavelengths often present difficulties in the laboratory,
and since the physical principles apply at all frequencies,
the laboratory apparatus is often adapted to a higher fre-
quency range. The propagating medium is often water
since a convenient ultrasonic range of 1–100 MHz gives

a convenient wavelength range of 0.014–1.4 mm. The
experimental arrangements to be described below are for
some specialized applications and cover this wavelength
range, or somewhat lower. The results, however, are use-
ful in the audio range as well.

6.3.2 Piezoelectricity and Transduction

In physical acoustics transducers play an important role.
A transducer is a device that can convert a mechani-
cal vibration into a current or vice versa. Transducers
can be used to generate sound or to detect sound.
Audible frequencies can be produced by loudspeakers
and received by microphones, which often are driven
electromagnetically. (For example, a magnet interact-
ing with a current-carrying coil experiences a magnetic
force that can accelerate it, or if the magnet is moved
it can induce a corresponding current in the coil.) The
magnet could be used to drive the cone of a loudspeaker
to convert a current into an audible tone (or speech, or
music, etc.). Similarly, one can use the fact that the ca-
pacitance between two parallel-plate capacitors varies
as a function of the separation distance between two
plates. A capacitor with one plate fixed and the other
allowed to vibrate in response to some form of mechan-
ical forcing (say the force caused by the pressure of an
acoustic wave) is a transducer. With a voltage across
the two plates, an electrical current is generated as the
plates move with respect to one another under the force
of the vibration of an acoustic wave impinging upon it.
These types of transducers are described in Chap. 24.

The most common type of transducers used in the
laboratory for higher-frequency work are piezoelectric-
element-based transducers. In order to understand how
these transducers work (and are used) we must first
examine the phenomenon of piezoelectricity.

Piezoelectricity is characterized by the both direct
piezoelectric effect, in which a mechanical stress ap-
plied to the material causes a potential difference across
the surface of the faces to which the stress is applied,
and the secondary piezoelectric effect, in which a poten-
tial difference applied across the faces of the material
causes a deformation (expansion or contraction). The
deformation caused by the direct piezoelectric effect is
on the order of nanometers, but leads to many uses in
acoustics such as the production and detection of sound,
microbalance applications (where very small masses are
measured by determining the change in the resonance
frequency of a piezoelectric crystal when it is loaded
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with the small mass), and frequency generation/control
for oscillators.

Piezoelectricity arises in a crystal when the crystal’s
unit cell lacks a center of symmetry. In a piezoelectric
crystal, the positive and negative charges are sepa-
rated by distance. This causes the formation of electric
dipoles, even though the crystal is electrically neutral
overall. The dipoles near one another tend to orient
themselves along the same direction. These small re-
gions of aligned dipoles are known as domains because
of the similarity to the magnetic analog. Usually, these
domains are oriented randomly, but can be aligned by
the application of a strong electric field in a process
known as poling (typically the sample is poled at a high
temperature and cooled while the electric field is main-
tained). Of the 32 different crystal classifications, 20
exhibit piezoelectric properties and 10 of those are po-
lar (i. e. spontaneously polarized). If the dipole can be
reversed by an applied external electric field, the mater-
ial is additionally known as a ferroelectric (in analogy
to ferromagnetism).

When a piezoelectric material undergoes a defor-
mation induced by an external mechanical stress, the
symmetry of the charge distribution in the domains is
disturbed. This gives rise to a potential difference across
the surfaces of the crystal. A 2 kN force (≈ 500 lbs) ap-
plied across a 1 cm cube of quartz can generate up to
12 500 V of potential difference.

Several crystals are known to exhibit piezoelectric
properties, including tourmaline, topaz, rochelle salt,
and quartz (which is most commonly used in acoustic
applications). In addition, some ceramic materials with
perovskite or tungsten bronze structures, including bar-
ium titanate (BaTiO3), lithium niobate (LiNbO3), PZT
[Pb(ZrTi)O3], Ba2NaNb5O5, and Pb2KNb5O15, also
exhibit piezoelectric properties. Historically, quartz was
the first piezoelectric material widely used for acous-
tics applications. Quartz has a very sharp frequency
response, and some unfavorable electrical properties
such as a very high electrical impedance which re-
quires impedance matching for the acoustic experiment.
Many of the ceramic materials such as PZT or lithium
niobate have a much broader frequency response and
a relatively low impedance which usually does not re-
quire impedance matching. For these reasons, the use
of quartz has largely been supplanted in the acoustics
lab by transducers fashioned from these other materials.
Although in some situations (if a very sharp frequency
response is desired), quartz is still the best choice.

In addition to these materials, some polymer
materials behave as electrets (materials possessing

a quasi-permanent electric dipole polarization). In most
piezoelectric crystals, the orientation of the polariza-
tion is limited by the symmetry of the crystal. However,
in an electret this is not the case. The electret material
polyvinylidene fluoride (PVDF) exhibits piezoelectric-
ity several times that of quartz. It can also be fashioned
more easily into larger shapes.

Since these materials can be used to convert a sinu-
soidal electrical current into a corresponding sinusoidal
mechanical vibration as well as convert a mechani-
cal vibration into a corresponding electrical current,
they provide a connection between the electrical sys-
tem and the acoustic system. In physical acoustics
their ability to produce a single frequency is especially
important. The transducers to be described here are
those which are usually used to study sound propaga-
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Fig. 6.16 Transducer housing
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tion in liquids or in solids. The frequencies used are
ultrasonic.

The first transducers were made from single crys-
tals. Single crystals of x-cut quartz were preferred for
longitudinal waves, and y-cut for transverse waves, their
thickness determined by the frequency desired. Single
crystals are still used for certain applications; however,
the high-impedance problems were solved by introduc-
tion of polarized ceramics containing barium titanate or
strontium titanate. These transducers have an electrical
impedance which matches the 50 Ω impedance found
on most electrical apparatus. Low-impedance transduc-
ers are currently commercially available.

Such transducers can be used to generate or receive
sound. When used as a receiver in liquids such trans-
ducers are called hydrophones. For the generation of
ultrasonic waves in liquids, one surface of the trans-
ducer material should be in contact with the liquid and
the other surface in contact with air (or other gas). With
this arrangement, most of the acoustic energy enters the
liquid. In the laboratory it is preferable to have one sur-
face at the ground potential and electrically drive the
other surface, which is insulated. Commercial trans-
ducers which accomplish these objectives are available.
They are designed for operation at a specific frequency.
A transducer housing is shown in Fig. 6.16. The trans-
ducer crystal and the (insulated) support ring can be
changed to accommodate the frequency desired. In the
figure a strip back electrode is shown. For generating
acoustic vibration over the entire surface, the back of the
transducer can be coated with an electrode. The width
which produces a Gaussian output in one dimension is

Fig. 6.17 Coaxial transducer

described in [6.25]. The use of a circular electrode that
can produce a Gaussian amplitude distribution in two
dimensions is described in [6.26].

For experiments with solids the transducer is of-
ten bonded directly to the solid without the need for
an external housing. For single-transducer pulse-echo
operation the opposite end of the sample must be flat
because it must reflect the sound. For two-transducer
operation one transducer is the acoustic transmitter, the
other the receiver.

With solids it is convenient to use coaxial trans-
ducers because both transducer surfaces must be
electrically accessible. The grounded surface in a coax-
ial transducer can be made to wrap around the edges so
it can be accessed from the top as well. An example is
shown in Fig. 6.17. The center conductor is the high-
voltage terminal. The outer conductor is grounded; it is
in electrical contact with the conductor that covers the
other side of the transducer.

6.3.3 Schlieren Imaging

Often it is useful to be able to see the existence of
an acoustic field. The Schlieren arrangement shown in
Fig. 6.18 facilitates the visualization of sound fields in
water. Light from a laser is brought to focus on a circu-
lar aperture by lens 1. The circular aperture is located
at a focus of lens 2, so that the light emerges parallel.
The water tank is located in this parallel light. Lens 3
forms a real image of the contents of the water tank on
the screen, which is a photographic negative for pho-
tographs. By using a wire or an ink spot on an optical
flat at the focus of lens 3, one produces conditions for
dark-field illumination. The image on the screen, then,
is an image of the ultrasonic wave propagating through
the water. The fact that the ultrasonic wave is propagat-
ing through the water means that the individual wave-
fronts are not seen. To see the individual wavefronts,
one must add a stroboscopic light source synchronized
with the ultrasonic wave. In this way the light can be on
at the frequency of the sound and produce a photograph
which shows the individual wavefronts.

On some occasions it may be useful to obtain color
images of the sound field; for example, one can show
an incident beam in one color and its reflection from
an interface in a second color for clarity. The resultant
photographs can be beautiful; however, to a certain ex-
tent their beauty is controlled by the operator. The merit
of color Schlieren photography may be more from its
aesthetic or pedagogical value, rather than its practical
application. This is the reason that color Schlieren pho-
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Fig. 6.18 Diagram of a Schlieren system

tographs are seldom encountered in a physical acoustic
laboratory. For completeness, however, it may be worth-
while to describe the process.

The apparatus used is analogous to that given in
Fig. 6.18. The difference is that a white-light source

Fig. 6.19 Spectra formed by the diffraction of light
through a sound field

a)

b)

c)

Fig. 6.20a–c Schlieren photographs showing reflection and diffrac-
tion of ultrasonic waves by a solid immersed in water
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Fig. 6.22 Block Diagram of apparatus for absolute amplitude measurements

Fig. 6.21 (a) Photograph of a goniometer system; (b) dia-
gram of a goniometer system �

is used in the place of the monochromatic light from
the laser. As the light diffracts, the diffraction pattern
formed at the focus of lens 3 is made up of com-
plete spectra (with each color of the spectra containing
a complete image of the acoustic field). A photograph
showing the spectra produced is shown in Fig. 6.19. If
the spectra are allowed to diverge beyond this point of
focus, they will combine into a white-light image of the
acoustic field. However, one can use a slit (rather than
using a wire or an ink spot at this focus to produce dark-
field illumination) to pass only the desired colors. The
position of the slit selects the color of the light pro-
ducing the image of the sound field. If one selects the
blue-colored incident beam from one of the spectra, and
the red-colored reflected beam from another spectrum
(blocking out all the other colors), a dual-colored image
results. Since each diffraction order contains enough
information to produce a complete sound field image,
the operator has control over its color. Spatial filtering,
then, becomes a means of controlling the color of the
various parts of the image. Three image examples are
given in Fig. 6.20. Figure 6.20a is reflection of a sound
beam from a surface. Figure 6.20b shows diffraction of
sound around a cylinder. Figure 6.20c shows backward
displacement at a periodic interface. The incident beam
is shown in a different color from that of the reflected
beam and the diffraction order.
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Fig. 6.23 Mounting system for room-temperature mea-
surement of absolute amplitudes of ultrasonic waves in
solids

6.3.4 Goniometer System

For studies of the propagation of an ultrasonic pulse
in water one can mount the ultrasonic transducers on
a goniometer such as that shown in Fig. 6.21. This is
a modification of the pulse-echo system. The advantage
of this system is that the arms of the goniometer allow
for the adjustments indicated in Fig. 6.21b. By use of
this goniometer it is possible to make detailed studies
of the reflection of ultrasonic waves from a variety of

water–solid interfaces. By immersing the goniometer in
other liquids, the type of liquid can also be changed.

6.3.5 Capacitive Receiver

In many experiments, one measures acoustic ampli-
tude relative to some reference amplitude, which is
usually determined by the parameters of the experi-
ment. However, in some studies it is necessary to make
a measurement of the absolute amplitude of acoustic
vibration. This is especially true of the measurement
of the nonlinearity of solids. For the measurement of
the absolute acoustic amplitude in a solid, a capac-
itive system can be used. If the end of the sample
is coated with a conductive material, it can act as
one face of a parallel-plate capacitor. A bias volt-
age is put across that capacitance, which enables it
to work as a capacitive microphone. As the acoustic
wave causes the end of the sample to vibrate, the ca-
pacitor produces an electrical signal. One can relate
the measured electrical amplitude to the acoustic am-
plitude because all quantities relating to them can be
determined.

The parallel-plate approximation, which is very well
satisfied for plate diameters much larger than the plate
separation, is the only approximation necessary. The
electrical apparatus necessary for absolute amplitude
measurements in solids is shown in the block dia-
gram of Fig. 6.22. A calibration signal is used in such
a manner that the same oscilloscope can be used for
the calibration and the measurements. The mounting
system for room-temperature measurements of a sam-
ple is shown in Fig. 6.23. Since stray capacitance
affects the impedance of the resistor, this impedance
must be measured at the frequencies used. The volt-
age drop in the resistor can be measured with either
the calibration signal or the signal from the capacitive
receiver. A comparison of the two completes the cali-
bration. With this system acoustic amplitudes as small
as 10−14 m (which is approximately the limit set by
thermal noise) have been measured in copper single
crystals [6.27].

6.4 Surface Acoustic Waves

It has been discovered that surface acoustic waves are
useful in industrial situations because they are relatively
slow compared with bulk waves or electromagnetic
waves. Many surface acoustic wave devices are made

by coating a solid with an interdigitated conducting
layer. In this case, the surface acoustic wave produces
the desired delay time and depends for its generation
on a fringing field (or the substrate may be piezoelec-
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Fig. 6.24a,b Sound waves at a liquid–solid interface

tric). The inverse process can be used to receive surface
acoustic waves and convert them into an electrical sig-
nal, which can then be amplified.

Another type of surface wave is possibly more
illustrative of the connection between surface acous-
tic waves and physical acoustics. This is the surface
acoustic wave generated when the trace velocity of an
incident wave is equal to the velocity of the surface
acoustic wave. This occurs when a longitudinal wave
is incident on a solid from a liquid. This is analogous
to the optical case of total internal reflection [6.28], but
new information comes from the acoustic investigation.

The interface between a liquid and a solid is shown
in Fig. 6.24, in which the various waves and their angles
are indicated. The directions in which the various waves
propagate at a liquid–solid interface can be calculated
from Snell’s law, which for this situation can be written

sin θi

v
= sin θr

v
= sin θL

vL
= sin θS

vS
, (6.66)

where the velocity of the longitudinal wave in the li-
quid, that in the solid, and the velocity of the shear wave
in the solid are, respectively, v, vL, and vS. The propa-
gation directions of the various waves are indicated in
Fig. 6.24.

Since much of the theory has been developed in
connection with geology, the theoretical development

of Ergin [6.29] can be used directly. Ergin has shown
that the energy reflected at an interface is proportional to
the square of the amplitude reflection coefficient, which
can be calculated directly [6.29]. The energy reflection
coefficient is given by

RE =
(

cosβ− A cosα (1−B)

cosβ+ A cosα (1−B)

)2

, (6.67)

where

A = ρ1VL

ρV
and

B = 2 sin γ sin 2γ

(
cos γ − vS

vL
cosβ

)
. (6.68)

The relationship among the angles α, β and γ can be
determined from Snell’s law as given in (6.66). The
book by Brekhovskikh [6.30] is also a good source of
information on this subject.
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Fig. 6.25a,b Behavior of energy reflected at a liquid–solid
interface
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Fig. 6.26 A 2 MHz ultrasonic wave reflected at a liquid–
solid interface

Typical plots of the energy reflection coefficient
as a function of incident angle are given in Fig. 6.25
in which the critical angles are indicated. Usually,
vL > vS > v, so the curve in Fig. 6.25a is observed. It
will be noticed immediately that there is a critical an-
gle for both the longitudinal and transverse waves in the
solid. In optics there is no longitudinal wave; therefore
the curve has only one critical angle.

If one uses a pulse-echo system to verify the be-
havior of an ultrasonic pulse at an interface between
a liquid and a solid, one gets results that can be graphed
as shown in Fig. 6.26. At an angle somewhat greater
than the critical angle for a transverse wave in the solid,
one finds a dip in the data. This dip is associated with
the generation of a surface wave. The surface wave is
excited when the projection of the wavelength of the in-
cident wave onto the interface matches the wavelength
of the surface wave. The effect of the surface wave can
be seen in the Schlieren photographs in Fig. 6.27.

Figure 6.27 shows the reflection at a water–
aluminum interface at an angle less than that for
excitation of a surface wave (a Rayleigh surface wave),
at the angle at which a surface wave is excited, and
an angle greater. When a surface wave is excited the
reflected beam contains two (or more) components:
the specular beam (reflected in a normal manner) and
a beam displaced down the interface. Since most of
the energy is contained in the displaced beam, the
minimum in the data shown in Fig. 6.24 is caused by
the excitation of the displaced beam by the surface
wave. This has been shown to be the case by dis-
placing the receiver to follow the displaced beam with
a goniometer system, as shown in Fig. 6.21. This mini-
mizes the dip in data shown in Fig. 6.24. Neubauer has

αi = 20

αi = α R

αi = 35

Interface

Interface

Interface

a)

b)

c)

Fig. 6.27a–c Schlieren photographs showing the behavior
of a 4 MHz ultrasonic beam reflected at a water–aluminium
interface

shown that the ultrasonic beam excited by the surface
wave is 180◦ out of phase with the specularly reflected
beam [6.31]. Destructive interference resulting from
phase cancelation causes these beams to be separated
by a null strip. Although a water–aluminum interface
has been used in these examples, the phenomenon oc-
curs at all liquid–solid interfaces. It is less noticeable
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Fig. 6.28 Schlieren photograph showing backward dis-
placement of a 6 MHz ultrasonic beam at a corrugated
water–brass interface

at higher ultrasonic frequencies since the wavelength is
smaller.

At a corrugated interface it is possible that the in-
cident beam couples to a negatively directed surface
wave so that the reflected beam is displaced in the
negative direction. This phenomenon was predicted for
optical waves by Tamir and Bertoni [6.32]. They deter-

Liquid
x

t

dSolid

2 w ei

Fig. 6.29 Diagram of incident beam coupling to a back-
ward-directed leaky wave to produce backward displace-
ment of the reflected beam

mined that the optimum angle for this to occur is given
by

sin θi = Vliq

(
1

fd
− 1

VR

)
(6.69)

where d is the period, f is the frequency, Vliq is the
wave propagation velocity in the liquid, and VR is the
propagation velocity of the leaky surface wave. Fig-
ure 6.28 is a Schlieren photograph which shows what
happens in this case [6.33]. Figure 6.29 is a diagram of
the phenomenon [6.33]. The incident beam couples to
a backward-directed surface wave to produce backward
displacement of the reflected beam.

6.5 Nonlinear Acoustics

There are several sources of nonlinearity whether the
propagating medium be a gas, liquid, or solid. They
are described in more detail in Chap. 8. Even in an
ideal medium in which one considers only interatomic
forces, there is still a source of nonlinear behavior since
compression requires a slightly different force from di-
latation. With Hooke’s law (strain is proportional to
stress) one assumes that they are equal. This is seldom
true. The subject of nonlinear acoustics has been devel-
oped to the point that it is now possible to go beyond
the linear approximation with many substances.

6.5.1 Nonlinearity of Fluids

If one assumes an ideal gas and keeps the first set of
nonlinear terms, Beyer has shown that the equation of
motion in one dimension becomes [6.34]

∂2ξ

∂t2
= c2

0(
1+ ∂ξ

∂a

)γ+1

∂2ξ

∂a2
. (6.70)

This form of the nondissipative wave equation in one
dimension in Lagrangian coordinates includes nonlin-
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ear terms. In this equation γ is the ratio of specific heats
and

c2
0 =

γ p0

ρ0

1
(

1+ ∂ξ
∂a

)γ−1
. (6.71)

One can also generalize this equation in a form which
applies to all fluids. By expanding the equation of state

p = p0

(
ρ
ρ0

)γ
in powers of the condensation s = ρ−ρ0

ρ0
,

one obtains

p = p0+ As+ B

2! s
2+ . . . and

c2 = c2
0

[
1+

(
B

A

)
s+ . . .

]
. (6.72)

This makes it possible to obtain the nonlinear wave
equation in the form [6.24]

∂2ξ

∂t2
= c2

0
(

1+ ∂ξ
∂a

)2+ B
A

∂2ξ

∂a2
. (6.73)

In this form one can recognize that the quantity 2+ B/A
for fluids plays the same role as γ +1 for ideal gases.
Values of B/A for fluids given in Table 6.3 indicate that
nonlinearity of fluids, even in the absence of bubbles of
air, cannot always be ignored. The nonlinearity of fluids
is discussed in greater detail in Chap. 8.

6.5.2 Nonlinearity of Solids

The propagation of a wave in a nonlinear solid is de-
scribed by first introducing third-order elastic constants.
When extending the stress–strain relationship (which
essentially is a force-based approach) it becomes dif-
ficult to keep a consistent approximation among the
various nonlinear terms. However, If one instead uses
an energy approach, a consistent approximation is auto-
matically maintained for all the terms of higher order.

Beginning with the elastic potential energy, one can
define both the second-order constants (those determin-
ing the wave velocity in the linear approximation) and
the third-order elastic constants simultaneously. The

Table 6.4 K2 and K3 for the principal directions in a cubic crystal

Direction K2 K3

[100] C11 C111

[110] C11+C12+2C44
2

C111+3C112+12C166
4

[111] C11+2C12+4C44
3

1
9 (C111+6C112+12C144+24C166+2C123+16C456)

Table 6.3 Values of B/A

Substance T (◦C) B/A

Distilled water 0 4.2

20 5.0

40 5.4

60 5.7

80 6.1

100 6.1

Sea water (3.5%) 20 5.25

Methanol 20 9.6

Ethanol 0 10.4

20 10.5

40 10.6

N-propanol 20 10.7

N-butanol 20 10.7

Acetone 20 9.2

Beneze 20 9/0

Chlorobenzene 30 9.3

Liquid nitrogen b.p. 6.6

Benzyl alcohol 30 10.2

Diethylamine 30 10.3

Ethylene glycol 30 9.7

Ethyl formate 30 9.8

Heptane 30 10.0

Hexane 30 9.9

Methyl acetate 30 9.7

Mercury 30 7.8

Sodium 110 2.7

Potassium 100 2.9

Tin 240 4.4

Monatomic gas 20 0.67

Diatomic gas 20 0.40

elastic potential energy is

φ (η)= 1

2!
∑

ijkl

Cijklηijηkl

+ 1

3!
∑

ijklmn

Cijklmnηijηklηmn + . . . , (6.74)
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Table 6.5 Comparison of room-temperature values of the
ultrasonic nonlinearity parameters of solids. BCC = body-
centered cubic; FCC = face-centered cubic

Material or Bonding βavg

structure

Zincblende Covalent 2.2

Flourite Ionic 3.8

FCC Metallic 5.6

FCC (inert gas) van der Waals 6.4

BCC Metallic 8.2

NaCl Ionic 14.6

Fused silica Isotropic −3.4

YBa2Cu3O7−δ Isotropic 14.3

(ceramic)

where the η are the strains, Cijkl are the second-order
elastic constants, and Cijklmn are the third-order elas-
tic constants. For cubic crystals there are only three
second-order elastic constants: C11, C12 and C44, and
only six third-order elastic constants: C111, C112, C144,
C166, C123 and C456. This makes the investigation of cu-
bic crystals relatively straightforward [6.35]. By using
the appropriate form of Lagrange’s equations, special-
izing to a specific orientation of the coordinates with
respect to the ultrasonic wave propagation direction,
and neglecting attenuation and higher-order terms, one
can write the nonlinear wave equation for propagation
in the directions that allow the propagation of purely
longitudinal waves (with no excitation of transverse
waves). In a cubic crystalline lattice there are three of
these pure mode directions for longitudinal waves and
the nonlinear wave equation has the form [6.35]

ρ0
∂2u

∂t2
= K2

∂2u

∂a2
+ (3K2+K3)

∂u

∂a

∂2u

∂a2
+ . . . ,

(6.75)

where both K2 and K3 depend on the orientation con-
sidered. The quantity K2 determines the wave velocity:
K2 = c2

0ρo. The quantity K3 contains only third-order
elastic constants. The quantities K2 and K3 are given
for the three pure-mode directions in a cubic lattice in
Table 6.4. The ratio of the coefficient of the nonlinear
term to that of the linear term has a special significance.
It is often called the nonlinearity parameter β and its
magnitude is β = 3+ K3

K2
. Since K3 is an inherently neg-

ative quantity and is usually greater in magnitude than
3K2, a minus sign is often included in the definition

β =−
(

3+ K3

K2

)
. (6.76)

Table 6.6 Parameters entering into the description of
finite-amplitude waves in gases, liquids and solids

Parameter Ideal gas Liquid Solid

c2
0

γ P0
ρ0

A
ρ0

K2
ρ0

Nonlinearity

parameter β γ +1 B
A +2 −

(
K3
K2

+3
)

The nonlinearity parameters of many cubic solids have
been measured. As might be expected, there is a dif-
ference between the quantities measured in the three
pure-mode directions (usually labeled as the [100],
[110] and [111] directions). These differences, however,
are not great. If one averages them, one gets the results
shown in Table 6.5. The nonlinearity parameters cover
the range 2–15. This means that for cubic crystals the
coefficient of the nonlinear term in the nonlinear wave
equation is 2–15 times as large as the coefficient of the
linear term. This gives an impression of the approxima-
tion involved when one ignores nonlinear acoustics.

There is also a source of nonlinearity of solids that
appears to come from the presence of domains in lithium
niobate; this has been called acoustic memory [6.36].

It is possible to measure all six third-order elas-
tic constants of cubic crystals. To do so, however,
it is necessary to make additional measurements.
The procedure that minimizes errors in the evalua-
tion of third-order elastic constants from combina-
tion of nonlinearity parameters with the results of
hydrostatic-pressure measurements has been considered
by Breazeale et al. [6.37] and applied to the evaluation
of the third-order elastic constants of two perovskite
crystals.

6.5.3 Comparison of Fluids and Solids

To facilitate comparison between fluids and solids, it is
necessary to use a binomial expansion of the denomina-
tor of (6.73)

(
1+ ∂ξ

∂a

)−
(

B
A+2

)

= 1+
(

B

A
+2

)
∂ξ

∂a
+ . . . (6.77)

Using this expression, (6.73) becomes

∂2ξ

∂t2
= c2

0
∂2ξ

∂a2
+ c2

0

(
B

A
+2

)
∂ξ

∂a

∂2ξ

∂a2
+ . . . (6.78)

This form of the equation can be compared directly with
(6.74) for solids. The ratio of the coefficient of the non-
linear term to that of the linear term can be evaluated
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directly. The nonlinearity parameters of the various sub-
stances are listed in Table 6.6. Use of Table 6.6 allows
one to make a comparison between the nonlinearity of
fluids as listed in Table 6.3 and the nonlinearity pa-
rameters of solids listed in Table 6.5. Nominally, they
are of the same order of magnitude. This means that

solids exhibit intrinsic nonlinearity that is comparable to
that exhibited by fluids. Thus, the approximation made
by assuming that Hooke’s law (strain is proportional
to stress) is valid for solids is comparable to the ap-
proximation made in the derivation of the linear wave
equation for fluids.
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Thermoacoust7. Thermoacoustics

Gregory W. Swift

Thermodynamic and fluid-dynamic processes in
sound waves in gases can convert energy from one
form to another. In these thermoacoustic processes
[7.1, 2], high-temperature heat or chemical energy
can be partially converted to acoustic power,
acoustic power can produce heat, acoustic power
can pump heat from a low temperature or to a high
temperature, and acoustic power can be partially
converted to chemical potential in the separation
of gas mixtures. In some cases, the thermoacoustic
perspective brings new insights to decades-old
technologies. Well-engineered thermoacoustic
devices using extremely intense sound approach
the power conversion per unit volume and the
efficiency of mature energy-conversion equipment
such as internal combustion engines, and the
simplicity of few or no moving parts drives the
development of practical applications.

This chapter surveys thermoacoustic energy
conversion, so the reader can understand how
thermoacoustic devices work and can estimate
some relevant numbers. After a brief history, an
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initial section defines vocabulary and establishes
preliminary concepts, and subsequent sections
explain engines, dissipation, refrigeration, and
mixture separation. Combustion thermoacoustics
is mentioned only briefly. Transduction and mea-
surement systems that use heat-generated surface
and bulk acoustic waves in solids are not discussed.

7.1 History

The history of thermoacoustic energy conversion has
many interwoven roots, branches, and trunks. It is
a complicated history because invention and technology
development outside of the discipline of acoustics
have sometimes preceded fundamental understanding;
at other times, fundamental science has come first.

Rott [7.3, 4] developed the mathematics describ-
ing acoustic oscillations in a gas in a channel with
an axial temperature gradient, with lateral channel
dimensions of the order of the gas thermal penetra-
tion depth (typically ≈ 1 mm), this being much shorter
than the wavelength (typically ≈ 1 m). The problem
had been investigated by Rayleigh and by Kirchhoff,
but without quantitative success. In Rott’s time, the

motivation to understand the problem arose largely
from the cryogenic phenomenon known as Taconis
oscillations – when a gas-filled tube is cooled from
ambient temperature to a cryogenic temperature, the
gas sometimes oscillates spontaneously, with large
heat transport from ambient to the cryogenic envi-
ronment. Yazaki [7.5] demonstrated convincingly that
Rott’s analysis of Taconis oscillations was quantita-
tively accurate.

A century earlier, Rayleigh [7.6] understood the
qualitative features of such heat-driven oscillations:

If heat be given to the air at the moment of great-
est condensation (i. e., greatest density) or be taken
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from it at the moment of greatest rarefaction, the
vibration is encouraged.

He had studied Sondhauss oscillations [7.7], the glass-
blowers’ precursor to Taconis oscillations.

Applying Rott’s mathematics to a situation where
the temperature gradient along the channel was too
weak to satisfy Rayleigh’s criterion for spontaneous
oscillations, Hofler [7.8] invented a standing-wave
thermoacoustic refrigerator, and demonstrated [7.9]
again that Rott’s approach to acoustics in small channels
was quantitatively accurate. In this type of refrigera-
tor, the coupled oscillations of gas motion, temperature,
and heat transfer in the sound wave are phased in time
so that heat is absorbed from a load at a low tempera-
ture and waste heat is rejected to a sink at a higher
temperature.

Meanwhile, completely independently, pulse-tube
refrigeration was becoming the most actively investi-
gated area of cryogenic refrigeration. This development
began with Gifford’s [7.10] accidental discovery and
subsequent investigation of the cooling associated with
square-wave pulses of pressure applied to one end of
a pipe that was closed at the other end. Although
the relationship was not recognized at the time, this
phenomenon shared much physics with Hofler’s refrig-
erator. Mikulin’s [7.11] attempt at improvement in heat
transfer in one part of this basic pulse-tube refrigerator

led unexpectedly to a dramatic improvement of perfor-
mance, and Radebaugh [7.12] realized that the resulting
orifice pulse-tube refrigerator was in fact a variant of the
Stirling cryocooler.

Development of Stirling engines and refrigerators
started in the 19th century, the engines at first as an
alternative to steam engines [7.13]. Crankshafts, mul-
tiple pistons, and other moving parts seemed at first
to be essential. An important modern chapter in their
development began in the 1970s with the invention of
free-piston Stirling engines and refrigerators, in which
each piston’s motion is determined by interactions be-
tween the piston’s dynamics and the gas’s dynamics
rather than by a crankshaft and connecting rod. Analysis
of such complex, coupled phenomena is complicated,
because the oscillating motion causes oscillating pres-
sure differences while simultaneously the oscillating
pressure differences cause oscillating motion. Ceper-
ley [7.14, 15] added an explicitly acoustic perspective
to Stirling engines and refrigerators when he realized
that the time phasing between pressure and motion
oscillations in the heart of their regenerators is that
of a traveling acoustic wave. Many years later, acous-
tic versions of such engines were demonstrated by
Yazaki [7.16], de Blok [7.17, 18], and Backhaus [7.19],
the last achieving a heat-to-acoustic energy efficiency
comparable to that of other mature energy-conversion
technologies.

7.2 Shared Concepts

7.2.1 Pressure and Velocity

For a monofrequency wave, oscillating variables can be
represented with complex notation, such as

p(x, t) = pm+Re
[

p1(x)eiωt] (7.1)

for the pressure p, where pm is the mean pressure,
Re (z) indicates the real part of z, ω= 2π f is the an-
gular frequency, f is the frequency, and the complex
number p1 specifies both the amplitude and the time
phase of the oscillating part of the pressure. For propa-
gation in the x direction through a cross-sectional area
A in a duct, p1 is a function of x. In the simple lossless,
uniform-area situation the sinusoidal x dependence can
be found from the wave equation, which can be written
with iω substituted for time derivatives as

ω2 p1+ c2 d2 p1

dx2
= 0 , (7.2)

where c2 = (∂p/∂ρ)s is the square of the adiabatic
sound speed, with ρ the density and s the entropy. In
thermoacoustics, intuition is well served by thinking of
(7.2) as two first-order differential equations coupling
two variables, pressure p1 and the x component of vol-
ume velocity U1,

dp1

dx
=− iωρm

A
U1 , (7.3)

dU1

dx
=− iωA

ρmc2
p1. (7.4)

For a reasonably short length of duct Δx, these can be
written approximately as

Δp1 =−iωL U1 , (7.5)

p1 =− 1

iωC
ΔU1 , (7.6)
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Table 7.1 The acoustic–electric analog. The basic build-
ing blocks of thermoacoustic energy-conversion devices
are inertances L , compliances C, viscous and thermal re-
sistances Rvisc and Rtherm, gains (or losses) G, and power
transducers

Acoustic variables Electric variables

Pressure p1 Voltage

Volume velocity U1 Current

Inertance L Series inductance

Viscous resistance Rvisc Series resistance

Compliance C Capacitance to ground

Thermal-hysteresis Resistance to ground

resistance Rtherm

Gain/loss along Proportionally controlled

temperature gradient, G current injector

Stroke-controlled transducer Current source

Force-controlled transducer Voltage source

where

L = ρmΔx

A
, (7.7)

C = AΔx

ρmc2
. (7.8)

As introduced in Chap. 6 (Physical Acoustics) (7.3) is
the acoustic Euler equation, the inviscid form of the
momentum equation. It describes the force that the pres-
sure gradient must exert to overcome the gas’s inertia.
In the lumped-element form (7.5), the geometrical and
gas-property aspects of the inertia of the gas in the duct
are represented by the duct’s inertance L . Similarly in-
troduced in Chap. 6, (7.4) and (7.6) are, respectively,
the differential and lumped-element versions of the
continuity equation combined with the gas’s adiabatic
equation of state. These describe the compressibility
of the gas in response to being squeezed along the
x-direction. In the lumped-element form (7.6), the geo-
metrical and gas-property aspects of the compressibility
of the gas in the duct are represented by the duct’s com-
pliance C.

Accurate calculation of the wave in a long duct or
a long series of ducts requires analytical or numeri-
cal integration of differential equations [7.1], but for
the purposes of this chapter we will consider lumped-
element approximations, because they are satisfactorily
accurate for many estimates, they allow a circuit model
representation of devices, and they facilitate intuition
based on experience with alternating-current (AC) elec-
trical circuits. Table 7.1 shows the analogy between
acoustic devices and electrical circuits.

a)

QH

TH

Stack

b)

Δxreso

C reso

L reso

C reso

L reso Rvisc

R therm L rad

R rad

c)

H

TA

d)

Fig. 7.1a–d Quarter-wavelength resonator. (a) A quarter-
wavelength resonator: a tube closed at one end and open
at the other. (b) A simple lossless lumped-element model
of the resonator as a compliance Creso in series with an
inertance L reso. (c) A more complicated lumped-element
model, including thermal-hysteresis resistance Rtherm in
the compliance, viscous resistance Rvisc in the inertance,
and radiation impedance Rrad+ iωL rad. (d) An illustration
of the first law of thermodynamics for a control volume,
shown enclosed by the dashed line, which intersects the
stack of a well-insulated standing-wave engine. In steady
state, the thermal power Q̇H that flows into the system at
the hot heat exchanger must equal the total power Ḣ that
flows along the stack

For example, the closed–open resonator shown in
Fig. 7.1a has a resonance frequency that can be calcu-
lated by setting its length Δxreso equal to a quarter
wavelength of sound; the result is freso = c/4Δxreso.
The simplest lumped-element approximation of the
quarter-wavelength resonator is shown in Fig. 7.1b. We
assign compliance Creso to the left half of the resonator,
because the compressibility of the gas is more impor-
tant than its inertia in the left half, where |p1| is high
and |U1| is low. Similarly, we assign inertance L reso
to the right half of the resonator, because the inertia is
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more important in the right half where |U1| is high. Set-
ting Δx =Δxreso/2 in (7.7) and (7.8), and recalling that
the resonance frequency of an electrical LC circuit is
given by ω2 = 1/LC, we find freso = c/πΔxreso, dif-
fering from the exact result only by a factor of 4/π.
Such accuracy will be acceptable for estimation and
understanding in this chapter.

Circuit models can include as much detail as is nec-
essary to convey the essential physics [7.1]. When the
viscosity is included in the momentum equation, the
lumped-element form becomes

Δp1 =− (iωL + Rvisc)U1 , (7.9)

and when the thermal conductivity and a temperature
gradient in the x direction are included in the continuity
equation, the lumped-element form becomes

ΔU1 =−
(

iωC+ 1

Rtherm

)
p1+GUin,1 . (7.10)

Figure 7.1c is a better model than Fig. 7.1b for the
closed–open resonator of Fig. 7.1a, because it includes
thermal-hysteresis resistance in the compliance, viscous
resistance in the inertance, and the inertial and resistive
radiation impedance at the open end. This model would
yield reasonably accurate estimates for the free-decay
time and quality factor of the resonator as well as its
resonance frequency.

Ducts filled with porous media and having tempera-
ture gradients in the x-direction play a central role in
thermoacoustic energy conversion [7.1]. The pore size

Table 7.2 Expressions for the lumped-element building blocks L , Rvisc, C, Rtherm, and GU1, and for the total power Ḣ ,
in the boundary-layer limit rh � δ and in the small-pore limit rh 
 δ. The symbol “∼” in the small-pore limit indicates
that the numerical prefactor depends on the shape of the pore

Boundary-layer limit Small-pore limit

L
ρmΔx

A
∼ ρmΔx

A

Rvisc
μΔx

Arhδvisc
∼ 2μΔx

Ar2
h

C
AΔx

ρmc2 =
AΔx

γ pm

γ AΔx

ρmc2 = AΔx

pm

Rtherm
ρ2

mc2
pTmrhδtherm

kAΔx
∼ 3kTm

4ω2r2
h AΔx

GU1
1− i

2

1

1+√σ
δtherm

rh

ΔTm

Tm
U1

ΔTm

Tin,m
Uin,1

Ḣ
δtherm

4rh (1+σ) Re
{

p̃1U1
[
i
(
1+√σ)+ (1−√σ)]} − δthermρmcp

(
1−σ√σ) |U1|2

4rh Aω
(
1−σ2

) ΔT

Δx
− Asolidksolid

ΔT

Δx

+ Ė− (Ak+ Asolidksolid)
ΔT

Δx

is characterized by the hydraulic radius rh, defined as
the ratio of gas volume to gas–solid contact area. In
a circular pore, rh is half the circle’s radius; in the gap
between parallel plates, rh is half the gap. The term
stack is used for a porous medium whose rh is com-
parable to the gas thermal penetration depth

δtherm =
√

2k/ωρmcp , (7.11)

where k is the gas thermal conductivity and cp is its
isobaric heat capacity per unit mass, while a porous
medium with rh 
 δtherm is known as a regenerator. The
viscous penetration depth

δvisc =
√

2μ/ωρm , (7.12)

where μ is the viscosity, is typically comparable to, but
smaller than, the thermal penetration depth. If the dis-
tance between a particular mass of gas and the nearest
solid wall is much greater than the penetration depths,
thermal and viscous interactions with the wall do not
affect that gas.

In such porous media with axial temperature gradi-
ents, the gain/loss term GUin,1 in (7.10) is responsible
for the creation of acoustic power by engines and for
the thermodynamically required consumption of acous-
tic power by refrigerators. This term represents cyclic
thermal expansion and contraction of the gas as it moves
along and experiences the temperature gradient in the
solid. In regenerators, the gain G is nearly real, and
ΔU1 caused by the motion along the temperature gra-
dient is in phase with U1 itself, because of the excellent
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thermal contact between the gas in small pores and the
walls of the pores. (Positive G indicates gain; negative
G indicates loss.) In stacks, a nonzero imaginary part
of G reflects imperfect thermal contact in the pores and
the resultant time delay between the gas’s cyclic mo-
tion along the solid’s temperature gradient and the gas’s
thermal expansion and contraction.

Table 7.2 gives expressions for the impedances in
the boundary-layer limit, rh � δtherm and rh � δvisc ,
which is appropriate for large ducts, and in the small-
pore limit appropriate for regenerators. Boundary-layer-
limit entries are usefully accurate in stacks, in which
rh ∼ δ. General expressions for arbitrary rh and many
common pore shapes are given in [7.1].

The lumped-element approach summarized in Ta-
ble 7.1 and the limiting expressions given in Table 7.2
are sufficient for most of this overview, but quan-
titatively accurate thermoacoustic analysis requires
slightly more sophisticated techniques and includes
more phenomena [7.1]. Every differential length dx
of duct has dL , dC, dRvisc, and d(1/Rtherm), and if
dTm/dx �= 0 it also has dG, so a finite-length ele-
ment is more analogous to an electrical transmission
line than to a few lumped impedances. In addition to
smoothly varying x dependencies for all variables, im-
portant phenomena include turbulence, which increases
Rvisc above the values given in Table 7.2; pore sizes
which are in neither of the limits given in Table 7.2;
nonlinear terms in the momentum and continuity equa-
tions, which cause frequency doubling, tripling, etc., so
that the steady-state wave is a superposition of waves
of many frequencies; and streaming flows caused by the
wave itself. Many of these subjects are introduced in
Chap. 8 (Nonlinear Acoustics). Thermoacoustics soft-
ware that includes most or all of these phenomena and
has the properties of several commonly used gases is
available [7.20, 21].

For estimating the behavior of thermoacoustic de-
vices, it is useful to remember some properties of
common ideal gases [7.22]. The equation of state is

p = ρRunivT

M
, (7.13)

where Runiv = 8.3 J/(mole K) is the universal gas con-
stant and M is the molar mass. The ratio of isobaric to
isochoric specific heats, γ , is 5/3 for monatomic gases
such as helium and 7/5 for diatomic gases such as ni-
trogen and air near ambient temperature, and appears in
both the adiabatic sound speed

c =
√
γ RunivT

M
(7.14)

and the isobaric heat capacity per unit mass

cp = γ Runiv

(γ −1)M
. (7.15)

The viscosity of many common gases (e.g., air, helium,
and argon) is about

μ� (2 × 10−5 kg/m s)

(
T

300 K

)0.7

, (7.16)

and the thermal conductivity k can be estimated by re-
membering that the Prandtl number

σ = μcp

k
(7.17)

is about 2/3 for pure gases, but somewhat lower for gas
mixtures [7.23].

7.2.2 Power

In addition to ordinary acoustic power Ė, the time-
averaged thermal power Q̇, total power Ḣ , and exergy
flux Ẋ are important in thermoacoustic energy con-
version. These thermoacoustic powers are related to
the simpler concepts of work, heat, enthalpy, and ex-
ergy that are encountered in introductory [7.22] and
advanced [7.24] thermodynamics.

Just as acoustic intensity is the time-averaged prod-
uct of pressure and velocity, acoustic power Ė is the
time-averaged product of pressure and volume velocity.
In complex notation,

Ė = 1

2
Re ( p̃1U1) , (7.18)

where the tilde denotes complex conjugation. At trans-
ducers, it is apparent that acoustic power is closely
related to thermodynamic work, because a moving pis-
ton working against gas in an open space with volume V
transforms mechanical power to acoustic power (or vice
versa) at a rate f

∮
p dV , which is equal to (7.18) for

sinusoidal pressure and motion. Resistances R dissipate
acoustic power; the gain/loss term GU1 in components
with temperature gradients can either consume or pro-
duce acoustic power, and inertances L and compliances
C neither dissipate nor produce acoustic power, but sim-
ply pass it along while changing p1 or U1.

Time-averaged thermal power Q̇ (i. e., time-
averaged heat per unit time) is added to or removed
from the gas at heat exchangers, which are typically ar-
rays of tubes, high-conductivity fins, or both, spanning
a duct. Thermal power can be supplied to an engine by
high-temperature combustion products flowing through
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such tubes or by circulation of a high-temperature heat-
transfer fluid through such tubes and a source of heat
elsewhere. Thermal power is often removed from en-
gines and refrigerators by ambient-temperature water
flowing through such tubes.

Of greatest importance is the total time-averaged
power

Ḣ =
∫ [

1

2
ρmRe

(
h̃1u1

)− k
dTm

dx

]
dA , (7.19)

based on the x component u of velocity and the enthalpy
h per unit mass, which is the energy of most utility in
fluid mechanics. Figure 7.1d uses a simple standing-
wave engine (discussed more fully below) to illustrate
the centrality of Ḣ to the first law of thermodynamics
in thermoacoustics. The figure shows a heat exchanger
and stack in a quarter-wavelength resonator. When heat
is applied to the hot heat exchanger, the resonance is
driven by processes (described below) in the stack. The
dashed line in Fig. 7.1d encloses a volume whose en-
ergy must be constant when the engine is running in
steady state. If the side walls of the engine are well
insulated and rigid within that volume, then the only

energy flows per unit time into and out of the volume are
Q̇H and whatever power flows to the right through the
stack. We define the total power flow through the stack
to be Ḣ , and the first law of thermodynamics ensures
that Ḣ = Q̇H in this simple engine.

As shown in (7.19), the total power Ḣ is the sum
of ordinary steady-state heat conduction (most impor-
tantly in the solid parts of the stack or regenerator and
the surrounding duct walls) and the total power carried
convectively by the gas itself. Analysis of the gas con-
tribution requires spatial and temporal averaging of the
enthalpy transport in the gas [7.4], and shows that the
most important contributions are acoustic power flow-
ing through the pores of the stack and a shuttling of
energy by the gas that occurs because entropy oscil-
lations in the gas are nonzero and have a component in
phase with velocity. Remarkably, these two phenomena
nearly cancel in the small pores of a regenerator.

Finally, the exergy flux Ẋ represents the rate at
which thermodynamic work can be done, in principle,
with unrestricted access to a thermal bath at ambient
temperature [7.1, 24]. Exergy flux is sometimes used
in complex systems to analyze sources of inefficiency
according to location or process.

7.3 Engines

Implicit in Rayleigh’s criterion [7.6] for spontaneous
oscillations,

If heat be given to the air at the moment of great-
est (density) or be taken from it at the moment of
greatest rarefaction, the vibration is encouraged,

is the existence of a vibration in need of encourage-
ment, typically a resonance with a high quality factor.
Today, we would express Rayleigh’s criterion in either
of two ways, depending on whether we adopt a La-
grangian perspective, focusing on discrete masses of
gas as they move, or an Eulerian perspective, focus-
ing on fixed locations in space as the gas moves past
them. In the Lagrangian perspective, some of the gas in
a thermoacoustic engine must experience

∮
p dV> 0,

where V is the volume of an identified mass of gas. In
the Eulerian perspective, part of the device must have
dĖ/dx > 0, arising from Re ( p̃1 dU1/dx) > 0 and the
G term in (7.10).

By engine we mean a prime mover, i. e., some-
thing that converts heat to work or acoustic power.

We describe three varieties: standing-wave engines,
traveling-wave engines, and pulse combustors.

7.3.1 Standing-Wave Engines

Continuing the quarter-wavelength example introduced
in Fig. 7.1, Fig. 7.2 shows a simple standing-wave
engine, of a type that is available as a classroom demon-
stration [7.25]. A stack and hot heat exchanger are near
the left end of the resonator, and its right end is open
to the air. When heat Q̇H is first applied to the hot heat
exchanger, the heat exchanger and the adjacent end of
the stack warm up, establishing an axial temperature
gradient from hot to ambient in the stack. When the gra-
dient is steep enough (as explained below), the acoustic
oscillations start spontaneously, and grow in intensity as
more heat is added and a steady state is approached. In
the steady state, total power Ḣ equal to Q̇H (minus any
heat leak to the room) flows through the stack, creating
acoustic power, some of which is dissipated elsewhere
in the resonator and some of which is radiated into
the room. To the right of the stack, where an ambient-
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temperature heat exchanger would often be located,
the heat is carried rightward and out of this resonator
by streaming-driven convection in the resonator, while
fresh air at ambient temperature TA streams inwards.

The most important process in the standing-wave
engine is illustrated in Fig. 7.2d and Fig. 7.2e from
a Lagrangian perspective. Figure 7.2d shows a greatly
magnified view of a mass of gas inside one pore of
the stack. The sinusoidal thermodynamic cycle of that
mass of gas in pressure p and volume V is shown in

Fig. 7.2a–e A standing-wave engine. (a) A hot heat ex-
changer and a stack in a quarter-wavelength resonator.
Heat Q̇H is injected at the hot heat exchanger, and the de-
vice radiates acoustic power Ėrad into the surroundings.
(b) Total power flow Ḣ and acoustic power Ė as func-
tions of position x in the device. Positive power flows in
the positive-x direction. (c) Lumped-element model of the
device. (d) Close-up view of part of one pore in the stack of
(a), showing a small mass of gas going through one full cy-
cle, imagined as four discrete steps. Thin arrows represent
motion, and wide, open arrows represent heat flow. (e) Plot
showing how the pressure p and volume V of that small
mass of gas evolve with time in a clockwise elliptical tra-
jectory. Tick marks show approximate boundaries between
the four numbered steps of the cycle shown in (d) �

Fig. 7.2e; the mass’s temperature, entropy, density, and
other properties also vary sinusoidally in time. How-
ever, for qualitative understanding of the processes, we
describe the cycle as if it were a time series of four dis-
crete steps, numbered 1–4 in Fig. 7.2d and Fig. 7.2e.
In step 1, the gas is simultaneously compressed to
a smaller volume and moved leftward by the wave a dis-
tance 2 |ξ1| , which is much smaller than the length Δx
of the stack. While the gas is moving leftwards, the
pressure changes by 2 |p1| and the temperature would
change by 2 |T1| = 2Tm(γ −1) |p1| /γ pm if the process
were adiabatic. This suggests the definition of a critical
temperature gradient

∇Tcrit = |T1| / |ξ1| . (7.20)

Thermal contact in the stack’s large pores is imperfect,
so step 1 is actually not too far from adiabatic. How-
ever, the temperature gradient imposed on the stack is
greater than ∇Tcrit, so the gas arrives at its new loca-
tion less warm than the adjacent pore walls. Thus, in
step 2, heat flows from the solid into the gas, warm-
ing the gas and causing thermal expansion of the gas to
a larger volume. In step 3, the gas is simultaneously ex-
panded to a larger volume and moved rightward by the
wave. It arrives at its new location warmer than the ad-
jacent solid, so in step 4 heat flows from the gas to the
solid, cooling the gas and causing thermal contraction
of the gas to a smaller volume. This brings it back to the
start of the cycle, ready to repeat step 1.

Although the mass of gas under consideration re-
turns to its starting conditions each cycle, its net effect
on its surroundings is nonzero. First, its thermal ex-
pansion occurs at a higher pressure than its thermal
contraction, so

∮
p dV> 0: the gas does work on its sur-
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roundings, satisfying Rayleigh’s criterion. This work is
responsible for the positive slope of Ė versus x in the
stack in Fig. 7.2b and is represented by the gain element
GstackUH,1 in Fig. 7.2c. All masses of gas within the
stack contribute to this production of acoustic power;
one can think of the steady-state operation as due to all
masses of gas within the stack adding energy to the os-
cillation every cycle, to make up for energy lost from
the oscillation elsewhere, e.g., in viscous drag in the
resonator and acoustic radiation to the surroundings.
Second, the gas absorbs heat from the solid at the left
extreme of its motion, at a relatively warm tempera-
ture, and delivers heat to the solid farther to the right
at a lower temperature. In this way, all masses of gas
within the stack pass heat along the solid, down the
temperature gradient from left to right; within a sin-
gle pore, the gas masses are like members of a bucket
brigade (a line of people fighting a fire by passing buck-
ets of water from a source of water to the fire while
passing empty buckets back to the source). This trans-
port of heat is responsible for most of Ḣ inside the stack,
shown in Fig. 7.2b.

This style of engine is called standing wave be-
cause the time phasing between pressure and motion
is close to that of a standing wave. (If it were ex-
actly that of a standing wave, Ė would have to be
exactly zero at all x.) To achieve the time phasing
between pressure and volume changes that is neces-
sary for

∮
p dV> 0, imperfect thermal contact between

the gas and the solid in the stack is required, so that
the gas can be somewhat thermally isolated from the
solid during the motion in steps 1 and 3 but still ex-
change significant heat with the solid during steps 2
and 4. This imperfect thermal contact occurs because
the distance between the gas and the nearest solid sur-
face is of the order of δtherm, and it causes Rtherm to
be significant, so standing-wave engines are inherently
inefficient. Nevertheless, standing-wave engines are ex-
ceptionally simple. They include milliwatt classroom
demonstrations like the illustration in Fig. 7.2, similar
demonstrations with the addition of a water- or air-
cooled heat exchanger at the ambient end of the stack,
research engines [7.26, 27] up to several kW, and the
Taconis and Sondhauss oscillations [7.5, 7]. Variants
based on the same physics of intrinsically irreversible
heat transfer include the no-stack standing-wave en-
gine [7.28], which has two heat exchangers but no stack,
and the Rijke tube [7.29], which has only a single, hot
heat exchanger and uses a superposition of steady and
oscillating flow of air through that heat exchanger to
create

∮
p dV> 0.

7.3.2 Traveling-Wave Engines

One variety of what acousticians call traveling-wave
engines has been known for almost two centuries as
a Stirling engine [7.13, 30, 31], and is illustrated in
Fig. 7.3a,b,f,g. A regenerator bridges the gap between
two heat exchangers, one at ambient temperature TA
and the other at hot temperature TH; this assembly
lies between two pistons, whose oscillations take the
gas through a sinusoidal cycle that can be approxi-
mated as four discrete steps: compression, displacement
rightward toward higher temperature, expansion, and
displacement leftward toward lower temperature. For
a small mass of gas in a single pore in the heart of the
regenerator, the four steps of the cycle are illustrated
in Fig. 7.3f. In step 1, the gas is compressed by rising
pressure, rejecting heat to the nearby solid. In step 2,
it is moved to the right, toward higher temperature, ab-
sorbing heat from the solid and experiencing thermal
expansion as it moves. In step 3, the gas is expanded
by falling pressure, and absorbs heat from the nearby
solid. In step 4, the gas is moved leftward, toward lower
temperature, rejecting heat to the solid and experienc-
ing thermal contraction as it moves. The Stirling engine
accomplishes

∮
p dV> 0 in Fig. 7.3g for each mass of

gas in the regenerator, and this work production allows
the hot piston to extract more work from the gas in each
cycle than the ambient piston delivers to the gas.

The similarities and differences between this pro-
cess and the standing-wave process of Fig. 7.2 are
instructive. Here, the pore size is 
 δtherm, so the
thermal contact between the gas and the solid in the
regenerator is excellent and the gas is always at the
temperature of the part of the solid to which it is adja-
cent. Thus, the thermal expansion and contraction occur
during the motion parts of the cycle, instead of during
the stationary parts of the cycle in the standing-wave
engine, and the pressure must be high during the right-
ward motion and low during the leftward motion to
accomplish

∮
p dV> 0. This is the time phasing be-

tween motion and pressure that occurs in a traveling
wave [7.14, 15], here traveling from left to right. The
small pore size maintains thermodynamically reversible
heat transfer, so Rtherm is negligible, and traveling-wave
engines have inherently higher efficiency than standing-
wave engines. One remaining source of inefficiency is
the viscous resistance Rvisc in the regenerator, which
can be significant because the small pores necessary
for thermal efficiency cause Rvisc to be large. To min-
imize the impact of Rvisc, traveling-wave engines have
|p1|> ρmc |U1| /A, so the magnitude of the specific
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Fig. 7.3a–g Traveling-wave engines. (a) A Stirling engine. From left to right, the ambient piston, the ambient heat ex-
changer, the regenerator, the hot heat exchanger, and the hot piston. Time-averaged thermal power Q̇H is injected into
the gas at hot temperature TH, waste thermal power Q̇A is removed at ambient temperature TA, and net mechanical
power is extracted by the two pistons. (b) Lumped-element model of the engine in (a). (c) Acoustic–Stirling hybrid en-
gine, with the same processes as (a) in the regenerator and its two adjacent heat exchangers, but with additional acoustic
components replacing the two pistons. (d) Acoustic power Ė as a function of position x in the device shown in (c).
Positive power flows in the positive-x direction, so the bottom branch of the curve represents power flowing leftward
through the feedback path. Total power Ḣ is not shown, because it is essentially zero in the regenerator and essen-
tially identical to Ė in the open parts of the device. (e) Lumped-element model of the engine in (c). (f) Close-up view
of part of one pore in the regenerator of (a) or (c), showing a small mass of gas going through one full cycle, imag-
ined as four discrete steps. (g) Plot showing how the pressure p and volume V of that small mass of gas evolve with
time in a clockwise elliptical trajectory. Tick marks show approximate boundaries between the four steps of the cycle
shown in (f)

acoustic impedance |zac| = |p1| A/ |U1| is greater than
that of a traveling wave.

The gain G listed in Table 7.2 takes on a particularly
simple form in the tight-pore limit: Greg =ΔTm/Tin,m .
In the engine of Fig. 7.3a, the initial temperature is
TA, and ΔTm = TH−TA, so the extra volume velocity

that the lumped-element model injects at the right end
of the regenerator is UA,1 (TH−TA) /TA and the total
volume velocity at the right end of the regenerator is
UA,1TH/TA. Thus, the regenerator acts like an amplifier
of volume velocity, with amplification TH/TA. If Rreg is
small so that p1 is nearly the same on both sides of the
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a)

b)

RviscL reso

C reso

Fig. 7.4a,b Pulsed combustor. (a) From left to right, check
valve for admitting fresh air, fuel injection, combustion
cavity, neck. (b) Lumped-element model of the combustor

regenerator, then the regenerator amplifies Ė by nearly
TH/TA.

Figure 7.3c–e illustrates a thermoacoustic–Stirling
hybrid engine [7.16–19], in which the processes in
the regenerator and its adjacent heat exchangers are
the same as in the Stirling engine and in Fig. 7.3f
and Fig. 7.3g, but with acoustic elements replacing
the Stirling engine’s pistons. The toroidal topology of
the thermoacoustic–Stirling hybrid allows some of the
acoustic power that leaves the hot end of the regenerator
to be fed back to the ambient end of the regener-
ator, eliminating the need for the Stirling engine’s
ambient piston. The feedback path has an inertance
L feed (with an unavoidable but small viscous resistance
Rfeed) and a compliance Cfeed, with 1/L feedCfeed � ω2

and with ωL feed significantly smaller than the re-
generator viscous resistance Rreg. These choices let
the L feedCfeed feedback path boost p1 as acous-
tic power flows through it, providing the extra p1
needed to drive U1 into the regenerator at its ambient
end.

The Stirling engine in Fig. 7.3a has a hot piston,
which extracts acoustic power from the gas. From the
hot piston’s face, mechanical power flows from TH
to TA along a temperature gradient in a moving part,
either the piston itself or a connecting rod. In the
thermoacoustic–Stirling hybrid engine of Fig. 7.3c, this
thermal isolation function is accomplished by the ther-
mal buffer tube, a thermally stratified column of moving
gas. A well-designed thermal buffer tube passes acous-
tic power with little attenuation and has Ḣ � Ė, so
almost no thermal power flows from hot to ambient
along the tube and little thermal power need be re-
moved at the auxiliary heat exchanger at the thermal
buffer tube’s ambient end. Minimizing streaming and
attendant heat convection in thermal buffer tubes, which

otherwise causes Ḣ �= Ė, is a topic of current research
in thermoacoustics.

Traditional Stirling engines are used for propulsion
in some submarines [7.32] and for auxiliary power in
boats [7.33], and are under development for residen-
tial cogeneration of electricity and space heating [7.34],
concentrated solar electricity generation, and nuclear
generation of electricity for spacecraft [7.35]. In most
of these applications, piston motion is converted to
electricity via relative motion of wires and permanent
magnets, either with a rotary alternator for crankshaft-
coupled pistons or a linear alternator (reminiscent of
a loudspeaker) for resonant free-piston configurations.
Thermoacoustic-Stirling hybrid engines are under con-
sideration for small-scale natural-gas liquefaction [7.26,
36] and for spacecraft power [7.37]. In the former
case, acoustic power is fed directly from the engine to
cryogenic acoustic refrigerators, without transduction to
electrical power.

7.3.3 Combustion

In the standing-wave and traveling-wave engines,
Rayleigh’s criterion

∮
p dV> 0 is met with volume

changes that arise from temperature changes; those
temperature changes, in turn, arise from thermal con-
tact between the gas and nearby solid surfaces. In
pulsed combustion, the volume changes needed to meet
Rayleigh’s criterion arise from both temperature and
mole-number changes, which in turn are due to time-
dependent chemical reactions whose rate is controlled
by the time-dependent pressure or time-dependent ve-
locity [7.38, 39].

Figure 7.4 illustrates one configuration in which
pulsed combustion can occur. At the closed end of
a closed–open resonator, a check valve periodically lets
fresh air into the resonator and a fuel injector adds fuel,
either steadily or periodically. If the rate of the exother-
mic chemical reaction increases with pressure (e.g., via
the temperature’s adiabatic dependence on pressure),
positive dV occurs when p is high, meeting Rayleigh’s
criterion. A four-step diagram of the process, resem-
bling Fig. 7.2d and Fig. 7.3f, is not included in Fig. 7.4
because the process is fundamentally not cyclic: a given
mass of gas does not return to its starting conditions,
but rather each mass of fresh-air–fuel mixture burns and
expands only once.

Combustion instabilities can occur in rockets, jet
engines, and gas turbines, with potentially devastat-
ing consequences if the pressure oscillations are high
enough to cause structural damage. Much of the

Part
B

7
.3



Thermoacoustics 7.4 Dissipation 257

literature on thermoacoustic combustion is devoted to
understanding such oscillations and using active or pas-
sive means to prevent them. However, some devices
such as high-efficiency residential gas-fired furnaces
deliberately use pulsed combustion as illustrated in

Fig. 7.4 to pump fresh air in and exhaust gases out of
the combustor. This eliminates the need to leave the ex-
haust gases hot enough for strong chimney convection,
so a larger fraction of the heat of combustion can be
delivered to the home.

7.4 Dissipation

The dissipative processes represented above by Rvisc
and Rtherm occur whenever gas-borne sound interacts
with solid surfaces. Figure 7.5 illustrates this in the case
of a short length dx of a large-radius duct with no axial
temperature gradient. The origin of the viscous dissi-
pation of acoustic power is viscous shear within the
viscous penetration depth δvisc, as shown in Fig. 7.5c.
Most people find viscous dissipation intuitively plaus-
ible, imagining the frictional dissipation of mechanical
energy when one surface rubs on another. More subtle
is the thermal relaxation of acoustic power, illustrated
in Fig. 7.5d,e. Gas is pressurized nearly adiabatically in
step 1, then shrinks during thermal equilibration with
the surface in step 2. It is depressurized nearly adia-
batically in step 3, and then thermally expands during
thermal equilibration with the surface during step 4. As
shown in Fig. 7.5e, the net effect is

∮
p dV< 0: the gas

absorbs acoustic power from the wave, because the con-
traction occurs at high pressure and the expansion at low
pressure. To avoid a hopelessly cluttered illustration,
Fig. 7.5d shows the thermal-hysteresis process super-
imposed on the left–right oscillating motion in steps 1
and 3, but the thermal-hysteresis process occurs even in
the absence of such motion.

Fig. 7.5a–e Boundary dissipation in acoustic waves.
(a) A duct with no temperature gradient, with one short
length dx identified. (b) Each length dx has inertance,
viscous resistance, compliance, and thermal hysteresis re-
sistance. (c) The dissipation of acoustic power by viscous
resistance is due to shear in the gas within roughly δvisc

of the boundary, here occurring during steps 1 and 3 of
the cycle. (d) and (e) The dissipation of acoustic power
by thermal relaxation hysteresis occurs within roughly
δtherm of the boundary. Gas is pressurized nearly adiabat-
ically in step 1, then shrinks during thermal equilibration
with the surface in step 2. It is depressurized nearly adi-
abatically in step 3, and then thermally expands during
thermal equilibration with the surface during step 4. The
net effect is that the gas absorbs acoustic power from
the wave �
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Differentiating (7.18) with respect to x shows that
the dissipation of acoustic power in the duct in length
dx is given by

dĖ = 1

2
Re

(
d p̃1

dx
U1+ p̃1

dU1

dx

)
dx , (7.21)

and examination of (7.10) and (7.9) associates Rvisc
with the first term and Rtherm with the second term.
Expressions for Rvisc and Rtherm in the boundary-layer
approximation are given in Table 7.2, and allow the ex-
pression of (7.21) in terms of the dissipation of acoustic

power per unit of surface area S:

dĖ =1

4
ρm |u1|2 ωδvisc dS

+ 1

4
(γ −1)

|p1|2
ρmc2

ωδtherm dS , (7.22)

where u1 =U1/A is the velocity outside the boundary
layer, parallel to the surface. Each term in this result ex-
presses a dissipation as the product of a stored energy
per unit volume ρm |u1|2 /4 or (γ −1) |p1|2 /4ρmc2,
a volume δvisc dS or δtherm dS, and a rate ω.

7.5 Refrigeration

7.5.1 Standing-Wave Refrigeration

The thermal-hysteresis process described in Sect. 7.4
consumes acoustic power without doing anything
thermodynamically useful. Standing-wave refrigeration
consumes acoustic power via a similar process, but
achieves a thermodynamic purpose: pumping heat up
a temperature gradient, either to remove heat from
a temperature below ambient or (less commonly) to
deliver heat to a temperature above ambient. Fig-
ure 7.6a–c shows a standing-wave refrigerator of the
style pioneered by Hofler [7.8, 9] and recently stud-
ied by Tijani [7.40]. At the left end, a driver such as
a loudspeaker injects acoustic power Ė, which flows
rightward through the stack, causing a leftward flow of
total energy Ḣ .

The most important process in a standing-wave re-
frigerator is illustrated in Fig. 7.6d,e from a Lagrangian
perspective. Figure 7.6d shows a greatly magnified view
of a small mass of gas inside one pore of the stack.
The sinusoidal thermodynamic cycle of that mass of gas
in pressure p and volume V is shown in Fig. 7.6e; the
mass’s temperature, entropy, density, and other prop-
erties also vary sinusoidally in time. However, for
qualitative understanding of the processes, we describe
them as if they are a time series of four discrete steps,
numbered 1–4 in Fig. 7.6d,e. In step 1, the gas is simul-
taneously compressed to a smaller volume and moved
leftward by the wave. Thermal contact is imperfect in
the pores of a stack, so during step 1 the gas experiences
a nearly adiabatic temperature increase due to the pres-
sure increase that causes the compression. It arrives at
its new location warmer than the adjacent solid because
the temperature gradient in the solid is less than the crit-
ical temperature gradient ∇Tcrit defined in (7.20). Thus,

in step 2, heat flows from the gas into the solid, cool-
ing the gas and causing thermal contraction of the gas
to a smaller volume. In step 3, the gas is simultaneously
expanded to a larger volume and moved rightward by
the wave. It arrives at its new location cooler than the
adjacent solid, so in step 4 heat flows from the solid to
the gas, warming the gas and causing thermal expansion
of the gas to a larger volume. This brings it back to the
start of the cycle, ready to repeat step 1.

The mass of gas shown in Fig. 7.6d has two time-
averaged effects on its surroundings. First, the gas
absorbs heat from the solid at the right extreme of its
motion, at a relatively cool temperature, and delivers
heat to the solid farther to the left at a higher tempera-
ture. In this way, all masses of gas within the stack
pass heat along the solid, up the temperature gradi-
ent from right to left – within a single pore, the gas
masses are like members of a bucket brigade passing
water. This provides the desired refrigeration or heat-
pumping effect. If the left heat exchanger is held at
ambient temperature, as shown in Fig. 7.6a, then the
system is a refrigerator, absorbing thermal power Q̇C
from an external load at the right heat exchanger at
one end of the bucket brigade at TC, as waste thermal
power is rejected to an external ambient heat sink at the
other end of the bucket brigade at TA. (The system func-
tions as a heat pump if the right heat exchanger is held
at ambient temperature; then the left heat exchanger is
above ambient temperature.) Second, the gas’s thermal
expansion occurs at a lower pressure than its thermal
contraction, so

∮
p dV< 0: the gas absorbs work from

its surroundings. This work is responsible for the nega-
tive slope of Ė versus x in the stack in Fig. 7.6b and is
represented by the gain element GstackUA,1 in Fig. 7.6c.
All masses of gas within the stack contribute to this con-
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sumption of acoustic power, which must be supplied by
the driver.

As in the standing-wave engine, the time phasing
between pressure and motion in the standing-wave re-
frigerator is close to that of a standing wave. Imperfect
thermal contact between the gas and the solid in the
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stack is required to keep the gas rather isolated from
the solid during the motion in steps 1 and 3 but still
able to exchange significant heat with the solid during
steps 2 and 4. This imperfect thermal contact occurs be-
cause the distance between the gas and the nearest solid
surface is of the order of δtherm, and it causes Rtherm to
be significant, so standing-wave refrigerators are inher-
ently inefficient.

7.5.2 Traveling-Wave Refrigeration

Several varieties of traveling-wave refrigerator are com-
mercially available or under development. At their core
is a regenerator, in which the process shown in Fig. 7.7a,b
operates. In step 1 of the process, the gas is compressed
by rising pressure, rejecting heat to the nearby solid. In
step 2, it is moved to the right, toward lower tempera-
ture, rejecting heat to the solid and experiencing thermal
contraction as it moves. In step 3, the gas is expanded
by falling pressure, and absorbs heat from the nearby
solid. In step 4, the gas is moved leftward, toward higher
temperature, absorbing heat from the solid and experi-
encing thermal expansion as it moves. The heat transfers
between gas and solid in steps 2 and 4 are equal and op-
posite, so the net thermal effect of each mass of gas on
the solid is due to steps 1 and 3, and is to move heat
from right to left, up the temperature gradient. As be-
fore, the motion of any particular mass of gas is less
than the length of the regenerator, so the heat is passed
bucket-brigade fashion from the cold end of the regen-
erator to the ambient end. Each mass of gas absorbs∮

p dV of acoustic power from the wave as shown in
Fig. 7.7b, because the thermal contraction in step 2 oc-

Fig. 7.6a–e A standing-wave refrigerator. (a) From left to
right, a piston, ambient heat exchanger, stack, cold heat ex-
changer, tube, and tank. Acoustic power is supplied to the
gas by the piston to maintain the standing wave, and re-
sults in thermal power Q̇C being absorbed by the gas from
a load at cold temperature TC while waste thermal power
Q̇A is rejected by the gas to an external heat sink at ambient
temperature TA. (b) Total power flow Ḣ and acoustic power
Ė as functions of position x in the device. Positive power
flows in the positive-x direction. (c) Lumped-element
model of the device. (d) Close-up view of part of one
pore in the stack of (a), showing a small mass of gas go-
ing through one full cycle, imagined as four discrete steps.
(e) Plot showing how the pressure p and volume V of that
small mass of gas evolve with time in a counter-clockwise
elliptical trajectory. Tick marks show approximate bound-
aries between the four steps of the cycle shown in (d) �
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Fig. 7.7a–g Traveling-wave refrigerators. (a) Close-up view of part of one pore in the regenerator of a traveling-wave
refrigerator, showing a small mass of gas going through one full cycle, imagined as four discrete steps. (b) Plot showing
how the pressure p and volume V of that small mass of gas evolve with time in a counterclockwise elliptical trajectory.
Tick marks show approximate boundaries between the four steps of the cycle shown in (a). (c) A traditional Stirling
refrigerator. From left to right, the ambient driver piston; the ambient heat exchanger, the regenerator, and the cold heat
exchanger are across the top; the displacer is below. Time-averaged thermal power Q̇C is removed by the gas from an
external heat load at cold temperature TC, while waste thermal power Q̇A is rejected by the gas to an external heat sink at
ambient temperature TA and net acoustic power is supplied to the gas by the driver. (d) Pulse-tube refrigerator, with the
same processes as (c) in the regenerator and its two adjacent heat exchangers, but with the displacer replaced by acoustic
components. (e) Acoustic power Ė and total power Ḣ as functions of position x in the device shown in (d). Positive
power flows in the positive-x direction. (f) Lumped-element model of the pulse-tube refrigerator in (d). (g) A refrigerator
in which the thermal-buffer function and moving-mass function of (c)’s displacer are in two separate components

curs at high pressure and the thermal expansion in step 4
occurs at low pressure. The small pore size, rh 
 δtherm,
maintains thermodynamically reversible heat transfer,
so Rtherm is negligible, and traveling-wave refrigera-
tors have an inherently high efficiency. Acoustically, the
process shown in Fig. 7.7a represents acoustic power

traveling from left to right through the regenerator, and
being partly consumed as it goes. Different varieties of
traveling-wave refrigerator use different methods to cre-
ate the necessary amplitudes and relative time phasing of
motion and pressure to achieve this acoustic power flow
through the regenerator.
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The traditional Stirling refrigerator [7.41] uses two
moving pistons, which can be either crankshaft-coupled
in a configuration like that of the engine in Fig. 7.3a
or of the free-displacer variety shown in Fig. 7.7c. In
the free-displacer Stirling refrigerator (often called free
piston), the solid displacer moves in response to the gas-
pressure forces on it, without linkage to any external
motor. Its area and mass are selected to give its motion
the desired amplitude and time phase [7.30]. Acoustic
power is transmitted through it, from right to left, so
that the acoustic power that flows out of the right end of
the regenerator is fed through the displacer to the left,
added to the acoustic power supplied by the driver, and
injected into the left end of the regenerator. The dis-
placer must be a thermal insulator, because its right end
is at TC and its left end at TA. Crankshaft-coupled Stir-
ling refrigerators were used in the 19th century to keep
beef cold on the long sea voyage from South Amer-
ica to Britain. Free-piston Stirling cryocoolers are in
common use today for cooling infrared sensors in mil-
itary night-vision goggles and surveillance satellites,
and a free-piston Stirling refrigerator built into a small,
portable ice chest is commercially available at low cost
for picnics [7.42].

The pulse-tube refrigerator [7.12], illustrated in
Fig. 7.7d–f, uses only one piston. The acoustic power
flowing out of the right end of the regenerator is
absorbed in an acoustic impedance, instead of be-
ing fed back to the left end of the regenerator. This

gives the pulse-tube refrigerator a lower efficiency
than the Stirling refrigerator, but for cryogenic ap-
plications the reduced efficiency is a small price to
pay for the elimination of the Stirling’s cold mov-
ing part. The lumped-element model of the impedance
and adjacent tank shown in Fig. 7.7f correctly sug-
gests that proper design of L imped, Rimped, and Ctank
can create almost any desired ratio of |U1| to |p1|
and time phasing between U1 and p1 at the right end
of the regenerator. The desired impedance is often
achieved by choosing Rvisc ∼ ωL imped � 1/ωCimped.
The so-called pulse tube, and the ambient heat ex-
changer to its right, thermally isolate the cold heat
exchanger from the dissipation of acoustic power in
the impedance, just as the thermal buffer tube performs
that function in Fig. 7.3c. Pulse-tube refrigerators are
in common use today in satellites [7.43] and are under
development for many other applications such as small-
scale oxygen liquefaction and cooling superconducting
equipment.

Another variation of the theme is shown in Fig. 7.7g,
where the thermal buffer tube and the moving mass
perform the thermal-insulation and inertial functions
of the free displacer of Fig. 7.7c in two separate loca-
tions [7.44, 45]. This variety is under development for
commercial food refrigeration [7.46]. Yet another vari-
ety [7.47] replaces the inertial moving mass of Fig. 7.7g
with inertial moving gas, similar to the thermoacoustic–
Stirling hybrid engine of Fig. 7.3c.

7.6 Mixture Separation

In thermoacoustic mixture separation, acoustic power
causes the components of a gas mixture to sepa-
rate [7.48, 49]. The process is loosely analogous to the
pumping of heat through the stack in a standing-wave
refrigerator. The expenditure of acoustic power results
in an increase in the Gibbs free energy of the mix-
ture’s components, and the efficiency of the process is
comparable to that of some other practical separation
processes [7.50].

Figure 7.8 illustrates the process for a binary gas
mixture of heavy and light molecules, whose motions
are indicated by filled and open arrows, respectively.
The motion of the molecules in steps 1 and 3 of the
process is bulk motion of the gas, and the motion
during steps 2 and 4 is thermal diffusion, in which
light molecules diffuse toward higher temperature and
heavy molecules diffuse toward lower temperature. In

step 1, the gas in the center of the pore moves left-
ward and its pressure rises, so its temperature rises
nearly adiabatically. Trapped by the viscous boundary
layer near the wall of the tube is some other gas that
does not move and whose thermal contact with the
pore wall keeps its temperature from rising. During
step 2, the temperature difference between the central
gas and the peripheral gas causes light atoms to dif-
fuse into the center and heavy atoms to diffuse out of
the center, enriching the center in light atoms. Bulk
motion rightward in step 3 carries this central light-
enriched gas to the right. Simultaneously, the pressure
drops in step 3, and hence the central temperature drops
nearly adiabatically. Thus thermal diffusion in step 4
pulls heavy molecules into the center and drives light
molecules out of the center, leaving the center enriched
in heavy molecules so that the leftward motion dur-
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ing step 1 carries heavy-enriched gas leftward. The net
effect of steps 1 and 3 is to move heavy molecules
leftward and light molecules rightward. The process
takes place when the mole-fraction gradient is less than
a critical gradient, analogous to the critical tempera-
ture gradient below which standing-wave refrigeration
occurs.

As is evident from Fig. 7.8, the process works best
for tubes with rh somewhat larger than δtherm and δvisc.

Fig. 7.8 Close-up view of part of one pore in a thermo-
acoustic mixture separator, showing a small body of gas
in the center of the pore going through one full cycle,
imagined as four discrete steps, and exchanging mass with
neighboring, immobile gas. The gray and brown arrows in
steps 2 and 4 signify thermally driven diffusion of light and
heavy molecules between the central gas and the peripheral
gas close to the wall of the pore. In steps 1 and 3, the gray
and brown arrows signify bulk motion of the gas, without
diffusion �

However, unlike the description above, the process ac-
tually works best near traveling-wave phasing, because
two 45◦ phase shifts were ignored in that description.
High separation purities require long tubes, and high
mole fluxes will require many passages in parallel, per-
haps in structures similar to the stacks of standing-wave
engines and refrigerators.

In a 2 m-long tube, a 50–50 helium–argon mixture
has been separated to yield 70% helium, 30% argon at
one end and 30% helium, 70% argon at the other end;
and a measurable enrichment of 22Ne from natural neon
has been achieved [7.51].
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Nonlinear Aco8. Nonlinear Acoustics in Fluids
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At high sound intensities or long propagation
distances at sufficiently low damping acoustic phe-
nomena become nonlinear. This chapter focuses
on nonlinear acoustic wave properties in gases and
liquids. The origin of nonlinearity, equations of
state, simple nonlinear waves, nonlinear acoustic
wave equations, shock-wave formation, and in-
teraction of waves are presented and discussed.
Tables are given for the nonlinearity parameter
B/A for water and a range of organic liquids, liquid
metals and gases. Acoustic cavitation with its non-
linear bubble oscillations, pattern formation and
sonoluminescence (light from sound) are mod-
ern examples of nonlinear acoustics. The language
of nonlinear dynamics needed for understanding
chaotic dynamics and acoustic chaotic systems is
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Acoustics belongs to those areas of physics, where
nonlinear phenomena were observed first [8.1–4]. All
musical instruments including the human voice belong
to nonlinear acoustics as they generate sound waves.
Generation processes are necessarily nonlinear as new
phenomena appear that are not proportional to already
existing ones. Propagation, on the other hand, is nor-
mally linear for propagation distances that are not too
long and only shows nonlinear effects at high intensities
(finite amplitudes). As mankind started to speak early in
its history and also is supposed to have made music early
on, nonlinear acoustics belongs to the oldest parts of sci-
ence. Sorge in 1745 and Tartini in 1754 report that, when
two tones of frequency f1 and f2 > f1 are presented to
the ear at high intensities, the difference frequency f2−
f1 is additionally heard. For a long time there was a de-

bate of whether these tones are generated in the ear or
are already present in the propagating medium. Today
we know that in this case the ear generates the differ-
ence frequency. But we also know today that a differ-
ence frequency can be generated in a nonlinear medium
during the propagation of a sound wave [8.5]. This
fact is used in the parametric acoustic array to trans-
mit and receive highly directed low-frequency sound
beams. Under suitable circumstances generally a se-
ries of combination frequencies fmn = m f1+n f2 with
m, n = 0,±1,±2, . . . can be generated.

A special case is a single harmonic wave of
frequency f propagating in a nonlinear medium. It
generates the higher harmonics fm = m f . This leads
to a steepening of the wave and often to the for-
mation of shock waves. Further nonlinear effects are
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subsumed under the heading of self-action, as changes
in the medium are produced by the sound wave that
act back on the wave. Examples are self-focusing and
self-transparency.

Also forces may be transmitted to the medium set-
ting it into translatory motion, as exemplified by the
phenomenon of acoustic streaming. Acoustic radiation
forces may be used to levitate objects and keep them
in traps. In other areas of science this is accomplished
by electrical or electromagnetical forces (ion traps, op-
tical tweezers). Nonlinear acoustics is the subject of
many books, congress proceedings and survey arti-
cles [8.1–4, 6–21].

In liquids a special phenomenon occurs, the rupture
of the medium by sound waves, called acoustic cavi-
tation [8.22–30]. It leads to the formation of cavities
or cavitation bubbles with very peculiar dynamical be-
havior [8.31–35] and gives rise to a plethora of special
effects bringing acoustics in contact with almost any

other of the natural sciences. Via the dynamics of the
cavities or bubbles, particles and contaminations can be
removed from surfaces (ultrasonic cleaning [8.36–39]),
light emission may occur upon bubble collapse (sonolu-
minescence [8.40–47]) and chemical reactions may be
initiated (sonochemistry [8.48–51]).

The general theory of nonlinear dynamics has led to
the interesting finding that nonlinear dynamical systems
may not just show the simple scenario of combina-
tion tones and self-actions, but complicated dynamics
resembling stochastic behavior. This is known as deter-
ministic chaos or, in the context of acoustics, acoustic
chaos [8.52–55].

Nonlinear acoustics also appears in wave propaga-
tion in solids. In this case, further, entirely different,
nonlinear phenomena appear, because not only longitu-
dinal but also transverse waves are supported that may
interact. A separate chapter of the Handbook is devoted
to this topic.

8.1 Origin of Nonlinearity

All acoustic phenomena necessarily become nonlinear
at high intensities. This can be demonstrated when look-
ing at the propagation of a harmonic sound wave in air.
In Fig. 8.1 a harmonic sound wave is represented graph-
ically. In the upper diagram the sound pressure p is
plotted versus location x. The static pressure pstat serves
as a reference line around which the sound pressure
oscillates. This pressure pstat is normally about 1 bar.
In the lower diagram the density distribution is given
schematically in a grey scale from black to white for
the pressure range of the sound wave.

p

x

pstat

Fig. 8.1 Graphical representation of a harmonic sound
wave

Assuming that the sound pressure amplitude is in-
creased steadily, a point is reached where the sound
pressure amplitude attains pstat giving a pressure of
zero in the sound pressure minimum. It is impossible
to go below this point as there cannot be less than zero

Resulting displacement

Applied force

Soft

Hard

Fig. 8.2 Symmetric nonlinear expansion and compression
laws compared to a linear law (straight dotted line) with
soft spring behavior (solid line) and hard spring behavior
(dashed line)
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air molecules in the minimum. However, air can be
compressed above the pressure pstat just by increasing
the force. Therefore, beyond a sound pressure ampli-
tude p = pstat no harmonic wave can exist in a gas; it
must become nonlinear and contain harmonics. The ob-
vious reason for the nonlinearity in this case (a gas)
is the asymmetry in density between compression and
expansion.

However, symmetric expansion and compression
also lead to nonlinear effects when they are not propor-
tional to an applied force or stress. Figure 8.2 shows
two types of symmetric nonlinearities: hard and soft
spring behavior upon expansion and compression with
reference to a linear law represented by a straight
(dotted) line. An example of hard spring behavior is
a string on a violin, because the average string tension
increases with increasing wave amplitude. It is intrinsi-
cally symmetric, as positive and negative elongation are
equivalent. An example of soft spring behavior is the

pendulum, also having a symmetric force–displacement
law in a homogeneous gravitational field. An exam-
ple of an asymmetric mixed type, but with overall soft
spring behavior, is a bubble in water oscillating in
a sound field. Upon compression a bubble shows hard
spring behavior, upon expansion soft spring behavior in
such a way that soft spring behavior dominates.

Acoustic waves also show nonlinear behavior in
propagation, even without any nonlinearity of the
medium. This is due to the cumulative effect of dis-
tortion of the wave profile by convection, introduced
by the particle velocity that itself constitutes the sound
wave. Larger particle velocities propagate faster than
slower ones, leading to distortion of an acoustic wave
upon propagation. This property can be considered an
intrinsic self-action of the wave, leading to an intrin-
sic nonlinearity in acoustics. This aspect of nonlinearity
is discussed below in the context of the coefficient of
nonlinearity β.

8.2 Equation of State

The compression and expansion of a medium is
described by the equation of state, for which an inter-
relation between three quantities is needed, usually the
pressure p, density ! and specific entropy s (entropy
per unit mass). Often the variation of entropy can be ne-
glected in acoustic phenomena and the calculations can
be carried out at constant entropy; the equations are then
called isentropic. A basic quantity in acoustics, the ve-
locity of sound or sound speed c of a medium, is related
to these quantities,

c2 =
(
∂p

∂!

)

s
. (8.1)

The subscript index s indicates that the entropy is to be
held constant to give the isentropic velocity of sound.

Even an ideal gas is nonlinear, because it obeys the
isentropic equation of state

p = p0

(
!

!0

)γ
, (8.2)

where p0 and !0 are the reference (ambient) pressure
and density, respectively, and

γ = cp

cv
, (8.3)

where γ is the quotient of the specific heat cp at constant
pressure and cv that at constant volume.

An empirical formula, the Tait equation, is often
used for liquids, obviously constructed similarly to the

equation of state of the ideal gas

p = P

(
!

!0

)γ L

−Q (8.4)

or
p+Q

p∞+Q
=
(
!

!0

)γ L

. (8.5)

The two quantities Q and γL have to be fitted to the
experimental pressure–density curve. For water γL = 7,
P = p∞+Q = 3001 bar and Q = 3000 bar are used.
(Note that γL in the Tait equation is not the quotient
of the specific heats.)

There is another way of writing the equation of state
where the pressure is developed as a Taylor series as
a function of density and entropy [8.19]. In the isen-
tropic case it reads [8.56–58]

p− p0 =
(
∂p

∂!

)

s,!=!0

(!−!0)

+ 1

2

(
∂2 p

∂!2

)

s,!=!0

(!−!0)2+ . . . (8.6)

or

p− p0 = A
!−!0

!0
+ B

2

(
!−!0

!0

)2

+ C

6

(
!−!0

!0

)3

+ . . . (8.7)
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with

A = !0

(
∂p

∂!

)

s,!=!0

= !0c2
0 , (8.8)

B = !2
0

(
∂2 p

∂!2

)

s,!=!0

, (8.9)

C = !3
0

(
∂3 p

∂!3

)

s,!=!0

. (8.10)

Here, c0 is the velocity of sound under the reference
conditions. The higher-order terms of the Taylor series
can normally be neglected.

8.3 The Nonlinearity Parameter B/A

To characterize the strength of the nonlinearity of
a medium properly the relation of B to the linear coef-
ficient A is important [8.66, 67]. Therefore A and B are
combined as B/A, the nonlinearity parameter, a pure
number.

It is easy to show that for an ideal gas we get from
(8.2) together with (8.8) and (8.9)

B

A
= γ −1 , (8.11)

so that B/A = 0.67 for a monatomic gas (for example
noble gases) and B/A = 0.40 for a diatomic gas (for
example air). Moreover, it can be shown that

C

A
= (γ −1)(γ −2) (8.12)

for an ideal gas, leading to negative values.
When there is no analytic expression for the equa-

tion of state recourse must be made to the direct
definitions of A and B and appropriate measurements.
From the expressions for A (8.8) and B (8.9) a formula
for the nonlinearity parameter B/A is readily found,

B

A
= !0

c2
0

(
∂2 p

∂!2

)

s,!=!0

. (8.13)

To determine B/A from this formula, as well as the
density and sound velocity the variation in pressure ef-
fected by an isentropic (adiabatic) variation in density

Table 8.2 Pressure and temperature dependence of the B/A values for water [8.65]

T(K)
P(MPa) 303.15 313.15 323.15 333.15 343.15 353.15 363.15 373.15

0.1 5.38±0.12 5.54±0.12 5.69±0.13 5.82±0.13 5.98±0.13 6.06±0.13 − −
5 5.46±0.12 5.59±0.12 5.76±0.13 5.87±0.13 6.04±0.13 6.07±0.13 6.03±0.13 6.05±0.13

10 5.55±0.12 5.62±0.12 5.78±0.13 5.94±0.13 6.03±0.13 6.11±0.13 6.06±0.13 6.01±0.13

15 5.57±0.12 5.66±0.12 5.83±0.13 5.96±0.13 6.07±0.13 6.09±0.13 6.11±0.13 6.08±0.13

20 5.61±0.12 5.68±0.13 5.81±0.13 5.98±0.13 6.10±0.13 6.14±0.14 6.12±0.13 6.06±0.13

30 5.63±0.12 5.70±0.13 5.84±0.13 5.95±0.13 6.07±0.13 6.16±0.14 6.09±0.13 6.08±0.13

40 5.73±0.13 5.77±0.13 5.86±0.13 6.02±0.13 6.11±0.13 6.14±0.14 6.16±0.14 6.14±0.14

50 5.82±0.13 5.84±0.13 5.93±0.13 6.04±0.13 6.13±0.13 6.16±0.14 6.12±0.13 6.09±0.13

has to be measured. Due to the small density variations
with pressure in liquids and the error-increasing second
derivative this approach is not feasible.

Fortunately, equivalent expressions for B/A have
been found in terms of more easily measurable quanti-
ties, namely the variation of sound velocity with pres-

Table 8.1 B/A values for pure water at atmospheric pres-
sure

T(◦C) B/A Year Reference

0 4.2 1974 [8.59]

20 5 1974 [8.59]

20 4.985±0.063 1989 [8.60]

25 5.11±0.20 1983 [8.61]

26 5.1 1989 [8.62]

30 5.31 1985 [8.63]

30 5.18±0.033 1991 [8.64]

30 5.280±0.021 1989 [8.60]

30 5.38±0.12 2001 [8.65]

40 5.4 1974 [8.59]

40 5.54±0.12 2001 [8.65]

50 5.69±0.13 2001 [8.65]

60 5.7 1974 [8.59]

60 5.82±0.13 2001 [8.65]

70 5.98±0.13 2001 [8.65]

80 6.1 1974 [8.59]

80 6.06±0.13 2001 [8.65]

100 6.1 1974 [8.59]
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Table 8.3 B/A values for organic liquids at atmospheric
pressure

Substance T(◦C) B/A Reference

1,2-DHCP 30 11.8 [8.59]

1-Propanol 20 9.5 [8.68]

1-Butanol 20 9.8 [8.68]

1-Pentanol 20 10 [8.68]

1-Pentanol 20 10 [8.68]

1-Hexanol 20 10.2 [8.68]

1-Heptanol 20 10.6 [8.68]

1-Octanol 20 10.7 [8.68]

1-Nonanol 20 10.8 [8.68]

1-Decanol 20 10.7 [8.68]

Acetone 20 9.23 [8.69]

20 8.0 [8.68]

40 9.51 [8.69]

Benzene 20 9 [8.59]

20 8.4 [8.70]

25 6.5 [8.71]

40 8.5 [8.71]

Benzyl alcohol 30 10.19 [8.69]

50 9.97 [8.69]

Carbon bisulfide 10 6.4 [8.71]

25 6.2 [8.71]

40 6.1 [8.71]

Carbon tetrachloride 10 8.1 [8.71]

25 8.7 [8.71]

25 7.85±0.31 [8.61]

40 9.3 [8.71]

Chlorobenzene 30 9.33 [8.69]

Chloroform 25 8.2 [8.71]

Cyclohexane 30 10.1 [8.59]

Diethylamine 30 10.3 [8.69]

Ethanol 0 10.42 [8.69]

20 10.52 [8.69]

20 9.3 [8.68]

40 10.6 [8.69]

Ethylene glycol 25 9.88±0.4 [8.61]

26 9.6 [8.62]

30 9.7 [8.59]

30 9.93 [8.63]

30 9.88±0.035 [8.64]

Ethyl formate 30 9.8 [8.59]

Heptane 30 10 [8.59]

40 10.05 [8.72]

Hexane 25 9.81±0.39 [8.61]

30 9.9 [8.59]

40 10.39 [8.72]

Table 8.3 (continued)

Substance T(◦C) B/A Reference

Methanol 20 8.6 [8.68]

20 9.42 [8.69]

30 9.64 [8.69]

Methyl acetate 30 9.7 [8.59]

Methyl iodide 30 8.2 [8.59]

Nitrobenzene 30 9.9 [8.59]

n-Butanol 0 10.71 [8.69]

20 10.69 [8.69]

40 10.75 [8.69]

n-Propanol 0 10.47 [8.69]

20 10.69 [8.69]

40 10.73 [8.69]

Octane 40 9.75 [8.72]

Pentane 30 9.87 [8.72]

Toluene 20 5.6 [8.71]

25 7.9 [8.71]

30 8.929 [8.73]

Table 8.4 B/A values for liquid metals and gases at atmo-
spheric pressure

Substance T(◦C) B/A Reference

Liquid metals

Bismuth 318 7.1 [8.59]

Indium 160 4.6 [8.59]

Mercury 30 7.8 [8.59]

Potassium 100 2.9 [8.59]

Sodium 110 2.7 [8.59]

Tin 240 4.4 [8.59]

Liquid gases

Argon −187.15 5.01 [8.74]

−183.15 5.67 [8.74]

Helium −271.38 4.5 [8.75]

Hydrogen −259.15 5.59 [8.74]

−257.15 6.87 [8.74]

−255.15 7.64 [8.74]

−253.15 7.79 [8.74]

Methane −163.15 17.95 [8.74]

−153.15 10.31 [8.74]

−143.15 6.54 [8.74]

−138.15 5.41 [8.74]

Nitrogen −203.15 7.7 [8.74]

−195.76 6.6 [8.75]

−193.15 8.03 [8.74]

−183.15 9.00 [8.74]

Other substances

Sea water (3.5% NaCl) 20 5.25 [8.59]

Sulfur 121 9.5 [8.59]
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sure and temperature. Introducing the definition of the
sound velocity the following formulation chain holds:
(∂2 p/∂!2)s,!=!0 = (∂c2/∂!)s,!=!0 = 2c0(∂c/∂!)s,!=!0 =
2c0(∂c/∂p)s,p=p0 (∂p/∂!)s,!=!0 = 2c3

0(∂c/∂p)s,p=p0 . In-
sertion of this result into (8.9) yields

B = !2
0

(
∂2 p

∂!2

)

s,!=!0

= 2!2
0c3

0

(
∂c

∂p

)

s,p=p0

(8.14)

and into (8.13) results in

B

A
= 2!0c0

(
∂c

∂p

)

s,p=p0

. (8.15)

Here B/A is essentially given by the variation of
sound velocity c with pressure p at constant entropy
s. This quantity can be measured with sound waves
when the pressure is varied sufficiently rapidly but still
smoothly (no shocks) to maintain isentropic conditions.

Equation (8.15) can be transformed further [8.67,
76] using standard thermodynamic manipulations and
definitions. Starting from c = c(p, t, s = const.) it fol-
lows that dc = (∂c/∂p)T,p=p0 dp+ (∂c/∂p)p,T=T0 dT or

(
∂c

∂p

)

s,p=p0

=
(
∂c

∂p

)

T,p=p0

+
(
∂c

∂T

)

p,T=T0

(
∂T

∂p

)

s,p=p0

.

(8.16)

From the general thermodynamic relation Tds =
cpdT − (αT /!)Tdp = 0 for the isentropic case the re-
lation

(
∂T

∂p

)

s,p=p0

= T0αT

!0cp
. (8.17)

follows, where

αT = 1

V

(
∂V

∂T

)

p,T=T0

=− 1

!0

(
∂!

∂T

)

p,T=T0

(8.18)

is the isobaric volume coefficient of the thermal expan-
sion and cp is the specific heat at constant pressure of
the liquid. Insertion of (8.17) into (8.16) together with
(8.15) yields

B

A
= 2!0c0

(
∂c

∂p

)

T,p=p0

+2
c0T0αT

!0cp

(
∂c

∂T

)

p,T=T0

. (8.19)

This form of B/A divides its value into an isother-
mal (first) and isobaric (second) part. It has been found
that the isothermal part dominates.

For liquids, B/A mostly varies between 2 and 12.
For water under normal conditions it is about 5. Gases
(with B/A smaller than one, see before) are much less
nonlinear than liquids. Water with gas bubbles, how-
ever, may have a very large value of B/A, strongly
depending on the volume fraction, bubble sizes and fre-
quency of the sound wave. Extremely high values on the
order of 1000 to 10 000 have been reported [8.77, 78].
Tables with values of B/A for a large number of mater-
ials can be found in [8.66, 67].

As water is the most common fluid two tables (Ta-
bles 8.1 and 8.2) of B/A for water as a function of
temperature and pressure are given (see also [8.79]).
Two more tables (Tables 8.3 and 8.4) list B/A values
for organic liquids and for liquid metals and gases, both
at atmospheric pressure.

8.4 The Coefficient of Nonlinearity β

In a sound wave the propagation velocity dx/dt of
a quantity (pressure, density) as observed by an outside
stationary observer changes along the wave. As shown
by Riemann [8.80] and Earnshaw [8.81], for a forward-
traveling plane wave it is given by

dx

dt
= c+u , (8.20)

c being the sound velocity in the medium without the
particle velocity u introduced by the sound wave. The
sound velocity c is given by (8.1), c2 = (∂p/∂!)s , and
contains the nonlinear properties of the medium. It is
customary to incorporate this nonlinearity in (8.20) in

a second-order approximation as [8.82, 83]

dx

dt
= c0+βu , (8.21)

introducing a coefficient of nonlinearity β. Here c0 is
the sound velocity in the limit of vanishing sound pres-
sure amplitude. The coefficient of nonlinearity β is
related to the parameter of nonlinearity B/A as derived
from the Taylor expansion of the isentropic equation of
state [8.7] via

β = 1+ B

2A
. (8.22)
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The number 1 in this equation comes from the u
in (8.20). For an ideal gas [8.2] B/A = γ −1 (8.11) and
thus

β = 1+ γ −1

2
= γ +1

2
. (8.23)

The quantity β is made up of two terms. They can
be interpreted as coming from the nonlinearity of the
medium (second term) and from convection (first term).

This convective part is inevitably connected with the
sound wave and is an inherent (kinematic) nonlinear-
ity that is also present when there is no nonlinearity in
the medium (thermodynamic nonlinearity) [8.83].

The introduction of β besides B/A is justified be-
cause it not only incorporates the nonlinearity of the
medium, as does B/A, but also the inherent nonlinear-
ity of acoustic propagation. The deformation of a wave
as it propagates is described by β.

8.5 Simple Nonlinear Waves

In the linear case the wave equation is obtained for
the quantities pressure p− p0, density !−!0 and each
component of the particle velocity u−u0 (p0 ambient
pressure, ρ0 ambient density, u0 constant (mean) veloc-
ity, often u0 = 0) from the equations for a compressible
fluid. In the spatially one-dimensional case, when ϕ de-
notes one of the perturbational quantities, one gets

ϕtt − c2
0ϕxx = 0 , (8.24)

where c0 is the propagation velocity of the perturba-
tion, given by c2

0 = (∂p/∂!)s,!=!0 , and the subscripts t
and x denote partial differentiation with respect to time
and space, respectively. A simple way to incorporate
the influence of nonlinearities of the medium without
much mathematical effort consists in considering the
propagation velocity no longer as constant. One pro-
ceeds as follows. As nonlinear waves do not superpose
interaction-free, and because waves running in opposite
directions (compound waves) would cause problems,
the wave equation above is written as

(
∂

∂t
− c0

∂

∂x

)(
∂

∂t
+ c0

∂

∂x

)
ϕ = 0 (8.25)

and only one part, i. e. a wave running in one direction
only, called a progressive or traveling wave, is taken, for
instance:

ϕt+ c0ϕx = 0 , (8.26)

a forward, i. e. in the +x-direction, traveling wave. The
general solution of this equation is

ϕ(x, t) = f (x− c0t) . (8.27)

The function f can be a quite general function of
the argument x−c0t. A nonlinear extension can then be
written as

ϕt+v(ϕ)ϕx = 0 , (8.28)

whereby now the propagation velocity v(ϕ) is a function
of the perturbation ϕ. In this way the simplest propaga-
tion equation for nonlinear waves is obtained; it already
leads to the problem of breaking waves and the occur-
rence of shock waves.

A solution to the nonlinear propagation equation
(8.28) can be given in an implicit way,

ϕ(x, t) = f [x−v(ϕ)t] , (8.29)

as can be proven immediately by insertion. This seems
of little use for real calculations of the propagation of
the perturbation profile. However, the equation allows
for a simple physical interpretation, that is, that the
quantity ϕ propagates with the velocity v(ϕ). This leads
to a simple geometric construction for the propagation
of a perturbation (Fig. 8.3).

To this end the initial-value problem (restricted to
progressive waves in one direction only and cutting out
one wavelength traveling undisturbed) is considered,

ϕ(x, t = 0) = f (ξ) . (8.30)

To each ξ value belongs a value f (ξ) that propagates
with the velocity v[ f (ξ)]

dx

dt

∣∣∣∣
f
= v[ f (ξ)] (8.31)

or

x = ξ+v[ f (ξ)]t . (8.32)

This is the equation of a straight line in the (x, t)-
plane that crosses x(t = 0) = ξ with the derivative
v( f (ξ)). Along this straight line ϕ stays constant. These
lines are called characteristics and were introduced by
Riemann [8.80]. In this way the solution of (hyperbolic)
partial differential equations can be transformed to the
solution of ordinary differential equations, which is of
great advantage numerically.
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0
0

t2

t1

Particle velocity (u)

Distance (X )

Time (t)

Fig. 8.3 Characteristics and the construction of the wave-
form for nonlinear progressive wave propagation (after
Beyer [8.3])

The initial-value problem (8.30) is difficult to real-
ize experimentally. Normally a sound wave is launched
by a loudspeaker or transducer vibrating at some loca-
tion. For one-dimensional problems a piston in a tube
is a good approximation to a boundary condition
ϕ(x = 0, t) = g(t), when the finite amplitude of the pis-
ton can be neglected. (The piston cannot vibrate and
stay stationary at x = 0.) Also, simple waves are pro-
duced from the outset without the complications of

Sound pressure

Time (ms)
0 1.61.20.80.4 2.0

Fig. 8.4 Form of the sound wave at the launch site (lower)
and after three meters of propagation (upper) in a tube
filled with air. Measurement done at the Drittes Physikali-
sches Institut, Göttingen

compound waves and their mixed flow being produced
by an initial condition in which the perturbation values
are given in space at a fixed time (t = 0) [8.84].

The steepening of a wavefront has been measured
this way by sending a strong sound wave through
a nonlinear medium and monitoring the wave with a mi-
crophone. Figure 8.4 shows the steepening of a sound
wave in air after three meters of propagation. The wave
at a frequency of 2 kHz was guided inside a plastic tube.
As the horizontal axis denotes time, the steepening is on
the left flank, the flank of the propagation direction that
passes the microphone first.

8.6 Lossless Finite-Amplitude Acoustic Waves

How elastic waves propagate through a medium is
a main topic in acoustics and has been treated to various
degrees of accuracy. The starting point is a set of equa-
tions from fluid mechanics. For plane acoustic waves
in nondissipative fluids this set is given by three equa-
tions: the equation of continuity, the Euler equation and
the equation of state,

∂!

∂t
+u

∂!

∂x
+!∂u

∂x
= 0 , (8.33)

∂u

∂t
+u

∂u

∂x
+ 1

!

∂p

∂x
= 0 , (8.34)

p = p(!) . (8.35)

The quantities !, u and p are the density of the fluid,
the particle velocity and the pressure, respectively. The
three equations can be condensed into two in view of the
unique relation between p and !. From (8.35) it follows
that ∂p/∂x = c2∂!/∂x and with (8.34) we obtain

∂u

∂t
+u

∂u

∂x
+ c2

!

∂!

∂x
= 0 , (8.36)

where c is the sound velocity of the medium. The
following relation between u and ! holds for forward-
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traveling waves [8.80, 81] (see also [8.1])

∂u

∂x
= c

!

∂!

∂x
(8.37)

giving the propagation equation

∂u

∂t
+ (u+ c)

∂u

∂x
= 0 (8.38)

for a plane progressive wave without dissipation. The
propagation velocity c (here for the particle veloc-
ity we use u) due to the nonlinearity of the medium
to a second-order approximation follows from u+
c = c0+βu (see (8.21) and (8.22)) as

c = c0+ B

2A
u . (8.39)

The corresponding relation for an ideal gas,

c = c0+ γ −1

2
u , (8.40)

is exact.
Comparing the propagation equation (8.38) with

(8.28) where a general function v(ϕ) was introduced for
the nonlinear propagation velocity with ϕ a disturbance
of the medium, for instance u, the function can now be
specified as

v(u) = u+ c(u) . (8.41)

This finding gives rise to the following degrees of
approximation.

The linear approximation

v(u) = c0 , (8.42)

the kinematic approximation, where the medium is still
treated as linear,

v(u) = u+ c0 , (8.43)

the quadratic approximation

v(u) = u+ c0+ B

2A
u = c0+βu , (8.44)

and so forth, as further approximations are included.
From these equations it follows that v(u = 0) = c0 re-
gardless of the degree of approximation. This means
that the wave as a whole propagates with the linear ve-
locity c0; its form, however, changes. This holds true as
long as the form of the wave stays continuous. Also,
there is no truly linear case. Even if the medium is
considered linear the kinematic approximation reveals
that there is a distortion of the wave. Only in the limit
of infinitely small amplitude of the particle velocity u

(implying also an infinitely small amplitude of acoustic
pressure p− p0) does a disturbance propagate linearly.
There is no finite amplitude that propagates linearly.
This is different from the transverse waves that ap-
pear in solids, for instance, and in electromagnetic wave
propagation. In these cases, linear waves of finite ampli-
tude exist, because they do not experience distortion due
to a kinematic term u.

A solution to the propagation equation (8.38) to
a second-order approximation,

∂u

∂t
+ (c0+βu)

∂u

∂x
= 0 , (8.45)

can be given in implicit form as for (8.28)

u(x, t) = f [x− (c0+βu)t] . (8.46)

For the boundary condition (source or signaling
problem)

u(x = 0, t) = ua sinωt (8.47)

the implicit solution reads with the function f =
ua sin(ωt− kx) and k = ω/v(u):

u(x, t) = ua sin

(
ωt− ω

c0+βu
x

)
, (8.48)

or, when expanding and truncating the denominator in
the argument of the sine wave

u(x, t) = ua sin

[
ωt− ω

c0

(
1−β u

c0

)
x

]
. (8.49)

With the wave number

k0 = ω

c0
, (8.50)

ω= 2π f , where f is the frequency of the sound wave,
and

Ma = ua

c0
, (8.51)

is the initial (peak) acoustic Mach number, the solution
reads:

u(x, t)

ua
= sin

[
ωt− k0x

(
1+βMa

u(x, t)

ua

)]
.

(8.52)

This implicit solution can be turned into an ex-
plicit one, as shown by Fubini in 1935 [8.85] (see
also [8.82, 86–88]), when the solution is expanded in
a Fourier series (ϕ = ωt− k0x) later

u

ua
=

∞∑

n=1

Bn sin(nϕ) (8.53)
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with

Bn = 1

π

2π∫

0

u

ua
sin(nϕ)dϕ . (8.54)

After insertion of (8.52) into (8.54) and some math-
ematical operations the Bessel functions Jn of the first
kind of order n yield

Bn = 2

βMak0nx
Jn(βMak0nx) . (8.55)

The explicit solution then reads
u(x, t)

ua

= 2

βMak0

∞∑

n=1

Jn(βMak0nx)

nx
sin n(ωt− k0x) .

(8.56)

The region of application of this solution is deter-
mined by βMak0. The inverse has the dimensions of
a length

x⊥ = 1

βMak0
, (8.57)

and is called the shock distance, because at this distance
the wave develops a vertical tangent, the beginning of
becoming a shock wave. The solution is valid only up
to this distance x = x⊥.

To simplify the notation the dimensionless normal-
ized distance σ may be introduced

σ = x

x⊥
. (8.58)

1.0

0.5

0

–0.5

–1.0

2.01.51.00.50
(x–x)/λ

u
ua

Fig. 8.5 Waveform of the Fubini solution (8.66) at the
shock formation time t⊥ (σt = 1) for the initial-value prob-
lem. λ is the wavelength of the sound wave

The Fubini solution then reads

u

ua
= 2

∞∑

n=1

Jn(nσ )

nσ
sin n(ωt− k0x) . (8.59)

When a pure spatial sinusoidal wave is taken as the
initial condition [8.87]

u(x, t = 0) = ua sin k0x , (8.60)

the implicit solution reads

u(x, t) = ua sin k0[x− (c0+βu)t] , (8.61)

or, with the acoustic Mach number Ma = ua/c0 as be-
fore,

u(x, t)

ua
= sin k0

[
x− c0t

(
1+βMa

u(x, t)

ua

)]
.

(8.62)

When again doing a Fourier expansion the explicit
solution emerges,

u(x, t)

ua
= 2

βMak0c0

∞∑

n=1

(−1)n+1

×
Jn(βMak0c0nt)

nt
sin nk0(x− c0t) . (8.63)

The region of application is determined by
βMak0c0. The inverse has the dimension of time

t⊥ = 1

βMak0c0
. (8.64)

u
ua

1.0

0.5

0

–0.5

–1.0

2.01.61.20.40 0.8
(t – t)/T

u
ua

Fig. 8.6 Waveform of the Fubini solution (8.59) at the
shock distance x⊥ (σ = 1) for the source problem. T is
the period of the sound wave. Compare the experiment
in Fig. 8.4
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Bn

ν/ν0
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0.0
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0.5

0.0
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0.5

0.0
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0.5

0.0

σ = 0.0
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σ = 0.5

σ = 0.8

σ = 1.0

9876543210

Fig. 8.7 Growth of the harmonics upon propagation for the
Fubini solution (8.59) (source problem) at different nor-
malized distances σ up to the shock distance

The quantity t⊥ is called the shock formation time,
because at this time the wave develops a vertical tan-
gent. The solution is valid only up to this time t = t⊥.
To simplify the notation the dimensionless normalized
time σt may be introduced

σt = t

t⊥
. (8.65)

The Fubini solution then reads

u(x, t)

ua
= 2

∞∑

n=1

(−1)n+1 Jn(nσt)

nσt
sin nk0(x− c0t) .

(8.66)

When comparing t⊥ with x⊥, the relation

c0t⊥ = x⊥ (8.67)

1.0

0.8

0.6

0.4

0.2

0
1.00.80.60.40.20

2.01.61.20.40 0.8

1.0

0.5

0

–0.5

–1.0

Bn

σ

n = 1

n = 2

n = 3
n = 4

n = 5

(t-t)/T

u
ua

Fig. 8.8 Growth of the first five spectral components Bn

of a plane wave as a function of the normalized distance
σ for the Fubini solution. The inset gives the waveform at
σ = 1 for the source problem, T being the period of the
sound wave (after [8.87])

is noted. This means that the shock distance is reached
in the shock formation time when the wave travels at
the linear sound speed c0. This is in agreement with
the earlier observation that the wave travels at the linear
sound speed regardless of the nonlinearity as long as the
wave stays continuous. In the case of the quadratic ap-
proximation the range in space and time for which this
property holds can be quantified explicitly.

To give an impression of what the wave looks like
when having propagated the shock distance x⊥ in the
shock formation time t⊥, Fig. 8.5 shows two wave-
lengths at the shock formation time t⊥ and Fig. 8.6
shows two periods at the shock distance x⊥.

A set of spectra of the waveform for different nor-
malized distances σ is plotted in Fig. 8.7 for the source
problem, where all harmonics have positive value. The
growth of the harmonics Bn (8.55) in the spectrum on
the way to the shock distance is visualized. Similar plots
have been given by Fubini Ghiron [8.85]. A plot of the
first five Fourier coefficients Bn as a function of σ is
given in Fig. 8.8. In the inset the waveform at the shock
distance x⊥ is plotted for two periods of the wave.

The solutions (8.59) and (8.66) are given for the par-
ticle velocity u. This quantity is difficult to measure.
Instead, in experiments, pressure is the variable of
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choice. When combining the equation of state for an
ideal gas with the definition of sound velocity (see (8.2)
and (8.1)) a relation between pressure and sound veloc-
ity is obtained

p

p0
=
(

c

c0

)2γ/(γ−1)

. (8.68)

Insertion of the expression c = c0+[(γ −1)/2]u
(8.40) yields

p = p0

(
1+ γ −1

2

u

c0

)2γ/(γ−1)

. (8.69)

Inserting the solution for the particle velocity u into
this equation will give the pressure p and the acous-
tic pressure p− p0. This operation is easy to perform
numerically but not analytically. However, the approx-
imation scheme for moderate-strength finite-amplitude
waves, |u/c0| 
 1, is only consistent when expanding
(8.69) and taking only the linear part. This leads to the
linear relation between acoustic pressure p− p0 and
acoustic particle velocity u (local linearity property for
weak nonlinearity) [8.84, 89]

p− p0 = !0c0u , (8.70)

where the expression !0c0 is known as the impedance.
When the boundary condition (8.47) is rewritten as

(p− p0)(x = 0, t) = !0c0ua sinωt

= (pa− p0) sinωt (8.71)

with pa− p0 = !0c0ua, the relation

p− p0

pa− p0
= u

ua
(8.72)

is obtained. The normalized Fubini solution then reads
in terms of the acoustic pressure for the boundary-value
or source problem

p− p0

pa− p0
= 2

∞∑

n=1

Jn(nσ )

nσ
sin n(ωt− k0x) , (8.73)

and for the initial-value problem

p− p0

pa− p0
= 2

∞∑

n=1

(−1)n+1 Jn(nσt)

nσt
sin nk0(x− c0t) .

(8.74)

The steepening of acoustic waves upon propaga-
tion may occur in musical wind instruments, e.g.,
the trombone [8.90]. It has been shown that depend-
ing on the playing level the emitted sound waves
steepen when going from piano to fortissimo, even up
to shock waves. Indeed, the brightness (the metallic
sound) of loudly played brass instruments (in partic-
ular the trumpet and the trombone as opposed to the
saxhorns) is attributed to the increasing harmonic con-
tent connected with wave steepening, as exemplified in
Fig. 8.7.

8.7 Thermoviscous Finite-Amplitude Acoustic Waves

Because of the inherently nonlinear nature of acoustic
wave propagation steep gradients of physical quantities
(pressure, density, temperature, . . . ) inevitably appear
after some time of traveling, after which losses can
no longer be neglected. In the steep gradients brought
about by nonlinearity, linear phenomena that could be
neglected before become important [8.91]. These are
losses by diffusive mechanisms, in particular viscosity
and heat conduction, and spreading phenomena by dis-
persive mechanisms as in frequency dispersion. When
losses balance nonlinearity, the characteristic wave-
forms of shock waves appear, when frequency disper-
sion balances nonlinearity the characteristic form of
solitons appear. Both are given about equal space in
this treatment. The inclusion of thermoviscous losses is
treated in this chapter, the inclusion of frequency dis-
persion, small in pure air and water, but large in water
with bubbles, is treated in Sect. 8.10 on liquids contain-
ing bubbles.

The extension of (8.45) when thermoviscous losses
are included as a small effect leads to the Burgers
equation

∂u

∂t
+ (c0+βu)

∂u

∂x
= 1

2
δ
∂2u

∂x2
. (8.75)

Here δ, comprising the losses, has been called the
diffusivity of sound by Lighthill [8.92]

δ= 1

ρ0

(
4

3
μ+μB

)
+ κ

ρ0

(
1

cv
− 1

cp

)

= ν
(

4

3
+ μB

μ
+ γ −1

Pr

)
(8.76)

where μ is the shear viscosity, μB the bulk viscosity,
ν=μ/!0 the kinematic viscosity, κ the thermal conduc-
tivity, cv and cp the specific heats at constant volume
and constant pressure, respectively, and Pr being the
Prandtl number, Pr = μcp/κ. The equation is an ap-
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proximation to a more exact second-order equation that,
however, does not lend itself to an exact solution as does
the Burgers equation above. In the context of acoustics
this relation was first derived by Mendousse, although
for viscous losses only [8.93]. The derivations make use
of a careful comparison of the order of magnitude of
derivatives retaining the leading terms. The above form
of the Burgers equation is best suited to initial-value
problems. Source problems are best described when
transforming (8.75) to new coordinates (x, τ) with the
retarded time τ = t− x/c0

∂u

∂x
− β

c2
0

u
∂u

∂τ
= δ

2c3
0

∂2u

∂τ2
. (8.77)

The equation can be normalized to a form with only
one parameter,

∂W

∂σ
−W

∂W

∂ϕ
= 1

Γ

∂2W

∂ϕ2
, (8.78)

where W = u/u0, σ = x/x⊥, ϕ = ωτ = ωt− k0x, Γ =
βM0k0/α= 2πβM0/αλ, with α being the damping con-
stant for linear waves,

α= δk2
0

2c0
. (8.79)

Γ is called the Gol’dberg number after Gol’dberg [8.94]
who introduced this normalization (Blackstock [8.95]).
It can be written as

Γ = 1/x⊥
α

(8.80)

where 1/x⊥ = βM0k0 is the strength of the nonlinear-
ity and α is the strength of the damping. The Gol’dberg
number is therefore a measure of the importance of
nonlinearity in relation to damping. For Γ > 1 nonlin-
earity takes over and for Γ < 1 damping takes over. For
Γ � 1 nonlinearity has time to accumulate its effects,
for Γ 
 1 damping does not allow nonlinear effects to
develop.

The Burgers equation is exactly integrable by the
Hopf–Cole transformation [8.96, 97],

W = 2

Γ

1

ζ

∂ζ

∂ϕ
= 2

Γ

∂ ln ζ

∂ϕ
(8.81)

that is best done in two steps [8.10]

W = ∂ψ
∂ϕ
, (8.82)

ψ = 2

Γ
ln ζ . (8.83)

By this transformation the nonlinear Burgers equa-
tion is reduced to the linear heat conduction or diffusion
equation

∂ζ

∂σ
= 1

Γ

∂2ζ

∂ϕ2
. (8.84)

For this equation a general explicit solution is avail-
able,

ζ (σ, ϕ)

=
√
Γ

4πσ

+∞∫

−∞
ζ (0, ϕ′) exp

(
−Γ (ϕ′ −ϕ)2

4σ

)
dϕ′ .

(8.85)

For a specific solution the initial or boundary con-
ditions must be specified. A common problem is the
piston that starts to vibrate sinusoidally at time t = 0.
This problem has been treated by Blackstock [8.95]
whose derivation is closely followed here. The bound-
ary condition is given by

u(0, t) = 0 for t ≤ 0 ,

u(0, t) = ua sinωt for t> 0 ,
(8.86)

or in terms of the variable W(σ, ϕ)

W(0, ϕ) = 0 for ϕ ≤ 0 ,

W(0, ϕ) = sinϕ for ϕ > 0 .
(8.87)

To solve the heat conduction equation the boundary
condition is needed for ζ (σ, ϕ). To this end the Hopf–
Cole transformation (8.81) is reversed,

ζ (σ, ϕ) = exp

⎛

⎝Γ
2

ϕ∫

−∞
W(σ, ϕ′)dϕ′

⎞

⎠ . (8.88)

Insertion of W(0, ϕ) yields as the boundary condi-
tion for ζ ,

ζ (0, ϕ) = 1 for ϕ ≤ 0

ζ (0, ϕ) = e
1
2Γ (1−cosϕ) for ϕ > 0

(8.89)

and insertion into (8.85) yields the solution in terms of
ζ . Using σ̄ =√

4σ/Γ and q = (ϕ′ −ϕ)/σ̄ the solution
for the vibrating piston in terms of ζ reads

ζ (σ, ϕ) = 1√
π

−ϕ/σ̄∫

−∞
e−q2

dq

+ 1√
π

e
1
2Γ

∞∫

−ϕ/σ̄
e−

1
2Γ cos(σ̄q+ϕ) e−q2

dq .

(8.90)
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This solution is involved and also contains the tran-
sients after starting the oscillation. When ϕ→∞ these
transients decay and the steady-state solution is ob-
tained,

ζ (σ, ϕ |ϕ→∞)

= 1√
π

e
1
2Γ

∞∫

−∞
e−

1
2Γ cos(σ̄q+ϕ) e−q2

dq . (8.91)

With the help of the modified Bessel functions of
order n, In(z) = i−n Jn(iz), and the relation [8.98]

ez cos θ = I0(z)+2
∞∑

n=1

In(z) cos nθ (8.92)

the expression

e−
1
2Γ cos(σ̄q+ϕ)

= I0

(
− 1

2Γ
)
+2

∞∑

n=1

In

(
− 1

2Γ
)

cos n(σ̄q+ϕ)

= I0

(
1
2Γ
)
+2

∞∑

n=1

(−1)n In

(
1
2Γ
)

cos n(σ̄q+ϕ)

(8.93)

is valid. Inserting this into (8.91) and integrat-
ing yields, observing that

∫ +∞
−∞ exp(−q2x2) cos[p(x+

λ)]dx = (
√
π/q) exp[−p2/(4q2)] cos pλ [8.99],

ζ (σ, ϕ|ϕ→∞)

= e
1
2Γ

[
I0
( 1

2Γ
)+2

∞∑

n=1

(−1)n In
( 1

2Γ
)
e−n2σ/Γ cos nϕ

]
.

(8.94)

This is the exact steady-state solution for the oscil-
lating piston problem given for ζ as a Fourier series.
Transforming to W(σ, ϕ) via (8.81) gives

W(σ, ϕ)

= 4Γ−1∑∞
n=1(−1)n+1nIn

( 1
2Γ
)

e−n2σ/Γ sin nϕ

I0
( 1

2Γ
)+2

∑∞
n=1(−1)n In

( 1
2Γ
)

e−n2σ/Γ cos nϕ
.

(8.95)

Finally, for u(x, t) the solution reads

u(x, t)

ua

= 4Γ−1 ∑∞
n=1(−1)n+1nIn

(
1
2Γ
)

e−n2αx sin n(ωt−k0x)

I0

(
1
2Γ
)
+2

∑∞
n=1(−1)n In

(
1
2Γ
)

e−n2αx cos n(ωt−k0x)
.

(8.96)

The equation for the acoustic pressure p− p0 again
can be obtained via the approximation (8.72) as before
in the lossless case: (p− p0)/(pa− p0) = u/ua gives
the identical equation.

There are regions of the parameter Γ and the inde-
pendent variables x and t where the solution is difficult
to calculate numerically. However, in these cases ap-
proximations can often be formulated.

For Γ →∞ and σ = x/x⊥ 
 1 the Fubini solution
is recovered.

For σ � Γ , i. e. far away from the source, the first
terms in the numerator and the denominator in (8.96)
dominate, leading to

u(x, t)

ua
= 4

Γ

I1(Γ /2)

I0(Γ /2)
e−αx sin(ωt− k0x) . (8.97)

When additionally Γ � 1, i. e. nonlinearity domi-
nates over attenuation, I0(Γ /2) ≈ I1(Γ /2) and there-
fore

u(x, t) = ua
4

Γ
e−αx sin(ωt− k0x)

= 4uaαx⊥ e−αx sin(ωt− k0x)

= 4αc2
0

βω
e−αx sin(ωt− k0x) (8.98)

= 2δω

βc0
e−αx sin(ωt− k0x) . (8.99)

This series of equations for the amplitude of the si-
nusoidal wave radiated from a piston in the far field
lends itself to several interpretations. As it is known that
for Γ � 1 harmonics grow fast at first, these must later
decay leaving the fundamental to a first approximation.
The amplitude of the fundamental in the far field is inde-
pendent of the amplitude ua of the source, as can be seen
from the third row (8.98). This means that there is a sat-
uration effect. Nonlinearity together with attenuation
does not allow the amplitude in the far field to increase
in proportion to ua because of the extra damping intro-
duced by the generation of harmonics that are damped
more strongly than the fundamental. This even works
asymptotically because otherwise ua would finally ap-
pear. The damping constant is frequency dependent
(8.79), leading to the last row (8.99). It is seen that the
asymptotic amplitude of the fundamental grows with
the frequency f = ω/2π. This continues until other ef-
fects come into play, for instance relaxation effects in
the medium. Equations (8.98) and (8.99) for u are dif-
ferent from the equations for the acoustic pressure, as
they cannot be normalized with ua or pa− p0, respec-
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tively. They are related via the impedance !0c0 (8.70),

(p− p0)(x, t) = 4α!0c3
0

βω
e−αx sin(ωt− k0x) (8.100)

= 2δ!0ω

β
e−αx sin(ωt− k0x) . (8.101)

Good approximations for Γ � 1 have been given by
Fay [8.101],

u(x, t)

ua
=

∞∑

n=1

2/Γ

sinh[n(1+ x/x⊥)/Γ ] sin n(ωt− k0x) ,

(8.102)
and Blackstock [8.95]:

u(x, t)

ua

= 2

Γ

∞∑

n=1

1− (n/Γ 2) coth[n(1+ x/x⊥)/Γ ]
sinh[n(1+ x/x⊥)/Γ ]

× sin n(ωt− k0x) . (8.103)

With an error of less than 1% at Γ = 50 Fay’s
solution is valid for σ > 3.3 and Blackstock’s solu-
tion for σ > 2.8, rapidly improving with σ . The gap
in σ from about one to three between the Fubini
and Fay solution has been closed by Blackstock. He
connected both solutions using weak shock theory giv-
ing the Fubini–Blackstock–Fay solution ([8.100], see
also [8.1]). Figure 8.9 shows the first three harmonic
components of the Fubini–Blackstock–Fay solution
from [8.100]. Similar curves have been given by
Cook [8.88]. He developed a numerical scheme for cal-
culating the harmonic content of a wave as it propagates
by including the losses in small spatial steps linearly for
each harmonic component. As there are occurring only
harmonic waves that do not break the growth in each
small step is given by the Fubini solution.

In the limit Γ →∞ the Fay solution reduces to

u(x, t)

ua
=

∞∑

n=1

2

1+ x/x⊥
sin n(ωt− k0x) , (8.104)

a solution that is also obtained by weak shock theory.
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0.6

0.4

0.2

0
11109876543210
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n = 1
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n = 3

Fig. 8.9 Growth and decay of the first three harmonic
components Bn of a plane wave as a function of the nor-
malized distance σ according to the Fubini–Blackstock–
Fay solution (after Blackstock [8.100])

When Fay’s solution (8.102) is taken and σ �
Γ (farfield), the old-age region of the wave is
reached. Then sinh[n(1+ x/x⊥)/Γ ] � 1

2 (enx/x⊥Γ −
e−nx/x⊥Γ ) � 1

2 enx/x⊥Γ = 1
2 enαx and

u(x, t) = 4αc2
0

βω
,

∞∑

n=1

e−nαx sin n(ωt− k0x) (8.105)

is obtained similarly as for the fundamental (8.98).
Additionally all harmonics that behave like the funda-
mental, i. e. that are not dependent on the initial peak
particle velocity ua, are obtained. Moreover, they do not
decay (as linear waves do) proportionally to e−n2αx but
only proportionally to e−nαx .

In the range σ > 1 shock waves may develop. These
are discussed in the next section.

8.8 Shock Waves

The characteristics of Fig. 8.3 must cross. According
to the geometrical construction the profile of the wave
then becomes multivalued. This is easily envisaged with
water surface waves. With pressure or density waves,
however, there is only one pressure or one density at one

place. The theory is therefore oversimplified and must
be expanded with the help of physical arguments and
the corresponding mathematical formulation. Shortly
before overturning, the gradients of pressure and den-
sity become very large, and it is known that damping
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effects brought about by viscosity and heat conduction
can no longer be neglected. When these effects are taken
into account, the waves no longer turn over. Instead,
a thin zone is formed, a shock wave, in which the val-
ues of pressure, density, temperature, etc. vary rapidly.
A theoretical formulation has been given in the preced-
ing section for thermoviscous sound waves based on the
Burgers equation.

It has been found that damping effects do not nec-
essarily have to be included in the theory, but that an
extended damping free theory can be developed by
introducing certain shock conditions that connect the
variables across a discontinuity. A description of this
theory can be found in the book by Whitham [8.10].
The result can be described in a simple construc-
tion. In Fig. 8.10 the profile of the wave has been
determined according to the methods of characteris-
tics for a time where the characteristics have already
crossed. The shock wave then has to be inserted in
such a way that the areas between the shock wave
and the wave profile to the left and the right are equal
(the equal area rule). Moreover, it can be shown that
the velocity of the shock wave is approximately given
by

vs = 1

2
(v1+v2) , (8.106)

where v1 and v2 are the propagation velocities of the
wave before and behind the shock, respectively.

Shock waves are inherently difficult to describe by
Fourier analysis as a large number of harmonics are
needed to approximate a jump-like behavior. A time-
domain description is often more favorable here. Such
solutions have been developed for the propagation of
sound waves in the shock regime. For Γ > σ > 3,
Khokhlov and Soluyan [8.102] have given the following

Density (   )

Distance (X )

vS

v2

v1

2

1







Fig. 8.10 Condition for the location of the shock wave for
an overturning wave, the equal area rule
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Fig. 8.11a,b Waveforms of the Khokhlov–Soluyan solu-
tion for Gol’dberg numbers Γ = 10 (a) and Γ = 100 (b) for
different σ (the age of the wave)

solution

u(x, t)

ua
= 1

1+ x/x⊥

(
−ϕ+π tanh

πΓϕ

2(1+ x/x⊥)

)

(8.107)

for −π < ϕ= ωt−k0x < π, covering a full cycle of the
wave.

Figure 8.11 shows the waveforms for Γ = 10 and
Γ = 100 for different σ = x/x⊥. When the wave is fol-
lowed at fixed Γ for increasing σ (i. e. increasing x), the
decay and change of the waveform upon propagation
can be observed.

The solution and the waveforms are remarkable as
they are exact solutions of the Burgers equation, but
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approximate solutions with respect to the boundary
condition.

When the wave gets very steep, i. e., in the case
Γ →∞, it attains the shape of a sawtooth (σ > 3),

u(x, t)

ua
=

⎧
⎪⎨

⎪⎩

1

1+ x/x⊥
[−ϕ+π] 0< ϕ ≤ π ,

1

1+ x/x⊥
[−ϕ−π] −π ≤ ϕ < 0 ,

(8.108)

where ϕ = ωt− k0x. The amplitude of the jump is

u(x, t)

ua
= π

1+ x/x⊥
, (8.109)

the actual jump height from peak to peak being two
times this value and falling off rapidly with x. This so-

Fig. 8.12 Shock waves (dark circles) and bubbles (dark
spheres) from laser-induced breakdown in water. Recon-
structed image from a hologram 1.75 μs after breakdown.
The size of the picture is 1.1 × 1.6 mm �

lution, too, is an exact solution of the Burgers equation,
albeit for 1/Γ ≡ 0, i. e., with the diffusion term missing
in the Burgers equation.

The Fourier form solution of the sawtooth wave
(8.108) is given by

u(x, t)

ua
= 2

1+ x/x⊥

∞∑

n=1

1

n
sin n(ωt− k0x) . (8.110)

This form can also be derived as approximation
from the Fay solution (see (8.104)). This can be
considered a consistency proof in the approximation ap-
proaches, one proceeding in the time domain, the other
in the frequency domain.

An example of the occurrence of shock waves, al-
beit spherical ones, is given in Fig. 8.12. A laser pulse
has been focused into water, leading to four spots
of breakdown, the emission of four shock waves and
the growth of four bubbles. Laser-produced bubbles
are used in cavitation research to investigate bubble
dynamics in liquids and their effects [8.32]. Focused
shock waves are used in lithotripsy to fragment kidney
stones to small enough pieces to fit through the urinary
tract [8.103].

8.9 Interaction of Nonlinear Waves

Linear waves do not interact, in the sense that upon
superposition they propagate independently, each ac-
cording to their own parameters. This makes Fourier
theory a powerful technique for linear systems. In non-
linear systems, however, the harmonic components of
which an initial perturbation is composed interact and
produce new components that again interact, etc. Even
a single harmonic oscillation creates higher harmonics,
as set out in the preceding sections.

For the description of strong nonlinear acoustic
wave interaction it is very fortunate that the Burgers
equation (8.78) allows for a linearizing transformation.
The superposition can then be evaluated in the linear
variables, giving the result of the nonlinear interaction
when transforming back.

Of special interest is the interaction of two (primary)
waves in the course of which the sum and, in particular,
the difference frequency can be generated. A highly di-

rectional high-frequency source can be transformed into
a highly directed low-frequency source (the parametric
array). As the low-frequency beam generated has lower
damping than the high-frequency beams it propagates to
longer distances. Applications are sound navigation and
ranging (SONAR) and surface and subsurface scanning
of the ocean bottom.

Taking two waves with amplitudes u1,2 and fre-
quencies ω1,2, starting at t = 0, the boundary condition
becomes

u(x = 0, t) =
⎧
⎨

⎩
0 t< 0 ,

u1 sin(ω1t)+u2 sin(ω2t) t ≥ 0 ,

(8.111)

or with the normalized variables W = u/u0, ϕ = ωτ =
ω(t− x/c0), σ = x/x⊥,
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W(σ = 0, ϕ)

=
⎧
⎨

⎩
0 ϕ < 0 ,

W1 sin(Ω1ϕ)+W2 sin(Ω2ϕ) , ϕ ≥ 0 .
(8.112)

Here, Ω1,2 = ω1,2/ω denote the input frequen-
cies normalized to the reference frequency ω and
W1,2 = u1,2/u0 the amplitudes normalized to the ref-
erence amplitude u0. The inverse Hopf–Cole trans-
formation (8.88) gives the initial condition for the
linearized problem in the variable ζ . For ϕ < 0 we ob-
tain ζ (σ = 0, ϕ) = 1, while for ϕ ≥ 0,

ζ (σ = 0, ϕ)

= exp

⎡

⎣Γ
2

ϕ∫

0

W(σ = 0, ϕ′)dϕ′
⎤

⎦

= exp

{
−Γ

2

[
W1

Ω1
cos(Ω1ϕ

′)+ W2

Ω2
cos(Ω2ϕ

′)
]ϕ

0

}
.

(8.113)

To simplify notation, introduce the Gol’dberg num-
bers Γ1,2 = ΓW1,2/Ω1,2 which agree with the defini-
tion (8.80) applied to the two input waves, respectively.
Then

ζ (σ = 0, ϕ ≥ 0) = exp

(
Γ1

2
+ Γ2

2

)

︸ ︷︷ ︸
=:C

× exp

[
−Γ1

2
cos(Ω1ϕ)− Γ2

2
cos(Ω2ϕ)

]
. (8.114)

With this initial condition, the solution (8.85) of the
diffusion equation (8.84) reads

ζ (σ, ϕ) =
√
Γ

4πσ

0∫

−∞
exp

(
−Γ (ϕ′ −ϕ)2

4σ

)
dϕ′

+C

√
Γ

4πσ

+∞∫

0

exp

[
−Γ1

2
cos(Ω1ϕ

′)

−Γ2

2
cos(Ω2ϕ

′)−Γ (ϕ′ −ϕ)2

4σ

]
dϕ′

=
√
Γ

4πσ

−ϕ∫

−∞
exp

(
−Γ ϕ

′2

4σ

)
dϕ′

+C

√
Γ

4πσ

+∞∫

−ϕ
exp

{
−Γ1

2
cos[Ω1(ϕ′ +ϕ)]

−Γ2

2
cos[Ω2(ϕ′ +ϕ)]−Γ ϕ

′2

4σ

}
dϕ′ .

This general solution is quite complicated as the in-
tegration limits depend on the phase ϕ. To dismiss the
transients caused by the starting of the waves at ϕ = 0,
again the limit ϕ→∞ is considered. This means that
at a certain position x = σx⊥ in the medium the wave
is examined a long time after the passage of the initial
perturbation that started at x = 0, t = 0. Then, the first
integral of (8.115) vanishes, and the second integral can
be evaluated from −∞ to +∞ by using the expansion
(8.92), written in the following form

exp(z cos θ) = I0(z)+2
∞∑

n=1

In(z) cos(nθ)

=:
∞∑

n=0

bn In(z) cos(nθ) , (8.115)

where the numerical factors b0 = 1, bn = 2 for n > 0
have been introduced for convenient notation. Substi-
tuting this series in (8.115) and noting that In is an even
(odd) function for even (odd) n, we get

ζ (σ, ϕ)

= C

√
Γ

4πσ

∞∑

m=0

∞∑

n=0

(−1)m+nbmbn Im

(
Γ1

2

)
In

(
Γ2

2

)

×

+∞∫

−∞
cos[mΩ1(ϕ′ +ϕ)] cos[nΩ2(ϕ′ +ϕ)]

× exp

(
−Γ ϕ

′ 2

4σ

)
dϕ′ . (8.116)

Using cos(α) cos(β) = (1/2) [cos(α+β)+ cos(α−
β)], and proceeding as in the derivation of (8.94) we
get

ζ (σ, ϕ)

= C

2

∞∑

m=0

∞∑

n=0

(−1)m+nbmbn Im

(
Γ1

2

)
In

(
Γ2

2

)

×

[
exp

(
−
(
Ω+

mn

)2

Γ
σ

)
cos

(
Ω+

mnϕ
)

+ exp

(
−
(
Ω−

mn

)2

Γ
σ

)
cos

(
Ω−

mnϕ
)
]
.

Here, a short-hand notation for the combination
frequencies has been introduced: Ω±

mn = mΩ1±nΩ2.
Transforming back to the original variable yields
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W(σ, ϕ) = 2

Γ

1

ζ (σ, ϕ)

∂ζ (σ, ϕ)

∂ϕ

=
∞∑

m=0

∞∑
n=0

(−wmn )[Ω+
mn e+mn sin(Ω+

mnϕ)+Ω−
mn e−mn sin(Ω−

mnϕ)]

(Γ /2)
∞∑

m=0

∞∑
n=0

wmn
[

e+mn cos
(
Ω+

mnϕ
)+e−mn cos

(
Ω−

mnϕ
)] ,

(8.117)

where

wmn = (−1)m+nbmbn Im

(
Γ1

2

)
In

(
Γ2

2

)
,

e+mn = exp

(
− (Ω+

mn)2

Γ
σ

)
,

e−mn = exp

(
− (Ω−

mn)2

Γ
σ

)
.

It is seen that for σ > 0 the solution in ϕ contains all
combination frequencies mΩ1±nΩ2 of the two input
frequencies due to the nonlinear interaction. Note also
that for Ω1 = 1, Γ1 = Γ , Ω2 = 0, Γ2 = 0 the solution
(8.96) is recovered. In its full generality, the expression
is rather cumbersome to analyze. However, as higher
frequencies are more strongly damped for σ→∞ only
a few frequencies remain with sufficient amplitude. In
particular, if Ω1 and Ω2 <Ω1 are close, the difference
frequency ΔΩ =Ω1−Ω2 (m = n = 1) will be small
and give a strong component with

W−(σ, ϕ) =−4ΔΩ

Γ

I1

(
Γ1
2

)
I1

(
Γ2
2

)

I0

(
Γ1
2

)
I0

(
Γ2
2

)

× exp

(
− (ΔΩ)2

Γ
σ

)
sin(ΔΩϕ) , (8.118)

or, returning to physical coordinates and constants,

u−(x, t)

=−2Δω δ

c0β

I1

(
Γ1
2

)
I1

(
Γ2
2

)

I0

(
Γ1
2

)
I0

(
Γ2
2

)

× exp

(
−δ(Δω)2

2c3
0

x

)
sin[Δω(t− x/c0)]

= u(0)
− exp

(
−δ(Δω)2

2c3
0

x

)
sin[Δω(t− x/c0)] .

(8.119)

The Gol’dberg numbers of the interacting waves
determine the quantity u(0)

− of the resulting difference-
frequency wave. For Γ1,2 
 1, i. e., for low-power
waves, I0(Γ /2) ≈ 1 and I1(Γ /2) ≈ Γ /4, thus the value

u(0)
− = −2Δω δ

c0β

Γ1Γ2

16
=−Δωβc0

2δ

u01u02

ω1ω2
(8.120)

is proportional to the product of the amplitudes of the
interacting waves. For very intense waves, Γ1,2 � 1,
as limξ→∞ I1(ξ)/I0(ξ) = 1, the quantity u(0)

− of the
difference-frequency wave becomes independent of u01
and u02,

u(0)
− = −2Δω δ

c0β
. (8.121)

The difference-frequency wave (8.121) has been
given for the far field where the two incoming waves
have essentially ceased to interact. There, the wave
propagates linearly and is exponentially damped by
thermoviscous dissipation.

8.10 Bubbly Liquids

Liquids with bubbles have strongly pronounced non-
linear acoustic properties mainly due to the nonlinear
oscillations of the bubbles and the high compressibil-
ity of the gas inside. Within recent decades theoretical
and experimental investigations have detected many
kinds of nonlinear wave phenomena in bubbly fluids.
To mention just a few of these: ultrasound self-
focusing [8.104,105], acoustic chaos [8.52], sound self-
transparency [8.106], wavefront conjugation [8.106],
the acoustic phase echo [8.107] intensification of sound
waves in nonuniform bubbly fluids [8.108, 109], sub-
harmonic wave generation [8.110], structure formation

in acoustic cavitation [8.111,112], difference-frequency
sound generation [8.113, 114]. These phenomena are
discussed in several books and review papers [8.2,9,32,
115–118].

In this section we are going to discuss some phe-
nomena related to nonlinear acoustic wave propagation
in liquids with bubbles. First, the mathematical model
for pressure-wave propagation in bubbly liquids will
be presented. Second, this model will be used to in-
vestigate long nonlinear pressure waves, short pressure
wave trains, and some nonlinear interactions between
them.
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Let αl and αg be the volume fractions and ρl and ρg
the densities of the liquid and the gas (vapor), respec-
tively. Then the density of the two-phase mixture ρ in
the bubbly liquid mixture is given by

ρ = αlρl+αgρg , (8.122)

where αl+αg = 1. Note that the gas (vapor) volume
fraction depends on the instantaneous bubble radius R,

αg = 4

3
πR3n , (8.123)

where n is the number density of bubbles in the mixture.
Equation (8.123) is true in general and applicable to the
case in which bubbles oscillate in an acoustic field, as
considered in the following.

8.10.1 Incompressible Liquids

First, we consider the case when the liquid can be treated
as incompressible. The bubbly fluid model in this case
is based on the bubble-in-cell technique [8.115], which
divides the bubbly liquid mixture into cells, with each
cell consisting of a liquid sphere of radius Rc with a bub-
ble of radius R at its center. A similar approach has been
used recently to model wet foam drop dynamics in an
acoustic field [8.119] and the acoustics of bubble clus-
ters in a spherical resonator [8.120].

It should be mentioned here that the bubble-in-cell
technique may be treated as a first-order correction to
a bubbly fluid dynamics model due to a small bub-
ble volume fraction. This technique is not capable of
capturing the entire bubbly fluid dynamics for high con-
centration of bubbles when bubbles lose their spherical
shape.

According to the bubble-in-cell technique, the ra-
dius Rc of the liquid sphere comprising each cell and the
embedded bubble, are related to the local void fraction
at any instant by

R

Rc
= α1/3

g . (8.124)

We note that Rc, R, and αg are variable in time.
The liquid conservation of mass equation and the

assumed liquid incompressibility imply that the radial
velocity around a single bubble depends on the radial
coordinate

v′ = R2 Ṙ

r ′2
, R ≤ r ′ ≤ Rc , (8.125)

where R(t) is the instantaneous radius of the bubble,
primed quantities denote local (single-cell) variables,

namely, r ′ is the radial coordinate with origin at the bub-
ble’s center, v′ is the radial velocity of the liquid at radial
location r ′, and the dot denotes a time derivative (i. e.,
R = dR/dt).

The dynamics of the surrounding liquid is analyzed
by writing the momentum equation for an incompress-
ible, inviscid liquid as

∂v′

∂t
+v′ ∂v

′

∂r ′
+ 1

ρl

∂p′

∂r ′
= 0 . (8.126)

Integrating this equation over r ′ ≤ Rc from R to
some arbitrary r ′ and using (8.125) yields

p′ = pR−ρl

[
RR̈+ 3

2
Ṙ2

−
(

RR̈+2Ṙ2
) R

r ′
+ 1

2
Ṙ2
(

R

r ′

)4
]
, (8.127)

where p′ is the liquid pressure at location r ′ around
a bubble, and pR is the liquid pressure at the bubble
interface. Evaluating (8.127) at the outer radius of the
cell, r ′ = Rc, and using (8.124), results in

pR− pc

ρl
=
(

1−α1/3
g

)
RR̈

+ 3

2

(
1− 4

3
αg1/3 + 1

3
αg4/3

)
Ṙ2 . (8.128)

This equation bears a resemblance to the well-
known Rayleigh–Plesset equation that governs the
motion of a single bubble in an infinite liquid. Indeed,
in the limit of vanishing void fraction, αg → 0, the pres-
sure at the outer radius of the cell (pc) becomes the
liquid pressure far from the bubble (pc → p∞), and
(8.128) reduces to the Rayleigh–Plesset equation

pR− p∞
ρl

= RR̈+ 3

2
Ṙ2 . (8.129)

Let us assume that the gas pressure inside the bubble
pg is spatially uniform. The momentum jump condi-
tion requires that the gas pressure differs from the liquid
pressure at the bubble wall due to surface tension and
viscous terms according to

pR = pg− 2σ

R
− 4μl Ṙ

R
, (8.130)

where σ is the surface tension and μl is the liquid vis-
cosity. Furthermore, the gas pressure may be assumed
to be governed by a polytropic gas law of the form

pg =
(

p0+ 2σ

R0

)(
R

R0

)−3κ

, (8.131)
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where R0 is the equilibrium radius of the bubble (i. e.,
the bubble radius at ambient pressure) and κ is a poly-
tropic exponent. Combining (8.128)–(8.131) gives the
following relationship between the liquid pressure at the
edge of the cell (pc) and the radius of the bubble (R),

pc =
(

p0+ 2σ

R

)(
R

R0

)−3κ

− 2σ

R
− 4μl Ṙ

R

−ρl

[ (
1−α1/3

g

)
RR̈

+3

2

(
1− 4

3
α

1/3
g + 1

3
α

4/3
g

)
Ṙ2
]
. (8.132)

Equation (8.132) can be integrated to find the bubble
radius, R(t), given the time-dependent pressure at r ′ =
Rc and the initial conditions.

Next, we connect the various cells at points on their
outer radii and replace the configuration with an equiva-
lent fluid whose dynamics approximate those of the
bubbly liquid. We assume that the velocity of the trans-
lational motion of the bubbles in such a fluid is equal to
the velocity of the bubbly fluid v. The fluid is required
to conserve mass, thus

∂ρ

∂t
+∇ · (ρv) = 0 , (8.133)

where ρ is given by (8.122). The fluid also satisfies
Euler’s equation,

ρ
dv

dt
+∇ p = 0 , (8.134)

where d/dt = ∂/∂t+v ·∇ is the material derivative, and
p is the mean fluid pressure, which is approximately the
pressure at the outer radius of a cell, pc.

The mass and bubble densities are related by requir-
ing that the total mass of each cell does not change
in time. The initial volume of one cell is V0 = 1/n0,
so the initial mass of the cell is M0 = ρ0/n0, where
ρ0 = αl0ρl0+αg0ρg0. Requiring that the mass of each
cell remains constant gives

ρ

n
= ρ0

n0
. (8.135)

This set of equations describes the nonlinear dy-
namics of a bubbly liquid mixture over a wide range
of pressures and temperatures.

We can now linearize these equations by assum-
ing that the time-dependent quantities only vary slightly
from their equilibrium values. Specifically, we write
ρ = ρ0+ ρ̃, n = n0+ ñ, p = p0+ p̃, v= ṽ, αg = αg0+
α̃g, and R = R0 + R̃. The perturbed quantities are

assumed to be small, so that any product of the per-
turbations may be neglected. When these assumptions
are introduced into (8.132), we arrive at the following
linearized equation,

p̃ =−
[(

p0+ 2σ

R0

)
3κ

R0
− 2σ

R2
0

]
R̃

− 4μl

R0

∂ R̃

∂t
−ρl

(
1−α1/3

g0

)
R0
∂2 R̃

∂t2
. (8.136)

Linearizing (8.135) gives

ñ = n0

ρ0
ρ̃ . (8.137)

Similarly, linearizing the density in (8.122) taking
into account that ρg/ρl 
 1 and using (8.137) yields

ρ̃ =−4πR2
0ρ0n0 R̃, (8.138)

where ρ0 ≈ ρl
(
1−αg0

)
. By combining (8.136) and

(8.138) we obtain a pressure–density relationship for
the bubbly fluid

p̃ = C2
b

ω2
b

(
ω2

bρ̃+2δb
∂ρ̃

∂t
+ ∂

2ρ̃

∂t2

)
, (8.139)

where Cb represents the low-frequency sound speed in
the bubbly liquid

C2
b =

3κ p0+ (3κ−1)
2σ

R0

3αg0(1−αg0)ρl
, (8.140)

and ωb is the natural frequency of a bubble in the cell

ω2
b =

ω2
M

1−α1/3
g0

. (8.141)

We note that ωM is the natural frequency of a single
bubble in an infinite liquid (i. e. the so-called Minnaert
frequency),

ω2
M =

3κ p0+ (3κ−1)
2σ

R0

ρl R2
0

. (8.142)

In (8.139) the parameter δb represents the dissipa-
tion coefficient due to the liquid viscosity,

δb = 2μl

ρl R2
0

(
1−α1/3

g0

) . (8.143)

Actually acoustic wave damping in bubbly liquids
occurs due to several different physical mechanisms:
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liquid viscosity, gas/vapor thermal diffusivity, acoustic
radiation, etc. The contribution of each of these dissipa-
tion mechanisms to the total dissipation during bubble
oscillations depends on frequency, bubble size, the type
of gas in a bubble and liquid compressibility [8.115].
For convenience one can use an effective dissipation
coefficient in the form of a viscous dissipation

δeff = 2μeff

ρl R2
0

(
1−α1/3

g0

) , (8.144)

where μeff denotes an effective viscosity (instead of
just the liquid viscosity), which implicitly includes all
the aforementioned dissipation mechanisms in a bub-
bly liquid. The value for μeff should be chosen to fit
experimental observations and the theoretical data of
amplitude versus frequency for a single bubble.

We can also linearize (8.133) and (8.134) to obtain
∂ρ̃

∂t
+ρ0∇ ·v= 0 , (8.145)

ρ0
∂v

∂t
+∇ p̃ = 0 . (8.146)

Combining the time derivative of (8.145) with the
divergence of (8.146) results in

∂2ρ̃

∂t2
=∇2 p̃ . (8.147)

Combining this result with (8.139) gives a wave
equation for the bubbly liquid of the form

∂2 p̃

∂t2
−C2

b

(
1+ 2δeff

ω2
b

∂

∂t
+ 1

ω2
b

∂2

∂t2

)
∇2 p̃ = 0 .

(8.148)

Equation (8.148) describes the propagation of a lin-
ear acoustical pressure perturbations in a liquid with
bubbles when the liquid can be treated as incompress-
ible. It also accounts for the effect of a small but finite
void fraction on wave propagation [8.9, 115, 116].

8.10.2 Compressible Liquids

When the pressure waves are very intense, and the void
fraction is small (αg 
 1), one should take into account
liquid compressibility, which may lead to acoustic radi-
ation by the oscillating bubbles. In this case, correction
terms of α1/3

g , α
4/3
g in (8.128) may be neglected, and in

order to account for acoustic radiation (8.128) should be
rewritten as follows [8.121, 122],

RR̈+ 3

2
Ṙ2 = pR− p

ρl0
+ R

ρl0Cl

d

dt
(pR− p) ,

(8.149)

where Cl is the speed of sound in the liquid. In (8.149)
the liquid density ρl is taken as a constant ρl0 although
the equation of state of the liquid can be approximated
as

p = p0+C2
l (ρl−ρl0) . (8.150)

After linearization (8.149) becomes (compare with
(8.136))

p̃ =−
[(

p0+ 2σ

R0

)
3κ

R0
− 2σ

R2
0

]
R̃

− 4μl

R0

∂ R̃

∂t
−ρl0 R0

(
1+ R0

Cl

∂

∂t

)−1
∂2 R̃

∂t2
.

(8.151)

In order to evaluate the last term in (8.151) and to
incorporate acoustic radiation losses into an effective
viscosity scheme we use the following approximation
for the differential operator,

(
1+ R0

Cl

∂

∂t

)−1

≈ 1− R0

Cl

∂

∂t
. (8.152)

Then (8.151) becomes

p̃ ≈−
[(

p0+ 2σ

R0

)
3κ

R0
− 2σ

R2
0

]
R̃− 4μl

R0

∂ R̃

∂t

−ρl0 R0
∂2 R̃

∂t2
+ ρl0 R2

0

Cl

∂3 R̃

∂t3
. (8.153)

The third derivative in (8.153) can be estimated us-
ing the approximation of a freely oscillating bubble

∂2 R̃

∂t2
≈−

(
p0+ 2σ

R0

)
3κ

R0
− 2σ

R2
0

ρl0 R0
R̃. (8.154)

Substituting (8.154) in the third-derivative term of
(8.153) we get

p̃ =−
[(

p0+ 2σ

R0

)
3κ

R0
− 2σ

R2
0

]
R̃− 4μeff

R0

∂ R̃

∂t

−ρl0 R0
∂2 R̃

∂t2
, (8.155)

where

μeff = μl+μr, μr = (3κ−1)σ

2Cl
+ 3κ p0

4Cl
R0 .

(8.156)

It is easy to see from (8.156) that acoustic radiation
may lead to a very large dissipation. For example, for
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Fig. 8.13 The dispersion relation for water with air bub-
bles (the liquid is treated as compressible, dissipation
is ignored): Cl = 1500 m/s, p0 = 105 Pa, κ = 1.4, σ =
0.0725 N/m, ρl0 = 103 kg/m, αg0 = 10−4, R0 = 10−4 m

air bubbles of R0 = 10−4 m in water, effective viscosity
due to acoustic radiation μr may be about seven times
larger than the viscosity of water, μl.

Equation (8.135), and eventually its linearized form
(8.137), are valid in the case of a compressible liquid.
However, the linearized form of (8.122) changes. Now
instead of (8.138) we have

ρ̃ = ρ̃l−4πR2
0ρ0n0 R̃ (8.157)

or, accounting for the liquid equation of state (8.150),

ρ̃ = C−2
l p̃−4πR2

0ρ0n0 R̃ . (8.158)

Substituting (8.158) into (8.147) we have

C−2
l
∂2 p̃

∂t2
−∇2 p̃ = 4πR2

0n0ρ0
∂2 R̃

∂t2
. (8.159)

Equation (8.159) together with (8.155) leads to the
following wave equation for a bubbly fluid in the case
of a compressible liquid

∂2 p̃

∂t2
−C2

b

(
1+ 2δeff

ω2
b

∂

∂t
+ 1

ω2
b

∂2

∂t2

)

×

(
∇2−C−2

l
∂2

∂t2

)
p̃ = 0 . (8.160)
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Fig. 8.14 The phase velocity for water with air bub-
bles (the liquid is treated as compressible, dissipation
is ignored): Cl = 1500 m/s, p0 = 105 Pa, κ = 1.4, σ =
0.0725 N/m, ρl0 = 103 kg/m, αg0 = 10−4, R0 = 10−4 m

Here ωb and δeff are calculated according to (8.141)
and (8.144) in which αg0 is taken to be zero, and
Cb is calculated according to (8.140). It is easy to
see that (8.160) reduces to (8.148) in the case when
Cl →∞.

The linear wave equation (8.160) admits the har-
monic wave-train solution

p̃ = pa exp [i(kx−ωt)] , (8.161)

in which the frequency ω and wave number k are related
through the following dispersion relation

k2 = ω2

⎛

⎜⎜⎝
1

C2
l

+ 1

C2
b

(
1+ i 2ωδeff

ω2
b
− ω2

ω2
b

)

⎞

⎟⎟⎠ . (8.162)

The graph of this dispersion relation is shown
in Fig. 8.13. The corresponding phase velocity is given
in Fig. 8.14.

8.10.3 Low-Frequency Waves:
The Korteweg–de Vries Equation

In order to analyze the low-frequency nonlinear acous-
tics of a bubbly liquid the low-frequency limit of the
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dispersion relation (8.162) is first considered,

ω= Ck+ iα1k2−α2k3 , (8.163)

where

1

C2
= 1

C2
l

+ 1

C2
b

, α1 = δeffC4

ω2
bC2

b

, α2 = C5

2C2
bω

2
b

.

(8.164)

Noting that

ω=−i
∂

∂t
, k = i

∂

∂x
, (8.165)

(8.163) can be treated as the Fourier-space equivalent of
an operator equation which when operating on p̃, yields

∂ p̃

∂t
+C

∂ p̃

∂x
−α1

∂2 p̃

∂x2
+α2

∂3 p̃

∂x3
= 0 . (8.166)

Equation (8.166) should be corrected to account for
weak nonlinearity. A systematic derivation is normally
based on the multiple-scales technique [8.123]. Here we
show how this derivation can be done less rigorously,
but more simply. We assume that the nonlinearity in
bubbly liquids comes only from bubble dynamics. Then
(8.155) for weakly nonlinear bubble oscillations has an
additional nonlinear term and becomes

p̃ =−B1 R̃+ B2 R̃2− 4μeff

R0

∂ R̃

∂t
−ρl0 R0

∂2 R̃

∂t2
.

(8.167)

0

Π (p~)

p~

3W
α 0

A

B

2W
α 0

Fig. 8.15 The potential well used to illustrate the soliton
solution for the KdV equation

B1 =
(

p0+ 2σ

R0

)
3κ

R0
− 2σ

R2
0

,

B2 =
(

p0+ 2σ

R0

)
3κ(3κ+1)

2R2
0

− 2σ

R3
0

. (8.168)

Equation (8.167) has to be combined with the linear
wave equation (8.159), which in the case of plane waves
can be written

C−2
l
∂2 p̃

∂t2
− ∂

2 p̃

∂x2
= 4πR2

0n0ρ0
∂2 R̃

∂t2
. (8.169)

Taking into account that all the terms except the first
one on the right-hand side of (8.167) are small, i. e.,
of the second order of magnitude, one can derive the
following nonlinear wave equation for pressure pertur-
bations in a bubbly liquid,

C−2 ∂
2 p̃

∂t2
− ∂

2 p̃

∂x2

= 4πR2
0n0ρ0

×

(
B2

B3
1

∂2 p̃2

∂t2
+ 4μeff

R0 B2
1

∂3 p̃

∂t3
+ ρl0 R0

B2
1

∂4 p̃

∂t4

)
.

(8.170)

Equation (8.170) is derived for plane weakly non-
linear pressure waves traveling in a bubbly liquid in
both directions. Namely, the left part of this equation
contains a classic wave operator when applied to a pres-
sure perturbation function describes waves traveling left
to right and right to left. The right part of this equa-
tion contain terms of second order of smallness and is
therefore responsible for a slight change of these waves.
Thus, (8.170) may be structured as follows,

(
C−1 ∂

∂t
+ ∂

∂x

)(
C−1 ∂

∂t
− ∂

∂x

)
p̃ = O

(
ε2
)
.

(8.171)

If one considers only waves traveling left to right
then

C−1 ∂

∂t
+ ∂

∂x
= O (ε) , (8.172)

and we can use the following derivative substitution
(see [8.10])

∂

∂t
≈−C

∂

∂x
. (8.173)

Then, after one time integration over space, and
translation to the frame moving left to right with a speed
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of sound C, (8.170) leads to the Burgers–Korteweg–
de Vries (BKdV) equation for a pressure wave [8.115–
117, 124],

∂ p̃

∂t
+α0 p̃

∂ p̃

∂ξ
−α1

∂2 p̃

∂ξ2
+α2

∂3 p̃

∂ξ3
= 0,

ξ = x−Ct , (8.174)

where

α0 = C3

C2
b

· B2

B2
1

(8.175)

and the parameters α1, α2, and C are presented in
(8.164).

Let us first discuss a nondissipative case, α1 = 0.
Then (8.174) is called the Korteweg–de Vries (KdV)
equation. The low-frequency dispersion relation (8.163)
shows that every Fourier component of initial arbitrary
pressure perturbation propagates with its own speed,
and the shape of the acoustic signal changes. Since
α2 > 0, the long-wavelength waves propagate with
higher speed than lower-wavelength waves. This means
that dispersion may begin to compete with nonlinear-
ity, which stops shock-wave formation. The competition
between dispersion and nonlinearity leads to the forma-
tion of a so-called soliton.

In order to derive the shape of soliton, here we con-
sider a steady solution of (8.174) in the moving frame

η= ξ−Wt . (8.176)

Then, assuming that there is no pressure perturba-
tion at infinity, (8.174) can be reduced as follows,

α2
d2 p̃

dη2
=−∂Π

∂ p̃
, Π( p̃) =−W p̃2

2
+ α0 p̃3

6
.

(8.177)

It is instructive to use the analogy that (8.177) is
similar to the equation of a point-like particle in a poten-
tial well shown schematically in Fig. 8.15. The structure
of the pressure solitary wave can be viewed as follows:
initially the particle is at point O, which corresponds to
the fact that far away the pressure perturbation is equal
to zero; then the particle slides down to the bottom of
the potential well, point A, and due to a conservation
law climbs up to point B; at point B it stops and moves
all the way back to point O. The solution of (8.177) rep-
resents the shape of the soliton, which in the immovable
frame is

p̃ = 3W

α0
cosh−2

{√
W

4α2
[x− (C+W)t]

}
.

(8.178)

It was mentioned above that a soliton may be
interpreted as a result of the balance between two com-
petitors: nonlinearity and dispersion. To consider this
competition in more detail the KdV equation is consid-
ered in the frame moving with the speed of sound in
a bubbly liquid

∂ p̃

∂t
+α0 p̃

∂ p̃

∂ξ
+α2

∂3 p̃

∂ξ3
= 0, ξ = x−Ct . (8.179)

Then the solitary wave has the following shape,

p̃ = 3W

α0
cosh−2

{√
W

4α2
(ξ−Wt)

}
(8.180)

with a pressure amplitude equal to 3W/α0 and a thick-
ness of about

√
α2/W .

In order to evaluate the effect of nonlinearity let us
consider the simple nonlinear equation

∂ p̃

∂t
+α0 p̃

∂ p̃

∂ξ
= 0 . (8.181)

The factor α0 p̃ stands for the velocity of transportation
of pressure perturbations. Thus, part of the pressure pro-
file which has higher pressure will be translated faster
than the part which has lower pressure. According to
the solitary solution (8.180) the maximum translation
velocity is equal to 3W . The time needed for the pres-
sure peak to be translated the distance of about the
thickness of the pressure wave can be estimated as
tnl ≈ α1/2

2 W−3/2. This amount of time would be needed
to transform the smooth solitary shape to a shock wave.

In order to evaluate the effect of dispersion let us
consider the simple dispersive equation

∂ p̃

∂t
+α2

∂3 p̃

∂ξ3
= 0 . (8.182)

This equation admits harmonic wave-train solutions
of the form exp(ikξ+ iα2k3t). The characteristic wave
numbers contributing to the wave shape of thickness√
α2/W are k ≈√

W/α2. Such wave numbers will grad-
ually change the wave phase on π and thus lead to
a substantial deformation of the wave shape. The time
interval needed for this, td, is calculated as follows:
α2
(√

W/α2
)3

td = π, thus, td ≈ α1/2
2 W−3/2, which is

≈ tnl. So, the time that is needed for nonlinearity to
transform the solitary wave into a shock wave is equal
to the time taken for dispersion to smooth out this wave.

One of the most important results obtained from the
BKdV equation is the prediction of an oscillatory shock
wave. In order to derive the shape of an oscillatory
shock wave we again consider the steady-state solution
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of (8.174) in the moving frame (8.176). Then, assuming
that there is no pressure perturbation at infinity, (8.174)
can be reduced to

α2
d2 p̃

dη2
−α1

d p̃

dη
=−∂Π

∂ p̃
,

Π( p̃) =−W p̃2

2
+ α0 p̃3

6
. (8.183)

Equation (8.183) represents the equation of a point-
like particle in a potential well shown schematically in
Fig. 8.15 with friction. Here p̃ stands for the coordinate
of the particle, minus ξ stands for the time (time passes
from −∞ to +∞), α2 is the mass of the particle, and
α1 is the friction coefficient. An oscillatory shock wave
corresponds to motion of the particle from point O to
the bottom of potential well (point A) with some decay-
ing oscillations around the bottom. Thus, the amplitude
of the shock wave is equal to 2W/α0. Eventually oscil-
lations take place only for relatively small values of the
friction coefficient α1. To derive a criterion for an oscil-
latory shock wave one should investigate a solution of
(8.183) in close vicinity to point A. Assuming that

p̃ = 2W

α0
+ψ(ξ) , (8.184)

where ψ is small, and linearizing (8.183) we get

α2
d2ψ

dξ2
−α1

dψ

dξ
+Wψ = 0 . (8.185)

Equation (8.185) has a solution

ψ = A1 exp(−λξ)+ A2 exp(λξ),

λ= α1

2α2
±
√
α2

1

4α2
2

− W

α1
. (8.186)

It is easy to see that the shock wave has an oscillatory
structure if

α1 <
√

4α2W . (8.187)

In terms of the bubbly fluid parameters, (8.187)
gives a critical effective viscosity

μeff < μcrit = ρl R
2
0ωb

Cb

C

√
1

2

W

C
. (8.188)

The KdV equation for describing the evolution of
long-wavelength disturbances in an ideal liquid with
adiabatic gas bubbles was first proposed in [8.124]. The
solitons and shock waves in bubbly liquids were sys-
tematically investigated in [8.116] in the framework
of the BKdV equation. Good correlation with experi-
mental data was obtained. In [8.115] wave-propagation

phenomena in bubbly liquids were analyzed using
a more advanced and complete mathematical model
that is valid for higher intensities of pressure waves.
In [8.125] the effect of polydispersivity on long small-
amplitude nonlinear waves in bubbly liquids was
considered. It was shown that evolution equations of
BKdV type can be applied for modeling of such waves.
In particular, it was shown that for polydisperse bub-
bly liquids an effective monodisperse liquid model can
be used with the bubble sizes found as ratios of some
bubble size-distribution moments and corrections to the
equation coefficients.

8.10.4 Envelopes of Wave Trains:
The Nonlinear Schrödinger Equation

When the amplitude of an acoustic wave in a fluid is
small enough the respective linearized system of equa-
tions will admit the harmonic wave-train solution

u = a exp {i[kx−ω(k)t]} . (8.189)

If the amplitude is not small enough the nonlinear-
ity cannot be neglected. The nonlinear terms produce
higher harmonics, which react back on the original
wave. Thus, the effect of nonlinearity on this sinusoidal
oscillation is to cause a variation in its amplitude and
phase in both space and time. This variation can be
considered as small (in space) and slow (in time) for
off-resonant situations. To account for a variation of
amplitude and phase it is convenient to consider the
amplitude as a complex function of space and time A.

Here we follow [8.126] to show what kind of equa-
tion arises as the evolution equation for a carrier-wave
envelope in a general dispersive system. A linear sys-
tem has a dispersion relation which is independent of
the wave amplitude

ω= ω(k) . (8.190)

However, it is instructive to assume that the develop-
ment of a harmonic wave in a weakly nonlinear system
can be represented by a dispersion relation which is
amplitude dependent

ω= ω(k, |A|2) . (8.191)

Such a situation was initially uncovered in nonlinear op-
tics and plasma where the refractive index or dielectric
constant of a medium may be dependent on the elec-
tric field. That same situation occurs in bubbly liquids
as well.
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Let us consider a carrier wave of wave number k0
and frequency ω0 = ω(k0). A Taylor expansion of the
dispersion relation (8.191) around k0 gives

Ω =
(
∂ω

∂k

)

0
K + 1

2

(
∂2ω

∂k2

)

0
K2+

(
∂ω

∂(|A|2)

)

0
|A|2 ,
(8.192)

where Ω = ω−ω0 and K = k− k0 are the frequency
and wave number of the variation of the wave-train am-
plitude. Equation (8.192) represents a dispersion rela-
tion for the complex amplitude modulation. Noting that

Ω =−i
∂

∂t
, K = i

∂

∂x
, (8.193)

(8.192) can be treated as the Fourier-space equivalent of
an operator equation that when operating on A yields

i

[
∂

∂t
+
(
∂ω

∂k

)

0

∂

∂x

]
A+ 1

2

(
∂2ω

∂k2

)

0

∂2 A

∂x2

−
(

∂ω

∂(|A|2)

)

0
|A|2 A = 0 . (8.194)

In the frame moving with group velocity

ξ = x−Cgt, Cg = (∂ω/∂k)0 , (8.195)

(8.194) represents the classical nonlinear Schrödinger
(NLS) equation

i
∂A

∂t
= βd

∂2 A

∂ξ2
+γn|A|2 A , (8.196)

βd =−1

2

(
∂2ω

∂k2

)

0
, γn =

(
∂ω

∂(|A|2)

)

0
, (8.197)

which describes the evolution of wave-train envelopes.
Here A is a complex amplitude that can be repre-

sented as follows

A(t, ξ) = a(t, ξ) exp[iϕ(t, ξ)] , (8.198)

where a and ϕ are the (real) amplitude and phase of the
wave train. A spatially uniform solution of (8.196) cor-
responds to an unperturbed wave train. To analyze the
stability of this uniform solution let us represent (8.196)
as a set of two scalar equations,

−a
∂ϕ

∂t
= βd

[
∂2a

∂ξ2
−a

(
∂ϕ

∂ξ

)2
]
+γna3 , (8.199)

∂a

∂t
= βd

(
2
∂a

∂ξ

∂ϕ

∂ξ
+a
∂2ϕ

∂ξ2

)
. (8.200)

It is easy to verify that a spatially uniform solution
(∂/∂ξ ≡ 0) of (8.199) and (8.200) is

a = a0, ϕ =−γna2
0t . (8.201)

The evolution of a small perturbation of this uniform
solution

a = a0+ ã, ϕ =−γna2
0t+ ϕ̃ , (8.202)

is given by the following linearized equations

a0
∂ϕ̃

∂t
+βd

∂2ã

∂ξ2
+2γna2

0ã = 0 . (8.203)

∂ã

∂t
−βda0

∂2 ˜̃ϕ
∂ξ2

= 0 . (8.204)

Now let us consider the evolution of a periodic
perturbation with wavelength L = 2π/K that can be
written as(

ã

ϕ̃

)
=
(

a1

ϕ1

)
exp (σ t+ iKξ) . (8.205)

The stability of the uniform solution depends on the sign
of the real part of the growth-rate coefficient σ . To com-
pute σ we substitute the perturbation (8.205) into the
linearized equations (8.203) and (8.204) and obtain the
following formula for σ

σ2 = β2
d K2

(
2γn

βd
a2

0 −K2
)
. (8.206)

This shows that the sign of the βdγn product is cru-
cial for wave-train stability. If βdγn < 0 then σ is always
an imaginary number, and a uniform wave train is stable
to small perturbations of any wavelength; if βdγn > 0
then in the case that

K < Kcr =
√

2γn

βd
a0 (8.207)

σ is real, and a long-wavelength instability occurs.
This heuristic derivation shows how the equation

for the evolution of the wave-train envelope arises.
The NLS equation has two parameters: βd, γn. Even-
tually, the parameter βd can be calculated from the
linear dispersion relation discussed in detail earlier.
However, the parameter γn has to be calculated from
more-systematic, nonlinear arguments.

The general method of derivation is often given
the name of the method of multiple scales [8.123].
A specific multiscale technique for weakly nonlinear os-
cillations of bubbles was developed in [8.127,128]. This
technique has been applied to analyze pressure-wave
propagation in bubbly liquids.

In [8.129] the NLS equation describing the propa-
gation of weakly nonlinear modulation waves in bubbly
liquids was obtained for the first time. It was de-
rived using the multiple asymptotic technique from the
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governing continuum equations for bubbly liquids pre-
sented in detail in this chapter. The NLS equation was
applied for determination of the regions of modulation
stability/instability in the parametric plane for mono-
and polydisperse bubbly liquids.

To understand the behavior of the coefficients of the
NLS equation one can consider the simplified model of
a monodisperse system presented before. For this we
note that the dispersion relation for bubbly liquids with
compressible carrier liquid has two branches (Fig. 8.13).
The low-frequency branch is responsible for bubble
compressibility, and the high-frequency branch is due
to liquid compressibility.

The first (low-frequency) branch corresponds to
frequencies from zero to ωb, which is the resonance
frequency for bubbles of given size, the second (high-
frequency) branch corresponds to frequencies from
some ω$ to infinity. There are no solutions in the form
of spatially oscillating waves for frequencies between
ωb and ω$; in this range there are exponentially decay-
ing solutions only. This region is known as the window
of acoustic non-transparency.

The coefficient βd is calculated as shown in (8.197).
For bubbly liquids this quantity is always positive for
the low-frequency branch and always negative for the
high-frequency branch.

The coefficient γn (see (8.197)) represents the non-
linearity of the system and is a complicated function
of frequency ω. If it is positive, then long-wavelength
modulation instability occurs. An important region
of instability appears near the frequency ωs, where
Cg(ωs) = Ce, with Ce being the equilibrium speed of
sound (Ce = ω/k for ω→ 0).

For such frequencies the coefficient γn has a singu-
larity and changes sign when the frequency is changing
around this point. Physically this corresponds to the
Benjamin–Feir instability, and can be explained by
transfer of energy from mode 0 (DC mode, or mode of
zero frequency, for which perturbations propagate with
velocity Ce) to the principal mode of the wave train,
which moves with the group velocity Cg.

Accounting for a small dissipation in bubbly liq-
uids leads to the Landau–Ginzburg equation, which
describes how the wave amplitude should decay due to
dissipation. This part includes the dissipation effect due
to viscosity and due to internal bubble heat transfer. The
difference between the viscous and thermal effects for
bubbles is that for an oscillating bubble there is a π/2
shift in phase between the bubble volume and the heat
flux, while the loss of energy due to viscous dissipa-
tion occurs in phase with bubble oscillation. This phase

shift results in the effect that the pressure in the mixture
has some additional shift in phase relative to the mix-
ture density (determined mainly by the bubble volume).
This, in fact, can be treated as a weak dispersive effect
and included to the dispersion relation in the third-order
approximation.

It is interesting to note that the system of govern-
ing equations presented can be also obtained as Euler
equations for some Lagrangian [8.130, 131]. The vari-
ation formulation might be very useful for the analysis
of nonlinear acoustics phenomena in bubbly liquids.

8.10.5 Interaction of Nonlinear Waves:
Sound–Ultrasound Interaction

The nature of the interactions among individual wave
components is quite simple and can be explained by
considering the nature of dispersive waves in general.

Suppose u represents some property of the fluid mo-
tion, for example the fluid velocity. Then infinitesimal
(linear) plane one-dimensional sound waves in a pure
liquid are governed by the classical linear wave equation

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0 , (8.208)

where c is the speed of sound. This equation has ele-
mentary solutions of the type

u = A exp[i(kx±ωt)], ω= ck , (8.209)

describing the propagation of a sinusoidal wave with
a definite speed c independent of the wavelength
(λ = 2π/k, k is the wavenumber). These waves are
called nondispersive.

However, many of the waves encountered in fluids
do not obey the classical wave equation, and their phase
velocity may not be independent of the wavenumber.
An example is wave propagation in bubbly liquids.

More generally, for an infinitesimal disturbance, the
governing equation is of the type

L(u) = 0 , (8.210)

where L is a linear operator involving derivatives with
respect to position and time. The form of this operator
depends upon the fluid system and the particular type
of wave motion considered. Again, this linear equation
admits solutions of the form

u = A exp[i(kx±ωt)] , (8.211)

provided that ω and k satisfy a so-called dispersion
relation

D(ω, k) = 0 (8.212)
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that is characteristic for the fluid system and of the type
of wave motion considered.

These infinitesimal wave solutions are useful since
in many circumstances the nonlinear effects are weak.
Thus, the infinitesimal amplitude solution in many cases
represents a very useful first approximation to the mo-
tion. The interaction effects can be accounted for by
considering an equation of the form

L(u) = εN(u) , (8.213)

where N is some nonlinear operator whose precise na-
ture again depends upon the particular fluid system
considered, and ε is a small parameter characterizing
the amplitude of the motion. Solutions to this equation
can be built by successive approximation.

Let us consider two interacting wave trains, given to
a first approximation by solutions to the linear equation
(8.210)

u1 = A1 exp[i(k1x−ω1t)] ,
u2 = A2 exp[i(k2x−ω2t)] , (8.214)

where the individual wave numbers and frequencies are
related by the dispersion relation (8.212): D(ωi , ki )= 0;
i = 1, 2. These expressions are to be substituted into the
small nonlinear term εN(u) of (8.213).

If the lowest-order nonlinearity is quadratic, this
substitution leads to expressions of the type

≈ exp i[(k1± k2)x− (ω1±ω2)t] . (8.215)

These terms act as a small-amplitude forcing function to
the linear system and provide an excitation at the wave
numbers (k3 = k1±k2) and frequencies (ω3 =ω1±ω2).
In general, the response of the linear system to this
forcing is expected to be small (≈ ε). However, if the
wavelength and frequency of the forcing are related by
the dispersion relation (8.212) as well: D(ω3, k3) = 0,
then we have a case which normally is referred to
as nonlinear resonance wave interaction. Similarly to
a well-known resonance behavior of a linear oscillator,
the amplitude of the third component

u3 = A3 exp[i(k3x−ω3t)] (8.216)

grows linearly at the beginning. Later the energy drain
from the first two components begins to reduce their
amplitudes and consequently the amplitude of the forc-
ing function.

Let us now consider a set of three wave trains under-
going resonant interactions. The solutions representing
these wave trains would be expected to look like the so-
lutions of the linear problem, although the amplitudes

Ai (i = 1, 2, 3) may possibly vary slowly with time

u =
3∑

i=1

{
Ai (εt) exp[i(ki x−ωi t)]

+A∗i (εt) exp[−i(ki x−ωi t)]
}
. (8.217)

Here it is used that u is necessarily real. Substitu-
tion of this set into (8.213) with subsequent averaging
over a few wavelengths leads to a system of equations
for the amplitudes of the interacting wave trains. This
system basically describes the energy balance between
these wave components.

Thus, the existence of energy transfer of this kind
clearly depends upon the existence of these resonance
conditions. The classic example of dispersion relations
which allow for such resonance conditions are capillary
gravity waves on the surface of deep water [8.132]. This
example, however, is far from the scope of the present
section.

In this section the nonlinear acoustics of liquids with
bubbles is discussed as an example of a multiphase
fluids with complicated and pronounced nonlinearity
and dispersion. The dispersion encountered there may
also lead to a special nonlinear wave interaction called
long-wave–short-wave resonance in this context.

In [8.133] it was suggested a new form of triad reso-
nance between three waves of wave numbers k1, k2, and
k3 and frequencies ω1, ω2, and ω3, respectively, such
that

k1 = k2+ k3, ω1 = ω2+ω3 . (8.218)

It was suggested to consider k1 and k2 to be
very close: k1 = k+ ε, k2 = k− ε and k3 = 2ε (ε
 k).
The resonance conditions (8.218) are automatically
achieved if

ω(k+ ε)−ω(k− ε) = ω3 (8.219)

or

2ε
dω

dk
= ω3 . (8.220)

That means the group velocity of the short
wave (wave number k) equals the phase velocity of
the long wave (wave number 2ε). It is called the
long-wave–short-wave resonance. At first sight this res-
onance would appear hard to achieve but it is clearly
possible from Fig. 8.13.

Let us identify the lower (or low-frequency) and
upper (or high-frequency) branches of the dispersion re-
lation with subscripts “−” and “+”, respectively. The
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long-wave asymptotics of the low-frequency branch,
ωl(kl) = ω− |k→0, and the short-wave asymptotics of
the high-frequency branch, ωs(ks) = ω+ |k→∞, can be
written as follows,

ωl = cekl+O(k3
l ), ωs = cfks+O(k−1

s ) , (8.221)

where

ce = ωl

kl
|kl→0, cf = dωs

dks
|ks→∞ , (8.222)

are the equilibrium and the frozen speeds of sound in
the bubbly mixture.

It is easy to see that dispersion relation (8.162)
allows the existence of the long-wave–short-wave reso-
nance. Since cf > ce, there is always some wave number
ks and frequency ωs (Fig. 8.13) such that its group ve-
locity is equal to the equilibrium velocity of the mixture.

It should be noted that the long-wave–short-wave
resonance in bubbly liquids has nothing to do with the
resonance of bubble oscillations. Suppose we consider
water with air bubbles of radius R0 = 0.1 mm un-
der normal conditions (p0 = 0.1 MPa, ρl0 = 103 kg/m3)
and with a volume gas content αg0 = 2.22 × 10−4. The
wavelengths of the short and long waves are then
λs ≈ 0.67 cm and λl ≈ 6.7 m, respectively. The equi-
librium speed of sound is ce ≈ 730 m/s. Thus, the
frequency of the long wave is fl = ce/λl ≈ 110 Hz
(audible sound). Obviously, the short-wave frequency
fs ≥ 35.6 kHz lies in the ultrasound region. More-
over, a decrease in the bubble radius R0 leads to

increasing the short-wave frequency fs. Hence, the
long-wave–short-wave interaction in a bubbly fluid can
be considered as the interaction of ultrasound and audi-
ble sound propagating in this medium.

The long-wave–short-wave resonance interaction
for pressure waves in bubbly liquids was investigated
in [8.134–137] using the method of multiple scales. In
particular, it was shown that in a nondissipative bubbly
medium this type of resonance interaction is described
by the following equations [8.138]

∂L

∂τ
+ α

2ce

∂|S|2
∂ξ

= 0 , i
∂S

∂τ
+β ∂

2S

∂ξ2
= δLS ,

(8.223)

where L and S are normalized amplitudes of the
long- and short-wave pressure perturbations, τ is the
(slow) time and ξ is the space coordinate in the frame
moving with the group velocity; α and β are parameters
of interaction.

It turns out that in bubbly fluids, parameters of in-
teraction can vanish simultaneously at some specific
ultrasound frequency [8.137]. The interaction between
sound and ultrasound is then degenerate, i. e., the
equations for interaction are separated. However, such
a degeneracy does not mean the absence of interac-
tion. The quasi-monochromatic ultrasonic signal will
still generate sound but of much smaller intensity than
in the nondegenerate case.

8.11 Sonoluminescence

Sound waves not only give rise to self-steepening and
shock waves but may even become the driving agent
to the emission of light, a phenomenon called sono-
luminescence. It is mediated by bubbles in the liquid
that are driven to strong oscillations and collapse [8.22–
32, 40–51]. The detection of the conditions when a sin-
gle bubble can be trapped in the pressure antinode of
a standing sound wave [8.139] has furthered this field
considerably.

The trapping of a bubble in a sound field is due to
the acoustic radiation forces acting on objects in a sound
field (primary Bjerknes force) [8.140–145]. In the case
of a spherical bubble in a harmonic standing sound field
of frequency fa and amplitude pa(x),

pac(x, t) = pa(x) sin(2π fat) , (8.224)

the net force is given by

FB(x) =−〈V (t)∇ pac(x, t)〉τ , (8.225)

where V (t) = (4π/3R3(t) is the volume of the oscil-
lating bubble, ∇ pac(x, t) is the gradient of the sound
field and 〈. . . 〉τ denotes averaging over a time interval
τ (often one period of the sound field). The bubble is
located at x, where it encounters the pressure ampli-
tude pa(x) modulated in time harmonically. The force
on the bubble is a second-order effect, i. e. nonlinear,
but strong enough to trap bubbles under appropriate
conditions. For small amplitude (linear) bubble oscilla-
tions (appropriate V (t) in (8.225)) bubbles driven below
their resonance frequency move toward the pressure
antinode, whereas bubbles driven above their resonance
frequency move away from it to the pressure node. The
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Fig. 8.16 Positional stability diagram for bubbles in wa-
ter in a standing sound field of fa = 20 kHz. Attractive
(green area) and repelling (red area) Bjerknes force with
respect to the pressure antinode in the standing sound field
for different bubble sizes normalized to the resonance bub-
ble size at 20 kHz of Rn0 = 176.8 μm. pstat = 100 kPa,
σ = 0.072 N/m, γ = 1.67

linear resonance frequency, f0, of a bubble with radius
at rest of Rn0, when surface tension σ is included, is
given by

f0 = 1

2πRn0
√
ρl

√

3γ (pstat+ 2σ

Rn0
− pv)− 2σ

Rn0
,

(8.226)

with the further parameters density of the liquid ρl,
static pressure pstat, and (constant) vapor pressure pv.

For nonlinear bubble oscillations the situation gets
more complex. A bubble trapped at low driving may
be expelled from the pressure antinode at high driv-
ing [8.146–149]. This is due to the nonlinearity of
bubble oscillations of finite amplitude that enter (8.225)
via V (t). For getting an overview which bubbles can be
trapped for a given driving frequency, positional stabil-
ity diagrams may be calculated. Figure 8.16 gives an
example for a driving frequency of 20 kHz.

For a bubble to become stably trapped further stabil-
ity criteria must be fulfilled, in particular that the bubble
does not go into solution or grow (diffusional stabil-
ity) [8.150–152] and does not disintegrate by too strong
surface oscillations (shape stability) [8.153–156]. Each
of these criteria impose further restrictions on the re-
gion in parameter space, where a bubble can be stably
trapped [8.157, 158]. The notion of a bubble habi-
tat [8.31,159] has been introduced for visualizing these

0 50 100 150 200

pa (kPa)

Rn (µm)

300

200

100

0

Fig. 8.17 Bubble habitat diagram for bubbles in water
in a standing sound field of fa = 20 kHz. Bubble habi-
tat (green area), dissolving bubbles (lower white area),
shape unstable bubbles (upper white area). Above the
thin red line in the middle of the diagram the bubble
is positionally unstable (compare Fig. 8.16 for the com-
plete positional unstability region), in the red areas being
solely positionally unstable, in the white areas above the
line being additionally shape unstable. Resonance bub-
ble radius at 20 kHz is Rn0 = 176.8 μm. pstat = 100 kPa,
σ = 0.072 N/m, γ = 1.67

restrictions. More precisely, the bubble habitat is that
region in parameter space, where positional and shape
stability criteria are fulfilled for a nondissolving bubble.

An example of a bubble habitat diagram is given in
Fig. 8.17 for bubbles in a standing sound field of fre-
quency fa = 20 kHz. The different stability/instability
areas are quite involved and overlap leaving the small
green area as the bubble habitat. In the habitat the bub-
bles grow by rectified diffusion and will finally reach
one of its stability borders. The fate of the bubble then
depends on the type of the border and its slope. When
the bubble gets shape unstable, it will be fragmented
and may start anew, when the fragment or fragments fall
into the green area. When it encounters the positional
stability border, it will be expelled from the pressure
antinode with unknown fate. The dissolution border can
be reached from within the habitat only at positive slope
of the border; the negative slope border is an unsta-
ble equilibrium. At the positive slope border the bubble
must stop as it simultaneously wants to grow and to dis-
solve. At this bubble size and driving amplitude of the
sound field the bubble then is stable and settles in the
pressure antinode.

It is seen from Fig. 8.17 that the regions of posi-
tive slope are very small at normal conditions and thus
bubbles are difficult to trap [8.160]. However, when the
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Fig. 8.18 Bubble habitat diagram for bubbles in water in
a standing sound field of fa = 20 kHz with reduced gas
content. Bubble habitat (green area), dissolving bubbles
(lower white area below the green line), shape unstable
bubbles (upper white area above the green line; plung-
ing into the lower white area not shown). Above the red
line in the middle of the diagram the bubble is position-
ally unstable, in the red areas being solely positionally
unstable, in the white areas above the red line being ad-
ditionally shape unstable. The white shape unstable region
between the green and red line eliminates part of the habi-
tat. Resonance bubble radius at 20 kHz is Rn0 = 176.8 μm.
pstat = 100 kPa, σ = 0.072 N/m, γ = 1.67, 0.00001 of the
saturation gas content

content of noncondensable gas is lowered, the habitat
changes and opens up a connected window for bubbles
to be stably trapped. This is shown in Fig. 8.18, where
the gas content has been lowered to 0.00001 of its sat-
uration concentration and again fa = 20 kHz is taken as
the sound field frequency. An extended positive slope of
the habitat–diffusion border (green line) is found that is
cut by shape instability. Thus shape instability confines
sonoluminescence to small bubbles in the trapping case.
More habitat diagrams can be found in [8.159].

In Fig. 8.19 a basic arrangement for single-bubble
sonoluminescence (SBSL) is shown where a bubble is
trapped in a rectangular container filled with water. The
sound field is produced by a circular disc of piezoelec-
tric material glued to the bottom of the container. The
bright spot in the upper part of the container is the light
from the bubble. It is of blueish white color. The nee-
dle sticking out into the container in the upper left part
of the figure is a platinum wire for producing a bub-
ble via a current pulse. The bubble is then driven via
acoustic radiation forces into its position where it is

Fig. 8.19 Photograph of a rectangular container with light-
emitting bubble. There is only one transducer glued to
the bottom plate of the container (dimensions: 50 mm ×
50 mm × 60 mm). The piezoelectric transducer (dimen-
sions: height 12 mm, diameter 47 mm) sets up a sound field
of high pressure (approx. 1.3 bar) at a frequency of approx.
21 kHz (courtesy of R. Geisler)

trapped almost forever. The bubble exerts large oscil-
lations that can be photographed [8.161]. Figure 8.20
shows a sequence of the bubble oscillation of a light-
emitting bubble. A full cycle is shown after which the
oscillation repeats. Indeed, this repetition has been used
to sample the series of photographs by shifting the in-
stant of exposure by 500 ns from frame to frame with
respect to the phase of the sound wave. The camera is
looking directly into the illuminating light source (back
illumination). The bubble then appears dark on a bright
background because the light is deflected off its surface.
The white spot in the middle of the bubble results from
the light passing the spherical bubble undeflected.

Upon the first large collapse a shock wave is ra-
diated (Fig. 8.21). At the 30 ns interframe time the 12
frames given cover 330 ns, less than one interframe time
in Fig. 8.20. The shock wave becomes visible via deflec-
tion of the illuminating light at the density variation in
the shock wave. The bubble expands on a much slower
time scale than the speed of the shock wave and is
seen as a tiny black spot growing in the middle of the
ring of the shock wave. Measurements of the shock ve-
locity near the bubble at collapse (average from 6 to
73 μm) leads to about 2000 m/s, giving a shock pressure
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of about 5500 bar [8.162]. Higher-resolution measure-
ments have increased these values to about 4000 m/s
and 60 kbar [8.163].

The bubble oscillation as measured photographi-
cally can be compared with theoretical models for the
motion of a bubble in a liquid. A comparison is shown
in Fig. 8.22. The overall curve is reproduced well, al-
though the steep collapse is not resolved experimentally.
For details the reader is referred to [8.32].

There is the question whether shock waves are also
emitted into the interior of the bubble [8.164–167].
Theoretically, shock waves occur in certain models,
when the collapse is of sufficient intensity. Recently, the
problem has been approached by molecular dynamics
calculations [8.168–175]. As the number of molecules
in a small bubble is relatively small, around 109 to
1010 molecules, this approach promises progress for
the question of internal shock waves. At present mo-
lecular dynamics simulations are feasible with several
million particles inside the bubble. Figure 8.23 gives
a graphical view on the internal temperature distribu-
tion inside a collapsing sonoluminescence bubble with
near-adiabatic conditions (reflection of the molecules
at the inner boundary of the bubble) for six different
times around maximum compression. The liquid mo-
tion and the inner molecular dynamics calculations are
coupled via the gas pressure (at the interface), which is
determined from the molecular dynamics of the 106 par-
ticles and inserted into the Rayleigh–Plesset equation
giving the motion of the bubble wall. A strong focus-
ing of energy inside the bubble is observed under these
conditions. An inward-traveling compression wave fo-
cuses at the center and yields a core temperature of more
than 105 K. This temperature is an overestimate as no
energy-consuming effects are included.

The temperature variation inside the bubble with
time can be visualized for spherical bubbles in a sin-

Fig. 8.21 Shock wave from a trapped, sonoluminescing bubble driven at 21.4 kHz and a pressure amplitude of 132 kPa.
The interframe time is 30 ns. Picture size is 160 × 160 μm (courtesy of R. Geisler)

Fig. 8.20 Photographic series of a trapped, sonoluminescing bub-
ble driven at 21.4 kHz and a pressure amplitude of 132 kPa. The
interframe time is 500 ns. Picture size is 160 × 160 μm (courtesy of
R. Geisler)

gle picture in the following way (Fig. 8.24). The vertical
axis represents the radial direction from the bubble cen-
ter, the horizontal axis represents time and the color
gives the temperature in Kelvin according to the color-
coded scale (bar aside Fig. 8.24). The upper solid line
in Fig. 8.24 depicts the bubble wall; the blue part is
water. In this case an argon bubble with water vapor
is taken and chemical reactions are included. Then the
temperature is lowered significantly by the endothermal
processes of chemical species formation, for instance of
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OH− radicals. The temperature drops to about 40 000 K
in the center [8.171].

Experimental investigations suggest that an increase
of the driving frequency may lead to stronger col-
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Fig. 8.23 Temperature distribution inside a collapsing sonoluminescence bubble filled with argon, one million particles,
radius of the bubble at rest 4.5 μm, sound pressure amplitude 130 kPa, sound field frequency 26.5 kHz, total time covered
106 ps (courtesy of B. Metten [8.169])

Fig. 8.22 Radius-time curve of a trapped bubble in a
water-glycerine mixture derived from photographic obser-
vations. A numerically calculated curve (Gilmore model)
is superimposed on the experimental data points (open
circles). The calculation is based on the following param-
eters: driving frequency f0 = 21.4 kHz, ambient pressure
p0 = 100 kPa, driving pressure p0 = 132 kPa, vapor pres-
sure pv = 0, equilibrium radius Rn = 8.1 μm, density of
the liquid ρ = 1000 kg/m3, viscosity μ= 0.0018 Ns/m2

(measured) and surface tension σ = 0.0725 N/m. The gas
within the bubble is assumed to obey the adiabatic equa-
tion of state for an ideal gas with κ = 1.2 (measured points
courtesy of R. Geisler) �

lapses and higher temperatures [8.176, 177]. Therefore
molecular dynamics calculations have been done with
a driving frequency of 11 MHz for a small argon bubble
with a radius at rest of 250 nm. Driving pressure am-
plitude is 100 bar, necessary to expand a small bubble
to larger radii for storing energy. In this case, the bub-
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Fig. 8.25a–d Bubble collapse diagrams for a small argon bubble in water in a standing sound field of frequency fa =
11 MHz. Space-time evolution of (a) temperature, (b) argon density, (c) H2O vapor density an (d) light emission power
density in the final stages of collapse and the first stages of rebound. Bubble contents: argon and water vapor including
vapor chemistry. About 700 000 initial ensemble particles. Bubble radius at rest Rn = 250 nm, pa = 100 bar, Twater =
290 K (courtesy of D. Schanz)

Fig. 8.24 Distribution of temperature inside an acousti-
cally driven bubble in dependence on time. Molecular
dynamics calculation with argon and water vapor including
chemical reactions (after [8.171]) �

ing. Figure 8.25 gives the results for the evolution of
temperature, argon density, water vapor density and
the radiated light flash in a small interval around bub-
ble collapse (≈ 10 ps). A hot spot at the bubble center
is formed shortly before the bubble minimum with a
maximum core temperature of 396 000 K and about
2 ps flash duration (Fig. 8.25a). In a collapsing bub-
ble species are separated according to their molecular
weight called vapor trapping or more generally species
segregation [8.169, 173–175, 178, 179], whereby the
lighter species accumulate in the bubble center region
and the heavier particles near the bubble wall. This can
be seen in Fig. 8.25b,c with the argon molecules accu-
mulating at the bubble wall (Fig. 8.25b) and the vapor
molecules being driven to the bubble center (Fig. 8.25c).
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The water vapor is decomposed as soon as the tempera-
ture reaches values above ≈ 8500 K and is almost gone
shortly after the onset of the hot spot and the start of the
light emission (Fig. 8.25d). A density wave is running to
the bubble center, best seen in Fig. 8.25c, arriving there
about 2 ps before the bubble minimum. The bubble
collapse is stopped, when the reflected, backward run-
ning density wave reaches the bubble wall, best seen in
Fig. 8.25b. The light emission (Fig. 8.25d) is calculated
according to a Bremsstrahlung model [8.165], assuming
an optically thin plasma. As expected, the light emis-
sion is restricted in its duration to the hot spot and is
of similar duration, ≈ 1.9 ps. The spatial extension of
the light emission (≈ 100 nm in diameter) is slightly
extended toward the wall because of the larger shell vol-
ume at larger distances from the center contributing to
the emission.

The highest core temperature so far reached in mo-
lecular dynamics calculations for an argon bubble in
water including water vapor and vapor chemistry is
1 180 000 K [8.173]. It is attained for a bubble radius
at rest of 70 nm, a driving frequency of 11 MHz and
a driving pressure of 100 bar.

In the quest for even higher temperatures (inertial
confinement fusion in mind), the conditions for reach-
ing high temperatures under the conditions of single
bubble (sono)luminescence must be discussed. Water
vapor with its endothermic decomposition and reaction
products uses up part of the available energy during
bubble compression leading to lower core tempera-
tures [8.180] as do volatile additives (alcohols) to the
water [8.181]. The basic idea, therefore, is straight-
forward: put as few as possible decomposable and
endothermically reacting molecules into the bubble.
There are two solutions to the problem, either working
with ever smaller bubbles for a given liquid (see before,
70 nm bubble) or use a liquid with lower vapor pressure.
The best solution will make use of both approaches.
Additionally, the new liquid should be transparent in
a large range of wavelengths for ease of access to the
light emission. This excludes mercury, for instance.

The first solution has been tested experimen-
tally [8.176, 177] for noble gas bubbles in water and
by molecular dynamics calculations [8.173–175] and
is shown to work, i. e., to lead to higher temperatures.
The small bubbles, however, need high acoustic pres-
sure amplitudes to drive them into expansion and high
frequencies to keep the maximum bubble radius suf-
ficiently small for not to accumulate too many vapor
molecules by evaporation in the expansion phase. Thus,
there will be a natural frontier, albeit not yet finally

explored, by the small bubble sizes and the high fre-
quencies.

The second solution has led to essentially two liq-
uids with low vapor pressure that are presently intensely
studied, sulfuric acid [8.182–204] and phosphoric
acid [8.183, 184, 201, 205–211]. A strong increase in
emitted light intensity has been found compared to
water (up to three orders of magnitude [8.185, 186]),
whereas the (spectroscopic) emission temperatures do
not change in magnitude. This can be explained by the
much larger bubbles that form and are trapped or al-
most trapped (for sulfuric acid [8.188, 197]) and the
stronger emission for larger bubbles ([8.32, Fig. 38],
where it is shown for bubbles in water). Simultaneously
the pulse duration is much larger [8.188, 197] as it is
positively correlated with the maximum bubble radius
([8.31, Fig. 85], where it is shown for laser-induced
bubbles and trapped bubbles in water). Therefore the
emission temperatures may stay the same and yet the
brightness increases [8.205].

For single bubble collapse in water spectroscopic
temperatures (fitted to an assumed blackbody) range
from ≈ 6000 to ≈ 20 000 K [8.212], whereas emission
temperatures between ≈ 8000 K and ≈ 15 000 K have
been observed in 85 wt % H2SO4 (aq.) at 30 kHz driv-
ing, albeit for moving bubbles [8.185] prone to a finally
aspherical collapse. Up to ≈ 10 000 K are reported for
phosphoric acid, again for a moving bubble [8.206], and
under water hammer conditions, conditions also leading
to aspherical bubble collapse [8.210]. Aspherical bubble
collapse diminishes light emission (presumably along
with lowering the temperature), as has been demon-
strated with laser-induced bubbles [8.213]. The reason,
why bubbles in sulfuric and phoshoric acid cannot be
stabilized so easily in position for spherical collapse
(and higher temperatures), has to be sought for in their
relatively high viscosity. Viscosity introduces a history
force [8.214] with the tendency to lower the positional
stability of a bubble in a standing sound field [8.215].
However, windows of positional stability have been
found, although not for all aequous concentrations of
sulfuric acid [8.192, 195, 197].

The spectroscopic data are from the visible part of
the bubble and there are speculations about a dense core
inside the collapsed bubble with a high degree of ioniza-
tion [8.200,208,211] and possibly higher temperatures.
This may limit the observable temperatures as with the
stars, supposed to have much higher core temperatures.
Moreover, the spectroscopic data usually are averages
over the flash duration. Time resolved spectra of the
flashes (≈ 10 ns duration) from single krypton bubbles
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in sulfuric acid (85 wt %) driven at 26.3 kHz and 1.4 bar
reveal a changing spectrum strongly going from red to
violet in 10 ns and ending in the violet region [8.196].

Fitting blackbody curves to the spectra gives an aver-
age temperature of 11 800 K, but a peak temperature of
≈ 100 000 K [8.196].

8.12 Acoustic Chaos

Nonlinearity in acoustics not only leads to shock waves
and, as just demonstrated, to light emission, but to even
deeper questions of nonlinear physics in general [8.4].
In his curiosity, man wants to know the future. Knowl-
edge of the future may also be of help to master one’s
life by taking proper provisions. The question therefore
arises: how far can we look into the future and where
are the difficulties in doing so? This is the question of
predictability or unpredictability. In the attempt to solve
this question we find deterministic systems, stochastic
systems and, nowadays, chaotic systems [8.216–219].
The latter are special in that they combine deterministic
laws that nevertheless give unpredictable output. They
thus form a link between deterministic and stochastic
systems.

8.12.1 Methods of Chaos Physics

A description of the methods developed to handle
chaotic systems, in particular in acoustics, has been
given in [8.54]. The main question in the context
of experiments is how to connect the typically one-
dimensional measurements (a time series) with the
high-dimensional state space of theory (given by the
number of variables describing the system). This is done
by what is called embedding (Fig. 8.26 and [8.220–
222]) and has led to a new field called nonlinear time-
series analysis [8.223–225].

The embedding procedure runs as follows. Let
{p(kts), k = 1, 2, . . . , N} be the measured time series,

t

Experiment

Measurement Embedding

Trajectory in state spaceTi

φ

φ

me series

x1

x4

x2

x3

Fig. 8.26 Visualization of the embedding procedure

then an embedding into a n-dimensional state space
is achieved by grouping n elements each of the time
series to vectors pk

(n) = [p(kts), p(kts+ tl), . . . , p(kts+
(n−1)tl)], k = 1, 2, . . . , N −n, in the n-dimensional
state space. There ts is the sampling interval at which
samples of the variable p are taken. The delay time tl is
usually taken as a multiple of ts, tl = lts, l = 1, 2, . . .,
to avoid interpolation. The sampling time ts, the de-
lay time tl and the embedding dimension n must all be
chosen properly according to the problem under investi-
gation. Figure 8.27 demonstrates the effect of different
delay times with experimental data from a chaotically
oscillating periodically driven pendulum. When the de-
lay time tl is too small then from one embedding vector
to the next there is little difference and the embed-
ded points all lie along the diagonal in the embedding
space (Fig. 8.27a). On the other hand, when the de-
lay time tl is too large, the reconstructed trajectory
obtained by connecting successive vectors in the em-
bedding space becomes folded and the reconstruction
becomes fuzzy (Fig. 8.27c). The embedding dimension
n is usually not known beforehand when an unknown
system is investigated for its properties. Therefore the
embedding is done for increasing n until some crite-
rion is fulfilled. The basic idea for a criterion is that
a structure in the point set obtained by the embed-
ding should appear. Then some law must be at work
that generates it. The task after embedding is there-
fore to find and characterize the structure and to find
the laws behind it. The characterization of the point set
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a) b) c)

Fig. 8.27a–c Three embeddings with different delay times tl for experimental data obtained from a chaotically oscillat-
ing, periodically driven pendulum (courtesy of U. Parlitz)

obtained can be done by determining its static struc-
ture (e.g., its dimension) and its dynamic structure (e.g.,
its expansion properties via the dynamics of nearby
points).

The dimension easiest to understand is the pointwise
dimension. It is defined at a point P of a point set M
by N(r) ≈ r D, r → 0, where N(r) is the number of
points of the set M inside the ball of radius r around P
(Fig. 8.28). Examples for a line and a surface give the
right integer dimensions of one and two (Fig. 8.29), be-
cause for a line we have N(r) ≈ r1 for r → 0 and thus
D = 1, and for a surface we have N(r) ≈ r2 for r → 0
and thus D = 2.

Chaotic or strange attractors usually give a fractal
(noninteger) dimension. The pointwise dimension may
not be the same in this case for each point P. The dis-
tribution of dimensions then gives a measure of the
inhomogeneity of the point set. Figure 8.30 gives an
example of a fractal point set. It has been obtained by
sampling the angle and the angular velocity of a pen-

M

P r

Fig. 8.28 Notations for the definition of the pointwise di-
mension

dulum at a given phase of the periodic driving for
parameters in a chaotic regime.

To investigate the dynamic properties of a (strange
or chaotic) set the succession of the points must be
retained. As chaotic dynamics is brought about by
a stretching and folding mechanism and shows sensi-
tive dependence on initial conditions [8.54] the behavior
of two nearby points is of interest: Do they separate or
approach under the dynamics? This behavior is quanti-
fied by the notion of the Lyapunov exponent. In Fig. 8.31
the calculation scheme [8.226] is depicted. It gives the
maximum Lyapunov exponent via the formula

λmax = 1

tm− t0

m∑

k=1

log2
L ′(tk)

L(tk−1)

[
bit

s

]
. (8.227)

When the largest Lyapunov exponent is positive, the
system is said to be chaotic. A whole set of Lyapunov
exponents can be defined, the Lyapunov spectrum of
a dynamical system, giving the expansion properties in
suitably defined eigenspaces. A comparison of methods
for calculation of the Lyapunov spectrum can be found
in [8.227]. When the Lyapunov spectrum from em-
bedded experimental data is to be calculated, routinely
the problem of spurious Lyapunov exponents arises,

P rP
r

Fig. 8.29 Example of pointwise dimensions for one-
dimensional (a curve) and two-dimensional (a surface)
point sets
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Fig. 8.30 The point set of a strange attractor of an experi-
mental, driven pendulum (courtesy of M. Kaufmann)

Fiducial trajectoryL(t 0)
t 0

t 1 t 2

L'(t 1)

L(t 1)

L'(t 2)

L(t 2)

L'(t 3)

t 3

Fig. 8.31 Notations for the definition of the largest Lya-
punov exponent
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Fig. 8.32 Operations in nonlinear time-series analysis
(courtesy of U. Parlitz)

when the dimension of the embedding space is getting
larger than the dimension of the embedded attractor.
The extra, superfluous Lyapunov exponents are not nec-
essarily the lowest ones. The problem can be solved
by the method of time reversal of the data [8.228].
The true Lyapunov exponents then change sign due to
their connection with the inverted dynamics, whereas
the spurious ones do not as they are not connected with
a real dynamics. The more Lyapunov exponents are pos-
itive, the more chaotic the system behaves. A system
with a large number of positive Lyapunov exponents
approaches a stochastic behavior.

As space does not permit us to dig deeper into the
operations possible with embedded data, only a graph
depicting the possible operations in nonlinear time-
series analysis is given in Fig. 8.32. Starting from the
time series obtained by some measurement, the usual
approach is to do a linear time-series analysis, for in-
stance by calculating the Fourier transform or some
correlation. The new way for chaotic systems proceeds
via embedding to a reconstructed state space. There
may be some filtering involved in between, but this is
a dangerous operation as the results are often difficult
to predict. For the surrogate data operation and nonlin-
ear noise reduction the reader is referred to [8.223–225].
From the characterization operations we have men-
tioned here the dimension estimation and the largest
Lyapunov exponent or Lyapunov spectrum. Various sta-
tistical analyses can be done and the data can also be
used for modeling, prediction and controlling the sys-

Hollow
cylinder of
piezoelectric
material

Liquid filled
container

Hydrophone



Fig. 8.33 Cylindrical transducer submerged in water for
bubble oscillation, cavitation noise, and sonoluminescence
studies

Part
B

8
.1

2



304 Part B Physical and Nonlinear Acoustics

Fig. 8.34 Example of the filamentary bubble pattern
(acoustic Lichtenberg figure) inside the cylinder in the
projection along the axis of the transducer (courtesy of
A. Billo)

tem. Overall, nonlinear time series analysis is a new
diagnostic tool for describing (nonlinear) systems.

8.12.2 Chaotic Sound Waves

One of the first examples of chaotic dynamics and
where these methods were first applied was acous-
tic cavitation [8.4, 53, 229]. To investigate this phe-
nomenon, the rupture of liquids by sound waves and the
phenomena associated with it, an experimental arrange-
ment as depicted in Fig. 8.33 was used. A cylindrical
transducer of piezoelectric material is used to gener-
ate a strong sound field in water. A typical transducer
was of 76 mm length, 76 mm inner diameter, and 5 mm
wall thickness submerged in a water-filled glass con-
tainer. Cylinders of different size were available driven
at different frequencies between 7 kHz and 23 kHz.
A standing acoustic wave is set up inside the cylinder
having its maximum pressure amplitude along the axis
of the transducer. A hydrophone monitors the sound
output of the liquid. Some electronics and a computer

Fig. 8.35 Power spectra of cavitation noise taken at a driv-
ing frequency of f0 = 23 kHz, marked in the figures by
small triangle. The driving pressure was increased from
one graph to the next, giving first a periodic, anharmonic
signal (top), then subharmonic motion with lines at mul-
tiples of f0/2 (period 2 motion, top next), then period 4
motion with lines at multiples of f0/4 (third plot) and fi-
nally a broadband spectrum indicative of chaotic behavior
(bottom) �

surround the experiment to drive the cylinder and to
store the sampled pressure data from the hydrophone.
When cavitation is fully developed, a dentritic filamen-
tary bubble pattern is set up in the cylinder (Fig. 8.34).

When the sound field amplitude is raised the whole
bubble field undergoes a period-doubling cascade to
chaos [8.31, 32, 230], a strong indication that chaotic
dynamics has been reached and that the broadband
sound spectrum then encountered after successive pe-
riod doubling (Fig. 8.35) is not of stochastic origin. It
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should be noted, however, that the noise floor may have
a stochastic part from fluctuating conditions actually be-
ing present in the bubble cloud as given in Fig. 8.34. The
series of sound spectra as given in Fig. 8.35 can be vi-
sualized in a single diagram, called spectral bifurcation
diagram, where the spectral amplitude is color coded
and plotted versus some parameter, then called control
parameter [8.53]. Figure 8.36 gives an example of the
onset of cavitation inside the cylinder with the succes-
sive generation of period doubled subharmonic lines in
the spectrum together with their harmonics. Period dou-
bling sequences and chaotic oscillations have also been
observed in connection with sonoluminescence experi-
ments, i. e., when working with single bubbles [8.231–
236].

The cascade of period-doubled sound in the li-
quid has its origin in the cascade of period-doubled
oscillations to chaos of the nonlinearly oscillating bub-
bles [8.31, 32, 54, 237–239], and thus shows chaotic
sound at the end of the cascade. An example of a pe-
riod doubling sequence of bubble oscillations is given
in Fig. 8.37 for a bubble with a radius at rest of 10 μm
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–40 –30 –20 –10 (dB) 0
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Fig. 8.36 Experimental spectral bifurcation diagram from
acoustic cavitation noise inception. Driving frequency is
f0 = 22.9 kHz. Control parameter is the voltage at the
piezoelectric cylinder (courtesy of J. Holzfuss)

driven at 275 kPa with the frequency of the sound field
as control parameter. The oscillation is represented by
sampling the radius of the bubble at a specified phase
of the sound field. A bubble oscillation with the pe-
riod of the sound field then is represented by one dot
at the respective frequency, a period doubled oscilla-
tion repeating after two periods of the sound field by
two dots and so on, a chaotic oscillation being repre-
sented by a given, sufficiently large number of sample
points. Two period doubling cascades are to be seen
from low frequencies upwards (left) and from high
frequencies downwards (right) meeting in a zone of
chaotic oscillations. The corresponding sequence of di-
agrams when coming successively from lower driving
amplitudes starts from incomplete period doubling se-
quences, i. e., meeting in the middle at period 2, at
higher driving at period 4, etc., until both sequences
meet with chaotic oscillations [8.239] as in Fig. 8.37.
This scenario is called period bubbling, also in contexts
not pertaining to bubbles. Spherical bubble clusters with
many interacting bubbles have been investigated nu-
merically for their dynamics. Again period doubling
sequences to chaos are found [8.240].

Embedding of the experimental (chaotic) time se-
ries data from acoustic chaos into spaces of increasing
dimension [8.241, 242] yields a structure with low frac-
tal dimensions between two and three (Fig. 8.38) and
only just one positive Lyapunov exponent [8.242]. This
is a quite surprising result in view of the thousands of
oscillating bubbles of different sizes. Indeed, new theo-
retical results on the superposition of the sound output

360 435 510 585 660 735 810

Rp /Rn Ps = 275 kPa Rn = 10 µm

υ (kHz)

2.82

2.51

2.2

1.89

1.58

1.27

0.96

Fig. 8.37 Period bubbling of an acoustically driven bub-
ble. Two complete sequences of period doubling from low
and high frequencies meet in the middle with chaotic os-
cillations. Normalized radius of the bubble at phase zero
of the sound field versus the driving frequency (courtesy of
U. Parlitz)
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Fig. 8.38 Dimension estimation by embedding experi-
mental acoustic cavitation sound pressure data into spaces
of increasing dimension (dots). The crosses (×) are from an
experiment, where noise from a noise generator has been
embedded

of a population of driven bubbles have indicated that the
low dimensionality may be a result of the (weak) syn-
chronization of their motion from the periodic driving
and the scale of observation [8.243]. Synchronization
has been found to be a universal concept that abounds
in nonlinear science [8.244]. It has directly been ob-
served between two bubble populations in numerical
calculations [8.240].

Bifurcations and chaotic sound waves also ap-
pear in other contexts [8.55]. In musical acoustics
bifurcations are long known under the name of mul-
tiphonics in woodwind instruments [8.245, 246] and
as the wolf note in bowed string instruments [8.247].
Recently, also bowed-string multiphonics have been
investigated [8.248]. These oscillations are quasiperi-
odic motions, i. e. contain at least two incommensurable
frequencies in their Fourier spectrum. Several musical
instruments are susceptible to bifurcations and chaotic
sound emission [8.249]. Examples are the bowed
string [8.250–255], the clarinet [8.256–260], gongs and
cymbals [8.261], and the trombone, crumhorn and bas-
soon [8.262, 263].

The human speech production process is intrinsi-
cally nonlinear. To produce voice sounds the vocal cords

Moving the hand

Trombone

Flute

Organ

Fig. 8.39 Different types of use of the thermoacoustic os-
cillator (TAO) as a musical instrument. From top to bottom:
moving the hand for opening and closing the open end of
the TAO, TAO trombone, TAO flute, TAO organ (courtesy
of G. Müller)

are set into vibration through the air flow between them.
The cords are a coupled system of nonlinear oscillators
giving rise to bifurcations and chaos [8.264]. They play
some role in modern vocal music [8.265].

Sound can be generated by heat. This research
area is called thermoacoustics. When a gas-filled tube,
closed at one end and open at the other is heated at
the closed end and/or cooled at the open end, sound
waves are emitted at a sufficiently high temperature
difference (Sondhauss and Taconis oscillation). This
phenomenon has been used to study its quasiperiodic
route to chaos [8.266,267]. Also shock waves have been
observed in a looped tube [8.268]. Upon suitable con-
struction a thermoacoustic oscillator (TAO) can be built
that can be used as a musical instrument [8.269, 270].
In Fig. 8.39 a few of the musical operations tried are
demonstrated: moving a hand in front of a TAO, alter-
ing the length of the oscillating air column for gliding
sounds, fitting holes to the tube like in a flute, and using
TAOs of different length that can be played like an or-
gan. The main use of thermoacoustic engines, however,
is as a new type of refrigerator and heat pump [8.271]
and the principles and construction details are described
in a separate chapter of this Handbook.
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Acoustics in H9. Acoustics in Halls for Speech and Music

Anders C. Gade

This chapter deals specifically with concepts, tools,
and architectural variables of importance when
designing auditoria for speech and music. The fo-
cus will be on cultivating the useful components
of the sound in the room rather than on avoiding
noise from outside or from installations, which is
dealt with in Chap. 11. The chapter starts by pre-
senting the subjective aspects of the room acoustic
experience according to consensus at the time of
writing. Then follows a description of their ob-
jective counterparts, the objective room acoustic
parameters, among which the classical reverber-
ation time measure is only one of many, but still
of fundamental value. After explanations on how
these parameters can be measured and predicted
during the design phase, the remainder of the
chapter deals with how the acoustic properties can
be controlled by the architectural design of au-
ditoria. This is done by presenting the influence
of individual design elements as well as brief de-
scriptions of halls designed for specific purposes,
such as drama, opera, and symphonic concerts.
Finally, some important aspects of loudspeaker
installations in auditoria are briefly touched upon.
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Current knowledge about room acoustic design is based
on several centuries of practical (trial-and-error) ex-
perience plus a single century of scientific research.
Over the last couple of decades scientific knowledge
has matured to a level where it can explain to a usable
degree:

1. The subjective aspects related to how we perceive
the acoustics of rooms

2. How these subjective aspects are governed by ob-
jective properties in the sound fields

3. How these objective properties of the sound field are
governed by the physical variables in the architec-
tural design.

This chapter is organized in the same manner. The
various subjective acoustic aspects will form the basis
for our discussion and be a guide through most aspects
of relevance in room acoustic design. However, some
trends in current design practice based on the expe-
rience and intuition of individual acoustical designers
will also be commented on. It is hoped that this ap-
proach will also have the advantage of stimulating the
reader’s ability to judge a room from her/his own listen-
ing experience, an ability which is important not only
for designers of concert halls, but also for those re-
sponsible for creating and enjoying the sound in these
halls: musicians, sound-system designers, recording en-
gineers and concert enthusiasts.

9.1 Room Acoustic Concepts

In order to help the reader maintain a clear perspective
all the way through this chapter, Fig. 9.1 illustrates the
universe of architectural acoustics.

In the upper half of the figure, we have the phenom-
ena experienced in the real world. Going from left to
right, we have the auditoria, in which we can experience
objective sound fields causing subjective impressions of
the acoustic conditions. In all of these three domains,
we find a huge number of degrees of freedom: halls
can differ in a myriad of ways (from overall dimensions

���������	�
�
��
��

���������
��
��

�	��������
��
��

������
�	���
�
	�����	���

�	��	������
����	���	��������

�	��������
�	��������

�������
����

��	����
�	������
�	���	�����

���������
�
�
������

�	��������
�
�
������

�����
��
����

Fig. 9.1 Overview of concepts related to subjective room acoustics
(after [9.1])

to detailed shaping of small details like door handles),
the sound fields which we describe by the impulse re-
sponse concept – as explained in a moment – contain
a wealth of individual sound components (reflections),
each being a function of time, level, direction and fre-
quency. Also, every individual may have his/her own
way of expressing what the room does to the sound
heard.

In other words, like in many other aspects of life,
the real world is so complex that we need to simplify
the problem – reduce the degrees of freedom – through
definition of abstract, well-formulated and meaningful
concepts and parameters in all three domains (the lower
row of boxes). First, we must try to define a vocabulary
to describe the subjective acoustic impression: we will
isolate a set of subjective acoustic parameters that are
valid to most people’s listening experience (as indicated
by the box in the lower-right corner), then we will try
to deduce those properties from the sound fields that are
responsible for our experience of each of the subjective
aspects: we will define a set of objective, measurable
parameters that correlate well with the subjective pa-
rameters, and finally – in order to be able to guide the
architect – we must find out which aspects of the design
govern the important objective and in turn the subjective
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parameters, so we can assist in building halls meeting
the specific needs of their users.

A rough historical overview: systematic search for
objective acoustic parameters peaked in the 1960s and
1970s, while the relationships between the objective pa-
rameters and design variables were the topic of many
research efforts in the 1980s and 1990s. However, we

cannot yet claim to have the answers to all questions
regarding the acoustic design of auditoria. Hopefully,
there will always be room for intuition and individual
judgment, not only in room acoustic design; but also as
a source of inspiration for continued research efforts.
Still it should be clear that room acoustic design today
is based on solid research; it is not a snake-oil business.

9.2 Subjective Room Acoustics

9.2.1 The Impulse Response

The basic source of information regarding the audible
properties of the sound field in a room is the impulse
response signal. Actually, this signal – when recorded
with a multichannel technique preserving the informa-
tion about direction of incidence – can be shown to
contain all information about the acoustics of a room
between two specific source and receiver positions.

Consider a short sound impulse being emitted by the
source on the stage, as shown in Fig. 9.2. A spherical
wave propagates away from the source in all directions
and the sound first heard in the listener position orig-
inates from that part of the wave that has propagated
directly from the source to the receiver, called the di-
rect sound. This is shown on the left in the lower part of
Fig. 9.2, which shows the received signal versus time at
a given position in the room.

This component is soon followed by other parts of
the wave that have been reflected one or more times
by the room boundaries or by objects in the room be-
fore reaching the receiver, called the early reflections.
Besides arriving later than the direct sound, normally
these reflections are also weaker because the intensity
is reduced as the area of the spherical wavefront in-
creases with time (spherical distance attenuation) and
because a fraction of the energy is being absorbed each
time the wave hits a more or less sound-absorbing room
boundary or object in the room.

The sound wave will continue to be reflected and
to pass the receiver position until all the energy has
been absorbed by the boundaries/objects or by the air.
The density of these later reflections increases with time
(proportional to t2), but the attenuation due to absorp-
tion at the room boundaries ensures that eventually all
sound dies out. This decay is often heard as reverber-
ation in the room, as Sabine did, when he carried out
his famous experiment in the Fogg Art Museum more
than 100 years ago [9.2]. This event marked the start of
subjective room acoustics as a science.

9.2.2 Subjective Room Acoustic Experiment
Techniques

With each of the reflections specified in time, level,
spectrum and direction of incidence, the impulse re-
sponse contains a huge amount of information. Now, the
question is how we can reduce this to what is necessary
for an explanation of why we perceive the acoustics in
different rooms as being different.

Experiments trying to answer this question have
mainly been carried out in the second half of the
20th century when electro-acoustic means for record-
ing, measurement and simulation of sound fields had
become available. Such experiments take place in the
four rightmost boxes in Fig. 9.1: A number of im-
pulse responses – or rather, music or speech convolved
(filtered) through these responses – are presented to
a number of subjects. The subjective evaluations are
collected either as simple preferences between the
sound fields presented in pairs or as scalings along
specific subjective parameters suggested by the exper-
imenter. The experimenter will also choose a number
of different objective parameters, and calculate their
values for each of the impulse responses presented.
The level of correlation between these objective val-
ues and the objective scalings will then indicate which
of the parameters and therefore which properties of
the impulse responses are responsible for the subjective
evaluations.

As can be imagined, the results of such experiments
will be strongly dependent on the range of variation and
degree of realism of the impulse responses presented –
as well as by the sound quality of the equipment used for
the presentation. Besides, the results will always be lim-
ited by the imagination of the experimenter regarding
his/her:

1. Suggestions of proper semantic descriptors for the
subjects’ evaluation (except in cases where the sub-
jects are only asked to give preferences) and
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2. Suggestions of calculation of parameters from the
impulse response.

In other words, before the experiments, the experimenter
must have some good hypotheses regarding the contents
of the lower-mid and lower-right boxes in Fig. 9.1.

Over the years, a variety of different techniques have
been applied for presenting room sound fields to test
subjects:

1. Collection of opinions about existing halls recalled
from the memory of qualified listeners

2. Listening tests in different halls or in a hall with
variable acoustics
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Fig. 9.2 Diagram illustrating the generation of an impulse response in a room (after [9.3])

3. Listening tests with presentation of recordings from
existing halls or of dry speech/music convolved with
impulse responses recorded in existing halls

4. Listening tests with sound fields synthesized in
anechoic rooms (via multiple loudspeakers in
an anechoic room) or impulse responses gener-
ated/modified by computer convolved with dry
speech/music and presented over headphones.

It should be mentioned here that our acoustic mem-
ory is very short. Therefore, unless the subjects are
highly experienced in evaluating concert hall acoustics,
comparison of acoustic experiences separated by days,
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weeks or even years is less reliable than comparison in
the lab, where different recordings can be presented im-
mediately one after the other. On the other hand, it is
often difficult to get really qualified people to come to
the lab to participate in scientific tests. Therefore, re-
sults from interview surveys can still be highly relevant.

These different techniques for presenting the sound
fields all have different limitations. Experiments in the
lab involving electro-acoustic reproduction or the gen-
eration of sound fields may lack fidelity, while listening
in a real hall to a real orchestra will normally lack
flexibility and control of the independent variables.
Another important difference between these two meth-
ods is the absence of realistic visual cues in the lab.
Enjoyment of a performance is a holistic experience,
a fact which is now given increased scientific atten-
tion. In all cases elaborate statistical analysis of the
results are needed in order to separate the significant
facts from the error variance present in any experiment
involving subjective judgements. Since the 1960s, mul-
tidimensional statistical tool such as factor analysis and
multidimensional scaling have been very useful in dis-
tinguishing between the different subjective parameters
which are present – consciously or not – in our evalu-
ation. In any case, published results are more likely to
be close to the truth, if they have been verified by sev-
eral experiments – and experimenters – using different
experimental approaches.

9.2.3 Subjective Effects
of Audible Reflections

As the impulse response consists of the direct sound
followed by a series of reflections, the simplest case
possible would be to have only the direct sound plus
a single reflection (and perhaps some late, artificial
reverberation). Many experiments in simulated sound
fields have been conducted using such a simple setup,
and in spite of the obvious lack of realism, we can still
learn a lot about the subjective effects of reflections
from these experiments.

First of all, due to the psycho-acoustic phenomenon
called forward masking, the reflection will be inaudible
if it arrives very soon after the direct sound and/or its
level is very low relative to the direct sound. Thus, there
exists a level threshold of audibility depending on delay
and direction of incidence relative to the direct sound.
Only if the level of the reflection is above this threshold
will the reflection have an audible effect, which again
depends on its level, delay and direction of incidence.
The possible effects are (at least):

• Increased level (energy addition).• Increased clarity, if it arrives within 50–80 ms after
the direct sound.• Increased spaciousness, if the reflection direction in
the horizontal plane is different from that of the di-
rect as this causes the signals received at the two
ears to be different. (If the angle between the di-
rect and reflected sounds differs in the vertical plane
only, the effect is rather a change in timbre or col-
oration of the sound.)• Echo, typically observed for delays beyond. 50 ms
and at high reflection levels. If the delay is very
long, say 200 ms, then the echo may even be de-
tected at a much lower level.• Coloration. If the delay is short, say below 30 ms,
and the level is high, phase addition of the direct
sound and the reflection will create a comb filter
effect, which severely deteriorates the original fre-
quency spectrum.• Change in localization direction, in cases where the
reflection is louder than the direct sound. This may
happen either due to amplification of the reflection
via a concave surface or due to excess attenuation of
the direct sound, for instance by an orchestra pit rail.

Audibility thresholds, echo risk and other effects
also depend on spectral and temporal properties of the
signal itself. Thus, with speech and fast, staccato played
music (not to speak of artificial, impulsive click sounds),
echoes are much easier to detect than when the signal is
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Fig. 9.3 Various audible effects of a single reflection arriving from
the side. The signal used was music (after [9.4])
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Fig. 9.4 Thresholds of perception of a new reflection (circles and
horizontal lines) being added to impulse responses already contain-
ing one, two, three, or four other reflections with delay and relative
levels, as indicated by the vertical lines (after [9.5])

slow, legato music. On the other hand, these slower sig-
nals are more sensitive for the detection of coloration
effects.

The temporal properties of sounds are sometimes
described by the autocorrelation function. According to
Ando (Chap. 10) not only the thresholds of audibility
but also the preferred delay of early reflections and the
preferred reverberation time depend strongly on the au-
tocorrelation of the signal. However, such a strong effect
on concert hall preference – derived from listening ex-
periments in rather simplified simulated sound fields in
the lab – is not in accordance with everyday listening
experiences in concert halls, in which we gladly accept
listening to different music pieces of different tempo
from different seats (different reflection delays) in the
same hall (fixed reverberation time).

Figure 9.3 illustrates the various audible effects of
a single reflection arriving from a 40◦ angle relative to

a frontal direct sound. In this experiment music was
used as the stimulus signal. Below the lower thresh-
old (reflection level below about −20 dB and almost
independent of the delay), the reflection is inaudible. In
the upper-right region it causes a distinct echo, while
in the shaded area we experience spatial impression or
a broadening of the area from which the sound seem to
originate. For delays lower than about 30 ms, this single
reflection also causes an unpleasant change in timbre or
tonal color, which is due to the combination of the di-
rect and reflected signal forming a comb filter giving
systematic changes in the spectrum. If the level of the
reflection is increased to be louder than the direct sound
(above 0 dB) while the delay is still below say 50 ms,
we experience an image shift or a change in localiza-
tion from the direction of the direct sound towards the
direction from which the reflection is coming.

In practice, of course, the impulse response from
a room contains many reflections, and we therefore need
to know how the threshold of perceptibility of the in-
coming reflection changes in cases where the impulse
response contains other reflections already. As seen
from Fig. 9.4, the threshold level increases substantially
in the delay range already occupied by other reflections.
This phenomenon is primarily due to masking.

From this we can conclude that many of the details
in a complex impulse response will be masked and only
some of the dominant components or some of its over-
all characteristics seriously influence our perception of
the acoustics. This is the reason why it is possible to cre-
ate rather simple objective room acoustic parameters, as
listed in the following section, which still describe the
main features of the room acoustic experience. Thus,
we seem to have some success describing the complex
real world (the upper-middle and right boxes in Fig. 9.1)
by simpler, abstract concepts. Also, it will be seen that
the subjective effects caused by a single reflection re-
main important in the evaluation of more-realistic and
complicated impulse responses.

9.3 Subjective and Objective Room Acoustic Parameters
From a consensus of numerous subjective experi-
ments in real rooms and in simulated sound fields
(representing all of the previously mentioned subjec-
tive research techniques), we now have a number
of subjective parameters and corresponding objective
measures available. Most of these are generally recog-
nized as relevant descriptors of major aspects in our
experience of the acoustics in rooms. This situation

has promoted standardization of measurement meth-
ods and many of the objective parameters are now
described in an appendix to the International Orga-
nization for Standardization (ISO) standard [9.6]. In
order to maintain a clear distinction between the sub-
jective and objective parameters in the following, the
names for the subjective parameters will be printed in
italics.
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9.3.1 Reverberation Time

Reverberance is probably the best known of all subjec-
tive room acoustic aspects. When a room creates too
much reverberance, speech loses intelligibility because
important details (consonants) are masked by louder,
lingering speech sounds (the vowels). For many forms
of music, however, reverberance can add an attrac-
tive fullness to the sound by bonding adjacent notes
together and blending the sounds from the different in-
struments/voices in an ensemble.

The reverberation time T which is the traditional ob-
jective measure of this quality, was invented 100 years
ago by W. C. Sabine. T is defined as the time it takes for
the sound level in the room to decrease by 60 dB after
a continuous sound source has been shut off. In practice,
the evaluation is limited to a smaller interval of the de-
cay curve, from−5 dB to−35 dB (or−5 dB to−25 dB)
below the start value; but still relating to a 60 dB decay
(Fig. 9.5), i. e.

T = 60 dB
(t−35)− (t−5)

(−5 dB)− (−35 dB)
. (9.1)

In this equation, t−x denotes the time when the decay
has decreased to XdB below its start value, or, if we let
R(t) represent the squared value of the decaying sound
pressure and shut off the sound source at time t = 0

10 log10

(
R(t−X )

R(0)

)
=−X dB . (9.2)

With the fluctuations always present in decay curves,
T should rather be determined from the decay rate,
A dB/s, as found from a least-squares regression line
(determined from the relevant interval of the decay
curve). Hereby we get for T

T = 60 dB

A dB
s

= 60

A
s . (9.3)

Ways to obtain the decay curve from the impulse re-
sponse will be further explained in the section on
measurement techniques.

Due to masking, the entire decay process is only per-
ceivable during breaks in the speech or music. Besides,
the rate of decay is often different in the beginning and
further down the decay curve. During running music or
speech, the later, weaker part of the reverberation will
be masked by the next syllable or musical note. There-
fore an alternative measure, early decay time (EDT) has
turned out to be better correlated with the reverberance
perceived during running speech and music. This pa-
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Fig. 9.5 The definition of reverberation time (after [9.4])

rameter, like T , also measures the rate of the decay; but
now evaluated from the initial part, the interval between
0 and −10 dB, only. Thus,

EDT = 6(t−10) or EDT = 60

A(0 dB→−10 dB)
s .

(9.4)

The detailed behavior of the early part of the rever-
beration curve is influenced by the relative levels and
distribution in time of the early reflections, which in
turn vary depending on the positions of the source and
receiver in the room. Likewise, the value of EDT is of-
ten found to vary throughout a hall, which is seldom the
case with T .

In spite of the fact that EDT is a better descriptor
of reverberance than T , T is still regarded the basic
and most important objective parameter. This is mainly
due to the general relationship between T and many of
the other room acoustic parameters and because a lot
of room acoustic theory relates to this concept, not least
diffuse field theory, which is the basis for measurements
of sound power, sound absorption, and sound insulation.
T is also important by being referred to in legislation
regarding room acoustic conditions in buildings.

Talking about diffuse field theory, it is often of
relevance to compare the measured values of certain ob-
jective parameters with their expected values according
to diffuse field theory and the measured or calculated
reverberation time. As diffuse field theory predicts the
decay to be purely exponential, the distribution in time
of the impulse response squared should follow the
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function:

h2(t) = A exp

(−13.8

T
t

)
, (9.5)

in which the constant −13.8 is determined by the re-
quirement that for t = T

10 log10

(
exp

(−13.8

T
t

))
= 60 dB . (9.6)

With an exponential decay, the decay curve in dB be-
comes a straight line. Consequently, the expected value
of EDT, EDTexp, equals T .

When evaluating measurement results, it is also rel-
evant to compare differences with the smallest change
that can be detected subjectively. For EDT, this so-
called subjective difference limen is about 5% [9.7].

9.3.2 Clarity

Clarity describes the degree to which every detail of the
performance can be perceived as opposed to everything
being blurred together by later-arriving, reverberant
sound components. Thus, clarity is to a large extent
a property complementary to reverberance.

When reflections are delayed by no more than
50–80 ms relative to the direct sound, the ear will inte-
grate these contributions and the direct sound together,
which means that we mainly perceive the effect as if the
clear, original sound has been amplified relative to the
later, reverberant energy. Thus, an objective parameter
that compares the ratio between energy in the impulse
response before and after 80 ms has been found to be
a reasonably good descriptor of clarity

C = 10 log10

⎡

⎣
80 ms∫

0

h2(t)dt

/ ∞∫

80 ms

h2(t)dt

⎤

⎦ . (9.7)

The higher the value of C, the more the early sound
dominates, and the higher the impression of clarity.
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Fig. 9.6 The definition of C: the ratio between early and
late energy in the impulse response

With exponential decay, the expected value of C
becomes a function of T alone

Cexp = 10 log10

[
exp

(
1.104

T

)
−1

]
dB . (9.8)

The subjective difference limen for C (the equal best
difference perceivable) is about 0.5 dB.

The definition of C is illustrated in Fig. 9.6.
Another parameter, which is also used to describe

the balance between early and late sound or the balance
between clarity and reverberance, is the center time ts,
which describes the center of gravity of the squared
impulse response:

ts =
∞∫

0

th2 (t) dt

/ ∞∫

0

h2 (t) dt . (9.9)

A low value of ts corresponds to a clear sound, whereas
higher values indicate dominance of the late, reverber-
ant energy. The main advantage of ts is that it does not
contain a sharp time limit between early and late energy,
since this sharp distinction is not justified by our knowl-
edge about the functioning of our hearing system. The
subjective difference limen for ts is about 10 ms, and the
expected diffuse field value is simply given by

ts,exp = T

13.8
. (9.10)

9.3.3 Sound Strength

The influence of the room on the perceived loudness is
another important aspect of room acoustics. A relevant
measurement of this property is simply the difference
in dB between the level of a continuous, calibrated
sound source measured in the room and the level the
same source generates at 10 m distance in anechoic sur-
roundings. This objective measure called the (relative)
strength G can also be obtained from impulse response
recordings from the ratio between the total energy of
the impulse response and the energy of the direct sound
with the latter being recorded at a fixed distance (10 m)
from the impulsive sound source

G = 10 log10

∫∞
0 h2(t)dt

∫ tdir
0 h2

10 m(t)dt
. (9.11)

Here the upper integration limit in the denominator tdir
should be limited to the duration of the direct sound
pulse (which in practice will depend on the bandwidth
selected). A distance different from 10 m can be used,
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if a correction for the distance attenuation is applied as
well.

The expected value of G according to diffuse field
theory becomes a function of T as well as of the room
volume V

Gexp = 10 log10

(
T

V

)
+45 dB . (9.12)

The subjective difference limen for G is about 1.0 dB.
The definition of G is illustrated in Fig. 9.7.

9.3.4 Measures of Spaciousness

Spaciousness is the feeling that the sound is arriving
from many different directions in contrast to a mono-
phonic impression of all sound reaching the listener
through a narrow opening. It is now clear that there are
two aspects of spaciousness, both of which are attrac-
tive, particularly when listening to music:

• Apparent source width (ASW): the impression that
the sound image is wider than the visual, physical
extent of the source(s) on stage. This should not be
confused with localization errors, which of course
should be avoided.

and

• Listener envelopment (LEV): the impression of be-
ing inside and surrounded by the reverberant sound
field in the room.

Both aspects have been found to be dependent on
the direction of incidence of the impulse response re-
flections. When a larger portion of the early reflection
energy (up to about 80 ms) arrives from lateral direc-
tions (from the sides) the ASW increases. When the
level of the late, lateral reflections is high, strong LEV
results.

The lateral components of the impulse response en-
ergy can be recorded using a figure-of-eight microphone
with the sensitive axis held horizontal and perpendicu-
lar to the direction towards the sound source (so that
the source lies in the deaf plane of the microphone). For
measurement of the lateral energy fraction (LEF), the
early part (up to 80 ms) of this lateral sound energy is
compared with the energy of the direct sound plus all
early reflections picked up by an ordinary omnidirec-
tional microphone

LEF =
t=80 ms∫

t=5 ms

h2
l (t)dt

/ t=80 ms∫

t=0 ms

h2(t)dt , (9.13)
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Fig. 9.7 The definition of strength G: the total energy in the impulse
response measured relative to the direct sound level at 10 m distance
from the source

where hl is the impulse response pressure recorded with
a figure-of-eight microphone, whereas h is captured
through the (usual) omnidirectional microphone.

It is mainly the energy at low and mid frequen-
cies that contribute to the spaciousness. Consequently,
LEF is normally averaged over the four octaves
125–1000 Hz. The higher the value of LEF, the wider
the ASW. The literature contains many data on LEF
values in different, existing concert halls.

LEF does not have an expected value related to T .
In a completely diffuse field, LEF would be constant
with a value of 0.33, which is higher than that normally
found in real halls. The subjective difference limen for
LEF is about 5%.

The definition of LEF is illustrated in Fig. 9.8.
The ASW aspect of spaciousness is not only depen-

dent on the ratio between early lateral and total early
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Fig. 9.8 The definition of lateral energy fraction (LEF): the ratio
between early reflection energy arriving from the sides and total
early energy
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sound; but also on the total level of the sound. The
higher the G value (and the louder the sound source),
the broader the acoustic image of the source. However,
at the time of writing, there is no solid way of incorpo-
rating the influence of level into the objective measure.

Listener envelopment seems to be determined
mainly by the spatial distribution and the level of
the late reflections (arriving after 80 ms). A parameter
called late lateral strength (LG) relating the late lat-
eral energy to the direct sound at 10 m distance from the
source has been proposed to measure this quality [9.8]

LG =
t=∞∫

t=80 ms

h2
l (t)dt

/ t=tdir∫

t=0 ms

h2
10 m(t)dt . (9.14)

LG is likely to be included in the ISO 3382 standard
(from 2007); but so far LG has only been found correlat-
ing with subjective responses in laboratory experiments
using synthetic sound fields. Therefore, it may be wise
not to put too much emphasis on this parameter until
its value has also been confirmed by experiments in real
halls.

In contrast to reflections arriving in the median
plane, lateral reflections will cause the instantaneous
pressure at the two ears of the listener to be differ-
ent. Such a dissimilarity of the signals at the two ears
can also be measured by means of the interaural cross-
correlation coefficient IACC

IACCt1,t2 = max

∣∣∣∣∣∣

∫ t2
t1

hL(t)hR(t+ τ)dt
√∫ t2

t1
h2

L(t)dt
∫ t2

t1
h2

R(t)dt

∣∣∣∣∣∣
(9.15)

in which t1 and t2 define the time interval of the impulse
response within which the correlation is calculated, hL
and hR represent the impulse response measured at the
entrance of the left and right ear, respectively, and τ
is the interval within which we search for the maxi-
mum of the correlation. Normally, the range of τ is
chosen between −1 and +1 ms, covering roughly the
time it takes for sound to travel the distance from one
ear to the other. As the correlation is normalized by
the product of the energy of hL and hR, the IACC
will take a value between 0 and 1. Results are often
reported as 1− IACC in order to obtain a value increas-
ing with increasing dissimilarity, corresponding to an
increasing impression of spaciousness. If the time in-
terval for the calculation (t1, t2) is (0 ms, 100 ms), then
the IACC will measure the ASW, while a later inter-
val (t1, t2)= (100 ms, 1000 ms) may be used to describe
the LEV. The literature on measured values in halls

mainly contain data on IACC related to the 0–100 ms
time interval.

Although the LEF and IACC parameters relate to
the same subjective quality, they are not highly corre-
lated in practice. Another puzzling fact is that LEF and
IACC emphasize different frequency regions being of
importance. LEF is primarily measured in the four low-
est octaves, 125 Hz, 250 Hz, 500 Hz and 1000 Hz while
IACC should rather be measured in the octave bands
above 500 Hz. IACC values would always be high in
the lower octaves, because the distance between the ears
(< 30 cm) is small compared to 1/4 of the wave length
(≈ 70 cm at 125 Hz).

9.3.5 Parameters Relating to Timbre
or Tonal Color

Timbre describes the degree to which the room influ-
ences the frequency balance between high, middle and
low frequencies, i. e. whether the sound is harsh, bright,
hollow, warm, or whatever other adjective one would
use to describe tonal color. Traditionally, a graph of
the frequency variation of T (per 1/1 or 1/3 octave)
has been used to indicate this quality; but a conve-
nient single-number parameter intended to measure the
warmth of the hall has been suggested [9.9]: the bass
ratio (BR) given by

BR = T125 Hz+T250 Hz

T500 Hz+T1000 Hz
. (9.16)

Likewise, a treble ratio (TR) can be formed as

TR = T2000 Hz+T4000 Hz

T500 Hz+T1000 Hz
. (9.17)

However, in some halls, a lack of bass sound is expe-
rienced in spite of high T values at low frequencies.
Therefore EDT or perhaps G versus frequency would
be a better – and intuitively more logical – parameter
for measurement of timbre. Likewise, BR or TR could
be based on G rather than T values.

Besides the subjective parameters mentioned above,
a quality called intimacy is also regarded as being
important when listening in auditoria. Beranek [9.9]
originally suggested this quality to be related to the
initial time delay gap ITDG; but this has not been ex-
perimentally verified (At the time of writing, Beranek
no longer advocates this idea but mentions the obser-
vation that, if the ITDG exceeds 45 ms, the hall has
no intimacy [9.10]). It is likely that intimacy is related
to a combination of some of the other parameters al-
ready mentioned, such as a high sound level combined
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with a clear and enveloping sound, as will naturally be
experienced fairly close to the source or in small rooms.

9.3.6 Measures of Conditions
for Performers

In rooms for performance of music it is also relevant
to consider the acoustic conditions for the musicians,
partly because it is important to ensure that the mu-
sicians are given the best working conditions possible
and partly because the product as heard by the audience
will also be better if the conditions are optimal for the
performers.

Musicians will be concerned about reverberance
and timbre as mentioned above; but also about at least
two aspects which are unique for their situation: ease of
ensemble and support [9.11] and [9.12].

Ease of ensemble relate to how well musicians can
hear – and play together with – their colleagues. If en-
semble is difficult to achieve, the result – as perceived
by musicians and listeners alike – might be less pre-
cision in rhythm and intonation and a lack of balance
between the various instruments. Ease of ensemble has
been found to be related to the amount of early reflec-
tion energy being distributed on the stage. So far, the
only widely recognized objective parameter suggested
for objective measurement of this quality is early sup-
port STearly.

STearly is calculated from the ratio between the early
reflection energy and the direct sound in an impulse re-
sponse recorded on the stage with a distance of only one
meter between the source and receiver

STearly = 10 log10

∫ 100 ms
20 ms h2

1 m(t)dt
∫ tdir

0 ms h2
1 m(t)dt

. (9.18)

Support relates to the degree to which the room sup-
ports the musicians’ efforts to create the tone on their
own instruments, whether they find it easy to play or
whether they have to force their instruments to fill the
room. Having to force the instrument leads to playing
fatigue and inferior quality of the sound.

Support is also related to the amount of reflected
energy on the stage measured using only a one me-
ter source/microphone distance. For measurement of
support, however, one needs to consider also the later
reflections. This is because for many types of instru-
ments, (especially strings), the early reflections will be
masked by the strong direct sound from the instrument
itself. Consequently, it seems relevant to define a mea-
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Fig. 9.9 The definition of early support STearly and late support
STlate, the ratio between early and late reflection energy respectively
and the direct sound in the impulse response. Both are measured at
1 m distance from the source

sure such as late support, STlate

STlate = 10 log10

∫ 1000 ms
100 ms h2

1 m(t)dt
∫ tdir

0 ms h2
1 m(t)dt

(9.19)

which relates to late response (after 100 ms) from the
room to the sound emitted.

STearly and STlate are typically measured in the four
octaves 150 Hz, 500 Hz, 1000 Hz, 2000 Hz. The lowest
octave is omitted primarily because it is not possible
to isolate the direct sound from the early reflections in
a narrow band measurement. The definitions of early
and late support are illustrated in Fig. 9.9.

Also the support parameters are planned to be in-
cluded in the ISO 3382 standard (from 2007); but like
LG the experiences and amount of data available from
existing halls are still rather limited.

The amount of reverberance on the stage may be
measured by means of EDT, (with a source–receiver
distance of, say, 5 m or more).

9.3.7 Speech Intelligibility

All the objective parameters mentioned above (except
the basic T parameter), are mainly relevant in larger au-
ditoria intended for performance of music. In auditoria
used for speech, such as lecture halls or theaters, the
influence of the acoustics on intelligibility is a major
issue.

Currently, the most common way to assess objec-
tively speech intelligibility in rooms is by measurement
of the speech transmission index STI.

As illustrated in Fig. 9.10, this measure is based on
the idea that speech can be regarded as an amplitude-
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Theory:
Modulation reduction function of T and S/N

Fig. 9.10 Illustration of the theory and principle in the measurement of STI or RASTI. The scale for the evaluation of RASTI
values is shown at the bottom (after [9.13])

modulated signal in which the degree of modulation
carries the speech information. If the transmission path
adds noise or reverberation to the signal, the degree of
modulation in the signal will be reduced, resulting in
reduced intelligibility.

The modulation transfer is tested by emitting noise
in seven octave bands, each modulated with 14 different
modulation frequencies as listed in the table in Fig. 9.10
and then calculating the ratio between the original
and the received degree of modulation, the modula-
tion reduction factor, in each of these 98 combinations.
A weighted average of the modulation reduction factor
then results in a number between 0 and 1, corresponding
to very poor and excellent conditions respectively.

A faster measurement method using only two carrier
bands of noises and four plus five modulation fre-
quencies (indicated by the dark squares in Fig. 9.10) is
called rapid STI (RASTI). The STI/RASTI method is
described in an International Electrotechnical Commis-
sion (IEC) standard: IEC 286-16.

Although the original method of STI or RASTI
measurement employs modulated noise signals, it is
also possible to calculate the modulation reduction fac-
tor from the impulse response. Thus, the modulation
reduction factor versus modulation frequency F, which
is called the modulation transfer function (MTF), can

be found as the Fourier transform of the squared im-
pulse response normalized by the total impulse response
energy.

According to Bradley [9.14], a simpler parame-
ter, called the useful-to-detrimental sound ratio U80 is
equally suitable for measurement of speech intelligi-
bility. U80 is simply a modified version of the clarity
parameter defined in Sect. 9.3.2, in which a correction is
made according to the ratio between the levels of speech
and background noise.

9.3.8 Isn’t One Objective Parameter
Enough?

It is important to notice that all the parameters men-
tioned above – apart from T – may show large
differences between different seats within the same hall.
Actually, differences within a single hall are sometimes
as large (both objectively and subjectively) as the differ-
ences between two different halls.

It should also be mentioned that the objective
parameters related to the three subjectively different as-
pects: reverberance/clarity, loudness and spaciousness
show low mutual correlation when measured in dif-
ferent seats or in different halls. In other words, they
behave as orthogonal factors and do not monitor the
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same properties of the sound fields. Consequently, it is
obviously necessary to apply one objective parameter
for each of these subjective aspects.

It is also clear that different listeners will judge the
importance of the various subjective parameters differ-
ently. While some may base their judgment primarily
on loudness or reverberance others may be more con-
cerned about spaciousness or timbre.

For these reasons, one should be very sceptical
when people attempt to rank concert halls along a sin-
gle, universal, one-dimensional quality scale or speak
about the best hall in the world. Fortunately, the diver-
sity of room acoustic design and the complexity of our
perception does not justify such simplifications.

9.3.9 Recommended Values
of Objective Parameters

In view of the remarks above, it may be regarded risky
to recommend values for the various objective acoustic
parameters. On the other hand, there is a long tradition
of suggesting optimal values for reverberation time T
as a function of hall volume and type of performance.
Besides, most of the other parameters will seldom de-
viate drastically from the expected value determined
by T . As we shall see later, this deviation is primar-
ily influenced by how we shape the room to control
early reflections. Designing for strong early reflections
can increase clarity, sound strength and spaciousness.
Current taste regarding concert hall acoustics for classi-
cal music seems to be in favor of high values for these
factors in addition to strong reverberance. This could
lead to suggested ranges for the various parameters in
small and large halls, as shown in Table 9.1. These val-
ues relate to empty halls with well-upholstered seating,

Table 9.1 Suggested position-averaged values of objective room acoustic parameters in unoccupied concert halls for
classical music. It is assumed that the seats are highly absorptive, so that T will be reduced by no more than 0.2 s when
the hall is fully occupied. 2.4 s should be regarded as an upper limit mainly suitable for terraced arena or DRS halls with
large volumes per seat (Sect. 9.7.3), whereas 2.0 s will be more suitable for shoe-box-shaped halls, which are often found
to be equally reverberant with lower T values and lower volumes per seat

Parameter Symbol Chamber music Symphony

Hall size V/N 2500 m3/300 seats 25 000 m3/2000 seats

Reverberation time T 1.5 s 2.0–2.4 s

Early decay time EDT 1.4 s 2.2 s

Strength G 10 dB 3 dB

Clarity C 3 dB −1 dB

Lateral energy fraction LEF 0.15–0.20 0.20–0.25

Interaural cross correlation 1− IACC 0.6 0.7

Early support STearly −10 dB −14 dB

assuming that, when fully occupied with musicians and
audience, the T values will drop by no more than say
0.2 s. The reason for relating the values to the unoc-
cupied condition is that it is seldom possible to make
acoustic measurements in the occupied state and almost
all reference data existing regarding parameters other
than T are from unoccupied halls. On the other hand,
suggesting well-upholstered seats is a sound recom-
mendation in most cases, which will ensure only small
changes depending on the degree of occupancy. This
will also justify extrapolation of the unoccupied values
of the other parameters to the occupied condition, as
mentioned later in this section.

The values listed in the table were arrived at by
first choosing values for T ensuring high reverberance,
while the correlative values for EDT, G and C stem
from the diffuse field expected values; but these have
been slightly changed to promote high clarity and high
levels. As this is particularly important in larger halls,
it has been suggested to use an EDT value 0.1 s lower
than T (= EDTexp) and C values 1 dB higher than Cexp
in a 2500 m3 hall, but 0.2 s less than T and 2 dB higher
than Cexp, respectively, in the 25 000 m2 hall. Likewise,
it is suggested to use G values 2 dB less than Gexp in the
small halls; but only 1 dB less than or even equal to Gexp
in large halls. For halls of size between the 2500 and
25 000 m3 listed in the table, one may of course interpo-
late to taste. Please note that, in general, G is found to
be 2–3 dB lower that Gexp (Sect. 9.5.6) so the G values
suggested here are actually 1–2 dB higher than those
found in normal halls.

In the occupied condition, one may expect EDT, C
and G to be reduced by amounts equal to the difference
between the expected values calculated using T for the
empty and occupied conditions respectively. In any case,
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if the empty–occupied difference in T is limited to 0.2 s,
as suggested here, then the difference in these parame-
ters will be fairly limited, with changes in both C and G
being less than one dB – given that the audience does not
introduce additional grazing incidence attenuation of di-
rect sound and early reflections (Sect. 9.6.2).

For opera, one may aim towards the same relation-
ships between the diffuse field expected and the desired
values of EDT, C and G, as mentioned above for sym-
phonic halls; but the goal for the reverberation time will
normally be set somewhat lower, 1.4–1.8 s in order to
obtain a certain intelligibility of the libretto and per-
haps to make breaks in the music sound more dramatic
(Sect. 9.7.2).

For rhythmic music, T values of 0.8–1.5 s, depend-
ing on room size, are appropriate, and certainly the
value should not increase towards low frequencies in

this case. In very large rock venues such as sports are-
nas, it may actually be very difficult to get T below
3–5 s; but even then the conditions can be satisfac-
tory with a properly designed sound system. The reason
is that in such large room volumes the level of the
reverberant sound can often be controlled, if highly di-
rective loudspeakers are being used. In these spaces,
the biggest challenge is often to avoid highly delayed
echoes, which are very annoying. For amplified music,
only recommendations for T are relevant, because the
acoustic aspects related to the other parameters will be
determined primarily by the sound system (Sect. 9.7.5).

In order to ensure adequate speech intelligibility in
lecture halls and theaters, values for STI/RASTI should
be at least 0.6. In reverberant houses of worship values
higher than 0.55 are hard to achieve even with a well-
designed loudspeaker system.

9.4 Measurement of Objective Parameters
Whenever the acoustic specifications of a building are
of importance we need to be able to predict the acoustic
conditions during the design process as well as document
the conditions after completion. Therefore, in this and
the following sections, techniques for measurement and
prediction of room acoustic conditions will be presented.

In Sect. 9.2.1 it was claimed that the impulse re-
sponse contains all relevant information about the
acoustic conditions in a room. If this is correct, it must
also be true that all relevant acoustic parameters can
be derived from impulse response measurements. For-
tunately, this has also turned out to be the truth.

9.4.1 The Schroeder Method
for the Measurement of Decay Curves

Originally, reverberation decays were recorded from the
decay of the sound level following the termination of
a stationary sound source. However, Schroeder [9.15]
has shown that the reverberation curve can be meas-
ured with increased precision by backwards integration
of the impulse response, h(t), as follows

R(t) =
∞∫

t

h2(t)dt =
∞∫

0

h2(t)dt−
t∫

0

h2(t)dt (9.20)

in which R(t) is equivalent to the decay of the squared
pressure decay. The method is called backwards inte-
gration because the fixed upper integration limit, infinite
time, is not known when we start the recording. There-

fore, in the days of magnetic tape recorders, the inte-
gration was done by playing the tape backwards. In this
context infinite time means the duration of the record-
ing, which should be comparable with the reverberation
time. Traditional noise decays contain substantial,
random fluctuations because of interference by the dif-
ferent eigenmodes present within the frequency range of
the measurement (normally 1/3 or 1/1 octaves). These
fluctuations will be different each time the measurement
is carried out because the modes will be excited with
random phase by the random noise (and the random
time of the noise interruption). When, instead, the room
is exited by a repeatable impulse, the response will be
repeatable as well without such random fluctuations. In
fact, Schroeder showed that the ensemble average of
interrupted noise decays (recorded in the same source
and receiver positions) will converge towards R(t) as
the number of averages goes towards infinity.

In (9.20), the right-hand side indicates that the im-
pulse response decay can be derived by subtracting the
running integration (from time zero to t) from the to-
tal energy. Contrary to the registration of noise decays,
this means that the entire impulse response must be
stored before the decay function is calculated. How-
ever, with modern digital measurement equipment, this
is not a problem. From the R(t) data, T is calculated
by linear regression as explained in Sect. 9.3.1. As the
EDT is evaluated from a smaller interval of the decay
curve than T , the EDT is more sensitive to random de-
cay fluctuations than is T . Therefore, EDT should never
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be derived from interrupted noise decays – only from
integrated impulse responses.

9.4.2 Frequency Range of Measurements

T may be measured per 1/3 octave; but regarding the
other objective parameters mentioned in this chapter,
it makes no sense to use a frequency resolution higher
than 1/1 octave. The reason is that the combination of
narrow frequency intervals and narrow time windows
in the other parameters will lead to extreme fluctua-
tions with position of the measured values due to the
acoustic relation of uncertainty. Such fluctuations have
no parallel in our subjective experience. Bradley [9.16]
has shown that, with 1/1 octave resolution, a change in
microphone position of only 30 cm can already cause
fluctuations in the clarity C and strength G of about
0.5–1 dB, which is equal to the subjective difference
limen. Higher fluctuations would not make sense, as
normally we do not experience an audible change when
moving our head 30 cm in a concert hall.

The frequency range in which room acoustic mea-
surements are made is normally the six octaves from 125
to 4000 Hz, but it may be extended to 63–8000 Hz when
possible. Particularly for reverberation measurements in
halls for amplified music, the 63 Hz octave is important.

9.4.3 Sound Sources

With the possibility of deriving all of the objective
parameters described above from impulse response
measurements, techniques for creating impulses are de-
scribed briefly in the following.

Basically, the measurements require an omnidirec-
tional sound source emitting short sound pulses (or
other signals that can be processed to become impulses)
covering the frequency interval of interest, an omnidi-
rectional microphone and a medium for the storage of
the electrical signal generated by the microphone.

Impulsive sources such as pistols firing blank car-
tridges, bursting balloons, or paper bags and electrical
spark sources may be used; but these sources are
primarily used for noncritical measurements, as their
directivity and acoustic power are not easy to control.

For measurements requiring higher precision and
repeatability, omnidirectional loudspeakers are prefer-
able, as the power and directivity characteristics of
loudspeakers are more stable and well defined. Omnidi-
rectional loudspeakers are often built as six units placed
into the sides of a cube, 12 units placed into a dodeca-
hedron or 20 units in an icosahedron, see Fig. 9.11. The

requirements regarding omnidirectivity of the source
are described in the ISO 3382 standard.

Loudspeakers, however, cannot always emit suffi-
cient acoustic power if an impulsive signal is applied
directly. Therefore, special signals of longer duration
such as maximum-length sequences or tone sweeps
have been developed, which have the interesting prop-
erty that their autocorrelation functions are band-limited
delta pulses. This means that the loudspeaker can emit
a large amount of energy without challenging its limited
peak-power capability while impulse responses with
high time resolution can still be obtained afterwards
through postprocessing (a correlation/convolution pro-
cess) of the recorded noise or sweep responses.

In certain cases, other source directivity patterns
than omnidirectional can be of interest. For example,
a directivity like that of a human talker may be rele-
vant if the measurement is related to the intelligibility
of speech or to measurements on the stage in an opera
house. A suitable talker/singer directivity can be ob-
tained by using a small loudspeaker unit (membrane
diameter about three to four inches) mounted in a closed
box of size comparable to that of the human head. Using
only one of the loudspeakers in a cube or dodecahedron
speaker of limited size is another possibility.

9.4.4 Microphones

For most of the parameters mentioned, the microphone
should be omnidirectional, while omni plus figure-of-
eight directivity and dummy heads are used when the
impulse responses are to be used for the calculation of
LEF and IACC.

Three-dimensional intensity probes, sound field
microphones or microphone arrays have also been sug-
gested in attempts to obtain more-complete information
about the amplitude and direction of incidence of indi-
vidual reflections [9.17] or for wave field analysis [9.18].
However, such measurements are mainly for research or
diagnostic purposes. As such, they do not fulfill the goal
set up in Sect. 9.1 of reducing the information to what
is known to be subjectively relevant. A selection of rele-
vant microphones are shown in Fig. 9.12.

9.4.5 Signal Storage and Processing

For the storage of the impulse responses the following
choices appear:

• The hard disk on a personal computer (PC)
equipped with a sound card or special analog-to-
digital (A/D) converter card.
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• Real-time (1/3 and 1/1 octave) analyzers or sound
level meters with sufficient memory for storage of
a series of short time-averaged root-mean-square
(RMS) values.• Fast Fourier transform (FFT) analysers capable of
recording adequately long records.• Tape recorders, preferably a digital audio tape
(DAT) recorder, or even MP3 recorders given that
the data reduction does not deteriorate the signal.

Of these, real-time analyzers and sound level me-
ters will process the signal through an RMS detector
before storage, which means that not the full signal,

but only energy with a limited time resolution will be
recorded.

Today, calculation of the objective parameters will
always be carried out by a PC or by a computer
built into a dedicated instrument. A large number of
PC-based systems and software packages particularly
suited for room acoustic measurements are available.
Some systems come with a specific analog-to-digital
(A/D), digital-to-analog (D/A) and signal-processing
card, which must be installed in or connected to the PC,
while others can use the sound card already available
in most PCs as well as external sound cards for hobby
music use.

9.5 Prediction of Room Acoustic Parameters

Beyond theoretical calculation of the reverberation
time, the prediction techniques presented in this section
range from computer simulations and scale model mea-
surements to simple linear models based on empirical
data collected from existing halls.

In all cases, the main objective is the prediction
of the acoustic conditions described in terms of the
acoustic parameters presented in Sect. 9.3. Just as we
can record the sound in a hall, both scale models and
numerical computer simulations can also provide au-
ralizations, which are synthesized audible signals that
allow the client and architect to listen to and participate
in the acoustic evaluation of proposed design alterna-
tives. Such audible simulations will often have much
greater impact and be more convincing than the acous-
tician’s verbal interpretation of the numerical results.
Therefore, the acoustician must be very careful to judge
the fidelity and the degree of realism before presenting
auralizations.

9.5.1 Prediction of Reverberation Time
by Means
of Classical Reverberation Theory

Reverberation time as defined in Sect. 9.3.1 is still the
most important objective parameter for the characteri-
zation of the acoustics of a room. Consequently, the pre-
diction of T is a basic tool in room acoustic design. Cal-
culation of reverberation time according to the Sabine
equation was the first attempt in this direction and today
is still the most commonly used. However, during the
100 years since its invention, several other reverberation
time formulae have been suggested (by Eyring, Fitzroy,
Millerton and Sette, Metha and Mulholland Kuttruff and

others), all with the purpose of correcting some obvious
shortcomings of the Sabine method.

The Sabine equation has been described in
Sect. 11.1.4. In larger rooms, the absorption in the air
plays a major role at high frequencies. If we include this
factor, the Sabine equation reads

T = 0.161V

Sα∗ +4mV
, (9.21)

where V is the room volume, S is the total area of the
room surfaces, α∗ is the area-weighted average absorp-
tion coefficient of the room surfaces

α∗ = α= 1

S

∑

i

Siαi (9.22)

and m accounts for the air absorption, which is a func-
tion of the relative humidity and increases rapidly with

Fig. 9.11 Two types of omnidirectional sound sources for
room acoustic measurements: blank pistol (in the raised
hand of the seated person) and an omnidirectional loud-
speaker (icosahedron with 20 units)
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Table 9.2 Air absorption coefficient m for different frequencies and relative humidity; valid for an air temperature of
20 ◦C (after [9.19])

Relative humidity (%) 0.5 kHz 1 kHz 2 kHz 4 kHz 8 kHz Air absorption

40 0.4 1.1 2.6 7.2 23.7 10−3 m−1

50 0.4 1.0 2.4 6.1 19.2 10−3 m−1

60 0.4 0.9 2.3 5.6 16.2 10−3 m−1

70 0.4 0.9 2.1 5.3 14.3 10−3 m−1

80 0.3 0.8 2.0 5.1 13.3 10−3 m−1

frequency [9.19]. Values of m versus frequency and rel-
ative humidity are listed in Table 9.2.

The Sabine equation assumes the absorption to be
evenly distributed on all surfaces, and that the sound
field is diffuse, which means that in each point of the
room:

1. The energy density is the same, and
2. There is equal probability of the sound propagating

in all directions.

Among the alternative reverberation formulae, only
the Eyring method will be described here, as it may give
more-accurate predictions in cases where the room is
highly absorptive.

In contrast to Sabine, the Eyring theory assumes that
the sound field is composed of plane sound waves that
lose a fraction of their energy equal to the absorption
coefficient of the surface whenever the wave hits a sur-
face in the room. Thus, after n reflections, the energy
in all wavefronts and the average energy density in the
room has been reduced to (1−α)n times the original
value. The average distance of propagation during this
process is lmn = ct, in which lm is the mean free path,

Fig. 9.12 A selection of microphones types used for
recording impulse responses in rooms. From left: artificial
head (with both internal and external microphones), sound
field microphone (with four capsules for 3-D recordings
of reflections) and a two-channel (stereo) microphone with
omnidirectional and figure-of-eight capsules

equal to the average distance traveled by the wave be-
tween two reflections, and t is the time elapsed since
the wave propagation started. Kosten [9.20] has shown,
that regardless of the room shape, lm equals 4V/S, if all
directions of propagation are equally probable. These
assumptions lead to the Eyring formula, which can be
expressed by substituting α∗ in (9.21) by

α∗ = αe = ln

(
1

1−α
)
. (9.23)

For low values of α∗, α and αe are almost identical,
causing the Sabine and the Eyring formulae to give
nearly identical results; but the difference becomes no-
ticeable when α exceeds about 0.3. In general, αe will
always be larger than α, leading to TSabine > TEyring. In
the extreme case of the mean absorption approaching
1, αe converges towards ∞, whereby TEyring → 0 as
one would expect for a totally absorbing room. How-
ever, TSabine converges towards the finite positive value
0.16 V/S, which of course is unrealistic.

Both the Sabine and the Eyring theories suffer from
at least two shortcomings. Neither of them consider
the actual distribution of the free paths (see the com-
ments on the mean free path above), which is highly
dependent on the room shape, nor the often very un-
even distribution of the absorption in the room, which
causes different directions of sound propagation not to
be equally probable. Typical situations where these fac-
tors become important are rooms with highly absorbing
acoustic ceilings and hard walls and floors – or the
reverse situation of an auditorium, where almost all ab-
sorption is found in the seating. In these situations the
energy is certainly not evenly distributed, there is a con-
siderable distribution of the path lengths, and there is
a much higher probability for sound energy to travel
towards the absorbing surface than away from it.

A common example in which the Sabine and Eyring
theories fall short is the simple case of a rectangular
room with plane walls, absorbing ceiling and low height
compared to length and width. In such a room the main
part of the late reverberant energy will be stored in
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Fig. 9.13 Strength versus distance measured in the Boston
Symphony Hall; values averaged over the four octaves
250–2000 Hz. The reverberation distance in this hall is
about 5 m

one- and two-dimensional horizontal room modes with
long free paths, whereas the three-dimensional modes
with shorter free paths will soon have lost their en-
ergy by interacting with the absorbing ceiling. Hereby,
different modes end up having very different decay
rates, leading to bent or double-sloped decay curves
and to measured T values often longer than calculated.
In fact, only the unnatural situation with an even ab-
sorption distribution and all free paths of equal length
will result in a straight-line decay and a well-defined T
value.

From practical measurements of the distribution of
G values, it is also clear that the assumption of an even
distribution of the energy density is not met in large
auditoria. Contrary to the Sabine theory, which pre-
dicts a constant level beyond the reverberation distance
(Fig. 11.6), we observe that the level continues to de-
crease with distance from the source – even far beyond
the reverberation distance, where the contribution of the
direct sound is negligible. An example of this is seen
in Fig. 9.13. (Based on empirical data, simple equations
predicting this attenuation of G with distance as a func-
tion of room geometry have been derived as described
in Sect. 9.5.6.)

Still, rather than relying on another of the reverber-
ation formulas to provide a more correct result, today
it may be wiser just to apply the Sabine and perhaps
the Eyring equations, keeping in mind their limitations.
Thus, Beranek [9.21] has suggested that, for Sabine cal-
culations in concert halls, one should apply different
sets of seat absorption values depending on the room
shape. These values should be measured in nearly the
same type of room as the hall in question.

When higher prediction accuracy is required, it is
recommended to carry out simulations in a computer
model as described in Sect. 9.5.4. However, also with
this calculation approach, the question about which ab-
sorption values to use is relevant.

9.5.2 Prediction of Reverberation
in Coupled Rooms

Auditoria with coupled spaces form another situation in
which the decay curve may end up being nonlinear and
the energy density will be different in different areas
of the room. Typical of such cases are open-plan of-
fice floors coupled to an atrium covering several storeys,
seating areas in auditoria subdivided by (deep) bal-
conies, theaters with proscenium openings between the
auditorium and the stage house, churches subdivided
into main and side naves and concert halls with re-
verberation chambers. Diffuse field theory can be used
to illuminate important properties of the reverberation
conditions in coupled rooms.

We consider a sound source placed in a room,
room 1, with volume V1 and physical absorption
area A10. This room is coupled by an opening with area
S to another room, room 2, with volume V2 and ab-
sorption area A20. From diffuse field theory (the energy
balance equations) we find that the apparent absorption
area of room 1, A1, depends on the ratio between the
absorption area of the attached room A20 and the area
of the opening S

A1 = A10+ A20S

A20+ S
. (9.24)

It is seen that for small openings, S 
 A20, A1 ≈ A10+
S, and for large openings, S � A20, A1 ≈ A10+ A20, as
we would expect.

As for the reverberation curve, a double slope may
be observed, particularly if both source and receiver are
placed in the less reverberant of the two rooms. The two
reverberation times TI and TII defining the double slope
can be described in terms of the reverberation times for
each of the two rooms separately if we consider the
opening to be totally absorbing

T1 = 0.161V1

A10+ S
and T2 = 0.161V2

A20+ S
. (9.25)

However, for our purpose the math gets simpler
if we apply damping coefficients: δ1 = 6.9/T1 and
δ2 = 6.9/T2 instead of the reverberation times. Then,
with coupling, the two damping coefficients, δI and δII,
corresponding to the slope in the first and second part of
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the decay, respectively, can be calculated from

δI,II =δ1+ δ2
2

±
√
(δ1− δ2)2

4
+ S2δ1δ2

(A10+ S) (A20+ S)
(9.26)

upon which

TI = 6.9

δI
and TII = 6.9

δII
. (9.27)

Another important feature of the double-slope decay is
how far down the knee point appears. If the opening area
is large and/or the source or receiver is placed close to
the opening, then a substantial exchange of energy can
occur and the knee point may appear so early that even
the EDT can be influenced by the decay from the cou-
pled room with longer T . If the opening area is small,
then the knee point appears late and far down on the
curve, in which case the influence of the coupled room
can only be perceived after final cords. This is the case
with some of the existing concert halls equipped with
coupled reverberation chambers. Further descriptions of
coupled spaces can be found in [9.5].

9.5.3 Absorption Data
for Seats and Audiences

Regardless of which reverberation formula is used, the
availability of reliable absorption values is fundamen-
tal for the accurate prediction of T as well as of most
other room acoustic parameters. Beyond the absorp-
tion values of various building materials (as listed in
Table 11.1), realistic figures for the absorption of the
chairs and seated audience are of special concern, be-

Table 9.3 Absorption coefficients of seating areas in concert halls for three different degrees of upholstery; both empty
and occupied (after [9.22])

Octave centre frequency (Hz) 125 250 500 1000 2000 4000

Heavily upholstered chairs 0.70 0.76 0.81 0.84 0.84 0.81

Unoccupied

Heavily upholstered chairs 0.72 0.80 0.86 0.89 0.90 0.90

Occupied

Medium upholstered chairs 0.54 0.62 0.68 0.70 0.68 0.66

Unoccupied

Medium upholstered chairs 0.62 0.72 0.80 0.83 0.84 0.85

Occupied

Lightly upholstered chairs 0.36 0.47 0.57 0.62 0.62 0.60

Unoccupied

Lightly upholstered chairs 0.51 0.64 0.75 0.80 0.82 0.83

Occupied

cause these elements normally account for most of the
absorption in auditoria. The absorption of chairs – both
with and without seated people – depends strongly on
the degree of upholstery. Average values of absorp-
tion for three different degrees of chair upholstery have
been published by Beranek [9.22] and quoted in Ta-
ble 9.3. As mentioned earlier, chair absorption values
for use specifically in Sabine calculations and for dif-
ferent types of hall geometries can be found in [9.21].

Sometimes audience absorption data are quoted as
absorption area per chair or per person. However, as
demonstrated by Beranek [9.3], the use of absorp-
tion coefficients multiplied by the area covered by the
seats plus an exposed perimeter correction is more rep-
resentative than absorption area per person, because
audience absorption tends to vary proportionally with
the area covered, while the absorption coefficient does
not change much if the density of chairs is changed
within that area.

Minimizing the total sound absorption area is of-
ten attempted in auditoria for classical music in order
to obtain a strong, reverberant sound field. One way to
achieve this is not to make the row-to-row distance and
the width of the chairs larger than absolutely necessary.
Another factor is the seat design itself. Here one should
aim at a compromise between minimum absorption and
still a minimum difference between the absorption of
the occupied and empty seat. This is facilitated by back
rests not being higher than the shoulders of the seated
person and only the surfaces covered by the person be-
ing upholstered. The rear side of the back rest should be
made from a hard material like varnished wood. On the
other hand, a minimum difference between the occupied
and empty chair implies that the upholstery on the seat
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and back rest should be fairly thick (e.g., 80 mm on the
seat and 50 mm on the back rest), the bottom of the tip-
up seats should be perforated or otherwise absorptive,
and when the seat is in its vertical position, there should
be a wide opening between the seat and the back rest so
that the sound can still access the upholstered areas.

9.5.4 Prediction by Computer Simulations

Computer simulations take into account the geometry
and actual distribution of the absorption materials in
a room as well as the actual source and receiver posi-
tions. The results provided are values for all relevant
acoustic parameters as well as the generation of audio
samples for subjective judgments. Computer simula-
tion is useful not only for the design of concert halls

Fig. 9.14 Examples of output from a room acoustic simulation software package (ODEON); see text for explanation

and theaters, but also for large spaces such as factories,
open-plan offices, atria, traffic terminals, in which both
reverberation, intelligibility and noise-mapping predic-
tions are of interest. Besides, they can be used in
archaeological acoustics for virtual reconstruction of
the acoustics of ancient buildings such as Roman the-
aters (http://server.oersted.dtu.dk/www/oldat/erato/).

The first computer models appeared in the 1960s,
and today a number of commercially available software
packages are in regular use by acoustic consultants as
well as by researchers all over the world.

In computer simulations the room geometry is rep-
resented by a three-dimensional (3-D) computer-aided
design (CAD) model. Thus, the geometry information
can often be imported from a 3-D model file already cre-
ated by the architects. However, one needs to break up
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eventual curved surfaces into plane elements and often
it is also advisable to simplify details in the geometry
provided by the architect. Alternatively, the acoustician
can build the room model by writing a file of coordi-
nate points or mathematical expressions for all surface
corners. Of course this will be more time consuming in
cases of complex room geometry, but some programs
offer intelligent programming routines for the modeling
of geometric elements.

When the geometry has been completed, the ab-
sorption values for each octave band, the scatter, and
the eventual degree of acoustic transparency have to be
assigned to each surface. In addition, the source and re-
ceiver characteristics (power and directivity versus fre-
quency, position and orientation) must also be entered.

In the calculation of sound propagation, most mod-
els disregard phase properties and use an energy
approximation. The sound propagation is studied by
means of rays (up to millions depending on the room
complexity) being traced from the source position
through reflections until their energy has been reduced
below the dynamic range of interest (often determined
by T or the signal-to-noise ratio in auralizations). Re-
flection directions are chosen so that angle of reflection
equals angle of incidence or with more or less random
angles depending on the scatter value attributed to the
surface. For the calculation of early reflections, some
models also apply image source theory, which actu-
ally makes phase considerations possible if the complex
impedances of the various surface materials and not
just their energy absorption coefficients are known.
However, the late reverberation part is normally cal-
culated by some kind of ray method, as image source
calculations become impractical after a few orders of
reflection. Recently, however, attempts to carry out
complete calculations inspired by finite-element (FEM)
or boundary-element (BEM) methods have been re-
ported even for rather complex rooms [9.23], whereby
phase and diffraction phenomena can be handled.

As a result of tracing the history of all rays emitted
in the room model, source and receiver specific impulse
responses are produced with detailed information about
the direction of incidence, delay and level versus fre-
quency of each reflection component. From these, all
the parameters mentioned in Sect. 9.3 can be calculated.
Most programs can generate a grid of receiver point
over selected audience areas and code the numeric re-
sults using a color scale to facilitate a fast overview of
the detailed position results for any of the parameters.
Also, automatic plots of relevant statistics regarding the
distribution with frequency and position are provided.

Impulse responses suitable for use in auralization
can be generated by applying available head-related
transfer functions, which have been recorded as a func-
tion of direction of sound incidence on an artificial head.
Such transfer functions not only represent the directiv-
ity of the human receiver, but are also important for
correct perception of direction of incidence of sound
field components when listening through headphones.
Alternatively, the directional information of the indi-
vidual reflections making up the impulse response can
be coded into a surround-sound format for listening via
a multiple-loudspeaker setup.

Figure 9.14 shows a view of a room model as well
as two binaural impulse responses and a color mapping
of a calculated parameter (generated by the ODEON
software).

9.5.5 Scale Model Predictions

Acoustic scale models have been used since the
1930s [9.24] to study the behavior of sound in rooms.
With proper care in detailing the geometry and the
choice of materials for building the model, this tech-
nique can provide quite accurate predictions of impulse
responses and acoustic parameters. Actually, scale mod-
eling is still regarded as more reliable than computer
models in cases where the room contains a lot of irreg-
ular surfaces or objects that diffuse or diffract sound
waves. However, the use of physical scale models is
limited to larger, acoustically demanding projects, as
building and testing the model is far more time consum-
ing and costly than computer modeling.

The diffusion and diffraction caused by an object
or surface in a room depends on the ratio between
the linear dimensions and the wavelength of the
sound: l/λ. Therefore, in a 1 : M scale model, the
diffraction/diffusion conditions will be modeled cor-
rectly if the wavelengths of the measurement signals in
the model are chosen such that

l

λ
= lM

λM
= l/M

λ/M
⇒ fM = fM . (9.28)

This means that we should increase the frequency used
in the model measurements by the factor M. Fortu-
nately, sound sources and microphones exist that are
capable of handling frequencies up to around 100 kHz,
whereby the frequency range up to 10 kHz can be han-
dled in a 1 : 10 scale model or 2 kHz in a 1 : 50 scale
model. The sources may be small loudspeaker units
(piezoelectric or electro magnetic) and the microphones
1/4′′ or even 1/8′′ condenser types.
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Ideally, the absorption coefficient αM of the mater-
ials chosen for building each surface in the hall model
should fulfil the equation

αM( fM) = α( f ) . (9.29)

In practice, however, we need only to distinguish
between mainly reflecting and mainly absorptive ma-
terials. The reflecting surfaces are quite easy, as these
can be made of any hard material (plywood, plaster)
with a couple of layers of varnish if necessary. It is
far more important to build the seats/audience so that
both head diffraction and absorption is correct for the
scale chosen. In the end it is often necessary to fine-tune
the reverberation time in the model by applying absorp-
tion to some secondary surfaces (surfaces that do not
generate primary early reflections).

Another important issue is to compensate for the ex-
cessive air absorption at high frequencies in the model.
This can be achieved either by drying the air in the
model, by exchanging the air for nitrogen, or simply
as a calculated compensation since the attenuation is
a simple linear function of time once the, frequency, hu-
midity and temperature have been specified. However,
in the case of compensation the signal-to-noise ratio
at high frequencies will be severely limited, which re-
duces the decay range for the estimation of T and the
sound quality if auralization is attempted. Figures 9.15
and 9.16 show an example of a 1 : 10 scale model and
its audience respectively.

9.5.6 Prediction from Empirical Data

In the 1980s, when most of the current objective acous-
tic parameters had been defined, several researchers
started making systematic measurement surveys of con-
cert, opera and multipurpose halls. Many of these meas-
ured data were published in [9.3]. Combining acoustic
data with data on the geometry of the halls has made it
possible to derive some simple rules of thumb regarding
how, and how much, acoustic parameters are affected by
the choice of gross room shape and dimensions.

Through statistical multiple linear-regression anal-
ysis of data from more than 50 halls, a number of
relationships between acoustical and geometrical prop-
erties have been found [9.25]. A number of the linear
regression models derived are shown in Table 9.4. In
these models, the variations in the acoustic parameters
are described as functions of the expected value accord-
ing to diffuse field theory (Gexp and Cexp, Sect. 9.3) plus
various geometrical variables such as: average room
height H , average width W , room volume V , number

of seats N , number of rear balcony levels no. rear balc.
etc. When the models were derived, the measured re-
verberation time (T ) was used to calculate the expected
values of strength Gexp and clarity Cexp. When using
these models for prediction of the values in a hall not
yet built, the expected values could be based on a Sabine
calculation of T instead. It should be mentioned that,
apart from ΔG(10 m), the attenuation in strength per
10 m increase in source–receiver distance, the predicted
values should be considered as representing the position
average of values to be found in the hall.

The three rightmost columns in Table 9.4 contain
information about how well each prediction formula
matched the measured data. When comparing the
amounts of variance explained by the different models,
it is seen that the diffuse field prediction is responsible
for the largest portion of the variance. This may be inter-
preted as hall volume and total absorption area being the
most important factors governing the behavior of C and
G. However, as all the independent variables listed gave
a significant improvement of the model accuracy, this
also demonstrated that consideration of the geometri-
cal factors can improve the prediction accuracy. Equally
importantly, the acoustic effects of changes in certain
design variables can be quantified quickly.

Prediction of Clarity
The first C-model illustrates that absorption and volume,
as reflected in T , are responsible for the main part of
the variation in C. The other three models all illustrate
the positive, but sometimes unwanted, effect of average
hall width on clarity. Moreover, it is seen that introduc-
ing a moderate 15◦ slope of the main audience floor
(without changing the other variables: average width-to-
height ratio, volume and absorption area) causes C to
increase by about 0.5 dB on average. Similarly, chang-
ing the basic design from rectangular to a 70◦ fan shape
makes C increase by about 1 dB. The last C-model illus-
trates the effect of tilting the angle of the stage ceiling
towards the audience. Changing the slope from horizon-
tal to 20◦ results in about 0.5 dB higher C values.

Predictions of Strength
The G model only considering Gexp is rather accurate.
The constants in both G-models illustrate the fact that
G is always a few dB lower than Gexp, as also predicted
by Barron’s revised theory [9.26].

The second G-model contains an independent vari-
able: the ratio between the volume and the number of
seats. The positive influence of this ratio is not immedi-
ately evident because V/N , which is strongly correlated

Part
C

9
.5



Acoustics in Halls for Speech and Music 9.6 Geometric Design Considerations 339

Table 9.4 Regression models for the relationships between room acoustic parameters and room design variables as
derived from a database containing data from more than 50 halls (after [9.25])

Room acoustic
parameter

Regression models: f (PARexpected, geometry) Correlation
coefficient

% of variance STD residuals

C (dB) −0.1+1.0Cexp 0.76 58 1.0 dB

−1.4+0.95Cexp+0.47W/H +0.031 floor slope 0.83 68 0.9 dB

−1.2+1.03Cexp+0.43W/H +0.013 wall angle 0.84 70 0.9 dB

−1.77+1.10Cexp+0.055W +0.027 stage ceil. angle 0.86 74 0.8 dB

G (dB) −2.0+0.94Gexp 0.91 83 0.9 dB

−5.61+1.06Gexp+0.17V/N +0.04 distance 0.94 89 0.9 dB

ΔG(10 m) (dB) −1.85+0.42 no. rear balc. 0.50 25 0.7 dB

−1.41+0.35 no. rear balc.−3.93 distance/(HW) 0.55 31 0.6 dB

LEF (–) 0.39−0.0061 width 0.70 49 0.05

0.37−0.0051 width−0.00069 wall angle 0.72 53 0.05

with T , is expected to be incorporated into the vari-
able Gexp already (although this result has also been
confirmed by other researchers [9.27]).

As mentioned earlier, G shows a steady and signif-
icant decrease with distance in most halls, as was also
found by Barron [9.26]. This phenomenon is described
quantitatively by the two models for estimation of the
rate of decrease in G per 10 m source–receiver distance
ΔG(10 m).

Both listed ΔG(10 m) models indicate a reduced
distance attenuation when the number of rear balconies
is increased. This may be related to the fact that the
level is increased in the more-distant seats when these
are placed on a balcony, whereby they are closer to the
stage and to the reflecting ceiling.

In the second ΔG(10 m) model, distance/HW ap-
pears as an independent variable. This variable equals
the distance from the stage to the rearmost seat divided
by the product of the average room height H and aver-
age hall width W . As the coefficient to this variable is

negative, the natural result appears to be that attenuation
with distance will increase if the hall is long, narrow or
has a low ceiling.

Predictions of Lateral Energy Fraction
At the bottom of Table 9.4 are listed two models for
LEF as a function of hall geometry only, as diffuse
field theory has no effect on LEF variation. The ef-
fects of the width and angle between the side walls are
understandable.

Simple prediction formulae as listed in Table 9.4
are particularly useful in the very early phases of the
design process, in which it is natural for the archi-
tect to produce and test many different sketches in
short succession, leaving no time to carry out computer
simulation of each proposal. The importance of the
knowledge embedded in these rule-of-thumb equations
is highlighted by the fact that many aspects of the acous-
tics of a new hall are settled when one of these sketches
is selected for the further development of the project.

9.6 Geometric Design Considerations

With the connections between room acoustic parame-
ters and hall geometry described in the previous section,
we have made the first approach to the third question
set up in the introduction to this chapter, which is of
real interest to the acoustic designer: how do we con-
trol the acoustic parameters by the architectural design
variables? Referring again to Fig. 9.1, we are beginning
to fill the lower-left box with architectural parameters
and establish the relationship between these and the
objective parameters. The major geometric factors of
importance in auditorium design will be dealt with in

the present section: seating layout in plan (determin-
ing the gross plan shape of the room) and in section
(determining sight lines), use of balconies, choice of
wall structure, room height, ceiling shape and use of
free-hanging reflectors.

9.6.1 General Room Shape
and Seating Layout

When people stop to watch or listen to a spontaneous
performance, for instance in an open square in the city,
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Fig. 9.15 A 1 : 10 scale model of the Danish Broadcasting
concert hall in Ørestad, Copenhagen. The model is fitted
with audience and orchestra (acoustic design by Nagata
Acoustics, Japan)

Fig. 9.16 Model audience used in a 1 : 10 scale model of
the Danish Broadcasting concert hall shown in Fig. 9.15.
Upper-left corner: Close view of model orchestra musi-
cians and spark sound source. Lower left: close-up view of
model chairs and polystyrene audience with hollow chest.
Dress and hair is made from wool felt. Right: model audi-
ence and chairs placed in model reverberation chamber for
absorption testing (reverberation room designed by Nagata
Acoustics)

the way they arrange themselves depends on the type
of performance. It will be governed by the fact that any
newcomer will look for the best position available rela-
tive to his/her need to see or hear properly. The choice
will be a compromise between choosing a position close
to the performer(s) and next to other members of the
audience or farther away but close to an eventual main

Fig. 9.17 Organic formations of audience depending on
the type of performance

Fig. 9.18 Basic room shapes (after [9.4])

center line for vision and sound radiation. In Fig. 9.17,
such organic audience arrangements are shown for two
different types of performances:

1. Action or dialogue theater such as dancing, fighting,
debating, circus performance, for which the visual
and acoustic emission are more or less omnidirec-
tional and

2. Monologue or proscenium stage theater perfor-
mance and concerts with acoustic instruments – all
of which have a more-limited visual and/or acoustic
directivity.

When we set up walls around the gathered people,
we arrive at two classical plan shapes of auditoria devel-
oped early during our cultural history. These are shown
at the top of Fig. 9.18: the fan-shaped Greek/Roman the-
ater (left), and the amphitheater, circus or arena (right).
Both were originally open theaters; but the shapes
were maintained in roofed buildings. In the bottom of
Fig. 9.18, later, basic forms are shown: the horseshoe,
the Italian opera plan and the rectangular concert hall.
The latter form was originally a result of traditional
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Fig. 9.19 Mean stage–listener distance and net efficiency of floor area for four different room shapes. Fn is the net
area occupied by the audience, Fb is the total floor area, d is the average source–listener distance; dI = d for case I
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Fig. 9.20 Calculated distributions of early lateral reflection levels in rooms of different plan shape: fan, hexagon,
rectangular and reverse fan. Darker areas represent higher LEF levels (after [9.5])

building forms and limitations in roof span with wooden
beams.

When building an auditorium, efficient use of the
available floor space and the average proximity of the
audience to the performers are very important parame-
ters. Depending on the plan shape of the room different
values appear as shown in Fig. 9.19.

Low average distance is the main reason for the fre-
quent use of the fan shape (III and IV in Fig. 9.19),
although the directivity of sound sources (like the hu-

man voice) as well as the quality of lines of sight sets
limits on the opening angle of the fan.

Another limitation of the fan shape is that it does
not generate the strong lateral reflections so important
in halls for classical music. This was already seen in
the empirical equations in Sect. 9.5.6 and confirmed in
Fig. 9.20, showing the calculated distributions of early
lateral reflection levels in rooms of different plan shapes.

The reason is that sound waves from the source hit-
ting the side walls will produce reflections that will run
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Fig. 9.21 Directions of side-wall reflections depending on
room shape (after [9.4])

almost parallel to the direct sound and so hit the listener
from an almost frontal direction, therefore not con-
tributing to the LEF or causing dissimilarity between
the two ear signals. This is also illustrated in Fig. 9.21.
In addition, many of the side-wall reflections will not
reach the center of the hall at all.

9.6.2 Seating Arrangement in Section

When several rows of seated audience are placed on a flat
floor, the direct sound from a source on the stage and
the reflection off the audience surface will hit a receiver
in this audience area after having traveled almost iden-
tical distances, and the reflection will hit the audience
surface at a very small angle relative to the surface plane.
At this grazing angle of incidence, all the energy will
be reflected regardless of the diffuse absorption value of
the surface, but the phase of the pressure in the reflected
wave will also be shifted 180◦. Hereby the direct sound
and the grazing incidence reflection will almost cancel
each other over a wide frequency range. Typical atten-
uation values found at seats beyond the tenth row can
amount to 10–20 dB in the range 100–800 Hz relative to
an unobstructed direct sound. Moreover, the higher fre-
quencies above 1000 Hz will also be attenuated by 10 dB
or more due to scattering of the sound by the heads of
people sitting in the rows in front.

The same values of attenuation mentioned above for
the direct sound are likely also to be valid for first-
order reflections off vertical side walls. The result will
be weaker direct sound and early reflections in the hori-
zontal stalls area and subjective impressions of reduced
clarity, intimacy and warmth in the stalls seats.

To avoid this grazing incidence attenuation, the seat-
ing needs to be sloped relative to the direction towards
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Fig. 9.22 Relevant parameters for the calculation of the
necessary angle α for a constantly sloping floor section. a:
distance from the source to the first seating row, b: distance
from the source to the last seating row, d: distance between
the seat rows, e: source height above the head of listeners
in the first row (determined by the height of the stage floor
over the stalls floor), h: line-of-sight clearance at the last
row. Rows closer to the source will have clearance values
larger than h (after [9.28])

the source. The vertical angle of the audience floor can
be designed to be constant or to vary gradually with
distance. If a constant slope is planned, the angle α nec-
essary to obtain a certain clearance h at the last row
(equal to the vertical distance between sight lines from
this and the preceding row) can be calculated from the
variables indicated in Fig. 9.22

tanα= hb

da
− e

a
. (9.30)

In particular, it is of interest to use this formula to see
how far away from the source it is possible to main-
tain a certain slope (one obvious example being α = 0,
corresponding to a horizontal floor)

b = d

h
(e+a tanα) . (9.31)

Normally, a clearance value of minimum 8 cm will
be sufficient to avoid grazing-incidence attenuation; but
sight lines will still be unsatisfactory unless staggered
seating is applied so that each listener is looking to-
wards the stage between two other heads and not over
a person sitting directly in front. However, if the clear-
ance is increased to about 12 cm, then both the acoustic
and visual conditions will be satisfactory, but this im-
plies a steeper floor slope.

In rows closer to the sound source a linear slope will
cause the clearance to be higher than the design goal –
and so higher than necessary. Often this is not desir-
able as it may cause the last row to be elevated high

Part
C

9
.6



Acoustics in Halls for Speech and Music 9.6 Geometric Design Considerations 343

������	�	����

7��	����

�

��

��

�+

��

�

�+

�

�

�

��

Fig. 9.23 Relevant parameters for the calculation of a floor
slope with constant clearance. The variables are explained
in the text (after [9.29])

above the source and the steeply sloped floor will re-
duce the effective volume of the room. Therefore, it can
be relevant to consider instead a curved floor slope with
constant clearance, as illustrated in Fig. 9.23.

In Fig. 9.23, the height of a person’s head in the n-th
row Hn relative to the height of the head in the first
row is calculated according to the formula (derived from
a logarithmic spiral)

Hn = d0γ +d (θ−γ)
= γ

[
dn loge

(
dn

d0

)
− (dn −d0)

]
. (9.32)

In this expression d0 is the distance from the source to
the first row, dn the distance to the n-th row and γ the
desired angle between the tangent to the seating plane
and the line of sight to the source. For a one meter row-
to-row distance, an angle γ of 8◦ will correspond to
a clearance of about 12 cm.

A curved slope can also be obtained by simply
applying the linear-slope formula to each of smaller sec-
tions of seat rows successively (e.g. for every five rows).
In this case the variables a and e in (9.30) should refer
to the first row in the relevant section.

As mentioned earlier, a steep slope will reduce the
volume and so the reverberation time T . Besides, ge-
ometric factors may reduce T beyond what a Sabine
calculation may predict. The reason is that the ele-
vated seating – and its mirror image in the ceiling –
will cover a larger solid angle as seen from the source.
Hereby a larger part of the emitted sound energy will
quickly reach the absorbing seating and leave less for
fueling a reverberant sound field in the room. The re-
sult is higher clarity and less reverberance in halls with
steeply raked seating. This is in line with the empirical
equation for clarity as a function of T (Cexp) and floor
slope listed in Table 9.4, Sect. 9.5.6. Consequently, it
is a good idea to limit the clearance/angle in halls for

classical music to about 8 cm or 6◦, whereas for speech
auditoriums and drama theaters, in which both intelli-
gibility and good visual sight lines have priority, values
closer to 12–15 cm or 8–10◦ may be preferable.

9.6.3 Balcony Design

The introduction of balconies allows a hall with a larger
seat count to be built where a limited footprint area is
available; but often balconies are introduced simply in
order to avoid longer distances between stage and listen-
ers. The average stage–listener distance can be reduced
significantly by elevating the rearmost seat rows and
moving them forward on rear or side balconies above
parts of the audience in the stalls. In this way not only
is the direct sound increased by shortening the direct
sound path, but the elevated seats also become closer
to a possibly reflecting ceiling. The result is higher
strength as well as higher clarity in the balcony seats
compared to the alternative placement of seats at the
back of an even deeper hall.

Since the line-of-sight and clearance criteria still
have to be fulfilled for balcony seats, the slope of-
ten becomes quite steep on balconies, as illustrated in
Fig. 9.24 showing a long section in a hall with con-
stant clearance on main floor and balcony seats. For
safety reasons the slope must be limited to no more than
about 35◦.

When balconies are introduced, the acoustics in the
seats below the balconies need special attention. It is
important to ensure sufficient opening height below bal-
cony fronts relative to the depth of the seating under
the balcony (Fig. 9.25). Otherwise, particularly the level
of the reverberant energy in the overhung seats will be
reduced, causing the overall sound level to be weak
and lacking in fullness. Rules of thumb in design are
H ≥ 2D for theaters (in which reverberant sound is less
important) and H ≥ D for concert halls (in which full-
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Fig. 9.24 Section of a hall with a rear balcony and constant
clearance. The result is an increased slope for the elevated
balcony (after [9.30])
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Fig. 9.25 Important parameters for maintaining proper
sound in seats overhung by balconies (after [9.9])
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Fig. 9.26a,b Poor (a) and good (b) design of balcony pro-
file (after [9.29])

Fig. 9.27 A half cross section of a hall with side balconies
that, in combination with the side wall, return early re-
flection energy towards the stalls area from a lateral angle
(after [9.4])

ness is more important) [9.9]. The criteria may also be
stated in terms of the vertical viewing angle from the
seat to the main hall volume. Recently, Beranek [9.3]
has suggested this be a minimum of 45◦.

Sometimes, the requirement for limited depth of
balcony overhangs is also specified as a percentage of
the ceiling area needed to be visible from the last row
of seating or as a vertical opening angle β between the
balcony soffit and the head of listener below the balcony
front as seen from the last row. In the latter case, Barron
has suggested 25◦ as suitable for drama halls and 35◦
for concert halls.

As illustrated in Fig. 9.26, it is often advantageous
to let the soffit be sloped, so that it will help distribute
reflected sound to the overhung seats. If a diffusing
profile is added to the balcony soffit, the reflection off
this surface may even gain a lateral component, so that
spaciousness will not be reduced. The drawing also il-
lustrates how the otherwise vertical balcony front and
the right angle between the rear wall and balcony soffit
have been modified to avoid sound being reflected back
to the stage where it could generate an echo. However,
in a rectangular hall with balconies along the side walls,
vertical soffits in combination with the side-wall surface
can increase the early and lateral reflection energy in the
stalls area as shown in the half cross section in Fig. 9.27.

In general, as large-scale modulations in the hall ge-
ometry, balconies also provide low-frequency diffusion,
which is considered an advantage.

9.6.4 Volume and Ceiling Height

As the people present are often the main source of sound
absorption in an auditorium, the ratio between the vol-
ume and area covered by the audience and performers
is an important factor for the reverberation time achiev-
able. The general relationship valid for concert halls is
shown in Fig. 9.28.

Because the variation in area per person does not
vary significantly between halls, the volume per seat is
also used as a rule of thumb for the calculation of the
required volume. For speech theaters, a volume per seat
of 5–7 m3 will result in a reverberation time around 1 s,
whereas at least 10 m3 per seat is needed to obtain a T
value of 2 s.

Since the audience normally occupies most of the
floor area, the volume criterion can also be translated
to a ceiling height criterion. In such cases, the abscissa
in Fig. 9.28 can be interpreted as roughly equal to the
required room height. A ceiling height of about 15 m is
required if a T value of 2 s is the target, whereas a height
of just 5–6 m will result in an auditorium with a re-
verberation time of about 1 s. It should be emphasized
that, in the discussion above, we have assumed the other
room surfaces to be reflective.
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Fig. 9.28 Reverberation time T in occupied concert halls
versus the ratio between the volume V and area occupied
by the audience and orchestra ST (including aisle space up
to 1 m width). Derived from empirical data (after [9.9])

These guidelines on volume should be regarded as
rough rules of thumb only, as room shape, floor slope,
the presence of balconies and the distribution of absorp-
tion on other surfaces can cause significant variations
in the objective values obtained for T and other pa-
rameters. In smaller halls (say below 1500 seats) for
symphonic concerts, it is better to start with a volume
slightly larger than required rather than the opposite, as
one can always add a little absorption – but not more
volume – to a hall near completion. On the other hand,
in larger halls, where maintaining a suitably high G
value is also of concern, a better strategy is to limit
the volume and minimize the absorption instead. One
way of minimizing absorption is to place some of the
seats under balcony overhangs, where they are less ex-
posed to the reverberant sound field. However, the other
side of the coin is the poor conditions in these seats, as
explained in Sect. 9.6.3.

9.6.5 Main Dimensions and Risks of Echoes

In order for early reflections to contribute to the in-
telligibility of speech or to the clarity of music, they
must not be delayed more than about 30 ms and 80 ms,
respectively, relative to the direct sound. If the first
reflection arrives later than 50 ms, it is likely to be per-
ceived as a disturbing echo when impulsive sounds are
emitted (Sect. 9.2).

In large rooms it is a challenge to shape the sur-
faces so that reflections from the main reflecting areas
arrive within 50 ms at all seats. It is possible to iden-
tify which surfaces are able to generate echoes at the
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Fig. 9.29 Echo ellipses drawn over the plan of an audito-
rium (after [9.4])

receiver point in question by means of simple geomet-
rical studies of plan and sectional drawings as seen in
Fig. 9.29. Ellipses are drawn so that the source and rel-
evant receiver positions are placed at the focal points
and so that the sum of distances from the focal points
to any point on the ellipse equals the distance between
the focal points plus 17 m (times the scale of the draw-
ing). Then, if a surface outside the ellipse marked “m”
in the figure directs sound towards seats near point M,
this surface must be made absorbing, diffusing or be re-
oriented so that the reflection is directed towards areas
farther away from the source than M.

In particular, it is important to check the risk of
echoes being generated by the rear wall behind the au-
dience and from a high ceiling.

9.6.6 Room Shape Details
Causing Risks of Focusing and Flutter

Concave surfaces can cause problems as they may focus
the sound in certain areas while leaving others with too
little sound. Thus, vaulted ceilings as seen in Fig. 9.30
are only acceptable if the radius of curvature is less than
half the height of the room (or rather half the distance
from peoples’ heads to the ceiling) so that the focus cen-
ter is placed high above the listeners. Situations with
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Fig. 9.30 Focusing by concave ceilings (after [9.31])
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Fig. 9.31a,b Circular room with focused and creeping
waves (a), and with the surface shape modified (b) so that
these phenomena are avoided
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Fig. 9.32a–c Room shapes causing risk of flutter echoes

a slight curvature, r ≥ 2h, may also be acceptable if the
floor is covered with absorptive seating so that multiple
reflections between floor and ceiling will not arise.

Circular rooms are also unfavorable both due to the
risk of focusing and the risk of a whispering-gallery
effect (boundary waves creeping along the wall). Modi-
fications of the concave wall within the overall circular
shape as shown in Fig. 9.31 can solve the problem, at
least at mid and high frequencies.

Another frequent problem is regular, repeated re-
flections, so-called flutter echoes, which arise between
parallel, smooth reflecting walls or along other simple
reflection paths that can repeat themselves as shown in
Fig. 9.32. Particularly in small rooms such reflections
may cause strong coloration of the sound (through comb
filtering as explained in Sect. 9.2.3) while in larger
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Fig. 9.33a–c Room with flutter echoes (a), and measures against this by means of diffusion (b) or absorption (c) (af-
ter [9.28])

rooms they may be perceived as a long series of distinct
echoes evenly spaced in time.

In any case, the flutter can be avoided by simple
absorptive or diffusive treatment of at least one of the
opposite reflecting surfaces, as shown in Fig. 9.33. Be-
sides, if it is possible to change the angle between the
opposite walls just by a few degrees (3−5◦), the prob-
lem will also disappear.

9.6.7 Cultivating Early Reflections

In most rooms accommodating more than say 25
listeners, it is of relevance to consider how early re-
flections can help distribute the sound evenly from the
source(s) to the audience. This will increase the early
reflection energy and so improve clarity/intelligibility
and perhaps even reduce the reverberation time by
directing more sound energy towards the absorbing
audience.

In rooms for speech, the ceiling height should be
moderate (Sect. 9.6.4) so that this surface becomes the
main surface for the distribution of early reflection en-
ergy to the audience. Figure 9.34 shows examples of
how this can be accomplished in rooms with both low
and high ceilings.

In this figure the two situations at the top need im-
provement. In the low-ceiling room to the left the echo
from the rear wall/ceiling combination can be removed
by introducing a slanted reflector covering the corner.
In this way the sound is redirected to benefit the last
rows, which may need this to compensate for the weak
direct sound at this large distance. Alternatively, the en-
ergy from this rear corner may simply be attenuated by
one or both surfaces near the corner being supplied with
absorption.

If the ceiling is so high that echoes can be generated
in the front part of the room, as shown to the right, the
front part may likewise be treated with slanted reflectors
that redirect the sound to the remote seat rows, or this
ceiling area may simply be made sound absorbing. The
lower-right section in the figure also illustrates how the
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floor can be tilted to reduce volume and allow the rear
seats benefit from being closer to the reflecting ceiling.

If for architectural reasons the ceiling is higher than
necessary in a room for speech or rhythmic music, sub-
stantial areas of the room surfaces must be treated with
sound-absorbing material to control the reverberation
time. However, more sound absorption will reduce the
overall sound level in the room so this is only recom-
mended if the sound can be amplified.

If the ceiling is to be partly absorbing, the ceiling
area that should be kept reflecting in order to dis-
tribute useful first-order reflections to all listeners can
be generated geometrically by drawing the image of the
source in the ceiling surface and connecting lines from
this image point to the boundaries of the seating area.
Where these lines cross the actual ceiling we find the
boundaries for the useful reflecting area, as shown in
Fig. 9.35.

In larger auditoria, a more-detailed shaping of the
ceiling profile may be needed to ensure even distribu-
tion of the reflected sound to the listeners. Notice in
Fig. 9.36 that the concave overall shape of the ceiling
can be maintained if just the size of the ceiling panel
segments is large enough to redirect the reflections at
suitably low frequencies.

Local reshaping of surfaces while maintaining the
overall form is also illustrated in Fig. 9.37, in which
the weak lateral reflections in a fan-shaped hall are
improved by giving the walls a zigzag shape with al-
most parallel sets of smaller areas along the splayed
side walls. In the example shown in the photo, the pan-
els are even separated from the wall surface and tilted
downward.

9.6.8 Suspended Reflectors

In many cases it is advantageous to reduce the delay
and increase the level of a reflection without changing
the room volume. In this case it is obvious to suggest in-
dividual reflecting surfaces suspended within the room
boundaries, as shown to the right in Fig. 9.38. If the re-
flector is placed over an orchestra pit, it can improve
mutual hearing among the musicians in the pit as well as
increase the early energy from the singing on the stage
to the seating primarily in the stalls area.

Suspended reflectors are also suitable for acous-
tic renovation of existing, listed buildings, because the
main building structure is not seriously affected (as in
the case of the Royal Albert Hall in London [9.3]).
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Fig. 9.34a–f Means of controlling early reflections in auditoria (af-
ter [9.28])
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Fig. 9.35 Sketch identifying the area responsible for cov-
ering the audience area with a first-order ceiling reflection
(after [9.32])
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Fig. 9.36 Reshaping of ceiling profile to avoid focusing and pro-
vide more-even sound distribution

@

@

Fig. 9.37 Improvement of side-wall reflections in a fan-shaped hall
by local reshaping or adding of panels parallel to the long axis of
the room (drawing after [9.32])

For a given source position, a small reflector will
cover only a limited area of receiver positions. There-
fore, how the reflector(s) influence the balance heard
between different sources such as the different sec-
tions in a symphony orchestra must be thoroughly
considered. With small reflectors, the balance between
sections may be perceived as very different in different
parts of the audience. Often it will be advantageous to
give the reflector(s) a slightly convex shape to extend
the area covered by the reflection and to soften its level.

The nature of the reflection off a panel of limited
size is strongly frequency dependent and may be influ-
enced by several factors: distance to source and receiver,
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Fig. 9.38 The influence on reflection paths of a reflecting panel suspended in front of a stage (after [9.33])

absorption by the panel material, diffraction governed
by the ratio between panel size and the wavelength, and
focusing/diffusion due to panel curvature.

The attenuation with distance is as for a spherical
wave in free field: 6 dB per doubling of the total distance
from the source to the reflector a1 plus the distance from
the reflector to the receiver a2. Normally, the attenua-
tion due to absorption is negligible, as reflectors should
obviously be made from a reflective material. The only
exception could be when a thin, lightweight material is
used, such as plastic foil or coated canvas. In this case
the attenuation ΔLabs can be calculated from the mass
law

ΔLabs =−10 log10

[
1+

(
ρc

π fm cos θ

)2
]

(9.33)

where ρc equals the specific impedance of air
(≈ 414 kg m−2 s−1), f is the frequency in Hz, m is the
mass per square meter of the material and θ is the angle
of incidence relative to the normal direction.

As a simple design guide, diffraction can be said to
cause the specular reflection to be attenuated by 6 dB
per octave below a limiting frequency fg given by

fg = ca∗

2S cos θ
(9.34)

where a∗ is the weighted characteristic distance of the
reflector from the source and receiver

a∗ = 2a1a2

a1+a2
, (9.35)

S is the area of the reflector, and θ is the angle of
incidence as before. Above the frequency specified in
(9.34), the influence of diffraction can be neglected.

If the reflector is curved, the attenuation ΔLcurv can
be calculated as

ΔLcurv =−10 log10

∣∣∣∣1+
a∗

R cos θ

∣∣∣∣ . (9.36)
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Fig. 9.39 Attenuation of a reflection caused by concave
and convex reflectors (after [9.34])
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Fig. 9.40 Approximate attenuation due to diffraction from
a reflector array. All non-horizontal lines have a slope
of 6 dB per octave. See text for further explanation (af-
ter [9.34])

Here, the only new variable R is the radius of curva-
ture. R should be entered positive for convex surfaces
and negative for concave surfaces. When the reflector is
concave, strong focussing occurs when R =−a∗/ cos θ.
In Fig. 9.39, graphs of ΔLcurv are shown for both the
concave and convex cases. It is noted that the values
can be both positive and negative. In the case where the
surface is curved in both the x- and y-directions of the
reflecting plane, the ΔLcurv correction should be ap-
plied twice using the appropriate radii of curvature in
the two directions.

In certain cases an array of (identical) reflectors are
suspended as an alternative to having one large reflector.
Such an array can be characterized by the area of each
element, S, the total area covered by the array Stotal and
the degree of coverage, μ, equal to the ratio between

the total area of the n reflector elements nS and Stotal. In
this case, the attenuation due to diffraction depends on
frequency as shown in Fig. 9.40.

Here, fg is the limit frequency of the individual
elements calculated according to (9.34), while fg,total
is the lower-limit frequency related to the entire array
area Stotal

fg,total = ca∗

2Stotal cos θ
. (9.37)

First we look at the situation above the frequency fg
in Fig. 9.40. As in the case of the single reflector, the
attenuation is zero as long as the specular reflection
point falls on one of the reflector elements. If the spec-
ular point falls between two elements, the attenuation
can be approximated by the dotted line, according to
which we have an attenuation of 6 dB per octave as
frequency increases. In the frequency range between
fg,total and μ fg, the attenuation is roughly frequency
independent and governed by the array density μ, and
below fg,total the level again rolls off by 6 dB per oc-
tave. It is seen that, in order to obtain a wide range of
frequency-independent reflection, one should aim to use
many small reflectors rather than fewer, larger elements.
Fortunately, the strong position-dependent variation in
reflection level at high frequencies can be reduced by
making the individual elements slightly convex.

It should be remembered that whenever surfaces are
shaped with the purpose of efficiently directing sound
energy from the source towards the absorbing audience,
this energy is no longer available for the creation of the
reverberant sound field. In other words, the more we try
to improve the clarity and intelligibility, the more we
reduce reverberation in terms of T and EDT (regard-
less of the physical absorption area), and the more the
sound field will deviate from the diffuse field predicted
by any simple reverberation formula. If substantial re-
verberation is needed as well, the solution may be to
increase the volume per seat beyond the 10 m3 as al-
ready suggested for large halls in Table 9.1. As seen in
Sect. 9.7.3 this is in line with the current trend in concert
hall design.

9.6.9 Sound-Diffusing Surfaces

It is often stated that diffusion of sound from irregu-
lar surfaces adds a pleasant, smooth character to the
sound in a concert hall. It is a fact that reflections
from large smooth surfaces can produce an unpleasant
harsh sound. It is also a fact that most of the sur-
faces in famous old and highly cherished halls such as
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the Musikvereinsaal break up and scatter the reflected
sound in many directions due to rich ornamentation,
many window and door niches and the coffered ceiling
(Fig. 9.45). Even the large chandeliers in this hall break
up the sound waves.

Many present-day architects are influenced by mod-
ernism and are less enthusiastic about filling their
designs with rich ornamentation. Therefore, close co-
operation is often needed between architect and acousti-
cian in order to reach a surface structure that will scatter
the sound sufficiently, although this is difficult to define
exactly as good guidelines do not exist for what percent-
age of the wall/ceiling area one should make diffusive.

Schroeder [9.35] has done pioneering work on cre-
ating algorithms for the design of surface profiles that
will ensure uniform distribution of scattered sound
within a well-defined frequency range. These algo-
rithms are based on number theory using the maximum
length, quadratic residue or primitive root number se-
quences. However, in most cases of practical auditorium
design, perfectly uniform scattering is not needed, and
good results can be obtained even after a relaxed archi-
tectural adaptation of the ideas, as shown in Fig. 9.41.

The primary requirement to achieve diffusion is that
the profile depth of the relief is comparable with a quar-
ter of the wavelength and the linear extension of the
diffusing element (before it is eventually repeated) is

Fig. 9.41 Diffusion treatment by means of wooden sticks
screwed on an otherwise plane, wooden wall surface

comparable with the wavelength at the lowest frequency
of interest to be diffused. Given this, many different
solutions can be imagined such as soft, curved forms
cast in plaster, broken stone surfaces, wooden sticks,
irregular brick walls etc.

Finally, it should be mentioned that strict periodic
structures with sharp edges equally spaced along the
surface can cause problems of harsh sound at frequen-
cies above the design frequency range. Actually, it is
safer to apply more-organic, chaotic structures, or to ask
the workers not to be too careful with the ruler.

9.7 Room Acoustic Design of Auditoria for Specific Purposes

This section will present some examples showing how
the principles outlined in Sect. 9.5 are implemented in
the current design of different types of auditoria. The
main focus will be on concert halls for classical mu-
sic as well as drama and opera theaters. It will also be
shown that design choices are not only compromises be-
tween acoustic and other concerns, but sometimes even
between different room acoustic aspects. This is often
the case with multipurpose auditoria. In any case, the
compromises are more serious the larger the seating
capacity.

9.7.1 Speech Auditoria, Drama Theaters
and Lecture Halls

In the Western world, rooms for spoken drama as
well as for opera have their roots in the Greek
and Roman theaters in which the audience is ar-
ranged in sloping concentric rows, the cavea. In
Roman times, this audience area covered a 180◦ an-

gle around the orchestra or apron stage. The advantage
of such an arrangement is of course the possibility
to accommodate a large audience within a limited
maximum distance from the stage. Many modern
theaters and speech auditoria have adopted this lay-
out – perhaps extended with one or more sets of
balconies.

An example of such a modern speech auditorium
(the lecture hall at Herlev Hospital, Denmark) is seen in
Fig. 9.42 along with a Roman theater for comparison.

In a drama theater, a moderate reverberation time
around 1 s will provide a good compromise between
high intelligibility and a high strength value, as both are
needed for unamplified speech. The T value may be re-
duced to about 0.5 s in small rooms for 50–100 people
and also increased slightly for audiences above 1000. To
obtain a high strength value in a large theater, it is im-
portant to choose a modest volume per seat (about 5 m3)
rather than to control the reverberation in an unneces-
sarily large volume by applying additional absorption
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a) b)

Fig. 9.42a,b Photos of Roman theater (in Aspendos, Turkey) (a) and of a modern speech auditorium (Herlev Hospital,
Denmark) (b)

beyond that provided by the audience chairs. Thus, the
height of the ceiling should be chosen fairly low –
which is also advantageous for its ability to distribute
early reflections to the audience. According to diffuse
field theory, the steady-state energy density equivalent
to Gexp is inversely proportional to the total absorption
area A in the room.

High clarity and sound level are also promoted by
careful shaping of the reflecting ceiling and a substantial
sloping of the audience floor. Due to the directivity of
the human voice, a reflecting rear wall (or stage scenery
in a theatre) is of less importance, unless an actor should
turn his back to the audience. Also the wall surfaces
close to the stage opening are important, because they
will send sound across the room so that sound also
reaches people behind the speaker when he turns the
head towards one side. The rear wall/balcony soffits be-
hind/over the rear part of the audience should diffuse or
redirect the sound to benefit nearby listeners.

As spaciousness is not a quality of particular im-
portance in a speech auditorium, reflections from the
side walls farther from the stage are often given lower
priority than a low average stage-to-audience distance,
which is promoted by a fan-shaped floor plan. However,
as indicated by the problems encountered in the Olivier
Theater in London [9.4], there should be limits to the
opening angle of large fan-shaped theaters.

In a modern theater, the floor slope will often be
more modest than seen in Fig. 9.42. In contrast to the
lecture hall, a modern drama theater also needs to be
highly flexible regarding the layout of stage and audi-
ence areas.

The classical proscenium frame inherited from the
Italian Baroque theater is often considered to limit
intimacy as well as the creativity of the stage-set de-

signers and directors. If the classical proscenium stage
is not needed, intimacy and audience involvement can
be maximized by an arena arrangement, with audience
all around the stage. In other cases, the stage can be
extended into the audience chamber, for instance by re-
moving the first rows of seats and raising the floor below
to stage level. If such a flexible forestage is considered,
the line-of-sight design should be adjusted accordingly,
particularly if the hall features balconies.

An example of a flexible modern theater (without
balcony) is seen in Fig. 9.43. In this room, the circular
side/rear wall was made highly sound absorbing, leav-
ing most of the distribution of early reflection energy to
the ceiling.

Dedicated drama theaters are seldom built with
a seat count higher than 500–1000, because visual as
well as acoustic intimacy, including close view of facial
expressions and freedom from artificial amplification,
are given high priority. Thus, the maximum distance
from the stage front to any seat should not exceed about
20 m for drama performances.

From this discussion it can be concluded that a re-
flecting ceiling of modest height is the main source of
early reflection energy in theaters. However, lighting
staff will often want to penetrate this surface with slots
for stage lights and rigging or place light bridges across
the room, which will act as possible barriers for the
sound paths going via the ceiling. This challenge must
always be considered in the acoustic design of drama
theaters.

9.7.2 Opera Halls

There is a 350 year tradition of performing opera in halls
of the Italian Baroque theater style. These are halls with
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Fig. 9.43a–f Plans showing a flexible theater in Hëlsingborg, Sweden, with different layouts of the stage, orchestra pit
and audience seating. (a) and (b): arena with small and large stage respectively, (c), (e), and (f): proscenium theater with
three different sizes of orchestra pits. (d): proscenium theater without pit

a horse-shoe plan shape with several balcony levels run-
ning continuously from one side of the proscenium arch
to the other along the curved side and rear walls. The
balconies are either divided into boxes separated by thin
walls or are open with long seat rows. The orchestra is

placed in front of the proscenium opening that connects
the auditorium with the stage house.

This tradition has undergone few changes during the
past 350 years. Since the 19th century, the orchestra has
been placed in a lowered pit separated from the stalls by
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a closed barrier. In this arrangement, seats in the stalls
and lower rear balcony experience an attenuation of the
direct sound from the orchestra, because the pit rail
blocks the free line of sight to the orchestra. The result
may be an improved singer-to-orchestra balance in these
seating areas. The pit rail will also reflect sound back
and forth between the stage and pit, giving improved
contact between the singers and the lowered orchestra.

Another development is that the separate boxes have
been exchanged for open balconies, which improves the
possibility for the now exposed side walls to help dis-
tribute the sound to seating farther backwards in the
auditorium. This development is the result of advances
in building technology as well as of changes in social
attitudes.

The multiple levels of horseshoe-shaped balconies
facilitates a short average distance between the audi-
ence and the singers, promoting both the visual and the
acoustic intimacy, which is important for both parties.
However, balcony seats close to the proscenium and on
the upper balcony levels often have a very restricted
view of the stage.

The short audience–singer distance obtained by the
horseshoe form gives high levels of both strength and
clarity. On the other hand, the horseshoe form and the
proscenium arch also cause some acoustic problems:

• With all wall surfaces covered by balconies, only
small free wall areas are left to generate the early re-
flections that assist an even distribution of the sound,
clarity and the generation of reverberation in the
room.• Often focusing effects occur from the curved wall
surfaces and a cupola-shaped ceiling which, along
with the placement of the orchestra out of sight in
the pit, give a high risk of false localization of cer-
tain instruments.• Only part of the energy generated by the singer will
reach the auditorium, because the singers are placed
in a large stage house coupled to the auditorium via
a proscenium opening of limited size, and this en-
ergy even depends on the acoustic properties of the
ever-changing stage sets.

Recent developments in the acoustic design of opera
halls have mainly aimed at avoiding these problems.
Only a few attempts have been tried to radically change
the overall shape (e.g. the Deutsche Oper in Berlin, and
the Opéra Bastille in Paris) but without much success.
Therefore, we are left with tradition and acoustic prop-
erties of horseshoe halls to shape the current acoustic
ideals for opera, which are:

a) b)

Fig. 9.44a,b Plan and section drawings of the Teatro alla Scala,
Milan, Italy, from 1778 (a) and the New National Theatre Opera,
Tokyo, Japan, from 1997 (b) (after [9.3])

• Sufficient level of the singers’ voices relative to the
orchestra,• Some emphasis on clarity and intelligibility (al-
though not as much as in speech auditoria),• A certain fullness of tone and reverberance; but less
than in a classical concert hall.

In recent years the trend has moved towards higher
T values than found in the old halls, like Opéra Gar-
nier, Paris (2131 seats, 1.1 s), Teatro Alla Scala, Milano
(2289 seats, 1.2 s). This might well be due to the ten-
dency to perform operas in the original language and
display the translated text on a text board above the
proscenium. Thus, for many recent opera halls we find
T values of 1.4–1.8 s. Examples are: Göteborg (1390
seats, T = 1.7 s), Glyndebourne (1200 seats, T = 1.4 s),
Tokyo (1810 seats, T = 1.5 s), and Semper Oper, Dres-
den (reconstruction, 1290 seats, T = 1.6 s).

As the width of the traditional horseshoe shape is
about equal to its length, the lateral sound is not very
pronounced and so spaciousness is seldom regarded
a factor of particular importance in opera hall acoustics.

In order to ensure a sufficient level and clarity of
the singers’ sound, efficient sound reflections off the
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proscenium frame, ceiling, balcony fronts and from the
corners between balcony soffits and rear/side walls are
important. Of course the scenery may also be designed
to help in this respect, but generally this is out of the
hands of the acoustician.

If a seat count larger than, say, 1500 is demanded it
is better to extend the top balcony backwards, as seen
in Covent Garden in London and the Metropolitan in
New York rather than increase the overall dimensions of
the horseshoe, which would give poorer acoustics for all
seats. As this extended balcony is close to the ceiling sur-
face, the acoustics here can often be very intimate, clear
and loud, in spite of the physical and visual distance to
the stage being very large. In the Metropolitan Opera in
New York the farthest seat is about 60 m from the stage.

The culmination of the old Baroque theater tradition
is represented by the Teatro alla Scala in Milan, Italy,
which dates from 1778. Drawings of this theater are
shown in Fig. 9.44 along with a modern opera with al-
most the same number of seats, the New National Opera
in Tokyo from 1997.

The horseshoe-shaped Milan opera contains six lev-
els of balconies subdivided into boxes with the openings
covered with curtains so that the audience could decide
whether to concentrate on the play or on socializing
with their guests or family in the box. The audience in
the boxes receive a rather weak sound unless they are
very close to the opening.

This aspect has been improved in the modern opera
with open balconies. Steeper slopes on the stalls floor
and even on the side balconies have also improved the
direct sound propagation to all seats. Fewer balcony lev-
els have created higher openings at the balcony fronts,

Fig. 9.45 The Musikvereinsaal, Vienna. Balcony and floor plans and long section (after [9.3])

allowing the reverberant sound to reach the seats in
the last rows below the balconies, providing more early
reflection energy from the walls to all seats.

In the Tokyo opera, much emphasis has been put
on retracting the balconies away from the proscenium
so that extensive side-wall areas close to the prosce-
nium are available for projecting the sound from the
stage into the auditorium. Along with the ceiling above
the pit, these wall areas almost form a trumpet flare.
In the section, it is also seen that the side balconies
are tilted downwards towards the stage in order to im-
prove lines of sight. Finally, the side-wall areas and the
side-balcony fronts have been made straight to avoid
focusing and improve lateral reflection energy.

9.7.3 Concert Halls for Classical Music

Public concerts with large orchestras started in Europe
about 250 years ago in halls that resembled those in
which the composers normally found audience for their
nonreligious music such as the salons and ballrooms of
the nobility and courts. It is likely that this tradition as
well as the limited span of wooden beam ceilings are the
main reasons why many of the old concert rooms were
built in what we now call the classical shoe-box shape:
a narrow rectangle with a flat floor and ceiling and with
the orchestra placed on a platform at one end.

The most famous of the shoe-box-shaped halls
is the Musikvereinsaal in Vienna, Austria, shown in
Fig. 9.45. This hall, dating from 1870, has a volume of
15 000 m3 and seats 1670 people. Today, we understand
many of the factors responsible for its highly praised
acoustics:
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• The volume per seat is only 9 m3; but T is still 2.0 s
in the fully occupied hall because the seating area is
relatively small (the seats are narrow and the row-
to-row distance is small) and because of the flat
main floor. Thus, the sound becomes both loud and
reverberant.• The reverberation also benefits from the fact that the
absorbing audience (apart from a few on the top rear
balcony) is placed in the lower half of the volume,
whereby a reservoir of reverberant energy can exist
in the upper part of the room.• The close side walls create strong lateral reflections
giving high clarity and envelopment, and all sur-
faces are modulated with rich ornamentation, which
prevents echoes and causes the room reflections to
sound soft and pleasant.

There are however elements of the acoustics, and
lack of comfort, that we would not accept in a mod-
ern concert hall. The sound is somewhat unclear and
remote in the rear part of the flat main floor due to
grazing-incidence attenuation. Also, in the side bal-
conies only people sitting close to the balcony front can
see well. Other old and famous shoe-box halls (such as
the Boston Symphony Hall) have too-shallow balcony
overhangs, which results in weak reverberant energy
below the balconies.

Because of the general and proven success of the
shoe-box design, many new halls are built with this
shape. However, in most of the modern shoe-box
halls, the drawbacks mentioned above are avoided by
a slightly sloping stalls floor and a different layout of
the side balconies.

One of the modern shoe-box halls in which the
above modifications have been introduced is the Ky-
oto Concert Hall, Japan, shown in Fig. 9.46. Comparing
Fig. 9.45 and Fig. 9.46, the increased floor slope and the
subdivided side balconies turned towards the stage are
clearly seen.
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Fig. 9.46 Kyoto Concert Hall, Japan. Built 1995, volume 20 000 m3, 1840 seats, reverberation time RT = 2.0 s (af-
ter [9.3])

Recalling the influence of floor slope on T (and
other parameters, Sect. 9.5.6) the increased slope will
result in a reduced T and higher C. In modern designs
T will also tend to be reduced by more-spacious seat-
ing and less-shallow balcony overhangs, which result
in a larger absorptive audience area being exposed to
the sound field. All these factors call for a larger vol-
ume per seat in modern shoe-box halls than found in
the classical ones, if a high T value is to be maintained.
On the other hand, this might well be the reason why
the newer halls seldom provide the same intensity and
warmth as experienced when listening from one of the
sparsely upholstered wooden chairs in Vienna.

Early in the 20th century the development of con-
crete building technology allowed architects to shape
the halls more freely. At the same time it became popu-
lar to treat sound as light, by designing the surfaces by
means of geometric acoustics and by trying to transmit
the sound as efficiently as possible from the source on
stage to the (absorbing) audience. Another desire was to
put the audience as close as possible to the stage.

The result was the fan-shaped concert hall, which
dominated modernist architecture between about 1920
and 1980. An example is seen in Fig. 9.47: Kleinhans
Music Hall in Buffalo, USA. Comparison with Fig. 9.45
reveals a very wide hall with a relatively low ceiling
and the stage surrounded by concave, almost parabolic,
walls and with the ceiling projecting the sound into the
absorbing audience area after just a single reflection.
This phenomenon, as well as the low volume per seat
(about 6.4 m3), are the reasons for the resulting low re-
verberation time and the weak sense of reverberance.
The audience receives most of the sound from frontal
directions or from the ceiling, so the sound is clear
but lacks envelopment. Other examples of modernist
fan-shaped halls are, the Salle Pleyel in Paris (1927)
and the old Danish Broadcasting Concert Hall (Copen-
hagen, 1946). In conclusion, few concert halls from the
modernist era have been acoustically successful.
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Fortunately, mainly as a result of advances in room
acoustic research, two alternative and more-promising
designs appeared in the 1960s and 1970s: the vineyard
and the directed reflection sequence (DRS). Both are
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Fig. 9.48 Plan and section of Philharmonie Berlin, Germany. (Built 1963, 2335 seats, V = 21 000 m3, T = 2.1 s) Acous-
tician: Lothar Cremer (after [9.3])

Fig. 9.47 Kleinhans Music Hall, Buffalo, USA. Built
1940, volume 18 240 m3, 2839 seats, RT= 1.5 s. Plans and
long section (after [9.3]) �

arena-shaped with the possibility of the audience be-
ing placed all around the orchestra platform. Even more
than the fan shape, this causes the audience to come
closer to the orchestra for the sake of intimacy. How-
ever, both designs are primarily relevant for larger halls,
say more than 1500 seats. For halls seating more than
about 2000, these designs may even be more success-
ful than the classical rectangular shape, which, with
so many seats, possess a risk of some listeners being
placed too far from the stage.

The first vineyard concert hall was the Philharmonie
Berlin, shown in Fig. 9.48, which opened in 1963. This
hall has no balconies. Instead, the seating area is sub-
divided into terraces elevated relative to each other,
whereby the terrace fronts and sides can act as local
reflectors for specific seating areas. By careful design
of these terraces, it is possible to provide plenty of
early, and even lateral, reflections to most of the seats
in an arena-shaped hall. With no seats being overhung
by balconies, a large absorptive area is exposed to the
sound, whereby a generous volume per seat is recom-
mended. Thus, in the Sapporo Concert Hall in Japan
(1997) as well as in the new Danish Radio Concert Hall
in Copenhagen, the volume per seat is about 14 m3. This
is a quite high value for concert halls, as a 2 s T value
should normally be obtained with just 10 m3 per seat.

In directed reflection sequence halls such as the
Christchurch Town Hall shown in Fig. 9.49, most of the
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Fig. 9.49 Christchurch Town Hall, New Zealand. (Built 1972, 2662 seats, V = 20 500 m3, T = 2.4 s) Acoustician:
Harold Marshall (after [9.3])
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Fig. 9.50 The KKL Concert hall in Luzern, Switzerland. (Built 1999, 1892 seats, V = 17800+6200 m3, T = 1.8–2.2 s)
Acoustician: Russell Johnson (after [9.3])

early reflections are provided by huge, suspended and
tilted reflectors. These are distinctly separate from the
boundaries, which define the reverberant volume. The

fronts and soffits of the sectioned balconies surrounding
the main floor and stage in the elliptical plan pro-
vide additional early reflections. Because of the arena
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Fig. 9.51 Three concert hall concepts with the potential of combining high clarity with long reverberation. From left to
right: vineyard (plan), shoe box with coupled reverberation chambers (cross section), and directed reflection sequence
(cross section)

layout combined with the extensive use of balconies
(containing more than half of the seats) the hall is
very intimate, and the large reflecting surfaces provide
a stunningly clear, dynamic and almost too loud sound.
Still, the reverberation is long and rich because of the
significant volume without absorption above/behind the
reflectors.

This aim towards a combination of high clarity
and high reverberance, probably developed through our
extensive listening to recorded music, requires close re-
flecting surfaces as well as a large volume. The natural
consequence of this demand is to separate the early re-
flecting surfaces from the room boundaries. Both the
terrace fronts in the vineyard halls and the suspended
reflectors in the DRS halls offer this possibility. A third
way to achieve high clarity as well as high reverberance
is a narrow shoe box with added surrounding volume,
as found in a number of halls since about 1990. In these
halls the volume of the narrow tall shoe-box hall provid-
ing the early reflections is quite moderate; but an extra
volume is coupled to the main hall through openings
that can be closed by heavy doors, so that the total vol-
ume can be varied. However, in such halls one should
be careful to make the coupling area large enough for
the added volume to have any significant effect (unless
one sits close to one of the open doors), otherwise it is
hard to justify the enormous costs of the extra volume
and door system. With weak coupling, a double-sloped
decay curve with a knee point perhaps 20 dB down is
created, whereby the added, longer reverberation be-
comes barely audible except during breaks in the music.

A recent design of such a rectangular hall with
a coupled volume is shown in Fig. 9.50.

The sketches in Fig. 9.51 summarize the basic de-
sign of the three types of halls mentioned. It is seen

that they all possess the possibility of separating the sur-
faces that generate the early reflections from the volume
boundaries that generate the reverberation.

9.7.4 Multipurpose Halls

Many modern halls built for cultural purposes of-
ten have to accommodate a variety of different types
of events, from classical to pop/rock concerts, drama
and musicals, opera, conferences, banquets, exhibitions,
cinema and perhaps even sports events. From an acous-
tical point of view, the first concern in these cases is
whether a variable reverberation time will be necessary.
The answer is yes in most cases where some functions
primarily require intelligibility of speech while others
require a substantial reverberation, such as for classical
music.

A hall in which these demands have been met by
means of variable absorption is Dronningesalen, at the
Royal Library in Copenhagen (Fig. 9.52). For this hall
both chamber-music concerts and conferences with am-
plified speech were given high priority. The variable
absorption is provided by means of moveable panels on
the side walls as well as by folded curtains and roller
blinds on the end walls. Combining these measures in
different ways, T values in the range from 1.1 to above
1.8 s can be obtained (in the empty hall) as seen in
Fig. 9.52.

In many cases, stage performances with extensive
scenery are also required. The most common way to
accomplish this is to design a stage house, mount an
orchestra shell on the stage and raise the pit to stage
level for concerts. If a hall is also to be used for ban-
quets and exhibitions requiring a flat floor, it is common
to place the stalls seats on a telescopic riser system on
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a flat floor instead of having a fixed, sloped seating.
When not in use, this riser system is stored along the
rear wall or under a balcony. If the reverberation time
suits classical music concerts with the sloped seating in
place, a substantial area of variable absorption is needed
to reduce the T value when the chairs are absent. An-
other problem may be that the telescopic systems offer
only a rather steep and linear slope, which is not op-
timal for classical concerts. If the chairs are fixed on
the riser steps, the minimum step height is about 25 cm,
corresponding to a rake of about 25%.

If a change in T is accomplished by means of vari-
able absorption, G will be reduced along with lowering
T . However, if instead T is lowered by reducing the
volume, for instance by moving a wall or lowering the
ceiling, G will remain approximately constant or per-
haps even increase. This can be advantageous when the
low-T setting is to be used, for instance for unampli-
fied drama or for chamber music in a larger symphony
concert hall.

An example of a hall with variable volume is found
in Umeå, Sweden (Fig. 9.53). In this hall the auditorium
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Fig. 9.52 Dronningesalen in the Royal Library in Copenhagen, Denmark; 1999, 400–600 seats. Reverberation time
curves, plan, section and wall elevations with hatched areas indicating variable absorption

volume can be adjusted by moving the proscenium wall
between three positions. When the proscenium is stored
against the rear wall in the concert format, the entire
volume is available for concerts with large symphonic
orchestras on an open stage. In this situation, the stage
tower can be closed off by horizontal panels at ceiling
level. But when the proscenium is moved forward to
the opera setting, the auditorium becomes smaller and
a proscenium stage area is created, while the ceiling
panels are removed for access to the fly tower above.
In the third position, drama, the auditorium volume is
further reduced to create an intimate theater. The vari-
able elements also include a hinged side-wall section
to improve the shape of the room for theater as well
as moveable reflectors and variable absorption curtains
above the grid ceiling level.

It should be mentioned that many of the problems
related to the successful design of speech and music
auditoria become more severe with increased size of
the room. In other words, it is much easier to design
a hall for less than 1000 people, like the two examples
presented above, than for 2000 plus. The problems be-
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Fig. 9.53 The Idun multipurpose hall in Umeå, Sweden, with variable volume and stage configurations. The hall seats
up to 860 people. Brief data (left), photos from cardboard model, long section and plan (right)

come even more complicated if multipurpose function
is requested.

Still, a few examples of such successful designs ex-
ist. The most innovative is probably the Segerstrom Hall
in Orange County, California, USA, which is shown
in Fig. 9.54. This hall features a special layout of the
almost 3000 audience seats, which are distributed on
four levels. Each of these forms an almost rectangular,
or even reverse fan, shape. However, the orientation of
each level is shifted so that the overall plan becomes
a wide fan. In this way the virtues of the fan shape for
audience proximity to the stage are combined with the
advantages of the rectangular shape for strong, early
reflections from lateral directions. Thus, although the
total width is about 50 m, the lateral energy level in this
hall resembles that found in rectangular, 25 m-wide con-
cert halls with typical seating capacity up to, say, 2000
people [9.36].

9.7.5 Halls for Rhythmic Music

Halls intended for rhythmic, amplified music concerts
range in size from less than 100 to perhaps more than
50 000 listeners (in roofed sports arenas). The reason for
this broad range of audience capacity is that the size and
number of the sound amplification loudspeakers as well
as of event video screens can be chosen at will to ensure
good vision and adequate (often too high) sound levels
for any size of audience. In any case, the reverberation
time should be close to the optimal for speech, i. e., not
more than 1 s if possible.

In huge arenas, of course, the reverberation time will
be higher; but if efficient absorption is applied to the
critical surfaces, a higher reverberation time need not
compromise clarity. This is because the reverberation
level will be low compared to the direct sound from the
loudspeakers. In large spaces, designed to have a mod-
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Fig. 9.54 Segerstrom Hall, Orange County, California, seating 2900 people. Acoustic design: Marshall, Hyde, Paoletti
(after [9.3])

erate T value, one must be careful to avoid echoes from
distant, hard surfaces facing the often highly directional
loudspeakers. Even small surfaces such as doors can
cause echo problems if most other surfaces in the room
are efficiently absorbing.

It is also very important to maintain modest low-
frequency T values. A bass ratio larger than unity
can create serious problems with control of the low-
frequency levels. This is largely because most loud-

speakers are almost omnidirectional at low frequencies,
at which they willingly excite the room reverberance. In
contrast, with high loudspeaker directivity in mid- and
high-frequency range, it is easy to control the level in
the audience area at these frequencies without spilling
additional sound energy into the room.

Unfortunately, low-frequency reverberation control
can be difficult to achieve, because low-frequency ab-
sorbers are normally less efficient (have lower α values)
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than mid-/high-frequency absorbers, and in a room
in which these already occupy most of the avail-
able surfaces, it can be difficult to also find spaces
for dedicated low-frequency absorbers. In particular,
this poses a problem in buildings made from heavy
concrete or masonry (which on the other hand is fa-
vorable for insulation of low-frequency sound towards
the neighbors). When the low-frequency reverbera-
tion is too high the string bass and pedal drum will
sound muddy. The audience area layout should be
shaped to allow an even coverage by a sensible loud-
speaker set up, and in large halls, a sloping floor is
not suitable if a standing audience is expected. Fortu-
nately, a sloping floor is not always mandatory, since
in larger venues, the loudspeakers can be elevated to
avoid grazing-incidence attenuation and elevated video
projection screens improve the visual experience. It is
advantageous to design the hall as well as the loud-
speaker system so that zones with lower levels are
also created, whereby people can have a chance to
rest their ears, for instance while picking up refresh-
ments in the bar. This may be accomplished by placing
the bar in a smaller, partly decoupled, space with
a shallower room height and an efficiently absorbing
ceiling.

9.7.6 Worship Spaces/Churches

The liturgies in old Christian and Muslim worship were
developed in highly reverberant cathedrals and mosques,
both of which have their roots in Byzantine architecture.
When new churches are built for the traditional Catholic
or Protestant Christian denominations, it is customary
to aim at a rich reverberation, which suit the pipe organ
literature and congregational singing, while the intelli-
gibility of the words by the priests is taken care of by
a distributed public address (PA) sound system.

The same is true for new large mosques, in which
the speech is amplified while the long reverberation sup-
ports traditional singing by the imams. Apart form these
songs music is not performed in mosques.

In contrast to this, several Christian denominations,
particularly in the US, have built new churches or
temples (often accommodating several thousand peo-
ple) and brought in newer art forms making use of
large rock-music sound systems. In these spaces, there-
fore, the solution is often for the acoustician to create
fairly dry, natural acoustics and to install both a heavy
PA sound system as well as an artificial, electronic
reverberation-enhancement system. Both types of sound
systems are briefly described in Sect. 9.8.

9.8 Sound Systems for Auditoria

It is important to realize that sound systems will always
be installed in both new and existing halls. As these sys-
tems are often used to amplify natural sound sources
appearing on the stage in the hall, they may be regarded
as a means for creating variable acoustics of the space.
In this regard, the following will focus on how these
systems interact with the natural acoustics, rather than
talking about specific details or trends in the design of
the loudspeakers themselves.

In principle, one may consider two different types
of loudspeaker to be installed in an auditorium: tra-
ditional PA systems intended for the modification of
the early part of the impulse response of the hall, and
reverberation-enhancement systems intended for mod-
ification of the later part. Below, important aspects of
both types will be briefly explored.

9.8.1 PA Systems

Normally, PA sound systems are installed with the
purpose of increasing the sound level and/or the intel-

ligibility of the performance. Use of the sound system
for the reproduction of prerecorded sounds is of less
interest in this context, as in this case it just acts like
any other sound source working under the acoustic con-
ditions provided by the natural acoustics of the room.
In Sect. 9.2 we learned that, in order to improve clar-
ity/intelligibility as well as the level, we need to increase
the clarity C by adding sound components to the early
part of the impulse response. (The alternative, to in-
crease C by reducing the late part, can so far only
be accomplished by adding physical absorption; but
some day in the future, active systems with multiple
microphones and loudspeakers integrated into acoustic
wallpaper could be imagined as well.) Doing this re-
quires that the main part of the sound energy leaving
the loudspeakers hits the absorbing audience area. Al-
ternatively, if substantial parts of the energy hit other,
reflecting room surfaces, it may be reflected randomly
and feed the reverberant field, which will reduce the
clarity. For this reason, it is very important to apply
loudspeakers with well-controlled directivity for this

Part
C

9
.8



Acoustics in Halls for Speech and Music 9.8 Sound Systems for Auditoria 363

purpose, especially in auditoria with T values larger
than optimal for speech.

For the acoustician, the most important technical
specification for PA loudspeakers relates to their direc-
tivity, either in terms of vertical and horizontal radiation
angles or in terms of the Q factor. Sometimes, the term
directivity index DI = 10 log(Q) is used instead. Q is
defined as the ratio between

1. The intensity emitted in the axis direction of the
directive loudspeaker, and

2. The averaged intensity emitted by the same loud-
speaker integrated over all directions.

The higher the Q value, the more the sound emitted
will be concentrated in the forward direction (or rather,
within the radiation angles specified).

When the loudspeaker is placed in a room, the sound
field close to the loudspeaker will be dominated by the
direct sound, whereas at longer distances, this compo-
nent is negligible compared to the (diffuse) reverberant
sound, as illustrated in Fig. 11.6. The (squared) sound
pressure as a function of distance from the source in
a room can be written as follows

p2(r) = ρc PSP

(
QSP

4πr2
+ 4

A

)
. (9.38)

In (9.38) the first term in the parenthesis is the direct
sound component and the second one, 4/A, the diffuse,
reverberant component, PSP is the emitted sound power,
QSP is the Q factor of the loudspeaker, and A is the to-
tal sound absorption area of the room. Notice that in
(9.38), for simplification, we assume a diffuse field in-
tensity that is constant throughout the room, although
in Sect. 9.5.1 and Fig. 9.13 we demonstrated that this is
seldom the case.

Equation (9.38) shows that the direct component
will dominate as long as the direct term is larger than
the diffuse term. This will be the case for distances be-
low the critical distance or the reverberation distance,
rcr,SP. At this distance, the two components have equal
magnitude, whereby

rcr,SP =
√

QSP A

16π
=
√

QSPV

100πT
. (9.39)

As seen from (9.39), we maximize the range within
which we are able to provide the listeners with a clear
sound from the speakers by increasing Q (as well as A).

One should be careful not to apply a larger num-
ber of loudspeakers than needed for coverage of the
audience area, as each new loudspeaker will contribute
to the generation of the reverberant diffuse field, while

only one at a time will send direct sound towards a given
audience position. Likewise, the number of open mi-
crophones should be minimized (which is often done
automatically by an intelligent microphone mixer), as
all open microphones will pick up and amplify the un-
clear reverberant field in the room.

The number of active loudspeakers and micro-
phones should also be minimized in order to reduce the
risk of feedback, which is a consequence of the micro-
phone(s) picking up the sound from the loudspeaker(s)
and the amplifier gain being set to high. If the ampli-
fication through the entire closed loop (microphone–
amplifier–loudspeaker–room and back to the micro-
phone) exceeds unity, the system will start to oscillate
at a random frequency, which is emitted at maximum
power level into the room, a most annoying experience.

The risk of feedback can be reduced by min-
imizing the loudspeaker–listener distance and the
source–microphone distance, whereby a suitable listen-
ing level can be obtained with a moderate amplifier
gain setting. Use of head-borne microphones repre-
sents the ultimate reduction of the source–microphone
distance. Consequently, with such microphones the
risk of feedback is substantially reduced. Also, the
microphone–loudspeaker distance should be maxi-
mized and directional microphones and loudspeakers
should be used and positioned so that the transmission
from the loudspeaker back into the microphone is min-
imized. Thus, the loudspeakers and the microphones
should be placed pointing away from each other with
the microphone pointing towards the stage and the loud-
speaker pointing toward the audience.

Considering the factors mentioned above, we still
need to choose a configuration of the loudspeakers for
a given room. Often the choice is between

1. A central system, consisting of a single or a limited
number of highly directional units arranged close
together in a cluster over the stage, or

2. A distributed system of several smaller units placed
closer to the listeners.

C! C"

C#

Fig. 9.55 Alternative solutions for loudspeaker coverage in an au-
ditorium: a central (cluster) system H1, the same with a delayed
secondary unit H2, or a highly distributed (pew back) system with
small loudspeakers placed in each row of seats
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These options are illustrated schematically in Fig. 9.55
as H1 and H3, respectively. H2 illustrates a compro-
mise with a secondary unit or cluster assisting the main
cluster, H1.

In meeting rooms or churches, highly distributed
systems with small loudspeakers built into fixed meet-
ing tables or pews can be very successful. With each
loudspeaker being within a distance of say 1 m from
the listener, each unit can be set to a very moder-
ate level. Therefore, it is often possible to serve the
listeners with a clear direct sound from such speak-
ers without the total number of speakers exciting too
much of the room reverberation. If the system is sub-
divided into independent sections, it is even possible
to install automatic switches that only activate loud-
speakers in zones where people are sitting. In this
way, the reverberant field can be even further reduced
in cases of fewer people attending the meeting or
service. This is actually very fortunate as, especially
in churches, fewer people also means less absorption
and louder reverberation. The performance regarding
intelligibility of pew-back systems with perhaps one
hundred, moderately directive speakers is often equal
to or better than when a highly directive central-
cluster system is used. This is simply due to the
moderate sound level needed from each of the closely
placed loudspeakers compared to the much higher level
needed for the cluster to reach the distant listeners.
As can be imagined, the sound level distribution pro-
duced by the pew-back system will also be more
uniform.

Of course, the highly distributed systems are not
suitable for amplification of stage performances, where
a high sound level of music is needed. For this purpose,

��$	������

�����	������

Fig. 9.56 Example of distribution of loudspeakers for reverberation enhancement in a theatre

a main cluster over the stage or a stereo system with
loudspeakers on each side of the stage is preferable.
For such systems, it is also more important to maintain
a correct localization of the sound as coming from the
performers on the stage.

In cases where some additional, distributed loud-
speakers are needed to assist coverage in certain parts
of the room, for instance on and under deep balconies,
these are equipped with an electronic delay. If this de-
lay is set so that the sound from the distributed assisting
loudspeakers arrives 5–25 ms after the sound from the
main loudspeakers, the listener will still perceive the
sound as coming from the direction of the source. This
is even true when the assisting loudspeakers are up to
5 dB louder than the main cluster at the listener’s po-
sition. This very convenient phenomenon, called the
precedence effect or Hass effect, is generally used as
a guideline for the choice of level and delay settings in
distributed loudspeaker systems.

9.8.2 Reverberation-Enhancement Systems

For auditoria where a long reverberation time is only
needed occasionally or when the available room volume
is simply inadequate, one may consider creating more
reverberation by means of an electronic reverberation-
enhancement system. Like the systems described in the
previous section, these also consist of a number of loud-
speakers and microphones connected by amplifiers; but
there are many important differences.

The basic difference is that enhancement systems
primarily attempt to add energy to the late part of
the impulse response. Therefore, delays must be built
into the signal processing between microphones and
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loudspeakers. In the first systems of this kind, as-
sisted resonance (AR) and multichannel reverberation
(MCR), which appeared in the 1960s, this delay was
provided by letting the loop gain of a large number of
microphone–loudspeaker channels be tuned to just be-
low the feedback limit. By spacing the microphones and
loudspeakers far apart in the room (normally close to the
ceiling), the sound would spend sufficient time traveling
several times between loudspeakers and microphones
for an audible prolongation of the reverberation to be
perceived. In more-modern systems, electronic delays
and reverberators are normally used.

In order to create the illusion of diffuse reverber-
ation coming from the room itself, a large number of
loudspeakers with low directivity must be distributed
over the main surfaces in the room, as illustrated in
Fig. 9.56. Since many speakers are needed, each can be
fairly small and with limited acoustic power capability.
The density and placement of these speakers as well
as the balancing of their levels is essential to prevent
localization of individual loudspeakers from any seat.

Regarding the microphones, these may be highly di-
rective, but they must be placed quite far from the sound
sources (and preferably out of sight) in order to cover
the stage without the reverberant level being strongly
dependent on the position of the sound source.

In view of what was explained in Sect. 9.8.1 about
the measures needed to reduce the risk of feedback
in loudspeaker systems, it is no wonder that most
reverberation-enhancement manufacturers have to im-
plement a solid strategy against uncontrolled feedback.
One very efficient approach is to introduce time-varying
delays in the sound-processing equipment, as this seems
to destroy sharp room resonances when they start to
build up to form a hauling frequency. Still, most en-
hancement systems work with a loop gain close to the
feedback limit (which is actually participating actively
in increasing the reverberation time), which is accept-
able as long as it is under control and does not cause
audible coloration of the sound.
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Fig. 9.57 Reverberation time values measured in a hall for different
settings of the reverberation enhancement system (LARES)

It is essential for the acceptance of enhancement
systems that neither audience nor performers experi-
ence the sound as coming from a loudspeaker system.
Likewise, artefacts such as coloration due to feedback
or the poor frequency characteristics of speakers are
unacceptable.

The maximum increase in reverberation time pos-
sible with feedback-based systems like AR and MCR
was typically about 50%. With modern digital reverber-
ators, a much larger range can be achieved, as shown in
Fig. 9.57. Increasing the reverberation time by a factor
of three or more is not impossible. However, the illu-
sion, when you still see the physical, much-dryer room
around you, tends to break down when the value in-
creases much above the 50%, which ironically is what
the old systems could produce.

From a purist standpoint, reverberation enhance-
ment can be regarded as an acoustic prosthesis, but in
many cases a pragmatic approach to the use of these sys-
tems can increase the range of programs that a cultural
venue can host.
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Concert Hall A10. Concert Hall Acoustics
Based on Subjective Preference Theory

Yoichi Ando

This chapter describes the theory of subjective
preference for the sound field applied to design-
ing concert halls. Special attention is paid to the
process of obtaining scientific results, rather than
only describing a final design method. Attention
has also been given to enhancing satisfaction in
the selection of the most preferred seat for each
individual in a given hall. We begin with a brief
historical review of concert hall acoustics and
related fields since 1900.

A neurally grounded theory of subjective pref-
erence for the sound field in a concert hall, based
on a model of the human auditory–brain sys-
tem, is described [10.1]. Most generally, subjective
preference itself is regarded as a primitive re-
sponse of a living creature and entails judgments
that steer an organism in the direction of main-
taining its life. Brain activities relating to the
scale value of subjective preference, obtained by
paired-comparison tests, have been determined.
The model represents relativity, relating the au-
tocorrelation function (ACF) mechanism and the
interaural cross-correlation function (IACF) mech-
anism for signals arriving at the two ear entrances.
The representations of ACF have a firm neural ba-
sis in the temporal patterning signal at each of
the two ears, while the IACF describes the correla-
tions between the signals arriving at the two ear
entrances. Since Helmholtz, it has been well appre-
ciated that the cochlea carries out a rough spectral
analysis of sound signals. However, by the use the
of the spectrum of an acoustic signal, it was hard
to obtain factors or cues to describe subjective re-
sponses directly. The auditory representations from
the cochlea to the cortex that have been found to
be related to subjective preference in a deep way
involve these temporal response patterns, which
have a very different character from those related
to power spectrum analyses. The scale value of
subjective preference of the sound field is well
described by four orthogonal factors. Two are

temporal factors (the initial delay time between
the direct sound and the first reflection, Δt1,
and the reverberation time, Tsub) associated with
the left cerebral hemisphere, and two are spatial
factors (the binaural listening level (LL) and the
magnitude of the IACF, the IACC) associated with
the right hemisphere. The theory of subjective
preference enables us to calculate the acoustical
quality at any seat in a proposed concert hall,
which leads to a seat selection system.

The temporal treatment enables musicians to
choose the music program and/or performing style
most suited to a performance in a particular con-
cert hall. Also, for designing the stage enclosure for
music performers, a temporal factor is proposed.
Acoustical quality at each seating position exam-
ined in a real hall is confirmed by both temporal
and spatial factors.

10.1 Theory of Subjective Preference
for the Sound Field ............................... 369
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In the first half of the 20th century, studies were mostly
concentrated on temporal aspects of the sound field. In
1900 Sabine [10.2] initiated the science of architectural
acoustics, developing a formula to quantify reverbera-
tion time. In 1949, Haas [10.3] investigated the echo
disturbance effect from adjustment of the delay time
of the early reflection by moving head positions on
a magnetic tape recorder. He showed the disturbance
of speech echo to be a function of the delay time, with
amplitude as a parameter.

After investigations with a number of existing con-
cert halls throughout the world, Beranek in 1962 [10.4]
proposed a rating scale with eight factors applied to
sound fields from data obtained by questionnaires on
existing halls given to experienced listeners. Too much
attention, however, has been given to monaural tempo-
ral factors of the sound field since Sabine’s formulation
of reverberation theory. For example, the Philharmonic
Hall of Lincoln Center in New York, opened in 1962,
was not satisfactory to listeners even after many im-
provements.

On the spatial aspect of the sound field, Damaske
in 1967 [10.5] investigated subjective diffuseness by
arranging a number of loudspeakers around the lis-
tener. In 1968, Keet [10.6] reported the variation of
apparent source width (ASW) in relation to the short-
term cross-correlation coefficient between two signals
fed into the stereo loudspeakers as well as the sound
pressure level. Marshall in 1968 [10.7] stressed the im-
portance of early lateral reflections of just 90◦, and
Barron in 1971 [10.8] reported spatial impressions or
envelopment of sound fields in relation to the short-term
interaural cross-correlation coefficient.

As a typical spatial factor of the sound field,
Damaske and Ando in 1972 [10.9] defined the IACC
as the maximum absolute value of the interaural
cross-correlation function (IACF) within the possible
maximum interaural delay range for the human head,
such that

IACC = |φlr(τ)|max , for |τ |< 1 ms (10.1)

and proposed a method of calculating the IACF for
a sound field. In 1974, Schroeder et al. in [10.10] re-

ported results of paired-comparison tests asking listen-
ers which of two music sound fields was preferred. In an
anechoic chamber, sound fields in existing concert halls
were reproduced at the ears of listeners through dummy
head recordings and two loudspeaker systems, with fil-
ters reproducing spatial information. They found that
two significant factors, the reverberation time and the
IACC, had a strong influence on subjective preference.

In 1977, Ando discussed subjective preference in re-
lation to the temporal and spatial factors of the sound
field simulated with a single reflection [10.11]. In
1983, he described a theory of subjective preference
in relation to four orthogonal factors consisting of the
temporal and spatial factors for the sound field, which
enable us to calculate the scale value of the subjective
preference at each seat [10.12, 13]. Cocchi et al. recon-
firmed this theory in an existing hall in 1990 [10.14].
In 1997, Sato et al. [10.15] reconfirmed this clearly by
use of the paired-comparison judgment in an existing
hall, switching identical loudspeakers located at differ-
ent positions on the stage, instead of changing the seats
of each subject. This method may avoid effects of other
physical factors than the acoustic factors. In addition
to the orthogonal factors, they found the interaural de-
lay in the IACF, τIACC, as a measure of image shift
of the sound source that is to be kept at zero realizes
good balance in the sound field. Using this method,
the dissimilarity distance has also been described by
the temporal and spatial factors of the sound field in
2002 [10.16].

Thus far, the theory has been based on the global
subjective attributes for a number of subjects. The the-
ory may be applied for enhancing each individual’s sat-
isfaction by adjusting the weighting coefficient of each
orthogonal factor [10.1], even though a certain amount
of individual differences exist [10.17]. The seat selec-
tion system [10.18] was introduced in 1994 after con-
struction of the Kirishima International Concert Hall.

For the purpose of identifying the model of
the auditory–brain system, experiments point toward
the possibility of developing the correlation between
brain activities, measurable with electroencephalog-
raphy (EEG) [10.19, 20]. Correspondences between
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Concert Hall Acoustics Based on Subjective Preference Theory 10.1 Theory of Subjective Preference for the Sound Field 369

subjective preference and brain activity have been found
from EEG and magnetoencephalography (MEG) stud-
ies in human subjects [10.21, 22], but details of these
results are not included in this chapter due to limited
space. Results show that orthogonal factors comprise
two temporal factors: the initial time delay gap between
the direct sound and the first reflection (Δt1) and the
subsequent reverberation time (Tsub) are associated with
the left hemisphere, and two spatial factors: the listen-
ing level (LL) and the magnitude of the IACF (IACC)
are associated with the right hemisphere. The informa-
tion corresponding to subjective preference of the sound
field can be found in the effective duration of the auto-
correlation function (ACF) of the alpha (α) waves of
both EEG and MEG. A repetitive feature in the α-wave,
as measured in its ACF at the preferred condition, has
been found. The evidence ensures that the basic theory
of subjective preference may also be applied to each
individual preference [10.21].

Since individual differences of subjective prefer-
ence in relation to the IACC in the spatial factor are
small enough, at the first stage of acoustic design we
can determine the architectural space form of the room.
The temporal factors are closely related to the dimen-
sions of a specific concert hall, which can be altered
to exhibit specific types of music, such as organ music,
chamber music or choral works.

On the neural mechanism in the auditory pathway,
a possible mechanism for the interaural time difference
and correlation processors in the time domain was pro-
posed by Jeffress in 1948 [10.23], and by Licklider
in 1951 [10.24]. By recording left and right auditory

brainstem responses (ABR), Ando et al. in 1991 [10.25]
revealed that the maximum neural activity (wave V at
the inferior colliculus) corresponds well to the magni-
tude of the interaural cross-correlation function. Also,
the left and right waves IVl,r are close to the sound
energies at the right- and left-ear entrances. In fact,
the time-domain analysis of the firing rate of the au-
ditory nerve of a cat reveals a pattern of ACF rather
than the frequency-domain analysis as reported by
Secker-Walker and Searle in 1990 [10.26]. Cariani and
Delgutte in 1996 showed that pooled inter-spike inter-
val distributions resemble the short-time or the running
autocorrelation function (ACF) for the low-frequency
component. In addition, pooled interval distributions for
sound stimuli consisting of the high-frequency compo-
nent resemble the envelope for running ACF [10.27,28].

Remarkably, primary sensations such as the pitch
of the missing fundamental [10.29], loudness [10.30],
and duration sensation [10.31] can be well described
by the temporal factors extracted from the ACF [10.32,
33]. Timbre investigated by the dissimilarity judg-
ment [10.16] of the sound field has been described by
both the temporal and spatial factors. The typical spatial
attributes of the sound field, such as subjective diffuse-
ness [10.34] and apparent source width (ASW), as well
as subjective preference, are well described by the spa-
tial factor [10.32–36].

Besides the design of concert halls, other acousti-
cal applications such as speech identification [10.36],
environmental noise measurement [10.37], and sound
localization in the median plane [10.38] should benefit
from guidelines derived from this model.

10.1 Theory of Subjective Preference for the Sound Field
Subjective preference judgment is the most primitive re-
sponse in any subjective attribute and entails judgments
that steer an organism in the direction of maintaining
and/or animating life. Subjective preference, therefore,
may relate to an aesthetic issue. It is known that judg-
ment in an absolute manner presents a problem in
reliability; rather, data is judged in a relative manner
such as by paired-comparison tests. This is the simplest
method, in that any person may participate, and the re-
sulting scale value may be utilized in the wide range of
applications. From the results of subjective preference
studies in relation to the temporal factor and the spatial
factor of the sound field, the theory of subjective pref-
erence is derived. Examples of calculating subjective
preference at each listener’s position are demonstrated

in Sect. 10.2 for the global listener and Sect. 10.3 for the
individual listener. The relationship between the result-
ing scale value of subjective preference in an existing
hall and the physical factors obtained by calculation us-
ing architectural plan drawings, has been examined by
factor analysis in Sect. 10.4.

10.1.1 Sound Fields with a Single Reflection

Preferred Delay Time of a Single Reflection
First of all, the simplest sound field, which consists of
the direct sound with the horizontal angle to a listener:
ξ0 = 0◦ (the elevation angle η0 = 0◦), and a single re-
flection from a fixed direction ξ1 = 36◦ (η1 = 9◦), was
investigated. These angles were selected since they are
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370 Part C Architectural Acoustics

Table 10.1 Music and speech source signals and their min-
imum effective duration of the running ACFa, (τe)min

Sound source Title Composer (τe)min

or writer (ms)

Music motif A Royal Pavane Orlando 125

Gibbons

Music motif B Sinfonietta, opus Malcolm 40

48; IV movement Arnold

Speech S Poem read by a Doppo 10

female Kunikida
a The value of (τe)min is the minimum value extracted from the
running ACF, 2T = 2 s, with a running interval of 100 ms. The
recommended value of 2T is given by (10.14)
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Fig. 10.1 Determination of the effective duration of the
running ACF, τe. The value of τe may be obtained by
the delay for which the envelope of the normalized ACF
becomes 0.1 or −10 dB (10-percentile delay)

typical in a concert hall. The delay time Δt1 of the re-
flection was adjusted in the range of 6–256 ms. The
paired-comparison test was performed for all pairs in an
anechoic chamber using normal hearing subjects with
two different music motifs A and B (Table 10.1). The ef-
fective duration of the ACF of the sound source defined
by τe may be obtained by the delay at which the enve-
lope of the normalized autocorrelation function (ACF)
becomes 0.1 (10-percentile delay) as shown in Fig. 10.1.
The value of (τe)min indicated in Table 10.1 is obtained
from the minimum value of the running ACF, 2T = 2 s,
with an interval of 100 ms. The recommended 2T is
given by (10.14). As far as these source signals are con-
cerned, values of (τe) extracted from the long-term ACF
were similar to the minimum values from the running
ACF, (τe)min.
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Fig. 10.2 Preference scores of the sound fields as a func-
tion of the delay time A1 = 1.0 (six sound fields and 13
subjects (after [10.11]). Preference scores are directly ob-
tained for each pair of sound fields by assigning the values
+1 and −1, corresponding to positive and negative judg-
ments, respectively. The normalized score is obtained by
accumulating the scores for all sound fields (F) tested and
all subjects (S), and then dividing by the factor S(F−1) for
13 subjects. A: music motif A, Royal Pavane by Gibbons,
(τe)min = 125 ms; B: music motif B, Sinfonietta, opus 48,
III movement by Malcolm Arnold, (τe)min = 40 ms

For simplicity, the score was simply obtained, in
this section, by accumulating a score giving +1 and −1
corresponding to positive and negative judgments, re-
spectively, and the total score is divided by S(F−1) to
get the normalized score, where S is the number of sub-
jects and F is the number of sound fields tested. The
normalized scores for two motifs and the percentage of
preference for speech signal as a function of the delay
time are shown in Fig. 10.2.

Obviously, the most preferred delay time with the
maximum score differs greatly between the two mo-
tifs. When the amplitude of reflection A1 = 1, the most
preferred delays are around 130 ms for music motif A,
35 ms for music motif B (Fig. 10.2a), and 16 ms for
speech [10.36]. Later, it was found that this corresponds
well to the minimum values of the effective durations of
the running ACF [10.39] of the source signals, so that
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Fig. 10.3 The relationship between the preferred delay
time of the single reflection and the duration of the ACF
such that its envelope becomes 0.1 A1 (for k = 0.1 and
c = 1.0). The ranges of the preferred delays are graphi-
cally obtained at 0.1 below the maximum score. A, B and
S refer to motif A, motif B, and speech, respectively. Dif-
ferent symbols indicate the center values obtained at the
reflection amplitudes of +6 dB ( ), 0 dB ( ), and −6 dB
( ), respectively (13–19 subjects) (after [10.11])

the most preferred delay time were 125 ms (motif A),
40 ms (motif B) and 10 ms (speech). After inspection,
the preferred delay is found roughly at certain durations
of the ACF, defined by τp, such that the envelope of
the ACF becomes 0.1A1. Thus, [Δt1]p ≈ τe only when
A1 = 1. As shown in Fig. 10.3, changing the amplitude
A1, collected data of [Δt1]p are expressed approxi-
mately by

[Δt1]p = τp ≈ (1− log10 A1)(τe)min . (10.2)

Note that the amplitude of reflection relative to that of
the direct sound should be measured by the most accu-
rate method (ex. the square-root value of the ACF at the
origin of the delay time).

Two reasons can be given for why the preference
decreases for the short delay range of reflection, 0<
Δt1 < [Δt1]p:
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Fig. 10.4 Definition of the three spatial factors IACC,
τIACC and WIACC, extracted from the interaural cross-
correlation function (IACF)

1. Tone coloration effects occur because of the inter-
ference phenomenon in the coherent time region;
and

2. The IACC increases when Δt1 is near 0. The
definition of the IACC, which may be extracted
from the IACF, as given by [10.1], is shown in
Fig. 10.4.

On the other hand, echo disturbance effects can be
observed when Δt1 is greater than [Δt1]p.

Preferred Horizontal Direction
of a Single Reflection to a Listener

The direction was specified by loudspeakers located
at ξ1 = 0◦ (η1 = 27◦), and ξ1 = 18◦, 36◦, . . . , 90◦
(η1 = 9◦), where the delay time of the reflection was
fixed at 32 ms [10.11]. Results of the preference tests
for the two motifs are shown in Fig. 10.5. No fundamen-
tal differences are observed between the curves of the
sound source in spite of the large differences in the value
of (τe)min. The preferred score increases roughly with
decreasing IACC, the typical spatial factor. The correla-
tion coefficient between the score and the IACC is −0.8
(p< 0.01). The score with motif A at ξ1 = 90◦ drops
to a negative value, indicating that the lateral reflec-
tions coming only from around ξ1 = 90◦, thus, are not
always preferred. The figure shows that there is a prefer-
ence for angles less than ξ1 = 90◦, and on average there
may be an optimum range centered on about ξ1 = 55◦.
Similar results can be seen in the data from speech sig-
nals [10.40]. These results are due to the spatial factor
independent of the temporal factor, which consists of
the source signal.
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Fig. 10.5 Preference scores and the IACC of the sound
fields with extreme music motifs A and B, as a function of
the horizontal angle of a single reflection, A1 = 0 dB (six
sound fields and 13 subjects)

10.1.2 Optimal Conditions Maximizing
Subjective Preference

According to a systematic investigation of simulating
the sound field with multiple reflections and reverber-
ation by the aid of a computer and the listening test,
the optimum design objectives and the linear scale value
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Fig. 10.6 Recommended reverberation time for several sound pro-
grams

of subjective preference may be derived. The optimum
design objectives can be described in terms of the sub-
jectively preferred sound qualities, which are related to
the four orthogonal factors describing the sound signals
arriving at the two ears. They clearly lead to comprehen-
sive criteria for achieving the optimal design of concert
halls as summarized below [10.11–13].

Listening Level (LL)
The listening level is, of course, the primary criterion
for listening to sound in a concert hall. The preferred
listening level depends upon the music and the par-
ticular passage being performed. The preferred levels
obtained with 16 subjects were similar for two extreme
music motifs: 77–79 dBA in peak ranges for music mo-
tif A (Royal Pavane by Gibbons) with a slow tempo, and
79–80 dBA for music motif B (Sinfonietta by Arnold)
with a fast tempo Fig. 10.7a.

Early Reflection after the Direct Sound (Δt1)
An approximate relationship for the most preferred de-
lay time has been discovered in terms of the ACF
envelope of source signals and the total amplitude of
reflections A. Generally, it is expressed by [Δt1]p = τp

∣∣φp(τ)
∣∣
envelope ≈ kAc, at τ = τp , (10.3)

where k and c are constants that depend on the subjec-
tive attributes [10.1, Fig. 41]. If the envelope of ACF is
exponential, then

[Δt1]p = τp ≈
[
log10(1/k)− c log10 A

]
(τe)min ,

(10.4)

where the total pressure amplitude of reflection is given
by

A =
(

A2
1+ A2

2+ A2
3+ . . .

)1/2
. (10.5)

The relationship given by (10.2) for a single reflection
may be obtained by putting A = A1, k = 0.1 and c = 1.

The value of (τe)min is observed at the most active
part of a piece of music containing artistic information
such as a vibrato, a quick passage in the music flow,
and/or a very sharp sound signal. Echo disturbance,
therefore, may be perceived at (τe)min. Even for a long
musical composition, the minimum part of (τe)min of the
running ACF in the whole music, which determines the
preferred temporal condition, may be taken into consid-
eration for the choice of music program to be performed
in a given concert hall. A method of controlling the
minimum value (τe)min in performance, which deter-
mines the preferred temporal condition for vocal music
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Concert Hall Acoustics Based on Subjective Preference Theory 10.1 Theory of Subjective Preference for the Sound Field 373

has been discussed for blending the sound source and
a given concert hall [10.41, 42]. If vibrato is introduced
during singing, for example, it decreases (τe)min, blend-
ing the sound field with a short reverberation time.

Reverberation Time
After the Early Reflection (Tsub)

It has been observed that the most preferred frequency
response to the reverberation time is a flat curve [10.39].
The preferred reverberation time, which is equivalent
to that defined by Sabine [10.2], is expressed approxi-
mately by

[Tsub]p ≈ 23(τe)min . (10.6)

The total amplitudes of reflections A tested were
1.1 and 4.1, which cover the usual conditions of sound
fields in a room. Recommended reverberation times for
several sound sources are shown in Fig. 10.6. A lecture
and conference room must be designed for speech, and
an opera house mainly for vocal music but also for or-
chestra music. For orchestral music, there may be two
or three types of concert hall designs according to the
effective duration of the ACF. For example, symphony
no. 41 by Mozart, Le Sacre du Printemps by Stravinsky,
and Arnold’s Sinfonietta have short ACFs and fit or-
chestra music of type (A). On the other hand, symphony
no. 4 by Brahms and symphony no. 7 by Bruckner are
typical of orchestra music (B). Much longer ACFs are
typical for pipe-organ music, for example, by Bach.

The most preferred reverberation times for each
sound source given by (10.6) might play important roles
for the selection of music motifs to be performed. Of
interest is that the most preferred reverberation time
expressed by (10.6) implies about four times the rever-
beration time containing the source signal itself.

Magnitude of the Interaural
Cross-Correlation Function (IACC)

All individual data indicated a negative correlation
between the magnitude of the IACC and subjective pref-
erence, i. e., dissimilarity of signals arriving at the two
ears is preferred. This holds only under the condition
that the maximum value of the IACF is maintained
at the origin of the time delay, keeping a balance of
the sound field at the two ears. If not, then an image
shift of the source may occur (Sect. 10.4.2). To obtain
a small magnitude of the IACC in the most effective
manner, the directions from which the early reflections
arrive at the listener should be kept within a certain
range of angles from the median plane centered on
±55◦. It is obvious that the sound arriving from the

median plane ±0◦ makes the IACC greater. Sound ar-
riving from ±90◦ in the horizontal plane is not always
advantageous, because the similar detour paths around
the head to both ears cannot decrease the IACC ef-
fectively, particularly for frequency ranges higher than
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Fig. 10.7a–d Scale values of subjective preference ob-
tained by the paired-comparison test for simulated sound
fields in an anechoic chamber. Different symbols indi-
cate scale values obtained from different source signals
(after [10.12]). Even if different signals are used, a con-
sistency of scale values as a function of each factor is
observed, fitting a single curve. (a) As a function of the
listening level, LL. The most preferred listening level,
[LL]p = 0 dB
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Fig. 10.7 (b) As a function of the normalized initial delay time of
the first reflection by the most preferred delay time calculated by
(10.4), Δt1/[Δt1]p;
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Fig. 10.7 (c) As a function of the normalized reverberation time for
the most preferred calculated by (10.6), Tsub/[Tsub]p;
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Fig. 10.7 (d) As a function of the IACC (after [10.12])

500 Hz. For example, the most effective angles for the
frequency ranges of 1 kHz and 2 kHz are centered on
±55◦ and ±36◦, respectively. To realize this condition
simultaneously, a geometrical uneven surface has been
proposed [10.43].

10.1.3 Theory of Subjective Preference
for the Sound Field

Theory
Since the number of orthogonal acoustic factors of the
sound field, which are included in the sound signals at
both ears, is limited [10.12]; the scale value of any one-

dimensional subjective response may be expressed by

S = g(x1, x2, . . . xi ) . (10.7)

It has been verified by a series of experiments that
four objective factors act independently on the scale
value when changing two of the four factors simulta-
neously [10.13]. Results indicate that the units of the
scale value of subjective preference derived by a series
of experiments with different sound sources and differ-
ent subjects have appeared to be constant [10.12], so
that we may add scale values to obtain the total scale
value such as

S = g(x1)+ g(x2)+ g(x3)+ g(x4)

= S1+ S2+ S3+ S4 , (10.8)

where Si (i = 1, 2, 3, 4) is the scale value obtained
relative to each objective parameter. Equation (10.8)
indicates a four-dimensional continuity.

A Common Formula
for the Four Normalized Orthogonal Factors

The dependence of the scale value on each objective
parameter is shown graphically in Fig. 10.7. From the
nature of the scale value, it is convenient to put a zero
value at the most preferred conditions, as shown in this
figure. These results of the scale value of subjective
preference obtained from the different test series, using
different music programs, yield the following common
formula

Si ≈−αi |xi |3/2 , i = 1, 2, 3, 4 (10.9)

where values of αi are weighting coefficients as listed
in Table 10.2, which were obtained with a number of
subjects. These coefficients depend on the individual.
If αi is close to zero, then a lesser contribution of the
factor xi on subjective preference is signified.

Table 10.2 Four orthogonal factors of the sound field
and their weighting coefficients αi obtained by a paired-
comparison test of subjective preference with a number of
subjects in conditions without any image shift of the source
sound (τIACC = 0)

i xi αi

xi > 0 xi < 0

1 20 log P−20 log[P]p 0.07 0.04

(dB)

2 log(Δt1/[Δt1]p) 1.42 1.11

3 log(Tsub/[Tsub]p) 0.45+0.75A 2.36−0.42A

4 IACC 1.45 –
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Concert Hall Acoustics Based on Subjective Preference Theory 10.1 Theory of Subjective Preference for the Sound Field 375

The factor x1 is given by the sound pressure level
(SPL) difference, measured by the A-weighted network,
so that

x1 = 20 log P−20 log[P]p , (10.10)

P and [P]p being, respectively, the sound pressure at
a specific seat and the most preferred sound pressure
that may be assumed at a particular seat position in the
room under investigation

x2 = log
(
Δt1/[Δt1]p

)
, (10.11)

x3 = log
(
Tsub/ [Tsub]p

)
, (10.12)

x4 = IACC . (10.13)

Scale values of preference have been formulated
approximately in terms of the 3/2 powers of the normal-
ized objective parameters, expressed in the logarithm
for the parameters, x1, x2 and x3. Thus, scale values
are not greatly changed in the neighborhood of the most
preferred conditions, but decrease rapidly outside of this
range. The remarkable fact is that the spatial binaural
parameter x4 is expressed in terms of the 3/2 powers
of its real values, indicating a greater contribution than
those of the temporal parameters.

Limitation of Theory
Since experiments were conducted to find the optimal
conditions, this theory holds in the range of preferred
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Fig. 10.8 Scale values of subjective preference for the
sound field with music motif A as a function of the lis-
tening level and as a parameter of the IACC (after [10.13]).
Solid line: calculated values based on (10.8) together with
(10.9) taking the two factors (10.10) and (10.13) into con-
sideration; dashed line: measured values

Table 10.3 Hemispheric specializations determined by
analyses of AEP (SVR), EEG and MEGa

Factors AEP (SVR) EEG, ratio of MEG, ACF

changed A(P1 − N1) ACF τe values τe value

of α-waves of α-wave

Temporal

Δt1 L> R L> R L> R

(speech)b (music) (speech)

Tsub – L> R –

(music)

Spatial

LL R> L – –

(speech)

IACC R> L R> L –

(vowel /a/) (music)c

R> L

(band noise)
a See also [10.44] for a review of these investigations
b The sound source used in experiments is indicated in the
bracket
c Flow of α-wave (EEG) from the right hemisphere to the left
hemisphere for music stimuli when changing the IACC was
observed by |φ(τ)|max between α-waves recorded at different
electrodes [10.45]

conditions obtained by the test. In order to demonstrate
the independence of the four orthogonal factors, under
the conditions of fixed Δt1 and Tsub around the pre-
ferred conditions, scale values of subjective preference
calculated by (10.8) for the LL with (10.10) and the
IACC with (10.13) with constants listed in Table 10.2
are shown in Fig. 10.8. Agreement between the calcu-
lated and observed values are satisfactory [10.13]. Even
though both LL and the IACC are spatial factors, which
are associated with the right cerebral hemisphere (Ta-
ble 10.3), these are quite independent of each other. The
same is true for the temporal factors of Δt1 and Tsub as-
sociated with the left hemisphere. Of course, the spatial
factor and the temporal factor are highly independent.

Example of Calculating the Sound Quality
at Each Seat

As a typical example, we shall discuss the quality of
the sound field at each seating position in a concert
hall with a shape similar to that of Symphony Hall in
Boston. Suppose that a single source is located at the
center, 1.2 m above the stage floor. Receiving points at
a height of 1.1 m above the floor level correspond to the
ear positions. Reflections with their amplitudes, delay
times, and directions of arrival at the listeners are taken
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Fig. 10.9a,b An example of calculating the scale value with the
four orthogonal factors using (10.8) through (10.13) with weight-
ing coefficients (Table 10.2). (a) Contour lines of the total scale
value for the Boston Symphony Hall, with original side reflectors
on the stage. (b) Contour lines of the total scale values for the side
reflectors optimized on the stage

into account using the image method. Contour lines of
the total scale value of preference calculated for mu-
sic motif B are shown in Fig. 10.9. Results shown in
Fig. 10.9b demonstrate the effects of the reflection from
the sidewalls adjusted to the stage, which produce de-
creasing values of the IACC for the audience area. Thus
the preference value at each seat is increased compared
with that in Fig. 10.9a. In this calculation, the reverbera-
tion time is assumed to be 1.8 s throughout the hall and
the most preferred listening level, [LL]p = 20 log[P]p
in (10.10), is set for a point on the center line 20 m from
the source position.

10.1.4 Auditory Temporal Window for ACF
and IACF Processing

Auditory Temporal Window for ACF Processing
In analyzing the running ACF, the so-called auditory–
temporal window 2T must be carefully determined.
The initial part of the ACF within the effective dura-
tion of the ACF contains important information about
the source signal. In order to determine the auditory–
temporal window, successive loudness judgments in
pursuit of the running SPL have been conducted. Re-
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Fig. 10.10 Recommended temporal window (2T )r for the
ACF proceeding as a function of the minimum value
of effective duration of the ACF (τe)min. Different sym-
bols represent experimental results using different sound
sources

sults shown in Fig. 10.10 indicate that the recommended
signal duration (2T )r to be analyzed is approximately
expressed by [10.46]

(2T )r ≈ 30(τe)min , (10.14)

where (τe)min is the minimum effective duration, ex-
tracted from the running ACF [10.47]. This signifies
an adaptive temporal window depending on the tempo-
ral characteristics of the sound signal in the auditory
system. For example, the temporal window may dif-
fer according to music pieces ((2T )r = 0.5–5 s) and
to the vowels ((2T )r = 50–100 ms) and consonants
((2T )r = 5–10 ms) in continuous speech signals. It is
worth noticing that the time constant represented by fast
or slow of the sound level meter should be replaced by
the temporal window, which depends on the effective
duration of the ACF of the source signal. The running
step (Rs), which signifies a degree of overlap of sig-
nal to be analyzed, is not critical. It may be selected as
K2(2T )r; K2 is chosen, say, in the range 0.25–0.5.

Auditory Temporal Window for IACF Processing
For the sound source fixed on the stage in a concert
hall as usual, the value of 2T can be selected longer
than 1.0 s for the measurement of the spatial factor at
a fixed audience seat. But, when a sound signal is mov-
ing in the horizontal direction on the stage, we must
know a suitable temporal window for 2T in analyzing
the running IACF, which describes the moving image
of sound localization. For a sound source moving si-
nusoidally in the horizontal plane with less than 0.2 Hz,
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2T may be selected in a wide range from 30 to 1000 ms.
If a sound source is moving below and/or at 4.0 Hz,
2T = 30–100 ms is acceptable. In order to obtain a re-
liable result, it is recommended that such a temporal
window for the IACF covering a wide range of move-
ment velocity in the horizontal localization be fixed at
about 30 ms.

10.1.5 Specialization
of Cerebral Hemispheres
for Temporal and Spatial Factors
of the Sound Field

The independent influence of the aforementioned tem-
poral and spatial factors on subjective preference
judgments has been achieved by the specialization of
the human cerebral hemispheres [10.44]. Recording
over the left and right hemispheres of the slow ver-
tex response (SVR) with latency of less than 500 ms,
electroencephalograms (EEG) and magnetoencephalo-
grams (MEG) have revealed various pieces of evidence
(Table 10.3), with the most significant results being:

1. The left and right amplitudes of the evoked SVR,
A(P1− N1) indicate that the left and right hemi-
spheric dominance are due to temporal factors
(Δt1) and spatial factors (LL and IACC), respec-
tively [10.35, 48].

2. Both left and right latencies of N2 of SVR corre-
spond well to the IACC [10.35].

3. Results of EEGs for the cerebral hemispheric spe-
cialization of the temporal factors, i. e., Δt1 and Tsub
indicated left-hemisphere dominance [10.49, 50],
while the IACC indicated right-hemisphere domi-
nance [10.45]. Thus, a high degree of independence
between temporal and spatial factors was indicated.

4. The scale value of subjective preference is well de-
scribed in relation to the value of τe extracted from
the ACF of α-wave signals over the left hemisphere
and the right hemisphere according to changes in
temporal and spatial factors of the sound field, re-
spectively [10.45, 49, 50].

5. Amplitudes of MEGs recorded when Δt1 was
changed reconfirm the left-hemisphere specializa-
tion [10.51].

6. The scale values of individual subjective preference
relate directly to the value of τe extracted from the
ACF of the α-wave of the MEG [10.51]. It is worth
noting that the amplitudes of the α-wave in both the
EEG and the MEG do not correspond well to the
scale value of subjective preference.

In addition to the aforementioned activities in the time
domain, in both the left and right hemispheres, spatial
activity waves were analyzed by the cross-correlation
function of alpha waves from the EEGs and MEGs. The
results showed that a larger area of the brain is activated
when the preferred sound field is presented [10.52]
than when a less preferred one. This implies that the
brain repeats a similar temporal rhythm in the α-wave
range over a wider area of the scalp under the preferred
conditions.

It has been reported that the left hemisphere is
mainly associated with speech and time-sequential
identifications, and the right is concerned with non-
verbal and spatial identification [10.53, 54]. However,
when the IACC was changed using speech and music
signals, right-hemisphere dominance was observed, as
indicated in Table 10.3. Therefore, hemispheric domi-
nance is a relative response depending on which factor
is changed in the comparison pair, and no absolute be-
havior could be observed.

To date, it has been discovered that the LL and the
IACC are dominantly associated with the right cerebral
hemisphere, and the temporal factors, Δt1 and Tsub are
associated with the left. This implies that such special-
ization of the human cerebral hemisphere may relate to
the highly independent influence of spatial and tempo-
ral criteria on any subjective attribute. It is remarkable,
for example, that cocktail party effects might well be
explained by such specialization of the human brain,
because speech is processed in the left hemisphere, and
spatial information is processed in the right hemisphere
independently.

10.2 Design Studies

Using the scale values in the four orthogonal factors
of the sound field obtained by a number of listeners,
the principle of superposition expressed by (10.8) to-
gether with (10.9) through (10.13) can be applied to
calculate the scale value of preference for each seat.

Comparison of the total preference values for differ-
ent configurations of concert halls allows a designer to
choose the best scheme. Temporal factors relating to
its dimensions and the absorbing material on its walls
are carefully determined according to the purpose of
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the hall in terms of a range of specific music pro-
grams (Fig. 10.6). In this section, we discuss mainly
the spatial form of the hall, the magnitude of the in-
teraural correlation function and the binaural listening
level.

10.2.1 Study of a Space-Form Design
by Genetic Algorithms ( GA)

A large number of concert halls have been built since
the time of the ancient Greeks, but only the halls
with good sound quality are well liked. In order to
increase the measure of success, a genetic algorithm
(GA) system [10.55], a form of evolutionary comput-
ing, can be applied to the acoustic design of concert
halls [10.56,57]. The GA system is applied here to gen-
erate the alternative scheme on the left-hand side of
Fig. 10.11 for listeners.
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Fig. 10.11 The procedure for designing the sound field in a concert hall maximizing the scale values of subjective pref-
erence for a number of listeners (including a conductor) and performers. Data for global values of subjective preference
may be utilized when designing a public hall

Procedure
In this calculation, linear scale values of subjective pref-
erence S1 and S4 given by (10.9) are employed as fitting
functions due to the LL and IACC, because the geomet-
rical shape of a hall is directly affected by these spatial
factors. The spatial factor for a source on the stage
was calculated at a number of seating positions. For the
sake of convenience, the single omnidirectional source
was assumed to be at the center of the stage, 1.5 m
above the stage floor. The receiving points that corre-
spond to the ear positions were 1.1 m above the floor
of the hall. The image method was used to determine
the amplitudes, delay times, and directions of arrival of
reflections at these receiving points. Reflections were
calculated up to the second order. In fact, there was no
change in the relative relationship among the factors ob-
tained from calculations performed up to the second,
third, and fourth order of reflection. The averaged val-
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ues of the IACC for five music motifs (motifs A through
E [10.13]) were used for the calculation.

Those hall shapes that produced greater scale values
are selected as parent chromosomes. An example of the
encoding of the chromosome is given in Fig. 10.12. The
first bit indicated the direction of motion for the vertex.
The other (n−1) bits indicated the range over which
the vertex moved. To create a new generation, the room
shapes are modified and the corresponding movement
of the vertices of the walls is encoded in chromosomes,
i. e., binary strings. After GA operations that include
crossover and mutation, new offspring are created. The
fitness of the offspring is then evaluated in terms of the
scale value of subjective preference. This process is re-
peated until the end condition of about 2000 generations
is satisfied.

Shoe-Box Optimized
First of all, the proportions of the shoe-box hall were
optimized (model 1). The initial geometry is shown in
Fig. 10.13. In this form, the hall was 20 m wide, the
stage was 12 m deep, the room was 30 m long, and the
ceiling was 15 m above the floor. The point source was
located at the center of the stage and 4.0 m from the
front of the stage; 72 listening positions were selected.
The range of motion for each sidewall and the ceiling
was ±5 m from the respective initial positions, and the
distance through which each was moved was coded on
the chromosome of the GA. Scale values at the listening
positions other than those within 1 m of the sidewalls
were included in the averages (S1 and S4). These values
were employed as the measure of fitness. In this calcula-
tion, the most preferred listening level [LL]p was chosen
at the frontal seat near the stage. Results of optimization
of the hall for S1 and S4 are shown in Fig. 10.14a,b, re-
spectively. The width and length were almost the same
in the two results, but the indicated heights were quite
different. The height of the ceiling that maximizes S1
was as low as possible within the allowed range of mo-
tion to obtain a constant LL (Fig. 10.14a). The height

Table 10.4 Comparison of proportions for the optimized
spatial form of shoe-box type and the Grosser Musik-
vereinssaal

Length/width Height/width

Optimized for S1 2.50 0.71

for the listening level

Optimized for S4 2.57 1.43

for the IACC

Grosser Musikvereinssaal 2.55 0.93

that maximizes S4, on the other hand, was at the up-
per limit of the allowed range of motion to obtain small
values of the IACC (Fig. 10.14b). Table 10.4 shows the
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Fig. 10.12 An example of the binary strings used in encoding of the
chromosome to represent modifications to the room shape
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Fig. 10.13 The initial scheme of a concert hall (model 1). The range
of sidewall and ceiling variation was ±5 m from the initial scheme
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Fig. 10.14a,b Results for the model 1. (a) Geometry optimized for
S1. (b) Geometry optimized for S4 (after [10.56])
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comparison of the proportions obtained here and those
of the Grosser Musikvereinssaal, which is a typical
example of an excellent concert hall. The length/width
ratios are almost the same. The height/width ratio of the
Grosser Musikvereinsaal is intermediate between our
results for the two factors. For the ceiling of the hall,
the height that maximized S1 was the lowest within
the allowed range of motion (Fig. 10.14a). This is due
to the fact that more energy can be provided from the
ceiling to the listening position throughout the seats.
To maximize S4, on the other hand, the ceiling took
on the maximum height in the possible range of mo-
tion (Fig. 10.14b). Reflections from the flat ceiling did
not decrease the IACC, but those from the sidewalls
did.

Modification from the Shoe-Box
Next, to obtain even better sound fields, a little more
complicated form (model 2), as shown in Fig. 10.15,
was examined. The floor plan optimized according to
the above results was applied as a starting point. The
hall in its initial form was 14 m wide, the stage was 9 m
deep, the room was 27 m long, and the ceiling was 15 m
above the stage floor. The sound source was again 4.0 m
from the front of the stage, but was 0.5 m to one side
of the centerline and 1.5 m above the stage floor. The

����	������

�����

���$�

Fig. 10.15 Initial scheme of the concert hall (model 2). The rear wall
of the stage and the rear wall of the audience area were divided into
two. Sidewalls were divided into four

front and rear walls were vertically bisected to obtain
two faces, and each stretch of wall along the side of the
seating area was divided into four faces. The walls were
kept vertical (i. e., tilting was not allowed) to examine
only the plan of the hall in terms of maximizing S1 and
S4. Each wall was moved independently of the other
walls. The openings between the walls, in the acous-
tical simulation using the image method, were assumed
not to reflect the sound. Forty-nine listening positions
distributing throughout the seating area on a 2 m × 4 m
grid were selected. In the GA operation, the sidewalls
were moved, so that none of these 49 listening positions
were excluded. The moving range of each vertex was
±2 m in the direction of the line normal to the surface.
The coordinates of the two bottom vertices of each sur-
face were encoded on the chromosomes for the GA. In
this calculation, the most preferred listening level was
set for a point on the hall’s long axis (central line), 10 m
from the source position.

Leaf-Shape Concert Hall
The result of optimizing the hall for S1 is shown in
Fig. 10.16 and the contour lines of equal S1 values are
shown in Fig. 10.17. To maximize S1, the rear wall of
the stage and the rear wall of the audience area took
on concave shapes. The result of optimizing for S4 is
shown in Fig. 10.18 and contour lines of equal S4 val-
ues are shown in Fig. 10.19. To maximize S4, on the
other hand, the rear wall of the stage and the rear wall

Fig. 10.16 A result for the model 2 optimized for S1
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of the audience area took on convex shapes. With re-
gard to the sidewalls, both S1 and S4 were maximized by
the leaf-shaped plan, which is discussed in the follow-
ing section. As for the conflicting requirements for S1
and S4, the maximization of S4 may take priority over
that of S1, because the preference increases with de-
creasing IACC without exception [10.1], while there is
a large individual difference in the preferred LL [10.58].
It is worth noting that listeners themselves can usually
choose the best seat with respect to the preferred LL in
a real concert hall.

A conductor and/or music director must be aware
of the sound field characteristics of a concert hall. One
is then able to select a program of music so that the
sound is best in that hall in terms of the temporal factors
(Fig. 10.6).

10.2.2 Actual Design Studies

After testing more than 200 listeners, a small value of
the IACC, which corresponds to different sound sig-
nals arriving at two ears, was demonstrated to be the
preferred condition for individuals without exception.
A practical application of this design theory was done
in the Kirishima International Concert Hall (Miyama
Conceru), which was characterized by a leaf shape
(Fig. 10.20).

Temporal Factors of the Sound Field
for Listeners

When the space is designed for pipe-organ performance,
the range of (τe)min, which may be selected to be cen-
tered on 200 ms, determines the typical temporal factor
of the hall: [Tsub]p ≈ 4.6 s (10.6). When designed for
the performance of chamber music, the range is selected
to be near the value of 65 ms ([Tsub]p ≈ 1.5 s). The
conductor and/or the sound coordinator select suitable
musical motifs with a satisfactory range of effective du-
ration of the ACF to achieve a music performance that
blends the music and the sound field in a hall (Fig. 10.6).
To adjust the preferred condition of Δt1, on the other
hand, since the value of (τe)min for violins is usually
shorter than that of contrabasses in the low-frequency
range, the position of the violins is shifted closer to the
left wall on the stage, and the position of the contra-
basses is shifted closer to the center, as viewed from the
audience.

Spatial Factors of the Sound Field for Listeners
The IACC should be kept as small as possible, main-
taining τIACC = 0. This is realized by suppressing the
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Fig. 10.17 Contour lines of equal S1 values calculated for the geom-
etry shown in Fig. 10.16

Fig. 10.18 A result for model 2 optimized for S4
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Fig. 10.19 Contour lines of equal S4 values calculated for the ge-
ometry shown in Fig. 10.18
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Fig. 10.20a,b A leaf shape for the plan proposed for the
Kirishima International Concert Hall. (a) Original leaf
shape. (b) Proposed shape for the plan. As usual, the sound
field in circled seating area close to the stage must be care-
fully designed to obtain reflections from the walls on the
stage and tilted sidewalls

strong reflection from the ceiling, and by appropriate
reflections from the sidewall at certain angles. When
the source signal mainly contains frequency compo-
nents around 1 kHz, the reflection from the side walls
is adjusted to be centered roughly 55◦ to each listener,

a)

Fig. 10.21a–f Scheme of the Kirishima International Concert Hall, Kagoshima, Japan designed by the architect Maki and
associates (1997) (after [10.59, 60]). (a) Longitudinal section

measured from the median plane. Under actual hear-
ing conditions, the perceived IACC depends on whether
or not the amplitudes of reflection exceed the hearing
threshold level. This may be one of the reasons why
a more diffuse sound field can be perceived with in-
creasing power of the sound source. When the source is
weak enough, that only the direct sound is heard, the ac-
tual IACC being processed in the auditory–brain system
approaches unity, resulting in no diffuse sound impres-
sion. Thus, the IACC should be small enough with only
strong early reflections.

Sound Field for Musicians
For music performers, the temporal factor is consid-
ered to be much more critical than the spatial factor
(Sect. 10.3.2). Since musicians perform over a sequence
of time, reflections with a suitable delay in terms of the
value of (τe)min of the source signals are of particular
importance. Without any spatial subjective diffuseness,
the preferred directions of reflections are in the me-
dian plane of music performers, resulting in IACC ≈
1.0 [10.61, 62]. In order to satisfy these acoustic condi-
tions, some design iterations are required, maximizing
scale values for both musicians and listeners and lead-
ing to the final scheme of the concert hall as shown in
Fig. 10.11.

Sound Field for the Conductor
It is recommended that the sound field for the conduc-
tor on the stage should be designed as that of a listener
with appropriate reflections from the sidewalls on the
stage [10.63].

Acoustic Design with Architects
From the historical viewpoint, architects have been
more concerned with spatial criteria from the visual
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standpoint, and less so from the point of view of tem-
poral criteria for blending human experience and the
environment with design. On the other hand, acous-
ticians have mainly been concerned with temporal
criteria, represented primarily by the reverberation time,
from the time of Sabine [10.2] onward. No comprehen-
sive theory of design including the spatial criterion as
represented by the IACC existed before 1977, so that
discussions between acousticians and architects were

b)

c)

Fig. 10.21 (b) Plan of balcony level; (c) Plan of audience level

rarely on the same subject. As a matter of fact, both
temporal and spatial factors are deeply interrelated with
both acoustic design and architectural design [10.64,
65].

As an initial design sketch of the Kirishima Interna-
tional Concert Hall, a plan shape like a leaf (Fig. 10.20a)
was presented at the first meeting for discussion with the
architect Fumihiko Maki and associates with the expla-
nation of the temporal and spatial factors of sound field.
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d) e)

Fig. 10.21 (d) Cross section; (e) Tilt sidewalls and triangular ceilings after construction of the hall

After some weeks, Maki and Ikeda indicated a scheme
of the concert hall as shown in Fig. 10.21 [10.59, 60].
Without any change of plan and cross sections, the cal-
culated results indicated the excellent sound field as
shown in Fig. 10.22 [10.66, 67].

The final architectural schemes, together with the
special listening room for testing individual preference
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Fig. 10.22a–d Calculated orthogonal factors at each seat with a performing position S for an initial design of the hall.
In the final design of the hall, the width was enlarged by about 1 m to increase the number of seats. The designed
reverberation time was about 1.7 s for the 500 Hz band. (a) Relative listening level; (b) initial time delay gap between the
direct sound and the first reflection Δt1 [ms]; (c) A-value, the total amplitude of reflections; (d) IACC for white noise

of sound field and selecting the appropriate seats for
maximizing individual preference of the sound field, are
shown in Fig. 10.21b. In these figures, the concert court-
yard, the small concert hall, several rehearsal rooms and
dressing rooms are also shown. The concert hall under
construction is shown in Fig. 10.21e, in which the leaf
shape may be seen; it was opened in 1994 (Fig. 10.21f).
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Roof

Ceilings of
triangular plates

Rear wall
on the stage

Diffusing
wall tilted
(1:10)
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Fig. 10.23 Details of the cross sec-
tion, including a sectional detail of
the rear wall on the stage at the lower
left of the figure

Details of Acoustic Design
For Listeners on the Main Floor. In order to obtain
a small value of the IACC for most of the listeners, ceil-
ings were designed using a number of triangular plates
with adjusted angles, and the side walls were given a
10% tilt with respect to the main audience floor, as
are shown in Fig. 10.21d and Fig. 10.23. In addition,
diffusing elements were designed on the sidewalls to
avoid the image shift of sound sources on the stage

caused by the strong reflection in the high-frequency
range above 2 kHz. These diffusers on the sidewalls
were designed as a modification of the Schroeder dif-
fuser [10.68] without the wells, as shown by the detail
of Fig. 10.24.

For Music Performers on Stage. In order to provide
reflections from places near the median plane of each
of the performers on the stage, the back wall on the
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# "# )# (# %# ,# ��
�

Fig. 10.24 Detail of the diffusing sidewalls effective for
the higher-frequency range above 1.5 kHz, avoiding image
shift of the sound source on the stage. The surface is de-
formed from the Schroeder diffuser by removal of the well
partitions (after [10.68])

stage is carefully designed as shown in the lower left in
Fig. 10.23. The tilted back wall consists of six sub-walls
with angles adjusted to provide appropriate reflections
within the median plane of the performer. It is worth
noting that the tilted sidewalls on the stage provide good
reflections to the audience sitting close to the stage, at
the same time resulting in a decrease of the IACC. Also,
the sidewall on the stage of the left-hand side look-
ing from the audience may provide useful reflections
arriving from the back for a piano soloist.

Stage Floor Structure. For the purpose of suppressing
the vibration [10.69] of the stage floor and anoma-
lous sound radiation from the stage floor during a per-
formance, the joists form triangles without any neigh-
boring parallel structure, as shown in Fig. 10.25. The

# " ) ( % , �
�

Fig. 10.25 Detail of the triangular joist arrangement for the
stage floor, avoiding anomalous radiation due to the nor-
mal modes of vibration from certain music instruments that
touch the floor

thickness of the floor is designed to be relatively thin
(27 mm) in order to radiate sound effectively from the
vibration of instruments such as the cello and contra-
bass. During rehearsal, music performers may control
the radiation power somewhat by adjusting their posi-
tion or by the use of a rubber pad between the floor and
the instrument.

10.3 Individual Preferences of a Listener and a Performer

The minimum unit of society to be satisfied by the en-
vironment is one individual, which leads to a unique
personal existence. Here, we demonstrate that the indi-
vidual subjective preferences of each listener and each
cellist may be described by the theory in Sect. 10.1,
which resulted from observing a number of subjects.

10.3.1 Individual Subjective Preference
of Each Listener

In order to enhance individual satisfaction for each lis-
tener, a special facility for seat selection, testing each
listener’s own subjective preference [10.58, 70], was

first introduced at the Kirishima International Concert
Hall in 1994. The sound simulation system employed
multiple loudspeakers. It used arrows for testing the
subjective preference of four listeners at the same
time. Since the four orthogonal factors of the sound
field influence the preference judgment almost inde-
pendently [10.1], each single factor is varied, while
the other three are fixed at the preferred condition
for the average listener. Results of testing acousticians
who participated in the International Symposium on
Music and Concert Hall Acoustics (MCHA95), which
was held in Kirishima in May 1995, are presented
here [10.1].
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Individual Preference and Seat Selection
The music source was orchestral, the Water Music
by Händel; the effective duration of the ACF was
62 ms [10.11]. The total number of listeners partici-
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Fig. 10.26a–d Scale values of preference obtained by
paired-comparison tests for the four orthogonal factors,
subject BL. (a) The most preferred listening level was
83 dBA, the individual weighting coefficient in (10.9):
α1 = 0.06; (b) the preferred initial time delay gap between
the direct sound and first reflection was 26.8 ms, the in-
dividual weighting coefficient in (10.9): α2 = 1.86, where
[Δt1]p calculated by (10.4) with (τe)min = 62 ms for the
music used (A = 4) is 24.8 ms; (c) the preferred subsequent
reverberation time is 2.05 s, the individual weighting co-
efficient in (10.9): α3 = 1.46, where [Tsub]p calculated by
(10.6) with (τe)min = 62 ms for the music used, is 1.43 s;
(d) individual weighting coefficient in (10.9) for IACC:
α4 = 1.96.

pating was 106. Typical examples of the test results
for listener BL as a function of each factor are shown
in Fig. 10.26. Scale values of this listener were rather
close to the averages for subjects previously col-
lected: the most preferred [LL]p was 83 dBA, the value
[Δt1]p ≈ [(1− log10 A)(τe)min] was 26.8 ms (the global
preferred value calculated by (10.4) with the total sound
pressure as was simulated A = 4.0 is 24.8 ms. And the
most preferred reverberation time is 2.05 s (the global
preferred value calculated by (10.6) is 1.43 s). Thus,
as was designed, the center area of seats was preferred
for listener BL (Fig. 10.27). With regard to the IACC,
the result for all listeners was that the scale value of
preference increased with decreasing the IACC value.
Since listener KH preferred a very short delay time
of Δt1, his preferred seats were located close to the
boundary wall, as shown in Fig. 10.28. Listener KK in-

���$�

Fig. 10.27 Preferred seating area calculated for subject BL.
The seats are classified in three parts according to the scale
value of subjective preference calculated by the summa-
tion of S1–S4 (10.8) together with (10.9). Black indicates
preferred seating areas, about one third of all seats in this
concert hall, for subject BL
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Fig. 10.28 Preferred seating area calculated for subject KH

dicated a preferred listening level exceeding 90 dBA.
For this listener, the front seating area close to the stage
was preferable, as shown in Fig. 10.29. For listener
DP, whose preferred listening level was rather weak
(76.0 dBA) and the preferred initial delay time was
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Fig. 10.30 Cumulative frequency of preferred listening
level [LL]p (106 subjects). About 60% of subjects pre-
ferred the range of 80–84.9 dBA

Fig. 10.29 Preferred seating area calculated for subject KK

short (15.0 ms), the preferred seat was in the rear part of
hall, as shown in Fig. 10.32. The preferred initial time
delay gap for listener CA exceeds 100.0 ms, but was
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Fig. 10.31 Cumulative frequency of the preferred initial
time delay gap between the direct sound and the first reflec-
tion [Δt1]p (106 subjects). About 45% of subjects preferred
the range of 20–39 ms. The value of [Δt1]p calculated
using (10.4) is 24.8 ms with c = 1 and k = 0.1
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Fig. 10.32 Preferred seating area calculated for subject DP

not critical. Thus, any initial delay times were accept-
able, but the IACC was critical. Therefore, the preferred
areas of seats were located as shown in Fig. 10.33.

Cumulative Frequency of Preferred Values
Cumulative frequencies of the preferred values with 106
listeners are shown in Fig. 10.30 through Fig. 10.34 for
three factors. As indicated in Fig. 10.30, about 60% of
listeners preferred the range 80–84.9 dBA when listen-
ing to music, but some listeners indicated that the most
preferred LL was above 90 dBA, and the total range
of the preferred LL was scattered, exceeding a 20 dB
range. As shown in Fig. 10.31, about 45% of listeners
preferred initial delay times of 20–39 ms, which were
around the calculated preference of 24.8 ms (10.4) with
k = 0.1, c = 1 and A = 4.0; however, some listeners in-
dicated 0–9 ms and others more than 80 ms. With regard
to the reverberation time, as shown in Fig. 10.34, about
45% of listeners preferred 1.0–1.9 s, which is centered
on the preferred value of 1.43 s calculated by (10.6), but
some listeners indicated preferences lower than 0.9 s or
more than 4.0 s.

Fig. 10.33 Preferred seating area calculated for subject CA

Independence of the Preferred Conditions
It was thought that both the initial delay time and the
subsequent reverberation time appear to be mutually re-
lated, due to a kind of liveness of the sound field. Also,
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Fig. 10.34 Cumulative frequency of the preferred subse-
quent reverberation time [Tsub]p (106 subjects). About 45%
of subjects preferred the range 1.0–1.9 s. The value of
[Tsub]p calculated using (10.6) is 1.43 s
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it was assumed that there is a strong interdependence
between these factors for each individual. However, as
shown in Fig. 10.35, there was little correlation between
preference values of [Δt1]p and [Tsub]p (the correlation
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Fig. 10.35 The relationship between the preferred values
of [Δt1]p and [Tsub]p for each subject. No significant cor-
relation between values was achieved
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Fig. 10.36 Three-dimensional illustration of the three preferred or-
thogonal factors for the sound field for each individual subject
(squares). All 106 listeners tested indicated that a smaller value of
the IACC was preferred, and these data are not included in this fig-
ure. Preferred conditions are distributed in a certain range of each
factor, so that subjects could not be classified into any specific groups

is 0.06). The same is true for the correlation between
values of [Tsub]p and [LL]p and for that between val-
ues of [LL]p and [Δt1]p, a correlation of less than 0.11.
Figure 10.36 shows the three-dimensional plots of the
preferred values of [LL]p, [Δt1]p and [Tsub]p for the 106
listeners. Looking at a continuous distribution in pre-
ferred values, no specific groupings of individuals can
be classified from the data.

Another important fact is that there was no corre-
lation between the weighting coefficients αi and α j ,
i �= j (i, j = 1, 2, 3, 4) in (10.9) for each individual
listener [10.1]. A listener indicating a relatively small
value of one factor will not always indicate a relatively
small value for another factor. Thus, a listener can be
critical about a preferred condition as a function of
a certain factor, while insensitive to other factors, re-
sulting in characteristic differences from other listeners.

10.3.2 Individual Subjective Preference
of Each Cellist

To realize an excellent concert, we need to know the op-
timal conditions not only in the stage enclosure design
for performers, but also in the style of the performance.
The primary issue is that the stage enclosure is de-
signed to provide a sound field in which performers
can play easily. Marshall et al. [10.71] investigated
the effects of stage size on the playing of an ensem-
ble. The parameters related to stage size in their study
were the delay time and the amplitude of reflections.
Gade [10.72] performed a laboratory experiment to
investigate the preferred conditions for the total ampli-
tude of the reflections of performers. Nakayama [10.61]
showed a relationship between the preferred delay time
and the effective duration of the long-time ACF of
the source signal for alto-recorder soloists (data was
rearranged [10.1]). When we listen to a wide range
of music signals containing a large fluctuation, it is
more accurately expressed by the minimum value of
the effective duration (τe)min of the running ACF of the
source signals [10.39]. For individual singers, Noson
et al. [10.73,74] reported that the most preferred condi-
tion of the single reflection for an individual singer may
be described by (τe)min and a modified amplitude of
reflection according to the overestimate and bone con-
duction effects (for control of (τe)min see [10.41, 42]).

Preferred Delay Time of the Single Reflection
for Cellists

As a good example, the preferred delay time of the
single reflection for individual cello soloist is de-
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Table 10.5 Judged and calculated preferred delay times of a single reflection for each cello soloist. Calculated values of
[Δt1]p are obtained by (10.15) using the amplitude of the reflection A′1 and (τe)min for music signals performed by each
cellist

Judged [Δt1]p (ms) Calculated [Δt1]p (ms)

A (dB) A′ (dB) (= A+10) A′ Cellist Motif I Motif II Motif I Motif II

−15 −5 0.56 A 16.2 47.9 16.3 38.5

B <12.0 73.8 35.2 62.7

C <12.0 60.8 211.3 51.3

D 22.6 38.2 35.1 53.9

E 17.6 63.6 17.3 35.2

Global 18.0 48.3 24.3 47.5

−21 −11 0.28 A 18.1 48.4 21.8 51.5

B 61.2 105.0 59.3 105.6

C – 77.9 – 80.6

D 74.6 86.8 56.9 87.4

E <14.0 42.2 24.8 50.2

Global 30.4 71.8 37.6 73.4

scribed by the minimum value of the effective duration
of the running ACF of the music motifs played by
that cellist [10.75]. The same music motifs (mo-
tifs I and II) used in the experiment by Nakayama
were applied here [10.61]. The tempo of motif I was
faster than that of motif II, as shown in Fig. 10.37.
A microphone in front of the cellist picked up the
music signals performed three times by each of five
cellists.

Figure 10.38 shows an example of the regression
curve for the scale value of preference fitted by (10.9).
The peak of this curve denotes the most preferred delay
time [Δt1]p. The values for individual cellists are listed
in Table 10.5. Global and individual results (except for
that of subject E) for music motif II were longer than
those for music motif I.

The most preferred delay time of a single reflec-
tion is approximately expressed by the duration τ ′p
of the ACF as similar to that of listeners (10.4), so
that

[Δt1]p = τ ′p ≈
[
log10(1/k′)− c′ log10 A′

]
(τe)min ,

(10.15)

where the values k′ and c′ are constants that depend on
the individual performer and musical instrument used.
A substantial difference from (10.4) of listeners is that
the amplitude of the reflection A′ is defined by A′ = 1
relative to −10 dB of the direct sound as measured at
the ear’s entrance. This is due to the phenomenon of
missing reflection (i. e., a performer overestimating the
reflection) [10.1].

Individual Subjective Preference
Using the quasi-Newton method, the resulting constants
on average were k′ ≈ 1/2 and c′ ≈ 1 for the five cellists.
(It is worth noting that the coefficients k′ and c′ for alto-
recorder soloists were 2/3 and 1/4, respectively [10.1].)
After setting k′ = 1/2, the coefficient c′ for each in-
dividual was figured out as listed in Table 10.6. The
average value of the coefficient c′ for the five cellists
obtained was 1.03. The relationship between the most
preferred delay time [Δt1]p obtained by the judgment

 ����	
����	;;

I*#
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Fig. 10.37 Music motifs I and II composed by Tsuneko Okamoto
for the investigation (after [10.61])
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Fig. 10.38 An example of the regression curve for the
preferred delay time (subject D, music motif I, −15 dB),
log10[Δt1]p ≈ 1.35, thus [Δt1]p ≈ 22.6 ms
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Fig. 10.39 The relationship between the most preferred de-
lay time [Δt1]p measured and the duration [Δt1]p = τ ′p
calculated using (10.15). Correlation coefficient, r = 0.91
(p< 0.01). : music motif I, −15 dB; : music motif I,
−21 dB; : music motif II, −15 dB; : music motif II,
−21 dB

and the duration τ ′p (= [Δt1]p) of the ACF calculated
by (10.15) is shown in Fig. 10.40. Different symbols in-
dicate values obtained in different test series with two
music motifs. The correlation coefficient between cal-
culated values of [Δt1]p and measured values is 0.91
(p< 0.01). The scale values of preference for each of
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Fig. 10.40 Scale values of preference for each of five cel-
lists as a function of the delay time of the single reflection
normalized by its most preferred delay time calculated
by (10.15). : music motif I, −15 dB; : music motif I,
−21 dB; : music motif II, −15 dB; : music motif II,
−21 dB. The regression curve is expressed by (10.9),
i = 2

Table 10.6 The coefficient c′ for each cellist in (10.15),
calculating the preferred delay time of reflection for indi-
vidual results and the global result, with k′ = 1/2 (fixed)

Cellist Averaged

A B C D E (global)

Coefficient c′ 0.47 1.61 1.10 1.30 0.67 ≈ 1.03

the five cellists as a function of the delay time of the
single reflection normalized by the calculated [Δt1]p are
shown in Fig. 10.40.

Subjective Responses
as a Function of [Δt1]p/(τe)min

Figure 10.41 shows the relative amplitude of the single
reflection to that of the direct sound for the prefer-
ence of cello soloists as a function of the delay time
of the single reflection normalized by the minimum
value of the effective duration (τe)min of the running
ACF of the source signal. Several other subjective
responses in terms of the amplitude are shown to-
gether as a function of the delay time of the single
reflection normalized by the value of the effective du-
ration τe of the long-time ACF. All these values can
generally be expressed by (10.4) in relation to the ef-
fective duration of the ACF with the constants k and
c, which depend on different subjective responses. An
alto-recorder soloist’s preference is also plotted in this
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Fig. 10.41 Relative amplitude of the single reflection for
the subjective preference of cello soloists as a function
of the delay time of a single reflection normalized by the
value of (τe)min. Also, the amplitudes of several subjective
responses as a function of the delay time of the single re-
flection normalized by the value of τe of the source signal.
Note that threshold has been rearranged using the typical
ACF of the speech signal (after [10.1])

figure [10.1]. The values for performers are below or
close to the threshold of perception of listeners [10.76].
These reconfirm the phenomenon of missing reflection
for performers.

In order to blend the source music under perfor-
mance and the sound field in a given concert hall,
a performer, to some extent, can control the value of
(τe)min by introducing vibrato. Such an introduction
of vibrato may decease the value of (τe)min to obtain
a more preferred condition for listeners as well, even
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though there is a short reverberation time in a given
concert hall [10.41, 42].

10.4 Acoustical Measurements of the Sound Fields in Rooms

Acoustical measurements were made in an existing
hall for the purpose of testing acoustic factors that
were calculated using the architectural scheme at the
design stage. Also, subjective preference judgments
for different source locations on the stage were per-
formed by the paired-comparison test at each set of
seats. The relationship between the resulting scale val-
ues of subjective preference and the physical factors
obtained by simulation using architectural plan draw-
ings was examined by factor analysis. The accumulation
and understanding of the field data, in turn, may im-
prove details of future methods for calculating acoustic
factors.

10.4.1 Acoustic Test Techniques

Binaural Impulse Response
A diagnostic system for measuring the impulse response
at the two ear entrances determining the four orthogo-
nal factors, and for further evaluation of the subjective
attributes of sound field at each seat in a hall is shown in
Fig. 10.42. A test signal is radiated from the loudspeaker
to measure impulse responses using two small micro-
phones placed at the ear entrances of a real head (1.1 m
above the floor). Then spatial factors associated with the
right-hemisphere specialization (LL and IACC) and the
temporal factors of left-hemisphere specialization (Δt1

and Tsub) are analyzed. When the effective duration of
the ACF of the source signal (τe) is calculated, the total
scale value may be obtained by adding the scale values
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Fig. 10.42 A system for measuring the four orthogonal factors of
sound fields and evaluating subjective qualities at each seat in
a room. TS: test signal (maximum-length sequence signal); IPR:
impulse response analyzer; RH: right-hemispheric factors (listening
level and the IACC); LH: left-hemispheric factors (Δt1, Tsub, and
the A value); CP: comparators with the most preferred condition
based on the effective duration of ACF, (τe)min; ACF: autocor-
relation function; SIG: source signals; gr(x): scale values from
the right-hemispheric factors; gl(x): scale values from the left-
hemispheric factors; Σ: total scale value of subjective preference
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a)

b)

Fig. 10.43a,b Examples of the impulse response measured at seats:
(a) (near to the stage) and (b) (far from the stage) in the Kirishima
International Concert Hall. The amplitude of the impulse response
measured at seat a is attenuated because of a strong direct sound

#

����	1
��$��	���

�	���
#B, " "B, ) )B,

����	�
����	���

"#�5

of the orthogonal factors referred to the most preferred
conditions. The value of (τe)min is used to determine the
most preferred temporal values for [Δt1]p and [Tsub]p
(Sect. 10.1.2). If the source signal is fed into the ACF
processor, then outputs (numbered 1–4) may be used to
control the sound field simultaneously with an electro-
acoustic system, without any manual adjustment, pre-
serving the preferred conditions of the four factors.

Examples of measuring binaural impulse responses
at a seat close to the stage (seat a, left ear) and at
a rear seat b (right ear) in the Kirishima International
Concert Hall are demonstrated in Fig. 10.43. In this
measurement, an omnidirectional dodecahedron loud-
speaker with 12 full-range drivers was placed on the
stage 1.5 m above the floor for a sound source. The to-
tal amplitude of reflections A at a seat close to the stage
is usually smaller than that at seat far from the stage.

Another powerful signal to be radiated from the
loudspeaker to measure the impulse binaural responses
is the pulse signal generated by inverse Fourier transfor-
mation [10.77].

Reverberation Time
After the impulse response is obtained, the reverbera-
tion time is measured by Schroeder’s method [10.78,
79]. The integrated decay curve as a function of time
may be obtained by squaring and integrating the im-
pulse response of the sound field in a room, such that

〈s2(t)〉 = K

t∫

t+T

h2(x)dx (10.16)

where the time T should be chosen sufficiently longer
than the reverberation time.

For the 500 Hz octave band, examples of the meas-
ured decay curve and the decay rate of both left and
right ears at seating position a are shown in Fig. 10.47.
The reverberation times measured are both 2.07 s. The
measured reverberation times with octave band filters in
the Kirishima International Concert Hall (without au-
dience) are plotted as filled circles in Fig. 10.45. The
empty circles are estimated values of the reverberation
time for a full audience. It is worth noticing that Jor-
dan [10.80] showed that the values of the early decay
time (EDT) measured over the first 10 dB of decay are
close to values of the reverberation time averaged with
the interval of −5 to −35 dB.

Fig. 10.44 Integrated decay curves obtained from the im-
pulse responses at the two ear entrances, at seat a in the
Kirishima International Concert Hall �
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The total amplitude of reflection A, defined by
(10.5), is obtained as its square

A2 =
∫ ε
∞ h2(x)dx
∫ 0
ε

h2(x)dx
, (10.17)
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Fig. 10.46a–d Orthogonal factors measured at each seat in the Kirishima International Concert Hall, other than the re-
verberation time, which is almost constant throughout the hall: (a) listening level; (b) Δt1; (c) A value, the total amplitude
of reflections; (d) IACC

Fig. 10.45 Reverberation time measured in the Kirishima
International Concert Hall. : Measured values without
audience; : estimated with full audience �

where ε signifies a small delay time just large enough to
cover the duration of the direct sound.

Measurement of Acoustic Factors at Each Seat
in a Concert Hall

In Sect. 10.3.1 we discussed the seat selection system,
designed for the purpose of enhancing individual satis-
faction. To begin with, four orthogonal factors are meas-
ured at each seat in a concert hall [10.66,67]. Measured
values of the listening level (LL), the total amplitude of
reflection (A), the initial time delay gap (Δt1) between
the direct sound and the first reflection excluding the
reflection from the floor, and the IACC at each seat in
the Kirishima International Concert Hall are shown in
Fig. 10.46. The reverberation times at all the seats had
almost the same value, about 2.05 s for the 500 Hz band.
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Fig. 10.47 Measured IACC as a function of the integration interval
2T of the impulse responses for each octave band range. The value
of IACC converged for 2T> 200 ms (after [10.81])

Even though the final scheme of the concert hall
was changed in terms of the width of the hall (one
meter wider) from the scheme at the design stage,
values of each physical factor measured as shown in
Fig. 10.46 are not very different from the values calcu-
lated (Fig. 10.22).

Recommended Method for IACC Measurement
There are two purposes for measuring IACC, as needed
for subjective evaluations and acoustic comparison of
existing halls:
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Fig. 10.48 Measured IACC and τIACC as a function of
head direction relative to the sound source in a narrow hotel
atrium (after [10.82])

1. In order to evaluate the subjective quality of the
sound field in an existing hall, the IACF (with val-
ues of IACC, τIACC and WIACC defined in Fig. 10.4
as well as LL) together with the other three factors
Δt1, Tsub and A are measured. Without any octave
band filtering, measurements must be performed af-
ter passage of the music or the speech signal through
an A-weighting network, under identical conditions
with subjective judgment.

2. In order to compare values of the IACC as well
as Tsub for the sound field in existing halls, mea-
surements with octave band filtering are performed.
With a fixed sound source on the stage, the IACC
is defined by a long integration interval, which
includes the effects of the direct sound and all reflec-
tions, including reverberation, without any temporal
subdivisions.

A typical example of measuring the IACC as a func-
tion of the integration interval, which was performed in
Symphony Hall, Boston, is shown in Fig. 10.47 [10.81].
It is remarkable that the measured values of IACC al-
most converged for 2T ≈ 200 ms, and the values are not
so different for longer intervals.

If a room is used for performing dance, ice-skating
or a party, then the listeners face in various directions.
In this case, the values of IACC and τIACC are measured
as a function of the direction of the head. The meas-
ured results with the 500 Hz octave band noise in an
oblong atrium of a hotel at the distance 10 m from the
source position are demonstrated in Fig. 10.48 [10.82].
When the listener is facing the sound source, then
IACC = 0.41, and τIACC = 0, and thus no image shift
occurs. These values are nearly unchanged for head di-
rectional angles less than 30◦ when the listener is facing
the lateral side at 90◦, then the IACC is greater than
0.50, and τIACC is about 600 μs, due to the interaural
delay time.

10.4.2 Subjective Preference Test
in an Existing Hall

The subjective preference judgments for different
source locations on the stage at Uhara Hall, Kobe, were
performed by a paired-comparison test at each set of
seats. The relationship between the resulting scale value
of subjective preference and the physical factors ob-
tained by calculation, using architectural plan drawings,
was examined by factor analysis [10.15]. Calculated
scale values of subjective preference were reconfirmed
for the Uhara Hall (Fig. 10.49). The physical factors at

Part
C

1
0
.4



Concert Hall Acoustics Based on Subjective Preference Theory 10.4 Acoustical Measurements of the Sound Fields in Rooms 397

a) b)

c)

Fig. 10.49 (a) Plan; (b) and (c) cross sections of the Uhara Hall, Kobe. Four source positions, 1, 2, 3 and 4 on the stage, which
were switched in the paired-comparison test of subjective preference without moving subjects from seat to seat. There were 21
listening positions including neighboring seats

each set of seats for four source locations on the stage
were calculated. In the simulation, the directional char-
acteristics of the four loudspeakers used in preference
tests were not taken into consideration for the sake of
convenience. The simulation calculation was performed
up to the third order of reflection. Due to a floor struc-
ture with a fair amount of acoustic transparency, the
floor reflection was not taken into account for the cal-
culation, and part of the diffuser ceiling was regarded
as a nonreflective plane for the sake of convenience. In
the calculation of the IACC, the listeners faced toward
the center of the stage, so that the IACC was not always
a maximum at the interaural time delay τ = 0.

The hall contains 650 seats with a volume of
4870 m3. Four identical loudspeakers with the same
characteristics were placed 0.8 m above the stage floor,
and sixty-four listeners, divided into 21 groups, were

seated in the specified set of seats. Without moving
from seat to seat and excluding the effects of other
physical factors such as visual and tactual senses on
judgments, subjective preference tests by the paired-
comparison method were conducted, switching only the
loudspeakers on the stage. As a source signal, mu-
sic motif B was selected in the tests. Scale values
of preference were obtained by applying the law of
comparative judgment and were reconfirmed by the
goodness of the fit [10.83, 84]. The session was re-
peated five times, exchanging seats, and thus data for
14–16 subjects in total were obtained for each set of
seats.

Results of Multiple-Dimensional Analyses
In order to examine the relationship between scale
values of subjective preference and physical factors ob-
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Fig. 10.50a–d Scores for each category of four physical factors obtained by the factor analyses. The number indicated at
the upper left part of each figure signifies the partial correlation coefficient between the score and each factor. (a) Listening
level; (b) normalized initial time delay gap between the direct sound and the first reflection; (c) IACC; (d) interaural time
delay of the IACC, τIACC, found as the most significant factor in this investigation with loudspeaker reproductions on the
stage. Tendencies obtained here are similar to those of the scale value shown in Fig. 10.7, which were obtained from the
simulated sound field

tained by simulation of an architectural scheme, the data
were analyzed by factor analysis [10.78, 79, 85].

Of the four orthogonal factors, the reverberation
time was almost constant for the source location and
the seat location throughout the hall, and thus was not
involved in the analysis. As previously discussed, as
a condition for calculating the scale value of preference,
the maximum value of the interaural cross-correlation
function must be maintained at τIACC = 0 to ensure
frontal localization of the sound source. However, the

IACC was not always maintained at τ = 0 due to the
loudspeaker locations, because the subjects were facing
the center of stage. In this analysis, therefore, the effect
of the interaural time delay of the IACC was added as
an additional factor. Thus, the outside variable to be pre-
dicted with factor analysis was the scale value obtained
by subjective judgments, and the explanatory factors
were: (1) the listening level, (2) the initial time delay
gap, (3) the IACC, and (4) the interaural time delay
(τIACC).

Part
C

1
0
.4



Concert Hall Acoustics Based on Subjective Preference Theory 10.4 Acoustical Measurements of the Sound Fields in Rooms 399

Scores for Each Factor
The scores for each category of the factors obtained
from the factor analysis are shown in Fig. 10.50. As
shown in Fig. 10.50a, the scores for the listening level
indicate a peak at the subcategory of 83–85.9 dB, with
decreasing scores moving away from the preferred
listening level. For the IACC, the preference score in-
creases with a decrease in the IACC (Fig. 10.50c). It
is worth noting that the scores for the aforementioned
two factors are in good agreement with preference
scale values obtained from preference judgments for
a simulated sound field (Fig. 10.7a and 10.7d). The
scores of the initial time delay gap normalized to the
optimum value (Δt1/[Δt1]p) peaked at smaller val-
ues (Fig. 10.50b) than the most preferred value of the
initial time delay gap obtained from the simulated
sound fields (Fig. 10.7b). It is considered that, due to
the limited range of the Δt1 in the existing concert
hall and the limited data for the short range of the
Δt1, the effects of the Δt1 of the sound fields was
rather minor in this investigation. Concerning τIACC,
as shown in Fig. 10.50d, the score decreases monoton-
ically as the delay is increased. This may be caused
by an image shift without balancing of the sound
field.

Measured and Calculated Subjective Preference
Values

The relationship between the scale value obtained by
subjective judgments and the total score at each cen-
ter of three or four seats is shown in Fig. 10.51. The
scale values of preference are well predicted with the
total score for four loudspeaker locations (r = 0.70,
p < 0.01). In some cases there is a certain degree of
apparent coherence between physical factors, for ex-
ample, the calculated listening level and the IACC for
sound fields in existing concert halls. However, these
factors are theoretically orthogonal, and therefore the
preference scores obtained were in good agreement with
the calculated preference scale values obtained by the
simulation.

So far the subjective preference of source locations
on the stage has been examined at each set of seats. The
rear source position (#4) on the stage is more preferred
than that of the other source locations. The side source
position (#3) indicates a low preference, due to the in-
teraural time delay. The initial time delay gap resulted in
a small influence on the total score because of its limited
range.
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Fig. 10.51 Relationship between the scale value of subjec-
tive preference obtained by the paired-comparison test in
the existing hall and the total score calculated by using the
scores shown in Fig. 10.50. The correlation coefficient was
r = 0.70 (p< 0.01)

10.4.3 Conclusions

Results of the analysis demonstrate that the theory of
calculating subjective preference by the use of orthog-
onal parameters obtained in the laboratory is supported
by experiments in a real hall. This may hold only when
the maximum value of the interaural cross-correlation
is maintained at τ = 0. However, this condition is usu-
ally realized by introducing certain diffusing elements
on the sidewalls in a real concert hall when the listeners
face a performer.

Cerebral hemisphere specialization in the human
brain may play an important role for the independent
effects of temporal and spatial factors on preference as
discussed in Sect. 10.1.5. The scale values of subjec-
tive preference of both the sound field and the visual
field have been described by both temporal and spa-
tial factors [10.86]. Accordingly, a generalized theory
of environmental planning incorporating the temporal
and spatial values for the left and right cerebral hemi-
spheres, respectively, has been proposed by blending
the built environment and nature [10.87]. In particular,
examples of temporal design associated with the left
hemisphere are opened for discussed introducing the
third stage of human life [10.88].
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Building Acou11. Building Acoustics

James Cowan

This chapter summarizes and explains key concepts
of building acoustics. These issues include the
behavior of sound waves in rooms, the most
commonly used rating systems for sound and
sound control in buildings, the most common
noise sources found in buildings, practical noise
control methods for these sources, and the specific
topic of office acoustics. Common noise issues for
multi-dwelling units can be derived from most
of the sections of this chapter. Books can be and
have been written on each of these topics, so
the purpose of this chapter is to summarize this
information and provide appropriate resources for
further exploration of each topic.

11.1 Room Acoustics .................................... 403
11.1.1 Room Modes................................ 404
11.1.2 Sound Fields in Rooms .................. 406
11.1.3 Sound Absorption......................... 406
11.1.4 Reverberation .............................. 410
11.1.5 Effects of Room Shapes ................. 411
11.1.6 Sound Insulation ......................... 411

11.2 General Noise Reduction Methods .......... 416
11.2.1 Space Planning ............................ 416
11.2.2 Enclosures ................................... 417
11.2.3 Barriers ....................................... 418
11.2.4 Mufflers ...................................... 418

11.2.5 Absorptive Treatment ................... 418
11.2.6 Direct Impact and Vibration

Isolation ..................................... 418
11.2.7 Active Noise Control ...................... 418
11.2.8 Masking ...................................... 419

11.3 Noise Ratings
for Steady Background Sound Levels ...... 419

11.4 Noise Sources in Buildings ..................... 421
11.4.1 HVAC Systems ............................... 421
11.4.2 Plumbing Systems ........................ 421
11.4.3 Electrical Systems ......................... 421
11.4.4 Exterior Sources ........................... 421

11.5 Noise Control Methods
for Building Systems ............................. 422
11.5.1 Walls, Floor/Ceilings, Window

and Door Assemblies .................... 423
11.5.2 HVAC Systems ............................... 428
11.5.3 Plumbing Systems ........................ 432
11.5.4 Electrical Systems ......................... 433
11.5.5 Exterior Sources ........................... 434

11.6 Acoustical Privacy in Buildings ............... 435
11.6.1 Office Acoustics Concerns ............... 435
11.6.2 Metrics for Speech Privacy ............. 435
11.6.3 Fully Enclosed Offices .................... 438
11.6.4 Open-Plan Offices ........................ 438
11.6.5 LEED Participation ........................ 440

11.7 Relevant Standards............................... 441
References .................................................. 441

11.1 Room Acoustics

When a sound wave in a room encounters a boundary
surface, some of its energy is reflected back into the
room, as illustrated in Fig. 11.1. The physical laws re-
garding reflected sound energy are analogous to those
for the laws of optics. Just as light bounces off a mir-
ror at the same angle as its angle of incidence, sound
waves have equal angles of incidence and reflection.
Acoustically reflective surfaces are typically smooth
and hard.

Some common room acoustics problems caused by
reflection are echoes and room resonance. Echoes re-
sult from the limitations of our hearing mechanisms to
process sounds. When the difference in arrival times
between two sounds is less than 60 ms, we hear the
combination of the two sounds as a single sound. How-
ever, when this difference exceeds 60 ms, we hear the
two distinct sounds (Fig. 11.2). When these two sounds
are generated by the same source, this effect (which
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Angle of
reflection

Angle of
incidence

Solid, smooth
surface

Fig. 11.1 Reflection of a sound wave off a hard, smooth
surface

is called an echo) can cause difficulty in understand-
ing speech, especially when arrival times differ by more
than 100 ms. These kinds of delays occur when a person
hears a sound wave coming directly from a source and

If R–D>30m,
an echo would be heard

Reflected path (R2)

Listener

Source

Direct
path (D)

Reflected path (R1)

Fig. 11.2 Generation of an echo

another coming from a reflecting surface. Given that the
speed of sound in air is roughly 300 m per second, the
100 ms delay translates to a distance of roughly 30 m.
Therefore, a difference in sound travel path of more
than 30 m between a sound wave traveling directly from
a source to a listener and a sound wave traveling from
a source to a reflecting surface and then to a listener
causes an echo.

When parallel reflective surfaces are tall and more
than 10 m from each other, a rapid succession of mid-
frequency echoes can occur, known as flutter echo,
resulting in a flapping sound similar to that generated
by birds or bats. When these surfaces are fairly close
to each other, as in a narrow hallway or stairwell, flut-
ter echo sounds more like a high-pitched buzzing since
the smaller spacing accommodates higher frequencies
(shorter wavelengths).

Echoes are normally perceived as discrete reflec-
tions that can be clearly heard and identified, but many
reflections off all surfaces within a room can combine to
produce the phenomenon known as reverberation. Re-
verberation can raise the sound level in a room and can
also reduce speech intelligibility, but it is desirable for
certain types of music. More discussion on reverbera-
tion and its control can be found later in this chapter.

11.1.1 Room Modes

Room modes occur at specific frequencies when
two reflective walls are parallel to each other. Since
the surfaces reflect the sound, their mirror images

A
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re
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ur

e

0

Reflective walls

Original
wave

Reflected
wave

+

–

Fig. 11.3 Generation of a standing wave between parallel,
reflective surfaces
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Fig. 11.4 Pressure patterns of the lowest axial standing
wave modes in a room with parallel reflective surfaces

reflect off each wall to set up a stationary pres-
sure pattern in a room. This phenomenon is called
a single-dimensional (or axial) standing wave, as shown
in Fig. 11.3, and it is the simplest form of room modes.

Axial standing waves occur at frequencies described
by the equation below:

fn = nc/2d , (11.1)

where n = 1, 2, 3, . . . , c is the speed of sound, and d is
the distance between the parallel reflective surfaces. This
means that axial standing wave room modes occur at in-
teger multiples of specific 1/2-wavelengths of sound, as
is shown in Fig. 11.4. Standing waves can become more
complex in two and three dimensions, where they are
known as tangential and oblique modes, respectively.

A design problem with standing waves is that they
generate uneven sound distribution patterns. Some ar-
eas will have higher levels of sound (because a standing
wave is reinforcing the pressure at those locations) and
some areas will have lower levels of sound (because the
standing wave is canceling much of the pressure at those
locations), but only at specific frequencies.

The topic of building acoustics stresses the im-
portance of controlling sound. When one talks about
controlling sound, it is often assumed that one is refer-
ring to the reduction of sound. However, there are cases
(e.g., auditorium or concert hall design) in which we
want to preserve the sound energy but we would like
to control its spatial spreading characteristics. The pri-
mary ways to reduce sound are through absorption and
insulation. Using absorption on an auditorium’s side
walls may eliminate unwanted reflections but may also
eliminate the possibility of some people hearing sound
coming from the stage. We therefore must clarify how
we plan to control the sound. Redirection and diffu-
sion can have favorable acoustic results for even sound
distribution in large rooms.

Discussions about noise control usually refer to the
reduction of sound (since noise is defined as unwanted
sound). Figure 11.5 shows what happens to a sound
wave that interacts with a room’s surface. Part is ab-
sorbed, part is redirected, and the rest is transmitted
through the surface.

Reflected
sound
wave

Incident
sound wave

Partition

Transmitted
sound wave

Absorbed
sound wave

Fig. 11.5 The interaction of a sound wave with a partition
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11.1.2 Sound Fields in Rooms

Several different fields, or acoustic environments, ex-
ist in all rooms. The size of these fields depends on
the dimensions of the room, the reflective qualities of
the room’s surfaces, and the frequency of interest. The
near field is the region within 1/4-wavelength (of the
lowest frequency of interest) of a sound source or large
reflective surface. Sound pressure levels can fluctuate
dramatically in the near field of a source and sound pres-
sures cancel and enhance each other near large reflective
surfaces, so sound pressure level measurements should
be avoided in near fields.

The far field is the region beyond the near field. It is
contrasted with the near field to designate the region that
is appropriate for recording sound pressure level mea-
surements from a sound source. As one moves out of
the near field and into the far field, sound pressure lev-
els drop off at a rate of 6 dB per doubling of distance,
for a point source, in accordance with the inverse square
law that is simplified in the following equation:

SPL2 = SPL1−[20 × log(d2/d1)] , (11.2)

where SPL1 is the sound pressure level at the location
closer to the sound source, SPL2 is the sound pressure
level at the location farther from the sound source, d1 is
the distance from the source at which SPL1 is measured,
and d2 is the distance from the source at which SPL2 is
measured.

The region in which (11.2) is valid is known as
the free field. Free-field conditions exist in large open
outdoor spaces or in rooms having highly absorptive
surfaces, in which there are no obstructions in the sound
travel path between the source and listener. The free

SPL (dB)

Distance

Free
field

Reverberant
(diffuse) field

–6dB/
doubling

of distance

Far fieldNear field

Fig. 11.6 Sound fields in rooms

field is sometimes referred to as the direct field when
source measurements are taking place that only consider
the sound wave traveling from the source to the listener
with no influence by reflected sound coming from room
surfaces.

As sound pressure levels decay from sources within
a room, they eventually drop to a relatively constant
level which is determined by the amount of reflected
sound within a room. This lower limit is known as the
reverberant or diffuse field. The size of the reverberant
field depends on the size of the room and the size and
characteristics of its reflective surfaces. Within the re-
verberant field, sound pressures are similar independent
of location. Figure 11.6 puts all of the fields described
above into perspective.

11.1.3 Sound Absorption

Absorption converts sound energy into heat energy. It
is useful for reducing sound levels within rooms but not
between rooms. Each material with which a sound wave
interacts absorbs some sound. The most common mea-
surement of that is the absorption coefficient, typically
denoted by the Greek letter α. The absorption coeffi-
cient is a ratio of absorbed to incident sound energy. If
a material does not absorb any sound incident upon it,
its absorption coefficient is 0. In other words, a mater-
ial with an absorption coefficient of 0 reflects all sound
incident upon it. In practice, all materials absorb some
sound, so this is a theoretical limit. If a material absorbs
all sound incident upon it, its absorption coefficient is
1. As with the lower limit for absorption coefficients,
all materials reflect some sound, so this is also a the-
oretical limit. Therefore, absorption coefficients range
between 0 and 1.

Absorption coefficients vary with frequency. Typ-
ical absorptive materials are porous and characterized
by absorption coefficients that increase with frequency.
They therefore have limited effectiveness for lower fre-
quencies, especially below 250 Hz. There are absorbers
that have been designed to absorb these lower frequen-
cies, and these will be discussed shortly. However, for
typical cases, it is convenient to use a single number (in-
corporating multiple frequency components) to describe
the absorption characteristics of a material. This value
has been defined by the American Society for Testing
and Materials (ASTM) in Standard C 423 as the noise
reduction coefficient (NRC). The NRC is the arithmetic
(as opposed to the logarithmic) average of a material’s
absorption coefficients at 250, 500, 1000, and 2000 Hz,
rounded to the closest 0.05.
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Table 11.1 Absorption coefficients and NRC values for common materials

Material 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz NRC

Painted drywall 0.10 0.08 0.05 0.03 0.03 0.03 0.05

Plaster 0.02 0.03 0.04 0.05 0.04 0.03 0.05

Smooth concrete 0.10 0.05 0.06 0.07 0.09 0.08 0.05

Coarse concrete 0.36 0.44 0.31 0.29 0.39 0.25 0.35

Smooth brick 0.03 0.03 0.03 0.04 0.05 0.07 0.05

Glass 0.05 0.03 0.02 0.02 0.03 0.02 0.05

Plywood 0.58 0.22 0.07 0.04 0.03 0.07 0.10

Metal blinds 0.06 0.05 0.07 0.15 0.13 0.17 0.10

Thick panel 0.25 0.47 0.71 0.79 0.81 0.78 0.70

Light drapery 0.03 0.04 0.11 0.17 0.24 0.35 0.15

Heavy drapery 0.14 0.35 0.55 0.72 0.70 0.65 0.60

Helmholtz resonator 0.20 0.95 0.85 0.49 0.53 0.50 0.70

Ceramic tile 0.01 0.01 0.01 0.01 0.02 0.02 0.00

Linoleum 0.02 0.03 0.03 0.03 0.03 0.02 0.05

Carpet 0.05 0.05 0.10 0.20 0.30 0.40 0.15

Carpet on concrete 0.05 0.10 0.15 0.30 0.50 0.55 0.25

Carpet on rubber 0.05 0.15 0.13 0.40 0.50 0.60 0.30

Upholstered seats 0.19 0.37 0.56 0.67 0.61 0.59 0.55

Occupied seats 0.39 0.57 0.80 0.94 0.92 0.87 0.80

Water surface 0.01 0.01 0.01 0.01 0.02 0.03 0.00

Soil 0.15 0.25 0.40 0.55 0.60 0.60 0.45

Grass 0.11 0.26 0.60 0.69 0.92 0.99 0.60

Cellulose spray (1′′) 0.08 0.29 0.75 0.98 0.93 0.76 0.75

Table 11.1 lists absorption coefficients and NRC
values for common materials. Note that the values listed
in Table 11.1 are for general reference purposes only,
and specific values should be based on manufactur-
ers specifications. Also note that absorption coefficients
and NRC values have no units associated with them. In
general, materials with NRC values less than 0.20 are
considered to be reflective while those with NRC values
greater than 0.40 are considered to be absorptive. When
significant sound energy must be absorbed, as may be
the case for eliminating echoes or standing waves, ma-
terials having higher absorption coefficients are usually
recommended.

A few cautionary notes apply. NRC values are con-
venient to use for rating the absorption characteristics of
a material. However, they should only be used when the
sound sources of interest are within the 200–2000 Hz
range. For sources outside of this range, and especially
below this range, materials effective for the specific fre-
quency of interest must be used. Also note that some
manufacturers specify NRC and absorption coefficient
values that are greater than 1.0. Methods used to mea-
sure absorption coefficients can artificially raise their
values above 1.0; yet such values inaccurately imply that

more energy is absorbed by a material than is incident
upon it, which is a physical impossibility. Therefore, any
published absorption coefficient or NRC values greater
than 1.0 should be not be considered as greater than 1.0.

Another absorption metric gaining increasing appli-
cation is the sound absorption average (SAA). The SAA
is a single number rating that is the average, rounded off

Absorption coefficient α

Octave band center frequency (Hz)
125

0
250 500 1k 2k 4k

0.2

0.4

0.6

0.8

1.0

Typical absorptive material
against reflective surface

Same material with airspace
behind

Fig. 11.7 The general effect of an air space between absorp-
tive material and its mounting surface
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Absorption coefficient α
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1.0

No facing

With facing

Fig. 11.8 The general effect of non-acoustically transpar-
ent facings on absorption

to the nearest 0.01, of the sound absorption coefficients
of a material for the twelve one-third octave bands from
200 through 2500 Hz. Although the SAA replaces the
NRC rating, as directed by the ASTM C 423 since the
year 2000, most product literature still uses NRC values.

The method by which these materials are mounted
affects their sound absorption effectiveness, especially
for low frequencies (below 500 Hz). Figure 11.7 shows
the effect of air spaces between an absorptive material
and a mounting surface.

Facings on absorptive materials can degrade their
absorptive properties, especially for higher frequencies
(above 2000 Hz). Acoustically transparent facings, such
as grill cloth and open-weave fabrics, will have lit-
tle effect on absorption properties, but facing materials
that are not acoustically transparent, such as perforated
metal and wood slats, can produce the kind of effects
shown in Fig. 11.8.

SlotSlat thickness
Slot thickness

(at least 1.27cm)

maximal 8cm

Wood slat
Acoustically transparent
fabric

Glass fiber insulation

Fig. 11.9 General design guidelines for absorptive wood-slat ceilings

Of critical importance with these facings is the open
area ratio. Since there are so many perforated metal de-
signs, it is best to check with the manufacturer for the
most appropriate opening ratio and design for the situ-
ation. Figure 11.9, however, offers some guidelines for
wood-slat ceiling designs.

As Table 11.1 shows, the absorption coefficients
of most porous materials increase with increasing fre-
quency. This means that they are not as effective at
low frequencies as at higher ones. If absorption is re-
quired for frequencies below 250 Hz, special materials
must be used. Each of these materials has an air space
behind its light or open surface to provide the extra ab-
sorption. Two common materials used for this purpose
are Helmholtz resonators and diaphragmatic absorbers.
Helmholtz resonators have narrow openings that lead to
the outside on one end and into a larger air cavity on the
other, as is shown in Fig. 11.10.

As viewed by an incoming sound wave, the air in
the narrow neck functions as a mass and the air in the
larger cavity functions as a spring. A mass on a spring
will resonate at a frequency appropriate to that mass
and spring stiffness. Thus, at and near the resonant fre-
quency of such an acoustic chamber, sound will be
absorbed from an incoming sound wave, as is shown
in Fig. 11.11.

Such devices incorporated in wall constructions are
usually resonant below 250 Hz, depending on the di-
mensions of the neck and size of the cavity. There are
commercially available products that incorporate this
design into concrete masonry units. When viewing these
products installed as partitions, the wall surfaces have
slots in them, as are shown in Fig. 11.12. Table 11.1
has a listing for these products which shows their su-
perior absorption in a narrow low-frequency range. The
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Absorptive
material

Fig. 11.10 Cross section of a Helmholtz resonator concrete
masonry unit. The absorptive material helps to spread the
absorptive properties over a larger frequency range than
would otherwise occur

porous and coarse nature of the surface provides modest
absorption at higher frequencies also.

Diaphragmatic absorbers work according to simi-
lar principles to Helmholtz resonators, except they are
comprised of an air space behind a lightweight wall, as
shown in Fig. 11.13.

Reverberant Field Noise Reduction
Adding absorptive materials to a room’s surfaces, in ad-
dition to reducing or eliminating echoes and standing
waves, can reduce the overall reverberant field noise
level within a room. The mathematical basis for this
is to determine the total absorption for all of a room’s
surfaces using the following equation:

A =
n∑

i=1

αi Si = α1S1+α2S2+ . . .+αn Sn , (11.3)

where α1, α2, etc., are the absorption coefficients of
each surface material in the room while S1, S2, etc. are
the surface areas corresponding to the surfaces having
the same subscript value as those for the absorption co-
efficients. The total absorption (A) is in units of sabins,
for which one sabin is defined as the total absorption
provided by a one square foot piece of material having
an absorption coefficient of 1.

The reverberant field noise reduction (NR) is de-
fined as

NR = 10 × log(A2/A1) , (11.4)

Absorption coefficient α

Frequency f0

1

0

Fig. 11.11 General absorption characteristics of Helmholtz
resonators not filled with absorptive material

Fig. 11.12 Wall built from Helmholtz resonator concrete
masonry units

where A1 is the total absorption within a room be-
fore absorptive treatment is applied and A2 is the
total absorption within that same room after absorp-
tive treatment is applied. The practical limits of NR
are 12–15 dBA with typical cases yielding 6–8 dBA of
noise reduction within a room from the proper use of
absorptive materials. Bear in mind that this will not re-
duce sound pressure levels close to a source but will
only reduce reflected sound pressure levels, which lim-
its the effectiveness of the noise reduction to locations
in a room’s reverberant field.
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Air space

Lightweight panelStructural wall

Fig. 11.13 Cross section of a generalized diaphragmatic ab-
sorber

11.1.4 Reverberation

Absorption is useful in reducing or eliminating un-
wanted reflections off surfaces. The standing waves
discussed in Sect. 11.1.1 can be eliminated by cover-
ing one of the parallel surfaces with absorptive material.
Absorption can also be used to eliminate echoes. The
rear walls of auditoriums are prime candidates for ab-
sorptive materials since rear walls have the greatest
potential to cause echoes. The most common use of
absorption, however, is to control reverberation.

Reverberation is the build up of sound within a room
resulting from repeated sound wave reflections off all
of its surfaces. Reverberation can increase sound levels
within a room by up to 15 dBA, as well as distort speech
intelligibility. Reverberation is desirable for rooms in
which music is being played, especially classical and
cathedral-style music, to add a pleasant persistence to
the sounds. Therefore, there are different reverberation
characteristics that would be appropriate for different
room uses.

Reverberation is described by a parameter known
as the reverberation time (denoted RT60). RT60 can be
defined in two ways – physically and mathematically.
Physically, RT60 is the time (in seconds) that it takes for
a sound source to reduce in sound pressure level (within
a room) by a factor of 60 dB after that sound source
has been silenced. Mathematically, in what is known
as the sabine equation, RT60 is directly proportional to
the volume of a room and inversely proportional to the
absorption of the materials in the room, as follows:

RT60 = 0.161 ·V/A , (11.5)

where V is the room volume in cubic meters and A is the
total absorption of the room’s surfaces in metric sabins.

Table 11.2 Optimum mid-frequency RT60 values for vari-
ous occupied facilities

Type of facility Optimum mid-frequency

RT60 (s)

Broadcast studio 0.5

Classroom 1.0

Lecture/conference room 1.0

Movie/drama theater 1.0

Multipurpose auditorium 1.3 to 1.5

Contemporary church 1.4 to 1.6

Rock concert hall 1.5

Opera house 1.4 to 1.6

Symphony hall 1.8 to 2.0

Cathedral 3.0 or higher

This means that RT60 increases as the size of a room
increases and as the absorption of the room’s surfaces
decreases. Conversely, RT60 decreases as the size of
a room decreases and as the absorption of the room’s
surfaces increases. There are then two principal ways to
control RT60: (1) by changing a room’s size and (2) by
changing the amount of absorption on its surfaces. Al-
though it is possible to reduce a large room’s volume
by dividing the space with walls, it is more practical to
adjust RT60 by adding sound absorptive materials.

Since the absorption performance of materials
varies with frequency, so does RT60. Table 11.2 offers
generally accepted ranges of RT60 for different uses in
the mid-frequency (500–1000 Hz) range. As you can
see from the table, lower RT60 values are desirable
for rooms used mainly for human speech and higher
RT60 values are desirable for rooms used mainly for
music. The optimum mid-frequency RT60 for a fully
occupied room is different for various types of music.
Because contemporary orchestral repertoires emphasize
late classical and romantic music, the optimum mid-
frequency RT60 for a fully occupied concert hall is
usually stated as 1.8–2.0 s.

Optimum RT60 values generally increase by 10% of
the values in Table 11.2 for each halving of frequency
below 500 Hz and decrease by 10% of the values in Ta-
ble 11.2 for each doubling of frequency above 1000 Hz.
A room with a low (less than 0.8 s) RT60 is called a dead
room and a room with a high (greater than 1.7 s) RT60 is
called a live room. Multipurpose facilities should have
RT60 values between the live and dead range limits.

Note that the sabine equation is based on the as-
sumption that the absorptive properties of the surface
materials are spread evenly throughout the room. When
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this is clearly not the case, other (more complex) RT60
calculation methods would be more appropriate.

11.1.5 Effects of Room Shapes

Although absorption is necessary in many circum-
stances, eliminating reflections is not always useful.
This is of key importance in rooms where an audience
is listening to a performance or lecture. In this type of
room, it is desirable that all audience members hear
the sound not only clearly, but without preference to
seating location. Without an electronic sound system,
this can only be accomplished by reflections off side
walls and ceilings. Discrete echoes can be eliminated
by avoiding smooth, flat reflective surfaces and by hav-
ing irregular and convex surfaces to diffuse the sound
evenly throughout the audience. For smaller rooms such
as recording studios that require diffusion, commer-
cially available sound-diffusing panels called quadratic
residue diffusers are available. These panels can also
be used for larger spaces, as well as irregularly shaped
surfaces.

Concave reflective surfaces focus sound in certain
areas and defocus sound from others, causing hot spots
where sound is concentrated and dead spots where sound
cannot be heard. Concave reflective surfaces should be
avoided for this reason. If aesthetics dictate the need for
a concave surface, it would be best to install an absorp-
tive or diffusive surface (as needed) and cover it with
acoustically transparent fabric in the concave shape.

Reflective rear walls in auditoriums are notorious
for generating echoes because of their associated large
sound travel path differences. For this reason, reflective
surfaces should be avoided for rear walls. Reflective sur-
faces are beneficial, especially for concert halls, when
they are close to the stage and along side walls. Reflec-
tive surfaces close to the stage assist in several ways,
by sending sound into the audience rather than allow-
ing it to be lost behind the stage and by enhancing the
sound through lateral reflections off side walls to spread
the sound more evenly throughout an audience. Another
benefit of reflective surfaces near the stage is that they
permit the performers to hear each other, something
that is critical to concert performances. These so-called
early reflections are usually generated by shells on the
stage or by hanging reflective panels.

11.1.6 Sound Insulation

The description of the insulation of sound is similar in
many ways to the description of the absorption of sound.

As with absorption, there is a transmission coefficient
that ranges from the ideal limits of 0 to 1. The trans-
mission coefficient, denoted by the Greek letter τ , is the
unitless ratio of transmitted to incident sound energy.
Unlike the absorption coefficient, however, the limit of
τ = 1 is possible in practice since a transmission co-
efficient of 1 implies that all of the sound energy is
transmitted through a partition. This would be the case
for an open window or door, where the sound energy
has no obstruction to its path. The other extreme of
τ = 0 (implying no sound transmission), however, is not
a practical value since some sound will always transmit
through a partition.

Unlike absorption, the principal descriptor for sound
insulation is a decibel level based on the transmission
coefficient. This value is known as the transmission loss
(TL), and is based on the following equation:

TL = 10 · log(1/τ) . (11.6)

The transmission loss can be loosely defined as the
amount of sound reduced by a partition between a sound
source and a listener. The complete sound reduction of
a partition between two rooms also takes into account
the absorptive characteristics of the listener’s room, as
follows:

SPLS−SPLL = TL+10 · log(AL/S) , (11.7)

where SPLS is the average sound pressure level in the
room enclosing the sound source, SPLL is the aver-
age sound pressure level in the adjacent listener’s room,
AL is the total absorption in the listener’s room, TL is
the transmission loss of the partition between the two
rooms, and S is the surface area of the partition be-
tween the two rooms. Note that TL is the quantity that is
typically reported in manufacturers’ literature since it is
measured in a laboratory independent of the installation.

Since the logarithm of 1 is 0, the condition in which
the transmission coefficient is 1 translates to a TL of
0 dB. This concurs with the notion that an open air space
in a wall allows the free passage of sound. Although
an open air space itself would have a TL value of 0 dB
associated with it, a wall with an open air space in it
would have a TL value greater than 0 (up to 10) dB,
depending on the size of the opening and the location
with respect to the wall. The practical upper limit of TL
is roughly 70 dB.

As for absorption, TL is frequency dependent.
Typical partitions have TL values that increase with in-
creasing frequency, as is shown in Fig. 11.14, with the
exception of a dip in TL around a bending wave reso-
nance frequency, known as the critical frequency. This
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TL

Frequency

Stiffness Resonance Mass law Coincidence

6dB increase per doubling

of mass and frequency

Vibration isolation
Heavy damping
Light damping

fcritical

Fig. 11.14 General characteristics of the transmission loss
spectrum

Table 11.3 Critical frequencies for common building ma-
terials

Material Thickness Critical frequency
(cm) (Hz)

Concrete 8 100

Plywood 1.2 1700

Gypsum wall board 1.2 3100

Steel or aluminum 0.3 4100

Lead 1.2 4400

Glass 0.3 4900

Plexiglass 0.3 9800

effect is known as the coincidence dip. The extent of
this dip depends on the vibrational damping of the par-
tition and the frequency at which it occurs depends on
the density and thickness of the material.

Table 11.3 lists critical frequencies for common
building materials. Critical frequencies generally de-
crease at the same rate as the material thickness
increases. Therefore, a doubling in material thickness
translates to cutting the critical frequency in half for
the same homogeneous material. Coincidence effects
can be minimized by using multilayered partitions with
different materials and different material thicknesses
combined into a single partition.

There is a single-number rating for TL that takes the
entire frequency spectrum into account, established by
ASTM standard E413. This value, known as the sound
transmission class (STC), is not derived by the simple
averaging method used for NRC values. Instead, the
TL frequency spectrum is matched to a standard curve
within the limits imposed by the ASTM standard. Fig-
ure 11.15 shows how STC is calculated from the TL
spectrum. Note that STC values have no units associated

TL in increments of 10dB
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Arrow indicates STC
rating on TL data plot

Fig. 11.15 The standard STC calculation curve, from
ASTM E 413. STC values are derived by plotting the TL
spectrum on this curve and determining the highest curve
shape that meets the criteria of: (1) the sum of the differ-
ences between individual TL values and the solid line is
less than 32 dB and (2) no individual 1/3-octave band TL
value is more than 8 dB below the solid line. The TL value
at 500 Hz corresponding to this spectrum is the STC value

with them, but they are based on decibels. Similar to
NRC, STC is useful to describe the sound insulation ef-
ficiency of a partition over the human speech frequency
range of roughly 500–2000 Hz. If sound insulation out-
side of that frequency range (especially for frequencies
below 250 Hz) is required, the TL values relevant to the
frequency range of interest must be used.

Table 11.4 lists TL and STC values for common
partitions. As with Table 11.1, these values are for gen-
eral reference purposes only, and specific values should
be based on manufacturers’ specifications. Table 11.5
gives some meaning to the numbers by listing speech
privacy ratings for different ranges of STC values. No-
tice that the same wall design with metal studs has a
higher STC rating than one with wooden studs. Stud
spacing can also make a difference in TL and STC val-
ues. A wall having a 400 mm stud spacing can have a
3–4 unit lower STC rating than one having a 600 mm
stud spacing. The gauge of metal can also make a dif-
ference of up to 5 STC units when comparing 16-gauge
studs with 25-gauge studs, with walls having 25-gauge
studs having the higher values [11.1].
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Table 11.4 Transmission loss and STC values for common partitions

Partition 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz STC

1/2 inch drywall on both sides of wooden studs 17 31 33 40 38 36 33

1/2 inch drywall on wooden studs with 2 inches of insulation 15 30 34 44 46 41 37

Double layer of 1/2 inch drywall on wooden studs 25 34 41 51 48 50 41

1/2 inch drywall on staggered wooden studs 23 28 39 46 54 44 39

1/2 inch drywall on staggered wooden studs 29 38 45 52 58 50 48
with 2 inches of insulation

1/2 inch drywall on metal studs 22 27 43 47 37 46 39

1/2 inch drywall on metal studs with 2 inches of insulation 26 41 52 54 45 51 45

8 inch thick concrete masonry units 36 44 50 54 58 56 53

Open-plane office partition 10 12 12 12 12 11 12

4 inch thick brick wall 32 34 40 47 55 61 45

1/2 inch drywall inside/1 inch stucco outside on wooden studs 21 33 41 46 47 51 42

Single-paned 1/8 inch thick glass 18 21 26 31 33 22 26

1/2 inch thick laminated glass 31 34 38 40 37 46 40

Double-paned 1/8 inch thick glass 13 25 35 44 49 43 37
with 2 inch air gap

Hollow wooden door, 1 3/4 inch thick 14 19 23 18 17 21 19

Solid wooden door, 1 3/4 inch thick 29 31 31 31 39 43 34

Hollow metal door, 1 3/4 inch thick 24 23 29 31 24 40 28

Filled metal door, 1 3/4 inch thick 26 34 40 48 44 52 43

Wood joist floor/ceiling with 1/2 inch 23 32 36 45 49 56 37
plywood subfloor and 1/2 inch drywall

8 inch thick concrete slab floor 32 38 47 52 57 63 50

Wood plank shingled roof 29 33 37 44 55 63 43

Wood plank shingled roof with 1/2 inch 35 42 49 62 67 79 53
drywall ceiling, 4 inches of insulation

Corrugated steel roof with 1 inch of sprayed cellulose 17 22 26 30 35 41 30

As with any construction system, the actual in-field
performance seldom matches the theoretical or labora-
tory STC rating for the construction. This is most often
caused by flanking paths, poor construction practices,
and/or lack of sealing cracks, gaps and openings. The
noise isolation class (NIC) is the metric that consid-
ers these conditions. NIC is determined using the same
method and template as is used for determining STC
(shown on Fig. 11.15), using measured field data instead
of using controlled laboratory data. The NIC value is
typically 5–10 points less than the STC rating of a given
partition design.

STC does not effectively consider the transmission
of impact noise on floors from foot traffic as it may
affect floors below. For this purpose the impact insu-
lation class (IIC) was established by ASTM standard
E 989. The IIC stresses the low-frequency range, as
is shown in Fig. 11.16, but note that IIC does not ad-
dress very low (below 100 Hz) frequencies, which may

be associated with resonances of a building’s structural
components.

One other single-number rating worth noting here
is the outdoor–indoor transmission class (OITC), estab-
lished in ASTM E 1332. The OITC is a single-number
rating for the effectiveness of a building façade in reduc-
ing noise to interior spaces. The calculation of OITC
is based on an A-weighted source spectrum of typical
transportation (aircraft, rail, and traffic) sources in the
80–4000 Hz range and the façade’s transmission loss
spectrum in the same frequency range.

Non-Homogeneous Partitions
Up to this point we have been discussing homogeneous
partitions. Actual designs, however, include walls com-
posed of different materials, such as those with windows
and doors. Each of these wall components has different
associated TL characteristics. Wall components having
lower TL characteristics than the rest of the wall can
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Table 11.5 Speech privacy associated with STC ratingsa

STC range Sound privacy

0 to 20 No privacy
(voices heard clearly between rooms)

20 to 40 Some privacy
(voices heard in lowb background noise)

40 to 55 Adequate privacy
(only raised voices heard in low
background noise)

55 to 65 Complete privacy
(only high level noise heard in low
background noise)

70 Practical limit
a Assuming no significant flanking paths or openings in walls
b In the 35 dBA range

significantly degrade a wall’s sound reduction effec-
tiveness. This can be calculated using the composite
transmission coefficient, which is defined as:

τcomp =
(

n∑

i=1

τi Si

)
/S

= (τ1S1+ τ2S2+ . . .+ τn Sn)/S , (11.8)

where τ1, τ2, etc., are the transmission coefficients of
each wall component while S1, S2, etc. are the surface
areas corresponding to the surfaces having the same
subscript value as those for the transmission coeffi-
cients, and S is the surface area of the entire partition.
The composite transmission coefficient that is calcu-
lated using (11.8) can then be replaced in (11.6) to yield
the composite transmission loss for the partition.

Air gaps (e.g., around doors, windows or pene-
trations) are notorious for compromising the sound
reduction effectiveness of walls. Table 11.6 shows the
TL degradation caused by varying sizes of air gaps in
a wall originally rated at a TL of 45 dB. As the table
shows, an air gap just one tenth of one percent the size
of a wall can lower the TL rating from 45 to 30 dB.
Figure 11.17 offers a graphical method for making this
determination, not only for openings but also for doors
and windows that have lower TL values than the walls
in which they are installed. This emphasizes the impor-
tance of sealing walls, avoiding air gaps, and placing
airtight seals around doors.

A rule that governs most of the TL spectrum of
homogeneous partitions, known as the mass law, states
that TL increases at a rate of 6 dB with each doubling
of mass and with each doubling of frequency (shown
in Fig. 11.14). This rule can make it impractical to solve

Table 11.6 Transmission loss reduction as a function of air
openinga

Wall area having Resultant Resultant reduction
air opening (%) wall TL (dB) in TL (dB)

0.01 39 6

0.1 30 15

0.5 23 22

1 20 25

5 13 32

10 10 35

20 7 38

50 3 42

75 1 44

100 0 45
a Based on original wall TL of 45 dB

SPL in increments of 10dB

One-third octave band center frequency (Hz)
31.5

40
50

63
80

100
125

160
200

250
315

400
500

630
800

1000
1250

1600
2000

2500
3150

4000
5000

6300
8000

Arrow indicates rating
on SPL data plot
IIC = 110 – SPL

Fig. 11.16 The standard IIC calculation curve, from ASTM
E 989. IIC values are derived by plotting the SPL spectrum
(from a tapping machine specified in ASTM E 492) on this
curve and determining the lowest curve shape that meets
the criteria of: (1) the sum of the differences between indi-
vidual SPL values and the solid line is less than 32 dB and
(2) no individual 1/3-octave band TL value is more than
8 dB above the solid line. The SPL value at 500 Hz corre-
sponding to this spectrum, subtracted from 110, is the IIC
value

sound privacy issues with homogeneous partitions. For
example, if a 1/2 meter-thick concrete wall does not
provide enough sound insulation for a specific situ-
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Fig. 11.18a–d Examples of multilayered partition and floor/ceiling designs that result in high TL

Fig. 11.17 Chart for determining the reduction in TL wall
rating by the installation of a door, window, or opening �

ation, doubling the thickness of that wall to 1 meter
would only offer an additional 6 dB of sound reduction.
A more practical way of avoiding this kind of issue is
by using multilayered partitions.

Multilayered partitions are comprised of layers of
different materials. Each time sound passes through
a different material, its level is reduced. Therefore, this
method can be used to reduce costs, weight and space
restrictions while providing adequate sound reduction.
A sharp change in density of material is most effective
in raising TL. Air spaces between wall sections and ma-
terials are effective by setting up such environments and
also breaking any rigid connections between sides of
a partition. A rigid connection can provide a vibration
channel for sound to pass through with little reduc-
tion. For example, the noise reduction effectiveness of
a studded wall filled with fiber insulation between studs
can be short-circuited because sound may travel unim-
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Approximate improvement in TL (dB)
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peded through the studs to the other side of the wall.
Figure 11.18 shows examples of multilayered partitions
that are effective for sound insulation.

Fig. 11.19 General TL improvement that can be expected
from air spaces in partitions �

Figure 11.19 shows the TL benefit of different air
spaces in partitions. In general, the TL of a partition in-
creases at a rate of 5 dB with each doubling of air space
(within a partition) beginning with an air space of 5 cm.

As is mentioned above, transmission loss generally
increases with frequency. If significant sound reduction
is required for frequencies below 250 Hz, it is most prac-
tical to use multilayered partitions with air spaces and
staggered studs or resilient channels between compo-
nents. Resilient channels are shaped metal bars (the S
shape is common) or resilient clips that connect two wall
components. Only one side of their shape touches each
side of the wall, and they effectively reduce vibrational
energy from traveling through them. Resilient clips re-
semble isolation hangers, and can be more effective than
resilient channels because short-circuiting their isola-
tion properties during installation is easier with resilient
channels. Another option for greater transmission loss at
low frequencies is massive concrete slabs.

11.2 General Noise Reduction Methods

Noise can be controlled at its source, in the path be-
tween the source and the listener, or at the listener.
Table 11.7 summarizes the general options available.
If the noise can be controlled sufficiently well at its
source, it is unnecessary to consider the path or listener
locations. Likewise, if the noise can be controlled suffi-
ciently well in the path between the source and listener,
it is unnecessary to consider the listener’s location for
noise control measures.

The options for noise control at the source are gen-
erally self-explanatory. Most often, due to economic or
logistic issues, noise control options are limited to the

Table 11.7 Generalized noise reduction options

Control Control Control
at the source in the path at the listener

Maintenance Enclosure(s) Relocate listener
Avoid resonance Barrier(s) Enclose listener
Relocate source/ Muffler(s) Hearing
space planning protection
Remove unnecessary Absorptive Masking
sources treatment
Use quieter model(s) Vibration isolation
Redesign source to Active noise
be quieter control

path between the source and the listener. Given many
misconceptions about these options, it is useful to dis-
cuss some of them further.

11.2.1 Space Planning

The most effective noise control method for buildings is
space planning. This is true both for room layout within
a building and for the placement of the building itself
with respect to exterior noise sources. Inherently noisy
spaces adjacent to spaces inherently requiring quiet
should be avoided as much as possible. The noisiest in-
door spaces tend to be mechanical rooms, restrooms,
and elevator shafts.

For placement with respect to loud exterior sources,
buildings should be as far as possible from noisy streets
or rail lines, taking advantage of shielding from other
buildings and topographical features. If building place-
ment near noisy outdoor sources is unavoidable, special
attention should be paid to the design of the façade(s)
facing the noisy sources, avoiding operable windows,
doors, and penetrations.

Another aspect to consider for outdoor sound is the
potential effect of a building’s noise sources on the
surrounding community. Rooftop mechanical units are
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Building Acoustics 11.2 General Noise Reduction Methods 417

the most common noise sources that may need to be
insulated from community intrusions, especially when
municipal codes are involved. The community noise as-
pect of a building is often considered in the building’s
permitting process.

11.2.2 Enclosures

Enclosures can be effective at reducing noise levels as
long as they are properly designed. The following points
should be considered when designing noise enclosures
(also illustrated in Fig. 11.20a–d).

1. The enclosure must completely surround the noise
source, with no air gaps. As mentioned earlier in this
chapter, air gaps can significantly compromise the
noise reduction effectiveness of partitions. An en-
closure with any side open is not an enclosure but
a barrier, and the noise reduction effectiveness of
barriers is limited by diffraction to 15 dBA, indepen-
dent of the barrier material (as long as the material
would provide at least 20 dBA of noise reduction on
its own). Enclosures, on the other hand, can provide
up to 70 dBA of reduction.

2. The enclosure must be isolated from floors or any
structural members of a building. An enclosure cov-
ering the sides and top of a noise source but not the
bottom (since the source is sitting on the floor or
ground) can compromise its effectiveness for sev-
eral reasons. First, the chances of the sides of the
enclosure perfectly sealing to the ground are slim,
and therefore, air gaps would result. Second, vi-
brations will be carried along the ground or floor
since the source is in direct contact with it. The only
way to reduce these vibrations is to vibrationally
isolate the source from the ground or floor using
tuned springs (appropriate for the source), pads, or
a floating floor.

3. The enclosure should be constructed using non-
porous materials. Sound absorptive material can be
effective in reducing noise when it is used as part
of a multilayered enclosure (on the inside); how-

Fig. 11.20a–d Noise reduction effectiveness of enclosures
sitting on a solid surface (a) enclosing the source on
five sides with absorptive material only, (b) enclosing the
source on five sides with one layer of rigid, nonporous ma-
terial, (c) completely enclosing the source with absorptive
material only, and (d) surrounding the source in an isolated,
multilayered enclosure �

a) 3 to 5dB reduction

b) 3 to 10dB reduction

c) 6 to 10dB reduction

d) 20 or more dB reduction
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ever, absorptive material by itself is not effective in
reducing noise.

4. The enclosure designer must consider that some
sources require ventilation. This cannot translate to
leaving an opening in the enclosure without com-
promising the noise control effectiveness of the
enclosure. Ventilation systems must be developed
that minimize noise transmission.

5. The enclosure should be constructed using multi-
layered construction for maximum efficiency. As is
mentioned earlier in this chapter, doubling the mass
of an enclosure would add 6 dB to its noise reduc-
tion effectiveness. This can easily lead to excessive
weight for an effective homogeneous enclosure. As
for single partitions, multilayered enclosures can
add more than 20 dB of effectiveness (under simi-
lar space requirements) to massive enclosures with
a fraction of the weight.

11.2.3 Barriers

A barrier is contrasted from an enclosure by being
open to the air on at least one side. Because of diffrac-
tion, noise barriers are limited to 15 dBA of noise
reduction capability, independent of the material. This
limited effectiveness is compromised even more if there
are reflective ceilings above the barrier because sound
reflected off the ceiling minimizes the barrier’s effec-
tiveness. Therefore, wherever noise barriers are used
indoors, an absorptive ceiling should be installed above
them. It is also important to have no air spaces within
or under the barriers, since this will compromise their
already limited effectiveness.

The noise reduction effectiveness of barriers is typi-
cally rated by the insertion loss (denoted by IL). The IL
is the reduction in sound pressure level, at a specific lo-
cation, resulting from the installation of a barrier. The
IL is then the difference between conditions with and
without a barrier.

To provide any insertion loss, a barrier must break
the line of sight between the sound source and lis-
tener. In other words, if you can see a sound source
on the other side of a barrier, that barrier is providing
no sound reduction (from that source) for you. Break-
ing this line of sight typically provides a minimum of
3–5 dBA of insertion loss, with insertion loss increas-
ing as one goes further into the shadow zone of the
barrier.

Bear in mind that a row of trees is ineffective for
outdoor noise control. Only solid walls or earth berms
breaking the line of sight between the noise source and

building occupants will produce any meaningful noise
reduction.

11.2.4 Mufflers

Mufflers are devices that are inserted in the path of duct-
work or piping with the specific intention of reducing
sound traveling through that conduit. The effectiveness
of mufflers is typically rated using insertion loss. Muf-
flers must be designed for each purpose to preserve the
required static or back pressure characteristics of the
equipment and to reduce noise in the appropriate fre-
quency range(s). For that reason, each muffler is unique
to its installation.

11.2.5 Absorptive Treatment

Absorptive treatment within a room can reduce rever-
beration and, in this process, reduce noise levels by up
to 10 dBA. Bear in mind, though, that absorptive treat-
ment is only effective for reducing reverberation within
a room and not for reducing transmission of sound be-
tween rooms.

11.2.6 Direct Impact and Vibration Isolation

Mechanical equipment can generate vibration that can
travel through a building’s structural members to affect
remote locations within a building. It is therefore pru-
dent to isolate any heavy equipment from any structural
members of buildings. This can be accomplished by
mounting the equipment on springs, pads, and/or inertia
blocks; however, the selection of specific isolating de-
vices (especially springs) should be performed by a spe-
cialist trained in vibration analysis. The main reason for
this is that each vibration isolation device is tuned to
a specific frequency range. If this is not matched prop-
erly with the treated equipment, the devices can amplify
the vibration and cause more of a problem than would
have occurred without any treatment.

Mechanical equipment and, to a lesser degree,
footfalls generate direct impacts that should also be
addressed by properly isolating floors from building
structures.

11.2.7 Active Noise Control

Passive noise control involves all of the noise control
methods discussed above, in which the sound field is not
directly altered. Active noise control involves electroni-
cally altering the character of the sound wave to reduce
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Fig. 11.21 Typical characteristics of effective masking sys-
tems (frequency response range in shaded area)

its level. In this case, a microphone measures the noise
and a processor generates a mirror image of (180◦ out
of phase from) that source. This mirror image is then
reproduced by a loudspeaker in the path of the original
sound. This new sound cancels enough of the original
signal to reduce levels by up to 40 dB under the appro-
priate conditions. Although this is a very powerful noise
control tool, active noise control is only practical in
local environments and for tones below 500 Hz. Venti-
lation ducts provide ideal environments for active noise
control systems because they are enclosed environments
and their noise is often dominated by low frequency
tones (associated with the fan characteristics).

11.2.8 Masking

As long as background sound levels are low in a build-
ing, one way of easing a noise problem is to add
a more pleasing sound to the environment to make
the noise less noticeable. This is especially desir-
able in open-plan offices where people can clearly
hear activities in other offices and areas (since their
offices are not completely enclosed). Any desirable
sound can provide masking, but most often electronic
masking systems are used, comprised of loudspeakers
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Fig. 11.22 NC curves (after [11.2])

placed between dropped ceilings and structural ceilings.
These loudspeakers are connected to signal proces-
sors that are set to generate sounds similar to those
generated by typical heating, ventilating and air condi-
tioning (HVAC) systems. Although many people think
of masking system sounds as white noise, which has
an equal amount of energy in all audible frequen-
cies, a typical masking system frequency response is
more like that shown in Fig. 11.21, where less em-
phasis is placed on higher frequencies. Whatever the
response, it is advisable to have an electronic mask-
ing system installed by a contractor with experience in
this area. If the system is set at too high a level or with
a harsh frequency response, the resulting environment
may be more unpleasant with the masking system than
without.

11.3 Noise Ratings for Steady Background Sound Levels

There are two standardized methods for rating the
background sound levels inside rooms. Each of these
methods is referenced in ANSI standard S12.2 and the

American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) Handbooks [11.3,
4]. These are the balanced noise criterion (NCB) and
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Fig. 11.23 NCB curves (after [11.5]). Sound in the region
labeled A can cause perceptible noise-induced vibration
such as rattling of doors, windows, or fixtures. Sound in
the region labeled B may generate lower levels of these
noise-induced vibrations

the room criterion (RC) curves. The NCB curves are up-
dated versions of the widely used noise criterion (NC)
curves, different in that they are extended down to the
16 and 31.5 Hz octave bands. Figure 11.22 shows the
NC curves and Fig. 11.23 shows the NCB curves.

As for the room criterion (RC) method, the NCB
method was developed to better consider low-frequency
noise generated by HVAC systems. In each case, stan-
dardized curves are used in conjunction with measured
noise levels in a room to yield a single-number rat-
ing for HVAC noise. The NC and NCB rating values
result from plotting the measured octave band sound
pressure level spectrum on each chart and noting the
lowest standard curve that is not exceeded by the meas-
ured values. This single number is then rated against
design guidelines established in the two references
above. Determining the RC rating is more complicated,
based on the 1000 Hz value of the standard RC curve
(in Fig. 11.24) that matches the arithmetic average of
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Fig. 11.24 RC curves (after [11.6, 7]). The A and B
regions have the same meanings as the NCB curves
in Fig. 11.23. The LF, MF, and HF regions are designated
as low-frequency (rumble), medium-frequency (roar), and
high-frequency (hiss) ranges, respectively

the 500, 1000, and 2000 Hz values of the SPL room
spectrum. The quality of the sound is also rated by
the RC method, based on the deviations of the meas-
ured SPL spectrum from the standard RC curve. A
neutral spectrum, designated by N and used in most
RC specifications, implies that levels below 500 Hz
do not exceed an RC curve by more than 5 dB and
levels above 1000 Hz do not exceed an RC curve by
more than 3 dB. When deviations greater than these
exist, the RC rating is given the designation of the fre-
quency range (from Fig. 11.24) in which the greatest
deviations occur. The levels in the octave bands below
125 Hz are much lower for RC curves than those for
the NCB curves. The purpose of this lower limit is to
consider fluctuations or surges at the ventilation outlets
better. These fluctuations are not considered for NCB
ratings.

Table 11.8 lists generally recommended NC, NCB
and RC(N) ranges for common spaces.
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Table 11.8 Recommended background noise criteria for common spaces

Category of space Specific uses NC, NCB or RC(N) range dBA limit

Sensitive listening spaces Broadcast and recording studios, concert halls 15 to 20 25 dBA

Performance spaces Theaters, churches, video and teleconferencing 20 to 25 30 dBA

Presentation spaces Large conference rooms, small auditoriums, movie
theaters, courtrooms, meeting and banquet rooms,
executive offices

25 to 30 35 dBA

Private spaces Offices, small conference rooms, classrooms, private
residences, hospitals, hotels, libraries

30 to 35 40 dBA

Public spaces Restaurants, lobbies, open-plan offices, clinics 35 to 40 45 dBA

Service and support spaces Computer equipment rooms, public circulation areas,
arenas, convention centers

40 to 45 50 dBA

11.4 Noise Sources in Buildings

The most common noise sources in buildings, other than
the inhabitants, are related to HVAC systems, plumbing
systems, electrical systems, and exterior sources. Fig-
ure 11.25 shows the most common paths for intrusive
noise in buildings.

Although there is legislation that often deals with
outdoor noise disturbances directly related to people as
sources, these indoor sources are typically unregulated
and their associated noise levels are governed by the
desires of developers, builders, and occupants.

11.4.1 HVAC Systems

Noise sources associated with HVAC systems can be
separated into two general categories – mechanical
equipment and duct-borne/airflow noise.

Mechanical Equipment
Common mechanical equipment associated with HVAC
systems includes pumps, compressors, chillers, gener-
ators, and air handlers. Rotating components of these
pieces of equipment, such as gears and fans, generate
most of the noise that causes concerns in buildings. Ro-
tating mechanical equipment typically generate tones,
their frequencies being associated with their rotational
speeds. When mechanical equipment is housed in
rooms within buildings, its associated noise can affect
rooms throughout a building. When mechanical equip-
ment is placed on rooftops or slabs outside buildings, its
associated noise can also affect the surrounding com-
munities. Figure 11.26 shows noise sources and paths
for a typical rooftop HVAC unit.

Mechanical equipment not only generates noise in
buildings, but also generates vibrations that can propa-

gate throughout a building’s structural members if not
properly isolated. These vibrations can excite building
members far from the sources and cause remote build-
ing components to rattle and generate their own noise.

Duct-Borne/Airflow Noise
Air is typically carried throughout a building using
a system of ductwork. Ducts carry the tones generated
by fans and they cause additional noise by inducing
turbulence in the airflow. Some of this noise is car-
ried through the ductwork to rooms in buildings (out of
grilles in each room) and some of it is radiated directly
from the duct walls (known as breakout noise).

11.4.2 Plumbing Systems

The most common plumbing system noise sources are
water flowing through pipes and noise radiating from
the walls of pipes.

11.4.3 Electrical Systems

The most common electrical system noise sources are
transformers and noise radiated from associated conduit
(by carrying vibrations that excite walls).

11.4.4 Exterior Sources

The most common exterior noise sources that affect
building inhabitants are those associated with trans-
portation (such as vehicular traffic, rail, and aircraft),
industrial operations, and mechanical equipment from
nearby buildings or mounted outside the same build-
ing. Figure 11.27 shows an average spectrum shape for
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Exterior
source

Permanent structural ceiling Exterior wall

HVAC
ductwork

Dropped
ceiling

Electric outlet conduit

Rigidly connected
stud separating wall

DrywallSound source

Door

Open air space

Baseboard

Fig. 11.25 Common noise leaks occur through these nine paths

Exhaust
fan

Noise
radiated to
community

Supply
fan

Condenser
fan

Return
duct

Supply
duct

Return air
noise path Structure-

borne
path Supply

air
noise path

Curb

Com-
pressor

Airborne
casing-
radiated
path

Roof

Room ceiling

Fig. 11.26 Common noise paths for a typical rooftop
HVAC unit

transportation noise sources used by ASTM E 1332.
This shows the concentration of sound in the low fre-

SPL in increments of 10dB

One-third octave band center frequency (Hz)
31.5
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800
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3150
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6300
8000

Fig. 11.27 Average transportation noise spectrum shape
(adapted from data in ASTM E 1332)

quency (below 500 Hz) range, emphasizing the need for
exterior-wall noise control design measures that effec-
tively address low frequencies.

11.5 Noise Control Methods for Building Systems

The principles discussed in Sect. 11.2 can be put into
practice using the general design concepts listed in this
section. Specific dimensions and sound ratings have
intentionally been omitted from the drawings in this

section because these drawings stress the design prin-
ciples rather than specific installations. These design
concepts can be used to develop specific designs for
each project.
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11.5.1 Walls, Floor/Ceilings, Window
and Door Assemblies

A key issue with all of these designs is to stop the path
of sound and vibration through rigid connections be-
tween building components. Generous use of air spaces
and resilient materials is the most effective method
for this to occur. Another key issue is avoiding open-
ings in and around partitions (for the reasons stated
in Sect. 11.1.6). All openings must therefore be com-
pletely sealed. These two themes will be repeated in
most of the designs listed in this section.

Walls
The most effective wall system for noise reduction is
a double-wall system, in which wall sections (includ-
ing studs) are separated by an air space. The larger the
depth of the air space, the more effective the wall will
be in controlling sound. Double walls can be especially
effective for controlling low-frequency sound, as long
as the walls are properly sealed and isolated from the
building structure. It is important to have absorptive in-
sulation in any wall system to avoid cavity resonance.
This insulation should not be tightly packed.

Figure 11.28 shows the general concept of a double-
studded wall that is effective for noise control. Al-
though metal studs are shown in the drawing, wooden
studs would provide comparable results in this de-
sign because of the air gap. Figure 11.29 shows

2 layers 1.6cm thick
gypsum board,
all joints staggered
and sealed air tight

Glass fiber or
mineral wool insulation

2.5cm min. air space
between studs

Metal Stud

Fig. 11.28 Cross section of a double-wall design (courtesy
of Acentech Inc., Cambridge MA)

a full floor-to-structural-ceiling double-wall construc-
tion concept.

Note that the wall must be sealed with a non-
hardening material at its perimeter to avoid any sound
leakage through air gaps (since a hardening mater-
ial may crack and leave gaps). Figure 11.30 shows
a double-wall concept using a concrete masonry unit
(CMU) and studded component.

All of these double-wall designs will provide STC
values in excess of 55; however, if low-frequency noise
control is an issue, the STC rating does not address
that and larger air spaces between wall components will
increase the low-frequency noise control effectiveness.

Double-wall constructions are often impractical be-
cause of space restrictions. In these cases, an alternative
to the CMU construction in Fig. 11.30 would be that
shown in Fig. 11.31, in which the air space is replaced
by a resilient element.

Floor
structure

Provide a continuous
bead of acoustical
sealant around ceiling
and perimeters of
partition

Structure

Acoustical
sealant at
perimeter

Ceiling

One layer
GWB

Sound
attenuation
blanket

Metal studs
each side,
non-bridging

Fig. 11.29 Cross section of a double-wall design extending
from floor to structural ceiling (courtesy of Acentech Inc.,
Cambridge MA)
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Sound
attenuation
blanket

CMU
1 layer GWB

2.5cm min.
air gap

Metal studs

Set studs 1.3cm
from structure
above

Provide a continuous
bead of acoustical
sealant around ceiling
and floor perimeters
of partition

Angle
restraint

Fig. 11.30 Cross section of a floor to structural ceiling
double-wall design with a CMU wall (courtesy of Acen-
tech Inc., Cambridge MA)

When working with gypsum board, Fig. 11.32
shows a design concept that will provide an STC of at
least 50 as long as it is sealed properly. Note that a fluted
structural deck may provide air gaps at the top of the
wall that would need to be sealed to preserve the noise
reduction effectiveness of the system.

When a room needs to be isolated from the building
structure (which would be the case when structure-
borne vibrations cause unwanted noise and vibration
in certain rooms in which sensitive activities are taking
place), Fig. 11.33 shows the conceptual design for a re-
siliently mounted wall. Figure 11.34 shows appropriate
designs for intersections of double-studded walls.

A common path for sound leaks between rooms
in buildings with large windows as facades is the
connection between walls and those windows. Fig-
ures 11.35 and 11.36 show designs that effectively
minimize sound transmission between rooms having
this situation, Fig. 11.35 with a permanent installation
and Fig. 11.36 with a curtain wall design.

Floor/Ceilings
Noise control design for floor/ceiling assemblies typi-
cally involves a significant amount of vibration isolation
to minimize the transmission of footfall and other im-
pact noise between floors. The design concepts that

Compressible
filler Angle restraint

Structure

Sealant or firestop
system at perimeter
on both sides
(as necessary)

Resilient element

Metal channel

One layer GWB

CMU – solid grout

Sealant at perimeter

Floor structure

Fig. 11.31 Cross section of alternate construction to
a double-wall design in Fig. 11.30 (courtesy of Acentech
Inc., Cambridge MA)

minimize vibration between floors can also be used to
minimize sound transmission between floors.

The most common noise control design for floors is
the floating floor system, in which a layer of resilient
material is placed between the floor structure and the
subflooring. More complicated measures are required
for effective control of the high vibration and noise lev-
els that can be associated with mechanical equipment
in buildings. Figures 11.37–11.43 offer design concepts
for resiliently mounted ceilings for mechanical rooms
or other noisy spaces. Figure 11.44 shows a sound
isolating design for a metal roof deck and Fig. 11.45
shows a sound isolating design for a concrete roof
deck.

Windows and Doors
Windows and doors often have the lowest TL ratings
of a wall system and are therefore often the sources of
noise leaks through partitions. In addition to their lower
TL ratings than the main wall, installation with air gaps
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Structure

Acoustical sealant
at deck flutes where
required

Ceiling

Sound attenuation
blanket

Metal studs

2 layers GWB per side

Provide a continuous
bead of acoustical
sealant around
ceiling and floor
perimeters of partition

Floor structure

Fig. 11.32 Cross section of a single-studded sound insulat-
ing wall meeting a fluted metal structural deck (courtesy of
Acentech Inc., Cambridge MA)

Control
joint

2 layers
1.6 cm thick
gypsum-board,
all joints
staggered and
sealed air tight

No bracing
between studs;
horizontal
bracing between
studs of the same
stud row is
acceptable

a) b)

Resilient
mounts

Preferred condition:
Caulked gap,
control joint
or resiliently

mounted GWB
Acceptable condition:

Continuous GWB

Fig. 11.34a,b Cross section of effective double-stud wall junction designs. (a) Completely separated wall sections;
(b) with resilient connections between wall sections to conserve space (courtesy of Acentech Inc., Cambridge MA)

Neoprene   pads (30
durometer) with angle
iron clips for securing
top resiliently

Stop wall-board short
by 1.27cm pack
remaining space
with glass fiber and
seal with permanently
resilient sealant Sway

brace2 layers 1.6cm thick
gypsum-board, all
joints staggered
and sealed air tight

Metal
stud

Pack and seal
bottom of gypsum
board same as top

Isolate steel stud
plate with neoprene
pads

Blanket
insulation

Fig. 11.33 Cross section of a resiliently mounted wall on
a concrete building structure (courtesy of Acentech Inc.,
Cambridge MA)
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Window glass

End cap
(typ. both sides)

Blocking to
match width of
mullion

Glass-fiber batt
insulation
(if possible)

Partition as
scheduled

Window system mullion

Paintable
particle board
covering entire
height of mullion

Permanently
resilient sealant
(typ. both sides)

Fig. 11.35 Cross section of an effective mullion/partition
junction (courtesy of Acentech Inc., Cambridge MA)

Window glass Window glass

Curtain wall
system

Compressible
foam sealer
with caulk full
height

Scheduled
partition
(varies)

Fig. 11.36 Cross section of an effective mullion/partition
junction with a curtain wall system (courtesy of Acentech
Inc., Cambridge MA)

around them can significantly compromise their noise
control effectiveness.

Many window manufacturers provide models that
offer significant sound insulation and each of these

Caulk around
perimeter

Steel structure Concrete

Double layer
gypsum board
enclosure on
steel framing7.6cm glass fiber

batt insulation

Vibration isolation
hangar

Fig. 11.37 Cross section of a resiliently mounted gypsum-
board ceiling (courtesy of Acentech Inc., Cambridge MA)

Steel structure

Concrete slab Neoprene hangers

7.6cm glass fiber
batt insulation

Steel
framing

Caulk
around
perimeter Double-layer

gypsum board ceiling

Steel grid for support of all ceiling hung
equipment rigidly suspended from structural steel

Fig. 11.38 Cross section of a sound insulating gypsum
board ceiling framed from I-beams (courtesy of Acentech
Inc., Cambridge MA)

manufacturers offers its own acoustical test data and
design parameters. As for walls, larger air spaces
between double-paned designs will provide better
sound insulation than single-paned windows of the
same thickness. For those wishing to manufacture
custom sound-insulating windows, Fig. 11.46 shows
some design guidelines for high-TL interior windows
and Fig. 11.47 shows design guidelines for high-TL ex-
terior windows.
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Steel structureConcrete

Vibration
isolation
hangar

Caulk around
perimeter

7.6cm glass
fiber batt
insulation

Double-layer gypsum
board enclosure on steel
framing

Pack all
around with
fibrous material
and seal with
permanently
resilient
sealant

Steel grid for support of all ceiling
hung equipment rigidly suspended
from structural steel

Fig. 11.39 Cross section of an effective sound insulating
ceiling for mechanical rooms (courtesy of Acentech Inc.,
Cambridge MA)

Concrete

Vibration
isolation
hangar

Caulk around
perimeter

7.6cm glass
fiber batt
insulation

Double-layer
gypsum board

enclosure on
steel framing

Pack all around
with fibrous
material and
seal with
permanently
resilient sealantSteel grid for support of all

ceiling hung equipment rigidly
suspended from structural steel

Fig. 11.40 Cross section of a ceiling resiliently mounted
from a concrete slab (courtesy of Acentech Inc., Cam-
bridge MA)

Concrete
structure

Vibration
isolation
hangar

10cm glass
fiber batt
insulation

Air space
at least
30cm thick

Acoustical
sealant
around
perimeter Mechanical and

electrical systems
supported by ceiling

Finished
acoustical
tile ceiling

Double-layer
gypsum board

Fig. 11.41 Cross section of a resilient ceiling supporting
mechanical and electrical system equipment (courtesy of
Acentech Inc., Cambridge MA)

Concrete
structure

Vibration
isolation
hangar

10cm
glass fiber
batt
insulation

Air space of
maximum thickness

Acoustical
sealant
around
perimeter

Ductwork and diffuser
penetration

Pack all around with
fibrous material and
seal with permanently
resilient sealant

Double-layer
gypsum board

Surface
mounted
acoustical tiles

Surface
mounted

light
fixture

Fig. 11.42 Cross section of a resilient ceiling with HVAC
equipment (courtesy of Acentech Inc., Cambridge MA)
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Concrete
structure

Vibration
isolation
hangar

10cm
glass fiber
batt
insulation

Air space of
maximum
thickness

Acoustical
sealant
around
perimeter

Surface
mounted

light
fixture

Ductwork and diffuser
penetration

Pack all around with fibrous
material and seal with
permanently resilient sealant

Double-
layer
gypsum
board

Surface
mounted
acoustical
tiles

Fig. 11.43 Cross section of an alternative resilient ceiling
design (courtesy of Acentech Inc., Cambridge MA)

Mechanical equipment on dunnage

Dunnage height
(as required for
access or
maintenance)

Cement board
(2) 1.2 cm layers

Roof membrane
protection board

Roofing membrane

Metal
deck

2.5 cm thick semi -rigid
glass fiber insulation

Thermal insulation
(thickness as required)

Fig. 11.44 Cross section of a sound isolating sandwich de-
sign for a metal roof deck (courtesy of Acentech Inc.,
Cambridge MA)

Mechanical equipment on dunnage

Dunnage height
(as required for
access or
maintenance)

Cement board
(2) 1.2cm layers

Roof membrane
protection board

Roofing membrane

Concrete
deck

2.5cm thick
semi-rigid glass
fiber insulation

Thermal insulation
(thickness as required)

Fig. 11.45 Cross section of a sound isolating sandwich de-
sign for a concrete roof deck (courtesy of Acentech Inc.,
Cambridge MA)

As for windows there are many door manufacturers
that provide sound insulation data for their prefabricated
products. In general, solid-core doors are more effective
than hollow-core doors for noise reduction. To maxi-
mize the effectiveness of these doors, they should be
gasketed around their perimeters and they should ei-
ther have drop seals or rubber skirts on their undersides,
which should contact solid floor thresholds.

11.5.2 HVAC Systems

ASHRAE publishes thorough discussions on HVAC
noise sources and their control in their Fundamentals
and Applications Handbooks [11.3, 4]. The basic prin-
ciples to bear in mind for minimizing HVAC noise are
minimizing airflow turbulence and isolating vibrations,
each of which is able to carry noise far from the source
to remote locations in buildings.

Airflow Turbulence
Airflow turbulence noise can be minimized by

• Lowering flow rates as much as possible,• Distributing the flow as evenly as possible through-
out the ducted system,
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10cm min.

Wood
or metal
frameTrim board to

conceal gap
(fasten on only
one side of
frame)

Glass pane
(laminated or
different
thickness than
other plane)

Glass pane
0.6cm thick
min.
(or thicker as
required for
code)

Perimeter caulked
airtight on both
sides of partition

Double stud
partition

(as scheduled)

Fig. 11.46 Cross section of a high-TL interior window in
a double-wall design (courtesy of Acentech Inc., Cam-
bridge MA)

• Providing long ducted passages and transitions that
avoid sharp changes in direction or discontinuities
in cross-sectional area,• Installing properly designed silencers and absorp-
tive lining in the flow path that do not unduly
compromise the efficiency of the HVAC system,• Wrapping ductwork with lagging materials, and• Enclosing ductwork and HVAC equipment.

Figures 11.48 through 11.50 offer effective noise
control designs for duct and hanging HVAC equipment
enclosures.

Fig. 11.48 Cross section of a double-layer gypsum-board
duct enclosure (courtesy of Acentech Inc., Cambridge
MA) �

Base building
window system

Base building exterior wall construction

Seal perimeter
of window
frame to sill
with caulk

Neoprene or
bulb seal to seal
around window
sash perimeter

Recommended
airspace depth

Upgraded window
sash (system shown
with cam locks for
fastening into
window frame)

Upgraded
window
frame

Fig. 11.47 Cross section of an upgraded exterior window
for high-TL design (courtesy of Acentech Inc., Cambridge
MA)

Another issue to consider with ductwork is sound
leaks through wall and ceiling duct penetrations. If these
penetrations are not sealed properly, they will diminish
the noise reduction effectiveness of the wall or ceiling

Building construction
(roof deck or floor
slab)

Duct

Permanently resilient
around perimeter

No contact
between
duct and
enclosure

7.6 cm
glass fiber
insulation

Double-layer
gypsum board enclosure
on metal framing
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Caulk
typ.

Vibration isolation
hanger

Metal
angle

1.9 cm plywood panel
fastened to deck

Metal
deck

10 cm glass fiber
insulation

Double-layer gypsum
board enclosure on wood
or metal framing Fire rated gasketed

access door location, size
and number as required

HVAC Unit

Fig. 11.49 Cross section of a duct enclosure resiliently
mounted to a metal deck (courtesy of Acentech Inc., Cam-
bridge MA)

Structural deck
or existing
construction

Minimum 10cm

Short duct sections

Final duct
(dimensions as indicated
on mechanical plans)

Final duct
(dimensions as
indicated on
mechanical plans)

Gypsum board partition
(as scheduled)

Fig. 11.51 Cross section of a duct penetrating a gypsum-
board partition near a deck (courtesy of Acentech Inc.,
Cambridge MA)

that they are penetrating. Figure 11.51 shows an ef-
fective design for a single duct penetrating a wall and
Fig. 11.52 shows an effective design for multiple duct

B

B

Section A–A

A

A

DuctDuct

Caulk typ.

Structural deck
1.2cm plywood panel
fastened to deck as
necessary to seal/close
flutes

Caulk
around
ductwork
penetration
to seal
enclosure

Terminal box
(fan coil unit or
variable air
volume)

Structural deck

Single-layer
gypsum board
enclosure on wood or
metal framing with
no rigid contact to
the terminal box

Fire rated
access door
location, size
and number as
required for
adequate main-
tenance and
access

Section B–B
Sized
generously for
maintenance/access
(ask engineer or
facilities personnel
for guidance)

ACT
ceiling

7.6cm batt
insulation

Fig. 11.50 Sections of a ducted terminal box enclosure
mounted to a structural deck (courtesy of Acentech Inc.,
Cambridge MA)

penetrations. Figure 11.53 shows design considerations
for the placement of a duct silencer near a wall penetra-
tion.

Vibration Isolation
Springs and pads are the most common tools used to
minimize the transfer of vibration from HVAC units to
the building structure. The key here is to eliminate any
rigid connections between the units and the structure.
Figure 11.54 shows a typical spring isolator properly
mounted to reduce this transfer of vibrations effectively.

These benefits, however, will become short-
circuited if improper or misaligned isolators are in-
stalled. Figure 11.55 shows improperly loaded spring
isolators supporting a piece of equipment, one being
overcompressed and the other being undercompressed.

Figure 11.56 shows an example of a spring isolating
pipe hanger that is misaligned. The rigid connections
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During the erection
of the wall, install
short sections of duct
to use for sealing the
partition. After the
partition is sealed
and finished, connect
the final ductwork

Gypsum board
partition
(as scheduled)

DuctDuct

DuctDuct

Short duct
section

Minimum 10cm

Before the final ducts
are connected, fill gap
between the gypsum
board and duct with
fibrous material and
seal with caulk

During the
partition
construction,
close smaller
gaps between
the short duct
sections with
two layers of
GWB on each
side of the
wall with
insulation
in the cavity

Short duct
section

Fig. 11.52 Cross section of sealed multiple duct penetra-
tions in a partition (courtesy of Acentech Inc., Cambridge
MA)

established by this misalignment compromise the effec-
tiveness of the system.

Figure 11.57 shows a common design in which pipe
supports are rigidly attached to a floor. Figure 11.58
shows an effective design to reduce the transfer of
vibrations between the piping and the floor using neo-
prene pads and spring hangers. Note that any spring
hangers must be appropriately sized for each situation.
When lateral restraints are required for large equip-
ment, Fig. 11.59 offers a general design for effective
vibration isolation.

Enclosures for Floor-Based Equipment
When barriers and source treatments do not provide
enough noise control, the only practical noise control
option for many floor-based units may be a full enclo-
sure. Key issues for enclosures of HVAC equipment are
access (for maintenance) and ventilation. A practical
design for indoor environments is shown in Fig. 11.60,
in which a heavy curtain system (which can be drawn

a)

b)

Silencer Duct

L

(2/3)L
min.

Angled channel as needed
to support enclosure material

1.2cm space all around, packed with
fibrous material. Seal at least one side
with permanently resilient sealant

1.2cm space all around,
packed with fibrous material.
Seal at least one side with
permanently resilient sealant

5cm glass
fiber
insulation
cover with
2.5cm thick
dense plaster
or 2 layers of
1.58 cm thick
gypsum
board with
all joints
staggered
and sealed
air tight

DuctSilencer

Fig. 11.53a,b Cross section of a duct penetration with ap-
propriate silencer locations. (a) Preferred location; (b) alter-
nate location (courtesy of Acentech Inc., Cambridge MA)

Fig. 11.54 A properly mounted spring isolator

along tracks for access) surrounds the equipment. There
are hoods built into the sliding curtains to provide the
necessary ventilation for the equipment.

Exterior enclosures are discussed in Sect. 11.5.5 be-
low.

Part
C

1
1
.5



432 Part C Architectural Acoustics

Overcompressed
isolator

Undercompressed
isolator

Fig. 11.55 Examples of misaligned and misloaded spring
isolators

Fig. 11.56 A misaligned isolating pipe hanger. Note that
the post is touching the support, thus short-circuiting the
isolating effect of the hanger

Unisolated
supports

Fig. 11.57 Pipe supports rigidly attached to a structural
floor. This can channel vibrations through the building
structure

Seismic sway
cables (if
necessary by
seismic
consultant)

Multiple pipe
support

Single pipe
support

Spring
and neo-
prene
isolation
hangers

Height as
necessary
for
clearance

Enlarged detail of
resilient anchor
restraints

Side view

Anchor bolt

Nuts

Metal
washer
Neoprene
grommet
Base of
stanchion

Neoprene
pad(s)

Steel frame-
work (brace
as necessary
for seismic
restraint)

Fig. 11.58 Pipe floor supports with resilient anchors (cour-
tesy of Acentech Inc., Cambridge MA)

11.5.3 Plumbing Systems

As for HVAC systems, the most common plumbing-
system noise issues are related to reducing flow
turbulence and vibration isolation. For plumbing sys-
tems we are dealing with liquid flow rather than air
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Concrete base or padAnchor

Anchor
bolt
with
metal
washer

Base of
equipment
to be isolated

Double-layer ribbed or
waffle neoprene pad

(selected and sized for
appropriate static deflection)

Steel
shim

1.6 mm

7.9 mm
neoprene

pad

Steel angled
channels
bolted or
welded
together
(for seismic
restraint;
engineered
by others)

Fig. 11.59 Cross section of a lateral restraint for an equip-
ment base on neoprene pads (courtesy of Acentech Inc.,
Cambridge MA)

Fig. 11.60 A heavy curtain enclosure system for floor-
based equipment

flow and pipe noise and vibration isolation rather than
duct noise and vibration isolation. As for ducted sys-
tems, pipes can be wrapped with lagging materials to
reduce breakout noise radiated from the pipe walls. Fig-
ures 11.61 and 11.62 show the general design principles
to bear in mind for pipe penetrations through common
walls and Fig. 11.63 shows these principles in practice
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Fig. 11.61 Cross sections of sealed wall penetrations with
a duct and a pipe (courtesy of Acentech Inc., Cambridge
MA)

in an installation. As much as possible, it is best to keep
active pipes, especially for toilets, out of common walls
with acoustically sensitive spaces.

11.5.4 Electrical Systems

Electrical system noise control issues typically deal
with transformer noise control and the vibration chan-
nel set up by rigid conduit between noise and vibration
sources and noise-sensitive spaces. When transformers
cause noise issues, they are most commonly addressed
by enclosing and vibrationally isolating the transform-
ers. Conduit issues can be addressed by using a flexible
conduit that is not stretched. Figure 11.64 shows an ex-
ample of stretched electrical conduit, which provides
a clear vibration channel from the source to remote
locations.

An air space between an electrical box and other
equipment will break any vibration channel that
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Fig. 11.62 General considerations for sealing pipe penetra-
tions (courtesy of Acentech Inc., Cambridge MA)

Fig. 11.63 Examples of sealed pipe and duct penetrations

would otherwise have been established, as is shown
in Fig. 11.65.

11.5.5 Exterior Sources

Environmental noise sources, such as transportation or
industrial sources, can only be controlled in buildings
by using exterior-wall designs that effectively reduce
noise in the frequency ranges of those sources. Exterior
noise sources, such as rooftop mechanical equipment or

Stretched
flexible
conduit

Fig. 11.64 An example of stretched flexible conduit

Fig. 11.65 An example of separating an electrical box from
mechanical equipment to isolate vibrations

mechanical equipment in lots beside buildings (associ-
ated with the operations of the building in question) can
be controlled by appropriately designed enclosure sys-
tems. Figure 11.66 shows an enclosure for a rooftop
HVAC unit and Fig. 11.67 shows an enclosure for
a rooftop chiller unit.

Note in Fig. 11.66 the relief hoods that provide
ventilation while directing the sound away from the
community. When designing these types of enclo-
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sures, it would be prudent to face any ventilation
openings away from noise-sensitive locations, includ-
ing skylights on the roof of the building supporting

the unit. Figure 11.68 shows a chiller enclosure at
ground level next to a building near a residential
community.

11.6 Acoustical Privacy in Buildings

Privacy issues can be a concern for spaces in which
speech is a predominant source. A partial list of
these areas includes offices, dwelling units, classrooms,
health care facilities, libraries, hotels, and motels.
The office environment provides a good example of
privacy concerns and how they are handled. These
solutions can be used for sound privacy in most
situations.

Fig. 11.66 An example of a rooftop HVAC unit enclosure
(courtesy of Acentech Inc., Cambridge MA)

Fig. 11.67 An example of a rooftop chiller enclosure (cour-
tesy of Acentech Inc., Cambridge MA)

11.6.1 Office Acoustics Concerns

The most common concerns related to office acous-
tics are privacy and distractions. Distractions can affect
productivity. The concern for privacy has recently re-
ceived much broader attention due to the passage
of numerous privacy-protection laws by the US fed-
eral government and the European Parliament. Current
legislation in the USA requires that the transfer of
health records, in whatever format, conforms with re-
quirements for privacy (through the Health Insurance
Portability and Accounting Act of 1996). This includes
privacy for digital transfer of health records between
health care providers and presumably aural privacy as
well. Similar concerns are also entering the realm of
potential legislation for the financial world (through
the Gramm Leach Bliley Financial Services Modern-
ization Act of 1999, relating to privacy of financial
transactions).

11.6.2 Metrics for Speech Privacy

Many metrics are available for rating office environ-
ments, particularly those related to speech privacy.
Listed below are the most popular.

Fig. 11.68 An example of a ground-level chiller enclosure
(courtesy of Acentech Inc., Cambridge MA)
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Fig. 11.69 Correlation between articulation index and
speech privacy (adapted from [11.8])

Articulation Index
Speech intelligibility and acoustics in open-plan offices
have been rated in terms of the articulation index (AI)
until recently (through ANSI S3.5), but AI is still being
used by many consultants. AI is a measure of the ra-
tio between a voice level and steady background noise
(background noise from mechanical equipment, traffic,
or electronic sound masking). AI was originally devel-
oped to evaluate communication systems, and has been
widely used to assess conditions for speech intelligibil-
ity in rooms. AI values range from near 0 (low speech
level and relatively high background noise resulting in
poor intelligibility and good speech privacy) to 1.0 (high
voice level and low background noise resulting in ex-
cellent communication and no speech privacy). When
privacy is desired, it is necessary to have a low AI.
When communication is desired, it is necessary to have
a high AI so people can clearly understand speech.

Figure 11.69 shows how AI relates to speech pri-
vacy. This graph provides general guidelines from
experience. Speech privacy goals are divided into three
categories – minimal distraction, normal speech privacy,
and confidential speech privacy. Minimal distraction
corresponds to an AI of 0.35 or less. Normal speech
privacy, in which the average person can work without
distraction although occasional parts of outside conver-
sations can be heard, corresponds to an AI of 0.20 or
less. Confidential privacy, where the average person can
carry on discussions with assurance that he or she will

a)

b)

Plan view

Cross section

2

1

3

5 6

4

Fig. 11.70a,b The most common paths for sound leakage
between closed offices. (a) Plan view; (b) cross section
(1-diffraction between openings, 2-transmission through
partitions, 3-structure-borne transmission, 4-transmission
through air gaps in wall seals, 5-diffraction through plenum
when partition does not seal to structural deck, and 6-
transmission through ductwork)

not be understood by neighbors, corresponds to an AI of
0.05 or less. There is no privacy when AI exceeds 0.40.

Speech Intelligibility Index
AI has been replaced by the speech intelligibility in-
dex (SII) in recent versions of ANSI S3.5. SII is still,
like AI, a weighted speech-to-noise ratio. However, it
is somewhat more complex to calculate than AI and
includes revised frequency weightings and the mask-
ing effect of one frequency band on nearby frequency
bands. Like AI, it has values that range between 0 and
1, but for the same conditions SII values are slightly
higher than AI values.

Privacy Index
Low AI values indicate a higher degree of privacy. Since
this may be confusing to laypersons who want to fo-
cus on better privacy conditions, a metric called privacy
index (PI) has been published in ASTM E 1130. The
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Table 11.9 AI, SII and PI for open plan offices

AI SII PI Privacy condition Office environment

> 0.65 > 0.75 < 35% Good communication Necessary when communication is desirable (conference
rooms, classrooms, auditoriums, etc.)

> 0.40 > 0.45 < 60% No privacy Clear intelligibility of conversations and distraction

0.35 0.45 65% Freedom from distraction Reasonable work conditions not requiring heavy concentra-
tion or speech privacy; can hear and understand neighboring
conversations

0.20 0.27 80% Normal speech privacy Only occasional intelligibility from a neighbor’s conversation;
work patterns not interrupted

< 0.05 < 0.10 > 95% Confidential speech privacy Aware of neighbor’s conversation but it is not intelligible

Privacy Index (PI) is defined as:

PI = (1−AI) × 100 , (11.9)

presented as a percentage. Higher PI values indicate
more privacy; lower PI values indicate less privacy. For
example, an AI of 0.10 corresponds to a PI of 90%.

Generally accepted practice for the design of open-
plan offices refers to two levels of speech privacy.
Confidential privacy is defined as a condition in which
speech may be detected but not understood. Normal
privacy allows modest amounts of intelligibility, but
normal work patterns are usually not interrupted. These
terms are standardized in ASTM E 1374.

Table 11.9 compares AI, SII, and PI for the same
types of communication and privacy conditions.

Articulation Class
In an open-plan office, the effectiveness of the ceiling
in determining noise reduction is partially related to the
height of the barrier that separates two workstations,
the distance between a talker and listener, and the ab-
sorption characteristics. Therefore, another metric has
been developed to describe a ceiling’s contribution to
noise reduction between typical work areas. This is the
articulation class (AC), measured in an office mock-
up environment in accordance with ASTM E 1110 and
E 1111. The AC is the sum of the weighted sound
attenuation numbers in a series of 15 test bands for
a carefully specified office layout, barrier height, and
ceiling height. AC values usually exceed 100 and typi-
cally range from about 150 to 220, with higher values
indicating more privacy and less speech intelligibility.
AC only considers the effects of noise reduction while
AI, SII, and PI also consider the effects of speech level
and spectrum characteristics, and background level and
spectrum characteristics. Subjective ratings of AC for
levels of privacy (like those listed in Table 11.9) have
not been analyzed at this time.

Speech Interference Level
The international community uses the speech interfer-
ence level (SIL), as defined in ISO 9921-1, to rate
speech communication environments. SIL is defined
as the arithmetic average of sound pressure levels in
the ambient environment at the 500, 1000, 2000, and
4000 Hz octave-band frequencies. SIL can also be ap-
proximated by subtracting 8 dB from the overall dBA
ambient level. Speech intelligibility is rated by the dif-
ference between the SIL and the A-weighted sound
pressure level of speech at the listener’s location. If
this signal-to-noise ratio exceeds 10 dB, that indicates
satisfactory speech communication. Table 11.10 shows
general characteristics of assessing speech intelligibility
against this signal-to-noise ratio.

Speech Transmission Index
While the metrics above are typically used for office
environments to rate privacy between spaces, there is
another metric that is widely used to describe speech
intelligibility within performance and lecture spaces.
This metric, known as the speech transmission index
(STI), can be measured with commercially available in-
struments, often in terms of the metric known as the
rapid speech transmission index (RASTI) to stream-

Table 11.10 ISO 9921-1 speech intelligibility ratings based
on SIL

Signal-to-noise ratio Speech intelligibility
at listener’s position (dBA-SIL) rating

<−6 Insufficient

−6 to −3 Unsatisfactory

−3 to 0 Sufficient

0 to 6 Satisfactory

6 to 12 Good

12 to 18 Very good

> 18 Excellent
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line the monitoring effort. STI measurements consider
octave-band levels between 125 and 8000 Hz while
RASTI measurements only consider octave-band levels
at 500 and 2000 Hz. STI measurement procedures are
standardized in the International Electrotechnical Com-
mission (IEC) standard IEC 60268-16. STI, as AI and
SII, ranges from 0 to 1 and, unlike AI and SII, STI takes
room reverberation into account in its calculations. The
meanings of STI ratings are generally similar to those
for SII, with higher values being good for speech intelli-
gibility and bad for privacy, and low values representing
the opposite. While STI can be measured directly with
instruments, AI and SII cannot.

Ceiling Attenuation Class
With current lightweight construction, walls often do
not extend to the structure. In these cases, the path for
sound through the ceiling plenum is the weakest sound
path between offices. This sound path is rated with
a ceiling attenuation class (CAC) that is analogous to an
STC rating. The CAC value is measured in accordance
with ASTM E 1414 and measures the sound transfer
from one standard-sized office through an acoustic tile
ceiling, then into a standard plenum, and then back into
the neighboring office again through an acoustic tile
ceiling. Mineral fiber acoustic tiles typically have a rat-
ing of CAC 35–39. Fiberglass tiles have significantly
lower CAC values. In cases where there is a return air
grille in the ceiling so air can be exhausted through the
plenum, the field performance will also be significantly
degraded.

11.6.3 Fully Enclosed Offices

If confidential privacy is required, employees must be
located in closed offices with sealed doors and walls
that extend to the structural ceiling. This point needs
to be stressed because many closed offices are designed
with unsealed doors and walls extending to suspended,
nonstructural ceilings, allowing space for HVAC and
electrical equipment. Typical suspended ceilings pro-
vide acoustic absorption for reflected sound but provide
little in the way of transmission loss. This means that
sound will travel through suspended ceiling panels and
over walls as if the walls are barriers, thus limiting the
acoustic privacy of these offices almost to the open-plan
condition. Figure 11.70 shows the most common sound
leakage paths between closed offices.

Speech privacy between two rooms, in general, is
a function of two key parameters – noise reduction
and background noise level. One must not only reduce

the sound level of the unwanted source, but one must
also generate sufficient background noise to mask the
unwanted source, making it less intelligible and less dis-
tracting. Confidential speech privacy can be achieved in
closed offices by using walls having a high transmission
loss. If these types of walls are used, the background
sound levels can remain low. However, for normal
speech privacy in an open-plan office, one must strike
a balance between a lower transmission loss (because
of the limited effectiveness of barriers) and a higher
background noise level (that can often be set using an
electronic masking system).

For typical contemporary offices, the range of con-
struction options is often limited to just the number of
layers of gypsum board on the wall, the type of stud
framing, and whether or not there will be insulation in
the cavity of the wall. A single metal stud with a single
layer of gypsum board on each side of the stud and no
insulation in the cavity will have a performance in the
range of STC 40. If the layers of gypsum board are dou-
bled (that is, two layers on each side), then the overall
STC value will increase by about 5 STC points. There
is negligible difference between the performance of the
wall with gypsum board that is 1.2 cm thick or 1.6 cm
thick. Insulation in the cavity of a wall with a single
stud may provide an additional 3–5 STC points perfor-
mance. Wood studs instead of metal studs can provide
a more rigid path for the transfer of sound (in a single-
wall design), and may degrade the performance by 3–5
STC points. Further improvements above STC 50 re-
quire the use of resilient channels or staggered stud
framing, as discussed in Sect. 11.5.1.

11.6.4 Open-Plan Offices

The open-plan office design has become very popular
through the latter half of the 20th century and into the
21st. This design scheme saves money, promotes team-
work, and improves flexibility for future renovations.
Many employees, however, view this design as a series
of compromises in terms of space, prestige, and (most
of all) privacy. As employees consider changing from
the traditional closed office to open-plan cubicles, they
often have concerns about their abilities to work produc-
tively in what they anticipate to be a noisier, more dis-
tracting workplace. The overwhelming complaint about
open-plan office design is the lack of acoustic privacy.

The first step in the acoustic design of an office
is to determine the needs of the employees in each
area. Employees in some companies may need to com-
municate freely as part of their jobs. These workers
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Electronic sound masking in plenum

Sound
absorbing
ceiling

Partial
height
barrier

Fig. 11.71 Acoustic considerations for open-plan office de-
sign in cross section

Absorb reflecting paths

Seal ends of barrier

Fig. 11.72 Acoustic considerations for open-plan office de-
sign in plan view

would not need any acoustic privacy. Some may need
visual privacy (using barriers that block their line of
sight with others) but need only a minimal amount of
speech privacy. Some may require an environment free
from distractions for the performance of detailed work.
It is often this last category of employees that feels
most compromised by being moved into cubicles. This
category of employee needs normal speech privacy, in
which conversations in adjacent areas can be understood
but are not distracting to concentration on tasks. Normal
speech privacy is attainable for open-plan offices with
the proper acoustic design.

Confidential speech privacy, in which no part
of a conversation can be understood from an adja-
cent space, cannot be expected from open-plan office
designs.

Poor layout

Fair layout

Preferred layout

Fig. 11.73 Acoustical considerations for open-plan office
layout

Assuming a goal of normal speech privacy, there are
three acoustic design principles that must be addressed
to achieve that goal in an open-plan office. These three
principles are to absorb, block and cover speech in
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nearby workstations. These three principles are briefly
discussed below.

Absorption
It is critical to have as much absorption as possible in
rooms designed for open-plan offices. This will stop
sound from reflecting off room surfaces to travel appre-
ciable distances and from causing remote distractions.
If one has to choose surfaces for absorptive treatment,
the ceiling is the most critical surface to start with. This
is because reflections off ceilings significantly compro-
mise the already limited noise reduction capabilities of
barriers. Ceiling finishes should have NRC ratings of at
least 0.90 or an AC of at least 180. Ceiling treatments can
be part of suspended ceilings or surface-applied. Hard,
sound-reflecting lighting fixtures can degrade the perfor-
mance of the ceiling finish, so it is ideal to use indirect
floor lighting to keep the ceiling as absorbing as possi-
ble. If ceiling fixtures must be used, parabolic fixtures
are more appropriate than others because they diffuse the
sound more evenly. Figure 11.71 shows ceiling consid-
erations. Absorptive finishes are also important on the
interior of workstation panels and on any walls that may
reflect sound from one cubicle to another. Figure 11.72
shows how to place absorptive materials strategically on
walls to eliminate reflected paths between cubicles. Car-
peting is important for floors to control impact noise
(such as footfalls, dropped objects and furniture move-
ment) as well as to absorb reflected sound energy.

Blocking
Sound is blocked in open-plan offices by cubicle bar-
riers. To be most effective, these barriers must be
designed to minimize the compromises caused by
diffraction. In this regard, barriers should be at least
1.5 m tall and should have STC ratings of at least 25.
The amount by which STC ratings exceed 25 will not
make a difference in barrier performance (because of
diffraction). They should be arranged to block the line
of sight between workers (as is shown in Fig. 11.73) and
should be flush with floors, window sills, and side walls.

Masking
A typical contemporary office, with sealed windows
and properly maintained HVAC systems, often has
too low of a background noise level to allow for
normal speech privacy. The most practical way to im-
prove privacy under these conditions is to increase the
background noise level by adding an electronic sound
masking system. These systems can include loudspeak-
ers distributed throughout ceiling plenums, hanging

unobtrusively from ceilings, or in each cubicle. These
systems, when set up properly, sound like typical HVAC
noise to employees. Figure 11.21 shows a typical spec-
trum for sound masking systems.

11.6.5 LEED Participation

The U.S. Green Building Council has established
a rating system for the environmental friendliness of
buildings through Leadership in Energy and Environ-
mental Design (LEED) criteria. The LEED certification
process has minimum requirements and potential for
advanced credits for acoustics in the design of educa-
tional and health care facilities, both through the indoor
environmental quality (IEQ) category.

The LEED schools guidelines offer minimum per-
formance requirements [11.9] and the potential for an
extra point of credit for enhanced acoustical perfor-
mance [11.10]. Both of these are meant to optimize
the learning environment by offering learning spaces
with clear communications free of limiting reverbera-
tion or background noise. In each case, the limits are
based on criteria listed in ANSI Standard S12.60 for
all core learning spaces. Reverberation requirements
can be satisfied by using absorptive materials on the
ceiling having a minimum NRC of 0.70. Background
noise is rated in terms of HVAC noise and the STC rat-
ings of perimeter walls of core learning spaces. For the
minimum performance category, HVAC noise must be
45 dBA or less in all core learning spaces and for an
extra credit point for enhanced acoustical performance,
HVAC noise is limited to 40 dBA or less.

The LEED healthcare facilities requirements are
based on the premise of providing environments free
of intrusive or disruptive sound to promote the heal-
ing process. Similar issues to those for schools, such
as reverberation, background noise, and sound insula-
tion, are the bases for this rating as well, but the criteria
are based on the latest version of the Facility Guide-
lines Institute (FGI) Guidelines and associated Sound
and Vibration Design Guidelines for Health Care Fa-
cilities [11.11]. In this rating system, there are two
credit points available, one point for minimum sound
insulation, speech privacy, and background room noise
requirements, and another point for meeting the mini-
mum requirements plus minimizing reverberation and
considering exterior noise sources in building designs.
This second point includes performing measurements
to ensure compliance with the criteria. The require-
ments and associated methods are spelled out in the
LEED [11.12] and FGI guidelines.
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11.7 Relevant Standards

The following standards are referenced in this chapter:

US Standards
ANSI (American National Standards Institute)

S3.5 Standard Methods for Calculation of the
Speech Intelligibility Index

S12.2 Standard Criteria for Evaluating Room Noise
S12.60 Acoustical Performance Criteria, Design Re-

quirements, and Guidelines for Schools

ASTM (American Society of Testing and Materials)

C 423 Standard Test Method for Sound Absorption
and Sound Absorption Coefficients by the Re-
verberation Room Method

E 90 Standard Test Method for Laboratory Mea-
surement of Airborne Sound Transmission
Loss of Building Partitions and Elements

E 413 Classification for Rating Sound Insulation
E 492 Standard Test Method for Laboratory Mea-

surement of Impact Sound Transmission
Through Floor-Ceiling Assemblies Using the
Tapping Machine

E 989 Standard Classification for Determination of
Impact Insulation Class (IIC)

E 1041 Standard Guide for Measurement of Masking
Sound in Open Offices

E 1110 Standard Classification for Determination of
Articulation Class

E 1111 Standard Test Method for Measuring the Inter-
zone Attenuation of Ceiling Systems

E 1130 Standard Test Method for Objective Measure-
ment of Speech Privacy in Open Offices Using
Articulation Index

E 1179 Standard Specification for Sound Sources
Used for Testing Open Office Components and
Systems

E 1332 Standard Classification for Determination of
Outdoor–Indoor Transmission Class

E 1374 Standard Guide for Open Office Acoustics and
Applicable ASTM Standards

E 1375 Standard Test Method for Measuring the Inter-
zone Attenuation of Furniture Panels Used as
Acoustical Barriers

E 1376 Standard Test Method for Measuring the Inter-
zone Attenuation of Sound Reflected by Wall
Finishes and Furniture Panels

E 1414 Standard Test Method for Airborne Sound At-
tenuation Between Rooms Sharing a Common
Ceiling Plenum

International Standards
International Electrotechnical Commission (IEC) and
International Organization for Standardization (ISO)

IEC 60268-16 Objective Rating Of Speech Intelligibil-
ity By Speech Transmission Index

ISO 9921-1 Speech Interference Level And Com-
munication Distances For Persons With
Normal Hearing Capacity In Direct
Communication (SIL method)
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Physiological12. Physiological Acoustics

Eric D. Young

The analysis of sound in the peripheral auditory
system solves three important problems. First,
sound energy impinging on the head must be cap-
tured and presented to the transduction apparatus
in the ear as a suitable mechanical signal; second,
this mechanical signal needs to be transduced into
a neural representation that can be used by the
brain; third, the resulting neural representation
needs to be analyzed by central neurons to ex-
tract information useful to the animal. This chapter
provides an overview of some aspects of the first
two of these processes. The description is entirely
focused on the mammalian auditory system, pri-
marily on human hearing and on the hearing of
a few commonly used laboratory animals (mainly
rodents and carnivores). Useful summaries of non-
mammalian hearing are available [12.1]. Because
of the large size of the literature, review papers
are referenced wherever possible.
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12.1 The External and Middle Ear

The external and middle ears capture sound energy and
couple it efficiently to the cochlea. The problem that
must be solved here is that sound in air is not efficiently
absorbed by fluid-filled structures such as the inner ear.
Most sound energy is reflected from an interface be-
tween air and water, and terrestrial animals gain up to
30 dB in auditory sensitivity by virtue of their external
and middle ears.

Comprehensive reviews of the external and mid-
dle ears are available [12.2, 3]. Figure 12.1 shows
an anatomical picture of the ear (Fig. 12.1a) and
a schematic showing the important signals in this part
of the system (Fig. 12.1b). The external ear collects
sound from the ambient field (pF) and conducts it to
the eardrum where sound pressure fluctuations (pT)
are converted to mechanical motion of the middle-ear
bones, the malleus (with velocity vM), the incus, and
the stapes; the velocity of the stapes (vS) is the input sig-

nal to the cochlea, producing a pressure pV in the scala
vestibuli. The following sections describe the properties
of the transfer function from pF to pV.

12.1.1 External Ear

The acoustical properties of the external ear transform
the sound pressure (pF) in the free field to the sound
pressure at the eardrum (pT). Two main aspects of this
transformation important for hearing are:

1. Efficient capture of sound impinging on the head;
and

2. The directional sensitivity of the external ear, which
provides a cue for localization of sound sources.

Figures 12.2a and 12.2b show external-ear transfer
functions for the human and cat ear, These are the dB
ratio of the sound pressure near the eardrum pT (see
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Fig. 12.1 (a) Drawing of a cross section of the human ear, showing the pinna, the ear canal, eardrum (drum membrane),
middle-ear bones (ossicles), and the labyrinth. The latter contains the vestibular organs of balance and the cochlea, or
inner ear (after [12.8]). (b) Schematic of the mammalian external and middle ears showing the signals referred to in
the text. The middle-ear bones are the malleus, incus, and stapes. The stapes terminates on the cochlea, on a flexible
membrane called the oval window. The velocity of the stapes (vS) is the input signal to the cochlea; it produces a pressure
variation pV in the fluids of the scala vestibuli, one of the chambers making up the cochlea. The structure of the cochlea
and definitions of the scala vestibuli and scala tympani are shown in a later figure. The function of the external and
middle ears is to capture the energy in the external sound field pF and transfer it to stapes motion vS or equivalently,
sound pressure pV in the scala vestibuli

the caption) to the sound in free field (pF). The free-
field sound pF is the sound pressure that would exist at
the approximate location of the eardrum if the subject
were removed from the sound field completely. Thus the
transformation from pF to pT contains all the effects of
putting the subject in the sound field, including those
due to refraction and reflection of sound from the sur-
faces of the body, the head, and the ear and the effects
of propagation down the ear canal. In each case sev-
eral transfer functions are shown. The dotted lines show
pT/pF for sound originating directly in front of the sub-
ject [12.4,5]; these curves are averaged across a number
of ears. The solid lines show transfer functions meas-
ured in one ear from different locations in space [12.6,
7]. These have a fixed azimuth (i. e., position along the
horizon, with 0◦ being directly in front of the subject)
and vary in elevation (again 0◦ is directly in front) in
the median plane. Elevations are given in the legends.
External-ear transfer functions differ in detail from ani-
mal to animal. In particular, the large fluctuations at high
frequencies, above 3 kHz in the human ear and 5 kHz in
the cat ear, differ from subject to subject. These fluctua-
tions are not seen in the averaged ears because they are
substantially reduced by averaging across subjects, al-
though some aspects of them remain [12.7]. However,
the general features illustrated here are typical.

Capture of Sound Energy by the External Ear
Over most of the range of frequencies, the sound pres-
sure is higher at the eardrum than in the free field in
both the human (Fig. 12.2a) and the cat (Fig. 12.2b)
subjects. The amplification results from resonances in
the external ear canal and in the cavities of the pinna;
the resonances produce the broad peak between 2 and
5 kHz [12.2]. Although this seems to be an amplifica-
tion of the sound field, the pressure gain is not by itself
sufficient to specify fully the sound-collecting func-
tion of the external ear, because it is really the power
collection that is important and sound power is the
product of pressure and velocity. A useful summary
measure of power collection is the effective cross-
sectional area of the ear aETM [12.2, 9]. aETM measures
the ear’s ability to collect sound from a diffuse pres-
sure field incident on the head, in the sense that the
sound power into the middle ear is equal to aETM
multiplied by the power density in the sound field. If
aETM is larger (smaller) than the anatomical area of the
eardrum, for example, it means that the external ear is
more (less) efficient at collecting sound than a simple
eardrum-sized membrane located on the surface of the
head.

Figure 12.2c shows calculations of the magnitude of
aETM for the cat and human ear [12.2]. For comparison,
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the horizontal line shows the cross-sectional area of the
external opening of the cat’s pinna. Around 2–3 kHz,
aETM equals the pinna area for the cat. The dotted line
marked ideal is the maximum possible value of aETM,
based on the power incident on a sphere in a diffuse
field [12.2, 9]. At frequencies above 2 kHz, the cat ear
is close to this maximum and the human ear is some-
what lower. At these frequencies, the external ear is
collecting the sound power in a diffuse field nearly as
efficiently as is possible. At lower frequencies, the effi-
ciency drops rapidly; Shaw [12.9] attributes the drop off
to three effects:

1. Loss of pressure gain below the canal resonance
2. Increase in the wavelength of sound compared to the

size of the ear

Fig. 12.2a–c Transformation of sound pressure by the ex-
ternal ear, considered as the ratio pT/pF for the human
ear (a) and the cat ear (b). pT is the pressure measured by
a probe microphone in the ear canal, within 2 mm of the
eardrum for all cases except the solid curves in (a), which
show the pressure at the external end of the ear canal,
with the ear canal blocked. The dashed curves are aver-
aged across many ears, with the sound originating straight
ahead, and the solid curves are data from one ear at various
sound-source directions. The numbers next to the curves
or in the legend identify the elevation of the sound source
relative to the head. In both cases, the azimuth of the
source is fixed. (c) Capture of sound energy by the external
ear, considered as the effective cross-sectional area of the
ear, mapped to the eardrum and plotted versus frequency.
Curves for the cat and human ear are shown. The shaded
bar shows the range of cross-sectional areas of the ear
canal, for comparison. (Fig. 12.2a after [12.4,7]; Fig. 12.2b
after [12.5, 6]; Fig. 12.2c after [12.2]) �

3. Increase in the impedance of the middle ear at low
frequencies, decreasing the ability of the ear to ab-
sorb sound.

Figure 12.2c shows that the external ear can be con-
sidered as an acoustical horn that captures sound and
couples it to the eardrum. A feeling for the effective-
ness of the external ear’s sound collection can be gotten
by comparing the values of aETM to the cross-sectional
area of the ear canal, which is 0.2–0.4 cm2 in cat, shown
by the shaded bar [12.10].

Directional Sensitivity
Directional sensitivity means that the transfer function
of the external ear depends on the direction to the sound
source. As a result, the spectra of broadband sounds
(like noise) will be different, depending on the direction
in space from which they originate. Listeners, both hu-
mans and non-human mammals, are sensitive to these
differences and are able to extract sound localization
information from them. For example, human observers
use these so-called spectral cues to localize sounds in
elevation and to disambiguate binaural difference cues,
helping to distinguish sounds in front and behind the
listener [12.11]. Cats depend on spectral cues to local-
ize sounds in the frontal plane, both in azimuth and
elevation [12.12].

The directional sensitivity of the external ear is gen-
erated by sound reflecting off the structures of the pinna.
In humans the pinna is the cartilaginous structure at-
tached to the external ear canal on the side of the head,
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and includes the cavities that lead to the entrance of the
ear canal [12.13, 14]. In the cat, the pinna is a collec-
tion of similar cartilaginous shapes and cavities leading
to the ear canal, most of which are located on the sur-
face of the head at the ear canal opening. The external
auricle, which forms the movable part of the cat’s ear,
serves as an additional sound collector and a way for
the cat to change the directionality of its ear under vol-
untary control [12.15]. The nature of spectral cues in
human and cat are shown in Figs. 12.2a,b. The most
prominent spectral cue is the notch at mid frequencies
(3–10 kHz in human and 7–20 kHz in cat). The notch
is created as an interference pattern when sound propa-
gates through the pinna. Essentially, there are multiple
sound paths through the pinna due to reflections. These
echoed sounds reach the ear canal after variable de-
lays, depending on the path taken. At the ear canal,
sounds can cancel at frequencies where the delays are
approximately a half-cycle. The interference patterns
so generated produce the notches shown in Fig. 12.2.
The notches occur at relatively high frequencies, where
the wavelength of sound is comparable to the lengths
of the reflection paths in the pinna. In cats, the notch
moves toward higher frequencies as the elevation (or
the azimuth, not shown) increases [12.6, 16]. At higher
frequencies, above 10 kHz in humans and 20 kHz in
cat, there are additional complex changes in the transfer
function of the external ear that are not easily summa-
rized. Cats appear to be sensitive to spectral cues at all
frequencies, but use the notch for localizing sounds and
the higher-frequency characteristics for discriminating
the locations of two sounds [12.17].

12.1.2 Middle Ear

The function of the middle ear is to transfer sound from
the air to the fluids of the cochlea (e.g., from pT to
pV in Fig. 12.1b). The process can be considered as an
impedance transformation [12.18]. The specific acous-
tic impedance of a medium is the ratio of the sound
pressure to the particle velocity of a plane wave prop-
agating through the medium and is a property of the
medium itself. When sound impinges on an interface
between two media with different impedances, such
as an air–water interface, energy is reflected from the
boundary. In the case of air and water, the air is a low-
impedance medium (low pressure, large velocity) and
the water is high impedance medium (high pressure,
low velocity). At the boundary, the pressure and veloc-
ity must be continuous, i. e. equal across the boundary.

If the pressure is equal across the boundary, then the
velocities must be different, larger in air than in wa-
ter because of the differing impedances. A reflection
occurs to allow both boundary conditions to be satis-
fied, i. e., the boundary conditions can only be satisfied
by creating a third reflected wave at the boundary. The
reflected wave, of course, takes energy away from the
wave that propagates through the boundary. Maximum
energy transfer across the boundary occurs when the
impedance of the source medium equals that of the
second medium (no reflection). In the middle ear, the
challenge is to transform the low impedance of air to
the high impedance of the cochlea, so as to couple as
much energy as possible into the cochlea.

The function of the middle ear as a impedance
transformer is schematized in Fig. 12.3a which shows
a drawing of the eardrum and the ossicles in approxi-
mately the anatomically correct position. In this model,
the eardrum and oval window are assumed to act as
pistons and the ossicles are assumed to act as a lever
system, rotating approximately in the plane of the fig-
ure around the axis shown by the white dot in the head
of the malleus [12.3]. The area of the eardrum (ATM) is
larger than the area of the oval window (AOW), which in-
creases the pressure by the ratio pV/pT = ATM/AOW.
The difference in the lengths of the malleus and incus
further increases the pressure by the lever ratio LM/L I,
and decreases the velocity by the same amount. Thus
the net pressure ratio is ATM LM/AOW L I. The area ra-
tio amounts to a factor of 10–40 and the lever ratio is
about 1.2–2.5 in mammalian ears [12.3]. For the cat,
the pressure ratio should be about 36 dB. The impedance
change is the ratio of the pressure and velocity ratios,
ATM/AOW(LM/L I)2, which is about 29 for the human
ear [12.18]. This is less than the ideal value of 3500
for an air–water interface or 135 estimated for an air–
cochlea interface, but is still a significant improvement
(about 15 dB).

In reality, the motion of middle-ear components is
more complex than is assumed in this model [12.2].
First, the eardrum does not displace as a simple piston;
second the malleus and incus undergo a more com-
plex motion than the one-dimensional rotation assumed
in Fig. 12.3a; and third, there are losses in the mo-
tion of the ossicles that are not included in the model.
Figure 12.3b shows a comparison of the actual pres-
sure transformation in the middle ear of a cat, given
as pV/pT. The dashed line is the prediction of the
transformer model (36 dB). The cat ear gives a smaller
pressure pV than the transformer model for the rea-

Part
D

1
2
.1



Physiological Acoustics 12.1 The External and Middle Ear 449

sons listed above, along with the fact that additional
impedances in the middle ear must be considered when
doing this calculation, such as the middle-ear cavity
behind the eardrum, whose air is compressed and ex-
panded as the eardrum moves [12.2]. Figure 12.3c
shows the transfer function as it is usually displayed,

Fig. 12.3 (a) Schematic drawing of the mammalian middle
ear from the eardrum (TM on the left) to the oval win-
dow (OW on the right). The malleus, incus, and stapes
are shown in their approximate anatomical arrangement.
The areas of the TM and OW are shown along with the
lever arms of the malleus (LM) and incus (L I). These lever
arms are drawn as if the malleus and incus rotate in the
plane of the paper around an axis indicated by the white
dot. In reality, the motion is more complex. (b) Ratio of
the sound pressure in scala vestibuli (pV) to the sound
pressure at the eardrum (pT) as a function of frequency,
from measurements by Décory (unpublished doctoral the-
sis, 1989 [12.2]). The dashed line is the prediction of the
model in (a) for typical dimensions of the cat middle ear.
(c) Transfer admittance of the middle ear in human and
cat, given as the velocity at the stapes (vS) divided by the
pressure at the eardrum (pT). (d) Performance of the ex-
ternal and middle ears in sound collection plotted as the
effective area of the ear, referenced to the oval window.
This is the cross-sectional area across which the ear col-
lects sound power in a diffuse sound field, plotted against
frequency; the shaded bar shows the range of cross sec-
tional areas of the oval window for comparison. Comparing
with Fig. 12.2c shows the effect of the middle ear (af-
ter [12.2]) �

as a transfer admittance from the eardrum pressure pT
to the velocity in the cochlea vS.

The overall function of the external and middle ears
in collecting sound from a diffuse field in the envi-
ronment and delivering it to the cochlea is shown in
Fig. 12.3d [12.2]. This figure plots the effective area of
the ear as a sound collector as in Fig. 12.2c, except now
it refers to the sound power delivered to the oval win-
dow. Again, the dashed line shows the performance of
an ideal spherical receiver and is the same line as in
Fig. 12.2c. The effective area has a bandpass shape, as
in Fig. 12.2c, with a maximum at 3 kHz. The sharp drop
off in performance below 3 kHz was seen in the external
ear analysis and occurs because energy is not absorbed
at the eardrum at low frequencies. At higher frequencies
the effective area tracks the ideal receiver, but is about
10–15 dB smaller than the performance at the eardrum,
which approximates the ideal for the cat. This decrease
reflects the losses in the middle ear discussed above.
Although the external and middle ear do not approach
ideal performance, they do serve to couple sound into
the cochlea. As a comparison to the effective area in
Fig. 12.3d, the cross-sectional area of the oval window
is about 0.01–0.03 cm2 in the cat and human (shaded
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bar). Thus the effective area is larger than the area of
the oval window over the mid frequencies. Moreover, if
there were no middle ear, the collecting cross section of

the oval window would be smaller by about 15–30 dB
because of the impedance mismatch between the air and
cochlear fluids [12.19].

12.2 Cochlea

The cochlea contains the ear’s transduction apparatus,
by which sound energy is converted into electrical activ-
ity in nerve cells. The conversion occurs in transduction
cells, called inner hair cells, and is transferred to neu-
rons in the auditory nerve (AN) that connect to the
brain. However the function of the cochlea is more than
a transducer. The cochlea also does a frequency analy-
sis, in which a complex sound such as speech or music is
separated into its component frequencies, a process not
unlike a Fourier or wavelet transform. Auditory percep-
tion is largely based on the frequency content of sounds;
such features as the identity of sounds (which speech
sound?), their pitches (which musical note?), and the
extent to which they interact in the ear (e.g., to make
it hard to hear one sound because of the presence of
another) are determined by the mixture of frequencies
making them up (Chap. 13).

In this section, the steps in the transduction process
in the inner ear or cochlea are described. The prob-
lems solved in this process include frequency analysis,
mentioned above, but also regulating the sensitivity of
process. Transduction must be very sensitive at low
sound levels, so that sounds can be detected near the
limit imposed by Brownian motion of the components
of the cochlea [12.20]. At the same time, the cochlea
must function over the wide dynamic range of sound in-
tensities (up to 100 dB or more) that we encounter in the
world. Responses to this wide dynamic range must be
maintained in neurons with much more limited dynamic
ranges, 20–40 dB [12.21]. In part this is accomplished
by compressing the sound in the transduction process,
so that acoustic sound intensities varying over a range
of 60–100 dB are mapped into neural excitation over
a much more limited dynamic range. Thus cochlear sen-
sitivity must be high at low sound levels to allow soft
sounds to be heard and must be reduced at high sound
levels to maintain responsiveness without saturation.
Both frequency tuning and dynamic-range adjustment
depend on the same cochlear element, the second set of
transducer cells called outer hair cells. Whereas inner
hair cells convey the representation of sound to the AN,
the outer hair cells participate in cochlear transduction
itself, making the cochlea more sensitive, increasing
its frequency selectivity, and compressing its dynamic

range. These processes are described in more detail be-
low.

The remainder of this chapter assumes some knowl-
edge of neural excitation and synaptic transmission.
These subjects are too extensive to review here, but can
be quickly grasped from an introductory text on neuro-
physiology or neuroscience.

12.2.1 Anatomy of the Cochlea

The inner ear consists of the cochlea and the AN.
The cochlea contains the transduction apparatus; it is
a coiled structure, as shown in Fig. 12.1a. A cross-
sectional view of a cochlea is shown in Fig. 12.4a. This
figure is a low-resolution sketch that is provided to
show the locations of the major parts of the structure.
The section is cut through the center of the cochlear
coil and shows approximately 3.5 turns of the coil. The
cochlea actually consists of three fluid-filled chambers
(or scalae) that coil together. A cross section of one turn
of the spiral showing the three chambers is in Fig. 12.4b.
The scala tympani (ST) and scala media (SM) are sep-
arated by the basilar membrane, a complex structure
consisting of connective tissue and several layers of
epithelial cells. The scala vestibuli (SV) is separated
from the SM by Reissner’s membrane, a thin epithelial
sheet consisting of two cell layers. Reissner’s mem-
brane is not important mechanically in the cochlea and
is usually ignored when discussing cochlear function. In
the following, the mechanical properties of the basilar
membrane are discussed without reference to the Reiss-
ner’s membrane and it is usual to speak of the basilar
membrane as if it separated the SV and ST.

What Reissner’s membrane does do is to separate
the fluids of the SV from the SM. The fluids in the
SV and ST are typical of the fluids filling extracellu-
lar spaces in the body; this fluid, called perilymph is
basically a dilute NaCl solution, with a variety of other
constituents but with low K+ concentration. In contrast,
the fluid in SM, called endolymph, has a high K+ con-
centration with low Na+ and Ca2+ concentrations. Such
a solution is rare in extracellular spaces, but is com-
monly found bathing the apical surfaces of hair cells
in sensory organs from insects to mammals, suggesting
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that the high potassium concentration is important for
hair-cell function. The endolymph is generated in the
stria vascularis, a specialized epithelium in the lateral
wall of the SM by a complex multicellular active-
transport system [12.22].

Mounted on the basilar membrane is the organ of
Corti, which contains the actual cochlear transduction

Fig. 12.4 (a) Sketch of a cross section of the cochlea, cut
through the center of the coil. The cochlear spirals are cut
in cross section, shown at higher resolution in (b). The
cochlea consists of three fluid-filled chambers that spiral
together: [ST1]ST – scala tympani, SV – scala vestibuli,
and SM – scala media. H is the helicotrema, a connection
between the SV and ST at the apex of the cochlea. The
cochlear transducer has three essential functional parts: 1 –
the basilar membrane which separates the SM and ST; 2 –
the organ of Corti, which contains the hair cells, and 3 –
the stria vascularis which secretes the fluid in the SM and
provides an energy source to the transducer. The AN fibers
have their cell bodies in the spiral ganglion (SG); their ax-
ons project to the brain in the AN. (b) Cross section of
the cochlear spiral showing the three scalae. The scalae
are fluid-filled; the SV and ST contain perilymph. The SM
contains endolymph. (c) Schematic drawing of the organ of
Corti showing the inner (IHC) and outer hair cells (OHC)
and several kinds of supporting cells. The spaces contain-
ing perilymph are marked with asterisks and the spaces
containing endolymph with daggers (†). TM is the tecto-
rial membrane, which lies on the organ of Corti and is
important in stimulating the hair cells. Nerve fibers enter
the organ from the SG (off to the left). Both afferent and
efferent fibers are present. Afferents are the SG neurons
that are connected synaptically to hair cells, mainly IHCs,
and carry information to the brain. Efferents are the axons
of neurons located in the brain which connect to OHCs and
to the afferents under the IHCs (Fig. 12.5) (after [12.23]) �

apparatus, shown in more detail in Fig. 12.4c. The organ
of Corti consists of supporting cells and hair cells. There
are two types of hair cells, called inner (IHC) and outer
(OHC), because of their positions. The AN fibers and
their cell bodies in the spiral ganglion (SG in Fig. 12.4a)
occupy the center of the cochlear coil. Spiral ganglion
cells have two processes: a distal process that invades
the organ of Corti and innervates one or more hair cells,
usually an IHC, and a central process that travels in the
AN to the brain.

The arrangement of the nerve fibers in the cochlea
is reviewed in detail by Ryugo [12.24] and by
Warr [12.25] and is summarized in Fig. 12.5. Both affer-
ent and efferent fibers are present. The afferents are the
neurons mentioned above with their cell bodies in the
SG which carry information from the hair cells to the
brain. The efferents are the axons of neurons in the brain
that terminate in the cochlea and allow central control of
cochlear transduction.

Considering the afferents firsts, there are two groups
of SG neurons, called type I and type II. Type I neurons
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Fig. 12.5 A schematic of the wiring diagram of the mam-
malian cochlea. The hair cells are on the left. Afferent
terminals on hair cells, those in which the hair cell excites
an AN fiber, are shown lightly shaded; efferent terminals,
in which an axon from a cell body in the central nervous
system contacts a hair cell or another terminal in the or-
gan of Corti, are shown heavily shaded. All the synapses
in the cochlea are chemical. Inner hair cells (IHC) are con-
tacted by the distal processes of AN fibers. These fibers
have bipolar cell bodies in the spiral ganglion; their axons
are myelinated and travel centrally (type I fibers) to inner-
vate principal neurons in the cochlear nucleus (CN). Outer
hair cells (OHC) are innervated by a small population of
type II spiral ganglion cells whose axons terminate in gran-
ule cell regions in the CN. The efferent fibers to the cochlea
are called olivocochlear neurons; they originate in the su-
perior olivary complex (SOC, box at lower right), another
part of the central auditory system. There are two kinds of
efferents: the medial olivocochlear system (MOC), origi-
nates near the medial nucleus of the SOC and innervates
OHCs. The lateral olivocochlear system (LOC) originates
near the lateral nucleus of the SOC and innervates affer-
ent terminals of type I afferent fibers under the IHCs. The
MOC and LOC contain fibers from both sides of the brain,
although most LOC fibers are ipsilateral and most MOC
fibers are contralateral, as drawn. The exact ratios vary with
the animal

make up about 90–95% the population; their distal pro-
cesses travel directly to the IHC in the organ of Corti.
Each type I neuron innervates one IHC, and each hair
cell receives a number of type I fibers; the exact num-
ber varies with species and location in the cochlea, but
is typically 10–20. The connection between the IHC

and type I hair cells is a standard chemical synapse,
by which the hair cell excites the AN fiber. Type I AN
fibers project into the core areas of the cochlear nucleus,
the first auditory structure in the brain; the type I fibers
plus the neurons in the core of the cochlear nucleus
make up the main pathway for auditory information
entering the brain.

The remaining 5–10% of the spiral ganglion neu-
rons, type II, innervate OHCs. The fibers cross the fluid
spaces between the IHC and the OHC (shown by the
asterisks in Fig. 12.4c) and spiral along the basilar mem-
brane beneath the OHCs toward the base of the cochlea
(toward the stapes, not shown) innervating a few OHCs
along the way. Although the type II fibers are like type I
fibers in that they connect hair cells (in this case OHC)
to the cochlear nucleus, there are some important dif-
ferences. The axons of type II SG neurons are unmyeli-
nated, unlike the type I fibers; their central processes ter-
minate in the granule-cell areas of the cochlear nucleus,
where they contact interneurons, meaning neurons that
participate in the internal circuitry of the nucleus but
do not contribute their axons to the outputs of the nu-
cleus. Finally, type II fibers do not seem to respond to
sound [12.26–28], even though they do propagate ac-
tion potentials [12.29,30]. It is clear that the type I fibers
are the main afferent auditory pathway, but the role of
the type II fibers is unknown. In the remainder of this
chapter, the term AN fiber refers to type I fibers only.

The efferent neurons have their cell bodies in an au-
ditory structure in the brain called the superior olivary
complex; for this reason, they are called the olivo-
cochlear bundle (OCB). The anatomy and function of
the OCB efferents are reviewed by Warr [12.25] and by
Guinan [12.31]. Anatomically, there are two groups of
OCB neurons. So-called lateral efferents (LOC) travel
mainly to the ipsilateral cochlea and make synapses on
the dendrites of type I afferents under the IHC. Thus
they affect the afferent pathway directly. The second
group, medial efferents (MOC), travel to both the ipsi-
lateral and contralateral ears and make synapses on the
OHCs. Their effect on the afferent pathway is thus in-
direct, in that they act through the OHC’s effects on the
transduction process in the cochlea.

12.2.2 Basilar-Membrane Vibration and
Frequency Analysis in the Cochlea

An overview of the steps in cochlear transduction is
shown in Fig. 12.6a. The sound pressure at the eardrum
(pT) is transduced into motion of the middle-ear os-
sicles, ultimately resulting in the stapes velocity (vS),
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Fig. 12.6 (a) Summary of the steps in direct cochlear
transduction. (b) Schematic diagram showing the basi-
lar membrane in an unrolled cochlea and the nature
of cochlear frequency analysis. A snapshot of basilar-
membrane displacement (greatly magnified) by a tone with
frequency near 3 kHz is shown. The frequency left scale
shows the location of the maximum membrane displace-
ment at various frequencies for a cat cochlea. For a human
cochlea, the frequency scale runs from about 20 Hz to
15 kHz. The array of AN fibers is shown by the parallel
lines on the right. Each fiber innervates a hair cell at one
place on the basilar membrane, so the fiber’s sensitivity is
maximal at the frequency corresponding to that place, as
shown by the left scale. In other words, the separation of
frequencies done by the basilar membrane is preserved in
the AN fiber array (after [12.32] with permission)

which couples sound energy into the SV. The transfor-
mations in this part of the system have mainly to do
with acoustical mechanics and were described in the
first section above. The stapes motion produces a sound
pressure signal in the cochlea that results in vibration of
the basilar membrane, which is the topic of this section.
The vibration results in stimulation of hair cells, through
opening and closing of transduction channels built into
the cilia that protrude from the top of the hair cell, de-

scribed in a later section. The hair cells are synaptically
coupled to AN fibers, so that basilar-membrane vibra-
tion is eventually coupled to activation of the nerve.

A key aspect of cochlear function is frequency
analysis. The nature of cochlear frequency analysis is
illustrated in Fig. 12.6b, which shows the cochlea un-
coiled, with the basilar membrane stretching from the
base, the end near the stapes, to the apex (the heli-
cotrema). As described above, the basilar membrane
lies between (separates) the ST and the SM/SV. The
sound entering the cochlea through the vibration of the
stapes is coupled into the fluids of the SV and SM
at the base, above the basilar membrane in Fig. 12.6.
The sound energy produces a pressure difference be-
tween the SV/SM and the ST, which causes vertical
displacement of the basilar membrane. The displace-
ment is tuned, in that the motion produced by sound
of a particular frequency is maximum at a particular
place along the cochlea. The resulting place map is
shown by the frequency scale on the left in Fig. 12.6.
Basilar-membrane displacement was first observed and
described by von Békésy [12.33]; more recent data are
reviewed by Robles and Ruggero [12.34].

Basilar-Membrane Motion
The displacement of any single point on the basilar
membrane is an oscillation vertically (perpendicular to
the surface of the membrane); the relative phase (or tim-
ing) of the oscillations of adjacent points is such that
the overall displacement looks like a traveling wave,
frequently described as similar to the waves propagat-
ing away from an object dropped into a pool of water.
Essentially, the motion of the basilar membrane is de-
layed in time as the observation point moves from base
to apex. Figure 12.7a shows an estimate of the cochlear
traveling wave on the guinea-pig basilar membrane,
based on electrical potentials recorded across the mem-
brane [12.35]. The horizontal dimension in this figure
is distance along the basilar membrane, with the base at
left and the apex at right. The vertical dimension is the
estimate of displacement, shown at a greatly expanded
scale. The oscillations marked “2 kHz” show membrane
deflections in response to a 2 kHz tone at five succes-
sive instants in time (labeled 1–5). The wave appears
to travel rightward, from the base toward the apex; as
it does so, its amplitude changes. When the stimulus is
a tone, the displacement envelope (i. e., the maximum
amplitude of the displacement at each point along the
basilar membrane) has a single peak at a location that
depends on the tone frequency (approximately at point 2
in this case). In Fig. 12.7a, displacement envelopes are
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shown by dashed lines for 0.5 kHz and 0.15 kHz tones;
these envelopes peak at more apical locations, com-
pared to 2 kHz. The locations of the envelope peaks are
given by the cochlear frequency map for the cat cochlea,
shown by the scale running along the basilar membrane
in Fig. 12.6b. Notice that the scale is logarithmic: the
position along the basilar membrane corresponds more
closely to log than to linear frequency. The logarithmic
frequency organization corresponds to a number of phe-
nomena in the perception of sound, such as the fact that
musical notes are spaced logarithmically in frequency.

Fig. 12.7 (a) An estimate of the instantaneous displace-
ment of the basilar membrane in the guinea-pig cochlea
for a 2 kHz tone (solid lines) and estimates of the enve-
lope of the displacement for two lower-frequency tones
(dashed lines). Distance along the basilar membrane runs
from left (base) to right (apex) and the displacement of
the membrane is plotted vertically. The estimates were
obtained by measuring the cochlear microphonic at three
sites, indicated by the three vertical lines, and then interpo-
lating or extrapolating to other locations using an informal
method [12.35]; this method can be expected to produce
only qualitatively correct results. The 2 kHz estimates are
shown at 0.1 ms intervals. Waveforms at successive times
are identified with the numbers 1 through 5. The dashed
curves were drawn through the maximum displacements of
similar data for 0.5 and 0.15 kHz tones, which were scaled
to have the same maximum displacement as the 2 kHz data.
The cochlear microphonic is produced by hair cells, mainly
OHCs, and is roughly proportional to basilar-membrane
displacement. The ordinate scale has been left as micro-
volts of cochlear microphonic. The scale markers at lower
left show distance from the origin. (b) Measurements of
the gain of the basilar membrane (root mean square dis-
placement divided by pressure at the eardrum) for two
data sets. In each case, basilar-membrane displacement at
one place was measured with an interferometer. Both fre-
quency (abscissa) and sound level (symbols) were varied.
The curves peaking near 9–10 kHz are from the chin-
chilla cochlea [12.36] and the curves peaking near 20 kHz
are from the guinea pig cochlea [12.37] (after [12.34]).
(c) Basilar-membrane input–output curves, showing the ve-
locity of membrane displacement (ordinate) versus sound
intensity (abscissa), at various frequencies, marked on the
plots (kHz). The dashed line at right shows the linear
growth of basilar-membrane motion (velocity proportional
to sound pressure). The curve for 10 kHz is extrapolated
to low sound levels (dashed line at left) under the as-
sumption of linear growth at low sound levels (Fig. 12.7a
after [12.35], Fig. 12.7b after [12.34], and Fig. 12.7c af-
ter [12.36]) �

The basilar-membrane responses in Fig. 12.7a illus-
trate the property of tuning, in that the displacement
in response to a tone is confined to a region of the
membrane centered on a place of maximal displace-
ment. Tuning can be further understood by plotting
basilar-membrane displacement as in Fig. 12.7b. This
plot shows the displacement plotted against frequency
at a fixed location, thus providing a direct measure
of the frequency sensitivity of a place on the mem-
brane. Data are shown at two locations from separate
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experiments (in different species). The ordinate actually
shows basilar-membrane gain, defined as membrane
displacement divided by sound pressure at the eardrum.
At low sound levels (20 dB, plotted with empty circles),
the gain peaks at a particular best frequency (BF) and
decreases at adjacent frequencies. If such measurements
could be repeated at multiple locations along the basilar
membrane (which is difficult because of the restricted
anatomical access to the basilar membrane), these gain
functions would move toward higher frequencies at
more basal locations in the cochlea, as predicted by the
displacement functions in Fig. 12.7a.

Notice that the gain and tuning of the basilar-
membrane response near the BF varies with sound level.
At low sound levels (20 dB in Fig. 12.7b), gain is high
and the tuning is sharp (i. e. the width of the gain func-
tions is small), giving a clear BF; at high sound levels
(100 dB), the gain is substantially reduced, especially
in the vicinity of the low-sound-level BF, and the fre-
quency at which the gain is maximum moves to a lower
frequency, often about a half-octave lower. The tuning
also becomes much broader.

Basilar Membrane and Compression
The fact that basilar-membrane gain changes with
sound level was first described by Rhode [12.38]; this
finding revolutionized our understanding of the au-
ditory system, most importantly by introducing the
idea of an active cochlea, meaning one in which the
acoustic energy entering through the middle ear is
amplified by an internal energy-utilizing process to pro-
duce cochlear responses [12.39–44]. The existence of
amplification has been demonstrated by calculations
of energy flow in the cochlea. However, a simpler
evidence for cochlear amplification is the change in
cochlear gain functions with death. The dependence of
gain on sound level seen in Fig. 12.7b occurs only in
the live, intact cochlea; after death, the cochlear gain
functions resemble those at the highest sound levels
in living animals (e.g. at 100 dB in Fig. 12.7b). Most
important, the post-mortem gain functions are linear,
meaning that the gain is constant, regardless of stimu-
lus intensity, at all frequencies. In the live cochlea, as
shown in Fig. 12.7b, the gain functions are linear only
at low frequencies (below 6 kHz or 12 kHz for the two
sets of data shown). Presumably, the post-mortem gain
functions are the result of passive basilar-membrane
mechanics, i. e., the result of the mechanical properties
of the cochlea without any energy sources. The dif-
ference between the gain at the highest sound levels
in Fig. 12.7b and those at low sound levels thus re-

flects an amplification process, often called the cochlear
amplifier.

Additional evidence for a cochlear amplifier comes
from the study of otoacoustic emissions, OAE [12.45,
46]. OAEs are sounds produced in the cochlea that can
be measured at the eardrum, after propagating in the
backwards direction through the middle ear. OAEs can
be produced by reflection of the cochlear traveling wave
from irregularities in the cochlea [12.47, 48] or from
nonlinear distortion in elements of the cochlea [12.49].
In either case amplification of the sound is necessary to
explain the characteristics of the emitted sound [12.46],
but see also [12.50]. There are several different kinds
of OAEs, varying in the mode of production. Most rel-
evant for the present discussion are the spontaneous
emissions, sounds that are present in the ear canal with-
out any external sound source. Such sounds necessitate
an acoustic energy source in the cochlea, of the type
postulated for the cochlear amplifier.

A variety of evidence suggests that cochlear ampli-
fication depends on the OHCs. When these cells are
destroyed, as by an ototoxic antibiotic, the sharply tuned
high-sensitivity portion of the tuning of auditory-nerve
fibers is lost [12.51]; presumably this change reflects
a similar change at the level of the basilar membrane,
i. e., loss of the high-gain sharply tuned portion of
the basilar-membrane response. Electrical stimulation
of the MOC (Fig. 12.5), which affects only the OHC,
produces similar losses in both basilar-membrane mo-
tion [12.52] and neural responses [12.53, 54]. Finally,
stimulation of the MOC reduces OAE [12.55, 56]. In
each case, a neural input to a cellular element of the
cochlea, the OHC, affects mechanical processes in the
cochlea. These data suggest that the OHCs participate
in producing basilar-membrane motion. The possible
mechanisms for this effect are discussed in Sect. 12.2.4.

The sound-level dependence of gain observed in
Fig. 12.7b shows that the sensitivity of the cochlea is
regulated across sound levels. The gain is high at low
sound levels and decreases at higher sound levels; as
a result, the output varies over a narrower dynamic
range than the input, which is compression. A dif-
ferent view of compression is shown in Fig. 12.7c,
which plots basilar-membrane input/output functions at
various frequencies for a 10 kHz site on a chinchilla
basilar membrane [12.36]. Basilar-membrane response
is measured as velocity, instead of displacement as in
previous figures. However, velocity and displacement
are proportional for a fixed frequency, so in terms of
input/output functions it does not matter which variable
is plotted. Figure 12.7c has logarithmic axes, so a linear
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growth of response, in which the output is proportional
to the input, corresponds to a line with slope 1, as for
the dashed line at right. At low sound levels (< 40 dB),
the response is largest at 10 kHz, as it should be for the
BF. The response to 10 kHz is roughly linear at very
low sound levels (< 20 dB), but has a lower slope at
higher levels. Over the range of input sound levels from
20–80 dB SPL, the output velocity increases only 10-
fold or 20 dB, a compression factor of about 0.3. At
lower frequencies (8 and 2 kHz), the slope is closer to 1,
as expected from the constant gain at low frequencies in
Fig. 12.7b. At higher frequencies (11 kHz), the growth
of response is also compressive, but with a lower gain.
Finally, at very high frequencies (16 kHz), the growth is
again approximately linear.

The behavior shown in Fig. 12.7b,c is typical of
cochleae that are judged to be in the best condition dur-
ing the measurements. As the condition of the cochlea
deteriorates, the input/output functions become more
linear and their gain decreases [12.57], reflecting a loss
of cochlear amplification. Although such data are not
available for the example in Fig. 12.7c, the typical post-
mortem behavior of input/output functions at BF is
something like the dashed line used to illustrate lin-
ear growth. Post-mortem functions have a slope of 1
at all sound levels and typically intercept the compres-
sive BF input/output function at levels of 70–100 dB.
Assuming that the cochlear amplifier is not functioning
post-mortem, the gain of the amplifier can be defined
as the horizontal distance between the linear-growth
portion of the BF curve in the normal ear and the
post-mortem curve. With this definition of gain, the
compression region of the input/output function can be
understood as resulting from a gradual decrease in am-
plification as the sound grows louder.

The compression of basilar-membrane response
shown in Fig. 12.7c has a number of perceptual cor-
relates [12.58]. The degree of compression can be
measured in human observers using a masking tech-
nique, motivated by the behavior of basilar-membrane
data like Fig. 12.7 [12.59, 60]; the compression meas-
ured in these studies is comparable to that measured
in basilar-membrane data. Moreover, compression can
be used to explain a number of perceptual phenomena,
including aspects of temporal processing and loudness
growth. In hearing-impaired persons, compression is
lost to varying degrees, consistent with the effects of
loss of OHCs on basilar-membrane responses discussed
above (i. e., the slopes of basilar-membrane input/output
functions steepen). Some of the effects of hearing im-
pairment can be explained by a change in compression

ratio from 0.2–0.3 to a value near 1. An important ex-
ample is loudness recruitment. If loudness is somehow
proportional to the overall degree of basilar-membrane
motion, then a steepening of the growth of basilar-
membrane motion with sound intensity should lead to
a steepening of loudness growth with intensity. This
is the major effect observed on loudness growth with
hearing impairment.

Mechanisms Underlying Basilar-Membrane
Tuning

The current understanding of how the properties of
basilar-membrane motion arise is incomplete. Work on
this subject has proceeded along two lines:

1. Collection of evermore accurate data on the motion
of the basilar membrane and the components of the
organ of Corti; and

2. Models of the observed motion of the basilar mem-
brane based on physical principles of mechanics and
fluid mechanics.

Progress in this field has been limited by the dif-
ficulty of obtaining data, however, and modelers have
generally responded vigorously to each new advance in
observing and measuring basilar-membrane motion. At
present, the major impasse in this work seems to be the
difficulty of observing the independent motion of the
components of the organ of Corti. Such data are neces-
sary to resolve questions about the mode of stimulation
of hair cells by the motion of the basilar membrane and
questions about the effects of OHC and stereociliary
movements on the basilar membrane.

Modeling of basilar-membrane motion has been ap-
proached with a variety of methods in an attempt to
account for the properties of the motion. Comprehensive
reviews of this literature and its relationship to important
aspects of data on basilar-membrane motion are avail-
able [12.61, 62]. The next paragraphs provide a rough
summary of the current understanding of this topic.

Tuning or the separation of frequencies in basilar-
membrane motion is usually attributed to the variation
in the stiffness and (sometimes) the mass of the basilar
membrane along its length. In most basilar-membrane
models, the points on the basilar membrane are as-
sumed to move independently; that is, the longitudinal
stiffness coupling adjacent points on the membrane is
assumed to be small. With this assumption, the resonant
frequency of a point on the basilar membrane should
vary approximately as the square root of its stiffness
divided by its mass, using the usual formula for the
resonant frequency of a mass–spring oscillator. In so-
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called long-wave models, it is this resonant frequency
that determines the mapping of frequency into place in
the cochlea. Experimentally, the stiffness of the basi-
lar membrane varies from high near the base to low at
the apex [12.33, 63]. Thus the stiffness gradient is qual-
itatively consistent with the observed place–frequency
map; however, whether the stiffness gradient is suffi-
cient to fully account for tuning in the cochlea is not set-
tled, because of the difficulty of making measurements.

Recent efforts in cochlear modeling have been de-
voted to micromechanical models, i. e., models of the
detailed mechanics of the organ of Corti and the tec-
torial membrane [12.49, 62]. Movement of the basilar
membrane is coupled to the hair cells through the or-
gan of Corti, particularly through the relative movement
of the top surface of the organ (the reticular lamina)
in which the hair cells are inserted and the overlying
tectorial membrane (refer to Fig. 12.4c). Mechanical
feedback from the OHCs is similarly coupled into the
basilar membrane through the same structures. The
structure of the organ of Corti is complex and hetero-
geneous, with considerable variation in the stiffness of
its different parts [12.64]. Thus a full account of the
properties of the basilar membrane awaits an adequate
micromechanical model, based on accurate data on the
mechanical properties of its components.

In both models and measurements, the sound pres-
sure difference across the basilar membrane drops
rapidly to zero past the point of resonance. This be-
havior is illustrated by the high-frequency part of the
data in Fig. 12.7b and the lack of deflection beyond the
peak of the responses in Fig. 12.7a. This fact means that
there is no pressure difference across the basilar mem-
brane at the apical end of the cochlea, so the helicotrema
does not affect basilar-membrane mechanics (in partic-
ular it does not short out the pressure difference driving
the basilar membrane) except at very low frequencies,
where the displacement is large near the apex. The role
of the helicotrema is presumably to prevent the genera-
tion of a constant pressure difference across the basilar
membrane; such a difference would interfere with the
delicate transducer system in the organ of Corti.

The frequency analysis done by the basilar mem-
brane is preserved by the arrangement of hair cells and
nerve fibers in the cochlea (Fig. 12.6b). A particular hair
cell senses only the local motion of the basilar mem-
brane, so that the cochlear place map is recapitulated in
the population of hair cells spread out along the basi-
lar membrane. Moreover, each AN fiber innervates only
one IHC, so the cochlear place map is again recapitu-
lated in the AN fiber array. As a result, AN fibers that

innervate, say, the 3 kHz place on the basilar membrane
are maximally activated by 3 kHz energy in the sound
and it is the level of activation of those fibers that pro-
vides information to the brain about the 3 kHz energy
in the sound. The representation of sound in an array of
neurons tuned to different frequencies is the basic or-
ganizing principle of the whole auditory system and is
called tonotopic organization.

12.2.3 Representation of Sound
in the Auditory Nerve

Before discussing cochlear transduction in hair cells, it
is useful to introduce some properties of the responses
to sound of AN fibers. Of course, the properties of AN
fibers derive directly from the properties of the basi-
lar membrane and the transduction process in IHCs.
AN fibers encode sound using trains of action poten-
tials, which are pulses fired by a fiber when stimulated
by a hair-cell synapse. Information is encoded in the
rate at which the fiber discharges action potentials or
by the temporal pattern of action potentials. Fibers are
active spontaneously at rates that vary from near 0 to
over 100 spikes/s. When stimulated by an appropriate
sound, the fiber’s discharge rate increases and the tem-
poral patterning of action potentials often changes as
well. Figure 12.8 shows some basic features of the en-
coding process. Reviews of the representation of sound
by auditory neurons are provided by Sachs [12.65], Eg-
germont [12.66] and Moore [12.67]. Another view is
provided by recent attempts to model comprehensively
the responses of AN fibers [12.68–70] or to analyze the
information encoded using theoretical methods [12.71].

The tuning of the basilar membrane is reflected in
the tuning of AN fibers as is shown by the tuning curves
in Fig. 12.8a. This figure shows tuning curves from 11
AN fibers with different BFs. Each curve shows how
intense a tone has to be (ordinate) in order to pro-
duce a criterion change in discharge rate from a fiber,
as a function of sound frequency (abscissa). The tun-
ing curves qualitatively resemble the basilar-membrane
response functions shown in Fig. 12.7b for the low-
est sound levels (after being turned upside down).
The comparison should not be exact because the data
are from different species and the tuning curves in
Fig. 12.8a are constant-response contours whereas the
basilar-membrane functions in Fig. 12.7b are constant-
input-level response functions. However, a quantitative
comparison of threshold functions for the basilar mem-
brane and AN fibers from the same species yields
a good agreement, and it is generally considered that
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Fig. 12.8a–c Basic properties of responses to sound in AN fibers. (a) Tuning curves, showing the threshold sound level
for a response plotted versus frequency. the dashed line shows the lowest thresholds across a population of animals.
(b) Rate versus sound-level plots for responses to BF tones in three AN fibers. Rate in response to a 200 ms tone is shown
by the solid lines and SR by the dashed lines, which actually plot the SR during the 400 ms immediately preceding
each stimulus. The fibers had similar BFs (5.36, 6.18, and 5.74 kHz) but different spontaneous rates and were recorded
successively in the same experimental preparation. The fluctuations in the curves derive from the randomness in the
responses remaining after three-point smoothing of the curves. (c) Strength of phase-locking in a population of AN fibers
to a BF tone plotted as a function of BF. Phase-locking is measured as the synchronization index, equal to the magnitude
of the Fourier transform of the spike train at the stimulus frequency divided by the average rate. The inset illustrates
phase-locked spike trains (Fig. 12.8a after [12.72], Fig. 12.8c after [12.73])

AN tuning is accounted for by basilar-membrane tun-
ing [12.34]. The AN consists of an array of fibers tuned
across the range of frequencies that the animal can hear.
The frequency content of a sound is conveyed by which
fibers are activated, the tonotopic representation dis-
cussed in the previous section.

The perceptual sense of sound frequency, of the
highness or lowness of a simple sound like a tone, is
strongly correlated with stimulus frequency and, there-
fore, with the population of AN fibers activated by the
sound. However, the pitch of a complex sound, as for
musical sounds or speech, is a more complex attribute
both in terms of the relationship of pitch to the physical
qualities of the sound [12.74] and in terms of the repre-
sentation of pitch in the AN. A discussion of this issue
is provided by Cariani and Delgutte [12.75].

The intensity of a sound is conveyed by the rate
at which fibers respond. AN fibers increase their dis-
charge rates as sound intensity increases (Fig. 12.8b). In
mammalian ears, fibers vary in their threshold sensitiv-
ity, where threshold means the sound level at which the
rate increases from the spontaneous rate. The thresh-
old variation is correlated with spontaneous discharge
rate (SR), so that very sensitive fibers, those with
the lowest thresholds, have relatively high SR and
less-sensitive fibers have lower SR [12.76]. Fibers are

broken into three classes, low, medium, and high, us-
ing the somewhat arbitrary criteria of 0.5–1 spikes/s to
divide low from medium and 15–20 spikes/s to divide
medium from high, depending on the experimenters.
Figure 12.8b shows plots of discharge rate versus sound
level for an example fiber in each SR group, labeled
on the figure. Fibers of all SRs have similar rate-level
functions; for tones, these increase monotonically with
sound level (except for the effect of noisy fluctuations)
from spontaneous rate to a saturation rate. In high-
SR fibers, the dynamic range, the range over which
sound intensity increases produce rate increases, is nar-
row and the saturation of discharge rate at high sound
levels is clear. In low- and medium-SR fibers, the sat-
uration is gradual (sloping) and the dynamic range is
wider.

The sloping saturation in low- and medium-SR
fibers is thought to reflect compression in basilar-mem-
brane responses [12.21,77]. High-SR fibers do not show
sloping saturation because the fiber reaches its maxi-
mum discharge rate at sound levels where growth of the
basilar-membrane response is linear (e.g. below 20 dB
in Fig. 12.7). By contrast, the low- and medium-SR
fibers sample both the linear and compressed portion
of the basilar-membrane input/output function. The ver-
tical dashed line in Fig. 12.8 shows the approximate
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threshold for basilar-membrane compression inferred
for these fibers.

The relationship of AN responses to the percep-
tual sense of loudness is an apparently simple problem
that has not been fully solved. While it is generally
assumed that loudness is proportional to the overall
increase in discharge rate across all BFs [12.78], this
calculation does not predict important details of loud-
ness growth [12.79–81], especially in ears with damage
to the hair cells. Presumably there are additional trans-
formations in the central auditory system that determine
the final properties of loudness growth.

A property of AN discharge that is important for
many sounds is the ability to represent the temporal
waveform. Sounds such as speech have information en-
coded at multiple levels of temporal precision [12.82];
these include:

1. Syllables and other aspects of the envelope at fre-
quencies below 50 Hz;

2. Periodicity (pitch) in sounds such as vowels at fre-
quencies from 50–500 Hz; and

3. The fine structure of the actual oscillations in the
acoustic waveform at frequencies above 500 Hz.

AN fibers represent the waveform of sounds
(the fine structure) by phase-locking to the stimulus.
A schematic example is shown in the inset of Fig. 12.8c,
which shows a sinusoidal acoustic waveform (a tone)
and four examples of AN spike trains in response to the
stimulus. The important point is that the spikes in the
responses do not occur at random, but rather at a par-
ticular stimulus phase, near the positive peak of the
stimulus waveform in this example. The phase-locking
is not perfect, in that a spike does not occur on every
cycle of the stimulus, and the alignment of spikes and
the waveform varies somewhat. However, a histogram
of spike-occurrence times shows a strong locking to
the stimulus waveform and the Fourier transform of the
spike train generally has its largest component at the
frequency of the stimulus.

Phase-locking occurs at stimulus frequencies up to
a few kHz, depending on the animal. The main part
of Fig. 12.8c shows the strength of phase-locking in
terms of the synchronization index (defined in the cap-
tion) plotted against the frequency of the tone. These
data are from the cat ear [12.73] where phase-locking is
strongest below 1 kHz and disappears by about 6 kHz.
Phase-locking always shows this low-pass property of
being strong at low frequencies and nonexistent at high
frequencies. The highest frequency at which phase-

locking is seen varies in different species, being lower
in rodents than in cats [12.83].

AN phase-locking is essential for the perception of
sound localization. The relative time of occurrence of
spikes from the two ears is used to compute the delays in
the stimulus waveform across the head that provide in-
formation about the azimuth of a sound source [12.84].
Phase-locking has also been suggested as a basis for
processing of speech and other complex stimuli [12.71,
85]. Examples of the usefulness of phase-locking in
analyzing responses to complex stimuli are given in
Sect. 12.3.1.

12.2.4 Hair Cells

The transduction of basilar-membrane motion into elec-
trical signals occurs in the IHCs. The OHCs participate
in the generation of sensitive and sharply tuned basilar-
membrane motion. In this section, the physiology of
IHCs and OHCs are described with reference to these
tasks. At the time of this writing, hair-cell research is
one of the most active areas in auditory neuroscience
and many of the details of hair-cell function are just be-
ing worked out. Useful recent reviews of the literature
are available [12.86–89].

IHCs and Transduction
Both IHCs and OHCs transduce the motion of the basi-
lar membrane. This section describes transduction with
reference to the IHCs, but transduction works in es-
sentially the same fashion in OHCs. The transduction
apparatus depends on the arrangement of stereocilia on
the apical surface of hair cells. Stereocilia are structures
that protrude from the hair cells into the endolymphatic
space of the SM (Fig. 12.9a). They consist of bundles
of actin filaments anchored in an actin/myosin matrix
just under the apical surface of the cell. The membrane
of the cell wraps the actin rods so that they are intra-
cellular and the membrane potential of the cell appears
across the membranes of the stereocilia. The struc-
ture of stereocilia is intricate and involves a number of
structural proteins that are important for organizing the
development of the cilia and for maintaining them in
proper position on the cell [12.90]. The stereocilia form
a precisely organized bundle; in the cochlea, the bun-
dle consists of several roughly V- (IHCs) or W-shaped
(OHCs) rows of cilia (typically three, as in Fig. 12.9) of
graded length, so that the cilia in the row nearest the lat-
eral edge of the hair cell are the longest and those in the
adjacent rows are successively shorter. Each row con-
sists of 20–30 cilia precisely aligned with the cilia in

Part
D

1
2
.2



460 Part D Hearing and Signal Processing

a) b)
Adaption
motor

Actin
filament

Tip link

Trans.
chan.

K+

+90 mV
Stereo-
cilia

–50
mV

s.c.s.c.

Ca++

0 mV

s.c.

c) Receptor potential

Displacement

adjacent rows. The tips of the cilia are connected by tip
links [12.91], a string-like bundle of protein that con-
nects the tip of a shorter cilium to the side of the taller
adjacent cilium (Fig. 12.9b).

Transduction occurs when vertical motion of the
basilar membrane is converted into a shearing motion
of the stereocilia (the arrow in Fig. 12.9b). It has long
been known that hair cells are functionally polarized,
in the sense that they respond most strongly to dis-
placement of the cilia in the direction of the arrow, are
inhibited by displacement in the opposite direction, and
respond weakly to displacement of the cilia in lateral
directions [12.92, 93]. In fact, hair cells are depolar-
ized when the stereocilia are displaced in the direction
that stretches the tip links. Further evidence to associate
the tip links to the transduction process is that when

Fig. 12.9a–c Transduction in IHCs. (a) Schematic of an
IHC showing the components important for transduction.
The stereocilia protrude into the endolymphatic space
(top), containing mainly K+; the extracellular potential
here is about +90 mV (the endolymphatic potential). The
transduction apparatus consists of tip links and channels
near the tips of the cilia. The dashed lines show the trans-
duction current. It enters the cell through the transduction
channel and exits through K+ channels in the basolateral
membrane of the cell into the perilymphatic space. The in-
tracellular and extracellular potentials of the cell and the
perilymphatic space are given. There is a mechanically stiff
and electrically insulating boundary between the endolym-
phatic and perilymphatic spaces, formed by tight junctions
between the apical surfaces of hair cells and supporting
cells (s.c.), indicated by the small black ovals. The synapse,
at the base of the cell, is a standard chemical synapse, in
which voltage-gated Ca2+ channels open in response to
the depolarization caused by the transduction current and
admit Ca2+ to activate neurotransmitter release. (b) De-
tailed view of two stereocilia with a tip link connecting ion
channels in the membrane of each. The upper ion chan-
nel is connected to an adaptation motor that moves up
and down along the actin filaments to tension the tip link.
(c) Transduction function showing the receptor potential
(the depolarization or hyperpolarization) of a hair cell ver-
sus the displacement of the stereocilia tips. Typical axis
scales would be 0.01–1 μm per tick on the abscissa and
≈ 2 mV per tick on the ordinate �

the tip links are destroyed by lowering the extracellu-
lar calcium concentration, transduction disappears and
reappears as the tip links are regenerated [12.94].

The mechanical connection between basilar-mem-
brane motion and cilia motion is not fully understood.
As shown in Fig. 12.4c, the stereocilia bundles are ori-
ented so that lateral displacement of the cilia (i. e.,
displacement away from the central axis of the cochlea)
should be excitatory. Furthermore the tips of the OHC
cilia are embedded in the tectorial membrane, whereas
those of the IHC are not. Based on the geometry of the
organ, upward motion of the basilar membrane (i. e.,
away from the ST and toward the SM and SV) results
in lateral displacement of the cilia through the relative
motions of the organ of Corti and the tectorial mem-
brane. Presumably the coupling to the OHC is a direct
mechanical one, whereas the coupling to the IHC is
via fluid movements, so the IHC stereocilia are bent
through viscous drag of the endolymph in the space be-
tween the organ of Corti and the tectorial membrane.
While this model is commonly offered and is proba-
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bly basically correct, it is not consistent in detail with
the phase relations between the stimulus (or basilar-
membrane motion) and action potential phase locking
in AN fibers [12.95]. Presumably the inconsistencies re-
flect complexities in the motions of the organ of Corti
that connect basilar-membrane displacement to stere-
ociliary displacement.

The current model for the tip link and transduction
channel is shown in Fig. 12.9b. The tip link connects
(probably) two transduction channels, one in each cil-
ium. When the bundle moves in the excitatory direction
(the direction of the arrow), the tension in the tip link
increases, which opens the transduction channels and
allows current flow into the cell. Movement in the op-
posite direction relaxes the tension in the tip link and
allows the channels to close. The current through the
transduction channels is shown by the dashed line in
Fig. 12.9a. Outside of the stereociliary membrane is
the endolymph of the SM. The transduction channels
are nonspecific channels which allow small cations to
pass; in the cochlea, these are mainly Na+, K+, and
Ca2+. However, the predominant ion in both the ex-
tracellular (endolymph) and intracellular spaces is K+,
so the transduction current is mostly K+. The energy
source producing the current is the potential difference
between the SM (the endolymphatic potential, approxi-
mately +90 mV) and the intracellular space in the hair
cell (approximately −50 mV). The endolymphatic po-
tential is produced by the active transport of K+ into
the endolymph and Na+ out of the endolymph in the
stria vascularis (Fig. 12.4b). This transport process also
produces the endolymphatic potential [12.22]. The neg-
ative potential inside the hair cell is produced by the
usual mechanisms in which active transport of K+ into
the cell and Na+ out of the cell produces a negative dif-
fusion potential through the primarily K+ conductances
of the hair cell membrane. Because the transduction cur-
rent is primarily K+, it does not burden the hair cell
with the necessity for additional active transport of ions
brought into the hair cell by transduction.

When the transduction channels open, the hair cell is
depolarized by the entry of positive charge into the cell.
The transduction current flows out of the cell through
the potassium channels in its membrane. Figure 12.9c
shows the typical transduction curve for a cochlear hair
cell, as the depolarization of the membrane (ordinate)
produced by a certain displacement of the stereociliary
bundle (abscissa). At rest (zero displacement), some
transduction channels are open, so that both positive
and negative displacements of the bundle can be sig-
naled. However, hair cells generally have only a fraction

of channels open at rest so that a much larger depo-
larization is possible than hyperpolarization, i. e., more
channels are available for opening than for closing.
The transduction curve saturates when all channels are
closed or all channels are open.

The transduction process is completed by the open-
ing of voltage-gated Ca2+ channels in the hair cell
membrane, which allows Ca2+ ions to enter the cy-
toplasm (dotted line at the bottom of Fig. 12.9a) and
activate the synapse. The hair-cell synapse has an
unusual morphology, containing a synaptic ribbon sur-
rounded by vesicles [12.96,97]. This ribbon presumably
reflects molecular specializations that allow the synapse
to be activated steadily over a long period of time with-
out losing its effectiveness and also to produce an action
potential in the postsynaptic fiber on each release event,
so that summation of postsynaptic events is not nec-
essary, as is required for phase-locking at kilohertz
frequencies. The synapse appears to be glutamater-
gic [12.98] with specializations for fast recovery from
one synaptic release, also necessary for high-frequency
phase-locking.

The final component of the transduction apparatus
is the adaptation motor, shown as two black circles in
Fig. 12.9b [12.99]. Presumably the transduction chan-
nel and the adaptation motor are mechanically linked
together so that when the motor moves, the channel
moves also. The sensitivity of the transduction process
depends on having an appropriate tension in the tip link.
If the tension is too high, the channels are always open;
if the tip link is slack, then the threshold for transduc-
tion will by elevated because larger motions of the cilia
will be required to open a transduction channel. The tip-
link tension is adjusted by a myosin motor that moves
upward along the actin filaments when the transduction
channel is closed. When the channel opens, Ca2+ flows
into the stereocilium through the transduction channel
and causes the motor to slip downward. Thus the adap-
tation motor serves as a negative feedback system to set
the resting tension in the tip link. The zero-displacement
point on the transduction curve in Fig. 12.9c is set by an
equilibrium between the motor’s tendency to climb up-
ward and the tension in the tip link, which causes the
channel to open and admit Ca2+, pulling it downward.
Adaptation also regulates the sensitivity of the transduc-
tion process in the presence of a steady stimulus.

There is a second, fast, mechanism for adaptation
in which Ca2+ entering through an open transduction
channel acts directly on the channel to close it, thus
moving the transduction curve in the direction of the
applied stimulus [12.88]. This mechanism is discussed
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again in a later section, because it also can serve as
a kind of cochlear amplifier.

IHC Transduction
and the Properties of AN Fibers

The description of transduction in the previous section
suggests that the stimulus to an AN fiber should be ap-
proximately the basilar-membrane motion at the point
in the cochlea where the IHC innervated by the fiber is
located. It follows that the tuning and rate responses of
the fiber should be similar to the tuning and response
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Fig. 12.10 Receptor potentials in an IHC in the basal turn
of a guinea-pig cochlea. The stimulus level was set at 80 dB
SPL so that the cell would respond across a wide range
of frequencies. Stimulus frequency is given at right. No-
tice the change in ordinate scale between the 900 Hz and
1000 Hz traces (after [12.83], with permission)

amplitude of the basilar membrane, discussed in con-
nection with Fig. 12.7.

The receptor potentials in an IHC responding to
tones are shown in Fig. 12.10 [12.83]. The traces are
the membrane potentials recorded in an IHC, each trace
at a different stimulus frequency. These potentials are
the driving force for the Ca2+ signal to the synapse,
and thus indirectly for the AN fibers connected to the
cell. The properties of these potentials can be predicted
from Fig. 12.9c by the thought experiment of moving
a stimulus sinusoidally back and forth on the abscissa
and following the potential traced out on the ordinate.
The potential should be a distorted sinusoid, because
depolarizing responses are larger than hyperpolarizing
ones, and it should have a steady (DC) offset, also be-
cause of the asymmetry favoring depolarization. At low
frequencies, both components can be seen in Fig. 12.10;
the response is a distorted sinusoid riding on a steady
depolarization. At high frequencies (>1000 Hz), the si-
nusoidal component is reduced by low-pass filtering by
the cell’s membrane capacitance and only the steady
component is seen. The transition from sinusoidal re-
ceptor potentials at low frequencies to rectified DC
potentials at high frequencies corresponds to the loss
of phase-locking at higher frequencies in AN fibers
(Fig. 12.8c). At low frequencies, the IHC/AN synapse
releases transmitter on the positive half cycles of the
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Fig. 12.11a,b Schematic summary of AN tuning curves in
normal ears and in ears with damaged cochleae. (a) In re-
gions of the cochlea with remaining OHCs but damaged
IHCs tuning curves mainly show a threshold elevation.
(b) In regions with missing OHCs but intact IHCs there
is an elevation of threshold at frequencies near BF and
a substantial broadening of tuning (after [12.51])
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receptor potential and the AN fiber is phase-locked; at
high frequencies, there is a steady release of neurotrans-
mitter and the AN fiber responds with a rate increase but
without phase-locking.

OHCs and the Cochlear Amplifier
In the discussion of the basilar membrane, the need
for a source of energy in the cochlea, a cochlear am-
plifier, was discussed. At present, two possible sources
of the amplification have been suggested. The first is
OHC motility [12.86,100] and the second is hair bundle
motility [12.101]. Although hair bundle motility could
function in both IHCs and OHCs, it seems likely that
the OHC is the principal element of the cochlear ampli-
fier. The evidence for this is that the properties of the
cochlea change in a way consistent with modification
of cochlear mechanics when the OHC are damaged or
otherwise manipulated, but not the IHC. For example,
electrical stimulation of the MOC, which projects only
to the OHCs (Fig. 12.5), modifies otoacoustic emis-
sions [12.31] and reduces the amplitude of motion of
the basilar membrane [12.102, 103].

Figure 12.11 shows tuning curves in AN fibers for
intact ears (normal) and for ears with IHC or OHC
damage [12.51, 104]. These tuning curves are schemat-
ics that summarize the results of studies in ears with
damage due to acoustic trauma or ototoxic antibiotics.
Complete destruction of IHCs, of course, eliminates AN
activity entirely. However, it is possible to find regions
of the cochlea with surviving IHCs that have damaged
stereocilia and OHCs that appear intact. The sensitivity
of AN fibers in such regions is reduced, reflected in the
elevated threshold in Fig. 12.11a, but the tuning is still
sharp and appears to be minimally altered. By contrast,
in regions with intact IHCs and OHCs that are damaged
or missing, the tuning curves are dramatically altered, as
in Fig. 12.11b. There is a threshold shift reflecting a loss
of sensitivity but also a substantial broadening of tun-
ing. These are the effects that are expected from the loss
of the cochlear amplifier. Note that the thresholds well
below BF (<1 kHz in Fig. 12.11b) can actually be lower
than normal with OHC damage. This phenomenon is
not fully understood and seems to reflect the existence
of two modes of stimulation of IHCs [12.105].

Some properties of OHCs are shown in Fig. 12.12.
These cells have a transduction apparatus similar to that
in IHCs, but Fig. 12.12 focuses on unique aspects of
OHC anatomy and physiology. The OHCs are located
in an unusual system of structural or supporting cells.
Unlike virtually all tissues, the OHC are surrounded by
a fluid space containing perilymph for distances compa-

rable to the cells’ widths (asterisks in Fig. 12.4c). The
OHC are held by supporting cells called Deiter’s cells
that form a cup around the base of the cell and have a stiff
extension up to the top surface of the organ of Corti.
The extension terminates next to the apical surface of the
OHC, where a system of tight junctions similar to that
in the IHC region holds the OHCs and Deiter’s cells to
form a mechanically stiff and electrically insulating bar-
rier between the endolymph and perilymph.

In response to depolarization of their membranes,
say in response to a transduction current, OHCs shorten,
a process called electromotility [12.106, 107]. Electro-
motility does not use a direct chemical energy source
(such as adenosine triphosphate (ATP)) as do other cel-
lular motility processes. It is also very fast, responding
to frequencies of 10 kHz or above, limited mainly by the
limits of the experimental observations. This unusual
motile process is produced by a molecule called prestin
(“P” in Fig. 12.12a) found in a dense array in the lateral
wall of the OHCs [12.108–110], where it is associated
with a complex mechanical matrix that forms the cell’s
skeleton [12.111]. Prestin causes the cell to shorten in
response to electrical depolarization of its membrane,
so the energy source for electromotility is the electrical
membrane potential. The mechanism of electromotil-
ity is shown schematically in Fig. 12.12b. The prestin
molecule is similar to anion transporters, molecules that
normally move anions through the cell membrane. It is
thought that prestin is a modified transporter that can
bind an anion, but the ion moves only part of the way
through the membrane. In OHCs, the relevant anion
is Cl− because electromotility is blocked by remov-
ing Cl− from the cytoplasm [12.112]. When a Cl− ion
binds to a prestin molecule, the cross-sectional area
of the molecule increases, thus increasing the mem-
brane area and lengthening the cell (indicated by the
double-headed arrow). Cl− ions are driven into the
membrane by negative membrane potentials, so depo-
larization pulls them out and decreases the membrane
area, shortening the cell.

When a Cl− ion binds to a prestin molecule, it
moves part way through the cell’s electrical membrane
potential (ΔV in Fig. 12.12b). This movement behaves
like charging a capacitance in the cell’s membrane
and appears in electrical recordings as an additional
membrane capacitance. However the extent of charge
movement depends on the membrane potential, making
the capacitance nonlinear. At very negative membrane
potentials, all the prestin molecules have a bound
Cl− and no charge movement can occur; similarly,
at positive potentials, the Cl− is unlikely to bind to
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prestin and again no charge movement can occur.
Thus the nonlinear capacitance is significant only over
the range of membrane potentials where the prestin
molecules are partially bound to Cl−. The bottom
part of Fig. 12.12c shows the nonlinear capacitance as
a function of membrane potential, showing the pre-
dicted behavior [12.113]. The top part of Fig. 12.12c
shows the electrically produced change in cell length; as
expected, changes in cell length are observed only over
the range of membrane potentials where the nonlinear
membrane capacitance is observed.

Fig. 12.12 (a) Schematic picture of an OHC showing ele-
ments important for OHC function. The diagram is labeled
as for Fig. 12.9a except for the following: DC – Deiter’s
cell extensions that are linked to OHCs by tight junctions to
form the top surface of the organ of Corti; Na+ – the extra-
cellular spaces around the lateral membranes of the OHCs
are filled with perilymph, a high-Na+, low-K+ fluid; P –
prestin molecules in the lateral membrane; eff. – efferent
terminal of a MOC neuron on the OHC; s.c. subsynaptic
cistern associated with the efferent synapse. K+ and Ca2+
currents activated by the synapse are shown by dashed
and dotted lines, respectively. (b) Schematic of prestin
molecules in the lateral membrane of the cell. When the
membrane potential ΔV is negative, Cl− ions are driven
into the prestin molecule, increasing its membrane area (as
indicated by the double-headed arrow). (c) The top plot
shows the length of an isolated OHC as a function of mem-
brane potential showing the amplitude of the electromotil-
ity. The bottom plot shows the nonlinear capacitance of the
same cell. (Fig. 12.12c after [12.113] with permission) �

Prestin is found essentially only in OHCs and, in
particular, is not seen in IHCs [12.110]. When expressed
by genetic methods in cells that normally do not con-
tain it, prestin confers electromotility on those cells. In
addition, when the prestin gene was knocked out, the
morphology of the cochlea and the hair cells was not
affected (except that the OHCs were shorter), but elec-
tromotility was not observed and the sensitivity of audi-
tory neurons was decreased; otoacoustic emissions were
also decreased [12.114]. These are the effects expected
if prestin is the energy source for the cochlear amplifier.

The means by which OHC motility amplifies
basilar-membrane motion is somewhat uncertain. Mod-
els that use physiologically accurate OHC motility to
produce cochlear amplification have been suggested and
analyzed, e.g., [12.115]. However, such models require
assumptions about the details of the mechanical inter-
actions within the organ of Corti, assumptions that have
not been tested experimentally. For example, the OHCs
lie at an angle to the vertical extensions of the Deiter’s
cells, so that successive locations along the basilar
membrane are coupled to one another [12.107]. The
mechanical effects of structures like this are quite im-
portant in models of basilar-membrane movement that
incorporate OHC electromotility [12.62]. An additional
major uncertainty at present about a prestin-derived
cochlear amplifier is the fact that prestin depends on
the membrane potential as its driving signal [12.88].
Because the membrane potential is low-pass filtered by
the cell’s membrane capacitance, in the fashion seen in
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Fig. 12.10, it is not clear that a prestin-based mechanism
can generate sufficient force at high frequencies.

The second possible mechanism for the cochlear
amplifier is by stereocilia bundle movements that can
amplify hair-cell stimulation either through nonlineari-
ties in the compliance of the bundle or through active
hair-bundle movements [12.89, 101]. Essentially these
mechanisms work by moving the bundle further in the
direction of its displacement, which would amplify the
stimulation of the hair cell. Calculations suggest that
the speed of bundle movement is sufficient and that
the stiffness of the bundles is a significant fraction of
the basilar-membrane stiffness, both necessary condi-
tions for a stereociliary-bundle motor to be the cochlear
amplifier. Of course both the prestin and stereociliary-
bundle mechanisms may operate.

The final aspect of OHC physiology shown in
Fig. 12.12a is the efferent synapse made by the MOC
neuron on the OHC. This synapse activates an unusual
cholinergic postsynaptic receptor which admits a sig-
nificant Ca2+ current (dotted line), along with other
cations, to the cytoplasm. The Ca2+ current activates
a calcium-dependent potassium channel producing
a larger potassium current (dashed line) [12.116]. The
efferent synapse inhibits OHC function, decreasing the
sensitivity of AN fibers and broadening their tuning,
effects consistent with a decrease in cochlear ampli-
fication [12.31]. The mechanism is thought to be an
increase in the membrane conductance of the OHC,
from opening the calcium-dependent K+ channel,
which hyperpolarizes the cell and shorts the transducer
current, producing a smaller receptor potential.

12.3 Auditory Nerve and Central Nervous System

In a previous section, the basic properties of AN fiber
responses to acoustic stimuli were described. These
properties can be related directly to the properties of
the basilar membrane and hair cells. The auditory sys-
tem does not usually deal with the kinds of simple
stimuli that have been considered so far, i. e., tones of
a fixed frequency. When multiple-tone complexes or
other stimuli with multiple frequency components are
presented to the ear, there are interactions among the
frequency components that are important in shaping the
responses. This section describes two such interactions
and then provides an overview of the tasks performed
by the remainder of the auditory system.

12.3.1 AN Responses to Complex Stimuli

Many of the features of responses of AN fibers to
complex stimuli can be seen from the responses to
a two-tone complex. An example is shown in Fig. 12.13
which shows responses of AN fibers to 2.17 and
2.79 kHz tones (called f1 and f2, respectively) pre-
sented simultaneously and separately [12.117]. In this
experiment a large population of AN fibers were
recorded in one animal and the same set of stimuli were
presented to each fiber. Because fibers were recorded
across a wide range of BFs, this approach allows the
construction of an estimate of the response of the whole
AN population. Responses are plotted in Fig. 12.13 as
the strength of phase-locking to various frequency com-
ponents of the stimulus. Phase-locking is used here to

allow the complex responses of the fibers to be sepa-
rated into responses to the various individual frequency
components. The abscissa is plotted as BF, on a re-
versed frequency scale, and also in terms of the distance
of the fibers’ points of innervation from the stapes.

The distribution of responses to the f1 frequency
component (2.17 kHz) presented alone is shown in
Fig. 12.13a by the solid line. The response peaks near
the point of maximum response to f1, indicated by
the arrow labeled f1 at the top of the plot. The dotted
line shows the phase-locking to f1 when the stimulus
is a simultaneous presentation of f1 and f2. The re-
sponse to f1 is similar in both cases, except near the
point of maximum response to f2 (at the arrow marked
f2) where the response to f1 is reduced by the addition
of f2 to the stimulus. This phenomenon is called two-
tone suppression [12.118,119]; it can be suppression of
phase-locking as in this case or it can be a decrease of
the discharge rate in response to an excitor tone when
a suppressor tone is added. Suppression can be seen
on the basilar membrane as a reduction in the mem-
brane motion at one frequency caused by the addition
of a second frequency [12.34], and is usually explained
as resulting from compression in the basilar-membrane
input/output relationship.

The importance of suppression for responses to
complex stimuli is that it improves the tonotopic sepa-
ration of the components of the stimulus. In Fig. 12.13a,
for example, f1 presented by itself (solid line) gives
a broad response that spreads away from the f1 place
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and encompasses the f2 place. In the presence of f2, the
f1 response is confined to points near the f1 place, thus
improving the effective tuning of the fibers for f1. The
bottom part of Fig. 12.13b shows that the responses at
the f2 place are dominated by phase-locking to f2 when
f1 and f2 are presented simultaneously (dashed curve).
The suppression effect is symmetric and a dip in the
response to f2 is observed at the f1 place (at the aster-
isk in the bottom plot of Fig. 12.13b) which represents
suppression of f2 by f1.

The top part of Fig. 12.13b shows responses to
combination tones, another phenomenon that can be
important in responses to complex stimuli. When two
tones are presented simultaneously, observers can hear
distortion tones, most strongly at the cubic distortion
frequency 2 f1− f2 (1.55 kHz here). This distortion

Fig. 12.13a,b Responses of a population of AN fibers
to a two-tone complex consisting of f1 = 2.17 kHz and
f2 = 2.79 kHz at 65 dB SPL. The ordinates show the
strength of the phase-locked response as the synchronized
rate divided by the spontaneous rate. Synchronized rate is
the Fourier transform of the spike train at the appropriate
frequency normalized to have units of spikes/s. Responses
of a representative sample of fibers of different BFs were
recorded. The lines are smoothed versions of the data
computed as a moving-window average of the responses
of individual fibers, for fibers with SR>15 /s. (a) Phase-
locking to f1 for responses to the f1 stimulus tone alone
(solid line) and to both f1 and f2 (dashed line). The arrows
at top show the BF places for the two frequencies. (b) The
top plots and left ordinate show phase-locking to the com-
bination frequencies 2 f1− f2 (dashed) and f2− f1 (solid)
when the stimulus was f1 and f2. The bottom plots and
the right ordinate show phase-locking to f1 (solid) and f2

(dashed). For both plots, data were taken only from fibers
to which all the stimuli shown were presented. Thus the f1

phase-locking in (a) (dashed line) and in the bottom part
of (b) (solid line) differ slightly, even though they estimate
the same response to the same stimulus, because they were
computed from somewhat different populations of fibers
(after [12.117] with permission) �

component is produced in the cochlea and is a promi-
nent part of otoacoustic emissions for two-tone stimuli.
It is used for both diagnostic and research purposes as
a measure of OHC function [12.46]. In the cochlea,
phase-locking at the frequency 2 f1− f2 is seen, as
shown by the dotted curve in the top part of Fig. 12.13b.
It is important that the response to 2 f1− f2 peaks at
the place appropriate to the frequency 2 f1− f2 (indi-
cated by the arrow). The distribution of phase-locking to
2 f1− f2 is similar to the distribution of phase-locking
to a single tone at the frequency 2 f1− f2, when account
is taken of suppression effects and of sources of distor-
tion in the region near the f1 and f2 places [12.117].
This behavior has been interpreted as showing that
cochlear nonlinearities in the region of the primary
tones ( f1 and f2) lead to the creation of energy at the
frequency 2 f1− f2, which propagates on the basilar
membrane in a fashion similar to an acoustic tone of
that frequency presented at the ear. The phase of the re-
sponses (not shown) is consistent with this conclusion.

There is also a distortion tone at the frequency f2−
f1 (solid line in the top part of Fig. 12.13b), which ap-
pears to propagate on the basilar membrane and shows
a peak of phase-locking at the appropriate place. This
difference tone can also be heard by observers; how-
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ever, there are differences in the rate of growth of the
percept of f2− f1 versus 2 f1− f2, such that the former
grows nonlinearly and the latter linearly as the level of
f1 and f2 are increased. As a result, f2− f1 is audible
at high sound levels only.

Responses to a somewhat more complex stimulus
are shown in Fig. 12.14, in this case an approximation
to the vowel /eh/, as in met [12.65]. The magnitude
spectrum of the stimulus is shown in Fig. 12.14a. It con-
sists of the harmonics of a 125 Hz fundamental with
their amplitudes adjusted to approximate the spectrum
of /eh/. The actual vowel has peaks of energy at the res-
onant frequencies of the vocal tract, called formants;
these are indicated by F1, F2, and F3 in Fig. 12.14a.
Again the experimental approach is to record from
a large population of AN fibers in one animal and
present the same stimulus to each fiber. The response
of the whole population is estimated by a moving aver-
age of the data points for individual fibers. This stimulus
contains many frequency components, so the responses
are quite complex. However, the data show that formant
frequencies dominate the responses. Note that combi-
nation tones always occur at the frequency of a real
acoustic stimulus tone for a harmonic series like this, so
it is not possible to analyze combination tones without
making assumptions that allow the responses to combi-
nation and real tones to be separated [12.121].

The distribution of phase-locking in response to the
formants and to one non-formant frequency are shown
in Figs. 12.14b and 12.14c; these show responses at two
sound levels. At 58 dB (Fig. 12.14b), the formant re-
sponses are clearly separated into different populations
of fibers, so that the response to a formant is largest
among fibers with BFs near the formant frequency.
There are significant responses to all three formants,
but there is little response to frequency components be-
tween the formants, such as the response to 1.152 kHz
(dotted line). These results demonstrate a clear tono-
topic representation of the vowel.

At 78 dB (Fig. 12.14c), the responses to F2 and F3
decrease in amplitude and the response to F1 spreads
to occupy almost the entire population. This behav-
ior is typically observed at high sound levels, where
the phase-locking to a large low-frequency component
of the stimulus spreads to higher BFs in the popu-
lation [12.122]. Suppression plays two roles in this
process. First, the spread of F1 and the decrease in
response to F2 and F3 behave quantitatively like sup-
pression of a tone at F2 or F3 by a tone at F1 and
therefore seem to represent suppression of F2 and F3 by
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Fig. 12.14a–c Responses to a stimulus similar to the vowel
/eh/ presented at two sound levels in a population of AN
fibers. (a) The magnitude spectrum of the stimulus. It is
periodic and consists of harmonics of a 125 Hz fundamen-
tal. There are peaks of energy at the formant frequencies of
a typical /eh/, near 0.5 (F1), 1.75 (F2), and 2.275 kHz (F3).
The 1.152 kHz component in the trough between F1 and
F2 is used for comparison in parts (b) and (c). (b) Distri-
bution of phase-locking to four frequency components of
the vowel when presented at 58 dB SPL, as labeled. These
are moving-window averages of the phase-locking of indi-
vidual fibers. Phase-locking here is the magnitude of the
Fourier transform of the spike train at the frequency of in-
terest normalized by the maximum discharge rate of the
fiber. Maximum rate is the rate in response to a BF tone
50 dB above threshold. (c) Same for responses to the vowel
at a sound level of 78 dB SPL (after [12.120, 121])

F1 [12.120]. Second, the response to F1 is suppressed
among fibers with BFs near F2, as shown by dips in the
phase-locking to F1 near the F2 place. Suppression acts
to improve the representation in the latter case, but has
the opposite effect in the former case.
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12.3.2 Tasks of the Central Auditory System

The discussion so far concerns only the most basic
aspects of physiological acoustics. The representation
of sound in the AN is the input to a complex of
neural pathways in the central auditory system. Discus-
sion of specifics of the central processing of auditory
stimuli is beyond the scope of this chapter. However,
several recent books provide comprehensive coverage
of the anatomy and physiology of this system, e.g.,
[12.123–126].

The representation of the auditory stimulus pro-
vided to the brain by the AN is a spectrotemporal one.
That is, the responses of AN fibers provide an accurate
representation of the moment-by-moment distribution
of energy across frequency for the sound entering the
ear. In terms of processing sound, the major steps taken
in the cochlea are frequency analysis, compression, and
suppression. Frequency analysis is essential to all of
the processing that follows in the brain. Indeed cen-
tral auditory centers are all organized by frequency and
most properties of the perception of sound appear to in-
clude frequency analysis as a fundamental component.
Compression is important for extending the dynamic
range of hearing. Its importance is illustrated by the
problems of loudness abnormality and oversensitivity to
loud sounds in persons with damaged cochleae that are
missing compression [12.127]. Suppression is impor-
tant for maintaining the quality of the spectrotemporal
representation, at least at moderate sound levels, and
is the first example of interaction across frequencies
in the auditory system. In the following paragraphs,
some of the central nervous system’s secondary anal-
yses on the cochlear spectrotemporal representation are
described.

The first function of the central auditory system is
to stabilize the spectrotemporal representation provided
in the AN. As shown in Fig. 12.14, the representation
changes across sound level and the quality of the rep-
resentation is generally lower at high sound levels and
at low sound levels. In the cochlear nucleus the repre-

sentation is more stable as sound level changes, e.g.,
for speech [12.128]. Presumably the stabilization occurs
through optimal combination of information across SR
groups in the AN and perhaps also through inhibitory
interactions.

A second function of the lower central auditory
system is binaural interaction. The location of sound
sources is computed by the auditory system from small
differences in the sounds at the two ears [12.84, 129].
Essentially, a sound is delayed in reaching the ear on
the side of the head away from the source and is less
intense there. Differences in interaural stimulus timing
are small and require a specialized system of neurons in
the first and second stages of the central auditory sys-
tem to allow accurate representation of the interaural
timing cues. A similar system is present for interau-
ral differences in sound level. The representation of
these cues is elaborated in higher levels, where neu-
rons show response characteristics that might explain
perceptual phenomena like binaural masking level dif-
ferences [12.130] and the precedence effect [12.131].

A third aspect of central processing is that the
representation of sound switches away from a spec-
trotemporal description of the stimulus, as in the AN,
and moves to derived representations, such as one that
represents auditory objects [12.132]. For example, the
representation of speech in the auditory cortex does not
take a recognizable tonotopic form, in that peaks of ac-
tivity at BFs corresponding to the formant frequencies
are not seen [12.133]. The nature of the representa-
tion used in the cortex is unknown; it is clearly based
on a tonotopic axis, but neurons’ responses are not
determined in a straightforward way by the amount
of energy in their tuning curves, as is observed in
lower auditory nuclei [12.134]. In some cases, neu-
rons specialized for particular auditory tasks have been
found; neurons in one region of the marmoset cortex
are tuned to pitch, for example [12.135]. Perhaps the
best-studied cases are neurons that respond specifically
to species-specific vocalizations in marmosets [12.136]
and songbirds [12.137, 138].

12.4 Summary

Research on the auditory system has defined the means
by which the system efficiently captures sound and
couples it into the cochlea, how the frequency anal-
ysis of the cochlea is conducted, how transduction
occurs, how nonlinear mechanisms involving the OHCs

sharpen the frequency tuning, increase the sensitiv-
ity, and compress the stimulus intensity, and how
suppression acting at the level of AN fibers main-
tains the sharpness of the frequency analysis for
complex, multicomponent stimuli. Over the next dec-
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ade, research on the auditory system will increasingly
be focused on the organization and function of the
central auditory system, with particular reference to

the way in which central neurons derive informa-
tion from the spectrotemporal display received from
the AN.
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Psychoacousti13. Psychoacoustics

Brian C. J. Moore

Psychoacoustics is concerned with the relationships
between the physical characteristics of sounds and
their perceptual attributes. This chapter describes:
the absolute sensitivity of the auditory system for
detecting weak sounds and how that sensitivity
varies with frequency; the frequency selectivity
of the auditory system (the ability to resolve or
hear out the sinusoidal components in a com-
plex sound) and its characterization in terms of an
array of auditory filters; the processes that influ-
ence the masking of one sound by another; the
range of sound levels that can be processed by the
auditory system; the perception and modeling of
loudness; level discrimination; the temporal reso-
lution of the auditory system (the ability to detect
changes over time); the perception and modeling
of pitch for pure and complex tones; the percep-
tion of timbre for steady and time-varying sounds;
the perception of space and sound localization;
and the mechanisms underlying auditory scene
analysis that allow the construction of percepts
corresponding to individual sounds sources when
listening to complex mixtures of sounds.
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13.1 Absolute Thresholds

The absolute threshold of a sound is the lowest de-
tectable level of that sound in the absence of any other
sounds. In practice, there is no distinct sound level at
which a sound suddenly becomes detectable. Rather, the
probability of detecting a sound increases progressively
as the sound level is increased from a very low value.
Hence, the absolute threshold is defined as the sound
level at which an individual detects the sound with
a certain probability, such as 75% (in a two-alternative
forced-choice task, where guessing leads to 50% cor-
rect, on average). Typically, results are averaged across
many listeners with normal hearing (i. e., with no known
history of hearing disorders and no obvious signs of
hearing problems) to obtain representative results.

The absolute threshold for detecting sinusoids is
partly determined by the sound transmission through the
outer and middle ear (Chap. 12); to a first approxima-
tion, the inner ear (the cochlea) is equally sensitive to all
frequencies, except perhaps at very low frequencies and
very high frequencies [13.3, 4]. Figure 13.1 shows esti-
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Fig. 13.1 The minimum audible sound level as a function
of frequency. The brown curve shows the minimum au-
dible field (MAF) for binaural listening published in an
International Standards Organization (ISO) standard (af-
ter [13.1]). The grey curve shows the minimum audible
pressure (MAP) for monaural listening (after [13.2])

mates of the absolute threshold, measured in two ways.
For the curve labeled MAP, standing for minimum au-
dible pressure, the sound level was measured at a point
close to the eardrum [13.2]. For the curve labeled MAF,
standing for minimum audible field, the measurement
of sound level was made after the listener had been re-
moved from the sound field, at the point which had been
occupied by the center of the listener’s head [13.1]. For
the MAF curve, the sound was presented in free field
(in an anechoic chamber) from a direction directly in
front of the listener. Note that the MAP estimates are for
monaural listening and the MAF estimates are for bin-
aural listening. On average, thresholds are about 2 dB
lower when two ears are used as opposed to one, al-
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Fig. 13.2a,b Comparison of a clinical audiogram for
a 50 dB hearing loss at all frequencies (a) and the absolute
threshold curve for the same hearing loss plotted in terms
of the MAP (b)
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though the exact value of the difference varies across
studies from 0 to 3 dB, and it can depend on the inter-
aural phase of the tone [13.5–7]. Both curves represent
the average data from many young listeners with nor-
mal hearing. It should be noted, however, that individual
people may have thresholds as much as 20 dB above
or below the mean at a specific frequency and still be
considered as normal.

The MAP and MAF curves are somewhat differ-
ently shaped, since the head, the pinna and the meatus
have an influence on the sound field. The MAP curve
shows only minor peaks and dips (±5 dB) for frequen-
cies between about 0.2 kHz and 13 kHz, whereas the
MAF curve shows a distinct dip around 3–4 kHz and
a peak around 8–9 kHz. The difference derives mainly
from a broad resonance produced by the meatus and
pinna. The sound level at the eardrum is enhanced
markedly for frequencies in the range 1.5–6 kHz, with
a maximum enhancement at 3 kHz of about 15 dB.

The highest audible frequency varies considerably
with age. Young children can often hear tones as high as
20 kHz, but for most adults the threshold rises rapidly
above about 15 kHz. The loss of sensitivity with in-
creasing age (presbyacusis) is much greater at high
frequencies than at low, and the variability between
different people is also greater at high frequencies.
There seems to be no well-defined low-frequency limit
to hearing, and very intense low-frequency tones can
sometimes be felt as vibration as well as being heard.
The lowest frequency that evokes a pitch sensation is
about 20–30 Hz [13.8].

A third method of specifying absolute thresholds
is commonly used when measuring hearing in clinical
situations, for example, when a hearing impairment is
suspected; thresholds are specified relative to the av-
erage threshold at each frequency for young, healthy
listeners with normal hearing. In this case, the sound

level is usually specified relative to standardized values
produced by a specific earphone in a specific coupler.
A coupler is a device that contains a cavity or series of
cavities and a microphone for measuring the sound pro-
duced by the earphone. The preferred earphone varies
from one country to another. For example, the Tele-
phonics TDH49 or TDH50 is often used in the UK
and USA, while the Beyer DT48 is used in Germany.
Thresholds specified in this way have units of dB HL
(hearing level) in Europe or dB HTL (hearing threshold
level) in the USA. For example, a threshold of 40 dB HL
at 1 kHz would mean that the person had a threshold that
was 40 dB higher than normal at that frequency. In psy-
choacoustic work, thresholds are normally plotted with
threshold increasing upward, as in Fig. 13.1. However,
in audiology, threshold elevations are shown as hearing
losses, plotted downward. The average normal thresh-
old is represented as a horizontal line at the top of the
plot, and the degree of hearing loss is indicated by how
much the threshold falls below this line. This type of
plot is called an audiogram. Figure 13.2 compares an
audiogram for a hypothetical hearing-impaired person
with a flat hearing loss, with a plot of the same thresh-
olds expressed as MAP values. Notice that, although the
audiogram is flat, the corresponding MAP curve is not
flat. Note also that thresholds in dB HL can be negative.
For example, a threshold of −10 dB simply means that
the individual is 10 dB more sensitive than the average.

The absolute thresholds described above were meas-
ured using tone bursts of relatively long duration. For
durations exceeding about 500 ms, the sound level at
threshold is roughly independent of duration. However,
for durations less than about 200 ms, the sound level
necessary for detection increases as duration decreases,
by about 3 dB per halving of the duration [13.9]. Thus,
the sound energy required for threshold is roughly
constant.

13.2 Frequency Selectivity and Masking

Frequency selectivity refers to the ability to resolve or
separate the sinusoidal components in a complex sound.
It is a key aspect of the analysis of sounds by the
auditory system, and it influences many aspects of audi-
tory perception, including the perception of loudness,
pitch and timbre. It is often demonstrated and meas-
ured by studying masking, which has been defined as:
The process by which the threshold of audibility for one

sound is raised by the presence of another (masking)
sound [13.10]. It has been known for many years that
a signal is most easily masked by a sound having fre-
quency components close to, or the same as, those of
the signal [13.11]. This led to the idea that our ability to
separate the components of a complex sound depends,
at least in part, on the frequency analysis that takes place
on the basilar membrane (Chap. 12).
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13.2.1 The Concept of the Auditory Filter

Fletcher [13.13], following Helmholtz [13.14], sug-
gested that the peripheral auditory system behaves as
if it contains a bank of bandpass filters, with overlap-
ping passbands. These filters are now called the auditory
filters. Fletcher thought that the basilar membrane pro-
vided the basis for the auditory filters. Each location on
the basilar membrane responds to a limited range of fre-
quencies, so each different point corresponds to a filter
with a different center frequency. When trying to detect
a signal in a broadband noise background, the listener is
assumed to make use of a filter with a center frequency
close to that of the signal. This filter passes the signal
but removes a great deal of the noise. Only the compo-
nents in the noise that pass through the filter have any
effect in masking the signal. It is usually assumed that
the threshold for detecting the signal is determined by
the amount of noise passing through the auditory filter;
specifically, threshold is assumed to correspond to a cer-
tain signal-to-noise ratio at the output of the filter. This
set of assumptions has come to be known as the power
spectrum model of masking [13.15], since the stimuli
are represented by their long-term power spectra, i. e.,
the short-term fluctuations in the masker are ignored.

The question considered next is: What is the shape of
the auditory filter? In other words, how does its relative
response change as a function of the input frequency?
Most methods for estimating the shape of the auditory
filter at a given center frequency are based on the as-
sumptions of the power spectrum model of masking. The
threshold of a signal whose frequency is fixed is meas-
ured in the presence of a masker whose spectral content
is varied. It is assumed, as a first approximation, that the
signal is detected using the single auditory filter that is
centered on the frequency of the signal, and that thresh-
old corresponds to a constant signal-to-masker ratio at
the output of that filter. The methods described below
both measure the shape of the filter using this technique.

13.2.2 Psychophysical Tuning Curves

One method of measuring the shape of the auditory fil-
ter involves a procedure that is analogous in many ways
to the determination of a neural tuning curve (Chap. 12),
and the resulting function is often called a psychophys-
ical tuning curve (PTC). To determine a PTC, the signal
is fixed in level, usually at a very low level, say, 10 dB
above absolute threshold (called 10 dB sensation level,
SL). The masker can be either a sinusoid or a noise with
a small bandwidth.
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Fig. 13.3 Psychophysical tuning curves (PTCs) determined
in simultaneous masking, using sinusoidal signals at 10 dB
SL. For each curve, the circle below it indicates the fre-
quency and level of the signal. The masker was a sinusoid
which had a fixed starting phase relationship to the 50 ms
signal. The masker level required for threshold is plotted
as a function of masker frequency on a logarithmic scale.
The dashed line shows the absolute threshold for the signal
(after Vogten [13.12])

For each of several masker center frequencies, the
level of the masker needed just to mask the signal is
determined. Because the signal is at a low level it is
assumed that it produces activity primarily at the out-
put of a single auditory filter. It is assumed further
that at threshold the masker produces a constant output
from that filter, in order to mask the fixed signal. Thus
the PTC indicates the masker level required to produce
a fixed output from the auditory filter as a function of
frequency. Normally a filter characteristic is determined
by plotting the output from the filter for an input vary-
ing in frequency and fixed in level. However, if the filter
is linear the two methods give the same result. Thus,
assuming linearity, the shape of the auditory filter can
be obtained simply by inverting the PTC. Examples of
some PTCs are given in Fig. 13.3.

One problem in interpreting PTCs is that, in prac-
tice, the listener may use the information from more
than one auditory filter. When the masker frequency is
above the signal frequency the listener might do better
to use the information from a filter centered just below
the signal frequency. If the filter has a relatively flat
top, and sloping edges, this will considerably attenu-
ate the masker at the filter output, while only slightly
attenuating the signal. By using this off-center filter
the listener can improve performance. This is known
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as off-frequency listening, and there is now good evi-
dence that humans do indeed listen off-frequency when
it is advantageous to do so [13.16, 17]. The result of
off-frequency listening is that the PTC has a sharper tip
than would be obtained if only one auditory filter were
involved [13.18].

13.2.3 The Notched-Noise Method

Patterson [13.19] described a method of determining
auditory filter shape that limits off-frequency listen-
ing. The method is illustrated in Fig. 13.4. The signal
(indicated by the bold vertical line) is fixed in fre-
quency, and the masker is a noise with a bandstop or
notch centered at the signal frequency. The deviation
of each edge of the noise from the center frequency
is denoted by Δ f . The width of the notch is varied,
and the threshold of the signal is determined as a func-
tion of notch width. Since the notch is symmetrically
placed around the signal frequency, the method cannot
reveal asymmetries in the auditory filter, and the anal-
ysis assumes that the filter is symmetric on a linear
frequency scale. This assumption appears not unrea-
sonable, at least for the top part of the filter and at
moderate sound levels, since PTCs are quite symmet-
ric around the tips. For a signal symmetrically placed
in a bandstop noise, the optimum signal-to-masker ra-
tio at the output of the auditory filter is achieved with

Power (linear scale)

Frequency (linear  scale)

NoiseNoise

2Δ f

Fig. 13.4 Schematic illustration of the technique used by
Patterson [13.19] to determine the shape of the auditory
filter. The threshold of the sinusoidal signal (indicated by
the vertical line) is measured as a function of the width of
a spectral notch in the noise masker. The amount of noise
passing through the auditory filter centered at the signal
frequency is proportional to the dark shaded areas

a filter centered at the signal frequency, as illustrated
in Fig. 13.4.

As the width of the spectral notch is increased, less
noise passes through the auditory filter. Thus the thresh-
old for detecting the signal drops. The amount of noise
passing through the auditory filter is proportional to
the area under the filter in the frequency range cov-
ered by the noise. This is shown as the dark shaded
areas in Fig. 13.4. Assuming that threshold corresponds
to a constant signal-to-masker ratio at the output of the
filter, the change in signal threshold with notch width in-
dicates how the area under the filter varies with Δ f . The
area under a function between certain limits is obtained
by integrating the value of the function over those lim-
its. Hence by differentiating the function relating thresh-
old to Δ f , the relative response of the filter at that value
of Δ f is obtained. In other words, the relative response
of the filter for a given deviation, Δ f , from the center
frequency is equal to the slope of the function relating
signal threshold to notch width, at that value of Δ f .

A typical auditory filter derived using this method is
shown in Fig. 13.5. It has a rounded top and quite steep
skirts. The sharpness of the filter is often specified as the
bandwidth of the filter at the points where the response
has fallen by a factor of two in power, i. e., by 3 dB. The
3 dB bandwidths of the auditory filters derived using
the notched-noise method are typically between 10%

Relative response (dB)

Frequency (kHz)
0.4

0

–10

– 20

– 30

– 40

– 50
0.6 0.8 1.0 1.2 1.4 1.6

Fig. 13.5 A typical auditory filter shape determined using
Patterson’s method. The filter is centered at 1 kHz. The rel-
ative response of the filter (in dB) is plotted as a function
of frequency
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and 15% of the center frequency. An alternative mea-
sure is the equivalent rectangular bandwidth (ERB),
which is the bandwidth of a rectangular filter that has
the same peak transmission as the filter of interest and
that passes the same total power for a white noise in-
put. The ERB of the auditory filter is a little larger than
the 3 dB bandwidth. In what follows, the mean ERB
of the auditory filter determined using young listeners
with normal hearing and using a moderate noise level is
denoted ERBN (where the subscript N denotes normal
hearing). An equation describing the value of ERBN as
a function of center frequency, F (in Hz), is [13.20]:

ERBN = 24.7(0.00437F+1) . (13.1)

Sometimes it is useful to plot psychoacoustical data
on a frequency scale related to ERBN, called the ERBN-
number scale. For example, the value of ERBN for
a center frequency of 1 kHz is about 132 Hz, so an in-
crease in frequency from 934 to 1066 Hz represents
a step of one unit on the ERBN-number scale. The units
of ERBN-number are Cams. A formula relating ERBN
number in Cams to frequency is [13.20]:

ERBN-number= 21.4 log10(0.00437F+1) , (13.2)

where F is frequency in Hz. This scale is conceptu-
ally similar to the Bark scale proposed by Zwicker and
coworkers [13.22], although it differs somewhat in nu-
merical values.

The notched-noise method has been extended to in-
clude conditions where the spectral notch in the noise
is placed asymmetrically about the signal frequency.
This allows the measurement of any asymmetry in the
auditory filter, but the analysis of the results is more
difficult, and has to take off-frequency listening into
account [13.23]. It is beyond the scope of this chapter
to give details of the method of analysis; the inter-
ested reader is referred to [13.15,20,24,25]. The results
show that the auditory filter is reasonably symmet-
ric at moderate sound levels, but becomes increasingly
asymmetric at high levels, the low-frequency side be-
coming shallower than the high-frequency side. The
filter shapes derived using the notched-noise method
are quite similar to inverted PTCs [13.26], except that
PTCs are slightly sharper around their tips, probably as
a result of off-frequency listening.

13.2.4 Masking Patterns
and Excitation Patterns

In the masking experiments described so far, the fre-
quency of the signal was held constant, while the

masker was varied. These experiments are most appro-
priate for estimating the shape of the auditory filter at
a given center frequency. However, many of the early
experiments on masking did the opposite; the masker
was held constant in both level and frequency and
the signal threshold was measured as a function of
the signal frequency. The resulting functions are called
masking patterns or masked audiograms.

Masking patterns show steep slopes on the low-
frequency side (when the signal frequency is below that
of the masker), of between 55 and 240 dB/octave. The
slopes on the high-frequency side are less steep and de-
pend on the level of the masker. A typical set of results
is shown in Fig. 13.6. Notice that on the high-frequency
side the curve is shallower at the highest level. Around
the tip of the masking pattern, the growth of masking is
approximately linear; a 10 dB increase in masker level
leads to roughly a 10 dB increase in the signal thresh-
old. However, for signal frequencies in the range from
about 1300 to 2000 Hz, when the level of the masker
is increased by 10 dB (e.g., from 70 to 80 dB SPL),
the masked threshold increases by more than 10 dB;
the amount of masking grows nonlinearly on the high-
frequency side. This has been called the upward spread
of masking.

The masking patterns do not reflect the use of a sin-
gle auditory filter. Rather, for each signal frequency
the listener uses a filter centered close to the signal
frequency. Thus the auditory filter is shifted as the sig-
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Fig. 13.6 Masking patterns for a narrow-band noise
masker centered at 410 Hz. Each curve shows the elevation
in threshold of a pure-tone signal as a function of signal fre-
quency. The overall noise level for each curve is indicated
in the figure (after Egan and Hake [13.21])
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Psychoacoustics 13.2 Frequency Selectivity and Masking 481

nal frequency is altered. One way of interpreting the
masking pattern is as a crude indicator of the exci-
tation pattern of the masker [13.27]. The excitation
pattern is a representation of the effective amount of
excitation produced by a stimulus as a function of char-
acteristic frequency (CF) on the basilar membrane (BM;
see Chap. 12), and is plotted as effective level (in dB)
against CF. In the case of a masking sound, the ex-
citation pattern can be thought of as representing the
relative amount of vibration produced by the masker at
different places along the basilar membrane. The sig-
nal is detected when the excitation it produces is some
constant proportion of the excitation produced by the
masker at places with CFs close to the signal frequency.
Thus the threshold of the signal as a function of fre-
quency is proportional to the masker excitation level.
The masking pattern should be parallel to the excitation
pattern of the masker, but shifted vertically by a small
amount. In practice, the situation is not so straightfor-
ward, since the shape of the masking pattern is influ-
enced by factors such as off-frequency listening, and the
detection of beats and combination tones [13.28].

Moore and Glasberg [13.29] have described a way
of deriving the shapes of excitation patterns using the
concept of the auditory filter. They suggested that the
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Fig. 13.7 Calculated psychoacoustical excitation patterns
for a 1 kHz sinusoid at levels ranging from 20 to 90 dB
SPL in 10 dB steps

excitation pattern of a given sound can be thought of as
the output of the auditory filters plotted as a function of
their center frequency. To calculate the excitation pat-
tern of a given sound, it is necessary to calculate the
output of each auditory filter in response to that sound,
and to plot the output as a function of the filter center
frequency. The characteristics of the auditory filters are
determined using the notched-noise method described
earlier. Figure 13.7 shows excitation patterns calculated
in this way for 1000 Hz sinusoids with various levels.
The patterns are similar in form to the masking patterns
shown in Fig. 13.6. Software for calculating excitation
patterns can be downloaded from [13.30].

13.2.5 Forward Masking

Masking can occur when the signal is presented just be-
fore or after the masker. This is called non-simultaneous
masking and it is studied using brief signals, often
called probes. Two basic types of non-simultaneous
masking can be distinguished: (1) backward masking,
in which the probe precedes the masker; and (2) for-
ward masking, in which the probe follows the masker.
Although many studies of backward masking have
been published, the phenomenon is poorly understood.
The amount of backward masking obtained depends
strongly on how much practice the subjects have re-
ceived, and practiced subjects often show little or no
backward masking [13.31, 32]. The larger masking ef-
fects found for unpracticed subjects may reflect some
sort of confusion of the signal with the masker. In the
following, I will focus on forward masking, which can
be substantial even in highly practiced subjects. The
main properties of forward masking are as follows:

1. Forward masking is greater the nearer in time to
the masker that the signal occurs. This is illustrated
in the upper panel of Fig. 13.8. When the delay D
of the signal after the end of the masker is plot-
ted on a logarithmic scale, the data fall roughly on
a straight line. In other words, the amount of for-
ward masking, in dB, is a linear function of log D.

2. The rate of recovery from forward masking is
greater for higher masker levels. Regardless of the
initial amount of forward masking, the masking de-
cays to zero after 100–200 ms.

3. A given increment in masker level does not produce
an equal increment in amount of forward mask-
ing. For example, if the masker level is increased
by 10 dB, the masked threshold may only increase
by 3 dB. This contrasts with simultaneous masking,
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Fig. 13.8a,b Panel (a) shows the amount of forward mask-
ing of a brief 4 kHz signal, plotted as a function of the time
delay of the signal after the end of the noise masker. Each
curve shows results for a different noise level, specified as
the level in a one-ERBN-wide band centered at 4 kHz. The
results for each level fall roughly on a straight line when
the signal delay is plotted on a logarithmic scale, as here.
Panel (b) shows the same thresholds plotted as a function
of masker level. Each curve shows results for a different
signal delay time (17.5, 27.5, or 37.5 ms). Note that the
slopes of these growth of masking functions decrease with
increasing signal delay. The dashed line indicates a slope
of 1 (after Moore and Glasberg [13.33])

where, at least for wide-band maskers, threshold
corresponds approximately to a constant signal-to-
masker ratio. This effect can be quantified by plot-
ting the signal threshold as a function of the masker
level. The resulting function is called a growth of
masking function. Several such functions are shown
in the lower panel of Fig. 13.8. In simultaneous

masking such functions would have slopes close
to one, as indicated by the dashed line. In forward
masking the slopes are usually less than one, and
the slopes decrease as the value of D increases.

4. The amount of forward masking increases with in-
creasing masker duration for durations up to at
least 50 ms. The results for greater masker dura-
tions vary somewhat across studies. Some studies
show an effect of masker duration for durations up
to 200 ms [13.34,35], while others show little effect
for durations beyond 50 ms [13.36].

5. Forward masking is influenced by the relation be-
tween the frequencies of the signal and the masker
(just as in the case of simultaneous masking).

The basis of forward masking is still not clear. Four
factors may contribute:

1. The response of the BM to the masker contin-
ues for some time after the end of the masker, an
effect known as ringing. If the ringing overlaps
with the response to the signal, then this may con-
tribute to the masking of the signal. The duration
of the ringing is less at places tuned to high fre-
quencies, whose bandwidth is larger than at low
frequencies. Hence, ringing plays a significant role
only at low frequencies [13.37–39]. For frequencies
above 200–300 Hz, the amount of forward mask-
ing for a given masker level and signal delay time
is roughly independent of frequency [13.40].

2. The masker produces short-term adaptation or fa-
tigue in the auditory nerve or at higher centers in
the auditory system, which reduces the response
to a signal presented just after the end of the
masker [13.41]. However, the effect in the auditory
nerve may be too small to account for the forward
masking observed behaviorally [13.42].

3. The neural activity evoked by the masker persists
at some level in the auditory system higher than the
auditory nerve, and this persisting activity masks the
signal [13.43].

4. The masker may evoke a form of inhibition in the
central auditory system, and this inhibition persists
for some time after the end of the masker [13.44].

Oxenham and Moore [13.45] have suggested that
the shallow slopes of the growth of masking func-
tions, as shown in the bottom panel of Fig. 13.8, can
be explained, at least qualitatively, in terms of the com-
pressive input–output function of the BM (Chap. 12).
Such an input–output function is shown schematically

Part
D

1
3
.2



Psychoacoustics 13.2 Frequency Selectivity and Masking 483

100

90

80

70

60

50

40
1009080706050403020100

Relative response (dB)

Input level (dB)

ΔMΔS

ΔO

ΔO

Fig. 13.9 Illustration of why growth of masking functions
in forward masking usually have shallow slopes. The solid
curve shows a schematic input–output function on the basi-
lar membrane. The relative response is plotted on a dB
scale with an arbitrary origin. When the masker is in-
creased in level by ΔM, this produces an increase in
response of ΔO. To restore signal threshold, the response
to the signal also has to be increased by ΔO. This requires
an increase in signal level, ΔS, which is markedly smaller
than ΔM

in Fig. 13.9. It has a shallow slope for medium input
levels, but a steeper slope at very low input levels. As-
sume that, for a given time delay of the signal relative
to the masker, the response evoked by the signal at
threshold is directly proportional to the response evoked
by the masker. Assume, as an example, that a masker
with a level of 40 dB produces a signal threshold of
10 dB. Consider now what happens when the masker
level is increased by 30 dB. The increase in masker
level, denoted by ΔM in Fig. 13.9, produces a relatively
small increase in response, ΔO. To restore the signal to
threshold, the signal has to be increased in level so that
the response to it also increases by ΔO. However, this
requires a relatively small increase in signal level, ΔS,
as the signal level falls in the range where the input–
output function is relatively steep. Thus, the growth of
masking function has a shallow slope.

According to this explanation, the shallow slope of
the growth of masking function arises from the fact that
the signal level is lower than the masker level, so the
masker is subject to more compression than the sig-
nal. The input–output function on the BM has a slope
that decreases progressively with increasing level over
the range 0 to about 50 dB SPL. Hence the slope of
the growth of masking function should decrease with

increasing difference in level between the masker and
signal. This can account for the progressive decrease in
the slopes of the growth of masking functions with in-
creasing delay between the signal and masker (see the
right-hand panel of Fig. 13.8); longer delays are associ-
ated with greater differences in level between the signal
and masker. Another prediction is that the growth of
masking function for a given signal delay should in-
crease in slope if the signal level is high enough to fall
in the compressive region of the input–output function.
Such an effect can be seen in the growth of masking
function for the shortest delay time in Fig. 13.8; the
function steepens for the highest signal level.

In summary, the processes underlying forward
masking are not fully understood. Contributions from
a number of different sources may be important. Tem-
poral overlap of patterns of vibration on the BM may
be important, especially for small delay times between
the signal and masker. Short-term adaptation or fatigue
in the auditory nerve may also play a role. At higher
neural levels, a persistence of the excitation or inhibi-
tion evoked by the masker may occur. The form of the
growth of masking functions can be explained, at least
qualitatively, in terms of the nonlinear input–output
functions observed on the BM.

13.2.6 Hearing Out Partials
in Complex Tones

A complex tone, such as a tone produced by a musical
instrument, usually evokes a single pitch; pitches corre-
sponding to the frequencies of individual partials are not
usually perceived. However, such pitches can be heard
if attention is directed appropriately. In other words, in-
dividual partials can be heard out. Plomp [13.46] and
Plomp and Mimpen [13.47] used complex tones with
12 equal-amplitude sinusoidal components to investi-
gate the limits of this ability. The listener was presented
with two comparison tones, one of which was of the
same frequency as a partial in the complex; the other
lay halfway between that frequency and the frequency
of the adjacent higher or lower partial. The listener had
to judge which of these two tones was a component of
the complex. Plomp used two types of complex: a har-
monic complex containing harmonics 1 to 12, where the
frequencies of the components were integer multiples of
that of the fundamental; and a nonharmonic complex,
where the frequencies of the components were mistuned
from simple frequency ratios. He found that for both
kinds of complex, partials could only be heard out if
they were sufficiently far in frequency from neighboring
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partials. The data, and other more recent data [13.48],
are consistent with the hypothesis that a partial can be
heard out (with 75% accuracy) when it is separated from
neighboring (equal-amplitude) partials by 1.25 times
the ERBN of the auditory filter. For harmonic complex
tones, only the first (lowest) five to eight harmonics can
be heard out, as higher harmonics are separated by less
than 1.25 ERBN.

It seems likely that the analysis of partials from
a complex sound depends in part on factors other than
the frequency analysis that takes place on the basi-
lar membrane. Soderquist [13.49] compared musicians

and non-musicians in a task very similar to that of
Plomp, and found that the musicians were markedly
superior. This result could mean that musicians have
smaller auditory filter bandwidths than non-musicians.
However, Fine and Moore [13.50] showed that audi-
tory filter bandwidths, as estimated in a notched-noise
masking experiment, did not differ for musicians and
non-musicians. It seems that some mechanism other
than peripheral filtering is involved in hearing out par-
tials from complex tones and that musicians, because of
their greater experience, are able to make more efficient
use of this mechanism.

13.3 Loudness

The human ear is remarkable both in terms of its ab-
solute sensitivity and the range of sound intensities
to which it can respond. The most intense sound that
can be heard without damaging the ear has a level
about 120 dB above the absolute threshold; this range
is referred to as the dynamic range of the auditory
system and it corresponds to a ratio of intensities of
1 000 000 000 000 : 1.

Loudness corresponds to the subjective impression
of the magnitude of a sound. The formal definition of
loudness is: that intensive attribute of auditory sensa-
tion in terms of which sounds can be ordered on a scale
extending from soft to loud [13.10]. Because loudness
is subjective, it is very difficult to measure in a quantita-
tive way. Estimates of loudness can be strongly affected
by bias and context effects of various kinds [13.51, 52].
For example the impression of loudness of a sound with
a moderate level (say, 60 dB SPL) can be affected by
presenting a high level sound (say, 100 dB SPL) before
the moderate level sound.

13.3.1 Loudness Level
and Equal-Loudness Contours

It is often useful to be able to compare the loudness
of sounds with that of a standard, reference sound.
The most common reference sound is a 1000 Hz sinu-
soid, presented binaurally in a free field, with the sound
coming from directly in front of the listener. The loud-
ness level of a sound is defined as the intensity level
of a 1000 Hz sinusoid that is equal in loudness to the
sound. The unit of loudness level is the phon. Thus, the
loudness level of any sound in phons is the level (in dB
SPL) of the 1000 Hz sinusoid to which it sounds equal
in loudness. For example, if a sound appears to be as

loud as a 1000 Hz sinusoid with a level of 45 dB SPL,
then the sound has a loudness level of 45 phons. To de-
termine the loudness level of a given sound, the subject
is asked to adjust the level of a 1000 Hz sinusoid un-
til it appears to have the same loudness as that sound.
The 1000 Hz sinusoid and the test sound are presented
alternately rather than simultaneously.
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Fig. 13.10 Equal-loudness contours for loudness levels
from 10 to 100 phons for sounds presented binaurally from
the frontal direction. The absolute threshold curve (the
MAF) is also shown. The curves for loudness levels of 10
and 100 phons are dashed, as they are based on interpola-
tion and extrapolation, respectively
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In a variation of this procedure, the 1000 Hz sinu-
soid is fixed in level, and the test sound is adjusted to
give a loudness match, again with alternating presenta-
tion. If this is repeated for various different frequencies
of a sinusoidal test sound, an equal-loudness con-
tour is generated [13.53, 54]. For example, if the
1000 Hz sinusoid is fixed in level at 40 dB SPL, then
the 40 phon equal-loudness contour is generated. Fig-
ure 13.10 shows equal-loudness contours as published
in a recent standard [13.54]. The figure shows equal-
loudness contours for binaural listening for loudness
levels from 10–100 phons, and it also includes the ab-
solute threshold (MAF) curve. The listening conditions
were similar to those for determining the MAF curve;
the sound came from a frontal direction in a free field.
The equal-loudness contours are of similar shape to the
MAF curve, but tend to become flatter at high loudness
levels.

Note that the subjective loudness of a sound is not
directly proportional to its loudness level in phons. For
example, a sound with a loudness level of 80 phons
sounds much more than twice as loud as a sound with
a loudness level of 40 phons. This is discussed in more
detail in the next section.

13.3.2 The Scaling of Loudness

Several methods have been developed that attempt to
measure directly the relationship between the physical
magnitude of sound and perceived loudness [13.55]. In
one, called magnitude estimation, sounds with various
different levels are presented, and the subject is asked
to assign a number to each one according to its per-
ceived loudness. In a second method, called magnitude
production, the subject is asked to adjust the level of
a sound until it has a loudness corresponding to a spec-
ified number.

On the basis of results from these two methods,
Stevens suggested that loudness, L , was a power func-
tion of physical intensity I ,

L = kI0.3 , (13.3)

where k is a constant depending on the subject and the
units used. In other words, the loudness of a given sound
is proportional to its intensity raised to the power 0.3.
Note that this implies that loudness is not linearly re-
lated to intensity; rather, it is a compressive function
of intensity. An approximation to this equation is that
the loudness doubles when the intensity is increased
by a factor of 10, or, equivalently, when the level is
increased by 10 dB. In practice, this relationship only
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Fig. 13.11 The relationship between loudness in sones and
loudness level in phons for a 1000 Hz sinusoid. The curve
is based on the loudness model of Moore et al. (after [13.3])

holds for sound levels above about 40 dB SPL. For
lower levels than this, the loudness changes with in-
tensity more rapidly than predicted by the power-law
equation.

The unit of loudness is the sone. One sone is de-
fined arbitrarily as the loudness of a 1000 Hz sinusoid
at 40 dB SPL, presented binaurally from a frontal di-
rection in a free field. Fig. 13.11 shows the relationship
between loudness in sones and the physical level of a
1000 Hz sinusoid, presented binaurally from a frontal
direction in a free-field; the level of the 1000 Hz tone
is equal to its loudness level in phons. This figure is
based on predictions of a loudness model [13.3], but it
is consistent with empirical data obtained using scaling
methods [13.56]. Since the loudness in sones is plotted
on a logarithmic scale, and the decibel scale is itself log-
arithmic, the curve shown in Fig. 13.11 approximates
a straight line for levels above 40 dB SPL. The slope
corresponds to a doubling of loudness for each 10 dB
increase in sound level.

13.3.3 Neural Coding
and Modeling of Loudness

The mechanisms underlying the perception of loudness
are not fully understood. A common assumption is that
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Fig. 13.12 Block diagram of a typical loudness model

loudness is somehow related to the total neural activity
evoked by a sound, although this concept has been ques-
tioned [13.57]. In any case, it is commonly assumed
that loudness depends upon a summation of loudness
contributions from different frequency channels (i. e.,
different auditory filters). Models incorporating this
basic concept have been proposed by Fletcher and Mun-
son [13.58], by Zwicker [13.59, 60] and by Moore and
coworkers [13.3, 61]. The models attempt to calculate
the average loudness that would be perceived by a large
group of listeners with normal hearing under condi-
tions where biases are minimized as far as possible.
The recent models have the basic form illustrated in
Fig. 13.12. The first stage is a fixed filter to account for
the transmission of sound through the outer and mid-
dle ear. The next stage is the calculation of an excitation
pattern for the sound under consideration. In most of the
models, the excitation pattern is calculated from psy-
choacoustical masking data, as described earlier. From
the excitation-pattern stage onwards, the models should
be considered as multichannel; the excitation pattern is
sampled at regular intervals along the ERBN-number
scale, each sample value corresponding to the amount
of excitation at a specific center frequency.

The next stage is the transformation from excita-
tion level (dB) to specific loudness, which is a kind of
loudness density. It represents the loudness that would
be evoked by the excitation within a small fixed dis-
tance along the basilar membrane if it were possible to
present that excitation alone (without any excitation at
adjacent regions on the basilar membrane). In the model
of Moore et al. [13.3], the distance is 0.89 mm, which
corresponds to one ERBN, so the specific loudness rep-
resents the loudness per ERBN. The specific loudness
plotted as a function of ERBN-number is called the
specific loudness pattern. The specific loudness can-
not be measured either physically or subjectively. It is
a theoretical construct used as an intermediate stage in
the loudness models. The transformation from excita-
tion level to specific loudness involves a compressive
nonlinearity. Although the models are based on psy-
choacoustical data, this transformation can be thought
of as representing the way that physical excitation is

transformed into neural activity; the specific loudness is
assumed to be related to the amount of neural activity at
the corresponding CF. The overall loudness of a given
sound, in sones, is assumed to be proportional to the
total area under the specific loudness pattern. In other
words, the overall loudness is calculated by summing
the specific loudness values across all ERBN numbers
(corresponding to all center frequencies).

Loudness models of this type have been rather
successful in accounting for experimental data on
the loudness of both simple sounds and complex
sounds [13.3]. They have also been incorporated into
loudness meters, which can give an appropriate in-
dication of the loudness of sounds even when they
fluctuate over time [13.27,61,62]. Software for calculat-
ing loudness using the model of Moore et al. [13.3] can
be downloaded from [13.30]. The American National
Standards Institute (ANSI) standard for calculating
loudness [13.63] is based on this model.

13.3.4 The Effect of Bandwidth on Loudness

Consider a complex sound of fixed energy (or inten-
sity) having a bandwidth W . If W is less than a certain
bandwidth, called the critical bandwidth for loudness,
CBL, then the loudness of the sound is almost inde-
pendent of W ; the sound is judged to be about as
loud as a pure tone or narrow band of noise of equal
intensity lying at the center frequency of the band.
However, if W is increased beyond CBL, the loud-
ness of the complex begins to increase. This has been
found to be the case for bands of noise [13.27, 64] and
for complex sounds consisting of several pure tones
whose frequency separation is varied [13.65, 66]. An
example for bands of noise is given in Fig. 13.13. The
CBL for the data in Fig. 13.13 is about 250–300 Hz
for a center frequency of 1420 Hz, although the ex-
act value of CBL is hard to determine. The value of
CBL is similar to, but a little greater than, the ERBN
of the auditory filter. Thus, for a given amount of
energy, a complex sound is louder if its bandwidth
exceeds one ERBN than if its bandwidth is less than
one ERBN.
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Fig. 13.13 The level of a 210 Hz-wide noise required to
match the loudness of a noise of variable bandwidth is plot-
ted as a function of the variable bandwidth; the bands of
noise were geometrically centered at 1420 Hz. The number
by each curve is the overall noise level in dB SPL (after
Zwicker et al. [13.64])

The pattern of results shown in Fig. 13.13 can
be understood in terms of the loudness models de-
scribed above. First, a qualitative account is given to
illustrate the basic concept. When a sound has a band-
width less than one ERBN at a given center frequency,
the excitation pattern and the specific loudness pat-
tern are roughly independent of the bandwidth of the
sound [13.67]. Further, the overall loudness is domi-
nated by the specific loudness at the peak of the pattern.
Consider now the effect of increasing the bandwidth
of a sound from one ERBN to N ERBN, keeping the
overall power, Poverall, constant. The power in each one-
ERBN-wide band is now Poverall/N . However, the peak
specific loudness evoked by each band decreases by
much less than a factor of N , because of the com-
pressive relationship between excitation and specific
loudness. For example, if N = 10, the peak specific
loudness evoked by each band decreases by a factor of
about two. Thus, in this example, there are ten bands
each about half as loud as the original one-ERBN-wide
band, so the overall loudness is about a factor of five
greater for the ten-ERBN-wide than for the one-ERBN-
wide band. Generally, once the bandwidth is increased
beyond one ERBN, the loudness goes up because the de-
crease in loudness per ERBN is more than offset by the
increase in the number of channels contributing signifi-
cantly to the overall loudness.
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Fig. 13.14a,b Panel (a) shows excitation patterns for
a 1 kHz sinusoid with a level of 60 dB SPL (the narrowest
pattern with the highest peak) and for noise bands of vari-
ous widths, all centered at 1 kHz and with an overall level
of 60 dB SPL. The frequency scale has been transformed
to an ERBN number scale. The noise bands have widths of
20, 60, 140, 300, 620 and 1260 Hz. As the bandwidth is
increased, the patterns decrease in height but spread over
a greater number of Cams. Panel (b) shows specific loud-
ness patterns corresponding to the excitation patterns in the
upper panel. For bandwidths up to 140 Hz, the area un-
der the specific loudness patterns is constant. For greater
bandwidths, the total area increases

This argument is illustrated in a more quantitative
way in Fig. 13.14, which shows excitation patterns (top)
and specific loudness patterns (bottom) for a sinusoid
and for bands of noise of various widths (20, 40, 60,
140, 300 and 620 Hz), all with a level of 60 dB SPL,
calculated using the model of Moore et al. [13.3]. With
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increasing bandwidth, the specific loudness patterns be-
come lower at their tips, but broader. For the first three
bandwidths, the small decrease in area around the tip is
almost exactly canceled by the increase on the skirts, so
the total area remains almost constant. When the band-
width is increased beyond 140 Hz, the increase on the
skirts is greater than the decrease around the tip, and
so the total area, and hence the predicted loudness, in-
creases. The value of CBL in this case is a little greater
than 140 Hz. Since the increase in loudness depends on
the summation of specific loudness at different center
frequencies, the increase in loudness is often described
as loudness summation.

At low sensation levels (around 10–20 dB SL), the
loudness of a complex sound is roughly independent of
bandwidth. This can also be explained in terms of the
loudness models described above. At these low levels,
specific loudness changes rapidly with excitation level,
and so does loudness. As a result, the total area under
the specific loudness pattern remains almost constant as
the bandwidth is altered, even for bandwidths greater
than CBL. Thus, loudness is independent of bandwidth.
When a narrow-band sound has a very low sensation
level (below 10 dB), then if the bandwidth is increased
keeping the total energy constant, the output of each
auditory filter becomes insufficient to make the sound
audible. Accordingly, near threshold, loudness must de-
crease as the bandwidth of a complex sound is increased
from a small value. As a consequence, if the intensity of
a complex sound is increased slowly from a subthresh-
old value, the rate of growth of loudness is greater for
a wide-band sound than for a narrow-band sound.

13.3.5 Intensity Discrimination

The smallest detectable change in intensity of a sound
has been measured for many different types of stimuli
by a variety of methods. The three main methods are:

1. Modulation detection. The stimulus is amplitude
modulated (i. e., made to vary in amplitude) at a slow
regular rate and the listener is required to detect the
modulation. Usually, the modulation is sinusoidal.

2. Increment detection. A continuous background
stimulus is presented, and the subject is required
to detect a brief increment in the level of the back-
ground. Often the increment is presented at one of
two possible times, indicated by lights, and the lis-
tener is required to indicate whether the increment
occurred synchronously with the first light or the
second light.

3. Intensity discrimination of gated or pulsed stimuli.
Two (or more) separate pulses of sound are pre-
sented successively, one being more intense than
the other(s), and the subject is required to indicate
which pulse was the most intense.

In all of these tasks, the subjective impression of
the listener is of a change in loudness. For example,
in method 1 the modulation is heard as a fluctua-
tion in loudness. In method 2 the increment is heard
as a brief increase in loudness of the background, or
sometimes as an extra sound superimposed on the back-
ground. In method 3, the most intense pulse appears
louder than the other(s). Although there are some mi-
nor discrepancies in the experimental results for the
different methods, the general trend is similar. For wide-
band noise, or for bandpass-filtered noise, the smallest
detectable intensity change, ΔI , is approximately a con-
stant fraction of the intensity of the stimulus, I . In
other words, ΔI/I is roughly constant. This is an
example of Weber’s Law, which states that the small-
est detectable change in a stimulus is proportional to
the magnitude of that stimulus. The value of ΔI/I is
called the Weber fraction. Thresholds for detecting in-
tensity changes are often specified as the change in
level at threshold, ΔL , in decibels. The value of ΔL
is given by

ΔL = 10 log10[(I +ΔI )/I ] . (13.4)

As ΔI/I is constant, ΔL is also constant, regardless of
the absolute level, and for wide-band noise has a value
of about 0.5–1 dB. This holds from about 20 dB above
threshold to 100 dB above threshold [13.68]. The value
of ΔL increases for sounds with levels close to the
absolute threshold.

For sinusoidal stimuli, the situation is somewhat dif-
ferent. If ΔI (in dB) is plotted against I (also in dB),
a straight line is obtained with a slope of about 0.9;
Weber’s law would give a slope of 1.0. Thus discrim-
ination, as measured by the Weber fraction, improves
at high levels. This has been termed the near miss to
Weber’s Law. The data of Riesz [13.69] for modula-
tion detection show a value of ΔL of 1.5 dB at 20 dB
SL, 0.7 dB at 40 dB SL, and 0.3 dB at 80 dB SL (all at
1000 Hz). The Weber fraction may increase somewhat
at very high sound levels (above 100 dB SPL) [13.70].
In everyday life, a change in level of 1 dB would hardly
be noticed, but a change in level of 3 dB (corresponding
to a doubling or halving of intensity) would be fairly
easily heard.
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13.4 Temporal Processing in the Auditory System

This section is concerned mainly with temporal reso-
lution (or acuity), which refers to the ability to detect
changes in stimuli over time, for example, to detect
a brief gap between two stimuli or to detect that a sound
is amplitude modulated. As pointed out by Viemeister
and Plack [13.72], it is also important to distinguish the
rapid pressure variations in a sound (the fine structure)
from the slower overall changes in the amplitude of
those fluctuations (the envelope). Temporal resolution
normally refers to the resolution of changes in the enve-
lope, not in the fine structure. In characterizing temporal
resolution in the auditory system, it is important to take
account of the filtering that occurs in the peripheral
auditory system. Temporal resolution depends on two
main processes: analysis of the time pattern occurring
within each frequency channel and comparison of the
time patterns across channels.

A major difficulty in measuring the temporal reso-
lution of the auditory system is that changes in the time
pattern of a sound are generally associated with changes
in its magnitude spectrum, for example its power spec-
trum (Chap. 14). Thus, the detection of a change in
time pattern can sometimes depend not on temporal
resolution per se, but on the detection of the change
in magnitude spectrum. There have been two gen-
eral approaches to getting around this problem. One
is to use signals whose magnitude spectrum is not
changed when the time pattern is altered. For exam-
ple, the magnitude spectrum of white noise remains
flat if the noise is interrupted, i. e., if a gap is intro-
duced into the noise. The second approach uses stimuli
whose magnitude spectra are altered by the change in
time pattern, but extra background sounds are added
to mask the spectral changes. Both approaches will be
described.

13.4.1 Temporal Resolution Based
on Within-Channel Processes

The threshold for detecting a gap in a broadband noise
provides a simple and convenient measure of tempo-
ral resolution. Usually a two-alternative forced-choice
(2AFC) procedure is used: the subject is presented with
two successive bursts of noise and either the first or
the second burst (at random) is interrupted to produce
the gap. The task of the subject is to indicate which
burst contained the gap. The gap threshold is typically
2–3 ms [13.73,74]. The threshold increases at very low
sound levels, when the level of the noise approaches the

absolute threshold, but is relatively invariant with level
for moderate to high levels.

The long-term magnitude spectrum of a sound is not
changed when that sound is time reversed (played back-
ward in time). Thus, if a time-reversed sound can be
discriminated from the original, this must reflect a sensi-
tivity to the difference in time pattern of the two sounds.
This was exploited by Ronken [13.75], who used as
stimuli pairs of clicks differing in amplitude. One click,
labeled A, had an amplitude greater than that of the
other click, labeled B. Typically the amplitude of A was
twice that of B. Subjects were required to distinguish
click pairs differing in the order of A and B: either AB
or BA. The ability to do this was measured as a function
of the time interval or gap between A and B. Ronken
found that subjects could distinguish the click pairs for
gaps down to 2–3 ms. Thus, the limit to temporal reso-
lution found in this task is similar to that found for the
detection of a gap in broadband noise. It should be noted
that, in this task, subjects do not hear the individual
clicks within a click pair. Rather, each click pair is heard
as a single sound with its own characteristic quality.
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Fig. 13.15 A temporal modulation transfer function
(TMTF). A broadband white noise was sinusoidally am-
plitude modulated, and the threshold amount of modulation
required for detection is plotted as a function of modulation
rate. The amount of modulation is specified as 20 log(m),
where m is the modulation index (Chap. 14). The higher the
sensitivity to modulation, the more negative is this quantity
(after Bacon and Viemeister [13.71])
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The experiments described above each give a sin-
gle number to describe temporal resolution. A more
comprehensive approach is to measure the threshold
for detecting changes in the amplitude of a sound
as a function of the rapidity of the changes. In the
simplest case, white noise is sinusoidally amplitude
modulated, and the threshold for detecting the modula-
tion is determined as a function of modulation rate. The
function relating threshold to modulation rate is known
as a temporal modulation transfer function (TMTF).
Modulation of white noise does not change its long-
term magnitude spectrum. An example of the results
is shown in Fig. 13.15; data are taken from Bacon and
Viemeister [13.71]. For low modulation rates, perfor-
mance is limited by the amplitude resolution of the ear,
rather than by temporal resolution. Thus, the thresh-
old is independent of modulation rate for rates up to
about 50 Hz. As the rate increases beyond 50 Hz, tem-
poral resolution starts to have an effect; the threshold
increases, and for rates above about 1000 Hz the mod-
ulation cannot be detected at all. Thus, sensitivity to
amplitude modulation decreases progressively as the
rate of modulation increases. The shapes of TMTFs do
not vary much with overall sound level, but the abil-
ity to detect the modulation does worsen at low sound
levels.

To explore whether temporal resolution varies with
center frequency, Green [13.76] used stimuli which con-
sisted of a brief pulse of a sinusoid in which the level of
the first half of the pulse was 10 dB different from that
of the second half. Subjects were required to distinguish
two signals, differing in whether the half with the high
level was first or second. Green measured performance
as a function of the total duration of the stimuli. The
threshold, corresponding to 75% correct discrimination,
was similar for center frequencies of 2 and 4 kHz and
was between 1 and 2 ms. However, the threshold was
slightly higher for a center frequency of 1 kHz, being
between 2 and 4 ms.

Moore et al. [13.77] measured the threshold for de-
tecting a gap in a sinusoid, for signal frequencies of
100, 200, 400, 800, 1000, and 2000 Hz. A background
noise was used to mask the spectral splatter produced
by turning the sound off and on to produce the gap. The
gap thresholds were almost constant, at 6–8 ms over the
frequency range 400–2000 Hz, but increased somewhat
at 200 Hz and increased markedly, to about 18 ms, at
100 Hz. Individual variability also increased markedly
at 100 Hz.

Overall, it seems that temporal resolution is roughly
independent of frequency for medium to high fre-

quencies, but worsens somewhat at very low center
frequencies.

The measurement of TMTFs using sinusoidal car-
riers is complicated by the fact that the modulation
introduces spectral sidebands, which may be detected
as separate components if they are sufficiently far in
frequency from the carrier frequency. When the carrier
frequency is high, the effect of resolution of sidebands
is likely to be small for modulation frequencies up
to a few hundred Hertz, as the auditory filter band-
width is large for high center frequencies. Consistent
with this, TMTFs for high carrier frequencies generally
show an initial flat portion (sensitivity independent of
modulation frequency), then a portion where threshold
increases with increasing modulation frequency, pre-
sumably reflecting the limits of temporal resolution,
and then a portion where threshold decreases again,
presumably reflecting the detection of spectral side-
bands [13.78, 79].

The initial flat portion of the TMTF extends to about
100–120 Hz for sinusoidal carriers, but only to 50 or
60 Hz for a broadband noise carrier. It has been sug-
gested that the discrepancy occurs because the inherent
amplitude fluctuations in a noise carrier limit the de-
tectability of the imposed modulation [13.80–83]; see
below for further discussion of this point. The effect
of the inherent fluctuations depends upon their simi-
larity to the imposed modulation. When a narrow-band
noise carrier is used, which has relatively slow inherent
amplitude fluctuations, TMTFs show the poorest sen-
sitivity for low modulation frequencies [13.80, 81]. In
principle, then, TMTFs obtained using sinusoidal car-
riers provide a better measure of the inherent temporal
resolution of the auditory system than TMTFs obtained
using noise carriers, provided that the modulation fre-
quency is within the range where spectral resolution
does not play a major role.

13.4.2 Modeling Temporal Resolution

Most models of temporal resolution are based on the
idea that there is a process at levels of the auditory
system higher than the auditory nerve that is slug-
gish in some way, thereby limiting temporal resolution.
The models assume that the internal representation of
stimuli is smoothed over time, so that rapid temporal
changes are reduced in magnitude but slower ones are
preserved. Although this smoothing process almost cer-
tainly operates on neural activity, the most widely used
models are based on smoothing a simple transformation
of the stimulus, rather than its neural representation.
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Most models include an initial stage of bandpass fil-
tering, reflecting the action of the auditory filters. Each
filter is followed by a nonlinear device. This nonlinear
device is meant to reflect the operation of several pro-
cesses that occur in the peripheral auditory system such
as compression on the basilar membrane and neural
transduction, whose effects resemble half-wave rectifi-
cation (Chap. 12). The output of the nonlinear device is
fed to a smoothing device, which can be implemented
either as a low-pass filter [13.84] or (equivalently) as
a sliding temporal integrator [13.39,85]. The device de-
termines a kind of weighted average of the output of
the compressive nonlinearity over a certain time inter-
val or window. This weighting function is sometimes
called the shape of the temporal window. The window
itself is assumed to slide in time, so that the output
of the temporal integrator is like a weighted running
average of the input. This has the effect of smooth-
ing rapid fluctuations while preserving slower ones.
When a sound is turned on abruptly, the output of the
temporal integrator takes some time to build up. Sim-
ilarly, when a sound is turned off, the output of the
integrator takes some time to decay. The shape of the
window is assumed to be asymmetric in time, such that
the build up of its output in response to the onset of
a sound is more rapid than the decay of its output in re-
sponse to the cessation of a sound. The output of the
sliding temporal integrator is fed to a decision device.
The decision device may use different rules depend-
ing on the task required. For example, if the task is to
detect a brief temporal gap in a signal, the decision de-
vice might look for a dip in the output of the temporal
integrator. If the task is to detect amplitude modula-
tion of a sound, the device might assess the amount of
modulation at the output of the sliding temporal integra-
tor [13.84].

It is often assumed that backward and forward
masking depend on the process of build up and decay.
For example, if a brief signal is rapidly followed by
a masker (backward masking), the response to the sig-
nal may still be building up when the masker occurs.
If the masker is sufficiently intense, then its internal ef-
fects may swamp those of the signal. Similarly, if a brief
signal follows soon after a masker (forward masking),
the decaying response to the masker may swamp the re-
sponse to the signal. The asymmetry in the shape of the
window accounts for the fact that forward masking oc-
curs over longer masker-signal intervals than backward
masking.

13.4.3 A Modulation Filter Bank?

Some researchers have suggested that the analysis
of sounds that are amplitude modulated depends on
a specialized part of the brain that contains an ar-
ray of neurons, each tuned to a different modulation
rate [13.86]. Each neuron can be considered as a fil-
ter in the modulation domain, and the array of neurons
is known collectively as a modulation filter bank.
The modulation filter bank has been suggested as
a possible explanation for certain perceptual phe-
nomena, which are described below. It should be
emphasized, however, that this is still a controversial
concept.

The threshold for detecting amplitude modulation
of a given carrier generally increases if additional
amplitude modulation is superimposed on that car-
rier. This effect has been called modulation masking.
Houtgast [13.87] studied the detection of sinusoidal
amplitude modulation of a pink noise carrier. Thresh-
olds for detecting the modulation were measured when
no other modulation was present and when a masker
modulator was present in addition. In one experiment,
the masker modulation was a half-octave-wide band of
noise, with a center frequency of 4, 8, or 16 Hz. For
each masker, the masking pattern showed a peak at the
masker frequency. This could be interpreted as indi-
cating selectivity in the modulation-frequency domain,
analogous to the frequency selectivity in the audio-
frequency domain that was described earlier.

Bacon and Grantham [13.88] measured thresh-
olds for detecting sinusoidal amplitude modulation of
a broadband white noise in the presence of a sinu-
soidal masker modulator. When the masker modulation
frequency was 16 or 64 Hz, most modulation masking
occurred when the signal modulation frequency was
near the masker frequency. In other words, the masking
patterns were roughly bandpass, although they showed
an increase for very low signal frequencies. For a 4 Hz
masker, the masking patterns had a low-pass character-
istic, i. e., there was a downward spread of modulation
masking.

It should be noted that the sharpness of tuning of
the hypothetical modulation filter bank is much less
than the sharpness of tuning of the auditory filters in
the audio-frequency domain. The bandwidths have been
estimated as between 0.5 and 1 times the center fre-
quency [13.81, 89–91]. The modulation filters, if they
exist, are not highly selective.
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13.4.4 Duration Discrimination

Duration discrimination has typically been studied by
presenting two successive sounds with the same power
spectrum but differing in duration. The subject is re-
quired to indicate which sound had the longer duration.
Both Creelman [13.92] and Abel [13.93] found that the
smallest detectable increase in duration, ΔT , increased
with the baseline duration T . The data of Abel showed
that, for T = 10, 100, and 1000 ms, ΔT was about 4,
15, and 60 ms, respectively. Thus, the Weber fraction,
ΔT/T , decreased with increasing T . The results were
relatively independent of the overall level of the stimuli
and were similar for noise bursts of various bandwidths
and for bursts of a 1000 Hz sine wave.

Abel [13.94] reported somewhat different results
for the discrimination of the duration of the silent in-
terval between two markers. For silent durations, T ,
less than 160 ms, the results showed that discrimina-
tion improved as the level of the markers increased.
The function relating ΔT/T to T was non-monotonic,
reaching a local minimum for T = 2.5 ms and a local
maximum for T = 10 ms. The value of ΔT ranged from
6 to 19 ms for a base duration of 10 ms and from 61 to
96 ms for a base duration of 320 ms.

Divenyi and Danner [13.95] required subjects to
discriminate the duration of the silent interval defined
by two 20 ms sounds. When the markers were identical
high-level (86 dB SPL) bursts of sinusoids or noise, per-
formance was similar across markers varying in center
frequency (500–4000 Hz) and bandwidth. In contrast
to the results of Abel [13.94], ΔT/T was almost inde-
pendent of T over the range of T from 25 to 320 ms.
Thresholds were markedly lower than those reported
by Abel [13.94], being about 1.7 ms at T = 25 ms and
15 ms at T = 320 ms. This may have been a result of
the extensive training of the subjects of Divenyi and
Danner. For bursts of a 1 kHz sinusoid, performance
worsened markedly when the level of the markers was
decreased below 25 dB SL. Performance also wors-
ened markedly when the two markers on either side
of a silent interval were made different in level or
frequency.

In summary, all studies show that, for values of
T exceeding 10 ms, ΔT increases with T and ΔT is
roughly independent of the spectral characteristics of
the sounds. This is true both for the duration discrim-
ination of sounds and for the discrimination of silent
intervals bounded by acoustic markers, provided that
the markers are identical on either side of the interval.

However, ΔT increases at low sound levels, and also in-
creases when the markers differ in level or frequency on
either side of the interval.

13.4.5 Temporal Analysis Based
on Across-Channel Processes

Studies of the ability to compare timing across different
frequency channels can give very different results de-
pending on whether the different frequency components
in the sound are perceived as part of a single sound or
as part of more than one sound. Also, it should be re-
alized that subjects may be able to distinguish different
time patterns, for example, a change in the relative onset
time of two different frequencies, without the subjec-
tive impression of a change in time pattern; some sort
of change in the quality of the sound may be all that
is heard. The studies described next indicate the limits
of the ability to compare timing across channels, using
highly trained subjects.

Patterson and Green [13.96] and Green [13.76] have
studied the discrimination of a class of signals that have
the same long-term magnitude spectrum, but which dif-
fer in their short-term spectra. These sounds, called
Huffman sequences, are brief, broadband click-like
sounds, except that the energy in a certain frequency
region is delayed relative to that in other regions. The
amount of the delay, the center frequency of the de-
layed frequency region, and the width of the delayed
frequency region can all be varied. If subjects can dis-
tinguish a pair of Huffman sequences differing, for
example, in the amount of delay in a given frequency
region, this implies that they are sensitive to the differ-
ence in time pattern, i. e., they must be detecting that one
frequency region is delayed relative to other regions.
Green [13.76] measured the ability of subjects to detect
differences in the amount of delay in three frequency re-
gions: 650, 1900 and 4200 Hz. He found similar results
for all three center frequencies: subjects could detect
differences in delay time of about 2 ms regardless of the
center frequency of the delayed region.

It should be noted that subjects did not report hear-
ing one part of the sound after the rest of the sound.
Rather, the differences in time pattern were perceived as
subtle changes in sound quality. Further, some subjects
required extensive training to achieve the fine acuity
of 2 ms, and even after this training the task required
considerable concentration.

Zera and Green [13.97] measured thresholds for de-
tecting asynchrony in the onset or offset of complex
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signals composed of many sinusoidal components. The
components were either uniformly spaced on a loga-
rithmic frequency scale or formed a harmonic series.
In one stimulus, the standard, all components started
and stopped synchronously. In the signal stimulus, one
component was presented with an onset or offset asyn-
chrony. The task of the subjects was to discriminate the
standard stimulus from the signal stimulus. They found
that onset asynchrony was easier to detect than offset
asynchrony. For harmonic signals, onset asynchronies
less than 1 ms could generally be detected, whether the
asynchronous component was leading or lagging the
other components. Thresholds for detecting offset asyn-
chronies were larger, being about 3–10 ms when the
asynchronous component ended after the other compo-
nents and 10–30 ms when the asynchronous component
ended before the other components. Thresholds for
detecting asynchronies in logarithmically spaced com-

plexes were generally 2–50 times larger than for
harmonic complexes.

The difference between harmonically and logarith-
mically spaced complexes may be explicable in terms
of perceptual grouping (see later for more details). The
harmonic signal was perceived as a single sound source,
i. e., all of the components appeared to belong together.
The logarithmically spaced complex was perceived as
a series of separate tones, like many notes being played
at once on an organ. It seems that it is difficult to com-
pare the timing of sound elements that are perceived as
coming from different sources, a point that will be ex-
panded later. The high sensitivity to onset asynchronies
for harmonic complexes is consistent with the finding
that the perceived timbres of musical instruments are
partly dependent on the exact onset times and rates
of rise of individual harmonics within each musical
note [13.98]. This is described in more detail later on.

13.5 Pitch Perception

Pitch is an attribute of sound defined in terms of what
is heard. It is defined formally as that attribute of
auditory sensation in terms of which sounds can be or-
dered on a scale extending from low to high [13.10].
It is related to the physical repetition rate of the wave-
form of a sound; for a pure tone (a sinusoid) this
corresponds to the frequency, and for a periodic com-
plex tone to the fundamental frequency. Increasing the
repetition rate gives a sensation of increasing pitch.
Appropriate variations in repetition rate can give rise
to a sense of melody. Variations in pitch are also
associated with the intonation of voices, and they pro-
vide cues as to whether an utterance is a question
or a statement and as to the emotion of the talker.
Since pitch is a subjective attribute, it cannot be meas-
ured directly. Often, the pitch of a complex sound is
assessed by adjusting the frequency of a sinusoid un-
til the pitch of the sinusoid matches the pitch of the
sound in question. The frequency of the sinusoid then
gives a measure of the pitch of the sound. Sometimes
a periodic complex sound, such as a pulse train, is
used as a matching stimulus. In this case, the repeti-
tion rate of the pulse train gives a measure of pitch.
Results are generally similar for the two methods, al-
though it is easier to make a pitch match when the
sounds to be matched do not differ very much in timbre
(Sect. 13.6.)

13.5.1 Theories of Pitch Perception

There are two traditional theories of pitch perception.
One, the place theory, is based on the fact that differ-
ent frequencies (or frequency components in a complex
sound) excite different places along the basilar mem-
brane, and hence neurons with different CFs. The place
theory assumes that the pitch of a sound is related to the
excitation pattern produced by that sound; for a pure
tone the pitch is generally assumed to be determined by
the position of maximum excitation [13.99].

An alternative theory, called the temporal theory,
is based on the assumption that the pitch of a sound
is related to the time pattern of the neural impulses
evoked by that sound [13.100]. These impulses tend
to occur at a particular phase of the waveform on the
basilar membrane, a phenomenon called phase locking
(Chap. 18). The intervals between successive neural im-
pulses approximate integer multiples of the period of
the waveform and these intervals are assumed to deter-
mine the perceived pitch. The temporal theory cannot be
applicable at very high frequencies, since phase lock-
ing does not occur at such frequencies. However, the
tones produced by most musical instruments, the human
voice, and most everyday sound sources have funda-
mental frequencies in the range where phase locking
occurs.
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Many researchers believe that the perception of
pitch involves both place mechanisms and temporal
mechanisms. However, one mechanism may be domi-
nant for a specific task or aspect of pitch perception, and
the relative role of the two mechanisms almost certainly
varies with center frequency.

13.5.2 The Perception of the Pitch
of Pure Tones

It is important to distinguish between frequency selec-
tivity and frequency discrimination. The former refers
to the ability to resolve the frequency components of
a complex sound. The latter refers to the ability to detect
changes in frequency over time. Usually, the changes in
frequency are heard as changes in pitch. The smallest
detectable change in frequency is called the frequency
difference limen (DL).

The Frequency Discrimination of Pure Tones
Place models of frequency discrimination [13.101,102]
predict that frequency discrimination should be re-
lated to frequency selectivity; both should depend on
the sharpness of tuning on the basilar membrane.
Zwicker [13.102] described a model of frequency dis-
crimination based on changes in the excitation pattern
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Fig. 13.16 Schematic illustration of an excitation-pattern
model for frequency discrimination. Excitation patterns are
shown for two sinusoidal tones differing slightly in fre-
quency; the two tones have frequencies of 995 Hz and
1005 Hz. It is assumed that the difference in frequency,
ΔF, can be detected if the excitation level changes any-
where by more than a criterion amount. The biggest change
in excitation level is on the low-frequency side

evoked by the sound when the frequency is altered,
inferring the shapes of the excitation patterns from
masking patterns such as those shown in Fig. 13.6. The
model is illustrated in Fig. 13.16. The figure shows two
excitation patterns, corresponding to two tones with
slightly different frequencies. A change in frequency re-
sults in a sideways shift of the excitation pattern. The
change is assumed to be detectable whenever the ex-
citation level at some point on the excitation pattern
changes by more than about 1 dB.

The change in excitation level is greatest on the
steeply sloping low-frequency (low-CF) side of the ex-
citation pattern. Thus, in this model, the detection of
a change in frequency is functionally equivalent to the
detection of a change in level on the low-frequency
side of the excitation pattern. The steepness of the low-
frequency side is roughly constant when the frequency
scale is expressed in units of ERBN, rather than in terms
of linear frequency. The slope is about 18 dB per ERBN.
To achieve a change in excitation level of 1 dB, the fre-
quency has to be changed by one eighteenth of an ERBN.
Thus, Zwicker’s model predicts that the frequency DL
at any given frequency should be about one eighteenth
(= 0.056) of the value of ERBN at that frequency.

To test Zwicker’s model, frequency DLs have been
measured as a function of center frequency. There have
been two common ways of measuring frequency dis-
crimination. One involves the discrimination of two
successive steady tones with slightly different frequen-
cies. On each trial, the tones are presented in a random
order and the listener is required to indicate whether
the first or second tone is higher in frequency. The fre-
quency difference between the two tones is adjusted
until the listener achieves a criterion percentage cor-
rect, for example 75%. This measure will be called the
difference limen for frequency (DLF). A second mea-
sure, called the frequency modulation detection limen
(FMDL), uses tones that are frequency modulated. In
such tones, the frequency moves up and down in a regu-
lar periodic manner about the mean (carrier) frequency.
The number of times per second that the frequency goes
up and down is called the modulation rate. Typically,
the modulation rate is rather low (2–20 Hz), and the
change in frequency is heard as a fluctuation in pitch –
a kind of warble. To determine a threshold for detecting
frequency modulation, two tones are presented succes-
sively; one is modulated in frequency and the other has
a steady frequency. The order of the tones on each trial
is random. The listener is required to indicate whether
the first or the second tone is modulated. The amount
of modulation (also called the modulation depth) re-

Part
D

1
3
.5



Psychoacoustics 13.5 Pitch Perception 495
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Fig. 13.17 Thresholds for detecting differences in fre-
quency between steady pulsed tones (DLFs) and for
detecting frequency modulation (FMDLs), plotted relative
to the ERBN of the auditory filter at each center frequency
(after Sek and Moore [13.103])

quired to achieve a criterion response (e.g. 75% correct)
is determined.

It turns out that the results obtained with these
two methods are quite different [13.104], although the
difference depends on the modulation rate used to mea-
sure the FMDLs. An example of results obtained with
the two methods is given in Fig. 13.17 (data from Sek
and Moore [13.103]). For the FMDLs the modulation
rate was 10 Hz. To test Zwicker’s model, the DLFs
and FMDLs were plotted as a proportion of the value
of ERBN at the same center frequency. According to
this model, the proportion should be independent of
frequency. The proportion for FMDLs using a 10 Hz
modulation rate, shown as the brighter line, is roughly
constant, and its value is about 0.05, close to the value
predicted by the model. However, the proportion for
DLFs varies markedly with frequency [13.103, 105].
This is illustrated by the dark line in Fig. 13.17. The
DLFs for frequencies of 2 kHz and below are smaller
than predicted by Zwicker’s model, while those for fre-
quencies of 6 and 8 kHz are larger than predicted.

The results for the FMDLs are consistent with the
place model, but the results for the DLFs are not. The
reason for the deviation for DLFs is probably that DLFs
at low frequencies depend on the use of temporal infor-

mation from phase locking. Phase locking becomes less
precise at frequencies above 1 kHz, and it becomes very
weak above 5 kHz. This can account for the marked
increase in the DLFs at high frequencies [13.106].

The ratio FMDL/ERBN is not constant across center
frequency when the modulation rate is very low (around
2 Hz), but increases with increasing frequency [13.103,
107]. For low center frequencies, FMDLs are smaller
for a 2 Hz modulation rate than for a 10 Hz rate, while
for high carrier frequencies (above 4 kHz) the reverse
is true. Thus, for a 2 Hz modulation rate, the agreement
between DLFs and FMDLs is better than for a 10 Hz
rate, but discrepancies remain. For very low modulation
rates, frequency modulation may be detected by virtue
of the changes in phase locking to the carrier that occur
over time. In other words, the frequency is determined
over short intervals of time, using phase-locking infor-
mation, and changes in the estimated frequency over
time indicate the presence of frequency modulation.
Moore and Sek [13.107] suggested that the mechanism
for decoding the phase-locking information was slug-
gish; it had to sample the sound for a certain time in
order to estimate its frequency. Hence, it could not fol-
low rapid changes in frequency and it played little role
for high modulation rates.

In summary, measures of frequency discrimination
are consistent with the idea that DLFs, and FMDLs
for very low modulation rates, are determined by tem-
poral information (phase locking) for frequencies up
to about 4–5 kHz. The precision of phase locking de-
creases with increasing frequency above 1–2 kHz, and
it is very weak above about 5 kHz. This can explain why
DLFs increase markedly at high frequencies. FMDLs
for medium to high modulation rates may be determined
by a place mechanism, i. e., by the detection of changes
in the excitation pattern. This mechanism may also ac-
count for DLFs and for FMDLs for low modulation
rates, when the center frequency is above about 5 kHz.

The Perception of Musical Intervals
If temporal information plays a role in determining the
pitch of pure tones, then we would expect changes
in perception to occur for frequencies above 5 kHz, at
which phase locking is very weak. Two aspects of per-
ception do indeed change in the expected way, namely
the perception of musical intervals, and the perception
of melodies.

Two tones that are separated in frequency by an in-
terval of one octave (i. e., one has twice the frequency
of the other) sound similar. They are judged to have the
same name on the musical scale (for example, C3 and
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C4). This has led several theorists to suggest that there
are at least two dimensions to musical pitch. One as-
pect is related monotonically to frequency (for a pure
tone) and is known as tone height. The other is related to
pitch class (i. e., the name of the note) and is called tone
chroma [13.108, 109]. For example, two sinusoids with
frequencies of 220 and 440 Hz would have the same
tone chroma (they would both be called A on the musi-
cal scale) but, as they are separated by an octave, they
would have different tone heights.

If subjects are presented with a pure tone of a given
frequency, f1, and are asked to adjust the frequency, f2
of a second tone (presented so as to alternate in time
with the fixed tone) so that it appears to be an octave
higher in pitch, they generally adjust f2 to be roughly
twice f1. However, when f1 lies above 2.5 kHz, so that
f2 would lie above 5 kHz, octave matches become very
erratic [13.110]. It appears that the musical interval of
an octave is only clearly perceived when both tones are
below 5 kHz.

Other aspects of the perception of pitch also change
above 5 kHz. A sequence of pure tones above 5 kHz
does not produce a clear sense of melody [13.111].
It is possible to hear that the pitch changes when the
frequency is changed, but the musical intervals are
not heard clearly. Also, subjects with absolute pitch
(the ability to assign names to notes without reference
to other notes) are very poor at naming notes above
4–5 kHz [13.112].

These results are consistent with the idea that
the pitch of pure tones is determined by different
mechanisms above and below 5 kHz, specifically, by
a temporal mechanism at low frequencies and a place
mechanism at high frequencies. It appears that the per-
ceptual dimension of tone height persists over the whole
audible frequency range, but tone chroma only occurs in
the frequency range below 5 kHz. Musical intervals are
only clearly perceived when the frequencies of the tones
lie in the range where temporal information is available.

The Effect of Level on Pitch
The pitch of a pure tone is primarily determined by its
frequency. However, sound level also plays a small role.
On average, the pitch of tones with frequencies below
about 2 kHz decreases with increasing level, while the
pitch of tones with frequencies above about 4 kHz in-
creases with increasing sound level. The early data of
Stevens [13.113] showed rather large effects of sound
level on pitch, but other data generally show much
smaller effects [13.114]. For tones with frequencies be-
tween 1 and 2 kHz, changes in pitch with level are

generally less than 1%. For tones of lower and higher
frequencies, the changes can be larger (up to 5%). There
are also considerable individual differences both in the
size of the pitch shifts with level, and in the direction of
the shifts [13.114].

13.5.3 The Perception of the Pitch
of Complex Tones

The Phenomenon of the Missing Fundamental
For complex tones the pitch does not, in general, cor-
respond to the position of maximum excitation on the
basilar membrane. Consider, as an example, a sound
consisting of short impulses (clicks) occurring 200 times
per second. This sound contains harmonics with fre-
quencies at integer multiples of 200 Hz (200, 400, 600,
800 . . . Hz). The harmonic at 200 Hz is called the fun-
damental component. The sound has a low pitch, which
is very close to the pitch of its fundamental compo-
nent (200 Hz), and a sharp timbre (a buzzy tone quality).
However, if the sound is filtered so as to remove the fun-
damental component, the pitch does not alter; the only
result is a slight change in timbre. This is called the
phenomenon of the missing fundamental [13.100, 115].
Indeed, all except a small group of mid-frequency har-
monics can be eliminated, and the low pitch remains the
same, although the timbre becomes markedly different.

Schouten [13.100, 116] called the low pitch associ-
ated with a group of high harmonics the residue. Several
other names have been used to describe this pitch, in-
cluding periodicity pitch, virtual pitch, and low pitch.
The term low pitch will be used here. Schouten pointed
out that it is possible to hear the change produced by
removing the fundamental component and then reintro-
ducing it. Indeed, when the fundamental component is
present, it is possible to hear it out as a separate sound.
The pitch of that component is almost the same as the
pitch of the whole sound. Therefore, the presence or ab-
sence of the fundamental component does not markedly
affect the pitch of the whole sound.

The perception of a low pitch does not require
activity at the point on the basilar membrane that
would respond maximally to the fundamental com-
ponent. Licklider [13.117] showed that the low pitch
could be heard when low-frequency noise was present
that would mask any component at the fundamental
frequency. Even when the fundamental component of
a complex tone is present, the pitch of the tone is usually
determined by harmonics other than the fundamental.

The phenomenon of the missing fundamental is not
consistent with a simple place model of pitch based
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on the idea that pitch is determined by the position of
the peak excitation on the basilar membrane. However,
more elaborate place models have been proposed, and
these are discussed below.

Theories of Pitch Perception for Complex Tones
To understand theories of pitch perception for complex
tones, it is helpful to consider how complex tones are
represented in the peripheral auditory system. A sim-
ulation of the response of the basilar membrane to
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Fig. 13.18 A simulation of the responses on the basilar
membrane to periodic impulses of rate 200 pulses per sec-
ond. The input waveform is shown at the bottom; impulses
occur every 5 ms. Each number on the left represents the
frequency that would maximally excite a given point on the
basilar membrane. The waveform that would be observed
at that point, as a function of time, is plotted opposite that
number

a complex tone is illustrated in Fig. 13.18. In this exam-
ple, the complex tone is a regular series of brief pulses,
whose spectrum contains many equal-amplitude har-
monics. The number of pulses per second (also called
the repetition rate) is 200, so the harmonics have fre-
quencies that are integer multiples of 200 Hz. The lower
harmonics are partly resolved on the basilar membrane,
and give rise to distinct peaks in the pattern of ac-
tivity along the basilar membrane. At a place tuned
to the frequency of a low harmonic, the waveform
on the basilar membrane is approximately a sinusoid
at the harmonic frequency. For example, at the place
with a characteristic frequency of 400 Hz the wave-
form is a 400 Hz sinusoid. At a place tuned between
two low harmonics, e.g., the place tuned to 317 Hz,
there is very little response. In contrast, the higher
harmonics are not resolved, and do not give rise to
distinct peaks on the basilar membrane. The wave-
forms at places on the basilar membrane responding to
higher harmonics are complex, but they all have a rep-
etition rate equal to the fundamental frequency of the
sound.

There are two main (nonexclusive) ways in which
the low pitch of a complex sound might be extracted.
Firstly, it might be derived from the frequencies of
the lower harmonics that are resolved on the basilar
membrane. The frequencies of the harmonics might be
determined either by place mechanisms (e.g., from the
positions of local maxima on the basilar membrane)
or by temporal mechanisms (from the inter-spike in-
tervals in neurons with CFs close to the frequencies
of individual harmonics). For example, for the com-
plex tone whose analysis is illustrated in Fig. 13.18, the
second harmonic, with a frequency of 400 Hz, would
give rise to a local maximum at the place on the basi-
lar membrane tuned to 400 Hz. The inter-spike intervals
in neurons innervating that place would reflect the fre-
quency of that harmonic; the intervals would cluster
around integer multiples of 2.5 ms. Both of these forms
of information may allow the auditory system to deter-
mine that there is a harmonic at 400 Hz.

The auditory system may contain a pattern rec-
ognizer that determines the low pitch of the complex
sound from the frequencies of the resolved compo-
nents [13.118–120]. In essence the pattern recognizer
tries to find the harmonic series giving the best match
to the resolved frequency components; the fundamental
frequency of this harmonic series determines the per-
ceived pitch. Say, for example, that the initial analysis
establishes frequencies of 800, 1000 and 1200 Hz to be
present. The fundamental frequency whose harmonics
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would match these frequencies is 200 Hz. The per-
ceived pitch corresponds to this inferred fundamental
frequency of 200 Hz. Note that the inferred fundamental
frequency is always the highest possible value that fits
the frequencies determined in the initial analysis. For
example, a fundamental frequency of 100 Hz would also
have harmonics at 800, 1000 and 1200 Hz, but a pitch
corresponding to 100 Hz is not perceived. It should also
be noted that when a complex tone contains only two or
three low harmonics, some people, called analytic lis-
teners, do not hear the low pitch, but rather hear pitches
corresponding to individual harmonics [13.121, 122].
Others, called synthetic listeners, usually hear only the
low pitch. When many harmonics are present, the low
pitch is usually the dominant percept.

Evidence supporting the idea that the low pitch of
a complex tone is derived by combining information
from several harmonics comes from studies of the abil-
ity to detect changes in repetition rate (equivalent to
the number of periods per second). When the repetition
rate of a complex tone changes, all of the components
change in frequency by the same ratio, and a change in
low pitch is heard. The ability to detect such changes is
better than the ability to detect changes in a sinusoid at
the fundamental frequency [13.123] and it can be bet-
ter than the ability to detect changes in the frequency
of any of the individual sinusoidal components in the
complex tone [13.124]. This indicates that information
from the different harmonics is combined or integrated
in the determination of low pitch. This can lead to very
fine discrimination; changes in repetition rate of about
0.2% can be detected for fundamental frequencies in
the range 100–400 Hz provided that low harmonics are
present (e.g., the third, fourth and fifth).

The pitch of a complex tone may also be extracted
from the higher unresolved harmonics. As shown in
Fig. 13.18, the waveforms at places on the basilar mem-
brane responding to higher harmonics are complex, but
they all have a repetition rate equal to the fundamental
frequency of the sound, namely 200 Hz. For the neurons
with CFs corresponding to the higher harmonics, nerve
impulses tend to be evoked by the biggest peaks in the
waveform, i. e., by the waveform peaks close to enve-
lope maxima. Hence, the nerve impulses are separated
by times corresponding to the period of the sound. For
example, in Fig. 13.18 the input has a repetition rate of
200 periods per second, so the period is 5 ms. The time
intervals between nerve spike would cluster around in-

teger multiples of 5 ms, i. e., 5, 10 15, 20 . . . ms. The
pitch may be determined from these time intervals. In
this example, the time intervals are integer multiples of
5 ms, so the pitch corresponds to 200 Hz.

Experimental evidence suggests that pitch can be
extracted both from the lower harmonics and from the
higher harmonics. Usually, the lower, resolved harmon-
ics give a clearer low pitch, and are more important
in determining low pitch, than the upper unresolved
harmonics [13.125–127]. This idea is called the princi-
ple of dominance; when a complex tone contains many
harmonics, including both low- and high-numbered har-
monics, the pitch is mainly determined by a small group
of lower harmonics. Also, the discrimination of changes
in repetition rate of complex tones is better for tones
containing only low harmonics than for tones contain-
ing only high harmonics [13.124, 128–130]. However,
a low pitch can be heard when only high unresolvable
harmonics are present. Although, this pitch is not as
clear as when lower harmonics are present, it is clear
enough to allow the recognition of musical intervals and
of simple melodies [13.130, 131].

Several researchers have proposed theories in which
both place (spectral) and temporal mechanisms play
a role; these are referred to as spectro-temporal theories.
The theories assume that information from both low
harmonics and high harmonics contributes to the deter-
mination of pitch. The initial place/spectral analysis in
the cochlea is followed by an analysis of the time pattern
of the neural spikes evoked at each CF [13.132–136].
The temporal analysis is assumed to occur at a level of
the auditory system higher than the auditory nerve, per-
haps in the cochlear nucleus. In the model proposed by
Moore [13.134], the sound is passed through an array of
bandpass filters, each corresponding to a specific place
on the basilar membrane. The time pattern of the neu-
ral impulses at each CF is determined by the waveform
at the corresponding point on the basilar membrane.
The inter-spike intervals at each CF are determined.
Then, a device compares the time intervals present at
different CFs, and searches for common time intervals.
The device may also integrate information over time. In
general the time interval that is found most often corre-
sponds to the period of the fundamental component. The
perceived pitch corresponds to the reciprocal of this in-
terval. For example, if the most prominent time interval
is 5 ms, the perceived pitch corresponds to a frequency
of 200 Hz.
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13.6 Timbre Perception

Almost all of the sounds that we encounter in everyday
life contain a multitude of frequency components with
particular levels and relative phases. The distribution of
energy over frequency is one of the major determinants
of the quality of a sound or its timbre. Timbre is usually
defined as [13.10]

that attribute of auditory sensation in terms of which
a listener can judge that two sounds similarly pre-
sented and having the same loudness and pitch are
dissimilar.

Differences in timbre enable us to distinguish between
the same note played on, say, the piano, the violin or the
flute.

13.6.1 Time-Invariant Patterns and Timbre

Timbre depends upon more than just the frequency
spectrum of the sound; fluctuations over time can play
an important role (see the next section). For the purpose
of this section we can adopt a more restricted definition
suggested by Plomp [13.137] as applicable to steady
tones:

Timbre is that attribute of sensation in terms of
which a listener can judge that two steady complex
tones having the same loudness, pitch and duration
are dissimilar.

Timbre defined in this way depends mainly on the rela-
tive magnitudes of the partials of the tones.

Timbre is multidimensional; there is no single scale
along which the timbres of different sounds can be com-
pared or ordered. Thus, a way is needed of describing
the spectrum of a sound that takes into account this
multidimensional aspect, and that can be related to the
subjective timbre. A crude first approach is to look at the
overall distribution of spectral energy. The brightness or
sharpness [13.138] of sounds seems to be related to the
spectral centroid. However, a much more quantitative
approach has been described by Plomp and his col-
leagues [13.137, 139]. They showed that the perceptual
differences between different sounds, such as vowels,
or steady tones produced by musical instruments, were
closely related to the differences in the spectra of the
sounds, when the spectra were specified as the levels
in 18 1/3-octave frequency bands. A bandwidth of 1/3
octave is slightly greater than the ERBN of the auditory
filter over most of the audible frequency range. Thus,
timbre is related to the relative level produced at the out-

put of each auditory filter. Put another way, the timbre of
a sound is related to the shape of the excitation pattern
of that sound.

It is likely that the number of dimensions required to
characterize timbre is limited by the number of ERBNs
required to cover the audible frequency range. This
would give a maximum of about 37 dimensions. For
a restricted class of sounds, however, a much smaller
number of dimensions may be involved. It appears
to be generally true, both for speech and non-speech
sounds, that the timbres of steady tones are determined
primarily by their magnitude spectra, although the rel-
ative phases of the components may also play a small
role [13.140, 141].

13.6.2 Time-Varying Patterns
and Auditory Object Identification

Differences in static timbre are not always sufficient
to allow the absolute identification of an auditory ob-
ject, such as a musical instrument. One reason for this
is that the magnitude and phase spectrum of the sound
may be markedly altered by the transmission path and
room reflections [13.142]. In practice, the recognition of
a particular timbre, and hence of an auditory object, may
depend upon several other factors. Schouten [13.143]
has suggested that these include: (1) whether the sound
is periodic, having a tonal quality for repetition rates
between about 20 and 20 000 per second, or irregular,
and having a noise-like character; (2) whether the wave-
form envelope is constant, or fluctuates as a function of
time, and in the latter case what the fluctuations are like;
(3) whether any other aspect of the sound (e.g., spec-
trum or periodicity) is changing as a function of time;
(4) what the preceding and following sounds are like.

The recognition of musical instruments, for exam-
ple, depends quite strongly on onset transients and on
the temporal structure of the sound envelope. The char-
acteristic tone of a piano depends upon the fact that
the notes have a rapid onset and a gradual decay. If
a recording of a piano is reversed in time, the timbre is
completely different. It now resembles that of a harmo-
nium or accordion, in spite of the fact that the long-term
magnitude spectrum is unchanged by time reversal.
The perception of sounds with temporally asymmet-
ric envelopes has been studied by Patterson [13.144,
145]. He used sinusoidal carriers that were amplitude
modulated by a repeating exponential function. The en-
velope either increased abruptly and decayed gradually
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(damped sounds) or increased gradually and decayed
abruptly (ramped sounds). The ramped sounds were
time-reversed versions of the damped sounds and had
the same long-term magnitude spectrum. The sounds
were characterized by the repetition period of the en-
velope, which was 25 ms, and by the half life. For
a damped sinusoid, the half life is the time taken for
the amplitude to decrease by a factor of two.

Patterson reported that the ramped and damped
sounds had different qualities. For a half life of 4 ms, the
damped sound was perceived as a single source rather
like a drum roll played on a hollow, resonant surface
(like a drummer’s wood block). The ramped sound was
perceived as two sounds: a drum roll on a non-resonant
surface (such as a leather table top) and a continuous
tone corresponding to the carrier frequency. Akeroyd
and Patterson [13.146] used sounds with similar en-
velopes, but the carrier was broadband noise rather
than a sinusoid. They reported that the damped sound
was heard as a drum struck by wire brushes. It did
not have any hiss-like quality. In contrast, the ramped
sound was heard as a noise, with a hiss-like quality, that
was sharply cut off in time. These experiments clearly
demonstrate the important role of the temporal envelope
in timbre perception.

Pollard and Jansson [13.147] described a perceptu-
ally relevant way of characterizing time-varying sounds.
The sound is filtered in bands of width 1/3 octave. The
loudness of each band is calculated at 5 ms intervals.

Loudness values are then converted into three coordi-
nates, based on the loudness of:

1. The fundamental component,
2. A group containing partials 2–4, and
3. A group containing partials 5–n,

where n is the highest significant partial. This
tristimulus representation appears to be related quite
closely to perceptual judgements of musical sounds.

Many instruments have noise-like qualities that
strongly influence their subjective quality. A flute, for
example, has a relatively simple harmonic structure, but
synthetic tones with the same harmonic structure do not
sound flute-like unless each note is preceded by a small
puff of noise. In general, tones of standard musical in-
struments are poorly simulated by the summation of
steady component frequencies, since such a synthesis
cannot produce the dynamic variation with time charac-
teristic of these instruments. Thus traditional electronic
organs (pre-1965), which produced only tones with
a fixed envelope shape, could produce a good simula-
tion of the bagpipes, but could not be made to sound
like a piano. Modern synthesizers shape the envelopes
of the sounds they produce, and hence are capable of
more accurate and convincing imitations of musical in-
struments. For a simulation to be convincing, it is often
necessary to give different time envelopes to different
harmonics within a complex sound [13.98, 148].

13.7 The Localization of Sounds

It has long been recognized that slight differences in
the sounds reaching the two ears can be used as cues in
sound localization. The two major cues are differences
in the time of arrival at the two ears and differences in
intensity at the two ears. For example, a sound coming
from the left arrives first at the left ear and is more in-
tense in the left ear. For steady sinusoids, a difference
in time of arrival is equivalent to a phase difference
between the sounds at the two ears. However, phase
differences are not usable over the whole audible fre-
quency range.

13.7.1 Binaural Cues

Experiments using sounds delivered by headphones
have shown that a phase difference at the two ears
can be detected and used to judge location only for
frequencies below about 1500 Hz. This is reasonable

because, at high frequencies, the wavelength of sound
is small compared to the dimensions of the head, so
the listener cannot determine which cycle in the left ear
corresponds to a given cycle in the right; there may be
many cycles of phase difference. Thus phase differences
become ambiguous and unusable at high frequencies.
On the other hand, at low frequencies our accuracy at
detecting changes in relative time at the two ears is re-
markably good; changes of 10–20 μs can be detected,
which is equivalent to a movement of the sound source
of 1−2◦ laterally when the sound comes from straight
ahead [13.149].

Intensity differences are usually largest at high fre-
quencies. This is because low frequencies bend or
diffract around the head, so that there is little difference
in intensity at the two ears whatever the location of the
sound source, except when the source is very close to
the head. At high frequencies, the head casts more of
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a shadow, and above 2–3 kHz the intensity differences
provide useful cues. For complex sounds, containing
a range of frequencies, the difference in spectral pat-
terning at the two ears may also be important.

The idea that sound localization is based on inter-
aural time differences at low frequencies and interaural
intensity differences at high frequencies, called the du-
plex theory of sound localization, was proposed by Lord
Rayleigh [13.150]. However, complex sounds, contain-
ing only high frequencies (above 1500 Hz), can be
localized on the basis of interaural time delays, pro-
vided that they have an appropriate temporal structure.
For example, a single click can be localized in this way
no matter what its frequency content. Periodic sounds
containing only high-frequency harmonics can also be
localized on the basis of interaural time differences,
provided that the envelope repetition rate (usually
equal to the fundamental frequency) is below about
600 Hz [13.151, 152]. Since most of the sounds we
encounter in everyday life are complex, and have rep-
etition rates below 600 Hz, interaural time differences
can be used for localization in most listening situations.

13.7.2 The Role of the Pinna and Torso

Binaural cues are not sufficient to account for all aspects
of sound localization. For example, an interaural time
or intensity difference will not indicate whether a sound
is coming from in front or behind, or above or below,
but such judgments can clearly be made. Also, under
some conditions localization with one ear can be as ac-
curate as with two. It has been shown that reflections
of sounds from the pinnae and torso play an important
role in sound localization [13.153, 154]. The spectra of
sounds entering the ear are modified by these reflections
in a way that depends upon the direction of the sound
source relative to the head. This direction-dependent
filtering provides cues for sound source location. The
spectral cues are important not just in providing infor-
mation about the direction of sound sources, but also

in enabling us to judge whether a sound comes from
within the head or from the outside world. The pinnae
alter the sound spectrum primarily at high frequencies.
Only when the wavelength of the sound is comparable
with or smaller than the dimensions of the pinnae is
the spectrum significantly affected. This occurs mostly
above about 6 kHz. Thus, cues provided by the pin-
nae are most effective for broadband high-frequency
sounds. However, reflections from other structures, such
as the shoulders, result in spectral changes at lower fre-
quencies, and these may be important for front–back
discrimination [13.155].

13.7.3 The Precedence Effect

In everyday conditions the sound from a given source
reaches the ears by many different paths. Some of it ar-
rives via a direct path, but a great deal may only reach
the ears after reflections from one or more surfaces.
However, listeners are not normally aware of these re-
flections, and the reflections do not markedly impair the
ability to localize sound sources. The reason for this
seems to lie in a phenomenon known as the precedence
effect [13.156, 157]; for a review, see [13.158]. When
several sounds reach the ears in close succession (i. e.,
the direct sound and its reflections) the sounds are per-
ceptually fused into a single sound (an effect called echo
suppression), and the location of the total sound is pri-
marily determined by the location of the first (direct)
sound (the precedence effect). Thus the reflections have
little influence on the perception of direction. Further-
more, there is little awareness of the reflections, although
they may influence the timbre and loudness of the sound.

The precedence effect only occurs for sounds of
a discontinuous or transient character, such as speech
or music, and it can break down if the reflections have
a level 10 dB or more above that of the direct sound.
However, in normal conditions the precedence effect
plays an important role in the localization and identi-
fication of sounds in reverberant conditions.

13.8 Auditory Scene Analysis

It is hardly ever the case that the sound reaching our ears
comes from a single source. Usually the sound arises
from several different sources. However, usually we are
able to decompose the mixture of sounds and to per-
ceive each source separately. An auditory object can be
defined as the percept of a group of successive and/or

simultaneous sound elements as a coherent whole, ap-
pearing to emanate from a single source.

As discussed earlier, the peripheral auditory system
acts as a frequency analyzer, separating the different fre-
quency components in a complex sound. Somewhere in
the brain, the internal representations of these frequency
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components have to be assigned to their appropriate
sources. If the input comes from two sources, A and
B, then the frequency components must be split into
two groups; the components emanating from source A
should be assigned to one source and the components
emanating from source B should be assigned to another.
The process of doing this is often called perceptual
grouping. It is also given the name auditory scene anal-
ysis [13.159]. The process of separating the elements
arising from two or more different sources is sometimes
called segregation.

Many different physical cues may be used to de-
rive separate perceptual objects corresponding to the
individual sources that give rise to a complex acous-
tic input. There are two aspects to this process: the
grouping together of all the simultaneous frequency
components that emanate from a single source at a given
moment, and the connecting over time of the chang-
ing frequencies that a single source produces from one
moment to the next [13.160]. These two aspects are
sometimes described as simultaneous grouping and se-
quential grouping, respectively.

Most experiments on perceptual grouping have
studied the effect of grouping on one specific attribute
of sounds, for example, their pitch, their subjective lo-
cation, or their timbre. These experiments have shown
that a cue that is effective for one attribute may be
less effective or completely ineffective for another at-
tribute [13.161]. Also, the effectiveness of the cues may
differ for simultaneous and sequential grouping.

13.8.1 Information Used to Separate
Auditory Objects

Fundamental Frequency
and Spectral Regularity

When we listen to two steady complex tones together
(e.g., two musical instruments or two vowel sounds),
we do not generally confuse which harmonics belong
to which tone. If the complex tones overlap spectrally,
two sounds are heard only if the two tones have differ-
ent values of the fundamental frequency (F0) [13.162].
Scheffers [13.163] has shown that, if two vowels are
presented simultaneously, they can be identified better
when they have F0s that differ by more than 6% than
when they have the same F0. Other researchers have
reported similar findings [13.164, 165].

F0 may be important in several ways. The compo-
nents in a periodic sound have frequencies that form
a simple harmonic series; the frequencies are integer
multiples of F0. This property is referred to as har-

monicity. The lower harmonics are resolved in the
peripheral auditory system. The regular spacing of the
lower harmonics may promote their perceptual fusion,
causing them to be heard as a single sound. If a sinu-
soidal component does not form part of this harmonic
series, it tends to be heard as a separate sound. This is il-
lustrated by some experiments of Moore et al. [13.166].
They investigated the effect of mistuning a single
low harmonic in a harmonic complex tone. When the
harmonic was mistuned sufficiently, it was heard as
a separate pure tone standing out from the complex as
a whole. The degree of mistuning required varied some-
what with the duration of the sounds; for 400 ms tones,
a mistuning of 3% was sufficient to make the harmonic
stand out as a separate tone.

Roberts and Brunstrom [13.167, 168] have sug-
gested that the important feature determining whether
a group of frequency components sounds fused is not
harmonicity, but spectral regularity; if a group of com-
ponents form a regular spectral pattern, they tend to be
heard as fused, while if a single component does not
fit the pattern, it is heard to pop out. For example, a se-
quence of components with frequencies 623, 823, 1023,
1223, and 1423 Hz is heard as relatively fused. If the fre-
quency of the middle component is shifted to, say, 923
or 1123 Hz, that component no longer forms part of the
regular pattern, and it tends to be heard as a separate
tone, standing out from the complex.

For the higher harmonics in a complex sound, F0
may play a different role. The higher harmonics of
a periodic complex sound are not resolved on the basi-
lar membrane, but give rise to a complex waveform
with a periodicity equal to F0 (Fig. 13.18). When two
complex sounds with different F0s are presented simul-
taneously, then each will give rise to a waveform on the
basilar membrane with periodicity equal to its respec-
tive F0. If the two sounds have different spectra, then
each will dominate the response at certain points on
the basilar membrane. The auditory system may group
together regions with common F0 and segregate them
from regions with different F0 [13.164]. It may also be
the case that both resolved and unresolved components
can be grouped on the basis of the detailed time pattern
of the neural spikes [13.169].

This process can be explained in a qualitative way
by extending the model of pitch perception presented
earlier. Assume that the pitch of a complex tone results
from a correlation or comparison of time intervals be-
tween successive nerve firings in neurons with different
CFs. Only those channels that show a high correlation
would be classified as belonging to the same sound.

Part
D

1
3
.8



Psychoacoustics 13.8 Auditory Scene Analysis 503

Such a mechanism would automatically group together
components with a common F0. However, de Cheveigné
et al. [13.170] presented evidence against such a mecha-
nism. They measured the identification of a target vowel
in the presence of a background vowel; the nominal
fundamental frequencies of the two vowels differed by
6.45%. Identification was better when the background
was harmonic than when it was made inharmonic (by

Envelope amplitude

Time

a)

c)

b)

Masker

Signal

Masker

Signal

Masker

Signal

Fig. 13.19a–c Schematic illustration of the stimuli used by
Rasch [13.173]. Both the signal and the masker were pe-
riodic complex tones, with the signal having the higher
fundamental frequency. When the signal and masker were
gated on and off synchronously (a), the threshold for the
signal was relatively high. When the signal started slightly
before the masker (b), the threshold was markedly reduced.
When the signal was turned off as soon as the masker
was turned on (c), the signal was perceived as continu-
ing through the masker, and the threshold was the same
as when the signal did continue through the masker

shifting the frequency of each harmonic by a random
amount between 0 and 6.45% or by less than half of the
spacing between harmonics, whichever was smaller). In
contrast, identification of the target did not depend upon
whether or not the target was harmonic. De Cheveigné
and coworkers [13.170–172] proposed a mechanism
based on the idea that a harmonic background sound
can be canceled in the auditory system, thus enhancing
the representation of a target vowel.

Onset and Offset Disparities
A cue for the perceptual separation of (near-)simultane-
ous sounds is onset and offset disparity. Rasch [13.173]
investigated the ability to hear one complex tone in the
presence of another. One of the tones was treated as
a masker and the level of the signal tone (the higher in
F0) was adjusted to find the point where it was just de-
tectable. When the two tones started at the same time
and had exactly the same temporal envelope, the thresh-
old of the signal was between 0 and −20 dB relative to
the level of the masker (Fig. 13.19a). Thus, when a dif-
ference in F0 was the only cue, the signal could not be
heard when its level was more than 20 dB below that of
the masker.

Rasch also investigated the effect of starting the
signal just before the masker (Fig. 13.19b). He found
that threshold depended strongly on onset asynchrony,
reaching a value of −60 dB for an asynchrony of 30 ms.
Thus, when the signal started 30 ms before the masker, it
could be heard much more easily and with much greater
differences in level between the two tones. It should be
emphasized that the lower threshold was a result of the
signal occurring for a brief time on its own; essentially
performance was limited by backward masking of the
30 ms asynchronous segment, rather than by simultane-
ous masking. However, the experiment does illustrate
the large benefit that can be obtained from a relatively
small asynchrony.

Although the percept of his subjects was that the
signal continued throughout the masker, Rasch showed
that this percept was not based upon sensory informa-
tion received during the presentation time of the masker.
He found that identical thresholds were obtained if the
signal terminated immediately after the onset of the
masker (Fig. 13.19c). It appears that the perceptual sys-
tem assumes that the signal continues, since there is
no evidence to the contrary; the part of the signal that
occurs simultaneously with the masker would be com-
pletely masked.

Rasch [13.173] showed that, if the two tones have si-
multaneous onsets but different rise times, this also can
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give very low thresholds for the signal, provided it has
the shorter rise time. Under these conditions and those
of onset asynchronies up to 30 ms, the notes sound as
though they start synchronously. Thus, we do not need
to be consciously aware of the onset differences for the
auditory system to be able to exploit them in the percep-
tual separation of complex tones. Rasch also pointed out
that, in ensemble music, different musicians do not play
exactly in synchrony even if the score indicates that they
should. The onset differences used in his experiments
correspond roughly with the onset asynchronies of nom-
inally simultaneous notes found in performed music.
This supports the view that the asynchronies are an im-
portant factor in the perception of the separate parts or
voices in polyphonic music.

Onset asynchronies can also play a role in deter-
mining the timbre of complex sounds. Darwin and
Sutherland [13.174] showed that a tone that starts or
stops at a different time from a vowel is less likely
to be heard as part of that vowel than if it is simul-
taneous with it. For example, increasing the level of
a single harmonic can produce a significant change in
the quality (timbre) of a vowel. However, if the incre-
mented harmonic starts before the vowel, the change in
vowel quality is markedly reduced. Similarly, Roberts
and Moore [13.175] showed that extraneous sinusoidal
components added to a vowel could influence vowel
quality, but the influence was markedly reduced when
the extraneous components were turned on before the
vowel or turned off after the vowel.

Contrast with Previous Sounds
The auditory system seems well suited to the analysis of
changes in the sensory input, and particularly to changes
in spectrum over time. The changed aspect stands out
perceptually from the rest. It is possible that there are
specialized central mechanisms for detecting changes in
spectrum. Additionally, stimulation with a steady sound
may result in some kind of adaptation. When some as-
pect of a stimulus is changed, that aspect is freed from
the effects of adaptation and thus will be enhanced per-
ceptually. While the underlying mechanism is a matter
of debate, the perceptual effect certainly is not.

A powerful demonstration of this effect may be
obtained by listening to a stimulus with a particular
spectral structure and then switching rapidly to a stim-
ulus with a flat spectrum, such as white noise. A white
noise heard in isolation may be described as colorless; it
has no pitch and has a neutral sort of timbre. However,
when a white noise follows soon after a stimulus with
spectral structure, the noise sounds colored [13.176].

A harmonic complex tone with a flat spectrum may be
given a speech-like quality if it is preceded by a har-
monic complex having a spectrum that is the inverse of
that of a speech sound, such as a vowel [13.177].

Another demonstration of the effects of a change in
a stimulus can be obtained by listening to a steady com-
plex tone with many harmonics. Usually such a tone
is heard with a single pitch corresponding to F0, and
the individual harmonics are not separately perceived.
However, if one of the harmonics is changed in some
way, by altering either its relative phase or its level, then
that harmonic stands out perceptually from the complex
as a whole. For a short time after the change is made,
a pure-tone quality is perceived. The perception of the
harmonic then gradually fades, until it merges with the
complex once more.

Change detection is obviously of importance in as-
signing sound components to their appropriate sources.
Normally we listen against a background of sounds that
may be relatively unchanging, such as the humming of
machinery, traffic noises, and so on. A sudden change
in the sound is usually indicative that a new source has
been activated, and the change detection mechanisms
enable us to isolate the effects of the change and inter-
pret them appropriately.

Correlated Changes in Amplitude or Frequency
Rasch [13.173] also showed that, when the two com-
plex tones start and end synchronously, the detection of
the tone with the higher F0 could be enhanced by fre-
quency modulating it. The modulation was similar to
the vibrato that often occurs for musical tones, and it
was applied so that all the components in the higher tone
moved up and down in synchrony. Rasch found that the
modulation could reduce the threshold for detecting the
higher tone by 17 dB. A similar effect can be produced
by amplitude modulation (AM) of one of the tones. The
modulation seems to enhance the salience of the mod-
ulated sound, making it appear to stand out from the
unmodulated sound.

It is less clear whether the perceptual segregation
of simultaneous sounds is affected by the coherence of
changes in amplitude or frequency when both sounds
are modulated. Coherence here refers to whether the
changes in amplitude or frequency of the two sounds
have the same pattern over time or different patterns over
time. Several experiments have been reported suggest-
ing that coherence of amplitude changes plays a role;
sounds with coherent changes tend to fuse percep-
tually, whereas sounds with incoherent changes tend
to segregate [13.178–181]. However, Summerfield and
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Culling [13.182] found that the coherence of AM did not
affect the identification of pairs of simultaneous vowels
when the vowels were composed of components placed
randomly in frequency (to avoid effects of harmonicity).

Evidence for a role of frequency modulation (FM)
coherence in perceptual grouping has been more elu-
sive. While some studies have been interpreted as
indicating a weak role for frequency modulation coher-
ence [13.183,184], the majority of studies have failed to
indicate such sensitivity [13.182, 185–189]. Furukawa
and Moore [13.190] have shown that the detectability
of FM imposed on two widely separated carrier fre-
quencies is better when the modulation is coherent on
the two carriers than when it is incoherent. However,
this may occur because the overall pitch evoked by
the two carriers fluctuates more when the carriers are
modulated coherently than when they are modulated in-
coherently [13.191–193]. There is at present no clear
evidence that the coherence of FM influences perceptual
grouping when both sounds are modulated.

Sound Location
The cues used in sound localization may also help in
the analysis of complex auditory inputs. A phenomenon
that is related to this is called the binaural masking level
difference (MLD). The phenomenon can be summa-
rized as follows: whenever the phase or level differences
of a signal at the two ears are not the same as those of
a masker, the ability to detect the signal is improved rel-
ative to the case where the signal and masker have the
same phase and level relationships at the two ears. The
practical implication is that a signal is easier to detect
when it is located in a different position in space from
the masker. Although most studies of the MLD have
been concerned with threshold measurements, it seems
clear that similar advantages of binaural listening can be
gained in the identification and discrimination of signals
presented against a background of other sound.

An example of the use of binaural cues in sepa-
rating an auditory object from its background comes
from an experiment by Kubovy et al. [13.194]. They
presented eight continuous sinusoids to each ear via ear-
phones. The sinusoids had frequencies corresponding to
the notes in a musical scale, the lowest having a fre-
quency of 300 Hz. The input to one ear, say the left, was
presented with a delay of 1 ms relative to the input to
the other ear, so the sinusoids were all heard toward the
right side of the head. Then, the phase of one of the si-
nusoids was advanced in the left ear, while its phase in
the right ear was delayed, until the input to the left ear
led the input to the right ear by 1 ms; this phase-shifting

process occurred over a time of 45 ms. The phase re-
mained at the shifted value for a certain time and was
then smoothly returned to its original value, again over
45 ms. During the time that the phase shift was present,
the phase-shifted sinusoid appeared toward the opposite
(left) side of the head, making it stand out perceptu-
ally. A sequence of phase shifts in different components
was clearly heard as a melody. This melody was com-
pletely undetectable when listening to the input to one
ear alone. Kubovy et al. interpreted their results as in-
dicating that differences in relative phase at the two
ears can allow an auditory object to be isolated in the
absence of any other cues.

Culling [13.195] performed a similar experiment to
that of Kubovy et al. [13.194], but he examined the im-
portance of the phase transitions. He found that, when
one component of a complex sound changed rapidly
but smoothly in interaural time difference (ITD), it per-
ceptually segregated from the complex. When different
components were changed in ITD in succession, a rec-
ognizable melody was heard, as reported by Kubovy
et al. However, when the transitions were replaced by
silent intervals, leaving only static ITDs as a cue, the
melody was much less salient. Thus, transitions in ITD
seem to be more important than static differences in
ITD in producing segregation of one component from
a background of other components. Nevertheless, static
differences in ITD do seem to be sufficient to produce
segregation under some conditions [13.196].

Other experiments suggest that binaural process-
ing often plays a relatively minor role in simultaneous
grouping. Shackleton and Meddis [13.197] investigated
the ability to identify each vowel in pairs of concur-
rent vowels. They found that a difference in F0 be-
tween the two vowels improved identification by about
22%. In contrast, a 400 μs interaural delay in one vowel
(which corresponds to an azimuth of about 45 degrees)
improved performance by only 7%. Culling and Sum-
merfield [13.198] investigated the identification of con-
current whispered vowels, synthesized using bands of
noise. They showed that listeners were able to identify
the vowels accurately when each vowel was presented to
a different ear. However, they were unable to identify the
vowels when they were presented to both ears but with
different ITDs. In other words, listeners could not group
the noise bands in different frequency regions with the
same ITD and thereby separate them from noise bands
in other frequency regions with a different ITD.

In summary, when two simultaneous sounds differ
in their interaural level or time, this can contribute to
the perceptual segregation of the sounds and enhance
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their detection and discrimination. However, such bin-
aural processing is not always effective, and in some
situations it appears to play little role.

13.8.2 The Perception of Sequences
of Sounds

Stream Segregation
When we listen to rapid sequences of sounds, the
sounds may be grouped together (i. e., perceived as if
they come from a single source, called fusion or co-
herence), or they may be perceived as different streams
(i. e., as coming from more than one source, called fis-
sion or stream segregation) [13.159,200–202]. The term
streaming is used to denote the processes determining
whether one stream or multiple streams are heard. Van
Noorden [13.203] investigated this phenomenon using
a sequence of pure tones where every second B was
omitted from the regular sequence ABABAB . . . , pro-
ducing a sequence ABA ABA . . . . He found that this
could be perceived in two ways, depending on the fre-
quency separation of A and B. For small separations,
a single rhythm, resembling a gallop, is heard (fusion).
For larger separations, two separate tone sequences can
be heard, one of which (A A A) is running twice as fast
as the other (B B B) (fission). Components are more
likely to be assigned to separate streams if they differ
widely in frequency or if there are rapid jumps in fre-
quency between them. The latter point is illustrated by
a study of Bregman and Dannenbring [13.204]. They
used tone sequences in which successive tones were
connected by frequency glides. They found that these
glides reduced the tendency for the sequences to split
into high and low streams. Conditions using partial
glides also showed decreased stream segregation, al-
though the partial glides were not quite as effective
as complete glides. Thus, complete continuity between
tones is not required to reduce stream segregation; a fre-
quency change pointing toward the next tone allows the
listener to follow the pattern more easily.

The effects of frequency glides and other types of
transitions in preventing stream segregation or fission
are probably of considerable importance in the percep-
tion of speech. Speech sounds may follow one another
in very rapid sequences, and the glides and partial glides
observed in the acoustic components of speech may be
a strong factor in maintaining the percept of speech as
a unified stream.

Van Noorden found that, for intermediate frequency
separations of the tones A and B in a rapid sequence,
either fusion or fission could be heard, according to the

instructions given and the attentional set of the subject.
When the percept is ambiguous, the tendency for fis-
sion to occur increases with increasing exposure time to
the tone sequence [13.205]. The auditory system seems
to start with the assumption that there is a single sound
source, and fission is only perceived when sufficient evi-
dence has built up to contradict this assumption. Sudden
changes in a sequence, or in the perception of a se-
quence, can cause the percept to revert to its initial,
default condition, which is fusion [13.206,207]; for a re-
view, see [13.208].

For rapid sequences of complex tones, strong fis-
sion can be produced by differences in spectrum of
successive tones, even when all tones have the same
F0 [13.202, 209–211]. However, when successive com-
plex tones are filtered to have the same spectral
envelope, stream segregation can also be produced by
differences between successive tones in F0 [13.211,
212], in temporal envelope [13.210,213], in the relative
phases of the components [13.214], or in apparent lo-
cation [13.215]. Moore and Gockel [13.208] proposed
that any salient perceptual difference between succes-
sive tones may lead to stream segregation. Consistent
with this idea, Dowling [13.216, 217] has shown that
stream segregation may also occur when successive
pure tones differ in intensity or in spatial location. He
presented a melody composed of equal-intensity notes
and inserted between each note of the melody a tone
of the same intensity, with a frequency randomly se-
lected from the same range. He found that the resulting
tone sequence produced a meaningless jumble. Making
the interposed notes different from those of the melody,
in either intensity, frequency range, or spatial location,

ITD = + 45 μs + 45 μs + 45 μs
“Could you please write the word dog down     now”

“You’ll   also   hear   the    sound bird this     time”

ITD = – 45 μs – 45 μs – 45 μs

0.0 1.0 s 2.0 s

Fig. 13.20 Example of the stimuli used by Darwin and
Hukin [13.199] (after [13.199, Fig. 1])
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caused them to be heard as a separate stream, enabling
subjects to pick out the melody.

Darwin and Hukin [13.199] have shown that se-
quential grouping can be strongly influenced by ITD.
In one experiment, they simultaneously presented two
sentences (Fig. 13.20). They varied the ITDs of the two
sentences in the range 0 to ±181 μs. For example, one
sentence might lead in the left ear by 45 μs, while the
other sentence would lead in the right ear by 45 μs (as in
Fig. 13.20). The sentences were based on natural speech
but were processed so that each was spoken on a mono-
tone, i. e., with constant F0. The F0 difference between
the two sentences was varied from 0 to 4 semitones.
Subjects were instructed to attend to one particular sen-
tence. At a certain point, the two sentences contained
two different target words aligned in starting time and
duration (dog and bird). The F0s and the ITDs of the
two target words were varied independently from those
of the two sentences. Subjects had to indicate which of
the two target words they heard in the attended sentence.
They reported the target word that had the same ITD as
the attended sentence much more often than the target
word with the opposite ITD. In other words, the target
word with the same ITD as the attended sentence was
grouped with that sentence. This was true even when
the target word had the same ITD as the attended sen-
tence but a different F0. Thus, subjects grouped words
across time according to their perceived location, inde-
pendent of F0 differences. Darwin and Hukin [13.199]
concluded that listeners who try to track a particular
sound source over time direct attention to auditory ob-
jects at a particular subjective location. The auditory
objects themselves may be formed using cues other than
ITD, for example, onset and offset asynchrony and har-
monicity.

It should be noted that, for discrete sequences of
musical tones, the auditory system does not necessarily
form streams according to perceived location, espe-
cially when that cue competes with other cues. This is
illustrated by an effect, called the scale illusion, reported
by Deutsch [13.218]. She presented two sequences of
tones via headphones, one sequence to each ear. The nth
tone in the left ear was synchronous with the nth tone
in the right ear. The sequences were created by repeti-
tive presentation of the C major scale in both ascending
and descending form, such that when a component of
the ascending scale was in one ear, a component of
the descending scale was in the other, and vice versa.
However, the tones from each scale alternated between
ears. Within each ear there were often large jumps in
frequency between successive tones. Most subjects per-

ceived the sounds as two streams, organized by the
frequency proximity of successive tones. One stream
(which was often heard towards one ear) was heard as
a musical scale that started high, descended and then
increased again, while the other stream (which was usu-
ally heard towards the opposite ear) was heard as a scale
that started low, ascended, and then decreased again.
Thus, the true location of the tones had little influence
on the formation of the perceptual streams.

Another example come from the opening bars of the
last movement of Tchaikovsky’s sixth symphony. This
contains interleaved notes played by the first and second
violins, who according to 19th century custom sat on
opposite sides of the stage. These notes are perceived as
a single stream, despite the difference in location, pre-
sumably because of the frequency proximity between
successive notes.

A number of composers have exploited the fact that
stream segregation occurs for tones that are widely sep-
arated in frequency. By playing a sequence of tones
in which alternate notes are chosen from separate fre-
quency ranges, an instrument such as the flute, which is
only capable of playing one note at a time, can appear
to be playing two themes at once. Many fine examples
of this are available in the works of Bach, Telemann and
Vivaldi.

Judgment of Temporal Order
It is difficult to judge the temporal order of sounds
that are perceived in different streams. An example
of this comes from the work of Broadbent and Lade-
foged [13.219]. They reported that extraneous sounds in
sentences were grossly mislocated. For example, a click
might be reported as occurring a word or two away from
its actual position. Surprisingly poor performance was
also reported by Warren et al. [13.220] for judgments
of the temporal order of three or four unrelated items,
such as a hiss, a tone, and a buzz. Most subjects could
not identify the order when each successive item lasted
as long as 200 ms. Naive subjects required that each
item last at least 700 ms to identify the order of four
sounds presented in an uninterrupted repeated sequence.
These durations are well above those that are normally
considered necessary for temporal resolution.

The poor order discrimination described by War-
ren et al. is probably a result of stream segregation.
The sounds they used do not represent a coherent class.
They have different temporal and spectral characteris-
tics, and, as for tones widely differing in frequency,
they do not form a single perceptual stream. Items
in different streams appear to float about with respect
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to each other in subjective time. Thus, temporal or-
der judgments are difficult. It should be emphasized
that the relatively poor performance reported by Warren
et al. [13.220] is found only in tasks requiring abso-
lute identification of the order of sounds and not in
tasks that simply require the discrimination of different
sequences. Also, with extended training and feedback
subjects can learn to distinguish between and iden-
tify orders within sequences of unrelated sounds lasting
only 10 ms or less [13.221].

To explain these effects, Divenyi and Hirsh [13.222]
suggested that two kinds of perceptual judgments are
involved. At longer item durations the listener is able
to hear a clear sequence of steady sounds, whereas at
shorter durations a change in the order of items in-
troduces qualitative changes that can be discriminated
by trained listeners. Similar explanations have been put
forward by Green [13.76] and Warren [13.221].

Bregman and Campbell [13.201] investigated the
factors that make temporal order judgments for tone
sequences difficult. They used naive subjects, so per-
formance presumably depended on the subjects actually
perceiving the sounds as a sequence, rather than on their
learning the overall sound pattern. They found that, in
a repeating cycle of mixed high and low tones, sub-
jects could discriminate the order of the high tones
relative to one another or of the low tones among
themselves, but they could not order the high tones
relative to the low ones. The authors suggested that
this was because the two groups of sounds split into
separate perceptual streams and that judgments across
streams are difficult. Several more recent studies have
used tasks involving the discrimination of changes in
timing or rhythm as a tool for studying stream segre-
gation [13.211, 214, 223]. The rationale of these studies
is that, if the ability to judge the relative timing of suc-
cessive sound elements is good, this indicates that the
elements are perceived as part of a single stream, while
if the ability is poor, this indicates that the elements are
perceived in different streams.

13.8.3 General Principles
of Perceptual Organization

The Gestalt psychologists [13.224] described many of
the factors that govern perceptual organization, and
their descriptions and principles apply reasonably well
to the way physical cues are used to achieve perceptual
grouping of the acoustic input. It seems likely that the
rules of perceptual organization have arisen because, on
the whole, they tend to give the right answers. That is,

use of the rules generally results in a grouping of those
parts of the acoustic input that arose from the same
source and a segregation of those that did not. No single
rule will always work, but it appears that the rules can
generally be used together, in a coordinated and prob-
ably quite complex way, in order to arrive at a correct
interpretation of the input. In the following sections, I
outline the major principles or rules of perceptual orga-
nization. Many, but not all, of the rules apply to both
vision and hearing, and they were mostly described first
in relation to vision.

Similarity
This principle is that elements will be grouped if they
are similar. In hearing, similarity usually implies close-
ness of timbre, pitch, loudness, or subjective location.
Examples of this principle have already been described.
If we listen to a rapid sequence of pure tones, say 10
tones per second, then tones that are closely spaced in
frequency, and are therefore similar, form a single per-
ceptual stream, whereas tones that are widely spaced
form separate streams.

For pure tones, frequency is the most important fac-
tor governing similarity, although differences in level
and subjective location between successive tones can
also lead to stream segregation. For complex tones,
differences in timbre produced by spectral differences
seem to be the most important factor. Again, however,
other factors may play a role. These include differences
in F0, differences in timbre produced by temporal enve-
lope differences, and differences in perceived location.

Good Continuation
This principle exploits a physical property of sound
sources, that changes in frequency, intensity, location,
or spectrum tend to be smooth and continuous, rather
than abrupt. Hence, a smooth change in any of these as-
pects indicates a change within a single source, whereas
a sudden change indicates that a new source has been
activated. One example has already been described;
Bregman and Dannenbring [13.204] showed that the
tendency of a sequence of high and low tones to split
into two streams was reduced when successive tones
were connected by frequency glides.

A second example comes from studies using syn-
thetic speech. In such speech, large fluctuations of an
unexpected kind in F0 (and correspondingly in the
pitch) give the impression that a new speaker has
stepped in to take over a few syllables from the primary
speaker. Darwin and Bethell-Fox [13.225] synthesized
spectral patterns that changed smoothly and repeatedly
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between two vowel sounds. When the F0 of the sound
patterns was constant they were heard as coming from
a single source, and the speech sounds heard included
glides (l as in let) and semivowels (w as in we). When
a discontinuous, step-like F0 contour was imposed on
the patterns, they were perceived as two distinct speech
streams, and the speech was perceived as containing
predominantly stop consonants (e.g., b as in be, and d
as in day). Apparently, a given group of components
is usually only perceived as part of one stream. Thus,
the perceptual segregation produces illusory silences in
each stream during the portions of the signal attributed
to the other stream, and these silences are interpreted,
together with the gliding spectral patterns in the vowels,
as indicating the presence of stop consonants. It is clear
that the perception of speech sounds can be strongly
influenced by stream organization.

Common Fate
The different frequency components arising from a sin-
gle sound source usually vary in a highly coherent way.
They tend to start and finish together, change in inten-
sity together, and change in frequency together. This
fact is exploited by the perceptual system and gives rise
to the principle of common fate: if two or more com-
ponents in a complex sound undergo the same kinds of
changes at the same time, then they are grouped and
perceived as part of the same source.

Two examples of common fate were described ear-
lier. The first concerns the role of the onsets and offsets
of sounds. Components will be grouped together if they
start and stop synchronously; otherwise they will form
separate streams. The onset asynchronies necessary to
allow the separation of two complex tones are not large,
about 30 ms being sufficient. The asynchronies that are
observed in performed music are typically as large as or
larger than this, so when we listen to polyphonic mu-
sic we are easily able to hear separately the melodic
line of each instrument. Secondly, components that are
amplitude modulated in a synchronous way tend to be
grouped together. There is at present little evidence
that the coherence of modulation in frequency affects
perceptual grouping, although frequency modulation of
a group of components in a complex sound can promote
the perceptual segregation of those components from an
unchanging background.

Disjoint Allocation
Broadly speaking, this principle, also known as belong-
ingness, is that a single component in a sound can only
be assigned to one source at a time. In other words,

Frequency

Time

a)

c)

b)

B
A

B
A

X X

B
A

X XXX X X

Fig. 13.21a–c Schematic illustration of the stimuli used by
Bregman and Rudnicky [13.226]. When the tones A and B
are presented alone (a), it is easy to tell their order. When
the tones A and B are presented as part of a four-tone com-
plex XABX (b), it is more difficult to tell their order. If the
four-tone complex is embedded in a longer sequence of X
tones (c), the Xs form a separate perceptual stream, and it
is easy to tell the order of A and B

once a component has been used in the formation of one
stream, it cannot be used in the formation of a second
stream. For certain types of stimuli, the perceptual orga-
nization may be ambiguous, there being more than one
way to interpret the sensory input. When a given com-
ponent might belong to one of a number of streams, the
percept may alter depending on the stream within which
that component is included.

An example is provided by the work of Bregman
and Rudnicky [13.226]. They presented a sequence of
four brief tones in rapid succession. Two of the tones,
labeled X, had the same frequency, but the middle two,
A and B, were different. The four-tone sequence was
either XABX or XBAX. The listeners had to judge
the order of A and B. This was harder than when the
tones AB occurred in isolation (Fig. 13.21a) because
A and B were perceived as part of a longer four-tone
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pattern, including the two distracter tones, labeled X
(Fig. 13.21b). They then embedded the four-tone se-
quence into a longer sequence of tones, called captor
tones (Fig. 13.21c). When the captor tones had frequen-
cies close to those of the distracter tones, they captured
the distracters into a separate perceptual stream, leaving
the tones AB in a stream of their own. This made the
order of A and B easy to judge. It seems that the tones
X could not be perceived as part of both streams. When
only one stream is the subject of judgment and hence of
attention, the other one may serve to remove distracters
from the domain of attention.

It should be noted that the principle of disjoint allo-
cation does not always work, particularly in situations
where there are two or more plausible perceptual orga-
nizations [13.227]. In such situations, a sound element
may sometimes be heard as part of more than one
stream.

Closure
In everyday life, the sound from a given source may be
temporarily masked by other sounds. While the mask-
ing sound is present there may be no sensory evidence
that can be used to determine whether the masked sound
has continued or not. Under these conditions the masked
sound tends to be perceived as continuous. The Gestalt
psychologists called this process closure.

A laboratory example of this phenomenon is the
continuity effect [13.228–230]. When a sound A is al-
ternated with a sound B, and B is more intense than A,
then A may be heard as continuous, even though it is

interrupted. The sounds do not have to be steady. For
example, if B is noise and A is a tone that is gliding up-
ward in frequency, the glide is heard as continuous even
though certain parts of the glide are missing [13.231].
Notice that, for this to be the case, the gaps in the
tone must be filled with noise and the noise must be
a potential masker of the tone (if they were presented
simultaneously). In the absence of noise, discrete jumps
in frequency are clearly heard.

The continuity effect also works for speech stimuli
alternated with noise. In the absence of noise to fill in
the gaps, interrupted speech sounds hoarse and raucous.
When noise is presented in the gaps, the speech sounds
more natural and continuous [13.232]. For connected
speech at moderate interruption rates, the intervening
noise actually leads to an improvement in intelligi-
bility [13.233]. This may occur because the abrupt
switching of the speech produces misleading cues as to
which speech sounds were present. The noise serves to
mask these misleading cues.

It is clear from these examples that the perceptual
filling in of missing sounds does not take place solely on
the basis of evidence in the acoustic waveform. Our past
experience with speech, music, and other stimuli must
play a role, and the context of surrounding sounds is
important [13.234]. However, the filling in only occurs
when one source is perceived as masking or occluding
another. This percept must be based on acoustic evi-
dence that the occluded sound has been masked. Thus,
if a gap is not filled by a noise or other sound, the
perceptual closure does not occur; a gap is heard.

13.9 Further Reading and Supplementary Materials

More information about the topics discussed in this
chapter can be found in: A. S. Bregman: Audito-
ry Scene Analysis: The Perceptual Organization of
Sound (Bradford Books, MIT Press, Cambridge 1990);
W. M. Hartmann: Signals, Sound, and Sensation (AIP
Press, Woodbury 1997); B. C. J. Moore: An Introduction
to the Psychology of Hearing, 6th edn. (Brill, Leiden
2012); R. Plomp: The Intelligent Ear (Erlbaum, Mah-
wah 2002)

A compact disc (CD) of auditory demonstrations
has been produced by A. J. M. Houtsma, T. D. Ross-
ing, W. M. Wagenaars (1987). The disc can be obtained
through the Acoustical Society of America; contact as-
apubs@abdintl.com for details.

The following CD has a large variety of demonstra-
tions relevant to perceptual grouping: A. S. Bregman,

P. Ahad (1995). Demonstrations of Auditory Scene
Analysis: The Perceptual Organization of Sound, (Audi-
tory Perception Laboratory, Department of Psychology,
McGill University, distributed by MIT Press, Cam-
bridge, MA). It can be ordered from The MIT
Press, 55 Hayward St., Cambridge, MA 02142, USA.
Further relevant demonstrations can be found at:
http://www.kyushu-id.ac.jp/∼ynhome/.

A CD simulating the effects of a hearing loss on the
perception of speech and music is Perceptual Conse-
quences of Cochlear Damage. This may be obtained by
writing to B. C. J. Moore, Department of Experimental
Psychology, University of Cambridge, Downing Street,
Cambridge, CB2 3EB, England, and enclosing a check
for 20 dollars or a cheque for 12 pounds sterling, made
payable to B. C. J. Moore.
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Acoustic Signa14. Acoustic Signal Processing

William M. Hartmann, James V. Candy

Signal processing refers to the acquisition, stor-
age, display, and generation of signals – also to
the extraction of information from signals and
the re-encoding of information. As such, signal
processing in some form is an essential element
in the practice of all aspects of acoustics. Signal
processing algorithms enable acousticians to sep-
arate signals from noise, to perform automatic
speech recognition, or to compress information
for more efficient storage or transmission. Signal
processing concepts are the building blocks used
to construct models of speech and hearing. Now,
in the 21st century, all signal processing is effec-
tively digital signal processing. Widespread access
to high-speed processing, massive memory, and
inexpensive software make signal processing pro-
cedures of enormous sophistication and power
available to anyone who wants to use them. Be-
cause advanced signal processing is now accessible
to everybody, there is a need for primers that in-
troduce basic mathematical concepts that underlie
the digital algorithms. The present handbook
chapter is intended to serve such a purpose.

The chapter emphasizes careful definition of
essential terms used in the description of signals
per international standards. It introduces the
Fourier series for signals that are periodic and
the Fourier transform for signals that are not. Both
begin with analog, continuous signals, appropriate
for the real acoustical world. Emphasis is placed
on the consequences of signal symmetry and on
formal relationships. The autocorrelation function
is related to the energy and power spectra for
finite-duration and infinite-duration signals. The
chapter provides careful definitions of statistical
terms, moments, and single- and multi-variate
distributions. The Hilbert transform is introduced,
again in terms of continuous functions. It is
applied both to the development of the analytic
signal – envelope and phase, and to the dispersion
relations for linear, time-invariant systems. The
bare essentials of filtering are presented, mostly

to provide real-world examples of fundamen-
tal concepts – asymptotic responses, group delay,
phase delay, etc. This introduction is followed by
more advanced ideas: matched filtering and time-
reversal processing. Spectral estimation in the
presence of noise is treated by several techniques:
parametric models, autoregressive procedures,
model-based signal processing implemented as
Wiener and Kalman filters, and matched-field pro-
cessing. There is a brief introduction to cepstrology,
with emphasis on acoustical applications. The
treatment of the mathematical properties of noise
emphasizes the generation of different kinds of
noise. Digital signal processing with sampled data
is specifically introduced with emphasis on digital-
to-analog conversion and analog-to-digital
conversion. It continues with the discrete Fourier
transform and with the z-transform, applied to
both signals and linear, time-invariant systems.
Digital signal processing continues with an intro-
duction to maximum length sequences as used in
acoustical measurements, with an emphasis on
formal properties. The chapter ends with a section
on information theory including developments of
Shannon entropy and mutual information.
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14.1 Definitions

Signal processing begins with signals. The simplest sig-
nal is a sine wave with a single spectral component,
i. e., with a single frequency, as shown in Fig. 14.1. It
is sometimes called a pure tone. A sine wave function
of time t with amplitude C, angular frequency ω, and
starting phase ϕ, is given by

x(t) = C sin(ωt+ϕ) . (14.1)

The amplitude has the same units as the waveform x,
the angular frequency has units of radians per second,
and the phase has units of radians.

Because there are 2π radians in one cycle

ω= 2π f, (14.2)

�
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Fig. 14.1 A sine wave with amplitude C and period T .
A little more than three and a half cycles are shown. The
starting phase is ϕ = 0

and (14.1) can be written as

x(t) = C sin(2π ft+ϕ) (14.3)

or as

x(t) = C sin

(
2π

t

T
+ϕ

)
, (14.4)

where f is the frequency in cycles per second (or Hertz)
and T is the period in units of seconds per cycle, T =
1/ f .

A complex wave is the sum of two or more sine
waves, each with its own amplitude, frequency, and
phase. For example,

x(t) = C1 sin(ω1t+ϕ1)+C2 sin(ω2t+ϕ2) (14.5)

is a complex wave with two spectral components having
frequencies f1 and f2. The period of a complex wave
is the reciprocal of the greatest common divisor of f1
and f2. For instance, if f1 = 400 Hz and f2 = 600 Hz,
then the period is 1/(200 Hz) or 5 ms. The fundamental
frequency is the reciprocal of the period.

A general waveform can be written as a sum of N
components,

x(t) =
N∑

n=1

Cn sin(ωnt+ϕn) , (14.6)
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and the fundamental frequency is the greatest common
divisor of the set of frequencies { fn}.

An alternative description of the general waveform
can be derived by using the trigonometric identity

sin(θ1+ θ2) = sin θ1 cos θ2+ sin θ2 cos θ1 (14.7)

so that

x(t) =
N∑

n=1

An cos(ωnt)+ Bn sin(ωnt) , (14.8)

where An = Cn sinϕn , and Bn = Cn cosϕn , are the co-
sine and sine partial amplitudes respectively. Thus the
two parameters Cn and ϕn are replaced by two other
parameters An and Bn .

Because of the trigonometric identity

sin2 θ+ cos2 θ = 1 , (14.9)

the amplitude Cn can be written in terms of the partial
amplitudes,

C2
n = A2

n + B2
n , (14.10)

as can the component phase

ϕn = Arg(An, Bn) . (14.11)

The Arg function is essentially an inverse tangent, but
because the principal value of the arctangent function
only runs from −π2 to π

2 , an adjustment needs to be
made when Bn is negative. In the end,

Arg(An, Bn) = arctan

(
An

Bn

)
(for Bn ≥ 0)

(14.12)

and

Arg(An, Bn) = arctan

(
An

Bn

)
+π (for Bn < 0) .

The remaining sections of this chapter provide
a brief treatment of real signals x(t) – first as continu-
ous functions of time and then as sampled data. Readers
who are less familiar with the continuous approach may
wish to refer to the more extensive treatment in [14.1].

14.2 Fourier Series

The Fourier series applies to a function x(t) that is pe-
riodic. Periodicity means that we can add any integral
multiple m of T to the running time variable t and the
function will have the same value as at time t, i. e.

x(t+mT ) = x(t) , for all integral m . (14.13)

Because m can be either positive or negative and as
large as we like, it is clear that x is periodic into the in-
finite future and past. Then Fourier’s theorem says that
x can be represented as a Fourier series like

x(t) = A0+
∞∑

n=1

[An cos(ωnt)+ Bn sin(ωnt)] . (14.14)

All the cosines and sines have angular frequencies
ωn that are harmonics, i. e., they are integral multiples
of a fundamental angular frequency ω0,

ωn = nω0 = 2π
n

T
, (14.15)

where n is an integer.
The fundamental frequency f0 is given by f0 =

ω0/(2π). The fundamental frequency is the lowest fre-
quency that a sine or cosine wave can have and still
fit exactly into one period of the function x(t) because
f0 = 1/T . In order to make a function x(t) with period

T , the only sines and cosines that are allowed to enter
the sum are those that fit exactly into the same period T .
These are those sines and cosines with frequencies that
are integral multiples of the fundamental.

The factors An and Bn in (14.14) are the Fourier
coefficients. They can be calculated by projecting the
function x(t) onto sine and cosine functions of the har-
monic frequencies ωn . Projecting means to integrate the
product of x(t) and a sine or cosine function over a dura-
tion of time equal to a period of x(t). Sines and cosines
with different harmonic frequencies are orthogonal over
a period. Consequently, projecting x(t) onto, for exam-
ple cos(3ω0t), gives exactly the Fourier coefficient A3.

It does not matter which time interval is used for in-
tegration, as long as it is exactly one period in duration.
It is common to use the interval −T/2 to T/2.

The orthogonality and normality of the sine and co-
sine functions are described by the following equations:

2

T

T/2∫

−T/2

dt sin(ωnt) cos(ωmt) = 0 , (14.16)

for all m and n;

2

T

T/2∫

−T/2

dt cos(ωnt) cos(ωmt) = δn,m (14.17)
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and

2

T

T/2∫

−T/2

dt sin(ωnt) sin(ωmt) = δn,m , (14.18)

where δn,m is the Kronecker delta, equal to one if m = n
and equal to zero otherwise.

It follows that the equations for An and Bn are

An = 2

T

T/2∫

−T/2

dt x(t) cos(ωnt) for n > 0 , (14.19)

Bn = 2

T

T/2∫

−T/2

dt x(t) sin(ωnt) for n > 0. (14.20)

The coefficient A0 is simply a constant that shifts
the function x(t) up or down. The constant A0 is the
only term in the Fourier series (14.14) that could possi-
bly have a nonzero value when averaged over a period.
All the other terms are sines and cosines; they are neg-
ative as much as they are positive and average to zero.
Therefore, A0 is the average value of x(t). It is the direct-
current (DC) component of x. To find A0 we project the
function x(t) onto a cosine of zero frequency, i. e. onto
the number 1, which leads to the average value of x,

A0 = 1

T

T/2∫

−T/2

dt x(t) . (14.21)

14.2.1 The Spectrum

The Fourier series is a function of time, where An and
Bn are coefficients that weight the cosine and sine con-
tributions to the series. The coefficients An and Bn are
real numbers that may be positive or negative.

An alternative approach to the function x(t) deem-
phasizes the time dependence and considers mainly the
coefficients themselves. This is the spectral approach.
The spectrum simply consists of the values of An and
Bn , plotted against frequency, or equivalently, plotted
against the harmonic number n. For example, if we have
a signal given by

x(t) = 5 sin(2π 150t)+3 cos(2π 300t)

−2 cos(2π 450t)+4 sin(2π 450t) (14.22)

then the spectrum consists of only a few terms. The pe-
riod of the signal is 1

150 s, the fundamental frequency is
150 Hz, and there are two additional harmonics: a sec-
ond harmonic at 300 Hz and a third at 450 Hz. The
spectrum is shown in Fig. 14.2.

a) Amplitude A

b) Amplitude B

c) Magnitude C

d) Phase � (deg)

Fig. 14.2 (a,b) The amplitudes A and B for the signal in
(14.22); (c,d) the corresponding magnitude and phases

14.2.2 Symmetry

Many important periodic functions have symmetries
that simplify the Fourier series. If the function x(t) is
an even function [x(−t) = x(t)] then the Fourier series
for x contains only cosine terms. All coefficients of the
sine terms Bn are zero. If x(t) is odd [x(−t) =−x(t)],
the the Fourier series contains only sine terms, and all
the coefficients An are zero. Sometimes it is possible to
shift the origin of time to obtain a symmetrical function.
Such a time shift is allowed if the physical situation at
hand does not require that x(t) be synchronized with
some other function of time or with some other time-

Part
D

1
4
.2



Acoustic Signal Processing 14.3 Fourier Transform 523

Fig. 14.3 The Fourier series of an odd function like this
sawtooth consists of sine terms only. The Fourier coeffi-
cients can be computed by an integral over a single period
from −T/2 to T/2 �

referenced process. For example, the sawtooth function
in Fig. 14.3 is an odd function. Therefore, only sine
terms are present in the series.

The Fourier coefficients can be calculated by doing
the integral over the interval shown by the heavy line.
The integral is easy to do analytically because x(t) is
just a straight line. The answer is

Bn = 2

π

(−1)(n+1)

n
. (14.23)

Consequently, the sawtooth function itself is given
by

x(t) = 2

π

∞∑

n=1

(−1)(n+1)

n
sin

(
2πn

t

T

)
. (14.24)

,�
!

� ���

�

,!

+

A bridge between the Fourier series and the Fourier
transform is the complex form for the spectrum,

Xn = An + iBn . (14.25)

Because of Euler’s formula, namely

eiθ = cos θ+ i sin θ , (14.26)

it follows that

Xn = 2

T

T/2∫

−T/2

dt x(t) eiωn t . (14.27)

14.3 Fourier Transform

The Fourier transform of a time-dependent signal is
a frequency-dependent representation of the signal,
whether or not the time dependence is periodic. Com-
pared to the frequency representation in the Fourier
series, the Fourier transform differs in several ways.
In general the Fourier transform is a complex func-
tion with real and imaginary parts. Whereas the Fourier
series representation consists of discrete frequencies,
the Fourier transform is a continuous function of fre-
quency. The Fourier transform also requires the concept
of negative frequencies. The transformation tends to be
symmetrical with respect to the appearance of positive
and negative frequencies and so negative frequencies
are just as important as positive frequencies. The treat-
ment of the Fourier integral transform that follows
mainly states results. For proof and further applications
the reader may wish to consult [14.1, mostly Chap. 8].

The Fourier transform of signal x(t) is given by the
integral

X(ω) = F [x(t)] =
∫

dt e−iωt x(t) . (14.28)

Here, and eleswhere unless otherwise noted, integrals
range over all negative and positive values, i. e. −∞ to
+∞.

The inverse Fourier transform expresses the signal
as a function of time in terms of the Fourier transform,

x(t) = 1

2π

∫
dω eiωt X(ω) . (14.29)

These expressions for the transform and inverse trans-
form can be shown to be self-consistent. A key fact in
the proof is that the Dirac delta function can be written
as an integral over all time,

δ(ω) = 1

2π

∫
dt e±iωt , (14.30)

and similarly

δ(t) = 1

2π

∫
dω e±iωt . (14.31)

Because a delta function is an even function of its ar-
gument, it does not matter if the + or − sign is used in
these equations.

Reality and Symmetry
The Fourier transform X(ω) is generally complex. How-
ever, signals like x(t) are real functions of time. In that
connection (14.29) would seem to pose a problem, be-
cause it expresses the real function x as an integral
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involving the complex exponential multiplied by the
complex Fourier transform. The requirement that x be
real leads to a simple requirement on its Fourier trans-
form X. The requirement is that X(−ω) must be the
complex conjugate of X(ω), i. e., X(−ω)= X∗(ω). That
means that

Re X(−ω) = Re X(ω) (14.32)

and

Im X(−ω) =−Im X(ω) .

Similar reasoning leads to special results for signals
x(t) that are even or odd functions of time t. If x is even
[x(−t) = x(t)] then the Fourier transform X is not com-
plex but is entirely real. If x is odd [x(−t)=−x(t)] then
the Fourier transform X is not complex but is entirely
imaginary.

The polar form of the Fourier transform is normally
a more useful representation than the real and imaginary
parts. It is the product of a magnitude, or absolute value,
and an exponential phase factor,

X(ω) = |X(ω)| exp[iϕ(ω)] . (14.33)

The magnitude is a positive real number. Negative or
complex values of X arise from the phase factor. For
instance, if X is entirely real then ϕ(ω) can only be zero
or 180◦.

14.3.1 Examples

A few example Fourier transforms are insightful.

The Gaussian
The Fourier transform of a Gaussian is a Gaussian. The
Gaussian function of time is

g(t) = 1

σ
√

2π
e−t2/(2 σ2) . (14.34)

The function is normalized to unit area, in the sense
that the integral of g(t) over all time is 1.0. The Fourier
transform is

G(ω) = e−ω2σ2/2 . (14.35)

The Unit Rectangle Pulse
The unit rectangle pulse, r(t), is a function of time that is
zero except on the interval −T0/2 to T0/2. During that
interval the function has the value 1/T0, so that the func-
tion has unit area. The Fourier transform of this pulse
is

R(ω) =
[

sin

(
ω

T0

2

)]/(
ω

T0

2

)
, (14.36)
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Fig. 14.4 The Fourier transform of a single pulse with
duration T0 as a function of frequency f expressed in di-
mensionless form fT0

or, in terms of frequency

R( f ) = sin(π fT0)

π fT0
,

as shown in Fig. 14.4.
The function of the form (sin x)/x is sometimes

called the sinc function. However, (sinπx)/(πx) is also
called the sinc function. Therefore, whenever the sinc
function is used by name it must be defined.

Both the Gaussian and the unit rectangle illustrate
a reciprocal effect sometimes called the uncertainty
principle. The Gaussian function of time g(t) is nar-
row if σ is small because σ appears in the denominator
of the exponential in g(t). Then the Fourier transform
G(ω) is wide because σ appears in the numerator of the
exponential in G(ω). Similarly, the unit rectangle is nar-
row if T0 is small. Then the Fourier transform R(ω) is
broad because R(ω) depends on the product ωT0. The
general statement of the principle is that, if a function
of one variable (e.g. time) is compact, then the trans-
form representation, that is the function of the conjugate
variable (e.g. frequency), is broad, and vice versa. The
extreme expression of the uncertainty principle appears
in the Fourier transform of a function that is constant for
all time. According to (14.30), that transform is a delta
function of frequency. Conversely, the Fourier trans-
form of a delta function is a constant for all frequency.
That means that the spectrum of an ideal impulse con-
tains all frequencies equally.

A contrast between the Fourier transforms of Gaus-
sian and rectangle pulses is also revealing. Because the
Gaussian is a smooth function of time, the transform has
a single peak. Because the rectangle has sharp edges,
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there are oscillations in the transform. If the rectangle
is given sloping or rounded edges, the amplitude of the
oscillations is reduced.

14.3.2 Time-Shifted Function

If y(t) is a time-shifted version of x(t), i. e.

y(t) = x(t− t0) , (14.37)

then the Fourier transform of y is related to the Fourier
transform of x by the equation

Y (ω) = exp(−iωt0)X(ω) . (14.38)

The transform Y is the same as X except for a phase
shift that increases linearly with frequency. There are
two important implications of this equation. First, be-
cause the magnitude of the exponential with imaginary
argument is 1.0, the magnitude of Y is the same as the
magnitude of X for all values of ω. Second, revers-
ing the logic of the equation shows that, if the phase
of a signal is changed in such a way that the phase
shift is a linear function of frequency, then the change
corresponds only to a shift along the time axis for the
function of time, and not to a distortion of the shape of
the wave. A general phase-shift function of frequency
can be separated into the best-fitting straight line and
a residual. Only the residual distorts the shape of the
signal as a function of time.

14.3.3 Derivatives and Integrals

If v(t) is the derivative of x(t), i. e., v(t) = dx/dt, then
the Fourier transform of v is related to the transform of
x by the equation

V (ω) = iωX(ω) . (14.39)

Thus, differentiating a signal is equivalent to ideal high-
pass filtering with a boost of 6 dB per octave, i. e.,
doubling the frequency doubles the ratio of the output to
the input, as processed by the differentiator. Differenti-
ating also leads to a simple phase shift of 90◦ (π/2 rad)
in the sense that the new factor of i equals exp(iπ/2).
The differentiation equation can be iterated. The Fourier
transform of the n-th derivative of x(t) is (iω)n X(ω).

Integration is the inverse of differentiation, and that
fact becomes apparent in the Fourier transforms. If w(t)
is the integral of x(t), i. e.,

w(t) =
t∫

−∞
dt′ x(t′) , (14.40)

then the Fourier transform of w is related to the Fourier
transform of x by the equation

W(ω) = X(ω)

iω
+ X(0)δ(ω) . (14.41)

The first term above could have been anticipated based
on the transform of the derivative. The second term
corresponds to the additive constant of integration that
always appears in the context of an integral. The num-
ber X(0) is the average (DC) value of the signal x(t),
and if this average value is zero then the second term
can be neglected.

14.3.4 Products and Convolution

If the signal x is the product of two functions y and w,
i. e. x(t) = y(t)w(t) then, according to the convolution
theorem, the Fourier transform of x is the convolution
of the Fourier transforms of y and w, i. e.

X(ω) = 1

2π
Y (ω)∗W(ω) . (14.42)

The convolution, indicated by the symbol ∗, is defined
by the integral

X(ω) = 1

2π

∫
dω′ Y (ω′) W(ω−ω′) . (14.43)

The convolution theorem works in reverse as well.
If X is the product of Y and W , i. e.

X(ω) = Y (ω) W(ω) (14.44)

then the functions of time x, y, and w are related by
a convolution,

x(t) =
∞∫

−∞
dt′ y(t′) w(t− t′) (14.45)

or

x(t) = y(t)∗w(t) .

The symmetry of the convolution equations for mul-
tiplication of functions of frequency and multiplication
of functions of time is misleading. Multiplication of
frequency functions, e.g. X(ω) = Y (ω)W(ω), normally
corresponds to a linear operation on signals generally
known as filtering. Multiplication of signal functions
of time, e.g. y(t)w(t), is a nonlinear operation such as
modulation.
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14.4 Power, Energy, and Power Spectrum

The instantaneous power in a signal is defined as
P(t) = x2(t). This definition corresponds to the power
that would be transferred by a signal to a unit load that
is purely resistive, or dissipative. Such a load is not at
all reactive, wherein energy is stored for some fraction
of a cycle.

The energy in a signal is the accumulation of power
over time,

E =
∫

dt P(t) =
∫

dt x2(t) . (14.46)

At this point, a distinction must be made between
finite-duration signals and infinite-duration signals. For
a finite-duration signal, the above integral exists. By
substituting the Fourier transform for x(t), one finds that

E = 1

2π

∫
dω X(ω) X(−ω) or

∫
dω E(ω) .

(14.47)

Thus the energy in the signal is written as the accumu-
lation of of the energy spectral density,

E(ω) = 1

2π
X(ω) X(−ω) = 1

2π
|X(ω)|2 . (14.48)

The symmetry between (14.46) and (14.47) is known as
Parseval’s theorem. It says that one can compute the en-
ergy in a signal by either a time or a frequency integral.

The power spectral density is obtained by divid-
ing the energy spectral density by the duration of the
signal, TD,

P(ω) = E(ω)

TD
. (14.49)

For white noise, the power density is constant on
average, P(ω) = P0. From (14.47) it is evident that
a signal cannot be white over the entire range of
frequencies out to infinite frequency without having in-
finite energy. One is therefore limited to noise that is
white over a finite frequency band.

For pink noise the power density is inversely propor-
tional to frequency, P(ω) = c/ω, where c is a constant.
The energy integral in (14.47) for pink noise also di-
verges. Therefore, pink noise must be limited to a finite
frequency band.

Turning now to infinite-duration signals, for an
infinite-duration signal the energy is not well defined.
It is likely that one would never even think about an
infinite-duration signal if it were not for the useful
concept of a periodic signal. Although the energy is un-
defined, the power P is well defined, and so is the power

spectrum, or power spectral density P(ω). As expected,
the power is the integral of the power spectral density,

P =
∫

dω P(ω) , (14.50)

where P(ω) is given in terms of X from (14.27),

P(ω) = π
2

∞∑

n=0

|Xn |2[δ(ω−ωn)+ δ(ω+ωn)] .

(14.51)

It is not hard to convert densities to different units.
For instance, the power spectral density can be written
in terms of frequency f instead of ω (ω= 2π f ). By the
definition of a density we must have that

P =
∫

d f P( f ) . (14.52)

This definition is consistent with the fact that
a delta function has dimensions that are the inverse of
its argument dimensions. Therefore, δ(ω) = δ(2π f ) =
δ( f )/(2π), and

P( f ) = 1

4

∞∑

n=0

|Xn |2[δ( f − fn)+ δ( f + fn)] .

(14.53)

14.4.1 Autocorrelation

The autocorrelation function af of a signal x(t) provides
a measure of the similarity between the signal at time t
and the same signal at a different time, t+ τ . The vari-
able τ is called the lag, and the autocorrelation function
is given by

af (τ) =
∞∫

−∞
dt x(t) x(t+ τ) . (14.54)

When τ is zero then the integral is just the square of
x(t), and this leads to the largest possible value for the
autocorrelation, namely E. For a signal of finite du-
ration, the autocorrelation must always be strictly less
than its value at τ = 0. Consequently, the normalized
autocorrelation function a(τ)/a(0) is always less than
1.0 (τ �= 0).

By substituting (14.29) for x(t) one finds a fre-
quency integral for the autocorrelation function,

af (τ) = 1

2π

∞∫

−∞
dω eiωt |X(ω)|2 , (14.55)
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or, from (14.47),

af (τ) =
∞∫

−∞
dω eiωτ E(ω) . (14.56)

Equation (14.56) says that the autocorrelation function
is the Fourier transform of the energy spectral density.
This relationship is known as the Wiener–Khintchine
relation. Because E(−ω) = E(ω), one can write af in
a way that proves that it is a real function with no imag-
inary part,

af (τ) = 2

∞∫

0

dω cos(ωτ)E(ω) . (14.57)

Furthermore, because the cosine is an even function of
its argument [af (−τ)= af (τ)], the autocorrelation func-
tion only needs to be given for positive values of the
lag.

A signal does not have finite duration if it is peri-
odic. Then the autocorrelation function is defined as

a(τ) = lim
TD→∞

1

2TD

TD∫

−TD

dt x(t)x(t+ τ) . (14.58)

If the period is T then a(τ) = a(τ +nT ) for all inte-
ger n, and the maximum value occurs at a(0) or a(nT ).
Because of the factor of time in the denominator of
(14.58), the function a(τ) is the Fourier transform of
the power spectral density and not of the energy spectral
density.

A critical point for both af (τ) and a(τ) is that au-
tocorrelation functions are independent of the phases
of spectral components. This point seems counterin-
tuitive because waveforms depend on phases and it
seems only natural that the correlation of a waveform
with itself at some later time should reflect this phase

dependence. However, the fact that autocorrelation is
the Fourier transform of the energy or power spectrum
proves that the autocorrelation function must be inde-
pendent of phases because the spectra are independent
of phases.

For example, if x(t) is a periodic function with zero
average value, it is defined by (14.6). Then it is not hard
to show that the autocorrelation function is given by

a(τ) = 1

2

N∑

n=1

C2
n cos(ωnτ) . (14.59)

The autocorrelation function is only a sum of cosines
with none of the phase information. Only the harmonic
frequencies and amplitudes play a role.

14.4.2 Cross-Correlation

Parallel to the autocorrelation function, the cross-
correlation function is a measure of the similarity of the
signal x(t) to the signal y(t) at a different time, i. e. the
similarity to y(t+ τ). The cross-correlation function is

ρ0(τ) =
∫

dt x(t) y(t+ τ) . (14.60)

In practice, the cross-correlation is usually normal-
ized,

ρ(τ) =
∫

dt x(t) y(t+ τ)
[∫

dt1 x2(t1)
∫

dt2 y2(t2)
]1/2 , (14.61)

so that the maximum value of ρ(τ) is equal to 1.0. Un-
like the autocorrelation function, the maximum of ρ(τ)
does not necessarily occur at τ = 0. For example, if sig-
nal y(t) is the same as signal x(t) except that y(t) has
been delayed by Tdel then ρ(τ) has its maximum value
1.0 when τ = Tdel.

14.5 Statistics

Measured signals are always finite in length. Definitions
of statistical terms for measured signals, together with
their continuum limits are given in this section.

The number of samples in a measurement is N . The
duration of the measured signal is TD, and TD = Nδt,
where δt is the inverse of the sample rate.

The sampled signal has values xi , (1 ≤ i ≤ N), and
the continuum analog is the signal x(t), (0 ≤ t ≤ TD).

The average value, or mean, is

x = 1

N

N∑

i=1

xi or
1

TD

TD∫

0

dt x(t) . (14.62)

The variance is

σ2 = 1

N −1

N∑

i=1

(xi − x)2
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or

1

TD

TD∫

0

dt [x(t)− x]2 . (14.63)

The standard deviation is the square root of the vari-
ance, σ =√

σ2.
The energy is

E = δt
N∑

i=1

x2
i or

TD∫

0

dt x2(t) . (14.64)

The average power is

P = 1

N

N∑

i=1

x2
i or

E

TD
. (14.65)

The root-mean-square (RMS) value is the square
root of the average power, xRMS =

√
P.

14.5.1 Signals and Processes

Signals are the observed results of processes. A process
is stationary if its stochastic properties, such as mean
and standard deviation, do not change during the time
for which a signal is observed. Signals provide incom-
plete glimpses into processes.

The best estimate of the mean of the underlying pro-
cess is equal to the mean of an observed signal. The
expected error in the estimate of the mean of the un-
derlying process, the so-called standard deviation of the
mean, is

s = σ√
N
, (14.66)

where N is the number of data points contributing to the
mean of the observed signal.

14.5.2 Distributions

Digitized signals are often regarded as sampled data {x}.
If the data are integers or are put into bins j then the
probability that the signal has value x j is the proba-
bility mass function PMF( j) = N j/N , the ratio of the
number of samples in bin j to the total number of sam-
ples. If data are continuous floating-point numbers, the
analogous distribution is the probability density function
PDF(x). In terms of these distributions, the mean is given
by

x =
∑

x jPMF( j) or

∞∫

−∞
dx xPDF(x) . (14.67)

The most important PDF is the normal (Gaussian)
density G(x),

G(x) = 1

σ
√

2π
exp

[
(x− x)2

2σ2

]
. (14.68)

Like all PDFs, G(x) is normalized to unit area, i. e.
∞∫

−∞
dx G(x) = 1 . (14.69)

The probability that x lies between some value x1
and x1+ dx is PDF(x1) dx, and normalization reflects
the simple fact that x must have some value.

The probability that variable x is less than some
value x1 is the cumulative distribution function (CDF),

CDF(x1) =
x1∫

−∞
dx′ PDF(x′) . (14.70)

If the density is normal, the integral is the cumulative
normal distribution (CND),

CND(x) = 1

σ
√

2π

x∫

−∞
dx′ exp

(
x′2

2σ2

)
. (14.71)

It is convenient to think of the CND as a function of
x compared to the standard deviation, i. e., as a function
of y = (x− x)/σ , as shown in Fig. 14.5.

C(y) = 1√
2π

y∫

−∞
dy′ exp

(
y′2

2

)
. (14.72)

Because of the symmetry of the normal density,

C(−y) = 1−C(y) . (14.73)

Therefore, it is enough to know C(y) for y> 0. A few
important values follow.

�

(������

+

Fig. 14.5 The area under the normal density is the cumu-
lative normal. Here the area is the function C(y)
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Table 14.1 Selected values of the cumulative normal distri-
bution

C(0) 0.5000

C(0.675) 0.7500

C(1) 0.8413

C(2) 0.9773

C(3) 0.9987

C(∞) 1.0000

Table 14.1 can be used to find probabilities. For
example, the probability that a normally distributed
variable lies between its mean and its mean plus a stan-
dard deviation, i. e., between x and x+σ , is C(1)−
0.5 = 0.3413. The probability that it lies within plus
or minus two standard deviations (±2σ ) of the mean
is 2[C(2)−0.5] = 0.9546.

The importance of the normal density lies in the cen-
tral limit theorem, which says that the distribution for
a sum of random variables approaches a normal dis-
tribution as the number of variables becomes large. In
other words, if the variable x is a sum

x = x1+ x2+ x3+ . . . xN =
N∑

i=1

xi , (14.74)

then no matter how the individual xi are distributed, x
will be normally distributed in the limit of large N .

14.5.3 Multivariate Distributions

A multivariate distribution is described by a joint prob-
ability density PDF(x, y), where the probability that
variable x has a value between x1 and x1+ dx and si-
multaneously variable y has a value between y1 and
y1+ dy is

P(x1, y1) = PDF(x1, y1)dx dy . (14.75)

The normalization requirement is
∫

dx
∫

dy PDF(x, y) = 1 . (14.76)

The marginal probability density for x, PDF(x), is
the probability density for x itself, regardless of the
value of y. Hence,

PDF(x) =
∫

dy PDF(x, y) . (14.77)

The y dependence has been integrated out.
The conditional probability density PDF(x|y) de-

scribes the probability of a value x, given a specific

value of y, for instance, if y = y1, then

PDF(x|y1) = PDF(x, y1)

/∫
dx PDF(x, y1) ,

(14.78)

or

PDF(x|y1) = PDF(x, y1)/PDF(y1) . (14.79)

The probability that x = x1 and y = y1 is equal to
the probability that y = y1 multiplied by the conditional
probability that if y = y1 then x = x1, i. e.,

P(x1, y1) = P(x1|y1)P(y1) . (14.80)

Similarly, the probability that x = x1 and y = y1 is
equal to the probability that x = x1 multiplied by the
conditional probability that if x = x1 then y = y1, i. e.

P(x1, y1) = P(y1|x1)P(x1) . (14.81)

The two expressions for P(x1, y1) must be the same,
and that leads to Bayes’ Theorem,

P(x1|y1) = P(y1|x1)
P(x1)

P(y1)
. (14.82)

14.5.4 Moments

The m-th moment of a signal is defined as

xm = 1

N

N∑

i=1

xm
i or

1

TD

TD∫

0

dt xm(t) . (14.83)

Hence the first moment is the mean (14.62) and the
second moment is the average power (14.65).

The m-th central moment is

μm = 1

N

N∑

i=1

(xi − x)m or
1

TD

TD∫

0

dt [x(t)− x]m .

(14.84)

The first central moment is zero by definition. The
second central moment is the alternating-current (AC)
power, which is equal to the average power (14.65) mi-
nus the time-independent (or DC) component of the
power.

The third central moment is zero if the signal prob-
ability density function is symmetrical about the mean.
Otherwise, the third moment is a simple way to measure
how the PDF is skewed. The skewness is the normalized
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third moment,

skewness= μ3

μ
3/2
2

. (14.85)

The fourth central moment leads to an impression
about how much strength there is in the wings of a prob-
ability density compared to the standard deviation. The

normalized fourth moment is the kurtosis,

kurtosis = μ4

μ2
2

. (14.86)

For instance, the kurtosis of a normal density, which has
significant wings, is 3. But the kurtosis of a rectangular
density, which is sharply cut off, is only 9/5.

14.6 Hilbert Transform and the Envelope

The Hilbert transform of a signal x(t) is H [x(t)] or
function xI(t), where

xI(t) =H [x(t)] = 1

π

∞∫

−∞
dt′ x(t′)

t− t′
. (14.87)

Some facts about the Hilbert transform are stated
here without proof. Proofs and further applications may
be found in appendices to [14.1].

First, the Hilbert transform is its own inverse, except
for a minus sign,

x(t) =−H [xI(t)] = − 1

π

∞∫

−∞
dt′ xI(t′)

t− t′
. (14.88)

Second, a signal and its Hilbert transform are or-
thogonal in the sense that

∫
dt x(t) xI(t) = 0 . (14.89)

Third, the Hilbert transform of sin(ωt+ϕ) is
− cos(ωt+ϕ), and the Hilbert transform of cos(ωt+ϕ)
is sin(ωt+ϕ).
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Fig. 14.6 A Gaussian pulse x(t) and its Hilbert transform
xI(t) are the real and imaginary parts of the analytic signal
corresponding to the Gaussian pulse

Further the Hilbert transform is linear. Conse-
quently, for any function for which a Fourier transform
exists,

H

[
∑

n

An cos(ωnt)+ Bn sin(ωnt)

]

=
∑

n

An sin(ωnt)− Bn cos(ωnt) (14.90)

or

H

[
∑

n

Cn sin(ωnt+ϕn)

]

=−
∑

n

Cn cos(ωnt+ϕn)

=
∑

n

Cn sin
(
ωnt+ϕn − π

2

)
. (14.91)

Comparing the two sine functions above makes it clear
why a Hilbert transform is sometimes called a 90◦ rota-
tion of the signal.

Figure 14.6 shows a Gaussian pulse x(t) and its
Hilbert transform, xI(t). The Gaussian pulse was made
by adding up 100 cosine harmonics with amplitudes
given by a Gaussian spectrum per (14.35). The Hilbert
transform was computed by using the same amplitude
spectrum and replacing all the cosine functions by sine
functions.

Figure 14.6 illustrates the difficulty often encoun-
tered in computing the Hilbert transform using the time
integrals that define the transform and its inverse. If we
had to calculate x(t) by transforming xI(t) using (14.88)
we would be troubled by the fact that xI(t) goes to zero
so slowly. An accurate calculation of x(t) would require
a longer time span than that shown in the figure.

14.6.1 The Analytic Signal

The analytic signal x̃(t) for x(t) is given by the complex
sum of the original signal and an imaginary part equal
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to the Hilbert transform of x(t),

x̃(t) = x(t)+ i xI(t) . (14.92)

The analytic signal, in turn, can be used to calcu-
late the envelope of signal x(t). The envelope e(t) is
the absolute value – or magnitude – of the analytic
signal

e(t) = |x̃(t)| . (14.93)

For instance, if x(t) = A cos(ωt+ϕ), then xI(t) =
A sin(ωt+ϕ) and

x̃(t) = A[cos(ωt+ϕ)+ i sin(ωt+ϕ)] . (14.94)

By Euler’s theorem

x̃(t) = A exp[i(ωt+ϕ)] , (14.95)

and the absolute value is

e(t) = {A exp[i(ωt+ϕ)]A exp[−i(ωt+ϕ)]}1/2
= A . (14.96)

14.7 Filters

Filtering is an operation on a signal that is typically de-
fined in frequency space. If x(t) is the input to a filter
and y(t) is the output then the Fourier transforms of x
and y are related by

Y (ω) = H(ω)X(ω) , (14.97)

where H(ω) is the transfer function of the filter. The
transfer function has a magnitude and a phase

H(ω) = |H(ω)| exp[iΦ(ω)] . (14.98)

The frequency-dependent magnitude is the amplitude
response, and it characterizes the filter type – low pass,
high pass, bandpass, band-reject, etc. The phase Φ(ω)
is the phase shift for a spectral component with fre-
quency ω. The amplitude and phase responses of a filter
are explicitly separated by taking the natural logarithm
of the transfer function

ln H(ω) = ln[|H(ω)|]+ iΦ(ω) . (14.99)

Because ln |H| = ln(10) log |H|,

ln H(ω) = 0.1151G(ω)+ iΦ(ω) , (14.100)

where G is the filter gain in decibels, andΦ is the phase
shift in radians.

14.7.1 One-Pole Low-Pass Filter

The one-pole low-pass filter serves as an example to
illustrate filter concepts. This filter can be made from
a single resistor (R) and a single capacitor (C) with
a time constant τ = RC. The transfer function of this

filter is

H(ω) = 1

1+ iωτ
= 1− iωτ

1+ω2τ2
. (14.101)

The filter is called one-pole because there is a single
value of ω for which the denominator of the transfer
function is zero, namely ω= 1/(iτ) =−i/τ .

The magnitude (or amplitude) response is

|H(ω)| =
√

1

1+ω2τ2
. (14.102)

The filter cut-off frequency is the half-power point
(or 3-dB-down point), where the magnitude of the trans-
fer function is 1√

2
compared to its maximum value. For

the one-pole low-pass filter, the half-power point occurs
when ω= 1/τ .

Filters are often described by their asymptotic fre-
quency response. For a low-pass filter, asymptotic
behavior occurs at high frequency, where, for the
one-pole filter |H(ω)| ∝ 1/ω. The 1/ω dependence is
equivalent to a high-frequency slope of −6 dB/octave,
i. e., for octave frequencies,

L2− L1 = 20 log

(
ω1

2ω1

)
= 20 log

1

2
=−6 .

(14.103)

A filter with an asymptotic dependence of 1/ω2 has
a slope of −12 dB/octave, etc.

The phase shift of the low-pass filter is the arctan-
gent of the ratio of the imaginary and real parts of the
transfer function,

Φ(ω) = tan−1
(

Im[H(ω)]
Re[H(ω)]

)
, (14.104)
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which, for the one-pole filter, is Φ(ω) = tan−1(−ωτ).
The phase shift is zero at zero frequency, and ap-
proaches 90◦ at high frequency. This phase behavior is
typical of simple filters in that important phase shifts
occur in frequency regions where the magnitude shows
large attenuation.

14.7.2 Phase Delay and Group Delay

The phase shifts introduced by filters can be inter-
preted as delays, whereby the output is delayed in time
compared to the input. In general, the delay is differ-
ent for different frequencies, and therefore, a complex
signal composed of several frequencies is bent out of
shape by the filtering process. Systems in which the de-
lay is different for different frequencies are said to be
dispersive.

Two kinds of delay are of interest. The phase de-
lay simply reinterprets the phase shift as a delay. The
phase delay Tϕ is given by Tϕ =−Φ(ω)/ω. The group
delay Tg is given by the derivative Tg =−dΦ(ω)/dω.
Phase and group delays for a one-pole low-pass fil-
ter are shown in Fig. 14.7 together with the phase
shift.

14.7.3 Resonant Filters

Resonant filters, or tuned systems, have an ampli-
tude response that has a peak at some frequency
where ω = ω0. Such filters are characterized by the
resonant frequency, ω0, and by the bandwidth, 2Δω.
The bandwidth is specified by half-power points
such that |H(ω0+Δω)|2 ≈ |H(ω0)|2/2 and |H(ω0−
Δω)|2 ≈ |H(ω0)|2/2. The sharpness of a tuned system
is often quoted as a Q value, where Q is a dimensionless

–φ

Fig. 14.7 The phase shift Φ for a one-pole low-pass fil-
ter can be read on the left ordinate. The phase and group
delays can be read on the right ordinate

number given by

Q = ω0

2Δω
. (14.105)

As an example, a two-pole low-pass filter with a reso-
nant peak near the angular frequency ω0 is described by
the transfer function

H(ω) = ω2
0

ω2
0−ω2+ iωω0/Q

. (14.106)

14.7.4 Impulse Response

Because filtering is described as a product of Fourier
transforms, i. e., in frequency space, the temporal repre-
sentation of filtering is a convolution

y(t) =
∫

dt′ h(t− t ′)x(t′) =
∫

dt′ h(t′)x(t− t ′) .

(14.107)

The two integrals on the right are equivalent.
Equation (14.107) is a special form of linear proces-

sor. A more general linear processor is described by the
equation

y(t) =
∫

dt′ h(t, t′)x(t′) , (14.108)

where h(t, t′) permits a perfectly general dependence on
t and t′. The special system in which only the difference
in time values is important, i. e. h(t, t′) = h(t− t′), is
a linear time-invariant system. Filters are time invariant.

A system that operates in real time obeys a further
filter condition, namely causality. A system is causal if
the output y(t) depends on the input x(t′) only for t′ < t.
In words, this says that the present output cannot depend
on the future input. Causality requires that h(t) = 0 for
t< 0. For the one-pole, low-pass filter of (14.101) the
impulse response is

h(t) = 1

τ
e−t/τ for t> 0 ,

h(t) = 0 for t< 0 ,

h(t) = 1

2τ
for t = 0 . (14.109)

For the two-pole low-pass resonant filter of
(14.106), the impulse response is

h(t) = ω0√
1−[1/(2Q)]2 e−

ω0
2Q t

× sin

{
ω0t

√
1−[1/(2Q)]2

}
, t ≥ 0 ,

h(t) = 0 , t< 0 . (14.110)
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14.7.5 Dispersion Relations

The causality requirement on the impulse response,
h(t)= 0 for t< 0, has implications for the transfer func-
tion. Causality means that the real and imaginary parts
of the transfer function are Hilbert transforms of one an-
other. Specifically, if the real and imaginary parts of H
are defined as H(ω) = HR(ω)+ iHI(ω) then

HR(ω) = 1

π
P

∞∫

−∞
dω′ HI(ω′)
ω−ω′ , (14.111)

and

HI(ω) = −1

π
P

∞∫

−∞
dω′ HR(ω′)

ω−ω′ .

The symbol P signifies that the principal value of a di-
vergent integral should be taken. In many cases, this
requires no special steps, and definite integrals from
integral tables give the correct answers.

These equations are known as dispersion relations.
They arise from doing an integral in frequency space to
calculate the impulse response for t< 0. The fact that
this calculation must return zero means that H(ω) must
have no singularities in the complex frequency plane
for frequencies with a negative imaginary part. Similar
dispersion relations apply to the natural log of the trans-
fer function, relating the filter gain to the phase shift as
in (14.100)

G(ω) = G(0)− ω2

0.1151π
P

∞∫

−∞
dω′ Φ(ω′)
ω′(ω′2−ω2)

(14.112)

and

Φ(ω) = 0.1151 ω

π
P

∞∫

−∞
dω′ G(ω′)
ω′2−ω2

.

Because G(ω) is even and Φ(ω) is odd, both integrands
are even in ω′, and these integrals can be replaced by
twice the integral from zero to infinity. The second
equation above is particularly powerful. It says that, if
we want to find the phase shift of a system, we only
have to measure the gain of the system in decibels, mul-
tiply by 0.1151, and do the integral. Of course, it is in
the nature of the integral that in order to find the phase
shift at any given frequency we need to know the gain
over a wide frequency range.

The dispersion relations for gain and phase shift
also arise from a contour integral over frequencies with
a negative imaginary part, but now the conditions on

H(ω) are more stringent. Not only must H(ω) have
no poles for Im(ω)< 0, but ln H(ω) must also have
no poles. Consequently H(ω) must have no zeros for
Im(ω)< 0. A system that has neither poles nor zeros
for Im(ω)< 0 is said to be minimum phase. The disper-
sion relations in (14.112) only apply to a system that is
minimum phase.

14.7.6 Matched Filtering

One of the most important problems in acoustics espe-
cially in sonar, nondestructive evaluation and medical
imaging [14.2] involves the transmission of a known
pulse or signal into the medium under investigation
followed by its reception. The noisy, distorted, mea-
surement is processed to extract the pulse that has
been reflected or scattered back from an object (tar-
get or scatterer). For instance, sonar, much like radar,
uses this information to obtain the range of the object
from the transmitter by simply monitoring the round-
trip travel time. In both nondestructive evaluation and
medical imaging, an ultrasonic pulse is transmitted into
the material or tissue medium under investigation and
the received signal is processed to remove the effects
of the transmitted pulse (deconvolution) to produce an
image of the medium for analysis [14.3].

The basic problem to be solved is that of maximiz-
ing the output signal-to-noise ratio (SNROUT) at the
receiver. The underlying system model is given by

y(t) = h(r, t)∗ x(t)+n(t) , (14.113)

where x is the transmitted pulse, y is the received sig-
nal or measurement, h is the impulse response of the
medium in both space r and time t, n is the contaminat-
ing zero-mean, uncorrelated (white) noise and ∗ is the
convolution operation.

The problem is:

Problem
GIVEN a known signal x(t) in additive uncorrelated
(white) noise n(t) of (14.113), FIND the optimum filter
response, hm(t) that maximizes the output signal-to-
noise ratio.

Here the output SNR is defined by

max
mf

SNROUT = ξOUT

E{n2(t)} =
|hm(t)∗ x(t)|2

σ2
n

=
∣∣∣
∫ T

0 dτhm(τ)x(t− τ)
∣∣∣
2

σ2
n

(14.114)
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for hm the optimum processor or matched-filter, ξOUT,
the output signal energy and σ2

n the noise variance.
The solution to this problem is classical and reduces

to applying the Schwartz inequality [14.4, 5] to the nu-
merator of the previous expression, that is,

|hm(t)∗ x(t)|2 ≤ ξmf × ξx (14.115)

for ξ the respective energies. When hm(t) is related to
x(t) by a constant, say unity, then this relation is satis-
fied with equality at some time T such that its solution
is

hm(t) = x(T − t) (14.116)

the time-reversed, shifted (by T ) signal or replicant.
The matched filtering operation applied to the received
measurement is therefore

ρxy(T − t) = E{hm(t)∗ y(t)} = E{x(T − t)∗ y(t)} ,
(14.117)

where ρxy is the cross-correlation function of the known
signal x(t) and the measurement y(t).

As an example, consider the problem of detecting
and locating a known acoustic pulse of unity amplitude
(inset) transmitted and received on a noisy sensor (0 dB
SNR) as shown in Fig. 14.8. The matched-filter is the
time-reversed, shifted replicant of the pulse which is

Pulse
Matched-filter output
Data

0 50 100 150 200 250

Amplitude

Sample no.

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

Fig. 14.8 Matched-filtering of noisy acoustic pulse: Pulse
(inset), measurement/noise (dashed) at 0 dB SNR matched-
filter output (filled line)

used to process the raw data. After processing (cross-
correlation) of the data and replicant the result distinctly
shows the location of the pulse in the measurement
data.

14.7.7 Time-Reversal Processor

One of the more intriguing techniques in acoustic
signal processing is based on the concept of time-
reversal [14.2]. We have already noted in Sect. 14.7.6
that the optimum matched-filter is the time-reversed,
shifted replicant of the transmitted pulse, hm(t)= x(T −
t). In digital signal processing (e.g. MATLAB [14.6]),
two-pass filter design to remove phase lag is a standard
operation that actually time reverses the original filter
( f (t)) output to achieve a zero-phase design, that is,

F [ f (t)∗ f (−t)] = [F(ω) × F(−ω)]
= [F(ω) × F∗(ω)] = |F(ω)|2 ,

(14.118)

where ∗ is the conjugation operation.
In acoustics, time-reversal (T/R) is an intricate

part of nondestructive evaluation (flaw detection) and
medical operations (lithotripsy) [14.7]. T/R can be ap-
plied in two basic scenarios. The first is a monostatic
operation in which a transceiver (transmitter/receiver)
device transmits the signal or wave (transceiver array)
into the medium and receives the reflected or scat-
tered signal. The second is a bistatic operation that
occurs when a signal or wave is launched into the
medium by a transmitter(s) and captured by a separate
receiver(s) [14.8]. The fundamental theory can be found
in [14.2] and [14.8] for each case, respectively.

The key to the time-reversal processor evolves from
the matched-filter concept in which the known sig-
nal is simply replaced by the known impulse response
or Green’s function of the medium in both space
and time/frequency, g(r, r0; t) or G(r, r0;ω). For time-
reversal, we have that the matched-filter solution is
again found by maximizing the output SNR leading to
the modified numerator of (14.115)

|hm(t)∗ g(r, r0; t)|2 ≤ ξmf × ξg , (14.119)

that is satisfied with equality at some time T , if

hm(t) = g(r, r0; T − t) . (14.120)

Thus, for T/R, the optimal matched-filter solution
is the time-reversed, shifted Green’s function. Note that
in order for the time-reversal property to hold, then spa-
tial reciprocity from source-to-receiver (r0 → r) must
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be valid for receiver-to-source (r → r0) or, formally,
g(r, r0; T − t) ⇔ g(r0, r; T − t).

If an array is employed then these results include
the ability to focus the beam on reversal back to the
source yielding the optimal space/time matched-filter
solution [14.5]. Optimality occurs in temporal (autocor-
relation peak) and spatial (array focus) gains. For this
case, T/R processing is essentially a technique to fo-
cus on a reflective object through a homogeneous or
inhomogeneous medium that is excited by a broadband
source. It converts a divergent wave generated from
a source into a convergent wave focused on the source
while compensating for all geometric distortions and
reducing the associated noise [14.7].

We illustrate the basic T/R operation (bistatic) in
Fig. 14.9 where we observe (1) a point source transmit-
ting through the medium creating a divergent wavefront
sampled spatially by the receiver array, much like drop-
ping a pebble into a puddle, that is,

y(r�, t) = g(r�, r; τ)∗ δ(r− r0; τ− t) = g(r�, r0; t) .

(14.121)

The received data is (2) time-reversed

y(r�,−t) = g(r0, r�;−t) (14.122)

and re-transmitted propagating back through the medi-
um focusing on the source

x̂(r0, t) = g(r�, r0; t)∗ y(r�,−t)

= g(r�, r0; t)∗ g(r0, r�;−t) . (14.123)

Applying reciprocity, we have (3)

x̂(r0, t) =
[
g(r�, r0; t)∗ g(r�, r0;−t)

]=Agg(r�, t) ,

(14.124)

where Agg(r�, t) is the autocorrelation function at the
�-th sensor. Expanding these relations across an entire
L-element receiver array gives

x̂(r0, t) =
L∑

�=1

Agg(r�, t) = L ×Agg(r, t) . (14.125)

It can be observed by this example the key to
T/R processing is to time-reverse the Green’s function
(replicant) in order to mitigate the effects of the medium
and perform matched-filtering of Sect. 14.7.6. In prac-
tice, obtaining the Green’s function in the bistatic case
is obtained by first transmitting an impulse-like pulse
from the source to the array and then performing the
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Fig. 14.9a–c Time-reversal processing: (a) Divergent wavefront
point source transmission. (b) Reversal convergent wavefront fo-
cusing. (c) Time-reversal operation: convolve and sum

T/R operations above [14.7]. The monostatic case is
more complex but achieves similar results [14.2].

As an example, consider a communications problem
where a coded information sequence is to be recovered
from a signal transmitted through the channel medium
to a client [14.8]. The client station first transmits a pi-
lot signal that is a narrow pulse (impulse-like) to the
base station receiving array establishing a link or path
(g(r�, r0; t)). Once the link is established, the base sta-
tion transmits a coded message (information) sequence
i(t) consisting of ones and zeros to the client along with
the reversed Green’s function learned from the received
pilot

y(r�,−t) = g(r0, r�;−t)∗ i(t) (14.126)

as shown in Fig. 14.10a where we see the reversed
transmission with the coded message highlighted. After
propagation through the medium the data are received
at the client station as

zclient(r0, t) = g(r�, r0; t)∗ y(r�,−t)

= [g(r�, r0; t)∗ g(r0, r�;−t)
]∗ i(t)

(14.127)

Again applying reciprocity and recognizing the autocor-
relation (with array gain), we have

zclient(r0, t) = L ×A(r; t)∗ i(t) (14.128)
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Fig. 14.10a,b Time-reversal commu-
nications: (a) Reversed, transmitted
information sequence. (b) Zoomed
T/R processed data extracting the
transmitted code

as shown in Fig. 14.10b where we see the original re-
versed transmission and the desired code along with
the recovered symbols. Clearly placing a threshold at 0
and applying (> 0 → 1) would recover the information
perfectly. Thus, T/R establishes a unique link (path)
between base and client stations using the learned
Green’s function enabling an increase in SNR, both
temporal and spatial as well as establishing a secure
channel.

14.7.8 Spectral Estimation

Unfortunately measured signals rarely contain readily
available desired information; they are contaminated
with random noise (Sect. 14.9). Deterministic process-
ing or analysis techniques like Fourier transforms can be
calculated even though theoretically the transform does
not exist for this case. However, the Wiener–Khintchine
relation (Sect. 14.5) relates the autocorrelation (deter-
ministic) to the power spectrum as a Fourier transform
pair. Thus, the basis of random signal processing resides
in applying this relation in some form with the expecta-
tion operation incorporated to mitigate the randomness,
that is, for the sampled random signal xk we have

Pxx(z) =Z [ρxx (�)] = E{X(z)X∗(z)} and

ρxx (�) = 1

2πi

∮
Pxx (z)z−� dz . (14.129)

where z indicates the z-transform (Sect. 14.12). There-
fore, the autocorrelation and power spectrum enable
a way to statistically characterize a random signal.

Classical Spectral Methods
There are a variety of methods to estimate the power
spectrum from noisy measurements. Classical methods
evolved with the discovery of the fast Fourier trans-
form (FFT) techniques that led to the development of
the correlation method of spectral estimation which is
an application of the Wiener–Khintchine relation and is
given by

P̂xx(z) =Z
[
W(k) × ρ̂xx (�)

]
, (14.130)

where ρ̂xx is an estimate of the autocorrelation function
using lag sums or the FFT

ρ̂xx(�) = 1

Nx

Nx∑

k=0

x(k)x(k+�) , �= 0, 1, 2, · · ·

(14.131)

for lag �, data length Nx and spectral window function
W that must satisfy certain positivity constraints (e.g.
maximum at origin) [14.9, 10].

Another well-known classical approach, especially
useful when long data records are available, is the aver-
aged periodogram method [14.9]. Here windowed data
are sectioned, transformed (FFT) to create the peri-
odograms that are then averaged (P̄xx (z)) to produce the
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estimate,

P̂xx(z) = P̄xx(z) = 1

Nx

Nx∑

n=1

|X(z; n)|2 . (14.132)

Both methods suffer from the tradeoff of bias/var-
iance. For the correlation method the spectral window
choice specifies this tradeoff, while the periodogram ap-
proach enables choice of section window length and the
number of averages performed.

Parametric Spectral Methods
More of the current spectral estimation techniques in-
corporate parametric models of the signal into the
processor. We start with the discrete transfer function
model of Sect. 14.12, but with a noisy input for the
random case. The signal measurement Y (z) is given by

H(z) = Y (z)

E(z)
= B(z)

A(z)
, (14.133)

where E(z) is white noise with variance σ2, B(z)= b0+
b1z−1 +· · ·+ bNb z−Nb and A(z) = 1+a1z−1 +· · ·+
aNa z−Na are numerator and denominator polynomials
and can be factored as in Sect. 14.12 into the so-called
zeros and poles of H(z). Thus, with this representation
various models can be characterized as special cases,
that is,

Hpole-zero(z) = σB(z)

A(z)
,

Hall-pole(z) = σ

A(z)
,

Hall-zero(z) = σB(z) . (14.134)

Taking inverse Z-transforms of these relations and ap-
plying the delay property z−qY (z) → yk−q gives the
equivalent difference equation models as

yk +a1 yk−1+· · ·+aNa yk−Na

= σ (b0ek +b1ek−1+· · ·+bNb ek−Nb )

(pole-zero) ,

yk +a1 yk−1+· · ·+aNa yk−Na

= σb0ek (all-pole) ,

yk = σ (b0ek +b1ek−1+· · ·+bNb ek−Nb )

(all-zero) , (14.135)

where all-pole is called an autoregressive (AR) model,
all-zero is called a moving average (MA) model and
pole-zero model is called an autoregressive-moving-
average (ARMA) model. These models prove quite
useful in parametric signal processing applications as

well spectral estimators because the power spectrum
can be represented as

Ppole−zero(z) = Hpole−zero(z) × Hpole−zero(z−1)

= |Hpole−zero(z)|2 = σ
2|B(z)|2
|A(z)|2 ,

Pall−pole(z) = Hall−pole(z) × Hall−pole(z−1)

= |Hall−pole(z)|2 = σ2

|A(z)|2 ,
Pall−zero(z) = Hall−zero(z) × Hall−zero(z−1)

= |Hall−zero(z)|2
= σ2|B(z)|2 . (14.136)

Parametric spectral estimation techniques require
two steps: (1) estimate the parameters of the paramet-
ric model {ân}, {b̂n}; and (2) calculate the corresponding
power spectrum as shown above varying z or using the
FFT.

A wide variety of methods exist to estimate the
power spectrum parametrically [14.11]. Perhaps one of
the most popular techniques evolved from the process-
ing of seismic and speech signals [14.9]. It is called
linear prediction or equivalently the maximum entropy
method (MEM) in which the algorithm is applied to
estimate an all-pole model from noisy measurements
and then used to estimate the spectrum as in (14.136).
The linear predictor solves the following set of equa-
tions recursively for the unknown parameters using the
well-known Levinson recursion [14.11]

â = R−1
xx × rxx , (14.137)

where Rxx is an Na × Na Toeplitz (covariance) matrix
and rxx is an Na × 1 covariance vector. Once the pa-
rameters are estimated using the recursion, the power
spectrum is estimated as discussed before.

Another technique that has evolved is the minimum
variance distortionless response (MVDR) processor
that is considered a data adaptive method because it
designs a set of optimal narrowband filters at each spec-
tral frequency bin while minimizing the measurement
noise variance. It is similar to the classical correla-
tion/periodogram techniques with the exception that the
narrowband filters adapt to the process. Theoretically,
the MVDR processor attempts to minimize the out-
put (noise) power at each spectral bin subject to the
constraint that the narrowband filters pass center fre-
quencies (ωm) at each bin with unity gain, |F(ωm)| = 1.
Mathematically, the formal problem is to

min
f

f T Ryy f � |F(ωm)| = 1 , (14.138)
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where f is an Ny × 1 vector of filter weights, Ryy is the
Ny × Ny covariance matrix (Toeplitz). The constraint in
the Fourier domain is

|F(ωm)| = 1 = dT(ωm) × f (14.139)

for dT(ωm) = [1e−iωn · · · e−iNyωn ].
The solution to this problem is obtained by applying

Lagrange multipliers to obtain ([14.11] for more details)

PMVDR(ωm) = 1

d†(ωm)R−1
yy d(ωm)

m = 1, 2, · · · ,
(14.140)

where † stands for the Hermitian (conjugate) transposed
operator.

In practice, the MVDR method exhibits more
resolution than the classical correlation/periodogram
estimators, but less than the all-pole (AR) technique. It
is interesting to note that there exists a relationship be-
tween the MEM and MVDR spectral estimators called
Burg’s formula [14.11] given by

1

PMVDR(ω)
= 1

Na

Na∑

n=1

1

PMEM(ω; n)
, (14.141)

which provides and alternate method of calculating
PMVDR by averaging all lower order AR models.

Subspace Spectral Methods
Another class of spectral estimators that has evolved is
the eigenvector or subspace methods. It follows from
the covariance matrix Ryy and its eigen-decomposition.
An eigenvalue λ of a matrix R is defined as a root of
det(R−λI) with corresponding eigenvector e satisfying
the relation (R−λI) × e = 0. The idea is based on esti-
mating sinusoidal signals in uncorrelated noise [14.11]
and was extended to the case of multiple sinusoids.
The well-known multiple signal classification (MUSIC)
method of spectral estimation is a special case of
the eigenvector methods with the eigenvalues set to
unity [14.12].

A suite of algorithms evolved with the basic idea
of first finding the rank of Ryy or equivalently the
dimension (Ne) of the signal subspace by eigen-
decomposition. If en is the n-th eigenvector of Ryy, then
the corresponding frequency (spectral) line estimator is
given by

PEIG(ωm) = 1
∑Ny

n=Ne+1

∣∣∣ 1
λn

d†(ωm)en

∣∣∣
2

m = 1, 2, · · · (14.142)

Ne is the number of independent signal (eigenvectors)
vectors or equivalently the rank of Ryy.

It should also be noted that the temporal spectral and
frequency line estimators can be extended to the spa-
tial domain, that is, spatial spectral (power) estimation.
These techniques lead to the popular direction of arrival
(DOA) or localization methods mimicking those of the
time domain with the a wave space-time signal replac-
ing the time series x(r, t) → x(t), the spatial wavenum-
ber replacing the temporal frequency (κm → ωm) and
therefore, the spatial power spectrum replacing the
spectrum P(κm) → P(ωm) [14.12], [14.13].

Consider an application of these methods to synthe-
sized data consisting of sinusoids (35 Hz, 50 Hz, 56 Hz,
90 Hz) in broadband (30–70 Hz) noise at 0 dB SNR in
which we:

• Constructed an ensemble of 100 realizations of the
process;• Selected a spectral estimation method: FFT, corre-
lation, periodogram, MVDR, MEM, MUSIC;• Performed the spectral estimation for each ensem-
ble member (green in Fig. 14.11);• Estimated the average power spectrum over the en-
semble (red in Fig. 14.11); and• Estimated the average spectral peaks (blue list in
Fig. 14.11).

The results of the application are shown in Fig. 14.11.
Noting the performance of each of the estimators,
we see some of their interesting characteristics. In
Fig. 14.11a the FFT method produced a set of very sharp
spectral peaks in the correct frequency locations but un-
fortunately also included many extraneous peaks due to
the randomness of the bandpass noise. The correlation
method (Fig. 14.11b) performed the similarly but used
the windowed covariance function to reduce the noise,
while the periodogram (Fig. 14.11c) method smoothed
the signal eliminating some of the desired peaks. The
MVDR method (Fig. 14.11d) produced an enhanced
spectral estimate with noise reduction capability as
well. Both MEM and MUSIC frequency-line estima-
tors (Fig. 14.11e,f) performed quite well and extracted
the sinusoidal spectral line reliably with smaller vari-
ances. The completes the section on spectral estimation
using classical, parametric and eigen-decomposition
techniques.

Thus, classical spectral estimators fall into the all-
zero (MA) category, while the parametric estimators fall
into the pole-zero (ARMA) representations while the
eigen-decomposition processors fall into the subspace
category.
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Fig. 14.11a–f Power spectral estimation of sinusoids (35 Hz, 50 Hz, 56 Hz, 90 Hz) in bandpass (30–70 Hz) noise at 0 dB SNR:
(a) FFT method, (b) correlation method, (c) average periodogram method, (d) MVDR method, (e) MEM method, (f) MUSIC
method

Spectrogram
An extension of spectral estimation techniques to
time-varying spectra enables the development of the
spectrogram which is a member of the time-frequency
class of spectra (frequency versus time versus power).
Evolving from speech and sonar (bearing-time) sys-
tem developments, the spectrogram is a powerful
tool [14.3, 9]. It can be calculated using both clas-
sical and parametric methods. The classical spectro-
gram estimator uses the short-time (or windowed)
Fourier transform (STFT) in which a small (in length)
data window is slid through the data record us-
ing the FFT spectral approach, while the paramet-
ric approach relies on the sequential estimation of
model (AR, MA, ARMA) parameters providing an

instantaneous spectral estimate at each step (if de-
sired) [14.3].

The spectrogram or more properly instantaneous
power spectrum is defined by P(z; k), where z is the
transform (frequency) and k is the time sample (index).
The classical FFT spectrogram estimator is given by

P(z; k) = ∣∣F [
Wk × yk

]∣∣2 (14.143)

for W the short-time window function, while the para-
metric approach for the pole-zero (ARMA) spectral
estimator is

P̂ARMA(z; k) =
∣∣∣∣∣
σ B̂(z; k)

Â(z; k)

∣∣∣∣∣

2

, (14.144)
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Fig. 14.12 Spectrogram of sinusoids
in bandpass noise at 0 dB SNR using
an ARMA parametric processor

the polynomials B(z; k) and A(z; k) are identical to
those of (14.133) but with time-varying coefficients
{bn → bn(k); an → an(k)}.

The parameter estimation technique is sequential in
that each time sample is processed individually and the
ARMA parameters updated recursively (in time), that
is,

Θ̂k = Θ̂k−1+Gk
(
yk − ŷk|k−1

)
, (14.145)

where Θ is the joint parameter (a and b coefficients)
vector, G is the weight vector and ŷ is the one-step pre-
diction of y based on k−1 samples [14.3]. Once these
parameters are estimated, the spectrogram is estimated
instantaneously at k (if desired) as P̂ARMA(z; k).

Reconsider the bandpass sinusoids example of the
previous sections and process it with the ARMA spec-
trogram estimator. The results are shown in Fig. 14.12.
Here we see that the spectra at the various sinusoidal
frequencies appear as horizontal lines of constant fre-
quency (red) across the spectrogram after the initial
transients settle down. If at any time there were any
changes in the spectrum, then the lines would indicate
these changes. This approach is especially useful in con-
dition monitoring for vibrations in machinery [14.14].
This completes the section, next we extend many of

these ideas to incorporate more direct knowledge of the
underlying acoustics into the processors.

14.7.9 Model-Based Signal Processing

Inherently, it seems like the more a-priori knowledge
about the measurement and its underlying acoustics that
can be incorporated into the processor, the better we can
expect it to perform – as long as the information that is
included is correct. One strategy called the model-based
approach provides the essence of model-based signal
processing. Many believe that all of the signal process-
ing schemes can be cast into this generic framework.
Simply, the model-based approach is

incorporating mathematical models of both physi-
cal phenomenology and the measurement process
(including noise/uncertainty) into the processor to
extract the desired information.

This approach provides a mechanism to include knowl-
edge of the underlying acoustics in the form of
mathematical propagation models, measurement sys-
tem models and accompanying uncertainties such as
instrumentation noise or ambient noise as well as model
uncertainties directly into the resulting processor [14.3].
In this way the model-based processor (MBP) enables
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the interpretation of results directly in terms of the prob-
lem acoustics. The model-based processor is really an
acoustic modeler’s tool enabling the incorporation of
any a-priori information about the particular applica-
tion problem to extract the desired information. The
fidelity of the model determines the complexity of the
processor. These models can range from simple implied
non-physical representations of the measurement data
such as the Fourier or wavelet transforms to parametric
models used for data prediction, to lumped mathemat-
ical physical representations characterized by ordinary
differential equations to full physical partial differen-
tial equation models capturing the critical details of
the acoustic wave propagation in a complex medium.
The dominating factor of which model is the most
appropriate is usually determined by how severe the
measurements are contaminated with noise and the un-
derlying uncertainties encompassing the philosophy of
letting the problem dictate the approach. If the signal-
to-noise ratio of the measurements is high, then simple
non-physical techniques can be used to extract the de-
sired information. Selecting the appropriate model to
increase the SNR usually requires that the complex-
ity of the model set increases to achieve the desired
results.

A simple spectral estimation example of estimating
sinusoids in noise as shown in Fig. 14.13 can be used
to illustrate this approach. Suppose we have a noisy
acoustical measurement (Fig. 14.13a) of an oscillation
in random noise (SNR = 0 dB) and we would like to
extract the desired information (oscillation frequency).
Our first simple approach to analyze the measurement
data would be to take its Fourier transform and inves-
tigate the various frequency bands for resonant peaks.
The result is shown in (Fig. 14.13b), where we basically
observe a noisy spectrum and a set of potential reso-
nances – but nothing really conclusive. Next we apply
a broadband power spectral estimator with the resulting
spectrum shown in Fig. 14.13c. Here we note that the
resonances have clearly been enhanced and appear in
well-defined bands while the noise is attenuated by the
processor, but their still remains a significant amount
of uncertainty in the spectrum due to all of the result-
ing spectral peaks. Upon seeing these resonances in the
power spectrum, we might proceed next to a model
to enhance the resonances even further by using our
a-priori knowledge that there is essentially one dom-
inant resonance we seek. The results of applying this
processor are shown in Fig. 14.13d.

Finally, we use this extracted model to develop an
explicit model-based processor (MBP) by developing
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Fig. 14.13a–e Simple sinusoid in noise oscillation example.
(a) Noisy oscillation (10.54 Hz) in noise (0 dB). (b) Fourier spec-
trum. (c) Correlation method spectrum. (d) MEM method spectrum
(AR model). (e) Model-based method spectrum (ODE)

a set of harmonic equations for a sinusoid in noise and
construct the MBP based on these relations.

yk = α sin(ω0k)+nk ,

(Measurement/Noise Model)

ŷk = α̂ sin(ω̂0k) , (MBP)

P̂ŷ ŷ(z) = F
[
ρŷ ŷ(�)

]
, (MBP-PSD)

(14.146)

where the MBP uses the knowledge of the sinusoidal
model and noise statistics to estimate the parameters
(α̂, ω̂0) and produce the enhanced spectral estimate.
The results for the MBP are shown in Fig. 14.13e. So
we see that once we have defined the acoustical prob-
lem, assessed the a-priori information including the
underlying phenomenology, then we can proceed to in-
corporate more sophisticated acoustic models into the
paradigm.

Part
D

1
4
.7



542 Part D Hearing and Signal Processing

The Wiener Filter
Model-based signal processing requires three primary
ingredients to develop a processor:

1. The model
2. The criterion
3. Algorithm.

Typically, once 1. and 2. are specified then 3. can
follow.

One of the most robust input/output models avail-
able in acoustic signal processing is the finite impulse
response (FIR) or equivalently moving-average (MA)
model (hk) expressed by the convolution operation of
(14.45). One of the most popular applications of the FIR
model is to identify an unknown system or black box by
exciting it with a known input and measuring its output
in order to provide data to estimate its impulse response.
This is the original Wiener filter problem and solutions
have been obtained in both time and frequency domains.

Suppose an unknown system is exited by an input xk
and with measured output yk. We would like to obtain
an estimate (linear) of the embedded signal sk based on
past excitation data, that is,

sk =
Nh∑

n=0

hn xk−n . (14.147)

If we represent the measurement yk as

yk = sk +nk , (14.148)

where n is zero-mean, white noise of variance Rnn , then
the optimal estimator is the solution to

min
h

Jk = E{e2
k} , (14.149)

where ek := yk − sk.
Following the standard minimization approach, we

differentiate (14.149) with respect to h j , set the result
to zero and obtain the orthogonality condition

∂J

∂h j
= 2E

{
ek
∂ek

∂h j

}
= 0 . (14.150)

The error gradient is

∂ek

∂h j
= ∂

∂h j
(yk − sk)= ∂

∂h j

⎛

⎝yk −
Nh∑

n=0

hn xk−n

⎞

⎠

= xk− j , (14.151)

and therefore substituting (14.151) into (14.150), we
obtain the orthogonality conditions

E
{
ekxk− j

}= E

⎧
⎨

⎩

⎛

⎝yk −
Nh∑

n=0

hn xk−n

⎞

⎠ xk− j

⎫
⎬

⎭

= 0 , j = 0, . . . , Nh , (14.152)

which yields the normal equations or the discrete
Wiener–Hopf equations for the estimation problem as

Nh∑

n=0

hn Rxx (n− j) = ryx( j) , j = 0, . . . , Nh .

(14.153)

Expanding these equations over the indices enables us
to obtain

Rxxh = ryx , (14.154)

where Rxx ∈R(Nh+1)×(Nh+1) is a Toeplitz matrix. The
optimal estimate, ĥ is obtained by inverting Rxx to give
the Wiener filter solution,

ĥ= R−1
xx ryx . (14.155)

We summarize the batch FIR solution as:

• Criterion: J = E{e2
k};• Models:

– Measurement: yk = sk +nk,
– Signal: sk =∑Nh

n=1 hn xk−n ,
– Noise: Rnn ,• Algorithm: ĥ = R−1

xx ryx .

From this solution a variety of other problems can be
solved such as the optimal deconvolution problem, in
which the output and impulse response sequences {yk}
and {hk} are given and the input sequence {x̂k} is to be
found. That is, the Wiener solution to this problem is

x̂ = R−1
hh ryh , (14.156)

because convolution is an commutative operation (y =
h ∗ x = x ∗h).

A related application is that of time delay estimation
where we assume a homogeneous medium (attenuation
and delay)

hk =
Nd∑

m=1

αmδ(k− τm) , (14.157)

where α ≤ 1 represents the weights (attenuation), τ the
delays and hk is essentially an unequally-spaced se-
quence of impulses of decreasing amplitudes, that is,
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Fig. 14.14a–c Optimal time delay
estimation results for NDE applica-
tion: (a) Overlay of synthesized and
estimated NDE data. (b) Estimated
impulse response (time delays) and
envelope. (c) Squared, thresholded,
peak detected impulse response for
time-delay estimates

a delayed-attenuated impulse train. The objective in this
delay estimation problem is to extract (estimate) the im-
pulse train and locate the peaks corresponding to the
delay times.

We apply this model-based approach to synthesized
5 MHz ultrasonic data sampled at 20 ns. The objective
is NDE of material for flaw damage (pits) caused by ab-
lation. The synthesized data are shown in Fig. 14.14a
along with the resulting estimated response or fit using
the optimal estimator of (14.156), ŷk = ĥk ∗ xk. Here the
order of the FIR processor was selected to be Nh = 2500
weights for the 2750 simulated sample data set. Clearly,
the estimated response overlays the data quite well pro-
viding a sanity check on the processor. In Fig. 14.14b,
the estimated impulse response is shown along with
its corresponding envelope. Here we note in the physi-
cal application that the ideal delayed/attenuated impulse
train corresponding to the reflections from the flaws
is distorted by the more realistic, highly scattering
medium. However, the peaks corresponding to the de-
lays indicating the flaw locations are clearly discernible.
A practical approach is to use the squared impulse
response, select a reasonable threshold for peak detec-
tion and locate the peaks. The results of this operation

along with the corresponding envelope are shown in
Fig. 14.14c. The estimated delays correspond reason-
ably well to the known flaw locations estimated from
the delay and known sound-speed of the material.

We summarize the all-zero time-delay estimation
approach as follows:

• Criterion: J = E{ε2
k };• Models:

– Measurement: yk = sk +nk,
– Signal: sk = h(r; k)∗ pk,
– Noise: Rnn ,
– Algorithm: ĥ = R−1

ppryp,
– Peak Detect: τ̂k = maxk ĥk ∀k.

The Kalman Filter
The Kalman filter is the optimal, linear, recursive, state
(signal) estimator in Gaussian noise [14.3, 15]. It in-
corporates all of the information available. The filter
processes the measurement data to provide an estimate
of the parameters (states, signals, variables, etc.) by in-
corporating:

1. Process (acoustics) and measurement system knowl-
edge (dynamics)
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2. Statistical knowledge of process and measurement
noise as well as model uncertainties

3. Any information about the initial conditions or re-
quired parameters.

It combines all of this information along with the
data to provide the best estimate possible.

The Kalman filter can be thought of as a signal
reconstructor, a measurement filter and a whitening
filter all wrapped up into one processor. The mathe-
matics become quite involved and various derivations
evolve from the purely Bayesian perspective, that is, the
Kalman filter can be thought of as an optimal processor
recursively calculating the required conditional means
and covariances of the posterior Gaussian distribution
of the signals (states). It can also be thought of as an
orthogonal projector via the Gram–Schmidt procedure
over a random vector space or equivalently the inno-
vations approach to orthogonal decomposition. It can
also be thought of as the minimum mean-squared er-
ror processor evolving from a weighted least-squares
perspective. All of these approaches lead to the same
solution, the Kalman filter, only because there is one
unique optimum for this estimation problem.

Perhaps the simplest way to approach the develop-
ment of this model-based processor is by observing its
recursive form. All recursive (or sequential) processors
have the form

ŜNEW = ŜOLD+Ke , (14.158)

where the NEW estimate is simply the OLD estimate
(Ŝ) plus a K -weighted error (e) term. This is precisely
the recursive form of the Kalman filter

ŝk|k︸︷︷︸
NEW

= ŝk|k−1︸ ︷︷ ︸
OLD

+ Kk︸︷︷︸
GAIN

(
yk − ŷk|k−1

)
︸ ︷︷ ︸

ERROR

, (14.159)

where ŝk|k is the signal or state estimate at time k given
all of the data up to time k, Kk is the weight or gain
and ek is the innovation or residual error given by the
difference between the measurement data yk and its
corresponding estimate ŷk|k−1. In a nutshell, (14.159)
is the primary Kalman filter recursion which follows
the simple recursive form of (14.158). The rest of the
calculations are based on the model and conditional
covariances that are also calculated recursively.

The underlying representation for this processor is
the Gauss–Markov model in state-space form [14.3]
given by

sk = Ask−1+ Buk−1+wk−1 ,

yk = Csk +vk , (14.160)

for s, u, y the Ns-signal (state), the Nu-input (determin-
istic) and Ny-measurement vectors,w, v the zero-mean,
random Gaussian noise vectors with covariance matri-
ces, Rww and Rvv, and the appropriately dimensioned
system and measurement matrices, A, B, C. Note that
this model is a linear transformation of Gaussian pro-
cesses causing all of the distributions to be Gaussian
and has the Markov property that the signal at k only
depends on it past value at k−1.

The simplest example of a Kalman filter is the recur-
sive form for the sample mean estimator. If the sample
mean is defined by

Ŝ(K ) = 1

K

K∑

n=1

sn ,

then removing the K -th term from the sum, and recog-
nizing the expression for Ŝ(K −1) leads to

Ŝ(K ) = 1

K
sK + K −1

K
Ŝ(K −1)

or rearranging, we obtain the desired recursive form

Ŝ(K )︸ ︷︷ ︸
new

= Ŝ(K −1)︸ ︷︷ ︸
old

+ 1

K︸︷︷︸
gain

[
sK − Ŝ(K −1)

]

︸ ︷︷ ︸
error

.

To obtain some insight into the filter operation, we can
think of it in terms of a predictor-corrector paradigm in
which the underlying phenomenological/measurement/
noise models are used to predict the signal in-between
the arrival of a new measurement. Once the new mea-
surement data is available, the processor corrects the
predicted signal estimate (OLD) as in (14.159). The
prediction-step embedding the dynamic model is given
by

ŝk|k−1 = Aŝk−1|k−1+ Buk−1 (Signal prediction) ,

(14.161)

which is accompanied by its corresponding prediction
error covariance, P̃k|k−1 := cov(sk − ŝk|k−1) for

P̃k|k−1 = AP̃k|k−1 AT+ Rww
(Covariance prediction) , (14.162)

incorporating A the process (system) matrix, P̃ the
previous error covariance and Rww, the process noise
or uncertainty covariance matrix. So we see that the
dynamical model (A,B) and statistics (Rww,P̃) are in-
corporated into this step quite naturally.
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The correction-step (or update) incorporates the
measurement data into the processor through the recur-
sive form of (14.159) discussed earlier, that is,

ŝk|k︸︷︷︸
corrected

= ŝk|k−1︸ ︷︷ ︸
predicted

+ Kkek︸︷︷︸
DATA

(Signal correction) ,

(14.163)

along with the corresponding innovation (ek) and cor-
rected error covariance, P̃k|k := cov(sk − ŝk|k) given by

ek = yk − ŷk|k−1 = yk −Cŝk|k−1

(Error innovation) , (14.164)

and

P̃k|k = P̃k|k−1−KkCT P̃k|k−1

(Covariance correction) , (14.165)

incorporating the gain, Kk and measurement system
model, C along with the predicted error covariance of
the previous step. The corrected error covariance en-
ables us to observe the quality (error) of the signal
estimate. The innovation (measurement error) plays a
key role in monitoring filter performance (on-line), since
the optimal solution (in theory) requires that {ek} be
a zero-mean and uncorrelated (white) sequence, if the
processor is operating properly. Performing whiteness
tests is a great advantage compared to other statistical
processors. The accompanying innovations covariance
is also computed as part of the scheme

Ree = C P̃k|k−1CT+ Rvv
(Innovations covariance) , (14.166)

which incorporates both measurement system model
(C) and measurement statistics (Rvv).

Finally, to complete the processor, the weight or
gain (Kalman gain) is given by

Kk = P̃k|k−1CT R−1
ee , (Gain) . (14.167)

We summarize the Kalman filter or state-space MBP
steps in Fig. 14.15.

Next let us consider a structural vibration signal
enhancement problem. The structure (one story) is gov-
erned by the dynamic equation [14.14]

mẍ(t)+ cẋ(t)+ kx(t) = f (t) , (14.168)

where x is the displacement, f is the forcing function
and m, c, k are the respective mass, damping and spring
constants with the displacement measurement of gain G
given by

y(t) = Gx(t) . (14.169)

Initialize
ŝ0|0, P

~
0|0

Prediction
ŝk|k–1, P

~
k|k–1

Correction
ŝk|k, P

~
k|k

P
~
k|k–1 = AP

~
k|k–1 A

T + Rww

ŝk|k–1 = Aŝk–1|k–1 + Buk–1

P
~
k|k = P

~
k|k–1 – KkCP

~
k|k–1

ŝk|k–1 = ŝk–1|k–1 + Kkek

Innovation Measurement

Model

Data

ek yk

Gain
Kk

Ree = CP
~
k|k–1 C

T + Rvv

ek = yk –  ŷk|k–1

Kk = P
~
k|k–1 C

TRee
–1

Fig. 14.15 Kalman Filter MBP: Predictor-Corrector Operations

The objective is to develop the Kalman filter for
this problem. First, we define the state vector as
s(t) := [x(t)ẋ(t)]T and input u(t)= f (t). Solving for the
highest derivative in (14.168), we obtain the state-space
relations

ṡ(t) = Acs(t)+ Bcu(t)

y(t) = Ccs(t) (14.170)

with continuous-time (subscript c) representations

Ac =
⎡

⎢⎣
0 | 1

− − −
− k

m | − c
m

⎤

⎥⎦ , Bc =
[

0
1
m

]
, Cc = [G 0] .

(14.171)

The data are digitized, so it is necessary to use
a sampled-data representation that we develop using
first differences

ṡ(t) ≈ sk − sk−1

Δtk

by substituting this approximation into (14.170) and ex-
tending it to a Gauss–Markov representation to obtain

sk = (I +Δtk Ac) sk−1+Δtk Bcuk−1+Δtkwk−1 ,

yk = Ccsk +vk , (14.172)
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or defining discrete notation, we have

A := I +Δtk Ac ,

B :=Δtk Bc ,

C := Cc ,

Rww :=Δtk Rww ,

Rvv := Rvv , (14.173)

and therefore, the sampled-data system of (14.172) can
be expressed simply as

sk = Ask−1+ Buk−1+wk−1 ,

yk = Csk +vk .

Now the Kalman filter equations follow directly

ŝk|k−1 = Aŝk−1|k−1+ Buk−1 (Prediction) ,

ek = yk − ŷk|k−1 = yk −Cŝk|k−1 (Innovation) ,

ŝk|k = sk|k−1+Kkek (Correction) ,

and the other required matrices follow. This completes
the formulation.

Concluding this section, we consider the problem of
the passive localization of a planar (nonlinear in param-
eters) source or target. This problem occurs in a variety
of applications such as the seismic localization of an
earthquake using an array of seismometers, the passive
localization of a target in ocean acoustics or the local-
ization of a flaw in NDE. For our problem in ocean
acoustics the model-based approach incorporates the
underlying physics represented by an acoustic propa-
gation (process) model depicting how the sound propa-
gates from a source to the sensor (measurement) array
of acoustic hydrophones. The statistics of the noise from
the background or ambient noise, shipping noise, or un-
certainty in the model parameters provides input to both
the process and measurement system models. Besides
the model parameters and initial conditions, the raw
measurement data is input to the processor with the out-
put being the filtered signal and unknown parameters.

Assume that a 50 Hz (ω0) nonlinear plane wave
source (target) at a bearing angle of 45◦ (θ0) is imping-
ing on a 2-element array at a 10 dB SNR. The plane
wave signal is characterized mathematically by

s�(t) = αeiκ0(�−1)Δ sin θ0−iω0t , (14.174)

where s�(t) is the space-time signal measured by the
l-th sensor, α is the plane wave amplitude factor with
κ0,Δ, θ0, ω0 the respective wavenumber, sensor spac-
ing, bearing angle, and temporal frequency parameters.
We would we like to solve the basic ocean acoustic

a)

b)

λ

λ

Fig. 14.16a,b Plane wave propagation: (a) Problem geom-
etry. (b) Synthesized 50 Hz, 45◦, plane wave impinging on
a 2-element sensor array at 10 dB SNR

processing localization problem estimating the target
bearing angle θ0 and temporal frequency, ω0 param-
eters. The basic problem geometry and synthesized
measurements (pressure-field) are shown in Fig. 14.16.

For the plane wave, we have the following models:

• Signal model:

s�(t) = αeiκ0(�−1)Δ sin θ0−iω0t ,

• Measurement model

p�(t) = s�(t)+n�(t) ,

• Noise model

n ∼N (0, σ2
n ) ,

where n�(t) is zero mean, random (uncorrelated) Gaus-
sian noise with variance, σ2

n . We use the notation
“N (m, v)” to define a Gaussian or normal probability
distribution with mean m and variance v.

In essence, this is a problem of estimating a set
of parameters, {θ0, ω0} from noisy array pressure-field
measurements, {p�(t)}. More formally, the target bear-
ing angle and frequency estimation problem is stated as:

Problem
GIVEN a set of noisy array measurements {p�(t)},
FIND the best estimates of the target bearing angle (θ0)
and temporal frequency (ω0) parameters, θ̂0 and ω̂0.
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Fig. 14.17a,b Plane wave imping-
ing on a 2-element sensor array –
frequency and bearing estimation
problem. (a) Classical spectral
(temporal and spatial) estimation ap-
proach. (b) Model-based approach
using parametric adaptive processor
to estimate bearing angle, tempo-
ral frequency, and the corresponding
residual or innovations (error) se-
quence

The classical approach to this problem is to first
take one of the sensor channels and perform power
spectral analysis of the filtered time series to estimate
the temporal frequency ω0. The bearing angle can be
estimated independently by performing classical spa-
tial spectral estimation (beamforming) [14.13] on the
array data. The spatial spectral estimator is scanned
over bearing angle indicating the true source location
at the spectral peak of maximum power. The results
of applying this approach to our problem are shown
in Fig. 14.17a depicting the outputs of both spectral
estimators peaking at the correct frequency and angle
parameters.

The MBP is implemented by incorporating the
plane wave propagation, hydrophone array, and statis-
tical noise models; however, the temporal frequency
and bearing angle parameters are now unknown and
must be estimated jointly along with the simultane-
ous enhancement of the pressure-field. The solution to
this problem is performed by solving a joint (parame-
ter/enhancement) estimation problem [14.3,16]. This is
the parameter adaptive form [14.17] of the MBP used
in many applications [14.8]. The filter becomes nonlin-
ear (in the measurement model) as follows

θ̂k|k = θ̂k|k−1+Kθe
θ
k ,

ω̂k|k = ω̂k|k−1+Kωeωk ,

p̂k|k−1 = c
[
θ̂k|k−1, ω̂k|k−1

]
. (14.175)

The results are appealing as shown in Fig. 14.17b.
We see the bearing angle and temporal frequency esti-
mates as a function of time eventually converging to the
true values (ω0 = 50 Hz, θ0 = 45◦). The MBP also pro-
duces a residual error (innovations) sequence (shown in
Fig. 14.17), which is used to determine its performance.

We summarize the classical and model-based so-
lutions to the temporal frequency and bearing angle
estimation problem. The classical approach simply per-
forms spectral analysis temporally and spatially to
extract the parameters from noisy data, while the model-
based approach embeds the unknown parameters into its
propagation, measurement, and noise models enabling
a solution to the joint estimation problem. The MBP
also monitors its performance by analyzing the statis-
tics of its residual (or innovations) error sequence. This
completes the section, next we consider a relevant ex-
tension of the MBP approach.

Wiener/Kalman Filter Equivalence
In this section, we show the equivalence of the Wiener
filter as a special case of the Kalman filter. Is is well-
known that there was a great conceptual stress created
by the introduction of the recursive Kalman proces-
sor. Primarily due to the limitations of the Wiener filter
which was constrained to statistically stationary (no
time-varying statistics) signals. Of course, the Kalman
paradigm is not constrained to stationary processes and
easily handles time-varying models and statistics as
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well as multivariable problems (vector-matrix) making
it an extremely powerful methodology in its versatility
and application. Therefore, in order to demonstrate the
equivalence we must limit the discussion to stationary
processes and resort to the power spectral domain where
the Wiener solution evolved.

In order to show the relationship between the
Wiener filter and its state-space counterpart, the Kalman
filter, we state the Wiener solution and then show
that the steady-state Kalman (staionary) filter provides
a unique solution with all the necessary properties. We
use frequency-domain techniques to show the equiv-
alence using Z-transforms. We choose the frequency
domain for historical reasons, since the classical Wiener
solution has more intuitive appeal.

The Wiener filter solution in the frequency domain
can be solved by spectral factorization, since

H(z) = Psy(z) × P−1
yy (z) , (14.176)

where H(z) has all its poles and zeros within the unit
circle (stable). The classical approach to Wiener filter-
ing can be accomplished in the frequency domain by
factoring the power spectral density (PSD) of the mea-
surement sequence; that is,

Pyy(z) = H(z)HT(z−1) . (14.177)

The factorization is unique, stable, and minimum-
phase [14.15, 18].

Now we must show that the steady-state Kalman
filter (ignoring the deterministic input) given by

ŝk+1 = Aŝk +Kek ,

yk = Cŝk + ek = ŷk + ek , (14.178)

where e is the zero-mean, white innovations with
covariance Ree, is stable and minimum-phase and there-
fore, in fact, the Wiener solution. The transfer function
of the innovations model is obtained by taking Z-
transforms of (14.178) as

T (z) = Y (z)

E(Z)
= C(z I − A)−1 K . (14.179)

Let us calculate the measurement covariance of
(14.178),

Rŷŷ(�) = Cov[yk+�yk]
= Rŷŷ(�)+ Rŷe(�)+ Reŷ(�)+ Ree(�) ,

(14.180)

where ŷk := Cŝk. Taking Z-transforms, we obtain the
measurement PSD as

Pyy(z) = Pŷŷ(z)+ Pŷe(z)+ Peŷ(z)+ Pee(z) .

(14.181)

Using linear system theoretical relations [14.3], we see
that

Pŷŷ(z) = CPŝŝ(z)CT = T (z)Pee(z)T T(z−1) ,

Pee(z) = Ree

Pŷe(z) = CPŝe(z) = T (z)Pee(z) ,

Peŷ(z) = Pee(z)T T(z−1) . (14.182)

Thus, the measurement PSD is given by

Pyy(z) = T (z)Pee(z)T T(z−1)

+T (z)Pee(z)+ Pee(z)T T(z−1)+ Pee(z) .
(14.183)

Since Pee(z) = Ree and Ree ≥ 0, the following factor-
ization always exists as

Ree = R1/2
ee (RT

ee)1/2 . (14.184)

Thus from (14.184), Pyy(z) of (14.183) can be written
as

Pyy(z) =
[
T (z)R1/2

ee R1/2
ee

]((RT
ee)1/2T T(z−1)

(RT
ee)1/2

)

:= Te(z) × T T
e (z−1) , (14.185)

which shows that the innovations model indeed admits
a spectral factorization of the type desired. To show
that Te(z) is the unique, stable, minimum-phase spec-
tral factor, it is necessary to show that |Te(z)| has all
its poles within the unit circle (stable). It has been
shown [14.15, 18], that Te(z) does satisfy these con-
straints. Therefore

Te(z) ≡ H(z)

is the Wiener solution. This completes the discussion on
the equivalence of the steady-state Kalman filter and the
Wiener filter.

Matched-Field Processing
One of the most popular methods of solving a large
suite of problems in a wide variety of acoustic
applications is the model-based matched-field proces-
sor (MFP) [14.19–21]. The MFP can be considered
a combination of spatial power spectral estimation,
matched-filtering and model-based signal processing.

The matched-field processor uses a propagation
model with an assumed location of a flaw for non-
destructive evaluation (NDE) or a target for sonar or
a tumor for medical by transmitting a pulse that inter-
rogates the medium (material, ocean, tissue). Matched
field propagates the pulse acoustically through the

Part
D

1
4
.7



Acoustic Signal Processing 14.7 Filters 549

0 200 400 600 800

Source localization (Power)
Y

-p
os

iti
on

 (
m

m
)

Y
-p

os
iti

on
 (

m
m

)

Source localizationa) b)

X-position (mm)
0 200 400 600 800

X-position (mm)

–900

–800

–700

–600

–500

–400

–300

–200

–100

0

–900

–800

–700

–600

–500

–400

–300

–200

–100

0

Raw MFP image Threshold filtered MFP image

(206.6, 296.9)

(902.9, 501.7) 

(498.1, 898.0) 

Fig. 14.18a,b MFP of component part with three flaws at (200 mm, 300 mm), (500 mm, 900 mm), (900 mm, 500 mm):
(a) MFP power image. (b) Flaw detection and localization: (207 mm, 297 mm), (498 mm, 898 mm) and (903 mm,
502 mm)

medium to known sensor position(s) generating a repli-
cant field (m) synthesized at each assumed target
(source) location to match the measured field (y) at the
sensor(s). The total power is estimated from the source
to the sensor(s)

P̂ (r)= |m′(r)y|2 = m†(r)Ryym(r) , (14.186)

where m(r) is the propagated field at r for each pre-
dicted source location and y is the measured field at
each sensor. A matrix or grid (or image) of power es-
timates at each source coordinate is created during the
search with the maximum peaks above a threshold se-
lected as the estimates of flaw, target, or tumor location

max
r

P̂ (r) . (14.187)

Consider the following NDE example to illustrate
this approach. There exists a large critical part of a ho-
mogeneous material that must be inspected for any
potential flaws. We would like to: (1) detect the pres-
ence of any flaws; and (2) determine their location. We
assume a simple homogeneous (geometric spreading
and time delay) material model in two dimensions.

The transmitted pulse is p(t) and the receiving ar-
ray consists of 64 sensors. The flaws are located at

xy-positions (200 mm, 300 mm), (500 mm, 900 mm),
and (900 mm, 500 mm) from the array center. The
space-time signals arriving at the array are governed
by spherical wave propagation in the homogeneous
medium (material) and satisfy

s(r� jk; t) = 1

|Δr� jk| × p(t− τ� jk) for Δr� jk

= |r�− r jk|; τ� jk = |Δr� jk|
ν

,

for τ the propagation delay, Δr the path length (source-
to-sensor), � the sensor element, j the x-position index,
k the y-position index and ν the sound speed in the ma-
terial. The signals are contaminated by white Gaussian
noise at a SNR of 40 dB.

The MFP is implemented in Cartesian coordinates
with the unknown (source) position given by

Δr� jk = |r�− r jk| =
√

(x�− x jk)2+ (y�− y jk)2

and corresponding matching function

m(x� jk, p� jk; t) = 1

|Δr� jk| pmodel� (t− τ� jk) ,
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with the power at each pixel given by

P(x� jk, p� jk) = |m′(r; t)p(t)|2
=
∑

� jk

|m(x� jk, y� jk; t)p�(t)|2 .

Using the MFP approach, flaw locations are estimated
by:

1. Varying the assumed flaw positions (location param-
eter vector).

2. Calculating the matching vector (propagation
model).

3. Calculating the corresponding power at the speci-
fied pixel location, a power image can be generated
over desired range of pixels, j = 1, · · · , Nx; k =
1, · · · , Ny.

4. Thresholding the image and selecting the dominant
peaks.

In this problem, the resulting power field is shown
in Fig. 14.18a with the thresholded image shown in
Fig. 14.18b. The estimated flaw positions are: (207 mm,
297 mm), (498 mm, 898 mm) and (903 mm, 502 mm)
which are reasonable and can be attributed to the high
SNR.

14.8 The Cepstrum

The cepstrum (pronounced kepstrum) is the inverse
Fourier transform of the natural logarithm of the spec-
trum. Because it is the inverse transform of a function
of frequency, the cepstrum is a function of a time-like
variable. But just as the word cepstrum is an anagram
of the word spectrum, the time-like coordinate is called
the quefrency, an anagram of frequency. The field of
cepstrology is full of word fun like this.

The complex cepstrum of complex spectrum Y (ω)
is

q(τ) = 1

2π

∞∫

−∞
dω eiωτ ln[Y (ω)] , (14.188)

where τ is the quefrency. Because Y (ω) = |Y (ω)|eiϕ(ω),

q(τ) = 1

2π

∞∫

0

dω eiωτ [ln |Y (ω)|+ iϕ(ω)]

+ 1

2π

∞∫

0

dω e−iωτ [ln |Y (−ω)|+ iϕ(−ω)] .

(14.189)

For a real signal y(t), the magnitude |Y (ω)| is an even
function of ω, and ϕ(ω) is odd. Therefore,

q(τ) = 1

π

∞∫

0

dω [ln |Y (ω)|] cos(ωτ)

+ i

π

∞∫

0

dω ϕ(ω) sin(ωτ) . (14.190)

The real part of q comes from the magnitude, the imagi-
nary part from the phase. The phase must be unwrapped;
it cannot be artificially restricted to a 2π range.

It is common to deal only with the real part of the
cepstrum qR. It is evident that the calculation will fail if
|Y (ω)| is zero. The cepstrum is not applied to theoreti-
cal objects such as periodic functions of time that have
delta function spectra – hence zeros. The cepstrum is
applied to measured data, where it can lead to insight
into features of the underlying processes.

The cepstrum is used in the acoustical and vibra-
tional monitoring of machinery. Bearings and other
rotating parts tend to produce sounds with interleaved
periodic spectra. These periodicities lead to peaks at the
corresponding quefrencies, revealing features that may
not be apparent in the spectrum.

The cepstrum is particularly suited to the separation
of source and filter functions. If Y is a filtered version
of X, where the transfer function is H , then

|Y (ω)| = |H(ω)| |X(ω)| . (14.191)

The logarithm operation turns the product on the right-
hand side into a sum, so that

qR(τ) = 1

π

∞∫

0

dω [ln |H(ω)|] cos(ωτ)

+ 1

π

∞∫

0

dω [ln |X(ω)|] cos(ωτ) . (14.192)

For instance, if |Y | is the spectrum of a spoken vowel,
then the term involving the formant filter |H| leads
to a low-quefrency structure, and the term involving
source spectrum |X| leads to a high-quefrency peak
characteristic of the glottal pulse period.

The cepstrum can reveal reflections. As a simple ex-
ample, we consider a direct sound X plus its reflection
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Fig. 14.19 The cepstrum of an original signal to which is
added a delayed version of the same signal, with a delay of
2 ms (a = 1). The original signal is the sum of two female
talkers �

with relative amplitude a and delay TD. The sum then
has a spectrum Y ,

|Y (ω)|=[1+a cos(ωTD)]|X(ω)| (a< 1) . (14.193)

The logarithm of the factor in square brackets is peri-
odic in ω with period 2π/TD. The corresponding term
in the cepstrum leads to a peak at quefrency τ = TD, as
shown in Fig. 14.19. The addition of more reflections
with other delays will lead to additional peaks. Main-
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taining the anagram game, the separation of peaks along
the quefrency axis is sometimes called liftering.

14.9 Noise

Noise has many definitions in acoustics. Commonly,
noise is any unwanted signal. In the context of com-
munications, it is an excitation that competes with the
information that one wishes to transmit. In signal pro-
cessing, noise is defined as a random signal that can
only be defined in statistical terms with no long-term
predictability.

14.9.1 Thermal Noise

Thermal noise, or Johnson noise, is generated in a re-
sistor. An electrical circuit that describes this source of
noise is a resistor R in series with a voltage source that
depends on R, such that the RMS voltage is given by
the equation

V =√4RkBTΔ f , (14.194)

where R is the resistance in ohms, kB is Boltzmann’s
constant, T is the absolute temperature, and Δ f is the
bandwidth over which the noise is measured.

The corresponding noise power can be defined by
measuring the maximum power that is transferred to
a load resistor connected across the series circuit above.
Maximum power occurs when the load resistor also has
a resistance R and has zero temperature so that the load
resistor produces no Johnson noise of its own. Then the
thermal noise power is given by

P = kBTΔ f . (14.195)

Because kBT has dimensions of Joules and Δ f has
dimensions of inverse seconds, the quantity P has di-

mensions of watts, as expected. Boltzmann’s constant
is 1.38 × 10−23 J/K, and room temperature is 293 K.
Therefore, the noise power density is 4 × 10−21 W/Hz.
Because the power is proportional to the first power of
the bandwidth, the noise is white. Johnson noise is also
Gaussian.

14.9.2 Gaussian Noise

A noise is Gaussian if its instantaneous values form
a Gaussian (normal) distribution. A noise distribution is
illustrated in an experiment wherein an observer makes
hundreds of instantaneous measurements of a noise
voltage and plots these instantaneous values as a his-
togram. Unless there is some form of bias, the measured
values are equally often positive and negative, and so
the mean of the distribution is zero. The noise is Gaus-
sian if the histogram derived in this way is a Gaussian
function. The more intense the noise, the larger is the
standard deviation of the Gaussian function. Because
of the central limit theorem, there is a tendency for
noise to be Gaussian. However, non-Gaussian noises
are easily generated. Random telegraph noise, where in-
stantaneous values can only be+1 or−1, is an example.

14.9.3 Band-Limited Noise

Band-limited noise can be written in terms of Fourier
components,

x(t) =
N∑

n=1

An cos(ωnt)+ Bn sin(ωnt) . (14.196)
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The amplitudes An and Bn are defined only statis-
tically. According to a famous paper by Einstein and
Hopf [14.22], these amplitudes are normally distributed
with zero mean, and the distributions of An and Bn have
the same variance σ2

n . The distributions themselves can
be thought of as representative of an ensemble of noises,
all of which are intended by the creator to be the same:
same duration and power, same frequency range and
bandwidth.

Because the average power in a sine or cosine is 0.5,
the average power in band-limited noise is

P =
N∑

n=1

σ2
n . (14.197)

An alternative description of band-limited noise is
the amplitude and phase form

x(t) =
N∑

n=1

Cn cos(ωnt+ϕn) , (14.198)

where ϕn are random variables with a rectangular dis-
tribution from 0 to 2π, and Cn =

√
A2

n + B2
n .

Given that An and Bn follow a Gaussian distribution
with variance σn , the amplitude Cn follows a Rayleigh
distribution fRayl

fRayl(Cn) = Cn

σ2
n

e−C2
n/(2σ

2
n ) (Cn > 0) . (14.199)

The peak of the Rayleigh distribution occurs at Cn =
σ . The zeroth moment is 1.0 because the distribution is
normalized. The first moment, or Cn , is σn

√
π/2. The

second moment is 2σ2
n , and the fourth moment is 8σ4

n .
The cumulative Rayleigh distribution can be calcu-

lated in closed form,

FRayl(Cn) =
Cn∫

0

dC′
n fRayl(C

′
n) = 1− e−C2

n/(2σ
2
n ) .

(14.200)

14.9.4 Generating Noise

To generate the amplitudes An and Bn with normal dis-
tributions using a computer random-number generator,

one can add up twelve random numbers and subtract
6. On the average, the amplitudes will have a normal
distribution, because of the central limit theorem, with
a mean of zero and a variance of 1.0.

To generate the amplitudes Cn with a Rayleigh dis-
tribution, one can transform the random numbers rn
that come from a computer random-number generator,
according to the formula

Cn = σ
√−2 ln(1− rn) . (14.201)

14.9.5 Equal-Amplitude
Random-Phase Noise

Equal-amplitude random-phase (EARP) noise is of the
form

x(t) = C
N∑

n=1

cos(ωnt+ϕn) , (14.202)

where ϕn is again a random variable over the range 0 to
2π.

The advantage of EARP noise is that every noise
sample has the same power spectrum. A possible disad-
vantage is that the amplitudes An and Bn are no longer
normally distributed. Instead, they are distributed like
the probability density functions for the sine or cosine
functions, with square-root singularities at An = ±C
and Bn =±C. However, the actual values of noise are
normally distributed as long as the number of noise
components is more than about five.

14.9.6 Noise Color

White noise has a constant spectral density, which
means that the power in white noise is proportional to
the bandwidth. On the average, every band with given
bandwidth Δ f has the same amount of power. Pink
noise has a spectral density that decreases inversely with
the frequency. Consequently, pink noise decreases at
a rate of 3 dB per octave. On the average, every octave
band has the same amount of power.

14.10 Sampled Data

Converting an analog signal, such as a time-dependent
voltage, into a digital representation dices the signal
in two dimensions, the dimension of the signal voltage

and the dimension of time. Dicing the signal voltage is
known as quantization, dicing with respect to time is
known as sampling.
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14.10.1 Quantization
and Quantization Noise

It is common for an analog-to-digital converter (ADC)
to represent the values of input voltages as integers. The
range of the integers is determined by the number of bits
per sample in the conversion process. A conversion into
an M-bit sample (or word) allows the voltage value to
be represented by 2M bits. For instance, a 10-bit ADC
that is restricted to converting positive voltages would
represent 0 V by the number 0 and +10 V by 210−1 or
1023.

A 16-bit ADC would allow 216 or 65 536 different
values. A 16-bit ADC that converts voltages between
−10 and +10 V would represent −10 V by −32 768
and +10 V by +32 767. Conversion is linear. Thus
0.3052 V would be converted to the sample value 1000
and 0.3055 V to the value 1001. A voltage of 0.3053
would also be converted to a value of 1000, no different
from 0.3052. The discrepancy is an error known as the
quantization error or quantization noise.

Quantization noise referenced to the signal is
a signal-to-noise ratio. Standard practice makes this ra-
tio as large as possible by assuming a signal with the
maximum possible power. For the positive and nega-
tive ADC described above, maximum power occurs for
a square wave between a sampled waveform value of
−2(M−1) and +2(M−1). The power is the square of the
waveform or 1

4 × 22M .
For its part, the noise is a random variable that rep-

resents the difference between an accurately converted
voltage and the actual converted value as limited by the
number of bits in the sample word. This error is never
more than 0.5 and never less than −0.5. The power in
noise that fluctuates randomly over the range −0.5 to
+0.5 is 1/12. Consequently the signal-to-noise (S/N)
ratio is 3 × 22M . Expressed in decibels, this value is
10 log(3 × 22M), or 20M log(2)+4.8 dB, or 6M+4.8
dB. For a 16-bit word, this would be 96+4.8 or about
101 dB. An alternative calculation would assume that
the maximum power is the power for the largest sine
wave that can be reproduced by such a system. This sine
has half the power of the square, and the S/N ratio is
then about 6M dB.

14.10.2 Binary Representation

Digitized data, like a sampled waveform are represented
in binary form by numbers (or words) consisting of
digits 0 and 1. For example, an eight-bit word consist-
ing of two four-bit bytes and representing the decimal

number 7, would be written as

0 0 0 0 0 1 1 1 .

This number has 1 in the ones column, 1 in the twos
column, 1 in the fours column, and nothing in any other
column. One plus two plus four is equal to 7, which is
what was desired.

An eight-bit word (M = 8) could represent decimal
integers from 0 to 255. It cannot represent 2M , which is
decimal 256. If one starts with the decimal number 255
and adds 1, the binary representation becomes all zeros,
i. e. 255+1= 0. It is like the 100 000-mile odometer on
an automobile. If the odometer reads 99 999 and the car
goes one more mile, the odometer reads 00 000.

Signals are generally negative as often as they are
positive, and that leads to a need for a binary repre-
sentation of negative numbers. The usual standard is
a representation known as twos-complement. In twos-
complement representation, any number that begins
with a 1 is negative. Thus, the leading digit serves as
a sign bit.

In order to represent the number−x in an M-bit sys-
tem one computes 2M − x. That way, if one adds x and
−x one ends up with 2M , which is zero.

A convenient algorithm for calculating the twos-
complement of a binary number is to reverse each bit, 0
for 1 and 1 for 0, and then add 1. Thus, in an eight-bit
system the number −7 is given by

1 1 1 1 1 0 0 1 .

14.10.3 Sampling Operation

The sampling process replaces an analog signal, which
is a continuous function of time, by a sequence of
points. The operation is equivalent to the process shown
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Fig. 14.20a–c An analog signal (a) x(t) is multiplied by
a train of delta functions s(t) (b) to produce a sampled
signal y(t) (c)
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554 Part D Hearing and Signal Processing

in Fig. 14.20, where the analog signal x(t) is multiplied
by a train of evenly spaced delta functions to create
a sequence of sampled values y(t).

Intuitively, it seems evident that this operation is
a sensible thing to do if the delta functions come along
rapidly enough – rapid compared to the speed of the
temporal changes in the waveform. That concept is most
clearly seen by studying the Fourier transforms of func-
tions x, s and y.

The Fourier transform of the analog signal is X(ω),
with a spectrum that is limited to some highest fre-
quency ωmax. By contrast, the Fourier transform of
the train of delta functions is, itself, a train of delta
functions, S(ω) that extends over the entire frequency
axis. Because the delta functions in time have period
Ts, the delta functions in S(ω) are separated by ωs,
equal to 2π/Ts. Because y(t) is the product of the time-
dependent analog signal and the train of delta functions,
the Fourier transform Y (ω) is the convolution of X(ω)
and S(ω), as shown in part (b) of Fig. 14.21. Because
of the convolution operation, Y (ω) includes multiple
images of the original spectrum.

It is evident from Fig. 14.21b that, if the ωmax is less
than half of ωs, the multiple images will not overlap.
That observation has the status of a theorem known as
the sampling theorem, which says that the sampled sig-
nal is an adequate representation of an analog signal if
the sample rate is more than twice the highest frequency
in the analog signal, i. e., ωs > 2ωmax.

As an example of a failure to apply the sampling
theorem, suppose that a 600 Hz sine tone is sampled at

� �����
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Fig. 14.21 (a) The spectrum of the analog signal X(ω) is
bounded in frequency. (b) The spectrum of the sampled
signal, Y (ω), is the convolution of X(ω) and the Fourier
transform of the sampling train of delta functions. Conse-
quently, multiple images of X(ω) appear. Frequencies that
are allowed by the sampling theorem are included in the
dashed box. A particular frequency (circled) is followed
through the multiple imaging

a rate of 1000 Hz. The spectrum of the sampled signal
will contain 600 Hz as expected, and it will also contain
a component at 1000−600= 400 Hz. The 400 Hz com-
ponent was not present in the original spectrum; it is an
alias, an unwanted image of the 600 Hz tone.

14.10.4 Digital-to-Analog Conversion

In converting a signal from digital to analog form, one
can begin with the train of delta functions that is sig-
nal y(t) as shown in Fig. 14.20c. An electronic device
to do that is a digital-to-analog converter (DAC). How-
ever, as shown in Fig. 14.21b, this signal includes many
high frequencies that are unwanted byproducts of the
sampling process. Consequently, one needs to low-pass
filter the signal so as to pass only the frequencies less
than half the sample rate, i. e., the frequencies in the
dashed box. Such a low-pass filter is called a recon-
struction filter.

Practical DACs do not produce delta-function volt-
age spikes. Instead, they produce rectangular functions
with durations pTs, where p is a fraction of a sample
period 0< p ≤ 1. If p = 1, the output of the DAC re-
sembles a staircase function. Mathematically, replacing
the delta function train of Fig. 14.20c by the train of
rectangles is equivalent to convolving the function y(t)
with a rectangular function. The consequence of this
convolution is that the output is filtered, and the trans-
fer function of the filter is the Fourier transform of the
rectangle. The magnitude of the transfer function is

|H(ω)| = sin(ωpTs/2)

ωpTs/2
. (14.203)

The phase shift of the filter is a pure delay and conse-
quently unimportant. The effective filtering that results
from the rectangles, known as sin(x)-over-x filtering,
can be corrected by the reconstruction filter.

14.10.5 The Sampled Signal

This brief section will introduce a notation that will be
useful in later discussions of sampled signals. It is sup-
posed at the outset that one begins with a total of N
samples, equally spaced in time by the sampling pe-
riod Ts. By convention, the first sample occurs at time
t = 0 and the last sample occurs at time t = (N −1)Ts.
Consequently, the signal duration is TD = (N −1)Ts.

In dealing with sampled signals, it is common to
replace the time variable with a discrete index k. Thus,

x(t) = x(kTs) = xk , (14.204)
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Acoustic Signal Processing 14.11 Discrete Fourier Transform 555

where the equation on the left indicates that the original
data exist only at discrete time values.

14.10.6 Interpolation

The discrete-time values of a sampled waveform can be
used to compute an approximate Fourier transform of
the original signal. This Fourier transform is valid up
to a frequency as high as half the sample rate, i. e., as
high as ωs/2, or π/Ts. The Fourier transform can then
be used to estimate the values of the original signal x(t)
at times other than the sample times. In this way, the
Fourier transform computed from the samples serves to
interpolate between the samples. Such an interpolation
scheme proceeds as follows.

First, the Fourier transform is

X(ω) = Ts

∑

k

xk exp(−iωTsk) , (14.205)

where, as noted above, xk is the signal x(t) at the times
t = Tsk, and the leading factor of Ts gets the dimensions
right.

Then the inverse Fourier transform is

x(t) = Ts

2π

ωs/2∫

−ωs/2

dω eiωt
∑

k

xk e−iωTsk . (14.206)

Reversing the order of sum and integral and using the
fact that Tsωs/2 = π, we find that

x(t) =
∑

k

xk
sinπ(t/Ts− k)

π(t/Ts− k)
. (14.207)

The sinc function is 1.0 whenever t = Tsk, and is zero
whenever t is some other integer multiple of Ts. There-
fore, the sum on the right only interpolates; it does not
change the values of x(t) when t is equal to a sample
time.

14.11 Discrete Fourier Transform

The Fourier transform of a signal with finite duration
is well defined in principle. The finite signal itself can
be regarded as some base function that is multiplied
by a rectangular window to limit the duration. Then
the Fourier transform proceeds by convolving with the
transform of the window. For example, a truncated
exponentially decaying sine function can be regarded
as a decaying sine, with the usual infinite duration,
multiplied by a rectangular window. Then the Fourier
transform of the truncated function is the Fourier
transform of the decaying sine convolved with a sinc
function – the Fourier transform of the rectangular
window. Such a Fourier transform is a function of a con-
tinuous frequency, and it shows the broad spectrum
associated with the abrupt truncation.

In digital signal processing the frequency axis is not
continuous. Instead, the Fourier transform of a signal is
defined at discrete frequencies, just as the signal itself
is defined at discrete time points. This kind of Fourier
transform is known as the discrete Fourier transform
(DFT).

To compute the DFT of a function, one begins
by periodically repeating the function over the entire
time axis. For example, the truncated decaying sine in
Fig. 14.22a is repeated in Fig. 14.22b where it should be
imagined that the repetition precedes indefinitely to the
left and right.

Then the Fourier transform of the periodically
repeated signal becomes a Fourier series. The funda-
mental frequency of the Fourier series is the reciprocal
of the duration, f0 = 1/TD, and the spectrum becomes
a set of discrete frequencies, which are the harmonics of
f0. For instance, if the signal is one second in duration,
the spectrum consists of the harmonics of 1 Hz, and if
the duration is two seconds then the spectrum has all the
harmonics of 0.5 Hz. As expected, the highest harmonic
is limited to half the sample rate. That Fourier series
is the DFT. Using xk to define the periodic repetition
of the original discrete function, xk, the DFT X(ω) is
defined for ω= 2πn/TD, where n indicates the n-th har-
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Fig. 14.22a,b A decaying function in part (a) is periodically re-
peated in part (b) to create a periodic signal with period TD
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monic. In terms of the fundamental angular frequency
ω0 = 2π/TD, the DFT is

X(nω0) = Ts

N−1∑

k=0

xk e−inω0kTs , (14.208)

where the prefactor Ts keeps the dimensions right. The
product ω0Ts is equal to ω0TD/(N −1) or 2π/(N −1),
and so

X(nω0) = Ts

N−1∑

k=0

xk e−i2πnk/(N−1) . (14.209)

Both positive and negative frequencies occur in the
Fourier transform. Because the maximum frequency is
equal to [1/(2Ts)]/(1/TD) times the fundamental fre-
quency, the number of discrete positive frequencies is
(N −1)/2, and the number of discrete negative frequen-
cies is the same. Consequently the inverse DFT can be
written

xk =
1

TD

(N−1)/2∑

n=−(N−1)/2

X(nω0) ei2πnk/(N−1) ,

(14.210)

or

x(t) = 1

TD

(N−1)/2∑

n=−(N−1)/2

X(nω0) einω0t . (14.211)

A virtue of the DFT is that the information in the
DFT is exactly what is needed to create the original
truncated function x(t) – no more and no less. The
fact that the DFT spectrum actually creates the peri-
odically repeated function xk and not the original xk
is not a problem if we agree in advance to ignore xk
for k outside the range of the original time-limited sig-
nal. However, it should be noted that certain operations,

such as time translations, products, and convolution,
that have familiar characteristics in the context of the
Fourier transform, retain those characteristics only for
the periodically extended signal xk and its Fourier trans-
form X(nω0) and not for the finite-duration signal.

14.11.1 Interpolation for the Spectrum

It is possible to estimate the Fourier transform at values
of frequency between the harmonics of ω0. The proce-
dure begins with the definition of the Fourier transform
of a finite function,

X(ω) =
TD∫

0

dt x(t)e−iωt . (14.212)

Next, the function x(t) is replaced by the inverse DFT
from (14.211), and the variable of integration t is re-
placed by t ′, which has symmetrical upper and lower
limits,

X(ω)

= 1

TD

TD/2∫

−TD/2

dt′ e−iωt′

×
(N−1)/2∑

n=−(N−1)/2

X(nω0) einω0t′ e−iωTD/2 einω0TD/2 ,

(14.213)

which reduces to

X(ω) =
(N−1)/2∑

n=−(N−1)/2

X(nω0)
sin[(ω−nω0)TD/2]

(ω−nω0)TD/2

× e−iωTD/2 eiπn . (14.214)

14.12 The z-Transform

Like the discrete Fourier transform, the z-transform is
well suited to describing sampled signals. We consider
x(t) to be a sampled signal so that it is defined at dis-
crete time points t = tk = kTs, where Ts is the sampling
period. Then the time dependence of x can be described
by an index, xk = x(tk). The z-transform of x is

X(z) =
∞∑

k=−∞
xkz−k . (14.215)

The quantity z is complex, with amplitude A and
phase ϕ,

z = A eiϕ = A eiωTs , (14.216)

where ϕ is the phase advance in radians per sample.
In the special case where A = 1, all values of z lie

on a circle of radius 1 (the unit circle) in the complex
z plane. In that case the z-transform is equivalent to the
discrete Fourier transform. An often-overlooked alter-

Part
D

1
4
.1

2



Acoustic Signal Processing 14.12 The z-Transform 557

Table 14.2 z-Transform pairs

xk X(z) Radius

of convergence

δk,k0 z−k0 all z

akuk z/(z−a) |z|> a

kakuk az/(z−a)2 |z|> a

ak cos(ωoTsk)uk
z2−az cos(ωoTs)

z2−2az cos(ωoTs)+a2 |z|> a

ak sin(ωoTsk)uk
az sin(ωoTs)

z2−2az cos(ωoTs)+a2 |z|> a

native view is that the z-transform is an extension of
the Fourier transform wherein the angular frequency ω
becomes complex,

ω= ωR+ iωI , (14.217)

so that

z = e−ωITs eiωRTs . (14.218)

The extended Fourier transform will not be pursued fur-
ther in this chapter.

A well-defined z-transform naturally includes a func-
tion of variable z, but the function itself is not enough.
In order for the inverse transform to be unique, the defi-
nition also requires that the region of the complex plane
in which the transform converges must also be specified.
To illustrate that point, one can consider two different
functions xk that have the same z-transform function,
but different regions of convergence (Table 14.2).

Consider first the function

xk = 2k for k ≥ 0 , (14.219)

xk = 0 for k < 0 .

This two-line function can be written as a single line by
using the discrete Heaviside function uk . The function
uk is defined as zero when k is a negative integer and as
+1 when k is any other integer, including zero. Then xk
above becomes

xk = 2kuk . (14.220)

The z-transform of xk is

X(z) =
∞∑

k=0

(2/z)k . (14.221)

The sum is a geometric series, which converges to

X(z) = 1

1−2/z
= z/(z−2) (14.222)

if |z|> 2. The region of convergence is therefore the
entire complex plane except for the portion inside and
on a circle of radius 2.

Next consider the function

xk =−2ku−k−1 . (14.223)

The z-transform of xk is

X(z) =−
−1∑

k=−∞
(2/z)k or −

∞∑

k=1

(z/2)k .

(14.224)

The sum converges to

X(z) =− (z/2)

1− z/2
= z

z−2
(14.225)

if |z|< 2. The function is identical to the function in
(14.222), but the region of convergence is now the por-
tion of the complex plane entirely inside the circle of
radius 2.

The inverse z-transform is given by a counterclock-
wise contour integral circling the origin

xk = 1

2πi

∮

C

dzX(z)zk−1 . (14.226)

The contour C must lie entirely within the region of
convergence of x and must enclose all the poles of X(z).

The regions of convergence when the functions x
and y are combined in some way are at least the in-
tersection of the regions of convergence for x and y
separately. Scaling and time reversal lead to regions of
convergence that are scaled and inverted, respectively.
For instance, if X(z) converges in the region between
radii r1 and r2, them X(1/z) converges in the region
between 1/r2 and 1/r1.

14.12.1 Transfer Function

The output of a process at time point k, namely yk, may
depend on the inputs x at earlier times and also on the
outputs at earlier times. In equation form,

yk =
Nq∑

q=0

βq xk−q −
N p∑

p=1

αp yk−p . (14.227)

This equation can be z-transformed using the time-shift
property in Table 14.3,

Nq∑

q=0

βqz−q X(z) =
N p∑

p=0

αpz−pY (z) , (14.228)

Part
D

1
4
.1

2



558 Part D Hearing and Signal Processing

Table 14.3 Properties of the z-transform

Property Signal z-transform

Definition xk X(z)

Linearity axk +byk aX(z)+bY (z)

Time shift xk−k0 z−k0 X(z)

Scaling z ak xk X(z/a)

Time reversal x−k X(1/z)

Derivative w.r.t. z kxk −z dX(z)/dz

Convolution xk ∗ yk X(z)Y (z)

Multiplication xk yk
1

2πi

∮
C dz′/z′ X(z′)Y (z/z′)

where α0 = 1. The transfer function is the ratio of the
transformed output over the transformed input,

H(z) = Y (z)/X(z) , (14.229)

which is

H(z) =
∑Nq

q=0 βqz−q

∑N p
p=0 αpz−p

. (14.230)

From the fundamental theorem of algebra, the nu-
merator of the fraction above has Nq roots and the
denominator has N p roots, so that H(z) can be written
as

H(z) = (1−q1z−1)(1−q2z−1) . . . (1−qNqz−1)

(1− p1z−1)(1− p2z−1) . . . (1− pN pz−1)
.

(14.231)

This equation and its development are of central
importance to digital filters, also known as linear time-
invariant systems. If the system is recursive, outputs
from a previous point in time are sent back to the in-
put. Therefore, some values of the coefficients αp are
finite for p> 1 and so are the values of some poles, such

as p2. Such filters are called infinite impulse response
(IIR) filters because it is possible that the response of
the system to an impulse put in at time zero will never
entirely die out. Some of the output is always fed back
into the input. A similar conclusion is reached by rec-
ognizing that the expansion of 1/(1− pz−1) in powers
of z−1 goes on forever. Because the system has poles,
there are concerns about stability.

If the system is nonrecursive, no values of the output
are ever sent back to the input. Therefore, the denomi-
nator of H(z) is simply the number 1. Such filters are
called finite impulse response (FIR) filters because their
response to a delta function input will always die out
eventually as long as Nq is finite. The system is said to
be an all-zero system. The order of the filter is estab-
lished by Nq or N p, the number of time points back to
the earliest input or output that contribute to the current
output value.

The formal z-transform,

H(z) =
∞∑

k=−∞
hkz−k (14.232)

leads to conclusions about causality and stability.
A filter is causal if the current value of the output

does not depend on future inputs. For a causal filter hk
is zero for k < 0. Then this sum has no terms with posi-
tive powers of z, and the region of convergence of H(z)
includes |z| =∞.

A filter is stable if

S =
∞∑

k=−∞
|hk| (14.233)

is finite. It follows, that H(z) is finite for |z| = 1, i. e., for
z on the unit circle. Thus, if the region of convergence
includes the unit circle, the filter is stable.

14.13 Maximum Length Sequences

A maximum length sequence (MLS) is a train of ones
and zeros that makes a useful signal for measuring
the impulse response of a linear system. An MLS can
be generated by a bit-shift register, which resembles
a bucket brigade. To make an N-bit MLS, one needs an
N-stage shift register. Each stage can hold either a one
or a zero. The register is imagined to have a clock which
synchronizes the transfer of bits from each stage to the
next. On every clock tick the content of each stage of
the register is transferred to the next stage down the line.

The content of the last stage is regarded as the output of
the register, and it is also fed back into the first stage. In
addition, the output can be fed back into one or more of
the other stages, and when that occurs the stage receiv-
ing the output, in addition to the content of the previous
stage, performs an exclusive OR (XOR) operation on
those two inputs. The XOR operation obeys the truth
table shown in Table 14.4. In words, the XOR of inputs
A and B is zero if A and B are the same and is 1 if A
and B are different.
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Acoustic Signal Processing 14.13 Maximum Length Sequences 559

Table 14.4 Truth table for the exclusive or (XOR) opera-
tion

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

! �	�! !

Fig. 14.23 A three-stage shift register [3: 1, 2] in which the
output is fed back into the first and second stages

Table 14.5 Successive values in the shift register of
Fig. 14.12

Step

0 1 1 1

1 1 0 1

2 1 0 0

3 0 1 0

4 0 0 1

5 1 1 0

6 0 1 1

7 1 1 1

8 1 0 1

9 1 0 0

A shift register with three stages is shown in
Fig. 14.23. With three stages and feedback taps to stages
1 and 2, it is defined as [3: 1,2].

At the instant shown in the figure, the register holds
the value 1,1,1. The subsequent development of the reg-
ister values is given in Table 14.5. The sequence repeats
after seven steps. The table shows that every possible
pattern of ones and zeros occurs once, and only once,
before the pattern repeats. There are 2N −1 = 23−
1 = 7 such patterns. There is one exception, namely the
pattern 0,0,0. If this pattern should ever appear in the
register then the process gets stuck forever. Therefore,
this pattern is not allowed. The output sequence is the
contents of the stage on the right, here, 1,1,0,0,1,0,1.
Because all seven register patterns appear before repeti-
tion, this output is a maximum length sequence. There is
nothing special about the starting register value, 1,1,1.
Therefore, any cyclic permutation of the MLS is also
an MLS. For instance, the sequence, 1,0,0,1,0,1,1 is the
same sequence.

�	�! ! !

Fig. 14.24 A three-stage shift with feedback into all the
stages does not produce an MLS

Table 14.6 Successive values in the shift register of
Fig. 14.13

Step

0 1 1 1

1 1 0 0

2 0 1 0

3 0 0 1

4 1 1 1

5 1 0 0

6 0 1 0

An example of a three-bit shift register that does not
produce an MLS is [3: 1,2,3], shown in Fig. 14.24. The
pattern for this shift register is shown in Table 14.6. The
pattern of register values begins to repeat after only four
steps. Therefore, the sequence of output values, namely
1,0,0,1,1,0,0,1,1,0,0,1, is not an MLS.

14.13.1 The MLS as a Signal

To make a signal from an MLS requires only one
step: every 0 in the sequence is replaced by −1.
Therefore, the MLS for the shift register in Fig. 14.23
becomes: 1, 1,−1,−1, 1,−1, 1. For this three-stage
register (N = 3) the MLS has a length of seven; there
are four +1 values and three −1 values. These results
can be generalized to an N-stage register which has
2N −1 values; 2(N−1) are +1 values and 2(N−1)−1 are
−1 values. The average value is therefore 1/(2N −1).

14.13.2 Application of the MLS

The key fact about an MLS is that its autocorrelation
function is very nearly a delta function. To express that
idea, one can write the autocorrelation function in the
form appropriate for discrete samples,

ck = 1

2N −1

∑

k1

xk1 xk1+k . (14.234)

This sum, and all sums to follow, are over the 2N −1
values of the MLS sequence x. Because the sequence is
cyclical, it does not matter where one starts the sum.
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560 Part D Hearing and Signal Processing

An MLS has the property that

ck =
(

1+ 1

2N −1

)
δk,0− 1

2N −1
. (14.235)

Therefore, ck is approximately a Kronnecker delta func-
tion

ck ≈ δk,0 . (14.236)

If we would like to know the impulse response h
of a linear system, we can excite the system with the
MLS x, and record the output y. As for filters, the linear
response y is the convolution of x and h, i. e.,

yk = x ∗h =
∑

k1

xk1+k hk1 . (14.237)

To find the impulse response, one can form the
quantity d, by convolving the recording y with the orig-
inal MLS x, i. e.,

dk = 1

2N −1

∑

k2

xk2+k yk2 (14.238)

or from (14.237)

dk = 1

2N −1

∑

k1,k2

xk2+k xk1+k2 hk1 . (14.239)

Table 14.7 Taps for maximum length sequences

Number of stages Length (bits) Number of taps Number of sets Set

2 3 2 1 [2: 1,2]

3 7 2 1 [3: 1,3]

4 15 2 1 [4: 1,4]

5 31 2 1 [5: 1,4]

6 63 2 1 [6: 1,6]

7 127 2 2 [7: 1,7], [7: 1,5]

8 255 4 6 [8: 1,2,7,8]

9 511 2 1 [9: 1,6]

10 1023 2 1 [10: 1,8]

11 2047 2 1 [11: 1,10]

12 4095 4 9 [12: 1,6,7,9]

13 8191 4 33 [13: 1,7,8,9]

14 16383 4 21 [14: 1,6,9,10]

15 32767 2 3 [15: 1,9], [15: 1,12], [15: 1,15]

16 65535 4 26 [16: 1,7,10,11]

17 131071 2 3 [17: 1,12], [17: 1,13], [17: 1,15]

18 262143 2 1 [18: 1,12]

19 524287 4 79 [19: 1,10,11,14]

20 1048575 2 1 [20: 1,18]

Only x ∗ x involves the index k2, and doing the sum over
k2 leads to

dk =
∑

k1

δk,k1 hk1 (14.240)

so that dk = hk. In this way, we have found the desired
impulse response.

As applied in architectural acoustics, the MLS is an
alternative to recording the response to a popping bal-
loon or gun shot. Because the MLS is continuous, it
avoids the dynamic-range problem associated with an
impulsive test signal, and by repeating the sequence one
can achieve remarkable noise immunity.

Similarly, the MLS is an alternative to recording the
response to white noise (the MLS is white). However,
digital white noise, such as random telegraph noise, has
an autocorrelation function that is zero only for a long-
term or ensemble average. In practice, the white-noise
response of a linear system is much noisier than the
MLS response.

14.13.3 Long Sequences

Table 14.7 gives the taps for some MLSs generated by
shift registers with 2–20 stages, i. e., orders 2–20. The
longest sequence has a length of more than one million
bits,
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Acoustic Signal Processing 14.14 Information Theory 561

For orders 2, 3, and 4, there is only one possible set
of taps. These sets have two taps, including the feedback
to stage 1. For orders 7, 15, and 17 there is more than one
set with two taps, and all of them are shown in the table.

Beginning with order 5 there are four-tap sets as
well as two-tap sets, except that for some orders, such

as 8, there are no two-tap sets. For every order the ta-
ble gives a set with the smallest possible number of
taps.

Beginning with order 7 there are six-tap sets. As the
order increases the number of sets also increases. For
order 19, there are 79 four-tap sets.

14.14 Information Theory

Information theory provides a way to quantify in-
formation by computing information content. The
information content of a message depends on the con-
text, and the context determines the initial uncertainty
about the message. Suppose, for example, that we re-
ceive one character, but we know in advance that the
context is one in which the character must be a digit
between 0 and 9. Our uncertainty before receiving that
actual character is described by the number of possible
outcomes, which is Ω = 10 in this case. Suppose in-
stead, that the context is one in which the character must
be a letter of the alphabet. Then our initial uncertainty
is greater because the number of possible outcomes is
now Ω = 26. The first step of information theory is to
recognize that, when we actually receive and identify
a character, the information content of that character is
greater in the second context than in the first because in
the second context the character has eliminated a greater
number of a priori possibilities.

The second step in information theory is to con-
sider a message with two characters. If the context of
the message is decimal digits then the number of possi-
bilities is the product of 10 for the first digit and 10 for
the second, namely Ω = 100 possibilities. Compared
to a message with one character, the number of possi-
bilities has been multiplied by 10. However, it is only
logical to expect that two characters will give twice as
much information as one, not 10 times as much. The
logical problem can be solved by quantifying informa-
tion in terms of entropy, which is the logarithm of the
number of possibilities

H = logΩ . (14.241)

Because log 100 is just twice log 10, the logical problem
is solved. The information measured in bits is obtained
by using a base 2 logarithm.

A few simple features follow immediately. If the
number of possible messages isΩ = 1 then the message
provides no information, which agrees with log 1= 0. If
the context is binary, where a character can be only 1 or

0 (Ω = 2), then receiving a character provides 1 bit of
information, which agrees with log2 2 = 1.

If the context is an alphabet with M possible sym-
bols, and all of the symbols are equally probable, then
a message with N characters hasΩ = MN possible out-
comes and the information entropy is

H = log MN = N log M , (14.242)

illustrating the additivity of information over the char-
acters of the message.

14.14.1 Shannon Entropy

Information theory becomes interesting when the
probabilities of different symbols are different. Shan-
non [14.23,24] showed that the information content per
character is given by

Hc =−
M∑

i=1

pi log pi , (14.243)

where pi is the probability of symbol i in the given
context.

The rest of this section proves Shannon’s formula.
The proof begins with the plausible assumption that, if
the probability of symbol i is pi , then in a very long
message of N characters, the number of occurrences of
character i, mi will be exactly mi = N pi .

The number of possibilities for a message of N
characters in which the set of {mi} is fixed by the corre-
sponding {pi} is

Ω = N !
m1! m2! . . . mM ! . (14.244)

Therefore,

H = log N !− log m1!− log m2!− . . . log mM ! .
(14.245)
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One can write log N ! as a sum

log N ! =
N∑

k=1

log k (14.246)

and similarly for log mi !.
For a long message one can replace the sum by an

integral,

log N ! =
N∫

1

dx log x = N log N − N +1 (14.247)

and similarly for log mi ! .
Therefore,

H =N log N − N +1

−
M∑

i=1

mi log mi +
M∑

i=1

mi −
M∑

i=1

1 . (14.248)

Because
∑M

i=1 mi = N , this reduces to

H = N log N +1−
M∑

i=1

mi log mi −M . (14.249)

The information per character is obtained by dividing
the message entropy by the number of characters in the
message,

Hc = log N −
M∑

i=1

pi log mi + (1−M)/N ,

(14.250)

where we have used the fact that mi/N = pi .
In a long message, the last term can be ignored as

small. Then because the sum of probabilities pi is equal
to 1,

Hc =−
M∑

i=1

pi (log mi − log N) , (14.251)

or

Hc =−
M∑

i=1

pi log pi , (14.252)

which is (14.243) as advertised.
If the context of written English consists of 27 sym-

bols (26 letters and a space), and if all symbols are
equally probable, then the information content of a sin-
gle character is

Hc =−1.443
27∑

i=1

1

27
ln

1

27
= 4.75 (bits) , (14.253)

where the factor 1/ ln(2) = 1.443 converts the natural
log to a base 2 log. However, in written English all sym-
bols are not equally probable. For example, the most
common letter, E, is more than 100 times more likely
to occur than the letter J. Because equal probability of
symbols always leads to the highest entropy, the un-
equal probability in written English is bound to reduce
the information content – to about 4 bits per character.
An even greater reduction comes from the redundancy
in larger units, such as words, so that the information
content of written English is no more than 1.6 bits per
character.

The concept of information entropy can be extended
to continuous distributions defined by a probability den-
sity function

h =−
∞∫

−∞
dx PDF(x) log[PDF(x)] . (14.254)

14.14.2 Mutual Information

The mutual information between sets of variables {i}
and { j} is a measure of the amount of uncertainty about
one of these variables that is eliminated by knowing the
other variable. Mutual information Hm is given in terms
of the joint probability mass function p(i, j)

Hm =
M∑

i=1

M∑

j=1

p(i, j) log
p(i, j)

p(i)p( j)
. (14.255)

Using written English as an example again, p(i) might
describe the probability for the first letter of a word and
p( j) might describe the probability for the second. It is
convenient to let the indices i and j be integers, e.g.,
p(i = 1) is the probability that the first letter is an ‘A’,
and p( j = 2) is the probability that the second letter is a
‘B’. Then p(1, 2) is the probability that the word starts
with the two letters ‘AB’. It is evident that in a context
where the first two letters are completely independent of
one another so that p(i, j) = p(i)p( j) then the amount
of mutual information is zero because log(1)= 0. In the
opposite limit the context is one in which the second
letter is completely determined by the first. For instance,
if the second letter is always the letter of the alphabet
that immediately follows the first letter then p(i, j) =
p( j) = p(i)δ( j, i+1), and

Hm =
M∑

i=1

p(i) log
p(i)

p(i)p(i)
(14.256)

which simply reduces to (14.243) for Hc, the informa-
tion content of the first letter of the word.
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In the general case, the mutual information is
a difference in information content. It is equal to
the information provided by the second letter of the
word given no prior knowledge at all, minus the in-
formation provided by the second letter of the word
given knowledge of the first letter. Mathematically,
p(i, j) = p(i)p( j|i), where p( j|i) is the probability that
the second letter is j given that the first letter is i. Then

Hm =
M∑

j=1

p( j) log
1

p( j)

−
M∑

i=1

M∑

j=1

p(i, j) log
1

p( j|i) . (14.257)

The information transfer ratio T is the degree to
which the information in the first letter predicts the in-
formation in the second. Equivalently, it describes the
transfer of information from an input to an output

T = −Hm∑M
i=1 p(i) log p(i)

. (14.258)

This ratio ranges between 0 and 1, where 1 indicates
that the second letter, or output, can be predicted from
the first letter, or input, with perfect reliability. The
mutual information is the basis for the calculation of
the information capacity of a noisy communications
channel.
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Musical Acous15. Musical Acoustics

Colin Gough

This chapter provides an introduction to the phys-
ical and psycho-acoustic principles underlying the
production and perception of the sounds of musi-
cal instruments. The first section introduces generic
aspects of musical acoustics and the perception of
musical sounds, followed by separate sections on
string, wind and percussion instruments.

In all sections, we start by considering the
vibrations of simple systems – like stretched
strings, simple air columns, stretched membranes,
thin plates and shells. We show that, for almost
all musical instruments, the usual text-book
description of such systems is strongly perturbed
by material properties, geometrical factors and
acoustical coupling between the drive mechanism,
vibrating system and radiated sound.

For stringed, woodwind and brass instruments,
we discuss excitation by the bow, reed and vi-
brating lips, which all involve strongly non-linear
processes, even though the vibrations of the ex-
cited system usually remains well within the linear
regime. However, the amplitudes of vibration of
very strongly excited strings, air columns, thin
plates and membranes can sometimes exceed the
linear approximation limit, resulting in a num-
ber of interesting non-linear phenomena, often of
significant musical importance.

Musical acoustics therefore provides an ex-
cellent introduction to the physics of both linear
and non-linear acoustical systems, in a context
of rather general interest to professional acousti-
cians, teachers and students, at both school and
college levels.

The subject continues its long tradition in
advancing the frontiers of experimental, compu-
tational and theoretical acoustics, in an area of
wide general appeal and contemporary relevance.

By discussing the theoretical models and
experimental methods used to investigate the
acoustics of many musical instruments, we have

aimed to provide a useful background for profes-
sional acousticians, students and their teachers,
for whom musical acoustics provides an exceed-
ingly rich area for original research projects at all
educational levels.

Because the subject is ultimately about the
sounds produced by musical instruments, a large
number of audio illustrations have been provided,
which can be accessed on the Springer EXTRAS
server. The extensive list of references is intended
as a useful starting point for entry to the current
research literature, but makes no attempt to
provide a comprehensive list of all important
research.

This chapter highlights the acoustics of musi-
cal instruments. Other related topics, such as the
human voice, the perception and psychology of
sound, architectural acoustics, sound recording
and reproduction, and many experimental, com-
putational and analytic techniques are described
in more detail elsewhere in this volume.

15.1 Vibrational Modes of Instruments .......... 569
15.1.1 Normal Modes ............................. 569
15.1.2 Radiation from Instruments .......... 571
15.1.3 The Anatomy of Musical Sounds ..... 575
15.1.4 Perception and Psychoacoustics ..... 586

15.2 Stringed Instruments ............................ 588
15.2.1 String Vibrations .......................... 589
15.2.2 Nonlinear String Vibrations ........... 597
15.2.3 The Bowed String ......................... 600
15.2.4 Bridge and Soundpost .................. 604
15.2.5 String–Bridge–Body Coupling ........ 609
15.2.6 Body Modes................................. 615
15.2.7 Measurements ............................. 628
15.2.8 Radiation and Sound Quality ......... 632

15.3 Wind Instruments ................................. 635
15.3.1 Resonances in Cylindrical Tubes ..... 636
15.3.2 Non-Cylindrical Tubes ................... 640
15.3.3 Reed Excitation ............................ 653
15.3.4 Brass-Mouthpiece Excitation ......... 662

Part
E

1
5

http://extras.springer.com/2014/978-1-4939-0755-7/


568 Part E Music, Speech, Electroacoustics

15.3.5 Air-Jet Excitation ......................... 667
15.3.6 Woodwind and Brass Instruments .. 671

15.4 Percussion Instruments ......................... 675
15.4.1 Membranes ................................. 676

15.4.2 Bars............................................ 682
15.4.3 Plates ......................................... 687
15.4.4 Shells ......................................... 692

References .................................................. 696

Musical acoustics is one the oldest of all the experi-
mental Sciences (see Levenson [15.1] for an informative
account of the interactions between Music and Science
over the ages). The observation of the relationship be-
tween the notes produced by the exact fraction divisions
of a stretched string and consonant musical intervals
like the octave (2 : 1), perfect fifth (3 : 2) and fourth
(4 : 3), resulted in the first physical law to be expressed
in mathematical terms. It also led to the idea of a di-
vinely created cosmos based on exact fractions, filled
with the music of the spheres (see, for example, Ke-
pler’s account of the ellipticity of the planetary orbits
described as notes on a musical scale, in Harmonies of
the World (1618) [15.2]). Ultimately, such observations
led to Newton’s discovery of celestial dynamics and
the laws of gravity leading to the modern view of the
universe subject to physical laws rather than numerical
relationships.

In the nineteenth century, musical acoustics contin-
ued to occupy a central scientific role. This culminated
in Lord Rayleigh’s monumental two volumes on the
Theory of Sound [15.3], which still provide the founda-
tions for almost every branch of modern acoustics. The
19th century advances in understanding waves in acous-
tics also laid the mathematical framework for quantum
wave mechanics in the early part of the 20th cen-
tury. More recently, the physics of vibrating strings can
be said to have come full circle, with the suggestion
that string-like vibrations of the quantum field equa-
tions account for the mass to the elementary particles
(Hawkins [15.4]).

Musical acoustics still remains a challenging and
exciting field of research and continues to advance
mainstream acoustics in many ways. Examples include
nonlinear physics and the use of laser holography and
both modal and finite-element analysis to investigate
complicated vibrating systems. Such developments are
described in this chapter and in more detail in other
chapters of this Handbook and in the Physics of Musi-
cal Instruments by Fletcher and Rossing [15.5], which
will often be cited, as an authoritative text and source
of additional references for most topics discussed. The
Science of Sound by Rossing et al. [15.6] covers an even
wider range of topics at a somewhat less mathematical

level. An informative overview of the history, technol-
ogy and performance of western musical instruments
has recently been published by Campbell, Greated and
Myers [15.7].

The first section of this chapter deals with the
generic properties of the vibrations and sounds of mu-
sical instruments. A brief description is first given of
the properties of both simple and coupled resonators,
typifying the vibrational modes of stringed, wind and
percussion instruments, where the sound is generated
by vibrating strings, air columns, plates, membranes
and shells. The radiation of sound by such structures
is then described in terms of multipole sources. This is
followed by a brief description of the envelopes, wave-
forms and spectra of the sounds that characterize the
sound of individual instruments. The section ends with
a consideration of the way the listener perceives such
sounds.

The section on stringed instruments first consid-
ers the general properties of string vibrations and their
excitation by plucking, bowing and striking. Large am-
plitude vibrations are shown to provide a particular
interesting illustration of nonlinearity of much wider ap-
plicability than to musical acoustics alone. The coupling
of the vibrating string via the bridge to the acoustically
radiating surfaces of the instrument is then discussed in
some detail, followed by a more detailed discussion of
excitation of a string via the bowed slip-stick mecha-
nism. The vibrational modes of the main shell of the
instrument and the importance of the bridge and sound-
post in determining the efficiency of energy transfer to
the radiating surfaces of the instrument are then dis-
cussed. The section ends with a description of some
of the experiment and computational techniques used
to describe the vibrational modes, followed by a brief
description of the radiated sound and the subjective as-
sessment of the quality of stringed instruments.

The section on woodwind and brass instruments
starts with a consideration of oscillating air columns and
sound radiation from cylindrical and conical tubes and
the more complicated shapes used for woodwind and
brass instruments. This is followed by sections on the
highly nonlinear processes involved in the excitation of
such vibrations by reed and lip vibrations and air-jets.
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The section concludes with a brief description of the
acoustical properties of various wind instruments.

The final section on percussion instruments de-
scribes the acoustical properties of a range of instru-
ments based on the vibrations of stretched membranes,
bars, plates and shells. Typical waveform envelopes

and time-dependent spectra are used to illustrate the
relationship between the vibrational modes of such in-
struments and the radiated sound. Non-linearity at large
amplitude excitation is again shown to be important and
accounts for the characteristic sounds of certain instru-
ments like gongs and cymbals.

15.1 Vibrational Modes of Instruments

15.1.1 Normal Modes

All musical instruments produce sound via the exci-
tation of a vibrating structure. Woodwind, brass and
percussion instruments radiate sound directly. How-
ever, stringed instruments radiate sound indirectly,
because the vibrating string itself radiates an insignifi-
cant amount of energy. Energy from the vibrating string
therefore has to be transferred to the much larger area,
acoustically efficient, radiating surfaces of the body of
the instrument. The resultant modes of vibration are
complex and involve the interactions and vibrations of
all the component parts, such as the strings, bridge, front
and back plates, soundpost, neck, and even the air inside
the volume of the violin body.

Any vibrating structure, however complicated, will
have a number of what are called normal modes of vi-
bration (Chap. 22). The important influence of damping
on the nature of the normal modes will be described in
the section on stringed instruments. The normal modes
satisfy exactly the same equations of motion as a simple
damped mass–spring resonator. The displacement ξn of
a given excited mode measured at any chosen point p
on the structure is given by

mn

(
∂2ξn

∂t2
+ ωn

Qn

∂ξn

∂t
+ω2

nξn

)
= F(t) , (15.1)

where the effective mass mn at the point p is defined
in terms of the kinetic energy of the excited mode,
1
2 mn(∂ξn/∂t)2

p, ωn = 2π fn is the eigenfrequency (the
angular frequency) of free vibration of the excited mode
in the absence of damping and Qn is the quality fac-
tor describing its damping. Initially, we consider a local
driving force F(t) at the point p, though it could be ap-
plied at any chosen point on the structure or distributed
over the whole surface.

The effective mass of a one-dimensional string, solid
bar or air column, at the point of maximum displace-
ment, is half the mass of the vibrating system, the factor
half resulting from averaging the kinetic energy over the

sinusoidal spatial displacement. Likewise, the effective
mass of a two-dimensional vibrating object at maximum
displacement, like a violin plate or drum skin, is of or-
der 1/4 its mass. The effective mass is very large close
to nodal positions, where the displacement is small, and
is small at antinodes, where the displacement is large.

Typical driving forces are those acting on the bridge
of a bowed or plucked string instrument and the pres-
sure fluctuations at the input end of the air column of
a blown woodwind or brass instrument. Such forces are
generated by highly nonlinear excitation mechanisms.
In contrast, the vibrations of the vibrating structure are
generally linear with displacements proportional to the
driving force. However, there are important exceptions
for almost all types of instruments, when nonlinearity
becomes significant at sufficiently strong excitation, as
discussed later.

In any continuously bowed or blown musical instru-
ments, feedback from the vibrating system results in
a periodic driving force, which will not in general be
sinusoidal. Nevertheless, by the Fourier theorem, any
periodic force can always be represented as a superpo-
sition of sinusoidally varying, harmonic, partials with
frequencies that are integer multiple of the periodic rep-
etition frequency. We can therefore consider the induced
vibrations of any musical instruments in terms of the in-
duced response of its vibrational modes to a harmonic
series of sinusoidal driving forces.

Resonance and Admittance
In the harmonic approach, the applied forces and in-
duced motions are assumed to vary sinusoidally as eiωt .
We will generally use this complex notation for nota-
tional and algebraic simplicity, where Re(eiωt) = cosωt
and Im(eiωt) = sinωt. The resonant response, with dis-
placement ξn eiωt and velocity iωξn eiωt at the driving
point p, for an applied sinusoidal force F eiωt , is then
given by

∂ξn

∂t
= iωξn = F

mn

iω(
ω2

n −ω2+ iωωn/Qn
) . (15.2)
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Fig. 15.1 Normalised real (Re) and imaginary (Im) compo-
nents and the modulus (Mod) of the induced velocity of
a simple harmonic resonator driven by a constant ampli-
tude sinusoidal force for a Q-factor of 10

The ratio of induced velocity to driving force is known
as the local admittance at the driving point p, and is
plotted in normalised form in Fig. 15.1 for a Q-value of
10. The admittance has both real and imaginary com-
ponents. The real part describes the component of the
induced velocity in phase with the driving force, while
the imaginary part describes the component in phase
quadrature (with phase leading that of the force by 90◦
degrees).

Well below resonance the induced displacement is
in phase with the driving force, while at resonance the
phase lags behind the driving force by 90◦, and well
above resonance lags by 180◦. The velocity v(t) leads
the displacement by 90◦ degree and is thus in phase with
the driving force at resonance, which corresponds to the
maximum rate of energy transfer iωFξn to the excited
mode. The 180◦ change in the phase of the response, as
the excitation frequency passes from well below to well
above resonance, is especially important in interpreting
the multiple resonances of any musical instrument.

Provided the damping of an excited mode is not
too strong (i. e. Qn is significantly larger than unity),
the peak in the modulus or real part of the admit-
tance occurs at ωn

(
1−1/8Q2

)
, which is very close

to the natural resonant frequency ωn . The width of
the resonance is Δ f = fn/Q, where Δ f is defined as
the difference in frequency between the points on the
resonance curve when the modulus of the induced dis-
placement has fallen to 1/

√
2 of its maximum value

(i. e. the stored energy is half that at resonance). The dis-
placement at resonance is Q × the static displacement.

Multi-Mode Systems
For any musical instrument having a number of vibra-
tional modes, the admittance at the driving point p can
be written as

App =
∑

n

1

mn

iω

ω2
n −ω2+ iωωn/Qn

, (15.3)

with admittances App of individual modes adding in
series, equivalent to impedances in parallel. The vi-
brational response of a multi-resonant mode musical
instrument can therefore be characterised by fitting the
measured admittance to such a function giving the
effective mass at the point of excitation, resonant fre-
quency and Q-value for each of the excited modes.
Using such a procedure, Bissinger [15.8] typically iden-
tifies up to around 40 vibrational modes for the violin
below 4 kHz. However, at high frequencies, the width
of individual resonances exceeds the spacing between
them, making it increasingly difficult to identify indi-
vidual modes.

It is important to recognise that damping is only im-
portant in a relatively narrow frequency range ≈ fn/Q
around the individual resonance peaks. Outside such
regions, the reactive component associated with each
vibrational mode continues to contribute significantly
to the overall response. For example, well below res-
onance, each mode acts as a spring with effective
spring constant mn(ω2

n −ω2), while well above reso-
nance it acts as a mass with effective mass mn(1−
ω2

n/ω
2). The static displacement (at ω = 0) is given

by ξ = F/Ko =∑
n

1/(mnω
2
n). Note that this involves

contributions from all the vibrational modes of the
structure, which is an important global property de-
scribing the low-frequency response of a multi-resonant
structure such as the violin or guitar. If displacements
are measured at a point p for an applied force at q,
a nonlocal admittance can be expressed as

Apq =
∑

n

1

mn,p

iω(
ω2

n −ω2+ iωωn/Qn
) ξn,pξn,q
ξ2

n,p
,

(15.4)

where ξn,p and ξn,q are the simultaneous displacements
of the nth mode at the points p and q, with identical
stored modal energy 1/2mn,pω

2ξ2
n,p = 1/2mn,qω

2ξ2
n,q .

Equation (15.4) illustrates the principle of reci-
procity in acoustics, which states that the motion at
a point p induced by a force at q is identical to the mo-
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tion at q induced by the same force at p. Equation (15.4)
also shows that, by applying a force at a particular posi-
tion and measuring the induced motion (amplitude and
phase) at a large number of different points p(x, y, z)
on the structure, it is possible to map out the ampli-
tude of the modal vibrations ξn(x, y, z) over the whole
of any excited structure. Alternatively, the measurement
point can be fixed and the excitation point moved across
the structure. This is the basis of the powerful tech-
nique of modal analysis, which has been widely used
to investigate the vibrational modes of many stringed
and percussion instruments, as described by Rossing in
Chap. 28 of this Handbook.

It also follows from (15.4) that a particular mode
of vibration will never be excited if the driving force is
located at a node of its vibrational state. This has impor-
tant consequences for the spectrum of sound produced
by bowed, plucked and struck stringed instruments and
all percussion instruments.

Time-Domain Measurements
The vibrational characteristics of an instrument can also
be investigated in the time domain. For example, by
striking a stringed instrument with a light hammer or
exciting the vibrational modes of a woodwind or brass
instrument with a short puff of air, the frequencies of
free vibration of the vibrational modes and their damp-
ing can be determined from their time-dependent decay.
Provided the damping is not too strong (Q � 1), the
modes will decay with time as

ξn(t) = ξ0 e−t/τn eiωn t , (15.5)

where τn = 2Qn/ωn = Qn/π fn . The frequency fn of
a given mode can be determined from its inverse period
and Qn from π× the number of periods for the ampli-
tude to fall by the factor exponential e. The Q-value
of strongly excited modes of a musical instrument can
be estimated from τ60dB = 13.6τ , the Sabine decay time
(Chap. 10 Concert Hall Acoustics). This is the perceptu-
ally significant time taken for the sound pressure to fall
by a factor of 103 – from a very loud level to just be-
ing detectable. Hence, Qn = π fnτ60/13.6≈ 0.23 fnτ60.
For example, the sound of a strongly plucked cello open
A-string (220 Hz) can be heard for at least ≈ 2 s, corre-
sponding to a Q-value of ≈ 100 or more.

Damping results in a loss of stored energy given by

dEn

dt
=− ωn

Qn
En =−2

En

τn
. (15.6)

Hence, the power P required to maintain a constant
amplitude at resonance is ωn

Qn
En , where En is the

energy stored. This tends to be the way that Q is de-
fined and measured by physicists, whereas in acoustic
spectroscopy it is more usual to define and meas-
ure Q-values from either the width of resonances in
spectroscopic measurements or from decay times af-
ter transient excitation. As illustrated above, all such
definitions are equivalent.

15.1.2 Radiation from Instruments

Although a large number of vibrational modes of a mu-
sical instrument may be excited simultaneously, they
will not be equally important in radiating sound, which
has important consequences for the quality of the sound.
This section therefore provides a brief introduction to
the radiation of sound from the vibrational modes of
musical instruments.

Sound Waves in Air
In free space, the longitudinal displacement ξ(x, t) =
ξ0 ei(ωt−kx) of plane sound waves satisfies the wave
equation

∂2ξ

∂x2
= 1

c2
0

∂2ξ

∂t2
. (15.7)

The dispersionless (independent of frequency) veloc-
ity of sound c0 =√

γ P0/ρ, where γ (≈ 1.4) is the ratio
of specific heats at constant pressure and volume, P0
(≈ 105 Pa or N/m2) is the ambient pressure and ρ
(≈ 1 kg/m3) is the density (the brackets give the values
for air at ambient pressure and temperature). The ratio
of acoustic pressure p =−γ P0∂ξ/∂x to the particle ve-
locity v= ∂ξ/∂t is referred to as the specific impedance,
z0 = p/v = ρc0.

The appearance of γ in the expression for the ve-
locity of sound reflects the adiabatic nature of acoustic
waves. This arises because acoustic wavelengths are
far too long to allow any significant equalisation of
the longitudinal temperature fluctuations arising from
the compressions and rarefactions of a sound wave. In
free space longitudinal heat flow between the fluctu-
ating regions is only important at very high ultrasonic
frequencies (MHz), where it leads to significant at-
tenuation. The major source of attenuation of freely
propagating acoustic sound waves arises from the water
vapour present. However, both viscous and transverse
thermal losses to the side walls of woodwind and brass
instruments can result in significant attenuation, as de-
scribed later.

The above expressions neglect first-order, nonlin-
ear, corrections to the compressibility, proportional to
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∂ξ/∂x, and other inertial correction terms in the nonlin-
ear Navier–Stokes equation. This approximation breaks
down at the very high intensities in the bores of the
trumpet and trombone when played very loudly [15.9],
which results in shockwave propagation, with a tran-
sition from a relatively smooth to a very brassy sound
(son cuivré in French). For the present, such corrections
will be neglected.

The speed of sound in air depends on the tempera-
ture θ (degrees centigrade) and, to a lesser extent, on the
humidity. For 50% humidity,

c0(θ) = 332 (1+ θ/273)1/2 ≈ 332(1+1.710−3θ) ,

(15.8)

giving a value of 343 m/s at 20 ◦C. Note that the air
inside a woodwind or brass instrument, once the instru-
ment is warmed up, will always be warm and humid,
which will affect the playing pitch.

Pressure and Intensity
The intensity I of sound radiated by a musical instru-
ment is given by the flow of acoustic energy (1/2ρv2

per unit volume) crossing unit area per unit time,

I = 1

2
ρc0v

2
max =

1

2
z0v

2
max =

1

2z0
p2

max . (15.9)

Sound pressure levels (SPL) are measured in dB rela-
tive to a reference sound pressure p0 of 2 × 10−5 Pa or
N/m2, so that SPL(dB) = 20 log10(p/p0). The reference
pressure is approximately equal to the lowest level of
sound that can be heard at around 1–3 kHz in a noise-
free environment. Relative changes in sound pressure
levels are given by 20 log10(p1/p2) dB. A sound pres-
sure of 2 × 10−5 Pa is very close to an intensity of
I0 = 10−12 W/m2, which is used to define the almost
identical intensity level, IL(dB) = 10 log10(I/I0). The
difference between the factor 10 and 20 arises because
sound intensity is proportional to the square of the
sound pressure.

Spherical Waves
In free space, sound from a localised source will
propagate as a spherical wave satisfying the three-
dimensional wave equation (Fletcher and Ross-
ing [15.5, Sect. 6.2]), with pressure

p(r) = A
ei(ωt−kr)

r
(15.10)

and particle velocity

v(r) = A

z0

(
1+ 1

ikr

)
ei(ωt−kr)

r
. (15.11)

Near and Far Fields
Note that, unlike plane-wave solutions, the velocity and
pressure differ in phase by an amount that depends on
the distance from the source and the wavelength. Close
to the source, in the near field (kr 
 1), the pressure and
induced velocity are in phase quadrature. Such terms
therefore involve no work being done (proportional to∫

pvdt) and hence no radiation of sound. The near-field
term describes the motion of the air that is forced to
vibrate backwards and forwards with the vibrating sur-
face of the source, which simply adds inertial mass to
the vibrating mode. This term is responsible for the end
correction (ΔL ≈ a, where a is the pipe radius), which
extends the effective length of an open-ended vibrat-
ing air column. The additional inertial mass also lowers
the vibrational frequency of the relatively light vibrating
membranes of a stretched drum skin.

In contrast, in the far field (kr � 1), the pressure is
in phase with the velocity, so that work is done on the
surrounding gas. This accounts for the fact that sound
radiation varies in intensity as 1/r2.

The transition from the near- to far-field regions oc-
curs when r ≈ λ/2π, where λ is the acoustic wavelength
of the radiated sound. At 340 Hz, this corresponds to
a distance of only ≈15 cm. The difference in the fre-
quency dependencies of the near- and far-field sound
means that a violinist or piccolo player, with their ears
relatively close to the instrument, experiences a rather
different sound from that heard by the listener in the
far field. However, for most musical instruments, the
distance between the source of radiated sound and the
player’s head is already at least λ/2, so that even the
player is in the far field (kr > 1), at least for the high-
frequency partials of a musical tone.

Directionality and Multipole Sources
At very low frequencies, the acoustic wavelength λ is
often considerably larger than the physical size of the
radiating source (e.g. the open ends of woodwind and
brass instrument bores and the body of most stringed
instruments), which can then be considered as a point
source radiating isotropically into space. However, as
soon as the wavelength becomes comparable with the
size of the radiating source, the radiated sound will ac-
quire directional properties determined by the geometry
of the instrument and the vibrational characteristics of
the excited modes. The directional properties can then
be described by treating the instrument as a superposi-
tion of monopole, dipole, quadrupole and higher-order
multipole acoustic sources, with the directional radiat-
ing properties shown schematically in Fig. 15.2.
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Fig. 15.2a–c Typical radiation patterns and intensities for
(a) monopole, (b) dipole and (c) quadrupole sources. The
two colours represent monopole sources and sound pres-
sures of opposite signs

A monopole source can be considered as a pulsating
sphere of radius a with surface velocity veiωt result-
ing in a pulsating volume source 4πa2veiωt = Q eiωt .
Equations (15.10) and (15.11) describe the sound field
generated by such a source. Equating the velocities on
the surface of the sphere to that of the induced air mo-
tion gives, at low frequencies such that ka 
 1,

p(r, t) = iωρ

4πr
Q ei(ωt−kr) . (15.12)

The radiated power P is then given by 1
2 p2/ρc0 inte-

grated over the surface of a sphere at radius r, so that

P(ka 
 1) = ω
2ρQ2

8πc0
. (15.13)

In the high-frequency limit (ka � 1), when the acoustic
wavelength is much less than the size of the sphere,

P(ka � 1) = ρc0

8πa2
Q2 = 4πa2 1

2
z0v

2 . (15.14)

Equation (15.12) is a special case of the general re-
sult that, at sufficiently high frequencies such that the
size of the radiating object � λ, the radiated sound is
simply 1

2 z0v
2 per unit area, though the sound at a dis-

tance also has to take into account the phase differences
from different parts of the vibrating surface. Note that

P(ka 
 1)

P(ka � 1)
= (ka)2 . (15.15)

The radiated sound intensity from a monopole source
therefore initially increases with the square of the fre-

quency but becomes independent of frequency above
the crossover frequency when ka> 1. Hence members
of the violin family and guitar families are rather poor
acoustic radiators for the fundamental component of
notes played on their lowest strings, as are wind and
brass instruments, which radiate sound from the rela-
tively small open ends and side holes. However, it is
only because of such low radiation efficiencies, that
strong resonances can be excited in the air columns of
brass and woodwind instruments.

A dipole source can be formed by displacing two
oppositely signed monopoles±Q a short distance along
the x-, y- or z-directions. For a dipole aligned along
the x-axis of strength qx = QΔx. The sound pressure
is simply the difference in pressure from monopoles of
opposite sign a distance Δx apart, so that in the far field
(kr � 1)

p(θ)dipole = p(θ)monopole × (ikΔx) cos θ . (15.16)

A polar plot of the sound pressure from a dipole is il-
lustrated schematically in Fig. 15.2, with intensity and
radiated power now proportional to ω4 and q2

x . In gen-
eral, any radiating three-dimensional object will involve
three dipole components (px , py and pz), with radiation
lobes along the three directions.

A quadrupole source is generated by two oppo-
sitely signed dipole sources displaced a small distance
along the x- ,y-, or z-directions (e.g. of the general
form qxy = QΔxΔy). The pressure is now given by
the differential of the dipole radiation in the newly dis-
placed direction, so that, for example, the pressure from
a quadrupole source qxy in the xy-plane is given by

pdipole = pmonopole × (−k2ΔxΔy) cos θ sin θ ,

(15.17)

as illustrated in Fig. 15.2. Note that each time the order
of the multipole source increases, the radiated pres-
sure depends on one higher power of frequency, while
the intensity increases by two powers of the frequency.
The radiated power from multipole sources therefore
decreases dramatically at low frequencies relative to
that of a monopole source. At low frequencies, radi-
ation from most musical instruments is dominated by
monopole components.

In general, six quadrupole sources (qxx, . . . , qyz)
would be required to describe radiation from a three-
dimensional source. However, because the acoustic
power radiated by a quadrupole source at low frequen-
cies is proportional to ω6, one need often only consider
the monopole and three dipole components to describe
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574 Part E Music, Speech, Electroacoustics

the low-frequency radiation pattern of instruments like
the violin and guitar family, as described in a recent
study of the low-frequency radiativity of a number of
quality guitars by Hill et al. [15.10]. However, at high
frequencies, when λ is comparable with or less than the
size of an instrument, the above simplifications break
down. The directionality of the radiated sound then has
to be computed from the known velocities over the
whole surface, taking into account phase differences
and baffling effects from the body of the instrument.

Radiation from Surfaces
Many musical instruments produce sound from the vi-
brations of two-dimensional surfaces – like the plates
of a violin or the stretched membrane of a drum. Imag-
ine first a standing wave set up in the two-dimensional
xy-plane with displacements in the z-direction vary-
ing as sin(kx x)eiωt . We look for propagating sound
waves solutions radiating from the surface of the form
sin(kx x)ei(ωt−kz z), which must satisfy the wave equation
and hence the relationship,

k2
z =

ω2

c2
0

− k2
x = ω2

(
1

c2
0

− 1

c2
m

)
, (15.18)

where cm is the phase velocity of transverse waves on
the membrane or plate in the xy-plane. Sound will there-
fore only propagate away from the surface (k2

z > 0)

0 10 (Hz)5 0 10 (Hz)5

a)

1 period

b)

1 period

2.2 s

Fig. 15.3a,b Comparison of the envelope, repetitive waveform and spectrum of (a) a synthesised sawtooth and (b) a note
played on an oboe

when cm > c0. If the sound velocity is greater than
the phase velocity in the plate or membrane, energy
will flow from regions of positive to negative vertical
displacements and vice versa, with an exponentially de-
caying sound field, varying as e−z/δ where δ= |kz|−1.

Typical dispersionless wave velocities for the
stretched drum heads of timpani are around 100 m/s
(Fletcher and Rossing [15.5, Sect. 18.1.2]), so that they
are not very efficient radiators of sound. This is par-
ticular relevant for asymmetrical modes, when sound
energy can flow from the regions of positive to negative
displacement and vice versa. However, for even modes,
the cancellation between adjacent regions moving out
of phase with each other can never be complete, so that
such modes will radiate more effectively.

A particularly interesting case occurs for stringed
instruments, where the phase velocity of the transverse
vibrations of the thin front and back plates increases
with frequency as ω1/2 (Sect. 15.2.6). Hence, below
a critical crossover or coincidence frequency, when the
phase velocity in the plates is less than the speed of
sound in air, standing waves on the vibrating plates are
relatively inefficient radiators of sound, while above the
crossover frequency the plates radiate sound rather effi-
ciently. Cremer [15.11] estimates the critical frequency
for a 4 mm-thick cello plate as 2.8 kHz; for a 2.5 mm
violin plate the equivalent frequency would be ≈ 2 kHz.
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Radiation from Wind Instruments
The holes at the ends or in the side walls of wind instru-
ments can be considered as piston-like radiation sources.
At high frequencies, such that ka � 1, where a is their
radius, the holes will be very efficient radiators radiating
acoustic energy ≈ 1/2z0v

2 per unit hole area. How-
ever, over most of the playing range ka 
 1, so that the
radiation efficiency drops off as (ka)2, just like the spher-
ical monopole source. Most of the sound impinging on
the end of the instrument is therefore reflected, so that
strong acoustic resonances can be excited, as discussed
in the later section on woodwind and brass instruments.

15.1.3 The Anatomy of Musical Sounds

The singing voice, bowed string, and blown wind in-
struments produce continuous sounds with repetitive
waveforms giving musical notes with a well-defined
sense of musical pitch. In contrast, many percus-
sion instruments produce sounds with nonrepetitive
waveforms composed of a large number of unrelated
frequencies with no definite sense of pitch, such as
the side drum, cymbal or rattle. There are also other
stringed instruments and percussion instruments, such
as the guitar, piano, harp, xylophone, bells and gongs,
which produce relatively long sounds, where the slowly
decaying vibrations produce a definite sense of pitch.

In all such cases, the complexity of the waveforms
of real musical instruments distinguishes their sound
from the highly predictable sounds of simple electronic
synthesisers. This is why the sounds of computer-
generated synthesised instruments lack realism and are
musically unsatisfying. In this section, we introduce the
way that sound waveforms are analysed and described.

Sinusoidal Waves
The most important, but musically least interesting,
waveform is the pure sinusoid. This can be expressed
in several alternative forms,

a cos(2π ft+φ) = a cos(ωt+φ) = Re(a eiωt) ,

(15.19)

where a is in general complex to account for phase, f is
the frequency measured in Hz and equal to the inverse of
the period T , ω= 2π f is the angular frequency meas-
ured in radians per second, t is time, and φ is the phase,
which depends on the origin taken for time.

Any sound, however complex, can be described
in terms of a superposition of sinusoidal waveforms
with a spectrum of frequencies. Figure 15.3 contrasts
the envelopes, waveforms and spectra of a synthesised

sawtooth waveform and the much more complex and
musically interesting waveform of a note played on the
oboe ( provides an audio comparison). Note
the much more complex fluctuating envelope and less
predictable amplitudes of the frequency components in
the spectrum of the oboe.

As we will show later, in defining the sound and
quality of any musical instrument, the shape and fluc-
tuations in amplitude of the overall envelope are just as
important as the waveform and spectrum.

Range of Hearing and Musical Instruments
A young adult can usually hear musical sounds from
around 20 Hz to 16 kHz, with the high-frequency
response decreasing somewhat with age (typically
down to between 10–12 kHz for 60-year olds). Au-
dio provides a sequence of 1 s-long sine
waves starting from 25 Hz to 12.8 kHz, doubling in
frequency each time. Doubling the frequency of a sinu-
soidal wave is equivalent in musical terms of increasing
the pitch of the note by an octave. Audio is
a similar sequence of pure sine waves from 8 kHz to
18 kHz in 2 kHz steps. Any loss of sound at the low fre-
quencies in will almost certainly be due to
the limitations of the reproduction system used, which
is particularly poor below ≈ 200 Hz on most PC lap-
tops and notebooks, while the decrease in intensity at
high frequencies in simply reflects the loss
of high-frequency sensitivity of the ear (see Fig. 15.16
and Chap. 13 for more details on the amplitude and fre-
quency response of the human ear).

The above sounds should be compared with the
much smaller range of notes on a concert grand piano,
typically from the lowest note A0 at 27.5 Hz to the high-
est note C9 at 4.18 kHz, as illustrated in Fig. 15.4. The
nomenclature for musical notes is based on octave se-
quences of C-major scales with, for example, the note
C1 followed by the white keys D1, E1, F1, G1, A1,
B1, C2, D2,. . . . Alternatively, the octave is indicated by
a subscript (e.g. A4 is concert A). Where the white notes
are a tone apart, a black key is inserted to play the semi-
tone between the adjacent white keys. This is indicated
by the symbol # from the note below or & from the note
above. Figure 15.4 also illustrates the playing range of
many of the instruments to be considered in this chapter.

Frequency and Pitch
It is important to distinguish between the terms fre-
quency and pitch. The frequency of a waveform is
strictly only defined in terms of a continuous sinusoidal
waveform. In contrast, the waveforms of real musical
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Harp

Octave

A0 C1 A1 C2

1 2 3 4 5 6 7

A2 C3 A3 C4 A4 C5 A5 C6 A6 C7 A7 C8D E F G

27.5 55 110 220 440 880 1760 3520
33 66 132 264 528 1056 2112 4224

Guitar

Violin

Viola

Cello

Bass

Piccolo

Flute

Oboe

Cor-anglais

B-flat clarinet

Bass clarinet

Bassoon

Contra

Cornet

Trumpet

Bass trumpet

Trombone

Bass trombone

Middle C Concert A

B

Fig. 15.4 Notation used for notes of the musical scale and the playing range of classical western musical instruments.
Subdivisions for stringed instruments represent the tuning of the open strings

instruments are in general complex, as illustrated by
the oboe waveform in Fig. 15.3. However, despite such
complexity, the repetition frequency and period T can
still be defined provided the waveform does not vary
too rapidly with time. The periodicity of a note (meas-
ured in Hz) can then be defined as the inverse of T .
This is generally the note that the player reads from
the written music. However, as described later, a repeti-
tive waveform does not necessarily include a sinusoidal
component at the repetition frequency, an effect referred
to as the missing fundamental. Furthermore, depending
on the strength of the various sinusoidal components
present, there can often be an ambiguity in the pitch of
a note perceived by the listener. The subjective pitch,
when matched against a pure sinusoidal wave, can of-
ten be an octave below or above the repetition frequency.

The subjective pitch, as its name implies, can differ from
person to person and within the musical context of the
note being played.

Musical Intervals and Tuning
In western music the octave interval is divided into six
tones (a whole-tone scale) and 12 semitones (the chro-
matic scale). Today, an equal temperament, logarithmic
scale is used to tune a piano, with a fractional increase
in frequency of 21/12 = 1.059 (≈ 6%) between any two
notes a semitone apart. The fractional increase between
the frequencies of a given musical interval (a given
number of semitones) is then always the same, whatever
the starting note. Twelve successive semitones played
in sequence therefore raises the frequency by an octave
((21/12)12 = 2). Any music played on the piano key-
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board can therefore be transposed up or down by a given
number of semitones, changing the pitch but leaving the
relationship between the musical intervals unchanged.
Such a scale was advocated as early as 1581, in a treatise
by the lutenist Vincenzo Galileo (the father of Galileo
Galilei). Although it is sometimes claimed that Bach
exploited such a tuning in his 48 Preludes and Fugues,
which uses all possible major and minor keys of the di-
atonic scale, historical research now suggests that Bach
used a form of mean-tone tuning, which preserved some
of the characteristic qualities of music written in partic-
ular keys [15.1].

To provide a greater discrimination in the meas-
urements of frequency, the semitone is divided into 100
further logarithmic increments called cents. The octave
is therefore equivalent to 1200 cents and a quarter-tone
to ≈ 50 cents, with the exact relationship between fre-
quencies given by

interval = 1200

ln 2
ln( f2/ f1) cents (15.20)

corresponding to ≈ 1.73 × 103(Δ f/ f ) cents for small
fractional changes Δ f/ f .

Early musical scales were based on various variants
of the natural harmonic series of frequencies, fn = n f1,
where n is an integer (e.g. 200, 400, 600, . . . 1600 Hz),
illustrated by the audio . These notes corre-
spond to the harmonics produced when lightly touching
a bowed string at integral subdivisions of its length (1/2,
1/3, 1/4, etc.) . These simple divisions give
successive musical intervals of the octave, perfect fifth,
perfect fourth, major third and minor third, with fre-
quency ratios 2/1, 3/2, 4/3, 5/4 and 6/5, respectively.
The seventh member of the harmonic sequence has no
counterpart in traditional western classical music, al-
though it is sometimes used by modern composers for
special effect [15.12].

Just temperament corresponds to musical scales
based on these integer fraction intervals. The Pythag-
orean scale is based on the particularly consonant
intervals of the octave (2/1) and perfect fifth (3/2),
which can be used to generate individual intervals of
the form 3p/2q or 2p/3q , where p and q are positive
integers. Although the Pythagorean and just-tempered
scales coincide for the octave, perfect fifth and fourth,
there are musically significant differences in the tun-
ing for all other defined intervals, and all intervals other
than the octave differ slightly from those of the equally
tempered scale. A comparison between the musical in-
tervals of just and equal temperament tuning is shown
in Table 15.1, with the fractional mistuning indicated

Table 15.1 Principal intervals and differences between
just- and equal-temperament intervals

Interval Just Equal Δ f/ f
Just-equal cents

Octave 2/1 2.00 0

Perfect fifth 3/2 27/12 = 1.498 +2

Perfect fourth 4/3 25/12 = 1.334 −2

Major third 5/4 24/12 = 1.260 −13

Minor third 6/5 23/12 = 1.189 +15

Tone 9/8 22/12 = 1.122 −4

Semitone 16/15 21/12 = 1.066 +1

in cents. Because of the differences in tunings of the
musical intervals, music transposed from one key to
another will generally sound badly out of tune (partic-
ularly for commonly used intervals like the major and
minor third) – unlike those played on a modern equal-
tempered keyboard. Prior to the now almost universal
practice of tuning keyboard instruments to a equal-
tempered scale, many tuning schemes were devised
which partially overcame the problems of tuning when
playing in a succession of different keys (see Fletcher
and Rossing [15.5, Sect. 17.6] and Barbour [15.13]
for further discussion). Singers, stringed and wind in-
strument players can adjust the pitch of the notes they
produce to optimise the tuning with other performers
and for musical effect.

Figure 15.5 and audio illustrate the dif-
ference in the sounds of a major triad formed from the
just intervals (1, 5/4, 3/2) and the equivalent equal-
tempered scale intervals (1 : 1.260 : 1.498). The rational
Pythagorean intervals give a repetitive waveform of
constant amplitude, while the less-consonant, inhar-
monic, equal-tempered intervals have a nonrepetitive

Fig. 15.5 Wave envelope of a major triad chord based on
the just tuning scale followed by the same chord on the
equal-tempered scale, with pronounced beats in the ampli-
tude arising from the departures from harmonicity in the
frequencies of the major third and perfect fifth
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waveform with an easily discernable periodic beat in
amplitude resulting from the departures in harmonicity
of its component frequencies, as illustrated in Fig. 15.5.
Interestingly, the pitch of the equally tempered intervals
also sounds slightly higher, though both share the same
fundamental.

A sequence of upward fifths (frequency ratio 3/2)
and downward octaves (ratio 1/2) can be used to fill
in all the semitones of an octave scale on the piano
keyboard. However, the resulting octave formed from
a succession of 12 upward fifths and six downward
octaves gives a frequency ratio of (3/2)12/26 = 2.027,
which is significantly sharper (higher in frequency)
than a true octave. In practice, a skilled piano tuner
listens to the beats produced when playing the above in-
tervals and tunes the upward fifth slightly flat, so that the
sequence returns to the exact octave. However, there are
striking psychoacoustic effects, in addition to physical
shifts in the frequencies of upper partials arising from
the finite rigidity of the strings, which result in pianos
being tuned on a slightly stretched tuning scale with the
octaves purposely tuned sharp at higher frequencies and
flat at lower frequencies (Fletcher and Rossing [15.5,
Sect. 12.8]).

Repetitive Waveforms
Before considering the more complex waveforms of
musical instruments, we consider the simple square, tri-
angular, sawtooth and triangular repetitive waveforms
(audio ) and the corresponding Fourier spec-
tra illustrated in Fig. 15.6.

Fourier Theorem
Fourier showed that any repetitive waveform, f (t+nT )
= f (t), can be described as a linear combination of si-
nusoidal components with frequencies that are exact
multiples of the inverse repetition period T or physi-
cal pitch of the wave. This is formally expressed by the
Fourier theorem,

f (t) =
∞∑

n=−∞
cn einω1t , (15.21)

where ω1 = 2π/T and

cn = 1

T

T∫

0

f (t)e−iωt dt , (15.22)

where n takes on all positive and negative integer val-
ues. The Fourier coefficients cn can be evaluated by
performing the integral over any single period of the
waveform. In general, the Fourier coefficients will have
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Fig. 15.6 Typical repetitive waveforms (synthesised from
the first 100 components of a Fourier series) and the am-
plitudes of the first few partials normalised to the amplitude
of the fundamental

both real and imaginary components describing both the
amplitude and phase.

For simple waveforms, such as the square, sawtooth
and triangular waveforms, the origin of time can be cho-
sen to make the waveforms symmetric or antisymmetric
in time. The Fourier expansion can then be expressed in
terms of the even cosine or odd sine functions,

f (t) =
∞∑

n=0

⎧
⎪⎨

⎪⎩

an sin(nω1t)

or

bn cos(nω1t)

⎫
⎪⎬

⎪⎭
, (15.23)

with corresponding coefficients given by
(

an

bn

)
= 2

T

T∫

0

f (t)

(
sin(nω1t)

cos(nω1t)

)
dt , (15.24)

where n is now restricted to positive integer values.
The factor 2 is replaced by unity for the zero frequency
average component b0.

The first few terms of the square, sawtooth and trian-
gular waveforms are listed in Table 15.2. The origin of
time has been selected to make the waves odd-functions
of time, as illustrated in Fig. 15.6, with the Fourier
series only including sine terms. The Fourier compo-
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nents at integral multiples of the fundamental repetition
frequency are referred to as partials, harmonics, or over-
tones. The nth partial has a frequency fn = n f1. This
differs from the terminology used by musicians, who re-
fer to f2 as the first harmonic or overtone. Interestingly,
a waveform depends critically on the sign (phase) of the
individual Fourier components. In contrast, the ear is
largely insensitive to the phase of the individual partials,
with little change in the perceived sound when the sign
or phase of a component partial is changed, though the
waveforms will be very different.

For an arbitrarily chosen origin of time, the Fourier
expansion will include both sine and cosine terms. The
energy or intensity is proportional to the resultant am-
plitudes squared, a2

n +b2
n , which is independent of the

origin of time. The phase φn is given by tan−1(bn/an).
The spectrum of a waveform is often plotted in terms of
the modulus of the amplitude as a function of frequency,
without reference to phase, as in Fig. 15.6. However,
measurements of both amplitude and phase are impor-
tant in any detailed comparison with theoretical models
and in analytic measurements, such as modal analysis.

The square and sawtooth waveforms are closely re-
lated to the waveforms excited on bowed and plucked

Clarinet
D4 #

(ms)
0 25

1

0.5

0

–0.5

–1
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0 2000
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0.5

0
500 1000 1500
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G3

(ms)
0 25

1

0.5

0

–0.5

–1
5 10 15 20
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1

0.5

0
500 1000 1500

Fig. 15.7 Short-period samples of clarinet (D#4) and bowed violin (G3) tones and the corresponding Fourier spectra. The
vertical scales are linear

Table 15.2 Fourier expansions of the square, sawtooth and triangu-
lar waveforms

Square
4

π

(
sinω1t+ 1

3
sin 3ω1t+ 1

5
sin 5ω1t . . .

)

Sawtooth
2

π

(
sinω1t− 1

2
sin 2ω1t+ 1

3
sin 3ω1t− 1

4
sin 4ω1t . . .

)

Triangular
2

π

(
sinω1t− 1

32
sin 3ω1t+ 1

52
sin 5ω1t . . .

)

strings and loudly played notes on wind and brass in-
struments. The discontinuities in waveform generate
a very rich harmonic spectrum with Fourier components
or partials that decrease relatively slowly (as 1/n) with
increasing n. The strong higher partials give a much
harsher and more penetrating sound than simple sinu-
soids, which is why the oboe, which has a sound that is
very rich in higher partials, is used to sound concert A
when an orchestra tunes up. In contrast, the partials of
the triangular wave, with discontinuities in slope in-
stead of amplitude, decrease more rapidly as 1/n2, with
a resultant sound little different from that of a simple
sinusoidal wave.

Note the large difference between the sound of
a sawtooth waveform, which is closely related to the
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sound of an oboe in having a complete set of harmonic
components, and the hollow sound of the square wave-
form, which is more like the sound of the lowest notes
on a clarinet, with rather weak even-integer harmonics
or overtones on its lowest notes (Fig. 15.7).

Musical Waveforms and Spectra
The waveforms produced by musical instruments are
generally far more complicated than the above sim-
ple examples, as already illustrated for an oboe note
in Fig. 15.3. Waveforms and associated spectra of the
clarinet note D#4 (309 Hz) and the violin bowed open-
G-string G3 (195 Hz) are illustrated in Fig. 15.7. These
are simply representative waveforms. Unlike the im-
pression given in some elementary textbooks, there is
no such thing as a defining violin or clarinet wave-
form or spectrum. Both the waveforms and the spectra
change significantly from one note to the next – and
even within a note when played with vibrato, particu-
larly on stringed instruments. Despite the complexity
of the waveforms, any repetitive waveform can be de-
scribed as a linear superposition of sine waves, with
frequencies that are integer multiples of the fundamen-
tal, as illustrated by the spectra.

Plotting the amplitudes of the Fourier coefficients
on a linear scale often highlights the physical processes
involved in the production of the sound. For example,
the relatively small amplitudes of the second harmonic
or partial in the sound of the clarinet reflects the absence
of even-n modes of a cylindrical tube closed at one end,
which approximates to that of the clarinet. Similarly,
the small amplitude of the first partial in the sound of
a violin reflects the absence of efficient radiating modes
at low frequencies. However, because of the very wide
dynamic range of hearing (a factor of ≈ 1010 –1012 in
intensity), it is often more appropriate to plot the Fourier
coefficients in decibels on a logarithmic scale. Fig-
ure 15.8 shows the spectrum for clarinet and violin notes
re-plotted on a dB scale, which illustrates the strength
of all the partials over a very wide dynamical range. For
bowed instruments such as the cello, well over 40 har-
monic partials can be identified below 8 kHz. The sound
of an instrument will be determined by all such compo-
nents and not simply by the fundamental, which may
make a relatively small contribution to the perceived
sound. This is illustrated for a scale played on the violin
with each note first played as recorded and then with the
fundamental component removed by a digital filter (au-
dio ). The lowest notes of the scale, for which
the fundamental component is already very weak, are
little affected by the removal of the fundamental com-
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–40

–60
1 2 3
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(kHz)
0 4
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–40

–60
1 2 3

Violin G4

Fig. 15.8 Typical spectra for a clarinet and violin note plot-
ted on a dB scale illustrating the large number of harmonics
or overtones excited by bowed and blown instruments

ponent; however, the sound gets progressively thinner
in the second half of the scale for notes for which the
fundamental partial makes an increasingly significant
contribution to the richness or warmth of the sound.

Transient and Non-Repetitive Tones
No musical note lasts for ever, so that musical sounds
are all, to some extent, transient. Moreover, the sound
of many percussion instruments is composed of many
strongly inharmonic partials, with no regime in which
the waveforms can be considered even quasi-repetitive.
Nevertheless, one can still use the Fourier theorem to
extract the spectrum of such a note, by considering each
transient signal as one of a sequence of such transients
repeated, say, every second, minute or even year. The
spectrum of such a repeated waveform will therefore in-
volve frequency components at integer multiples of the
inverse repetition period, which we can make as long
as we choose. In the limit of infinitely long repetition
times, the Fourier series of a nonrepeating waveform
can therefore be replaced by a continuous spectral dis-
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tribution over all possible frequencies, known as the
Fourier transform F(ω),

f (t) =
∞∫

−∞
F(ω)eiωt dt , (15.25)

where

F(ω) = 1

2π

∞∫

−∞
f (t)e−iωt dt . (15.26)

The Fourier transform spectra of important nonrepet-
itive waveforms are shown in Fig. 15.9. In all cases,
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f0= 1/τ
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Fig. 15.9 Fourier transforms of transient waveforms
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Fig. 15.10 Envelope, typical short-period waveform and spectrum for the sounds of a ratchet, cymbal and timpani

the width Δ f of the Fourier spectrum is inversely pro-
portional to the length τ of the input waveform, with
Δ f τ ≈ 1. For a rectangular pulse, the spectrum ex-
tends over a rather wide frequency range with the first
zero when f τ = 1, but with many ripples of decreas-
ing amplitude extending to higher frequencies. For an
impulse of negligible width (the delta-function), the
spectrum is flat out to very high frequencies. The spec-
trum of a Gaussian waveform varying as exp[−(t/τ)2]
is also a Gaussian proportional to exp[−(π f τ)2], with
a width Δ f = 1/πτ . Similarly, the spectrum of a sinu-
soidal waveform with a Gaussian envelope of width τ is
broadened by Δ f = 1/πτ .

Any waveform that involves variations on a time
scale τ will have Fourier components extending out to
frequencies ≈ 1/τ . To reproduce such waveforms faith-
fully, the bandwidth of any recording or reproduction
system must therefore extend to frequencies of at least
1/τ . Examples of nonrepetitive waveforms and their
associated spectra are illustrated in Fig. 15.10 for an
orchestral rattle, a cymbal crash and timpani.

The ratchet sound consists of a sequence of short
clicks illustrated by the selected short-section wave-
form. The spectrum is very broad with no individual
frequencies particularly dominant. The crash of a cym-
bal generates a very large number of very closely spaced
resonances, which appear as a fairly random set of
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peaks giving an overall broadband spectrum. The tim-
pani spectrum shows a small number of large peaks
corresponding to the prominent modes of vibration of
the drum head, superimposed on a very wide-band
spectrum largely associated with the initial transients
involving sound from all parts of drum.

Digital Recording
Nowadays almost all sound is recorded digitally using
an analogue-to-digital converter (ADC). This converts
the continuously varying analogue input signal into
a stream of numbers, which can be recorded digitally on
a computer or compact disc. Audio signals are typically
recorded at a sampling rate of 44.1 kHz with 16-bit reso-
lution corresponding to 1 part in 216. This allows signals
to be recorded in 65 536 equally divided levels between
the maximum positive and negative input signals (i. e.
between ±32.8 k levels).

For the highest-quality digital recordings, even
faster recording rates with higher-bit resolution are
used (typically 24-bit sampling at 96 kHz). This al-
lows for over-sampling of the recorded signal, so that
signals can be averaged, any errors detected and elim-
inated, and filtered more easily. As already noted, the
dynamic range of human hearing can be as large as
100 dB. To exploit such a large range and to capture
the details of both loud and soft sounds from a large
orchestra accurately requires the recording system to
have a large dynamic range. Table 15.3 shows the
dynamic range in terms of the number of bits used
to record the sound. Audio illustrates the
greatly enhanced signal-to-noise ratio and hence in-
creased dynamic range when sound is recorded at 16-bit
rather than 8-bit resolution.

Aliasing
When sound is recorded digitally, ambiguities can arise
when any of the input frequencies is larger than half
the sampling rate fD. This is known as the Nyquist
limit fNyquist = fD/2. For example, if a 2 kHz sine wave
were to be sampled at 2 kHz, the digital signal would
be recorded at exactly the same point of the waveform
each cycle. The recorded digital signal would then be

Table 15.3 Dynamic range of an analogue-to-digital con-
verter (ADC)

N-bit ADC Dynamic range ±2n−1 Dynamic range (dB)

8 bit 128 42

16 bit 32.8 k 90

24 bit 8.39 M 138

indistinguishable from a DC signal. It can easily be
shown that sinusoidal inputs at fNyquist+Δ f give the
same digital output as at fNyquist−Δ f and that the
recorded signal is the same for all frequencies differ-
ing in frequency by the digitising frequency, 2 fNyquist.
Thus for a steadily increasing input frequency the dig-
ital output is equivalent to that of a frequency which
first increases up to fNyquist then decreases to zero
when fin = fD = 2 fNyquist, with the process repeating
for higher input frequencies, as illustrated in Fig. 15.11.
In any replay system, an analogue output is gener-
ated that assumes a smooth curve between the sampled
points. Hence, recorded frequencies above the Nyquist
limit will be misinterpreted and will produce sounds be-
low fNyquist with no harmonic relevance to the original
input.

This ambiguity is illustrated in audio , in
which a sinusoidal input is swept in frequency from
200 Hz to 6 kHz. This is first recorded at 22.05 kHz,
when aliasing is not a problem, and then at 6 kHz,
when halfway through the increasing frequency signal,
at 3 kHz, the replayed sound starts to descend to zero
frequency at the end of the sweep, when the input sig-
nal has the same frequency as the sampling rate. The
single-frequency sweep is then followed by an ascend-
ing major triad (with intervals in the ratios 1 : 5/4 : 3/2)
recorded at 6 kHz, which illustrating the severe prob-
lems of aliasing in terms of musical harmonies, as soon
as any of the higher-frequency components in a signal
exceed the Nyquist limit, with the frequency of some
partials ascending while others are descending.

To avoid such problems, a high-frequency cut-off
input filter is generally used, with a cut-off frequency
slightly below the Nyquist frequency (see Chap. 14 by
Hartmann for further details).

fequiv

fNyquist 2fNyquist 3fNyquist finput

Fig. 15.11 Ambiguity of digital output for a steadily in-
creasing frequency exceeding the Nyquist limit
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Table 15.4 Decoded WAVE file information

Data provided Typical example

Mono (1), stereo (2) 2

Data acquisition rate 2.205 × 104

Resolution in bits 16

Data per second 4.41 × 104

First measurement from left channel 237

Simultaneous measurement −1356

from right channel

Second measurement from left channel 456

Simultaneous measurement −1972

from right channel

Repeated sequence until end . . .

of recorded sound

Sound File Formats
A sound signal is frequently recorded and stored as an
encoded WAVE file of the generic form *.wav, which
includes additional information on data acquisition rate,
stereo or mono format and bit resolution. The decoded
structure of a WAVE file is shown in Table 15.4.

Recording audio signals as WAVE files is very
expensive in memory, with 1 hour of stereo music
recorded at 22 kHz requiring ≈ 300 MB. Music files on
CDs are encoded so that the input is redistributed over
time and therefore over the surface of the disc. This en-
ables the original signal to be reproduced even in the
presence of dust, scratches and other small imperfec-
tions on the disc surface, eliminating the clicks that
were a familiar feature of older vinyl records. More so-
phisticated, adaptive, encoding schemes can be used to
significantly reduce the amount of memory used, such
as the now widely used mp3 format. An algorithm is
used, based on physical principles and on the way the
ear responds to musical sounds, to continuously anal-
yse and process the incoming data. The input data can
then be recorded using a much reduced number of bits,
in much the same sort of way that digital pictures are
encoded more efficiently in ZIP files and compact im-
age formats. The information used to encode the digital
signal is also recorded, so that the processed data can
be unscrambled on playback with relatively little loss in
perceived quality.

Discrete Fourier Transform
The digital form of the recorded data allows cer-
tain computational efficiencies in calculating the
Fourier spectrum. Consider a recorded sample of
N measurements, corresponding to a sample of length
Ts = N/ fD. To calculate the spectrum, this data set is

assumed to repeat indefinitely, to form a continuous
waveform with a repetition frequency. From the Fourier
theorem, the resulting spectrum is composed of Fourier
components that are exact multiples of the repetition
frequency, so that fn = n/Ts. Hence, a 1 s set of data
points will give a discrete Fourier spectrum with fre-
quencies at 1, 2, . . .n. . .Hz. In practice, the number of
Fourier components is limited to N/2, because each
component has both an amplitude and a phase, which
requires at least two independent measurements to be
made per Fourier component.

Windowing Functions
Using the sampled waveform to form a continuously re-
peating waveform will, in general, introduce a repeating
discontinuity Δ at the beginning and end of each re-
peated data set, since the start and end values will not
usually be the same. Any such discontinuity will gen-
erate spurious contributions to the spectrum, with addi-
tional Fourier coefficients with amplitudes proportional
to Δ/n. To circumvent this problem, a windowing func-
tion is used. This applies a smooth envelope to the data
set, which reduces the values at the start and end to zero,
thus eliminating the discontinuities. However, as de-
scribed above, the application of such an envelope will
give an extra width Δ f ≈ 1/Ts to the spectral features.

A typical windowing function is the Hanning func-
tion sin2(2πt/Ts). A number of other windowing func-
tions are illustrated in Fig. 15.12, each of which has
advantages for specific applications [15.14]. The Han-
ning windowing is widely used for general-purpose
measurements, while the Hamming function is used to
separate closely spaced sine waves. In general there is
a trade-off between the accuracy that can be achieved in

Amplitude

Time
0.0 1.0

1.1
1.0
0.9
0.8
0.7
0.6
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0.4
0.3
0.2
0.1
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4 term Blackmann –
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7 term BH

8 term BH

Constant

Fig. 15.12 Representative windowing functions (after
[15.14])
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determining the frequency of individual spectral com-
ponents and the width of the low-amplitude side lobes
generated by application of a windowing function. Vari-
ous forms of the Blackman–Harris windowing function
can be used to optimise the fast Fourier transform (FFT)
for specific measurements. Windowing need not be used
for the accurate measurements of widely separated sinu-
soidal waves with similar amplitudes, though one should
be aware of the existence of the rather wide side lobes
generated unless the sampling period is an exact integer
multiple of the period of the waveform being measured.

Fast Fourier Transform (FFT)
To determining the amplitude and phase of the N /2
Fourier components from N input measurements re-
quires the inversion of an N × N matrix, requiring
a computation time proportional to N2. However, if N
is an integral power of 2 (e.g. 28 = 256, 216 = 65 536),
the FFT computing algorithm can be used to reduce
the computing time by many orders of magnitude (by

Analogue
input

Windowing
function

Anti-
aliasing
filter

ADC FFT

FFT
spectrum

N = 2n samples at
rate fD, sample length

TS = N/fD

Amplitude and phase of
N/2 frequencies from

0 to fD /2 spaced 1/TS apart

Fig. 15.13 A typical digital sampling and FFT analysis
scheme

0 1 2 (kHz)

Fig. 15.14 Time sequence of delayed FFTs illustrating the
decay of excited modes of a violin, when the A-string is
plucked, with an expanded section of the frequency scale
for the lowest resonances excited. The time between suc-
cessive traces is 10 ms

a factor ≈ N/ log N). The speed of modern computers
is such that FFT spectra of the sound of musical in-
struments can be calculated and displayed with delays
of only a few milliseconds, though any such delay will
always be limited by the length and hence frequency
resolution of the data set being analysed.

A typical implementation of the FFT method for
spectral analysis is shown schematically in Fig. 15.13.
An input anti-aliasing filter is first used to remove
frequency components above the Nyquist limit fD/2;
an ADC then converts the incoming signal to a digi-
tal output to give a data set of N = 2n measurements
over a time T = N/ fD. A windowing function re-
moves problems from discontinuities at the start and
end of the recorded set of data, and the computer eval-
uates the FFT giving the amplitudes and phases of the
Fourier components at N/2 discrete frequencies spaced
1/T = fD/N Hz apart.

A sequence of FFTs from data taken over successive
short periods of time can be used to illustrate the decay
of individual partials in transient and decaying wave-
forms, such as those of a plucked string, a piano note
or struck bell, as illustrated for the sound of a plucked
violin A-string in Fig. 15.14.

Envelopes of Sound Waveforms
The time dependence or envelope of the amplitude of
a sound signal is just as important a factor in the recog-
nition of any musical instrument as the spectrum of the
sound produced. In general, the envelope has a starting
transient, a period with a quasi-constant amplitude for
a continuously bowed or blown instrument, and a period
of free decay, when the instrument is no longer being
excited. The sound produced by musical instruments
is also significantly affected by the acoustic environ-
ment in which the instrument is played, but this will be
ignored for the moment. Typical initial transients and
overall envelopes of single notes played on a violin,
clarinet and trumpet are shown in Fig. 15.15.

The starting transient provides an immediate clue to
the ear enabling the listener to recognise the instrument
being played quickly. However, the characteristic fluc-
tuations in frequency and amplitude within the overall
envelope and noise associated with the method of exci-
tation (e.g. bowing and blowing) are just as important
in the recognition of specific instruments. This can eas-
ily be shown by removing the starting transient from
a musical sound altogether, as illustrated in .
In this example comparisons are made between the
sounds of a violin, flute, trombone and oboe played
first with the initial 200 ms transient removed and then
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Violin

Clarinet

Trumpet

Initial transient
Decay

Decay

Decay

50 ms

50 ms

50 ms

Fig. 15.15 Typical wave envelopes for a violin, clarinet and
trumpet with a 50 ms expanded view of the initial starting
transient

with the transient reinserted. In each case the instru-
ment can immediately be identified even in the absence
of the starting transient. The audio example ends with
a constant amplitude sawtooth waveform having an un-
varying sound quite unlike the sound of any real musical
instrument.

Nevertheless, the starting transient and subsequent
decay of sound are extremely important in the identi-
fication of the sounds of plucked or hammered strings
and all percussion instruments, where the waveform and
spectral content changes very rapidly with time after the
start of the note. This is illustrated by the dramatic dif-
ference in the unrecognisable sound of a piano when
played backwards and then replayed in the normal di-
rection ( ).

Noise
There are several potential sources of fluctuations in the
envelope of musical instruments, which help to charac-
terise their characteristic sounds, such as the breathiness
induced by the noise of turbulent air passing over the
sound hole in a recorder, flute or organ pipe (Verge
and Hirschberg [15.15]) and irregularities in the sound
of any bowed instrument due to inherent noise in the
slip–stick bowing mechanism (McIntyre et al. [15.16]).

Amplitude and Frequency Modulation
Another important source of fluctuations is vibrato,
which involves periodic changes in the amplitude, fre-
quency, or spectral content of a note and often all
three (Meyer [15.17], Gough [15.18]). Vibrato is pro-
duced on a stringed instrument by periodically changing
the length of the bowed string by rocking the fin-
ger stopping the string backwards and forwards. In
singing (Prame [15.19]) and wind instruments (Gilbert
et al. [15.20]) vibrato is produced by periodic modula-
tions of the pressure exerted by the lungs or mouth on
the exciting reed or air passage.

Amplitude modulation of a sinusoidal frequency
component can be expressed as

y(t) = (1+am cosΩt) sinωt

= sinωt+ am

2
[sin(ω+Ω)t+ sin(ω−Ω)t] ,

(15.27)

where Ω is the modulation frequency and a the modu-
lation parameter. Amplitude modulation introduces two
side-bands with amplitude am/2 at frequenciesΩ above
and below that of the principal central component. The
side-bands have a net resultant that remains in phase
with the central component giving a fractional change
in amplitude [1+am cosΩt].

Frequency modulation should more strictly be re-
ferred to as phase modulation, with the phase varying
as

φ(t) = ωt+af cosΩt . (15.28)

where af is frequency-modulation index. The time-var-
ying frequency can then be defined by the rate of change
of phase, such that

dφ

dt
= ω−afΩ sinΩt , (15.29)

with a fractional shift in frequency varying as
Δω(t)

ω
=−af

Ω

ω
sinΩt . (15.30)

For small modulation index, a phase-modulated wave
can be written as

y(t) = sinωt+ af

2
[cos(ω+Ω)t+ cos(ω−Ω)t] ,

(15.31)

which again results in equally spaced side-bands about
the central frequency with amplitude af/2, but with a re-
sultant now in phase-quadrature with that of the central
frequency giving the above phase modulation.

Because of the multi-resonant frequency response
of all musical instruments, changes in driving frequency
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also induce significant fluctuations in amplitude. Such
fluctuations are particularly important for the strongly
peaked multi-resonant instruments of the violin family,
as illustrated in Fig. 15.15.

15.1.4 Perception and Psychoacoustics

In this section, we briefly highlight a number of psy-
choacoustic aspects of particularly importance in any
discussion of musical acoustics. See also Chap. 13 on
Psychoacoustics by Brian Moore.

Sensitivity of Hearing
We have already commented that the brain interprets
both frequency and intensity on a logarithmic scale.
The recognition of familiar intervals such as the octave,
perfect fifth, irrespective of the absolute frequencies,
provide an immediate example, as is the use of the dB
scale in the measurement of sound levels.

In the 1930s, Fletcher and Munson [15.22] un-
dertook a survey of a large population of subjects to
investigate how the sensitivity of the ear varies with fre-
quency and intensity (and age). These measurements
were later refined by Robinson and Dadson [15.21].
Their published values for normal equal-loudness level
contours, shown in Fig. 15.16, were adopted by the
International Standards Organization, as the original
ISO 226 standard for audio sensitivity, with data
recently refined to define the new ISO 226:2003
standard.

The plotted curves show population-averaged equal
loudness contours for sinusoidal sound waves measured

Sound level, dB SPL
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Fig. 15.16 Robinson–Dadson curves (after [15.21]) with
contours of perceived equal loudness measured in phons
on a dB scale

in phons on a dB scale, which equate to sound pres-
sure level (SPL) measurements in dB at 1 kHz. The SPL
dB scale is based on a reference root-mean-square pres-
sure of 20 μPa (equivalent to 2 × 10−5 Nm−2), which is
very close to an qintensity of 10−12 Wm−2. The thresh-
old contour is the population-averaged minimum sound
pressure that can be just detected under the quietest
environmental conditions. Above sound pressures of
≈ 120 dB, the ear experiences pain and potential per-
manent damage.

The equal subjective sound level contours reflect the
dynamics of the ear’s detection system. There is a rapid
fall-off in sensitivity at low frequencies, where the ef-
ficiency of the outer ear drum considered as a piston
detector falls off as ω4. The fall-off at high frequencies
is due to the increasing inertial impedance of the ear
drum and bones in the inner ear. However, the fall-off is
partially compensated by peaks in sensitivity from the
resonances of the outer air channel between the ears and
ear-drum. Older people experience a considerable loss
in sensitivity at high frequencies, which is strongly cor-
related with age. Fortunately, the losses are at relatively
high frequencies and are generally not too important for
the appreciation of music.

The sensitivity of the ear is particularly strong in the
frequency range 2–6 kHz, which is important for recog-
nising the consonants in speech. One would therefore
expect such frequencies to be equally important in the
identification and assessment of sound quality of musi-
cal instruments. Below around 200–400 Hz there is an
increasingly rapid fall-off in sensitivity, which will dif-
ferentially affect the subjective loudness of the lower
partials of any complex musical sound at these and
lower frequencies. At low frequencies the contours of
equal amplitude are more closely spaced, so that the
effect of increasing the SLP by 20 dB increases the
subjective loudness by considerably more. Turning up
the volume on any reproduction system changes the
perceived quality from a rather thin sound to a more ex-
citing sound with a much stronger bass and a somewhat
stronger high-frequency response.

From a musical acoustics viewpoint, it is often sen-
sible to invert the equal contour plot, as the inverted
plot essentially acts as a subjective, mid-frequency band
filter, de-emphasising the perceived intensities of the
lowest and highest-frequency partials in a complex
waveform.

Loudness levels will clearly vary with distance from
any source. Sounds levels exceed 120 dB close to an
aeroplane on take off or close to a loudspeaker in a noisy
rock concert, resulting in potential permanent damage
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to the ear. Sound levels close to a heavily used motor-
way are typically around 90 dB, around 70 dB inside
a car, about 50 dB in an office, 30 dB inside a quiet
house at night, 20 dB in a very quiet recording studio
and 0 dB inside an anechoic chamber. At the quietest
levels, one begins to hear the beating of the heart and
workings of other internal organs, which can be a some-
what disquieting experience. There would clearly be no
evolutionary reason to have developed a more sensitive
hearing system.

Audio is a short orchestral excerpt
played at successively decreasing 6 dB steps (half the
amplitude or a quarter the intensity). Musicians indi-
cate the loudness with which music should be played
using the dynamic markings pp, p, mp, mf, f and ff,
which roughly correspond to a subjective doubling of
intensity between each level. Such levels are clearly
only relative, since absolute values will vary strongly
with the distance of the listener from the source with
a 12 dB decrease in intensity on doubling the distance in
free space. Although the dynamic range of an individual
note on a musical instrument rarely exceeds 20 dB, with
only about six distinguishable dynamic levels within
this range, the total dynamic range of an instrument is
more like 45 dB (Patterson [15.23]). However, there is
a much larger range of sounds produced by different in-
struments (e.g. the trombone and violin. The carrying
power, penetration and prominence of musical sounds
is not simply a matter of absolute intensity, but also de-
pends on the harmonic content and transient structures
of the complex tones produced. This helps to explain
how a solo violinist can still be heard over the massive
sound of a large orchestra.

Subjective Assessment of Pitch
We have already noted that the perceived pitch of a note
is determined by the inverse period of a waveform and
does not necessarily require the presence of a Fourier
component at that frequency. This is illustrated in au-
dio , in which simple sinusoidal tones at
300 Hz and 200 Hz are first played in succession and
then played together to produce a repeating waveform
sounding an octave lower at 100 Hz, which is then fol-
lowed by a pure 100 Hz tone of the same amplitude but
sounding very much quieter. The final sinusoidal tone at
100 Hz may well not be heard on a typical PC laptop or
notebook sound production systems, which radiate little
sound below around 200 Hz. The absence of a Fourier
component at the pitch of a complex tone is often re-
ferred to as the missing fundamental phenomenon. It is
important in many stringed instruments, which produce

very little sound at the actual frequency of their lowest
open strings.

The missing fundamental phenomenon is a psy-
choacoustic rather than a nonlinear effect produced by
a distortion of the waveform in the ear. It reflects the
way that the ear processes sounds in the time domain at
low frequencies (Moore [15.24] and Chap. 13).

The ability of the ear to recognise the pitch at which
an instrument is playing, even though the lower partials
of the sound of individual instruments may be miss-
ing is very important in sound reproduction systems. It
enables the listener to recognise the distinctive sounds
of all the instruments in an orchestra, even when the
recording or reproduction system may have a very poor
low-frequency response – as in early gramophones and
the loudspeakers used in cheap radios and typical PC
laptops and notebooks.

Combining tones to produce a lower tone is ex-
ploited on the quint combination stop on the organ to
produce low-pitched sounds (e.g. a 16 ft pipe and a
16 × 2/3 = 10.66 ft pipe sounding a fifth above, when
sounded together, reproduce the sound of a 32 ft pipe,
as illustrated for the combination of 200 and 300 Hz
sine waves in above). Interesting, the ef-
fect is nothing like so strong in playing two bowed
strings a fifth apart (e.g. open A and open E on a vi-
olin), presumably because of the very rich spectrum of
higher partials and independent fluctuations of the two
sounds. However, such sounds can often be heard when
two flutes play well-tuned intervals together. The early
18th century virtuoso violinist Tartini recognised the
existence of such mysterious tones, whenever pairs of
notes were played together in exact intonation (e.g. in-
teger ratios such as 3/2 (perfect fifth), 5/4 (major third),
6/5 (major third)), and reputedly attributed them to the
devil. The effect is small, but is still used by violinists
when practising playing such intervals exactly in tune.

In general, complex tones are composed of a num-
ber of spectral components which have no particular
harmonic relationship to each other. One then has to
consider what determines the subjective pitch of the
perceived sound. This involves the way the brain pro-
cesses the signal and the relative emphasis given to the
spectral components present, which will depend on their
frequencies and intensities. It is important to recog-
nise that the perceived pitch is not necessarily that of
the lowest-frequency component present. This is illus-
trated in in which the fundamental and first
octave are fixed in frequency, while an intermediate par-
tial is swept upwards from the lower to the higher note.
First the fundamental is sounded by itself and then with
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the octave added producing a note at the same pitch
but with a different timbre. An intermediate partial is
then added and swept upwards in steps from the lower
to the upper note, giving the sense of a note of con-
tinuously rising pitch, though the fundamental and its
octave remain fixed. Although the fundamental and oc-
tave remain fixed, the rising partial gives the sense of
a note of increasing pitch. In this particularly simple ex-
ample, it is relatively easy to identify and follow the
pitch of each harmonic component separately. However,
for a musical instrument like a gong or bell, with no
preconceived knowledge of the likely pitch of the indi-
vidual partials, this is far more difficult. The perceived
pitch of the strike note of a bell and many other percus-
sion instruments, with an inharmonic combination of
excited modes, depends in a rather complex way on the
relative weighting of the partials present and the musical
context.

In assessing the subjective pitch of a note there
can often be an ambiguity of an octave in the appar-
ent pitch. This is illustrated by the famous example of
the apparent, ever-rising pitch of a note generated by
a continuously rising comb of logarithmically spaced
frequencies passing through a fixed hearing band of
frequencies, [15.25], which appears to be in-
creasing in pitch at all times though clearly repeating
itself. This illustrates the circularity of pitch perception
and is the audio equivalent of the visual illusion of con-
tinuously rising steps which return to the same point in
space in an Escher drawing.

Precedence Effect
Another important time-domain phenomenon in the
perception of musical sounds is the Haas precedence
effect, which enables a listener to locate the source of

a distant sound from the small difference in time that
sound arriving at an angle to the head takes to reach
the two ears. The brain gives precedence to the sound
arriving first, even though later sounds from other direc-
tions may be significantly stronger. Any sound arriving
within the first 20–40 ms (depending somewhat on fre-
quency and intensity) of the first sound to arrive simply
adds to the perceived intensity of the first sound. This
is very important in musical performance, with reflec-
tions from close reflecting surfaces adding strongly to
the intensity and definition of the music.

The precedence effect is illustrated in .
This is a stereo recording of identical clicks recorded
on the left and right channels with a delay of 20 ms be-
tween them, which is then reversed. Although the clicks
are too close together for the ear to distinguish them
separately, when replayed through a pair of stereo loud-
speakers (not earphones), the sound will appear to come
from the speaker providing the earlier click.

The precedence effect is one of the ways in which
one can locate the origin of a particular sound within an
orchestra or the sound of a particular voice in a crowded
room. Once located, the brain is able to focus on
the subsequent source even against a highly confusing
background of other sources. It is likely that fluctua-
tions within the characteristic sound of an individual
person or musical instrument enable the brain to focus
continuously on a particular source. In musical acous-
tics one must always recognise the formidable power
of the brain’s auditory processing capabilities, which
is far beyond what can be achieved using present-day
computers. Consequently, even very small effects on
a physical measurement scale can have a very signifi-
cant effect on the listener’s subjective response to the
sound of a particular instrument.

15.2 Stringed Instruments

In this section we describe the production of sound
by the great variety of musical instruments based on
the plucking, bowing and striking of stretched strings.
This will include an introduction to the different modes
of string vibrations excited by the player, the transfer
of energy from the vibrating string to the acoustically
radiating structural vibrations of the body of the instru-
ment via the bridge, and the modification of such sound
by the environment in which the instrument is played.
Although the production of sound is based on the vibra-
tions of relatively simple structures, such as strings and
plates, it is the interactions between these, extending the

physics well beyond introductory text-book treatments,
which results in the characteristic sounds of individual
stringed instrument, as summarised in this section.

The Physics of Musical Instruments by Fletcher and
Rossing [15.5, Chaps. 9–11] provides an authoritative
account of the acoustics of a wide range of string in-
struments, and a comprehensive set of references to the
research literature prior to 1998. The four volumes of re-
search papers on violin acoustics, collated and edited by
Hutchins [15.26, 27] and Hutchins and Benade [15.28],
also includes excellent introductions to almost every as-
pect of the acoustics of instruments of the violin family,
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much of which is just as relevant to other stringed in-
struments. Carleen Hutchins has been an inspirational
figure in the field of violin acoustics. The Catgut Acous-
tical Society, which she cofounded, published a journal
and an earlier newsletter [15.29] containing many im-
portant papers on violin research of interest to both pro-
fessional acousticians and violin makers. Her inspira-
tion has encouraged a world-wide school of violin mak-
ers, who use scientific measurements and plate tuning
in particular as an aide to making high-quality instru-
ments. The comprehensive monograph on the Physics
of the Violin by Cremer [15.30] provides an invaluable
theoretical and experimental survey of research on in-
struments of the violin family, with particular emphasis
on the bowed string, the action of the bridge, the vibra-
tions of the body and the radiation of sound.

The production of sound by any stringed instrument
is based on the same acoustic principles. The player
excites the vibrations of a stretched string by bowing,
plucking or striking. Energy from the vibrating string is
then transferred via the supporting bridge to the acous-
tically radiating structural vibrations of the instrument.
The radiated sound is then conditioned by the perform-
ing environment.

There are many different types of stringed instru-
ments formally classified as chordophones. Harp-like
lyres appear in Sumerian art from around 2800 BC.
However, more primitive instruments, like a plucked
string stretched over a bent stick and resonated across
the mouth, probably date back to soon after the emer-
gence of man the hunter [15.31, 32].

Stokes [15.33] was the first to recognise that the
vibrating string was essentially a linear dipole, which
radiated a negligible amount of sound at low frequen-
cies (see also Rayleigh [15.3, Vol. 2, Sect. 341]). To
produce sound, the vibrating string has to excite the
vibrations of a much larger area radiating surface. For
bowed and plucked instruments, such as members of
violin, lute and guitar families, almost all the sound is
radiated by the shell of the instrument, with the acous-
tic output at low frequencies usually boosted by the
Helmholtz resonance of the air inside the instrument vi-
brating in and out of the f- or rose-holes cut into the
front plate. On larger instruments, such as the piano and
harp, the sound is radiated by a large soundboard.

For any continuously bowed (or blown) instrument,
the sound is conditioned by a complex feedback loop
involving the instrument, player and surrounding acous-
tic, illustrated schematically for the violin in Fig. 15.17.
The expert string player controls the intonation and
quality of the sound produced using slight adjustments

Player

Fingers
Hands
Arms
Body
Ears

Ears

ListenerInstrument

Acoustic

Aural

Tactile

Bowing
Plucking
Striking

Brain

Brain

Fig. 15.17 A schematic representation of the complex
feedback and sound radiation systems involved in the gen-
eration of sound by a bowed string instrument

of the position of the left-hand fingers stopping the
string, and the pressure, velocity and position of the
bow on the string, in response to the sound heard from
both the instrument and the surrounding acoustic. In
addition, there is direct tactile feedback through the fin-
gers of both the left hand controlling the pitch of the
note and the right hand controlling the bow. A simi-
lar overall feedback system is also involved in playing
woodwind or brass instrument. The perception of the
sound by both player and listener is also strongly influ-
enced by the performing acoustic and the way the brain
processes the sound received by the sensory organs in
the ears, as illustrated schematically in Fig. 15.17. All
such factors are involved in determining the perceived
quality of the sound produced by a musical instrument.
However, for simplicity and physical insight into the
various mechanisms involved, it is convenient to con-
sider the acoustics of musical instruments in terms of
their component parts, like the vibrating string, the sup-
porting bridge and shell of the instrument. Nevertheless,
it is important not to lose sight of the fact that the sound
produced by any instrument will involve the interactions
of all such subsystems and, even more importantly, the
skill of the player in exciting and controlling the vibra-
tions ultimately responsible for the sound produced.

15.2.1 String Vibrations

The transverse vibrations ξ(x, t) of a perfectly flex-
ible stretched string, of mass μ per unit length and
tension T , satisfy the one-dimensional wave equation
(d’Alembert, 1747)

∂2ξ

∂x2
= 1

c2
T

∂2ξ

∂t2
, (15.32)
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where the velocity of transverse waves cT =√
T/μ. The

tension T = ESΔL/L , where E is Young’s modulus, S
is the cross-sectional area of the string and ΔL/L is the
fractional stretching of the string over its length L . For
the relatively small transverse displacements of bowed
and plucked strings on musical instruments, changes
in tension can be ignored. However, at larger ampli-
tudes, a number of interesting nonlinear effects can be
observed, which will be described in Sect. 15.2.2.

A string can also support longitudinal and tor-
sional modes, with velocities cL =√

E/ρ and cθ =√
E/ρ(1+ν), where ρ is the density and ν is the Pois-

son ratio (≈ 0.35 for most materials). The Poisson
ratio ν is the ratio of transverse to longitudinal strain
when the material is stretched along a given direction.
For strings on musical instruments, the longitudinal
and torsional wave velocities are typically an order
of magnitude larger than the transverse velocity, with
cL/cT ≈√

L/ΔL.
Although both longitudinal and torsional waves play

important roles in the detailed physics of the bowed,
plucked and struck string, the musically important
modes of string vibration are the transverse modes –
apart from unwanted squeaks from longitudinal modes,
which are often excited by the beginner on the violin.
Unless otherwise stated, we only consider transverse
waves and drop the defining subscript, unless a distinc-
tion needs to be made.

Waves on an ideal string are dispersionless (inde-
pendent of frequency), so that any wave initially excited
on the string will travel along the string without change
in amplitude or shape. D’Alembert obtained a general
solution of the wave equation of the form

f (x, t) = f1(x+ ct)+ f2(x− ct) , (15.33)

corresponding to two waves of unchanging shape trav-
elling with wave velocity c in opposite directions along
the string.

If the string is supported rigidly at its ends, the prop-
agated waves are reflected with a change in sign giving
zero displacement at the nodal end-points. Each prop-
agating wave will continue to be reflected with change
of sign on reflection at each end. For a string of length
L , the string displacement will therefore return to its
initial state in multiples of the transit time 2L/c. The
same is also true for the velocity and acceleration wave-
forms, since, if f satisfies the wave equation, then so
must all its temporal and spatial derivatives, ∂n f/∂xn

and ∂n f/∂tn . It follows that the repetition frequency
of any freely propagating wave on a given length of
a stretched string will always be the same, however

c c
F

T T

v

Fig. 15.18 Transverse motion of string induced by a lo-
calised force, with the dotted lines indicating the displace-
ment at an earlier time

the string is excited (e.g. sinusoidally or by plucking,
bowing or striking).

Excitation of Vibrations
First consider a string subject to a localised force F ap-
plied suddenly at a point along its length. This causes
the string to move with velocity v at the point of contact
exciting transverse waves travelling outwards in both di-
rections with velocity c, as illustrated schematically in
Fig. 15.18.

In a short time δt, the transverse waves travel a dis-
tance cδt along the string while the string at the point
of contact is displaced by a transverse distance vδt. For
v
 c, one can make the usual small-angle approxima-
tions, so that equating the applied force to the transverse
force from the deformed string, we obtain

v=
( c

2T

)
F = 1

2R0
F , (15.34)

where R0 = μc is the characteristic impedance (force/
induced velocity) of the string, which for an ideal string
ignoring intrinsic losses is purely resistive. The factor of
two in the above equation arises because the force acts
on the two semi-infinite lengths of string in parallel. In
practice, any discontinuity in slope will be rounded by
the finite flexibility of real strings, as discussed later.

Force on End-Supports
The characteristic resistance R0 of the string is an im-
portant parameter, because it determines the transfer of
energy from the vibrating string to the acoustically radi-
ating modes of the instrument via the supporting bridge
at the end of the string. The transverse force exerted by
the string on an end-support at the origin can be written
as FB = T (∂ξ/∂x)0. This induces a transverse velocity
at the point of string support given by

vB = 1

ZB
FB = AB FB , (15.35)

where ZB and AB are the frequency-dependent charac-
teristic impedance and admittance at the end-support. In
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general, the induced velocity at the point of string sup-
port on the supporting bridge will differ in phase from
that of the driving force, so that Z(ω) and A(ω) will be
complex quantities.

The bridge on a musical instrument is never a per-
fect node otherwise no energy could be transferred
to the radiating surfaces of the instrument. Waves on
the string are reflected at the bridge with a frequency-
dependent reflection coefficient r and a fractional loss
of energy ε given by

r = R0− ZB

R0+ ZB
and ε= 2R0

(
ZB+ Z∗B

)

|R0+ ZB|2
, (15.36)

where Z∗B is the complex conjugate of the complex
impedance at the terminating bridge.

For strings on musical instruments, R0 
 |ZB|, so
that to a first approximation we can consider the bridge
as a node. If this were not so, the vibrational frequen-
cies of strings would by strongly perturbed from their
harmonic values. Nevertheless, first-order corrections
are important, as they determine the energy transfer
from the strings to the body of the instrument and
hence the intensity of the radiated sound. The coupling
via the bridge also affects the string vibrations them-
selves, with the resistive losses at the bridge causing
damping and the reactive component of the admittance
perturbing their vibrational frequencies, as described in
Sect. 15.2.3. Such perturbations can sometimes be so
large that it is no longer possible to sustain a stable
bowed note, resulting in what is known as a wolf-note
(for an illustration of a bad wolf-note on the cello listen
to ).

Before considering the interaction of real strings
with the supporting structure, we first consider the sim-
plest cases of sinusoidal and simple Helmholtz modes
of vibration on an ideal string with perfectly rigid end-
supports.

Sine-Wave Modes
An ideally flexible string stretched between rigid end-
supports a distance L apart can support standing waves,
or eigenmodes, with transverse string displacements
given by

ξn(x, t) = an sin
(nπx

L

)
cos (ωnt+φn) , (15.37)

where ωn = 2π fn and an is the amplitude of the nth
mode with frequency fn = nc/2L and phase φn . Such
modes can be considered as the sum of two sine
waves of the d’Alembert form (15.33) travelling in op-
posite directions. For an ideal string, these solutions
form a complete orthogonal set of eigenmodes with

a harmonic set of eigenfrequencies, which are integer
multiples of the fundamental frequency c/2L .

The resonant response of individual modes of
a metal or metal-covered string can be investigated,
for example, with a photosensitive device to detect the
transverse string motion induced by a sinusoidal current
passing through the string placed in a magnetic field to
give a transverse Lorentz force (Gough [15.34]).

Because the wave equation is linear, any waveform,
however excited, can be described as a Fourier sum of
harmonic modes, such that

ξn(x, t) =
∞∑

n=1

sin
(nπx

L

)

× [An cos (ωnt)+ Bn sin (ωnt)] , (15.38)

where the Fourier coefficients An and Bn are de-
termined by the initial transverse displacement and
velocity along the length of the string, so that

An = 2

L

L∫

0

ξ(x, 0) sin
(nπx

L

)
dx , (15.39)

and

Bn = 2

Lωn

L∫

0

dξ(x, 0)

dt
sin
(nπx

L

)
dx . (15.40)

The transverse force on the end-support at x = L is
given by

Fend =−T

(
∂ξ

∂x

)

L

=−T
∑

n

(nπ

L

)
(−1)n

× [An cos (ωntn)+ Bn sin (ωnt)] . (15.41)

Helmholtz Modes
Although many physicists and most musicians intu-
itively associate waves on strings with the sinusoidal
waves of textbook physics, in practice, the vibrations
of a bowed, plucked or struck string are very different.
Nevertheless, because such waves are repetitive, it fol-
lows from the Fourier theorem that all such solutions
can be described as a sum of sinusoidal wave com-
ponents. However, the motions of plucked, bowed and
struck strings are much more easily described by what
are known as Helmholtz solutions to the wave equa-
tion [15.35]. These are illustrated for the plucked and
bowed string in Fig. 15.19a,b.

The Helmholtz solutions are made up of straight-
line sections of string. There is no net force acting on
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c

v bow

c

c

a)

b)

P

Fig. 15.19a,b Helmholtz waveforms for (a) a centrally
plucked and (b) a bowed string. The horizontal arrows in-
dicate the directions that the kinks are travelling in and the
vertical arrows the directions of the moving string sections.
The different colours represent string displacements at dif-
ferent times. P indicates a typical bowing position along
the string

any small segment within any such section, because the
transverse tension forces acting on its ends are equal and
opposite. By Newton’s laws, any such segment must
therefore be either at rest or moving with constant ve-
locity. Only where there is a kink or discontinuity in the
slope between adjacent straight-line sections (equiva-
lent to a δ function in the spatial double derivative)
can there be any acceleration. From our earlier discus-
sion, any such kink must travel backwards and forwards
along the string at the transverse string velocity c, re-
versing its sign on reflection at the ends. As the kink
moves past a specific position along the string, the dif-
ference in the transverse components of the tension on
either side of the kink results in a localised impulse,
which changes the local velocity of the string from one
moving or stationary straight-line section to the next. In
general, there can be any number of Helmholtz kinks
travelling along the string in either direction, each kink
marking the boundary between straight-line sections ei-
ther at rest or moving with constant velocity. Similar
solutions also exist for torsional and longitudinal waves.

We now consider the Helmholtz wave solutions for
the plucked, bowed and hammered string in a little more
detail.

Plucked String
Consider an ideal string initially at rest with an initial
transverse displacement a at its mid-point, as illustrated
in Fig. 15.19a. On release, kinks will propagate away
from the central point in both directions with velocity c,

but points on the string beyond the kinks will remain at
rest. When the kink arrives at a particular point along
the string, the associated impulse will accelerate the
string from rest to the uniform velocity of the central
section of the string. After a time t, the solution there-
fore comprises a straight central section of the string of
width 2ct moving downward with constant velocity c
(2a/L), with the outer regions remaining at rest until
a kink arrives. After a time L/2c, the kinks separating
the straight-line sections reach the ends and are reflected
with change of sign. After half a single period L/c, the
initial displacement will therefore be reversed and will
return to the original displacement after one full period
2L/c. In the absence of damping, the process would
repeat indefinitely.

Now consider the transverse force acting on the
end-support responsible for exciting sound through the
induced motion of the supporting bridge and vibrational
modes of the instrument. The initial transverse force
on the bridge is 2Ta/L , where we assume a 
 L . This
force is unchanged until the first kink arrives. On reflec-
tion, the direction of the force is reversed and is reversed
again when the second kink returns after reflection from
the other end of the string. The two circulating kinks
therefore cause a reversal in sign of the force on the end-
supports every half-cycle, resulting in a square-wave
waveform, as illustrated in Fig. 15.20. The spectrum of
a square wave has Fourier components at odd multi-
ples n of the fundamental frequency with amplitudes
proportional to 1/n, Fig. 15.20b.

Note that plucking a string at the mid-point excites
only the odd-n modes. This is a consequence of the
initial force being applied at a node of all the even-n
modes. If a string is plucked at a fractional position 1/m
along its length, any partial that is an integer multiples
of m will be missing. This is illustrated in Fig. 15.21,
showing the spectra of the force on the supporting
bridge for a string plucked at points 1/4 and 1/7-th along
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a) b)

Fig. 15.20 (a) Square-wave time dependence of transverse
force acting on the bridge from a string plucked at its centre
and (b) the corresponding amplitudes of the odd Fourier
components n varying as 1/n (dotted curve)
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Fig. 15.21 Normalised Fourier amplitudes for the force on
the bridge for a string plucked 1/4 and 1/7 of the string
length from the bridge. The dashed curves show the 1/n
envelope of the partials of a sawtooth waveform

its length. By selecting the plucking position along the
string, the guitar or lute player can change the har-
monic content of the sound produced. When plucked
near the bridge, the sound of the plucked guitar string
is rather bright, with nearly all the prominent partials
almost equally strongly excited (audio ).

In practice, the finite width of the plucking point,
the finite rigidity of the string and the loss of energy
at the bridge perturb the Helmholtz wave, removing the
unphysical discontinuities of the idealised model. This
results in a more rapid decrease in the intensities of the
higher partials excited.

Bowed String
The motion of the bowed string can be described rather
accurately by a simple Helmholtz wave with a sin-
gle kink circulating backwards and forwards along the
string. The kink now separates two straight sections
moving with constant angular velocity about the nodal
end-points, as illustrated in Fig. 15.19b. This is again
a solution that satisfies Newton’s laws of motion, with
the only acceleration occurring as the kink arrives at
a particular point along the string. Such a wave is just as
valid a solution to the wave equation as a sine wave and
once excited would continue indefinitely, if there were
no damping or energy losses on reflection at the bow or
supported ends.

The energy required to excite and maintain such
a wave is provided by frictional forces between the
moving bow hair and the string, involving what is
known as the slip–stick excitation mechanism. For
a typical bowing position, marked by the line at P in
Fig. 15.19b, the friction between the bow and string
forces the string to remain in contact with the bow hair
moving with constant bow velocity. This is referred to
as the sticking regime and occurs all the time the kink
is travelling to the left of the bowing position. How-

ever, when the kink is between the bow and supporting
bridge, the string moves in the opposite direction to the
bow. This is the slipping regime. Such motion is pos-
sible because the sliding friction between the bow and
string can be much smaller than the sticking friction,
when the bow and string are in contact. In this highly
idealised model, the frictional force is assumed to be
infinite in the sticking regime and zero in the slipping
regime.

A more detailed discussion of the slip–stick bowing
mechanism will be given later (Sect. 15.2.3), taking into
account more-realistic models for the frictional forces
between the bow and string and the transfer of energy
from the string to the vibrational modes of the struc-
ture via the bridge. However, the idealised Helmholtz
motion provides a surprisingly good description of the
vibrations of real strings, as confirmed in early meas-
urements by Raman [15.36] and many more-recent
publications to be cited later.

The amplitude of the Helmholtz bowed waveform
is determined by the velocity of the bow vbow and
its distance LB from the bridge. The transverse dis-
placement of the kink maps out a parabolic path as it
traverses the string (Fig. 15.19b). At the mid-point, the
string displacement executes a triangular-wave motion
with time, moving with velocity ±2ca/L in alter-
nate half-periods, where the maximum displacement
a = (L2/4LB)(vB/c), for a 
 L . At the bowing posi-
tion, the transverse string velocity alternates between
vbow in the sticking regime and −vbow (L − LB) /LB in
the slipping regime, as illustrated in Fig. 15.22.

Displacement

v bow

Velocity

vslip

t

Fig. 15.22 Displacement and velocity of string at the bow-
ing point. The mark-to-space ratio in the velocity is the
same as the division of the string by the bow
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To increase the sound, the player can therefore ei-
ther use a faster bow speed or play with the bow nearer
the bridge. Schelling [15.37] has shown that more-
realistic frictional models limit the playing range, as
discussed later (Fig. 15.31).

The transverse force on the bridge produced by
an idealised Helmholtz bowed wave has a sawtooth-
waveform time dependence, as shown in Fig. 15.23.
Each time the kink is reflected at the bridge, the trans-
verse force acting on the bridge reverses in sign. It then
increases monotonically with time until the process re-
peats again. The sense of the sawtooth motion reverses
with bow direction. The spectrum of the force acting
on the bridge includes both even and odd partials, with
amplitudes varying as 1/n.

The spectrum of the sound produced by the lowest
plucked and bowed notes on stringed instruments can
typically involve 40 or more significant harmonic par-
tials, as illustrated in Fig. 15.24 by the spectrum of the
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Fig. 15.23 Sawtooth time-dependence of force on the end
supports from Helmholtz bowed waveform and corre-
sponding amplitudes of the normalised Fourier spectrum
with partials varying as 1/n

20 dB markers

(kHz)
0 41 2 3

Fig. 15.24 The spectrum of the intensity of the lowest
bowed note on a cello, illustrating the very large number
of partials contributing to the sound of the instrument

sound produced by a bowed cello open C-string (C2
at ∼ 64 Hz, audio ). The FFT spectrum is
plotted on a dB scale to illustrate the large range of am-
plitudes of the partials (Fourier components) excited.
The amplitudes of the individual partials depend not
only on the force at the bridge exerted by the plucked
or bowed strings, but also on the frequency depen-
dent response and radiative properties of the supporting
structure, as discussed later.

Struck String
Many musical instruments are played by striking the
string with a hammer. The hammer can be quite light
and hard, as used for playing the dulcimer, Japanese
koto and many other related Asian instruments, or rel-
atively heavy and soft, like the felted hammers on a pi-
ano. Some time after the initial impact, the striking ham-
mer bounces away from the string, leaving the string in
a free state of vibration. There are a few instruments,
such as the clavichord (Thwaites and Fletcher [15.38]),
where the string is struck with a metal bar (the tangent),
which remains in contact with the string, defining its
vibrating length and hence the note produced.

Consider first a point mass m moving with veloc-
ity v striking an ideal stretched string of infinite extent.
In any small increment of time, the moving mass will
generate a wave moving outwards from the point of im-
pact. This will result in a decelerating force on the mass
equal to 2Tv/c = mcv, as illustrated in Fig. 15.18. The
displacement of the mass will then be described by the
following equation of motion

m
d2ξm

dt2
=−2T

cT

dξm
dt
. (15.42)

The transverse velocity of the impacting mass therefore
decays exponentially with time as

dξm
dt

= vm exp (−t/τ) , (15.43)

with τ = mc/2T . The is identical to the dynamics of
a trapeze artist dropping onto a stretched wire, with

cTcT

vm(t)

Displacement Velocity cTcTa) b)

Fig. 15.25a,b Time sequences of (a) string displacement
and (b) string velocity for a mass striking a string
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Fig. 15.26 (a) Time dependence of the upward force acting
on a light hammer impacting a string in arbitrary units of
time, and (b) amplitudes of Fourier coefficients of force
acting on end supports for a hammer after hitting the string
1/7 of the length from an end-support. The continuous line
shows the continuous spectrum for a string of semi-infinite
length

waves of displacement and velocity travelling outwards
in both directions away from the point of impact, as
illustrated in Fig. 15.25.

In general, the string will be struck at a distance a
from one of its end-supports. Hence, in a time (a/2L)T0,
a reflected wave will return to the mass and exert an
additional force, which will tend to throw the mass
back off the string. However, because the mass can-
not change its velocity instantaneously, any returning
wave will be partially reflected, so that the mass acts
as a source of secondary reflected waves travelling out-
wards in both directions. The total force acting on the
hammer is then given by any residual force from the
first impact plus the subsequent forces created by the
succession of reflections from the end-supports. This
problem was first correctly solved by Hall, in the first
of four seminal papers on the string–piano hammer in-
teraction [15.39–42].

Hall showed that the first reflected wave exerts an
additional decelerating force g(t′) ≈ (1− t ′/τ)e−t′/τ on
the mass, where t′ is the time after arrival of the first re-
flection. This is illustrated in Fig. 15.26 for a relatively
light mass impacting the string at a position 1/7-th of
the string length from an end. Provided the mass is suf-
ficiently small, the force from the initial impact will
have decayed significantly by the time the first reflec-
tion returns, so that the force acting on the mass will
become negative (the dotted section in Fig. 15.26a), and
the mass will detach itself from the string. The string
will then move away from the mass and will vibrate
freely, provided the hammer is prevented from falling
back onto the string. An elaborate mechanism is used on
the piano to prevent this from happening (see Rossing,
Fletcher [15.5, Sect. 12.2]), while the zither or dul-

cimer player quickly lifts the hammer well away from
the string after the initial impact using much the same
striking action as a percussionist playing a drum, where
the same considerations apply.

The heavier the mass, the longer it will remain in
contact with the string. Hall showed that it may then
take several reflections from both ends of the string and
sometimes several periods of attachment and detach-
ment before the mass is finally thrown away from the
string. A sufficiently heavy mass will never bounce back
off the string.

In general, the waveforms excited on the string
will therefore be rather complicated functions of the
properties of the string, hammer and striking position.
However, for a very light mass (
 mass of the string),
which is thrown off the string by the first reflected wave,
the Fourier coefficients of the induced velocity wave-
form, and hence the force on the end-supports, are given
by vn ≈

(
1+ e−1+inπα

)
sin (nπα), where α = a/L , il-

lustrated in Fig. 15.26b for an impact 1/7-th of the way
along the string. Note that the seventh harmonic is miss-
ing, as again expected from general arguments, since no
work can be transferred to a particular mode of string
vibration for a force applied at a nodal position.

In practice, the spectrum is affected by the finite
size of the hammer, multiple reflections occurring be-
fore the hammer is thrown from the string, and the
elastic and often hysteretic properties of the hammer
material [15.39].

Striking Tangent
On the clavichord (Fletcher, Rossing [15.5, Sect. 11.6]),
a string is struck by a rising end-support, or tangent,
which remains in contact with the string, exciting trans-
verse vibrations of the string on both sides of the
tangent. If we assume a simplified model in which the
rising tangent moves with constant velocity until its
final displacement a is reached, there is again a sim-
ple Helmholtz wave solution. In practice, the length of
string on one side of the tangent is damped, so that free
vibrations are only excited on one side of the striking
point. We therefore need only consider the length of
string between the tangent and the end connected to
the soundboard. The discontinuities ±v in the tangent
velocity, occurring on initial impact and on reaching
its final displacement after a time Δt, generate propa-
gating kinks and discontinuities of velocity of opposite
sign separated in time by Δt. The striking therefore
excites waves with kinks, velocities and displacements
along the string shown in Fig. 15.27a. The solutions are
again Helmholtz waves, but now with two kinks of op-
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Fig. 15.27a–c Waveforms for a tangent hitting and sticking
to string: (a) displacement and (b) velocity profiles along
the string, at a succession of times (different colours) af-
ter the tangent hits the string, and (c) the spectrum of the
resultant force on the end-supports for β = 3/8 (see text)

posite signs travelling around the string in the same
direction.

The Fourier coefficients of the velocity waveform
shown in Fig. 15.27b can be written as

cn ≈ 1

n

a

L ′
(

1− ein2πβ
)
, (15.44)

where β = Δt/T1 is the fraction of the period
T1 = L ′/2c of the freely vibrating length of string dur-
ing which the striking tangent moves from its initial to
final position. Figure 15.27 also includes the spectrum
of the force acting on the end-supports for β = 3/8.

Very similar modes to the above will be excited
during the time a heavy hammer is initially in con-
tact with the string on instruments like the dulcimer,
zither and piano. Such modes therefore contribute to
the initial transient sounds of such instruments. Another
related example is the use of col legno on stringed in-
struments, when the strings are struck by the wooden
part of the bow. By hitting the string at specific posi-
tions along the string, pitched initial transients can be
produced, creating special sound effects, nageln, some-
times used in avant-garde contemporary music, audio

). The above simplistic model for striking
a clavichord string will, in practice, be modified by the
way the player depresses the key, which is directly cou-
pled to the rising tangent, both during and after the
initial impact. The player can therefore influence the
initial transient and the after-sound, including the use
of a small amount of vibrato on the after-note, resulting
in a particularly responsive and intimate but quiet in-
strument, which was particularly popular in the baroque
period.

Real Strings
We now consider a number of departures from the above
idealised models for real strings including:

1. The finite size of the plucking or striking point
2. The finite flexibility of the string
3. Nonlinear effects.

In a subsequent section, we consider the even larger per-
turbations resulting from coupling to the acoustically
radiating modes of the body of the instrument via the
bridge.

Finite Spatial Variation
Idealised models for the string, with infinitely sharp
kinks produced by plucking, bowing or striking, in-
volve waveforms with discontinuities in amplitude and
slope and an infinite number of Fourier components
are clearly unphysical. In practice, physics and geo-
metrical limitations, like the finite size of the player’s
finger or plectrum, will always limit the maximum
curvature of the string at the point of excitation.
The kinks will therefore no longer be δ-functions
(infinitely narrow) but will have a finite size. For
illustration, travelling kinks can be modelled as Gaus-
sian waveforms, ξ±(x, t) ≈ exp[−(x± ct)2/2 (Δx)2],
which approximate to δ-functions when Δx → 0,
where Δx characterises the width of the kink. The
Fourier transform of such a function has a Gaus-
sian distribution of Fourier coefficients varying as
c(k) ≈ exp[−(k/Δk)2/2], where ΔkΔx = 1. This is
analogous to the uncertainty principle in position and
momentum in quantum wave mechanics. For long bend-
ing lengths, the amplitudes of the higher-frequency
Fourier components will be strongly attenuated.

The sound of a guitar string played with a sharp
plectrum is therefore much brighter, with many more
contributing higher partials, than when played with the
fleshy part of a finger, which limits the bending radius to
a few mm. This is illustrated by the sound of an acous-
tic guitar plucked first with a plectrum and then with the
thumb, both at a distance of ≈ 10 cm from the bridge
(audio ).

Finite Rigidity
Even for an infinitely narrow plectrum, the bending at
the plucking point will be limited by the finite flexibility
of the string. The wave equation is then modified by an
additional fourth-order bending stiffness term (Morse
and Ingard [15.43, (5.1.25)]),

ρS
∂2ξ

∂t2
= T

∂2ξ

∂x2
− ESκ2 ∂

4ξ

∂x4
, (15.45)

where E is Young’s Modulus, S is the cross-sectional
area of the string (assumed homogeneous) and κ its ra-
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dius of gyration. For a uniform circular wire of radius
a, Sκ2 = πa4/4. Using dimensional arguments, any
changes in slope of the string will take place over a char-
acteristic length δ ≈ (ESκ2/T )1/2 = (a2 L/2ΔL)1/2,
where ΔL is the extension of the string required to
bring it to tension. This provides an intrinsic limit to the
sharpness with which the string is bent and hence to the
wavelength and frequency of the highest partials con-
tributing significantly to the sound of a plucked, bowed
or struck string.

The additional stiffness energy required to bend the
string will also affect wave propagation on the string
and the frequencies of the excited modes. Assuming
sinusoidal wave solutions varying as ei(ωt±kx), the mod-
ified wave equation (15.45) gives modes with resonant
frequencies

ω2
n = c2k2

n

(
1+ δ2k2

n

)
. (15.46)

Waves on a real string are therefore no longer
dispersionless, but travel with a phase and group ve-
locity that depends on their frequency and wavelength.
Any Helmholtz kink travelling around a real string
will therefore decrease in amplitude and will broaden
with time. To maintain the Helmholtz slip–stick bowed
waveform, with a well-defined single kink circulating
around the string, the bow has to transfer energy to the
string to compensate for such broadening each time the
kink moves past the bow (Cremer [15.30, Chapt. 7] and
Sect. 15.2.2).

If a rigidly supported string is free to flex at its ends
(known as a hinged boundary condition), solutions of
the form sin(nπx/L) sin(ωt). However, the mode fre-
quencies remain are no longer harmonic;

ω∗n
ωn

=
(

1+ Bn2
)1/2 ≈ 1+ 1

2
Bn2 , (15.47)

with B = (π/L)2δ2, where the expansion assumes
Bn2 
 1.

When a string is clamped (e.g. by a circular
collet), it is forced to remain straight at its ends.
Fletcher [15.44] showed that this raises all the modal
frequencies by an additional factor ≈ [1+2/πB1/2+
(2/π)2 B]. For a real string supported on a bridge, con-
nected to another length of tensioned string behind the
bridge, the boundary conditions will be intermediate
between hinged and clamped.

Kent [15.45] has demonstrated that finite-flexibility
corrections raise the frequency of the fourth partial
of the relatively short C5 (an octave above middle-C)
string on an upright piano by 18 cents relative to the
fundamental. The inharmonicity would be even larger

for the very short, almost bar-like, strings at the very top
of the piano. However, the higher partials of the highest
notes on a piano rapidly exceed the limits of hearing,
so that the resulting inharmonicity becomes somewhat
less of a problem. The inharmonicity of the harmonics
of a plucked or struck string results in dissonances and
beats between partials, providing an edge to the sound,
which helps the sound of an instrument to penetrate
more easily. This is particularly true for instruments like
the harpsichord and the guitar when strung with metal
strings.

Finite-rigidity effects are particularly pronounced
for solid metal strings with a high Young’s modulus.
To circumvent this problem, modern strings for musi-
cal instruments are usually composite structures using
a strong but relatively thin and flexible inner core, which
is over-wound with one or more flexible layers of thin
metal tape or wire to achieve the required mass (Picker-
ing [15.46, 47]). The difference in sound of an acoustic
guitar strung with metal strings and the same instrument
strung with more flexible gut or over-wound strings is
illustrated in .

15.2.2 Nonlinear String Vibrations

Large-amplitude transverse string vibrations can result
in significant stretching of the string giving a time-
varying component in the tension proportional to the
square of the periodically varying string displacement.
This leads to a number of nonlinear effects of con-
siderable scientific interest, though rarely of musical
importance.

Morse and Ingard [15.43] and (Fletcher and Ross-
ing [15.5, Chap. 5]) provide theoretical introductions to
the physics of nonlinear resonant systems and to non-
linear string vibrations in particular. Vallette [15.48] has
recently reviewed the nonlinear physics of both driven
and freely vibrating strings.

The Nonlinear Wave Equation
Transverse displacements of a string result in a frac-
tional increase of its length L by an amount 1/L0∫ L

0 1/2(∂ξ/∂x)2 dx and hence to a similar fractional
increase in tension and related frequency of excited
modes. For a spatially varying sinusoidal wave, the
induced strain and hence tension will vary with both po-
sition and time along the string. Any spatially localised
changes in the tension will propagate along the string
with the speed of longitudinal waves. As this is typi-
cally an order of magnitude larger than for transverse
waves, cL/cT ≈√

L/ΔL, where ΔL is the amount that
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the string is stretched to bring it to tension, such pertur-
bations will propagate backwards and forwards along
the string many times during a single cycle of the
transverse waves. Hence, as pointed out by Morse and
Ingard [15.43], to a rather good approximation, trans-
verse wave propagation is determined by the spatially
averaged perturbation of the tension.

Consider a stretched string vibrating with large
amplitude in its fundamental mode with transverse
displacement u = a sin(πx/L) cosωt. The spatially av-
eraged increase in tension is given by

(
1+ π

2

4

a2

ΔL L
cos2 ω1t

)

= [1+β(1− cos 2ω1t)a2] , (15.48)

where β = π2

8
1

LΔL . Inserting this change in tension into
the equation of motion for transverse string vibrations
coplanar with a localised external driving force f (t), we
can write

∂2u

∂t2
+ ω1

Q

∂u

∂t
+ω2

1

[
1+β (1− cos 2ω1t) a2] u

= 2

m
f (t) . (15.49)

Mode Conversion
Nonlinearity results in an increase in the static tension
by the factor (1+βa2) and hence an increase in fre-
quency of all the string modes. In addition, the term
varying as cos 2ω1t, at double the frequency of the prin-
cipal mode excited, will interact with any other modes
present to excite additional with frequencies fn ±2 f1.
Of special note is the effect of this term on the prin-
cipal mode of vibration itself, exciting a new mode at
three times the fundamental frequency 3 f1 and an addi-
tional parametric term (acting on itself) from the f1−
2 f1 =− f1 contribution. The parametric term causes an
additional increase in frequency of the principal mode
excited, so that in total

ω2
1∗ = ω2

1

(
1+ 3

2
βa2

)
, (15.50)

where ω1 is the small-amplitude resonant frequency.
Nonlinear effects depend on the square of the am-

plitude of the strongly excited mode and inversely on
the amount by which the string has been stretched to
bring it to tension. To investigate nonlinear effects, it is
therefore advantageous to use weakly stretched strings
at low initial tension. Conversely, because the tension of
strings on musical instruments tends to be rather high,
nonlinear effects are not in general important within
a musical context.

Fig. 15.28 Nonlinear excitation of the third partial of
a stretched string plucked 1/3 of the way along its length;
the graticule divisions are 50 ms apart (after Legge and
Fletcher [15.49])

Figure 15.28 shows measurements by Legge and
Fletcher [15.49], which illustrate the nonlinear excita-
tion and subsequent decay of the third partial of a guitar
string plucked one third of the way along its length, so
that the third partial was initially absent.

In general, bowed, plucked and struck waveforms
have many Fourier components, each of which will
contribute a term proportional to a2

n to the nonlinear
increase in tension. However, in most cases, the funda-
mental will be the most strongly excited mode and will
therefore dominate the nonlinearity.

The inharmonicity and changes in frequency asso-
ciated with nonlinearity at large amplitudes can give
a strongly plucked string an initial rather twangy sound.
Nonlinear effects can also raise the frequency of a very
strongly bowed open C-string of a cello by almost
a semitone. However, under normal playing conditions,
nonlinearity is rarely musically significant, at least in
comparison with other more important perturbations
of string vibrations, such as their interaction with the
acoustically important structural resonances of an in-
strument, to be considered later.

Nonlinear Resonances
The nonlinear increase in frequency of modes with in-
creasing amplitude leads to string resonances, which
become increasingly skewed towards higher frequen-
cies at large amplitudes, as illustrated in Fig. 15.29. For
sufficiently large amplitudes and small damping, the
resonance curves develop an overhang. On sweeping
through resonance from the low-frequency side, the am-
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Fig. 15.29 (a) The effect of nonlinearity on the resonance
curves of a stretched string with a Q of 100, for increas-
ing drive excitation plotted against normalised resonant
frequency. The dashed curve represents the nonlinear am-
plitude of the frequency for free decay. Note the hysteretic
transitions at large amplitude; (b) the transition at large am-
plitudes from linearly polarised vibrations coplanar with
the driving force to elliptical and finally circular orbital
motion of the string at very large amplitudes. The two
continuous curves represent the induced amplitudes in the
directions parallel and perpendicular to the driving force

plitude rises causing the resonance frequency to shift
to higher frequencies, as indicated by the dashed line
in Fig. 15.29a. Damping eventually leads to a sudden
collapse, with the amplitude dropping to a much lower
high-frequency value, illustrated by the downward ar-
row. On decreasing the frequency, the response initially
remains on the low-amplitude curve before making
a sudden hysteretic transition back to the large ampli-
tude, strongly nonlinear, regime.

This behaviour is characteristic of any nonlinear os-
cillator with a restoring force that increases in strength
on increasing amplitude. For a spring constant that soft-
ens with increases displacement, as we will discuss later

in relation to Chinese gongs, the resonance curves are
skewed in the opposite direction.

Orbital Motion
Nonlinearity results in another surprising effect on the
driven resonant response. At sufficiently large ampli-
tudes of vibration, a sinusoidally driven string suddenly
develops motion in a direction orthogonal to and in
phase-quadrature with the driving force, illustrated
schematically in Fig. 15.29b. The transverse displace-
ments then execute elliptical orbits about the central
axis approaching circular motion at very large ampli-
tudes (Miles [15.50]). In this limit, the string is under
constant increased tension, producing an amplitude-
dependent inward force balancing the centrifugal force
of the orbiting string, resulting in an amplitude-
dependent orbital frequency ω2

1∗ = ω2
1(1+2βa2). For

circular motion, the extension of the string and hence
the increase in tension and resonant frequency are de-
termined by the orbital radius of the whirling string,
so there is now no variation in tension with time. The
sense of clockwise or anticlockwise rotation is deter-
mined by chance or in practice by slight geometrical
or material anisotropies of the string or supporting
structure.

Such transitions have been investigated by Hanson
and coworkers [15.51, 52] using a brass harpsichord
string stretched to playing tension. The transition from
linear to elliptically polarised motion was observed in
addition to chaotic behaviour at very large amplitude.
However, their measurements were complicated by the
very long time constants predicted to reach equilibrium
behaviour close to the transitional region and to rather
strong and not well-understood splitting of the degen-
eracy of the transverse modes, even at low amplitudes
when nonlinearity is unimportant.

A related effect occurs when a string is plucked
so that it is given some orbital motion, as is invari-
ably the case when plucking a string on a stringed
instrument such as the guitar. Nonlinearity introduces
coupling between motions in orthogonal transverse di-
rections, causing the orbits to precess (Elliot [15.53],
Gough [15.54], Villagier [15.48]), as illustrated by com-
putational simulations and measurements in Fig. 15.30.
The precessional frequency Ω is given by Ω

ω
= ab

LΔL ,
where a and b are the major and minor semi-axes of
the orbital motion and ΔL is the amount by which the
string is stretched to bring it to tension [15.54].

Such precession can lead to the rattling of the string
against the fingerboard on a strongly plucked instru-
ment, as the major axis of the orbiting string precesses
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Fig. 15.30 (a) The computed precession of the damped
elliptical orbits of a strongly plucked string, and (b) meas-
urements of the orthogonal transverse components of such
motion for a string plucked close to its mid-point (af-
ter [15.54])

towards the fingerboard. The nonlinear origin of such
effects can easily by distinguished from other linear ef-
fects causing degeneracy of the string modes and hence
beats in the measured waveform, by the very strong
dependence of the precession rate on amplitude, as il-
lustrated in Fig. 15.30b.

15.2.3 The Bowed String

Realistic Models
Although the main features of the bowed string can be
described by a simple Helmholtz wave, it is important
to consider how such waves are excited and maintained
by the frictional forces between the bow and string.
The simple Helmholtz solution is clearly incomplete for
a number of reasons including:

1. The unphysical nature of infinitely sharp kinks.
2. The insensitivity of the Helmholtz bowed waveform

to the position and pressure of the bow on the string.
In particular, the simple Helmholtz waveform in-
volves partials with amplitudes proportional to 1/n,
whereas such partials must be absent if the string
is bowed at any integer multiple of the fraction 1/n
along its length, since energy cannot be transferred
from the bow to the string at a nodal position of
a partial.

3. The neglect of frictional forces in the slipping
regime.

4. The neglect of losses and reaction from mechanical
coupling to structural modes at the supporting
bridge.

5. The excitation of the string via its surface, which
must involve the excitation of additional torsional
modes.

Understanding the detailed mechanics of the strongly
nonlinear coupling between the bow and string has been
a very active area of research over the last few decades,
with major advances in our understanding made possible
by the advent of the computer and the ability to simulate
the problem using fast computational methods. Cre-
mer [15.30, Sects. 3–8], provides a detailed account of
many of the important ideas and techniques used to in-
vestigate the dynamics of the bowed string. In addition,
Hutchins and Benade [15.28, Vol. 1], includes a use-
ful introduction to both historical and recent research
prefacing 20 reprinted research papers on the bowed
string. Woodhouse and Galluzzo [15.55] have recently
reviewed present understanding of the bowed string.

Pressure, Speed and Position Dependence
In the early part of the 20th century, Raman [15.36],
later to be awarded the Nobel prize for his research
on opto-acoustic spectroscopy, confirmed and extended
many of Helmholtz’s earlier measurements and theo-
retical models of the bowed string. Raman used an
automated bowing machine to investigate systemati-
cally the effect of bow speed, position and pressure
on bowed string waveforms. He also considered the at-
tenuation of waves on the string and dissipation at the
bridge. From both measurements and theoretical mod-
els, he showed that a minimum downward force was
required to maintain the Helmholtz bowed waveforms
on the string, which was proportional to bow speed and
the square of bow distance from the bridge. He also
measured and was able to explain the wolf-note phe-
nomenon, which occurs when the pitch of a bowed note
coincides with an over-strongly coupled mechanical
resonance of the supporting structure. At such a coinci-
dence, it is almost impossible for the player to maintain
a steady bowed note, which tends to stutter and jump in
a quasi-periodic way to the note an octave above, illus-
trated previously for a cello with a bad wolf note, audio

.
Saunders [15.56], well known for his work in

atomic spectroscopy (Russel–Saunders spin-orbit cou-
pling) was a keen violinist and a cofounder of the
Catgut Acoustical Society. He showed that, for any
given distance of the bow from the bridge, there was
both a minimum and a maximum bow pressure required
for the Helmholtz kink to trigger a clean transition from
the sticking to slipping regimes and vice versa. Subse-
quently, Schelling [15.57] derived explicit formulae for
these pressures in terms of the downward bow force F
as a function of bow speed vB, assuming a simple model
for friction between bow hair and string in the slipping
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region of μd F and a maximum sticking force of μs F,

Fmin = R2
0vB

2Rβ2 (μs−μd)
and

Fmax = 2R0vB

β (μs−μd)
= 4β

R

R0
Fmin , (15.51)

where R0 is the characteristic impedance of the string
terminated by a purely resistive load R at the bridge, and
β is the fractional bowing point along the string. If the
downwards force is larger than Fmax the string remains
stuck to the string instead of springing free into the slip-
ping regime, while for downward forces less than Fmin
an additional slip occurs leading to a double-slipping
motion.

Figure 15.31 is taken from the article by Schelling
on the bowed string in the Scientific American special
issue on the Physics of Musical Instruments [15.58]. It
shows how the sound produced by a bowed cello string
changes with bow position and downward bow pressure
for a typical bow speed of 20 cm/s. Note the logarithmic
scales on both axes. In practice, a string can be bowed
over a quite a large range of distances from the bridge,
bow speeds and pressures with relatively little change in
the frequency dependence of the spectrum and quality
of the sound of an instrument, apart from regions very
close and very distant from the bridge. Nevertheless, the
ability to adjust the bow pressure, speed and distance
from the bridge, to produce a good-quality steady tone,
is one of the major factors that distinguish an experi-
enced performer from the beginner.
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Fig. 15.31 The playing range for a bowed string as a func-
tion of bow force and distance from bridge, with the bottom
and right-hand axis giving values for a cello open A-
string with a constant bow velocity of 20 cms−1 (after
Schelling [15.57])

Slip–Stick Friction
An important advance was the use of a more real-
istic frictional force, dependent on the relative ve-
locity between bow and string, shown schematically
for three downward bow pressures in Fig. 15.32. Such
a dependence was subsequently observed by Schuma-
cher [15.59] in measurements of steady-state sliding
friction between a string and a uniformly moving bow.
The frictional force is proportional to the downward bow
pressure.

Friedlander [15.60] showed that a simple graphical
construction could be used to compute the instantaneous
velocity v at the bowing point from the velocity vp(t) at
the bowing point induced by the previous action of the
bow. The new velocity is given by the intersection of
a straight line with slope 2R0 drawn through vp with
the friction curve, where R0 is the characteristic string
impedance. This follows because the localised force be-
tween the bow and string generate secondary waves
with velocity F/2Z0 at the bowing point as previously
described (15.34). In the slipping region well away from
capture, there will be just a single point of intersection,
so the problem is well defined. However, close to cap-
ture, as illustrated by the intersections marked by the
black dots with the upper frictional curve, the straight
line can intersect in three points (two in the slipping
regime and one in the sticking regime) as first noted by
Friedlander.

Vp(t) vB

String velocity vs(t)
0

Friction

Increasing bow pressure

Fig. 15.32 Schematic representation of the dependence of
the frictional force between bow and string on their relative
velocity and downward pressure of the bow on the string.
The straight line with slope 2R0 passes through the veloc-
ity vp of the string determined by its past history and the in-
tersection with the friction curves determines its current ve-
locity. The open circle represents the single intersection in
the slipping regime at low bow pressures, while the closed
circles illustrate three intersections at higher pressures
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Computational Models
This model has been used in a number of de-
tailed computational investigations of both the transient
and steady-state dynamics of the bowed string, no-
tably by the Cambridge group lead by McIntyre
and Woodhouse [15.61–63], their close collaborator
Schumacher [15.59, 64] from Carnegie-Mellon, and
Guettler [15.65], who is also a leading international
double-bass virtuoso. Readers are directed to the origi-
nal publications for details of the various computational
schemes used, which are also discussed in some detail
by Cremer [15.30, Sect. 8.2].

Whenever a string is bowed at an integer interval
along its length, the secondary waves excited by the fric-
tional forces between bow and string can give rise to
coherent reflections between the bow and bridge, giving
rise to pronounced Schelling ripples on the Helmholtz
waveform and hence significant changes in the spectrum
of the radiated sound. However, because the bowing
force tends to be distributed across the ≈ 1 cm width of
the bow hairs, such effects tend to be smeared out and are
not generally of significant musical importance. McIn-
tyre et al. [15.63] have also shown that uncertainties in
the sticking point from the finite-width strand of bow
hairs leads to a certain amount of jitter or aperiodicity in
the pitch of the bowed string amounting of a few cents,
which is again of little musical significance, though the
noise generated may be significant in contributing to the
characteristic sound of bowed string instruments.

It is instructive to consider the kind of computa-
tional methods developed by Woodhouse and his col-
laborators to investigate both the initial transient and the
steady-state dynamics of the bowed string. This is illus-
trated schematically in Fig. 15.33, where u and u′ rep-
resent the velocity under the bow from waves travelling

un

vn+1 v'n+1

u'n

Kn–m K'n–m

Bridge Bow End-stop

Fig. 15.33 Schematic representation of the model used by
McIntyre and Woodhouse to compute bowed string dynam-
ics. The velocities u and v represent incoming and outgoing
waves from the two ends, with reflections of impulse func-
tions from the bridge and end-stop represented in their
digitised form

towards the bow from the bridge and from the stopped
end of the string respectively, and v and v′ are the ve-
locities at the bowing point of the waves travelling away
from the bow. In the absence of any bowing force v= u′
and v′ = u. However, in the presence of a frictional
force between the bow and string, the outgoing waves
will acquire an additional velocity f/2R0, where the
frictional force is determined by the velocity from the
incoming waves u+u′ excited by previous events. The
outgoing wave travelling towards the stopped end or nut
of the string will simply be reflected, while the outgo-
ing wave reaching the bridge will not only be reflected,
but will also excite continuing vibrations at the bridge
from the excitation of the coupled structural modes.

Such problems can be solved using a Green’s func-
tion approach Cremer [15.30, Sect. 8.4], in which the
outgoing waves can be considered in terms of the re-
sponse to forces represented as a succession of short
impulses. The problem is then reduced to understanding
the response of the system for the reflection of a se-
quence of short impulses or δ functions. At the end-stop,
an impulse will simply be reflected with reversed sign,
but reduced amplitude in the case of a soft finger stop-
ping the string. The incoming wave u′ generated by the
reflected impulse will therefore be an impulse function
delayed in time by the transit time from the bow to
the end-stop and back. Similarly, the impulse returning
from the bridge will be an impulse delayed by the tran-
sit time between bow and bridge and back followed by
a wave generated by the induced motions of the bridge
on reflection. The time-delayed impulse responses from
reflections at the bridge and end-stop can described
by the functions K (t) and K ′(t). The incoming waves
(u(t), u′(t)) can then be described by the convolution
of K (t) and K ′(t) with the outgoing waves (v(t), v′(t))
considered as a succession of impulse functions at all
previous times t′, such that

u(t) =
t∫
v(t′)K (t− t′)dt′ and

u′(t) =
t∫
v′(t′)K ′(t− t ′)dt . (15.52)

To compute the resulting dynamics of string mo-
tion digitally, one simply computes the above velocities
at a succession of short time intervals, with the outgo-
ing waves determined from the incoming waves plus
the secondary waves induced by the resulting frictional
force, such that

v′n+1 = un + fn/2R0 and

vn+1 = u′n + fn/2R0 (15.53)
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and

un+1 =
n∑
vmKn−m and

u′n+1 =
n∑
v′mK ′

n−m , (15.54)

where K j and K ′
j are now the digital equivalents of

the time-delayed impulse responses, illustrated schemat-
ically in Fig. 15.33. The frictional force fn enter-
ing (15.53) is evaluated from the pressure- and vel-
ocity-dependent frictional force using the Friedlander
construction with the computed string velocity under
the bow given by un +u′n .

Pressure Broadening and Flattening
As an example, Fig. 15.34 illustrates the computed
velocity of the string under the bow as a function of
increasing bow pressure (McIntyre et al. [15.61]). In
contrast to the rectangular waveform predicted by the
simple Raman model, the waveform is considerably
rounded, especially at low bow pressures. This results
in a less strident, less intense sound, with the higher
partials strongly attenuated. At higher pressures, but at

vs

a)

b)

c)

t

t

t

Fig. 15.34a–c Computed velocity of string at bowing point
for increasing bow pressures in the ratios 0.4 : 3 : 5 (af-
ter McIntyre and Woodhouse [15.61]) illustrating both the
broadened waveform and pitch dependence on bow pres-
sure compared with the idealised rectangular Helmholtz
bowed waveform

the same position and with the same bow velocity, the
rounding is less pronounced, so that higher partials be-
come increasingly important. The increased intensity
of the higher partials leads to an increased perceived
intensity with bow pressure, in contrast to the Raman
model, in which the waveform and hence intensity re-
mains independent of bow pressure. This is referred to
as the pressure effect. At even higher pressures, the am-
biguity in intersections noted by Friedlander leads to
a pronounced increase in the capture period and hence
the pitch of the bowed note, known as the flattening
effect. These features are discussed in considerable de-
tail along with his own important research and that
of his collaborators on such effects by Cremer [15.30,
Chaps. 7 and 8].

Initial Transients
Computational models can also describe the initial
transients of the bowed string before the steady-state
Helmholtz wave is established. Figure 15.35 compares
the computed and measured initial transients of the
string velocity under the bow for a string played with
a sharp attack (a martelé stroke) (McIntyre and Wood-
house [15.61]). These computations also include the
additional excitation of torsional waves, which are
excited because the bowing force acts on the outer
diameter of the wire, exerting a couple in addition to
a transverse force. The excitation and loss of energy
to the torsional waves appears to encourage the rapid
stabilisation of the bowed Helmholtz waveform.

For low-pitched stringed instruments such as the
double bass, it is very important that the Raman bowed
waveform is established very quickly, otherwise there
will be a significant delay in establishing the required
pitch. Remarkably, Guettler [15.65] has shown that, by

a)

b)

Fig. 15.35 (a) Computed transient string velocity at the
bowing point for a strongly bowed string including cou-
pling to both transverse and torsional modes and (b) the
measured string velocity for a strongly played martelé bow
stroke (after McIntyre and Woodhouse [15.61])
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simultaneously controlling both bow speed and down-
ward pressure, the player can establish a regular Raman
waveform in a single period. The speed with which
a steady-state bowed note can be established can be rep-
resented on a Guettler diagram, where the number of
slips before a steady-state Helmholtz motion is estab-
lished can be illustrated as a two-dimensional histogram
as a function of bowing force and acceleration of the
bow speed from zero.

To investigate such effects experimentally, Galluzzo
and Woodhouse [15.55, 67] have recently developed
a dynamically controlled bowing machine with ac-
tive feedback, providing programmable control of both
downward bow pressure and bow speed. This enables
reliable and reproducible results to be made over a very
wide range of possible playing parameters, extending
Guettler’s original measurements.

Viscoelastic Friction
Recent measurements have shown that the fric-
tional model assumed in these investigations is over-
simplistic. The force between the bow hairs and the
string is maintained by a thin layer of rosin which coats
them both. Rosin is a rather soft, sticky substance, with
a glass-to-liquid transition not far above room tempera-
ture, resulting in viscoelastic properties, which are very
sensitive to temperature (Smith, Woodhouse [15.66]).
As the bow slides past the bow hair, the frictional forces
will heat the rosin and hence reduce its viscoelastic-
ity frictional properties. During the sticking regime,
with no work being done at the bow–string interface,

Friction coefficient

Velocity (m/s)

1

0.8

0.6

0.4

0.2

0
–0.15 –0.1 –0.05 0 0.05

Fig. 15.36 Measured hysteretic frictional force between
string and a glass bow coated with rosin, with the dashed
line indicating previously assumed velocity dependence
(after Smith and Woodhouse [15.66])

the rosin will cool down and the friction will increase.
The frictional forces are therefore hysteretic and will
be strongly dependent on past history within a given
period of string vibration. Woodhouse et al. [15.68]
and Smith [15.69] have investigated this hysteretic be-
haviour in some detail using rosin-coated glass rods.
The hysteretic properties shown in Fig. 15.36 were de-
duced from measurements at the two supported ends
of the string. Woodhouse [15.70] subsequently extended
his computational models to incorporate the hysteretic
frictional properties. Somewhat surprisingly, this more
realistic model made little qualitative difference to the
predicted behaviour. Such measurements contribute to
our understanding of the physical processes underlying
viscoelastic properties of various coatings and lubri-
cants and have become an important tool in the field
of tribology (studies of friction).

15.2.4 Bridge and Soundpost

We now consider the role of the bridge and soundpost
in providing the coupling between the vibrating strings
and the vibrational modes of the body of instruments
of the violin family. We also consider the influence of
such coupling on the modes of string vibration, which
involves a discussion of the very important influence of
damping on the normal modes of any coupled system.

Bridges
Many plucked and struck stringed instruments, such as
the piano or guitar, use a rather low solid bridge to sup-
port the strings and transfer energy directly from the
transverse string vibrations perpendicular to the sup-
porting soundboard or front-plate of the instrument. The
bridge needs only to be sufficiently high to prevent the
strings from vibrating against the fingerboard or shell
of the instrument. This is also true for the Chinese two-
string violin, the erhu, which is held and played so that
the bow excites string vibrations perpendicular rather
than parallel to the stretched snake-skin membrane sup-
porting the bridge and strings. The strings of a harp are
attached to an angled sounding board, so that transverse
string vibrations in the plane of the strings couple di-
rectly to the perpendicular vibrations of the supporting
soundbox Fletcher and Rossing [15.5, Sect. 11.2].

For such instruments, the bridge and other string ter-
minations play a relatively insignificant acoustic role,
apart from adding a small inertial mass and additional
stiffness to the soundboard or top plate, which only
slightly perturbs the frequencies of the structural modes
of vibration.

Part
E

1
5
.2



Musical Acoustics 15.2 Stringed Instruments 605

3060 6100 985 2100 Hz

Fig. 15.37 The lowest in-plane resonant modes and fre-
quencies of violin and cello bridges (after Reinicke [15.71]).
The arrows represent the vibrational directions of the
bowed outer and middle strings

In contrast, the rather high bridges on instruments
of the violin and viol families have a profound influence
on the acoustical properties, particularly at frequencies
comparable with and above any mechanical resonances
of such structures. Figure 15.37 illustrates the shape of
modern violin (and viola) and cello bridges and indi-
cates their principal vibrational modes, as measured by
Reinicke and Cremer [15.71,72] using laser interference
holography. Bridges are cut from maple and taper in
thickness from the two feet to the top surface supporting
the four strings, which are set in small v-shaped locating
grooves.

Reinicke [15.71, 72] showed that the lowest vio-
lin bridge resonance at typically around 3 kHz involves
a rotational motion of the top half of the bridge about
its waist. The rotational motion induced by the vibrat-
ing strings supported on the top of the bridge results in
a couple acting on the top plate via the two feet. The
next most important in-plane resonance is at ≈ 6 kHz
and involves the top of the bridge bouncing up and
down on its feet, resulting in forces via the legs per-
pendicular to the supporting surface. The cello bridge
has rather longer legs, resulting in two low-frequency
twisting modes with resonances at around 1 and 2 kHz,
both of which exert a couple on the top plate. Longitu-
dinal forces from the vibrating strings can also induce
bridge motion perpendicular to its plane (at double the
frequency of the vibrating strings), but such motion is
generally rather small and will be ignored for the pur-
poses of this chapter.

Any transverse string force at the top of the bridge,
from bowing, plucking or striking the string, will be
transferred to the supporting body via the two feet. This
will induce a linear motion of the centre of mass of
the instrument, rotation about its centre of mass and
the excitation of both flexural and longitudinal waves
in the plates of the instrument. Because bowing in-
volves a static force which reverses with bow direction,

a bowed instrument has to be held fairly firmly by the
player, which introduces an extra channel for energy
loss through the supporting chin and fingers. The in-
duced linear and rotational motions of an instrument
are relatively unimportant at audio frequencies as they
involve the whole mass M of the instrument with admit-
tances varying ≈ 1/iMω.

If a tall bridge is placed centrally on a symmetric
shell structure, like the body of an early renaissance
viol, the plucked or bowed motion of the strings parallel
to the supporting top plate would excite only asym-
metrical modes of the supporting structure, whereas
perpendicular string vibrations would excite only sym-
metrical modes. For instruments of the violin family,
an offset soundpost is wedged between the front and
back plates, which destroys the symmetry. The coupled
modes will then involve a linear combination of sym-
metrical and asymmetric body modes, as discussed later
(Sect. 15.2.6).

The arching of the top of the bridge allows each of
the supported four strings to be bowed separately or to-
gether (double stopping), with the bow direction making
an angle of around±15−20◦ relative to the top plate for
the outer two strings and almost parallel for the middle
two strings. Bowing on the outer two strings therefore
involves significant perpendicular in addition to parallel
forces, but only slightly different sounds from a sin-
gle type of string when supported in different positions
on the bridge. Audio compares the sound of
a bowed covered-gut D-string mounted in the normal
position and in the G-, A- and E-string positions on the
same violin. On a guitar almost all the sound is produced
by the vertical motion of the plucked string rather than
by parallel vibrations, which primarily excite nonradiat-
ing longitudinal modes of the top plate.

Simplified Bridge Model
Cremer [15.30, Chap. 9] gives a detailed historical and
scientific introduction to research on violin and cello
bridges and their coupling to the body of the instru-
ment. Relatively complicated mechanical models are
described composed of several masses and springs to
account for the various possible vibrational modes of
the bridge. However, the principal resonances of the vi-
olin bridge shown in Fig. 15.37 can be modelled very
simply by a two-degree-of-freedom mechanical model,
with effective masses representing the linear and rota-
tional energy of the top of the bridge coupled to the
supporting surface through the two supporting feet via
a rotational or vertical spring, illustrated schematically
in Fig. 15.38. The relatively light mass and added rigid-
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Fig. 15.38a,b Simplified mechanical models for the low-
est (a) rotational and (b) bouncing motions of the bridge
supported by its two feet on a rigid surface

ity of the lower half of the bridge will only slightly
perturb the resonant frequencies of the more massive
supporting plates and can therefore be ignored as a first
approximation. The effective masses and strength of
the coupling springs can be chosen to reproduce the
vibrational characteristics of the first two vibrational
modes of the violin (or cello) bridge, which dominate
the acoustical properties of the instrument.

At low frequencies, well below any resonant fre-
quency, the bridge will vibrate as a rigid body, adding
a small amount of additional mass, moment of iner-
tia and rigidity to the top plate, which will again only
slightly perturb the vibrational frequencies of the sup-
porting shell structure. The additional relative height of
the cello bridge compared with that of the violin bridge
enables a rather larger couple to be exerted by the bowed
string on the more massive top plate. There is a delicate
balance between increasing the coupling to enhance the
intensity at low frequencies without making it so strong
that troublesome wolf-note problems arise, as referred
to earlier.

Bridge-Hill (BH) Feature
Reinicke [15.71,72] and Cremer [15.30] highlighted the
importance of the bridge resonance on both the sound
of the violin and on admittance measurements, which
are traditionally made by exciting the violin at the top
of the bridge using an external force parallel to the
top supporting plate. In recent year, this problem has
attracted renewed interest, in an attempt to describe
the rather broad peak and associated phase changes
superimposed on the multi-resonant response of the in-
strument, which Jansson refers to as the Bridge-Hill
(BH) feature [15.74, 75].

Figure 15.39 shows recent measurements by Wood-
house [15.73] of the modulus of the admittance at the
bridge for a particular instrument using a series of
bridges with different masses but the same resonant fre-
quency at ≈ 2 kHz. A strong but rather wide overall BH
peak is observed in the vicinity of the bridge resonance.

(dB)

(kHz)
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Fig. 15.39 The admittance at the top of the bridge on a sin-
gle violin, plotted on the same but arbitrary dB scale, for
a number of violin bridges having the same height and res-
onant frequency (≈ 2 kHz) but different masses. The upper
curve corresponds to the lightest bridge that could be fab-
ricated from a standard bridge blank and the lowest curve
by the heaviest. Subtracting 45 dB from the results would
give the approximate admittance in units of ms−1N−1 (data
kindly provided by Woodhouse [15.73])

Note the marked decrease in admittance with increas-
ing bridge mass above the bridge resonance. There is
also an associated overall 90◦ change in the phase of
the admittance on passing through the peak.

Evidence for the BH feature can also be seen in
Dünnwald’s [15.76] superimposed measurements of the
sound output of a large number of high-quality Ital-
ian, modern master and factory violins as a function
of sinusoidal input force at top of the bridge, shown in
Fig. 15.40. A surprising aspect of these measurements is
the apparent lack of any such feature for modern master
violins, possibly because of a wider variation in bridge
resonances and effective masses of bridge and plate res-
onances in the chosen instruments. From measurements
of the radiated sound of over 700 violins, Dünnwald
proposed that the presence of a number of strong acous-
tic resonances in the broad frequency band from 1.5 to
4 kHz was one of the distinguishing features of a really
fine instrument. The influence of the bridge in account-
ing for such a peak and the reduced response at higher
frequencies is clearly important.

Woodhouse [15.77] has recently revisited the prob-
lem of the coupling between bridge and body of the
instrument and the origin of the BH peak. A sim-
ple theoretical model shows that the peak depends on
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Fig. 15.40 Overlays of the sound output of 10 typical old
Italian, modern master instruments, and 10 factory instru-
ments for a constant sinusoidal force at the top of the bridge
(after Dünnwald [15.76])

many factors, such as the effective masses, Q-values
and resonant frequencies of the major vibrational modes
of the bridge and the multi-resonant properties of the
instrument. To demonstrate the overall effect of the
bridge without having to consider the detailed vibra-
tional response of a particular instrument, Woodhouse
first considered coupling to a simplified model for the
vibrational modes of the coupled instrument. This as-
sumed a set of coupled vibrational modes each having
the same effective mass M and Q-value, with a constant
spacing of resonances ω0 = 2πΔ f . Different values
for these parameters would need to be used to model
the independent rotational or bouncing modes, though
Woodhouse concentrates on the influence of the low-
est frequency rocking bridge mode. The merit of such
a model is that the multi-resonant response of such
a system varies monotonically with frequency. The fea-
tures introduced by the resonant properties of the bridge
can then be easily identified and the input admittance
expressed relative to the admittance AV for a com-
pletely rigid bridge of the same mass, where

AV(ω) = 1

M

∑

n

iω

(nω0)2−ω2+ iωnω0/Q
. (15.55)

The corresponding input admittance for the one-
degree-of-freedom model bridge is then given by

ABB(ω) = AV+ iω/mω2
B

1− (ω/ωB)
2+ iωm AV

, (15.56)

where m is the effective mass of the bridge and ωB its
resonant frequency and internal damping of the bridge
has been neglected.

We can also define a nonlocal admittance or mobil-
ity AVB to describe the induced body motion per unit
force at the foot of the bridge given by

AVB(ω) = AV

1− (ω/ωB)
2+ iωm AV

. (15.57)

The simulations in Fig. 15.41 illustrate the major
effect of the bridge resonance on both the input re-
sponse and induced body motion and hence radiated
sound at, around and above the resonant frequency of
the bridge (3 kHz in the above example). For a real
instrument, the spacing and Q-values of the individ-
ual modes will be very irregular and highly instrument
dependent; nevertheless, the effect of the bridge reso-
nance on the overall response will be very similar. In
particular, the bridge resonance gives a broad peak in
input admittance followed by a 6 dB/octave decrease in
the admittance above resonance, where the response is
largely dominated by the bridge dynamics rather than
that of the instrument itself, with ABB ≈ 1/imω. Note
that the height and width of the peak is largely deter-
mined by energy lost to the coupled structural vibrations
(including, in practice, additional energy lost to all
the supported strings) rather than from internal bridge
losses, which have been neglected in this example.

The bridge resonance introduces a somewhat
smaller peak in the induced body mobility and hence
radiated sound. Well above the bridge resonance, the in-
duced body velocity is given by AVB(ωB/ω)2, with an
intensity decreasing by 12 dB/octave. Unlike the input
bridge admittance, the induced body motion and out-
put sound retains the characteristic resonances of the
instrument, though attenuated.

The predicted difference in admittance at the top
of the bridge ABB and top of the instrument AV is
illustrated in Fig. 15.42, in measurements by Moral
and Jansson [15.78] reproduced by Cremer ([15.30],
Fig. 15.9). Whereas the average admittance of the vio-
lin varies relatively little with frequency, the admittance
at the bridge shows a pronounced BH peak with a rel-
atively featureless and approximately 1/ f (the added
solid line) variation above the peak, as anticipated from
the above model.

Part
E

1
5
.2



608 Part E Music, Speech, Electroacoustics

|ABB| (dB)

(kHz)
0 6

40

20

0

|AVB| (dB)

(kHz)
0 6

40

20

0

1

1

2

2

3

3

4

4

5

5

Feiwt

iωm

k/iω Zviolin

Fig. 15.41a,b Response curves for a one-degree-of-freedom
bridge coupled to an artificial set of regularly spaced
(200 Hz), constant effective mass (100 g) and constant Q
(50) structural resonances. Panel (a) illustrates the effect
of bridge mass on the admittance ABB measured at the
point of excitation at the top of the bridge, while (b) illus-
trates the corresponding induced body mobility AVB. The
coloured response curves are for lossless bridges with ef-
fective masses 1, 1.5 and 3 g (highest to lowest response),
having the same resonant frequency at 3 kH (after Wood-
house [15.77]) The black curves show the violin body
response AV that would be measured using a massless rigid
bridge

Woodhouse [15.77] has extended this idealised
model to describe the coupling of the bridge to a more
realistic, but still simplified, model for the vibrational
modes of the violin with a soundpost. This changes
the detailed response, but not the overall qualitative
features. Because the response of a violin depends
rather randomly at higher frequencies on the positions
and Q-values of the structural modes, Woodhouse uses
a logarithmic scale to average the peaks and troughs
at the maxima and minima of the admittance (approx-

(Hz)
2 105

10
dB

Fig. 15.42 Admittances of a violin measured at the top of
the bridge (top trace) and at the left foot of the bridge
(lower trace) illustrating a strong BH peak when meas-
ured at the top of the bridge but a relatively monotonic
dependence of the body of the instrument (after Cremer
[15.30, Fig. 12.9]). The added solid line represents the 1/ f
reduction in the predicted BH response above the bridge
resonance

imately proportional to Q and 1/Q), to give a skeleton
curve describing the global variation of the violin’s
complex admittance (more details are given in the later
Sect. 15.2.3 on shell modes). This enables Woodhouse
to illustrate the influence of various bridge parameters
on the acoustical properties of the instrument, suggest-
ing ways in which violin makers could vary bridge
properties to optimise the sound quality of an instru-
ment, though that will always be a matter of personal
taste rather than being scientifically defined.

The important role of the bridge in controlling the
sound of the violin or cello has often been overlooked,
even by many skilled violin makers. Indeed one of the
reasons why Cremonese violins generally produce such
highly valued sounds is the experience and skill in-
volved in adjusting the mass, size and fitting of the
bridge (and the position of the soundpost) to optimize
the sound quality, investigated experimentally by Hack-
linger [15.79].
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Added Mass and Muting
A familiar demonstration of the importance of the mass
of the bridge on the sound of an instrument is to place
a light mass or mute on the top of the bridge. This
dramatically softens the tone of the instrument by de-
creasing the resonant frequency of the bridge and hence
amplitude of the higher-frequency components in the
spectrum of sound. The added mass Δm lowers the
resonant frequency ωB by a factor [m/(m+Δm)]1/2.
Figure 15.43 illustrates changes in resonant frequency
measured by Reinicke for a bridge mounted on a rigid
support for an additional mass of 1.5 g and when
wedges are inserted between the wings of the bridge
to inhibit the rotational motion of the top of the bridge
and hence the resonant frequency. Audio il-
lustrates the changes in sound of a violin before and
after first placing a commonly used 1.8 g mute and then
a much heavier practice mute on top of the bridge, and
after wedges were inserted in the bridge to inhibit the
rocking motion.

Soundpost and Bass Bar
In instruments of the violin family, a soundpost is
wedged asymmetrically between the top and back
plates, as illustrated schematically in Fig. 15.44. Addi-
tionally, a bass bar runs longitudinally along much of
the length of the bass-side of the front plate. The sound-
post and bass bar give added mechanical strength to
the instrument, helping it to withstand the rather large
downward force from the angled stretched strings pass-
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With wedges

Fig. 15.43 Measurements of bridge resonances from meas-
urements of the ratio of the force exerted by one bridge foot
on a rigid surface to the applied force, for an added mass
of 1.5 g and for wedges introduced between the wings of
the bridge to increase its rotational stiffness (after Reinicke
data reproduced in Fletcher and Rossing [15.5, Fig. 10.19])

Helmholtz
air resonance

Force rocks bridge

Bowing direction

Sound post

Bass bar

Fig. 15.44 Schematic cross section of the violin illustrat-
ing the position of the soundpost, bass-bar and f-hole
openings

ing over the bridge, which is typically ≈ 10 kg weight
for the violin.

The influence of the soundpost on the quality of
sound is so strong that the French refer to it as the
âme (soul) of the instrument. Its acoustic function is to
provide a rather direct coupling of the induced bridge
vibrations to both the back and the front plates of the
instrument and to provide an additional mechanical con-
straint, so that the bowed string vibrations excite normal
modes, which are linear combinations of the asymmet-
ric and symmetric modes of vibration of the front and
back plates of the instrument.

Of modern stringed instruments, only the violin
family makes use of a soundpost. However, soundposts
were probably used in the medieval fiddle and other
early instruments including the viol. The ancient Celtic
crwyth effectively combined the functions of the bridge
and soundpost by using a bridge with feet of unequal
length, the first resting on the top plate and the sec-
ond passing through a hole in the front face to rest on
the back plate – a bridge design still used today in the
folk-style Greek rebec (see Gill [15.80]).

15.2.5 String–Bridge–Body Coupling

We now consider the interaction of the strings with the
vibrational modes of the body of the instrument via the
bridge. Because we are dealing with the coupling of the
vibrational modes of the strings, bridge and body of the
instrument, the problem has to be considered in terms
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of the normal modes of the coupled system. An im-
portant aspect of this problem that is often not widely
recognised, but is always important in dealing with mu-
sical instruments, is the profound influence of damping
on the nature of the coupled modes. This is a generic
phenomenon for any system of coupled oscillators. As
we will see, the strength of the damping relative to the
strength of the coupling determines whether a system
can be considered as weakly or strongly coupled.

String–Body Mode Coupling
For simplicity, we only consider the perturbation of
string resonances from the induced motion of the bridge
and ignore any damping introduced by, for example,
a finger stopping the string at its opposite end. In gen-
eral, as we have already seen, the admittance at the point
of string support on the bridge will be a complicated,
multi-resonant, function of frequency reflecting the nor-
mal modes of vibration of the coupled structure. The
normal modes will include the combined motions of
all parts of the violin body, including the body, bridge,
neck, tailpiece, etc.

Each coupled normal mode will contribute a charac-
teristic admittance, which will be spring-like below its
resonant frequency, resistive at resonance and mass-like
above resonance. The effect of such terminations on the
vibrating string is therefore to shift its effective nodal
position, as illustrated in Fig. 15.45a–c, for a spring-like
string termination with spring constant K , an effective
mass M and a lossy support with resistance R.

For a spring-like termination with spring constant
K , the bridge will move in phase with the force acting
on it. This will increase the effective length of the vi-
brating string between nodes by a distance ΔB = T/K ,
lowering the frequency of a string mode by a fraction
T/KL . For a mass-like termination M, the end-support
will move in anti-phase with the forces acting on it,
so that the effective string length is shortened. The
string frequencies are then increased by the fraction
T/Mω2

n = (1/nπ)2m/M, where m is the mass of the
string. It is less easy to visualise the effect of a re-
sistive support because the induced displacement is in
phase-quadrature with the driving force. Mathemati-
cally, however, a resistive termination can be considered
as an imaginary mass m∗ = R/iω leading to an imagi-
nary fractional increase in frequency iωn1/(nπ)2m/R.
This imaginary frequency is equivalent to an expo-
nential decay e−t/τ for all modes with τ = π2 R/mω2

1,
where ω1 is the frequency of the fundamental string
mode. This result can also be derived using somewhat
more physical arguments, by equating the loss of stored

a) ω< ωo

b) ω> ωo

c) ω= ωo

Spring support

ΔB =F/K

δL

Mass support

ΔB = –F/Mω2

δL

Resistive

ΔB = –iωF/R

δL = 0

Fig. 15.45a–c Coupling of vibrating string to a weakly
coupled normal mode via the bridge for the string res-
onance (a) below the resonant frequency of the coupled
mode, (b) above the resonant frequency, and (c) at reso-
nance

vibrational energy to the energy dissipated at the end-
support.

The terminating admittance at the bridge for a single
coupled vibrational mode can be written in the form

An(ω) = 1

Mn

iω

ω2
n −ω2+ iωωn/Qn

, (15.58)

with the real part of this function determining the decay
time of the coupled string resonances and the imaginary
part the perturbation in their resonant frequencies. The
perturbations are proportional to the ratio of mass of the
vibrating string to the effective mass of the coupled res-
onance at the point of string support on the bridge and
vary with frequency with the familiar dispersion and
dissipation curves of a simple harmonic oscillator. For
a multi-resonant system like the body of any stringed
instrument, the string perturbations from each of the
coupled structural resonances are additive.

Normal Modes and Damping
Strictly speaking, whenever one considers the coupling
between any two or more vibrating systems, one should
always consider the normal modes or coupled vibrations
rather than treat the systems separately, as we have done
above. However, the inclusion of damping has a pro-
found influence on the normal modes of any system
of coupled oscillators (Gough [15.81]) and justifies the
above weak-coupling approximation, provided that the
coupling at the bridge is not over-strong. Although we
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consider the effect of damping in the specific context
of a lightly damped string coupled to a more strongly
damped structural resonance, the following discussion
is completely general and is applicable to the normal
modes of any coupled system of damped resonators.

Consider a string vibrating in its fundamental mode
coupled via the bridge to a single damped structural res-
onance. The string has mass m, an unperturbed resonant
frequency of ωs a Q-value of Qs and a displacement at
its mid-point of v. The coupled structural resonance has
an effective mass M at the point of string support, an un-
perturbed resonant frequency of ωM a Q-value of QM
and displacement of u.

The vibrating string exerts a force on the coupled
body mode, such that

M

(
∂2v

∂t2
+ ω

Qm

∂v

∂t
+ω2

Mv

)
= T

(π
L

)
u . (15.59)

Multiplying this expression through by ∂v/∂t, one re-
covers the required result that the rate of increase in
stored kinetic and potential energy of the coupled mode
is simply the work done on it by the vibrating string
less the energy lost from damping. Similar energy bal-
ance arguments enable us to write down an equivalent
expression for the influence of the coupling on the string
vibrations,

m

2

(
∂2u

∂t2
+ ω

Qm

∂u

∂t
+ω2

Mu

)
= T

(π
L

)
v , (15.60)

where the effective mass of the vibrating string is m/2
(i. e. its energy is 1/4 mω2u2). To determine the normal-
mode frequencies, we look for solutions varying as eiωt .
Solving the resultant simultaneous equations we obtain

(
ω2

M−ω2 (1− i/QM)
) (
ω2

m−ω2 (1− i/Qm)
)

=
(

T
π

l

)2 2

mM
= α4 , (15.61)

where α is a measure of the coupling strength.
Solving to first order in 1/Q-values and α2 we ob-

tain the frequencies of the normal modes Ω± of the
coupled system,

Ω2± = ω2+±
(
ω4−+α4

)1/2
, (15.62)

where

ω2± =
1

2

[
ω2

M±ω2
m+ i

(
ω2

M

QM
± ω2

m

Qm

)]
. (15.63)

If the damping terms are ignored, we recover the
standard perturbation result with a splitting in the

frequencies of the normal modes at the crossover fre-
quency (when the uncoupled resonant frequencies of the
two systems coincide) such that Ω2± = ω2

M±α2.
In the absence of damping, the two normal modes

at the crossover frequency are linear combinations of
the coupled modes vibrating either in or out of phase
with each other, with equal energy in each, so that
v/u =±√m/2M. Well away from the crossover region,
the mutual coupling only slightly perturbs the individ-
ual coupled modes, which therefore retain their separate
identities. However, close to the crossover region, when
|ωM−ωm| � 2α2/ (ωM+ωm), the coupled modes lose
their separate identities, with the normal modes involv-
ing a significant admixture of both.

The inclusion of damping significantly changes the
above result. If we focus on the crossover region, cou-
pling between the modes will be significant when

α2 ≈ ω2
M−ω2

m . (15.64)

At the crossing point, when the uncoupled resonances
coincide, the frequencies of the coupled normal are
given by

Ω2± = ω2
M (1+ i/2Q+)±

⎛

⎝α4−
(
ω2

M

2Q−

)2
⎞

⎠
1/2

,

(15.65)

where

1

Q±
= 1

QM
± 1

Qm
. (15.66)

The sign of the terms under the square root clearly
depends on the relative strengths of the coupling and
damping terms. When the damping is large and the cou-
pling is weak, such that (ω2

M/2Q−)2 > α4, one is in the
weak-coupling regime, with no splitting in frequency of
the modes in the crossover region. In contrast, when
the coupling is strong and the damping is weak, such
that (ω2

M/2Q−)2 < α4, the normal modes are split, but
by a somewhat smaller amount than had there been no
damping.

Figure 15.46 illustrates the very different charac-
ter of the normal modes in the crossover region in
the weak- and strong-coupling regimes. The examples
shown are for an undamped string interacting with
a structural resonance with a Q of 25, evaluated for
coupling factors,

K = 2QM

ω2
M

α= 2QM

nπ

√
2m

M
, (15.67)
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Fig. 15.46 Normal modes of coupled oscillators illustrat-
ing the profound effect of damping on the behaviour in the
cross-over region illustrated for K -values of 0.75 and

√
5

for an undamped string resonance coupled to a body res-
onance with a typical Q = 25. The solid line shows the
shifted frequencies of the normal modes as the string fre-
quency is scanned through the body resonance, while the
dashed lines show the 3 dB points on their damped reso-
nant response (Gough [15.81])

of 0.75 and
√

5, in the weak- and strong-coupling
regimes, respectively.

In the weak-coupling limit, the frequency of the
vibrating string exhibits the characteristic perturbation
described in the previous section, with a shift in fre-
quency proportional to the imaginary component of the
terminating admittance and an increased damping pro-

portional to the real part. Note that the coupling also
weakly perturbs the frequency and damping of the cou-
pled structural resonance. However, there is no splitting
of modes at the crossover point and the normal modes
retain their predominantly string-like or body-like char-
acter throughout the transition region.

In the strong-coupling limit, K > 1, the normal
modes are split at the crossover point. The losses are
also shared equally between the split modes. As the
string frequency is varied across the body resonance,
one mode changes smoothly from a normal mode with
a predominantly string-like character, to a mixed mode
at cross over, and to a body-like mode at higher frequen-
cies, and vice versa for the other normal mode.

Our earlier discussion of the perturbation of string
resonances by the terminating admittance is therefore
justified in the weak-coupling regime (K 
 1), which
is the usual situation for most string resonances on mu-
sical instruments. However, if the fundamental mode of
a string is over-strongly coupled at the bridge to a rather
light, weakly damped body resonance, such that K > 1,
the normal-mode resonant frequency of the vibrating
string, when coincident in frequency with the coupled
body mode, will be significantly shifted away from its
position as the fundamental member of the harmonic
set of partials. It is then impossible to maintain a steady
Helmholtz bowed waveform on the string at the pitch of
the now perturbed fundamental, which is the origin of
the wolf-note problem frequently encountered on other-
wise often very fine-stringed instruments, and cellos in
particular.

To overcome such problems, it is sometimes pos-
sible to reduce K by using a lighter string, but more
commonly the effective Q-value is reduced by ex-
tracting energy from the coupled system by fitting
a resonating mass on one of the strings between the
bridge and tailpiece. A lossy material can be placed be-
tween the added mass and the string to extract energy
from the system, which might otherwise simply move
the wolf note to a nearby frequency.

String Resonances
Figure 15.47 illustrates: (a) the frequency dependence
of the in-phase and phase-quadrature resonant response
of an A-string as its tension increased, so that its fre-
quency passes through a relatively strongly coupled
body resonance at ≈ 460 Hz; (b) the splitting in fre-
quency of the normal modes of the second partial
of the heavier G-string frequency tuned to coincide
with the frequency of the coupled body resonance.
Superimposed on these relatively broad resonances is
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In-phase and phase-quadrature string resonance

Frequency (Hz)
425 500450 475

90 phase

(Hz)400 500

180 phase

(Hz)400 500

a) b)

Fig. 15.47a,b Measurements of the in-phase and in-quadrature resonant response of violin strings coupled via the bridge
to a strong body resonance (Gough [15.34]). The shift of the broader resonances relative to the unperturbed narrow
resonance indicates the extent of the perturbative coupling. (a) tuning the A-string resonance through a coupled resonance
at≈ 460 Hz; (b) the splitting of the string–body normal modes for the more strongly coupled, second partial, of the heavier
G-string

a very sharp resonance arising from transverse string
vibrations perpendicular to the strong coupling direc-
tion, to be explained in the next section. This very
weakly perturbed string resonance provides a marker,
which enables us to quantify the shifts and additional
damping of string vibrations in the strong coupling
direction.

When the frequency of the lighter A-string is tuned
below that of the strongly coupled body resonance, the
coupling lowers the frequency of the coupled string
mode, as anticipated from our earlier discussion. In
contrast, when tuned above the coupled resonance the
frequency of the coupled string mode is increased, while
at coincidence there is a slight indication of split modes
somewhat smaller than the widths. The splitting of
modes is clearly seen for the second partial of the much
heavier G-string (Fig. 15.47b), with symmetrically split
broad string/body modes above and below the narrow
uncoupled mode. Not surprisingly, this violin suffered
from a pronounced wolf note when played at 460 Hz in
a high position on the G-string, but not on the lighter
D- or A-string. Such effects tend to be even more pro-
nounced on cellos due to the very high bridge providing
strong coupling between the vibrating strings and body
of the instrument.

On plucked string instruments the inharmonicity of
the partials of a plucked note induced by coupling at
the bridge to prominent structural resonances causes
beats in the sound of plucked string, which contribute
to the characteristic sound of individual instruments.
Woodhouse [15.82,83] has recently made a detailed the-
oretical, computational and experimental study of such
effects for plucked notes on a guitar taking account of
the effect of damping on the coupled string–corpus nor-
mal modes. This is sometimes not taken into proper
account in finite-element software, in which the normal
modes of an interacting system are first calculated ig-
noring damping, with the damping of the modes then
added. As is clear from Fig. 15.46, such an approach
will always break down whenever the width of reso-
nances associated with damping becomes comparable
with the splitting of the normal modes in the absence
of damping, as is frequently the case in mechanical and
acoustical systems.

Polarisation
We have already commented on the response of a bridge
mounted centrally on a symmetrically constructed in-
strument, with string vibrations perpendicular to the
front plate exciting only symmetric modes of the body
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of the instrument, while string vibrations parallel to
the front plate induce a couple on the front plate
exciting only asymmetric modes. The terminating ad-
mittance at the bridge end of the string will therefore
be a strongly frequency dependent function of the
polarisation direction of the transverse string modes.
The angular dependence of the terminating admit-
tance lifts the degeneracy of the string modes resulting
in two independent orthogonal modes of transverse
string vibration, with different perturbed frequencies
and damping, polarised along the frequency-dependent
principal directions of the admittance tensor. If a string
is excited at an arbitrary angle, both modes will be ex-
cited, so that in free decay the directional polarisation
will precess at the difference frequency. The resultant
radiated sound from the excited body resonances will
also exhibit beats, which unlike the nonlinear effects
considered earlier will not vary with amplitude of string
vibration.

In instruments of the violin family, the soundpost
removes the symmetry of the instrument, with normal
modes involving a mixture of symmetric and asymmet-
ric modes. Measurements like those shown in Fig. 15.47
demonstrate that below ≈ 700 Hz, the effect of the
soundpost is to cause the bridge to rock backwards and
forwards about the treble foot closest to the soundpost,
which acts as a rather rigid fulcrum. This accounts for
the very narrow string resonances shown in Fig. 15.47,
which correspond to string vibrations polarised paral-
lel to the line between the point of string support and
the rigidly constrained right-hand foot, as indicated in
Fig. 15.44. In contrast, string vibrations polarised in the
orthogonal direction result in a twisting couple acting
on the bridge, with the left-hand foot strongly excit-
ing the vibrational modes of the front plate giving the
frequency-shifted and broadened string resonances of
the strongly coupled string modes.

By varying the polarisation direction of an elec-
tromagnetically excited string, one can isolate the
two modes and determine their polarisations (Baker
et al. [15.84]). When such a string is bowed, it will
in general be coupled to both orthogonal string modes.
The unperturbed string mode may well help stabilise the
repetitive Helmholtz bowed waveform.

String–String Coupling
A vibrating string on any multi-stringed instrument is
coupled to all the other strings supported on a common
supporting bridge. This is particularly important on the
piano, where pairs and triplets of strings tuned to the
same pitch are used to increase the intensity of the notes

in the upper half of the keyboard. Such coupling is also
important on instruments like the harp, where the strings
and their partials are coupled via the soundboard. On
many ancient bowed and plucked stringed instruments,
a set of coupled sympathetic string were used to en-
hance the sonority and long-term decay of plucked and
bowed notes. Even on modern instruments like the vio-
lin and cello, the coupling of the partials of a bowed or
plucked string with those of the other freely vibrating
open (unstopped) strings enhances the decaying after-
sound of a bowed or plucked note. This may be one
of the reasons why string players have a preference for
playing in the bright key signatures of G, D and A ma-
jor associated with the open strings, where both direct
and sympathetic vibrations can easily be excited.

The musical importance of such coupling on the pi-
ano is easily demonstrated by first playing a single note
and holding the key down so that the note remains un-
damped and then holding the sustaining pedal down, so
that many other strings can also vibrate in sympathy and
especially those with partials coincident with those of
the played note. Composers, such as Debussy, exploit
the additional sonorities produced by such coupling, as
in La Cathédrale Engloutie .

The influence of coupling at the bridge of the normal
modes of string vibration on the piano has been dis-
cussed by Weinreich [15.85] and for sympathetic string
in general by the present author [15.81]. Consider first
two identically tuned string terminated by a common
bridge with string vibrations perpendicular to the sound-
board and relative phases represented by arrows. The
normal modes can therefore be described by the com-
bination ↑↑ and ↓↑ with the strings vibrating in phase
or in anti-phase. When the strings vibrate in anti-phase
↓↑, they exert no net force on the bridge, which there-
fore remains a perfect node inducing no perturbation in
frequency or additional damping or transfer of energy
to the soundboard. In contrast, when the strings vibrate
in the same phase ↑↑, the force on the bridge and resul-
tant amplitude of sound produced will be doubled, as
will the perturbation in frequency and damping of the
normal modes, and the amplitude of the resultant sound,
relative to that of a single string.

Reactive terms in the common bridge admittance
tend to split the frequencies of the normal modes in
the vicinity of the crossover frequency region, while re-
sistive coupling at the bridge tends to draw the modal
frequencies together over an appreciable frequency
range. This is illustrated by Weinreich’s predictions
for two strings coupled at the bridge by a complex
admittance shown in Fig. 15.48, which shows the veer-
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Fig. 15.48 Normal modes of a string doublet coupled at
the bridge by a complex impedance. The dashed and dot-
ted curves illustrate the effect of increasing the reactive
component (after Weinreich [15.85])

ing together of the normal modes induced by resistive
coupling and the increase in splitting as the reactive
component of the coupling is increased.

If the two strings are only slightly mistuned, the am-
plitudes of the string vibrations involved in the normal
modes can still be represented as ↑↑ and ↓↑, but the
amplitudes of the two string vibrations will no longer be
identical. Hence, when the two strings of a doublet are
struck with equal amplitude by a hammer, the mode can
be represented by a combination of vibrations ↑↑ with
equal amplitude with a small component with opposite
amplitudes the ↓↑ dependent on the mistuning. This
leads to a double decay in the sound intensity, with the
strongly excited ↑↑ mode decaying relatively quickly,
leaving the smaller amplitude but weakly damped ↓↑
mode persisting at longer times. Figure 15.49, from
Weinreich [15.85], shows the rapid decay of a sin-
gle C4 string, when all other members of the parent
string triplet are damped, followed by the much longer
long-term decay of the normal mode excited when one
other member of the triplet is also allowed to vibrate
freely. More-complicated decay patterns with super-
imposed slow beats are observed for various degrees
of mistuning, from interference with small-amplitude

String displacement (dB)

(s)
0 50

0

–20

–40

–60

10 20 10 20 30 40

Fig. 15.49 Decay in string vibration of a struck C4
(262 Hz) piano string, first with other members of the string
triplet damped and then with one other similarly tuned
string allowed to vibrate also (after Weinreich [15.85])

orthogonally polarised string modes excited when the
strong-coupling direction is not exactly perpendicular
to the soundboard. Weinreich suggests that skilled pi-
ano tuners deliberately mistune the individual strings
of string doublets and triplets to maximise their long-
term ringing sound. Any weakly decaying component
of a decaying sound is acoustically important because
of the logarithmic response of the ear to sound intensity.

15.2.6 Body Modes

Stringed instruments come in a great variety of shapes
and sizes, from strings mounted on simple boxes or on
skins stretched over hollow gourds to the more complex
renaissance shapes of the viols, guitars and members
of the violin family. The vibrational modes of all such
instruments, which are ultimately responsible for the ra-
diated sound, involve the collective modes of vibration
of all their many component parts. For example, when
a violin or guitar is played, all parts of the instrument
vibrate – the individual strings, the bridge, the front and
back plates and ribs that make up the body of the in-
strument, the air inside its hollow cavity, the neck, the
fingerboard, the tailpiece and, for members of the violin
family, the internal soundpost also.

Because of the complexity of the dynamical struc-
tures, it would be well nigh impossible to work out
the modal shapes and frequencies of even the simplest
stringed instruments from first principles. However, as
we will show later in this section, with the advent of
powerful computers and finite-element analysis soft-
ware, it is possible to compute the modal vibrations
and frequencies of typically the first 20 or more nor-
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mal modes for the violin and guitar below around 1 kHz.
Such calculations do indeed show a remarkable variety
of vibrational modes, with every part of the instrument
involved in the vibrations to some extent. Such modes
can be observed by direct experiment using Chladni
plate vibrations, laser holography and modal analysis
techniques, as briefly described in this section.

The frequencies of the vibrational modes can be ob-
tained even more simply from the admittance measured
at the position of string support or other selected posi-
tion on the body of an instrument, when the instrument
is excited at the bridge by a sinusoidal electromagnetic
force or a simple tap. However, unless a large number
of measurements over the whole body of the instrument
(normal-mode analysis) are made, such measurements
provide very little direct information about the nature
of the normal modes and the parts of the violin which
contribute most strongly to the excited vibrations.

Although a particular structural mode can be very
strongly excited, it may contribute very little to the ra-
diated sound and hence the quality of sound of an instru-
ment. Examples of such resonances on the violin or gui-
tar include the strong resonances of the neck and finger-
board. However, even if such resonances produce very
little sound, their coupling to the strings via the body
and bridge of the instrument can lead to considerable
inharmonicity and damping of the string resonances, as
discussed in the previous section. Such effects can have
a significant effect on the sound of the plucked string of
a guitar and the ease with which a repetitive waveform
can be established on the bowed string.

To produce an appreciable volume of sound, the
normal modes of instruments like the violin and gui-
tar have to involve a net change in volume of the shell
structure forming the main body of the instrument. This
then acts as a monopole source radiating sound uni-
formly in all directions. However, when the acoustic
wavelength becomes comparable with the size of the
instrument, dipole and higher-order contributions also
become important.

For the guitar and instruments of the violin fam-
ily, there are several low-frequency modes of vibration
which involve the flexing, twisting and bending of the
whole body of the instrument, contributing very lit-
tle sound to the lowest notes of the instruments. To
boost the sound at low frequencies, use is often made
of a Helmholtz resonance involving the resonant vibra-
tions of the air inside the body cavity passing in and
out of f-holes or rose-hole cut into the front plate of the
instrument. This is similar to the way in which the low-
frequency sound of a loudspeaker can be boosted by

mounting it in a bass-reflex cabinet. The use of a res-
onant air cavity to boost the low-frequency response
has been a common feature of almost every stringed
instrument from ancient times.

Although finite-element analysis and modal analy-
sis measurement techniques provide a great wealth of
detailed information about the vibrational states of an
instrument, considerable physical insight and a degree
of simplification is necessary to interpret such meas-
urements. This was recognised by Savart [15.86] in the
early part of the 19th century, when he embarked on
a number of ingenious experiments on the physics of
the violin in collaboration with the great French violin
maker Vuillaume. To understand the essential physics
involved in the production of sound by a violin, he
replaced the beautiful, ergonomically designed, renais-
sance shape of the violin body by a simple trapezoidal
shell structure fabricated from flat plates with two cen-
tral straight slits replacing the elegant f-holes cut into
the front. As Savart appears to have recognised, the de-
tailed shape is relatively unimportant in defining the
essential acoustics involved in the production of sound
by a stringed instrument.

We will adopt a similar philosophy in this section
and will consider a stringed instrument made up of its
many vibrating components – the strings and bridge,
which we have already considered, the supporting shell
structure, the vibrations of the individual plates of such
a structure, the soundpost which couples the front and
back plates, the fingerboard, neck and tailpiece, which
vibrate like bars, and the air inside the cavity. Although
we have already emphasised that it is never possible to
consider the vibrations of any individual component of
an instrument in isolation, as we have already shown for
the string coupled to a structural resonance at the bridge,
it is only when the resonant frequencies of the coupled
resonators are close together that their mutual interac-
tions are so important that they change the character of
the vibrational modes. Otherwise, the mutual interac-
tions between the various subsystems simply provide
a first-order correction to modal frequencies without
any very significant change in their modal shapes.

Flexural Thin-Plate Modes
To radiate an appreciable intensity of sound, energy
has to be transferred via the bridge from the vibrat-
ing strings to the much larger surfaces of a soundboard
or body of an instrument. The soundboards of the
harp and keyboard instruments and the shell structures
of stringed instruments like the violin and guitar can
formally be considered as thin plates. Transverse or
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flexural waves on their surface satisfy the fourth-order
thin-plate equation (Morse and Ingard [15.43, Sect.
5.3]), which for an isotropic material can be written as

∂2z

∂t2
+ Eh2

12ρ(1−ν2)

(
∂4z

∂x4
+2
∂2z

∂x2

∂2z

∂y2
+ ∂

4z

∂y4

)
= 0 ,

(15.68)

where z is the displacement perpendicular to the xy-
plane, h is the plate thickness, E is the Young’s
modulus, ν is the Poisson ratio, and ρ the density.

It is instructive first to consider solutions for a nar-
row quasi-one-dimensional thin plate, like a wooden
ruler or the fingerboard on a violin. One-dimensional
solutions can be written in the general form

z = (a cos kx+b sin kx

+ c cosh kx+d sinh kx)eiωt , (15.69)

where

ω=
(

E

12ρ(1−ν2)

)1/2

hk2 . (15.70)

The hyperbolic functions correspond to displace-
ments that decay exponentially away from the ends of
the bar as exp(±kx). Well away from the ends, the so-
lutions are therefore very similar to transverse waves on
a string, except that the frequency now depends on k2

rather than k with a phase velocity c= ω/k proportional
to k ≈ ω1/2. Flexural waves on thin plates are therefore
dispersive and unlike waves travelling on strings any
disturbance will be attenuated and broadened in shape
as it propagates across the surface.

The k values are determined by the boundary condi-
tions at the two ends of the bar, which can involve the
displacement, couple M =−ESκ2∂2z/∂x2 and shear-
ing force F = ∂M/∂x =−ESκ2∂3z/∂x3 at the ends of
the bar, where k is the radius of gyration of the cross
section (Morse and Ingard [15.43, Sect. 5.1]).

For a flexible bar there are three important boundary
conditions:

1. Freely hinged, where the free hinge cannot exert
a couple on the bar, so that

z = 0 and
∂2z

∂x2
= 0 , (15.71)

2. Clamped, where the geometrical constraints require

z = 0 and
∂z

∂x
= 0 , (15.72)

3. Free, where both the couple and the shearing force
at the ends are zero, so that

∂3z

∂x3
= ∂2z

∂x2
= 0 . (15.73)

A bar of length L , freely hinged at both ends,
supports simple sinusoidal spatial solutions with m half-
wavelengths between the ends and modal frequencies

ωm = h

√
E

12ρ(1−ν2)

(mπ

L

)2
. (15.74)

For long bars with clamped or free ends, the nodes
of the sinusoidal component are moved inwards by
a quarter of a wavelength and an additional exponen-
tially decaying solution has to be added to satisfy the
boundary conditions, so that at the x = 0 end of the bar

z ≈ A

[
sin(kmx−π/4)± 1√

2
e−km x

]
, (15.75)

where the plus sign corresponds to a clamped end and
the minus to a free end, and km = (m+1/2)π/L . The
modal frequencies are given by

ωm = h

√
E

12ρ(1−ν2)

(
(m+1/2) π

L

)2

(15.76)

which, for the same m value, are raised slightly above
those of a bar with hinged ends. Corrections to these for-
mulae from the leakage of the exponentially decaying
function from the other end of the bar are only signif-
icant for the m = 1 mode and are then still less than
1%.

The solutions close to the end of a bar for hinged,
clamped and free boundary conditions are illustrated
in Fig. 15.50, with the phase-shifted sinusoidal com-
ponent for the latter two indicated by the dotted line.
The exponential contribution is only significant out to
distances ≈ λ/2.

The above formulae can be applied to the bending
waves of quasi-one-dimensional bars of any cross sec-
tion, by replacing the radius of gyration κ = h/

√
12 of

the thin rectangular bar with a/2 for a bar of circular
cross section and radius a, and

√
a2+b2/2 for a hollow

cylinder with inner and outer radii a and b (Fletcher and
Rossing [15.5, Fig. 2.19]).

Another case of practical importance in musical
acoustics is a bar clamped at one end and free at the
other. This would, for example, describe the bars of
a tuning fork or could be used to model the vibrations of
the neck or finger board on a stringed instrument. In this
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Hinged

Clamped

Free

Fig. 15.50 Boundary conditions for flexural waves at the
end of a one-dimensional bar. The dashed line represents
the phase-shifted sinusoidal component, to which the ex-
ponentially decaying component has to be added to satisfy
the boundary conditions

case, there is an addition m = 0 vibrational mode, with
exponential decay length comparable with the length of
the bar. The modal frequencies are then given (Fletcher
and Rossing [15.5, (2.64)]) by

ωm = h

4

(π
L

)2
√

E

12ρ(1−ν2)

×
[
1.1942, 2.9882, 52, . . . , (2m+1)2

]
.

(15.77)

In the above discussion, we have described the modes
in terms of the number m of half-wavelengths of the
sinusoidal component of the wave solutions within the
length of the bar. A different nomenclature is frequently
used in the musical acoustics literature, with the mode
number classified by the number of nodal lines (or
points in one dimension) m in a given direction not
including the boundaries rather than the number of half-
wavelengths m between the boundaries, as in Fig. 15.51.

Twisting or Torsional Modes
In addition to flexural or bending modes, bars can
also support twisting (torsional) modes, as illustrated in
Fig. 15.51 for the z = xy (1,1) mode.

The frequencies of the twisting modes are deter-
mined by the cross section and shear modulus G, equal
to E/2(1+ν) for most materials (Fletcher and Ross-
ing [15.5, Sect. 2.20]). The wave velocity of torsional
waves is dispersionless (independent of frequency) with
ωn = ncTk, where

cT = ω
k
=
√

GKT

ρI
= α

√
E

2ρ(1+ν) , (15.78)

Fig. 15.51 Schematic illustration of the lowest-frequency
twisting (1,1) and bending (2,0) modes of a thin bar with
free ends

where GKT is the torsional stiffness given by the
couple, C = GKT∂θ/∂x, required to maintain a twist
of the bar through an angle θ and I = ∫

ρr2 dS is
the moment of inertia per unit length along the bar.
For a bar of circular cross section α = 1, for square
cross section α = 0.92, and for a thin plate with width
w> 6h, α= (2h/w). For a bar that is fixed at both ends,
fn = ncT/2L , while for a bar that is fixed at one end
and free at the other, fn = (2n+1)cT/4L , where n is an
integer including zero.

Thin bars also support longitudinal vibrational
modes, but since they do not involve any motion per-
pendicular to the surface they are generally of little
acoustic importance, other than possibly for the lowest-
frequency soundpost modes for the larger instruments
of the violin family.

Two-Dimensional Bending Modes
Solutions of the thin-plate bending wave solutions
in two dimensions are generally less straightforward,
largely because of the more-complicated boundary con-
ditions, which couple the bending in the x- and y-direc-
tions. For a free edge parallel to the y-axis, the boundary
conditions are (Rayleigh [15.3, Vol. 1, Sect. 216])

∂2z

∂x2
+ν ∂

2z

∂y2
= 0

and

∂

∂x

[
∂2z

∂x2
+ (2−ν) ∂

2z

∂y2

]
= 0 . (15.79)

Thus, when a rectangular plate is bent downwards along
its length, it automatically bends upwards along its
width and vice versa. This arises because downward
bending causes the top surface of the plate to stretch and
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the bottom surface to contract along its length. But by
Poisson coupling, this causes the top surface to contract
and lower surface to stretch in the orthogonal direc-
tion, causing the plate to bend in the opposite direction
across its width. This is referred to as anticlastic bend-
ing. The Poisson ratio ν can be determined from the
ratio of the curvatures along the bending and perpen-
dicular directions.

In addition, for orthotropic materials like wood,
from which soundboards and the front plates of most
stringed instruments are traditionally made, the elastic
constants are very different parallel and perpendicular
to the grain structure associated with the growth rings.
McIntyre and Woodhouse [15.88] have published a de-
tailed account of the theory and derivation of elastic
constants from measurement of plate vibrations in both
uniform and orthotropic thin plates, including the influ-
ence of damping.

For an isotropic rectangular thin plate, hinged along
on all its edges, a simple two-dimensional (2-D) sine-
wave solution satisfies both the wave equation (15.68)
and the boundary conditions, with m and n half-
wavelengths along the x- and y-directions, respectively,
giving modal frequencies

ωmn = h

√
E

12ρ(1−ν2)

[(
mπ

Lx

)2

+
(

nπ

L y

)2
]
.

(15.80)

By analogy with our discussion of flexural waves in
one-dimensional bars, we would expect the modal fre-
quencies of plates with clamped or free edges to be
raised, with the nodes of the sinusoidal components of
the wave solution moved inwards from the edges by
approximately quarter of a wavelength. For the higher-
order modes, the modal frequencies would therefore be
given to a good approximation by

ωmn = h

√
E

12ρ(1−ν2)

×

[(
(m+1/2) π

Lx

)2

+
(
(n+1/2) π

L y

)2
]
.

(15.81)

As recognised by Rayleigh [15.3, Vol. 1, Sect. 223], it
is difficult to evaluate the modal shapes and modal fre-
quencies of plates with free edges. The method used by
Rayleigh was to make an intelligent guess of the wave-
functions which satisfied the boundary conditions and
to determine the frequencies by equating the resulting

potential and kinetic energies. Leissa [15.89] has re-
viewed various refinements of the original calculations.
For a plate with free edges, the nodal lines are also no
longer necessarily straight, as they were for plates with
freely hinged edges.

Chladni Patterns
The modal shapes of vibrating plates can readily be vi-
sualised using Chladni patterns. These are obtained by
supporting the plate at a node of a chosen mode ex-
cited electromagnetically, acoustically or with a rosined
bow drawn across an edge. A light powder is sprin-
kled onto the surface. The plate vibrations cause the
powder to bounce up and down and move towards the
nodes of the excited mode, allowing the nodal line pat-
terns to be visualised. Figure 15.52 illustrates Chladni
patterns measured by Waller [15.87] for a rectangular
plate with dimensions Lx/L y = 1.5, with the number
of nodal lines between the boundary edges determining
the nomenclature of the modes. Note the curvature of
the nodal lines resulting from the boundary conditions
at the free edges.

Figure 15.53 illustrates the nodal line shapes and
relative frequencies of the first 10 modes of a square
plate with free edges, where f11 = hcL/L2√1−ν/2
(after Fletcher and Rossing [15.5, Fig. 3.13]).

Another important consequence of the anticlastic
bending is the splitting in frequencies of combination
modes that would otherwise be degenerate. This is illus-
trated in Fig. 15.54 by the combination (2, 0) ± (0, 2)
normal modes of a square plate with free edges. The
(2, 0) ± (0, 2) modes are referred to as the X- and ring-
modes from their characteristic nodal line shapes. The
(2, 0)−(0, 2) X-mode exhibits anticlastic bending in the
same sense as that induced naturally by the Poisson cou-
pling. It therefore has a lower elastic energy and hence

3

2

1

0

3210 4

Fig. 15.52 Chladni pattern with white lines indicating the
nodal lines of the first few modes of a rectangular plate
(after Waller [15.87])
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(1,1) (2,0)–(0,2) (2,0)+(0,2) (2,1) (1,2)

(2,2) (3,0) (0,3) (3,1)–(1,3) (3,1)+(1,3)

1.00 1.52 1.94 2.71 2.71

4.81 5.10 5.10 5.30 6.00

Fig. 15.53 Schematic representation of the lowest 10 vi-
brational modes of a square plate with free edge

(2,0)

(0,2)

(2,0)+(0,2)

(0,2)–(2,0)

Fig. 15.54 Formation of the ring- and X-modes by the su-
perposition of the (2, 0) and (0, 2) bending modes

lower vibrational frequency than the (0, 2)+(2, 0) ring-
mode, with curvatures in the same sense in both the x-
and y-directions. The ring- and X-modes will therefore
be split in frequency above and below the otherwise
degenerate mode, as illustrated in Fletcher and Ross-
ing [15.5, Fig. 13.11].

Plate Tuning
The modal shapes and frequencies of the lowest-order
(1,1) twisting mode and the X-and ring-modes are
widely used for the scientific tuning of the front and back
plates of violins following plate-tuning guidelines de-
veloped by Hutchins [15.90,91]. These are referred to as
violin plate modes 1, 2 and 5, as illustrated in Fig. 15.55
by Chladni patterns for a well-tuned back plate. The vio-
lin maker aims to adjust the thinning of the plates across
the area of the plate to achieve these symmetrical nodal
line shapes at specified modal frequencies.

The use of such methods undoubtedly results in
a high degree of quality control and reproducibility of

Mode 1 Mode 2 Mode 5

Fig. 15.55 Chladni patterns for the first twisting-(#1),
X-(#2) and ring-(#5) modes of a viola back plate (after
Hutchins [15.90])

the acoustic properties of the individual plates before
assembly and, presumably, of the assembled instru-
ment also, especially for the lower-frequency structural
resonances. Unfortunately, they do not necessarily re-
sult in instruments comparable with the finest Italian
instruments, which were made without recourse to
such sophisticated scientific methods. Traditional vio-
lin makers instinctively assess the elastic properties of
the plates by their feel as they are twisted and bent, and
also by listening to the sound of the plates as they are
tapped or even rubbed around their edges, rather like
a bowed plate. From our earlier discussion, it is clear
that the mass of the plates is also important in governing
the acoustical properties.

Geometrical Shape Dependence
The above examples demonstrate that the lower-
frequency vibrational modes of quite complicated
shaped plates can often be readily identified with those
of simple rectangular plates, though the frequencies of
such modes will clearly depend on the exact geome-
try involved. This is further illustrated in Fig. 15.56 by
the modal shapes of a guitar front plate obtained from
time-averaged holography measurements by Richard-
son and Roberts [15.92], where the contours indicate
lines of constant displacement perpendicular to the sur-
face. For the guitar, the edges of the top plate are rather
good nodes, because of the rather heavy supporting ribs
and general construction of the instrument. The bound-
ary conditions along the edges of the plate are probably
intermediate between hinged and clamped. The modes
can be denoted by the number of half-wavelengths
along the length and width of the instrument. Note that
circular rose-hole opening in the front face, which plays
an important role in determining the frequency of the
Helmholtz air resonance boosting the low-frequency re-
sponse of the instrument, tends to concentrate most of
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the vibrational activity to the lower half of the front
plate.

Mode Spacing
Although the frequencies of the modes of complicated
shapes such as the violin, guitar and piano soundboard
are rather irregularly spaced, at sufficiently high fre-
quencies, one can use a statistical approach to estimate
the spacing of the modal frequencies (Cremer [15.30,
Sect. 11.2]). For large m and n values, the modal fre-
quencies of an isotropic rectangular plate are given by

ωmn ≈ h

√
E

12ρ(1−ν2)

(
km

2+ k2
n

)
, (15.82)

where km = mπ/Lx and kn = nπ/L y. The modes can
be represented as points (m, n) on a rectangular grid in
k-space, with a grid spacing of π/Lx and π/L y along
the kx and ky directions. Each mode therefore occupies
an area in k-space of π2/Lx L y. For large m and n, the
number of modes ΔN between k and k+Δk is therefore
on average just the number of modes in the k-space area
between k and k+Δk, so that

ΔN = π
2

kΔk
Lx L y

π2
= π

2

Δω

2β

Lx L y

π2
, (15.83)

where we have made use of the dispersion relationship
ω= βk2.

The density of modes per unit frequency is then
constant and independent of frequency,

dN

d f
= 1

2β
Lx L y =

√
3
(
1−ν2

)

cLh
S ≈ 1.5

S

cLh
,

(15.84)

where S is the area of the plate. The spacing of modes
Δ f will therefore on average be ≈ cLh/1.5S, propor-
tional to the plate thickness and inversely proportional
to plate area. For large k values, this result becomes in-
dependent of the shape of the plate. For an orthotropic
plate like the front plate of the violin or guitar, the
spacing is determined by the geometric mean (cxcy)1/2

of the longitudinal velocities parallel and along the
grain. For the violin, Cremer [15.30, p. 292] estimates
an asymptotic average mode spacing of 73 Hz for the
top plate and 108 Hz for the back plate. Above around
1.5 kHz the width of the resonances on violin and gui-
tar plates becomes comparable with their spacing, so
that experimentally it becomes increasingly difficult to
excite or distinguish individual modes.

On many musical instruments such as the violin
and guitar, the presence of the f- and rose-hole open-

286 533 628 672 731 Hz

873 980 1010 1124 1194 Hz

Fig. 15.56 Typical modal shapes for a number of low-frequency
modes of a guitar top plate from time-averaged holographic meas-
urements by Richardson and Roberts [15.92]

ings introduce additional free-edge internal boundary
conditions, which largely confine the lower-frequency
modes to the remaining larger areas of the plate.
The effective area determining the density of lower-
frequency modes for both instruments will therefore be
significantly less that that of the whole plate. Any re-
duction in plate dimensions, such as the island region
on the front plate of the violin between the f-holes,
will limit the spatial variation of flexural waves in
that direction. Such a region will therefore not con-
tribute significantly to the normal modes of vibration
of the plate until λ(ω)/2 is less than the limiting
dimension.

Anisotropy of Wood
Wood is a highly anisotropic material with different
elastic properties perpendicular and parallel to the grain.
Furthermore, the wood used for soundboards and plates
of stringed instruments are cut from nonuniform circu-
lar logs (slab or quarter cut), so that their properties can
vary significantly across their area.

McIntyre and Woodhouse [15.88] have described
how the anisotropic properties affect the vibrational
modes of rectangular thin plates and have shown how
the most important elastic constants including their loss
factors can be determined from the vibrational frequen-
cies and damping of selected vibrational modes. For
a rectangular plate with hinged edges

ω2
mn =

h2

ρ

[
D1k4

m +D3k4
n + (D2+D4) k2

mk2
n

]
,

(15.85)
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where D1–D4 are the four elastic constants required
to describe the potential energy of a thin plate with
orthotropic symmetry. These are related to the more
familiar elastic constants by the following relationships

D1 = Ex/12μ , D3 = Ey/12μ , D4 = Gxy/3 ,

D2 = νxy Ey/6μ= νyx Ex/6μ , (15.86)

where μ= 1−vxyvyx . Gxy gives the in-plane shear en-
ergy when a rectangular area on the surface is distorted
into a parallelogram. This is the only energy term in-
volved in a pure twisting mode (i. e. z = xy). For an
isotropic plate, D4 = E/6(1+ν).

For many materials, (D2+D4) ≈ 2
√

D1 D2, so that
(15.82) can be rewritten as

ω2
mn =

h2

ρ

√
D1 D3

×

[
4

√
D1

D3

(
mπ

Lx

)2

+ 4

√
D3

D1

(
nπ

L y

)2
]2

.

(15.87)

The vibrational frequencies are therefore equivalent
to those of a shape of the same area with averaged elas-
tic constant

√
D1 D3 and length scales Lx multiplied

by the factor 8
√

D1/D3 and L y by its inverse. The rela-
tive change in scaled dimensions is therefore 4

√
D1/D3.

These scaling factors account for the elongation of the
equal contour shapes along the stiffer bending direction
in the holographic measurements of mode shapes for the
front plate of the guitar (Fig. 15.56), where the higher
elastic modulus along the grains is further increased
by strengthening bars glued to the underside of the top
plate at a shallow angle to the length of the top plate.

Typical values for the elastic constants of spruce
and maple traditionally used for modelling the violin
are listed in Table 15.5 from Woodhouse [15.77]. The
anisotropy of the elastic constants along and perpendic-

Table 15.5 Typical densities and elastic properties of wood
used for stringed instrument modelling (after Wood-
house [15.77]). (The values with asterisks are intelligent
guesses in the absence of experimental data)

Property Symbol Units Spruce Maple

Density ρ kg/m3 420 650

D1 MPa 1100 860

D2 MPa 67 140*

D3 MPa 84 170

D4 MPa 230 230*

Relative scaling 4√D1/D3 1.9 1.4

factors

ular to the grain of a spruce plate cut with the growth
rings running perpendicular to the surface would give
a relative scaling factor for a violin front plate of almost
double the relative width, if one wanted to consider the
flexural vibrations in terms of an equivalent isotropic
thin plate. The anisotropy is therefore very important in
determining the vibrational modes of such instruments.

Plate Arching
The front and back plates of instruments of the violin
family have arched profiles, which give the instrument
a greatly enhanced structural rigidity to support the
downward component of the string tension (≈ 10 kg
weight). The arching also significantly increases the fre-
quencies of the lowest flexural plate modes. In the case
of lutes, guitars and keyboard instruments with a flat
sounding board or front plate, the additional rigidity is
achieved by additional cross-struts glued to the back of
the sounding board. The bass bar in members of the vio-
lin family serves a similar purpose in providing addition
strengthening to that of the arching.

The influence of arching on flexural vibration
frequencies is easily understood by considering the
transverse vibrations of a thin circular disc. For a flat
disc, the modal frequencies are determined by the flexu-
ral energy associated with the transverse vibrations. The
longitudinal strains associated with the transverse vi-
brations are only second order in displacement and can
therefore be neglected. However, if the disc is belled
out to raise the centre to a height H , the transverse
vibrations now involve additional first-order longitu-
dinal strains stretching the disc away from its edges.
The energy involved in such stretching, which is re-
sisted by the rigidity of the circumferential regions of
the disc, introduces an additional potential energy pro-
portional to H2. By equating the kinetic to the increased
potential energy, is follows that the frequency of the
lowest-order symmetrical mode will be increased by
a factor [1+α(H/h)2]1/2, where α≈ 1 has to be deter-
mined by detailed calculation. Reissner [15.93] showed
that, when the arching is larger than the plate thick-
ness, H � h, the frequency of the fundamental mode
is raised by a factor ω/ω0 = 0.68H/h for a circular disc
with clamped edges, and 0.84H/h with free edges. For
a shallow shell with H/a< 0.25, where a is the radius
of the disc, the asymptotic frequency can conveniently
be expressed as ωn ≈ 2(E/ρ)1/2 H/a2. The arching de-
pendence of the modal frequencies is greatest for the
lowest-frequency modes. At high frequencies, the ra-
dius of curvature is large compared to the wavelength,
so arching is much less important.
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The combined effect of the arching and the f- and
rose-holes cut into the front face of many stringed in-
struments is to raise the frequency of the acoustically
important lower-frequency modes to well above the
asymptotic spacing of modal frequencies predicted by
(15.82). For example, the lowest-frequency plate modes
of the violin front and back plates are typically in the
range 400–500 Hz compared with Cremer’s predictions
for an asymptotic spacing of modes ≈73 Hz for the top
plate and 108 Hz for the back plate [15.30, p. 292].

The more highly arched the plates the stiffer they
will be and, for a given mass, the higher will be their as-
sociated vibrational frequencies. High arching may well
contribute to the relatively soft and sweet sounds of the
more highly arched early Amati and Stainer violins and
the more powerful and brilliant sounds of the flatter later
Stradivari and Guarneri models.

Shell Structures
Although it is interesting to investigate the free plates of
violins and other instruments before they are assembled
into the instrument as a whole, once assembled their vi-
brational properties will generally be very different, as
they are subject to completely different boundary con-
ditions at their supporting edges and by the soundpost
constraint for instruments of the violin family. The sup-
porting ribs tie the outer edges of the back and front
plates together. The curvature of the outer edge shape
gives the 1–2 mm-thick ribs of a violin considerable
structural strength and rigidity, in much the same way as
the bending of a serpentine brick wall. In many instru-
ments there are extra strips and blocks attached to the
ribs and plate edges to strengthen the joint, which still
allow a certain amount of angular flexing, as indicated
by the schematic normal-mode vibrations illustrated in
Fig. 15.57. The supporting ribs add mass loading at the
edges of the plates and impose a boundary condition for
the flexing plates intermediate between freely hinged
and clamped.

For a simple shell structure, Fig. 15.57a represents
a low-frequency twisting mode in which the two ends
of the instrument twist in opposite directions, just like
the simple (z = xy) twisting mode of a rectangular
plate. Figure 15.57b–d schematically represent normal
modes involving flexural modes of the front and back
plates. Mode (b) is the important breathing mode, which
produces a strong monopole source of acoustic radia-
tion at relatively low frequencies. In mode (c), the two
plates vibrate in the same direction, resulting in a much
weaker dipole radiation source along the vertical axis.
The above examples assumed identical top and back

a)

Simple shell Soundpost and f-holes

b)

c)

d)

Fig. 15.57a–d Schematic cross-sectional representation of
typical shell modes for a simple box and a violin-type struc-
ture with f-holes and a soundpost

plates, whereas in general they will have different thick-
nesses arching, and will be constructed from different
types of wood with different anisotropic elastic proper-
ties: spruce for the front and maple for the back plate
of the violin. Hence, for typical high-frequency normal
modes (e.g. shown schematically in Fig. 15.57d), the
wavelengths of flexural vibrations will be different in
the top and back plates.

Note that, at low frequencies, several of the normal
modes involve significant motion of the outer edges of
the front and back plate, since the centre of mass of the
freely supported structure cannot move. Hence, when
an instrument is supported by the player, additional
mode damping can occur by energy transfer to the
chin, shoulder or fingers supporting the instrument at
its edges, as indeed observed in modal analysis inves-
tigations on hand-held violins by Marshall [15.94] and
Bissinger [15.95].

Skeleton Curves
In this idealised model, the normal modes of the struc-
ture at high frequencies will be similar to those of the
individual plates. Such modes will only be significantly
perturbed when the resonances of the separate plates
are close together, apart from a general background
interaction from the average weak but cumulative inter-
action with all other distant modes. Woodhouse [15.77]
has recently shown that the averaged amplitude and
phase of the admittance can be described by skeleton
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Fig. 15.58 The rotational admittance across the two feet of
a bridge on an idealised rectangular violin structure with
a soundpost under the treble foot but with no f-holes (after
Woodhouse [15.77])

curves, indicated by the dashed lines in Fig. 15.58, on
which peaks and troughs of height Q and 1/Q and
phase changes from individual resonances are super-
imposed. These curves were evaluated analytically for
the rotational admittance across the two feet of a bridge
mounted on the front plate of an idealised rectangu-
lar box-like violin without f-holes but with a soundpost
close to the treble foot of the bridge.

At low frequencies the averaged input impedance
across the two feet of the bridge is largely reactive, with
a value close to the static springiness, which can be iden-
tified with the low-frequency limit of the normal-mode
admittance

∑
n iω/mnω

2
n , where the effective mass of

each mode will depend on where and how the instrument
is excited. However, at high frequencies the admittance
becomes largely resistive resulting from internal damp-
ing and energy loss to the closely overlapping modes.
The use of skeleton curves enables Woodhouse to il-
lustrate the effect of various different bridge designs on
the overall frequency response of a violin, without hav-
ing to consider the exact positions, spacing or damping
of the individual resonances of the shell structure. Al-
though the idealised model is clearly over-simplistic, the
general trends predicted by such a model will clearly be
relevant to any multi-resonant shell model.

Soundpost and f-Holes
The soundpost and f-holes cut into the front plate of
the violin and related instruments have a profound ef-

fect on the frequencies and waveforms of the normal
modes, illustrated schematically by the right-hand set
of examples in Fig. 15.57. The f-holes create an island
area on which the bridge sits, which separates the top
and lower areas of the front plate. Like the rose-hole on
a guitar illustrated in Fig. 15.56, the additional internal
free edges introduced by the f-holes tend to localise the
vibrations of the front plate to the regions above and be-
low the island area. In addition, the soundpost acts as
a rather rigid spring locking the vibrations of the top
and back plates together at it its ends. At low frequen-
cies, the soundpost introduces an approximate node of
vibration on both the top and back plates, unless the fre-
quencies of the uncoupled front and back plates modes
are close together.

For some low-frequency modes, the soundpost and
f-hole have a relatively small effect on the modes of the
shell structure, such as the twisting mode (a) and mode
(c), when the plates vibrate in the same direction. How-
ever, the breathing mode (c) will be strongly affected by
the soundpost forcing the front and back plates to move
together across its ends.

As indicated earlier, any string motion parallel to the
plates will exert a couple on the top of the bridge. In the
absence of the soundpost, only asymmetric modes of the
top plate could then be excited. However, to satisfy the
boundary conditions at the soundpost position, the rock-
ing action now induces a combination of symmetric and
antisymmetric plate modes (illustrated schematically
in Fig. 15.57b), approximately doubling the number of
modes that can contribute to the sound of an instrument
including the very important lower-frequency symmet-
ric breathing modes. Because of the f-holes, the central
island can vibrate in the opposite direction to the wings
on the outer edges of the instrument. The mixing of
symmetric and antisymmetric modes is strongly depen-
dent on the position of the soundpost relative to the
nodes of the coupled waveforms. As a result, the sound
of a violin instrument is very sensitive to the exact plac-
ing of the soundpost. The difference in the sound of
a violin with the soundpost first in place and then re-
moved is illustrated in .

To a good approximation, in the audible frequency
range, the violin soundpost can be considered as a rigid
body, as its first longitudinal resonance is ≈100 kHz,
though lower-frequency bending modes can also be ex-
cited, particularly if the upper and lower faces of the
soundpost fail to make a flat contact with the top and
back plates (Fang and Rogers [15.96]). At high fre-
quencies, there is relatively little induced motion of
the outer edges of top and back plates, so that the
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impedance Z(ω) (force/induced velocity) measured at
the soundpost position is simply given by the sum of
the impedances at the soundpost position, Z(ω)top+
Z(ω)back, of the individual plates with fixed outer edges.
If one knows the waveforms of the individual coupled
modes, it is relatively straightforward to evaluate the ad-
mittance at any other point on the two surfaces, and
hence to evaluate the rotational admittance across the
two feet of the bridge (Woodhouse [15.77]).

We have already described the important role of the
bridge dynamics in the coupling between the strings
and the vibrational modes of the instrument. For instru-
ments of the violin family, the island region between
the f-holes probably plays a rather similar role to the
bridge, as it is via the vibrations of this central re-
gion that the larger-area radiating surfaces of the front
plate are excited. At low frequencies this will be mainly
by the lowest-order twisting and flexing modes of the
central island region. It therefore seems likely that the
dynamics of the central island region also contributes
significantly to the BH hill feature and the resulting
acoustical properties of the violin in the perceptually
important frequency range of ≈ 2–4 kHz, as recognised
by Cremer and his colleagues [15.11].

Historically, the role of the soundpost and the cou-
pling of plates through enclosed air resonances were
first considered analytically using relatively simple
mass–spring models with a limited number of degrees
of freedom to mimic the first few resonances of the
violin, as described in some detail by Cremer [15.30,
Chap. 10]. Now that we can obtain detailed information
about not only the frequencies, but also the shapes of the
important structural modes of an instrument from finite-
element calculations, holography and modal analysis,
there is greater emphasis on analytic methods based on
the observed set of coupled modes.

The Complete Instrument
Bowing, plucking or striking a string can excite every
conceivable vibration of the supporting structure includ-
ing, where appropriate, the neck, fingerboard, tailpiece
and the partials of all strings both in front of and behind
the bridge. Many of the whole-body lower-frequency
modes can be visualised by considering all the possi-
ble ways in which a piece of soft foam, cut into the
shape of the instrument with an attached foam neck and
fingerboard, can be flexed and bent about its centre of
mass.

Figure 15.59 illustrates the flexing, twisting and
changes in volume of the shell of a freely supported
violin for two prominent structural resonances com-

Mode 10 @ 436 Hz

Mode 15 @ 536 Hz

Fig. 15.59 Representative finite element simulations of the
structural vibrations of a violin, with greatly exaggerated
vibrational amplitudes (after Knott [15.97])

puted by Knott [15.97] using finite-element analysis.
However, not all modes involve a significant change
in net volume of the shell, so that many of the
lower-frequency modes are relatively inefficient acous-
tic radiators. Nevertheless, since almost all such modes
involve significant bridge motion, they will be strongly
excited by the player and will produce prominent res-
onant features in the input admittance at the point of
string support on the bridge. They can therefore signif-
icantly perturb the vibrations of the string destroying
the harmonicity of the string resonances and resulting
playability of particular notes on the instrument, espe-
cially for bowed stringed instrument.

Helmholtz Resonance
Almost all hand-held stringed instruments and many
larger ones such as the concert harp make use of
a Helmholtz air resonance to boost the sound of their
lowest notes, which are often well below the frequencies
of the lowest strongly excited, acoustically efficient,
structural resonances. For example, the lowest acousti-
cally efficient body resonance on the violin is generally
around 450 Hz, well above the bottom note G3 of
the instrument at ≈ 196 Hz. Similarly, the first strong
structural resonance on the classical acoustic guitar is
≈ 200 Hz, well above the lowest note of ≈ 82 Hz.
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To boost the sound in the lower octave, a relatively
large circular rose-hole is cut into the front plate of the
guitar and two symmetrically facing f-holes are cut into
the front plate of instruments of the violin family. The
air inside the enclosed volume of the shell of such in-
struments vibrates in and out through these openings to
form a Helmholtz resonator.

The frequency of an ideal Helmholtz cavity res-
onator of volume V , with a hole of area S in one of
its rigid walls is given by

ωH =
√
γ P

ρ

S

L ′V
= c0

√
S

L ′V
, (15.88)

where L ′ is the effective length of the open hole. For
a circular hole of radius a, Rayleigh [15.3, Vol. 2,
Sect. 306] showed that L ′ = π

2 a, while for an ellipse
L ′ ≈ π

2 (ab)1/2, provided the eccentricity is not too
large. Noting that the effective length depends largely
on area, Cremer [15.30, Fig. 10.6] modelled the f-hole
as an ellipse having the same width and area as the
f-hole. The two f-holes act in parallel to give an air
resonance for the violin at ≈ 270 Hz, at an interval of
just over a fifth above the lowest open string. For the
acoustic guitar, the circular rose-hole produces an air
resonance around 100 Hz, which, like for the violin, is
close to the frequency of the second-lowest open string
on the instrument.

Any induced motion of the top and bottom plates
that involves a net change in volume results in coupling
to the Helmholtz mode. Such coupling will perturb the
Helmholtz and body-mode frequencies, in just the same
way that string resonances are perturbed by coupling
to the body resonances (see Cremer [15.30, Sect. 10.3]
for a detailed discussion of such coupling). Since the
acoustically important coupled modes are at consider-
ably higher frequencies than the Helmholtz resonance,
the mutual perturbation is not very large. Because of
such coupling, purists often object to describing this
resonance as a Helmholtz resonance. Similar objections
could apply equally well to string resonances, since
they too are perturbed by their coupling to body modes.
But, as already discussed, in many situations the normal
modes largely retain the character of the individually
coupled modes other then when their frequencies are
close together and, even then, when the damping of
either of the coupled modes is large compared to the
splitting in frequencies induced by the coupling in the
absence of damping (Fig. 15.46).

Well below the Helmholtz resonance, any change
in volume of the shell of the violin or guitar induced

by the vibrating strings will be matched by an identical
volume of air flowing out through the rose- or f-holes,
with no net volume flow from the instrument as a whole.
Since at low frequencies almost all the radiated sound is
monopole radiation associated with the net flow of air
across the whole surface of an instrument, little sound
will be radiated. However, above the air resonance, the
response of the air resonance will lag in phase by 180◦,
so that the flow from body and cavity will now be in
phase, resulting in a net volume flow and strong acous-
tic radiation. The Helmholtz resonance serves the same
purpose as mounting a loudspeaker in a bass-reflex cab-
inet, with the air cavity resonance boosting the intensity
close to and above its resonant frequency.

A number of authors have considered the influ-
ence of the enclosed air on the lowest acoustically
important modes of the violin (Beldie [15.98]) and gui-
tar (Meyer [15.99], Christensen [15.100] and Rossing
et al. [15.101]) using simple mechanical modes of in-
teracting springs and masses with damping and their
equivalent electric circuits. Figure 15.60 shows the me-
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Fig. 15.60a,b The mechanical (a) and equivalent electrical
(b) circuit for a three-mass model describing the vibra-
tions of the front and back plates of a stringed instruments
coupled via a Helmholtz resonance (after Fletcher and
Rossing [15.5]). The modulus of the admittance at the
top plate has been evaluated for identical front and back
plates with uncoupled frequencies of 300 Hz, coupled via
a Helmholtz air resonator at 250 Hz in the absence of
coupling. The frequencies of the uncoupled air and body
resonances are indicated by the vertical lines
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chanical and equivalent electrical circuits and resulting
admittance curve for the top plate for the illustrative
three-mass model used by Rossing et al., which ac-
counts for the qualitative features of the first three most
important resonances of a guitar body. To emphasise
a number of important points, we have calculated the
admittance for a cavity with identical front and back
plates with uncoupled resonances at 300 Hz, coupled
via a cavity Helmholtz resonance at 250 Hz. The close-
ness in frequencies of the coupled resonators has been
chosen to emphasise the influence of the coupling on
the modal frequencies.

Without concerning oneself with mathematical de-
tail, one can immediately recognise an unshifted normal
mode associated with the uncoupled body resonances
at 300 Hz, corresponding to the two plates vibrating
in the same phase, with no volume change and hence
no coupling to the air resonance. However, the cou-
pling via the Helmholtz resonance splits the degenerate
plate modes, to give a normal mode at a raised fre-
quency, with the plates vibrating in opposite directions
in a breathing mode. The coupling also decreases the
frequency of the Helmholtz cavity resonance. The un-
perturbed mode may dominate the measured admittance
and affect the playability of the instrument via its per-
turbation of string resonances. But, because there is
no associated volume change, it will be an inefficient
acoustic radiator. One should note that, because of
the changes in phase of the air resonance on passing
through resonance, it appears as a dispersive curve su-
perimposed on the low-frequency wings of the stronger
higher-frequency body resonances. The frequency of
the excited normal mode is not the peak in the admit-
tance curve (i. e. its modulus), as often assumed but is
more nearly mid-way between the maximum and min-
imum, where its phase lags 90◦ relative to the phase
of the higher frequency normal modes. Similarly, the
upper body mode results in a dispersive feature in the
opposite sense, as its phase changes from almost 180◦
to 0◦ relative to the unshifted normal mode. Very sim-
ilar, but narrower, dispersive features are also observed
in admittance-curve measurements from string reso-
nances, unless they are purposely damped.

Cavity Modes
In addition to the Helmholtz air resonance, there will be
many other cavity resonances of the air enclosed within
the shell of stringed instruments, all of which can in
principle radiate sound through the f- or rose-holes. Al-
ternatively, the internal air resonances can radiate sound
via the vibrations they induce in the shell of the instru-

ment, as discussed in some detail by Cremer [15.30,
Sect. 11.4]. Because of the relatively small height of the
violin ribs, below around 4 kHz the cavity air modes are
effectively two dimensional in character. Simple statisti-
cal arguments based on the overall volume of the violin
cavity show that there are typically ≈ 28 resonances
below this frequency, as observed in measurements by
Jansson [15.102]. Whether or not such modes play
a significant role in determining the tonal quality of
an instrument remains a somewhat contentious issue.
However, at a given frequency, the wavelengths of the
flexural modes of the individual plates and the inter-
nal sound modes will not, in general, coincide. The
mutual coupling and consequent perturbation of modes
will therefore tend to be rather weak. Even if such cou-
pling were to be significant, it is likely to be far smaller
than the major changes in modal frequencies and shapes
introduced by the f-holes and soundpost.

Finite-Element Analysis
To progress further in our understanding of the complex
vibrations of instruments like the violin and guitar, it is
necessary to include the coupled motions of every single
part of the instrument and to consider the higher-order
front and back plate modes, which will be strongly mod-
ified by their mutual coupling via the connecting ribs
and, for the violin, the soundpost as well.

Such a task can be performed by numerical simula-
tions of the vibrations of the complete structure using
finite-element analysis (FEA). This involves modelling
any plate or shell structure in terms of a large num-
ber of interconnected smaller elements of known shape
and elastic properties. This division into smaller seg-
ments is known as tessellation. Provided the scale of
the tessellation is much smaller than the acoustic wave-
lengths at the frequencies being considered, the motion
of the structure as a whole can be described by the
three-dimensional translations and rotations of the tes-
sellated elements. The motion of each element can be
related to the forces and couples acting on the adjoin-
ing faces of each three-dimensional (3-D) element. The
problem is then reduced to the solution of N simultane-
ous equations proportional to the number of tessellated
elements. Deriving the frequencies and mode shapes
of the resulting normal modes of the system involves
the inversion of a N × N matrix. Such calculations can
be performed very efficiently on modern computer sys-
tems, though the computation time, proportional to N2,
can still be considerable for complex structures, par-
ticularly if a fine tessellation is used to evaluate the
higher-frequency, shorter-wavelength, modes.
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Figure 15.59 has already illustrated the potential
complexity of the vibrational modes of a violin. The
displacements have been greatly exaggerated for graph-
ical illustration. In practice, the displacements of the
plates are typically only a few microns, but can eas-
ily be sensed by placing the pad of a finger lightly on
the vibrating surfaces. The first example shows a typical
low-frequency mode involving the flexing and bending
of every part of the violin, but with little change in its
volume, so that it will radiate very little sound. The sec-
ond example illustrates a mode involving a very strong
asymmetrical vibration of the front plate, excited by the
rocking action of the bridge with the soundpost inhibit-
ing motion on the treble side of the instrument. Such
a mode involves an appreciable change in volume of the
shell-like structure, which will therefore radiate sound
quite strongly.

One of the virtues of FEA is that the effects of
changes in design of an instrument, or of the ma-
terials used in its construction, can be investigated
systematically, without having to physically build a new
instrument each time a change is made. For exam-
ple, Roberts [15.104] has used FEA to investigate the
changes in normal-mode frequencies of freely sup-
ported violin as a function of thickness and arching,
the effects of cutting the f-holes and adding the bass
bar, and the affect of the soundpost and mass of the ribs
on the normal modes of the assembled body of the in-
strument, but without the neck and fingerboard. This
enables a systematic correlation to be made between
the modes and frequencies of the assembled instrument
with the modes of the individual plates before assem-
bly. Without the soundpost, the modes of the assembled
violin were highly symmetric, with the bass-bar having
only a marginal effect on the symmetry and frequency
of modes. As expected, adding the soundpost removed
the symmetry and changed the frequencies of almost all
the modes, demonstrating the critical role of the sound-
post and its exact position in determining the acoustic
response of the violin.

Similar FEA investigations have been made of
several other stringed instruments including the gui-
tar (Richardson and Roberts [15.105]). Of special
interest is the recent FEA simulation from first prin-
ciples of the sound of a plucked guitar string by
Derveaux et al. [15.103]. Their model includes in-
teractions of the guitar plates, the plucked strings,
the internal cavity air modes and the radiated sound.
A DVD illustrating the methodology involved in such
calculations [15.106] recently won an international
prize, as an outstanding example of science com-

munication. The effects of changing plate thickness,
internal air resonances and radiation of sound on both
admittance curves and the decay times and sound
waveforms of plucked strings were investigated. Fig-
ure 15.61 compares the admittance curves at the guitar
bridge computed for damped strings for a front-plate
thickness of 2.9 mm first in vacuo and then in air.
Note the addition of the low-frequency Helmholtz and
higher-order cavity resonances in air and the perturba-
tions of the structural resonances by coupling to the
air modes.

15.2.7 Measurements

In this section we briefly consider the various methods
used to measure the acoustical properties of stringed
instruments, a number of which have already been
referred to illustrate specific topics in the preceding
section.
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Fig. 15.61a,b FEA computations of admittance at bridge
for a guitar with a 2.9 mm-thick front plate (a) in vacuo and
(b) coupled to the air-cavity resonances (after Derveaux
et al. [15.103])
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Admittance
The most common and easiest method used to inves-
tigate and characterise the acoustical properties of any
stringed instrument is to measure the admittance A(ω)
(velocity/force) at the point of string support on the
bridge. Fletcher and Rossing [15.5] give examples of
typical admittance curves for many stringed (and per-
cussion) instruments including the violin, guitar, lute,
clavichord and piano soundboard.

As described earlier, the admittance is in reality
a complex tensor quantity, with the induced velocity de-
pendent on and not necessarily parallel to the direction
of the exciting force. In practice, most published ad-
mittance curves for the high-bridge instruments of the
violin family show the amplitude and phase of the com-
ponent of induced bridge velocity in the direction of an
applied force parallel to the top plate. In contrast, for
low-bridge instruments like the guitar, piano or harpsi-
chord, the induced motion perpendicular to the top plate
or soundboard is of primary interest.

The admittance at the bridge can be expressed in
terms of the additive response of all the damped nor-
mal modes, which includes the mutual interactions of
the plates of the instrument and all the component parts
including, where appropriate, the neck, tailpiece, finger-
board, and all the strings. The admittance can then be
written as

A(ω) =
∑

n

1

mn

iω

ω2
n −ω2+ iωωn/Qn

, (15.89)

where ωn and Qn are the frequency and Q-value of
the nth normal mode and mn is the associated effec-
tive mass at the point of measurement. The value of
mn depends on how well the normal mode is excited
by a force at the point of measurement on the bridge.
If, for example, the bridge on a guitar is at a position
close to the nodes of particular normal modes, then the
coupling will be weak and the corresponding effective
mass will be rather large. Conversely, the low-frequency
rocking action of the bridge on a bowed stringed instru-
ment couples strongly into the breathing mode of the
violin shell, so that the effective mass will be relatively
low. The strength of this coupling plays an important
role in determining the sound output from a particular
instrument and also affects the playability of the bowed
string and the sound of a plucked string.

In practice, by measuring the frequency response of
the admittance, including both amplitude and phase, it
is possible to decompose the admittance into the sum of
the individual modal contributions and hence determine
the effective mass, frequency and damping of the con-

tributing normal modes. For the violin there are ≈ 100
identifiable modes below ≈ 4 kHz (Bissinger [15.107]),
though not all of these are efficient acoustic radiators.

To avoid complications from the numerous sym-
pathetic string resonances that can be excited, which
includes all their higher-frequency partials, meas-
urements are often made with all the strings damped by
a piece of soft foam or a piece of card threaded between
the strings. However, it should always be remembered
that the damped strings still contribute significantly to
the measured admittance. At low frequencies the strings
still exert the same lateral restoring force on the bridge
whether damped or not, while at high frequencies the
damped strings present a resistive loading with their
characteristic string impedances μc in parallel. When
undamped, the strings present an additional impedance
and transient response, which reflects the resonances
of all the partials of the supported strings. This can
make a significant difference to the sound of an instru-
ment, notably when the sustaining pedal is depressed on
a piano and in the ringing sound of any multi-stringed
instrument, when a note is plucked or bowed and es-
pecially instruments like the theorbo and viola d’amore
with freely vibrating sympathetic strings.

Figure 15.62 illustrates admittance measurements
for six different violins by Beldie [15.98] reproduced
from Cremer [15.30, Fig. 10.1]. The arrows indicate
the position of the dispersive-shaped Helmholtz air
resonance, which is the only predictable feature in
such measurements, though its relative amplitude varies
significantly from one instrument to the next. Such
measurements provide a fingerprint for an individual in-
strument, highlighting the very large number of almost
randomly positioned resonances that can be excited,
which must ultimately be responsible for the distinc-
tive sound of an instrument. As described earlier, above
≈ 1500 Hz the admittance often exhibits an underlying
BH peak at ≈ 2 kHz followed by a characteristic de-
crease at higher frequencies, which can be attributed to
a resonance of the bridge/central island region [15.75,
77].

Although most instruments have very different
acoustic fingerprints, Woodhouse (private communica-
tion), in a collaboration with the English violin maker
David Rubio, demonstrated that it is possible to con-
struct instruments with almost identical admittance
characteristics, provided one uses closely matching
wood from the same log, with a nearly perfect match
of plate thickness and arching. The German violin
maker Martin Schleske [15.108] also claims consid-
erable success in producing tonal copies with almost
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Fig. 15.62 Admittance measurements at bridge for six vio-
lins (after Beldie [15.98]). The arrows indicate the position
of the Helmholtz air resonance. The horizontal lines are
20 dB markers

identical acoustical properties to those of distinguished
Cremonese instruments by grading the thickness and
arching of the plates to reproduce both the input admit-
tance and radiated sound.

In contrast, slavishly copying the dimensions of
a master violin rarely produces an instrument with
anything like the same tonal quality. This is easily un-
derstood in terms of the differing elastic and damping
properties of the wood used to carve the plates, which
remains a problem of great interest, but beyond the
scope of this article.

Traditionally, the admittance is usually measured
using a swept sinusoidal frequency source, often gener-

ated by a small magnet waxed to the bridge and driven
by a sinusoidally varying magnetic field. The admit-
tance can equally well be determined from the transient
response f (t) following a very short impulse to the
bridge, since it is simply the Fourier transform,

A(ω) =
∞∫

0

f (t)eiωt dt . (15.90)

If signal-to-noise ratio from a single measurement
is insufficient, one can use a sequence of impulses or
a noise source, which is equivalent to a random succes-
sion of short pulses. In addition to many professional
systems, relatively inexpensive PC-based versions us-
ing sound cards have been developed for researchers
and instrument makers, such as the WinMLS system by
Morset [15.109].

Laser Holography
Admittance measurements at the bridge provide de-
tailed information on the frequencies, damping and
effective masses of the normal modes of vibration of
an instrument, but provide no information on the na-
ture of the modes excited. Laser holography, which is
essentially the modern-day equivalent of Chladni plate
measurements, enables one to visualise the vibrational
modes of stringed and percussion instruments. In such
measurements, photographs or real-time closed-circuit
television images of the interference patterns of laser
light reflected from a stationary mirror and from the
vibrating object are recorded. Using photographic or
electronic/software reconstruction of the original im-
age from the recorded holograms, a 3-D image of the
vibrating surface is formed with superimposed con-
tours indicating lines of equal vibrational amplitude,
as already illustrated for a number of prominent guitar
modes in Fig. 15.56.

Recent developments in laser and electronic data-
acquisition technology allow one to record such in-
terferograms electronically and to display them in
real time on a video monitor (for example, Saldner
et al. [15.110]). To record the shapes of individual vi-
brational modes of an instrument excited by a sinusoidal
force, care has to be taken to avoid contamination from
neighbouring resonances, by judicious placing of the
force transducer (e.g. placing it at a node of an unwanted
mode). Cremer [15.30, Chap. 12] reproduces an inter-
esting set of holograms by Jansson et al. [15.111] for
the front plate of a violin at various stages of its con-
struction, before and after the f-holes are cut, before and
after the bass-bar is added and with a soundpost sup-
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ported on a rigid back plate. These highlight the major
effect of the f-holes and soundpost on the modal shapes
and frequencies, but the relatively small influence of
the bass-bar, consistent with the FEA computations by
Roberts [15.104] referred to earlier. However, the bass
bar strengthens the coupling between the island area be-
tween the f-holes and the larger radiating surfaces of
the top plate and therefore has a strong influence on the
intensity of radiated energy.

With modern intense pulsed laser sources, one can
also investigate the transient response of instruments
using single pulses. For example, Fletcher and Ross-
ing [15.5, Fig.10.15] reproduce interferograms of the
front and back plate of a violin by Molin et al. [15.112,
113], which illustrate flexural waves propagating out
from the feet of the bridge on the front face and from the
end of the soundpost on the back plate at intervals from
100–450 μs after the application of a sharp impulse at
the bridge. Holograms can even be recorded while the
instrument is being bowed [15.112, 113].

Modal Analysis
Modal analysis measurements have been extensively
used to investigate the vibrational modes of the vi-
olin, guitar, the piano soundboards and many other
stringed and percussion instruments (Chap. 28). Briefly,
the method involves applying a known impulse at one
point and measuring the response at a large number of
other points on the surface of an instrument, which al-
lows one to determine both the modal frequencies and
the vibrations at all points on the surface. The Fourier
transform of the impulse response is directly related to
the nonlocal admittance, which in terms of the normal
modes excited can be written as

A(r1, r2, ω) = iω
∑

n

1

mn

ψn(r1)ψn(r2)

ω2
n −ω2+ iωωn/Qn

,

(15.91)

where ψn(r1)ψn(r2) is the product of the wavefunctions
describing the displacements at the measurment and ex-
citation points normalised to the product at the point
of maximum displacement, and mn is now the effective
mass of the normal mode at its point of maximum am-
plitude of vibration (i. e. K Emax = 1/2mnω

2ψ2
n |max).

An FFT of the recorded transient response will give
peaks in the frequency response, which can be decom-
posed into contributions from all the excited normal
modes. By keeping the point of excitation fixed and
moving the measurement point, one can record the am-
plitude and phase of the induced motion for a specific
mode and, using the spatial dependence in (15.91), can

map out the nodal waveform. Alternatively, one can
keep the measurement point fixed and apply the im-
pulse over the surface of the structure to derive similar
information.

One of the first detailed modal analysis investiga-
tions of the violin was made by Marshall [15.94], who
used a fixed measurement point on the top plate of the
violin near the bass-side foot of the bridge with a force
hammer providing calibrated impulses at a large num-
ber of points over the surface of the violin. From the
FFT of the resultant transient responses, the amplitudes
and phases of the excited normal modes of the violin in-
volving all its component parts including the body shell,
neck, fingerboard and tailpiece could be determined.
Marshall identified and characterised around 30 nor-
mal modes below ≈1 kHz. Many of the modes involved
the relatively low-frequency flexing and twisting of the
instrument as a whole. However, because such modes
involved little appreciable change in overall volume of
the shell of the instrument structure, they resulted in lit-
tle radiated sound. Nevertheless, it was suggested that
such modes might well play an important role for the
performer in determining the feel of the instrument and
its playability.

In any physical measurement, the instrument has to
be supported in some way. Rigid supports introduce ad-
ditional boundary conditions, which can significantly
perturb the normal modes of the instrument. Many
measurements are made with the instrument supported
by rubber bands, which provide static stability without
significant perturbation of the higher-frequency struc-
tural modes. However, Marshall [15.94] showed that,
when an instrument is held and supported by the player
under the chin, the damping of many of the normal
modes was significantly increased, which will clearly
affect the sound of the instrument when played. This
observation has also been confirmed in more recent
modal analysis measurements by Bissinger [15.95] and
by direct measurements of the decaying transient sound
of a freely and conventionally supported violin by the
present author [15.18].

Bissinger [15.107] has made extensive admittance,
modal analysis and sound radiation measurements on
a large number of instruments. Measurements were
made using impulsive excitation at the bridge and a laser
Doppler interferometer to record the induced velocities
at over 550 points on the surface of the violin. Si-
multaneous measurements of the overall radiation and
directivity were made using 266 microphone positions
over a complete sphere. Figure 15.63 shows cross sec-
tions illustrating the displacements associated with four
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159 Hz

281 Hz 425 Hz 480 Hz

Fig. 15.63 Modal analysis measurements illustrating the
displacements associated with four representative low-
frequency modes of a violin (data provided by George
Bissinger)

low frequency modes. The 159 Hz mode
involves major vibrations of the neck, fingerboard, tail-
piece and body of the instrument. The second example
at 281 Hz illustrates the body displace-
ments associated with the Helmholtz air resonance. The
mode at 425 Hz illustrates a mode with
asymmetric in-phase vibrations of the front and back
plates, with little net volume change and hence little ra-
diated sound, while the mode at 480 Hz is
a strong breathing mode.

By combining the modal analysis and radiativity
measurements, Bissinger has shown that the radiation
efficiency of the plate modes (i. e. the fraction of sound
energy radiated by the violin relative to a baffled pis-
ton of the same surface area having the same root
mean square surface velocity displacement) rises to
nearly 100% at a critical frequency of ≈2–4 kHz, when
the wavelength of the flexural vibrations of the plates
matches that of sound waves in air. Little apparent cor-
relation was observed between the perceived quality of
the measured violins and the frequencies and strengths
of prominent structural resonances below ≈1 kHz or
with the internal damping of the front and back plates.
This runs contrary to the general view of violin mak-
ers that the front and back plates of a fine violin should
be made of wood with a very long ringing time when
tapped. Interestingly, the American violin maker Joseph
Curtin has also observed that individual plates of old
Italian violins often appear to be more heavily damped
than their modern counterparts [15.114]. This is clearly
an area that merits further research.

15.2.8 Radiation and Sound Quality

As already emphasised, at low frequencies, when the
acoustic wavelength is smaller than the size of an in-
strument, the radiated sound is dominated by isotropic

monopole radiation. As the frequency is increased,
higher-order dipole and then quadrupole radiation be-
come progressively important, while above the critical
frequency, when the acoustic wavelength is shorter than
the that of the flexural waves on the shell of an in-
strument, the radiation patterns become increasingly
directional, so that it is no longer appropriate to consider
the radiation in terms of a multipole expansions.

Fletcher and Rossing [15.5, Fig. 10.30] repro-
duce measurements on both the violin and cello by
Meyer [15.115], which highlight the increasing di-
rectionality of the sound produced with increasing
frequency and the rather strong masking effect of the
player at high frequencies. More recently, Weinreich
and Arnold [15.116,117] have made detailed theoretical
and experimental studies of multipole radiation from the
freely suspended violin at low frequencies (typically be-
low 1 kHz). Interestingly, they made use of the principle
of acoustic reciprocity, based on the fact that the ampli-
tude of vibration at the top of the bridge produced by
incoming sound waves is directly related to the sound
radiated by a force applied to the violin at the same
point. The violin was radiated by an array of loudspeak-
ers to simulate incoming spherical or dipole sound fields
and the induced velocity at the bridge recorded by a very
light gramophone pick-up stylus.

Hill et al. [15.118] have used direct measurements
to investigate the angular dependence of the sound radi-
ated by a number of high-quality modern acoustic gui-
tars with different cross-strutting, when excited by a si-
nusoidal force at the bridge. From such measurements,
they were able to derive the fraction of sound radiated
as the dominant monopole and dipole (with components
in three directions) radiation, in addition to effective
masses and Q-values, for a number of prominent modes
up to ≈ 600 Hz. Significant differences were observed
for the three different strutting schemes investigated.

Bissinger [15.119] has made an extensive in-
vestigation of radiation from both freely supported
and hand-held violins, including measurements above
1 kHz, where the multimodal radiation expansion is
no longer appropriate. Bissinger correlates the sound
radiated over a large number of points on a sphere
surrounding the violin with measurements of the input
admittance at the bridge and the induced surface veloci-
ties over the whole violin structure. Figure 15.64 shows
a typical set of simultaneous measurements up to 1 kHz.
Although the low-frequency Helmholtz resonance con-
tributes strongly to the radiated sound, it results in
a relatively small feature on the mobility curves for
the body of the instrument (or on the measured admit-

Part
E

1
5
.2

http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_159.avi
http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_281.avi
http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_425.avi
http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_480.avi


Musical Acoustics 15.2 Stringed Instruments 633
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Fig. 15.64 Plots of the root-mean-square (rms) mobility
〈Y〉 (m/sN) averaged over the surface of the front and back
plate (solid shaded region) and ribs (white curve) of the in-
strument, the radiativity 〈R〉 (Pa/N) averaged over a sphere,
and directivity 〈D〉, the ratio of forward to backward radia-
tion averaged over hemispheres. The top arrows represent
the positions of the open-string resonances and their par-
tials. A0 is the position of the Helmholtz air resonance and
A1 the first internal cavity air resonance, CBR is a strong
corpus bending mode and B1 and B2 are the two strong
structural normal mode resonances of the coupled front and
back plates (data kindly supplied by George Bissinger)

tance at the bridge, not shown). Bissinger was unable to
find any significant correlation between the frequencies
and Q-values of the prominent signature modes excited
(see, for example, Jansson [15.120]) below≈ 1 kHz and
the perceived quality of the instruments investigated.
Above ≈ 1 kHz the modes strongly overlap, so that it
becomes more appropriate to compare the frequency av-
eraged global features. The measurements show that the
fraction of mode energy radiated increases monotoni-
cally from close to zero at low frequencies up to around
almost 100% efficient at 4 kHz and above, where almost
all the energy is lost by radiation rather than inter-
nal damping. The ultimate aim of these detailed modal
analysis studies is to correlate the measured acoustical
properties with the results obtained from finite-element
analysis and to produce sufficient information about the
acoustical properties that might allow a more realistic
comparison between physical properties and the proper-
ties of an instrument judged from their perceived sound
quality and playability.

Frequency (kHz)
5.0

0

0

0

0

0.2 0.3 0.4 0.5 1.0 2.0 3.0 4.0

1 
D

iv
is

io
n 

=
 1

0
dB

“DAN”

“COM”

“MEL”

“LAB”

F3 A3 C#4 F4 A4 C#5 F5 A5 C#6 F6 A6 C#7 F7 A7 C#8 F8

Fig. 15.65 Ratio of sound intensities along neck and per-
pendicular to front plate for four violins of widely different
qualities (after Weinreich [15.121])

Directional Tone Colour
Although the acoustic power radiated averaged over
a given frequency range is clearly an important sig-
nature of the sound of a particular instrument, the
intensity at a particular frequency in the important au-
ditory range above 1 kHz can vary wildly from note
to note. This is illustrated in Fig. 15.65 by Weinre-
ich [15.121], which compares the intensities of radiated
sound in an anechoic chamber along the direction of the
neck and perpendicular to the front plate for four vio-
lins of widely differing quality, with 0 dB representing
an isotropic response. Above around 1 kHz, the wave-
lengths of flexural waves on the plates of the instrument
become comparable with the wavelength of the radi-
ated sound. This leads to strong diffraction effects in
the radiated sound, which fluctuate wildly with direc-
tion as different modes are preferentially excited. At
a particular point in the listening space, the spectral
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content of the bowed violin therefore varies markedly
from note to note, as will the sound within a single note
played with vibrato resulting in frequency modulation.
The spectral content will also vary from position to po-
sition around the violin, especially if the player moves
whilst playing. Weinreich has emphasised the impor-
tance of such effects in producing a greater sense of
presence and vibrancy in the perceived sound from a vi-
olin than would be produced by a localised isotropic
sound source, such as a small loudspeaker. Weinreich
has coined the term directional tone colour to describe
such effects. He has also designed a loudspeaker sys-
tem based on the same principles, which gives a greater
sense of realism to the sound of the recorded violin than
a simple loudspeaker.

In addition to the intrinsic directionality of the vio-
lin, the time-delayed echoes from the surrounding walls
of a performing space also have a major influence on
the complexity of the sound waveforms produced by
a violin (or any other instrument) played with vibrato,
as first noted by Meyer [15.122]. This arises from the
interference between the different frequencies associ-
ated with the prompt sound reaching the listener (or
microphone) and the sound generated at earlier times
reflected from the surrounding surfaces. As discussed
by the present author (Gough [15.18]), the additional
complexity is largely a dynamic effect associated with
the time-delayed interference between signals of dif-
ferent frequencies rather than caused by the amplitude
modulation of individual partials associated with the
multi-resonant response of the violin, first highlighted
by Fletcher and Sanders [15.123] and Matthews and
Kohut [15.124].

Perceived Quality
No problem in musical acoustics has attracted more at-
tention or interest than the attempts made over the last
150 or so years to explain the apparent superiority of
old Cremonese violins, such as those made by Stradivar-
ius and Guarnerius, over their later counterparts, which
have often been near exact copies. Many explanations
have been proposed – a magic recipe for the var-
nish, chemical treatment of the wood and finish of the
plates prior to varnishing [15.125], the special quality
of wood resulting from micro-climate changes [15.126],
etc. However, despite the committed advocacy for par-
ticular explanations by individuals, there is, as yet, little
agreement between researchers, players or dealers on
the acoustical attributes that distinguish a fine Italian
violin worth $1M or more from that of a $100 student
instrument.

From a physicist’s point of view, given wood of the
same quality as that used by the old Italian makers,
there is no rational reason why a modern violin should
not be just as good from an acoustic point of view
as the very best Italian instrument. We have already
commented on Martin Schleske’s attempts to replicate
the sounds of fine Italian instruments, by making tonal
copies having as near as possible the same acoustical
properties [15.108]. In addition, we have also high-
lighted Dünnewald’s attempt to correlate the physical
properties of well over 200 violins with their acous-
tical properties [15.76], including the comparison of
selected student, modern and master violins reproduced
in Fig. 15.62. Such studies appear to show a correlation
between the amount of sound radiation in the acous-
tically important range around 3–4 kHz. As we have
emphasized, this is just the region where the resonant
properties of the bridge have a major influence on the
spectrum.

It must also be remembered that the changed de-
sign of the bridge, the increase in string tension, higher
pitch, increased size of the bass-bar, neck and sound-
post, and the use of metal-covered rather than gut
strings have resulted in a modern instrument sound-
ing very different from the instruments heard by the
17th and early 18th century maker and performer. Even
amongst the violins of the most famous Cremonese
luthiers, individual instruments have very different dis-
tinctive tones and degrees of playability, particular as
judged by the player. The gold standard itself is there-
fore very elusive. What is currently and may always
be lacking is reliable measurements on the individual
plates and shells of a large number of really fine in-
struments. We still largely rely on a small number of
measurements performed by Savart in the nineteenth
century and a few measurements by Saunders in the
1950s on which to base scientific guidelines for modern
violin makers.

Performance Acoustic
It should also be recognised that, when a violin (or any
other instrument) is played, the performer excites not
only the vibrational modes of the instrument but also the
multi-resonant normal modes of the performance space.
Whereas the sound heard by a violinist is dominated
by the sound of the violin, for the listener the acoustics
of the performance space can dominate the timbre and
quality of the perceived sound. To distinguish between
the intrinsic sound qualities of violins, comparisons
should presumably best be made in a rather dry acous-
tic, even though such an acoustic is generally disliked
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by the performer (and listener), who appreciates the
improvement in sound quality provided by a resonant
room acoustic.

One cannot review progress towards our under-
standing of what makes a good violin without recog-
nising the inspiration and enthusiastic leadership of
Carleen Hutchins, the doyenne and founder of the
Catgut Society and scientific school of violin mak-
ing, which has attracted many followers world-wide.
By matching the frequencies and shapes of the first
few modes of free plates before they are assembled
into the completed instrument (Fig. 15.55), the scientific
school of violin makers clearly achieve a high degree
of quality control, which goes some way towards com-
pensating for the inherent inhomogeneities and variable
elastic properties of the wood used to carve the plates.
However, in practice, there is probably just as much
variability in the sound of such instruments as there
is in instruments made by more traditional methods,
where makers tap, flex and bend the plates until they
feel and sound about right, this being part of the tra-
ditional skills handed down from master to apprentice
even today. That is certainly the way that the Italian
masters must have worked, without the aid of any sci-
entific measurements beyond the feel and the sound of
the individual plates as they are flexed and tapped.

Scientific Scaling
The other interesting development inspired by Carleen
Hutchins and her scientific coworkers Schelling and
Saunders has been the development of the modern vi-
olin octet [15.127], a set of eight instruments designed
according to physical scaling laws based on the premise
that the violin is the most successful of all the bowed
stringed instruments. The aim is to produce a consort
of instruments all having what are considered to be
the optimised acoustical properties of the violin. Each
member of the family is therefore designed to have
the frequencies of the main body and Helmholtz reso-
nances in the same relationship to the open strings as
that on the violin, where the Helmholtz air resonance
strongly supports the fundamental of notes around the
open D-string, while the main structural resonances sup-
port notes around the open A-string and the second and
generally strongest partial of the lowest notes played
on the G-string. Several sets of such instruments have
been constructed and admired in performance, though
not all musicians would wish to sacrifice the diversity
and richness of sounds produced by the different tra-
ditional violin, viola, cello and double bass in a string
quartet or orchestra. Nevertheless, the scaling methods
have led to rather successful intermediate and small-
sized instruments.

15.3 Wind Instruments

In this section we consider the acoustics of wind
instruments. These are traditionally divided into the
woodwind, played with a vibrating reed or by blowing
air across an open hole or against a wedge, and brass in-
struments, usually made of thin-walled brass tubing and
played by buzzing the lips inside a metal mouthpiece
attached to the input end of the instrument.

In general, the playing pitch of woodwind instru-
ments is based on the first two modes of the resonating
air column, with the pitch changed by varying the ef-
fective length by opening and closing holes along its
length. In contrast, brass players pitch notes based on
a wide range of modes up to and some times beyond
the 10th. The effective length of brass instruments can
be changed by sliding interpenetrating cylindrical sec-
tions of tubing (e.g. the trombone) or by a series of
valves, which connect in additional length of tubing
(e.g. trumpet and French horn). The pitch of many other
instruments, such as the organ, piano-accordion and
harmonium, is determined by the resonances of a set of

separate pipes or reeds to excite the full chromatic range
of notes, rather like the individual strings on a piano.

A detailed discussion of the physics and acousti-
cal properties underlying the production of sound in
all types of wind instruments is given by Fletcher
and Rossing [15.5], which includes a comprehen-
sive list of references to the most important research
literature prior to 1998. As in many fields of acous-
tics, Helmholtz [15.128] and Rayleigh [15.3] laid the
foundations of our present-day understanding of the
acoustics of wind instruments. In the early part of
the 20th century, Bouasse [15.129] significantly ad-
vanced our understanding of the generation of sound
by the vibrating reed. More recently, Campbell and
Greated [15.130] have written an authoritative text-
book on musical acoustics with a particular emphasis
on musical aspects, including extensive information on
wind and brass instruments. Recent reviews by Ned-
erveen [15.131] and Hirschberg et al. [15.132] provide
valuable introductions to recent research on both wind
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and brass instruments. Earlier texts by Backus [15.133]
and Benade [15.134], both leading pioneers in research
on wind-instrument acoustics, provide illuminating in-
sights into the physics involved and provide many
practical details about the instruments themselves. A re-
cent issue of Acta Acustica [15.135] includes a number
of useful review articles, especially on problems related
to the generation of sound by vibrating reeds and air jets
and on modern methods used to visualise the associated
air motions. For a mathematical treatment of the physics
underlying the acoustics of wind instruments, Morse
and Ingard [15.136] remains the authoritative modern
text. Other important review papers will be cited in the
appropriate sections, and selected publications will be
used to illustrate the text, without attempting to provide
a comprehensive list of references.

We first summarise the essential physics of sound
propagation in air and simple acoustic structures before
considering the more complicated column shapes used
for woodwind and brass instruments. An introduction is
then given to the excitation of sound by vibrating lips
and reeds, and by air jets blown over a sharp edge. The
physical and acoustical properties of a number of wood-
wind and brass instruments will be included to illustrate
the above topics.

A brief introduction to freely propagating sound in
air was given in Sect. 15.1.3. In this section, we will be
primarily concerned with the propagation of sound in
the bores of wind and brass instruments, the excitation
of standing-wave modes in such bores, the mechanics
involved in the excitation of such modes and the resul-
tant radiation of sound.

15.3.1 Resonances in Cylindrical Tubes

Standing waves in cylindrical tubes with closed or open
ends provide the simplest introduction to the acoustics
of wind instruments. For example, the flute can be con-
sidered as a first approximation as a cylindrical tube
open at both ends, while the clarinet and trombone are
closed at one end by the reed or the player’s lips. For
a cylindrical pipe open at both ends, wave solutions are
of the general form

pn(x, t) = A sin(kx x) sin(ωnt) , (15.92)

with the acoustic pressure zero at both ends. Neglecting
end-corrections, open ends are therefore displacement
antinodes and pressure nodes. These boundary con-
ditions result in eigenmodes with kn = nπ/L and
ωn = nc0π/L , where L is the length of the pipe and
n is an integer.

Such modes are closely analogous to the transverse
standing-wave solutions on a stretched string having n
half-wavelengths along the length L and a harmonic set
of frequencies fn = nc0/L , which are integral multi-
ples of the fundamental (lowest) frequency f1 = c0/2L .
When a cylindrical pipe open at both ends, such as
a flute, is blown softly, the pitch is determined by the
fundamental mode, but when it is overblown the fre-
quency doubles, with the pitch stabilising on the second
mode an octave above (audio ).

A cylindrical pipe played by a reed or vibrating
lips has a pressure antinode and displacement node at
the playing end. This results in standing-wave solutions
with an odd number of 1/4-wavelengths between the
two ends, such that kn = nπ/4L , where n is now lim-
ited to odd integer values. The corresponding modal
frequencies, ωn = nπ/4L , are therefore in the ratios
1 : 3 : 5 : 7 : etc. The lowest note on the cylindrical bore
clarinet, closed at one end by the mouthpiece, is there-
fore an octave below the lowest note on a flute of the
same length. Furthermore, when overblown, the clarinet
sounds a note three times higher than the fundamental,
musical interval of an octave plus a perfect fifth (au-
dio ). The weak intensity of the even-n-value
modes in the spectrum accounts for the clarinet’s char-
acteristic hollow sound, particularly for the lowest notes
on the instrument.

Real Instruments
For real wind and brass instruments, the idealised model
of cylindrical tube resonators is strongly perturbed by
a number of important factors. These include:

1. The shape of the internal bore of an instrument,
which is often noncylindrical including conical and
often flared tubes with a flared bell on the radiating
end

2. The finite terminating impedance of the reed or
mouthpiece used to excite the resonances, no longer
providing a perfect displacement node

3. Radiation of sound from the end of the instrument,
which is therefore no longer a perfect displacement
antinode

4. Viscous and thermal losses to the walls of the
instrument

5. Open and shut tone holes in the sides of wind in-
struments used to vary the pitch of the sounded
note

6. Bends and valves along the length of brass in-
struments, connecting additional lengths of tubing,
which allow the player to play all the notes of
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a chromatic scale within the playing range of the
instrument.

The skill of wind-instrument makers lies in their
largely intuitive understanding of the way that changes
in bore shape and similar factors affect the resonant
modes of an instrument. This allows the design of in-
struments that retain, as closely as possible, a full set of
harmonic resonances across the whole playing range of
the instrument. This facilitates the stable production of
continuous notes by the player, as the resulting harmonic
set of Fourier components or partials coincide with the
natural resonances of the instrument. For brass instru-
ments with a flaring end this can often be achieved for
all but the lowest natural resonance of the air column.

In discussing the acoustics of wind instruments with
variable cross-sectional area S, the flow rate U = Sv is
a more useful parameter than the longitudinal particle
velocity v. For example, the force acting on an ele-
ment of air of length Δx along the bore length of an
air column is then given by

−S
∂p

∂x
Δx = ρS

∂v

∂t
Δx = ρ ∂U

∂t
Δx . (15.93)

For travelling waves,ei(ωt±kx), this results in a ratio be-
tween the pressure and flow rate, defined as the tube
impedance

Z = p

U
=±ρc0

S
, (15.94)

where the plus and minus signs refer to waves travelling
in the positive and negative x-directions, respectively.
There is a very close analogy with an electrical trans-
mission line, with pressure and flow rate the analogue
of voltage and current, as discussed later. Because the
impedance is inversely proportional to area, it can be
appreciably higher at the input end of a brass or wind
instrument than at its flared output end. The flared bore
of a brass instrument or the horn on an old wind-up
gramophone can therefore be considered as an acous-
tic transformer, which improves the match between the
high impedance of the vibrating source of sound to the
much lower impedance presented by air at the end of
the instrument. There is clearly an optimum matching,
which enhances the radialed sound without serious de-
gredation of the excited resonant modes.

Acoustic Radiation
In elementary textbook treatments, the pressure at the
end of an open pipe is assumed to be zero and the flow
rate a maximum, so that Zclosed = p/U = 0. However,
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Fig. 15.66 Real and imaginary components of f , the
impedance at the unbaffled open end of a cylindrical tube
of radius a, in units of ρc0/πa2, as a function of ka (after
Beranek [15.137])

in practice, the oscillatory motion of the air extends
somewhat beyond the open end, providing a pulsating
source that radiates sound, as described by Rayleigh
[15.3, Vol. 1, Sect. 313]. Such effects can be described
by a complex terminating load impedance, ZL = R+
jx. Figure 15.66 shows the real (radiation resistance) R
and imaginary (inertial end-correction) x components
of ZL as a function of ka, where a is the radius of the
open-ended pipe. The impedance is normalised to the
tube impedance pc0/πa2.

When ka 
 1, the reactive component is propor-
tional to ka and corresponds to an effective increase in

–10dB
–20dB
–30dB

θ

ka = 0.5 ka = 1.5 ka = 3.83

Fig. 15.67 Polar plots of the intensity radiation from the
end of a cylindrical pipe of radius a for representative ka
values, calculated by Levine and Schwinger [15.138]. The
radial gradations are in units of 10 dB. The intensities in the
forward direction (θ = 0) relative to those of an isotropic
source are 1.1, 4.8 and 11.8 dB (Beranek [15.137])
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the tube length or end-correction of 0.61a. At low fre-
quencies, the real part of the impedance represents the
radiation resistance Rrad = ρc/4S(ka)2. In this regime,
the sound will be radiated isotropically as a monopole
source of strength U eiωt , illustrated in Fig. 15.67 by the
polar plots of sound intensity as a function of angle and
frequency.

When ka is of the order of and greater than unity,
the real part of the impedance approaches that of a plane
wave acting across the same area as that of the tube. Al-
most all the energy incident on the end of the tube is
then radiated and little is reflected. For ka � 1, sound
would be radiated from the end of the pipe as a beam of
sound waves. The transition from isotropic to highly di-
rectional sound radiation is illustrated for a sequence of
ka values in Fig. 15.67. The ripples in the impedance in
Fig. 15.66 arise from diffraction effects, when the wave-
length becomes comparable with the tube diameter.

For all woodwind and brass instruments, there is
therefore a crossover frequency fc ≈ c0/2πa, below
which incident sound waves are reflected at the open
end to form standing waves. Above fc waves generated
by the reed or vibrating lips will be radiated from the
ends of the instrument strongly with very little reflec-
tion. Narrow-bore instruments can have a large number
of resonant modes below the cut-off, while instruments
with a large output bell, like many brass instruments,
have far fewer.

For a narrow-bore cylindrical bore wind instrument
with end radius a ≈ 1 cm, the cut-off frequency (ka ≈ 1)
is ≈ 5.5 kHz. Below this frequency the instrument will
support a number of relatively weakly damped resonant
modes, which will radiate isotropically from the ends
of the instrument or from open holes cut in its sides. In
contrast, for brass instruments the detailed shape and
size ot the flared end-bell determines the cut-off fre-
quency. The large size of the bell leads to an increase
in intensity of the higher partials and hence brilliance
of tone-color, especially when the bell is pointed di-
rectly towards the listener. For French horns, much of
the higher-frequency sound is therefore projected back-
wards relative to the player, unless there is a strongly
reflecting surface behind.

For ka 
 1, the open end of a musical instrument
acts as an isotropic monopole source with radiated
power P given by

P =U2
rms Rrad = ω2 ρ

8πc
(Sωξ)2 . (15.95)

For a given vibrational displacement, the radiated power
therefore increases with the fourth power of both fre-

quency and radius. This very strong dependence on size
explains why brass instruments tend to have rather large
bells and why high-fidelity (HI-FI) woofer speakers and
the horns of public address loudspeakers tend to be
rather large. Conversely, it explains why the sound of
small loudspeakers, such as those used in PC notebooks,
fall off very rapidly below a few hundred Hz.

Acoustic radiation will lower the height and in-
crease the width of resonances in a cylindrical tube. The
resulting Q-values can be determined from

Q = ω stored energy

radiated energy

= ω
1
4ρSLω2ξ2

ω4 (ρ/8πc) S2ξ2
= 2πcL/ωS . (15.96)

Input impedance

Excitation frequency
0 2000

c0/Ain

1000

Input impedance

Excitation frequency
0 20001000



Fig. 15.68 Input impedance of a length of 1 cm diameter
trumpet tubing with and without a bell attached to the
output end (after Benade [15.134])

Part
E

1
5
.3



Musical Acoustics 15.3 Wind Instruments 639

Narrow-bore instruments will therefore have larger
Q-values and narrower resonances than wide-bore in-
struments such as brass instruments, where the flared
end-sections enhance the radiated energy at the expense
of increasing the net losses.

The increased damping introduced by radiation
from the end of an instrument is illustrated in Fig. 15.68,
which compares the resonances of a length of 1 cm-
diameter trumpet tubing, first with a normal open
end and then with a bell attached (Benade [15.133,
Fig. 20.4]). Attaching a bell to such a tube dramatically
increases the radiated sound from the higher partials
and perceived intensity, but at the expense of a cut-off
frequency at around ≈ 1.5 kHz and a significant broad-
ening of the resonances at lower frequencies. Audio

demonstrates the sound of a mouthpiece-
blown length of hose pipe with and without a conical
chemical filter funnel attached to its end.

Viscous and Thermal Losses
In addition to radiation losses, there can be signifi-
cant losses from viscous damping and heat transfer to
the walls, as discussed in detail in Fletcher and Ross-
ing [15.5, Sect. 8.2]. Although simple models for waves
propagating along tubes assume a constant particle dis-
placement across the whole cross-section, in reality the
air on the surface of the walls remains at rest. The
particle velocity only attains the assumed plane-wave
constant value over a boundary-layer distance of δη
from the walls. This is determined by the viscosity
η, where δη = (η/ωρ)1/2, which can be expressed as
≈ 1.6/ f 1/2 mm for air at room temperature. At 100 Hz,
δη ≈ 0.16 mm. which is relatively small in comparison
with typical wind-instrument pipe diameters. Neverthe-
less, it introduces a significant amount of additional
damping of the lower-frequency resonances of wind and
brass instruments.

The viscous losses lead to an attenuation of sound
waves, which can be described by adding an imaginary
component to the k value such that k′ = k− iα. Waves
therefore propagate as e−αx ei(ωt−kx), with an attenua-
tion coefficient

α= 1

ac0

√
ηω

2ρ
= kδη

a
. (15.97)

In addition, heat can flow from the sinusoidally vary-
ing adiabatic temperature fluctuations of the vibrating
column of air into the walls of the cylinder. At acoustic
frequencies, this takes place over the thermal diffusion
boundary length δθ = (κ/ωρCp)1/2, where κ is the ther-
mal conductivity and Cp is the heat capacity of the gas

at constant pressure. In practice, δθ ≈ δη, as anticipated
from simple kinetic theory (for air, the values differ
by only 20%). Viscous and heating losses are therefore
comparable in size giving an effective damping fac-
tor for air at room temperature, α = 2.2104k1/2/a m−1

(Fletcher and Rossing [15.5, Sect. 8.2]). The ratio of the
real to imaginary components of k determines the damp-
ing and effective Q-value of the acoustic resonances
from wall losses alone, with Qwalls = k/2α.

The combination of radiation and wall losses leads
to an effective Qtotal of the resonant modes given by

1

Qtotal
= 1

Qradiation
+ 1

Qwall-damping
. (15.98)

Because of the different frequency dependencies, wall
damping tends to be the strongest cause of damping of
the lowest-frequency resonances of an instrument. It can
also be significant in the narrow-bore tubes and crooks
used to attach reeds to wind instruments.

Input Impedance
The method used to characterize the acoustical proper-
ties of a wind or brass instrument is to measure the input
impedance Z in = pin/Uin at the mouthpiece or reed end
of the instrument. Such measurements are frequently
made using the capillary tube method. This involves
connecting an oscillating source of pressure fluctuations
to the input of the instrument through a narrow-bore
tube. This maintains a constant oscillating flow of air
into the instrument, which is largely independent of
the frequency-dependent induced pressure fluctuations
at the input of the instrument. Several examples of such
measurements, similar to those for the length of trumpet
tubing (Fig. 15.68), for woodwind and brass instruments
are shown and discussed by Backus [15.133] and Be-
nade [15.134], who pioneered such measurements, and
in Fletcher and Rossing [15.5, Chap. 15]. Alternatively,
a piezoelectric driver coupled to the end of the instru-
ment can provide a known source of acoustic volume
flow.

The input impedance of a cylindrical tube is a func-
tion of both the tube impedance Z0 = ρc0/S and the
terminating impedance ZL at its end. It can be cal-
culated using standard transmission-line theory, which
takes into account the amplitude and phases of the re-
flected waves from the terminating load. The reflection
and transmission coefficients R and T for a sound wave
impinging on a terminating load ZL are given by

R = ZL− Z0

ZL+ Z0
and T = 2ZL

ZL+ Z0
. (15.99)
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Real and imaginary components of Z
in 

a)

b)

2kL /π
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Fig. 15.69a,b Real and imaginary components of the in-
put impedance in units of Z0 as a function of 2kL/π for
(a) an ideally open-ended, ZL = 0, cylindrical tube with
wall losses varying as k1/2, and (b) the same components
shifted downwards for a pipe with radiation resistance pro-
portional to k2 also included

For a cylindrical tube of length L , the input impedance
is given by

Z in = Z0
ZL cos kl+ iZ0 sin kl

iZL sin kl+ Z0 cos kl
, (15.100)

with complex k values k− iα, if wall losses need to be
included.

In Fig. 15.69 we have plotted the kL dependence
of the real and imaginary components of the input
impedance of an open-ended cylindrical pipe. The up-
per plot includes wall losses alone proportional to k1/2

while the lower plot includes losses from the end of
the instrument with radiation resistance Re(ZL) varying
as k2. The input impedance is high when kn = nc0/4L ,
where n is an odd integer. The input impedance is a min-
imum when n is even.

It is instructive to consider the magnitude of the
input impedances on a logarithmic scale, as shown in
Fig. 15.70. When plotted in this way, the resonances and
anti-resonances are symmetrically placed about the tube
impedance Z0. The magnitude of the impedance of the
nth resonance is Qn Z0, where Qn is the quality fac-
tor of the excited mode. In contrast the anti-resonances
have values of Z0/Q. The widths Δω/ω of the modes
at half or double intensity are given by 1/Qn .

For efficient transfer of sound, the input impedance
of a wind instrument has to match the impedance of the

2kL /π
0 20

100

10

1

0.1

0.01
5 10 15

Zin /Z0

Fig. 15.70 The modulus of the input impedance plotted on
a logarithmic scale of cylindrical pipe with wall damping
alone and with additional radiative damping as a function
of k in units of π/2

sound generator. For instruments like the flute, recorder
and pan pipes, sound is excited by imposed fluctuations
in air pressure across an open hole, so that the generator
impedance is small. The resonances of such instruments
are therefore located at the minima of the anti-resonance
impedance dips, corresponding to the evenly spaced
resonances, fn = nc0/2L , of a cylindrical tube with
both ends open. In contrast, for all the brass instru-
ments and woodwind instruments played by a reed, the
playing end of the tube is closed by a relatively mas-
sive generator (the lips or reed). Resonances then occur
at the peaks of the input impedance with frequencies
fn = nc0/4L , where n is now an odd integer, corre-
sponding to the resonances of a tube closed at one end.
If we had plotted the magnitude of the input admittance,
A(ω)= 1/Z(ω), instead of the impedance, the positions
of the resonances and anti-resonances would have been
reversed. The resonant modes of a double-open-ended
wind instrument therefore occur at the peaks of the in-
put admittance, whereas the resonant modes of wind
or brass instruments played with a reed or mouthpiece
are at the peaks of the input impedance. This is a gen-
eral property of wind instruments, whatever the size or
shape of their internal bores.

15.3.2 Non-Cylindrical Tubes

Although there are simple wind instruments with cylin-
drical bores along their whole length, the vast majority
of modern instruments and many ancient and ethno-
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logically important instruments have internal bores that
flare out towards their ends. One of the principle reasons
for such flares is that they act as acoustic transformers,
which help to match the high impedance at the mouth-
piece to the much lower radiation impedance of the
larger-area radiating output end. However, increasing
the fraction of sound radiated decreases the amplitude
of the reflected waves and hence the height and sharp-
ness of the natural resonances of the air resonances. In
addition, the shape of the bore can strongly influence
the frequencies of the resonating air column, which de-
stroys the harmonicity of the modes. This makes it more
difficult for the player to produce a continuous note
that is rich in partials, since any repetitive waveform
requires the excitation of a harmonic set of frequencies.

Conical Tube
We first consider sound propagation in a conical
tube, approximating to the internal bore of the oboe,
saxophone, cornet, renaissance cornett and bugle. If
side-wall interactions are neglected, the solutions for
wave propagation in a conical tube are identical to those
of spherical wave propagating from a central point.
Such waves satisfy the wave equation, which may be
written in spherical coordinates as

∇2 (r p)= 1

c2
0

∂2 (r p)

∂t2
. (15.101)

We therefore have standing-wave solutions for r p that
are very similar to those of a cylindrical tube, with

p = C
sin kr

r
eiωt . (15.102)

Note that the pressure remains finite at the apex of the
cone, r = 0, where sin(kr)/r → k. For a conical tube
with a pressure node p = 0 at the open end, we there-
fore have standing wave modes with kn L = nπ and
fn = nc0/2L , where n is any integer. The frequencies of
the excited modes are therefore identical to the modes
of a cylindrical tube of the same length that is open at
both ends. The lowest note at f1 = c0/2L for a conical
tube instrument with a reed at one end (e.g. the oboe
and saxophone) is therefore an octave above a reed in-
strument of the same length with a cylindrical bore (e.g.
the clarinet) with a fundamental frequency of c0/4L .

The flow velocity U is determined by the accelera-
tion of the air resulting from the spatial variation of the
pressure, so that

ρ
∂U

∂t
= ∂(r

2 p)

∂r
= C (sin kr+ kr cos kr) eiωt .

(15.103)
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Fig. 15.71 Pressure and flow velocity of the n = 5 mode
along the length of a conical tube

Figure 15.71 illustrates the pressure and flow velocity
for the n = 5 mode of a conical tube. Unlike the modes
of cylindrical tube, the nodes of U no longer coincide
with the peaks in p, which is especially apparent for
the first few cycles along the tube. Furthermore, the am-
plitude fluctuations increase with distance r from the
apex (≈ r), whilst the fluctuations in pressure decrease
≈ 1/r. A conical section therefore acts as an acous-
tic transformer helping to match the high impedance at
the input mouthpiece end to the low impedance at the
output radiating end.

Attaching a mouthpiece or reed to the end of a con-
ical tube requires truncation of the cone, which will
clearly perturb the frequencies of the harmonic modes.
However, using a mouthpiece or reed unit having the
same internal volume as the volume of the truncated
section removed will leave the frequencies of the lowest
modes unchanged. Only when the acoustic wavelength
becomes comparable with the length of truncated sec-
tion will the perturbation be large.

Fletcher and Rossing [15.5, Sect. 8.7] consider the
physics of the truncated conical tube and give the input
impedance derived by Olson [15.139]

Z in = ρc0

S1

iZL

(
sin(kL−θ2)

sin θ2

)
+
(
ρc0
S2

)
sin kL

ZL
sin(kL+θ1−θ2)

sin θ1 sin θ2
+ j

(
ρc0
S2

)
sin(kl+θ1)

sin θ1

,

(15.104)

where x1 and x2 are the distances of the two ends
from the apex of the truncated conical section. The
length L = x2− x1, the end areas are S1 and S2, with
θ1 = tan−1 kx1 and θ2 = tan−1kx2.
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Fig. 15.72a,b The first four resonant frequencies of trun-
cated cones with (a) both ends open, and (b) the input end
closed, as a function of the ratio of their input to output
diameters (after Ayers et al. [15.140])

For a cone with ZL = 0 at the open end, (15.104)
reduces to

Z in =− j
ρc0

S1

sin kL sin θ1

sin(kL + θ1)
, (15.105)

which is zero for kL = nπ. The resonant frequencies of
truncated cones with both ends open are therefore inde-
pendent of cone angle and are the same as the equally
spaced harmonic modes of a cylinder of the same
length with both ends open, as shown in Fig. 15.72a. In
contrast, the resonant frequencies of a truncated cone
with one end closed (e.g. by the reed of an oboe or
saxophone or mouthpiece of a bugle) are strongly de-
pendent on the cone angle or ratio of input to output
diameter, as shown in Fig. 15.72b, adapted from Ayers
et al. [15.140]. As the ratio of input to output diameters
of a truncated cone increases, the modes change from
the evenly spaced harmonics of an open-ended cylinder
of the same length, to the odd harmonics of a cylin-
der closed at one end. In the transitional regime, the
frequencies of the modes are no longer harmonically re-

Table 15.6 Instruments approximately based on cylindrical and conical air columns

fn = nc0/2L
n even and odd

fn = nc0/4L
n odd

fn = nc0/2L
n even and odd

Flute
Recorders
Shakuhachi
Organ flue pipes (e.g. diapason)

Clarinet
Crumhorn
Pan pipes
Organ flue pipes (e.g. bourdon)
Organ reed pipes (e.g. clarinet)

Oboe
Bassoon
Saxophone
Cornett
Serpent
Organ reed pipes (e.g. trumpet)

lated. This has a significant effect on the playability of
the instrument, as the upper harmonics are no longer co-
incident with the Fourier components of a continuously
sounded note. However, for an instrument such as the
oboe, with a rather small truncated cone length, the per-
turbation of the upper modes is relatively small, as can
be seen from Fig. 15.71b.

Cylindrical and nontruncated conical tubes are the
only tubes that can produce a harmonically related set
of resonant modes, independent of their length. Hence,
when a hole is opened in the side walls of such a tube,
to reduce the effective length and hence pitch of the
note played, to first order, the harmonicity of the modes
is retained. This assumes a node at the open hole,
which will not be strictly correct, as discussed later in
Sect. 15.3.3.

In reality, the bores of wind instruments are rarely
exactly cylindrical or conical along their whole length.
Moreover, many wind instruments have a small flare
at the end to enhance the radiated sound, while oth-
ers, like the cor anglais and oboe d’amore, have an
egg-shaped cavity resonator towards their ends, which
contributes to their characteristic timbre or tone colour.
Table 15.6 lists representative wind instruments that are
at least approximately based on cylindrical and conical
bore shapes. The modern organ makes use of almost ev-
ery conceivable combination of closed- and open-ended
cylindrical and conical pipes.

Hybrid Tubes
Although many brass instruments include consider-
able lengths of cylindrical section, they generally have
a fairly long, gently flared, end-section terminated by
a very strongly flared output bell to enhance the radi-
ated sound. The shape of such flares can be optimized
to preserve the near harmonicity of the resonant modes,
as described in the following section.

One can use (15.104) to model the input impedance
of a flared tube of any shape, by approximating the
shape by a number of short truncated conical sections
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joined together. Starting from the radiating end, one
evaluates the input impedance of each cone in turn and
uses it to provide the terminating impedance for the
next, until one reached the mouthpiece end.

A weakness of all such models is the assumed plane
wavefront across the air column, whereas it must always
be perpendicular to the walls and belled outwards in any
rapidly flaring region. We will return to this problem
later.

Typical brass instruments, like the trumpet and
trombone, have bores that are approximately cylindri-
cal for around half their length followed by a gently
flared section and end bell, while others have initial con-
ical sections, like the bugle and horn. The affect on the
resonant frequencies of the first six modes of adding
a truncated conical section to a length of cylindrical
tubing is shown as a function their relative lengths in
Fig. 15.73, from Fletcher and Rossing [15.5, Fig. 8.9].
Note the major deviations from harmonicity of the res-
onant modes, apart from when the two sections are of
nearly equal lengths. These results highlight the com-
plexity involved, when adding flaring sections to brass
instruments to increase the radiated sound.

Horn Equation
Physical insight into the influence of bore shape on the
modes of typical brass instruments is given by the horn
equation introduced by Webster [15.141], though simi-
lar models date back to the time of Bernoulli (Rossing

(Hz)
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Fig. 15.73 The frequencies of the first six modes of a com-
pound horn formed from different fractional lengths of
cylindrical and conical section (after Fletcher and Ross-
ing [15.5])

and Fletcher [15.5, Sect. 8.6]). In its simplest form, the
horn equation can be written as

1

S

∂

∂x

(
S
∂p

∂x

)
= 1

c2
0

∂2 p

∂t2
, (15.106)

where S(x) is the cross-sectional area of the horn at
a distance x along its length. Provided the flare is not too
large, the above plane-wave approximation gives a good
approximation to the exact solutions and preserves the
essential physics involved.

If we make the substitution p = ψS1/2 and look for
solutions varying as ψ(x)eiωt , the horn equation can be
expressed as

∂2ψ

∂x2
+
[(
ω

c0

)2

− 1

a

∂2a

∂x2

]
ψ = 0 , (15.107)

where the radius a(x) is now a function of position
along the length. The above equation is closely re-
lated to the Schrödinger wave equation in quantum
mechanics, with 1/a ∂2a/∂x2 the analogue of potential
energy and −∂2ψ/∂x2 the analogue of kinetic energy
−h2/2m ∂2ψ/∂x2, where m is the mass of the particle
and h is Planck’s constant. One can look for solu-
tions of the form ei(ωt±kx). At any point along the horn
at radius x the radius of curvature of the horn walls,
R = (∂2a/∂x2)−1, so that

k2 =
(
ω

c0

)2

− 1

aR
. (15.108)

If ω > ωc = c0/(aR)1/2, k is real, so that unattenuated
travelling and standing-wave solutions exist. However,
when ω< ωc, k is imaginary and waves no longer prop-
agate, but are exponentially damped as e−x/δ eiωt with
a decay length of c0/(ω2

c −ω2)1/2.
The propagation of sound waves in a horn is there-

fore directly analogous to the propagation of particle
waves in a spatially varying potential. If the curvature
is sufficiently large sound waves will be reflected be-
fore they reach the end of the instrument. However, just
like particle waves in a potential well, sound waves can
still tunnel through the potential barrier and radiate into
free space at the end of the flared section. For a horn
with a rapidly increasing flare, the reflection point oc-
curs when the wavelength λ2 ≈ (2π)Ra. The effective
length of an instrument with a flared horn on its end
is therefore shorter for low-frequency modes than for
the higher-frequency modes. This is illustrated schemat-
ically in Fig. 15.77 for resonant modes of a flared Bessel
horn, which will be considered in more detail in the next
section.
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Exponential Horn
We now consider solutions of the horn equation, for
a number of special shapes that closely describe sec-
tions of the internal bore of typical brass instrument.
Cylindrical and conical section horns are special so-
lutions with (1/a)∂2a/∂x2 = 0, so that ψ satisfies the
simple dispersionless wave equation. Figure 15.74 il-
lustrates a number of other horn shapes described by
analytic functions.

The radii of exponential and cosh function horns
vary exponentially as A emx and A cosh(mx), re-
spectively, so that (1/a)∂2a/∂x2 = m2. The cosh mx
function provides a smooth connection to a cylindrical
tube at the input end. For both shapes, the horn equation
can then be written as

∂2ψ

∂x2
+
[(
ω

c0

)2

−m2

]
ψ = 0 , (15.109)

which has travelling solutions for the sound pressure
p = ψ/S1/2, where

p(x) = e−mx ei(ωt−
√

k2−m2x2) , (15.110)

and k = ω/c0. Above a critical cut-off frequency,
fc = c0m/2, waves can propagate freely along the
air column with a dispersive phase velocity of
c0/
√

1− (ωc/ω)2, while below the cut-off frequency the
waves are exponentially damped. The cut-off frequency
occurs when the free-space wavelength is approxi-
mately six times the length for the radius to increase
by the exponential factor e.

Figure 15.75 compares the input resistance and re-
actance of an infinite exponential horn with that of
a baffled piston having the same input area (Kinsler
et al. [15.142, Fig. 14.19]). The plots are for an ex-
ponential horn with m = 3.7 m−1, which corresponds
to a cut-off frequency of ≈ 100 Hz, and a baffled pis-
ton having the same radius of 2 cm as the throat of the

Cylindrical

Conical

exponential ~ exp(3x /L)

cosh ~ cosh(3xL)

Bessel ~ (1.01–x/L)– 0.7

Fig. 15.74 Analytic horn shapes
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Fig. 15.75 Comparison of input impedance at the input
throat of an infinitely long exponential horn and a piston
of the same area set into an infinite baffle (after Kinsler
et al. [15.142])

exponential horn. Above ≈ 400 Hz, there is very little
difference between the impedance of an infinitely long
horn and a horn with a finite length of≈ 1.5 m or longer,
though below this frequency reflections cause addi-
tional fluctuations around the plotted values. Below the
cut-off frequency, no acoustic energy can be radiated.
Above the cut off the input resistance rises rather rapidly
towards its limiting 100% radiating value. The exponen-
tial horn with a piston source at its throat is therefore
a much more efficient radiator of sound than a baffled
piston at all frequencies above the cut-off frequency.

The exponential horn illustrates how the flared cross
section of brass instruments enhances the radiation of
sound, though brass instruments are never based on ex-
ponential horns, otherwise no resonant modes could be
set up. However, exponential horns were widely used in
the early days of the gramophone. In the absence of any
electronic amplification, they amplified the sound pro-
duced by the input diaphragm excited by the pick-up
stylus on the recording cylinder or disc. They are still
widely used in powerful public address systems. Such
horns can also be used in reverse, as very efficient de-
tectors of sound, with a microphone placed at the apex
of the horn.

Bessel Horn
We now consider more realistic horns with a rapidly
flaring end bell, which can often be modelled by what
are known as Bessel horn shapes, with the radius vary-
ing as 1/xm from their open end. Typical flared horn
shapes are shown in Fig. 15.76 for various values of m,
where the horn functions A/(x+ x0)m have been nor-
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Fig. 15.76 Bessel horns representing the rapid outward
flare of the bell on the end of a brass instrument, for
a sequence of m values giving a ratio of input to output
diameters of 10

malised by suitable choice of A and x0, to model horns
with input and output values 1 and 10. Increasing the
value of m increases the rapidity with which the flare
opens out at the end.

Again assuming the plane-wave approximation, the
horn equation can be written as

∂2ψ

∂x2
+
[(
ω

c0

)2

− m(m+1)

x2

]
ψ = 0 , (15.111)

with solutions

ψ(kx) = x1/2 Jm+1/2(kx) (15.112)

and pressure varying from the end as

p(kx) = 1

x1/2
Jm+1/2(kx) , (15.113)

where Jm+1/2(kx) is a Bessel function of order m+1/2,
giving the name to such horns.

In the plane-wave approximation, the sharpness and
height of the barrier to wave propagation arising from
the curvature could result in total reflection of the in-
cident waves, so that no sound would be emitted from
the end of the instrument. In reality, the curvature of
the waveform will smear out any singularity in the
horn function over a distance somewhat smaller than
the output bell radius. Nevertheless, despite its limi-
tations, the plane-wave model provides an instructive
description of the influence of a rapidly flaring bell on
a brass instrument. This is illustrated in Fig. 15.77 for

Fig. 15.77 Fundamental and fourth mode of an m = 1/2
Bessel horn, illustrating the increase in wavelength and re-
sulting shift inwards of the effective nodal position. The
dashed lines illustrate the extrapolated sine-wave solutions
from well inside the bore. The plot is of p(x)/x

the fundamental and fourth modes of a Bessel horn with
m = 1/2, with the pressure p(x) varying from the output
end as xJ1(kx).

The most important point to note is the way that
the flare pushes the effective node of the incident sine-
wave solutions (extended into the flared section as
dashed curves) away from the end of the instrument.
The effective length is therefore shortened and resonant
frequencies increased, the effect being largest for the
lower frequency modes. The flare and general outward
curvature of the horn cross section therefore destroys
the harmonicity of the modal frequencies. This is a com-
pletely general result for any horn with a flared end. In
practice, the nodal positions will also be affected by the
curvature of the wavefront, which will further perturb
the modal frequencies, but without changing the above
qualitative behaviour.

Benade [15.134, Sect. 20.5] notes that, from the
early 17th century, trumpets and trombones have been
designed with strongly flaring bell corresponding to m
values of 0.5–0.65, while French horns have bells with
a less sudden flare with m values of 0.7–0.9.

From Fig. 15.77, it is easy to see how the player can
significantly affect the pitch of a note on the French
horn, by moving the supporting hand up into the bell
of the instrument, which is referred to as hand-stopping.
The pitch can be lowered by around a semitone, by plac-
ing the downwardly cupped hand and wrist against the
top of the flared bell, effectively reducing the flare and
increasing the effective length of the instrument. Alter-
natively, the pitch can be raised by a similar amount
when the hand almost completely closes the inner bore.
This leads to a major perturbation of the boundary
conditions, effectively shortening the air column and re-
ducing the output sound. The increase in frequency can
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be explained by the player using an almost unchanged
embouchure to excite a higher frequency mode of the
shortened tube. Because of the increased reflection of
sound by the presence of the hand, the resultant sound
although quieter is also much richer in higher partials
(Fig. 15.113). Both effects are illustrated in Audio ex-
ample .

Flared Horns
Use is made of the dependence of modal frequencies on
the curvature of horn shapes to design brass instruments
with a set of resonances, which closely approximate
to a harmonic series with frequencies fn = n f1. This
should be contrasted with the modes of a cylindrical
tube closed at one end by the mouthpiece, which would

Mouthpiece pressure

116 Hz 2 104 6 8

Mouthpiece pressure

57.6 Hz 2 104 6 8
Mouthpiece pressure

43.2 Hz 2 104 6 83 13 18
Relative excitation frequency

Trumpet

Trombone

French horn

Fig. 15.78 Input impedances of the trumpet, trombone and
French horn with the positions of the resonant peaks
marked above the axis to show their position relative to
a harmonic series based on the second harmonic of the
instrument (after Backus [15.133])

only involve the odd-n integer modes with frequencies
of fn = c/2L .

Historically, this has been achieved by empirical
methods, with makers adjusting the shapes of brass
instrument to give as near perfect a set of harmonic
resonances as possible, as illustrated in Fig. 15.78 from
Backus [15.133, Chap. 12]. A harmonic set of modes
enhances the playability of the instrument, as the par-
tials of any continuously blown note then coincide with
the natural resonances of the instrument. However, the
fundamental mode is always significantly flatter than
required and is therefore not normally used in musi-
cal performance. Nevertheless, the brass player can still
sound a pedal note corresponding to the virtual funda-
mental of the higher harmonics by exciting a repetitive
waveform involving the higher harmonics, but with only
a weak Fourier component at the pitch of the sounded
note.

The way that this is achieved is shown schemati-
cally in Fig. 15.79 starting from the odd-n resonances of
a cylindrical tube closed at one end by the mouthpiece to
an appropriately flared horn of the same length. In prac-
tice, one can achieve a nearly perfect set of harmonic
resonances, midway between the odd-integer modes of
a cylindrical tube closed at one end, for all but the fun-
damental mode, which cannot be shifted upwards by
a sufficient amount to form a harmonic fundamental,
stopping and of the new set of modes.

Benade [15.134, Sect. 20.5] has given an empirical
expression for the frequencies of the partials of Bessel
horns closed at the mouthpiece end, which closely de-

Cylindrical
tube

Brass
instrument

fn fn

0

4'

7

3'

5

2'

3

1'

n = 1

Fig. 15.79 The transformation of the odd-n modes of
a cylindrical air column closed at one end to the near har-
monic, all integer, n′ modes of a flared brass instruments.
The lower dashed line indicates schematically what can be
achieved in practice for the lowest
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scribes these perturbations,

f ′n
fn
≈
(

1+0.637

√
m(m+1)

2n−1

)
, (15.114)

where the (2n−1) in the denominator emphasising the
preferential raising in frequency of the lower-frequency
modes. This gives frequencies for the first six modes
of a Bessel function horn with m = 0.7 are in the ra-
tios 0.94, 2.00, 3.06, 4.12, 5.18 and 6.24, normalised
to the n = 2 mode. These should be compared with the
ideal 1, 2, 3, 4, 5, 6 ratios. Apart from the lowest note,
which is a semitone flat, the higher modes are less than
a semitone sharp compared with their ideal values.

Perturbation Models
Perturbation theory can be used to describe how
changes in bore shape perturb the resonant modes of
brass and woodwind instruments. Fletcher and Ross-
ing [15.5, Sect. 8.10] show that the change of frequency
of a resonant mode Δω resulting from small distributed
changes ΔS(x) in bore area S(x) is given by

Δωn

ωn
=−1

2

(
c0

ωn

) L∫

0

[
∂

∂x

(
ΔS(x)

S(x)

)
pn
∂pn

∂x
dx

]/

×

L∫

0

[
S(x)p2

n dx
]
. (15.115)

An alternative equivalent derivation uses Rayleigh’s
harmonic balance argument and equates the peak ki-
netic energy to the peak potential energy. To first order,
the perturbation is assumed to leave the shape of the
modal wavefunction unchanged. The kinetic and po-
tential energy stored in a particular resonant mode can
be expressed in terms of the local kinetic 1

2ρω
2
nξ

2
n and

strain 1
2γ P0(∂ξn/∂x)2 energy densities. For simplicity,

we consider the perturbation of the nth resonant mode
of a cylindrical air column open at one end, with par-
ticle displacement ξn ≈ sin(nπx/L) cos(ωnt), where n
is an odd integer. Equating the peak kinetic and poten-
tial energy over the perturbed bore of the cylinder, we
can then write

ω
′2
n

L∫

0

ρ [S+ΔS(x)] sin2(kx)dx

= γ P0k2
n

L∫

0

[S+ΔS(x)] cos2 (kx) dx , (15.116)

where ω′n is the perturbed frequency. This can be rewrit-
ten as

ω
′2
n

ω2
n
=

L∫

0

[S+ΔS(x)] cos2 (kx) dx

/

×

L∫

0

[S+ΔS(x)] sin2(kx)dx . (15.117)

Because the perturbations are assumed to be small, we
can rearrange (15.117) to give the fractional change in
frequency

Δωn

ωn
= 1

L

L∫

0

ΔS(x)

S
(cos2 kx− sin2 kx)dx .

(15.118)

Hence, if the tube is increased in area close to
a displacement antinode, where the particle flow is
large (low pressure), the modal frequency will increase,
whereas the frequency will decrease, if constricted close
to a nodal position (large pressure) (Benade [15.134,
Sect. 22.3]). This result can be generalised to a tube
of any shape. Hence, by changing the radius over an
extended region close to a node or antinode, the fre-
quencies of a particular mode can be either raised or
lowered, but at the expense of similar perturbations to
other modes. Considerable art and experience is there-
fore needed to correct for the inharmonicity of several
modes simultaneously.

Electric Circuit Analogues
It is often instructive to consider acoustical systems in
terms of equivalent electric circuit analogues, where
voltage V and electrical current I can represent the
acoustic pressure p and flow along a pipe U . For ex-
ample, a volume of air with flow velocity U in a pipe
of area S and length l has a pressure drop (ρl/S)∂U/∂t
across its length, which is equivalent to the voltage
L∂I/∂t across an inductor in an electrical circuit. Like-
wise, the rate of pressure rise, ∂p/∂t = γ P0U/V , as gas
flows into a volume V, is equivalent to the rate of volt-
age rise, ∂V/∂t = I/C across a capacitance C ≡ V/γ P0.

As a simple example, we re-derive the Helmholtz
resonance frequency, previously considered in relation
to the principal air resonance of the air inside a violin or
guitar body (Sect. 15.2.4), but equally important, as we
will show later, in describing the resonance of air within
the mouthpiece of brass instruments.

In its simplest form, the Helmholtz resonator con-
sists of a closed volume V with an attached cylindrical
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pipe of length l and area S attached, through which the
air vibrates in and out of the volume. All dimensions are
assumed small compared to the acoustic wavelength, so
that the pressure p in the volume and the flow in the pipe
U can be assumed to be spatially uniform. The volume
acts as an acoustic capacitance C = V/γ P0, which res-
onates with the acoustic inductance L = ρl/S of the air
in the neck. The resonant frequency is therefore given
by

ωHelmholtz = 1√
LC

=
√

S

ρl

γ P0

V
= c0

√
S

lV
,

(15.119)

as derived earlier.
Any enclosed air volume with holes in its con-

taining walls acts as a Helmholtz resonator, with an
effective kinetic inductance of the hole region equiva-
lent to a tube of the same diameter with an effec-
tive length of wall thickness plus ≈ 0.61 hole radius
(Kinsler et al. [15.142, Sect. 9.2]). This is the fa-
miliar end-correction for an open-ended pipe (Kinsler
et al. [15.142, Sect. 9.2]). Open holes of different diam-
eters will therefore give resonances corresponding to
different musical tones. The ocarina is a very simple
musical instrument based on such resonances, in which
typically four or five holes with different areas can be
opened and closed in combination, to give a full range
of notes on a chosen musical scale (audio ).
Because the sound is based on the single resonance
of a Helmholtz resonator, there are no simply related
higher-frequency modes that can be excited. Ocarinas
appear in many ancient and ethnic cultures around the
world and are often sold as ceramic toys.

Acoustic Transmission Line
There is also a close equivalence between acous-
tic waves in wind instruments and electrical waves
on transmission lines, with an acoustic pipe having
an equivalent inductance L0 = ρ/S and capacitance
C0 = S/γ P0 per unit length. For a transmission line the
wave velocity is therefore c0 =√

1/L0C0 =√
γ P0/ρ

and characteristic impedance Z0 =√
L0/C0 = ρc0/S,

as expected. The input impedance of a transmission line
as a function of its characteristic impedance and termi-
nating load is given by (15.100).

Valves and Bends
To enable brass instruments to play all the notes of the
chromatic scale, short lengths of coiled-up tubing are
connected in series with the main bore by a series of

piston- or lever-operated air valves. The constriction of
air flow through the air channels within the valve struc-
tures and the bends in the tubing, used to reduce the size
of the instruments to a convenient size for the player
to support, will clearly present discontinuities in the
acoustic impedance of the air bore and will lead to re-
flections. Such reflections will influence the feel of the
instrument for the player exciting the instrument via the
mouthpiece and will also perturb the frequencies of the
resonant modes of the instrument.

If the discontinuities are short in size relative to the
acoustic wavelengths involved, the discontinuity can be
considered as a discrete (localised) lumped circuit ele-
ment. Using our electromechanical equivalent, a short,
constricted channel through a valve can be represented
as an inductance ρLvalve/Svalve in series with the acous-
tic transmission line, or an equivalent additional extra
length of bore tubing LvalveStube/Svalve of cross sec-
tion Stube. For all frequencies such that kLvalve 
 1,
the valve simply increases the length of the acoustic
air column slightly and the frequencies of all the lower
modes by the same fractional amount. Only at very high
frequencies, outside the normal playing range, will the
constricted air channel significantly change the modal
frequencies.

When a straight length of cylindrical tube of radius
a is connected to the same size tubing but bent into a cir-
cle of radius R, there will a small change in the acoustic
impedance and velocity of sound waves, which arises
because the forces acting on each element induces ro-
tational in additional to linear motion. The presence of
bends will lead to reflections and slight perturbations of
resonant frequencies, though these effects will again be
relatively small. Nederveen [15.143] showed that frac-
tional increase in phase velocity and decrease in wave
impedance of a rectangular duct is given by the factor
F1/2, where

F = B2

2

/[
1−

(
1− B2

)1/2
]

= 1− B2/4 for B 
 1 , (15.120)

B = a/R, a is the half-width of the duct and R its
radius. Keefe and Benade [15.144] subsequently gen-
eralised this result to a bent circular tube, with its radius
r replacing a.

Finger Holes
In many woodwind instruments, tone holes can be
opened or closed to change the effective resonating
length of an air column and hence pitch of the sounded
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note. The holes can be closed by the pad of the finger or
a hinged felt-covered pad operated with levers. To a first
approximation, opening a side hole creates a pressure
node at that position, shortening the effective length
of the instrument and raising the modal frequencies.
However, as described in Fletcher and Rossing [15.5,
Sect. 15.2] and in detail by Benade [15.134, Chaps. 21
and 22], the influence of the side holes is in practice
strongly dependent on the hole size, position and fre-
quency, as summarised below.

At low frequencies, when the acoustic wavelength
is considerably longer than the size and spacing of the
tone holes, one can account for the effect of the tone
holes by considering their equivalent capacitance when
closed and their inductance when open, as illustrated
schematically in Fig. 15.80.

Because the walls of wind instruments and par-
ticularly woodwind instruments have a significant
thickness, the tone holes when shut introduce additional
small volumes distributed along the length of the
vibrating air column. Each closed hole will intro-
duce an additional volume and equivalent capacitance
Cc-hole = πb2/γ P0, which will perturb the frequencies
of the individual partials upwards or downwards by
a small amount that will depend on its position rel-
ative to the pressure and displacement nodes and the
closed volume of the hole. In severe cases, the pertur-
bations can be as large as a few per cent (one semitone
is 6%), which requires compensating changes in bore
diameter along the length of the instrument, to retain the
harmonicity of the partials. However, this is essentially
a problem that depends on geometrical factors involv-
ing the air column alone. Once solved, like all acoustic
problems involving the shape and detailed design, in-
struments can be mass-produced with almost identical

b

a

d

t

L0 d /2 L0 d /2 L0 d /2 L0 d /2

Cc-hole C0 d Lo-hole C0 d

Fig. 15.80 Equivalent circuits for a short length d of cylin-
drical pipe containing a closed and an open tone hole,
shunting the acoustic transmission line with a capacitance
and inductance, respectively

acoustic properties, quite unlike the problems that arise
for stringed instruments.

The more interesting situation is when the holes are
opened, introducing a pressure node at the exit of the
tone hole and shortening the effective acoustical length
of the instrument. An open hole can be considered as
an inductance, L ≈ ρ(t+0.6b)/πb2, where the effec-
tive length of the hole is increased by the unflanged
hole end-correction. Neglecting radiation losses from
the hole (Fletcher and Rossing [15.5, (15.21, 22)]), the
effective impedance Z∗ of an open-ended cylindrical
pipe of length l and radius a shunted by the inductive
impedance of a circular hole of radius b set into the wall
of thickness t is given by

1

Z∗
≈ πb2

iωρ(t+0.6b)
+ πa2

iρc0 tan kl

= πa2

iρc0 tan kl′
. (15.121)

Thus can be expressed in terms of an impedance of an
effectively reduced length l′.

For kl 
 1 ,
l′

l
=
[

1+ t+0.6b

l

(a

b

)2
]−1

.

(15.122)

The change in effective length introduced by the open
hole depends strongly on its area relative to that of the
cylinder, the thickness of the wall and its length from the
end. This gives the instrument designer a large amount
of flexibility in the positioning of individual holes on an
instrument. Figure 15.81 illustrates the dependence of
the effective pipe length on the ratio of hole to cylinder
radii for two lengths of pipe between the hole and end
of the instrument.

Not surprisingly, a very small hole with b/a 
 1 has
a relatively small effect on the effective length of an in-
strument. In contrast, a hole with the same diameter as
that of the cylinder shortens the effective added length
to about one hole diameter.

In practice, there will often be several holes open
beyond the first open tone hole, all of which can affect
the pitch of the higher partials.

Consider a regular array of open tone holes spaced
a distance d apart. The shunting kinetic inductance of
each open hole is in parallel with the capacitance as-
sociated with the volume of pipe between the holes.
At low frequencies, such that ω
 1/

√
LholeC0d, the

impedance is dominated by the hole inductance, so that
each hole attenuates any incident wave by approxi-
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l'/l

b/a
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1
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0
0.80.60.40.2

Fig. 15.81 Low-frequency (kl 
 1) fractional reduction of
effective length of a cylindrical end-pipe as a function of
hole to cylinder radius, for additional lengths of 10 (lower
curve) and 20 (upper curve) times the tube radius in length.
The side wall thickness is 0.4 times the tube radius

mately the ratio

≈ Lhole/ (Lhole+ L0d)=
[

1+ d

t+1.5b

(a

b

)2
]−1

,

(15.123)

where L0 is the inductance of the pipe per unit length.
Incident waves are therefore attenuated with an effective
node just beyond the actual hole as discussed above.

However, for frequencies such that ω� 1/√
LholeC0d, the impedance of the shunting hole induc-

tance is much larger than that of the capacitance of the
air column, so that the propagating properties of the in-
cident waves is little affected be the presence of the open
hole. There is therefore a crossover or cut-off frequency

ω≈ 1/
√

LholeC0d = c0
a

b

(
1

teffd

)1/2

, (15.124)

below which the incident waves are reflected to give
a pressure node just beyond the first hole of the array
and above which waves propagate increasingly freely
through the array to the open end of the instrument.

Figure 15.82 (Benade [15.134, Fig. 21.1]) illustrates
the effect of an array of open holes on the first few par-
tials of a typical woodwind instrument, highlighting the
increase in acoustic length of the instrument (indicated

Closed holes Open holes

neff

neff

neff

neff

Fig. 15.82 Schematic representation of the influence of
open holes on the first four partials of a woodwind instru-
ment, with the effective length indicated by the intercept
neff on the axis of the extrapolated incident wave (after
Benade [15.134])

by the intercept of the extrapolated incident waveform)
with increasing frequency. The dependence of the ef-
fective length of the acoustic air column on frequency
is therefore rather similar to the influence of the flare on
the partials of a brass instrument.

A consequence of the greater penetration at high fre-
quencies of the acoustic wave through the array of open
tone holes is the greater attenuation of such waves by ra-
diation and the consequent reduction in the amplitude of
the higher resonant modes in measurements of the input
impedance. This is illustrated in Fig. 15.83 for a length
of clarinet tubing first without and then with an added
section containing an array of equally spaced tone holes
(Benade [15.134, Fig. 21.3]).

Benade [15.134, Sect. 21.1] states that

specifying the cut-off frequency for a woodwind in-
strument is tantamount to describing almost the
whole of its musical personality

– assuming the proper tuning and correct alignment of
resonances for good oscillation. His measured values
of the cut-off frequency for the upper partials of clas-
sical and baroque instruments are 1200–2400 Hz for
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Input impedance

Frequency (Hz)
0 20001000

Pipe alone

Pipe plus
tone hole
lattice

Cutoff frequency

Fig. 15.83 Illustration of the cut-off-frequency effect,
when adding an addition length of tubing with an array of
open tone holes (after Benade [15.134])

oboes, 400–500 Hz for bassoons, and 1500–1800 Hz
for clarinets.

Cross-Fingering
The notes of an ascending scale can be played by suc-
cessively opening tone holes starting from the far end of
the instrument. In addition, by overblowing, the player
can excite notes in the second register based on the
second mode. As remarked earlier, instruments like the
flute and oboe overblow at the octave, whereas the clar-
inet overblows at the twelfth (an octave plus a perfect
fifth). To sound all the semitones of the western classi-
cal scale on the flute or oboe would therefore require
12 tone holes and the clarinet 20 – rather more than
the fingers on the two hands! In practice, the player
generally uses only three fingers on the left hand and
four on the right to open and close the finger holes.
The thumb on the left hand is frequently used to open
a small register hole near the mouthpiece, which aids
the excitation of the overblown notes in the higher
register.

In practice, cross- or fork-fingering enables all
the notes of the chromatic scale to be played using
the seven available fingers and combinations of open
and closed tone holes. This is illustrated in Fig. 15.84
for the baroque recorder (Fletcher and Rossing [15.5,
Fig. 16.21]). The bottom two notes can be sharpened
by a semitone by half-covering the lower two holes and
the overblown notes an octave above are played with

Thumb

1

2

3

1

2

3

4

C D E F# G# A# C

Fig. 15.84 Soprano recorder fingering for the first seven
notes of a whole-tone scale (after Fletcher and Ross-
ing [15.5])

the thumb hole either fully open or half closed. Cross-
fingering makes use of the fact that the standing waves
set up in a pipe extend an appreciable distance into an
array of open tone holes (Fig. 15.82), so that opening
and closing holes beyond the first open hole can have
an appreciable influence on the effective length of the
resonating air column.

Modern woodwind instruments use a series of in-
terconnected levers operated by individual keys, which
facilitates the ease with which the various hole-opening
combinations can be made.

Radiated Sound
Although the reactive loading of an open hole deter-
mines the effective length of the resonant air column,
particularly at low frequencies, it does not follow that
all the sound is radiated from the open tone holes. In-
deed, since the intensity of the radiated sound depends
on (ka)2, very little sound will be radiated by a small
hole relative to the much wider opening at the end of
an instrument. The loss in intensity of sound passing
an open side hole may therefore, in large part, be com-
pensated by the much larger radiating area at end of
the instrument. This also explains why the character-
istic hollow sound quality of a cor anglais, derived in
part from the egg-shaped resonating cavity near its end,
is retained, even when the tone holes are opened on the
mouthpiece side of the cavity.
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In practice, the sound from the end and open tone
holes of a woodwind instrument act as independent
monopole sources. When the acoustic wavelength be-
comes comparable with the hole spacing, interesting
interference effects in the output sound can occur con-
tributing to strongly directional radiation patterns, as
discussed by Benade [15.134, Sect. 21.4]. Similarly,
reciprocity allows one to make use of such interference
effects to produce a highly directional microphone by
placing a microphone at the end of a cylindrical tube
with an array of open side holes.

Brass Mouthpiece
Brass instruments are played using a mouthpiece insert,
against which the lips are pressed and forced to vibrate
by the passage of air between them. The mouthpiece not
only enables the player to vibrate their lips over a wide
range of frequency, but also provides a very important
acoustic function in significantly boosting the amplitude
of the higher partials, helping to give brass instruments
their bright and powerful sounds.

Typical mouthpiece shapes are shown in Fig. 15.85.
Mouthpieces can be characterized by the mouthpiece
volume and the popping frequency characterizing the
Helmholtz resonator comprising the mouthpiece vol-
ume and backbore. The popping frequency can easily
be estimated from the sound produced when the mouth-
piece is slapped against the open palm of the hand
(audio ).

By adjusting the tension in the lips, the shape of
the lips within the mouthpiece (the embouchure), and
the flow of air between the lips via the pressure in the
mouth, the skilled brass player forces the lip to vibrate
at the required frequency of the note to be played. This
can easily be demonstrated by making a pitched buzzing
sound with the lips compressed against the rim of the
mouthpiece cup. The circular rim constrains the lateral
motion of the lips making it far easier to produce stable
high notes. A brass player can sound all the notes on
an instrument by simply blowing into the mouthpiece
alone, but the mouthpiece alone produces relatively lit-
tle volume. The instrument both stabilises the playing

a) b)Mouthpiece Back bore Mouthpiece Back bore

Fig. 15.85a,b Cross sections of (a) trumpet mouthpiece
and (b) horn mouthpiece (after Backus [15.133])

Input impedance

0 20001000
Frequency (Hz)

Pipe alone

Pipe plus mouthpiece

Fig. 15.86 Input impedance of a length of cylindrical
trumpet pipe with and without a mouthpiece attached (after
Benade [15.134])

frequencies and increases the coupling between the vi-
brating lips and radiated sound.

Figure 15.86 illustrates the enhancement in the in-
put impedance around the popping frequency, when
a mouthpiece is attached to the input of a cylindrical
pipe, as measured by Benade [15.134]. Benade showed
that the influence of the mouthpiece on the acoustical
characteristics of a brass instrument is, to a first ap-
proximation, independent of the internal bore shape and
can be characterized by just two parameters, the internal
volume of the mouthpiece and the popping frequency.

Benade also measured the perturbation of the res-
onant frequencies of an instrument by the addition
of a mouthpiece, as illustrated in Fig. 15.87. At low
frequencies, the mouthpiece simply extends the effec-
tive input end of a terminated tube by an equivalent
length of tubing having the same internal volume as
the mouthpiece. In the measurements shown, Benade
removed lengths of the attached tube to keep the reso-
nant frequencies unchanged on adding the mouthpiece.
However, since the fractional changes in frequency are
small, the measurements are almost identical to the
effective increase in length from the addition of the
mouthpiece.

At the mouthpiece popping frequency (typically in
the range 500 Hz to 1 kHz depending on the mouth-
piece and instrument considered), the effective increase
in length is λ/4. This can result in decreases in reso-
nant frequencies by as much as a tone, which could have
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Equivalent length (cm)

fp

16

12

8

4

0

1 tone

1 semi-tone

λp/4

Vcup/Apipe

Trumpet mouthpiece

Fig. 15.87 The amount by which a trumpet tube of length
137 cm would have to be lengthened to compensate for
the lowering in frequency of the instrument’s resonant fre-
quencies when a mouthpiece is attached to the input (after
Benade [15.134]). The changes in length to give a semitone
and a whole-tone change in frequency are indicated by the
horizontal lines

a significant influence on the harmonicity, and hence
the playability, of an instrument. The effective length
continues to increase above the popping frequency be-
fore decreasing at higher frequencies. In many brass
instruments, such as the trumpet, there is also a longer
transitional conical section (the lead pipe) between the
narrow bore of the mouthpiece and the larger-diameter
main tubing. This reduces the influence of the mouth-
piece on the tuning of individual resonances and the
overall formant structure of resonances.

It is straightforward to write down the input
impedance inside the cup of a mouthpiece attached to
an instrument using an equivalent electrical circuit. The
volume within the cup is represented by a capacitance C
in parallel with the inductance L and resistance R of air
flowing through the backbore, which is in series with
the input impedance of the instrument itself, so that

Z in = 1

iωC

iωL + R+ Zhorn

(1/iωC)+ iωL + R+ Zhorn
. (15.125)

Figure 15.88 shows the calculated input impedance
of an 800 Hz Helmholtz mouthpiece resonator, of
volume 5 cm3 with a narrow-backbore neck section re-
sulting in a Q-value of 10, before and after attachment
to a cylindrical pipe of length 1.5 m and radius 1 cm,
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13001100900700500300100

Fig. 15.88 The calculated impedance of an 800 Hz
Helmholtz mouthpiece (dark brown), an attached pipe
(black) and the combination of mouthpiece and pipe (light
brown)

radiating into free space at its open end. The input
impedance of the pipe alone is also shown. Note the
marked increase in heights and strong frequency shifts
of the partials in the neighbourhood of the mouthpiece
resonance. As anticipated from our previous treatment
of coupled resonators in the section on stringed instru-
ments, the addition of the mouthpiece introduces an
additional normal mode resonance in the vicinity of
the Helmholtz resonance. In addition, it lowers the fre-
quency of all the resonant modes below the popping
frequency and increases the frequency of all the modes
above.

Above the mouthpiece resonance, the input imped-
ance is dominated by the inertial input impedance of
the mouthpiece. The resonances of the air column are
superimposed on this response and exhibit the famil-
iar dispersive features already noted for narrow violin
string resonances superimposed on the much broader
body resonances. The calculated behaviour is very sim-
ilar to the measured input admittance of typical brass
instrument (Fig. 15.78) as extended to instruments with
realistic bore shapes by Caussé, Kergomard and Lur-
ton [15.145].

15.3.3 Reed Excitation

In the next sections, we consider the excitation of sound
by: (a) the single and double reeds used for many
woodwind instruments and selected organ pipes, (b) the
vibrating lips in the mouthpiece of brass instrument, and
(c) air jets used for the flute, certain organ stops and
many ethnic instruments such as pan pipes.
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a) b)

c)

d)

Fig. 15.89a–d Examples of wind and brass instrument
reeds: (a) a single reed (clarinet), (b) a double reed (oboe),
(c) a cantilever reed (harmonium) and (d) the mouthpiece
lip-reed (horn) (after Fletcher and Rossing [15.5])

Reed Types
Figure 15.89 shows a number of reed types used in
woodwind and brass instruments (Fletcher and Ross-
ing [15.5, Figs. 13.1, 7]).

Helmholtz [15.128] classified two main types of
reed: inward-striking reeds, which are forced shut by
an overpressure within the mouth, and outward-striking
reeds, forced open by an overpressure. Modern au-
thors often prefer to call such reeds inward-closing and
outward-opening or swinging-door reeds. In addition
there are reeds that are pulled shut by the decreased
Bernoulli pressure created by the flow of air between
them. Such reeds are often referred to as sideways-
striking or sliding-door reeds.

A more formal classification (Fletcher and Ross-
ing [15.5, Sect. 13.3]) characterises such reeds by a dou-
blet symbol (σ1, σ2), where the values of σ1,2 = ±1
describe the action of over- and under-pressures at the
input and output ends of the reed. When the valve is
forced open by an overpressure at either end, σ1,2 =+1;
if forced open by an under-pressure, σ1,2 = −1. The
force tending to open the valve can then be written as
(σ1 p1S1+σ2 p2S2), where S1,2 and p1,2 are the areas
and pressures at the reed input and output. The op-
eration of reeds can therefore be classified as (+,−),
(−,+),(−,−) or (+,+). Single and double woodwind
reeds are inward-striking (−,+) valves, while the vi-
brating lips in a mouthpiece and the vocal cords involve
both outward-swinging (+,−) and sideways-striking
(+,+) actions.

Figure 15.90 summarises the steady-state and dy-
namic flow characteristics of the above reeds for typical
operating pressures across the valve, Δp = pm− pins,
where pm and pins are the input and output pressures
in the mouth and instrument input, respectively. For the

Fig. 15.90 Main classifications of vibrating reeds sum-
marising reed operation, nomenclature and the associated
static and ac conductance, with the negative resistance fre-
quency regimes indicated by solid shading

inward-swinging (−,+) reed, the flow rate initially in-
creases for a small pressure difference across the valve,
but then decreases as the difference in pressures tends
to close the valve, leading to complete closure above
a certain pressure difference pmax. Before closure, there
is an extended range of pressures where the flow rate
decreases for increasing pressure difference across the
reed. This is equivalent to an input with a negative resis-
tance to flow. This results in positive feedback exciting
resonances of any attached air column, provided the
feedback is sufficient to overcome viscous, thermal and
radiation losses.

It is less obvious why the outward-swinging (−,+)
reed can give positive feedback, because the steady-
state flow velocity always increases with increasing
pressure across the valve. However, this is only true at
low frequencies below the mechanical resonance of the
reed. Above its resonant frequency, the reed will move
in anti-phase with any sinusoidally varying fluctuations
in pressure. This will result in a regime of negative re-
sistance and the resonant excitation of any attached air
column, as discussed by Fletcher et al. [15.146].

Sideways-striking (+,+) or (−,−) reeds behave
rather like inward-striking reeds, with an extended re-
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gion of negative conductance. However, such reeds will
never cut off the flow completely, so that for large
pressure differences the dynamic conductance again be-
comes positive, as indicated in Fig. 15.90.

Bernoulli Pressures
Figure 15.91 schematically illustrates the variation
of flow velocity and pressure as air flows from the
mouth into the reed and attached air column. To solve
the detailed dynamic response from first principles
for a specific reed geometry would require massive
computer modelling facilities. Fortunately, the physics
involved is reasonably well understood, so that rela-
tively simple models can be used to reproduce reed
characteristics rather well, as illustrated for the clarinet
reed in the next section.

The operation of all reed generators is controlled by
the spatial variations in Bernoulli pressure exerted by
the air flowing across the reed surfaces. Such variations
in P arise because, within any region of streamlined
flow with velocity v, P+ 1

2ρv
2 remains constant. Hence

the pressure will be lowered on any surface over which
the air is flowing. The flow of air is determined by
the specific reed assembly geometry and the nonlinear
Navier–Stokes equation, which also includes the effects
of viscous damping.

After passing through the narrow reed constriction,
the air emerges as a jet, which breaks down into tur-
bulent motion on the downstream side of the reed. The
turbulence leads to a rapid lateral mixing of the air, so
that the flow is no longer streamlined. As a result, the

Vocal
tract Instrument

Mouth cavity

pmouth

pmouth

Local v vmax

pin
1/2  v 2

maxPressure

Streamlined flow Turbulent flow



Fig. 15.91 Schematic representation of vocal tract, mouth
cavity, reed and instrument, illustrating the variation of lo-
cal velocity and pressure for air flowing into and along the
reed and attached instrument

pressure on the downstream end of the reed opening
remains low and fails to recover to the initial pressure
inside the mouth. The double reeds used for playing
the oboe, bassoon and bagpipe chanter are mounted on
a relatively long, narrow tube connected to the wider
bore of the instrument. Turbulent flow in this region
could contribute significantly to the flow characteristics,
though recent measurements by Almeida et al. [15.147]
have shown that such effects are less important than
initially envisaged, as discussed later.

Single Reed
We first consider the clarinet reed, which is one of
the simplest and most extensively studied of all wood-
wind reeds (Benade [15.134, Sect. 21.2], Fletcher and
Rossing [15.5, Chap. 13], and recent investigations by
Dalmont and collaborators [15.148, 149]). Figure 15.92
shows a cross section of a clarinet mouthpiece, defin-
ing the physical parameters of a highly simplified but
surprisingly realistic model.

The lungs are assumed to supply a steady flow of
air U , which maintains a steady pressure Pmouth within
the mouth. Air flows towards the narrow entrance or
lip of the reed through which it passes with velocity
v. Because the air flowing into the reed is streamlined,
the pressure drops by 1

2ρv
2 on entering the reed, while

the much slower-moving air on the outer surfaces of
the reed leaves the pressure on the outer reed surfaces
largely unchanged. The air is then assumed to stream
through the narrow gap of the reed to form an outward-
going jet, which breaks up into vortices and turbulent
flow on the far side of the input constriction, with no fur-
ther change in overall pressure p in the relatively wide
channel on the downstream side of the reed entrance.

The resulting pressure difference 1
2ρv

2 across the
reed forces the reed back towards its closing position
on the curved lay of the mouthpiece, indicated by the
dashed line in Fig. 15.92. The pressure difference Δp is

Pmouth

U p

v

Fig. 15.92 Cross section of air flow through a clarinet
mouthpiece and reed assembly, illustrating the streamlined
flow into the gap with jet formation and turbulence on
exiting the reed entrance
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assumed to reduce the area of reed opening from S0 to
S0(1−Δp/pmax), where pmax is the pressure difference
required to close the reed. The net flow of air through
the reed is therefore given by

U(Δp) = α(Δp)1/2(1−Δp/pmax) . (15.126)

The player can control these characteristic by vary-
ing the position and pressure of the lips on the reed,
which is referred to as the embouchure. A lower pres-
sure is required to close the reed, if the reed is already
partially closed by pressing the lips against the reed to
constrict the entrance gap.

The flow rate U as a function of static pressure
across a clarinet reed is illustrated by the meas-
urements of Backus and Nederween [15.150] redrawn
in Fig. 15.93. Apart from a small region near clo-
sure, where the exact details of the closing geometry
and viscous losses may also be important, the shape
of these curves and later measurements by Dalmont
et al. [15.149, 151], which exhibit a small amount of
hysteresis from viscoelastic effects on increasing and
decreasing pressure, are in excellent agreement with
the above model. The measurements also illustrate how
the player is able to control the flow characteristics by
changing the pressure of the lips on the reed.

The reed equation can be written in the universal
form

U
(

Δp
pmax

)

Umax
= 33/2

2

(
Δp

pmax

)1/2 (
1− Δp

pmax

)
,

(15.127)

Flow through reed U

Pressure across reed Δp

Loose embouchure

Tight embouchure

Reed closes

Fig. 15.93 Quasistatic flow through a clarinet single reed
as a function of pressure across it illustrating the in-
fluence of the player’s embouchure on the shape (after
Benade [15.134])

with just two adjustable parameters: Umax the maximum
flow rate and pmax, the static pressure required to force
the reed completely shut. The maximum flow occurs
when Δp/pmax = 1/3.

Double Reeds
Instruments like the oboe, bassoon and bagpipe chanters
use double reeds, which close against each other with
a relatively long and narrow constricted air channel on
the downstream side before entering the instrument. The
turbulent air motion in the constricted air passage would
result in an additional turbulent resistance proportional
to the flow velocity squared, which would add to the
pressure difference across the reed. This could result in
strongly hysteretic re-entrant static velocity flow char-
acteristics as a function of the total pressure across the
reed and lead pipe (see, for example, Wijnands and
Hirschberg [15.152]).

A recent comparison of the flow-pressure character-
istics of oboe and bassoon double reeds and a clarinet
single reed, Fig. 15.94, by Almeida [15.147]) shows no
evidence for re-entrant double-reed features. Neverthe-
less, the measurements are strongly hysteretic, because
of changes in the properties of the reeds (elasticity and
mass), as they absorb and desorb moisture from the
damp air passing through them. In the measurements
the static pressure was slowly increased from zero to
its maximum value and then back again. Under normal

Normalized pressure flow characteristicFlow
1.2

1

0.8

0.6

0.4

0.2

0

Pressure difference
1 2 3 4 5 60

Clarinet

Oboe

Bassoon

Fig. 15.94 A comparison of the normalised, hysteric static
pressure/flow characteristics of single (clarinet) and double
(oboe and bassoon) reeds measured on first increasing and
then decreasing the flow rate of moist air through the reeds
(after [15.147])
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playing conditions, one might expect to play on a non-
hysteretic operating characteristic somewhere between
the two extremes of the hysteretic static measurements.
Thus, although the shape of the flow-pressure curves
for the double reeds differs significantly from those of
the clarinet single reed, the general form is qualitatively
similar, with a region of dynamic negative resistance
above the peak flow. The strongly moisture dependent
properties of reeds are very familiar to the player, who
has to moisten and play-in a reed before it is ready for
performance.

There therefore appears to be no fundamental dif-
ference between the way single and double reeds
operate. Indeed, the sound of an oboe is apparently
scarcely changed, when played with a miniature clar-
inet reed mouthpiece instead of a conventional double
reed (Campbell and Gilbert, private communication).

Dynamic Characteristics
Fletcher [15.153] extended the quasistatic model by
assuming the reed could be described as a simple mass–
spring resonator resulting in a dynamic conductance of

Y (ω) = Y (0)
1

1− (ω/ω0)
2+ iω/ω0 Q

(15.128)

where Y (0) = ∂U/∂ (Δp)|ω=0 is the quasistatic flow
conductance and the denominator describes the dy-
namic resonant response of the reed. The Q-value is de-
termined by viscous and mechanical losses in the reed.

The resistive and reactive components of Y (ω)reed
given by (15.128) are plotted in Fig. 15.95a,b for an
inward-closing reed (−,+), in the negative flow con-
ductance regime above the velocity flow maximum,

Re(Y)
Im(Y)

0 1

0

0 1f/f0 f/f0

a) b)

+ve

–ve

+ve

–ve

Fig. 15.95a,b Real (dark brown) and imaginary (light
brown) components of the reed admittance Y (ω) for (a) an
inward-closing reed in the negative dynamic conductance
regime and for (b) an outward-opening reed, as a function
of frequency normalised to the resonant frequency of the
reed for reeds having Q-values of 5

and for the outward-closing (+,−) reed. As discussed
qualitatively above, the negative input dynamic conduc-
tance of the inward-striking reed remains negative at all
frequencies below its resonant frequency, whereas the
conductance of the outward-opening reed only becomes
negative above its resonant frequency.

For the oscillations of any attached air column to
grow, feedback theory requires that

Im(Yr+Yp) = 0

Re(Yr+Yp)< 0 , (15.129)

where Yp and Yr are the admittances of the pipe and
reed, respectively. The negative dynamic conductance
of the reed must therefore be sufficiently small to over-
come the losses in the instrument. Furthermore, the
reactive components of the reed conductance will per-
turb the frequencies of the attached air column.

Fletcher and Rossing [15.5, Chap. 13] give an ex-
tended discussion of the dynamics of reed generators
including polar plots of admittance curves for typical
outward and inward-striking reed generators as a func-
tion of blowing pressure.

For the inward-striking reeds of the clarinet, oboe
and bassoon, the real part of the reed admittance is
negative below the resonant frequency of the reed.
For the oboe this is typically around 3 kHz, above the
pitch of the reed attached to its staple (joining sec-
tion) alone ( ). However, when attached to
an instrument, the negative conductance will excite the
lower-frequency natural resonances of the attached tube
( ). In this regime, the reactive load presented
by the reed is relatively small and positive and equiva-
lent to a capacitive or spring loading at the input end of
the attached pipe. This results in a slight increase in the
effective length of the pipe and a slight lowering of the
frequencies of the resonating air column.

Free reeds, like the vibrating brass cantilevers used
in the mouth organ, harmonium and certain organ reed
pipes (Fig. 15.89c), are rather weakly damped inward-
closing (−,+) reeds (Fletcher and Rossing [15.5,
Sect. 13.4]). The reed is initially open. High pressure on
one side or suction on the other (as in the harmonium or
American organ) forces the reed back into the aperture,
controlling the air flow. Like the clarinet reed, above
a certain applied pressure the reed will close and restrict
the flow resulting in a negative conductance regime. If
the reed is forced right through the aperture, it becomes
an outward-opening (+,−) reed with a positive conduc-
tance. Because of its low damping, the blown-closed
reed tends to vibrate at a frequency rather close to its

Part
E

1
5
.3

http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_RS307.wav
http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_RS308.wav


658 Part E Music, Speech, Electroacoustics

resonant frequency. In practice, as soon as a thresh-
old pressure is reached that is significantly below the
maximum in the static characteristics, a harmonium
reed starts to vibrate with a rather large sinusoidal
amplitude (typically ≈ 4 mm) resulting in highly non-
sinusoidal flow of air through the aperture (Koopman
et al. [15.154]). For such high-Q-value mechanical res-
onators, the vibrational frequency is strongly controlled
by the resonant frequency of the reed itself, so that
a separate reed is needed for each note, as in the pi-
ano accordion, harmonium, mouth organ and reed organ
pipes. The reeds in a mouth organ are arranged in pairs
in line with the flow of air. They are individually excited
by overpressure and suction.

In contrast, the dynamic conductance of an outward-
opening reed (+,−) is only negative above its resonant
frequency. The conductance then decreases rather
rapidly with increasing frequency, so that there may
only be a relatively narrow range of frequencies above
resonance over which oscillations can occur. The vi-
brating lips provide a possible example of such a reed,
with an increase in steady-state pressure always increas-
ing the static flow through them. Above their resonant
frequency, the dynamic conductance becomes negative
and could excite oscillations in an attached pipe. In such
a regime, the reactive component of the reed admittance
is negative. This corresponds to an inductive or inertial
load, which will shorten the effective length of the air
column and increase its resonant frequencies. The in-
fluence of the reed on the resonant frequencies of an
attached instrument therefore provides a valuable clue
to the way in which a valve is operating, as we will
discuss later in relation to the vibrations of the lips in
a brass-instrument mouthpiece.

Small-Amplitude Oscillations
We now consider the stability of the oscillations excited
by the negative dynamic conductance of the reed. In
particular, it is interesting to consider whether the os-
cillations, once initiated, are stabilised or grow quickly
in amplitude into a highly nonlinear regime. Surpris-
ingly, this depends on the bore shape of the attached air
column, as discussed by Dalmont et al. [15.155]. Sev-
eral authors have investigated such problems, including
Backus [15.156] using simple theoretical models and
measurements, Fletcher [15.157] using analytic mod-
els, Schumacher [15.158,159] in the time rather than the
frequency domain, and Gilbert et al. [15.155, 160] us-
ing a harmonic balance approach, which we will briefly
outline in the following section. Recent overviews of
the nonlinear dynamics of both wind and brass instru-

ments have been published by Campbell [15.161] and
by Dalmont et al. [15.155].

We first consider the excitation of small-amplitude
oscillations based on the reed equation, which is replot-
ted in Fig. 15.96 as a universal curve together with the
negative dynamic admittance or conductance,−∂U/∂p
above the flow-rate maximum.

The onset of self-oscillations occurs when the sum
of the real and the imaginary parts of the admittance of
the reed and attached instrument are both zero (15.129).
If losses in the reed and the attached instrument were
negligible, resonances of the air column would be ex-
cited as soon as the mouthpiece pressure exceeded
1
3 pmax. However, when losses are included, the nega-
tive conductance of the reed has to be sufficiently large
to overcome the losses in the instrument. The onset then
occurs at a higher pressure, as illustrated schematically
in Fig. 15.96.

The onset of oscillations depends not only on the
mouthpiece pressure but also on the properties of the
reed, such as the initial air gap and its flexibility, which
will depend on its thickness and elastic properties. The
elastic properties also change on the take up of mois-
ture during playing. It is not surprising that wind players
take great care in selecting their reeds. Furthermore,
notes are generally tongued. This involves pressing the

Fig. 15.96 Plot of normalised flow rate and differential
negative conductance of an inward-striking reed valve
as a function of pressure across the reed normalised to
the pressure required for closure. The intersection of the
negative conductance curve with the real part of the in-
put admittance Yinst(ω) of the instrument determines the
pressure in the mouthpiece for the onset of oscillations,
illustrated schematically for Yinst(ω) ≈ 0.78Ymax
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tongue against the lip of the reed to stop air passing
through it, so that the pressure builds up to a level well
above that required to just excite the note. When the
tongue is removed, the note sounds almost immediately
giving a much more precise definition to the start of
a note.

The transition to the oscillatory state can be consid-
ered using the method of small variations and harmonic
balance (Gilbert et al. [15.160]). For a given mouth
pressure defining the overall flow rate, oscillations of
the flow rate u can be written as a Taylor expansion of
the accompanying small pressure fluctuations p at the
output of the reed, such that

u = A p+ Bp2+C p3+ . . . . (15.130)

From the reed equation plotted in Fig. 15.96, the co-
efficient A is positive for mouthpiece pressures above
pmax/3, while B and C are positive and negative re-
spectively. We look for a periodic solution with Fourier
components that are integer multiples of the fundamen-
tal frequency ω, so that

p(t) =
∑

pn einωt , (15.131)

with a corresponding oscillatory flow u(t) superim-
posed on the static flow U ,

u(t) =
∑

un einωt . (15.132)

At the input to the instrument, the oscillatory flow can
be expressed in terms of the Fourier components of the
input pressure and admittance, so that

u(t) =
∑

pnY (nω) einωt . (15.133)

Using the method of harmonic balance, we equate the
coefficients of the Fourier components in (15.130) with
those in (15.133) having substituted (15.131) for the
pressure. The first three Fourier components are then
given by

p1 =±
(

Y1− A

2B2/ (Y2− A)+3C

)
,

p2 =
(

B

Y2− A

)
p2

1 ,

p3 =
(

C

Y3− A

)1/2

p3
1 . (15.134)

For a cylindrical-bore instrument like the clarinet at low
frequencies, only the odd-n partials will be strongly
excited, so that Y2 is very large. The amplitude of
the fundamental component is then given by ±[(Y1−
A)/C]1/2, with a vanishingly small second harmonic
p2. The amplitude p1 of small oscillations is then

stabilised by the cubic coefficient C. Stable, small-
amplitude oscillations can therefore be excited as soon
as the negative conductance of the reed exceeds the
combined admittance of the instrument and any addi-
tional losses in the reed itself.

Because the transition is continuous, p1 rises
smoothly from zero, taking either positive or negative
values (simply solutions with opposite phases). The
transition is therefore referred to as a direct bifurcation.
The player can vary the pressure in the mouthpiece and
the pressure of the lips on the reed to vary the coef-
ficients A and C and hence can control the amplitude
of the excited sound continuously from a very quiet to
a loud sound, as often exploited by the skilled clarinet
player.

In contrast, for a conical-bore instrument, the ampli-
tude of the fundamental,

p1 =±
(

(Y1− A)(Y2− A)

2B2+3C(Y2− A)

)1/2

, (15.135)

involves the admittance of both the fundamental and
second partial. On smoothly increasing A by increasing
the pressure on the reed, Grand et al. [15.162] showed
that there can again be a direct smooth bifurcation to
small-amplitude oscillations, if 2B2 > −3C(Y2 −Y1).
However, if this condition is not met, there will be
an indirect transition, with a sudden jump to a finite-
amplitude oscillating state. This gives rise to the
hysteresis in the amplitude as the mouth pressure is
first increased and then decreased. This means that the
player may have to exert a larger pressure to sound the
note initially, but can then relax the pressure to produce
a rather quieter sound. It may also explain why it is
more difficult to initiate a very quiet note on the saxo-
phone with a conical bore than it is on the clarinet with
a cylindrical bore.

For a direct bifurcation transition, the small non-
linearities in the dynamic conductance will result in
a spectrum of partials with amplitudes varying as pn

1,
where p1 is the amplitude of the fundamental compo-
nent excited. The spectral content or timbre of wind
and brass instruments, as discussed later, therefore
changes with increasing amplitude. This is illustrated by
measurements of the amplitude dependence of the par-
tials of a trumpet, clarinet and oboe by Benade [15.134,
Fig. 21.6c], which are reproduced for the trumpet in
Fig. 15.104. For the largely cylindrical-bore trumpet
and clarinet, nonlinearity results in partials varying
as pn

1 over quite a large range of amplitudes. However,
for the oboe, with its conical bore, the relative increase
in strength of the partials is rather more complicated
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(Benade [15.134, Sect. 21.3]). Eventually, the small-
amplitude approximation will always break down, with
a transition to a strongly nonlinear regime. Benade as-
sociates this transition with a change in timbre and
responsiveness of the instrument for the player.

Large-Amplitude Oscillations
For a lossless cylindrical-bore instrument with only odd
integer partials, the large-amplitude solutions are par-
ticularly simple. The flow of air from the lungs and
pressure in the mouth is assumed to remain constant re-
sulting in an average flow rate through the instrument.
The pressure at the exit of the reed then switches pe-
riodically from a high-pressure to a low-pressure state,
with equal amplitudes above and below the mean mouth
pressure, spending equal times in each. The net acous-
tic energy fed into the resonating air column per cycle is
therefore zero, U

∫
p(t)dt = 0, as required for a lossless

system.
Such a solution can easily be understood in terms of

the excess-pressure wave propagating to the open end of
the instrument, where it is reflected with change of sign.
On return to the reed it reverses the pressure difference
across the reed, which switches to the reduced pressure
state. The subsequent reflection of the reduced pressure
wave then switches the reed back to its original high-
pressure state and the process repeats indefinitely, with
a periodic time of 4L/c0, as expected.

The dependence of the square-wave pressure fluc-
tuations on the applied pressure can be obtained by the
simple graphical construction illustrated in Fig. 15.97.
The locus of the static pressure required to excite
square-wave pressure fluctuations above and below the
mouth pressure is shown by the solid line drawn from
pmouth = 1/3 to 1/2pmax, which bisects the high and
low pressures for a given flow rate. If losses are taken
into account, the horizontal lines are replaced by load
lines with a downward slope given by the real part of
the instrument’s input admittance (Fletcher and Ross-
ing [15.5], Fig. 15.9). At large amplitudes, the solutions
can then involve periods during which the reed is com-
pletely closed. The transition from small-amplitude to
large-amplitude solutions is clearly of musical impor-
tance, as it changes the sound of an instrument, and
remains an active area of research [15.155].

Analogy with Bowed String
In recent years, an interesting analogy has been noted
between the large-amplitude pressure fluctuations of
a vibrating air column in a cylindrical or truncated
conical tube and simple Helmholtz waves excited on
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Fig. 15.97a,b Large-amplitude Helmholtz pressure fluctu-
ation of (a) a cylinder and (b) a truncated cone with length
to apex of 1/4 of its length, illustrating the dependence of
fluctuation amplitudes as a function of mouthpiece pres-
sure. For the cylinder, the mouthpiece pressure is single
valued for a given flow rate, but for the truncated cone there
are two possible solutions referred to as the standard and
inverted Helmholtz solutions

a bowed string (Dalmont and Kergomard [15.163]).
For example, the square-wave pressure fluctuations at
the output of the reed attached to a cylindrical tube
are analogous to the velocity of the bowed Helmholtz
transverse waves of a string bowed at its centre, il-
lustrated schematically in Fig. 15.98. Helmholtz waves

Winds Strings

L

Reed

tp(t)

Ll
p (t)

p (t)

Reed

tp(t)

2L

v(t)

tv(t)

Ll

v (t)

tv(t)

Fig. 15.98 Analogy between large-amplitude pressure
waves in the bores of wind instruments and the transverse
velocity of Helmholtz waves on a bowed stretched string,
where the reed position is equivalent to the bowing position
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could equally well be excited on a bowed string by
a transducer with a square-wave velocity output placed
halfway along the length of the string, in just the same
way that the reed with a square-wave pressure output
excites Helmholtz sound pressure waves into a cylinder,
which acts like half the string length.

The analogy is particularly useful in discussing the
large-amplitude pressure fluctuations in conical-bore in-
struments such as the oboe or saxophone. As described
earlier, the conical tube has the same set of resonances
as a cylindrical tube that is open at both ends. There-
fore, in addition to having the same set of standing-wave
sinusoidal solutions for the transverse oscillations of
a stretched string, a conical tube can also support
Helmholtz wave solutions. For the bowed string, the
closer one gets to either end of the string the larger be-
comes the mark-to-space ratio between the regions of
high to low transverse velocity. The same is also true
for the switched fluctuations in pressure in a lossless
conical tube, shown schematically in Fig. 15.97. Hence,
if one truncates a conical tube with a vibrating reed
system, the resonant modes of the remaining air col-
umn will be unchanged, provided the vibrating reed
produces the same pressure fluctuations that would oth-
erwise have been produced by the reflected Helmholtz
waves returning from the removed apex end of the cone.
Hence a conical tube, truncated by a vibrating reed at
a distance l from the apex, can support Helmholtz wave
solutions in the remaining length L . To produce such
a wave the reed has to generate a rectangular pressure
wave with a mark-to-space ratio and pressure fluctua-
tions about the mean in the ratio L : l , as illustrated in
Fig. 15.98, for a truncated cone with L/l = 4.

The period of the Helmholtz wave solutions of
a conical bore instrument modelled as a truncated cone
will therefore be 2(L+ l)/c0, with a spectrum including
all the harmonics fn = nc0/2(L + l), other than those
with integer values of n = (L+ l). To determine the am-
plitude of the rectangular pressure wave as a function
of mouthpiece pressure, a graphical construction can be
used similar to that used for the cylindrical tube, except
that the pressures have now to be in the ratio L/l, as in-
dicated in Fig. 15.97b. For the lossless large-amplitude
modes of a truncated cone, there are two possible so-
lutions involving high and low mouth pressures, which
are known as the standard and inverted Helmholtz solu-
tions, respectively.

Any complete model of a reed driven instrument
must include losses and departures from harmonicity
of an instrument’s partials. This leads to a rounding of
the rectangular edges of the Helmholtz waveforms and

Fig. 15.99 Measured pressure waveform at input to a sax-
ophone compared with the Helmholtz waveform expected
for a truncated cone (after Dalmont et al. [15.163])

additional structure, in much the same way that bowed
string waveforms are perturbed by frictional forces and
nonideal reflections at the end-supports (Fig. 15.34).
Figure 15.99 shows a typical pressure waveform input
for the conical-bore saxophone, which is compared with
the Helmholtz waveform predicted for an ideal lossless
system (Dalmont et al. [15.163]).

A completely realistic model for the excitation
of sound in wind instruments must also include
coupling to the vocal tracts (Backus [15.164] and Scav-
one [15.165]), since the assumption of a constant
flow rate and constant mouth pressure is clearly over-
simplistic.

Register Key
This analysis implicitly assumes that the reed excites
the fundamental mode of the attached instrument. In
practice, the reed will generally excite the partial with
the lowest admittance corresponding to the highest peak
in impedance measurements. For most instruments this
is usually the fundamental resonance. However, the am-
plitude of the fundamental can be reduced relative to the
higher resonances by opening a small hole, the register
hole, positioned between the reed and first hole used
in normal fingering of the instrument. Because of the
difference in wavelengths and position of nodes, open-
ing the register hole preferentially reduces the Q-value
and shifts the frequency and amplitude of the funda-
mental relative to the higher partials. This allows the
player to excite the upper register of notes based on
the second mode, which in the case of the conical-bore
saxophone, oboe and bassoon is an octave above the
fundamental but is an octave and a perfect fifth above
the fundamental for the cylindrical-bore clarinet. The
lower and upper registers of the clarinet are sometimes
referred to as the chalumeau and chanter registers, af-
ter the earlier instruments from which the clarinet was
derived.
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Mouthpiece pressure

Relative excitation frequency
151 (Hz) 112 3 4 6 8

Clarinet E3

Fig. 15.100 Resonance curves for the note E3 on a clar-
inet, showing the shift of the lowest partial on opening the
register hole (after Backus [15.133])

Figure 15.100 illustrates the lowering in amplitude
and shift in resonant frequency of the fundamental
mode on opening the register hole for the note E3 on
a clarinet, which leaves the upper partials relatively
unchanged (Backus [15.133]). The measurements also
show the significant departures from the 1, 3, 5, 7
harmonicity of the resonant modes of the instrument,
which act as a warning not to take ideal models for
the harmonicity of modes in real wind instruments too
literally. Fletcher has developed a mode-locking model
to account for the excitation of periodic waveforms on
instruments with inharmonic partials [15.166].

15.3.4 Brass-Mouthpiece Excitation

The excitation of sound by the vibrating lips in the
mouthpiece of a brass instrument cannot be described
by any of the above simple models alone, which con-
sider the reed as a simple mass–spring resonator. As
we will show, the vibrations of the lips are three-
dimensional and much more complicated. As a result,
in some regimes the lips behave rather like outward-
swinging-door valves, as first proposed by Helmholtz,
and Bernoulli pressure operated sliding-door reeds in
others. In addition the air flow is also affected by three-
dimensional wave-like vibrations on the surface of the
lips.

When playing brass instruments, the lips are firmly
pressed against the rim of the mouthpiece with the lips
pouted inwards. Pitched notes are produced by blow-
ing air through the tightly clenched lips to produce
a buzzing sound. The excitation mechanism can eas-
ily be demonstrated by buzzing the lips alone, though
it is difficult to produce a very wide range of pitched
sounds However, if the lips are buzzed when pressed

against the rim of a mouthpiece, the input rim pro-
vides an additional constraint on the motion of the
lips, which makes it much easier to produce pitched
notes over a wide range of frequencies ( ).
The audio demonstrates the popping sounds of trum-
pet and horn mouthpieces followed by the sound of the
player buzzing the mouthpiece alone up to a pitch close
to the popping frequency and back again. Attaching
the mouthpiece to an instrument locks the oscillations
to the various possible resonances of the instrument
( ).

Figure 15.101 shows a series of time-sequence plots
of spectra of the sound produced by a player buzzing
into a trumpet mouthpiece (Ayers [15.167]), which acts
rather like a simple Helmholtz resonator. In the lower
sequence, the player excites well-defined pitched notes
from low frequencies up to slightly above the mouth-
piece popping frequency (see Sect. 15.3.3). The middle
set of traces shows the spectrum as the player starts

f (kHz)
0 1

Steady note

Downward
slide

Upward
slide

Fig. 15.101 Time sequence (from bottom to top) of spectra
of the sound produced by a player buzzing into a trumpet
mouthpiece, first for an upward slide in frequency, then
for a downward slide and finally for a steady low note
at high intensity showing the excitation of a note with
many Fourier components. The dashed line is the spec-
trum of the popping note excited by slapping the open
end of the mouthpiece against the palm of the hand (after
Ayers [15.167])
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at a high frequency and lowers the pitch. The up-
per traces shows the spectrum of a loudly sounded,
low-frequency, note, illustrating the rich spectrum of
harmonics produced by the strongly nonlinear sound-
generation processes involved (see, for example, Elliot
and Bowsher [15.168]).

These measurements on the mouthpiece alone
strongly suggest that the lips can generate periodic
fluctuations at frequencies up to, but not significantly
beyond, the resonant frequency of any coupled acous-
tic resonator. This was confirmed in an investigation
of lip-reed excitation using a simple single-resonant-
frequency Helmholtz resonator by Chen and Weinre-
ich [15.170], who used a microphone and loudspeaker
in a feedback loop to vary the Q-value of the Helmholtz
resonator played using a normal mouthpiece. They con-
cluded that a player could adjust the way they vibrated
their lips in the mouthpiece to produce notes that were
slightly higher or lower than the Helmholtz frequency,
though the most natural playing parameters generated
frequencies in the range 20–350 Hz below the resonator
frequency.

Attached Mouthpiece
Ayers [15.167] also compared the frequencies produced
in the mouthpiece before and immediately after at-
tachment of the instrument. In these measurements the
player first excited a pitched note in the mouthpiece
with the instrument effectively decoupled by opening
a large hole in its bore close to the mouthpiece. The
hole was then closed and the immediate change in fre-
quency measured before the player had time to make
any adjustments to the embouchure. The results of
such measurements are shown in Fig. 15.102, where the
diagonal line represents the pitched notes before the
instrument was connected and the discontinuous solid
line through the triangular points are the modified fre-
quencies for the same embouchure with the instrument
connected.

At the higher frequencies, the jumps between suc-
cessive branches are from just above the resonant
frequency of one partial to just below the resonant
frequency of the next, with a monotonic increase in
frequency on tightening the embouchure in between.
However, for the first two branches, the instrument res-
onances initially have a relatively small effect on the
frequencies excited by the mouthpiece alone until such
frequencies approach a particular partial frequency. The
frequency then approaches the resonant frequency of
the instrument before jumping to a frequency well
below the next partial and the sequence repeats. The dif-

Playing frequency (Hz)

Lip frequency (Hz)
0 800

800

600

400

200

0
200 400 600

Fig. 15.102 Frequencies produced by a trumpet mouth-
piece without (diagonal line) and with (broken line) the
instrument strongly coupled using an unchanged em-
bouchure under the same playing conditions. The solid
horizontal lines are the resonant frequencies of the assem-
bled trumpet. The squares and circles are predictions for
the Helmholtz outwardly opening-door and sliding-door
models computed by Adachi and Sato [15.169] for a trum-
pet with slightly lower-frequency resonant modes indicated
by the dashed horizontal lines (after Ayers [15.167])

ference in behaviour of the lower and higher branches
suggests that more than one type of lip-reed action is
involved.

Comparison with computational models by Adachi
and Sato [15.169] appear to rule out the outward-
swinging-door model first proposed by Helmholtz,
indicated by the squares in Fig. 15.101, as the pre-
dicted frequencies are always well above those of the
instrument’s partials. The computed predictions for the
Bernoulli sliding door model, indicated by the circles,
are in better agreement with measurements, but with
predicted frequencies rather lower than those observed
and never rising above the resonant frequencies of the
instrument, in contrast to the observed behaviour for the
higher modes excited.

Any model for the lip-reed sound generator has
to explain all such measurements. Such measurements
also highlight the way that a brass player can adjust
the embouchure and pressure acting on the lips in the
mouthpiece to change the frequency of the excited
mode. On tightening the embouchure and pressure the
player can progressively excite successive modes and
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can lip the pitch of the note up and down by surpris-
ingly large amounts, used with great expressive effect
by jazz trumpeters.

Vibrating Lips
In practice, the production of sound by the vibrating
lips inside a mouthpiece is a highly complex three-
dimensional problem closely analogous to the produc-
tion of sound by the vocal folds – see, for example,
Titze [15.171]. A complete model would involve solving
the coupled solutions of the Navier–Stokes equations
describing the flow of air from the mouth, through the
lips and into the mouthpiece, and the three-dimensional
motions of the soft tissues of the lips induced by the
Bernoulli pressures acting on their surfaces.

Stroboscopic and ultra-fast photography of the brass
players lips while playing reveal highly complex three-
dimensional motions (Coppley and Strong [15.172],
Yoshikawa and Muto [15.173]) suggest that the upper
lip is primarily involved in the generation of sound. Fig-
ure 15.103 and the video clip provided by
Murray Campbell show high-speed photography clips
of such motion. The lips inside the mouthpiece open
and shut rather like the gasping opening and shutting
of the mouth of a goldfish, but speeded up several hun-
dred times. Points on the surface of the upper lip exhibit
cyclic orbital motions involving the in-quadrature mo-
tions of the upper lip parallel and perpendicular to the
flow. To model such motion clearly requires at least two
independent mass–spring systems to account for the in-
duced motions of the lips along and perpendicular to
the flow (Adachi and Sato [15.169]). In addition, there
is a pulsating wave-like motion along the surface of the
lips in the direction of air flow, with the rear portion of
lips moving in anti-phase with the front. Yoshikawa and

Fig. 15.103 High-speed photograph clips showing one cy-
cle of lip vibration in a trombone mouthpiece

Muto [15.173] identify such motion as strongly damped
Rayleigh surface waves travelling through the mucous
tissue of the upper lip.

The simplest possible model to describe such
motion therefore requires at least three interacting
mass–spring elements; one to describe the lip motion
along the direction of flow, and two to describe the mo-
tions of the front and back surfaces of the lips. But even
then, the model will still only be an approximation to
the three-dimensional bulk tissue motions involved. Not
surprisingly, research into the lip-reed sound-excitation
mechanism remains a problem of considerable interest.

Artificial Lips
To achieve a better understanding of lip dynamics and
its effect on the sound produced by brass instrument,
several groups have developed artificial lips to ex-
cite brass instrument (e.g. Gilbert et al. [15.174] and
Cullen et al. [15.175]). These can be used to investi-
gate instruments under well-controlled and reproducible
experimental conditions. Typically, the lips are sim-
ulated by two slightly separated thin-walled (0.3 mm
thickness) latex tubes filled with water under a con-
trolled pressure. The tubes are rigidly supported from
behind so that the internal pressure forces the lips to-
gether. The tubes are placed across an opening in an
otherwise hermetically sealed unit that represents the
mouth and throat cavities. Air is fed into the mouth
cavity at a constant flow rate. A fixed mouthpiece is
then pushed against the artificial lips with a measured
force. By varying this force, the applied pressure and the
pressure within the artificial lips, the experimenter can
simulate the various ways in which a player can control
the dynamics of the lips (the embouchure) to produce
different sounding notes. Despite the considerable sim-
plification in comparison with the dynamics of real lips,
the sound of brass instruments played by artificial lips
is extremely close to that produced by a real player.
Such systems enable acoustical studies to be made on
brass instruments with a much greater degree of flexi-
bility, reproducibility and stability than can be achieved
by a player. Using a fixed mouthpiece, the playing char-
acteristics of different attached instruments can easily
be compared.

Nonlinear Sound Excitation
When played very quietly, brass instruments can pro-
duce sounds that are quasi-sinusoidal with relatively
weak higher harmonics. However, as previously noted
for vibrating reeds, any nonlinearity will lead to the
generation of harmonics of the fundamental frequency
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ω at frequencies 2ω, 3ω, etc., with initially amplitudes
increasing as |p0 (ω)|n , where p0(ω) is the amplitude
of the fundamental. However, in the strongly nonlinear
region at high amplitudes, all partials become impor-
tant and increase in much the same way with increasing
driving force (Fletcher [15.176] and Fletcher and Ross-
ing [15.5, Sects. 14.6 and 14.7]). Such effects are
illustrated in Fig. 15.104 for measurements on a B-flat
trumpet by Benade and Worman [15.134, Sect. 21.3].
The spectral content and resulting brilliance of the
sound or timbre of a trumpet, or any other brass in-
strument, therefore depends on the intensity with which
the instrument is played. Benade noted a change in the
sound and feel of an instrument by the player in the
transition region between the power-law dependence of
the Fourier component and the high-amplitude regime,
where the harmonic ratios remain almost constant. Sim-
ilar characteristics were observed for the clarinet though
rather different characteristics for the oboe.

Examples of the strongly nonsinusoidal periodic
fluctuations of the pressure and flow velocity within the
mouthpiece for two loudly played notes on a trombone
are shown in Fig. 15.105 (Elliot and Bowsher [15.168]).
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Fig. 15.104 Intensity of the first four partials of the note C4
on a trumpet as a function of the intensity of the first par-
tial, measured from the minimum to the maximum playing
intensity (after Benade [15.134, Fig. 21.8]). On this loga-
rithmic scale, the dashed lines through the measurements
for the second, third and fourth Fourier components have
slopes 2, 3 and 4, respectively

Fletcher and Rossing [15.5, Sect. 14.7] discuss such
waveforms in terms of the lips operating slightly above
the resonant frequency of their outward-swinging-door
resonant frequencies.

The nonlinearity of the lip-reed excitation mech-
anism enables the player to vibrate the lips at the
frequency of the missing fundamental of the quasi-
harmonic series of modes of brass instruments, illus-
trated in Fig. 15.38. This is referred to as the pedal
note and is an octave below the lowest mode nor-
mally excited on the instrument. The lips vibrate at
the pedal-note frequency but only excite the quasi-
harmonic n = 2, 3, 4, . . . modes.

The pressure fluctuations in Fig. 15.104 of ≈ 3 kPa
correspond to a sound intensity of nearly 160 dB. As
the static pressure in the mouthpiece is only a few
percent above atmospheric pressure (105 Pa), such pres-
sure excursions are a significant fraction of the excess
static pressure. Even larger-amplitude pressure fluctu-
ations can be excited on the trumpet and trombone
when played really loudly, to produce a brassy sound.
Long [15.177] has recorded pressure levels in a trum-
pet mouthpiece as high as 175 dB, corresponding to
pressure fluctuations of ≈ 20 kPa.

At such high amplitudes, one can no longer neglect
the change in density of a gas when considering its
acceleration under the influence of the pressure gradi-
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Fig. 15.105 Non-sinusoidal pressure fluctuations within
the mouthpiece for two notes played at large amplitudes
on the trombone (after Elliot and Bowsher [15.168])
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ent. To a first approximation, the wave equation then
becomes

∂2ξ

∂x2
=
(

1+ ∂ξ
∂x

)
1

c2
0

∂2ξ

∂t2
. (15.136)

The speed of sound will now depend on both frequency
and wave shape, with the velocity varying as

c′ = c0

〈(
1+ ∂ξ

∂x

)−1/2
〉

x,t

≈ c0

[
1+α (kξ)2

]
,

(15.137)

where the averaging is taken over both time and wave-
length giving a value for α≈ 1/8. In practice, for waves
propagating down a tube, other terms involving momen-
tum transport, viscosity and heat transfer also have to
be included in any exact solution. However, the essen-
tial physics remains unchanged. The net effect of the
nonlinearity is to progressively increase the slope of the
leading edge of any wave propagating along the tube.
A propagating sine wave is then transformed into a saw-
tooth waveform, or shockwave, with an infinitely steep
leading edge, at sufficiently large distances along the
tube.

Such waves have indeed been observed in trum-
pet and trombone bores, which are long and relatively
narrow. The effect is illustrated in Fig. 15.106 by the
measurements of Hirschberg et al. [15.178], for waves
propagating along a trombone tube. The sound in-
tensity of ≈ 175 dB is considerably higher than the
intensities illustrated in Fig. 15.99. As predicted, the
sharpness of the leading edge of the waveform pro-
gressively increased on propagating along the bore.
The discontinuity in waveform of the fully developed
shockwave dramatically increases the intensities of the
higher harmonics of a continuously played note and
gives the trumpet and trombone (and trompette organ
pipes) their characteristic brassy sound at very high in-
tensities ( ). The high-frequency components
of all such sounds will make them highly directional.
Campbell [15.161] reviews nonlinear effects in wood-
wind and brass instruments, with many references to
recent research.

To achieve such brassy sounds, the instrument must
have a sufficiently long length of relatively narrow pipe,
like the trumpet and trombone, in which the pressure
fluctuations remain high and have time to build up into
a shock wave. Shockwaves are far more difficult to set
up in instruments like the horn and cornet, with flaring
conical bores, because the pressure drops rather rapidly
with increasing diameter along the bore.
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Fig. 15.106a,b Internal acoustic pressure in a trombone
played at a dynamic level fortissimo (ff). (a) Pressure at
the input to the air column in the mouthpiece; (b) pres-
sure at the output of the slide section, showing the
characteristic profile of a shock wave (after Hirschberg
et al. [15.178])

Time-Domain Analysis
When nonlinearity is important or when the initial
transient response is of interest, it is more appropri-
ate to consider the dynamics in the time- rather than
frequency-domain, just as it was for analysing the
transient dynamics of the bowed string. Time-domain
analysis in wind and brass instruments was pioneered
by Schumacher [15.159], McIntyre et al. [15.179]
and Ayers [15.180], and is discussed in Fletcher and
Rossing [15.5, Sect. 8.14]. Time-delayed reflectometry
measurements are made by producing short pressure
pulses inside the mouthpiece generated by a spark or
by a sudden piezoelectric displacement of the mouth-
piece end-wall. The pressure in the mouthpiece is then
recorded as a function of time after the event.

In the linear response regime, measurement in the
time domain gives exactly the same information about
an instrument as measurements in the frequency do-
main, assuming both the magnitude and phase of the
frequency response is recorded. This follows because
the frequency response Z(ω) measured in the mouth-
piece is simply the Fourier transform of the transient
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pressure response p(t) for a δ- or impulse-function flow
(Av) induced by the spark or wall motion. Knowing
p(t) or Z(ω) one can obtain the other by applying the
appropriate Fourier transform

Z(ω) =
∞∫

0

p(t)e−iωt dt or

p(t) = 1

2π

∞∫

−∞
Z(ω)eiωt dω . (15.138)

Measurements of the impulse response are particularly
useful in identifying large discontinuities in the acous-
tic impedance along the bore of instruments produced
by tone holes, valves and bends, which can significantly
perturb particular partials. The position of any such dis-
continuity can be determined by the time it takes for the
reflected impulse to return to the mouthpiece.

Time-domain analysis is essential, if one wishes to
investigate starting transients, where reflections from
the end of the instrument are required to stabilise the
pitch of a note. This problem is particularly pronounced
for horn players pitching, for example, notes as high as
the 12th resonant mode of the instrument. The player
must buzz the lips a dozen or so cycles into the mouth-
piece before the first reflection from the end of the
instrument returns to stabilise the pitch. If the player
gets the initial buzzing frequency slightly wrong, the
instrument may lock on to the 11th or 13th harmonic
rather than the intended 12th, leading to the famil-
iar cracked note of the beginner and sometimes even
professional horn players. Furthermore, false reflec-
tions from discontinuities along the length of the tube,
may well confuse the initial feedback, making it more
difficult to pitch particular notes. This leads to small
pitch-dependent changes in the playing characteristics
of instruments made to different designs adopted by
different manufacturers.

15.3.5 Air-Jet Excitation

Many ancient and modern musical instruments are ex-
cited by blowing a jet of air across a hole in a hollow
tube or some other acoustic resonator. Familiar exam-
ples include the flute, pan pipes, the ocarina and simple
whistle in addition to many organ pipes. Sound excita-
tion in flutes and organ pipes was first considered by
Helmholtz [15.128] in terms of an interaction between
the air jet produced by the lips or a flue channel in the
mouthpiece of an instrument and the coupled air column
resonator.

In practice, the dynamics of sound production is
a very complex aerodynamic flow problem requiring
the solution of the Navier–Stokes equations govern-
ing fluid flow in often complex geometries. Various
simplified solutions have been considered by many au-
thors since the time of Helmholtz and Rayleigh [15.3].
Fletcher and Rossing [15.5, Sect. 16.1] provide refer-
ences to both historic and more-recent research. Fabre
and Hirschberg [15.181] have also written a recent re-
view of simple models for what are sometimes referred
to as flue instruments.

Rayleigh showed that the interface separating two
fluids moving with different velocities was intrinsically
unstable, resulting in an oscillating sinuous lateral dis-
turbance of the interface that grows exponentially with
time Fig. 15.107. This arises because, in the frame of
reference in which the two fluids move with the same
speed in opposite directions, any disturbance of the in-
terface towards one of the fluids will increase the local
surface velocity on that side. This will result in a de-
crease in Bernoulli pressure on that side of the interface
and increase it on the other, creating a net force in
the same sense as the disturbance, which will there-
fore grow exponentially with time. For a layer of air
moving at velocity V without friction over a stationary
layer, a sinusoidally perturbed deflection of the jet in the
laboratory frame of reference at rest increases exponen-
tially with distance as it travel along the interface with
velocity V /2.

Similar arguments were used by Rayleigh to de-
scribe the instability of an air jet of finite width b
and velocity V produced by blowing through an ar-
row constriction between the pouted lips when playing
the flute, or by blowing air through an air channel to-
wards the sharp lip of the recorder or an organ pipe.
Fletcher [15.182] showed that the lateral displacement
h(x) of the jet induced by an acoustic velocity field veiωt

between the jet orifice and the lip varies with position

u

V

b

Fig. 15.107 Propagating sinuous instability of an air jet
emerging from a flow channel with two possible positions
of the angled labium or lip to excite resonances of an at-
tached air column for a given jet velocity V
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and time as

h(x) =− j
( v
ω

) [
1− coshμx exp(−iωx/u)

]
eiωt ,

(15.139)

illustrated schematically in Fig. 15.107. The first term
simply corresponds to the jet moving with the im-
pressed acoustic field, while the second describes the
induced travelling-wave instability moving along the
jet with velocity u ≈ V/2, which dominates the jet
displacement at the lip of the instrument. For long-
wavelength instabilities on a narrow jet, such that the
characteristic wavevector k 
 1/b, Rayleigh showed
that the phase velocity u = ω/k ≈ kbV/2= (ωbV/2)1/2,
while the exponential growth factor μ= (k/b)1/2.

In practice, the velocity profile of the jet is never
exactly rectangular but in general will be bell-shaped.
This results in a slightly different frequency, width b
and velocity dependence of the phase velocity, with

u = 0.55(ωb)1/3V 2/3 (15.140)

and corresponding changes in the exponential growth
factor (Savic [15.184]). Typical propagation velocities
of disturbances on the jet of flute and organ pipes
measured by Coltman [15.183] range from 6.7 m/s to
3.7 m/s with velocity ratios u/V from 0.35 to 0.5 for
blowing pressures from 1 to 0.15 inches of water.

Resonances of the attached resonator can be excited
when the air-jet instability is in phase with oscillations
within the resonator, as shown for the two positions
indicated in Fig. 15.107. This corresponds to an odd
number of half-wavelengths of the propagating in-
stability, so that ωl/u = nπ, which is equivalent to
f ≈ nV/4, where n is an odd integer and we have as-
sumed u ≈ V/2. For a given length between jet orifice
and lip, different frequencies can be excited by vary-
ing the jet velocity V =√

2Pmouth/ρ, where Pmouth is
the pressure in the mouth creating the jet. When cou-
pled to an acoustic resonator with a number of possible
resonances, such as an organ pipe or the pipe of a flute
or recorder, the interaction between the jet and oscil-
lating resonator causes the frequency to lock on to
a particular resonance, with hysteretic jumps between
the resonance excited as the blowing pressure is in-
creased and decreased, as illustrated schematically in
Fig. 15.108 (Coltman [15.183]). This explains why the
pitch of an instrument like the recorder or flute doubles
when it is blown more strongly. The line marked edge
tones indicates the frequency of the excited jet mode in-
stability for the same orifice–lip geometry without an
attached pipe and the line marked f = pipe resonance

Frequency

Jet velocity

f = pipe resonances

Edge tone

Fig. 15.108 Schematic representation of the frequency of
a jet-edge oscillator before and after coupling to a multi-
resonant acoustic resonator. The line marked f = pipe
resonator indicates the pressures when the frequencies are
the same as the modes of the uncoupled acoustic resonator
(after Coltman [15.183])

indicates when the frequency of the coupled jet coin-
cides with the free vibrations of the attached air column.
In practice the instrument is played in close vicinity to
the pipe resonances.

The above model is strictly only applicable
to small perturbations in jet shape (
 b) and to
a nonviscous medium. In practice, measurements of
jet displacement by Schlieren photography, hot-wire
anemometry (Nolle [15.185]), smoke trails Cremer and
Ising [15.186] and Coltman [15.187] and particle im-
age velocimetry (PIV) (Raffel et al. [15.188]) show that
within an acoustic cycle the jet moves to either side
of the lip of the instrument with large displacement
amplitudes comparable with the physical dimensions
of the distance between the orifice and lip. In add-
ition, viscous forces lead to a change in profile of the
jet as it moves through the liquid from rectangular
to bell-shaped (Ségoufin et al. [15.189]). Furthermore,
the associated shear forces eventually induce vortic-
ity downstream, with individual vortices shearing away
from the central axis of the jet on alternate sides, as
observed by Thwaites and Fletcher [15.190, 191].

In recent years, major advances have also been made
in studying such problems by computation of solutions
of the Navier–Stokes equations describing the nonlin-
ear aerodynamic flow. An example is illustrated by
the simulated jet deflections by Adachi [15.192] shown
in Fig. 15.109. Adachi’s computational results are in

Part
E

1
5
.3



Musical Acoustics 15.3 Wind Instruments 669

Fig. 15.109 A computed snapshot showing the breakup of
a jet and generation of vortices (Adachi [15.192])

reasonably good agreement with Nolle’s flow meas-
urements [15.185] made with a hot-wire anemometer.
A sequence of such computations by Macherey for the
jet in a mouthpiece with flute-like geometry is included
in a recent review paper on the acoustics of wood-
wind instruments by Fabre and Hirschberg [15.193].
The computations show a relatively simple jet structure
switching from one side of the lip of a flute to the other
during each period of the oscillation.

Air-Jet Resonator Interaction
Despite the obvious limitations of any small-amplitude
linear approach to the jet–lip interaction and the exci-
tation of resonator modes, it is instructive to consider
the analytic model introduced by Fletcher [15.182],
which is discussed in some detail in Fletcher and
Rossing [15.5, Sect. 16.3], as it includes much of the
essential physics in a way that is not always apparent
from purely computational models. The assumed ge-
ometry is illustrated schematically in Fig. 15.110 and

M

Zm Zp

ejωt

Sp

Instability waves Mixing region
u

V

Fig. 15.110 Model to illustrate interaction between air jet
and pipe modes (after Fletcher [15.194])

can easily be generalised to model sound excitation
in air-jet-driven instruments with different mouthpiece
geometries such as the recorder, organ pipe or flute.
A uniform jet with a rectangular top-hat velocity pro-
file of width b and velocity V is assumed to impinge on
the lip or labium of the instrument, with the jet pass-
ing through a fraction A of the attached pipe area Sp.
The oscillating travelling-wave jet instability will result
in a periodic variation of the fractional area varying as
αeiωt . On entering the pipe channel, the jet will cou-
ple to all possible modes of the attached pipe, which in
addition to the principle acoustic modes excited, will in-
clude many other modes involving radial and azimuthal
variations [15.194] that are very strongly attenuated.
Much of the energy of the incident jet will therefore be
lost by such coupling with typically only a few percent
transferred to the important acoustic resonances of the
instrument.

To evaluate the transfer of energy to the principle
acoustic mode, we consider the pipe impedance across
the plane M. In the absence of the jet, the impedances
of the attached pipe and mouthpiece section are Zp and
Zm, where the mouthpiece section has a certain volume
and hole area, with the volume in the case of a flute
involving an adjustable length of pipe used for fine-
tuning. Fletcher simplified an earlier model introduced
by Elder [15.195], in assuming the principle of linear
superposition, with a jet flow superimposed on that of
the instrument. The oscillating incident jet then has two
principal effects: the oscillating fraction of area α of the
jet entering the pipe introduces a flow into the attached
pipe

U1 = αSp Zm/
(
Zm+ Zp

)
, (15.141)

while the effective pressure acting on the plane M
derived from momentum-balance arguments results in
a pipe flow of

U2 = αρV 2/
(
Zm+ Zp

)
. (15.142)

There is also an additional nonlinear term U3 mathemat-
ically arising from the nonlinear effect of the fractional
insertion area of the jet insertion at large amplitudes,
which is negligible in comparison with the many other
nonlinearities in any realistic model. This model in-
tegrates and simplifies earlier models introduced by
Cremer and Ising [15.186], Coltman [15.187] and El-
der [15.195].

It immediately follows from the above arguments
that, provided the phase of the jet instabilities are
appropriate, instabilities on the jet will excite strong res-
onances of the instrument when the series impedance
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(Zm+ Zp) is a minimum, which is just the impedance
of the pipe loaded by the impedance of the mouthpiece
assembly. Provided the lengths involved are much less
than an acoustic wavelength, Zm = iρΔL/Sp where ΔL
is the end correction introduced by the mouthpiece as-
sembly. The net flow is then given by

Up = (V + iωΔL) ρVα

Sp
(
Zm+ Zp

) . (15.143)

The resonances are therefore those of a pipe that is
open at both ends, but with a small end-correction for
the effective volume of the mouthpiece and any addi-
tional closed tuning tube and flow in and out of the
mouthpiece.

Because the mouthpiece impedance is reactive, the
induced vibrations in flow from direct jet flow (U1)
and that induced by the jet pressure (U2) are in phase
quadrature. In addition, the two terms have a different
dependence on jet velocity and frequency. In practice,
ωΔL is often larger than V , so that the second term usu-
ally dominates, though this will not necessarily be true
in more realistic models.

For small sinusoidally varying jet perturbations
and a top-hat velocity profile, the driving force would
only include single frequency components. However, in
practice, viscous damping results in a spreading out of
the velocity profile in the lateral direction with a bell-
shaped profile that increases in width with distance
along the jet. If such a profile is offset from the lip,
any sinusoidal disturbance of the jet will introduced
additional harmonics at frequencies, 2ω, 3ω, etc., with
increasing amplitudes for increasing jet oscillations. In
practice, the amplitudes of jet oscillation are so large
that the jet undergoes a near switching action, alternat-
ing its position from one side to the other of the lip.
The driving force is therefore strongly nonsinusoidal
and provides a rich spectrum of harmonics to excite
the upper partials of any sounded note. A flute player,
for example, has considerable control over the quality
of the sound produced, by variation of mouth pressure
and jet velocity, its velocity profile on leaving the lips,
and its direction in relation to the labium or lip of the
instrument.

For most musical instruments excited by an air jet,
the sinuous instability is the most important, though
Chanaud [15.196] and Wilson et al. [15.197] have high-
lighted the importance of varicose instabilities (periodic
variations in area of the jet), which were also investi-
gated by Rayleigh, as in whistles and whistling, where
the air passes through an aperture rather than striking an
edge.

Regenerative Feedback
We now consider the effective acoustic impedance of
the exciting air column as we did for the vibrating reed.
Our emphasis here is to highlight the essential physics
rather than provide a rigorous treatment. More details
and references are given in Fletcher and Rossing [15.5,
Sect. 16.4] and Fletcher [15.194].

The flow Um into the mouth of the resonator can be
expressed as

Um = vmSm = pmYm ≈ pmSp

iωρΔL
. (15.144)

From (15.139), the lateral displacement of the jet at the
lip a distance l from the exit channel of the jet is then
given by

hl ≈ i
(vm

ω

)
coshμl exp (−ωl/u) , (15.145)

where u is the phase velocity for disturbances travel-
ling along the jet and the implicit time variation has
been omitted. From the ratio of the net flow into the
mouthpiece-end and attached resonator to the pressure
acting on the air jet, Fletcher and Rossing derive the
effective admittance of the air-jet generator,

Yi ≈ VW

ρω2ΔL

(
Sp

Sm

)
coshμl exp

[
−i

(
ωl

u

)]
.

(15.146)

Apart from a small phase factor (φ ≈ V/ωL), which we
have omitted, the admittance is entirely real and neg-
ative when ωl/u = π, which corresponds to the first
half-wavelength of the instability just bridging the dis-
tance from channel exit to lip, as shown in Fig. 15.106.
This is also true for ωl/u = nπ, where n is any odd
integer, corresponding to any odd number of half-
wavelengths of the growing instability between the jet
exit and lip of the instrument.

These are just the conditions for positive feedback
and the growth of acoustic resonances in the pipe res-
onances will be excited when Im(Yp+Ym) = 0, which
is equivalent to the condition that Zs should be a mini-
mum, as expected from (15.129). As Coltman [15.183]
pointed out, the locus of Im(Yj) plotted as a function or
Re(Yj) as a function of increasing frequency is a spiral
about the origin in a clockwise direction (Fletcher and
Rossing [15.5, Fig. 16.10]). The jet admittance there-
fore has a negative real component at all frequencies
when the locus point is in the negative half-plane. Res-
onances can therefore be set up over frequency ranges
from ≈ (1/2 to 3/2)ω∗, (5/2 to 7/2)ω∗, etc. where ω∗,
3ω∗, 5ω∗ are the frequencies when the admittance is
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purely conductive and negative. By varying the blow-
ing pressure and associated phase velocity of the jet
instability, the player can therefore excite instabilities
of the jet with the appropriate frequencies to lock on to
the resonances of the attached air column, as illustrated
schematically in Fig. 15.108.

Measurements by Thwaites and Fletcher [15.190]
are in moderately good agreement with the above model
at low blowing pressures and reasonably high frequen-
cies, but deviate somewhat at low frequencies and high
blowing pressures. This is scarcely surprising in view of
the approximations made in deriving the above result.

Edge Tones and Vortices
Edge tones are set up when jet of air impinges on a lip
or thin wire without any coupling to an acoustic res-
onator. The high flow rates in the vicinity of the lip
or wire can generate vortices on the downstream side,
which spin off on alternating sides, setting up an alter-
nating force on the lip or wire. If the object is itself part
of a mechanical resonating structure, such as a stretched
telegraph wire or the strings of an Aeolian harp, wind-
blown resonances can be set up, with different resonant
modes excited dependent on the strength of the wind.
In extreme cases, the excitation of vortices can result
in catastrophic build up of mechanical resonances, as in
the Tacoma bridge disaster.

Before 1970, many treatments of wind instruments
discussed air-jet sound generation in such terms. Hol-
ger [15.198], for example, proposed a nonlinear theory
for edge-tone excitation of sound in wind instruments
based on the formation of a vortex sheet, with a suc-
cession of vortices already created on alternate sides of
the mid-plane of the emerging jet before it hit the lip or
labium of the instrument. Indeed, measurements of the
flow instabilities and phase velocity of instabilities in
a recorder-like instrument by Ségoufin et al. [15.189],
as a function of Strouhal number ωb/u, fit the Holger
theory rather better than models based on the Rayleigh
instability and refined by later authors for both short and
long jets, but the experimental errors are rather large.
However, the vortex-sheet model does not include the
growth of disturbances in the sound field with distance
(as measured by Yoshikawa [15.199]), which is a crucial
parameter for the prediction of the oscillation threshold
observed for instruments such as the recorder.

It is also clear that vortex production is important in
many wind instruments, especially where the acoustic
amplitude is large, as in the vicinity of sharp edges or
corners of both open and closed tone holes, as observed
in direct measurements of the flow field. For example,

Fabre et al. [15.200] have recently shown that vortex
generation is a significant source of energy dissipation
for the fundamental component of a flute note.

In view of the complexity of the fluid dynamics
involves, it seems likely that future progress in our un-
derstanding of jet-driven wind instruments will largely
come from computational simulations, though physi-
cal models still provide valuable insight into the basic
physics involved.

15.3.6 Woodwind and Brass Instruments

In this last section on wind instruments, we briefly de-
scribe a number of woodwind and brass instruments
of the modern classical orchestra. All such instruments
were developed from much earlier instruments, many
of which still exist in folk and ethnic cultures from
all around the World. Illustrated guides to a very large
number of such instruments are to be found in Musical
Instruments by Baines [15.201] and the encyclopae-
dia Musical Instruments of the World [15.31]. The two
text by Backus [15.133] and Benade [15.134], both
leading researchers in the acoustics of wind instru-
ments, provide many more technical details concerning
the construction and acoustics of specific woodwind
and brass instruments than space allows here, as does
Fletcher and Rossing [15.5, Chaps. 13–17] and Camp-
bell, Myers and Greated [15.7].

Woodwind Instruments
The simplest instruments are those based on cylindri-
cal pipes, such as bamboo pan pipes excited by a jet of
air blown over one end, or hollow resonators, such as
primitive ocarinas, which act as simple Helmholtz res-
onators with the pitch determined by the openings of the
mouthpiece and fingered open holes. Woodwind instru-
ments use approximately cylindrical or conical tubes
excited by a reed or a jet of air blown over a hole in the
wall of the tube. As we have seen, simple cylindrical
and conical tubes retain a harmonic set of resonances
independent of their length, which in principle allows
a full set of harmonic partials to be sounded when the
instrument is artificially shortened by opening the tone
holes. In practice, as discussed in the previous sec-
tion, the harmonicity of the modes is strongly perturbed
by a large number of factors including the strongly
frequency-dependent end-corrections from tone holes
and significant departures from simple cylindrical and
conical structures. Such perturbations can, to some ex-
tent, be controlled by the skilled instrument maker to
preserve the harmonicity of the lowest modes responsi-
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ble for establishing the playing pitch of an instrument.
We will describe the various methods of exciting vibra-
tions by single and double reeds and by air flow in the
next section.

Figure 15.111 shows four typical modern orchestral
woodwind instruments. All such instruments have dis-
tinctive tone qualities and come in various sizes, which
cover a wide range of pitches and different tone-colours.

The flute, bass flute and piccolo are based on the
resonances of a cylindrical tube, with the open end and
mouthpiece hole giving pressure nodes at both ends.
Like the recorder, all the chromatic notes of the musical
scale can be played by selectively opening and shutting
a number of tone holes in the walls of the instrument us-
ing the player’s fingers (on ancient and baroque flutes)
or felted hinged pads operated by a system of keys and
levers (on modern instruments). Primitive flutes appear
in most ancient cultures.

The clarinet is based on a cylindrical tube excited
by a single reed at one end. The reed and mouthpiece
close one end of the tube, so that the odd-integer partials
are more strongly excited than the even partials, par-
ticularly for the lowest notes, when most sideholes are
closed. In addition, when overblown, the clarinet sounds
a note three times higher (an octave and a fifth). Like
all real instruments, perturbations from the tone holes,

Flute Oboe Clarinet Bassoon

Fig. 15.111 The modern flute, oboe, clarinet and bassoon
(not to scale)

variations in tube diameter and the nonlinear processes
involved in the production of sound vibrations by the
reed strongly influence the strength of the excited par-
tials, all of which contribute to the characteristic sound
of the instrument.

The single-reed clarinet is a relatively modern
instrument developed around 1700 by the German in-
strument maker Denner. It evolved from the chalumeau,
an earlier simple single-reed instrument with a recorder-
like body, which still gives its name to the lower register
of the clarinet’s playing range. In the 1840s, the mod-
ern system of keys was introduced based on the Boehm
system previously developed for the flute [15.201].

The oboe is based on a conical tube truncated and
closed at the playing end by a double reed. As described
earlier, a conical tube supports all the integer harmonic
partials giving a full and penetrating sound quality that
is very rich in upper partials. This is why an oboe note is
used to define the playing pitch (usually A4 = 440 Hz)
of the modern symphony orchestra. Like all modern in-
struments, today’s oboe developed from much earlier
instruments, in this case from the double-reed shawn
and bagpipe chanters, which still exist in many ethnic
cultures in Europe, Asia and parts of Africa. In addition
to the bass oboe, the oboe d’amore and cor anglais, with
their bulbous end cavity just before the output bell, have
been used for their distinctive plaintive sounds by Bach
and many later composers. Like the flute and clarinet,
early oboes used mostly open-side holes closed by the
fingers, with only one or two holes operated by a key,
but developed an increasingly sophisticated key system
over time to facilitate the playing of the instrument.

The bassoon is a much larger instrument, producing
lower notes of the musical scale. Because of the length
of the air column, the spacing of the tone holes would be
far too wide to operate by the player’s fingers alone. To
circumvent this problem, the instrument is folded along
its length and relatively long finger holes are cut diago-
nally through the large wall thickness, so that normally
fingered holes can connect to the much wider separa-
tion of holes in the resonant air column. The bore of
the instrument is based on a largely conical cross sec-
tion, with the mouthpiece end terminated by a narrow
bent tube or crook to which a large double reed is at-
tached. Early bassoons included a single key to operate
the most distant tone hole on the instrument. Modern
instruments have an extended key system to facilitate
playing all the notes of the chromatic scale. The con-
trabassoon includes an additional folded length of tube.
Like the oboe, the sound of the bassoon is very rich in
upper partials and has a very rich, mellow sound.
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Related to the bassoon is the renaissance racket
played with a crook and double reed. The instrument
looks like a simple cylinder with a set of playing holes
cut into its surface. However, in reality, it is a highly
convoluted pipe with twelve parallel pipes arranged
round the inner diameter of the cylinder and inter-
connected with short bends at their ends to produce
a very long acoustic resonator with easily accessible
tone holes. This provides a beautiful example of the
centuries-old ingenuity of instrument makers in solving
the many acoustic and ergonomic problems involved in
the design of musically successful wind instruments.

Brass Instruments
Figure 15.112 illustrates the trumpet, trombone and
horn, which like all brass instruments are based on
lengths of cylindrical, conical and flared resonant air
columns. They are excited by a mouthpiece at one end
and a bell at the open end, as described in the previous
section. The player selects the note to be sounded by
buzzing the lips, usually at a frequency corresponding to
one of the natural resonances of the coupled air column.
The essential nonlinearity of this excitation process also
excites multiples in frequency of the playing pitch.
Ideally, for ease of playing, these harmonics should co-
incide with the higher modes of the excited air column.
As already described, brass instruments are therefore
designed to have a full harmonic set of modes. However,
because of their shape and outward flare, it is impossible
to achieve this for the fundamental mode (Fig. 15.77).

By adjusting the pressure and the tightness of the
lips in the mouthpiece, the player can pitch notes based
on the n = 2, 3, 4 . . . modes – the n = 2 mode, a fifth
above, an octave above, an octave and a fourth above,

Trombone
Positions 1  2  3  4  5  6  7

Trumpet

Horn

Fig. 15.112 The trombone, French horn and trumpet

etc. Trumpet players typically sound notes up to the
8–10 th mode, while skilled horn players can pitch
notes up to and sometimes above the 15th. In the higher
registers, the instruments can therefore play nearly all
the notes of a major diatonic scale. A few of the notes
can be rather badly out of tune, but a skilled player
can usually correct for this by adjusting the lip pressure
and flow of air through the mouthpiece. The low notes
are based on simple intervals: the perfect fifth, octave,
perfect fourth, etc. Trumpets and horns were therefore
often used in early classical music to add a sense of
military excitement and to emphasise the harmony of
the key in which the music is written. However, in later
classical music and music of the romantic period, all the
notes of the chromatic scale were required. To achieve
this, brass instruments such as the trumpet and horn
were developed with a set of air valves, which enabled
the player to switch in and out various combinations of
different lengths of tube, to change the effective res-
onating length of the vibrating air column and hence
playing pitch. Uniquely, the pitch of the trombone is
changed by the use of interpenetrating cylindrical slid-
ing tubes, which change the effective length. Modern
instruments generally use a folded or coiled tube struc-
ture to keep the size of the instrument to manageable
proportions.

The trombone can sound all the semitones of the
chromatic scale, by the player sliding lengths of closely
fitting cylindrical tubing inside each other. In the first
position, with the shortest length tube (Fig. 15.112),
the B-flat tenor trombone sounds the note B-flat at
≈115 Hz, corresponding to the n = 2 mode, an octave
below the lowest note on the B-flat trumpet. To play
notes at successive semitones lower, the total length has
to be extended sequentially by fractional increases of
1.059. From the shortest to longest lengths there are
seven such increasingly spaced positions. When fully
extended, the trombone then plays a note six semitones
lower (E) than the initial note sounded. One can then
switch to the n = 3 mode to increase the pitch by a per-
fect fifth, to the note B a semitone higher than the initial
note sounded. Using the closer positions enables the
next six higher semitones to be played. Higher notes
can be excited by suitable combinations of both position
and mode excited. The trombone is one of the few musi-
cal instruments that can slide continuously over a large
range of frequencies, simply by smoothly changing its
length. This is widely used in jazz, where it also enables
the player to use a very wide, frequency-modulated,
vibrato effect and bending of the pitch of a note for
expressive effect.
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The fully extended length of the vibrating air col-
umn in the first position is ≈ 2.5 m. Two-thirds of the
length is made up of 1.3 cm-diameter cylindrical tubing
with the remaining gently flared end-section opening
out to a bell diameter of 16–20 cm.

The trumpet achieves the full chromatic range by
the use of three piston valves, which enable additional
lengths of tubing to be switched in and out of the res-
onating air column. In the inactive up position, the
sound travels directly through a hole passing directly
through the valve. When the piston is depressed, the
valve enables the tube on either side of the valve to
be connected to an additional length of tubing, which
includes a small, preset, sliding section for fine tun-
ing. The pitch is decreased by a tone on depressing the
first piston and a semitone by the second. Pressing them
down together therefore lowers the pitch by three semi-
tones (a minor third). Depressing the third valve also
lowers the pitch by three semitones, so that when all
three valves are depressed the pitch is lowered by six
semitones. However, the tuning is not exact, because
whenever any single valve is depressed the effective
tube length is lengthened. Therefore, when a second (or
third) valve is depressed, the fractional increase in effec-
tive length is less when the second valve alone is used.
This is related to the need to increase the spacing of the
semitone positions on the trombone as it is extended.
Similar mistuning problems arise for all combinations
of valves used.

To circumvent these difficulties, compromises have
to be made, if the instrument is to play in tune
(Backus [15.133, pp. 270–271]). The added length of
tubing to produce the semitone and tone intervals are
therefore purposely made slightly too long, giving semi-
tone and tone intervals that are slightly flat, but which in
combination produce a three-semitone interval which is
slightly sharp. Similarly, the third valve is tuned to give
a pitch change of slightly more than three semitones.
This allows the full of range of semitones to be played
with only slight fluctuations above and below the cor-
rect tuning. The error is greatest when all three pistons
are depressed. In the modern trumpet, the mistuning can
be compensated by a small length of tubing operated by
an additional small valve operated by the little finger
of the playing hand. To regulate the overall tuning of
the instrument, the playing length of the instrument can
be varied by a sliding U-tube section at the first bend
away from the mouthpiece. As we will show later, the
skilled player can adjust the muscles controlling the dy-
namics of the lip-reed excitation to correct for any slight
mistuning inherent in the design of the instrument.

The bends and valves incorporated into the struc-
ture of brass instruments will clearly result in sudden
changes in acoustic impedance of the resonating air col-
umn, which will produce reflections and perturbations
in the frequency of the frequency of the excited modes.
Surprising, as shown earlier, such effects are acousti-
cally relatively unimportant, though for the player they
may affect the feel of the instrument and ease with
which it can be played. In particular, when a brass
player is pitching one of the higher modes of an in-
strument such as the horn several oscillations have to
be produced before any feedback returns from the end
of the instrument to stabilise the playing frequency. For
example, when pitching the 12th mode on a horn, the
player has to buzz the lips for about 12 cycles before the
first reflection returns from the end of the instrument,
which demonstrated the difficulty of exact pitching of
notes in the higher registers. Note that, because of the
dispersion of sound waves in a flared tube, the group ve-
locity determining the transit time will not be the same
as the phase velocity determining modal frequencies.
Any strong reflections from sharp bends and disconti-
nuities in acoustic impedance introduced by the valve
structures can potentially confuse the pitching of notes
and the playability of an instrument. Such transients can
be investigated directly by time-domain acoustic reflec-
tometry (see, for example, Ayers [15.180]). Different
manufacturers choose different methods to deal with
the various tuning and other acoustic problems involved
in the design of brass instruments and players develop
strong preferences for a particular type of instrument
based on both the sound they produce and their ease of
playing.

The trumpet bore is ≈ 137 cm long with largely
cylindrical tubing with a diameter of ≈ 1.1, which ta-
pers down to≈ 0.9 cm at the mouthpiece end over a dis-
tance of ≈ 12–24 cm. It opens up over about the last
third of its length with an end bell of diameter ≈ 11 cm.
To reduce the overall length, its length is coiled with
a single complete turn, as illustrated in Fig. 15.112.

The cornet is closely related to the trumpet but has
a largely conical rather than cylindrical bore and is
further shortened by having two coiled sections. This
results in a somewhat lower cut-off frequency giving
a slightly warmer but less brilliant sound quality. The
bugle is an even simpler double-coiled valveless instru-
ment of fixed length, so that it can only sound the notes
of the natural harmonics. It was widely used by the mil-
itary to send simple messages to armies and is still used
today in sounding the last post, accompanying the burial
of the military dead.
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The modern French horn developed from long
straight pipes with flared ends played with a mouth-
piece. Technology then enabled horns to be made with
coiled tubes, like hunting horns, greatly reducing their
size. In early classical music, horns were only expected
to play a few simple intervals in the key in which the
music was written. For music written in different keys,
the player had to add an additional section of coiled tube
called a crook, to extend the length of the instrument
accordingly.

To extend the range of notes that a horn could
play, the player can place his hand into the end of
the instrument. Depending how the hand is inserted,
the pitch of individual harmonics can be lowered or
raised by around a semitone, producing what is re-
ferred to as a hand-stopped note. If the hand is partially
inserted into the bell, it dramatically increases the
cut-off frequency giving the player access to a much
larger number of higher modes, as illustrated in meas-
urements by Benade [15.134, Fig. 20.17] reproduced in
Fig. 15.113. Although the associated changes in pitch
may be relatively small, inserting the hand into the
end of a horn significantly changes the spectrum of
the radiated sound, which allows the horn player some
additional freedom in the quality of the sound produced.

The modern orchestral horn produces all the notes
of the chromatic scale using rotary valves to switch in
combinations of different length tube, rather like the
trumpet. The modern instrument is a combination of
a horn in F and a horn in B-flat, which can be inter-
changed by a rotary valve operated by the thumb of the
left hand, while the first three fingers operate the three
main valves, which are common to both horns.

The total length of the F horn is about 375 cm,
a third longer than the B-flat trombone, enabling it to
play down to the note F2. The F-horn is used for the
lowest notes on the instrument, while the B-flat horn
is used to give the player a much higher degree of se-
curity in pitching the higher notes. Like the primitive
hunting horn, the modern horn is coiled to accommo-
date its great length and has a bore that opens up gently
over its whole length from a diameter of ≈ 0.9 mm at

Input impedance

Frequency  (Hz)
0 20001000

Natural horn in B

Hand in bell

Open bell

Fig. 15.113 Input impedance measurements of a natural
horn, with and without a hand in the bell (after Be-
nade [15.134])

the mouthpiece end to a rapidly flared output bell with
a diameter of ≈ 30 cm.

There are many other instruments played with
a mouthpiece in both ancient and ethnic cultures around
the world. Many primitive instruments are simply
hollowed-out tubes of wood, bamboo or animal bones.
The notes that such instruments can produce are lim-
ited to the principal, quasi-harmonic, resonances of the
instrument. There are also many hybrid instruments
played with a mouthpiece, which use finger-stopped
holes along their length, just like woodwind instru-
ments. Important examples are the renaissance cornett
and the now almost obsolete serpent, a spectacularly
large, multiple bend, s-shaped, instrument. Many mod-
ern players of baroque-period natural trumpets have
also added finger holes to the sides of their instruments,
to facilitate the pitching of the highest notes.

15.4 Percussion Instruments

Compared with the extensive literature on stringed,
woodwind and brass instruments, the number of publi-
cations on percussion instruments is somewhat smaller.
This is largely because the acoustics of percussion
instruments is almost entirely dominated by the well-

understood, free vibrations of relatively simple struc-
tures, without complications from the highly nonlinear
excitation processes involved in exciting string and
wind instruments. However, as this section will high-
light, the physics of percussion instruments involves
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a number of fascinating and often unexpected features
of considerable acoustic interest.

The two most important references on the acoustics
of percussion instruments are The Physics of Musical
Instruments, Fletcher and Rossing [15.5, Chaps. 18–21]
and the Science of Percussion Instruments [15.202] by
Rossing, the general editor of this Handbook, who has
pioneered research on a very wide range of classical and
ethnic percussion instruments. James Blade’s Percus-
sion Instruments and their History [15.203] provides an
authoritative survey of the development of percussion
instruments from their primitive origins to their modern
use.

Percussion instruments are amongst the oldest and
most numerous of all musical instruments. Primitive in-
struments played by hitting sticks against each other or
against hollowed-out tree stumps or gourds are likely to
have evolved very soon after man discovered tools to
make weapons and other simple artefacts essential for
survival. The rhythmic beating of drums by Japanese
Kodo drummers, the marching bands of soldiers down
the centuries, and the massed percussion section of
a classical orchestra still instil the same primeval feel-
ings of power and excitement used to frighten away
the beasts of the forest and to raise the fighting spir-
its of early groups of hunters. The beating of drums
would also have provided a simple way of communicat-
ing messages over large distances, the rhythmic patterns
providing the foundation of the earliest musical lan-
guage – the organisation of sound to convey information
or emotion. Martial music, relying heavily on the beat-
ing of drums continues to be used, and as often misused,
to instil a sense of belonging to a particular group or
nation and to instil fear in the enemy.

In China, bells made of clay and copper were al-
ready in use well before 2000 BC. The discovery of
bronze quickly led to the development of some of the
most sophisticated and remarkable sets of cast bells ever
made, reaching its peak in the western Zhou (1122–
771 BC) and eastern Zhou (770–249 BC) dynasties
(Fletcher and Rossing [15.5, Sect. 21.15]). Inscriptions
on the set of 65 tuned chime bells in the tomb of Zeng
Hou Yi (433 BC), show that the Chinese had already es-
tablished a 12-note scale, closely related to our present,
but much later, western scale. The ceremonial use of
bells and gongs is widespread in religious cultures all
over the world and in western countries has the tra-
ditional use of summoning worshippers to church and
accompanying the dead to their graves.

In the 18th century classical symphony orchestra of
Haydn and Mozart’s time, the timpani helped emphasise

the beat and pitch of the music being played, particu-
larly in loud sections, with the occasional use of cym-
bals and triangle to emphasise exotic and often Turkish
influences. The percussion section of today’s symphony
orchestra may well be required to play up to 100 dif-
ferent instruments for a single piece, as in Notations
I–IV by Boulez [15.204]. This typical modern score in-
cludes timpani, gongs, bells, metals and glass chimes,
claves, wooden blocks, cowbells, tom-toms, marimbas,
glockenspiels, xylophones, vibraphones, sizzle and sus-
pended cymbals, tablas, timbales, metal blocks, log
drums, boobams, bell plates in C and B flat, side drums,
Chinese cymbals, triangles, maracas, a bell tree, etc.
Modern composers can include almost anything that
makes a noise – everything from typewriters to vac-
uum cleaners. The percussion section of the orchestra
is required to play them all – often simultaneously.

We will necessarily have to be selective in the instru-
ments that we choose to consider and will concentrate
largely on the more familiar instruments of the mod-
ern classical symphony orchestra. We will also constrict
our attention to instruments that are struck and will ig-
nore instruments like whistles, rattles, scrapers, whips
and other similar instruments that percussion players are
also often required to play.

15.4.1 Membranes

Circular Membrane
A uniform membrane with areal density σ , stretched
with uniform tension T over a rigid circular supporting
frame, supports acoustically important transverse dis-
placements z perpendicular to the surface described by
the wave equation

T

(
∂2z

∂r2
+ 1

r

∂z

∂r
+ 1

r2

∂2z

∂φ2

)
= σ ∂

2z

∂t2
, (15.147)

which has solutions of the form

z (r, φ, t)= Jm(kmnr)

{
A cos mφ

+B sin mφ

}
eiωt .

(15.148)

Jm(kmnr) are Bessel functions of order m, where
n denotes the number of radial nodes and m the num-
ber of nodal diameters. The eigenfrequencies ωmn =
kmn

√
T/σ are determined by the requirement that

Jm(kmna) = 0 on the boundary at r = a. The frequency
of the fundamental (01) mode is (2.405/2πa)

√
T/σ ,

where J0(k01a)= 0. The relative frequencies of the first
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3.16 3.50 3.60 3.65 4.06 4.15

41 22 03 51 32 61

1 1.59 2.14 2.30 2.65 2.92

01 11 21 02 31 12

Fig. 15.114 The first 12 modes of a circular membrane
illustrating the mode nomenclature, nodal lines and fre-
quencies relative to the fundamental 01 mode

12 modes and associated nodal lines and circles are
shown in Fig. 15.114.

For ideal circular symmetry, the independent az-
imuthal cosine and sine solutions result in degenerate
modes having the same resonant frequencies. The de-
generacy of such modes can be lifted by a nonuniform
tension, variations in thickness when calfskin is used,
and a lack of ideal circularity of the supporting rim.
Any resulting splitting of the frequencies of such modes
can result in beats between the sound of given partials,
which the player can eliminate by selectively adjusting
the tension around the perimeter of the membrane or by
hitting the membrane at a nodal position of one of the
contributing modes.

Unlike transverse waves on a stretched string, the
modes of a circular membrane are inharmonic. As
a consequence, the waveforms formed by the combi-
nation of such partials excited when the drumhead is
struck are nonrepetitive. Audio illustrates
the frequencies of the first 12 modes played in sequence.

illustrates their sound when played together
as a damped chord, which already produces the realistic
sound of a typical drum, having a reasonably well-
defined sense of pitch, despite the inharmonicity of the
modes.

Although percussion instruments may often lack
a particularly well-defined sense of pitch, one can nev-
ertheless describe the overall pitch as being high or low.
For example, a side drum has a higher overall pitch than
a bass drum and a triangle higher than a large gong.
From an acoustical point of view, we will be particu-
larly interested in the lower-frequency quasi-harmonic
modes. However, one must never forget the importance
of the higher-frequency inharmonic modes in defining
the initial transient, which is very important in charac-
terising the sound of an instrument.

Nonlinear effects arise in drums in much the same
way as in strings (Sect. 15.2.2). The increase in tension,
proportional to the square of the vibrational ampli-
tude, leads to an increase in modal frequencies. In
addition, nonlinearity can result in mode conversion
(Sect. 15.2.2) and the transfer of energy from initially
excited lower-frequency modes with large amplitudes
to higher partials. Although the pitch of a drum is raised
when strongly hit, this may to some extent be compen-
sated by the psychoacoustic effect of a low-frequency
note sounding flatter as its intensity increased. Changes
in perceived pitch of a drum with time can often be em-
phasised by the use of digital processing, to increase the
frequency of the recorded playback without changing
the overall envelope in time (audio ).

Air Loading and Radiation
The above description of the vibrational states of
a membrane neglects the induced motion of the air
on either side of the drum skin. At low frequencies,
this adds a mass ≈ 8

3ρa3 to the membrane (Fletcher
and Rossing [15.5, Sect. 18.1.2]), approximating to
a cylinder of air with the same thickness as the ra-
dius a of the drum head. The added mass lowers the
vibrational frequencies relative to those of an ideal
membrane vibrating in vacuum. The effect is largest at
low frequencies, when the wavelength in air is larger
than or comparable with the size of the drumhead.
For higher-frequency modes, with a number of wave-
lengths λ across the width of the drumhead, the induced
air motion only extends a distance ≈ λ2π(
 a) from
the membrane. Air loading therefore leaves the higher-
frequency modes relatively unperturbed.

Drums can have a single drum skin stretched over
a hollow body, such as the kettle drum of the timpani, or
two drum heads on either side of a supporting cylinder
or hollowed out block of wood, like the side drum and
southern Indian mrdanga (Fletcher and Rossing [15.5,
Sect. 18.5]). By stretching the drum head over a hol-
low body, the sound radiated from the back surface is
eliminated, just like mounting a loudspeaker cone in
an enclosure. At low frequencies, the drum then acts
as a monopole source with isotropic and significantly
enhanced radiation efficiency. This is illustrated by the
much reduced 60 dB decay time of the (11) dipole mode
of a stretched timpani skin, when the drum skin was at-
tached to the kettle – from 2.5 s to 0.5 s (Fletcher and
Rossing [15.5, Table 18.4]).

In addition, any net change in the volume of the en-
closed air resulting from vibrations of the drum skin will
increase the restoring forces acting on it and hence raise
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Table 15.7 Ideal and measured frequencies of the modal frequencies of a timpani drum head normalised to the acous-
tically important (11) mode before and after mounting on the kettle, and the internal air resonances of the kettle. The
arrows indicate the sense of the most significant perturbations of drum head frequencies and the asterisks indicate the
resulting quasi-harmonic set of acoustically important modes (adapted from Fletcher and Rossing)

Mode Ideal membrane Drumhead in air Coupled internal
air resonances

Drumhead
on kettle

01 0.63 82 Hz 0.53 (0,1,0) 385 Hz 127 Hz 0.85 ↑
(0,1,1)

11 1.00 160 1.0 (1,1,0) 337 Hz 150 1.00 ↓ ***

(1,1,1) 566 Hz

21 1.34 229 1.48 (2,1,0) 537 Hz 227 1.51 ↓ ***

(2,1,1) 747 Hz

02 1.44 241 1.55 (0,1,0) (0,2,0) 252 1.68 ↑
31 1.66 297 1.92 (3,1,0) (3,1,1) 298 1.99 ***

12 1.83 323 2.08 (1,2,0) (1,2,1) 314 2.09 ↓
41 1.98 366 2.36 366 2.44 ***

22 2.20 402 2.59 401 2.67

03 2.26 407 2.63 (0,1,0) 418 2.79 ↑
51 2.29 431 2.78 434 2.89

32 2.55 479 3.09 448 2.99 ***

61 2.61 484 3.12 462 3.08

the modal frequencies, see Table 15.7. In this example,
the coupling raises the frequency of the (01) drumhead
mode from 82 to 127 Hz, the (02) mode from 241 to
252 Hz, and the (03) mode from 407 to 418 Hz. In con-
trast, the asymmetric, volume-conserving, (11) mode
is lowered in frequency from 160 to 150 Hz, which
probably results from coupling to the higher frequency
337 Hz internal air mode having the same aerial sym-
metry.

As in any coupled system in the absence of sig-
nificant damping, the separation in frequency of the
normal modes resulting from coupling will tend to be
greater than the separation of the uncoupled resonators
(Fig. 15.46b). In addition, any enclosed air will provide
a coupling between the opposing heads of a double-
sided drum. For example, the 227 and 299 Hz (01)
uncoupled (01) modes of the opposing heads of a snare
drum become the 182 and 330 Hz normal modes of
the double-sided drum (Fletcher and Rossing [15.5,
Fig. 18.7]).

Excitation by Player
The quality of the sound produced by any percussion
instrument depends as much on the player’s skills as on
the inherent qualities of the instrument itself. Drums are
not simply hit. A player uses considerable manual dex-
terity in controlling the way the drumstick strikes and is
allowed to bounce away from the stretched drum skin,

xylophone bar or tubular bell. It is important that contact
of the stick with the instrument is kept to a minimum;
otherwise the stick will strongly inhibit the vibrational
modes that the player intends to excite. The lift off is
just as important as the strike, and it takes years of prac-
tice to perfect, for example, a continuous side drum or
triangle roll.

It is also important to strike an instrument in the
right place using the right kind of stick or beater to pro-
duce the required tone, resonance or loudness required
for a specific musical performance. As discussed ear-
lier in relation to the excitation of modes on a stretched
string and modal analysis measurements, one can se-
lectively emphasise or eliminate particular partials by
striking an instrument at antinodes or nodes of par-
ticular modes. A skilled timpani player can therefore
produce a large number of different sounds by hitting
the drumhead at different positions from the rim. Strik-
ing timpani close to their outer rim preferentially excites
the higher-frequency modes, while striking close to the
centre results in a rather dull thud. This is due to the
preferential excitation of the inefficient (00) mode and
elimination of the acoustically important (0n) modes.
The most sonorous sounding notes are generally struck
about a quarter of the way in from the edge of the drum.

The sound is also strongly affected by the dynam-
ics of the beater–drumhead interaction, which is rather
soft and soggy near the centre and much harder and
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springy near the outer rim. The sound is also strongly
affected by the type of drumstick used. Light, hard
wooden sticks will make a more immediate impact with
a bar or drum skin than heavily felted beaters. Such
difference are similar to the effect of using heavy or
light force hammers to preferentially excite lower- or
higher-frequency modes in modal analysis investiga-
tions. A professional timpanist or percussion player will
use completely different sticks for different styles of
music and obtain effects on the same instrument rang-
ing from the muffled drum beats of the Death March
from Handel’s Saul to the sound of cannons firing in
Tchaikovsky’s 1812 overture.

There has been much less research on the mechanics
of the drumstick–skin interaction than on the excita-
tion of piano strings by the piano hammer (Sect. 15.2.2),
though much of the physics involved is very similar.
In particular, the shortest time that the drumstick can
remain in contact with the skin will be determined by
the time taken for the first reflected wave to return from
the rim of the drum to bounce it off. This is illustrated
schematically in Fig. 15.115, which illustrates qualita-
tively the force applied to the drumhead as a function of
time for a hard and a soft drumstick struck near the cen-
tre (solid line) and then played nearer the edge (dashed).
The overall spectrum of sound of the drum will be con-
trolled by the frequency content of such impulses. Short
contact times will emphasise the higher partials and give
rise to a more percussive and brighter sound. Higher
partials will also be emphasised by the use of metal
beaters or drumsticks with hard-wooden striking heads
rather than leather or soft felt-covered stick heads. This
is illustrated by the second pulse, which would produce
a softer, mellower sound, without such a strong initial
attack. Clearly, the loudness of the drum note will be
proportional to the mass m of the striking drumstick

Force

Time

Heavy–Loud

Light–Quiet
Rim Centre

Hard Soft

Fig. 15.115 Schematic impulses from a striking drumstick,
illustrating the effect of exciting the drum head at different
positions, with different strengths, and with a hard and soft
drumstick

head and its impact velocity v, delivering an impulse
of ≈ mv.

Audio illustrates the change in sound of
a timpani note, as the player progressively strikes the
drum with a hard felt stick, starting from the outside
edge and moving towards the centre, in equal intervals
of ≈ one eighth of the radius. Audio illus-
trates the sound of a timpani when struck at one quarter
of the radius from the edge, using a succession of drum-
sticks of increasing hardness, from a large softly felted
beater to a wooden beater.

In modern performances of baroque and early clas-
sical music, the timpanist will use relatively light sticks,
with leather-coated striking heads, while for music of
the romantic period larger and softer felt-covered drum-
sticks will often be used.

Many drums of ethnic origin are played with the
hands, hitting the drum head with fingers, clenched fists
or open palms to create quite different kinds of sounds.
In some cases, the player can also press down on the
drum head to increase the tension and hence change
pitch of the note. For a double-headed drum, the cou-
pling of the air between the drum heads can even enable
the player to change the pitch and sound of a given note
by applying pressure to the drum head not being struck.

We now consider a number of well-known percus-
sion instruments based on stretched membranes, which
illustrate the above principles. These will include drums
with a well defined pitch, such as kettle drums (timpani)
and the Indian tabla and mrdanga, and drums with no
defined pitch, such as the side and bass drum.

Kettle Drums (Timpani)
The kettle drum or timpani traditionally used a specially
prepared calfskin stretched over a hollow, approxi-
mately hemispherical, copper kettle generally beaten
out of copper sheet. Nowadays, thin (0.19 mm) mylar
sheet is often used in preference to calfskin for the drum
skin, because of its uniformity and reduced susceptibil-
ity to changes in tension from variations in temperature
and humidity. The drum skin is stretched over a support-
ing ring attached to the kettle, with the tension of the
skin typically adjusted using 6–8 tuning screws equally
spaced around the circumference. The player adjusts
these screws to tune the instrument and to optimise
the quality of tone produced. In modern instruments,
a mechanical pedal arrangement can be used to quickly
change the tension and thereby the tuning, by pushing
the supporting ring up against the drumhead. Typically,
such an arrangement can increase the tension by up to
a factor of two, raising the pitch by a perfect fifth. In
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Fig. 15.116 Decaying waveform of a timpani note and FFT
spectra at the start of a note (upper trace) and after 1 s
(lower trace)

the modern classical symphony orchestra, the timpanist
will use two or three timpani of different sizes to cover
the range of pitched notes required.

Figure 15.116 shows the waveform and spectrum
of the immediate and delayed sound of a timpani note
(the first drum note in audio ). The initial
sound includes contributions from all the modes ex-
cited. This includes not only the vibrational modes of
the drum head, but also the air inside the kettle, the
kettle itself and even the supporting legs and vibra-
tions induced in the floor. Many of these vibrations die
away rather quickly, leaving a number of prominent,
slowly decaying, drum-skin modes. Note in particular,
the strongly damped (01) mode at≈ 140 Hz and the less
strongly damped modes (02) and (03) modes at 210 Hz
and 284 Hz, tuned approximately to a perfect fifth and
an octave above the fundamental. As noted by Rayleigh
in relation to church bells [15.3, Vol. 1, Sect. 394],
the pitch of a note is often determined by the higher
quasi-harmonically related partials rather than the low-
est partial present. This is demonstrated by the second
drum beat in , which has all frequency com-
ponents below 250 Hz removed. The perceived pitch at

long times is unchanged, though there is a considerable
loss in depth or body of the resulting sound.

Modal frequencies for a typical kettle drum have al-
ready been listed in Table 15.7, which includes a set of
nearly harmonic modes indicated by asterisks achieved,
in part, by empirical design of the coupled membrane
and kettle air vibrations. To a first approximation, the
modal frequencies are determined by the volume of the
kettle rather than its shape. The smaller the enclosed
volume, the larger its effect on the lowest-order drum-
head modes. Nevertheless, there are distinct differences
in the sounds of timpani used by orchestras in Vienna
and those used elsewhere in Europe (Bertsch [15.205]).
Such differences can be attributed to the Viennese
preference for calfskin rather than mylar drum heads,
a small shape dependence affecting the coupling to the
internal air resonances, and a different tuning mecha-
nism. The modal frequencies of the Viennese timpani
measured by Bertsch were similar to those listed in Ta-
ble 15.7, with the (11), (21), (31) and (41) modes again
forming a quasi-harmonic set of partials, in the approx-
imate ratios 1:1.5:2.0:2.4:2.9. Rather surprisingly, the
relative frequencies of the lower two modes could be
interchanged with tuning.

Indian Tabla and Mrdanga
Another way of achieving a near harmonic set of res-
onances of a vibrating drumhead is to add mass to
the drum head and hence change the frequencies of
its normal modes of vibration. For the single- and
double-headed Indian tabla and mrdanga drums, this
is achieved by selectively loading the drum skin with
several coatings of a paste of starch, gum, iron oxide
and other materials – see Fletcher and Rossing [15.5,
Sect. 18.5]. The acoustics of the tabla was first in-
vestigated by Raman [15.206], who obtained Chladni
patterns for many of the lower-frequency modes of the
drum head. Rossing and Sykes [15.207] measured the
incremental changes in frequency of the loaded mem-
brane as each additional layer was added. A 100 layers
lowered the fundamental mode by about an octave.
The resulting five lowest modes were harmonically re-
lated and including several degenerate modes derived
from the smoothly transformed modes of the original
unloaded membrane. The results were very similar to
those obtained earlier by Raman. Investigations by Ra-
makrishna and Sondhi [15.208] and by De [15.209]
showed that, to achieve a quasi-harmonic set of low-
frequency modes, the areal density at the centre of such
drums should be approximately 10 times that of the
unloaded sections.
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Figure 15.117 illustrates the decaying waveform
and spectra of a well-tuned tabla drum (audio

) from 200 ms FFTs of the initial sound and
after 0.5 s. The spectra show three prominent partials
at 549, 826 and 1107 Hz, in the near-harmonic ratios
1:1.51:2.02, which results in a well-defined sense of
pitch. In contrast to the timpani, these partials dominate
the sound and determine the pitch from the very begin-
ning of the note. Note too the very wide spectrum of the
rapidly decaying initial transient.

Side and Snare Drum
The side or snare drum is the classical two-headed drum
of the modern symphony orchestra. It is usually played
with either very short percussive beats or as a roll, with
rapidly alternating notes from two alternating drum-
sticks. This results in a quasi-continuous noise source,
which can be played over a very wide range of in-
tensities, from very soft to very loud, to support, for
example, a Rossini crescendo. Because the side drum is
designed to produce short percussive sounds or a wide-
band source of noise, little effort is made to tune the
partial frequencies of the two drum heads.

Like the timpani and Indian drums, the vibrational
modes of the drumheads can be strongly perturbed in
frequency by the air coupling. When used as a snare
drum, the induced vibrations of the nonstriking head
can be sufficient for it to rattle against a number of
metal cables tightly stretched a few mm above the sur-
face of the nonstriking head. The resulting interruption
of the vibrations, on impact with the snares, leads to the
generation of additional high-frequency noise and the
sizzle effect of the sound excited. A not dissimilar ef-
fect is used on the Indian tambura, an Indian stringed
instrument investigated by Raman [15.210], which has
a bridge purposely designed to cause the strings to rattle
Fletcher and Rossing [15.5, Fig. 9.30].

Figure 15.118 shows the waveform and time-
averaged FFT of a side-drum roll (audio ).
The spectrum is lacking in spectral features other than
a modest peak in noise at around 100–200 Hz, associ-
ated with the vibration of the lower head against the
snares.

Although the exact placing of the vibrational modes
of the strike and snare heads are of little acoustic
importance, their coupling via the enclosed air illus-
trates the general properties of double-headed drums
of all types. The first four coupled normal modes are
shown in Fig. 15.119, which is based on data from Ross-
ing [15.211, Sect. 4.4]. For a freely supported drum,
momentum has to be conserved, so that normal modes

500 ms
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Fig. 15.117 Decaying waveform of a tabla drum with initial
FFT spectrum (upper trace) and after 0.5 s (lower) illus-
trating the weakly damped, near-harmonic, resonances of
the loaded drumhead

2 s
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0 8

0

–100
1 2 3 4 5 6 7

Fig. 15.118 Time-averaged FFT spectrum and waveform of
the sound of a snared side-drum roll of increasing intensity

with the two heads vibrating in the same phase will also
involve motion of the supporting shell of the drum, as
indicated by the arrows in Fig. 15.119.

As anticipated, the air coupling increases the separa-
tion of the (01) modes from 227 and 299 Hz to 182 and
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Dipole Quadrupole

Monopole Dipole

(01) 227 182 Hz (11) 284 278 Hz

(01) 299 330 Hz (11) 331 341 Hz

Fig. 15.119 Coupled motions of the two drumheads of
a side drum, indicating the change in frequency of the
drumhead modes from air coupling within the drum
and the associated polar radiation patterns (after Zhao
et al. [15.212])

330 Hz, and the (11) modes from 284 and 331 Hz to 278
and 341 Hz. The perturbations in modal frequencies will
always be largest when the coupled modes have similar
frequencies. Such perturbations becomes progressively
weaker at higher frequencies, partly because the cou-
pling from the enclosed air modes becomes weaker and
partly because the frequencies of the two drum-head
modes having the same symmetry become more widely
separated. The higher modal frequencies are therefore
little different from those of the individual drum heads
in isolation.

Figure 15.119 also illustrates the anticipated po-
lar radiation patterns for the normal modes measured
by Zhao [15.212] and reproduced in Rossing [15.202,
Figs. 4.7 and 4.8]. The coupled (10) normal modes act
as a monopole radiation source, when the heads move in
opposite directions, and a dipole source, when vibrating
in anti-phase. In contrast, the (11) modes with heads vi-
brating in phase act as a quadrupole source, and a dipole
source, when vibrating in anti-phase.

Although any induced motion of the relatively
heavy supporting structure will not significantly affect
the frequencies of the normal modes, it can result in
appreciable additional damping. As a consequence, the
sound of a side drum can sound very different depend-
ing on how it is supported – freely suspended on rubber
bands or rigidly supported by a heavy stand (Ross-

Table 15.8 Modal frequencies in Hz of the batter head of
a 82 cm bass drum (after Fletcher and Rossing [15.5])

Mode Batter head with carry
head at lower tension

Batter head with heads
at same tension (Hz)

(01) 39 44, 104
split normal modes

(11) 80 76, 82
split normal modes

(21) 121 120

(31) 162 160

(41) 204 198

(51) 248 240

ing [15.202, Sect. 4.4]). Rossing has also made detailed
vibrational and holographic studies of the free drum
shell [15.202, Fig. 4.5]. As the induced motions are
only a fraction of a percent of those of the drumhead,
such vibrations will not radiate a very large amount of
sound. Nevertheless, they may play an important role in
defining the initial sound.

Bass Drum
The bass drum is large with a typical diameter of
80–100 cm. It can produce a peak sound output of
20 W, the largest of any orchestral instrument. Single-
headed drums are used when a well-defined sense
of pitch is required, but double-headed drums sound
louder because they act as monopole rather than
dipole sources. Modern bass-drum heads generally use
0.25 mm-thick mylar, though calfskin is also used.

The batter or beating drum head is normally tuned
to about a fourth above the carry or resonating head
(Fletcher and Rossing [15.5, Sect. 18.2]). The change
in modal frequencies induced by the enclosed air is
illustrated in Table 15.8 (Fletcher and Rossing [15.5,
Table 18.5]). Note the strong splitting of the lowest
frequency (01) and (11) normal modes, when the two
heads are tuned to the same tension. In this example, the
frequencies of the first five modes are almost harmonic,
giving a sense of pitch to the sound (audio
illustrates the rather realistic synthesised sound of the
first six modes of the batter head tuned to the carry
head with equal amplitude and decay times). Drums
with heads tuned to the same pitch have a distinctive
timbre.

15.4.2 Bars

This section is devoted to percussion instruments based
on the vibration of wooden and metallic bars, both
in isolation and in combination with resonating air
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columns. Such instruments are referred to as idio-
phones – bars, plates and other structures that vibrate
and produce sound without having to be tensioned,
unlike the skins of a drum (membranophones). Repre-
sentative instruments considered in this section include
the glockenspiel, celeste, xylophone, marimbas, vibra-
phone and triangle.

The vibrations of thick and thin plates have al-
ready been considered in the context of the vibrational
modes of the wooden plates of stringed instruments
(Sect. 15.2.6). The most important acoustic modes of
a rectangular plate are the torsional (twisting) and flexu-
ral (bending) modes, both of which involve acoustically
radiating displacements perpendicular the surface of the
plate.

The torsional vibrations of a bar are discussed by
Fletcher and Rossing [15.5, Sect. 2.20]. For a bar
of length L , the frequency of the twisting modes is
given by fn = ncθ/2L , where cθ is the dispersion-
less velocity of torsional waves. For a rectangular
bar with width w significantly larger than its thick-
ness h, by cθ ≈ 2t/w

√
E/2ρ(1+ν), where E is the

Young’s modulus and ν the Poisson ratio. For a bar
with circular, cross-section, like the sides of a triangle,
cθ =√

E/2ρ(1+ν).
Musically, the most important modes of a thin bar

are the flexural modes involving a displacement z per-
pendicular to their length, which for a rectangular bar
satisfies the fourth-order wave equation

E

12(1−ν2)
h2 ∂

4z

∂x4
+ρ ∂

2z

∂t2
= 0 , (15.149)

with standing-wave solutions of the general form

z(x, t) = (A sin kx+ B cos kx

+C sinh kx+D cosh kx)eiωt , (15.150)

where

ω=
√

E

12ρ(1−ν2)
hk2 . (15.151)

As discussed in the earlier section on the vibrational
modes of soundboards and the plates of a violin or gui-
tar, the sinh and cosh functions decay away from the
ends of the bar or from any perturbation in the geometry,
such as local thinning or added mass, over a distance

k−1 ≈
(

E

12ρ
(
1−ν2

)
)1/4√

h

ω
.

Well away from the ends of a bar, the standing-wave
solutions at high frequencies are therefore dominated
by the sinusoidal wave components.

1 : 2.76 : 5.40

1 : 3.9 : 9.23

1 : 3 : 6

1 : 4 : 8

1 : 4 : 9

Fig. 15.120 Ratio of the frequencies of the first three par-
tials of a simple rectangular bar for three selectively
thinned xylophone bars and a typical marimba bar (after
Fletcher and Rossing [15.5])

The lowest flexural modes of a freely supported
thin rectangular bar are inharmonic, with frequencies
in the ratios 1 : 2.76 : 5.40 : 8.93. However, by selec-
tively thinning the central section, the frequency of
the lowest mode can be lowered, to bring the first
four harmonics more closely into a harmonic ratio,
as illustrated schematically for a number of longitudi-
nal cross-sections in Fig. 15.120, which also includes
the measured frequencies of a more-complex-shaped
marimba bar (Fletcher and Rossing [15.5, Figs. 19.2
and 19.7]).

Pitch Perception
The audio contrasts the synthesised sounds
of the first four modes of a simple rectangular bar, fol-
lowed by a note having the same fundamental but with
partials in the ratio 1 : 3 : 6, while the final note has the
inharmonic (1 : 8.96) fourth partial of the rectangular
bar added. Despite the inharmonicity of the partials, the
synthesised sound of a rectangular bar has a surprisingly
well-defined sense of pitch. The main effect of replac-
ing the second and third partials with partials in the ratio
1:3:6 is to raise the perceived pitch by around a tone,
even though the first partial is unchanged at 400 Hz.
This again emphasises that the perceived pitch is deter-
mined by a weighted average of the partials present and
not by the fundamental tone alone. Adding the fourth
inharmonic partial gives an increased edge or metallic
characteristic to the perceived sound, without changing
the perceived pitch.

The metal or wooden bars of tuned percussion in-
struments are usually suspended on light threads or rest
on soft pads at the nodal positions of their fundamen-
tal mode, which reduces the damping to a minimum.
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The resulting 60 dB decay time for an aluminium vi-
braphone bar can be as long as 40 s (Rossing [15.202,
Sect. 7.3]) compared with a few seconds for the lower-
frequency notes on the wooden bars of a marimba
(Rossing [15.202, Sect. 6.4]). The damping of vibrat-
ing bars is therefore highly material dependent and is
largely determined by internal damping losses rather
than radiation. This accounts for the very different
sounds of wooden and metal bars on instruments like
the glockenspiel and xylophone.

Glockenspiel and Celeste
The simplest of all idiophones are those instruments
based on the vibrations of freely supported thin rectan-
gular plates. Such instruments include the glockenspiel
played with a variety of hard and soft round-headed
hammers and the celeste played with strikers operated
from a keyboard, with a sustaining pedal to control the
damping. The playing range of the glockenspiel is typ-
ically two and a half octaves from G5 to C8, while
the celeste has a range of 4–5 octaves, with a separate
box-resonator used for each note.

Both instruments produce a bright, high-pitched,
bell-like, sparkling sound, as in the Dance of the Sugar
Plum Fairy in Tchaikovsky’s Nutcracker Suite. No at-
tempt is made to adjust the thickness of the plates to
achieve a more nearly harmonic set of modes.

Transverse

a

b

c

d

Torsional

f1 = 1.00

f2 = 2.71

fa = 3.57

f3 = 5.15

fb = 7.07

f4 = 8.43

fc = 10.61

f5 = 12.21

fd = 13.95

1

2

3

4

5

Fig. 15.121 Measured flexural and torsional modes of
a glockenspiel bar (after Fletcher and Rossing [15.5])

Figure 15.121 illustrates the lowest order flexural
and torsional modes and measured ratios of frequencies
for a C6 glockenspiel bar (Fletcher and Rossing [15.5,
Fig. 19.1]). A typical wave-envelope and spectrum of
a glockenspiel note is shown in Fig. 15.122. FFT spectra
are shown for 200 ms sections from the initial transient
and after 200 ms. There are two strongly contributing
weakly damped partials at 1045 Hz and 2840 Hz (in
the ratio 1:2.72), which can be identified as the first
two flexural modes of the bar. The lower of the two
long sounding partials gives the sense of pitch, while
the strong inharmonic upper partial gives the note its
glockenspiel character. Audio compares the
recorded glockenspiel note with synthesised tones at
1045 and 2840 Hz, first played separately then together.
In this case, the inharmonicity of the strongly sounded
partials plays a distinctive role in defining the character
of the sound. The spectrum is typical of all the notes on
a glockenspiel, which demonstrates that only a few of

(dB)

(kHz)
0 5

0

–100
1 2 3 4

0.34 s

Fig. 15.122 The waveform envelope and FFT spectra of
the prompt sound (upper) and the sound after ≈ 0.2 s
(lower) of a typical glockenspiel note illustrating the long-
time dominance of a few slowly decaying, inharmonic
partials
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the modes shown in Fig. 15.121 contribute significantly
to the perceived sound.

Xylophone, Marimba and Vibraphone
We now consider a number of acoustically related idio-
phones, with bars that are selectively thinned to produce
a more nearly harmonic set of resonances and well-
defined sense of pitch.

The modern xylophone has a playing range of typ-
ically 3 to 4 octaves and uses wooden bars, which are
undercut on their back surface to improve the harmonic-
ity of the lower frequency modes (Fig. 15.120). Each
bar has an acoustic resonator immediately below it,
consisting of a cylindrical tube, which is closed at the
far end. Any of the flexural and torsional modes can
contribute to the initial sound, when the bar is struck
by a hammer; however, most modes die away rather

(dB)

(kHz)
0 10

0

–100
2 4 6 8

60 ms

Fig. 15.123 The initial 60 ms of a xylophone waveform
showing the rapid decay of high-frequency components
and FFT spectra at the start of the note (upper trace) and
after 0.2 s (lower trace), highlighting the persistence of the
strong low-frequency air resonances excited

quickly so that at longer times the sound is dominated
by the resonances of the coupled pipe resonator.

Figure 15.123 shows the initial part of the waveform
and spectrum of a typical xylophone note ( ),
illustrating the initial large amplitudes and rapid de-
cay of the higher frequency bar modes excited and the
strongly excited but slowly decaying resonances of the
first two modes of the air resonator. All modes con-
tribute to the initial sound but the sound at longer times
is dominated by the lowest-frequency bar modes and
resonantly tuned air resonators.

The marimba is closely related to the xylophone, but
differs largely in its playing range of typically two to
four and a half octaves from A2 (110 Hz) to C7 (2093),
though some instruments play down to C2 (65 Hz). In
contrast to xylophone bars, which are undercut near
their centre to raise the frequency of their second par-
tial from 2.71 to 3.0 above the fundamental, marimba
bars are often thinned still further to raise the frequency
of the second partial to four times the fundamental fre-
quency (Fig. 15.119).

Marimbas produce a rather mellow sound and are
usually played with much softer sticks than tradition-
ally used for the xylophone. Although the marimba is
nowadays used mostly as a solo percussion instrument,
in the 1930s ensembles with as many as 100 marimbas
were played together. In many ways, such ensembles
were the forerunners of today’s Caribbean steelbands,
to be described later in this section.

The vibraphone is similar to the marimba, but uses
longer-sounding aluminium rather than wooden bars
and typically plays over a range of three octaves from
F3 to F6. Like the marimba, the bar thickness is varied
to give a second partial two octaves above the funda-
mental. They are usually played with soft yarn-covered
mallets, which produce a soft, mellow tone. In addition,
the vibraphone incorporates electrically driven rotating
discs at the top of each tuned air resonator, which pe-
riodically changes the coupling. This results in a strong
amplitude-modulated vibrato effect. The wave envelope
of audio is shown in Fig. 15.124 for a suc-
cession of notes played on the vibraphone with vibrato,
which are then allowed to decay freely. The vibrato rate
can be adjusted by changing the speed of the electric
motor. Note the very long decay of the sound, which
can be controlled by a pedal-operated damper.

Triangle
The triangle is a very ancient musical instrument
formed from a cylindrical metal bar bent into the
shape of a triangle, with typical straight arm lengths
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10 ms

Strikes Free decay

Fig. 15.124 Envelope of a succession of notes on the vi-
braphone, which freely decay with modulated coupling to
tuned air resonators to produce an amplitude modulated
vibrato effect

of 15–25 cm. They are usually struck with a similar-
diameter metal rod. Although the instrument is small
and therefore a very inefficient acoustic radiator, it pro-
duces a characteristic high-frequency ping or repetitive
high-pitched rattle, which is easily heard over the sound
of a large symphony orchestra (audio ). The
quality of the sound can be varied by beating at different
positions along the straight arms. The triangle is usu-
ally supported be a thread around the top bend of the
hanging instrument.

The flexural modes of a freely suspended bar of cir-
cular cross section are fn ≈ (a/2)

√
E/ρ(2n+1)2π/8L2,

with frequencies in the ratios 32:52:72:92:112:132 (see
Sect. 15.2.4). Transverse flexural vibrations can be ex-
cited perpendicular or parallel to the plane of the
instrument. For vibrations perpendicular to the plane,
the bends are only small perturbations. Transverse
modes in this polarisation are therefore almost identical
to those of the straight bar from which the triangle are
bent (Rossing [15.213, Sect. 7.6]). However, for flexu-
ral vibrations in the plane, there is a major discontinuity
in impedance at each bend, because the transverse vi-
brations within one arm couple strongly to longitudinal
vibrations in the adjacent arms. Hence each arm will
support its own vibrational modes, which will be cou-
pled to form sets of normal-mode triplets, since each
arm is of similar length.

Figure 15.125 illustrates the envelope and 50 ms
FFTs of the initial waveform and after 1 s, illustrating
the very well-defined and only weakly attenuated high-

(dB)

(kHz)
0 10

0

–100

2.5 s

Fig. 15.125 The decaying waveform and FFT spectra at the
start (upper trace) and after 1 s (lower trace) of a struck
triangle note

frequency modes of the triangle. Note the wide-band
spectrum at the start of the note from the initial impact
with the metal beater.

Chimes and Tubular Bells
We include orchestral chimes and bells in this sec-
tion because their acoustically important vibrations
are flexural modes, just like those of a xylophone or
triangle. The radius of gyration of a thin-walled cylin-
drical tube of radius a is ≈ a/

√
2. The frequency

of the lowest flexural modes is then be given by
fn ≈ a

√
E/2ρ(2n+1)2π/8L2.

Orchestral chimes are generally fabricated from
lengths of 32–38 mm-diameter thin-walled tubing, with
the striking end often plugged by a solid mass of brass
with an overhanging lip, which provides a convenient
striking point.

Fletcher and Rossing [15.5, Sect. 19.8] note that the
perceived pitch of tubular bells is determined by the
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frequencies of the higher modes, excited with frequen-
cies proportional to 92, 112, and 132, in the approximate
ratios 2 : 3 : 4. The pitch should therefore sound an oc-
tave below the lowest of these. Readers can make there
own judgement from audio , which compares
the rather realistic sound of a tubular bell synthesised
from the first six equal amplitude modes of an ideal
bar sounded together, followed by the 92, 112, and 132

modes in combination, and then by a pure tone an oc-
tave below the 92 partial. Such comparisons highlight
the problem of subjective pitch perception in any sound
involving a combination of inharmonic partials.

15.4.3 Plates

Flexural Vibrations
This section describes the acoustics of plates, cym-
bals and gongs, which involve the two-dimensional
flexural vibrations of thin plates described by the
two-dimensional version of (15.149). Unlike stringed
instruments, we can usually assume that the plates of
percussion instruments are isotropic. Well away from
any edges or other perturbing effects such as slots or
added masses, the standing-wave solutions at high fre-
quencies will be simple sinusoids. However, close to
the free edges, and across the whole plate at low fre-
quencies, contributions from the exponentially decaying
solutions will be equally important over a distance
≈ (E/12ρ(1−ν2))1/4(h/ω)1/2. The nodes of the sinu-
soidal wave contributions will be displaced a distance
≈ 1/4λ from the edges. Hence, the higher frequency
modes of a freely supported rectangular plate of length
a, width b and thickness h will be given, to a first ap-
proximation, by

ωmn ≈ h

(
E

12ρ
(
1−ν2

)
)1/4

π2

×

[(
m+1/2

a

)2

+
(

n+1/2

b

)2
]
.

(15.152)

A musical instrument based on the free vibrations of
a thin rectangular metal plate is the thunder plate, which
when shaken excites a very wide range of closely spaced
modes, which can mimic the sharp clap followed by the
rolling sound of thunder in the clouds.

Before the age of digital sound processing, such
plates were often used in radio and recording companies
to add artificial reverberation to the recorded sound. The
plate was suspended in a chamber along with a loud-
speaker and pick-up microphone. The sound to which

reverberation was to be added was played through the
loudspeaker, which excited the weakly damped vibra-
tional modes of the plate, which were then re-recorded
using the microphone to give the added reverberant
sound. As described earlier (Sect. 15.2.4), the density
of vibrational modes of a flat plate of area A and thick-
ness h is given by 1.75A/cLh. This can be very high
for a large-area thin metal sheet, giving a reverberant
response with a fairly uniform frequency response.

Most percussion instruments which involve the flex-
ural vibrations of thin sheets are axially symmetric, such
as cymbals, gongs of many forms, and the vibrating
plate regions of steeldrums or pans used in Caribbean
steelbands. Such instruments have many interesting
acoustical properties, many derived from highly nonlin-
ear effects when the instrument is instrument is struck
strongly.

The displacements of the flexural modes of an axi-
ally symmetric thin plate in polar coordinates are given
by

z(r, φ, t) = [AJm (kmnr)+ BIm (kmnr)]

× [C cos (mφ)+D sin(mφ)] eiωmnt ,

(15.153)

where Jm(kr) and Im(kr) are ordinary and hyperbolic
Bessel functions, the equivalent of the sinusoidally
varying and exponentially damped sinh and cosh func-
tions used to describe flexural waves in a rectangular
geometry. The hyperbolic Bessel functions are impor-
tant near the edges of a plate or at any perturbation, but
decay over a length scale of ≈ k−1

mn . The values of kmn
are determined from the boundary conditions, in just the
same way as considered earlier for rectangular plates.

The first six vibrational modes for circular plates
with free, hinged and clamped outside edges are shown
in Fig. 15.126, with frequencies expressed as a ratio rel-
ative to that of the fundamental mode (Fletcher and
Rossing [15.5, Sect. 3.6]). In each case, for large val-
ues of m and n, the frequency is given by the empirical
Chladni’s Law (1802),

ωmn ≈
√

E

12ρ
(
1−σ2

) π
2h

4a2
(m+2n)2 , (15.154)

justified much later by Rayleigh [15.3, Vol. 1, Chap. 10].
For arched plates, Rossing [15.214] showed that the fre-
quencies are more closely proportional to (m+bn)p,
where p is somewhat less than 2 and b is in the the range
2–4.

All the axially symmetric modes involving nodal
diameters are doubly degenerate, with a complementary
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(2,0) (0,1) (3,0) (1,1) (4,0) (5,0)

1 1.73 2.33 3.91 4.11 6.30

(0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

1 2.8 5.15 5.98 9.75 14.09

(01) (1,1) (2,1) (0,2) (3,1) (1,2)

1 2.08 3.41 3.89 5.00 5.95

Free

Hinged

Clamped

cLh
a2

f01= 0.229

cLh
a2

f01= 0.469

cLh
a2

f20= 0.241

Fig. 15.126 The vibrational modes of circular plates with
free, hinged and clamped outer edges, with the lowest
frequencies and ratio of frequencies of higher modes in-
dicated

solution with nodal diameters bisecting those drawn
in Fig. 15.126. Any perturbation of the structure from
cylindrical symmetry will split the degeneracy of such
modes. Modes with a nodal diameter passing through
the point at which the plate is struck will not be excited.

Instruments like the cymbal are slightly curved over
their major surfaces but with a sudden break to a more
strongly arched central section, to which the leather
holding straps or support stand are attached. The outer
edges can therefore be treated as free surfaces with
the transition to the central cupped region providing
an additional internal boundary condition, which will
be intermediate between clamped and hinged. In con-
trast, gongs tend to have a relatively flat surface but
with their edges turned though a right angle to form
a cylindrical outer rim. The rim will add mass to the
modes involving a significant radial displacement at the
edge, but will also increase the rigidity of any mode
having an azimuthal dependence. Thus, although the
modes of an ideal circular plate provide a guide to
modal frequencies and waveforms, we would expect
significant deviations in modal frequencies for real per-
cussion instruments. Any sudden change in plate profile
on a length scale smaller than an acoustic wavelength
will involve a strong coupling between the transverse
flexural and longitudinal waves resulting in reflections
from the discontinuity in acoustic impedance. This is
why, for example, the indented region on the surface of
a steeldrum pan can support localised standing waves on
the indented regions. Indented areas of different sizes

can then be used to produce a wide range of different
notes on a single drum head with relatively little leakage
in vibrations between them.

Nonlinear Effects
Figure 15.127 illustrates the cross section of some typ-
ical axially symmetric cymbals, gongs and a steelpan.
Nonlinear effects in such instruments can be important
when excited at large amplitudes. Such effects are par-
ticularly marked for gongs with relatively thin plates.
For Chinese opera gongs, the nonlinearity can result
in dramatic upward or downward changes in the pitch
of the sound after striking. In addition, nonlinearity
results in mode conversion, with the high-frequency
content of cymbal and large gong sounds increasing
with time, giving a characteristic shimmer to the sound
quality.

The shape dependence of the nonlinearity arises
from the arching of the plate. For the lowest mode
of a flat plate, the potential energy initially increases
quadratically with displacement, though the energy in-
creases more rapidly at large-amplitude excursions from
stretching, as indicated schematically in Fig. 15.128a.
Although the energy of an arched plate initially also in-
creases quadratically with distance about its displaced
equilibrium position, the energy will first increase then
decrease when the plate is pushed through the central
plane, (Fig. 15.128b). If the plate were to be pushed
downwards with increasing force, it would suddenly
spring to a new equilibrium position displaced about
the central plane by the same initial displacement, but in
the opposite direction. In combination with a Helmholtz
radiator, this is indeed how some insects such as ci-
cadas generate such strong acoustic signals – as high as
1 mW at 3 kHz (see Chap. 19 by Neville Fletcher). The
nonlinear bistable flexing of a belled-out plate can be

Cymbal
Lowering pitch

Rising pitch

Large gong or tam-tam

Steel pan Chinese opera gongs

Fig. 15.127 Schematic cross sections of axially symmetric
plate instruments and a steelpan, with arrows indicating the
principal areas producing sound
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Fig. 15.128a,b Potential energy and restoring force of
(a) a clamped flat and (b) arched circular plate as a function
of displacement from the central plane

disastrous, turning a cheap pair of thin cymbals inside
out, when crashed together too strongly.

The central peak in potential energy of an arched
plate, like the gently domed Chinese gong illustrated in
Fig. 15.127, therefore leads to a reduced restoring force
for large-amplitude vibrations and a lower pitch. In con-
trast, the restoring force of a flat plate, like the central
playing region of the upper of the two Chinese gongs,
increases with vibration amplitude. This arises from the
additional potential energy involved in stretching the
plate, in just the same way as we considered earlier for
the large-amplitude vibrations of a stretched string.

For a flat plate of thickness h, Fletcher [15.215]
has shown that the increase in frequency of the low-
est axisymmetric mode increases with the amplitude of
vibration a approximately as

ω≈ ω0

[
1+0.16

(
a

h

)2
]
. (15.155)

The nonlinearity also generates additional components
at three times the frequency of any initial modes present
and at multiples of any new modes excited. In add-
ition it produces cross-modulation products when more
than one mode is present. For example, for modes with
frequencies fi and f2 initially present, the nonlinearity
will generate inter-modulation products at 2 f1± f2 and
2 f2± f1.

Grossmann et al. [15.216] and Fletcher [15.215]
have considered the vibrations of a spherical-cap shell

ω/ω0

a/H0

1.4

1.2

1.0

0.8

0.6

0.4
1 2

h/H 2.0
1.2

1.0
0.8

0.6

0.4

0.2

0.2

Fig. 15.129 Vibration amplitude a dependence of fre-
quency of lowest axisymmetric mode of a spherical cap
of dome height H as a function of thickness h to H ratio

of height H and thickness h. Interestingly, the change in
frequency of the asymmetric vibrations about the equi-
librium point depends only on the ratio of the amplitude
to the arching height, a/H , as illustrated in Fig. 15.129.
When the height of the dome is much less than the
thickness, the frequency increases approximately as a2,
as expected from the induced increase in tension with
amplitude. However, when the arching becomes compa-
rable with and greater than the thickness, the asymmetry
of the potential energy dominates the dynamics and re-
sults in an initial decrease in frequency, which increases
strongly with the ratio of arching height to thickness.
At very large amplitude, a � H , the frequency is dom-
inated by the increase in tension and therefore again
increases with amplitude like a flat plate. At large am-
plitudes, Legge and Fletcher [15.217] have shown that
changes in the curvature of the plate profile result in
a large transfer of energy to the higher-frequency plate
modes.

We now show how many of the above properties re-
late to the sounds of cymbals, gongs of various types
and steelpans.

Cymbals
Many types of cymbals are used in the classical sym-
phony orchestra, marching bands and jazz groups. They
are normally made of bronze and have a diameter of
20–70 cm. The low-frequency modes of a cymbal are
very similar to those of a flat circular plate and can
be described using the same (mn) mode nomencla-
ture (Fletcher and Rossing [15.5, Fig. 20.2]). However,
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small changes in curvature across a cymbal will results
in modes that are linear combinations of ideal circular-
plate modes.

Cymbals are usually played by striking with
a wooden stick or soft beater or a pair can be crashed
together, each method producing a distinctive sound.
They can even be played by bowing with a heavy
rosined bow against the outer rim. Rossing and Shep-
herd showed that the characteristic 60 dB decay time
of the excited modes of a large cymbal varies ap-
proximately inversly proportional with frequency, with
a typical decay time for the lowest (20) mode as long as
300 s (Fletcher and Rossing [15.5, Fig. 20.5])

Figure 15.130 shows the waveform envelope and
spectra of the initial sound of a cymbal crash and af-
ter 1 s. Audio illustrates a recorded cymbal
crash followed by the same sound played first through a
0–1 kHz and then a 1–10 kHz band-pass filter, illustrat-
ing the decay of the low- and high-frequency wide-band
noise.

When a cymbal is excited with a drumstick, waves
travel out from the excitation point with a dispersive
group velocity proportional to k, inversely proportional
to the dimensions of the initial flexural indention of the
surface made by the drumstick. The dispersive pulse
strikes and is reflected from the edges of the cymbal
and the transitional region to the central curved cup, so

(dB)

(kHz)
0 10

0

–20

–40

–60
1 2 3 4 5 6 7 8 9

3s 60 ms

0 s

1 s

Fig. 15.130 Wave envelope and spectrum at start and af-
ter 1 s of a cymbal clash illustrating wide-band noise at all
times

that eventually the energy will be dispersed across the
whole vibrating surface. This has been investigated us-
ing pulsed video holography by Schedin et al. [15.218].
On reflection there will also be considerable mixing of
modes. In addition, because the plates are rather thin
and are often hit extremely strongly, nonlinear effects
are important. On large cylindrical plates this results in
the continuous transfer of energy from strongly excited
low-frequency modes to higher modes. Many of the
nonlinear effects can be investigated in the laboratory
using sinusoidal excitation. Measurements by Legge and
Fletcher [15.217] have revealed a wide range of nonlin-
ear effects including the generation of harmonic, bifur-
cations and even chaotic behaviours at large intensities.

When a plate is struck by a beater, the acoustic
energy is distributed across a very wide spectrum of
closely spaced resonances of the plate. To distinguish
individual partials requires the sound to be sampled over
a time of at least ≈ 1/Δ f , where Δ f is the separation
of the modes at the frequencies of interest. However,
because the modes of a large cymbal are so closely
spaced, the times involved can be rather long. Unlike
the sound of pitched instruments such as the glocken-
spiel and xylophone, there are no particular resonances
of the cymbal that dominate the sound, which is charac-
terised instead by the sizzle produced by the very wide
spectrum of very closely spaced resonances almost in-
distinguishable from wide-band high-frequency noise.

Large Gongs and Tam-Tams
Gongs are also very ancient instruments, which have
a very characteristic sound when strongly struck by
a soft beater, notably as a prelude to classic films by
the Rank organisation. A typical tam-tam gong used in
a symphony is a metre or even larger in diameter. It is
made of bronze and, like cymbals, is sufficiently ductile
not to shatter when strongly hit. The damping is very
low, so the sound of large gongs can persist for very
long times.

When initially struck strongly by a soft beater,
the initial sound is largely associated with the lower-
frequency partials that are strongly excited. However,
on a time scale of a second or so, the sound can ap-
pear to grow in intensity, as nonlinear effects transfer
energy from lower- to higher-frequency modes (audio

). This is illustrated in Fig. 15.131 (Fletcher
and Rossing [15.5, Fig 20.8]), which shows the build up
and subsequent decay of acoustic energy in the higher-
frequency bands at considerable times after the initial
impact. The fluctuations in intensity within these bands
were taken as evidence for chaotic behaviour. How-
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0.4 s
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2000
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Fig. 15.131 Buildup and decay in intensity of a struck tam-
tam sound in frequency bands centred on the indicated
frequencies (after Fletcher and Rossing [15.5])

ever, even in a linear system, interference between the
large number of very closely spaced inharmonic partials
would also result in apparently random fluctuations in
amplitude.

Chinese Opera Gongs
Chinese gongs provide the most dramatic illustration
of nonlinearity in percussion instruments, with upwards
or downwards pitch glides of several semitones over
a sizeable fraction of a second after being strongly
struck. The direction of the pitch glide depends on the
profile of the vibrating surface as previously described.

Figure 15.132 shows the decaying waveforms of the
sound of three Chinese gongs with a downward pitch
glide (audio ) played in succession. The ini-
tial spectrum of the third note played is followed by
spectra at 0.75 and 1.5 s after striking, illustrating the
transfer of energy to lower-frequency modes. The much
broader width of the initial spectrum reflects the de-
crease in lifetime of the initial modes struck resulting
from the nonlinear loss of energy to higher-frequency
modes. The two well-defined peaks between the two
major peaks are from the long-ringing principal partials
of the first two gongs.

(Hz)
200 500300 400

8 s

A B C

C

B
A

C

0
0.75 s
1.50 s

Fig. 15.132 The wave envelope of sounds from three
downward-sliding Chinese gongs followed by the spec-
trum of the third gong at the start, after 0.75 and 1.5 s
illustrating the nonlinear frequency shifts

Steelpans
Finally, in this section on percussion instruments based
on vibrating plates, we consider steelpans originating
from the Caribbean, which were initially fabricated by
indenting the top of oil cans left on the beaches by
the British navy after World War II. They have become
a immensely popular instrument in that part of the world
and are just as interesting from a musical acoustics
viewpoint (see Fletcher and Rossing [15.5, Sect. 20.7]
for further details).

Pitched notes on a given drum are produced by
hammered indentations of different sizes on the top
face of the drum. Different ranges of notes are pro-
duced by drums or pans of different sizes (e.g. lead
tenor, double tenor, alto, cello and bass). Typical in-
dented regions on a double-tenor steelpan are shown
in Fig. 15.133, adapted from drawings for a full set
of pans in Fletcher and Rossing [15.5, Fig. 20.17].
The various indented areas on the drum head can be
considered as an array of relatively weakly coupled
resonators. An individual indented area on an infi-
nite sheet would have very similar acoustic modes as
those of a hemispherical cap indented in an infinite
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E4
B4

B1

F4

A1

A4

C#4

G4

G5
Eb5

B5

F5

A5

C#5

C#6

Fig. 15.133 Typical indentation areas in a tenor steelpan
(after Fletcher and Rossing [15.5])

plate. The frequency of the modes would be deter-
mined by the size and arching of the indented areas.
The effective cap size would be defined by the rate
of change of the curvature of the plate and the asso-
ciated change in the acoustic impedance at the edge
of the indented region. However, all such regions on
a steelpan will be coupled together by the relatively
weak transfer of acoustic energy between them, to form
a set of coupled modes. Hitting one particular region
will therefore excite other regions, especially those that
have closely matching partials. The coupling between

(kHz)
0 21

0.28 s

0.1s

0 s

Fig. 15.134 Waveform and initial and time-delayed spectra
of the note C#4 on a steeldrum

such regions has been investigated holographically by
Rossing [15.202, Fig. 20.20].

Audio illustrates a succession of notes
played on a steeldrum. Figure 15.134 shows a typi-
cal decaying waveform with initial and time-delayed
spectra of a single note. A relatively large number of
well-defined modes can easily be identified. However,
the subjective absolute pitch of the note is not par-
ticularly well defined and there is a strong sense of
pitch circularity in the sound of an ascending scale
(Sect. 15.1.3 and audio ), sometimes making
it difficult to identify the octave to which a partic-
ular note should be attributed. Note the increase in
the amplitude of the second partial with time, which
could result from nonlinear effects in such thin-walled
structures, or possibly from interference beats between
degenerate modes split in frequency by the lack of axial
symmetry of the hand-beaten indentations.

15.4.4 Shells

Blocks and Bells
Finally, we consider the acoustics of three-dimensional
shell-like structures. This could include percussion in-
struments such as the wooden-block and hollow gourd
instruments like the maracas. However, the physics
of such instruments is essentially the same as that of
the soundbox of stringed instruments and involves lit-
tle of additional acoustic interest. In this section, we
will therefore concentrate on the acoustics of bell-like
structures, which are usually axially symmetric struc-
tures, closed at one end, and of variable thickness and
radius along their length. We will also consider nonax-
isymmetric bells with a quasi-elliptical cross section,
which produce two different pitched notes, depending
on where the bell is struck. All such structures have
a rich spectrum of modes, which are generally tuned
to give long-ringing notes with a well-defined sense of
pitch. The bronze used in their construction is typically
an alloy of 80% copper and 20% tin and has to be suf-
ficiently ductile not to crack under the impact of the
beater or clapper. Metallurgical treatment is required to
produce a grain structure producing little damping at
acoustic frequencies.

Some of the oldest bells are to be found in China.
Such bells are supreme examples of the art of bronze
casting dating to the fifth century BC. Bells in church
towers have traditionally marked the passage of time,
while peals of bells with internal swinging clappers con-
tinue to summon the faithful to worship. In more recent
times, carillons with up to 77 tuned bells have been
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developed to play keyboard music from the top of spe-
cially constructed bell towers, notably in the centres of
Dutch and American towns and college campuses. Bells
come in all sorts of shapes and sizes ranging from small
hand bells to the giant church bells on display inside
the Kremlin walls. However, the acoustics of all bells is
essentially the same, so no attempt will be made to pro-
vide a comprehensive coverage of every type (for such
information, see Fletcher and Rossing [15.5, Chap. 21]
and Rossing [15.202]).

Bell modes can be related to the longitudinal, tor-
sional and flexural modes of a cylindrical disc that is
axially deformed into a bell-shaped domed structure.
Although the modal frequencies will clearly be strongly
perturbed by such a transformation, the modal shapes
will remain unchanged, as illustrated in Fig. 15.135,
where m represents the number of radial nodal lines and
n the number of nodal circles between the (fixed) centre
and free edge.

The first example in Fig. 15.135 illustrates the rim
displacements of the (0, n) extensional modes. Al-
though such breathing modes would be efficient sound
radiators the energy involved in stretching the surfaces
of the bell leads to very high modal frequencies, so that
such modes are not strongly excited. Likewise, the tor-
sional (0, n)–modes involve no motion perpendicular
to the bell surfaces, and therefore generate a negligi-
ble amount of sound. With the bell rigidly supported at
its top, the m = 1 swinging modes again involve large
elastic strains and cannot be strongly excited. The first
modes to produce a significant amount of sound are
therefore the m = 2 and above flexural modes, which
involve the transverse motions of the outer edges with
negligible extension in circumferential length for small
amplitude vibrations. When the wavelength of the flex-
ural waves is much smaller than the overall curvature,
the vibrational modes will be closely related to the flex-

(n, m) bell modes

0 0 1 2 3m

0 1 2 3n

Extensional Torsional Radially flexural

Fig. 15.135 Nomenclature of the (m, n) modes of a bell
illustrating displacements of rim for given m-values

ural waves of a circular disc, with frequencies satisfying
Chladni’s generalised empirical law, fmn ≈ c(m+2n)p,
as confirmed by Perrin et al. [15.219].

The flexural modes involve radial displacements
proportional to cos(mφ). Continuity requires that there
must also be a tangential displacement, such that u+
∂v/∂φ = 0, where u and v are the radial and tangen-
tial velocities respectively. Coupling to the tangential
motion explains why it is possible to feed energy into
a vibrating wine glass or the individual glass resonators
of a glass harmonica (Rossing [15.202, Chap. 14]), by
rubbing a wetted finger around the rim. The excitation is
very similar to the slip–stick mechanism used to excite
the bowed string (Sect. 15.2.4).

Figure 15.136 illustrates a set of holographic meas-
urements by Rossing [15.202, Fig. 12.4], which is
typical of most bell shapes. The (m, 1) and (m, 2)
modes can immediatly be related to the (m, n) modes
of a cupped disc. However, there is a distinct change
in character for n > 0, with an additional node appear-
ing close to the rim – referred to as a (m, 1#) mode.
Some insight is provided by the finite element solu-
tions for a typical large English church bell illustrated
in Fig. 15.137 [15.220]. The three modes illustrated are
very similar to the (3, 0), (3, 1) and (3, 2) modes ex-
pected from the simple cupped disc model, except for
the lowest frequency (3, 0) mode, in which the top sur-
faces of the bell move in antiphase with the rim, to

2,1 3,1 4,1 5,1 6,1

2,0 3,0 4,1# 5,1# 6,1#

2,2 3,2 4,2 5,2 6,2

Fig. 15.136 Holographic interferograms and nomencla-
ture for vibrational modes of a hand bell (after Ross-
ing [15.202])
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(3,1) (3,1#) (3,2)

Fig. 15.137 Finite-element solutions for the lowest-order
m = 3 modes of an English church bell (after Perrin
et al. [15.221]) illustrating the (3,1), (3,1#) and (3,2) modes

give a nodal line about half-way along the length. Sim-
ilarly, the anticipated (4, 0), (5, 0) and (6, 0) modes of
the handbell investigated by Rossing [15.202] acquire
an additional nodal line close to the end rim denoted as
(4, 1#), (5, 1#) and (6, #) modes. Such features can gen-
erally only be accounted for by detailed computational
analysis.

Bell Tuning
Figure 15.138 shows the frequencies and associated
modes of a well-tuned traditional church bell (Ross-
ing and Perrin [15.222]), ordered into groups based on
mode shapes, which enable correlations to be made be-
tween bells of different shapes and sizes.

Group I

Group 0

Group II

Group III

End view

Tierce Nominal (Twelfth) (Upper octave)
(2,0) 0.5

Prime

Quint (Major third)1.0

0.30

0.19
0.54

0.19

0.54

(3,1) 1.2 (4,1) 2.0 (5,1) 3.0 (6,1) 4.2

(3,1#) 1.5 (4,1#) 2.5 (5,1#) 3.7 (6,1#) 5.0

(3,2) 2.6 (4,2) 3.3 (5,2) 4.5 (6,2) 5.9(2,2) 2.7

Fig. 15.138 Measured frequencies for a typical D5 church bell, in-
dicating the relative frequencies of the observed mode, with the
traditional names associated with such modes indicated (after Ross-
ing and Perrin [15.222])

Fine-quality bells are carefully tuned by the bell
maker, so that the lowest modes have harmonically
related frequencies, thereby achieving a well-defined
sense of pitch. This is achieved by selective thinning
of the thickness of the bell on a very large lathe after
its initial casting. In an ideally tuned bell, the principal
modes are designated as the hum (2,0) mode, an octave
below the prime or fundamental (2,1#) mode. A minor
third above the prime (ratio 5:4) is the tierce (3,1) mode,
a perfect fifth above that (ratio 3:2) is the quint or fifth
(3,1#) mode, and an octave above is the nominal (4,1)
mode. Fletcher and Rossing [15.5, Table 21.1] com-
pare these and higher modes with measured values for
a particular bell.

The art of tuning the partials of bells to achieve
a well-sounding note was initially developed in the sev-
enteenth century in the low countries (what is now
Holland and the northern parts of Germany and France).
Many fine bells from this period by François and
Pieter Hemony are still in use in carillons today (Ross-
ing [15.202]). However, the art of bell tuning then ap-
pears to have been lost until the end of the 19th century,
when it was rediscovered by Canon Arthur Simpson
in England, following Lord Rayleigh’s pioneering re-
search on the sound of bells [15.3, Vol. 1, Sect. 235].

Acoustic Radiation
The strongest-sounding partials of most bells are the
group I (m,1) modes, with a nodal circle approxi-
mately halfway up the bell (Fletcher and Rossing [15.5,
Sect. 21.11]). Such modes have 2m antinodal areas
providing spatially alternating sound sources in anti-
phase. The radiation efficiency of such modes increases
rapidly with size of bell and frequency. If the acoustic
wavelength is much larger than the separation of such
antinodes, the sound from such sources will tend to can-
cel out. However, above a crossover frequency, such
that the velocity of sound is equal to that of the flex-
ural waves on the surface of the bell, vflex =√

1.8cLh f ,
the spacing between the antinodes will exceed the wave-
length in air and the modes will radiate more efficiently.
For large church bells, this condition is satisfied for
almost all but the very lowest partials, so almost all par-
tials radiate sound rather efficiently. In contrast, hand
bells with rather thin walls are significantly less effi-
cient. There is also a small intensity of sound radiated
axially at double the modal frequencies, from the in-
duced fluctuations in the volume of air enclosed within
the bell.

When a bell is struck, usually by a cast or wrought-
iron, ball-shaped, clapper, the first sound heard, the
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strike note, contains contributions from the very large
range of largely inharmonic partials of the bell. Never-
theless the listener can usually identify a pitch to the
initial note, determined by the prominent partials ex-
cited. However, it is not always easy to attribute the
pitch of a note to a particular octave, which is a com-
mon feature of many struck percussion instruments (e.g.
notes on a xylophone, steeldrum and even timpani). The
pitch of the strike note appears to be determined prin-
cipally by the excited partials with frequencies in the
ratios 2:3:4. The ear attributes the pitch to be that of the
missing fundamental an octave below the lowest of the
partials principally excited, which does not necessar-
ily correspond to the pitch of the lowest partial excited,
unless the bell is well tuned.

The majority of the higher partials decay rather
quickly, with the long-term sound dominated by the
hum note. For a 70 cm church bell, Perrin et al. [15.219]
measured T60 decay times of 52 s for the (2,0) hum
mode, 16 s for the (2.1#) and (3,1) prime and minor third
modes, 6 s for the (4,1) octave and 3 s for the (4,1#) up-
per major third, with progressively shorter decay times
for the higher modes. Audio illustrates the
synthesised sound of the above harmonic modes excited
with equal amplitudes. This is followed by a synthe-
sised bell with a major rather than a minor third partial.
Such a bell has recently been realised (1999) based
on FEA studies at the Technical University in Eind-
hoven in collaboration with the Eijsbouts Bell foundry.
It produces a less mournful sound when played in the
major scale music in a carillon. In both cases the syn-
thesised sound reproduces the gentle sound of a bell
rather well, though it lacks the initial clang that results
from the higher-frequency inharmonic modes of a real
bell.

As an example of the waveform and spectrum of
a large bell, in Fig. 15.139 and audio signal ,
we illustrate the sound and rich spectrum of partials
of one of the most famous large bells in the world,
Big Ben, hung high above the Houses of Parliament
in London. This bell is broadcast each day following
the Westminster Chimes, marking the hours and end of
broadcasting on the BBC each night for UK listeners.

Non-Axial Symmetry
Bell modes with m > 1 are doubly degenerate with
orthogonal modes varying as cos mφ and sin mφ and
nodal lines in the azimuthal directions that bisect each
other. Any departures from axial symmetry will lift the
degeneracy and give rise to a split pair of orthogonal
modes. If both modes are excited together, the two fre-

(kHz)
0 0.80.6 10.40.2

5 s

Fig. 15.139 Decaying vibrations and spectrum of Big Ben,
London

quencies will beat against each other, as already evident
in the sound of Big Ben and in the sound ( )
of a slightly asymmetrical glass beaker with a pour-
ing spout, which lifts the degeneracy of the otherwise
axially symmetric modes.

Bells with strongly distorted or elliptical cross sec-
tions can have two completely different pitches, which
can be sounded independently by beating at the antin-
odal positions of one set of modes mode and nodes of
the other. Drums with quasi-elliptical cross sections will
therefore sound a single note when struck at the narrow-
est and widest cross-sectional radii, and a second note,
when struck at appropriate positions in between.

A dramatic example of axially asymmetric bells is
provided by the 65 ancient bells from the tomb of Zeng
Hou Yi found at Sui Xiang from around 433 BC. These
bells from the second millennium BC are masterpieces
of Chinese art and bell casting. They have oval cross
sections and range from small hand bells to well over
1.5 m in height. When struck at different positions along
the flattened surfaces, two quite distinct tones can be ex-
cited, which were designed to be about a major or minor
third apart. For further details of these and other Chinese
and other eastern bells see Rossing [15.202, Chap. 13]
and [15.223].
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The Human V16. The Human Voice in Speech and Singing

Björn Lindblom, Johan Sundberg

This chapter describes various aspects of the
human voice as a means of communication in
speech and singing. From the point of view of
function, vocal sounds can be regarded as the end
result of a three stage process: (1) the compression
of air in the respiratory system, which produces
an exhalatory airstream, (2) the vibrating vocal
folds’ transformation of this air stream to an
intermittent or pulsating air stream, which is
a complex tone, referred to as the voice source,
and (3) the filtering of this complex tone in the
vocal tract resonator. The main function of the
respiratory system is to generate an overpressure
of air under the glottis, or a subglottal pressure.
Section 16.1 describes different aspects of the
respiratory system of significance to speech and
singing, including lung volume ranges, subglottal
pressures, and how this pressure is affected by
the ever-varying recoil forces. The complex tone
generated when the air stream from the lungs
passes the vibrating vocal folds can be varied in at
least three dimensions: fundamental frequency,
amplitude and spectrum. Section 16.2 describes
how these properties of the voice source are
affected by the subglottal pressure, the length and
stiffness of the vocal folds and how firmly the vocal
folds are adducted. Section 16.3 gives an account of
the vocal tract filter, how its form determines the
frequencies of its resonances, and Sect. 16.4 gives
an account for how these resonance frequencies
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or formants shape the vocal sounds by imposing
spectrum peaks separated by spectrum valleys,
and how the frequencies of these peaks determine
vowel and voice qualities. The remaining sections
of the chapter describe various aspects of the
acoustic signals used for vocal communication
in speech and singing. The syllable structure is
discussed in Sect. 16.5, the closely related aspects
of rhythmicity and timing in speech and singing
is described in Sect. 16.6, and pitch and rhythm
aspects in Sect. 16.7. The impressive control of all
these acoustic characteristics of vocal signals is
discussed in Sect. 16.8, while Sect. 16.9 considers
expressive aspects of vocal communication.

16.1 Breathing

The process of breathing depends both on mechanical
and muscular forces (Fig. 16.1).

During inspiration the volume of the chest cavity is
expanded and air rushes into the lungs. This happens
mainly because of the contraction of the external in-
tercostals and the diaphragm. The external intercostal

muscles raise the ribs. The diaphragm which is the
dome-shaped muscle located below the lungs, flattens
on contraction and thus lowers the floor of the thoracic
cavity.

The respiratory structures form an elastic mechan-
ical system that produces expiratory or inspiratory
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Fig. 16.2 Subglottal pressures produced at different lung
volumes in a subject by the recoil forces of rib cage and
lungs. The resting expiratory level (REL) is the lung vol-
ume at which the inhalatory and the exhalatory recoil
forces are equal. The thin and heavy chain-dashed lines
represent subglottal pressures typically needed for soft and
very loud phonation
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Fig. 16.3 Definition of the various terms for lung volumes.
The graph illustrates the lung volume changes during quiet
breathing interrupted by a maximal inhalation followed by
a maximal exhalation. VC is the vital capacity, TLC is the
total lung capacity, IRV and ERV are the inspiratory and
expiratory reserve volume, REL is the resting expiratory
level, FRC is the functional residual capacity

subglottal pressures, depending on the size of the lung
volume, Fig. 16.2. Thus, exhalation and inhalation will
always produce forces whose effect is to move the ribs
and the lungs back to their resting state, often referred
to as the resting expiratory level (REL). The deeper the
breath, the greater this force of elastic recoil. This com-
ponent plays a significant part in pushing air out of
the lungs, both in speech and singing, and especially
at large lung volumes. The elasticity forces originate
both from the rib cage and the lungs. As illustrated in
Fig. 16.2, the rib cage produces an exhalatory force at
high lung volumes and an inhalatory force at low lung
volumes, and the lungs always exert an exhalatory force.
As a consequence, activation of inspiratory muscles is
needed for producing a low subglottal pressure, e.g. for
singing a soft (pianissimo) tone, at high lung volume.
Conversely, activation of expiratory muscles is needed
for producing a high subglottal pressure, e.g. for singing
a loud (fortissimo) tone, at low lung volume.

In addition to mechanical factors, exhaling may in-
volve the activity of the internal intercostals and the
abdominal muscles. Contraction of the former has the
effect of lowering the ribs and thus compressing the
chest cavity. Activating the abdominal muscles gener-
ates upward forces that also contribute towards reducing
the volume of the rib cage and the lungs. The function
of these muscles is thus expiratory.
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Fig. 16.4 Examples of speech breathing

Another significant factor is gravity whose role
depends on body posture. In an upright position, the di-
aphragm and adjacent structures tend to be pulled down,
increasing the volume of the thoracic cavity. In this sit-
uation, the effect of gravity is inspiratory. In contrast, in
the supine position the diaphragm tends to get pushed
up into the rib cage, and expiration is promoted [16.3].

The total air volume that is contained in a maxi-
mally expanded rib cage is called the total lung capacity
(TLC in Fig. 16.3). After maximum exhalation a small
air volume, the residual volume, is still left in the air-
ways. The greatest air volume that can be exhaled after
a maximum inhalation is called the vital capacity (VC)
and thus equals the difference between the TLC and the
residual volume. The lung volume at which the exha-
latory and inhalatory recoil forces are equal, or REL,
is reached after a relaxed sigh, see Figs. 16.2 and 16.3.
During tidal breathing inhalation is initiated from REL,
so that inhalation is active resulting from an activation
of inspiratory muscles, and exhalation is passive, pro-
duced by the recoil forces. In tidal breathing only some
10% of VC is inhaled, such that a great portion of the
VC, the inspiratory reserve volume, is left. The air vol-
ume between REL and the residual volume is called the
expiratory reserve volume.

VC varies depending on age, body height and gen-
der. At the age of about 20 years, an adult female
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Fig. 16.5 Lung volume averages used in speech and op-
eratic singing expressed as percentages of vital capacity
relative to the resting expiratory level REL. The shaded
band represents the mean lung volume range observed in
untrained female voices’ unscripted speech (after [16.1]).
The filled and open symbols show the corresponding
measures for professional opera singers of the indicated
classifications when performing opera arias according to
Thomasson [16.2]. The bars represent ± one SD

has a vital capacity of 3–3.6 l depending on body
height, and for males the corresponding values are about
4–5.5 l.

Experimental data [16.4] show that, during tidal
breathing, lung volume variations are characterized by
a regular quasi-sinusoidal pattern with alternating seg-
ments of inspiration and expiration of roughly equal
duration (Fig. 16.4). In speech and singing, the pat-
tern is transformed. Inspirations become more rapid
and expiration occurs at a slow and relatively steady
rate. Increasing vocal loudness raises the amplitude of
the lung volume records but leaves its shape relatively
unchanged.

Figure 16.5 shows mean lung volumes used by pro-
fessional singers when singing well-rehearsed songs.
The darker band represents the mean lung volume range
observed in spontaneous speech [16.1]. The lung vol-
umes of conversational speech are similar to those in
tidal breathing. Loud speech shows greater air con-
sumption and thus higher volumes (Fig. 16.4). Breath
groups in speech typically last for 3–5 seconds and are
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Fig. 16.6 The records show lung volume (relative to the
mid-respiratory level), subglottal (esophageal) pressure
and stylized muscular activity for speaker counting from
one to 32 at a conversational vocal effort (after Draper
et al. [16.5]). To the left of the vertical line recoil forces are
strongly expiratory, to the right they are inspiratory. Arrows
have been added to the x-axis to summarize the original
EMG measurements which indicate that the recoil forces
are balanced by muscular activity (EMG = electromyog-
raphy, measurement of the electrical activity of muscles).
To the left of the vertical line (as indicating by left-pointing
arrow) the net muscular force is inspiratory, to the right it
is expiratory (right-pointing arrow). To keep loudness con-
stant the talker maintains a stable subglottal pressure and
recruits muscles according to the current value of the lung
volume. This behavior exemplifies the phenomenon known
as motor equivalence

terminated when lung volumes approach the relaxation
expiratory level REL, as illustrated in Fig. 16.5. Thus,
in phonation, lung volumes below REL are mostly
avoided.

In singing, breath groups tend to be about twice as
long or more, and air consumption is typically much
greater than in conversational speech. Mostly they are
terminated close to the relaxation expiratory level, as

1000
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Air flow (ml/s)

500

0

10
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0

Subglottal pressure

f o n ε t k æ s p ε k s

1s

Oral
pressure

Fig. 16.7 Example of oral and subglottal pressure varia-
tions for the phrase phonetic aspects (after Netsell [16.6]).
As the glottis opens and closes for voiceless and voiced
sounds and the vocal tract opens or closes for vowels and
consonants, the expired air is opposed by varying degrees
of glottal and supraglottal impedance. Both the oral and
the subglottal pressure records reflect the combined effect
of these resistance variations

in speech, but sometimes extend into the expiratory re-
serve volume as illustrated in Fig. 16.5. This implies
that, in singing, breath groups typically start at much
higher lung volumes than in speech. This use of high
lung volumes implies that singers have to deal with
much greater recoil forces than in speech.

Figure 16.6 replots, in stylized form, a diagram
published by Ladefoged et al. [16.7]. It summarizes
measurements of lung volume and subglottal pressure,
henceforth referred to as Ps, recorded from a speaker
asked to take a deep breath and then to start counting.
The dashed line intersecting the Ps record represents the
relaxation pressure. This line tells us that elastic recoil
forces are strongly expiratory to the left of the verti-
cal line. To the right they produce a pressure lower than
the target pressure and eventually an inspiratory pres-
sure. The Ps curve remains reasonably flat throughout
the entire utterance.

The question arises: how can this relative constancy
be achieved despite the continually changing contribu-
tion of the relaxation forces? In a recent replication
of this classical work [16.8], various criticisms of the
original study are addressed but basically the original
answer to this question is restated: the motor system
adapts to the external goal of keeping the Ps fairly
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constant (Fig. 16.6). Initially, when recoil forces are
strong, muscle activity is predominantly in the inspira-
tory muscles such as the diaphragm and the external
intercostals. Gradually, as recoil forces decline, the ex-
piratory muscles (the internal intercostals, the rectus
abdominis among others) take over increasingly as the
other group relaxes (cf. arrows, Fig. 16.6). According to
our present understanding [16.8, 9], this adaptation of
breathing for speech is achieved by constantly updating
the balance between agonist and antagonist muscles in
accordance with current conditions (lung volume, body
posture, etc.) and in order to meet the goal of constant
Ps. Muscle recruitment depends on lung volume.

Figure 16.7 presents a representative example of
oral and Ps records. The phrase is phonetic aspects (af-
ter Netsell [16.6]). The top panel shows a record of oral
air flow. Vertical lines indicate acoustic segment bound-
aries. The bottom diagram superimposes the curves for
oral and subglottal pressure.

The Ps shows a falling pattern which becomes
more pronounced towards the end of the phrase and
which is reminiscent of the declination pattern of the
fundamental frequency contour typical of declarative
sentences [16.10, p. 127]. The highest values occur at
the midpoints of [�] and [
], the stressed vowels of the
utterance. For vowels, oral pressure is close to atmo-
spheric pressure (near zero on the y-axis cm H2O scale).
The [�] of phonetic and the [�] of aspects show highly
similar traces. As the tongue makes the closure for [�],
the air flow is blocked and the trace is brought down to
zero. This is paralleled by the oral pressure rising until
it equals the Ps. As the [�] closure progresses, a slight
increase builds up in both curves. The release of the [�]
is signaled by a peak in the air flow and a rapid decrease
in Ps. An almost identical pattern is seen for [�].

In analyzing Ps records, phoneticians aim at iden-
tifying variations based on an active control of the
respiratory system and phenomena that can be attributed
to the system’s passive response to ongoing activity
elsewhere, e.g., in the vocal tract and or at the level of
the vocal folds [16.11].

To exemplify passive effects let us consider the
events associated with [�] and [�] just discussed. As
suggested by the data of Figs 16.4 and 16.6, speech
breathing proceeds at a relatively steady lung vol-
ume decrement. However, the open or closed state of
the glottis, or the presence of a vocal tract constric-
tion/closure, is capable of creating varying degrees of
impedance to the expired air. The oral pressure record
reflects the combined effect of glottal and articulatory
resistance variations. Ps is also affected by such chang-

ing conditions. As is evident from Fig. 16.7, the Ps
traces during the [�] and [�] segments first increase dur-
ing the stop closures. Then they decrease rapidly during
the release and the aspiration phases. These effects
are passive responses to the segment-based changes in
supraglottal resistance and are unlikely to be actively
programmed [16.12, 13].

Does respiration play an active role in the produc-
tion of stressed syllables? In phonetic aspects main
stress occurs on [�] and [
]. In terms of Ps, these vowels
exhibit the highest values. Are they due to an active par-
ticipation of the respiratory system in signaling stress,
or are they fortuitous by-products of other factors?

An early contribution to research on breathing and
speech is the work by Stetson [16.14]. On the basis of
aerodynamic, electromyographic and chest movement
measurements, Stetson proposed the notion of the chest
pulse, a chunk of expiratory activity corresponding to
the production of an individual syllable.

In the late fifties, Ladefoged and colleagues pub-
lished an electromyographic study [16.7] which cast
doubt on Stetson’s interpretations. It reported increased
activity in expiratory muscles (internal intercostals) for
English syllables. However, it failed to support Stetson’s
chest pulse idea in that the increases were found only
on stressed syllables. Ladefoged [16.8] reports findings
from a replication of the 1958 study in which greater
activity in the internal intercostals for stressed syllables
was confirmed. Moreover, reduced activity in inspira-
tory muscles (external intercostals) was observed to
occur immediately before each stressed syllable.

Ps measurements provide further evidence for a pos-
itive role for respiration in the implementation of stress.
Ladefoged [16.15, p. 143] states: Accompanying ev-
ery stressed syllable there is always an increase in
the Ps. This claim is based on data on disyllabic En-
glish noun–verb pairs differing in the position of the
main stress: TORment (noun)–torMENT (verb), INsult
(noun)–inSULT (verb) etc. A clear distinction between
the noun and verb forms was observed, the former hav-
ing Ps peaks in the first syllable and the latter on the
second syllable.

As for segment-related Ps variations (e.g., the stops
in Fig. 16.7), there is wide agreement that such local
perturbations are induced as automatic consequences
of speech production aerodynamics. Explaining short-
term ripple on Ps curves in terms of aerodynamics is
consistent with the observation that the respiratory sys-
tem is mechanically sluggish and therefore less suited
to implement rapid Ps changes in individual phonetic
segments. Basically, its primary task is to produce a Ps
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Fig. 16.8 Changes in esophageal pressure, corresponding
to subglottic pressure changes (upper curve) and phonation
frequency (middle) in a professional baritone singer per-
forming the coloratura passage shown at the bottom (after
Leanderson et al. [16.16])

contour stable enough to maintain vocal intensity at
a fairly constant level (Fig. 16.6).

Singing provides experimental data on the behav-
ior of the respiratory system that tend to reinforce the
view that a time varying respiration activity can be
an active participant in the sound generation process.
Although there is ample justification for saying that
the mechanical response of the respiratory structures
is characterized by a long time constant, Ps in singing
varies quickly and accurately. One example is presented
in Fig. 16.8. It shows variations in pressure, captured as
the pressure variations in the esophagus and thus mir-
roring the Ps variations [16.18], during a professional
baritone singer’s performance of the music example
shown at the bottom. Each tone in the sequence of six-
teenth notes is produced with a pressure pulse. Note also
that in the fundamental frequency curve each note cor-
responds to a small rise and fall. The tempo of about six
sixteenth notes per second implies that the duration of
each rise–fall cycle is about 160 ms. It would take quite
special skills to produce such carefully synchronized Ps
and fundamental frequency patterns.

Synthesis experiments have demonstrated that this
particular fundamental frequency pattern is what
produces what is perceived as a sung legato col-
oratura [16.19,20]. The voice organ seems incapable of
producing a stepwise-changing F0 curve in legato, and
such a performance therefore sounds as if it was pro-
duced by a music instrument rather than by a voice. In
this sense this F0 variation pattern seems to be needed
for eliciting the perception of a sung sequence of short
legato tones.

F0 (Hz)

Time

20

Level

Poes (cm H2O)

10
0

Fig. 16.9 The three curves show, from top to bottom F0
sound level and esophageal pressure in a professional bari-
tone singer singing the music example shown in the graph,
i. e. a descending scale with three tones on each scale tone.
The singer marked the first beat in each bar by a pressure
pulse (after Sundberg et al. [16.17])

The pressure variations are not likely to result from
a modulation of glottal adduction. A weak glottal ad-
duction should result in a voice source dominated by
the fundamental and with very weak high spectrum par-
tials, and mostly the amplitudes of the high overtones
do not vary in coloratura sequences.

It is quite possible that the F0 variations are caused
by the Ps variations. In the example shown in Fig. 16.8,
the pressure variations amount to about 10 cm H2O,
which should cause a F0 modulation of about 30 Hz
or so, corresponding to two semitones in the vicinity
of 220 Hz. This means that the coloratura pattern may
simply be the result of a ramp produced by the F0 regu-
lating system which is modulated by the pressure pulses
produced by the respiratory system.

As another example of the skilled use of Ps in
singing, Fig. 16.9 shows the pressure variation in the
esophagus in a professional baritone singer performing
a descending scale pattern in 3/4 time, with three tones
on each scale step as shown by the score fragment in
the first three bars. The singer was instructed to mark
the first tone in each bar. The pressure record demon-
strates quite clearly that the first beat was produced
with a marked pulse approximately doubling the pres-
sure. Pulses of this magnitude must be produced by the
respiratory apparatus. When the subject was instructed
to avoid marking the first tone in each bar, no pressure
pulses were observed [16.17].
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Fig. 16.10 Mean subglottal pressure, captured as the oral
pressure during /p/-occlusion, in five lyric and six dramatic
professional sopranos (heavy and thin curves, respec-
tively) who sang as loudly and as softly as possible at
different F0. The dashed curve shows Titze’s prediction
of threshold pressure, i. e., the lowest pressure that pro-
duces vocal fold vibration. The bars represent one SD
(after [16.21])

The effect of Ps on fundamental frequency has been
investigated in numerous studies. A commonly used
method is to ask the subject to produce a sustained
vowel at a given steady pitch and then, at unpredictable
moments, change the Ps by applying a push to the sub-
ject’s abdomen or chest. The assumption underlying
these studies is that there will be an initial interval dur-
ing which possible reflex action of laryngeal muscles
will not yet come into play. Hence the data from this
time segment should give a valid picture of the relation-
ship between fundamental frequency and Ps.

In a study using the push method, Baer [16.22]
established this relationship for a single male subject.
Data on steady phonations at 94, 110, 220 Hz and
a falsetto condition (240 Hz) were collected. From elec-
tromyograms from the vocalis and the interarytenoid
it was possible to tell that the first 30 ms after the
push onset were uncontaminated by reflex muscle re-
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Fig. 16.11 Simultaneous recordings of sound level, sub-
glottic pressure (captured as the oral pressure during /p/
occlusion) and F0 in a professional singer singing the
note example shown at the bottom (after Leanderson
et al. [16.16])

sponses. Fundamental frequency was plotted against Ps
for the four F0 conditions. These plots showed linear
data clusters with slopes of 4, 4, 3 and 9 Hz/cm H2O re-
spectively. Other studies which assumed a longer reflex
response latency (100 ms) report that F0’s dependence
on Ps occurs between 2 to 7 Hz/cm H2O.

From such observations phoneticians have con-
cluded that, in producing the F0 variations of natural
speech, Ps plays only a secondary role. F0 control is
primarily based on laryngeal muscle activity. Nonethe-
less, the falling F0 contours of phrases with statement
intonation tend to have Ps contours that are also falling.
Moreover, in questions with final F0 increases, the Ps
records are higher towards the end of the phrase than in
the corresponding statements [16.15].

There is clear evidence that the Ps needs to be care-
fully adapted to the target fundamental frequency in
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singing, especially in the high range ([16.23], [16.24,
p. 36]). An example is presented in Fig. 16.10 which
shows mean Ps for five dramatic and five lyric sopra-
nos when they sang pp and ff tones throughout their
range [16.21]. The bars represent one standard devia-
tion. The dashed curve is the threshold pressure, i. e. the
lowest pressure that produced vocal fold vibration, for
a female voice according to Titze [16.25, 26].

The singers mostly used more than twice as high
Ps values when they were singing their loudest as com-
pared with their softest tones. The subjects reach up to
40 cm H2O. This can be compared with values typi-
cal of normal adult conversational speech, which tend
to occur in the range of 5–10 cm H2O. However, loud
speech and particularly stage speech may occasionally
approach the higher values for singing.

Also interesting is the fact that lyric sopranos use
significantly lower Ps values than dramatic sopranos
both in soft and loud phonation. It seems likely that this
difference reflects difference in the mechanical proper-
ties of the vocal folds.

Figure 16.11 presents another example of the close
link between Ps and fundamental frequency. From top
to bottom it plots the time functions for sound level
(SPL in dB), pressure (cm H2O), fundamental fre-
quency (Hz) for a professional baritone singing an
ascending triad followed by a descending dominant-

seventh triad (according to the score at the bottom). The
pressure record was obtained by recording the oral pres-
sure as the subject repeated the syllable [�
] on each
note. During the occlusion of the stop the peak oral pres-
sure becomes equal to the Ps (as discussed in connection
with Fig. 16.7). That means that the peak values shown
in the middle diagram are good estimates of the actual
Ps. It is important to note that, when the trace repeatedly
returns to a value near zero, what we see is not the Ps,
but the oral pressure reading for the [
] vowel, which is
approximately zero.

The exercise in Fig. 16.11 is often sung staccato,
i. e. with short pauses rather than with a /p/ consonant
between the tones. During these pauses the singer has
to get ready for the next fundamental frequency value
and must therefore avoid exhaling the pressurized air
being built up in the lungs. Singers do this by open-
ing the glottis between the tones and simultaneously
reducing their Ps to zero, so that no air will be exhaled
during the silent intervals between the tones. A remark-
able fact demonstrated here is that, particularly when
sung loudly – so that high Ps values are used – this ex-
ercise requires nothing less than a virtuoso mastering of
both the timing and tuning of the breathing apparatus
and the pitch control process. A failure to reach a tar-
get pressure is likely to result in a failure to reach the
target F0.

16.2 The Glottal Sound Source

In speech and singing the general method to generate
sound is to make a constriction and to let a strong flow
of air pass through it. The respiratory component serves
as the power source providing the energy necessary for
sound production. At the glottis the steady flow of air
generated by the respiratory component is transformed
into a quasiperiodic series of glottal pulses. In the vo-
cal tract, the glottally modified breath stream undergoes
further modifications by the resonance characteristics of
the oral, pharyngeal and nasal cavities.

Constrictions are formed at the glottis – by adjusting
the separation of the vocal folds – and above the glot-
tis – by positioning the articulators of the vocal tract.
As the folds are brought close together, they respond
to the air rushing through by initiating an open–close
vibration and thereby imposing a quasiperiodic mod-
ulation of airflow. Thus, in a manner of speaking, the
glottal structures operate as a device that imposes an
AC modulation on a DC flow. This is basically the way
that voicing, the sound source of voiced vowels and con-

sonants and the carrier of intonation and melody, gets
made.

A second mechanism is found in the production of
noise, the acoustic raw materials for voiceless sounds
(e.g., [f], [�], [�], [�]). The term refers to irregular turbu-
lent fluctuations in airflow which arise when air comes
out from a constriction at a high speed. This process
can occur at the glottis – e.g., in [�	] sounds, whisper
and breathy voice qualities – or at various places of
articulation in the vocal tract.

The framework for describing both singing and
speech is that of the source-filter theory of speech pro-
duction [16.27, 28]. The goal of this section is to put
speech and singing side by side within that frame-
work and to describe how the speaker and the singer
coordinate respiration, phonation and articulation to
shape the final product: the acoustic wave to be per-
ceived by the listener.

Figure 16.12 [16.29] is an attempt to capture a few
key aspects of vocal fold vibrations. At the center a sin-
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Time

Glottal flow

Closed Opening Open Closing

Fig. 16.12 Relationship between the flow glottogram,
showing transglottal airflow versus time, and glottal con-
figurations in a coronal plane (upper series of images) and
from above, as through a laryngeal mirror (lower series
of images). The airflow increases when the folds open the
glottis and allow air to pass and decreases quickly when
they close the glottis and arrest the airflow (after [16.29])

gle cycle of a glottal waveform is seen. It plots airflow
through the glottis as a function of time. Alternatively,
the graph can be used to picture the time variations of
the glottal area which present a pattern very similar to
that for airflow. The top row shows stylized cross sec-
tions of the vocal folds at selected time points during the
glottal cycle. From left to right they refer to the opening
of the folds, the point of maximum area and the point of
closure. Below is a view of the vocal folds from above
corresponding to the profiles at the top of the diagram.

There are a number of different methods for visual-
izing vocal fold vibrations. By placing an electrode on
each side of the thyroid cartilage, a minute current can
be transferred across the glottis. This current increases
substantially when the folds make contact. The result-
ing electroglottogram, also called a laryngogram, thus
shows how the contact area varies with time. It is quite
efficient in measurement of F0 and closed phase. Opti-
cal glottograms are obtained by illuminating the trachea
from outside by means of a strong light source and cap-
turing the light traveling through the glottis by means
of an optical sensor in the pharynx. The signal therefore
reflects the glottal area, but only as long as the light suc-

b)

a)

0.012

Differentiated flow

Flow

0 0.002 0.004 0.006 0.008 0.010
Time (s)

Period

Closed
phase

Peak-to-peak
pulse amplitude

Glottal
leakage

MFDR

Fig. 16.13a,b Illustration of measures commonly used to
characterize a flow glottogram (a) and its time derivative,
the differentiated flow glottogram (b). (The wiggles in the
latter are artifacts caused by an imperfect inverse filtering)

cessfully finds it way to the sensor. A posterior tilting of
the epiglottis may easily disturb or eliminate the signal.

Flow glottograms show transglottal airflow versus
time and are derived by inverse filtering the audio sig-
nal, often picked up as a flow signal by means of
a pneumotachograph mask [16.30]. Inverse filtering im-
plies that the signal is passed through a filter with
a transfer function equalling the inverted transfer func-
tion of the vocal tract. Therefore correct inverse filtering
requires that the inverted resonance peaks of the inverse
filter are tuned to the formant frequencies of the vowel
being filtered.

As transglottal airflow is zero when the glottis is
closed and nonzero when it is open, the flow glottogram
is physiologically relevant. At the same time it is a rep-
resentation of the sound of the voice source.

A typical example of a flow glottogram is given in
the upper graph of Fig. 16.13. The classical parameters
derived from flow glottograms are the durations of the
period and of the closed phase, pulse peak-to-peak am-
plitude, and glottal leakage. The lower graph shows the
differentiated glottogram. The negative peak amplitude
is often referred to as the maximum flow declination rate
(MFDR). As we shall see it has special status in the
process of voice production.

In the study of both speech and singing, the acous-
tic parameter of main relevance is the time variations
in sound pressure produced by the vocal system and re-
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ceived by the listener’s ears. Theoretically, this signal
is roughly proportional to the derivative of the output
airflow at the lips [16.28, 31] and it is related to the
derivative of the glottal waveform via the transfer func-
tion of the vocal tract. Formally, the excitation signal
for voiced sounds is defined in terms of this differen-
tiated signal. Accordingly, in source-filter theory, it is
the derivative of glottal flow that represents the source
and is applied to the filter or resonance system of the
vocal tract. The amplitude of the vocal tract excitation,
generally referred to as the excitation strength, is quan-
tified by the maximum velocity of flow decrease during
vocal-fold closing movement (the MFDR, Fig. 16.13)
which is a determinant of the level of the radiated sound.
At the moment of glottal closure a drastic modification
of the air flow takes place. This change is what gen-
erates voicing for both spoken and sung sounds and
produces a sound with energy across a wide range of
frequencies.

The Liljencrants–Fant (LF) model [16.32, 33] is
an attempt to model glottal waveforms using parame-
ters such as fundamental frequency, excitation strength,
dynamic leakage, open quotient and glottal frequency
(defined by the time period of glottal opening phase).
Other proposals based on waveform parameters have
been made by Klatt and Klatt [16.34], Ljungqvist and
Fujisaki [16.35], Rosenberg [16.36] and Rothenberg
et al. [16.37]. A second line of research starts out from
assumptions about vocal fold mechanics and applies
aerodynamics to simulate glottal vibrations [16.38, 39].
Insights from such work indicate the importance of pa-
rameters such as Ps, the adducted/abducted position of
vocal folds and their stiffness [16.28].

During the early days of speech synthesis it be-
came clear that the simplifying assumption of a constant
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Fig. 16.14 Running speech data on the excitation strength parameter of the LF model (after [16.32])

voice source was not sufficient to produce high-quality
natural-sounding copy synthesis. Experimental work on
the voice source and on speech synthesis has shown
that, in the course of an utterance, source parameters
undergo a great deal of variation. The determinants of
this dynamics are in part prosodic, in part segmental.
Figure 16.14 [16.32] presents a plot of the time varia-
tions of the excitation strength parameter (i. e. MFDR)
during the Swedish utterance: Inte i DETta århundrade
[���� �����a��������a��]. The upper-case letters indicate
that the greatest prominence was on the first syllable of
detta. Vertical lines represent acoustic segment bound-
aries.

Gobl collected flow data using the mask developed
by Rothenberg [16.30] and applied inverse filtering to
obtain records of glottal flow which, after differentia-
tion, enabled him to make measurements of excitation
strength and other LF parameters.

Figure 16.14 makes clear that excitation strength
is in no way constant. It varies depending on both
prosodic and segmental factors. The effect of the seg-
ments is seen near the consonant boundaries. As the
vocal tract is constricted, e.g., in [�] and [��], and as
transglottal pressure therefore decreases (cf. the pres-
sure records of Fig. 16.7), excitation strength is reduced.
In part these variations also occur to accommodate the
voicing and the voicelessness of the consonant [16.28].
This influence of consonants on the voice source has
been documented in greater detail by Ni Chasaide and
Gobl [16.40] for German, English, Swedish, French,
and Italian. Particularly striking effects were observed
in the context of voiceless consonants.

Prosodically, we note in Fig. 16.14 that excitation
strength exhibits a peak on the contrastively stressed
syllable in detta and that the overall pattern of the phrase
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Table 16.1 Measurements of subglottal pressure (cm H2O)
and SPL at 0.3 m (dB) measured for the glottograms shown
in Fig. 16.15

Table A Ps SPL at
(cm H2O) 0.3 m (dB)

loudest 14.3 84

loud 7.3 82

neutral 5.7 78

soft 3.9 75

softest 3 70

Table B Ps SPL at

(cm H2O) 0.3 m (dB)

pressed 11.4 83

neutral 5.1 79

flowy 8 88

breathy 6.6 84

is similar to the falling declination contour earlier men-
tioned for declarative statements.

Examples of the fact that the Ps has a strong influ-
ence on the flow glottogram are given in the upper set
of graphs of Fig. 16.15, which shows a set of flow glot-
tograms for phonations produced at the same pitch but
with varying degrees of vocal loudness. As we exam-
ine the series of patterns from loudest to softest we note
that both the peak flow and the maximum steepness of
the trailing end of the pulse, i. e., MFDR, increase sig-
nificantly with increasing Ps. These shape changes are
lawfully related to the variations in Ps and are directly
reflected in sound pressure levels as indicated by the
numbers in Table 16.1.

Holmberg and colleagues [16.41] made acoustic and
airflow recordings of 25 male and 20 female speakers
producing repetitions of [�
] at soft, normal and loud
vocal efforts [16.42, p. 136]. Estimates of Ps and glot-
tal airflow were made from recordings of oral pressure
and oral airflow. Ps was derived by interpolating be-
tween peak oral pressures for successive [�] segments
and then averaging across repetitions. A measure of

Fig. 16.15a,b Typical flow glottogram changes associated
with changes of loudness (a) or mode of phonation (b).
As loudness of phonation is raised, the closing part of the
curve becomes more steep. When phonation is pressed,
the glottogram amplitude is low and the closed phase is
long. As the adduction force is reduced, pulse amplitude
grows and the closed phase becomes shorter (note that the
flow scales are different for the (a) and (b) of glottograms).
Flowy phonation is the least adducted, and yet not leaky
phonation �
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average flow was obtained by low-pass filtering the air-
flow signal and averaging values sampled at the vowel
midpoints. A copy of the airflow signal was low-pass
filtered and inverse filtered to remove the effect of F1
and other formants. The output was then differentiated
for the purpose of determining the MFDR (Fig. 16.13).

Figure 16.15 also illustrates how the voice source
can be continuously varied between different modes of
phonation. These modes range from hyperfunctional,
or pressed, over neutral and flowy to hypofunctional,
or breathy. The corresponding physiological control pa-
rameter can be postulated to be glottal adduction, i. e.
the force by which the folds press against each other.
It varies from minimum in hypofunctional to extreme
in hyperfunctional. Flowy phonation is produced with
the weakest degree of glottal adduction compatible with
a full glottal closure. The physiologically relevant prop-
erty that is affected is the vibration amplitude of the
vocal folds, which is small in hyperfunctional/pressed
phonation and wide in breathy phonation.

As illustrated in Fig. 16.15 the flow glottogram
is strongly affected by these variations in phonation
mode [16.43]. In pressed phonation, the pulse ampli-
tude is small and the closed phase is long. It is larger in
neutral and even more so in flowy. In breathy phona-
tion, typically showing a waveform similar to a sine
wave, airflow is considerable, mainly because of a large
leakage, so there is no glottal closure.

a) Transglottal airflow (Falsetto)

Transglottal airflow (Modal)

Time Time Time

b) Transglottal airflow (Falsetto)

Transglottal airflow (Modal)

c) Transglottal airflow (Falsetto)

Transglottal airflow (Modal)

Baritone

Baritone

Tenor Counter
tenor

Tenor Counter
tenor

Fig. 16.16a–c Typical flow glottograms for falsetto and modal register in (a) a baritone, (b) tenor and (c) countertenor
singer, all professional. The flow scale is the same within subjects. The ripple during the closed phase in the lower middle
glottogram is an artifact. In spite of the great inter-subject variability, it can be seen that the glottogram pulses are wider
and more rounded in the falsetto register

Phonation mode affects the relation between Ps
and the SPL of the sound produced. As shown in Ta-
ble 16.1B pressed phonation is less economical from an
acoustic point of view: a Ps of 11.4 cm H2O produces
an SPL at 0.3 m of only 83 dB, while in flowy phonation
a lower Ps produces a higher SPL.

Pitch, loudness and phonation mode are voice qual-
ities that we can vary continuously. By contrast, vocal
registers, also controlled by glottal parameters, appear
more like toggles, at least in untrained voices. The voice
is operating either in one or another register. There are at
least three vocal registers, vocal fry, modal and falsetto.
When shifting between the modal and falsetto registers,
F0 discontinuities are often observed [16.44].

The definition of vocal registers is quite vague,
a set of tones along the F0 continuum that sound sim-
ilar and are felt to be produced in a similar way.
As registers depend on glottal function, they produce
different flow glottogram characteristics. Figure 16.16
shows typical examples of flow glottograms for the
falsetto and modal registers as produced by profes-
sional baritone, tenor and countertenor singers. The
pulses are more rounded, the closed phase is shorter,
and the glottal leakage is greater in the falsetto than in
the modal register. However, the waveform of a given
register often varies substantially between individuals.
Classically trained sopranos, altos, and tenors learn to
make continuous transitions between the modal and

Part
E

1
6
.2



The Human Voice in Speech and Singing 16.2 The Glottal Sound Source 715

–30

–40

–50

–60

–70

–80

–90
60000 1000 2000 3000 4000 5000

Mean spectrum level (dB)

Frequency (Hz)

Fig. 16.17 Long-term-average spectra curves obtained
from an untrained male speaker reading the same text at
6 different degrees of vocal loudness. From top to bottom
the corresponding Leq values at 0.3 m were 93 dB, 88 dB,
85 dB, 84 dB, 80 dB, and 76 dB

the falsetto registers, avoiding abrupt changes in voice
timbre.

Variation of vocal loudness affects the spectrum
slope as illustrated in Fig. 16.17, which shows long-
term-average spectra (LTAS) from a male untrained
voice. In the figure loudness is specified in terms of
the so-called equivalent sound level Leq. This is a com-
monly used time average of sound level, defined as

Leq = 10 log
1

T

T∫

0

p2

p2
0

dt ,

where t is time and T the size of the time window. p and
p0 are the sound pressure and the reference pressure,
respectively.

When vocal loudness is changed, the higher over-
tones change much more in sound level than the lower
overtones. In the figure, a 14 dB change of the level
near 600 Hz is associated with a 22 dB change near
3000 Hz, i. e., about 1.5 times the level change near
600 Hz. Similar relationships have been observed for
professional singers [16.47]. In other words, the slope
of the voice source spectrum decreases with increasing
vocal loudness.

The physiological variable used for variation of vo-
cal loudness is Ps. This is illustrated in the upper graph
of Fig. 16.18, comparing averaged data observed in un-
trained female and male subjects and data obtained
from professional operatic baritone singers [16.45, 46].
The relationship between the Ps and MFDR is approx-
imately linear. It can be observed that the pressure
range used by the singer is considerably wider than
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Fig. 16.18a,b Graph (a) shows the relationship between
the mean subglottal pressure and the mean MFDR for the
indicated subject groups. Graph (b) shows the relationship
between MFDR and the SPL at 0.3 m for a professional
baritone singing the vowels /a/ and /æ/ at different F0s
(after [16.45, p. 183] and [16.46, p. 184])

that used by the untrained voices. The MFDR pro-
duced with a given Ps by the untrained female and
male subjects is mostly higher than that produced by
the baritones with the same pressure. This may depend
on different mechanical characteristics of the vocal
folds.

As we will see later, SPL depends on the strength
of the excitation of the vocal tract, i. e. on MFDR. This
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variable, in turn, depends on Ps and F0; the higher the
pressure, the greater the MFDR value and the higher the
F0, the greater the MFDR. The top graph of Fig. 16.18
shows how accurately MFDR could be predicted from
Ps and F0 for previously published data for untrained
male and female singers and for professional baritone
singers [16.45, 46]. Both Ps and F0 are linearly related
to MFDR. However, the singers showed a much greater
variation with F0 than the untrained voices. This differ-

ence reflected the fact that unlike the untrained subjects
the singers could sing a high F0 much more softly than
the untrained voices. The ability to sing high notes also
softly would belong to the essential expressive skills
of a singer. Recalling that an increase of Ps increases
F0 by a few Hz/cm H2O, we realize that singing high
tones softly requires more forceful contraction of the
pitch-raising laryngeal muscles than singing such tones
loudly.

16.3 The Vocal Tract Filter

The source-filter theory, schematically illustrated in
Fig. 16.19, describes vocal sound production as a three-
step process: (1) generation of a steady flow of air
from the lungs (DC component); (2) conversion of
this airflow into a pseudo-periodically pulsating trans-
glottal airflow (DC-to-AC conversion), referred to
as the voice source; and (3) response of the vocal
tract to this excitation signal (modulation of AC sig-
nal) which is characterized by the frequency curve
or transfer function of the vocal tract. So far the
first two stages, respiration and phonation, have been
considered.

Velum
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Radiated spectrum
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In this section we will discuss the third step, viz.
how the vocal tract filter, i. e. the resonance character-
istics of the vocal tract, modifies, and to some extent
interacts with, the glottal source and shapes the final
sound output radiated from the talker’s/singer’s lips.

Resonance is a key feature of the filter response.
The oral, pharyngeal and nasal cavities of the vocal tract
form a system of resonators. During each glottal cycle
the air enclosed by these cavities is set in motion by the
glottal pulse, the main moment of excitation occurring
during the closing of the vocal folds, more precisely at
the time of the MFDR, the maximum flow declination
rate (cf. the previous section on source).

The behavior of a vocal tract resonance, or formant,
is specified both in the time and the frequency domains.
For any transient excitation, the time response is an
exponentially decaying cosine [16.27, p. 46]. The fre-
quency response is a continuous amplitude-frequency
spectrum with a single peak. The shape of either func-
tion is uniquely determined by two numbers (in Hz):
the formant frequency F and the bandwidth B. The
bandwidth quantifies the degree of damping, i. e., how
fast the formant oscillation decays. Expressed as sound
pressure variations, the time response is

p(t) = A e−πBt cos (2πFt) . (16.1)

Fig. 16.19 Schematic illustration of the generation of voice
sounds. The vocal fold vibrations result in a sequence
of voice pulses (bottom) corresponding to a series of
harmonic overtones, the amplitudes of which decrease
monotonically with frequency (second from bottom). This
spectrum is filtered according to the sound transfer char-
acteristics of the vocal tract with its peaks, the formants,
and the valleys between them. In the spectrum radiated
from the lip opening, the formants are depicted in terms of
peaks, because the partials closest to a formant frequency
reach higher amplitudes than neighboring partials �
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Fig. 16.20 (a) Predictability of formant levels; (b) calcu-
lated spectral envelopes for a set of Swedish vowels. Graph
(a) illustrates how varying only the frequency of F1 affects
the amplitudes of other formants

For a single formant curve, the amplitude variations
as a function of frequency f is given (in dB) by

L(f)=20 log

[
F2+ ( B

2

)2]

√
( f − F)2+ ( B

2

)2√
( f + F)2+ ( B

2

)2 .

(16.2)

In the frequency domain the bandwidth is defined as
the width of the formant 3 dB down from the peak, that
is, at the half-power points. A large bandwidth produces
a flat peak whereas a small value (less damping, reduced
acoustic losses) makes the peak higher and sharper.

Figure 16.20 shows spectral envelopes for a set of
Swedish vowels. They were calculated from formant
frequency data [16.48, 49] in accordance with source-
filter theory which assumes that a vowel spectrum can
be decomposed into formants (all specified with respect

to frequency and bandwidth), the spectrum of the voice
source, the contribution of formants above F4 and radi-
ation [16.27].

The individual panels are amplitude versus fre-
quency plots. Vowels are portrayed in terms of their
envelopes rather than as line spectra with harmonics.
The panels are arranged in a formant space. From top to
bottom the F2 in the panels decreases. From left to right
F1 increases. The frequency scale is limited to showing
the first three formant peaks.

We note that all envelopes have falling overall
slopes and that the amplitudes of the formant peaks vary
a great deal from vowel to vowel and depending on the
relative configuration of formant frequency positions.

In acoustic phonetic specifications of vowels, it is
customary to report no more than the frequencies of
the first two or three formants ([16.50, p. 59], [16.51]).
Experiments in speech synthesis [16.52] have indicated
that this compact description is sufficient to capture
the quality of steady-state vowels reasonably well. Its
relative success is explained by the fact that most of
the building blocks of a vowel spectrum are either
predictable (bandwidths and formant amplitudes), or
show only limited spectral variations (source, radiation,
higher-formant correction) [16.27].

Formant bandwidths [16.28, 53] reflect acoustic
losses. They depend on factors such as radiation, sound
transmission through the vocal tract walls, viscosity,
heat conduction, constriction size as well as the state
of the glottis. For example, a more open glottis, as in
a breathy voice, will markedly increase the bandwidth
of the first formant.

Despite the complex interrelations among these fac-
tors, bandwidths pattern in regular ways as a function of
formant frequency. Empirical formulas have been pro-
posed [16.54] that summarize bandwidth measurements
made using transient and sweep-tone excitation of the
vocal tract for closed-glottis conditions [16.55, 56].

To better understand how formant levels vary let us
consider the top diagram of Fig. 16.20. It compares en-
velopes for two vowel spectra differing only in terms
of F1. It is evident that the lowering of F1 (from 750
to 250 Hz) reduces the amplitudes of F2 and F3 by
about 15 dB. This effect is predicted by acoustic the-
ory which derives the spectral envelope of an arbitrary
vowel as a summation of individual formant curves on
a dB scale [16.27]. Figure 16.20 makes clear that, as
F1 is shifted, its contribution to the envelope is dras-
tically changed. In this case the shift moves the entire
F1 curve down in frequency and, as a result, its upper
skirt (dashed line) provides less of a lift to the upper for-
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mants. This interplay between formant frequency and
formant levels is the major determinant of the various
envelope shapes seen in Fig. 16.20.

One of the main lessons of Fig. 16.20 is accord-
ingly that, under normal conditions of a stable voice
source, formant amplitudes are predictable. Another im-
portant consequence of the source-filter theory is that,
since knowing the formants will enable us to reconstruct
the vowel’s envelope, it should also make it possible to
derive estimates about a vowel’s overall intensity.

A vowel’s intensity can be calculated from its power
spectrum as

I = 10 log
[∑

(Ai)
2
]
, (16.3)

where Ai is the sound pressure of the i-th harmonic.
This measure tends to be dominated by the strongest
partial or partials. In very soft phonation the strongest
partial is generally the fundamental while in neutral and
louder phonation it is the partial that lies closest to the
first formant. Thus, typically all partials which are more
than a few dB weaker than the strongest partial in the
spectrum do not contribute appreciably to the vowel’s
intensity.

As suggested by the envelopes in Fig. 16.20, the
strongest harmonics in vowels tend to be found in the F1
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Fig. 16.21 Spectrogram of operatic tenor Jussi Björling’s performance of an excerpt from Verdi’s opera Aida. The lyrics
are given below the graph

region. This implies that a vowel’s intensity is primarily
determined by its F1. Accordingly, in the set shown in
Fig. 16.20, we would expect [������	�] to be least intense
and [
�a��] the most intense vowels. This is in good
agreement with experimental observations [16.57].

The intrinsic intensity of vowels and other speech
sounds has been a topic of interest to phoneticians
studying the acoustic correlates of stress [16.58]. It is re-
lated to sonority, a perceptual attribute of speech sounds
that tends to vary in a regular way in syllables [16.59].
We will return below to that topic in Sect. 16.5.

Let us continue to illustrate how formant levels de-
pend on formant frequencies with an example from
singing: the singer’s formant. This striking spectral phe-
nomenon is characteristic of classically trained male
singers. It is illustrated in Fig. 16.21. The figure shows
a spectrogram of a commercial recording of an operatic
tenor voice (Jussi Björling) performing a recitativo from
Verdi’s opera Aida. Apart from the vibrato undulation of
the partials, the high levels of partials in the frequency
range 2200–3200 Hz are apparent. They represent the
singer’s formant.

The singer’s formant is present in all voiced sounds
as sung by operatic male singers. It was first discov-
ered by Bartholomew [16.60]. It manifests itself as
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Fig. 16.22 LTAS of the sound of a symphonic orchestra
with and without a singer soloist (dark and light curves).
The singer’s formant constitutes a major difference be-
tween the orchestra with and without the singer soloist
(after [16.61])
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Fig. 16.23 Effect on the spectrum envelope of lowering
formants F4 and F5 from 3500 Hz and 4500 Hz to 2700 Hz
and 3500 Hz, respectively. The resulting gain in level at F3
is more than 10 dB

a high, marked peak in the long-term-average spectrum
(LTAS).

A second example is presented in Fig. 16.22 show-
ing an LTAS of the same tenor voice as in Fig. 16.21,
accompanied by an orchestra of the traditional western
opera type. The LTAS peak caused by the singer’s for-
mant is just a few dB lower than the main peak in the
low-frequency range.

In the same figure an LTAS of a classical symphony
orchestra is also shown. On the average, the partials
in the low-frequency range are quite strong but those
above 600 Hz decrease by about 10 dB/octave with ris-
ing frequency. Even though this decrease varies depend-
ing on how loudly the orchestra is playing, this implies
that the level of the orchestral accompaniment is much
lower at 3000 Hz than at about 600 Hz. In other words,
the orchestral sound offers the singer a rather reason-
able competition in the frequency range of the singer’s
formant. The fact of the matter is that a voice possess-
ing a singer’s formant is much easier to hear when the
orchestral accompaniment is loud than a voice lacking
a singer’s formant. Thus, it helps the singer’s voice to
be heard when the orchestral accompaniment is loud.

The singer’s formant can be explained as a reso-
nance phenomenon [16.62]. It is a product of the same
rules that we invoked above to account for the formant
amplitudes of vowels and for intrinsic vowel intensi-
ties. The strategy of a classically trained male singer
is to shape his vocal tract so as to make F3, F4, and
F5 form a tight cluster in frequency. As the frequency
separations among these formants are decreased, their
individual levels increase, and hence a high spectral
peak is obtained between 2500 and 3000 Hz.

Figure 16.23 shows the effects on the spectrum en-
velope resulting from lowering F5 and F4 from 3500 Hz
and 4500 Hz to 2700 Hz and 3500 Hz, respectively. The
resulting increase of the level of F3 amounts to 12 dB,
approximately. This means that male operatic singers
produce a sound that can be heard more easily through
a loud orchestral accompaniment by tuning vocal tract
resonances rather than by means of producing an exces-
sive Ps.

The acoustical situation producing the clustering of
F3, F4, and F5 is obtained by acoustically mismatching
the aperture of the larynx tube, also referred to as the
epilaryngeal tube, with the pharynx [16.62]. This can
be achieved by narrowing this aperture. Then, the lar-
ynx tube acts as a resonator with a resonance that is not
much affected by the rest of the vocal tract but rather
by the shape of the larynx tube. Apart from the size of
the aperture, the size of the laryngeal ventricle would
be influential: the larger the ventricle, the lower the lar-
ynx tube resonance. Presumably singers tune the larynx
tube resonance to a frequency close to F3. The articula-
tory means used to establish this cavity condition seems
mainly to be a lowering of the larynx, since this tends
to widen both the pharynx and the laryngeal ventricle.
Many singing teachers recommend students to sing with
a comfortably low larynx position.
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Fig. 16.24 Mean LTAS derived from commercial record-
ings of four representatives of each of the indicated voice
classifications. The dashed curves show LTAS of untrained
female (red) and male (blue) voices’ speech with an Leq

of 70 dB at 0.3 m. Note that the singer’s formant produces
a prominent peak with a level well above the level of the
untrained voices’ LTAS only for the male singers

The level of the singer’s formant is influenced also
by the slope of the source spectrum which, in turn, de-
pends on vocal loudness, i. e. on Ps, as mentioned. Thus,
the singer’s formant tends to increase by about 15 dB for
a 10 dB change of the overall SPL [16.47].

The center frequency of the singer’s formant varies
slightly between voice classifications, as illustrated in
the mean LTAS in Fig. 16.24 which shows mean LTAS
derived from commercial recordings of singers classi-
fied as soprano, alto, tenor, baritone and bass [16.64].
Each group has four singers. The center frequency of
the singer’s formant for basses, baritones and tenors are
about 2.4, 2.6, and 2.8 kHz, respectively. These small
differences are quite relevant to the typical voice timbres
of these classifications [16.65]. Their origin is likely
to be vocal tract length differences, basses tending to
have longer vocal tracts than baritones who in turn have
longer vocal tracts than tenors [16.66]. On the other
hand, substantial variation in the center frequency of the
singer’s formant occurs also within classifications.

Also shown for comparison in Fig. 16.24 is a mean
LTAS of untrained voices reading at an Leq of 70 dB at
0.3 m distance. The singer’s formant produces a marked
peak some 15 dB above the LTAS of the untrained
voices for the male singers. The female singers, on the
other hand, do not show any comparable peak in this
frequency range. This implies that female singers do not
have a singer’s formant [16.67–69].

Female operatic singers’ lack of a singer’s formant
is not surprising, given the fact that: (1) they sing at
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Fig. 16.25a,b Perceived loudness of a vowel (b) correlates
better with subglottal pressure Ps than does SPL (a) which
depends on the intrinsic intensity of the vowel. This, in
turn, is determined by its formant pattern (after [16.63])

high F0, i. e. have widely spaced spectrum partials, and
(2) the F3, F4, F5 cluster that produces a singer’s for-
mant is rather narrow in frequency. The latter means
that a narrow formant cluster will be hit by a partial only
in some tones of a scale while in other scale tones there
will be no partial in the formant cluster. This would lead
to salient and quasi-random variation of voice timbre
between scale tones.

The singer’s formant is a characteristic of classi-
cally trained male singers. It is not found in nonclassical
singing, e.g. in pop or musical theater singing, where
audibility is the responsibility of the sound engineer
rather than of the singer. Likewise, choir singers gen-
erally do not possess a singer’s formant.

From the evidence in Fig. 16.18 we concluded that
the logarithm of Ps does a good job of predicting the
SPL over a large range of vocal intensities. This was
shown for untrained male and female speakers as well
as a professional baritone singer. In the next few para-
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graphs we will look at how vowel identity affects that
prediction and how listeners perceive loudness in the
presence of vowel-dependent variations in SPL at con-
stant Ps.

This topic was addressed by Ladefoged [16.63] who
measured the peak SPL and the peak Ps in 12 repetitions
of bee, bay, bar, bore and boo spoken by a British talker
at varying degrees of loudness. SPL values were plot-
ted against log(Ps) for all tokens. Straight lines could
readily be fitted to the vowels individually. The vowels
of bay and bore tended to have SPL values in between
those of bar and bee/boo. The left half of Fig. 16.25 re-
plots the original data for [�] and [�]/[	] pooled. The [�]
line is higher by 5–6 dB as it should be in view of F1
being higher in [�] than in [�] and [	] (cf. preceding dis-
cussion).

In a second experiment listeners were asked to judge
the loudness of the test words. Each item was presented
after a carrier phrase: Compare the words: bar and .
The word bar served as reference. The subjects were
instructed to compare the test syllable and the refer-
ence in terms of loudness, to give the value of 10 to
the reference and another relative number to the test
word. The analysis of the responses in terms of SPL
indicated that, for a given SPL, it was consistently the
case that bee and boo tended to be judged as louder than
bar. On the other hand, there were instances of bee and
bar with similar Ps that were judged to be equally loud.

This effect stood out clearly when loudness judgements
were plotted against log(Ps) as in the bottom half of
Fig. 16.25. Ladefoged concludes that . . . in the case of
speech sounds, loudness is directly related to the physi-
ological effort – in other words, Ps – rather than the SPL
as for many other sounds.

Speech Sounds
with Noise and Transient Excitation

A comprehensive quantitative treatment of the mecha-
nisms of noise production in speech sounds is found in
Stevens [16.28, pp. 100–121]. This work also provides
detailed analyses of how the noise source and vocal tract
filtering interact in shaping the bursts of stops and the
spectral characteristics of voiced and voiceless frica-
tives. While the normal source mechanism for vowels
always involves the glottis, noise generation may take
place not only at the glottis but at a wide range of lo-
cations along the vocal tract. A useful rule of thumb
for articulations excited by noise is that the output will
spectrally be dominated by the cavity in front of the
noise source. This also holds true for sounds with tran-
sient excitation such as stop releases and click sounds
[16.28, Chapts. 7, 8].

While most of the preceding remarks were devoted
to the acoustics of vowels, we should stress that the
source-filter theory applies with equal force to the pro-
duction of consonants.

16.4 Articulatory Processes, Vowels and Consonants

X-ray films of normal speech movements reveal
a highly dynamic process. Articulatory activity comes
across as a complex flow of rapid, parallel lip, tongue
and other movements which shows few, if any, steady
states. Although the speaker may be saying no more
than a few simple syllables, one nonetheless has the
impression of a virtuoso performance of a polyphonic
motor score. As these events unfold, they are in-
stantly reflected in the acoustic output. The articulatory
movements modify the geometry of the vocal tract.
Accordingly, the filter (transfer function) undergoes
continual change and, as a result, so do the output for-
mant frequencies.

Quantitative modeling is a powerful tool for in-
vestigating the speech production process. It has been
successfully applied to study the relations between
formant and cavities. Significant insights into this map-
ping have been obtained by representing a given vocal
tract configuration as an area function – i. e., a series
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Fig. 16.26 Magnetic resonance images of the Swedish
vowels of Fig. 16.20
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Fig. 16.27a–c From articulatory profile to acoustic output.
Deriving the formant patterns of a given vowel articulation
involves (a) representing the vocal tract profile in terms of
the cross-distances from the glottis to the lips; (b) convert-
ing this specification into a cross-sectional area function;
and (c) calculating the formant pattern from this area func-
tion. To go from (a) to (b), profile data (top left) need
to be supplemented by area measurements obtained from
transversal (coronal and axial) images of the cross sections

of cylindrical cross sections of variable lengths and
cross-sectional areas – and by simulating the effects of
changes in the area function on the formant frequen-
cies [16.27].

In the past, pursuing this approach, investigators
have used lateral X-ray images – similar to the magnetic
resonance imaging (MRI) pictures in Fig. 16.26 – to
trace the outlines of the acoustically relevant articu-
latory structures. To make estimates of cross-sectional
areas along the vocal tract such lateral profiles need to
be supplemented with information on the transverse ge-
ometry of the cross sections, e.g., from casts of the vocal
tract [16.70] and tomographic pictures [16.27, 71].

More currently, magnetic resonance imaging meth-
ods have become available, making it possible to obtain
three-dimensional (3-D) data on sustained steady artic-

i

u

o

X-ray data

Effect of
varying
APEX tongue
position

Neutral

Shape

Position

Idealization

Fig. 16.28 The top drawing shows superimposed observed
tongue shapes for [�], [	], [�] and [�] differing in the place
of the main constriction. Further analyses of similar data
suggest that, for vowels, two main dimensions are used:
The anterior–posterior location of the tongue body and its
displacement from neutral which controls the degree of vo-
cal tract constriction (lower right). These parameters are
implemented numerically to produce vowels in the APEX
articulatory model

ulations [16.72–76]. Figure 16.26 presents MRI images
taken in the mid-sagittal plane of a male subject dur-
ing steady-state productions of a set of Swedish vowels.
These data were collected in connection with work on
APEX, an articulatory model developed for studying the
acoustic consequences of articulatory movements, e.g.,
the lips, the tongue and the jaw [16.77–81].
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Fig. 16.29a,b Acoustic consequences of tongue body, jaw
and lip movements as examined in APEX simulations.
The tongue moves continuously between palatal, velar and
pharyngeal locations while maintaining a minimum con-
striction area Amin of 0.25 cm, a 7 mm jaw opening and
a fixed larynx height. (a) The dashed and solid lines refer
to rounded and spread conditions. Diagram (b) illustrates
the effect of varying the jaw. The thin lines show tongue
movement at various degrees of jaw opening (6, 7, 8, 9, 12,
15, 19 and 23 mm). The bold lines pertain to fixed palatal,
neutral or pharyngeal tongue contours �

Figure 16.27 highlights some of the steps involved
in deriving the formant pattern from lateral articulatory
profiles such those of Fig. 16.26. The top-left picture is
the profile for the subject’s [a]. The white lines indicate
the coronal, coronal oblique and axial planes where ad-
ditional MR images were taken to get information on
the cross sections in the transverse dimension.

The location of the transverse cut is indicated by
the bold white line segment in the lateral profile. In
the coronal section to the right the airway of the vo-
cal tract is the dark area at the center. Below it, the
wavy surface of the tongue is evident. Since the teeth
lack the density of hydrogen nuclei needed to show
up on MR images, their intersection contours (green)
were reconstructed from casts and added computation-
ally to the image. The red lines indicate the outline
of a dental plate custom-fitted to the subject’s up-
per and lower teeth and designed to carry a contrast
agent used to provide reference landmarks (tiny white
dots) [16.82].

At any given point in the vocal tract, it would appear
that changes in cross-sectional area depend primarily
on the midsagittal distance from the tongue surface to
the vocal tract wall. An empirically adequate approach
to capturing distance-to-area relations is to use power
functions of the form Ax = αdβx , where dx is the mid-
sagittal cross distance at a location x in the vocal tract
and α and β are constants whose values tend to be differ-
ent in different regions and depend on the geometry of
the vocal tract walls [16.24, 70, 72]. The cross-sectional
area function can be obtained by applying a set of d-to-
A rules of this type to cross distances measured along
the vocal tract perpendicular to the midline. The final
step consists in calculating the acoustic resonance fre-
quencies of the derived area function.

In producing a vowel and the vocal tract shape
appropriate for it, what are the main articulatory pa-
rameters that the speaker has to control? The APEX
model [16.80] assumes that the significant informa-
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tion about the vowel articulations in Fig. 16.26 is the
following. All the vowels exhibit tongue shapes with
a single constriction. They differ with respect to how
narrow this constriction is and where it is located.
In other words, the vowels appear to be produced
with control of two degrees of freedom: the palatal–
pharyngeal dimension (position) and tongue height,
or, in APEX terminology, displacement from neutral.
This interpretation is presented in stylized form in
Fig. 16.28 together with APEX tongue shapes sampled
along the palatal–pharyngeal continuum. The choice
of tongue parameters parallels the degree and place of
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Fig. 16.30 Role of the tongue tip and blade in tuning F3. As the tongue is raised to produce the retroflex configuration
required for the Swedish [��] sound an acoustically significant volume is created under the tongue blade. Simulations using
APEX indicate that this cavity is responsible for the considerable lowering of the third formant associated with the [��]

constriction in the area-function models of Stevens and
House [16.83] and Fant [16.27].

A useful application of articulatory models is that
they can be set up to change a certain variable while
keeping others constant [16.84]. Clearly, asking a hu-
man subject to follow such an instruction does not
create an easily controlled task.

Figure 16.29 plots results from APEX simulation
experiments. It demonstrates how F1, F2 and F3 vary
in response to the tongue moving continuously between
palatal, velar and pharyngeal locations and maintaining
a minimum constriction area Amin of 0.25 cm2, a 7 mm
jaw opening and keeping the larynx height constant.
The dashed and solid lines refer to rounded and spread
conditions. The calculations included a correction for
the impedance of the vocal tract walls ([16.54], [16.28,
p. 158]).

It is seen that the tongue movement has strong ef-
fect on F2. As the constriction becomes more posterior
F2 decreases and F1 rises. In general, rounding low-
ers formants by varying degrees that depends on the
formant-cavity relations that apply to the articulation
in question. However, for the most palatal position in
Fig. 16.29 – an articulation similar to an [�] or an [�], it
has little effect on F2 whereas F3 is affected strongly.

The F2 versus F1 plot of the lower diagram of
Fig. 16.29 was drawn to illustrate the effect of vary-
ing the jaw. The thin lines show how, at various degrees
of jaw opening (6, 7, 8, 9, 12, 15, 19 and 23 mm), the
tongue moves between palatal and pharyngeal constric-

tions by way of the neutral tongue shape. The bold lines
pertain to fixed palatal, neutral or pharyngeal tongue
contours. We note that increasing the jaw opening while
keeping the tongue configuration constant shifts F1
upward.

Figure 16.30 exemplifies the role of the tongue tip
and blade in tuning F3. The data come from an X-ray
study with synchronized sound [16.79, 85]. At the cen-
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Fig. 16.31 The acoustic vowel space: possible vowel for-
mant combinations according to the APEX model
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ter a spectrogram of the syllable par [����� ]. Perhaps
the most striking feature of the formant pattern is the
extensive lowering of F3 and F4 into the [��].

The articulatory correlates are illustrated in the trac-
ings. As we compare the profiles for [��] and [��], we
see that the major change is the raising of the tongue
blade for [��] and the emergence of a significant cavity in
front of, and below, the tongue blade. Simulations using
APEX and other models [16.28, 86] indicate that this
subapical cavity is responsible for the drastic lowering
of F3.

The curves of Fig. 16.30 are qualitatively consis-
tent with the nomograms published for three-parameter
area-function models, e.g., Fant [16.27]. An advantage
of more-realistic physiological models is that the rela-
tionships between articulatory parameters and formant
patterns become more transparent. We can summarize
observations about APEX and the articulation-to-
formants mapping as:

• F1 is controlled by the jaw in a direct way;• F2 is significantly changed by front–back movement
of the tongue;• F3 is influenced by the action of the tongue blade.

Another way of summarizing the acoustic proper-
ties of a speech production model is to translate all of its
articulatory capabilities into a formant space. By defini-
tion that contains all the formant patterns that the model
is capable of producing (and specifying articulatorily).
Suppose that a model uses n independent parameters
and each parameter is quantized into a certain number of
steps. By forming all legal combinations of those para-
metric values and deriving their vocal tract shapes and
formant patterns, we obtain the data needed to represent
that space graphically.

The APEX vowel space is shown in 3-D in
Fig. 16.31. The x-axis is F1. The depth dimension is F2
and the vertical axis is F3. Smooth lines were drawn to
enclose individual data points (omitted for clarity).

A cloud-like structure emerges. Its projection on the
F2/F1 floor plane takes the form of the familiar trian-
gular pattern appears with [�], [a] and [	] at the corners.
Adding F3 along the vertical axis offers additional room
for vowel timber variations especially in the [�/�] region.

Figure 16.32 shows typical values for F1 and F2
for various vowels. At the top of the diagram, F1 is
given also on the musical staff. The graph thus demon-
strates that the fundamental frequency in singing is
often higher than the normal value of F1. For example,
the first formant of [��] and [	�] is about 250 Hz (close to
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Fig. 16.32 Schematic illustration of the variation ranges of
F1 and F2 for various vowels as pronounced by female and
male adults. Above the graph F1 is given in musical score
notation together with typical F0 ranges for the indicated
voice classifications

the pitch of C4), which certainly is a quite low note for
a soprano.

Theory predicts that the vocal fold vibration will
be greatly disturbed when F0 = F1 [16.87], and singers
seem to avoid allowing F0 to pass F1 [16.88, 89]. In-
stead they raise F1 to a frequency slightly higher than
F0. Some formant frequency values for a soprano singer
are shown in Fig. 16.33. The results can be idealized
in terms of lines, also shown in the figure, relating F1,
F2, F3, and F4 to F0. Also shown are the subject’s for-
mant frequencies in speech. The main principle seems
to be as follows. As long as fundamental frequency is
lower than the normal value of the vowel’s first formant
frequency, this formant frequency is used. At higher
pitches, the first formant is raised to a value somewhat

Part
E

1
6
.4



726 Part E Music, Speech, Electroacoustics

4500

4000

3500

3000

2500

2000

1500

1000

500

100
1000100 200 400 800

Fn (Hz)

F0 (Hz)

F4

F3

F2

F1

i u e a

Fig. 16.33 Values of F1, F2, F3, and F4 for the indicated
vowels in a professional soprano as function of F0. F1 and
F3 are represented by open symbols and F2 and F4 by filled
symbols. The values for F0 ≈ 180 Hz were obtained when
the singer sustained the vowels in a speech mode (after
Sundberg [16.88])

higher than the fundamental frequency. In this way, the
singer avoids having the fundamental frequency exceed
the first formant frequency. With rising fundamental fre-
quency, F2 of front vowels is lowered, while F2 of back
vowels is raised to a frequency just above the second
spectrum partial; F3 is lowered, and F4 is raised.

A commonly used articulatory trick for achieving
the increase of F1 with F0 is a widening of the jaw
opening [16.85]. The graphs of Fig. 16.34 show the jaw
opening of professional singers as a function of the fre-
quency separation in semitones between F0 and the F1
value that the singer used at low pitches. The graph
referring to the vowel [��] shows that most singers be-
gan to widen their jaw opening when the F0 was about
four semitones below the normal F1 value. The lower
graph of Fig. 16.34 shows the corresponding data for
the vowel [�]. For this vowel, most subjects started to
widen the jaw opening when the fundamental was about
four semitones above the normal value of F1. It is likely
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Fig. 16.34 Singers’ jaw opening in the vowels [��] and
[�] plotted as functions of the distance in semitones be-
tween F0 and the individual singer’s normal F1 value for
these vowels. The singers belonged to different classifica-
tions: Sop = soprano, Mz = mezzosoprano, Alt = alto, Ten
= tenor, Bar = baritone. Symbols refer to subjects (after
Sundberg and Skoog [16.90])

that below this pitch singers increase the first formant by
other articulatory means than the jaw opening. A plau-
sible candidate in front vowels is the degree of vocal
tract constriction; a reduced constriction increases the
first formant. Many singing teachers recommend their
students to release the jaw or to give space to the tone;
it seems likely that the acoustic target of these recom-
mendations is to raise F1.

There are also other articulators that can be recruited
for the purpose of raising F1. One is the lip opening. By
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Fig. 16.35 The universal phenomenon of coarticulation illustrated with articulatory and acoustic data on Swedish [�].
The influence of the following vowel extends throughout the articulation of the stop closure. There is no point in time at
which a pure (context-free) sample of the [�] could be obtained

retracting the mouth corners, the vocal tract is short-
ened; and hence the frequencies of the formants will
increase. The vocal tract can also be shortened by rais-
ing the larynx, and some professional female singers
take advantage of this tool when singing at high pitches.

This principle of tuning formant frequencies de-
pending on F0 has been found in all singers who
encounter the situation that the normal value of the first
formant is lower than their highest pitches. In fact, all
singers except basses encounter this situation at least for
some vowels sung at high pitches. The benefit of these
arrangements of the formant frequencies is an enormous
increase of sound level, gained by sheer resonance.

Vowel quality is determined mainly by F1 and F2,
as mentioned. Therefore, one would expect drastic con-
sequences regarding vowel intelligibility in these cases.
However, the vowel quality of sustained vowels seems
to survive these pitch-dependent formant frequency
changes surprisingly well, except when F0 exceeds the
pitch of F5 (about 700 Hz). Above that frequency no
formant frequency combination seems to help, and be-
low it, the vowel quality would not be better if normal
formant frequencies were chosen. The amount of text

intelligibility which occurs at very high pitches relies
almost exclusively on the consonants surrounding the
vowel. Thus, facing the choice between inaudible tones
with normal formant frequencies or audible tones with
strange vowel quality, singers probably make a wise
choice.

One of the major challenges both for applied and
theoretical speech research is the great variability of the
speech signal. Consider a given utterance as pronounced
by speakers of the same dialect. A few moments’ re-
flection will convince us that this utterance is certain to
come in a large variety of physical shapes. Some varia-
tions reflect the speaker’s age, gender, vocal anatomy
as well as emotional and physiological state. Others
are stylistic and situational as exemplified by speak-
ing clearly in noisy environments, speaking formally in
public, addressing large audiences, chatting with a close
friend or talking to oneself while trying to solve a prob-
lem. Style and situation make significant contributions
to the variety of acoustic waveforms that instantiate
what we linguistically judge as the same utterance.

In phonetic experimentation investigators aim at
keeping all of these stylistic and situational factors
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constant. This goal tends to limit the scope of the
research to a style labeled laboratory speech, which
consists of test items that are chosen by the experi-
menter and are typically read from a list. Despite the
marked focus on this type of material, laboratory speech
nonetheless presents several variability puzzles. We will
mention two: segmental interaction, or coarticulation,
and prosodic modulation. Both exemplify the ubiqui-
tous context dependence of phonetic segments. First
a few remarks on coarticulation.

In Fig. 16.35 the phoneme [�] occurs in two words
taken from an X-ray film [16.79, 85] of a Swedish
speaker: [�����] and [���	��]. In these words the first
three phonemes correspond to the first three segments
on the spectrogram: an initial [�] segment, the [�] stop
gap and then the final vowel. So far, so good. However,
if we were to try to draw a vertical line on the spec-
trogram to mark the point in time where [�] ends and
[�] begins, or where [�] ends and the final vowel be-
gins, we would soon realize that we have an impossible
task. We would perhaps be able to detect formant move-
ments in the [�] segment indicating that articulatory
activity towards the [�] had been initiated. However,

that point in time occurs during the acoustic [�] seg-
ment. Similarly, we could identify the endpoint of the
formant transitions following [�] but that event occurs
when the next segment, the final vowel, is already under
way.

What we arrive at here is the classical conclusion
that strings of phonemes are not organized as beads
on a necklace [16.91–93]. The acoustic correlates of
phonemes, the acoustic segments, are produced accord-
ing to a motor schema that requires parallel activity in
several articulatory channels and weaves the sequence
of phonemes into a smooth fabric of overlapping move-
ments. We are talking about coarticulation, the overlap
of articulatory gestures in space and time.

Not only does this universal of motor organization
give rise to the segmentation problem, i. e., make it im-
possible to chop up the time scale of the speech wave
into phoneme-sized chunks, it creates another dilemma
known as the invariance issue. We can exemplify it by
referring to Fig. 16.35 again and the arrows indicating
the frequencies of F2 and F3 at the moment of [�] re-
lease. With [��] following they are high in frequency.
Next to [	�] they are lower. What acoustic attributes
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define the [�] phoneme? How do we specify the [�]
phoneme acoustically in a context-independent way?

The answer is that, because of coarticulation, we
cannot provide an acoustic definition that is context in-
dependent. There is no such thing as an acoustic pure
sample of a phoneme.

Articulatory observations confirm this account.
There is no point in time where the shape of the tongue
shows zero influence from the surrounding vowels. The
tracings at the top left of Fig. 16.35 show the tongue
contours for [��] and [	�] sampled at the vowel mid-
points. The bottom left profiles show the tongue shapes
at the [� release. The effect of the following vowel is
readily apparent.

So where do we look for the invariant phonetic cor-
relates for [�]? Work on articulatory modeling [16.49,
94] indicates that, if there is such a thing as a sin-
gle context-free target underlying the surface variants
of [�], it is likely to occur at a deeper level of speech
production located before the motor commands for [�]
closure and for the surrounding vowels blend.

This picture of speech production raises a number
of questions about speech perception that have been ad-
dressed by a large body of experimental work [16.95,
96] but which will not be reviewed here.

It should be remarked though that, the segmenta-
tion and invariance issues notwithstanding, the context
sensitivity of phonetic segments is systematic. As an il-
lustration of that point Fig. 16.36 is presented. It shows
average data on formant transitions that come from
the Swedish speaker of Fig. 16.36 and Figs. 16.26–

16.28. The measurements are from repetitions of CV
test words in which the consonants were [], [�] or [�]
and were combined with [��] [��] [
�] [a] [��] [��] and
[	�]. Formant transition onsets for F2, F3 and F4 are
plotted against F2 midpoints for the vowels.

If the consonants are coarticulated with the vowels
following, we would expect consonant onset patterns to
co-vary with the vowel formant patterns. As shown by
Fig. 16.36 that is also what we find. Recall that, in the
section on articulatory modeling, we demonstrated that
F2 correlates strongly with the front–back movement of
the tongue. This implies that, in an indirect way, the x-
axis labeled F2 at vowel midpoint can be said to range
from back to front. The same reasoning applies to F2
onsets.

Figure 16.36 shows that the relationship between F2
onsets and F2 at vowel midpoint is linear for bV and
dV. For gV, the data points break up into back (low
F2) and front (high F2) groups. These straight lines –
known as locus equations [16.97] – have received
considerable attention since they provide a compact
way of quantifying coarticulation. Data are available
for several languages showing robustly that slopes
and intercepts vary in systematic ways with places of
articulation.

Furthermore, we see from Fig. 16.36 that lawful pat-
terns are obtained also for F3 and F4 onsets. This makes
sense if we assume that vocal tract cavities are not com-
pletely uncoupled and that hence, all formants – not
only F2 – are to some extent influenced by where along
the front–back dimension the vowel is articulated.

16.5 The Syllable

A central unit in both speech and singing is the syllable.
It resembles the phoneme in that it is hard to define but
it can be described in a number of ways.

Linguists characterize it in terms of how vowels and
consonants pattern within it. The central portion, the nu-
cleus, is normally a vowel. One or more consonants
can precede and/or follow forming the onset and the
coda respectively. The vowel/nucleus is always there;
the onset and coda are optional.

Languages vary with respect to the way they com-
bine consonants and vowels into syllables. Most of them
favor a frame with only two slots: the CV syllable. Oth-
ers allow more-elaborated syllable structures with up to
three consonants initially and the mirror image in syl-
lable final position. If there is also a length distinction
in the vowel and/or consonant system, syllables frames

can become quite complex. A rich pattern with conso-
nant clusters and phonological length usually implies
that the language has a strong contrast between stressed
and unstressed syllables.

In languages that allow consonant sequences, there
is a universal tendency for the segments to be serially
ordered on an articulatory continuum with the conso-
nants compatible with the vowel’s greater jaw opening
occurring next to the vowel, e.g., [�] and [�], while those
less compatible, e.g. [�], are recruited at the syllable
margins [16.98, 99]. In keeping with this observation,
English and other languages use [��� as an initial, but
not final, cluster. The reverse sequence [���] occurs in
final, but not initial, position, cf. sprawl and harps.
Traditionally and currently, this trend is explained in
terms of an auditory attribute of speech sounds, sonor-
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ity. The sonority principle [16.59] states that, as the
most sonorous segments, vowels take the central nu-
cleus position of the syllable and that the sonority of the
surrounding consonants must decrease to the left and
to the right starting from the vowel. Recalling that the
degree of articulatory opening affects F1 which in turn
affects sound intensity, we realize that these articulatory
and auditory accounts are not incompatible. However,
the reason for the syllabic variations in sonority is artic-
ulatory: the tendency for syllables to alternate close and
open articulations in a cyclical manner.

The syllable is also illuminated by a developmental
perspective. An important milestone of normal speech
acquisition is canonical babbling. This type of vocal-
ization makes its appearance sometime between 6–10
months. It consists of sequences of CV-like events, e.g.,
[�
�
], [aa] [16.100–104]. The phonetic output of
deaf infants differs from canonical babbling both quan-
titatively and quantitatively [16.105–107], suggesting
that auditory input from the ambient language is a pre-
requisite for canonical babbling [16.108–111]. What
babbling shares with adult speech is its syllabic or-
ganization, that is, the alternation of open and close
articulations in which jaw movement is a major com-
ponent [16.112].

As mentioned, the regular repetition of open-close
vocal tract states gives rise to an amplitude modulation
of the speech waveform. Vowels tend to show the highest
amplitudes contrasting with the surrounding consonants
which have various degrees of constriction and hence
more reduced amplitudes. At the acoustic boundary be-
tween a consonant and a vowel, there is often an abrupt
rise in the amplitude envelope of the waveform.

When a Fourier analysis is performed on the
waveform envelope, a spectrum with primarily low,
sub-audio frequency components is obtained. This is
to be expected given the fact that amplitude envelopes
vary slowly as a function of time. This representation
is known as the modulation spectrum [16.113]. It re-
flects recurring events such as the amplitude changes
at consonant-vowel boundaries. It provides an approxi-
mate record of the rhythmic pulsating stream of stressed
and unstressed syllables.

The time envelope may at first appear to be a rather
crude attribute of the signal. However, its perceptual im-
portance should not be underestimated. Room acoustics
and noise distort speech by modifying and destroying its
modulation spectrum. The modulation transfer function
was proposed by Houtgast and Steeneken as a measure
of the effect of the auditorium on the speech signal and
as a basis for an index, the speech transmission index

(STI), used to predict speech intelligibility under dif-
ferent types of reverberation and noise. The success of
this approach tells us that the modulation spectrum, and
hence the waveform envelope, contains information that
is crucial for robust speech perception [16.114]. Ex-
perimental manipulation of the temporal envelope has
been performed by Drullman et al. [16.115,116] whose
work reinforces the conclusions reached by Houtgast
and Steeneken.

There seems to be something special about the front
ends of syllables. First, languages prefer CVs to VCs.
Second, what children begin with is strings of CV-
like pseudosyllables that emulate the syllable onsets of
adult speech. Third there is perceptually significant in-
formation for the listener in the initial dynamics of the
syllable. Let us add another phenomenon to this list: the
syllable beat, or the syllable’s P-center [16.117, 118].

In reading poetry, or in singing, we have a very
strong sense that the syllables are spoken/sung in ac-
cordance with the rhythmic pattern of the meter. Native
speakers agree more or less on how many syllables there
are in a word or a phrase. In making such judgments,
they seem to experience syllables as unitary events.
Although it may take several hundred milliseconds to
pronounce, subjectively a syllable appears to occur at
a specific moment in time. It is this impression to which
the phonetic term syllable beat refers and that has been
studied experimentally in a sizable number of publica-
tions [16.119–125].

Rapp [16.126] asked three native speakers of Swedish
to produce random sets of test words built from [aC����]
were the consonant C was selected from [�, �, �, �, �, ��,
���]. The instruction was to synchronize the stressed syl-
lable with a metronome beat presented over earphones.

The results are summarized in Fig. 16.37. The x-axis
represents distance in milliseconds from the point of
reference, the metronome beat. The top diagram shows
the total distribution of about 2000 time markers around
the mean. The lower graph indicates the relative loca-
tion of the major acoustic segment boundaries.

Several phonetic correlates have been proposed for
the syllable beat: some acoustic/auditory, others articu-
latory. They all hover around the vowel onset, e.g., the
amplitude envelope of a signal [16.127], rapid increase
in energy in spectral bands [16.128,129] or the onset of
articulatory movement towards the vowel [16.130].

Rapp’s data in Fig. 16.37 indicate that the mean beat
time tends to fall close to the release or articulatory
opening in [�, �, �, �] but that it significantly precedes the
acoustic vowel onsets of [����], [���] and [��]. However,
when segment boundaries were arranged in relation to
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Fig. 16.37a,b In Rapp [16.126] three male Swedish sub-
jects were asked to produce test words based on an [a	����]
frame with [�, �, �, �, �, ��, ���] as intervocalic seg-
ment(s). These items were pronounced in synchrony with
metronome beats presented over headphones. The figure
shows the temporal distribution of the metronome beats
(a) in relation to the average time location of acoustic seg-
ment boundaries (b) �

a fixed landmark on the F0 contour and vowel onsets
were measured relative to that landmark, the range of
vowel onsets was reduced. It is possible that the sylla-
ble beat may have its origin, not at the acoustic surface,
nor at some kinematic level, but in a deeper motor con-
trol process that coordinates and imposes coherence on
respiratory, phonatory and articulatory activity needed
to produce a syllable.

Whatever the definitive explanation for the sylla-
ble’s psychological moment of occurrence will be, the
syllable beat provides a useful point of entry for at-
tempts to understand how the control of rhythm and
pitch works in speech and singing. Figure 16.38 com-
pares spectrograms of the first few bars of Over the
rainbow, spoken (left) and sung (right).

Vertical lines have been drawn at vowel onsets and
points where articulators begin to move towards a more

Spoken Sung

some highway the rainbow upoverwhere some highway the rainbow upoverwhere

b)a)

Fig. 16.38a,b Waveforms and spectrograms of the first few bars of Over the rainbow, (a) spoken and (b) sung. Below: F0
traces in Hz. Vertical lines were drawn at time points corresponding to vowel onsets defined in terms of onset of voicing
after a voiceless consonant, or the abrupt vocal tract opening following a consonant
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open configuration. The lines form an isochronous tem-
poral pattern in the sung version which was performed
at a regular rhythm. In the spoken example, they occur
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Fig. 16.39 Spectrogram of Dietrich Fischer-Dieskau’s recording of song number 4 from Robert Schumann’s Dichter-
liebe, op. 48. The vertical bars mark the onset of the tones of the piano accompaniment. Note the almost perfect synchrony
between vowel onset and the piano. Note also the simultaneous appearance of high and low partials after the consonants
also after the unvoiced /t/ in Taube

at intervals that seem more determined by the syllable’s
degree of prominence.

The subject reaches F0 targets at points near the
beats (the vertical lines). From there target frequencies
are maintained at stationary values until shortly before
it is time to go to the next pitch. Thus the F0 curve re-
sembles a step function with some smoothing applied to
the steps.

On the other hand, the F0 contour for speech shows
no such steady states. It makes few dramatic moves as it
gradually drifts downward in frequency (the declination
effect).

Figure 16.39 shows a typical example of classical
singing, a spectrogram of a commercial recording of
Dietrich Fischer-Dieskau’s rendering of the song Die
Rose, die Lilie from Robert Schumann’s Dichterliebe,
op. 48. The vertical dashed lines show the onsets of the
piano accompaniment. The wavy patterns, often occur-
ring somewhat after the vowel onset, reflect the vibrato.
Apart from the vibrato undulation of the partials the
gaps in the pattern of harmonics are quite apparent. At
these points we see the effect of the more constricted ar-
ticulations for the consonants. Note the rapid and crisply
synchronous amplitude rise in all partials at the end
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Fig. 16.40 A quantitative approach to synthesizing F0 contours by rule (after Fujisaki [16.131]). The framework shown
here is an example of the so-called superposition models which generate F0 patterns by adding strongly damped responses
to input step function target commands for phrase and accents

of the consonant segments, also after unvoiced conso-
nants, e.g. the /t/ in Taube. These rises are synchronized
with the onset of the piano accompaniment tones, thus
demonstrating that in singing a beat is marked by the
vowel. The simultaneous appearing of low and high
partials seems to belong to the characteristics of clas-
sical singing as opposed to speech, where the higher
partials often arrive with a slight delay after unvoiced
consonants. As mentioned before, such consonants are
produced with abduction of the vocal folds. To generate
also high partials in this context, the vocal folds need to
close the glottis at the very first vibratory cycle at the
vowel onset. A potential benefit of this might be that
this enhances the higher formants which are important
to text intelligibility.

Several quantitative frameworks have been pro-
posed for generating speech F0 contours by rule (for
overview see Frid [16.132]). A subgroup of these has
been called superposition models [16.131,133]. A char-
acteristic of such models is that they decompose the
F0 curve into separate phrase and accent components.
The accent commands are F0 step or impulse func-
tions temporally linked to the syllables carrying stress.
Accent pulses are superimposed on the phrase compo-
nent. For a declarative sentence, the phrase component

is a falling F0 contour produced from rectangular step
function hat patterns [16.134]. The phrase and accent
commands are passed through critically damped filters
to convert their sum into the smoothly varying output
F0 contour. An example of this approach is shown in
Fig. 16.40 [16.131].

The last few figures suggest that the F0 patterns
of singing and speech may be rather different if com-
pared in terms of the raw F0 curves. However, the
superposition models suggest that speech F0 contours
have characteristics in part attributable to the passive re-
sponse characteristics of the neuro-mechanical system
that produces them, and in part due to active control sig-
nals. These control commands take the form of stepwise
changes, some of short, others of longer duration. This
representation is not unlike the sequence of F0 targets
of a melody.

The implication of this analysis is that F0 is con-
trolled in similar ways in speech and singing in the
sense that both are based on sequences of underlying
steady-state targets. On the other hand, a significant
difference is that in singing high accuracy in attain-
ment of acoustic target frequencies is required whereas
in speech such demands are relaxed and smoothing is
stronger.

16.6 Rhythm and Timing

A striking characteristic of a foreign language is its
rhythm. Phoneticians distinguish between stress-timed
and syllable-timed languages. English, Russian, Arabic
and Thai are placed in the first group [16.135]. French,
Spanish, Greek, Italian, Yoruba and Telugu are exam-
ples of the second.

Stress timing means that stressed syllables recur at
approximately equal intervals. For instance, it is pos-
sible to say in ENGlish STRESses reCUR at EQual
INtervals, spacing the stressed syllables evenly in time
and without sounding too unnatural. Stress increases
syllable duration. In case several unstressed syllables
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occur in between stresses they are expected to undergo
compensatory shortening. Syllable, or machine-gun,
timing [16.136] implies that syllables recur at approx-
imately equal intervals. In the first case it is the stresses
that are isochronous, in the second the syllables.

To what extent are speech rhythms explicitly con-
trolled by the speaker? To what extent are they
fortuitous by-products of other factors? Does acquiring
a new language involve learning new rhythmic target
patterns?

The answer depends on how speech is defined. In
the reading of poetry and nursery rhymes it is clear that
an external target, viz. the metric pattern, is a key de-
terminant of how syllables are produced. Similarly, the
groupings and the pausing in narrative prose, as read
by a professional actor, can exhibit extrinsic rhythmic
stylization compared with unscripted speech [16.137].

Dauer [16.138] points the way towards addressing
such issues presenting statistics on the most frequently
occurring syllable structures in English, Spanish and
French. In Spanish and French, syllables were found
to be predominantly open, i. e. ending with a vowel,
whereas English showed a preference for closed sylla-
bles, i. e. ending with a consonant, especially in stressed
syllables. Duration measurements made for English
and Thai (stress-timed) and Greek, Spanish and Ital-
ian (syllable-timed) indicated that the duration of the
interstress intervals grew at the same constant rate as
a function of the number of syllables between the inter-
stress intervals. In other words, no durational evidence
was found to support the distinction between stress tim-
ing and syllable timing. How do we square that finding
with the widely shared impression that some languages
do indeed sound stress-timed and others syllable-timed?

Dauer [16.138, p. 55] concludes her study by stating
that:

. . . the rhythmic differences we feel to exist between
languages such as English and Spanish are more
a result of phonological, phonetic, lexical and syn-
tactic facts about that language than any attempt
on the part of the speaker to equalize interstress or
intersyllable intervals.

It is clear that speakers are certainly capable of im-
posing a rhythmic template in the serial read-out of
syllables. But do they put such templates in play also
when they speak spontaneously? According to Dauer
and others [16.139, 140] rhythm is not normally an
explicitly controlled variable. It is better seen as an
emergent product of interaction among the choices
languages make (and do not make) in building their

syllables: e.g., from open versus closed syllable struc-
tures, heavy versus weak clusters, length distinctions
and strong stressed/unstressed contrast. We thus learn
that the distinction between syllable timing and stress
timing may be a useful descriptive term but should pri-
marily be applied to the phonetic output, more seldom
to its input control.

Do speech rhythms carry over into music? In
other words, would music composed by speakers of
syllable-timed or stress-timed languages also be syl-
lable timed or stress timed? The question has been
addressed [16.141,142] and some preliminary evidence
has been reported.

There is more to speech timing than what happens
inside the syllable. Processes at the word and phrase lev-
els also influence the time intervals between syllables.
Consider the English words digest, insult and pervert.
As verbs their stress pattern can be described as a se-
quence of weak–strong syllables. As nouns the order is
reversed: strong–weak. The syllables are the same but
changing the word’s stress contour (the lexical stress)
affects their timing.

The word length effect has been reported for sev-
eral languages [16.58,143]. It refers to the tendency for
the stressed vowel of the word to shorten as more sylla-
bles are appended, cf. English speed, speedy, speedily.
In Lehiste’s formulation:

It appears that in some languages the word as
a whole has a certain duration that tends to re-
main relatively constant, and if the word contains
a greater number of segmental sounds, the duration
of the segmental sounds decreases as their number
in the word increases.

At the phrase level we find that rhythmic patterns can be
used to signal differences in syntactic structure. Com-
pare:

1. The 2000-year-old skeletons,
2. The two 1000-year-old skeletons.

The phrases contain syllables with identical pho-
netic content but are clearly timed differently. The
difference is linked to that fact that in (1) 2000-year-old
forms a single unit, whereas in (2) two 1000-year-old
consists of two constituents.

A further example is:

3. Johan greeted the girl with the flowers.

Hearing this utterance in a specific context a listener
might not find it ambiguous. But it has two interpreta-
tions: (a) either Johan greeted the girl who was carrying
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flowers, or (b) he used the flowers to greet her. If spo-
ken clearly to disambiguate, the speaker is likely to
provide temporal cues in the form of shortening the
syllables within each syntactic group to signal the co-
herence of the constituent syllables (cf. the word length
effect above) and to introduce a short pause between
the two groups. There would be a lengthening of the
last syllable before the pause and of the utterance-final
syllable.

Version (a) can be represented as

4. [Johan greeted] # [the girl with the flowers].

In (b) the grouping is

5. [Johan greeted the girl] # [with the flowers].

The # symbol indicates the possibility of a short
juncture or pause and a lengthening of the segments
preceding the pause. This boundary cue is known
as pre-pausal lengthening, or more generally as final
lengthening [16.143, 144], a process that has been ob-
served for a great many languages. It is not known
whether this process is a language universal. It is fair
to say that is typologically widespread.

Curiously it resembles a phenomenon found in po-
etry, folk melodies and nursery tunes, called catalexis. It
consists in omitting the last syllable(s) in a line or other
metrical unit of poetry. Instead of four mechanically
repeated trochaic feet as in:

|−' |−' |−' |−' |
|−' |−' |−' |−' |

we typically find catalectic lines with durationally im-
plied but deleted final syllables as in:

|−' |−' |−' |− |
Old McDonald had a farm

|−' |−' |− | |
ee-i ee-i oh

Final lengthening is an essential feature of speech
prosody. Speech synthesized without it sounds both
highly unnatural and is harder to perceive. In music
performance frameworks, instrumental as well as sung,
final lengthening serves the purpose of grouping and
constituent marking [16.145, 146].

16.7 Prosody and Speech Dynamics

Degree of prominence is an important determinant of
segment and syllable duration in English. Figure 16.41
shows spectrograms of the word squeal spoken with
four degrees of stress in sentences read in response to
a list of questions (source: [16.147]). The idea behind
this method was to elicit tokens having emphatic, strong
(as in focus position), neutral and weak (unfocused)
stress on the test syllable. The lower row compares
the strong and the emphatic pronunciations (left and
right respectively). The top row presents syllables with
weaker degrees of stress.

The representations demonstrate that the differences
in stress have a marked effect on the word’s spectro-
graphic pattern. Greater prominence makes it longer.
Formants, notably F2, show more extensive and more
rapid transitions.

A similar experimental protocol was used in two
studies of the dynamics of vowel production [16.147,
148]. Both report formant data on the English front
vowels [�], [�], [�] and [��] occurring in syllables selected
to maximize and minimize contextual assimilation to
the place of articulation of the surrounding consonants.
To obtain a maximally assimilatory frame, words con-
taining the sequence [�	
] were chosen, e.g., as in

wheel, will, well and wail. (The [�] is a labio-velar and
English [
] is velarized. Both are thus made with the
tongue in a retracted position). The minimally assimila-
tory syllable was [�	�].

Moon’s primary concern was speaking style (clear
versus casual speech). Brownlee investigated changes
due to stress variations. In both studies measurements
were made of vowel duration and extent of formant
transitions. Vowel segment boundaries were defined in
terms of fixed transition onset and endpoint values for
[�] and [
] respectively. The [�	�] frame served as a
null context reference. The [�	
] environment produced
formant transitions large enough to provide a sensitive
and robust index of articulatory movement (basically
the front–back movement of the tongue).

Figure 16.42 presents measurements of F2 and
vowel duration from tokens of [�] in the word squeal
spoken by a male subject under four conditions of
stress: emphatically stressed, focused, neutral stress and
weak stress (out of focus). The subject was helped to
produce the appropriate stress in the right place by read-
ing a question before each test sentence.

Filled circles pertain to individual measurements
pooled for all stress conditions. The points form a co-
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Fig. 16.41 Spectrograms of the word squeal spoken with
four degrees of stress in sentences read in response to a list
of questions (after Brownlee [16.147])

herent cluster which is fairly well captured by an
exponential curve. The asymptote is the dashed hori-
zontal line, i. e., the average F2 value of the [�	� data
for [�]. The averages for the stress conditions are indi-
cated by the unfilled squares. They are seen to move
up along the curve with increasing stress (equivalently,
vowel duration).

To understand the articulatory processes underlying
the dynamics of vowel production it is useful to adopt
a biomechanical perspective. In the [�	
 test words the
tongue body starts from a posterior position in [�] and
moves towards a vowel target located in the front region
of the vocal tract, e.g., [�], [�], [�] or [�]. Then it returns
to a back configuration for the dark [
]. At short vowel
durations there is not enough time for the vowel gesture
to be completed. As a result, the F2 movement misses
the reference target by several hundred Hz. Note that in
unstressed tokens the approach to target is off by almost
an octave. As the syllable is spoken with more stress,
and the vowel accordingly gets longer, the F2 transition
falls short to a lesser degree. What is illustrated here is
the phenomenon known as formant undershoot [16.149,
150].

Formant undershoot has received a fair amount of
attention in the literature [16.151–155]. It is generally
seen as an expression of the sluggish response char-
acteristics of the speech production system. The term
sluggish here describes both neural delays and me-
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Fig. 16.42 Measurements of F2 as function of vowel du-
ration from tokens of [�] in the word squeal spoken by
a male subject under four conditions of stress: emphati-
cally stressed, focused, neutral stress and weak stress (out
of focus). Filled circles pertain to the individual mea-
surements from all the four stress conditions. The dashed
horizontal line, is the average F2 value of citation form
productions of [�	�]. The averages for the four stress con-
ditions are indicated by the open squares. As duration
increases – which is approximately correlated with increas-
ing stress – the square symbols are seen to move up along
the smooth curve implying decreasing undershoot (after
Brownlee [16.147])

chanical time constants. The response to the neural
commands for a given movement is not instantaneous.
It takes time for neural impulses to be transformed into
muscular contractions and it takes time for the tongue,
the jaw and other articulatory structures to respond me-
chanically to the forces generated by those contractions.
In other words, several stages of filtering take place
between control signals and the unfolding of the move-
ments. It is this filtering that makes the articulators
sluggish. When commands for successive phonemes
arrive faster than the articulatory systems are able to
respond, the output is a set of incomplete movements.
There is undershoot and failure to reach spatial, and thus
also acoustic, targets.

However, biomechanics tells us that, in principle,
it should be possible to compensate for system char-
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Fig. 16.43 Measurements F2 as function of vowel duration
for five male subjects’ casual citation-form style pronun-
ciation of the words wheel, wheeling, Wheelingham, will,
willing, willingly and for their pronunciation of the same
words when asked to say them clearly in an overarticulated
way. Casual style is represented by the solid circles, clear
speech by open circles. The frequency of F2 in [�] is indi-
cated by the arrows at 600 Hz. The mean F2 for the [�	�]
data is entered as dashed horizontal lines (after [16.157,
Fig. 4])

acteristics by applying greater force to the articulators
thereby speeding up movements and improving tar-
get attainment [16.156]. Such considerations make us
expect that, in speech movement dynamics, a given tra-
jectory is shaped by:

1. The distance between successive articulatory goals
(the extent of movement)

2. Articulatory effort (input force)
3. Duration (the time available to execute the

movement).

The data of Brownlee are compatible with such
a mechanism in that the stress-dependent undershoot
observed is likely to be a joint consequence of:

1. The large distances between back and front targets
2. The stress differences corresponding to variations in

articulatory effort
3. Durational limitations.

The three factors – movement extent, effort and du-
ration – are clearly demonstrated in Moon’s research on
clear and casual speech. As mentioned, Moon’s test syl-
lables were the same as Brownlee’s. He varied speaking
style while keeping stress constant. This was achieved
by taking advantage of the word-length effect. The seg-
ment strings [��
�], [��
�], [��
�] and [��
�] were
used as the first main-stressed syllable in mono-, bi-
and trisyllabic words to produce items such as wheel,
wheeling, Wheelingham, will, willing, willingly, etc.

In the first part of his experiment, five male subjects
were asked to produce these words in casual citation-
form style. In the second section the instruction was
to say them clearly in an overarticulated way. For
the citation-form pronunciation the results replicated
previously observed facts in that: (a) all subjects exhib-
ited duration-dependent formant undershoot, and (b) the
magnitude of this effect varied in proportion to the ex-
tent of the [�]–[vowel] transition. In the clear style,
undershoot effects were reduced. The mechanism by
which this was achieved varied somewhat from subject
to subject. It involved combinations of increased vowel
duration and more rapid and more extensive formant
transitions. Figure 16.43 shows the response of one of
the subjects to the two tasks [16.157].

Casual style is represented by the solid circles, clear
speech by open circles. The frequency of F2 in [�] is
indicated by the arrows at 600 Hz. The mean F2 for the
[�	� data is entered as dashed horizontal lines.

The solid points show duration-dependent under-
shoot effects in relation to the reference values for the
[�	�] environment. The open circles, on the other hand,
overshoot those values suggesting that this talker used
more extreme F2 targets for the clear condition. The
center of gravity of the open circles is shifted to the
right for all four vowels showing that clear forms were
longer than citation forms. Accordingly, this is a sub-
ject who used all three methods to decrease undershoot:
clear pronunciations exhibited consistently more ex-
treme targets (F2 higher), longer durations and more
rapid formant movements.

These results demonstrate that duration and con-
text are not the only determinants of vowel reduction
since, for any given duration, the talker is free to
vary the degree of undershoot by choosing to articu-
late more forcefully (as in overarticulated hyperspeech)
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or in a more relaxed manner (as in casual hypospeech).
Taken together, the studies by Moon and Brownlee sug-
gest that the dynamics of articulatory movement, and

thus of formant transitions, are significantly constrained
by three factors: extent of movement, articulatory effort
and duration.

16.8 Control of Sound in Speech and Singing

When we perform an action – walk, run, or reach for
and manipulate objects – our motor systems are faced
with the fact that the contexts under which movements
are made are never exactly the same. They change
significantly from one situation to the next. Nonethe-
less, motor systems adapt effortlessly to the continually
changing conditions presumably because, during evo-
lution, they were shaped by the need to cope with
unforeseen events and obstacles [16.158]. Their default
mode of operation is compensatory [16.159].

Handwriting provides a good illustration of this
ability. A familiar fact is that it does not matter if some-
thing is written on the blackboard or on a piece of
paper. The characteristic features of someone’s hand-
writing are nevertheless easily recognized. Different
sets of muscles are recruited and the size of the let-
ters is different but their shapes remain basically similar.
What this observation tells us is that movements are not
specified in terms of fixed set of muscles and constant
contraction patterns. They are recruited in function-
ally defined groups, coordinative structures [16.160].
They are planned and executed in an external coordi-
nate space, in other words in relation to the 3-D world
in which they occur so as to attain goals defined out-
side the motor system itself. The literature on motor
mechanisms teaches us that voluntary movements are
prospectively organized or future-oriented.

Speech and singing provide numerous examples of
this output-oriented mode of motor control [16.161–
163]. Earlier in the chapter we pointed out that, in up-
right position, the diaphragm and adjacent structures
are influenced by gravity and tend to be pulled down,
thereby causing the volume of the thoracic cavity to
increase. In this position, gravity contributes to the in-
spiratory forces. By contrast, in the supine position, the
diaphragm tends to get pushed up into the rib cage,
which promotes expiration [16.3, p. 40].

Sundberg et al. [16.164] investigated the effect of
upright and supine positions in two baritone singers
using synchronous records of esophageal and gas-
tric pressure, EMG from inspiratory and expiratory
muscles, lung volume and sound. Reorganization of
respiratory activity was found and was interpreted as

compensation for the different mechanical situations
arising from the upright and supine conditions.

This finding is closely related to what we know
about breathing during speech. As mentioned above
(Fig. 16.6), the Ps tends to stay fairly constant for any
given vocal effort. It is known that this result is achieved
by tuning the balance between inspiratory and expi-
ratory muscles. When the lungs are expanded so that
the effect of elastic recoil creates a significant expi-
ration force, inspiratory muscles predominate to put
a brake on that force. For reduced lung volumes the
situation is the opposite. The effect of elastic recoil is
rather to increase lung volume. Accordingly, the mus-
cle recruitment needed to maintain Ps is expected to
be primarily expiratory. That is indeed what the data
show [16.8, 63, 165].

The bite-block paradigm offers another speech ex-
ample. In one set of experiments [16.166] subjects were
instructed to pronounce syllables consisting only of
a long vowel under two conditions: first normally, then
with a bite block (BB) between the teeth. The subjects
all non-phoneticians were told to try to sound as normal
as possible despite the BB. No practice was allowed. The
purpose of the BB was to create an abnormally large jaw
opening for close vowels such as [�] and [	]. It was ar-
gued that, if no tongue compensation occurred, this large
opening would drastically change the area function of
the close vowels and disrupt their formant patterns. In
other words, the question investigated was whether the
subjects were able to sound normal despite the BB.

Acoustic recordings were made and formant pattern
data were collected for comparisons between condi-
tions, vowels and subjects. The analyses demonstrated
clearly that subjects were indeed able to produce normal
sounding vowels in spite of the BB. At the moment of
the first glottal pulse formant patters were well within
the normal ranges of variation.

In a follow-up X-ray investigation [16.167] it was
found that compensatory productions of [�] and [	] were
made with super-palatal and super-velar tongue shapes.
In other words, tongue bodies were raised high above
normal positions so as to approximate the normal cross-
sectional area functions for the test vowels.
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Speech and singing share a lot of features but signif-
icant differences are brought to light when we consider
what the goals of the two behaviors are.

It is more than 50 years since the sound spectro-
graph became commercially available [16.91]. In this
time we have learned from visible speech displays and
other records that the relation between phonetic units
and the acoustic signal is extremely complex [16.168].
The lesson taught is that invariant correlates of linguis-
tic categories are not readily apparent in the speech
wave [16.169]. In the preceding discussion we touched
on some of the sources of this variability: coarticula-
tion, reduction and elaboration, prosodic modulation,
stylistic, situational and speaker-specific characteristics.
From this vantage point it is astonishing to note that,
even under noisy conditions, speech communication is
a reliable and robust process. How is this remarkable
fact to be accounted for?

In response to this problem a number of ideas and
explanatory frameworks have been proposed. For in-
stance, it has been suggested that acoustic invariants
are relational rather than absolute (à la tone intervals
defined as frequency ratios).

Speech is rather a set of movements made audible
than a set of sounds produced by movements [16.14,
p. 33].

In keeping with this classical statement, many inves-
tigators have argued that speech entities are to be found
at some upstream speech production level and should be
defined as gestures [16.170–173].

At the opposite end, we find researchers (e.g.,
Perkell [16.163]) who endorse Roman Jakobson’s view
which, in the search for units gives primacy to the per-
ceptual representation of speech sounds. To Jakobson
the stages of the speech chain form an [16.174]

. . . operational hierarchy of levels of decreasing
pertinence: perceptual, aural, acoustical and artic-
ulatory (the latter carrying no direct information to
the receiver).

These viewpoints appear to conflict and do indeed di-
vide the field into those who see speech as a motoric
code (the gesturalist camp) and those who maintain
that it is primarily shaped by perceptual processes (the
listener-oriented school).

There is a great deal of experimental evidence for
both sides, suggesting that this dilemma is not an
either–or issue but that both parties offer valuable com-
plementary perspectives.

A different approach is taken by the H & H (Hy-
per and Hypo) theory [16.175, 176]. This account is

developed from the following key observations about
speaker–listener interaction:

1. Speech perception is always a product of signal in-
formation and listener knowledge;

2. Speech production is adaptively organized.

Here is an experiment that illustrates the first claim
about perceptual processing. Two groups of subjects
listen to a sequence of two phrases: a question fol-
lowed by an answer. The subject groups hear different
questions but a single physically identical reply. The
subjects’ task is to say how many words the reply con-
tains.

The point made here is that Group 1 subjects hear
[���� �a�� as less than five. Those in Group 2 interpret it
as lesson five. The first group’s response is three words,
and the answer of the second is two words. This is de-
spite the fact that physically the [���� �a�� stimulus is
exactly the same. The syllabic [�] signals the word than
in one case and the syllable –on in the other. Looking
for the invariant correlates of the initial consonant than
is doomed to failure because of the severe degree of
reduction.

To proponents of H & H theory this is not an iso-
lated case. This is the way that perception in general
works. The speech percepts can never be raw records
of the signal because listener knowledge will inevitably
interact with the stimulus and will contribute to shaping
the percept.

Furthermore, H & H theory highlights the fact that
spoken messages show a non-uniform distribution of in-
formation in that predictability varies from situation to
situation, from word to word and from syllable to sylla-
ble. Compare (a) and (b) below. What word is likely to
be represented by the gap?

1. The next word is .
2. A bird in the hand is worth two in the .

Any word can be expected in (1) whereas in (2) the
predictability of the word bush is high.

H & H theory assumes that, while learning and
using their native language, speakers develop a sense
of this informational dynamics. Introducing the ab-
straction of an ideal speaker, it proposes that the
talker estimates the running contribution that signal-
complementary information (listener knowledge) will
make during the course of the utterance and then tunes
his articulatory performance to the presumed short-term
listener needs. Statistically, this type of behavior has
the long-term consequence of distributing phonetic out-
put forms along a continuum with clear and elaborated
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forms (hyperspeech) at one end and casual and reduced
pronunciations (hypospeech) at the other.

The implication for the invariance issue is that the
task of the speaker is not to encode linguistic units as
physical invariants, but to make sure that the signal
attributes (of phonemes, syllables, words and phrases)
carry discriminative power sufficient for successful lex-
ical access. To make the same point in slightly different
terms, the task of the signal is not to embody pho-
netic patterns of constancy but to provide missing
information.

It is interesting to put this account of speech
processes next to what we know about singing. Ex-
perimental observations indicate that singing in tune
is not simply about invariant F0 targets. F0 is af-
fected by the singer’s expressive performance [16.177]
and by the tonal context in which a given note is
embedded [16.178]. Certain deviations from nominal
target frequencies are not unlike the coarticulation and
undershoot effects ubiquitously present in speech. Ac-
cordingly, with respect to frequency control, speaking
and singing are qualitatively similar. However, quanti-
tatively, they differ drastically. Recall that in describing
the dynamics of vowel reduction we noted that for-
mant frequencies can be displaced by as much as 50%
from target values. Clearly, a musician or singer with
a comparable under-/overshoot record would be rec-

ommended to embark on an alternative career, the
margins of perceptual tolerance being much narrower
for singing.

What accounts for this discrepancy in target attain-
ment? Our short answer is that singing or playing out of
tune is a bad thing. Where does this taboo come from?
From consonance and harmony constraints. In simpli-
fied terms, an arbitrary sample of tonal music can be
analyzed into a sequence of chords. Its melodic line
is a rhythmic and tonal elaboration of this harmonic
structure. Statistically, long prominent melody tones
tend to attract chord notes. Notes of less prominence
typically interpolate along scales in smaller intervals
between the metrically heavier chord notes. The notion
of consonance goes a long way towards explaining why
singing or playing out of tune is tabooed in music: hit-
ting the right pitch is required by the consonance and
harmony constraints expected by the listener and his-
torically presumably linked with a combination of the
polyphony in our Western tradition of music compo-
sition and the fact that most of our music instruments
produce tones with harmonic spectra. This implies that
intervals departing too much from just intonation will
generate beats between simultaneously sounding and
only nearly coinciding partials, particularly if the fun-
damental frequencies are constant, lacking vibrato and
flutter.

16.9 The Expressive Power of the Human Voice

The human voice is an extremely expressive instrument
both when used for speech and for singing. By means of
subtle variations of timing and pitch contour speakers
and singers add a substantial amount of expressiveness
to the linguistic or musical content and we are quite
skilled in deciphering this information. Indeed a good
deal of vocal artistry seems to lie in the artist’s skill in
making nothing but such changes of pitch, timbre, loud-
ness and timing that a listener can perceive as carrying
some meaning.

We perceive the extra-linguistic or expressive in-
formation in speech and singing in various shapes.
For example, we can interpret certain combinations of
acoustic characteristics in speech in terms of a smile
or a particular forming of the lips on the face of the
speaker [16.179]. For example Fónagy [16.180] found
that listeners were able to replicate rather accurately the
facial expression of speakers only by listening to their
voices.

The emotive transforms in speech and singing seem
partly similar and sometimes identical [16.181,182]. Fi-
nal lengthening, mentioned above, uses the same code
for marking the end of a structural element, such as
a sentence in speech or a phrase in sung and played mu-
sic performance. Emphasis by delayed arrival is another
example, i. e., delaying an emphasized stressed sylla-
ble or note by lengthening the unstressed syllable/note
preceding it [16.183].

The expressive potential of the human voice is in-
deed enormous, and would transpire from the ubiquitous
use of the voice for the purpose of communication.
Correct interpretation of the extra-linguistic content of
a spoken utterance is certainly important in our daily life,
so we are skilled in deciphering vocal signals also along
those dimensions. The importance of correct encod-
ing of the extra-linguistic implies that speakers acquire
a great skill in this respect. This skill would be the basic
requirement for vocal art, in singing as well as in acting.
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Computer Mu17. Computer Music

Perry R. Cook

This chapter covers algorithms, technologies, com-
puter languages, and systems for computer music.
Computer music involves the application of com-
puters and other digital/electronic technologies to
music composition, performance, theory, his-
tory, and the study of perception. The field
combines digital signal processing, computa-
tional algorithms, computer languages, hardware
and software systems, acoustics, psychoacous-
tics (low-level perception of sounds from the raw
acoustic signal), and music cognition (higher-level
perception of musical style, form, emotion, etc.).

Although most people would think that ana-
log synthesizers and electronic music substantially
predate the use of computers in music, many ex-
periments and complete computer music systems
were being constructed and used as early as the
1950s.

Because of this rich legacy, and the large
number of researchers working on digital audio
(primarily in speech research laboratories), there
are a large number of algorithms for synthesizing
sound using computers. Thus, a significant em-
phasis in this chapter will be placed on digital
sound synthesis and processing, first providing

17.1 Computer Audio Basics ......................... 748

17.2 Pulse Code Modulation Synthesis .......... 751

17.3 Additive (Fourier, Sinusoidal) Synthesis . 753

17.4 Modal (Damped Sinusoidal) Synthesis .... 756

17.5 Subtractive (Source-Filter) Synthesis ...... 758

17.6 Frequency Modulation (FM) Synthesis .... 761

17.7 FOFs, Wavelets, and Grains ................... 762

17.8 Physical Modeling (The Wave Equation) . 765

17.9 Music Description and Control............... 769

17.10 Language and Systems
for Research and Composition .............. 771

17.11 Controllers and Performance Systems .... 772

17.12 Music Understanding
and Modeling by Computer .................. 773

17.13 Conclusions, Communities,
and the Future .................................... 775

References .................................................. 776

an overview of the representation of audio in
digital systems, then covering most of the popular
algorithms for digital analysis and synthesis of
sound.

Pulse code modulation (PCM) is the means for sam-
pling and retrieval of audio in computers, and PCM
synthesis uses combinations of prerecorded waveforms
to reconstruct speech, sound effects, and music in-
strument sounds. Additive synthesis uses fundamental
waveforms (often sine waves), to construct more com-
plicated waves. PCM and sinusoidal (Fourier) additive
synthesis are often called nonparametric techniques.
The word parametric in this context means that an algo-
rithm with a few (but hopefully expressive) parameters
can be used to generate a large variety of waveforms and
spectral properties by varying the parameters.

Since PCM involves recording and playing back
waveforms, no actual expressive parameters are avail-
able in PCM systems. Similarly, Fourier’s theorem says
that we can represent any waveform with a sum of sine
waves, but in fact it might take a huge number of sine
waves to represent a particular waveform accurately. So,
without further work to parameterize PCM samples or
large groups of additive sine waves, these techniques are
nonparametric.

Modal synthesis recognizes the fact that many
vibrating systems exhibit a relatively few strong sinu-
soidal modes (natural frequencies) of vibration. Rigid
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bars and plates, plucked strings, and other structures are
good candidates for modal synthesis, where after be-
ing excited (struck, plucked, etc.) the vibration/sound
generation is restricted to a limited set of exponentially
decaying sine waves. Modal synthesis is generally con-
sidered to be parametric, since the number of sine waves
needed is often quite limited, and each one represents
a physical mode of vibration.

Subtractive synthesis begins with spectrally com-
plex waveforms (such as pulses or noise), and uses
filters to shape the spectrum and waveform to the de-
sired result. Subtractive synthesis works particularly
well for certain classes of sounds, such as human
speech, where a spectrally rich source (pulses of the vo-
cal folds) is filtered by a time-varying filter (the acoustic
tube of the vocal tract). Subtractive synthesis is para-
metric, because only a few descriptive numbers control
such a model. For example, a subtractive speech model
might be controlled by numbers expressing how pitched
versus noisy the voice is, the voice pitch, the loud-
ness, and 8–10 numbers describing the resonances of
the vocal tract. Using only a dozen or so variable num-
bers (parameters), a rich variety of vowel and consonant
sounds can be synthesized.

Frequency modulation (FM) synthesis exploits
properties of nonlinearity to generate complex spectra
and waveforms from much simpler ones. Modulating
the frequency or phase of a sine wave (the carrier) by
another sine wave (the modulator) causes multiple side-
band sinusoids to appear at frequencies related to the
ratio of the carrier and modulator frequencies. Thus
an important parameter in FM is the carrier : modulator
(C :M) ratio, and another is the amount (index) of mod-
ulation, which when increased causes the number of
sidebands to increase.

Wavelets are waveforms that are usually compact in
time and frequency. They are viewed by some as re-
lated to the fundamental unit of sound, by others as
convenient building blocks for constructing sonic tex-
tures, and by others as related to important small events
in nature and acoustics. Formes d’onde formantiques
(FOFs, French for formant wave functions) are special
wavelets that model the individual resonances of the
vocal tract, and thus have been successfully used for
modeling speech and singing.

Physical models solve the wave equation in space
and time to generate waveforms in the same ways
that physical acoustics does. Efficient techniques com-
bining discrete simulation of physics with modern
digital filtering techniques allow models of plucked
strings, wind instruments, percussion, the vocal tract,
and many other musical systems to be solved efficiently
by computers.

After the presentation and examples of the main
synthesis algorithms, some industry standards for
representing and manipulating musical data in com-
puterized systems will be discussed. The musical
instrument digital interface (MIDI), downloadable
sounds (DLS, and SoundFonts), open sound control
(OSC), structured audio orchestra language (SAOL),
and other score and control standards will be briefly
covered.

Some languages and systems for computer music
composition are discussed, including the historical Mu-
sicX languages, and many modern languages such as
Cmusic and MAX/MSP, followed by a few real-time
performance and interaction systems. Finally, some as-
pects of computer modeling of human listening and
systems for machine-assisted and automatic composi-
tion are covered.

17.1 Computer Audio Basics

Typically, digital audio signals are formed by sampling
analog (continuous in time and amplitude) signals at
regular intervals in time, and then quantizing the am-
plitudes to discrete values. The process of sampling
a waveform, holding the value, and quantizing the value
to the nearest number that can be digitally represented
(as a specific integer on a finite range of integers)
is called analog-to-digital (A to D, or A/D) conver-
sion [17.1]. A device that does A/D conversion is called
an analog-to-digital converter (ADC). Coding and rep-
resenting waveforms in sampled digital form is called
pulse code modulation (PCM), and digital audio signals

are often called PCM audio. The process of converting
a sampled signal back into an analog signal is called
digital-to-analog conversion (D to A, or D/A), and the
device is called a digital-to-analog converter (DAC).
Low-pass filtering (smoothing the samples to remove
unwanted high frequencies) is necessary to reconstruct
the sampled signal back into a smooth continuous-time
analog signal. This filtering is usually contained in the
DAC hardware.

The time between successive samples is usually de-
noted by T (the sampling period). Sampling an analog
signal first requires filtering it to remove unwanted high
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Time

Quantization error

Amplitude

Quantum
step

T=
1/SRATE

Fig. 17.1 Linear sampling and quantization (SRATE =
sampling rate)

frequencies (more on this shortly), holding the value
steady for a period while a stable measurement can be
made, then associating the analog value with a digi-
tal number (coding). Analog signals can have any of
the infinity of real-numbered amplitude values. Since
computers work with fixed word sizes (8 bit bytes,
16 bit words, etc.), digital signals can only have a fi-
nite number of amplitude values. In converting from
analog to digital, rounding takes place and a given ana-
log value must be quantized to the nearest digital value.
The difference between quantization steps is called the
quantum (not as in quantum physics or leaps, but the
Latin word for a fixed-sized jump in value or magni-
tude). Sampling and quantization is shown in Fig. 17.1;
note the errors introduced in some sample values due to
the quantization process.

A fundamental law of digital signal processing states
that, if an analog signal is bandlimited with bandwidth
B Hz, (Hz = Hertz = cycles per second), the signal can
be periodically sampled at a rate of 2B Hz or greater, and
exactly reconstructed from the samples. Band-limited
with bandwidth B means that no frequencies above B
exist in the signal. The rate 2B is called the sampling
rate, and B is called the Nyquist frequency. Intuitively,
a sine wave at the highest frequency B present in a band-
limited signal can be represented using two samples
per period (one sample at each of the positive and ne-
gative peaks), corresponding to a sampling frequency of
2B. All signal components at lower frequencies can be
uniquely represented and distinguished from each other
using this same sampling frequency of 2B. If there are
components present in a signal at frequencies greater
than 1/2 the sampling rate, these components will not
be represented properly, and will alias (i. e., show up as
frequencies different from their original values).

To avoid aliasing, ADC hardware often includes fil-
ters that limit the bandwidth of the incoming signal

Aliasing (complex wave)

Aliasing sine waves

Fig. 17.2 Because of inadequate sampling rate, aliasing
causes important features to be lost

before sampling takes place, automatically changing as
a function of the selected sampling rate. Figure 17.2
shows aliasing in complex and simple (sinusoidal)
waveforms. Note the loss of detail in the complex wave-
form. Also note that samples at less than two times the
frequency of a sine wave could also have arisen from
a sine wave of much lower frequency. This is the fun-
damental nature of aliasing, because frequencies higher
than 1/2 sample rate alias as lower frequencies.

Humans can perceive frequencies from roughly
20 Hz to 20 kHz, thus requiring a minimum sampling
rate of at least 40 kHz. Speech signals are often sa-
mpled at 8 kHz (telephone quality) or 11.025 kHz, while
music is usually sampled at 22.05 kHz, 44.1 kHz (the
sampling rate used on audio compact discs), or 48 kHz.
Some new formats allow for sampling rates of 96 kHz,
and even 192 kHz. This is because some engineers be-
lieve that we can actually hear things, or the effects of
things, higher than 20 kHz. Dolphins, dogs, and some
other animals can hear higher than us, so these new for-
mats could be considered as catering to those potential
markets.

In a digital system, a fixed number of binary dig-
its (bits) are used to sample the analog waveform, by
quantizing it to the closest number that can be rep-
resented. This quantization is accomplished either by
rounding to the quantum value nearest the actual ana-
log value, or by truncation to the nearest quantum value
less than or equal to the actual analog value. With uni-
form sampling in time, a properly bandlimited signal
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Fig. 17.3 Resampling by linear interpolation. Grey regions
show the errors due to linear interpolation

can be exactly recovered provided that the sampling rate
is twice the bandwidth or greater, but only if there is
no quantization. When the signal values are rounded or
truncated, the amplitude difference between the origi-
nal signal and the quantized signal is lost forever. This
can be viewed as an additive noise component upon
reconstruction. Using the additive-noise assumption
gives an approximate best-case signal-to-quantization-
noise ratio (SNR) of approximately 6N dB, where N is
the number of bits. Using this approximation implies
that a 16 bit linear quantization system will exhibit an
SNR of approximately 96 dB. 8 bit quantization exhibits
a signal-to-quantization-noise ratio of approximately
48 dB. Each extra bit improves the signal-to-noise ratio
by about 6 dB.

Most computer audio systems use two or three types
of audio data words. 16 bit (per channel) data is quite

Sampled signal

8

1

0.5

–0.5

642–2

Sinc function

1

–0.5

642–4

Sinc interpolation
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0.5
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Continuous time signal
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0.5

–0.5
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Fig. 17.4 Sinc interpolation for reconstruction and resampling

common, and this is the data format used in compact
disc systems. Many recent (high-definition) formats al-
low for 24 bit samples, and even larger word sizes and
floating point representations. 8 bit data is common for
speech data in personal computer (PC) and telephone
systems, usually using methods of quantization that are
nonlinear. In such systems the quantum is smaller for
small amplitudes, and larger for large amplitudes.

Changing the playback sample rate on sampled
sound results in a pitch shift. Many systems for record-
ing, playback, processing, and synthesis of music,
speech, or other sounds allow or require flexible con-
trol of pitch (sample rate). The most accurate pitch
control is necessary for music synthesis. In sampling
synthesis, this is accomplished by dynamic sample-rate
conversion (interpolation). In order to convert a sam-
pled data signal from one sampling rate to another,
three steps are required: bandlimiting, interpolation, and
resampling.

Bandlimiting: First, it must be assured that the orig-
inal signal was properly bandlimited to less than half
the new sampling rate. This is always true when up-
sampling (i. e., converting from a lower sampling rate
to a higher one). When downsampling, however, the sig-
nal must be first low-pass filtered to exclude frequencies
greater than half the new target rate.

Interpolation: When resampling by any but sim-
ple integer factors such as 2, 4, 1/2, etc., the task
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requires the computation of the values of the original
bandlimited analog signal at the correct points between
the existing sampled points. This is called interpola-
tion. The most common form of interpolation used is
linear interpolation, where the fractional time samples
needed are computed as a linear combination of the two
surrounding samples. Many assume that linear interpo-
lation is the correct means, or at least an adequate means
for accomplishing audio sample rate conversion. Fig-
ure 17.3 shows resampling by linear interpolation; note
the errors shown by the shaded regions.

Some might notice that linear interpolation is not
quite adequate, so they might assume that the correct
solution must lie in more elaborate curve-fitting tech-
niques using quadratics, cubics, or higher-order splines,
and indeed these types of interpolation can be ade-
quate for some applications. To arrive at the correct
answer (provably correct from theory) the interpolation
task should be viewed and accomplished as a filtering
problem, with the filter designed to meet some appro-
priate error criterion. Linear time-invariant filtering is
accomplished by convolution with a filter function. If
the resampling filter is defined appropriately, we can ex-
actly reconstruct the original analog waveform from the
samples.

The correct (ideal in a provable digital signal
processing sense) way to perform interpolation is con-
volution with the sinc function, defined as:

sinc

(
t

T

)
= sin

(
πt
T

)

πt
T

,

where

T = 1

SRATE
.

The sinc function is the ideal low-pass filter with
a cutoff of SRATE/2, where SRATE is the sampling
rate. Figure 17.4 shows reconstruction of a continu-
ous waveform by convolution of a digital signal with
the sinc function. Each sample is multiplied by a cor-
responding continuous sinc function, and those are
added up to arrive at the continuous reconstructed sig-
nal [17.2].

Resampling: This is usually accomplished at the
same time as interpolation, because it is not necessary
to reconstruct the entire continuous waveform in or-
der to acquire new discrete samples. The resampling
ratio can be time varying, making the problem a little
more difficult. However, viewing the problem as a filter-
design and implementation issue allows for guaranteed
tradeoffs of quality and computational complexity.

17.2 Pulse Code Modulation Synthesis

The majority of digital sound and music synthesis to-
day is accomplished via the playback of stored pulse
code modulation (PCM) waveforms. Single-shot play-
back of entire segments of stored sounds is common for
sound effects, narrations, prompts, segments of music,
etc. Most high-quality modern electronic music syn-
thesizers, speech synthesis systems, and PC software
systems for sound synthesis use pre-stored PCM as the
basic data. This data is sometimes manipulated to yield
the final output sound(s).

There are a number of different ways to look at
sound for computer music, with PCM being only one.
We can look at the physics that produce the sound and
try to model those. We could also look at the spectrum
of the sound and other characteristics having to do with
the perception of those sounds. Indeed, much of the
legacy of computer music has revolved around paramet-
ric (using mathematical algorithms, controlled by a few
well-chosen/-designed control parameters) analysis and
synthesis algorithms. We will discuss most of the com-
monly used algorithms later, but first we should look at
PCM in more depth.

For speech, the most common synthesis technique is
concatenative synthesis [17.3]. Concatenative phoneme
synthesis relies on the concatenation of roughly 40
pre-stored phonemes (for English). Examples of vowel
phonemes are /i/ as in beet, /I/ as in bit, /a/ as in fa-
ther, etc. Examples of nasals are /m/ as in mom, /n/
as in none, /ng/ as in sing, etc. Examples of frica-
tive consonant phonemes are /s/ as in sit, /sh/ as in
ship, /f/ as in fifty, etc. Examples of voiced fricative
consonants are /z/, /v/ (visualize), etc. Examples of
plosive consonants are /t/ as in tat, /p/ as in pop, /k/
as in kick, etc. Examples of voiced plosives include
/d/, /b/, /g/ (dude, bob, gag) etc. Vowels and nasals
are essentially periodic pitched sounds, so the minimal
required stored waveform is only one single period of
each. Consonants require more storage because of their
noisy (non-pitched, aperiodic) nature.

The quality of concatenative phoneme synthesis is
generally considered quite low, due to the simplistic as-
sumption that all of the pitched sounds (vowels, etc.)
are purely periodic. Also, simply gluing /s/ /I/ and
/ng/ together does not make for a high-quality realistic
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Attack Steady-state loop sustain

Release

Fig. 17.5 Wave-table synthesis of a trumpet tone

synthesis of the word sing. In actual speech, phonemes
gradually blend into each other as the jaw, tongue, and
other articulators move with time.

Accurately capturing the transitions between pho-
nemes with PCM requires recording transitions from
phoneme to phoneme, called diphones. A concatenative
diphone synthesizer blends together stored diphones.
Examples of diphones include see, she, thee, and
most of the roughly 40 × 40 possible combinations of
phonemes. Much more storage is necessary for a di-
phone synthesizer, but the resulting increase in quality
is significant. PCM speech synthesis can be improved
further by storing multiple samples, for different pitch
ranges, genders, voice qualities, etc.

For musical sounds, it is common to store only
a loop, or table, of the periodic component of a recorded
sound waveform and play that loop back repeatedly.
This is called wave-table synthesis [17.4]. For more re-
alism, the attack or beginning portion of the recorded
sound can be stored in addition to the periodic steady-
state part. Figure 17.5 shows the synthesis of a trumpet
tone starting with an attack segment, followed by repeti-
tion of a periodic loop, ending with an enveloped decay
(or release). The envelope is a synthesizer/computer
music term for a time-varying change applied to a wave-
form amplitude, or other parameter. Envelopes are often
described by four components: the attack time, the de-
cay time (decay here means the initial decay down to
the steady state segment), the sustain level, and the
release time (final decay). Hence, envelopes are some-
times called ADSRs.

Originally called sampling synthesis in the music in-
dustry, any synthesis using stored PCM waveforms has
now become commonly known as wave-table synthe-

sis. Filters are usually added to high-quality wave-table
synthesis, allowing control of spectral brightness as
a function of intensity, and to get more variety
(parameterization) of sounds from a given set of
samples.

Pitch shifting of a PCM sample or wave table is
accomplished via interpolation as discussed in the pre-
vious section. A given sample can be pitch-shifted only
so far in either direction before it begins to sound
unnatural. This can be dealt with by storing multiple
recordings of the sound at different pitches, and switch-
ing or interpolating between these upon resynthesis.
This is called multi-sampling. Multi-sampling might
also include the storage of separate samples for loud
and soft sounds. Linear or other interpolation is used
to blend the loudness of multi-samples as a function of
the desired synthesized volume. This adds realism, be-
cause loudness is not simply a matter of amplitude or
power, and most sound sources exhibit spectral vari-
ations as a function of loudness. For example, there

Trigger,
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and sync.
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Attack
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Envelope
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Fig. 17.6 A synthesis patch showing interconnection of
unit generators
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is usually more high-frequency energy (brightness) in
loud sounds than in soft sounds. Filters can also be used
to add spectral variation.

A common tool used to describe the various
components and steps of signal processing in perform-
ing digital music synthesis is the synthesizer patch
(historically named from hooking various electrical
components together using patch cords). In a patch,
a set of fairly commonly agreed building blocks, called
unit generators (also called modules, plug-ins, opera-
tors, op-codes, and other terms) are hooked together in

a signal flow diagram. This historical [17.5] graphical
method of describing signal generation and processing
affords a visual representation that is easily printed in
papers, textbooks, patents, etc. Further, graphical patch-
ing systems and languages have been important to the
development and popularization of certain algorithms,
and computer music in general. Figure 17.6 shows
a PCM synthesizer patch with attack and loop wave ta-
bles whose amplitudes are controlled by an envelope
generator, and a time-varying filter (also controlled by
another envelope generator).

17.3 Additive (Fourier, Sinusoidal) Synthesis
Lots of sound-producing objects and systems exhibit si-
nusoidal modes. A plucked string might exhibit many
modes, with the strength of each mode determined by
the boundary conditions of the terminations, and the
shape of the excitation pluck. Striking a metal plate
with a hammer excites many of the vibrational modes of
the plate, determined by the shape of the plate, and by
where it is struck. A singing voice, struck drum head,
bowed violin string, struck bell, or blown trumpet ex-
hibit oscillations characterized by a sum of sinusoids.
The recognition of the fundamental nature of the sinu-
soid gives rise to a powerful model of sound synthesis
based on summing sinusoidal modes.

These modes have a very special relationship in
the case of the plucked string, a singing voice, and
some other limited systems, in that their frequencies
are all integer multiples (at least approximately) of
one basic sinusoid, called the fundamental. This spe-
cial series of sinusoids is called a harmonic series,
and lies at the basis of the Fourier-series representa-
tion of shapes, waveforms, oscillations, etc. The Fourier
series [17.6] solves many types of problems, includ-
ing physical problems with boundary constraints, but is
also applicable to any shape or function. Any periodic
waveform (repeating over and over again) fper can be
transformed into a Fourier series, written as

fper(t) = a0+Σm[bm cos(2π f0mt)

+ cm sin(2π f0mt)] . (17.1)

The limits of the summation are technically infi-
nite, but we know that we can cut off our frequencies
at the Nyquist frequency for digital signals. The a0
term is a constant offset, or the average of the wave-
form. The bm and cm coefficients are the weights of
the mth harmonic cosine and sine terms. If the func-
tion fper(t) is purely even about t = 0 ([ f (−t) = f (t)]),

only cosines are required to represent it, and only the
bm terms would be nonzero. Similarly, if the function
fper(t) is odd ([ f (−t) = − f (t)]), only the cm terms
would be required. An arbitrary function fper(t) will
require sinusoidal harmonics of arbitrary (but specific)
amplitudes and phases. The magnitude and phase of the
m-th harmonic in the Fourier series can be found by:

Am =
√

b2
m + c2

m , (17.2a)

θm = arctan
cm

bm
. (17.2b)

Phase is defined relative to the cosine, so if cm is
zero, θm is zero. As a brief example, Fig. 17.7 shows
the first few sinusoidal harmonics required to build up
an approximation of a square wave. Note that due to
symmetries (boundary conditions), only odd sine har-
monics are required. Using more sines improves the
approximation.

The process of solving for the sine and cosine
components of a signal or waveform is called Fourier
analysis, or the Fourier transform. If the frequency vari-
able is sampled (as is the case in the Fourier series,
represented by m), and the time variable t is sampled as
well (as it is in PCM waveform data, represented by n),

Fig. 17.7 A sum of odd harmonics approximates a square
wave
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then the Fourier transform is called the discrete Fourier
transform (DFT). The DFT is given by

F(m) =
N−1∑

n=0

f (n)
[
cos

(
2π

mn

N

)

−i sin
(

2π
mn

N

)]
. (17.3)

Where N is the length of the signal being analyzed.
The inverse DFT (IDFT) is very similar to the Fourier
series

f (n) = 1

N

N−1∑

m=0

F(m)
[
cos

(
2π

mn

N

)

+i sin
(

2π
mn

N

)]
. (17.4)

The imaginary number i (=√−1) is used to place
the cosine and sine components in a unique mathemat-
ical arrangement, where odd [(x(−n) =−x(n))] terms
of the waveform are represented as imaginary compo-
nents, and even ([x(−n) = x(n)]) terms are represented
as real components. This gives us a means to talk about
the magnitude and phase in terms of the magnitude and
phase of F(m) (a complex number).

There is a near-mystical expression of equality in
mathematics known as Euler’s identity, which links
trigonometry, exponential functions, and complex num-
bers in a single equation

eiθ = cos(θ)+ i sin(θ) .

We can use Euler’s identity to write the DFT and
IDFT in shorthand

F(m) =
N−1∑

n=0

f (n)e−i2πmn/N , (17.5)

f (n) = 1

N

N−1∑

m=0

F(m)ei2πmn/N . (17.6)

Converting the cosine/sine form to the complex ex-
ponential form allows lots of manipulations that would
be difficult otherwise. But we can also write the DFT in
real-number terms as a form of the Fourier series

f (n) = 1

N

N−1∑

m=0

Fb(n) cos
(

2π
mn

N

)

+ Fc(n) sin
(

2π
mn

N

)
, (17.7)

where

Fb(m) =
N−1∑

n=0

f (n) cos
(

2π
mn

N

)
, (17.8)

Fc(m) =
N−1∑

n=0

− f (n) sin
(

2π
mn

N

)
. (17.9)

The fast Fourier transform (FFT) is a cheap way of
calculating the DFT. There are thousands of references
on the FFT [17.6], and scores of implementations of it,
so for our purposes we will just say that it is much more
efficient than computing the DFT directly from the def-
inition. A well-crafted FFT algorithm for real input data
takes on the order of N log2(N) multiply–adds to com-
pute. Comparing this to the N2 multiplies of the DFT, N
does not have to be very big before the FFT is a winner.
There are some down sides, such as the fact that FFTs
can only be computed for signals whose lengths are ex-
actly powers of 2, but the advantages of using it often
outweigh the annoying power-of-two problems. Practi-
cally speaking, users of FFTs usually carve up signals
into small chunks (powers of two), or zero pad a signal
out to the next biggest power of two.

The short-time Fourier transform (STFT) breaks up
the signal and applies the Fourier transform to each
segment individually [17.7]. By selecting the window
size (length of the segments), and hop size (how far the
window is advanced along the signal) to be perceptu-
ally relevant, the STFT can be used as an approximate
model of human audio perception. Figure 17.8 shows
the waveform of the utterance of the word synthesize,
and some STFT spectra corresponding to windows at
particular points in time.

If we inspect the various spectra in Fig. 17.8, we
can note that the vowels exhibit harmonic spectra (clear,
evenly spaced peaks corresponding to the harmonics
of the pitched voice), while the consonants exhibit
noisy spectra (no clear sinusoidal peaks). Recogniz-
ing that some sounds are well approximated/modeled
by additive sine waves [17.8], while other sounds are
essentially noisy, spectral modeling [17.7] breaks the
sound into deterministic (sines) and stochastic (noise)
components. Figure 17.9 shows a general sines + noise
additive synthesis model, allowing us to control the
amplitudes and frequencies of a number of sinusoidal
oscillators, and model the noisy component with a noise
source and a spectral shaping filter.

The beauty of this type of model is that it recognizes
the dominant sinusoidal nature of many sounds, while
still recognizing the noisy components that might be

Part
E

1
7
.3



Computer Music 17.3 Additive (Fourier, Sinusoidal) Synthesis 755

0.5

0:00.0

0

0:00.1 0:00.2 0:00.3 0:00.4 0:00.5 0:00.6 0:00.7 0:00.8

Fig. 17.8 Some STFT frames of the word synthesize
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Fig. 17.9 Sinusoidal additive model with filtered noise
added for spectral modeling synthesis

also present. More efficient and parametric representa-
tions, and many interesting modifications can be made
to the signal on resynthesis. For example, removing the

harmonics from voiced speech, followed by resynthe-
sizing with a scaled version of the noise residual, can
result in the synthesis of whispered speech.

One further improvement to spectral modeling is the
recognition [17.9] that there are often brief (impulsive)
moments in sounds that are really too short in time to be
adequately analyzed by spectrum analysis. Further, such
moments in the signal usually corrupt the sinusoidal/
noise analysis process. Such events, called transients,
can be modeled in other ways (often by simply keeping
the stored PCM for that segment).

Using the short-time Fourier transform, the phase
vocoder (VoiceCoder) [17.10, 11] processes sound by
calculating and maintaining both magnitude and phase.
The frequency bins (basis sinusoids) of the DFT can be
viewed as narrow-band filters, so the Fourier transform
of an input signal can be viewed as passing it through
a bank of narrow band-pass filters. This means that on
the order of hundreds to thousands of sub-bands are
used.

The phase vocoder has found extensive use in com-
puter music composition. Many interesting practical
and artistic transformations can be accomplished using
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the phase vocoder, including nearly artifact-free and in-
dependent time and pitch shifting. A technique called
cross synthesis assumes that one signal is the anal-
ysis signal. The time-varying magnitude spectrum of
the analysis signal (usually smoothed in the frequency
domain) is multiplied by the spectral frames of an-

other input (or filtered) signal (sometimes brightened
first by high-frequency emphasis pre-filtering), yielding
a composite signal that has the attributes of both. Cross-
synthesis has produced the sounds of talking cows,
morphs between people and cats, trumpet/flute hybrids,
etc.

17.4 Modal (Damped Sinusoidal) Synthesis
The simplest physical system that does something acous-
tically (and musically) interesting is the mass/spring/
damper (Fig. 17.10) [17.12]. The differential equation
describing that system has a solution that is a single
exponentially decaying cosine wave. The Helmholtz
resonator (large, contained air cavity with a small long-
necked opening, like a pop bottle, Fig. 17.11 behaves
like a mass/spring/damper system, with the same ex-

y +

0

–

Spring

m
Mass

Damping
(r)

k

Fig. 17.10 Mass/spring/damper system

PA

PV

Fig. 17.11 Helmholtz resonator

ponentially damped cosine behavior. The equations de-
scribing the behavior of these systems is

d2 y

dt2
+ (

r

m
)

dy

dt
+
(

k

m

)
y = 0 , (17.10)

y(t) = y0 e(−rt/2m) cos

(
t

√[
k

m
−
( r

2m

)2
])
.

(17.11)

String plucked
in center

Odd modes

Even (forbidden) modes

1

5 3

2

46

Fig. 17.12 Plucked string (top). The center shows sinu-
soidal modes of vibration of a center-plucked string. The
bottom shows the even modes, which would not be excited
by the center-plucked condition

(1,1) (1,2) (1,3)

(2,2) (2,3)
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Fig. 17.13 Square-membrane modes
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Fig. 17.14 Circular-membrane nodal lines

Of course, most systems that produce sound are
more complex than the ideal mass/spring/damper sys-
tem, or a pop bottle. And of course most sounds are
more complex than a simple damped exponential sinu-
soid. Mathematical expressions of the physical forces
(thus the accelerations) can be written for nearly any
system, but solving such equations is often difficult or
impossible. Some systems have simple enough prop-
erties and geometries to allow an exact solution to be
written out for their vibrational behavior. An ideal string
under tension is one such system.

Here we will resort to some graphical arguments
and our prior discussion of the Fourier transform to
motivate further the notion of sinusoids in real phys-
ical systems. The top of Fig. 17.12 shows a string,
lifted from a point in the center (halfway along its
length). Below that is shown a set of sinusoidal modes
that the center-plucked string vibration would have.
These are spatial functions (sine as function of po-
sition along the string), but they also correspond to
natural frequencies of vibration of the string. At the bot-
tom of Fig. 17.12 is another set of modes that would
not be possible with the center-plucked condition, be-
cause all of these even modes are restricted to have
no vibration in the center of the string, and thus they
could not contribute to the triangular shape of the string.

2rpcos(2πfpT )

–rp
2

+ y(n)x(n)

z–1

z–1

g

Fig. 17.15 Flexible parametric modal synthesis algorithm
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Fig. 17.16 Flexible parametric modal synthesis algorithm

These conditions of no displacement, corresponding
to the zero crossings of the sine functions, are called
nodes. Note that the end points are forced nodes of
the plucked string system for all possible conditions of
excitation.

Physical constraints on a system, such as the pinned
ends of a string, and the center plucked initial shape, are
known as boundary conditions. Spatial sinusoidal solu-
tions like those shown in Fig. 17.12 are called boundary
solutions (the legal sinusoidal modes of displacement
and vibration) [17.13].

Just as one can use Fourier boundary methods to
solve the one-dimensional (1-D) string, we can also
extend boundary methods to two dimensions. Fig-
ures 17.13 and 17.14 show the first few vibration
modes of uniform square and circular membranes. The
small boxes at the lower left corners of each square
modal-shape diagram depict the modes in a purely
two-dimensional way, showing lines corresponding to
the spatial sinusoidal nodes (regions of no displace-
ment vibration). This is how the circular modes are
presented. The natural modes must obey the two-
dimensional boundary conditions at the edges, but
unlike the string, the square membrane modes are not
integer-related harmonic frequencies. In fact they obey
the relationship

fmn = f11

√[
m2+n2

2

]
, (17.12)

where m and n range from 1 to (potentially) infinity,
and f11 is c/2L (the speed of sound on the membrane
divided by the square edge lengths). The circular modes
are predictable from mathematics, but have a much
more complex form than the square modes.

Part
E

1
7
.4



758 Part E Music, Speech, Electroacoustics

Unfortunately, circles, rectangles, and other sim-
ple geometries turn out to be the only ones for which
the boundary conditions yield a closed-form solution in
terms of spatial and temporal sinusoidal terms. How-
ever, we can measure and model the modes of any
system by using the Fourier transform of the sound it
produces, and looking for exponentially decaying sinu-
soidal components.

We can approximate the differential equation de-
scribing the mass/spring/damper system of (17.11) by
replacing the derivatives (velocity as the derivative of
position, and acceleration as the second derivative of
position) with sampled time differences (normalized by
the sampling interval T seconds). In doing so we would
arrive at an equation that is a recursion in past values of
y(n), the position variable

y(n)−2y(n−1)+ y(n−2)

T 2

+
{ r

m [y(n)− y(n−1)]
T

}
+ k

m
y(n) = 0 . (17.13)

Note that if the values of mass, damping, spring
constant, and sampling rate are constant, then the coef-
ficients (2m+Tr)/(m+Tr+T 2k) for the single delay,
and m/(m+Tr+T 2k) for the twice-delayed signal
applied to past y values are constant. Digital signal
processing (DSP) engineers would note that a stan-
dard infinite impulse response (IIR) recursive filter as
shown in Fig. 17.15 can be used to implement (17.13)
(the z−1 represents a single sample of delay). In fact,
the second order two-pole feedback filter can be used
to generate an exponentially decaying sinusoid, called
a phasor in DSP literature [17.14]. The connection
between the second order digital filter and the physi-
cal notion of a mode of vibration forms the basis for
modal sound synthesis [17.15]. Figure 17.16 shows
a general model for modal synthesis of struck/plucked
objects, in which an impulsive excitation function is
used to excite a number of filters that model the
modes. Rules for controlling the modes as a function
of strike position, striking object, changes in damping,
and other physical constraints can be included in the
model.

17.5 Subtractive (Source-Filter) Synthesis
Subtractive synthesis uses a complex source wave, such
as an impulse, a periodic train of impulses, or white
noise, to excite spectral shaping filters. One of the earli-
est uses of electronic subtractive synthesis dates back to
the 1920s and 1930s, with the invention of the channel
vocoder (or VOiceCODER) [17.16]. In the this device,
the spectrum is broken into sections called sub-bands,
and the information in each sub-band is converted to
a signal representing (generally slowly varying) power.
The analyzed parameters are then stored or transmitted
(potentially compressed) for reconstruction at another
time or physical site. The parametric data representing
the information in each sub-band can be manipulated
in various ways, yielding transformations such as pitch
or time shifting, spectral shaping, cross-synthesis, and
other effects. Figure 17.17 shows a block diagram of
a channel vocoder. The detected envelopes serve as
control signals for a bank of bandpass synthesis filters
(identical to the analysis filters used to extract the sub-
band envelopes). The synthesis filters have gain inputs
that are fed by the analysis control signals.

When used to encode and process speech, the chan-
nel vocoder explicitly makes an assumption that the
signal being modeled is a single human voice. The
source analysis block extracts parameters related to

finer spectral details, such as whether the sound is
pitched (vowel) or noisy (consonant or whispered). If
the sound is pitched, the pitch is estimated. The overall
energy in the signal is also estimated. These parame-
ters become additional low-bandwidth control signals
for the synthesizer. Intelligible speech can be synthe-
sized using only a few hundred numbers per second. An
example coding scheme might use eight channel gains
+ pitch + power, per frame, at 40 frames per second,
yielding a total of only 400 numbers per second. The
channel vocoder, as designed for speech coding, does
not generalize to arbitrary sounds, and fails horribly
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Fig. 17.17 Channel vocoder block diagram
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when the source parameters deviate from expected har-
monicity, reasonable pitch range, etc. But the ideas of
sub-band decomposition, envelope detection, and driv-
ing a synthesis filter bank with control signals give rise
to many other interesting applications and implementa-
tions of the vocoder concept.

A number of analog hardware devices were pro-
duced and sold as musical instrument processing
devices in the 1970s and 1980s. These were called
simply vocoders, but had a different purpose than
speech coding. Figure 17.18 shows the block diagram
of a cross-synthesizing vocoder. The main difference is
that the parametric source has been replaced by an ar-
bitrary audio signal. The cross-synthesizer can be used
to make non-speech sounds talk or sing. A typical ex-
ample would be feeding a voice into the analysis filter
bank, and an electric guitar sound into the synthesis
bank audio inputs to make a talking guitar. To be effec-
tive, the synthesis audio input should have suitably rich
spectral content (for instance, distorted electric guitar
works better than undistorted). Some vocoders allowed
an additional direct sibilance band (like the highest
band shown in Fig. 17.18) pass-through of the analyzed
sound. This would allow consonants to pass through
directly, creating a more intelligible speech-like effect.

Modal synthesis, as discussed before, is a form of
subtractive synthesis, but the spectral characteristics of
modes are sinusoidal and thus exhibit very narrow spec-
tral peaks. For modeling the gross peaks in a spectrum,
which could correspond to weaker resonances, we can
exploit the same two-pole resonance filters. This type of
source-filter synthesis has been very popular for voice
synthesis.

Having its origins and applications in many different
disciplines, time-series prediction is the task of esti-
mating future sample values from prior samples. Linear
prediction is the task of estimating a future sample (usu-
ally the next in the time series) by forming a linear

Analysis
input

Bandpass Envelope follow

Bandpass Envelope follow

Bandpass Envelope follow

Bandpass Envelope follow

Σ

Processed
input

Bandpass
and gain

Bandpass
and gain

Bandpass
and gain

Bandpass
and gainControl

signals

BandpassSibilance band
(optional)

Fig. 17.18 Cross-synthesizing vocoder block diagram

combination of some number of prior samples. Linear
predictive coding (LPC) is a technique that can auto-
matically extract the gross spectral features and design
filters to match those, and give us a source that we can
use to drive the filters [17.17, 18]. Figure 17.19 shows
linear prediction in block diagram form. The difference
equation for a linear predictor is

y(n) = x̂(n+1) =
m∑

i=0

ai x(n− i) . (17.14)

The task of linear prediction is to select the vector
of predictor coefficients

A = (a0, a1, a2, a2, . . . , am )

such that x̂(n+1) (the estimate) is as close as possible
to x(n+1) (the real sample) over a set of samples (of-
ten called a frame) x(0) to x(N −1). Usually, close as
possible is defined by minimizing the mean square error
(MSE)

MSE = 1

N

N−1∑

n=0

[x̂(n+1)− x(n+1)]2 . (17.15)

Many methods exist to arrive at the set of predictor
coefficients ai that yield a minimum MSE. The most
common uses correlation or covariance data from each
frame of samples to be predicted. The autocorrelation
function, defined as

x�x(n) =
N−1∑

i=0

x(i)x(i+n) . (17.16)

Autocorrelation computes a time (lag) domain func-
tion that expresses the similarity of a signal to delayed
versions of itself. It can also be viewed as the convolu-
tion of a signal with the time-reversed version of itself.
Purely periodic signals exhibit periodic peaks in the au-
tocorrelation function. Autocorrelations of white-noise
sequences exhibit only one clear peak at the zero-lag po-
sition, and are small (zero for infinite-length sequences)
for all other lags. Since the autocorrelation function
contains useful information about a signal’s similarity
to itself at various delays, it can be used to compute

a0
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am

x (n)
z –1

x(n–1)

z –1
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z –1       

x(n– m)

z –1
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Σ

Fig. 17.19 A linear prediction filter
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the optimal set of predictor coefficients by forming the
autocorrelation matrix

R =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x�x(0) x�x(1) x�x(2) ... x�x(m)

x�x(1) x�x(0) x�x(1) ... x�x(m−1)

x�x(2) x�x(1) x�x(0) ... x�x(m−2)

x�x(3) x�x(2) x�x(1) ... x�x(m−3)

· · · ·
x�x(m) x�x(m−1) x�x(m−2) ... x�x(0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17.17)

We can get the least-squares predictor coefficients by
forming

A= (a0a1a2a3 . . . am) = PR−1 , (17.18)

where P is the vector of prediction correlation coeffi-
cients

P = (x�x(1) x�x(2) x�x(3) . . . x�x(m+1)) .
(17.19)

For low-order LPC (delay order of 6–20 or so), the
filter fits itself to the coarse spectral features, and the
residue contains the remaining part of the sound that
cannot be linearly predicted. A common and popular
use of LPC is for speech analysis, synthesis, and com-
pression. The reason for this is that the voice can be
viewed as a source-filter model, where a spectrally rich
input (pulses from the vocal folds or noise from turbu-
lence) excites a filter (the resonances of the vocal tract).
LPC is another form of spectral vocoder (voice coder)
as discussed previously, but since LPC filters are not
fixed in frequency or shape, fewer bands are needed to
model the changing speech spectral shape dynamically.

LPC speech analysis/coding involves processing the
signal in blocks and computing a set of filter coefficients
for each block. Based on the slowly varying nature of
speech sounds (the speech articulators can only move
so fast), the coefficients are relatively stable for mil-
liseconds at a time (typically 5–20 ms is used in speech
coders). If we store the coefficients and information
about the residual signal for each block, we will have
captured many of the essential aspects of the signal.
Figure 17.20 shows an LPC fit to a speech spectrum.
Note that the fit is better at the peak locations than at
the valleys. This is due to the least-squares minimiza-
tion criterion. Missing the mark on low-amplitude parts
of the spectrum is not as important as missing it on
high-amplitude parts. This is fortunate for audio signal
modeling, in that the human auditory system is more
sensitive to spectral peaks (formants, poles, resonances)
than valleys (zeroes, anti-resonances).

Once we have performed LPC on speech, if we in-
spect the residual we might note that it is often a stream
of pulses for voiced speech, or white noise for unvoiced
speech. Thus, if we store parameters about the resid-
ual, such as whether it is periodic pulses or noise, the
frequency of the pulses, and the energy in the residual,
then we can get back a signal that is very close to the
original. This is the basis of much of modern speech
compression. If a signal is entirely predictable using
a linear combination of prior samples, and if the predic-
tor filter is doing its job perfectly, we should be able to
hook the output back to the input and let the filter predict
the rest of the signal automatically. This form of filter,
with feedback from output to input, is called recursive.
The recursive LPC reconstruction is sometimes called
all pole, to reflect the high-gain poles corresponding to
the primary resonances of the vocal tract. The poles do
not capture all of the acoustic effects going on in speech,
however, such as zeroes that are introduced in nasaliza-
tion, aerodynamic effects, etc. However, as mentioned
before, since our auditory systems are most sensitive to
peaks (poles), the LPC representation does quite a good
job of capturing the most important aspects of speech
spectra.

In recursive resynthesis form, any deviation of the
predicted signal from the actual original signal will
show up in the error signal, so if we excite the recur-
sive LPC reconstruction filter with the residual signal
itself, we can get back the original signal exactly. This is
a form of identity analysis/resynthesis, performing de-
convolution to separate the source from the filter, and
using the residue to excite the filter to arrive at the orig-
inal signal, by convolution, or using the residue as the
input to the filter.

For computer music composition, LPC can be used
for cross-synthesis, by keeping the time-varying filter
coefficients, and replacing the residual with some other
sound source. Using the parametric source model also
allows for flexible time and pitch shifting, without mo-
difying the basic timbre. The voiced pulse period can
be modified, or the frame rate update of the filter coef-
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–30

–60

–90

(dB)

Fig. 17.20 Tenth order LPC filter fit to a voiced ooo spec-
trum
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Fig. 17.21 Cascade factored formant subtractive synthe-
sizer
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Fig. 17.22 Parallel factored formant subtractive synthesizer

ficients can be modified, independently. So it is easy to
speed up a speech sound while making the pitch lower
and still retaining the basic spectral shapes of all vowels
and consonants.

In decomposing signals into a source and a filter,
LPC can be a marvelous aid in analyzing and under-

Scattering junction

x (n)
z–1+

y (n)

+

k 1+k
–k

1–k

+

z–1 z–1 z–1 z–1 z–1 z–1 z–1

Fig. 17.23 Ladder filter implementation of an all-pole LPC
filter

standing some sound-producing systems. The recursive
LPC reconstruction filter can be implemented in a vari-
ety of ways. Three different filter forms are commonly
used to perform subtractive voice synthesis [17.19]. The
filter can be implemented in series (cascade) as shown
in Fig. 17.21, factoring each resonance into a separate
filter block with control over center frequency, width,
and amplitude. The filter can also be implemented in pa-
rallel (separate sub-band sections of the spectrum added
together), as shown in Fig. 17.22.

One additional implementation of the resonant fil-
ter is the ladder filter structure, which carries with
it a notion of one-dimensional spatial propagation as
well [17.20]. Figure 17.23 shows a ladder filter realiza-
tion of a 10th-order IIR filter. We will refer to this type
of filter later when we investigate some 1-D waveguide
physical models.

17.6 Frequency Modulation (FM) Synthesis
Wave-shaping synthesis involves warping a simple (usu-
ally a sine or sawtooth wave) waveform with a non-
linear function or lookup table. One popular form of
wave-shaping synthesis, called frequency modulation
(FM), uses sine waves for both input and warping wave-
forms [17.21–23]. Frequency modulation relies on mod-
ulating the frequency of a simple periodic waveform
with another simple periodic waveform. When the fre-
quency of a sine wave of average frequency fc (called
the carrier), is modulated by another sine wave of fre-

Ampm(t)

Freqm (t)

A

F

+

A

F

Ampc(t)

Freqc (t)Modulator
Carrier

Fig. 17.24 Simple FM (one carrier and one modulator sine
wave) synthesis

quency fm (called the modulator), sinusoidal sidebands
are created at frequencies equal to the carrier frequency
plus and minus integer multiples of the modulator fre-
quency. Figure 17.24 shows a block diagram for simple
FM synthesis (one sinusoidal carrier and one sinusoidal
modulator). Mathematically, FM is expressed as

y(t) = sin[2πt fc+Δ fc cos(2πt fm)] . (17.20)

The index of modulation I is defined as Δ fc/ fc.
The equation as shown is actually phase modulation,
but FM and PM can be related by a differentiation/
integration of the modulation, and thus do not differ for
cosine modulation.

Carson’s rule (a rule of thumb) states that the num-
ber of significant bands on each side of the carrier
frequency (sidebands) is roughly equal to I +2. For
example, a carrier sinusoid of frequency 600 Hz, a mod-
ulator sinusoid of frequency 100 Hz, and a modulation
index of 3 would produce sinusoidal components of fre-
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Fig. 17.25 Simple FM with 600 Hz carrier, 100 Hz modu-
lator, and index of modulation of 3
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Fig. 17.26 Inharmonic simple FM with 500 Hz carrier and
273 Hz modulator. The index of modulation is ramped
from zero to 5 then back to zero

quencies 600, 700, 500, 800, 400, 900, 300, 1000, 200,
1100, and 100 Hz. Inspecting these components reveals
that a harmonic spectrum with 11 significant harmon-
ics, based on a fundamental frequency of 100 Hz can be
produced by using only two sinusoidal generating func-
tions. Figure 17.25 shows the spectrum of this synthesis.

Selecting carrier and modulator frequencies that are
not related by simple integer ratios yields an inharmonic
spectrum. For example, a carrier of 500 Hz, modula-
tor of 273 Hz, and an index of 5 yields frequencies of
500 (carrier), 227, 46, 319, 592, 865, 1138, 1411 (nega-
tive sidebands), and 773, 1046, 1319, 1592, 1865, 2138,
2411 (positive sidebands). Figure 17.26 shows a spec-
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Fig. 17.27 Frequency-modulation voice synthesis diagram
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Fig. 17.28 Frequency-modulation voice spectrum

trogram of this FM tone, as the index of modulation is
ramped from zero to 5. The synthesized waveforms at
I = 0 and I = 5 are shown as well.

By setting the modulation index high enough, huge
numbers of sidebands are generated, and the aliasing
and addition of these (in most cases) results in noise.
By careful selection of the component frequencies and
index of modulation, and combining multiple carrier/
modulator pairs, many spectra can be approximated us-
ing FM. However, the amplitudes and phases (described
by Bessel functions) of the individual components can-
not be independently controlled, so FM is not a truly
generic waveform or spectral synthesis method. Using
multiple carriers and modulators, connection topologies
(algorithms) have been designed for the synthesis of
complex sounds such as human voices, violins, brass
instruments, percussion, etc. Figures 17.27 and 17.28
show an FM connection topology for human voice syn-
thesis, and a typical resulting spectrum [17.24]. Because
of the extreme efficiency of FM, it became popular in
the 1980s as a music synthesizer algorithm. Later FM
found wide use in early PC sound cards.

17.7 FOFs, Wavelets, and Grains

In a source/filter vocal model such as LPC or pa-
rallel/cascade formant subtractive synthesis, periodic

impulses are used to excite resonant filters to produce
vowels. We could construct a simple alternative model
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Fig. 17.29 FOF synthesis of a vowel

using three, four, or more tables storing the impulse re-
sponses of the individual vowel formants. Note that it
is not necessary for the tables to contain pure exponen-
tially decaying sinusoids. We could include any aspects
of the voice source, etc., as long as those effects are pe-
riodic. Formes d’onde formantiques (FOFs, French for
formant wave functions) were created for voice synthe-
sis using such tables, overlapped and added at the rep-
etition period of the voice source [17.25]. Figure 17.29
depicts FOF synthesis of a vowel. FOFs are composed
of a sinusoid at the formant center frequency, with an
amplitude that rises rapidly upon excitation, then decays
exponentially. The control parameters define the center

frequency and bandwidth of the formant being modeled,
and the rate at which the FOFs are generated and added
determines the fundamental frequency of the voice.

Note that each individual FOF is a simple wavelet
(local and compact wave both in frequency and time).
A family of filter-based frequency transforms known
as wavelet transforms have been used for the analy-
sis and synthesis of sound. Instead of being based on
steady sinusoids like the Fourier transform, wavelet
transforms are based on the decomposition of signals
into fairly arbitrary wavelets [17.26]. These wavelets
can be thought of as mathematical sound grains. Some
benefits of wavelet transforms over Fourier transforms
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are that they can be implemented using fairly arbitrary
filter criteria, on a logarithmic frequency scale rather
than a linear scale as in the DFT, and that time res-
olution can be a function of the frequency range of
interest. This latter point means that we can say accu-
rate things about high frequencies as well as low. This
contrasts to the Fourier transform, which requires the
analysis window width to be the same for all frequen-
cies. This means that we must either average out lots of
the interesting high-frequency time information in fa-
vor of being able to resolve low-frequency information
(large window), or opt for good time resolution (small
window) at the expense of low-frequency resolution, or
perform multiple transforms with different sized win-
dows to catch both time and frequency details. There
are a number of fast wavelet transform techniques that
allow the sub-band decomposition to be accomplished
in essentially N log2(N) time just like the FFT.

Most of classical physics can be modeled as ob-
jects interacting with each other. Lots of small objects
are usually called particles. Granular synthesis involves
cutting sound into grains and reassembling them by
mixing [17.27]. The grains usually range in length from
5 to 100 ms. The reassembly can be systematic, but of-
ten granular synthesis involves randomized grain sizes,
locations, and amplitudes. The transformed result usu-
ally bears some characteristics of the original sound,
just as a mildly blended mixture of fruits still bears
some attributes of the original fruits, as well as taking
on new attributes due to the mixture. Granular synthe-
sis is mostly used as a compositional and musical-effect
type of signal processing, but some also take a phys-
ically motivated look at sound grains. Other variants
of granular synthesis include glisson synthesis, wherein
the pitch of each grain is shifted over the length of the
grain (glissando), and pulsar synthesis [17.28], where
each grain is synthesized as a pulsar (sinusoidal snippit
or impulse excited resonator).

The physically informed stochastic event modeling
(PhISEM) algorithm is based on pseudo-random over-
lapping and adding of parametrically synthesized sound
grains [17.29]. At the heart of PhISEM algorithms
are particle models, characterized by basic Newtonian
equations governing the motion and collisions of point
masses as can be found in any introductory physics text-
book. By reducing the physical interactions of many
particles to their statistical behavior, exhaustive calcu-
lation of the position, and velocity of each individual
particle can be avoided. By factoring out the resonances
of the system, the wavelets can be shortened to impulses
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Fig. 17.30 Complete PhISEM model showing stochastic
resonances

or short bursts of exponentially decaying noise. The
main PhISEM assumption is that the sound-producing
particle collisions follow a Poisson process. Another as-
sumption is that the system energy decays exponentially
(the decay of the sound of a maraca after being shaken
once, for example). Figure 17.30 shows the PhISEM
algorithm block diagram.

The PhISEM maraca synthesis algorithm requires
only two random number calculations, two exponential
decays, and one resonant filter calculation per sample.
Other musical instruments that are quite similar to the
maraca include the sekere and cabasa (afuche). Outside
the realm of multicultural musical instruments, there are
many real-world particle systems that exhibit one or two
fixed resonances like the maraca. A bag or box of candy
or gum, a salt shaker, a box of wooden matches, and
gravel or leaves under walking feet all fit well within
this modeling technique.

In contrast to the maraca and guiro-like gourd re-
sonator instruments, which exhibit one or two weak
resonances, instruments such as the tamborine (timbrel)
and sleigh bells use metal cymbals, coins, or bells sus-
pended on a frame or stick. The interactions of the metal
objects produce much more pronounced resonances
than the maraca-type instruments, but the Poisson event
and exponential system energy statistics are similar
enough to justify the use of the PhISEM algorithm for
synthesis. To implement these in PhISEM, more filters
are used to model the individual partials, and at each
collision, the resonant frequencies of the filters are ran-
domly set to frequencies around the main resonances.
Other sounds that can be modeled using stochastic fil-
ter resonances include bamboo wind chimes (related
to a musical instrument as well in the Javanese an-
klung) [17.30].
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17.8 Physical Modeling (The Wave Equation)
One way to model a vibrating string physically would
be to build it up as a chain of coupled masses and
springs, as shown in Fig. 17.31. The masses slide on
frictionless guide rods to restrict their motion to trans-
verse (at right angles to the length), as is the case in
the ideal string. In fact, some synthesis projects have
used mass/spring/damper systems to represent arbitrary
objects [17.31].

If we force the masses to move only up and down,
and restrict them to small displacements, we do not ac-
tually have to solve the acceleration of each mass as
a function of the spring forces pushing them up and
down. There is a simple differential equation that com-
pletely describes the motions of the ideal string

d2 y

dx2
= 1

c2

d2 y

dt2
. (17.21)

This equation (called the wave equation) means that
the acceleration (up and down) of any point on the string
is equal to a constant times the curvature of the string
at that point. The constant c is the speed of wave mo-
tion on the string, and is proportional to the square root
of the string tension, and inversely proportional to the
square root of the mass per unit length. This equation
could be solved numerically, by sampling it in both
time and space, and using the difference approximations

k k k k k

y +

0

–

m
Mass

m
Mass

m
Mass

m
Mass

Fig. 17.31 Mass/spring string network, with frictionless guide rods to restrict motion to one dimension
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Fig. 17.32 Waveguide string modeled as two delay lines

x (n) + z–P/2 y (n)

z–P/2
–1 –0.99

Fig. 17.33 Filter view of a waveguide string

for acceleration and curvature (much like we did with
the mass/spring/damper system earlier). With bound-
ary conditions (like rigid terminations at each end), we
could express the solution of this equation as a Fourier
series, as we did earlier in graphical form (Fig. 17.12).
However, there is one more wonderfully simple solution
to (17.21), given by

y(x, t) = yL

(
t+ x

c

)
+ yR

(
t− x

c

)
. (17.22)

This equation says that any vibration of the string
can be expressed as a combination of two separate trav-
eling waves, one traveling left (yL) and one traveling
right (yR). They move at the rate c, which is the speed of
sound propagation on the string. For an ideal (no damp-
ing) string and ideally rigid boundaries at the ends, the
wave reflects with an inversion at each end, and would
travel back and forth indefinitely. This view of two trav-
eling waves summing to make a displacement wave
gives rise to the waveguide filter technique of model-
ing the vibrating string [17.32, 33]. Figure 17.32 shows
a waveguide filter model of the ideal string. The two de-
lay lines model the propagation of left- and right-going
traveling waves. The conditions at the ends model the
reflection of the traveling waves at the ends. The −1 in
the left reflection models the reflection with inversion

Time

Frequency

SR
P sT =

T
1 HzF0 =

Fig. 17.34 Impulse response and spectrum of a comb
(string) filter
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Fig. 17.35 Waveguide pluck and strike initial conditions

of a displacement wave when it hits an ideally rigid ter-
mination (like a fret on a guitar neck). The −0.99 on
the right reflection models the slight loss that happens
when the wave hits a termination that yields slightly
(like the bridge of the guitar which couples the string
motion to the body), and models all other losses the
wave might experience (internal damping in the string,
viscous losses as the string cuts the air, etc.) in making
its round-trip path around the string.

Figure 17.33 shows the waveguide string as a digital
filter block diagram. The z−P/2 blocks represent a de-
lay equal to the time required for a wave to travel down
the string. Thus a wave completes a round trip each P
samples (down and back), which is the fundamental pe-
riod of oscillation of the string, expressed in samples.
Initial conditions can be injected into the string via the
input x(n). The output y(n) would yield the right-going
traveling wave component. Of course, neither of these
conditions is actually physical in terms of the way a real
string is plucked and listened to, but feeding the correct
signal into x is identical to loading the delay lines with
a predetermined shape.

The impulse response and spectrum of the filter
shown in Fig. 17.32 is shown in Fig. 17.34. As would
be expected, the impulse response is an exponentially
decaying train of pulses spaced T = P/SRATE seconds
apart, and the spectrum is a set of harmonics spaced
F0 = 1/T Hz apart. This type of filter response and
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Fig. 17.36 Fairly complete digital filter simulation of the plucked string system
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Fig. 17.37 Commuted plucked string model

spectrum is called a comb filter, so named because of
the comb-like appearance of the time-domain impulse
response, and of the frequency-domain harmonics.

The two delay lines taken together are called
a waveguide filter. The sum of the contents of the two
delay lines is the displacement of the string, and the
difference of the contents of the two delay lines is the
velocity of the string. If we wish to pluck the string,
we simply need to load 1/2 of the initial-shape mag-
nitude into each of the upper and lower delay lines. If
we wish to strike the string, we would load in an initial
velocity by entering a positive pulse into one delay line
and a negative pulse into the other (difference = initial
velocity, sum = initial position = 0). These conditions
are shown in Fig. 17.35.

Figure 17.36 shows a relatively complete model of
a plucked string simulation system using digital filters.
The inverse comb filters model the nodal effects of
picking, and the output of an electrical pickup, empha-
sizing certain harmonics and forbidding others based
on the pick (pickup) position [17.34]. Output channels
for the pickup position and body radiation are provided
separately. A solid-body electric guitar would have
no direct radiation and only pickup output(s), while
a purely acoustic guitar would have no pickup output,
but possibly a family of directional filters to model body
radiation in different directions [17.35].

We should note that everything in the block diagram
of Fig. 17.35 is linear and time invariant (LTI). Linear-
ity means that for input x and output y, if x1(t) → y1(t)
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Fig. 17.38 Bowed string model

and x1(t) → y2(t), then x1(t)+ x2(t) → y1(t)+ y2(t),
for any functions x1,2 (signals add and scale linearly).
Time invariant means that if x(t) → y(t), then x(t−
T ) → y(t− T ) for any x(t) and any T (the system
doesn’t change with time). Given that the LTI condi-
tion is satisfied, we can then happily (legally) commute
(swap the order) of any of the blocks. For example, we
could put the pick position filter at the end, or move
the body radiation filter to the beginning. Since the
body radiation filter is just the impulse response of the
instrument body, we can actually record the impulse re-
sponse with the strings damped, and use that as the input
to the string model. This is called commuted synthe-
sis [17.36]. Figure 17.37 shows a commuted synthesis
plucked string model.

Adding a model of bowing friction allows the string
model to be used for the violin and other bowed strings.
This focused nonlinearity is what is responsible for
turning the steady linear motion of a bow into an oscilla-
tion of the string [17.37,38]. The bow sticks to the string
for a while, pulling it along, then the forces become too
great and the string breaks away, flying back toward
rest position. This process repeats, yielding a periodic
oscillation. Figure 17.38 shows a simple bowed string
model, in which string velocity is compared to bow ve-
locity, then put through a nonlinear friction function
controlled by bow force. The output of the nonlinear
function is the velocity input back into the string.

In mathematically describing the air within a cylin-
drical acoustic tube (like a trombone slide, clarinet bore,
or human vocal tract), the defining equation is

d2 P

dx2
= 1

c2

d2 P

dt2
(17.23)

which we note has exactly the same form as (17.21),
except that the displacement y is replaced by the pres-
sure P. A very important paper in the history of physical
modeling [17.37] noted that many musical instruments
can be characterized as a linear resonator, modeled by
filters such as all-pole resonators or waveguides, and

a single nonlinear oscillator like the reed of the clar-
inet, the lips of the brass player, the jet of the flute,
or the bow–string friction of the violin. Since the wave
equation says that we can model a simple tube as a pair
of bidirectional delay lines (waveguides), then we can
build models using this simple structure. If we would
like to do something interesting with a tube, we could
use it to build a flute or clarinet. Our simple clar-
inet model might look like the block diagram shown
in Fig. 17.39.

To model the reed, we assume that the mass of the
reed is so small that the only thing that must be consid-
ered is the instantaneous force on the reed (spring). The
pressure inside the bore Pb is the calculated pressure
in our waveguide model, the mouth pressure Pm is an
external control parameter representing the breath pres-
sure inside the mouth of the player (Fig. 17.40). The net
force acting on the reed/spring can be calculated as the
difference between the internal and external pressures,
multiplied by the area of the reed (pressure is force per
unit area). This can be used to calculate a reed opening

Nonlinear
reed model

Radiation
filter

Player
breath
pressure

Pm

Pb Reflection
filter

Bore delay line

Fig. 17.39 Simple clarinet model

Pm

Pb

Reed= spring

Fig. 17.40 Reed model

Part
E

1
7
.8



768 Part E Music, Speech, Electroacoustics

position from the spring constant of the reed. From the
reed opening, we can compute the amount of pressure
that is allowed to leak into the bore from the player’s
mouth. If bore pressure is much greater than mouth
pressure, the reed opens far. If the mouth pressure is
much greater than the bore pressure, the reed slams shut.
These two extreme conditions represent an asymmetric
nonlinearity in the reed response. Even a grossly sim-
plified model of this nonlinear spring action results in
a pretty good model of a clarinet [17.38]. Figure 17.41
shows a plot of a simple reed reflection function (as
seen from within the bore) as a function of differential
pressure. Once this nonlinear signal-dependent reflec-
tion coefficient is calculated (or looked up in a table),
the right-going pressure injected into the bore can be
calculated as P+

b = αP−
b + (1−α)Pm.

The clarinet is open at the bell end, and essentially
closed at the reed end. This results in a reflection with
inversion at the bell and a reflection without inversion
(plus any added pressure from the mouth through the
reed opening) at the reed end. These odd boundary con-
ditions cause odd harmonics to dominate in the clarinet
spectrum.

We noted that the ideal string equation and the ideal
acoustic tube equation are essentially identical. Just
as there are many refinements possible to the plucked
string model to make it more realistic, there are many
possible improvements for the clarinet model. Replac-
ing the simple reed model with a variable mass/spring/
damper allows the modeling of a lip reed as is found in
brass instruments. Replacing the reed model with an air-
jet model allows the modeling of flute and recorder-like
instruments. With all wind or friction (bowed) excited
resonant systems, adding a little noise in the reed/jet/
bow region adds greatly to the quality (and behavior) of
the synthesized sound.

α

0 ΔP= Pb–Pm

1.0

Fig. 17.41 Reed reflection table
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Fig. 17.42 Stiffness-modified waveguide string filter

In an ideal string or membrane, the only restoring
force is assumed to be the tension under which they
are stretched. We can further refine solid systems such
as strings and membranes to model more-rigid objects,
such as bars and plates, by noting that the more-rigid
objects exhibit internal restoring forces due to their stiff-
ness. We know that if we bend a stiff string, it wants to
return back to straightness even when there is no tension
on the string. Cloth string or thread has almost no stiff-
ness. Nylon and gut strings have some stiffness, but not
as much as steel strings. Larger-diameter strings have
more stiffness than thin ones. In the musical world, pi-
ano strings exhibit the most stiffness. Stiffness results in
the restoring force being higher (thus the speed of sound
propagation as well) for high frequencies than for low.
So the traveling wave solution is still true in stiff sys-
tems, but a frequency-dependent propagation speed is
needed

y(x, t) = yL

[
t+ x

c
( f )
]
+ yR

[
t− x

c
( f )
]
. (17.24)

and the waveguide filter must be modified to simulate
frequency-dependent delay, as shown in Fig. 17.42.

For basic stiff strings, a function that predicts the
frequencies of the partials has this form

fn = n
[

f0
(
1+ Bn2)] , (17.25)

where B is a number slightly greater than 0, equal to
zero for perfect harmonicity (no stiffness), and increas-
ing for increasing stiffness. Typical values of B are
0.00001 for guitar strings, and 0.004 or so for piano
strings. This means that P( f ) should modify P by the
inverse of the (1+Bn2)1/2 factor.

Unfortunately, implementing the z−P( f )/2 frequency-
dependent delay function is not simple, especially for
arbitrary functions of frequency. One way to imple-

x (n) + z–1 y (n)+

α

–α

Fig. 17.43 First-order all-pass filter

Part
E

1
7
.8



Computer Music 17.9 Music Description and Control 769

0

–30

–60

(dB)

(kHz)
0 4.51.5 3

Fig. 17.44 Banded decomposition of a struck-bar spectrum

ment the P( f ) function is by replacing each of the
z−1 with a first-order all-pass (phase) filter, as shown
in Fig. 17.43 [17.34]. The first-order all-pass filter has
one pole and one zero, controlled by the same coeffi-
cient. The all-pass implements a frequency-dependent
phase delay, but exhibits a gain of 1.0 for all frequen-
cies. The coefficient α can take on values between −1.0
and 1.0. For α= 0, the filter behaves as a standard unit
delay. For α > 0.0, the filter exhibits delays longer than
one sample, increasingly long for higher frequencies.
For α < 0.0 the filter exhibits delays shorter than one
sample, decreasingly so for high frequencies.

It is much less efficient to implement a chain of
all-pass filters than a simple delay line. But for weak
stiffness it is possible that only a few all-pass sec-
tions will provide a good frequency-dependent delay.
Another option is to implement a higher-order all-pass
filter, designed to give the correct stretching of the up-
per frequencies, added to simple delay lines to give the
correct longest bulk delay required.

For very stiff systems such as rigid bars, a sin-
gle waveguide with all-pass filters is not adequate to
give enough delay, or far too inefficient to calculate.
A technique called banded waveguides employs sa-
mpling in time, space, and frequency to model stiff
one-dimensional systems [17.39]. This can be viewed

Controls

+

Mallet
/bow

BP

BP

BP

Delay

Delay

Delay

Force
Velocity
Position

Sound output

Fig. 17.45 Banded waveguide model

as a hybrid of modal and waveguide synthesis, in
that each waveguide models the speed of sound in
the region around each significant mode of the sys-
tem. As an example, Fig. 17.44 shows the spectrum of
a struck marimba bar, with additional bandpass filters
superimposed on the spectrum, centered at the three
main modes. In the banded waveguide technique, each
mode is modeled by a bandpass filter, plus a delay
line to impose the correct round-trip delay, as shown
in Fig. 17.45.

A variant of physical modelling known as Scanned
Synthesis [17.40] employs the periodic scanning of
a physically evolving system to generate PCM wave-
forms. The physically evolving system can be an actual
object/system (the motions of the surface of a waterbed
or other), or simulated, and the scanning trajectory can
be fixed or varying. For example, the surface height of
the waterbed can be scanned in a circular, oval, figure
eight, back and forth, striped, or other pattern, while the
waterbed is excited as desired. Similarly, a non-linear,
inhomogeneous vibrating string or membrane can be
simulated at an arbitrary computation rate, but scanned
at an audio rate, again with arbitrary trajectory, to yield
sound. This allows a flexible means to generate lively,
time-varying sounds.

17.9 Music Description and Control

The musical instrument digital interface (MIDI) stan-
dard, adopted in 1984, revolutionized electronic music,
and also profoundly affected the computer indu-
stry [17.41]. A simple two-wire serial electrical connec-
tion standard allows interconnection of musical devices
and computers over cable distances of up to 15 m
(longer over networks and extensions to the basic MIDI
standard). The MIDI software protocol is best described
as musical keyboard gestural, meaning that the mes-

sages carried over MIDI are the gestures that a pianist
or organist uses to control a traditional keyboard in-
strument. There is no time information contained in the
basic MIDI messages; they are intended to take effect
as soon as they come over the wire. As such it is a real-
time gestural protocol, and can be adapted for real-time
non-musical sound synthesis applications. There are
complaints about MIDI, however, mostly related to
limited control bandwidth (approximately 1000–1500
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•••

10010000 00111100 01000000Typical message:

Meaning: NoteOn
Chan= 0

Note = 60
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Velocity = 64
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MIDI serial data transmission
31.25kBaud, 1 Start, 8 Data, 1Stop bit

Asynchronous bytes

Mark

1 s s s s s s s 0ddddddd
If first bit = 1 then status byte
If first bit = 0 then data byte

Fig. 17.46 MIDI software transmission protocol

continuous messages per second maximum), and the
keyboard-centric bias of the messages.

Basic MIDI message types include NoteOn and
NoteOff, sustain pedal up and down, amount of mo-
dulation (vibrato), pitch bend, key pressure (also called
AfterTouch), breath pressure, volume, pan, balance, re-
verberation amount, and others. NoteOn and NoteOff
messages carry a note number corresponding to a par-
ticular piano key, and a velocity corresponding to how
hard that key is hit. Figure 17.46 shows the software se-
rial format of MIDI, and gives an example of a NoteOn
message.

Another MIDI message is program change, which
is used to select the particular sound being controlled
in the synthesizer. MIDI provides for 16 channels, and
the channel number is encoded into each message. Each
channel is capable of one type of sound, but possi-
bly many simultaneous voices (a voice is an individual
sound) of that same sound. Channels allow instruments
and devices to all listen on the same network, and
choose to respond to the messages sent on particular
channels.

General MIDI (1991), and the standard MIDI file
specifications serve to extend MIDI and made it even
more popular [17.42]. General MIDI helps to assure
the performance of MIDI on different synthesizers,
by specifying that a particular program (the algorithm
for producing the sound of an instrument) number
must call up a program the approximates the same
instrument sound on all general MIDI-compliant syn-
thesizers. There are 128 such defined instrument sounds
available on MIDI channels 1–9 and 11–16. For exam-
ple, MIDI program 1 is grand piano, and 57 is trumpet.
Some of the basic instrument sounds are sound effects.
Program #125 is a telephone ring, #126 is helicopter,

#127 is applause, and #128 is a gunshot sound. On gen-
eral MIDI channel 10, each note is mapped to a different
percussion sound. For example, the bass drum is note
number 35, and the cowbell is note number 56.

The MIDI file formats provide a means for the
standardized exchange of musical/sonic information.
A MIDI level 0 file carries the basic information that
would be carried over a MIDI serial connection, which
is the basic bytes in order, with added time stamps.
Time stamps allow a very simple program to play back
MIDI files. A MIDI level 1 file is more suited to ma-
nipulation by a notation program or MIDI sequencer
(a form of multi-track recorder program that records
and manipulates MIDI events). Data is arranged by
tracks, (each track transmits on only one MIDI chan-
nel) which are the individual instruments in the virtual
synthesized orchestra. Meta messages allow for infor-
mation which is not actually required for a real-time
MIDI playback, but might carry information related to
score markings, lyrics, composer and copyright infor-
mation, etc. An extension to the MIDI file format, the
eXtensible Music File (XMF) format is a tree-based
wrapper that allows for the specification and inclusing
of scores, sounds, and other information (performance
notes, etc.)

Recognizing the limitations of fixed PCM samples
in music synthesizers, the downloadable sounds (DLS)
specification was added to MIDI in 1999. This pro-
vides a means to load PCM into a synthesizer, then
use MIDI commands to play it back. Essentially any
instrument/percussion sound can be replaced with arbi-
trary PCM, making it possible to control large amounts
of recorded sounds. The emergence of software syn-
thesizers, on PC platforms made the use of DLS more
feasible than in earlier days when the samples were con-
tained in a static ROM within a hardware synthesizer.
A variety of commercial formats, such as SoundFonts
(Trademark and standard developed by Creative Labs)
were developed to meet this need. Many hardware
commercial sampling synthesizers, and essentially all
software-based computer synthesis support some form
of DLS.

The simplicity and ubiquity of MIDI, with thou-
sands of supporting devices and software systems, leads
many to use it for all sorts of projects and systems.
While not being directly compatible with popular mu-
sic synthesizers, using MIDI for the control of synthesis
still allows the use of the large variety of MIDI con-
trol signal generators and processors, all of which emit
standard and user-programmable MIDI messages. Ex-
amples include MIDI sequencers and other programs
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for general-purpose computers, as well as breath con-
trollers, drum controllers, and boxes with rows of sliders
and buttons.

One thing still missing from MIDI is the ability to
download or specify arbitrary synthesis algorithms. Be-
yond MIDI, a number of emerging standards for sound
and multimedia control have been developed. As men-
tioned in the last section, one of the things MIDI lacks is
high-bandwidth message capability for handling many
streams of gestural/model control data. Another com-
plaint about MIDI relates to the small word sizes, such
as semitone quantized pitches (regular musical notes),
and only 128 levels of velocity, volume, pan, and other
controllers. MIDI does support some extended precision
messages, allowing 14 bits rather than 7. Other speci-
fications have proposed floating-point representations,
or at least larger integer word sizes. A number of new
specifications and systems have arisen recently.

One system for describing sounds themselves is
called the sound description interchange format (SDIF
1999) [17.43], originally called the spectral description
interchange file (SDIF) format. It is largely intended to

encapsulate the parameters arising from spectral ana-
lysis, such as spectral modeling sinusoidal/noise tracks,
or source/filter model parameters using LPC.

Related to SDIF, but on the control side, is open
sound control (OSC, 2002) [17.43]. Open sound con-
trol allows for networked, extended-precision, object-
oriented control of synthesis and processing algorithms
over high-bandwidth transmission control protocol/
internet protocol (TCP/IP), FireWire, and other high-
bandwidth protocols. OSC has become extremely
popular, supported by most all computer music lan-
guages (see next section), and also many commercial
music software packages.

As part of the moving-picture experts group 4
(MPEG4) standard, the structured audio orchestra lan-
guage (SAOL, 1999) allows for parametric descriptions
of sound algorithms, controls, effects processing, mix-
ing, and essentially all layers of the audio synthesis and
processing chain [17.44]. One fundamental notion of
structured audio is that the more understanding we have
about how a sound is made, the more flexible we are in
compressing, manipulating, and controlling it.

17.10 Language and Systems for Research and Composition

The history of computer languages for music dates
back well into the 1950s. Beginning with Max Ma-
thew’s Music I, many features of these languages have
remained constant, such as the notion of unit genera-
tors as discussed before, and the idea of instruments
within an orchestra, controlled by a score. Early pop-
ular languages include Music V (a direct descendent
of Music I) [17.5], Csound, CMix, and CMusic (writ-
ten in C) [17.45]. More recent languages developed in
the last two decades include SuperCollider [17.46], Jsyn
(in Java) [17.47], STK in C++ [17.48], Aura [17.49],
Nyquist [17.50], and ChucK [17.51].

One class of languages that has advanced educa-
tion and participation in computer music are graphical
systems such as MAX/MSP [17.52] and Pure Data
(PD) [17.53]. These software systems allow novice
(and expert) users to construct patches by dragging
unit generator icons around on the desktop, connect-
ing them with virtual patch cords (Fig. 17.47). Similarly,
Fig. 17.48 shows computer code in the ChucK lan-
guage, to accomplish the same thing, connecting the
ADC to a delay line (using the ChucK operator ⇒,
which resembles a directional patch cord), and the out-
put of the delay line to the DAC output. The delay length
is set to 0.5 s (time is a native data type in ChucK) using

the ChucK operator, which functions as the assignment
operator in this case.

Nearly all music today is recorded, edited, mixed,
processed, mastered, compressed, distributed, and
played back in digital format. Popular programs for
studio music production (often called Digital Audio
Workstations, or DAWs [17.54]), include ProTools

Fig. 17.47 A simple MAX/MSP patch connects a mi-
crophone through a 1/2 s (22 050 samples at 44.1 kHz
sampling rate) delay to the speaker output
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(Avid Technology Inc., formerly DigiDesign), Logic
Studio (Apple Computer), Digital Performer (Mark of
the Unicorn), Cubase (Steinberg), Reaper (Cockos),
Cakewalk Sonar, and others. All of these programs al-
low expansion via the loading of DSP Plug-Ins which
can be bundled with software, but become instantly use-
able in other programs that support PlugIns, or bought
outright, or downloaded for free.

Popular programs for amateur music making in-
clude Apple’s Garage Band, and Fruity Loops (from
Image Line, now a more professional version known
as FL Studio). Some DAW and other music software is
optimized for live performance, allowing performers to
sequence music in real-time, launch sections, change ef-
fects, etc. One popular program for live computer-music
performance is Ableton’s Live.

Fig. 17.48 A simple ChucK program to connect the ADC
to the DAC output through a 1/2 s delay

17.11 Controllers and Performance Systems

Music performance is structured real-time control of
sound, to achieve an aesthetic goal (hopefully for both
the performers and audience). So one obvious applica-
tion area for real-time computer sound synthesis and
processing is in creating new forms of musical expres-
sion. Exciting developments in the last few years have
emerged in the area of new controllers and systems for
using parametric sound in real-time music performance,
or in interactive installation art.

Figure 17.49 shows three recent real-time mu-
sic performance systems, all using parametric digital
sound synthesis and a variety of sensors mounted on
the instruments and players. The author’s DigitalDoo
is a sensor/speaker enhanced/augmented didgeridoo.
Dan Trueman’s bowed sensor speaker array (BoSSA)
resulted from work in modeling, refining, and redefin-
ing the violin player’s interface [17.55]. Curtis Bahn’s

Fig. 17.49 (a) Cook’s DigitalDoo, (b) Trueman’s BoSSA, (c) Bahn’s “r!g”

“r!g” consists of a sensor enhanced upright (stick)
bass, pedal boards, and other controllers. All three of
these new instruments use spherical speakers to allow
flexible control of the sound radiation into the per-
formance space [17.56]. These instruments have been
used with computers to control percussion sounds, an-
imal noises, string models, flute models, and a large
variety of other sample-based and parametric synthesis
algorithms.

Various conducting systems, including Max Math-
ew’s radio baton (Stanford’s Center for Computer
Research in Music and Acoustics) [17.57], and Ther-
esa Marrin Nakra’s conducting jacket (MIT Media
Lab) [17.58] allow novices and experts to conduct
music performed by the computer. Also, the growth
and development of computer music has helped to
advance greatly the technological capabilities of the fa-

Part
E

1
7
.1

1
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Fig. 17.50 Gigapop networked concert between Princeton
(shown on screen to left) and Montreal (players on stage).
The right screen shows real-time graphics generated from
gestural data captured from sensors on the instruments

miliar karaoke industry. Some modern karaoke systems
now can deduce the song that is being sung and re-
trieve the appropriate accompaniment within just a few
notes. Also, these systems can automatically correct
the pitch and vocal qualities of a bad singer, making
them sound more expert and professional. The next sec-
tion will describe some of the algorithms being applied
now in karaoke and other automatic accompaniment
systems.

Some researchers and performers feel that there
is significant potential in networked computer mu-
sic performances and interactions. Projects range from
MIT’s Brain Opera [17.59], which allowed observers
to participate and contribute content to the perfor-
mance via the web, through the Auricle website, which
is a kind of audio analysis/synthesis enhanced chat
room [17.60]. Stanford’s SoundWire Project [17.61]
and Princeton’s GigaPop Project [17.62] (Fig. 17.50)
were aimed at synchronized multi-site live performance
through high-bandwidth low-latency streaming of un-
compressed audio and video.

Extending the idea of Electronic Chamber Music,
the Princeton Laptop Orchestra (PLOrk) was founded
in 2005 [17.63]. There had been ensembles of com-
puter musicians performing live as far back as The Hub
in the 1970’s [17.64] but PLOrk was the first large-
scale (15–45 players) ensemble where every player had

Fig. 17.51 The Princeton Laptop Orchestra (PLOrk) fills
the stage, with guest artists So Percussion Ensemble and
laptop-duo Matmos

their own laptop, hemispherical speaker, and a variety
of expressive controllers (Fig. 17.51). A large number
of similar ensembles quickly followed, including the
Stanford Laptop Orchestra (SLOrk), and Mobile Phone
Orchestra (MoPho), BLOrk (Boulder, CO), OLO (Oslo,
Norway), KLOrk (Kalamazoo, MI), L2Ork (The Linux
Laptop Orchestra of Virginia Tech), LOL (Laptop Or-
chestra of Louisiana), LORkAS (Arizona State), and
many others.

Others have begun to incorporate computer-me-
diated mechanical devices into the mix, with and
without human performers, for real-time music mak-
ing in permanent art installations and in live per-
formance. These projects range from Trimpin’s mu-
sical mechanical sound sculptures [17.65], to Eric
Singer’s League of Electronic Musical Urban Robots
(LEMUR) [17.66], to Ajay Kapur’s Karmetik Machine
Orchestra [17.67].

Increasingly, mobile devices such as smart phones
and tablets are capable of running sophisticated soft-
ware for music. The same algorithms and programs that
ran on desktop computers, then on laptops, often now
can run on the phones and tablets many of us carry with
us. This further democratizes the process of music con-
sumption and making, increasing the potential market
and space for creating new types of music software and
experiences.

17.12 Music Understanding and Modeling by Computer

Over the years, new research and applications have
arisen in the areas of content-based audio analysis, re-

trieval, and modeling. Also called music information
retrieval (MIR), machine listening, and other terms, the
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main tasks involve segmenting, separating, classifying,
and predicting the textures and structures present in
pieces of music or audio.

Audio segmentation is the process of breaking up
an audio stream into sections that are perceptually
different from adjacent sections. The audio texture
within a given segment is relatively stable. Examples of
segment boundaries could be the transition from back-
ground sound texture to a human beginning to speak
over that background, or the change from verse to cho-
rus in a popular song. Another segment boundary might
occur when the scene changes, such as leaving an of-
fice building lobby and going outside onto a busy street.
In movie production, the audio scene often changes just
prior to the visual scene, allowing a noncausal mode of
detecting a visual scene change.

Segmentation [17.68] can be accomplished in two
primary ways: blind segmentation based on sudden
changes in extracted audio features, and classification-
based segmentation based on comparing audio features
to a set of trained target feature values. The blind
method works well and is preferred when the seg-
ment textures are varied and unpredictable, but requires
the setting of thresholds to yield the best results. The
classification-based method works well on a corpus of
pre-labeled data, such as speech/music, musical genres,
indoor/outdoor scenes, etc. databases. Both methods re-
quire the extraction of audio features.

Audio feature extraction is the process of computing
a compact numerical representation of a sound segment.
A variety of audio features exist, and have been used in
systems for speech recognition, music/speech discrim-
ination, musical genre (rock, pop, country, classical,
jazz, etc.) labeling, and other audio classification tasks.
Most features are extracted from short moving windows
(5–100 ms in length, moving along at a rate of 5–20
windows per second) by using the short-time Fourier
transform, wavelets, or compressed data coefficients
(such as MP3). Each of the features described below
can be computed at different time resolutions, and the
value of each feature, along with the mean and variance
of the features can be used as features themselves:

• One common feature for segmentation is the gross
power in each window. If the audio stream sud-
denly gets louder or softer, then there is a high
likelihood that something different is occurring. In
speech recognition and some other tasks, however,
we would like the classification to be loudness in-
variant (over some threshold used to determine if
anyone is speaking).

• Another feature is the spectral centroid, which is
closely related to the brightness of the sound, or the
relative amounts of high- and low-frequency energy.
The spectral roll-off is another important feature
that captures more information about the brightness
of an audio signal.• Spectral flux is the amount of frame-to-frame vari-
ance in the spectral shape. A steady sound or texture
will exhibit little spectral flux, while a modulating
sound will exhibit more flux.• One popular set of features used for speech and
speaker recognition are mel-frequency cepstral co-
efficients, which are a compact (between 4 and 10
numbers) representation of spectral shape and struc-
ture.• For multi-time-scale analysis systems, the low-
energy feature is often used. This feature is defined
as the percentage of small analysis windows that
contain less power than the average over the larger
window that includes the smaller windows. This is
a coarser-time-scale version of flux, but computed
only for energy.• One other commonly used feature is zero-crossing
rate, which is a simple measure of high-frequency
energy.• For music query/recognition, features such as the
parametric pitch histogram, and beat/periodicity
histogram can be calculated and used.

Selection of the correct feature set for a given task
has proven to be an important part of building successful
systems for machine audio understanding. For a fixed
corpus, computing many features (40 dimensions or
more), then using principal-components analysis (re-
duction of dimensionality through regression) has
proven successful for reducing the dimensionality of
the feature/search space. As an example, mapping the
first three principal components onto color (red, green,
blue) allows the automatic coloration of sound plots, as
shown in Fig. 17.52. The three timbregrams on the left
are speech, and the three on the right are classical music.
The top two right timbregrams are orchestral record-
ings, while the lower right one is opera singing (hence
the color similarity to speech).

One holy grail in computer music research is auto-
matic transcription, where in the ideal case a computer
could generate a perfect musical score by analyzing
only a recording of the music. This problem has been
around for many decades, and has generated significant
funding for computer music researchers. While research
still continues on this difficult and unsolved problem,
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Allison.au.mf.mcl Brahms.au.mf.mcl

China.au.mf.mcl Debussy.au.mf.mcl

Greek.au.mf.mcl Opera.au.mf.mcl

b)a)

Fig. 17.52a,b Timbregrams of speech (a) and music (b), where the two sounds at the top are orchestral music, while the
one at the bottom is opera

the side effects of the research have given us a large
number of developments in signal processing, anal-
ysis/synthesis algorithms, and human perception and
cognition.

One other cognition-related research area in com-
puter music is musical style modeling, also called
automatic composition. One of the leading researchers
in this area is David Cope, whose experiments in
musical intelligence (EMI) projects have been devel-
oped over many years now. Through musical rules and
data entered by Cope in the LISP computer language,

the simple analytic recombinant algorithm (SARA)
program has generated imitative music in styles as
varied as those of Palestrina, Bach, Brahms, Chopin,
Mozart, Prokofiev, Stravinsky, Gershwin, and Scott
Joplin [17.69].

The area of Music Information Retrieval continues
to grow rapidly, with increasing commercial interest in
crafting algorithms that can model and predict human
responses to music (thus make recommendations about
what types of music individual people would like, and
thus possibly buy).

17.13 Conclusions, Communities, and the Future

With the advent of cheaper, more powerful, and more
portable computers, especially laptops and mobile de-
vices, the tools and techniques of computer music have
been greatly democratized. Many free or inexpensive
sound-editing tools now include features and algorithms
that were the sole domain of academic researchers only
a few years ago. Further, the World Wide Web has
made computer tools and music available to more peo-
ple. Computer-augmented performers and performance
spaces have become more common, and more com-
monly accepted by the public.

The growth of computer music research, soft-
ware, and hardware has also been accompanied by
growth in the forums for presenting computer music
research and artistic creations. The International Com-
puter Music Conference (ICMC, computermusic.org)
has convened yearly since the 1970’s to present the

newest research and computer music. The IEEE Work-
shop on Applications of Signal Processing to Audio
and Acoustics (WASPAA) meets every odd year at
the Mohonk Mountain House (New Paltz NY). The
yearly Digital Audio Effects (DAFX) conference first
convened in 1998, and still meets yearly to cover
a wide variety of topics in audio signal processing.
To address the interest and issues related to crafting
new controllers and systems for real-time computer
music performance, the annual New Interfaces for Mu-
sical Expression (NIME, nime.org) conference began
in 2001. The International Conference on Music In-
formation Retrieval (ismir.net) meets yearly to cover
topics related to machine understanding of music,
and also holds a sub-conference/competition called
MIREX (Music Information Retrieval Evaluation eX-
change), where algorithms (and their human authors)
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compete in various music classifying, modeling, and
retrieving tasks. Other conferences focused on graph-
ics, gaming, user interfaces, assistive technologies, and
other topics have sub-sessions dedicated to digital
sound and music. And the list grows, with more and
more international and regional conferences to cover
digital audio and computer music research, and festi-

vals to present computer music performances and art
installations.

It seems certain that the future of computer music
is likely to include more developments in the areas of
modeling and understanding of human perception and
preference, and new tools and systems to expand cre-
ativity and expression.
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Audio and Ele18. Audio and Electroacoustics

Mark F. Davis

This chapter surveys devices and systems associated
with audio and electroacoustics: The acquisition,
transmission, storage, and reproduction of audio.
The chapter provides an historical overview of
the field since before the days of Edison and Bell
to the present day, and analyzes performance of
audio transducers, components and systems from
basic psychoacoustic principles, to arrive at an
assessment of the perceptual performance of such
elements and an indication of possible directions
for future progress.

The first, introductory section is an overall
historical review of audio reproduction and spa-
tial audio to establish the context of events.
The next section surveys relevant psychoacoustic
principles, including performance related to fre-
quency response, amplitude, timing, and spatial
acuity. Section 18.3 examines common audio spec-
ifications, with reference to the psychoacoustic
limitations discussed in Sect. 18.2. The specifi-
cations include frequency and phase response,
distortion, noise, dynamic range and speed accu-
racy. Section 18.4 examines some of the common
audio components in light of the psychoacous-
tics and specifications established in the preceding
sections. The components in question include
microphones, loudspeakers, record players, am-
plifiers, magnetic recorders, radio, and optical
media. Section 18.5 is concerned with digital au-
dio, including the basics of sampling, digital signal
processing, and audio coding. Section 18.6 is de-
voted to an examination of complete audio systems
and their ability to reproduce an arbitrary acoustic
environment. The specific systems include monau-
ral, stereo, binaural, Ambisonics, and 5.1-channel
surround sound. The final section provides an
overall appraisal of the current state of audio and
electroacoustics, and speculates on possible future
directions for research and development.
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Considering that human records extend back to cave
drawings thousands of years old [18.1], it is notable that
the technology to record, transmit, and reproduce sound
has only existed for the last century or so. One can only
wonder at the effect it might have had on the course of
history, not to mention the effect it may yet have [18.2].

Sound is hardly the easiest quantity to work with.
As a vibration in air, it is invisible, dynamic, and three-
dimensional (3-D), not counting the dimensions of time
and frequency. Human interaction with a sound field
is often dynamic: Natural movements of the head and
body alter the perceived sounds in a way that is dif-
ficult to predict or reproduce. Despite over a century
of progress, the transducers available for recording and
reproducing sound, microphones and loudspeakers, are
still limited to being point-in-space devices, and are not
necessarily well suited to interacting with a 3-D phys-

ical phenomenon. And yet, human beings make do with
just two ears; so how hard can it be to capture and re-
produce all the characteristics and nuances of what the
ear perceives in nature?

The intent of this chapter is to review and evaluate
the performance of audio systems based on the known
performance of the human auditory system. Starting
with a brief historical overview, the salient aspects of
human auditory performance will be described. These
in turn will be used to derive a set of general audio
specifications that may be expected to apply to a broad
range of audio systems. Then, some of the more com-
mon audio components will be examined in light of
these specifications. Finally, the performance of com-
plete systems will be considered, in the hope of gaining
some overall perspective of progress to date and possi-
bly fertile directions for further investigation.

18.1 Historical Review

The first golden age of audio research arguably started
in the late 1800s with the inventions of the telephone by
A. G. Bell and the phonograph by T. A. Edison [18.3],
and ended in 1982 with the introduction of digital audio
as a practical reality as embodied in the audio com-
pact disc (CD). The inventions that inaugurated this
age established that an audio channel could indeed be
transmitted and recorded, as a continuous mechanical,
magnetic, optical, or electrical analog of the sound vi-
brations. These inventions were accompanied by a raft
of problems, including inadequate recording sensitivity
and playback volume, noise, distortion, speed irregu-
larities such as wow and flutter, nonlinear or limited
frequency response, and media wear. Although steady
incremental progress was made on these problems in
the decades that followed, they were all largely resolved
with digital audio. Efforts since then have focused on re-
duction of the required data rate (audio coding) and on
extending the realm of audio from single isolated chan-
nels to full three-dimensional systems. Ongoing parallel
efforts to fully understand the physiology and psychoa-
coustics of the human ear more fully have continued to
extend the knowledge base, and in some cases have yet
to be exploited by commercial audio systems.

Why wasn’t sound recording invented sooner? It is
hard to say. Bell’s telephone may have required a steady
electric current, which presumably was not available
in ancient times, but Edison’s phonograph was entirely
mechanical. The key to the latter invention seems to
have been the recognition that sound is a vibration and

that the vibration is mechanically transferable, but this
notion that is readily demonstrable by putting your fin-
gers to your lips or throat, and humming. The inventions
seem to have been part of a general flourishing of phys-
ical sciences and mathematics, one that has continued
to the present day. Prior to that, however, there is cer-
tainly evidence of some understanding of the acoustic
processes involved, as seen in the creation of musical
instruments and the design of concert halls.

Actually, both Edison and Bell were driven in part
by a desire to improve telegraph systems. The telegraph
was popularized by Samuel Morse, starting around
1837, although the notion of an electrical telegraph
harks back at least to a demonstration of sending a sim-
ple signal over a long wire by William Watson in
1747 [18.4]. The cause was greatly helped by the inven-
tion of the electric battery by Alessandro Volta in 1799,
and the storage battery in 1859 by Gaston Plante [18.5].

Many of the theoretical and mathematical founda-
tions of early audio technologies were established in
the 1800s, with work in the electrical sciences by Ohm,
Faraday, Henry and others, together with research in
acoustics and hearing physiology by Helmholtz, Lis-
sajous and others. Although Edison is credited with
the invention of the first device to reproduce sound,
the first audio recording device is generally credited to
Leon Scott, who on March 25, 1857, patented the pho-
nautograph [18.6]. As shown in Fig. 18.1, this device
combined a diaphragm and a stylus to inscribe a trace of
a sound on a visual medium, such as a smoke-blackened
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glass or cylinder, but it had no way to reproduce the
recording audibly. John Tyndall seems to have followed
Scott’s work on visualizing sound vibrations, using
a variety of different devices.

Alexander Graham Bell filed his patent for the tele-
phone on February 14, 1876, just two hours before
Elisha Gray filed for a similar device. Aside from its
intrinsic value, the invention was significant for employ-
ing acoustical to electrical and electrical to acoustical
transduction, principles that are still almost universally
employed in telephony, broadcast, and audio recording.

Transduction between acoustical and electrical en-
ergy was initially less important to Edison’s invention
of the phonograph on December 8, 1877, since a phys-
ical medium to store the recording was necessary in any
case, and there neither was nor is a ready way to directly
store a dynamic electrical signal on such a physical
medium. So it is perhaps not too surprising that the orig-
inal invention employed purely mechanical transduction
for both recording and playback.

With these two inventions, the foundations for ana-
log audio were established, and the race was on to refine
and commercialize the systems. In 1887, Emile Berliner
patented a recording format that used lateral groove
modulation on a flat disk [18.8], in contrast to Edison’s
use of vertical modulation on a cylinder. The underlying
principles may have been much the same, but Berliner’s
arrangement qualified as a separate patent, and the prac-
tical aspects of mass-producing, playing, and storing
disks instead of cylinders led to the grooved disk be-
coming the commercial recording medium of choice for
over half a century.

Lacking the means to record an electrical signal
directly, but seeking to avoid the wear accompanying
the playback of grooved recordings with a stylus, other
media were soon being explored, such as magnetic
recording by Valdemar Poulson in 1898 and optical
recording, by Leon Gaumont in 1901. Meanwhile, the
eventual foundation of the broadcast industry was be-
gun in 1894, with the invention of the wireless telegraph
by Guglielmo Marconi.

These systems were initially handicapped by a lack
of viable amplification means, and although there were
some imaginative attempts at mechanical amplifica-
tion, the key breakthrough occurred in 1906, with Lee
de Forest’s invention of the audion vacuum-tube tri-
ode amplifier. Vacuum tubes could and would be used
to amplify all manner of electrical signals, but de For-
est’s choice of the name audion seems derived directly
from the word audio. It is therefore a matter of some
speculation as to whether the tube amplifier would have

Fig. 18.1 Leon Scott and the phonautograph (after [18.7])

come about when it did had it not been for the formative
invention of sound recording just 29 years earlier.

Aside from resolving the problems of providing bet-
ter recording sensitivity and adequate playback volume,
the vacuum tube also enabled the wireless transmission
of audio, giving rise to the radio receiver and broadcast
industries.

So by 1910, the basic principles, physics, and de-
vices of audio and electroacoustics were in place, result-
ing in widespread continuing efforts to develop, patent,
and refine components and systems, establish standards
where required, and commercialize a growing variety of
formats and services. Amidst competitive struggles and
numerous patent fights, the following years saw a dra-
matic series of audio innovations, including [18.9, 10]:

• 1913: An early talking movie by Edison, using
a cylinder synchronized with the picture.• 1916: A superheterodyne radio circuit patented by
Edwin F. Armstrong.
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• 1917: A condenser microphone developed by
E. C. Wente at Bell Laboratories.• 1921: The first commercial amplitude-modulated
(AM) broadcast, KDKA, Pittsburgh, PA.• 1925: An electrical record cutter developed at Bell
Laboratories, followed by the commercial release of
78 revolutions per minute (RPM) records.• 1926: Iron-oxide-coated paper tape for magnetic re-
coding developed by O’Neill.• 1927: The Jazz Singer, the first commercial sync-
sound film, using audio on disk synchronized to the
picture.• 1929: The sampling theorem, the basis of digital
signal processing, developed by Harry Nyquist.• 1935: Plastic-based magnetic recording tape, from
BASF.• 1936: The first tape recording of a symphony con-
cert, by Sir Thomas Beecham.• 1936: A cardioid condenser microphone, by Von
Braunmuhl and Weber.• 1941: Commercial frequency-modulated (FM) broad-
casting inaugurated in the US.• 1947: The Williamson high-fidelity power amplifier
developed.• 1948: The 33 frac13-RPM long-play record, devel-
oped by CBS laboratories.• 1951: The transistor developed at Bell Laboratories.• 1954: The transistor radio, Sony.• 1963: Tape cassette format developed by Philips.• 1965: Dolby A noise-reduction system developed.• 1969: Dr. Thomas Stockham experiments with dig-
ital recording.• 1976: Stockham produces the first 16-bit digital
recording, of the Santa Fe Opera.• 1982: The digital compact disc is released commer-
cially.

Much of the thrust of these and countless other de-
velopments in this period was to improve the quality
of a given audio channel, by extending the frequency
response, reducing noise, etc. As noted earlier, once
digital recording came of age, these concerns were
rendered somewhat moot, as adequate quality became
a matter of using a sufficient number of bits per sample
and adequately sampling rate to avoid audible degrada-
tion. Of course, certain parts of the audio chain, notably
transducers such as microphones and loudspeakers, and
associated interface electronics, have remained analog,
as is likely to continue to be true at least until a di-
rect link is established to the human nervous system,
bypassing the ears altogether.

18.1.1 Spatial Audio History

Perhaps the one area of audio that was not immediately
improved with the adoption of digital recording tech-
niques was spatial reproduction. It is unlikely that the
importance of the spatial aspect of audio was lost on
early audio developers, nor the fact that most humans
do in fact, possess two ears. It was probably just a case
of priorities. Spatial audio systems would almost cer-
tainly require more channels and/or other information,
which was hard to accommodate with early audio me-
dia, and the emphasis was, quite reasonably, on refining
the quality of the single-channel monophonic format.

Still, there were some promising early experiments,
notably a demonstration in 1881 by Clement Ader, who
set up a series of microphones in front of the stage
of the Paris Opera, and ran their outputs to earphones
set up in a nearby room [18.9, 10]. Whether by acci-
dent or design, some of the listeners elected to use two
headphones, one on each ear, and were rewarded with
a crude but effective binaural spatial presentation.

Despite isolated experiments such as Ader’s, there
was little organized investigation of spatial audio until
1931, when Alan Blumlein single-handedly developed
a range of devices and protocols to support stereo sound,
including techniques to upgrade the entire audio broad-
cast and recording infrastructure of the time. Blumlein
filed a far-ranging patent covering the bulk of his work;
unfortunately, it seems to have been about a quarter cen-
tury ahead of his time, as it would be the late 1950s be-
fore stereophonic sound became a commercial reality.

In the 1930s, Bell Laboratories also became inter-
ested in spatial audio, albeit with more of an emphasis
on audience presentation. They concluded that stereo
was ineffective for such uses, as the virtual imaging of
just two channels would not work for listeners removed
from the centerline. They further concluded that adding
a center channel produced a far more satisfactory re-
sult, as demonstrated by Fletcher, Steinberg, and Snow
in 1933.

With consumer media still limited to single-channel
operation, it fell for a time to film studios to engage in
occasional commercial forays into spatial audio. A not-
able experiment in the venue was the film Fantasia
(1940), the road show productions of which used a syn-
chronized three-channel soundtrack, plus control track,
to feed as many as 10 loudspeakers [18.9, 10].

The use of multiple film channels accelerated some-
what in the 1950s, as film studios sought ways to
differentiate their product from television. One popu-
lar approach was to use wider-than-standard 70 mm film
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stock, instead of the normal 35 mm, which provided
enough room along the edge for several audio channels
on magnetic stripes. A common arrangement was three
front channels plus a surround channel, the latter usu-
ally fed to an array of loudspeakers arranged around the
sides and rear of the theater.

In the 1970s, the blockbuster movie genre was
kicked off with the releases of Star Wars and Close En-
counters of the Third Kind, along with the synergistic
Dolby matrix surround system, which encodes control

signals in the audio to pan two optical film channels
to four output channels (again, three in front, plus sur-
round).

In the 1990s, multichannel digital soundtracks came
into use, first in movie theaters and then in home sys-
tems, generally supporting three front channels, a pair
of surround channels, and a low-frequency channel, oth-
erwise referred to as a 5.1-channel system. This trend
has continued with increasingly elaborate channel con-
figurations.

18.2 The Psychoacoustics of Audio and Electroacoustics

In order to evaluate the requirements and performance
of audio systems, it is necessary to establish their
relation to the capabilities and limitations of the hu-
man hearing. People perceive sound on the basis of
frequency, amplitude, time and, somewhat indirectly,
space. The perceptual resolution limits of these quan-
tities are fairly well established, even if the underlying
mechanisms are still being explored.

18.2.1 Frequency Response

1. Range: The commonly quoted frequency range of
human hearing is 20–20 000 Hz, representing the
range of frequencies that can be heard as sounds.
In many cases, this is a somewhat optimistic spec-
ification, and in any case certainly varies with the
individual. Only young people are likely to hear out
to 20 kHz. With age generally comes a reduction in
the upper limit (along with other reductions in hear-
ing acuity, a process known as presbycusis [18.11]),
with typical values of the upper limit of hearing in
the range of 8–15 kHz common for middle-aged
adults. There has been considerable debate about
the ability to hear above 20 kHz, with some claim-
ing some sort of perception out to frequencies of
40–50 kHz. Hearing limits above 20 kHz are known
to exist in some small animals. At the low-frequency
end of the spectrum, a frequency of perhaps 32 Hz
is typically the minimum value at which a pitch can
be discerned, below which the sensation becomes
more of a series of discrete vibrations. Although
it is difficult to construct loudspeakers with flat re-
sponse below 20 Hz, humans can still perceive such
vibrations if they are sufficiently large in amplitude.

2. Sensitivity: The ear is not uniformly sensitive to all
frequencies, due in part to resonances and mech-
anical limitations of structures in the outer and mid-

dle ear, and in part to neural effects. The sensitivity
also tends to be a function of absolute loudness
(defined later). Contours of perceived equal loud-
ness were first measured by Fletcher and Munson at
Bell Laboratories in the 1930s [18.12]. Figure 18.2
shows typical equal loudness curves as a function of
absolute level (dB sound pressure level (SPL)).

3. Resolution: As illustrated in Fig. 18.3, the ear
exhibits a curious duality with respect to the de-
gree it can differentiate frequencies. On the one
hand, certain frequency-dependent processes, such
as masking, appear to indicate a grouping of the fre-
quency range into somewhat coarse sub-bands about
1
4 to 1

3 octave wide, called critical bands. On the
other hand, frequency discrimination of individual
sine waves on the basis of their perceived pitch has
a typical resolution limit on the order of 1

100th of
an octave, corresponding to a frequency change of
about 0.7%. This is one of the cases where the un-
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Fig. 18.2 Equal-loudness curves as a function of frequency
and absolute level (after [18.9])
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derlying mechanisms are uncertain, and a mixture
of temporal and spectral discrimination appears to
be necessary to explain the various observed phe-
nomena.

4. Pitch: In general terms, pitch is the perceptual re-
sponse to differences in the frequency content of
a source, but it is far more complex than a simple
mapping of frequency to a perceptual scale, and can
be affected by parameters such as the loudness of
the signal, which ear it is played to, and the timing
of the signal. The perception of pitch of spectrally
complex signals is especially difficult to model, in
part because a given signal may be perceived as hav-
ing more than one pitch, and the signal itself may or
may not actually contain spectral components cor-
responding to the perceived pitch [18.13].

18.2.2 Amplitude (Loudness)

Absolute Sensitivity
The total dynamic range of the human ear, that is, the
range from loudest to softest sound one can perceive,
is generally given to be about 120 dB, a pressure range

of about a million to one, or a power range of about
a trillion to one. The term sound pressure level (SPL)
is used to indicate where in this range a given sound
falls, with 0 dB SPL taken as the approximate thresh-
old of hearing at 1 kHz, corresponding to a level of
about 20 μPa [18.14]. The mathematical relation be-
tween a sound pressure p and corresponding SPL value
is

Lp = SPL = 20 log

(
p

p0

)
,

where p0 corresponds to the 0 dB SPL quoted above.
The upper limit of loudness perception is not well

defined, but corresponds in principle to the onset of non-
audible phenomena such as tingling and outright pain.
Depending on the listener, the upper limit is likely to be
in the range of 115–140 dB SPL. (Note that exposure to
such levels, especially for extended periods, can lead to
hearing loss [18.11]).

As noted, sensitivity is a function of frequency and
absolute level, with the greatest sensitivity observed in
the range 3500–4000 Hz, mainly due to resonance of
the ear canals, where the hearing threshold may actually
be slightly lower in level than 0 dB SPL. The greatest
variation as a function of frequency is at the lowest lev-
els, where the threshold of hearing may rise to more
than 20 dB SPL at high frequencies, and fully 60 dB
SPL at low frequencies.

The variation of perceived loudness with actual
sound pressure, while monotonic, is certainly nonlin-
ear, as can be seen from the differences in spacing
between the equal loudness curves at different frequen-
cies. The actual perception of a difference in loudness
will generally be less than the actual difference in
SPL. According to the sone scale of loudness per-
ception, a difference in SPL of 10 dB at 1 kHz is
roughly equivalent to a doubling of perceived loudness
Sones = 2[(Phons−40)/10] [18.15].

Because of the variation in perceived loudness with
the actual SPL and frequency of a signal, it is a nontrivial
matter to calculate the perceived loudness of an arbitrary,
spectrally complex signal. Recent efforts using multi-
band analysis and power summation have improved the
predictability to within close to a loudness just notice-
able difference (JND) for most signals [18.16].

Resolution
The amplitude resolution of the ear is generally taken to
be about 0.25 dB under best-case conditions, although
for some situations it is considered to be slightly larger,
on the order of 0.5–1.0 dB.
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Masking
The audibility of a sine wave in isolation may be mod-
ified in the presence of other spectral components. In
particular, the addition of spectral components is likely
to render an existing component less audible, a process
referred to as masking.

The basic notion of masking is that a louder sound
will tend to render as less audible or inaudible a softer
sound that would otherwise be audible in isolation. The
degree of masking will tend to depend in part on the
frequency spacing of the spectral components in ques-
tion. This gives rise to the notion of a prototype masking
curve, delineating the threshold of audibility in the pres-
ence of a sine wave of some frequency and amplitude,
as a function of frequency, as shown in Fig. 18.4.

To at least first-order approximation, the masking
effect of two or more sine waves can be calculated by
summing their respective individual masking curves.
Since, from Fourier theory, any signal can be decom-
posed into a sum of sinusoids, a composite masking
curve from an arbitrary signal can be calculated as the
sum of the masking curves of each spectral component.
This constitutes a convolution (filtering operation) of
a prototype masking curve with the signal spectrum.
In practice, the prototype masking curve used for the
convolution is likely to vary as a function of frequency,
amplitude, or signal type (noise versus sine wave). Fur-
ther, nonlinearities in the ear may result in significant
deviations from the predicted curve at times.

Although the masking effect of a signal is, quite
logically, maximized while the signal is present,

SPL–sound pressure level (dB)
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Fig. 18.4 Frequency Domain Masking: Curve A is hearing
threshold with no signal present. Curve B is revised thresh-
old in presence of 1 kHz tone C. Signal D, rising above
curve A but below curve B, will be audible by itself but
masked by signal C

some residual of the masking effect will extend be-
yond the termination of the signal, and even slightly
before its onset. This process is referred to as tem-
poral masking, and typical behavior is illustrated in
Fig. 18.5) [18.17].

18.2.3 Timing

Because the transduction structure of the ear – the basi-
lar membrane and associated hair cells – functionally
resembles a filter bank, questions of timing must be con-
sidered as applying to the filtered output signals of that
filter bank. The brain does not see the wide-band au-
dio signal arriving at the ear, as it might appear on an
oscilloscope, but instead processes the outputs of the
basilar membrane filter bank, subject to effective half-
wave rectification and loss of high-frequency synchrony
by the neurons (Fig. 18.6). Output neural signals from
each ear are ultimately processed by multiple areas of
the brain. So it is not surprising that issues of timing are
a little ill-defined, and that there are a number of time
constants associated with different aspects of hearing.

For starters, there is the basic ability of the neurons
in the auditory nerve to follow the individual cycles of
audio impinging on the basilar membrane; i. e. to ex-
hibit phase locking. Current research seems to put the
upper frequency of this activity at about 5 kHz, although
this seems somewhat at odds with lateralization of sine
waves on the basic of interaural time difference, which
only extends up to about 1500 Hz.

The ability to follow individual cycles of audio may
aid in pitch perception, as the effective shapes of the
basilar membrane filters appear too broad to account for
the observed pitch resolution. However, the physiologi-
cal mechanisms for how this might be accomplished are
still the subject of some debate.
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Fig. 18.5 Temporal masking characteristic
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Fig. 18.6 Neural phase locking at low frequencies and lack
of phase locking at higher frequencies (after [18.18])

Other time constants appear to apply to the aggre-
gate audio, regardless of the presence of a filter bank
at the input. Already noted are the masking time con-
stants, which substantially extend only 1–2 ms prior to
the onset of a loud sound, but continue for several tens
of milliseconds after its cessation.

Each of these may be related to a more fundamental
time constant. The short time constant of about 1–2 ms
may represent the shortest time one can perceive with-
out relying on spectral cues, while the post-masking
interval may be related to the fusion time. The fusion
time in particular seems to represent a kind of acoustic

Table 18.1 Summary of approximate perceptual time/amp-
litude limits

Parameter Range JND

Amplitude 120 dB 0.25 dB

Premask N/A 2 ms

Postmask N/A 30–50 ms

Binaural timing 700 μs 10 μs

integration time, or the limit of primary acoustic mem-
ory, typically on the order of 30–50 ms, and appears
to be associated with the lower frequency limit of the
audio band (20–30 Hz). It also seems to explain why
echoes are only heard as such in large cathedral-like
rooms, as they are integrated with the direct arrivals in
normal-size rooms.

On the other hand, binaural timing clearly exhibits
higher resolution, as differences of interaural timing on
the order of 10 μs may be audible. The range of audio
timing phenomena is summarized in Table 18.1.

18.2.4 Spatial Acuity

Strictly speaking, the spatiality of a sound field is
not perceived directly, but is instead derived from
analysis of the physical attributes already described.
However, given its importance to audio and electroa-
coustics, it is nonetheless useful to review the processes
involved.

Specification of the position of a sound source
relative to a listener in three-space requires three coor-
dinates. From the mechanisms used by the human ear,
the natural selection is to use a combination of azimuth,
elevation, and distance. Of these, distance is generally
considered to be an inferred metric, based on the am-
plitude, spectral balance, and reverberation content of
a source relative to other sources, and is not especially
accurate in any absolute sense.

This leaves directional estimation as the primary
localization task. It appears that the ear uses separate
processes to determine direction in a left/right sense and
a front/top/back sense. Given the physical placement of
the ears, it is not surprising that the left/right decision
is the more direct and accurate, depending on the in-
teraural amplitude difference (IAD) and interaural time
difference (ITD) localization cues.

Although the ear is sensitive to IAD at all audible
frequencies, as can be verified by headphone listening,
the head provides little shadowing effect at low frequen-
cies, since the wavelengths become much longer than
the size of the head, so IAD is mostly useful at middle
to high frequencies (Fig. 18.7).

The JND for IAD is about 1 dB, corresponding to
about 1 degree of an arc for a front/centered high-
frequency source. As a sound moves around to the side
of the head, the absolute IAD will tend to increase, and
the differential IAD per degree will decrease, causing
the angular JND to decrease accordingly.

The ITD lateralization cue has a rather astonishing
JND of just 10 μs, for a source on the centerline between
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Fig. 18.7 Interaural amplitude difference as a function of
direction (after [18.19])

the ears, corresponding to an angle of about 1 degree.
For signals off to one side, the ITD will typically reach
a maximum value of just 750 μs – 3

4 of a millisecond. As
with the IAD cue, the sensitivity of the ITD cue declines
as a source moves around to the side of the head.

Also like IAD, this cue is usable at all frequencies,
albeit with a key qualification. At frequencies below
about 1500 Hz, the neural response from the basilar
membrane remains phase locked to the bandpass-
filtered audio waveform. At such frequencies, even
a modest amount of interaural phase shift of a sine wave
can result in a shift in the position of the audio image.
Above 1500 Hz, neural phase synchrony is effectively
lost, at least as far as ITD perception is concerned,
so the interaural phase of a high-frequency sine wave
has little or no perceptual effect on its apparent posi-
tion. However, the brain can still make fairly accurate
judgments of the ITD of the envelopes of the high-
frequency bandpass-filtered signals, assuming there is
sufficient variation in the filtered envelopes. This will
tend to make spectrally dense high-frequency signals
easier to localize than sparse signals, since the latter
may exhibit constant-envelope sine waves only after the
critical band filtering of the basilar membrane.

While localization in the horizontal direction is
firmly mediated by two strong, well-behaved cues, lo-
calization in the vertical dimension is decidedly less
well behaved. The goal of vertical localization is to dif-
ferentiate the positions of sources on locus of constant
IAD/ITD. For sources equidistant from the two ears, the
locus is a plane passing though the center of the head,
referred to as the median plane. For sources off to one
side, the locus is a cone, sometimes referred to as the
cone of confusion. The best-case resolution, for front-
centered sources, is typically on the order of 5◦, which
is quite a bit less precise than the horizontal resolution
of about 1◦ under the same conditions. As with horizon-

tal localization, vertical resolution appears to diminish
for side sources, although since the cone of confusion
becomes progressively narrower, the net spatial error
resulting from a vertical localization error is likely to
diminish. For sources at the side, the cone of confusion
collapses to a line.

One demonstrated vertical localization cue [18.20]
is generated by the interaction of the arriving sound and
the folds of the pinnae. The pattern of reflections off
the folds depends on the direction of arrival of a sound,
although not in any simple, monotonic fashion. One
consequence of these pinna reflections is the introduc-
tion of sharp peaks and dips in the frequency response,
which the brain can apparently learn to associate with
specific directions. Because of the size of the pinna, and
resulting reflection delays, these direction-dependent
response delays appear only at high frequencies, above
about 7 kHz, and so are less effective for low-frequency
or narrow-band signals. Vertical localization of signals
below 7 kHz may be possible on the basis of pinna cues
if the brain is performing some sort of autocorrelation of
each ear’s signal, and can detect the delays in the time
domain, but so far there is little evidence to support this
hypothesis.

A second vertical localization cue is dynamic in
nature, namely the modulation of the horizontal lo-
calization cues – ITD and IAD – with movement of
the head, which will vary with the vertical position of
the source. Given a front source on the median plane,
for example, a rightward movement of the head will
result in a left ear arrival that is louder and sooner
than the right ear arrival. For a rear source, the cor-
respondence will be opposite, and for a top source,
there will be essentially no change in the ITD/IAD val-
ues. By correlating head movement with these sonic
changes, the brain can deduce the vertical position of
the source.

Finally, the presence and pattern of room echoes,
once learned, and in concert with the above cues, can
reinforce the vertical position of a source, especially
whether in front of or behind the listener.

Even so, the vertical localization cues tend to be
somewhat individual, like fingerprints, and, for exam-
ple, playing a recording made with microphones placed
in the ear canals of one subject may not result in good
vertical localization for another listener.

Common experience suggests that the perceived lo-
cation of a sound may be strongly influenced by visual
cues.
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18.3 Audio Specifications

With the basic limits of auditory resolution now re-
viewed, consideration can be given to the requirements
for high-quality audio systems in terms of those lim-
its. While individual audio components can be expected
to exhibit correspondingly individual performance re-
quirements, as will overall systems, there are some
specifications that can be expected to apply to all ele-
ments of the signal chain. Some of these are considered
traditional audio specs that have been used as general
metrics for many years. Happily, in at least some cases,
modern audio systems are of such high quality as to ren-
der some specifications moot. In other cases, complete
fulfillment of some of the requirements is something
that may never be completely realized.

18.3.1 Bandwidth

It is reasonably evident that, given the nominal
20–20 kHz range of human hearing, it will be desirable
for audio systems with aspirations to sonic accuracy
to support at least that frequency range. Since an au-
dio signal may pass through any number of processors
on its way from acquisition to ultimate reproduction,
it is generally advisable for each processor to have
a wide-enough pass band to avoid progressive band-
width limitation.

For most audio devices during the formative years
of audio development, this requirement was daunting,
and rarely achieved outside the laboratory, if then. There
were too many mechanical vibrating structures in the
chain, and it is very difficult to make them respond
consistently over a 1000 : 1 frequency range. Grooved
disc recordings were limited by large-diameter, low-
compliance styli, and slow inner-groove velocities of
constant-RPM discs. Optical media, like film, and mag-
netic media, were both limited by linear speed, and the
size of the effective apertures used for recording and
playback. The linear speed of such media was chosen
as a compromise with playing time, and the smallness
of the apertures was limited by high noise levels and di-
minishing signal level. Broadcast media were limited by
bandwidth constraints and noise.

Not counting a straight piece of wire, amplifiers
are the audio component that have probably had the
easiest time achieving full audio bandwidth, partic-
ularly small-signal amplifiers, thanks in part to the
relatively low mass of the electron. Power amplifiers
have had a slightly harder time, partly because devices
that handle high powers often come at the expense of

compromises in other parameters, and partly because
loudspeaker systems often exhibit ill-controlled, non-
resistive loads. The response and linearity of amplifiers
of all sorts were materially improved by the invention
of negative feedback by Harold Black of Bell Laborato-
ries, on August 2, 1927 [18.21].

An early recording system with fairly wide band-
width was demonstrated on April 9–10, 1940, by
Harvey Fletcher of Bell Laboratories, and conductor
Leopold Stokowski. This employed three optical audio
tracks on high-speed film, with a fourth track for a gain
control signal, apparently implementing a wide-band
compressor/expander for noise reduction, and possess-
ing a frequency response of about 30–15 000 Hz.

It was probably not until the mid-1950s that such
a bandwidth became commonplace in consumer media,
with improvements such as the long-play record, com-
mercial FM broadcasting, and refinements in magnetic
tape, heads, and circuits.

As with a number of other basic audio spec-
ifications, the question of full-bandwidth frequency
response was, to a great extent, rendered moot with
the commercial introduction of digital audio in 1982.
As discussed in a subsequent section, the bandwidth of
a digitally sampled signal is largely dependent on the
sampling rate chosen, which must be at least twice as
high as the highest audio frequency of interest. Thus,
conveying a bandwidth of 20 kHz requires a sampling
frequency of at least 40 kHz. Current standard sam-
pling frequencies in common use for full-bandwidth
audio systems are 44 100 Hz and 48 000 Hz, depend-
ing upon the medium. Sometimes, a slight reduction
in high-frequency response is tolerated, and a sampling
frequency of 32 000 Hz is used to reduce the data rate
slightly. Audio perfectionists, on the other hand, often
prefer sampling rates of 96 000 Hz or more, to support
an effective bandwidth in excess of 20 kHz and thereby
provide additional safety margin to avoid alias distor-
tion, preserve harmonics above 20 kHz, avoid possible
intermodulation distortion, and mitigate possible filter
distortion.

Once converted to digital representation, an audio
signal tends to maintain its bandwidth unless explic-
itly limited by some digital signal processing (DSP)
operation.

Despite the advances of digital audio, full-range au-
dio systems are still the exception. The chief culprits
for this situation are the transducers, especially loud-
speakers. At low frequencies, naturally occurring com-
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binations of mass and compliance lead to a fundamental
resonance for most typical loudspeaker drivers that falls
well inside the audio band, imparting a high-pass char-
acteristic that usually rolls off at lower frequencies at
a rate of at least 12 dB per octave. At high frequencies,
a similar fundamental resonance leads to a similar roll-
off, with a lowpass characteristic. Some of these roll-
offs can be partially mitigated with electronic equaliza-
tion, but the steepness of the characteristic makes it dif-
ficult to extend the response very far with equalization,
without incurring unduly high-power requirements.

In general, most musical and speech energy is con-
centrated in a subset of the audio band, say from 100 Hz
to 10 kHz, allowing the majority of audio signals to be
satisfactorily reproduced with modestly compromised
system bandwidth, to the benefit of size, cost, and bulk.

18.3.2 Amplitude Response Variation

From the basic amplitude acuity of the ear, it is logi-
cal to require that the pass-band deviation in frequency
response be less than an amplitude JND, say within
±0.25 dB of flat. Of course, this is the desired net re-
sponse of an entire signal chain, and if deviations are
known to exist in one part of the chain, it may be possi-
ble to apply compensating equalization elsewhere in the
chain.

As with the quest for full audio bandwidth, early
audio systems for many years had trouble meeting this
requirement, in part from mechanical limitations. Am-
plifiers again have traditionally had the easiest time
meeting this specification, and modern-day DSP is
limited only by the precision of the analog/digital
converters, which is generally quite good in this re-
gard, plus any deliberate signal-processing spectral
modifications.

The worst offender is many cases is the listen-
ing room, where echoes and resonances are likely to
make nearly any sine-wave frequency response plot
a jumble of peaks and dips covering many dB. The
three-dimensionality of the room and the fact that
echoes arrive from diverse directions work to reduce the
audibility of many of these measured deviations.

After rooms, loudspeakers have the hardest time
meeting this flat-response requirement, being mech-
anical devices and having to handle a lot of power and
move a lot of air. In order to cover the bulk of the audio
band, loudspeaker designs typically employ multiple
drivers, each optimized for a portion of the audio band,
but this in turn introduces potential response deviations
from required crossover networks.

In considering reasonable values for most audio
specifications based on psychophysical performance, it
is prudent to consider both monotic and dichotic perfor-
mance; that is, each ear considered in isolation, and then
the binaural performance of the two ears together. In the
case of amplitude response variation, similar JNDs ap-
ply, so there is no compelling reason to differentiate the
situations in this case.

18.3.3 Phase Response

In the course of passing through an audio component, an
audio signal may encounter delays, which may be fre-
quency dependent, and may therefore be categorized as
either frequency-dependent time delays, group delays,
or phase shifts. It is therefore prudent to establish pre-
ferred perceptual limits on the allowable deviations of
these quantities.

Of course, a pure wide-band time delay will be man-
ifested as a linear change in phase shift proportional to
frequency, so to separate the effects of time delay and
phase shift, so the latter (frequency-differential single-
channel phase shift) may commonly be understood to
represent the deviation from a linear-with-frequency
phase characteristic.

It is a little difficult to be completely definitive
about a phase-shift specification, in part because there
are multiple neural timing mechanisms involved. For
a sound channel considered in isolation, phase percep-
tion is rather weak. There does not seem to be an explicit
means of comparing the fine-grain phase or timing of
signals at significantly different frequencies (more than
a critical bandwidth), at least for steady-state signals.
This is sometimes used as the basis of a claim that the
ear is virtually phase deaf, although that is probably
an overstatement. Still, if one constructs a steady-state
signal with widely space spectral components that are
in slow precession, say a combination of 100 Hz and
501 Hz (360◦ per second relative phase precession), the
resulting percept is almost entirely constant.

So under what conditions are phase shifts audible?
There seem to be at least three such mechanisms: fusion
time, transient fusion time, and critical band envelopes.

As noted earlier, fusion time refers to the audio
event integration time of the ear, generally in the range
of 20–50 ms. Separate audio events that occur farther
apart than the fusion time will generally be heard as sep-
arate. If a spectrally complex signal is put through a sys-
tem where some frequencies are phase- or time-shifted
by more than the fusion time, the signal may temporally
defuse, rendering the phase shift quite audible. (A 20 ms
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phase delay at 30 Hz corresponds to 216 degrees of
phase shift, not an unrealistically large value.) This can
occur, for example, if a sharp pulse is passed through
a third-order, 1/3-octave filter bank tuned for flat mag-
nitude response. What starts out as a click will emerge
as a boing, quite audibly distinct from the source.

Transient fusion time refers to the shortest interval
the ear can differentiate temporally, as exemplified by
the premasking interval of about 1–2 ms. If a sharp tran-
sient, shorter than the transient fusion time, is passed
through an audio channel where the high-frequency
phase shift exceeds the transient fusion time, the out-
put signal may sound audibly time-smeared compared
to the source. Although the effect can be subtle, it is of-
ten manifested as the difference, e.g., between a sharp
strike with a hard mallet, and a wire-brush mallet hit.

Critical band envelopes come into play with regard
to the audibility of phase shifts with steady-state spec-
trally dense signals, more specifically signals in which
two or more significant signal components fall within
a common critical band. Since the basilar membrane fil-
ter bank will be unable to segregate these signals into
separate bands, they will beat with one another, and
the pattern of beats may be quite audible, for example,
a complex composed of equal parts 500 Hz and 501 Hz,
which can be considered the 500th and 501st harmonic
of a 1 Hz pulse train. These two spectral components
are certainly within a critical band of one another,
and the instantaneous phase relation between them will
certainly be audible; indeed the signal will cancel al-
together once per second. Compare that to the earlier
example of 100 Hz and 501 Hz, the 100th and 501st
harmonic of a 1 Hz pulse train, where the phase rela-
tion remained virtually inaudible because of the wider
frequency spacing.

So it can be safely hypothesized that keeping
frequency-differential single-channel phase shift un-
der 1 ms is probably pretty inaudible, assuming small
changes over the width of a critical band, and in prac-
tice, with most non-transient music, speech or other
natural sounds, it can be expected that phase shifts cor-
responding to frequency-differential time shifts much
under the fusion time of 20–50 ms (at least at low fre-
quencies) will be fairly benign, if not almost totally
inaudible under most conditions.

Once again, amplifiers have the easiest time meeting
this requirement, with multi-driver loudspeaker sys-
tems being one of the more problematic components.
Although sharp resonances, the bane of mechanical
acoustic components, may exhibit audible amounts of
phase shift, they will often be rendered insignificant

compared to the amplitude deviations introduced by
such resonances. And, again, with DSP systems, audi-
ble phase shift is not likely to be an issue as long as the
signal remains in the digital domain, unless such phase
shift is purposely introduced with signal processing.

As can be readily gleaned from binaural psy-
chophysics, dichotic phase shift – the phase shift
between a pair of channels – can be more audible
at lower delay levels than monotic phase perception.
A timing difference of even a single sample at 48 000 Hz
sampling, about 20 μs, is twice the JND of this parame-
ter. Of course, the perceptual metric for binaural phase
difference is a change in apparent image position or
width, rather than the spectral or amplitude change asso-
ciated with monotic phase shift. It is possible for audio
systems to have audible amounts of monotic phase shift
and still meet the dichotic (interchannel) phase require-
ment, as long as all channels have the same amount of
phase shift.

As usual, amplifiers and digital signals have the
easiest time with this specification. In the past, some
multichannel analog recording media, such as mag-
netic tape recorders or optical film recorders, tended
to exhibit small amounts of interchannel timing error,
owing to misalignment of the recording and playback
apertures. Real-world rooms and loudspeakers have the
hardest time, since differential timing of 10 μs corre-
sponds to a path-length difference of only about one
eighth of an inch, and few listeners are willing or able
to hold their heads that still. This effect is somewhat
mitigated because the plethora of echoes in a typical
room leads the brain to discount timing information
in favor of first-arrival amplitudes, which are some-
what better behaved. Still, it can be readily appreciated
that the virtual imaging of stereo reproduction is likely
to be fairly sweet-spot dependent, since listener posi-
tions near a loudspeaker will tend to receive sound both
sooner and louder from the near loudspeaker, resulting
in spatial distortion of the sound stage.

18.3.4 Harmonic Distortion

The presence of nonlinearities in the transfer function
of an audio device or system is likely to have the ef-
fect of introducing new, spurious spectral components.
For a single isolated sine wave, the nonlinearity will re-
sult in a new waveform with the same periodicity as
the original signal, which can then be expressed via
Fourier analysis as a sum of the original sine wave plus
harmonics thereof [and perhaps a direct-current (DC)
component]. For more spectrally complex signals, each
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Fig. 18.8 Sine wave with crossover distortion (after
[18.22])

discrete spectral component will be subject to such spu-
rious harmonic generation. This process is referred to
as harmonic distortion, and the power sum of the gen-
erated harmonics, divided by the power of the original
signal, is referred to as total harmonic distortion (THD),
usually expressed as a percentage.

The limit of acceptable quantities of THD is the
point at which the generated harmonics become audible.
In part, this may be signal dependent, since distortion
products of a low-level signal may themselves fall be-
low the threshold of hearing, rendering them inaudible.
For higher-level signals, the distortion products will be
inaudible if they are masked, rendering the effect of
harmonic distortion decidedly signal dependent. (The
amplitude dependency may by further emphasized by
nonlinearities that are themselves amplitude dependent,
such as clipping.) For example, a wide-band noise sig-
nal may mask all harmonic distortion components of
a moderate level. Harmonic distortion may therefore be
most audible with spectrally sparse signals, with mini-
mal masking components, such as a single sine wave.

For a sine-wave signal, the maximum acceptable
amount of harmonic distortion can be deduced from
the masking curve of that sine wave. From the masking
curve shown in Fig. 18.4, it may be deduced that, since
the masking level for a 1 kHz tone is around −35 dB at
2 kHz, the tolerable amount of second-harmonic distor-
tion is about 2%. By 3 kHz, the masking curve is down
around 50 dB, or about 0.3% third-harmonic distortion.
Higher-order harmonics would benefit from even less
masking, making them even more likely to be audi-
ble, until their amplitude falls below the threshold of
hearing. Thus, the audibility of harmonic distortion will
depend on the order of the distortion, with low-order
distortion generally being less audible than high-order
distortion.

Low-order harmonic distortion is generally asso-
ciated with smooth, gentle nonlinearities, such as the

typical onset of clipping of a vacuum-tube amplifier or
a loudspeaker driver. High-order harmonic distortion, in
contrast, is likely to result from sudden, sharp nonlinear-
ities, such as the crossover distortion of an improperly
designed solid-state power amplifier (Fig. 18.8).

Among more traditional audio devices, playback of
grooved media was probably fraught with the greatest
amount of high-order THD, caused by sharp mistrack-
ing of the stylus. In the age of digital audio, low-level
undithered digital signals will likely exhibit stair-step
behavior which will also tend to be rich in high har-
monic content, rendering them highly objectionable
from the perspective of THD. Although this can lead to
a desire for very high quantization accuracy (say 32-bits
per sample), proper use of dither to spread the harmonic
energy out as noise is generally the preferred solution.

18.3.5 Intermodulation Distortion

Intermodulation (IM) distortion results when two or
more spectral components interact with a nonlinearity.
The resulting distortion products will tend to be gen-
erated at sums and differences of the original spectral
components. For even low-order IM distortion, these
distortion products may be far in frequency from the
source signal components, and may in fact be much
lower in frequency. Since masking tends to be most
effective when the signal to be masked is higher in fre-
quency than the masker, having IM distortion products
lower in frequency than the generating components ren-
ders them more likely to be audible, in turn making IM
distortion potentially more bothersome than THD.

Serious IM distortion tends to be associated with
sharp nonlinearities, and was a problem with analog
grooved recordings when the stylus mistracked, as well
as with poorly designed power amplifiers exhibiting
crossover distortion. It can also show up with low-level
signals and digital converters. Loudspeakers usually
have less trouble with IM distortion, in part because
any nonlinearities are usually more gentle (associated
with maximum output limiting), and in part because IM
distortion products located outside the range of a driver
will tend not to be radiated.

Although the theoretical audible limit of IM distor-
tion is a miniscule fraction of 1%, a value of 0.1% IM
distortion or less is usually pretty safe.

18.3.6 Speed Accuracy

Considerations of speed accuracy encompass both ab-
solute accuracy and dynamic variations, sometimes
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subdivided into slow variations called wow and faster
variations called flutter. Except in extreme cases, tim-
ing error is usually perceived as an error in pitch, rather
than time. Unless it is drastically in error, absolute speed
accuracy is likely to be of concern mostly to those with
absolute pitch.

Speed variations such as wow and flutter are likely
to be audible to anyone with normal pitch perception.
Given a pitch JND of 0.7%, which would correspond
to peak-to-peak just-noticeable speed variation, the cor-
responding root-mean-square (RMS) speed variation
would be about 0.25%. Since speed variation may be
cumulative, a preferred figure of 0.1% is likely to be
specified [18.23]. There may also be cases in which can-
cellations from room echoes cause amplitude variations
resulting from flutter that may require still lower limits
of flutter to be rendered inaudible.

The analog mechanical and electromechanical
recording devices of the past have all had to contend
with speed accuracy. Turntables, tape drives of all stripe,
and film projectors all fought off the effects of speed
variation, usually with large flywheels and elaborate
bearings. Getting a small lightweight tape drive like the
Sony Walkman to have low flutter was a good engineer-
ing trick. Properly designed and maintained equipment
was generally able to meet the required speed accuracy
specification.

In the age of digital audio, speed errors of all sorts
are mostly a dead issue. Sampling clocks controlled by
quartz oscillators provide speed accuracy and steadiness
far in excess of what the ear can hope to detect.

18.3.7 Noise

Noise is a first cousin to distortion in its characteris-
tics and considerations. It is a random signal, hopefully
low in level, that gets tacked onto an audio signal in the
course of almost any processing, analog or digital, and
it is generally cumulative in nature. It often sounds like
a hiss. Noise will be inaudible if it is either below the
threshold of hearing, or masked by the audio signal.

Sources of Noise
Noise sources include:

• Acoustical: Random fluctuations of air molecules
against the eardrum or a microphone diaphragm• Electrical: Tiny fluctuations of electrical charge in
analog electronic circuits from discrete electrons• Mechanical: Surface irregularities of grooved
media

• Magnetic: Irregularities of magnetic strength from
discrete magnetic particles in recording tape• Arithmetic: Random errors from DSP quantization
of numerical signals to discrete values.

There are other common spurious signals, such as hums
and buzzes, that can corrupt an otherwise pristine au-
dio signal, and although strictly speaking they may
not be considered noise, they are generally at least as
undesirable.

In any case, the level of noise can be considered as
a function of frequency, giving rise to the notion of the
spectrum or spectral density of the noise. If the value
of an audio noise signal at any point in time is uncor-
related with the value of the noise at any other point in
time, the signal is an example of what is called white
noise. Spectrally, white noise is said to be flat in a linear
frequency sense. That is, in essence, the output energy
of a bandpass filter of bandwidth B Hz. supplied with
white noise, will be the same regardless of the cen-
ter frequency of the filter (provided, of course, that the
pass-band of the filter is substantially within the audio
band).

Because the filters on the basilar membrane are ap-
proximately logarithmic (not linear) in center frequency
and bandwidth, and because they tend to integrate the
signal energy within each pass-band, white noise will
likely be perceived as having a rising high-frequency
spectrum, even though it is flat on a linear frequency
basis. In other words, as the center frequency of each
effective basilar membrane bandpass filter increases, so
too does its bandwidth, roughly in proportion, ergo the
total filtered energy of a white-noise source will in-
crease with frequency, leading to the bright, top-heavy
perception. For each successive octave, or doubling of
center frequency, the bandwidth will double, ergo so too
will the bandpass white-noise signal energy, leading to
a characteristic spectral rise of 3 dB per octave.

Note: dB = 10 log (ratio of power) = 20 log (ratio
of amplitude).

If white noise is processed with a filter having a con-
stant roll-off characteristic of −3 dB per octave, the
output noise will have constant energy per octave, or
fraction thereof, and will sound flatter to the ear. Such
a signal is referred to as pink noise.

Although many forms of noise are independent of
the presence of an actual signal, there are mechanisms
whereby noise, or noise-like artifacts, are signal de-
pendent. The most common such behavior is for the
level of the noise to be roughly proportional to signal
level. This type of artifact can be especially pernicious,
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as the dynamic behavior tends to call attention to the
noise.

Although there are numerous ways of dynamically
suppressing noise if it is unavoidable, it is by far prefer-
able to avoid it in the first place as much as possible via
proper low-noise design, proper shielding and ground-
ing, etc.

18.3.8 Dynamic Range

Dynamic range is the amplitude range from the largest
to the smallest signal an audio device or channel can
handle. In cases where there is no minimum signal,
other than zero level, the minimum usable level may be
taken as the noise level of the channel usable.

If the noise level of the channel is substantially in-
dependent of signal level, the dynamic range of the
channel may alternately be referred to as the signal-to-
noise ratio (SNR). If the noise is signal dependent, the
audibility of the noise will depend on the instantaneous
signal-to-noise ratio, which is likely to be quite different
from the dynamic range.

Since both the noise level and the overload point of
a channel are likely to be functions of frequency, so too
will the dynamic range. A common characteristic of the
noise of traditional analog recording systems has been
rising noise levels at the ends of the audio band, cou-

pled with diminishing maximum signal levels, a double
whammy that tends to limit the resulting dynamic range,
in some cases rather severely.

Historically, unadorned analog channels have
tended to have overall dynamic-range specifications on
the order of 45–60 dB. This is true of such media as FM
stereo, grooved records, optical film soundtracks, and
magnetic tape. Perhaps the most limited hi-fi medium in
this regard has been cassette tape, which manages about
55 dB at midband and on the order of 30 dB dynamic
range at high frequencies.

Happily, DSP systems usually have flat overload
characteristics and flat, or at least white, noise floors.
The dynamic range of a DSP system is largely a ques-
tion of the number of bits used to represent the signal.
A rough rule of thumb is that each additional bit in
the representation of sample values adds 6 dB to the
dynamic range. The common 16-bit format used on dig-
ital compact discs yields a theoretical dynamic range
of 96 dB. In practice, the combined effect of real-world
imperfections and converter noise limits the practical at-
tainable dynamic range with 16-bit audio to a little short
of 96 dB, perhaps about 93 dB. A 24-bit converter can
approach 144 dB dynamic range, which not only allows
coverage of the full human auditory dynamic range, but
allows margin for error in setting recording levels and
subsequent mixing and processing operations.

18.4 Audio Components

With the common audio specifications now delineated,
consideration can be given to some of the common
audio components, their typical specifications, and spe-
cific characteristics and limitations.

18.4.1 Microphones

For any acoustical recording, the type, pickup pat-
tern, position, and characteristics of the microphone are
likely to have the greatest effect on the resulting quality
of the recording. A microphone is, of course, an analog
transducer, generally used to convert acoustic signals to
proportional electrical signals. It is the functional ana-
log of the eardrum in the human auditory system.

The term microphone was coined by Sir Charles
Wheatstone in 1827, although at that point it referred
to a purely acoustical device, such as a stethoscope. Its
start as a transducer was pretty much coincident with
Bell’s invention of the telephone. Bell’s initial transmit-

ter used a vibrating needle connected to a diaphragm
and immersed in an acid bath to implement a vari-
able resistance responsive to acoustic waves [18.24].
This was followed in short order by more practical,
rugged designs by Bell, Edison, Berliner, Hughes, and
others.

Common to virtually all microphones ever made is
a diaphragm. Most microphones do not directly sense
the instantaneous pressure deviations of an airborne
acoustic wave. Instead, the sound waves impinging on
a diaphragm cause movement of the diaphragm, and
it is this movement that is sensed and converted to an
electrical audio signal.

The methods used for the mechanical-to-electrical
transduction are many and varied. Bell’s telephone
patent seems to describe an odd type of electromagnetic
microphone, in which the diaphragm was mechanically
coupled to an armature in a magnetic circuit. Acoustic
vibrations caused vibration of the armature, in turn in-
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Output

Diaphragm

Magnet
Voice coil

Magnet

Fig. 18.9 A dynamic microphone uses a coil of wire at-
tached to a diaphragm, suspended in a magnetic field
(after [18.25])

ducing changes in the reluctance of the magnetic circuit,
which induced a dynamic current in a coil of wire.

Later dynamic microphones simply attached a fine
coil of wire to the diaphragm (Fig. 18.9), and suspended
it in a magnetic field. Movement of the diaphragm
induces a voltage in the coil of wire, presumably propor-
tional to the velocity of the diaphragm, and said voltage
can then be amplified as necessary. Dynamic micro-
phones do not require an external source of power. Their
popularity was limited prior to World War II by a lack
of powerful permanent magnets.

Many early telephone transmitters used carbon in
one form or another, typically carbon granules coupled
to the diaphragm such that vibration of the diaphragm
would dynamically squeeze the granules, causing a vari-
ation in resistance that could be electrically sensed by an
applied voltage (Fig. 18.10). This arrangement could be
scaled up in size and voltage enough to produce a size-
able signal, of particular importance prior to the advent
of electrical amplification.

Another type of self-generating microphone is the
crystal microphone, based on the piezoelectric effect
discovered by the Curies in 1880. Here, the diaphragm
constricts a thin crystal made of Rochelle salt, ce-
ramic, or similar material, directly producing a voltage
(Fig. 18.11). The low compliance of the piezoelectric el-
ement typically limits the performance of such a micro-
phone, especially the extent of its frequency response.

Indeed, the performance of most of the microphone
types mentioned so far is somewhat limited by the need
to attach some object or structure to the diaphragm to
detect its motion, increasing the mass of the moving el-
ements, which in turn tends to limit the high-frequency
response.

Single-button
carbon microphone

Double-button
carbon microphone

Fig. 18.10 A carbon microphone (after [18.26])

Two types of microphones avoid any mechanical at-
tachment to the diaphragm: the ribbon microphone and
the condenser microphone.

A popular variant of the dynamic microphone, the
ribbon microphone, uses a thin metal ribbon diaphragm
suspended in a magnetic field. Movement of the dia-
phragm induces a current in the diaphragm, which can
then be amplified. In effect, the diaphragm acts as
a single-turn moving coil. The ribbon microphone was
developed by Schottky and Gerlach in 1923, and consid-
erably refined by Harry Olson of RCA in 1930 [18.28].

Directly actuated type

Diaphragm type

Fig. 18.11 Piezoelectric microphones (after [18.27])
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Output

Diaphragm
Backplate

Fig. 18.12 A condenser microphone consists of a very thin
diaphragm suspended parallel to a backplate (after [18.25])

The condenser microphone (Fig. 18.12) is based on
the notion of electrical capacitance. A metal, or other
conducting, diaphragm is placed close to a second, fixed
conducting plate, forming a capacitor, and a polariz-
ing voltage is applied between the plates. Movement
of the diaphragm causes alterations in the capacitance,
in turn causing corresponding alteration of the charge
on the plates, which is converted to a dynamic voltage
by a resistor, and amplified as necessary. The inven-
tion of the condenser microphone is generally credited
to E. C. Wente of Bell Laboratories, in 1917 [18.29].
A popular modern variant is the electret condenser
microphone, perfected in 1962 by Sessler and West
of Bell Laboratories [18.30]. An electret is an object
possessing a permanent electrostatic charge, making
it rather like the electrical analog of the permanent
magnet. Use of an electret to polarize the capacitor in
a condenser microphone eliminates the need to sup-
ply a polarizing voltage for the capacitor. Since electret
condenser microphones are used almost universally in
cell phones, as well as other applications, they are
probably the most popular type in current use. The dia-
phragm of electret condenser microphones is usually
made of a thin sheet of flexible plastic which has had
a metal coating deposited on it, a notably lightweight ar-
rangement that permits good sensitivity and frequency
response. Such microphones also usually exhibit good
sample-to-sample consistency, making them practical
for multi-microphone arrays.

A more recent variant of the condenser micro-
phone is the silicon microphone. This is a microscopic
condenser microphone constructed using micro electro-
mechanical system (MEMS) technology. The required
electrostatic polarizing field is provided by a charge
pump, and the diaphragm can be free floating, being
held in place by electrostatic attraction.

In recent years, the motion of a diaphragm has
been measured using optical means, including laser in-
terferometry, which may in time become a practical
alternative to the capacitor microphone.

Microphone Dynamic Range
The noise level of a microphone is limited by Brownian
motion of air molecules impinging on the diaphragm.
Of course, it can be further limited by electrical noise of
the amplification which follows it, but even discounting
those effects, the so-called self-noise of a microphone
is likely to be 10–20 dB higher than the threshold of
hearing [18.31]. Lower self-noise is possible with larger
diaphragms, say on the order of one inch, but this comes
at a price of making the microphone more directional at
high frequencies.

The loud signal limit of a microphone is often set by
the maximum signal capacity of the associated pream-
plifier. Using large rail voltages can be of some aid in
this regard. Eventually the diaphragm will reach the
limits of its travel, and experience soft clipping. There
has been some work on using force feedback to lin-
earize the characteristics of the diaphragm [18.32, 33].
With a little effort and care, it is possible to make micro-
phones that can handle high-level signals about as well
as the human ear can.

Finally it should be noted that there has been some
work on creating a microphone that does not require
a diaphragm. Blondell and Chambers did some work on
a flame microphone in 1902 and 1910 [18.24]. More re-
cent efforts have used lasers to detect index of refraction
changes due to acoustic pressure waves [18.34].

Microphone Pickup Pattern
Interacting with a real, three-dimensional sound field,
a microphone is an audio device inextricably tied to
spatial considerations. Immersed in the sound field, the
microphone responds to the sound at essentially just one
point, so its output represents a spatial sample of the
total sonic event. This is not to say that it necessarily re-
sponds equally to sounds arriving from all directions; on
the contrary, most microphones exhibit some directional
bias, whether or not intended, and it is probably not
possible to specify a single universally preferred pickup
pattern.

The simplest arrangement is to put a sealed cham-
ber behind the diaphragm, allowing only a slow leak for
stabilization of quiescent atmospheric pressure. With
short-term pressure behind the diaphragm fixed, the mi-
crophone responds to the sound pressure at the front
of the diaphragm. Since pressure is a spatial scalar, it
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Fig. 18.13 Omnidirectional microphone pickup pattern.
Note the slight attenuation of sounds arriving from the rear
(after [18.36])

might be expected that a pressure microphone might
respond equally to sound from all directions, and in-
deed this might be the case if the diaphragm had zero
dimension. As it is, a finite-dimension diaphragm will
spatially integrate the sound pressure across its surface.
This will tend to increase output for normal-incident
waves and waves with long wavelength, but will have
less boosting effect for random incidence sounds, such
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Fig. 18.14 Bidirectional microphone pickup pattern, typi-
cal of an open-back ribbon microphone (after [18.36])
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Fig. 18.15 Cardioid microphone pickup pattern, obtained
by combining omnidirectional and bidirectional pickup
patterns (after [18.36])

as Brownian noise, and may reduce response to sounds
with oblique incidence and wavelengths shorter than
twice the diameter of the diaphragm. The resulting
pickup pattern may therefore become directional at
high frequencies, while remaining omnidirectional at
lower frequencies. To remain omnidirectional up to
20 kHz, a diaphragm will have to have a maximum
diameter of half the wavelength at the upper fre-
quency limit, or about 8 mm. Whether by accident
or design, this happens to be the approximate diam-
eter of the human eardrum [18.35]. The fact that the
eardrum is so small, and is coupled to the structures
of the inner ear, and yet the ear still manages to ex-
hibit a maximum sensitivity of 0 dB SPL or better has
to be considered impressive performance, especially
considering that quiet sounds just fade into perceived si-
lence, rather than some inherent background perceptual
noise.

More elaborate microphone pickup patterns
(Figs. 18.13–18.15) can be achieved by increasing the
number and complexity of acoustic paths to the dia-
phragm. For example, simply opening the back surface
of the diaphragm to the atmosphere, the arrangement
used in the classic open ribbon microphone, results in
a microphone sensitive to the difference between front
and back pressure, so sounds arriving from the side
produce no response, and the pickup pattern usually re-
sembles that of Fig. 18.8, albeit with the front arrival
signal of opposite phase to the rear arrival signal.
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If a pickup pattern as in Fig. 18.8 is summed ap-
propriately with an omnidirectional pickup pattern, the
rear arrival sound can be made to cancel, producing
a cardioid front-directional pickup pattern.

With more elaborate channeling of the audio read-
ing the diaphragm, more specialized or directional
pickup patterns may be obtained.

Greater flexibility in the choice of pickup pattern
can be obtained by using arrays of microphones, typi-
cally arranged in fixed physical orientations, where the
effective pickup pattern of the array is dependent on
how the individual microphone signals are electrically
summed. By recording the individual signals, the array
can be effectively focused and oriented after the fact by
postprocessing the recorded signals. The large-volume
low-cost manufacture of certain types of microphones
has made this approach especially attractive.

18.4.2 Records and Phonograph Cartridges

Although by now semi-obsolete, the phonograph car-
tridge has historically played a key role in sound
reproduction, and is fairly close to a microphone in
many aspects of operation. As with a microphone, the
intent is to act as a transducer for acoustical vibration, in
this case the vibration originating from a stylus follow-
ing the undulations of a groove, rather than a diaphragm
responding to vibrations in air.

Although early phonographs employed direct mech-
anical-to-acoustical transduction, the advent of elec-
tronic amplification made the electromechanical phono
cartridge the default device for record playing.

Most of the methods of transduction used for mi-
crophones have been tried for phono cartridges as well,
with piezoelectric and magnetic being the two most
popular. Whereas most magnetic microphones have
been of the moving-coil type, the magnetic cartridge
design has employed both moving magnet and mov-
ing coil designs. Perhaps the use of a cantilever design
of the stylus to reduce the effective mass of the coil or
magnet seen by the stylus tip, coupled with the lack of
a diaphragm, led to the preference of magnetic trans-
duction for phonograph cartridges, while the use of
capacitive transduction in condenser microphones has
tended to be preferred in that transducer.

Despite the popularity of the grooved phonograph
record for well over half a century, it has always been
a difficult medium with which to achieve full fidelity.

For one thing, the stylus assembly is fraught with
high-frequency resonance problems, much like the
microphone, which have tended to limit the high-

frequency response. In many cases, the high-frequency
resonance has been underdamped, resulting in a serious
peak in the mid-high-frequency response. The material
used to mount the stylus in a way to secure it but still
allow it to vibrate, often little bits of rubber, can some-
times degrade with age, impairing the characteristics of
the cartridge. Then there is the need for the cartridge to
drag a tonearm across the record with it.

In theory, the tonearm should provide a rock-stable
platform for the cartridge at audio frequencies, so that
only the stylus vibrates. Below the audio band, the ton-
earm should move as freely as possible, to follow the
slowly spiraling groove and miscellaneous movements
induced by the rotating disc, including horizontal ec-
centricity and vertical warp. In practice, this behavior
cannot be achieved perfectly (since a perfect brick-
wall filter is impossible), but at least the cartridge and
tonearm should be matched, and the low-frequency
resonance peak resulting from the compliance of the
stylus and the effective mass of the tonearm should be
properly damped, to avoid a peak either in the low-
frequency audio response, or in the subsonic region
where a resonance could make the system overly sen-
sitive to record warp. Even in the best arrangement of
properly damped resonance centered an octave or so be-
low the audio band, the system is only second order, so
some low-frequency tonearm vibration and some sub-
sonic stressing of the stylus from pulling the tonearm
is inevitable [18.37], which can lead to distortion and
uneven frequency response. To avoid the build up of
acoustic traveling waves in the tonearm, it is desirable
to have its construction and material chosen to damp out
such vibrations; not all tonearms have done this well.

Another problem that has hampered record play-
back, although not strictly the province of the phono
cartridge, is that the playback stylus usually does not
exactly follow the same path and orientation as the cut-
ting stylus. This is because discs are cut on a cutting
lathe, in which the cutter slowly traverses a straight-
line path from the outer grooves to the inner grooves.
The playback cartridge, in turn, is usually mounted on
a pivoted arm, so its path is an arc. (The longer the
tonearm, the smaller the disparity between record and
playback orientations.) In order to minimize the path
mismatch, a right dogleg bend has often been incorpo-
rated into the shape of the tonearm. The cartridge has to
be carefully mounted on the tonearm so that the stylus
is a specified distance from the pivot if this feature is to
be properly exploited. Unfortunately, the bent tonearm
traversing an arc results in a steady-state force from fric-
tion between the moving record groove and stylus tip,
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one which does not pull straight down the length of the
tonearm, but instead generates a sideways force, called
the skating force, which pulls the stylus tip against one
or the other of the groove walls, which is another poten-
tial source of distortion. The skating force varies with
groove speed and stylus tip size and shape, among other
things, making it challenging to fully compensate.

At various times straight-line tracking tonearms
have been produced, usually with the back of the ton-
earm mounted via bearings to a platform intended to
move in a straight line to follow the front of the arm
(and the stylus). Since the stylus cannot be expected to
drag the rear platform along with it, some sort of servo is
used to insure that the platform follows the slow move-
ments of the stylus/cartridge combination. Although
this should mitigate skating-force problems, assuming
the cartridge is mounted precisely, it still leaves the
other difficulties of disc playback.

Another issue with phono cartridges is the shape of
the stylus tip. The cutting stylus is chisel-shaped, with
sharp corners, so it is capable of inscribing very fine un-
dulations. But the traditional stylus tip shape is round,
so the points of contact with the groove walls vary with
the curvature of the groove. A round stylus will there-
fore follow a slightly different path than the cutting
stylus, another source of distortion. In the 1960s, ellipti-
cally shaped styli became popular to reduce the tracing
error, by more closely approximating the shape of the
cutting stylus. The smaller stylus tip radius of curvature
at the point of contact, compared to a spherical stylus
tip, should allow the stylus to more accurately track the
motion of the cutting stylus, but results in higher local-
ized pressure, which can increase groove wear unless
low tracking pressure is employed. Even so, the pre-
cision with which a given playback stylus follows the
motions of the cutting stylus is unlikely to be sufficient
to avoid some alteration in sound quality.

Around the time elliptical styli were becoming pop-
ular, RCA attempted to improve tracing performance
by pre-distorting the cutter signal, anticipating playback
with a round stylus. The system was not universally
welcomed [18.38], in part because it arguably impaired
performance with elliptical styli, and was eventually
dropped.

Ultimately it has to be accepted that there will be
some, hopefully slight, difference between the motion
of the cutting stylus and the motion of the playback sty-
lus, and that there are some signals that the playback
stylus cannot hope to track properly, such as a constant-
amplitude-cut square wave. The best one can hope for
is that the deviation will be small and gentle, and that

the resulting distortion will be mostly low-order THD.
Even so, distortion figures for records were not uncom-
monly in excess of 10%, especially for the slower inner
grooves. The technique of stereo recording on discs,
pioneered by Blumlein in 1931 and introduced com-
mercially in 1957, further complicated the task of the
playback stylus, as it then had to track both horizontal
and vertical undulations simultaneously.

Getting adequate dynamic range from records was
a tricky process, fraught with compromises. For one
thing, the maximum signal level used tended to be
traded off against total playing time. Large-amplitude
grooves took up more real estate than quiet grooves,
which led to the use of variable-pitch, look-ahead record
cutters that could dynamically adjust groove spacing in
response to groove amplitude. Such cutters functioned
by increasing the spacing one revolution before the ar-
rival of a loud sound, and maintaining the spacing for
the revolution that followed. Further complicating the
amplitude/playing-time conundrum is the desire on the
part of some recording engineers to minimize use of the
inner groove area, to minimize inner groove distortion
and bandwidth limitations.

Maximum amplitude was also limited by consid-
erations of what the playback styli and cartridges
of the consumers could accommodate, which could
lead to lowest-common-denominator compromises in
performance. To better match tracking ability and
noise floor to the average statistics of music spec-
tra, the Recording Industry Association of America
(RIAA) standard equalization curve was adopted in
1954 that progressively reduced low frequencies and
boosted high frequencies on recordings, applying in-
verse compensation during playback. This, along with
the characteristics of the stylus, record surface and
groove speed, made the overload characteristic of
records strong functions of both frequency and playing
time, so the precise specification of overload character-
istic of records is problematical at best. To be sure, there
are specified suggestions for maximum cutting ampli-
tude and velocity, but given the commercial realities, at
least with pop music, that louder all too often equates
with better, the suggested limits have not always been
observed.

The noise level of a record is dependent on the
smoothness with which a groove can be cut, which in
turn depends on the cutting technique and the material
used. Although wax and shellac were used in the early
years of record production, more modern practice has
been to use lacquer deposited on an aluminum disc base.
In conjunction with the hot-stylus cutting technique in-
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troduced in 1951 [18.9], a lacquer master disc is capable
of a dynamic range approaching 70 dB, although in
practice a somewhat lower figure is sometimes encoun-
tered for the end product on a production basis. Most
of the steady-state noise encountered with records is
concentrated at mid to low frequencies. In pursuit of
the goal of fitting a performance to the dynamic-range
characteristics and limitations of grooved discs, it has
traditionally been common practice to employ a combi-
nation of compression and limiting to the signal in the
course of cutting a master disc. There have been some
attempts to apply complementary compression and ex-
pansion to record audio to improve the system dynamic
range, notably discs produced by dbx Inc. in the 1970s.

Successful record playback can also run afoul of
a problem known as acoustic feedback, if sound from
the loudspeakers causes the disc itself to vibrate as a dia-
phragm. Solutions include the use of an inert turntable
mat, remote positioning of the turntable, and limiting
the playback level.

Of course, dust, dirt, scratches and wear will tend
not only to degrade the recorded signal but also to raise
the noise level, including the possible introduction of
clicks and pops.

Given the litany of compromises and limitations in
disc recording and playback, the level of performance
that has been achieved with this medium is laudable.
Although largely eclipsed by digital audio, some refine-
ment of grooved record playback continues, including
efforts to achieve the holy grail of disc playback, con-
tactless playback via light or laser beam, notably by
Fadeyev and Haber at Lawrence Berkeley National
Laboratory [18.39]. The availability of advanced DSP
has allowed after-the-fact improvements in noise re-
duction and distortion reduction that would have been
impossible in an earlier age. It is tantalizing to con-
sider the performance that might have been possible
with this medium if such processing had been available
and incorporated into the basic architecture of the disc
recording system.

18.4.3 Loudspeakers

Loudspeakers and headphones provide complementary
transduction to microphones, namely converting elec-
trical audio energy to acoustical energy. Many of the
principles and notions regarding microphones can be
applied to loudspeakers either directly or by, in a sense,
turning the ideas upside down.

In a manner reminiscent of microphones, few
loudspeakers convert directly between electrical and

acoustical energy. Instead, the electrical energy is con-
verted to mechanical energy, specifically the movement
of a diaphragm, often cone-shaped or dome-shaped,
which then radiates acoustical energy, sometimes aided
by an acoustical coupling horn or lens.

Indeed, many of the same transduction methods that
have been used in microphones have at least been tried
for loudspeakers including magnetic (also known as dy-
namic), piezoelectric, and condenser.

The genesis of loudspeaker-like transducer actually
predates Bell’s invention of the telephone by a couple
of years when, in 1874, Ernst W. Siemens described
a dynamic moving-coil transducer, although he does not
seem to have initially done much with it [18.40].

Bell’s telephone, patented in 1876, also used a dy-
namic receiver. With a magnetic armature mechanically
coupled to a diaphragm secured at its edges, it was prob-
ably closer in spirit to a headphone than a loudspeaker.

There followed a series of refinements that pro-
gressively brought the output transducer closer to the
modern concept of a loudspeaker. In 1898, Oliver Lodge
patented a spacer to maintain the air gaps in the mag-
netic circuit. Three years later, John Stroh came up with
the notion of attaching the cone to the frame via a flexi-
ble, corrugated surround that improved the linear travel
of the cone. Proper, flexible centering of the rear of the
cone in the magnetic gap was provided by the spider,
developed by Anton Pollak in 1909.

Many of these early loudspeakers used an acous-
tic horn of some sort to project the loudspeaker output
into the room. The horn improves efficiency, partly by
improving the acoustic coupling from the loudspeaker
to the room, and partly by collimating the sound into
a beam directed at the listener. Credit for the first true
direct radiator loudspeaker design to include all the el-
ements of what can be regarded as the modern-day
loudspeaker is generally accorded to Rice and Kellogg
in 1925 [18.41]. Their design took explicit account of
the baffle on which the driver was mounted in the over-
all acoustic design.

There were of course, countless follow-on refine-
ments to the basic electrodynamic driver, a process that
continues to present day. Other methods of transduc-
tion were also explored. In 1929, E. W. Kellogg filed
a patent for an electrostatic loudspeaker, consisting of
panels not unlike large condenser microphones. The de-
sign has not been as widely accepted as the dynamic
driver, in part due to some limitations in maximum out-
put. There have also been piezoelectric drivers, but the
limited travel of the piezoelectric element has limited
their use to mid-range drivers, tweeters, and earphones.
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So, as the Rice/Kellogg baffle indicated, with the
basic dynamic loudspeaker configuration established,
much of the attention focused on refining the loud-
speaker/cabinet combination as a system.

The output ultimately obtained from a raw loud-
speaker driver is profoundly affected by the surrounding
baffle or cabinetry. In isolation, a loudspeaker driver
produces two acoustical outputs: one from the front of
the diaphragm or cone, and the second from the back.
Unfortunately, the two outputs are out of phase. Were
they generated at the same place and time, they would
cancel; the loudspeaker would produce nothing but heat.
So part of the goal in designing a complete loudspeaker
system is to keep those two outputs from annihilating
each other.

At frequencies above the point where the wave-
length is comparable to the size of the speaker cone,
the radiation will tend to be a directional beam, and the
front and back waves will tend to naturally go their own
separate ways. At lower frequencies, the front and back
radiation will tend to be more omnidirectional, and will
therefore tend to cancel. This can be avoided by requir-
ing that the size of the loudspeaker be at least as large as
the wavelength of the lowest frequency of interest. For
a low-frequency limit of 20 Hz, this would correspond
to a diameter of at least 15 m, which at the very least
would make for rather unwieldy boom boxes.

Happily, it is not necessary to rely on the loud-
speaker itself to avoid low-frequency cancellation.
Instead, a smaller driver can be mounted on a baffle,
and the baffle can be used to prevent interaction of the
front and back radiation. Indeed, a common concept in
loudspeaker system theory is that of the infinite baf-
fle, which precludes cancellation at any frequency, at
the cost of being physically impossible. Even assuming
a willingness to forego response below 20 Hz, a baffle
of at least 15 m would still be required, which is not
much more practical than an unadorned 15 m woofer.
This leads to the notion of putting the loudspeaker in
a box, or loudspeaker cabinet. (A speaker mounted in
a car door or trunk lid is operating in an approximate in-
finite baffle, although the car interior can be considered
a semi-sealed cabinet.)

The simplest arrangement is to make the box com-
pletely sealed, so that the rear radiation is trapped within
the box, and cannot emerge to cancel the front radi-
ation. Of course, this requires making the box quite
rigid, else the rear speaker radiation will simply be con-
ducted through the walls of the box. One problem with
sealed-box systems is that the springiness of the air
in the cabinet will decrease the natural compliance of

the loudspeaker, so that a driver with a respectably low
free-air resonance may have a much higher resonance
mounted in a sealed box, with correspondingly reduced
low-frequency response.

This issue was addressed in 1954 by Edgar Villchur,
in a manner which in hindsight seems remarkably
straightforward, namely increasing the compliance of
the speaker to obtain the desired performance when it
was mounted in a sealed box. This approach, referred to
as an acoustic suspension design, made the cabinet an
inherent part of the design, and is still in use today.

The alternative to the sealed-box loudspeaker en-
closure is, logically enough, the vented box, in which
at least a portion of the back radiation of the driver is
allowed to emerge from the cabinet, often delayed or
phase-shifted to better align it with the front radiation.
One of the early examples of this approach was the bass
reflex design by Albert Thuras of Bell Laboratories, in
1930. Other vented designs have used elaborate internal
tubing, internal ductwork (such as the Klipsch folded
horns), and or provided mass loading of the exit port via
a diaphragm (the passive radiator). The goal is to im-
prove efficiency, partially by relieving some of the back
pressure behind the driver, but mostly by adding some
of the back radiation to the front radiation in a nonde-
structive fashion, to achieve some increase in output,
typically on the order of 3 dB.

More recently, hybrid enclosures have been devel-
oped, sometimes called bandpass enclosures, in which
a vented or sealed box is used behind the driver and
a vented box is used in front of the driver, to provide
improved low-frequency efficiency over a somewhat
narrow range of frequencies [18.42]. This design is pop-
ular in some smaller low-frequency speakers.

Regardless of its other characteristics, a bare loud-
speaker cabinet is likely to impart a variety of spurious
resonances to the response from sound waves bouncing
helter-skelter around the inside of the cabinet. For this
reason, loudspeaker cabinets are often lined or stuffed
with sound-absorbing material. This alters the overall
response as well as damping the resonances, and must
be accounted for in the overall design.

Much of the modern modeling of loudspeaker sys-
tems is based on the work of Thiele and Small in the
1970s, who established the basic parameters governing
the performance of loudspeaker systems, and devel-
oped accurate mathematical models incorporating those
parameters, allowing rapid and precise mathematical
prototyping [18.43].

Still, the implications of achievable, cost-effective
drivers and practical cabinet size is that there is precious
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little that can be done to get usable bass response down
to 20 Hz from a small loudspeaker system. It is possible
to apply low-level equalization to the signal upstream
of the loudspeaker, but this can increase the cost and
the power requirements, and will not be effective un-
less the driver can handle increased signal level without
serious distortion. The closed-box design is considered
one of the better choices for the use of equalization, as
its response roll-off below primary resonance is only
12 dB per octave, which is gentler than most vented
systems.

Most of the issues relating to speaker cabinetry per-
tain to low frequencies. Midrange and high-frequency
drivers may also have their backs sealed, but the
wavelengths are shorter, and the required resonant fre-
quencies are a lot easier to attain.

The notion of using multiple drivers in a loud-
speaker system seems to have originated in 1931 with
a two-way system designed by Frederick of Bell Lab-
oratories [18.44]. A three-way system followed within
two years. It is simply much easier to design a system
to have flat frequency response with multiple drivers,
optimized to handle a subset of the audio band, than to
try to accomplish the task with a single driver.

Part of the motivation for using multiple drivers is
that the loudspeaker, like the microphone, is an inher-
ently spatial entity. Sound radiates from a loudspeaker
in all directions, depending on angle and frequency. In
an anechoic environment, with a listener situated on the
main axis of the loudspeaker, the response on that axis
is well defined, and the only one that really matters.
In a real room, however, the multidirectional acousti-
cal output of the loudspeaker will reflect off walls and
other surfaces, generally producing a complicated mul-
tiplicity of arrivals at the listener’s ears. There is no
easy way to characterize this process, or of the resulting
perception, although in the 1970s, Roy Allison made
significant strides in characterizing the loudspeaker–
room interaction at low frequencies [18.45]. However, it
certainly establishes the importance of the loudspeaker
spatial response at all angles, and suggests the desir-
ability of a loudspeaker having a consistent radiated
frequency response (radiation pattern) at any angle.

This is another area in which multiple drivers can
be beneficial. Again, the output of a driver will begin to
get directional at a frequency corresponding to a wave-
length about twice the diameter of the driver. Assuming
consistently wide dispersion is desired, a 30 cm woofer
will be useful up to about 500 Hz, a 7.5 cm midrange
continuing to 2 kHz and a 2.5 cm tweeter maintain-
ing wide dispersion to at least 6 kHz. These figures

may be conservative, in part because controlled decou-
pling of the speaker cone can result in a progressively
smaller radiation area at successively higher frequen-
cies, decreasing the effective diameter and broadening
the resulting dispersion. Other approaches to maintain-
ing a desired radiation pattern across frequency include
the use of acoustic lenses and phased arrays of multi-
ple drivers within a given frequency range. It is rare for
a speaker to have truly constant directionality across its
entire pass-band, in part from that fact that most are at
least somewhat directional at mid and high frequencies,
and, because of the long wavelengths involved, almost
unavoidably omnidirectional at low frequencies. (Such
long wavelengths may be difficult to localize, enabling
the use of satellite systems with only one woofer to
support two or more channels.)

The use of two or more frequency-selective drivers
generally imposes the need for a crossover network
to apportion the signal on the basis of frequency. Not
only does this avoid wasting power, but it can be ab-
solutely necessary to avoid overdriving or burning-out
a driver. Some care is generally required in the tran-
sition frequency region to maintain flat response, and
although there are well-regarded canonical topologies,
such as the Linkwitz–Riley crossover developed in
1976 [18.46], real-world deviations from ideal driver
behavior may engender the use of recursive approxima-
tion techniques to optimize system response fully.

The combination of crossover networks, drivers,
and room loading will often result in a loudspeaker hav-
ing an electrical input impedance characteristic that is
strongly frequency dependent, and which poses a chal-
lenge for a power amplifier.

As is no doubt evident, a loudspeaker system and its
associated radiation pattern is a fiendishly complicated
device that does not readily lend itself to characteriza-
tion by traditional audio metrics or specifications. In
consideration of such specifications, it is difficult to
make definitive statements that fully characterize the
sound of a speaker.

The bandwidth of most speakers may approach the
ear’s 20–20 kHz bandwidth, but few speakers make it
all the way, particularly at low frequencies, and band-
widths on the order of, say, 70–14 kHz are far more
common, at least in consumer equipment.

The deviation of the frequency response is diffi-
cult to talk about meaningfully, but it seems desirable
for speakers to be within 1 dB of flat response across
their useful bandwidth, at least on axis, and better
speakers can approach or achieve this, although at low
frequencies the room exerts enough effect as to likely
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require tuning or experimentation with speaker position
to maintain a flat response. The response at other an-
gles should probably be smooth and well controlled, but
the exact optimal specification has not been established.
Perhaps the ideal speaker would adjust its radiation pat-
tern to match the instruments being reproduced. (But
then what is the preferred radiation pattern of a purely
electronic instrument, such as a synthesizer?) Although
it is necessary to measure the response of a loud-
speaker in a room in order to accurately gauge the
low-frequency response, a direct narrow-band or sine-
wave measurement of the system response in a room at
middle and high frequencies is likely to yield a useless,
mad scribble of a response, owing to the complex in-
teractions of the echoes at the point of measurement.
Fortunately, the perceived response should be a lot
smoother than what is measured, in part because the ear
differentiates sound arrivals on the basis of direction.
Measurement techniques that attempt to address this in-
clude the use of directional microphones, anechoic and
semi-anechoic measurement, and time-gated response
measurement.

Timing precision is another specification that is dif-
ficult to pin down with loudspeakers, again partly due
to the effects of room echoes. In one respect, most
speakers do pretty well in first-arrival timing, since the
ear’s temporal pre-masking resolution is on the order
of 1–2 ms, corresponding to about 30–60 cm of path
length, and speaker systems with all drivers mounted on
a common front panel will generally be well within this
tolerance for inter-driver path-length differences. Still,
audible time disparities may result from primary reso-
nances, particularly at low frequencies, and high-order
crossovers.

In the area of distortion, loudspeakers also do pretty
well, all things considered. At normal listening lev-
els, a properly designed loudspeaker exhibits fairly low
nonlinearity, with a fairly gentle limiting characteris-
tic, leading to low IM distortion and fairly low THD,
mostly third order, which is likely to be masked by most
signals. Most properly operating loudspeakers do not
produce drastic amounts of distortion until they reach
the limits of their travel. To be sure, some loudspeak-
ers can sound audibly harsh, but this is not necessarily
a byproduct of distortion, it may be more related to
an uneven response or radiation pattern. One bugaboo
of many drivers is cone breakup, wherein the cone no
longer acts as a piston. Although this can look un-
sightly in slow motion, it will not necessarily produce
distortion unless there is nonlinearity present, and most
speaker cones, being passive structures of paper, plastic,

or metal in and of themselves, are not especially nonlin-
ear. While such breakup is likely to affect the response
and/or the radiation pattern of the speaker, it may not
produce much distortion per se.

Although the basic dynamic loudspeaker has now
been in use for over 70 years, and has been greatly
refined in that time, it is still the subject of active re-
search, in both design and evaluation. One of the holy
grails yet to be achieved is, like the diaphragm-free mi-
crophone, the cone-less loudspeaker that more directly
converts electrical energy to acoustical energy. Aside
from eliminating some troubling mechanical elements
and their associated resonances, this might improve the
efficiency, which is currently typically around 1% for
consumer loudspeakers.

Another long-sought goal is the projection loud-
speaker, which can make a sound appear to emanate
from a specified remote location. The have been some
encouraging results in the use of ultrasonics [18.47] and
large-scale speaker arrays [18.48] in this regard.

18.4.4 Amplifiers

Of all the common audio analog devices, electronic
amplifiers of all types probably have the easiest time
meeting the preferred specifications of a good-quality
audio system. This in no small part derives from the
fact that they generally contain no mechanical process-
ing stages, and simply have to push a bunch of very
lightweight electrons around. Properly designed, an am-
plifier should have little difficulty achieving a dynamic
range approaching 120 dB, nor is it likely to deviate
significantly from the preferred specifications for band-
width, response deviation, phase/timing response, or
distortion.

This is despite the fact that most amplification de-
vices, mainly vacuum tubes, transistors, and field-effect
transistors (FETs), are not themselves inherently very
linear. In the years following de Forest’s invention of the
triode, considerable and rapid strides were made in not
only the refinement of the devices themselves, but in cir-
cuit designs which optimized the linearity and response
of the complete amplifiers. A major milestone was the
invention in 1928 of the negative-feedback amplifier
by Black of Bell Laboratories [18.9]. This arrangement
compares the output signal with the input signal, and to
the extent that they may tend to differ, generates an in-
stantaneous correction signal. Successful application of
negative feedback carries with it specific requirements
on the performance of the raw amplifier, such as maxi-
mum phase shift, and some of these requirements were

Part
E

1
8
.4



Audio and Electroacoustics 18.4 Audio Components 803

still being uncovered years after the initial development
of negative feedback.

Several standard types of amplifiers are commonly
found in audio use, each with specific requirements and
design challenges, including preamplifiers, line ampli-
fiers, power amplifiers, and radio frequency (RF) and
intermediate frequency (IF) amplifiers for use in radio.
Preamplifiers, for example, are required to handle the
generally very small signal from transducers such as
microphones, phonograph cartridges, tape heads, and
optical photocells. Linearity is usually not a major prob-
lem, because of the small signals involved, but low noise
and impedance matching to the transducer are often sig-
nificant design considerations. At the other end of the
chain, power amplifiers usually have a fairly easy time
with dynamic range, but high required power-handling
capability and the need to drive sometimes ill-behaved
loudspeaker loads make power amplifier design an art
unto itself, with the 1948 Williamson amplifier being
just one early example of a notable design [18.49].

The advent of the transistor, by Brattain, Bardeen,
and Shockley of Bell Laboratories in 1947, sparked
a revolution in active devices, and stands as one of the
foremost inventions of the 20th century [18.50,51]. Op-
erational differences between tubes and transistors were
sufficiently great that, to an extent, the discipline of am-
plifier design had to be reinvented from the ground up,
and it was some time before solid-state amplifiers were
accepted in some high-end audio systems.

In time, the development of analog integrated
circuits gave rise to the multi-transistor operational am-
plifier, an amazingly versatile device that facilitated
cost-effective analog processors of great sophistication
and complexity. These days, entire analog audio sub-
systems can be implemented on monolithic chips with
many transistors and associated components.

Special mention should be made of one particularly
challenging amplifier variant, the voltage-controlled
variable-gain amplifier (VCA). Such a device, basically
an analog multiplier, is essential for exercising auto-
matic control of signal level, a common building block
in many audio signal processors. Where fixed-gain
amplifiers depend on fixed, highly linear passive com-
ponents such as resistors to maintain operating point
and linearity, VCAs require linear active elements, like
FETs. In the late 1960s, Barry Blesser designed a novel
variable pulse width multiplier, and a few years later,
David Blackmer of dbx, Inc. designed a wide-range
variable-transconductance VCA, elements of which are
still used in commercial VCAs [18.52]. The complexity
and cost of VCAs limited their use somewhat, which is

perhaps ironic in these days of digital audio, where DSP
chips typically perform millions of multiplications per
second.

18.4.5 Magnetic and Optical Media

Part of the motivation for the use of magnetic and opti-
cal recording on linear media (tape, film) undoubtedly
came from the desire to avoid the wear inherent in the
playback grooved records. Both media involve the use
of narrow apertures to record and play audio striations
perpendicular to the motion of a linear medium.

Magnetic recording got its start in 1898, with Valde-
mar Poulsen recording on steel wire, an especially
notable accomplishment considering that the invention
of the triode amplifier tube was still several years away.
The use of magnetic tape originated with O’Neill’s
patent of paper tape coated with iron oxide, in 1926,
followed by the introduction of plastic tape by BASF
in 1935. A serious nonlinearity problem with magnetic
tape was largely resolved in 1939 with the development
of alternating-current (AC) recording bias. Consider-
able refinement was achieved during and following
World War II, and consumer reel-to-reel tape recording
became a reality in the 1950s. There followed a series
of formats which expanded the performance envelope
and consumer friendliness, most notably the compact
cassette and the venerable eight-track cartridge.

Optical recording on film was first investigated
around 1901 [18.9], five years before the vacuum tube,
and started to receive significant research and devel-
opment attention starting around 1915, with the work
of Arnold and others at Bell Laboratories, followed by
a number of efforts by RCA and other groups. Lee
De Forest may have come up with the first viable opti-
cal sound system, Phonofilm, in 1922 [18.53]. By 1928,
synchronized optical sound on film was used commer-
cially on Disney’s Steamboat Willie cartoon.

Both of these formats rely on some sort of device
with a narrow aperture to record and playback, and
therefore both face a tradeoff between high-frequency
response, corresponding to the smallest resolvable fea-
ture, and media speed/playback time.

Although there may be no vibrating mechanical ele-
ments in either the magnetic system or optical playback,
both media exhibit difficulty reaching the full audible
bandwidth, or in maintaining ruler-flat response, al-
though, properly designed and adjusted, they can come
fairly close. Beyond that, both media bear some simi-
larities to modern record-based reproduction, including
the use of fixed equalization, modest, gentle distortion
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at typical operating levels, a typical dynamic range on
the order of 50–70 dB, and both absolute and dynamic
speed error sensitivity.

The viability of these formats was significantly
enhanced by the invention in 1965 of analog noise
reduction by Ray Dolby. Noise-reduction (NR) sys-
tems usually consist of a compressor/encoder and an
expander/decoder. The compressor boosts low-level
signals to keep them above the noise floor of the chan-
nel, while the expander restores the signals to their
proper level, reducing the noise in the process. The
Dolby A-type noise-reduction system and follow-on
systems exploited a range of solid-state circuit tools,
including active filters, precision rectifiers, and linear
FET-based VCAs, to implement a comprehensive solu-
tion to the problems faced by noise-reduction systems.
The frequency-selective nature of masking by the hu-
man ear was addressed by splitting the signal processing
into multiple bands, and the problem of potential over-
load associated with the sudden onset of loud signals
was resolved by the use of a novel dual-path limiter.
Other well-known NR systems used wide-range band-
pass compressors (Telcom C-4), wideband compressors
with preemphasis (dbx I and II), sliding shelf filters
(Dolby B), cascaded sliding shelf filters (Dolby C), cas-
caded wideband and variable slope compressors (dbx/
MTS TV compressor), and cascaded combined sliding
shelf and bandpass compressors (Dolby SR and S). Sim-
ilar principles would subsequently be adapted for use in
digital low-bitrate coders.

18.4.6 Radio

While the medium of analog radio has its own share
of unique attributes, it shares with other analog media
many of the same sorts of characteristics and limita-
tions, including somewhat limited frequency response
and dynamic range, which is partly associated with
bandwidth conservation.

Commercial amplitude modulated (AM) radio
broadcast kicked off in 1921 when KDKA went on air in
Pittsburgh [18.9]. The use of dual-sideband modulation
made for simpler receivers at the cost of channel spac-
ing being twice the highest transmitted audio frequency.
Although in theory AM radio was capable of supporting
wide audio bandwidth, a channel spacing of just 10 kHz
was chosen to conserve spectrum space, limiting audio
bandwidth to something less than 5 kHz in practice.

Wide-band frequency modulated (FM) radio was
developed by Edwin Armstrong in 1933, motivated in
part by a desire to reduce the static that was common
to AM radio, with commercial broadcast originating in
1941 [18.9, 54]. The dual sidebands of standard FM
extend quite a bit farther than the maximum audio fre-
quency supported, with channel spacing of 200 kHz for
a typical audio bandwidth of 15 kHz. Dynamic range
in excess of 60 dB is possible with mono FM, although
this was compromised somewhat by the choice (in
the US at least) made by the Federal Communications
Commission (FCC) of the stereo multiplex system in
1961 [18.9].

18.5 Digital Audio

The advent of digital audio, perhaps best signified by
the introduction of the audio compact disc in 1982 by
Sony and Philips, completely revolutionized the world
of audio engineering, in effect completely rewriting the
rule book on what was readily achievable in mainstream
audio systems, not to mention how signals were pro-
cessed.

The basic notion of digital audio is discreteness. In-
stead of specifying a signal as a continuous function
of time and amplitude, it is expressed as a rapid series
of sample values at discrete time intervals, often with
integer or finite-precision values. The signal becomes,
in effect, a completely specified list of numbers, and
as long as no explicit errors are made, can be copied
an arbitrary number of generations without any loss or
alteration whatsoever. (Error-correction schemes com-

monly help guard against the occasional error slipping
through.)

The mathematical foundations of discrete sampling
of continuous functions go back surprisingly far, with
at least one claim on behalf of Archimedes, around
250 BC [18.55, 56]. Additional support for sampling
theory was provided by Fourier in 1822 [18.57, 58] and
Cauchy in 1841 [18.59, 60]. Modern sampling theory
is usually credited to the combined work of Whittaker
(1915) [18.61], Nyquist (1928), Kotelnikov (1933), and
Shannon (1949) [18.62, 63], who provided a rigorous
proof [18.64].

The key point of the sampling theorem is that a con-
tinuous band-limited signal can be discretely sampled
without loss of information, and the original continuous
signal subsequently recovered from the sampled ver-
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sion, as long as the sampling frequency is higher than
twice the signal bandwidth.

In order to exploit the sampling theorem and digital
audio practically, quite a few other pieces of the puzzle
had to be supplied. George Boole contributed the binary
number system in 1854, which would provide the nu-
merical and logical basis of modern digital processors.
Alec Reeves used Boole’s binary numbers to repre-
sent audio samples, creating the pulse code modulation
(PCM) format, in 1937. By the late 1960s, prototype
digital audio recorders were operating at companies like
Sony, NHK, and Philips [18.59,60], leading to the 1982
debut of the audio CD.

Some appreciation of the performance of digital au-
dio can be had by considering the traditional audio
specifications that analog systems have for so long tried
to fully embody.

18.5.1 Digital Audio Specifications

Bandwidth
Traditionally an uphill battle fighting mechanical res-
onances and slit-loss effects, successfully meeting
a bandwidth specification in the digital domain is sim-
ply a question of selecting a high enough sampling rate.
Similar principles apply to maintaining the precision
of a frequency response specification, usually a flat re-
sponse: without parasitic or extraneous influences, the
response will be ruler practically-flat by default, al-
though it can otherwise be explicitly and predictably
altered by application of appropriately designed DSP
filters and equalizers.

Distortion
With signal processing implemented as a series of digi-
tal additions and multiplications, which are presumably
accurate to the least significant bit, nonlinearity and
distortion in the digital domain is absent unless, like de-
viation from flat response, it is explicitly introduced into
the processing, to which end it can usually be precisely
applied and controlled.

Dynamic Range and Signal-to-Noise Ratio
The dynamic range is usually expressed as the logarith-
mic difference between the maximal signal level and
the noise level. By default, the maximal signal capac-
ity of a PCM DSP system as a function of frequency
is flat. The noise level is once again a design choice,
ergo so is the net dynamic range. In somewhat simpli-
fied terms, the noise level of a digital signal process
drops by a factor of two (6 dB) for each additional digi-

tal bit of precision employed in the representation of the
sample values. So, maintaining a desired dynamic range
is fundamentally a design choice to employ a sufficient
number of bits of precision.

Speed
Once a signal is in the digital domain, there is of course
no error or variation in speed unless it is explicitly im-
posed with appropriate processing.

In short, the attainment of performance that in the ana-
log domain might require considerable design skill,
and even then might simply be impractical or impos-
sible, becomes in the digital domain a matter of design
choices.

Of course, since most audio signals begin and end
as analog vibrations in air (and, so far, correspond-
ingly analog electrical signals associated with input and
output transducers), there must be means to convert be-
tween analog and digital domains. This is the province
of analog-to-digital converters (ADCs) and digital-to-
analog converters (DACs). With so much of the overall
performance of a digital audio system riding on the per-
formance of these devices, their design has been the
subject of intense activity since early experimental dig-
ital audio systems. Those early systems were fortunate
to muster a precision of just 10-bits per sample, but that
has slowly evolved over time to the point that current
converters can operate at 24-bits per sample or better
in a practical, cost-effective manner. Similarly, the var-
ious sources of subtle distortions that might otherwise
limit ultimate converter performance have progressively
been identified and, on the whole, reduced to the point
of insignificance. And, where once speed accuracy of
an audio system depended on the skill with which one
turned a crank, or perhaps the vagaries of a wind-
up clock motor and mechanical speed regulator, the
sampling rate of a digital/audio converter is usually
controlled by a high-precision electronic timing circuit,
such as a quartz oscillator, reducing speed anomalies of
all sorts to a level far below that of human perception.

Lest the case for digital audio appear at this point
a bit overly rosy, it must be allowed that there are lim-
itations, restrictions and pitfalls; and that it is perfectly
possible to produce miserable sound via digital means.

For one thing, there is the matter of the Nyquist
frequency, defined as half the sampling frequency and
otherwise the highest frequency that can be represented
at a particular sampling frequency. In some respects, the
Nyquist frequency of a digital audio system corresponds
to infinite frequency of an analog system. This intro-
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duces certain response-warping effects, such that it may
be difficult or impossible to replicate a given analog sys-
tem response in the digital domain. (Example: the phase
shift at the Nyquist frequency can only be 0◦ or 180◦.)

An attempt to represent a frequency greater than the
Nyquist frequency in the digital domain will result in
a different frequency being generated within the band,
usually by reflecting the original frequency value back
through the Nyquist frequency, a form of intermodu-
lation distortion. Unless the goal is to produce weird
spacey effects, this process is usually not highly desir-
able, and a low-pass filter is commonly placed ahead of
an ADC to prevent that occurrence.

Then there is the issue of performance levels being
matters of system architectural choices, rather than the
result of possibly elaborate or laborious designs. Such
design choices are not always free, in that they may be
tradeoffs with either other system resources, or simply
cost more monetarily, which may therefore still have the
result of limiting overall performance to something less
than idyllic near-perfection.

For example, the dynamic range of the human ear
was cited earlier to be on the order of 120 dB or more.
If the digital representation of an audio signal yields an
approximate dynamic range of 6 dB for each bit used,
it would follow that the logical word size to use for
digital audio samples would be at least 120 dB/6 dB
per bit = 20 bits. Yet the standard chosen for compact
discs, as well as many other current generation digi-
tal devices, is just 16-bits per sample, corresponding to
a best-case dynamic range of only 96 dB. This decision
was predicated in part on the performance limitations
of analog/digital converters at the time the CD speci-
fication was cast, and further from a desire to provide
a playing time of 74 min on a 12.7 cm disc. Had a larger
word size been chosen, either the disc would have had
to be larger, or the playing time reduced.

Does this result in audible impairment of the sound?
It can, but it will not necessarily be the case, so it will
be evident some hopefully small percentage of the time.
For example, there should be no audible alteration if the
maximum playback level does not exceed 96 dB SPL.
Nor should there be a problem if the playback level is
higher, but the room noise is high enough to mask the
digital noise. Since the ear is only maximally sensitive
in the upper-middle part of the audio band, the elevated
thresholds towards the band edges provide additional
noise margin. And the presence of signal components
will tend to mask digital noise that might otherwise have
been heard. So, consistent with practical experience,
16 bit PCM digital audio is free of serious imperfections

for most listeners and most source material, most of the
time.

18.5.2 Digital Signal Processing

With the practice of representing audio signals in the
digital domain as PCM samples comes the need to per-
form signal processing in the digital domain. To some
extent, this required a reinvention of signal processing
in terms of discrete numerical sample values, but since
the foundations of signal processing were mathematical
to begin with, in some respects there was a more direct
connection between theory and practice.

The most common signal processing operations –
amplification, filtering, and equalization – are mostly
implemented with the basic four mathematical func-
tions: addition, subtraction, multiplication, and, perhaps
to a lesser extent, division.

More elaborate signal processing functions, such as
rectification or level derivation, may involve geometric
or transcendental functions such as square roots, cosine,
or logarithms, virtually all of which are easier to imple-
ment, more direct, more wide-range, and more stable
as digital entities than analog alternatives. Even some
seemingly simple functions, such as a pure delay, can
be challenging to implement well as analog devices, but
become more-or-less trivial with DSP.

Clearly, the requirement of audio DSP to perform
large numbers of numerical calculations and the abil-
ity to perform such calculations with modern digital
hardware, including personal computers and specialized
DSP chips, whether by accident or design, has been
auspiciously symbiotic. Large, elaborate analog bread-
boards of spaghetti wiring have been replaced with even
more elaborate programs of (sometimes) spaghetti C
code.

The ability to create and combine a virtually lim-
itless number of new processing functions by simply
typing in the code for them, using a computer language
with full mathematical support, is an understandably
powerful tool to extend signal processing, a little like
a bottomless Tinker Toy. The effect is amplified by the
ability to nest functions to an almost arbitrary extent,
allowing the creation of labyrinthine tree-structured
processes. And whereas every block of an analog circuit
must be physically implemented, DSP programs usually
get by with just one physical copy of each routine, re-
gardless of how many times the function may appear in
the block diagram.

With all this processing power available, one may
inquire as to what has been applied. Certainly, one func-
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tion category that has not been strongly needed has been
aids to correct deficiencies inherent in the recording sys-
tem. If a clean recording is obtained to begin with, there
is often little need to clean it up further. Digital signal
processors have, however, been very effective in clean-
ing up and correcting the imperfections of older, analog
recordings, and have been used for noise suppression,
speed correction, and even distortion reduction.

The additional processing power afforded by DSP
processors has enabled re-engineering of most tradi-
tional audio processors, such as equalizers, with greater
complexity and precision. The availability of a simple,
cheap delay mechanism with equalization has allowed
extremely elaborate and faithful reverberators to be em-
ployed in both professional and consumer applications.
This is one area for which there was arguably never
a truly effective analog electronic solution. The best
pre-digital reverberators were electromechanical, using
transducers attached to a metal reverberation plate.

In general, the availability of a cheap, low-noise,
high-precision multiplication operation has, along with
other DSP elements, made it much easier to imple-
ment elaborate dynamic systems, once limited by the
relative scarcity and high cost of analog VCAs. This
has also made it much easier to include specific non-
linearities, where appropriate, usually in the signal
analysis of a processor. And the ability to combine mul-
tiple processing algorithms into a single DSP program
has facilitated multifunctional systems implemented on
a single DSP chip.

One of the key building blocks to be brought to bear
in a variety of digital signal processors has been a digi-
tal model of some or all of the human auditory system.
If a processor can be made to hear the same way as
humans do, it can make processing decisions that re-
flect the truly audible elements of a signal, resulting
in far more effective processing. A key component of
such an approach has been the digital filter bank, es-
sentially a bank of bandpass filters that, in most cases,
cover the entire audio band. This component provides
a cost-effective analog of the filter-bank-like process-
ing performed by the basilar membrane of the inner
ear. A major element of such processing has been the
so-called fast Fourier transform (FFT), first devised in
1805 by Gauss [18.65–67], then rediscovered in 1965
by Cooley and Tukey [18.68, 69]. This one algorithm
allows full-range filter banks of great complexity, typ-
ically implementing hundreds or thousands of bandpass
filters, with dramatically less processing power than
would otherwise be needed by direct implementation
of such filters. The use of this technique does, how-

ever, carry with it some compromise, as the bandpass
filters of an FFT filter bank all have the same bandwidth,
measured in hertz, and are linearly spaced in center fre-
quency, whereas the filters of the basilar membrane are
logarithmically arranged in both bandwidth and center
frequency. This discrepancy is sometimes compensated
by processing the FFT outputs in groups, or bands,
whose width and center frequency are arranged in an
approximately logarithmic manner.

The transform-based filter bank is used both as an
analysis tool, to present signals in a perceptually rele-
vant domain for subsequent processing, and as a compo-
nent of the actual signal path. In the latter instance, sig-
nals are processed in the transform domain, usually in
overlapping blocks of samples, and ultimately restored
to time-domain PCM values by performing running
inverse transforms. This has elevated transform-based
processing to the level of a new category of digital sig-
nal processing. In some situations, a variant transform
of some sort may be used to provide, for example, log-
arithmic frequency selectivity, but in many cases such
transforms are still based on a core FFT.

A final note on numerical precision: virtually
any digital processor will employ finite-word-length
symbols for numerical values, be they integers or
floating-point numbers. This gives rise to the genera-
tion of digital noise, resulting from the round-off error
of each arithmetic operation. Since there may be many
thousands of such performed in the course of a DSP al-
gorithm, the numerical precision of the processor must
be great enough that the accumulated noise remains in-
significant. For a 120 dB dynamic range, corresponding
to 20 bits of precision, one might prefer at least 24 bit
processing (that is, either 24 bit integers or 24 bit man-
tissas of float values). The actual precision required will
depend some on the actual operations performed, with
subtraction (or addition of opposite-signed values) es-
pecially troublesome, since it can leave a very small
residual, potentially exposing the digital noise. As it
happens, this is an issue in performing the FFT. As an
additional hedge against the buildup of digital noise,
many DSP processors employ double-length registers,
so accumulated quantities are only rounded back to
standard precision when stored back to memory, usually
after multiple multiply–accumulate operations.

18.5.3 Audio Coding

The commercial introduction of digital audio in the
form of the compact disc brought with it the rein-
carnation of a tradeoff that had long been a source
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of compromise in analog audio, namely that between
quality and capacity, or equivalently playing time, or
bandwidth. Mechanical audio recordings (i. e. records)
had started with cylinders that played for a minute or
two, and had progressed to long-play records with about
20 minutes per side. Magnetic tape had used media
running at speeds like 76 cm per second, and had pro-
gressed to cassette tapes with typical playback times of
45 minutes per side, usually aided with noise reduction.
Broadcast channels were less flexible, but techniques
had at least progressed to the practice of piggy-backing
low-energy subcarriers onto to the main signal, e.g. to
advance to stereo operation, sometimes accompanied by
noise reduction, at least in the case of US multichannel
television sound (MTS) audio. If the use of digital au-
dio for recording and broadcast was to be adopted for
media beyond the CD, the need to reduce the number
of bits required was apparent. This has given rise to
one of the premier pursuits of digital development since
that time: the use of audio coding to convey a signal
faithfully using the smallest possible number of bits.

The data rate of an audio CD derives from the use of
two channels, a sampling rate of 44 100 Hz, and 16 bit
PCM samples, a total of 1.4 megabits per second. This is
greater than can be accommodated on a standard 35 mm
movie print, or a standard cassette tape, or an FM ra-
dio channel. (It is also more than will fit on a standard
long-play record, but since that medium is not espe-
cially compatible with digital storage in the first place,
it is a moot point.) Even the CD can only accommo-
date the two channels; a 5.1-channel PCM format would
reduce the playing time to something under 25 min.

So the need to reduce the data rate without sac-
rificing quality was readily apparent, which motivated
interest and activity in the development of low-bitrate
audio coders, and made practical such applications as
digital cinema soundtracks, portable music players, and
satellite radio. It is perhaps not self-evident that the
data rate can be reduced in the first place, but for
starters, one could simply use smaller PCM words.
This would, of course, raise the effective noise floor,
which in turn could be addressed by adapting an analog
noise-reduction system as an associated DSP algorithm.
However, the resulting reduction in data rate would
still be relatively modest, as the compression ratios
of noise-reduction systems never exceeded a range of
about 2–3 : 1, to avoid mistracking problems, and this is
less data compression than is required by many coding
applications.

Overall, two general classes of techniques have been
exploited in digital audio coders, lossless and lossy, or

perceptual, coding. They share in common the arrange-
ment of an encoder and a decoder which, instead of just
conveying PCM samples, employ a common vocabulary
or protocol for describing and conveying the audio at
an elevated level of abstraction. This protocol is some-
times referred to as a bit-stream syntax. Although the
signal connecting encoder and decoder is indeed usu-
ally just a stream of bits, the meaning and significance
of a given bit will depend on the context in which it
appears. This represents an additional advantage of dig-
ital audio systems over analog systems: a bit stream can
consist of interleaved sequences of diverse information
packets. Some of these will generally be representations
of some derived form of the audio, and the rest will be
descriptive information about the signal, referred to as
side-chain information.

Lossless Audio Coding
The goal of lossless coding is to convey digital informa-
tion in a more compact form while reliably recovering
the original data in the decoder with bit-for-bit accuracy.
Obviously, no psychoacoustic or perceptual considera-
tions need enter into the picture.

The key to the ability to losslessly compress digi-
tal data is redundancy. Any time there is a pattern or
common element to a block of data, it may be possible
to express it in a more compact form by conveying the
essence of the pattern along with the deviations from
the pattern, such that the original data may be recon-
structed. Of course, in order for this to happen, the bit-
stream syntax must support a compact means of speci-
fying the necessary range of patterns to the decoder.

The number of potentially useful patterns is actually
fairly large, and considerable ingenuity has gone into
the development of lossless coding algorithms which
can recognize and concisely encapsulate the details of
redundant information patterns. Some of the more com-
mon data structures that can be losslessly compressed
are listed below.

1. A repeating sample value: rather than send the same
value multiple times, the sample can be sent just
once, along with a replication factor. This technique
is sometimes referred to as run-length coding.

2. Similar values: a variant of run-length coding, this
type of pattern can be compressed by sending the
average value, followed by concise representations
of the difference between each sample value and
the average. Alternatively, differential coding may
be used, in which the difference between successive
samples is coded.
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3. Repeating sinusoids: for an ongoing sinusoidal
signal, the PCM samples can be replaced with para-
meters indicating the amplitude, frequency, phase,
and length of the sample sequence. In general form,
this is sometimes referred to as linear prediction.
If there are small deviations, they may be sent as
concise difference values.

4. Small values: a sequence of samples, each with one
or more leading zeros, may be sent with the zeros
omitted, along with a factor indicating how many
leading zeros were suppressed. (Note: negative val-
ues expressed in two’s-complement form will have
leading ones, but the same factor should otherwise
apply.) This is known as block floating point repre-
sentation.

5. Commonly used values: sample values which ap-
pear more often than the average – like the letters
‘e’ and ‘s’ in English text – may be assigned special,
short transmission symbols to reduce the average
data rate. Representative techniques which employ
this include arithmetic coding and Huffman coding.

6. Interchannel difference coding: if two or more
channels are used and are sufficiently similar, data-
rate savings may be attained by sending sum and
difference information, or a variant thereof. The ex-
pectation is that the difference values will be small,
and can be coded in fewer bits using technique (4),
above. In the case of stereo content, this approach is
sometimes referred to as mid/side (M/S) coding.

In addition to the techniques described above (and
others), a lossless coder may either directly code time-
domain PCM samples, or may instead use running
transforms and operate in the frequency domain. In the
latter case, a specialized bit-exact transform may be
used to guarantee that the final output is an exact clone
of the input.

A fully realized lossless coder is likely to use
a combination of techniques like those described above,
requiring a flexible and perhaps elaborate bit stream
syntax. The process of selecting which coding options
will be brought to bear on a given block of samples
is often not readily apparent from inspection or sim-
ple calculation, so the encoder may be required to try
an exhaustive search of all possibilities for each block
in order to select the best option. Needless to say, this
can make for a rather slow-running encoder, but usually
does not affect the speed of the decoder.

As may be evident, the effectiveness of a lossless
coder is very much signal dependent: some signals
can be compressed considerably more than others, and

some, such as full-level white noise, basically cannot be
losslessly compressed at all. Typical compression ratios
run in the range of 2 : 1 to 3 : 1. Because lossless com-
pression is inherently a variable bitrate (VBR) coding
technology, it is not well suited to real-time streaming
applications, such as broadcast or fixed-speed digital
tape.

One weakness of lossless coding, and indeed of
lossy coding as well, is that an error of even a sin-
gle bit (in, say, one of the control codes specifying
which method to use to unpack a block of data) can
cause the loss of significant audio data. Some care must
be used in the design of the bitstream to ensure that
re-synchronization of the decoder in the face of data
errors is reliably possible within an acceptably short
period. More generally, the complexity and low error
tolerance of almost any data-reduction algorithm raises
the regrettable possibility that digital records, audio and
otherwise, may be lost to future generations unless care
is taken to avoid data errors, and to ensure that decod-
ing algorithms are carefully documented and preserved
in full detail. This is especially critical in the case of
proprietary algorithms owned and maintained by com-
mercial entities, whose long-term future operation may
not be assured.

Perceptual/Lossy Audio Coding
While one might wish that lossless coding be used
exclusively for digital audio compression, its limited
performance and variable bitrate render it inappropriate
for a large number of coding applications. For more-
aggressive compression and acceptable performance
within the constraint of constant bit rate, one must resort
to the use of perceptual audio coding.

The goal of perceptual audio coding is to preserve
and convey all of the perceptual aspects of audio con-
tent, without regard to preserving the signal literally,
usually employing the fewest bits possible. Recall that
the data rate for a standard audio CD was about 1.4
Mbit/s. As this is written, the lowest data rate in com-
mercial use for conveying high-quality stereo audio is
no higher than 48 Kbits/s, used by satellite radio and
for Internet streaming, a data-compression ratio on the
order of 30 : 1 or better.

How is this accomplished? For starters, the use
of lossless coding is not retained and incorporated in
overall lossy algorithms. Every packet of information
generated and reduced to its ultimate compactness by
any part of a perceptual coder is a candidate for further
reduction in size if one or more lossless techniques can
be brought to bear effectively.
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Beyond that, the keys to high-efficiency perceptual
coding are to:

1. Suppress any audio components not contributing to
the ultimate perception.

2. Ensure that all the audible components are conveyed
with no alteration in perceived quality, while using
the minimum possible number of bits.

3. Employ, as much as possible, high-level abstrac-
tions to describe audio signals in purely perceptual
terms, while retaining enough precision and detail to
allow the decoder to accurately reconstitute a signal
indistinguishable from the original encoder input
signal.

One fundamental building block that has almost always
been part of the foundation of perceptual coders is a dig-
ital filter bank. This, of course, mirrors the functionality
of the basilar membrane; and the frequency-domain
output signals are most commonly used for both the
analysis sections of the coder and the signal path.
Indeed, the fundamental data conveyed by most percep-
tual coders is not PCM time-domain data, but quantized
frequency-domain information from which the decoder
eventually produces PCM output by way of a synthe-
sis filter bank. The most commonly used digital filter
bank is a variant of the FFT called the time-domain alias
cancellation (TDAC) transform, developed by Princen
and Bradley in 1986 [18.70, 71]. This transform has
the highly desirable property of being critically sam-
pled, meaning that it produces exactly the same number
of output frequency-domain samples as there are in-
put PCM samples. There is also a companion inverse
TDAC transform for producing output PCM from a set
of decoded frequency-domain input samples.

In operation, PCM samples input to the encoder
are divided into regular blocks of some predetermined
length, and each block is transformed to the fre-
quency domain, conveyed to the decoder, reconstituted
as a block of PCM samples, and the successive blocks
strung together, often in an overlapping manner, to
recover the final outputs. This process is sometimes
described as block-oriented processing using running
transforms. The practice of coding an entire block of
samples as a single entity facilitates data rates of less
than one bit per original audio sample. One downside
of block processing is that events which occupy a small
fraction of a block, like a sharp transient, may be-
come smeared across a range of frequencies, consuming
a large number of bits. A number of techniques have
evolved to deal with this situation, most commonly the

use of block switching, wherein such short events are
detected (by, for example, a transient detector routine),
and the block size is temporarily shortened to more
closely isolate the transient within the shortened block.

The filter-bank output is of direct use in pursuit of
the first two perceptual coding techniques listed above,
principally by deriving the magnitude of the frequency-
domain signals as a function of frequency to obtain
a discrete approximation to the power spectral density
(PSD) of the signal block. This in turn is processed by
a routine implementing a perceptual model of human
hearing to derive a masking curve, which specifies the
threshold of hearing as a function of frequency for that
signal block. Any spectral component falling below the
masking curve will be inaudible, so need not be coded,
as per the first listed coding technique. The remaining
spectral components must be preserved if audible alter-
ation is to be avoided, but the quantization precision is
only that which is required to render the level of the
quantization noise below the masking curve. Instead
of the 120 dB/20 bit range one might require for PCM
audio, the instantaneous masking range is more often
on the order of 20–30 dB, about 4–5 bits per sample,
assuming 6 dB per bit SNR. Thus, between suppression
of inaudible components and dynamic quantization of
audible components, the data rate can be expected to
be reduced to something less than 4 bits per sample. Of
course, an effective bit-stream syntax protocol must be
devised to signal these conditions efficiently to the de-
coder, and considerable ingenuity has been brought to
bear on that issue to ensure the requirement is met.

Notable lossy audio coders based on these principles
include AC-3, MP3, DTS, WMA, Ogg, and AAC. These
have been instrumental enablers of such technologies as
portable music players, DVD’s, digital soundtracks on
35 mm film, and satellite radio.

It should be noted that perceptual coding is much
more compatible with constant-bit-rate operation than
is lossless coding, for as the complexity of a signal in-
creases, which might otherwise increase the required
data rate, the masking afforded by that signal also
increases, reducing the average quantization accuracy
required, thereby holding the required data rate to
a more nearly constant rate. In effect, the human au-
ditory system can only absorb so much information per
unit time, so as long as the coder accurately models that
behavior, the required data rate should be largely con-
stant. Of course, very simple signals, like silence, are
not likely to require the same data rate as more com-
plex signals, in which case a constant-bitrate coder may
simply use far more than the minimum required data
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rate in order to maintain a constant transmission rate.
Some coders can defer use of bits in the presence of
simple signals, saving them in a bit bucket until needed
by a more complex signal.

The third listed technique used in perceptual coding,
the application of higher-level abstractions to describe
the signal, is much more general and open-ended; and is
still an area of active investigation. It can be something
as simple as using a single PSD curve to approximate
the actual PSD curves of several successive transform
blocks, or using decoder-generated noise in place of
actually transmitting noise-like signals. More abstract
approaches may fall under the heading of parametric
coding.

One notable example of parametric coding is band-
width extension, in which the entire high-frequency
end of the spectrum is suppressed by the encoder, and
is reconstituted by the decoder from analysis of the
harmonic content of rest of the signal spectrum. This
technique alone can reduce the data rate by 30% or
more.

Another widely pursued approach to parametric
coding is to segregate signal components into cate-
gories, such as sinusoidal, noise-like, or transient, then
convey numerical descriptions of each to a synthesizing
decoder. Although this is arguably far closer to a true
perceptually grounded coder than a simple transform-
based coder, the complexity of the descriptors needed to
accurately portray the full range of possible signals has
so far made it difficult to reduce the data rate required
by more conventional coders dramatically.

Spatial Audio Coding
Although strictly speaking it may be a subset of per-
ceptual audio coding, spatial audio coding (SAC) is
a sufficiently independent approach to justify separate
examination. SAC can be used to improve the transmis-
sion efficiency of multichannel content, typically either
stereo or 5.1-channel surround material.

The approach involves coding the ensemble of chan-
nels as a single entity to achieve data savings that would
be unavailable if each channel were to be coded individ-
ually. An element common of many SAC algorithms is

to combine the source channels additively to a smaller
number of channels, perhaps as few as a single channel,
from which the decoded output channels are eventually
reconstructed. The data rate is thereby reduced by the
ratio of the number of input channels to the number
of down-mixed channels, minus any side-chain infor-
mation needed by the decoder to reconstruct the output
channels.

Probably the simplest approach to SAC is to down-
mix the input channels to mono in the encoder and then
simply distribute the common signal equally to the out-
put channels. If this is done to the full-bandwidth signal,
the result will simply be monaural sound reproduced
from multiple speakers, which is not likely to be a very
satisfactory multichannel experience, but if limited to
a subset of the audio range, say just high frequencies,
the ear will tend to associate the spread mono content of
the reproduced channels with the direction of the lower
frequency, discrete content, and the alteration will be
less noticeable.

A slightly more elaborate approach is to send
channel-by-channel scale factors, representing relative
signal amplitude in each input channel, which are
subsequently used by the decoder to distribute signal
components to each output channel. Sometimes referred
to as either intensity stereo or channel coupling, the
technique can be surprisingly effective, especially at
high frequencies when individual scale factors are sent
on something like a critical band frequency basis.

More recent spatial coding systems have augmented
the use of amplitude coupling with transient flags and
information about interchannel phase and coherence,
allowing extension to progressively lower frequencies,
with commensurately greater amounts of data rate re-
duction.

Although in most cases the spatial information
about individual channels is sent as side-chain informa-
tion comprising part of the total transmitted bit stream,
there has been some success in encoding the informa-
tion in the signal characteristics of the actual transmitted
audio, which can reduce the net data rate.

Spatial audio coding remains at this time an area of
very active investigation.

18.6 Complete Audio Systems

So far, this discussion of audio and electroacoustics has
focused on the task of capturing, transmitting, and re-
producing one or more individual channels of audio as

accurately as possible. However, the goal of sound re-
production is not strictly to convey some designated
number of channels, but to faithfully reproduce a full
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acoustic event, be it live, synthesized, or some combi-
nation thereof, to an audience that, at any given venue,
may range in number from one to many hundreds or
more.

The use of individual channels is mandated by the
available technology. Microphones and loudspeakers
are basically point-in-space devices, and most audio
media and processors are designed to handle individual
channels. But sound is, by nature, a three-dimensional
entity, not counting time and frequency, and a few iso-
lated channels can at best represent a sparse spatial
sampling of a full acoustic sound field.

So the question is raised as to just how effective are
complete audio systems, from recording to reproduc-
tion, at least in perceptual, psychoacoustic terms.

Any attempt to perform such an evaluation is imme-
diately faced with the conundrum as to just what should
be the ultimate goal of sound reproduction. Should we
be trying to transport the listener to the performance site
(we are there), or is the goal to transport the performers
to the listener’s living room (they are here). The answer
perhaps depends on the nature of the source material,
as well as listener preference. For situational acoustics,
from walking down a busy street to riding in a sub-
marine, it would seem logical to go with we are there.
This is most commonly the case for, say, cinema sound-
tracks, making a good case for surround-sound systems
in commercial and home theaters. A similar case can
be made for symphonic music, since the concert hall is
such an integral part of the experience. However, a small
ensemble or a solo artist might be more compelling if
holographically projected into the listening room. Given
unlimited wishes, one might hope to have both, with the
ability choose which option according to one’s predilec-
tions. In actual practice, we might be well served if
either one is possible. But in any case, it is perhaps
worth keeping in mind in evaluating the effectiveness
of complete audio systems.

18.6.1 Monaural

For the first half century of recorded sound, monaural
was all there was. In that time, considerable expertise
was developed in microphone techniques for captur-
ing sound with a viable balance of direct and ambient
content. In this era of multichannel audio, it is easy to
dismiss mono for failing to support any formal spatial
audio cues. Still, there are times when a single channel
should, at least in theory, be adequate for the task, such
as a solo performer or other single, localized source,
in a dry (relatively echo-free) ambient environment,

or here. Even in that case, however, the reproducing
loudspeaker is unlikely to have the same spatial radi-
ation pattern as the original source, a problem common
to many sound formats to one degree or another, so
that even with good frequency response and low distor-
tion, the sound may be recognizable as emanating from
a loudspeaker, rather than being a clone of the original
performance. To its credit, mono does not exhibit the
double-arrival problem of phantom images common to
stereo and other multichannel formats (below), arguably
resulting in a purer, less time-smeared sound. It is also
gratifyingly free of sweet-spot dependence: one can sit
pretty much anywhere in a listening room without wor-
rying about impairment of imaging. And historically at
least, mono was a big improvement over nothing at all.

18.6.2 Stereo

Two-channel stereophonic sound has been a commer-
cial reality for nearly half a century, and shows little
sign of being rendered obsolete anytime soon. The in-
tuitive attraction of stereo is self-evident: we have two
ears, and stereo provides two channels. On the surface,
this is an apparently compelling argument. The result
should perfect sound reproduction, yes? Well, no, al-
though stereo did pretty much render mono obsolete
for most media within a few years of its commercial
deployment.

Stereo provides the smallest possible increment in
spatial fidelity over mono: a horizontal line spread be-
fore the listener. But this is likely the most important
single improvement one could hope to make, as the
human ear is most sensitive to front-center horizontal
position. In addition, performing ensembles are most
often arrayed in such a manner. The arrangement also
allows rendering, where appropriate, of frontal am-
biance in a manner more natural than can be achieved
with a single audio channel.

An important element of stereo reproduction is the
creation of virtual images. These are sonic images that
appear suspended in space between the two speakers,
and they undoubtedly add considerably to the viability
of the format. Virtual images depend for their existence
on the primary horizontal localization cues: interaural
time differences and interaural amplitude differences.
The former cue is especially critical to the creation of
virtual images, as the total range of the cue is only about
±700 μs, corresponding to a horizontal displacement of
the listener of only about a foot. This rather undermines
the viability of stereo virtual imaging somewhat, and
renders the format decidedly sweet-spot dependent. The
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situation is partially compensated by the flexibility of
the human auditory system, and its apparent ability to
use dynamically whatever cues appear to be providing
reliable localization information. A listener a little off
the center line may still experience some degree of vir-
tual imaging by virtue of the interaural amplitude cue,
which may not degrade as rapidly as the interaural time
delay cue. Indeed, in the course of mixing a multichan-
nel source to a stereo track, a recording engineer will
typically position a virtual source between the speak-
ers using simple amplitude panning, with zero interaural
time delay, and yet the ear generally accepts this.

But sensitivity to listener position is not the only
issue relating to virtual images. There is also that
double-arrival problem. The direct sound from almost
any real sound source will generally arrive at each ear
once, and that is it. But a virtual image from a stereo
speaker array will result in two direct arrivals at each
ear, one from each speaker. Assuming a centered lis-
tener, the left ear will hear from the left speaker at
about the same time that the right ear hears the first ar-
rival from the right speaker. Then the sound from each
speaker will cross the head, in opposite directions, and
the left ear will hear the right speaker arrival, and vice
versa, a process sometimes referred to as loudspeaker
crosstalk. The time delay between arrivals is typically
on the order of 250 μs, resulting in a small, subtle, but
audible notch in the resulting response around 2 kHz.
Some temporal smearing of sharp transients may also
be evident.

A final difficulty with virtual imaging of stereo
systems is the relative inability to position virtual im-
ages outside the range of the speakers. This is another
consequence of loudspeaker crosstalk, limiting the max-
imum interaural time difference to that corresponding
to the position of the speaker, which again is about
250 μs, and similarly limiting the maximum interaural
amplitude difference. One way around this would be
to put the speakers in different rooms and sit between
them, one ear in each room, with a custom-fitted baf-
fle doorway to block any crosstalk, which is a little
impractical. Another approach is to employ a crosstalk
cancellation (virtual-speaker) system, to cancel the sec-
ond arrival at each ear, but such systems are themselves
very sweet-spot dependent, and even then usually lim-
ited to creating images on the horizontal plane. The
most direct way to provide sound from additional di-
rections is to position additional speakers around the
listener, including above and possibly below, assuming
additional source channels are available to feed them,
but that is no longer a stereo sound system.

18.6.3 Binaural

Like stereophonic sound, binaural makes use of just
two channels, but it uses headphones instead of loud-
speakers to avoid the crosstalk problem. On paper, this
system seems like it should be even more perfect than
stereo. However, the effect is often to place the sound
images within the head, with little or no front/back
differentiation.

Part of the problem appears to be that the presenta-
tion does not get altered when the listener’s head moves,
so that the image follows the head movement, which is
rather unnatural. There has been some work exploring
the use of tracking headphones, which alter the sig-
nal in response to head motion, but these have not yet
been completely successful, and require more than two
channels to be available.

Another issue with binaural reproduction seems to
be the lack of pinna cues, those alterations in tim-
ing and spectra that are imparted by the pinnae to an
arriving sound as a function of direction. Efforts to im-
part pinna cues electronically have had some success,
but they tend to be as individual as fingerprints, mak-
ing it difficult to have a single binaural track which
works for everyone. There has also been some success
in producing a universal binaural track by imparting
a direction-dependent room reverberation characteris-
tic to the signals, although some purists object to
the addition, and the effect is still somewhat listener
dependent.

One experimental system that mitigates some of the
shortcomings of two-channel binaural is four-channel
binaural. This employs two dummy heads or equiv-
alently arranged directional microphones, with one
head/microphone-pair in front of the other, preferably
with an isolating baffle separating them. The resulting
four-channel recording is played over four speakers,
preferably placed close to the listener in fixed posi-
tions around the listener’s head, corresponding to the
microphone positions, possibly with a left–right isolat-
ing panel or crosstalk-canceling circuits to minimize
crosstalk. Because the front–back pair each preserve
ITD and IAD, the left–right space is properly preserved,
while front–back differentiation and externalization are
provided by using separate front and back external
drivers. Dynamic IAD and ITD cues with head motion
are also at least crudely preserved by the use of front and
back channels. The resulting presentation can exhibit
good spatial fidelity.

Although it may never be suitable for general audi-
ence presentation, the binaural format has compelling
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qualities for the single listener, and remains an area of
active investigation.

18.6.4 Ambisonics

This system, devised by Michael Gerzon, approxi-
mates the sound field in the vicinity of a listener using
an array of precisely positioned loudspeakers, It is
sweet-spot dependent, so not amenable to audience pre-
sentation, but can provide compellingly good spatial
reproduction.

18.6.5 5.1-Channel Surround

The 5.1-channel format is a well-thought-out response
to the shortcomings of stereo. The format employs three
front speakers, two surround speakers placed to the side
and/or back of the listening room, and the 0.1 low-
frequency channel that only occupies a small fraction
of the total bandwidth.

The addition of the center-front speaker anchors
the front left–right spread, significantly mitigating the
problems stereo has with virtual images, even with audi-
ence presentation. The surround channels provide sound
more to the side than can be achieved with the front
speakers (or stereo), exercising the full range of the
ITD/IAD sensitivity of the ear, and providing the option
of a far more immersive experience than can be attained
with stereo.

The 5.1 format with high-quality source material
provides the most accurate overall audio reproduction
of any widely used format to date, within either the here
or there reproduction paradigms.

18.6.6 Beyond 5.1 Surround

In recent years, the channel count of commercial sur-
round systems has slowly grown, leading to ongoing
(as of 2014) efforts to develop configuration neutral
systems that will support arbitrary numbers of channels.

18.7 Appraisal and Speculation

We have been witness, from the crude but noble ori-
gins of sound reproduction, to an astonishing march of
progress that has, by degrees, rolled down the prob-
lems and imperfections of sound reproduction, reaching
a notably high level of performance, when considered in
basic perceptual terms.

A cynic might note that, over a half century ago,
children played little yellow plastic 78 RPM 17.78 cm
discs on phonographs that had 12.7 cm loudspeakers,
and now, after decades of dramatic, hard-won progress,
many people play little 12.7 cm plastic (compact) discs
on boom boxes with 12.7 cm loudspeakers or tablets or
even smaller speakers in smart phones. Yes, the fidelity
is better, as is the playing time, but have we really come
that far?

The apparent answer from all the above is that
a high-quality system of modern vintage can now satisfy
a major percentage of the electroacoustic and spatial
requirements implied by the capabilities of the human
auditory system.

This does not mean that audio engineers call all just
pack up and go home just yet. Indeed, the quantities of
audio research papers and patents published each year
show no sign of abating, giving rise to the specula-
tion that further meaningful improvements may yet be
attained.

One can certainly wish for a few more channels, to
fill in the remaining gaps and perhaps even provide ex-
plicit coverage above and below the listener. The issue
in that regard at this point is more of practicality than of
theory. There have been some experiments with the ad-
dition of height or ceiling (voice of God) channels, and
the specifications for digital cinema systems allow for
the use of over a dozen channels.

One can also hope for enhanced ability to project
sound into a room, rather than having it just arrive
from the walls. That is another area of active in-
vestigation. One approach, referred to as wave field
synthesis [18.72] has been to approximate a complete
sound field by reproducing the sound-pressure profile
around a periphery, and relying on the Huygens prin-
ciple [18.73] to recreate the complete interior sound
field. This requires large number of loudspeakers (192
in one experimental setup) to avoid spatial aliasing
effects.

The other well-known approach to generating inte-
rior sounds is to use an ultrasonic audio projector, which
projects acoustic signals above the audio band which
heterodyne to produce audible sound which appears to
come from a remote location [18.74].

Another problem that has only partly been solved is
that of sweet-spot sensitivity. This has long been an is-
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sue with cinema surround-sound systems, but is no less
challenging for automotive surround systems, where
there are often no centrally located seats and speaker
locations may be less than optimal. The issues go be-
yond balanced sound to trying to provide a coherent,
immersive experience at all listening positions.

Indeed, each new venue for audio seems to come
with its own idiosyncratic problems, leading to active
investigation of how to make compelling presentations
for portable music players, cell phones, and interactive
media such as game consoles.

It is also expected that there will be continuing re-
finement of binaural techniques for personal listening.

Ultimately there may come a wholesale revolution
in audio techniques, perhaps with laser transduc-
ers replacing loudspeakers and microphones, along
with holographic recording of entire sound fields. For
personal listening, your music player might interface di-
rectly to your brain, bypassing the ear altogether, allow-
ing otherwise deaf people to hear, and getting rid of that
troublesome 3 kHz peak in the ear canal once and for all.

It should make for some interesting vibes.
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Animal Bioaco19. Animal Bioacoustics

Neville H. Fletcher

Animals rely upon their acoustic and vibrational
senses and abilities to detect the presence of both
predators and prey and to communicate with
members of the same species. This chapter sur-
veys the physical bases of these abilities and their
evolutionary optimization in insects, birds, and
other land animals, and in a variety of aquatic
animals other than cetaceans, which are treated
in Chap. 20. While there are many individual vari-
ations, and some animals devote an immense
fraction of their time and energy to acoustic com-
munication, there are also many common features
in their sound production and in the detection
of sounds and vibrations. Excellent treatments
of these matters from a biological viewpoint are
given in several notable books [19.1, 2] and collec-
tions of papers [19.3–8], together with other more
specialized books to be mentioned in the following
sections, but treatments from an acoustical view-
point [19.9] are rare. The main difference between
these two approaches is that biological books tend
to concentrate on anatomical and physiological
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details and on behavioral outcomes, while acous-
tical books use simplified anatomical models and
quantitative analysis to model whole-system be-
havior. This latter is the approach to be adopted
here.

19.1 Optimized Communication

Since animals use their acoustic and vibrational senses
both to monitor their environment and to communicate
with other animals of the same species, we should ex-
pect that natural selection has optimized these sensing
and sound production abilities. One particular obvious
optimization is to maximize the range over which they
can communicate with others of the same species. Sim-
ple observation shows that small animals generally use
high frequencies for communication while large ani-
mals use low frequencies – what determines the best
choice? The belief that there is likely to be some sort
of universal scaling law involved goes back to the clas-
sic work of D’Arcy Thompson [19.10], while a modern
overview of physical scaling laws (though not includ-

ing auditory communication) is given by West and
Brown [19.11].

The simplest assumption is that the frequency is
determined simply by the physical properties of the
sound-producing mechanism. For a category of ani-
mals differing only in size, the vibration frequency
of the sound-producing organ depends upon the lin-
ear dimensions of the vibrating structure, which are
all proportional to the linear size L of the animal, and
upon the density ρ and elastic modulus E of the ma-
terial from which it is made. We can thus write that
the song frequency f = Aρx Ey Lz , where A, x, y, and
z are constants. Since the dimensions of each side of
the equation must agree, we must have x =−1, y = 1
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Fig. 19.1 The frequency ranges of the emphasized fre-
quencies of vocalization in a large range of land-dwelling
animals, plotted as a function of the mass of the animal.
The dashed line shows the regression f ∝ M−0.33 while
the solid line is the regression f ∝ M−0.4, as discussed in
the text [19.12]

and z =−1, which leads to the conclusion that song
frequency should be inversely proportional to the lin-
ear size of the animal or, equivalently, that f ∝ M−1/3,
where M is the mass of the animal. This simple re-
sult agrees quite well with observation, as shown by the
dashed line in Fig. 19.1, for a wide variety of animals,
but a more detailed analysis is desirable.

Over reasonable distances in the air, sound spreads
nearly hemispherically, so that its intensity decays like
1/R2, where R is the distance from the source. But
sound is also attenuated by atmospheric absorption,
with the attenuation coefficient varying as f 2. An
optimally evolved animal should have maximized its
communication distance under the influence of these
two effects. An analysis [19.12] gives the result that
f ∝ M−0.4 which, as shown in Fig. 19.1, fits the obser-
vations even better than the simpler result. There are,
however, many outliers even among the animals consid-
ered, due to different anatomies and habitats. Insects,
which must produce their sound in an entirely differ-
ent way as is discussed later, are not shown on this
graph, but there is a similar but not identical relative
size relation for them too.

The total sound power produced by an animal is
also a function of its size, typically scaling about as
M0.53 for air-breathing animals of a given category.
When the variation of song frequency is included, this
leads [19.12] to a conspecific communication distance

proportional about to M0.6. Again, while this trend
agrees with general observations, there are many very
notable outliers and great differences between different
types of animals. Thus, while mammals comparable in
size with humans typically produce sound power in the
range 0.1–10 mW, and large birds may produce compa-
rable power, some small insects such as cicadas of mass
not much more than 1 g can also produce almost contin-
uous calls with a power of 1 mW, as will be discussed
in Sect. 19.4. At intermediate sizes, however, many ani-
mals, particularly reptiles, are almost mute.

Elephants represent an interesting extreme in the
animal world because of their very large mass – as
much as 10 t. Their calls, which have a fundamental
in the range 14–35 Hz, can have an acoustic power as
large as 5 W, leading to a detection distance as large
as 5 km, or even up to 10 km after sunset on a clear
night [19.13] when very low frequency propagation is
aided by atmospheric inversion layers (Chap. 4). Vege-
tation too, of course, can have a significant effect upon
transmission distance. These elephant calls are often
misleadingly referred to as infrasonic in the biological
literature, despite the fact that only the fundamental and
perhaps the second harmonic satisfy this criterion, and
the calls have many harmonics well within the hearing
range of humans. Indeed, even other elephants depend
upon these upper harmonics to convey information, and
usually cannot recognize the calls of members of the
same family group above a distance of about 1.5 km
because of the attenuation of harmonics above about
100 Hz through atmospheric absorption [19.14].

When it comes to sound detection, rather similar
scaling principles operate. As will be discussed briefly
in Sect. 19.2, the basic neuro-physiological mechanisms
for the conversion of vibrations to neural impulses are
remarkably similar in different animal classes, so that
it is to be expected that auditory sensitivity should
vary roughly as the area of the hearing receptor, and
thus about as M2/3, and this feature is built into
the analysis referred to above. While a few animals
have narrow-band hearing adapted to detecting par-
ticular predators – for example caterpillars detecting
wing beats from wasps – or for conspecific com-
munication, as in some insects, most higher animals
require a wide frequency range so as to detect larger
predators, which generally produce sounds of lower fre-
quency, and smaller prey, which may produce higher
frequencies. The auditory range for most higher ani-
mals therefore extends with reasonable sensitivity over
a frequency range of about a factor 300, with the cen-
tral frequency being higher for smaller animals. In the
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Animal Bioacoustics 19.2 Hearing and Sound Production 823

case of mammals comparable in size to humans, the
range for mature adults is typically about 50 Hz to
15 kHz. This wide range, however, means that irrele-
vant background noise can become a problem, so that
conspecific call frequencies may be adapted, even over
a short time, to optimize communication. Small echo-
locating animals, such as bats, generally have a band of
enhanced hearing sensitivity and resolution near their
call frequency.

Aquatic animals, of course, operate in very different
acoustic conditions to land animals, because the density
of water nearly matches that of their body tissues. In
addition, while the water medium may be considered to
be essentially three-dimensional over small distances, it
becomes effectively two-dimensional for the very long-
distance communication of which some large aquatic
animals are capable. Some of these matters will be dis-
cussed in Sect. 19.8.

19.2 Hearing and Sound Production

Despite the large differences in anatomy and the great
separation in evolutionary time between different an-
imals, there are many surprising similarities in their
mechanisms of sound production and hearing. The basic
mechanism by which sound or vibration is converted to
neural sensation is usually one involving displacement
of a set of tiny hairs (cilia) mounted on a cell in such
a way that their displacement opens an ion channel and
causes an electric potential change in the cell, ultimately
leading to a nerve impulse. Such sensory hairs occur
in the lateral line organs of some species of fish, sup-
porting the otoliths in other aquatic species, and in the
cochlea of land-dwelling mammals. Even the sensory
cells of insects are only a little different. In the sub-
sequent discussion there will not be space to consider
these matters more fully, but they are treated in more
detail in Chap. 12.

Somewhat surprisingly, the auditory sensitivities of
animals differing widely in both size and anatomy vary
less than one might expect. Human hearing, for exam-
ple, has a threshold of about 20 μPa in its most sensitive
frequency range between 500 Hz and 5 kHz, where most
auditory information about conspecific communication
and the cries of predators and prey is concentrated, and
the sensitivity is within about 10 dB of this value over
a frequency range from about 200 Hz to 7 kHz. Other
mammals have very similar sensitivities with frequency
ranges scaled to vary roughly as the inverse of their
linear dimensions, as discussed in Sect. 19.1. Insects
in general have narrower bandwidth hearing matched
to song frequencies for conspecific communication. Of
course, with all of these generalizations there are many
outliers with very different hearing abilities.

Sound production mechanisms fall into two cate-
gories depending upon whether or not the animal is
actively air-breathing. For air-breathing animals there
is an internal air reservoir, the volume and pressure

of which are under muscular control, so that air can
be either inhaled or exhaled. When exhalation is done
through some sort of valve with mechanically resonant
flaps or membranes, it can set the valve into vibration,
thus producing an oscillatory exhalation of air and so
a sound source. In the case of aquatic mammals, which
are also air-breathing, it would be wasteful to exhale
the air, so that it is instead moved from one reservoir
to another through the oscillating valve, the vibration of
the thin walls of one of the reservoirs then radiating the
sound, as is discussed in more detail in Chap. 20. An-
imals such as insects that do not breathe actively must
generally make use of muscle-driven mechanical vibra-
tions to produce their calls, though a few such as the
cockroach Blaberus can actually make hissing noises
through its respiratory system when alarmed.

The amount of muscular effort an animal is prepared
to expend on vocalization varies very widely. Humans,
apart from a few exceptions such as trained singers, can
produce a maximum sound output of a few hundred mil-
liwatts for a few seconds, and only about 10 mW for
an extended time. In terms of body mass, this amounts
to something around 0.1 mW kg−1. At the other end of
the scale, some species of cicada with body mass of
about 1 g can produce about 1 mW of sound output at
a frequency of about 3 kHz, or about 1000 mW kg−1

on a nearly continuous basis. An interesting compara-
tive study of birdsongs by Brackenbury [19.15] showed
sound powers ranging from 0.15 to 200 mW and rela-
tive powers ranging from 10 to 870 mW kg−1. The clear
winner on the relative power criterion was the small
Turdus philomelos with a sound output of 60 mW and
a body mass of only 69 g, equivalent to 870 mW kg−1,
while the loudest bird measured was the common
rooster Gallus domesticus with a sound output during
crowing of 200 mW. Its body mass of 3500 g meant,
however, that its relative power was only 57 mW kg−1.
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Nearly all sound-production mechanisms, ranging
from animals through musical instruments to electric-
ally driven loudspeakers, are quite inefficient, with
a ratio of radiated acoustic power to input power of
not much more than 1%, and often a good deal less
than this. In the case of air-breathing animals, the losses
are largely due to viscosity-induced turbulence above
the vocal valve, while in insects that rely upon vibrat-

ing body structures internal losses in body tissue are
dominant. Wide-bandwidth systems such as the human
vocal apparatus are generally much less efficient than
narrow-band systems, the parameters of which can be
optimized to give good results at a single song fre-
quency. To all this must then be added the internal
metabolic loss in muscles, which has not been consid-
ered in the 1% figure.

19.3 Vibrational Communication

Most animals are sensitive to vibrations in materials or
structures with which they have physical contact. Even
humans can sense vibrations over a reasonably large fre-
quency range by simply pressing finger tips against the
vibrating object, while vibrations of lower frequency
can also be felt through the feet, without requiring any
specialized vibration receptors. Many insects make use
of this ability to track prey and also for conspecific com-
munication, and some for which this mode of perception
is very important have specialized receptors, called sub-
genual organs, just below a leg joint. A brief survey for
the case of insects has been given by Ewing [19.16].

For water gliders and other insects that hunt insects
that have become trapped by surface tension on the
surface of relatively still ponds, the obvious vibratory
signal is the surface waves spreading out circularly from
the struggles of the trapped insect. The propagation of
these surface waves on water that is deep compared with
the wavelength has been the subject of analysis, and the
calculated wave velocity cs, which is influenced by both
the surface tension T of water and the gravitational ac-
celeration g, is found to depend upon the wavelength λ
according to the relation

cs =
(

2πT

ρwλ
+ gλ

2π

)1/2

, (19.1)

where ρw is the density of water. From the form of this
relation it is clear that the wave speed has a minimum
value when λ= 2π(T/gρw)1/2, and substituting numer-
ical values then gives a wavelength of about 18 mm,
a propagation speed of about 24 cm s−1, and a frequency
of about 1.3 Hz. Waves of about this wavelength will
continue to move slowly across the surface after other

waves have dissipated. The attenuation of all these sur-
face waves is, however, very great.

From (19.1) it is clear that, at low frequencies
and long wavelengths, the wave speed cs is con-
trolled by gravitational forces and cs ≈ g/ω. These are
called gravity waves. At high frequencies and short
wavelengths, surface tension effects are dominant and
cs ≈ (Tω/ρw)1/3. These are called capillary waves. The
frequencies of biological interest are typically in the
range 10 to 100 Hz, and so are in the in the lower part
of the capillary-wave regime, a little above the cross-
over between these two influences, and the propagation
speeds are typically in the range 30 to 50 cm s−1.

For insects and other animals living aloft in trees
and plants, the waves responsible for transmission of
vibration are mostly bending waves in the leaves or
branches. The wave speed is then proportional to the
square root of the thickness of the structure and varies
also as the square root of frequency. Transmission is
very slow compared with the speed of sound in air,
although generally much faster than the speed of sur-
face waves on water. Once again, the attenuation with
propagation distance is usually large.

Disturbances on heavy solid branches or on solid
ground also generate surface waves that can be detected
at a distance, but these waves propagate with nearly the
speed of shear waves in the solid, and thus at speeds
of order 2000 m s−1. On the ground they are closely
related to seismic waves, which generally have much
larger amplitude, and animals can also detect these. Un-
derground, of course, as when an animal is seeking prey
in a shallow burrow, the vibration is propagated by bulk
shear and compressional waves.

19.4 Insects

The variety of sound production and detection mech-
anisms across insect species is immense [19.3, 16–18],

but their acoustic abilities and senses possess many fea-
tures in common. Many, particularly immature forms
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such as caterpillars but also many other insects, use ex-
ternal sensory hairs to detect air movement and these
can sense both acoustic stimuli, particularly if tuned to
resonance, or the larger near-field air flows produced by
the wings of predators [19.19]. These hairs respond to
the viscous drag created by acoustic air flow past them
and, since this is directional, the insect may be able to
gain some information about the location of the sound
source.

Analysis of the behavior of sensory hairs is com-
plex [19.19], but some general statements can be made.
Since what is being sensed is an oscillatory flow of air
across the surface of the insect, with the hair standing
normal to this surface, it is important that the hair be
long enough to protrude above the viscous boundary
layer, the thickness of which varies inversely with the
square root of frequency and is about 0.1 mm at 150 Hz.
This means that the length of the hair should also be
about inversely proportional to the frequency of the
stimulus it is optimized to detect, and that it should typ-
ically be at least a few tenths of a millimeter in length.
The thickness of the hair is not of immense importance,
provided that it is less than about 10 μm for a typical
hair, since much of the effective mass is contributed
by co-moving fluid. At the mechanical resonance fre-
quency of the hair, the sensitivity is a maximum, and the
hair tip displacement is typically about twice the fluid
displacement, provided the damping at the hair root is
not large, but the response falls off above and below this
frequency.

Mature insects of some species, however, have au-
ditory systems that bear a superficial resemblance to
those of modern humans in their overall structure. Thus
for example, and referring to Fig. 19.2a, the cricket has
thin sensory membranes (tympana or eardrums) on its
forelegs, and these are connected by tubes (Eustachian
tubes) that run to spiracles (nostrils) on its upper body,
the left and right tubes interacting through a thin mem-
brane (nasal septum) inside the body. Analysis of this
system [19.9] shows that the tubes and membranes are
configured so that each ear has almost cardioid re-
sponse, directed ipsilaterally, at the song frequency of
the insect, allowing the insect to detect the direction of
sound arrival. Some simpler auditory systems showing
similar directional response are discussed in Sect. 19.5.

Detailed analysis of the response of anatomically
complex systems such as this is most easily carried
out using electric network analogs, in which pressure
is represented by electric potential and acoustic flow by
electric current. Tubes are then represented as 2 × 2 ma-
trices, diaphragms by L, R,C series resonant circuits,

and so on, as shown in Fig. 19.2b. Brief details of this
approach are given in Sect. 19.10 and fuller treatments
can be found in the published literature [19.9, 20].

When it comes to sound production, insects are very
different from other animals because they do not have
the equivalent of lungs and a muscle-driven respira-
tory systems. They must therefore generally rely upon
muscle-driven vibration of diaphragms somewhere on
the body in order to produce sound. One significant
exception is the Death’s Head Hawk Moth Acherontia
atropos, which takes in and then expels pulses of air
from a cavity closed by a small flap-valve that is set into
oscillation by the expelled air to produce short sound
pulses [19.16].

Some insects, such as cicadas, have a large abdomi-
nal air cavity with two areas of flexible ribbed cartilage
that can be made to vibrate in a pulsatory manner under
muscle action, progressive buckling of the membrane as
the ribs flip between different shapes effectively multi-
plying the frequency of excitation by as much as a factor
50 compared with the frequency of muscle contraction.

Tube
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Fig. 19.2 (a) Schematic drawing of the auditory anatomy
of a cricket. (b) Simplified electric network analog for this
system. The impedances of the tympana and the septum
are each represented by a set of components L, R,C con-
nected in series; the tube impedances are represented by
2 × 2 matrices. The acoustic pressures pi acting on the sys-
tem are generally all nearly equal in magnitude, but differ
in phase depending upon the direction of incidence of the
sound
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File

Resonant structure

Pic

Fig. 19.3 Configuration of a typical file and pic as used by
crickets and other animals to excite resonant structures on
their wing cases

The coupling between these tymbal membranes and the
air cavity determines the oscillation frequency, and radi-
ation is efficient because of the monopole nature of the
source. The sound frequency is typically in the range
3 to 5 kHz, depending upon insect size, and the radi-
ated acoustic power can be as large as 1 mW [19.21]
on an almost continuous basis, though the actual sound
signal may consist of a series of regularly spaced bursts
corresponding to tymbal collapses and rebounds. Again,
there are occasional insects that have developed extreme
versions of this sound producing mechanism, such as
the bladder cicada Cystosoma Saundersii (Westwood),
in which the whole greatly extended abdomen is a reso-
nant air sac and the song frequency is only 800 Hz.

Most other insects do not have significant bodily
air cavities and must produce sound by causing parts
of their body shell or wings to vibrate by drawing
a ribbed file on their legs, or in some cases on their
wings, across the hard rim of the membrane, as shown
in Fig. 19.3. The anatomical features making up the file
and vibrating structure vary very greatly across species,
as has been discussed and illustrated in detail by Du-
mortier [19.22]. In some cases the file is located on the
vibrating structure and the sharp pic on the part that is
moving. The passage of the pic across each tooth or rib
on the file generates a sharp impulse that excites a heav-
ily damped transient oscillation of the vibrator, and each
repetitive motion of the leg or other structure passes the
pic over many teeth. A typical insect call can therefore
be subdivided into (a) the leg motion frequency, (b) the
pic impact frequency on the file, and (c) the oscilla-

a)

b)

Fig. 19.4a,b Structure of the sound emitted by a typical in-
sect: (a) three strokes of the file, the individual oscillations
being the pic impacts on the file teeth; (b) expanded view
of four of the pulses in (a), showing resonant oscillations of
the structure produced by successive pic impacts on the file

tion frequency of the vibrating structure. Since the file
may have 10 or more teeth, the frequency of the pic im-
pacts will be more than 10 times the frequency of leg
motion, and the structural oscillation may be 10 times
this frequency. The structure of a typical call is thus of
the form shown in Fig. 19.4. The dominant frequency is
usually that of the structural vibration, and this varies
widely from about 2–80 kHz depending upon species
and size [19.23]. Because of the structure of the call, the
frequency spectrum appears as a broad band centered on
the structural vibration frequency.

Such a vibrating membrane is a dipole source and
so is a much less efficient radiator than is a monopole
source, except at very high frequencies where the wing
dimensions become comparable with the sound wave-
length excited. Small insects therefore generally have
songs of higher frequency than those that are larger,
in much the same way as discussed in Sect. 19.1 for
other animals. Some crickets, however, have evolved
the strategy of digging a horn-shaped burrow in the
earth and positioning themselves at an appropriate place
in the horn so as to couple their wing vibrations effi-
ciently to the fundamental mode of the horn resonator,
thus taking advantage of the dipole nature of their
wing source and greatly enhancing the radiated sound
power [19.24].

19.5 Land Vertebrates

The class of vertebrates that live on land is in many
ways the most largely studied, since they bear the clos-
est relation to humans, but these animals vary widely in

size and behavior. Detailed discussion of birds is de-
ferred to Sect. 19.6, since their songs warrant special
attention, while human auditory and vocal abilities are
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not considered specifically since they are the subject of
several other chapters. Reptiles, too, are largely omit-
ted from detailed discussion, since most of them are
not notably vocal, and bats are given special attention
in Sect. 19.7.

The feature possessed by all the land-dwelling ver-
tebrates is that they vocalize using air expelled from
their inflated lungs through some sort of oscillating vo-
cal valve. The available internal air pressure depends
upon the emphasis put by the species on vocalization,
but is typically in the range 100–2000 Pa (or 1–20 cm
water gauge) almost independent of animal size, which
is what is to be expected if the breathing muscles and
lung cavity diameter scale about proportionally with
the linear size of the animal. There are, however, very
wide variations, as discussed in Sect. 19.2. The audi-
tory abilities of most animals are also rather similar, the
20 dB bandwidth extending over a factor of about 100
in frequency and with a center-frequency roughly in-
versely proportional to linear size, though again there
are outliers, as shown in Fig. 19.1. Although the audi-
tory and vocalization frequencies of different animals
both follow the same trend with size, the auditory sys-
tems generally have a much larger frequency range than
the vocalizations for several reasons. The first is that
hearing serves many purposes in addition to conspe-
cific communication, particularly the detection of prey
and predators. The second is that, particularly with the
more sophisticated animals, there are many nuances of
communication, such as the vowels and consonants in
human speech, for which information is coded in the
upper parts of the vocalization spectrum. For humans,
for example, the primary vocalization frequency is typ-
ically in the range 100 to 300 Hz, but the frequency
bands that are emphasized in vowel formants lie be-
tween 1 and 3 kHz. The same pattern is exhibited in the
vocalizations of other air-breathing animals, as shown
for the case of a raven in Fig. 19.5. The same formant
structure is seen in the cries of elephants, with a funda-
mental in the range 25–30 Hz and in high-pitched bird
songs, which may have a fundamental above 4 kHz.

In most such animals, sound is produced by exhal-
ing the air stored in the lungs through a valve consisting
of two taut tissue flaps or membranes that can be made
to almost close the base of the vocal tract, as shown
in Fig. 19.6a. The lungs in mammals are a complicated
quasi-fractal dendritic network of tubules with as many
as 16 stages of subdivision, the final stage being ter-
minated by alveolar sacs that provide most of storage
volume. The interaction of exhaled air pressure and air
flow with the flaps of this valve when they have been

brought together (or adducted) causes them to vibrate
at very nearly their natural frequency, as determined by
mass and tension, and this in turn leads to an oscillat-
ing air flow through the valve. The classic treatment of
the human vocal valve is that of Ishizaka and Flana-
gan [19.25], but there have been many more recent
treatments exploring modifications and refinements of
this model. Very similar vocal valves are found in other
mammals, while the major difference in the case of
birds is that the flaps of the vocal folds are replaced by
opposed taut membranes inflated by air pressure in cav-
ities behind them, and there may be two such valves, as
shown in Fig. 19.6b and discussed later in Sect. 19.6.

In most cases, the vibration frequency of the valve
is very much lower than the frequency of the first max-
imum in the upper vocal tract impedance. The valve
therefore operates in a nearly autonomous manner at
a frequency determined by its geometry, mass and ten-
sion and, to a less extent, by the air pressure in the
animal’s lungs. Because any such valve is necessarily
nonlinear in its flow properties, particularly if it actually
closes once in each oscillation cycle, this mechanism
generates an air flow, and thus a sound wave in the vo-
cal tract, containing all harmonics of the fundamental

a) b)

Fig. 19.5a,b A typical time-resolved spectrum for (a) hu-
man female speech, and (b) the cry of a raven, the level of
each frequency component being indicated by its darkness.
The frequency range is 0–6 kHz and the duration about
0.7 s in (a) and 0.5 s in (b). It can be seen that at any instant
the spectrum consists of harmonics of the fundamental,
with particular bands of frequencies being emphasized.
These are the formant bands that distinguish one vowel
from another in humans and enable similar distinctions to
be made by other animals. Consonants in human speech
consist of broadband noise, an example occurring at the
beginning of the second syllable in (a), and other animals
may have similar interpolations between the tonal sounds
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oscillation. The radiated amplitudes of these harmonics
can be modified by resonances in the air column of the
vocal tract to produce variations in sound quality and
peaks in the radiated spectrum known generally as vo-
cal formants. Changing the tension of the valve flaps
changes the fundamental frequency of the vocal sound,
but the frequencies of the formants can be changed inde-
pendently by moving the tongue, jaws, and lips or beak.

To be more quantitative, suppose that the pressure
below the valve is p0 and that above the valve p1. If the
width of the opening is W and its oscillating dimension
is x(t), then the volume flow U1 through it is determined
primarily by Bernoulli’s equation and is approximately

U1(t) =
(

2(p0− p1)

ρ

)1/2

Wx(t) , (19.2)

where ρ is the density of air. In order for the valve to be
maintained in oscillation near its natural frequency f ,
the pressure difference p0− p1 must vary with the flow
and with a phase that is about 90◦ in advance of the
valve opening x(t). This can be achieved if the acous-
tic impedance of the lungs and bronchi is essentially
compliant, and that of the upper vocal tract small, at the
oscillation frequency. The fact that this pressure differ-
ence appears as a square root in (19.2) then introduces
upper harmonic terms at frequencies 2 f , 3 f, . . . into the
flow U(t). Allowance must then be made for the fact
that the vocal valve normally closes for part of each
oscillation cycle, so that x(t) is no longer simply sinu-
soidal, and this introduces further upper-harmonic terms
into the flow. This is, of course, a very condensed and
simplified treatment of the vocal flow dynamics, and
further details can be found in the literature for the case
of mammalian, and specifically human, animals [19.25]
and also for birds [19.26].

This is, however, only the beginning of the analysis,
for it is the acoustic flow out of the mouth that deter-
mines the radiated sound, rather than the flow from the
vocal valve into the upper vocal tract. Suppose that the
acoustic behavior of the upper vocal tract is represented
by a 2 × 2 matrix, as shown in Fig. 19.11 of Sect. 19.10,
and that the mouth or beak is regarded as effectively
open so that the acoustic pressure p2 at this end of the
tract is almost zero. Then the acoustic volume flow U2
out of the mouth at a particular angular frequency ω is

U2 = Z21

Z22
U1 , (19.3)

where U1 is the flow through the larynx or syrinx at this
frequency. For the case of a simple cylindrical tube of

a)

b)

Lung

Bronchus Trachea

Vocal
folds Tongue

Lips

Mouth

Lung

Bronchus

Trachea

Beak

Mouth

TongueSyrinx

Fig. 19.6 (a) Sketch of the vocal system of a typical land
mammal. The lungs force air through the dual-flap vocal-
fold valve, producing a pulsating flow of air that is rich
in harmonics of the fundamental frequency. Resonances of
the upper vocal tract, which can be modified by motion of
the tongue and lips, produce formants in the sound spec-
trum which encode vocal information. (b) Sketch of the
vocal system of a typical song-bird. There are two inflated-
membrane valves in the syrinx just below the junction of
the bronchi with the trachea, which may be operated ei-
ther separately or together. Again a harmonic-rich airflow
is produced that can either have formants imposed by reso-
nances of the vocal tract and beak, or can be filtered to near
pure-tone form by an inflated sac in the upper vocal tract

length L at angular frequency ω, this gives

U2 = U1

cos kL
, (19.4)

where k = (ω/c)− iα, c is the speed of sound in air, and
α is the wall damping in the vocal tract. If the spec-
trum of the valve flow U1 has a simple envelope, as is
normally the case, then (19.4) shows that the radiated
sound power, which is proportional to ω2U2

2 , has max-
ima when ωL/c = (2n−1)π/2, and thus in a sequence
1, 3, 5, . . . These are the formant bands, the precise fre-
quency relationship of which can be varied by changing
the geometry of the upper vocal tract, which in turn
changes the forms of Z21 and Z22.
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Some other air-breathing animals (and even human
sopranos singing in their highest register) however, ad-
just their vocal system so that the frequency of the vocal
valve closely matches a major resonance of the upper
vocal tract, usually that of lowest frequency but not nec-
essarily so. Some species of frogs and birds achieve this
by the incorporation of an inflatable sac in the upper vo-
cal tract. In some cases the sac serves simply to provide
a resonance of appropriate frequency, and the sound is
still radiated through the open mouth, but in others the
walls of the sac are very thin so that they vibrate under
the acoustic pressure and provide the primary radiation
source. This will be discussed again in Sect. 19.6 in re-
lation to bird song, but the analysis for frog calls is
essentially the same.

The overall efficiency of sound production in ver-
tebrates is generally only 0.1–1%, which is about the
same as for musical instruments. The acoustic output
power output is typically in the milliwatt range even for
quite large animals, but there is a very large variation
between different species in the amount of effort that is
expended in vocalization.

The hearing mechanism of land-dwelling verte-
brates shows considerable similarity across very many
species. Sound is detected through the vibrations it in-
duces in a light taut membrane or tympanum, and these
vibrations are then communicated to a transduction
organ where they are converted to nerve impulses, gen-
erally through the agency of hair cells. The mechanism
of neural transduction and frequency discrimination is
complex, and its explanation goes back to the days
of Helmholtz [19.27] in the 19th century, with the
generally accepted current interpretation being that of
von Békésy [19.28] in the mid-20th century. Although
these studies related specifically to human hearing, the
models are generally applicable to other land-dwelling
vertebrates as well, as surveyed in the volume edited by
Lewis et al. [19.29]. All common animals have two au-
ditory transducers, or ears, located on opposite sides of
the head, so that they are able to gain information about
the direction from which the sound is coming.

In the simplest such auditory system, found for ex-
ample in frogs, the two ears open directly into the mouth
cavity, as shown in Fig. 19.7a, one neural transducer be-
ing closely coupled to each of the two tympana. Such
a system is very easily analyzed at low frequencies
where the cavity presents just a simple compliance with
no resonances of its own. Details of the approach are
similar to those for the more complex system to be dis-
cussed next. For a typical case in which the ears are
separated by 20 mm, the cavity volume is 1 cm3, and the
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Fig. 19.7 (a) A simple frog-ear model; (b) the calculated
frequency response for ipsilateral (I) and contralateral (C)
sound signals for a particular optimized set of parameter
values; (c) the calculated directivity at different frequen-
cies, shown in kHz as a parameter (after [19.9])

loaded tympanum resonance is at 500 Hz, the calculated
response has the form shown in Fig. 19.7b. Directional
discrimination is best at the tympanum resonance fre-
quency and can be as much as 20 dB. In a more realistic
model for the case of a frog, the nostrils must also be in-
cluded, since they lead directly into the mouth and allow
the entry of sound. The calculated results in this case
show that the direction of maximum response for each
ear is shifted towards the rear of the animal, typically by
as much as 30◦ [19.9].

In another simple auditory system such as that of
most reptiles, and surprisingly birds, the two tympana
are located at the ends of a tube passing through the
head and each is supplied with its own neural trans-
ducer, as shown in Fig. 19.8a. The tympana may be
recessed at the end of short tubes to provide protec-
tion, these tubes only slightly modifying the frequency
response. The behavior of such a system can be ana-
lyzed using the electric network analogs discussed in
Sect. 19.10, with each tympanum involving a series L ,
R, C combination and the tube being represented by a
2 × 2 impedance matrix Zij . If the sound comes from
straight in front, then it is the same in magnitude and
phase at each ear, so that their responses are necessarily
the same. When the sound comes from one side, how-
ever, there is a phase difference between the two ear
pressures, along with a rather less significant amplitude
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a)
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Fig. 19.8 (a) Idealized model of the auditory system of
a lizard or bird. Each tympanum is connected to a neural
transducer and the two are joined by a simple tube. (b) Re-
sponse of a particular case of the system in (a) to ipsilateral
(I) and contralateral (C) sound of amplitude 0.1 Pa (equiva-
lent to 74 dB re 20 μPa). The tube diameter is assumed to
be 5 mm and its length 20 mm, while the tympana have
a thickness of 10 μm and are tensioned to a resonance fre-
quency of 1000 Hz. (c) Directional response of this hearing
system (after [19.9])

difference. The motion of each tympanum is determined
by the difference between the internal and external pres-
sures acting upon it, and the internal pressure depends
upon the signal transferred from the opposite tympa-
num, modified by the phase delay or resonance of the
coupling tube. The analysis is straightforward, but the
resulting behavior, which depends upon the mass and
tension of the tympana and the length and diameter
of the connecting tube, can only be determined by ex-
plicit calculation [19.9]. When these parameters are
appropriately chosen, each ear has a strongly directional
response near the resonance frequency of the tympana,
as shown in Fig. 19.8b, c. The balance between the
depth and sharpness of the contralateral minimum is
affected by the acoustic absorption in the walls of the
connecting canal. In some animals, the bone lining of
this canal is actually porous, which reduces the effec-
tive sound-wave velocity inside it and so increases the
phase shift between internal and external signals, a fea-
ture that is of assistance when the physical separation of
the ears is small.

In most mammals and other large animals, the au-
ditory system is modified in several significant ways.

The first is that the auditory canal joining the two
ears in birds and reptiles has generally degenerated in
mammals to the extent that each ear functions nearly
independently. The connecting canal in humans has be-
come the pair of Eustachian tubes running from the
middle ear cavity, which contains the bones linking the
tympanum to the cochlea, down to the nasal cavities,
and its main purpose is now simply to equalize internal
and external static pressures and to drain excess fluids.
The middle ear cavity itself is necessary in order that
the enclosed air volume be large enough that it does not
raise the resonance frequency of the tympanum by too
much. The topology of the whole system is surprisingly
similar to that of the cricket auditory system shown in
Fig. 19.2a, but the functions of some of the elements are
now rather different.

The other major change is that, instead of the tym-
pana being located almost on the surface of the animal,
they are buried below the surface at the end of short
auditory canals (meati), which lead to external ears (pin-
nae) in the shape of obliquely truncated horns. As well
as protecting the tympana from mechanical damage,
the canals add a minor resonance of their own, gen-
erally in the upper part of the auditory range of the
animal concerned. The pinnae both increase the level
of the pressure signal, typically by about 10 dB and in
some cases even more, and impart a directionality to the
response [19.9, 30]. The convoluted form of some pin-
nae also imparts directionally-excited resonances that
help distinguish direction from tonal cues, a feature
that is necessary in order to distinguish up/down di-
rections for sounds coming from immediately ahead
or immediately behind. Some animals with particu-
larly large pinnae, such as kangaroos, are able to rotate
these independently to help locate a sound source. In
all such cases, however, the neural system plays a large
part in determining sound direction by comparing the
phases and amplitudes, and sometimes the precise tim-
ing of transients, in the signals received by the two
ears.

In a hearing system of any simple type it is clear
that, if geometrical similarity is maintained and the sys-
tem is simply scaled to the linear size of the animal
concerned, then the frequency of maximum discrim-
ination will vary as the inverse of the linear size of
the animal, giving an approximate match to general
trend of vocalization behavior. There is, however, one
anomaly to be noted [19.31]. Vocalizations by some
frogs have fundamental frequencies as high as 8 kHz
and the vocal signal contains prominent formant bands
in the case studied at 20 kHz and 80 kHz, so that they
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might almost be classed as ultrasonic. Despite this, be-
havioral evidence indicates that these frogs cannot hear
signals much above 10 kHz, so that perhaps the formant

bands are simply an epiphenomenon of the sound pro-
duction system. The same is true of the calls of some
birds.

19.6 Birds

Because of their generally melodious songs, birds have
excited a great deal of attention among researchers, as
described in several classic books [19.32, 33]. Hearing
does not require further discussion because the auditory
system is of the simple tube-coupled type discussed in
Sect. 19.5 and illustrated in Fig. 19.8. Research interest
has focused instead on the wide range of song types
that are produced by different species. These range from
almost pure-tone single-frequency calls produced by
doves, and whistle-like sounds sweeping over more than
a 2 : 1 frequency range produced by many other species,
through wide-band calls with prominent formants, to
the loud and apparently chaotic calls of the Australian
sulfur-crested cockatoo. Some birds can even produce
two-toned calls by using both syringeal valves simulta-
neously but with different tuning.

As noted in Sect. 19.5 and illustrated in Fig. 19.6b,
song birds have a syrinx consisting of dual inflated-
membrane valves, one in each bronchus just below their
junction with the trachea. These valves can be operated
simultaneously and sometimes at different frequencies,
but more usually separately, and produce a pulsating
air-flow rich in harmonics. In birds such as ravens, the
impedance maxima of the vocal tract, as measured at
the syringeal valve, produce emphasized spectral bands
or formants much as in human speech, as is shown
in Fig. 19.5. The vocal tract of a bird is much less
flexible in shape than is that of a mammal, but the
formant frequencies can still be altered by changes in
tongue position and beak opening. Studies with labo-
ratory models [19.34] show that the beak has several
acoustic functions. When the beak is nearly closed, it
presents an end-correction to the trachea that is about
half the beak length at high frequencies, but only about
half this amount at low frequencies, so that the formant
resonances are brought closer together in frequency. As
the beak gape is widened, the end-correction reduces
towards the normal value for a simple open tube at
all frequencies. The beak also improves radiation ef-
ficiency, particularly at higher frequencies, by about
10 dB for the typical beak modeled. Finally, the beak
enhances the directionality of the radiated sound, par-
ticularly at high frequencies and for wide gapes, this

enhanced directionality being as much as 10 dB com-
pared with an isotropic radiator.

The role of the tongue has received little attention
as yet, partly because it is rather stiff in most species
of birds. It does, however, tend to constrict the passage
between the top of the trachea and the root of the beak,
and this constriction can be altered simply by raising the
tongue, thereby exaggerating the end-correction pro-
vided to the trachea by the beak. These models of beak
behavior can be combined with models of the syrinx
and upper vocal tract [19.26] to produce a fairly good
understanding of vocalization in birds such as ravens.
The fundamental frequency of the song can be changed
by changing the muscle tension and thus the natural
resonance frequency of the syringeal valve, while the
formants, and thus the tone of the song, can be var-
ied by changing the beak opening and tongue position.
The role of particular anatomical features and muscu-
lar activities in controlling the fundamental pitch of the
song has since been verified by careful measurement
and modeling [19.35, 36].

Some birds have developed the ability to mimic
others around them, a notable example being Aus-
tralian Lyrebirds of the family Menuridae which, as
well as imitating other birds, have even learned to mimic
human-generated sounds such as axe blows, train whis-
tles, and even the sound of film being wound in cameras.
There has also been considerable interest in the vo-
calization of certain parrots and cockatoos, which can
produce, as well as melodious songs, quite intelligi-
ble imitations of human speech. The important thing
here is to produce a sound with large harmonic content
and then to tune the vocal tract resonances, particularly
those that have frequencies in the range 1–2.5 kHz,
to match those of the second and third resonances of
the human vocal tract, which are responsible for dif-
ferentiating vowel sounds. Consonants, of course, are
wide-band noise-like transients. Careful studies of var-
ious parrots [19.37, 38] show that they can achieve this
by careful positioning of the tongue, much in the way
that humans achieve the same thing but with quanti-
tative differences because of different vocal tract size.
The match to human vowels in the second and third
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human formants can be quite good. The first formant,
around 500 Hz in humans, is not reproduced but this is
not important for vowel recognition.

These studies produce a good understanding of the
vocalization of normal song-birds, the calls of which
consist of a dominant fundamental accompanied by
a range of upper harmonics. Less work has been done on
understanding the nearly pure-tone cries of other birds.
For many years there has been the supposition that the
sound production mechanism in this case was quite
different, perhaps involving some sort of aerodynamic
whistle rather than a syringeal vibration. More recent
experimental observations on actual singing birds, using
modern technology [19.39], have established however
that, at least in the cases studied, the syringeal valve is in
fact normally active, though it does not close completely
in any part of the cycle, thus avoiding the generation
of large amplitudes of upper harmonics. Suppression of
upper harmonics can also be aided by filtering in the
upper vocal tract [19.40].

In the case of doves, which produce a brief pure-
tone coo sound at a single frequency, the explanation
appears to lie in the use of a thin-walled inflated
esophageal sac and a closed beak, with fine tuning
provided by an esophageal constriction [19.41]. The
volume V of air enclosed in the sac provides an acoustic
compliance C = V/ρc2 that is in parallel with an acous-
tic inertance L = m/S2 provided by the mass m and
surface area S of the sac walls. The resonance frequency
f of this sac filter is given by

f = 1

2π

(
ρc2S2

mV

)1/2

, (19.5)

where ρ is the density of air and c is the speed of sound
in air. When excited at this frequency by an inflow of
air from the trachea, the very thin expanded walls of the
sac vibrate and radiate sound to the surrounding air. For
a typical dove using this strategy, the wall-mass and di-
mensions of the inflated sac are about right to couple
to the coo frequency of about 900 Hz. From (19.5), the

resonance frequency varies only as the square root of
the diameter of the sac, so that a moderate exhalation
of breath can be accommodated without much distur-
bance to the resonance. The dove must, however, learn
to adjust the glottal constriction to couple the tracheal
resonance efficiently to that of the sac.

Some other birds, such as the Cardinal, that produce
nearly pure-tone calls over a wide frequency range, ap-
pear to do so with the help of an inflated sac in the
upper vocal tract that leads to the opened beak, with
the tracheal length, sac volume, glottal constriction,
tongue position, and beak opening all contributing to
determine the variable resonance frequency of the fil-
ter. Because the sac is not exposed as in the dove, its
walls are heavy and do not vibrate significantly. It thus
acts as a Helmholtz resonator, excited by the input flow
from the trachea and vented through the beak. The bird
presumably learns to adjust the anatomical variables
mentioned above to the syringeal vibration frequency,
which is in turn controlled by syringeal membrane ten-
sion, and can then produce a nearly pure-tone song
over quite a large frequency range. Despite this explana-
tion of the mechanism of pure-tone generation in some
cases, others have still to be understood, for the vari-
ety of birdsong is so great that variant anatomies and
vocalization skills may well have evolved.

With most of the basic acoustic principles of bird-
song understood, most of the interest in birdsong
centers upon the individual differences between species.
The variety found in nature is extremely great and,
while sometimes correlated with large variations in
bird anatomy, it also has many environmental in-
fluences. Some birds, surprisingly, have songs with
prominent formant bands extending well into the ul-
trasonic region, despite the fact that behavioral studies
and even auditory brainstem measurements show that
they have no response above about 8 kHz [19.31, 42].
The formant bands in these cases are therefore pre-
sumably just an incidental product of the vocalization
mechanism.

19.7 Bats

Since human hearing, even in young people, is lim-
ited to the range from about 20 Hz to about 20 kHz,
frequencies lying outside this range are referred to as
either infrasonic or ultrasonic. Very large animals such
as elephants may produce sounds with appreciable in-
frasonic components, though the higher harmonics of
these sounds are quite audible. Small animals such as

bats, however, produce echo-location calls with dom-
inant frequencies around 80 kHz that are inaudible to
humans, though some associated components of lower
frequency may be heard. In this section brief atten-
tion will be given to the sonar abilities of bats, though
some other animals also make use of ultrasonic tech-
niques [19.43].
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Sound waves are scattered by any inhomogeneities
in the medium through which they are propagating, the
density of an animal body in air provides a large contrast
in acoustic impedance and therefore a large scattered
signal. The basic physics shows that, for a target in the
form of a sphere of diameter d and a signal of wave-
length λ� d, the echo strength is proportional to d6/λ4

times the incident intensity. This incident intensity is
itself determined by the initial signal power and the an-
gular width of the scanning signal, which varies about
as λ/a, where a is the radius of the mouth of the probing
animal. If R is the distance between the probing animal
and the target, then the sound power incident on the tar-
get varies as a2/λ2 R2 and the returned echo strength E
thus varies as

E ∝ d6a2

λ6 R4
, (19.6)

provided the wavelength λ is much greater than the
diameter d of the scattering object and the radius a of
the mouth. Another factor must, however, be added to
this equation and that is the attenuation of the sound
due to atmospheric absorption. This attenuation de-
pends on relative humidity, but is about 0.1 dB m−1 at
10 kHz, increasing to about 0.3 dB m−1 at 100 kHz, and
so is not a very significant factor at the short ranges
involved.

Once the size of the target becomes comparable
with the incident sound wavelength, the scattering tends
towards becoming reflection and geometrical-optics
techniques can be used. In this limit, the reflected inten-
sity is proportional to the area of the target, but depends
in a complicated way upon its shape and orientation. Fi-
nally, if a pure-tone sound is used, any Doppler shift in
the frequency of the echo can give information about
the relative motion of prey and predator. The reflected
sound can therefore give information about the nature
of the target and its motion, both of which are important
to the pursuing bat.

The sonar-location cries of bats and other ani-
mals are, however, not pure-tone continuous signals but
rather sound pulses with a typical frequency in the range
40–80 kHz and so a wavelength of about 4–8 mm. This

wavelength is comparable to the size of typical prey in-
sects so that the echo can give information about size,
shape and wing motion, while the echo delay reveals
the distance. The bat’s large ears are also quite direc-
tional at these frequencies, so that further information
on location is obtained. Rather than using short bursts
of pure tone, some predators use longer bursts in which
the frequency is swept rapidly through a range of sev-
eral kilohertz. This technique is known as chirping, and
it allows the returned echo to be reconstructed as a sin-
gle pulse by frequency-dependent time delay, although
animal neural systems may not actually do this. The ad-
vantage of chirping is that the total energy contained in
the probing pulse, and thus the echo, can be made much
larger without requiring a large peak power.

Because of the high frequencies involved in such
sonar detection, bats have a hearing system that is
specialized to cover this high-frequency range and to
provide extended frequency resolution near the signal
frequency, perhaps to aid in the neural equivalent of
de-chirping the signal and detecting Doppler frequency
shifts. The auditory sensitivity curve of bats is similar
in shape to that of humans (threshold about 20 μPa), but
shifted up in frequency by a factor of about 20 to give
high sensitivity in the range 10–100 kHz [19.1]. The
threshold curve generally shows a particular sensitivity
maximum near the frequency of the echo-location call,
as might be expected. Bats also generally have forward-
facing ears that are large in comparison with their body
size. The functions of these in terms of increased direc-
tionality and larger receiving area are clear [19.30].

Sound production in bats is generally similar to
that in other animals, but with the system dimensions
tailored to the higher frequencies involved, and often
with the sound emitted through the nose rather than the
mouth. The complicated geometry of the nasal tract,
which has several spaced enlargements along its length,
appears to act as an acoustic filter which suppresses the
fundamental and third harmonic of the emitted sound
while reinforcing the second harmonic, at least in some
species [19.44]. The physics of this arrangement is
very similar to that of matching stubs applied to high-
frequency transmission lines.

19.8 Aquatic Animals

The generation and propagation of sound under wa-
ter, as discussed in Chap. 20, have many features that
are different from those applying to sound in air. From
a physical point of view, a major difference is the

fact that water is often quite shallow compared with
the range of sound, so that propagation tends to be
two-dimensional at long distances. From the present
biological viewpoint the major difference is that the
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acoustic impedance of biological tissue is nearly equal
to that of the surrounding water, while in air these dif-
fer by a factor of about 3500. This leads to some very
significant differences in the auditory anatomy and be-
havior between aquatic and air-dwelling animals.

The variety of aquatic animal species is compara-
ble to that of land-dwelling animals, and they can be
divided into three main categories for the purposes of
the present chapter. First come the crustaceans, such as
shrimp, lobsters and crabs, which are analogous to in-
sects, then the wide variety of fish with backbones, and
finally the air-breathing aquatic mammals such as the
cetaceans (whales, dolphins and porpoises, which are
the subject of Chap. 20), though animals such as tur-
tles also come into this category. There are, of course,
many other categories of marine animal life, but they
are not generally significant from an acoustic point of
view. A good review has been given by Hawkins and
Myrberg [19.45].

The crustaceans, like most insects, generally pro-
duce sound by rubbing a toothed leg-file against one of
the plates covering their body, thus producing a pulse
of rhythmic clicks. Some animals, such as shrimp, may
produce a single loud click or pop by snapping their
claws in much the same way that a human can do with
fingers. Because this activity takes place under water,
which has density ρ about 800 times greater and sound
velocity c about 4.4 times greater than that of air, and
thus a specific acoustic impedance ρc about 3500 times
greater than air, the displacement amplitude of the vi-
bration does not need to be large, and the vibrating
structure is generally small and stiff. The peak radiated
acoustic power in the click can, however, be very large –
as much as several watts in the Pistol shrimp Alphei-
dae – probably from a mechanism involving acoustic
cavitation. The click lasts for only a very short time,
however, so that the total radiated energy is small.

Fish species that lack an air-filled swim-bladder, the
main purpose of which is to provide buoyancy, must
produce sound in a similar manner. For fish that do have
a swim-bladder, however, the sound production process
is much more like that of the cicada, with some sort of
plate or membrane over the bladder, or even the bladder
wall itself, being set into oscillation by muscular effort
and its displacement being aided by the compressibil-
ity of the air contained in the bladder. The surrounding
tissue and water provide a very substantial mass load-
ing which also contributes to determining the primary
resonance frequency of the bladder. This is a much
more efficient sound production process than that of
the crustaceans and leads to much louder sounds, again

generally consisting of a train of repetitive pulses at
a frequency typically in the range 100–1000 Hz.

When it comes to sound detection, hair cells again
come into play in a variety of ways. Because the dens-
ity of the animal body is very similar to that of the
surrounding water, a plane wave of sound tends to sim-
ply move the animal and the water in just the same
way. The slight difference in density, however, does
allow for some differential motion. The animal body
is, however, relatively rigid, so that its response to di-
verging waves in the near field is rather different from
that of the liquid. Any such relative motion between
the body and the surrounding water can be detected by
light structures such as hairs protruding from the body
of the animal, and these can form the basis of hair-
cell acoustic detectors. Even more than this, since such
cells are generally sensitive to hair deflection in just
one direction, arrays of hair cells can be structured so
as to give information about the direction of origin of
the sound. Although some such detector hairs may be
mechanically strong and protrude from the body of the
animal, others may be very small and delicate and may
be protected from damage by being located in trench-
like structures, these structures being called lateral-line
organs. Their geometry also has an effect on sound lo-
calization sensitivity.

There is another type of hair detector that responds
to acceleration rather than relative displacement and
that therefore takes advantage of the fact that the body
of the animal tends to follow the acoustic displacement
of the surrounding water. This is the otolith, which con-
sists of a small dense calcareous stone supported by one

a) b)

Hair
Compliant
sensory
cells

Liquid
medium

Mineral
grain

Liquid
medium

Sensory hair

Resilient substrateResiliant supporting tissue

Mineral
grain

Fig. 19.9a,b Two possible forms for a simple otolith de-
tector: (a) a single-cell detector, (b) a multi-cell detector.
As the mineral grain moves sideways relative to the sub-
strate, the sensory hairs are deflected and open ion channels
in the supporting transducer cells (after [19.9])
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or more hair cells,as shown in Fig. 19.9. Since the mo-
tion of this stone tends to lag behind the motion of the
liquid, and thus of its supports, the supporting hairs are
deflected in synchrony with the acoustic stimulus, so
that it can be detected by the cells to which they are
attached. These sensors will normally have evolved so
that combined mass of the otolith and stiffness of the
hair give a resonance frequency in the range of interest
to the animal, and detection sensitivity will be greatest
at this frequency.

If the fish possesses an air-filled swim-bladder,
then this can also be incorporated in the hearing sys-
tem [19.46]. An air bubble in water is made to move in
a sound wave by the differential pressure across it. Be-
cause its mass is small and the pressure gradient is the
same as that on an equivalent volume of water, the bub-
ble tends to move more than the surrounding liquid but,
in order to do so, it must displace a significant amount of

this liquid. The final result is that the amplitude of free
bubble motion is about three times the amplitude of the
motion of the surrounding liquid. Since the body of the
fish tends to follow the liquid motion because its den-
sity is nearly the same, there is relative motion between
the bladder and the rest of the fish, provided it is not
rigidly enclosed. This relative motion can be detected
by neural cells pressed against the bladder wall and
provides an efficient sensor of underwater sound. The
radial compressive resonances of the swim bladder can
also be important in the detection of sound and, since
these are also involved in sound production in these
fish, there is a good match between call frequency and
the frequency of maximum hearing sensitivity, which
typically lies in the range 100 to 1000 Hz. Fish with
swim bladders have thus evolved to use these primarily
buoyancy-regulating structures for both the production
and detection of sound.

19.9 Generalities

This brief survey has shown the strong resemblance
between the basic sound-producing and auditory mech-
anisms in a wide variety of animals. Certainly there is
a distinction in the matter of sound production between
those animals that store air within their bodies and those
that do not, and a rather similar distinction in the matter
of sound detection, but the similarities are more striking
than the differences. In particular, the universal impor-
tance of hair-cells in effecting the transduction from
acoustic to neural information is most striking.

Also notable in its generality is the scaling of
the dominant frequency of produced sound and the

associated frequency of greatest hearing sensitivity ap-
proximately inversely with the linear dimensions of the
animal involved. Certainly there are notable outliers in
this scaling, but that in itself is a clue to the signifi-
cantly different acoustic behavior of the animal species
concerned.

Fortunately, quite straightforward acoustic analysis
provides a good semi-quantitative description of the
operation of most of these animal acoustic systems,
and in some cases such analysis can reveal evolution-
arily optimized solutions to modern acoustical design
problems.

19.10 Quantitative System Analysis

Biological systems are almost always anatomically
complex, and this is certainly true of vocal and auditory
systems, which typically comprise sets of interconnect-
ing tubes, horns, cavities and membranes driven over
a wide frequency range by some sort of internal or ex-
ternal excitation. While a qualitative description of the
way in which such a system works can be helpful, this
must be largely based upon conjectures unless one is
able to produce a quantitative model for its behavior.
Fortunately a method has been developed for the con-
struction of detailed analytical models for such systems

from which their acoustic behavior can be quantitatively
predicted, thus allowing detailed comparison with ex-
periment. This section will outline how this can be done,
more detail being given in [19.9] and [19.20].

In a simple mechanical system consisting of masses
and springs, the quantities of interest are the force Fi ap-
plied at point i and the resulting velocity of motion v j
at point j, and we can define the mechanical impedance
Zmech by the equation Zmech

jj = Fj/v j . Note that the
subscripts on F and v are here both the same, so that
Zmech

jj is the ratio of these two quantities measured at

Part
F

1
9
.1

0



836 Part F Biological and Medical Acoustics

a single point j. It is also possible to define a quantity
Zmech

ij = Fi/v j which is called the transfer impedance
between the two points i and j. There is an important
theorem called the reciprocity theorem, which shows
that Z ji = Zij .

In such a simple mechanical system, as well as the
masses and springs, there is normally some sort of loss
mechanism, usually associated with internal viscous-
type losses in the springs, and the situation of interest
involves the application of an oscillating force of mag-
nitude F and angular frequency ω. We denote this
force in complex notation as F eiωt where i =√−1.
(Note that, in the interest of consistency throughout
this Handbook, this notation differs from the standard
electrical engineering notation in which i is replaced
by j.) For the motion of a simple mass m under the
influence of a force F we know that F = m dv/dt
or F = iωmv, so that the impedance provided by
the mass is iωm. Similarly, for a spring of compli-
ance C, F = ∫ vdt/C =−i/(ωC), giving an impedance
−i/(ωC). For a viscous loss within the spring there is
an equivalent resistance R proportional to the speed of
motion, so that F = Rv. Examination of these equations
shows that they are closely similar to those for electric
circuits if we assume that voltage is the electrical analog
of force and current the analog of velocity. The analog
of a mass is thus an inductance of magnitude m, the
analog of a compliant spring is a capacitance C, and the
analog of a viscous resistance is an electrical resistance
R. A frictional resistance is much more complicated to
model since its magnitude is constant once sliding oc-
curs but changes direction with the direction of motion,
so that its whole behavior is nonlinear.

These mechanical elements can then be combined
into a simple circuit, two examples being shown in
Fig. 19.10. In example (a) it can be seen that the mo-
tion of the mass, the top of the spring, and the viscous
drag are all the same, so that in the electrical analog the
same current must flow through each, implying a sim-
ple series circuit as in (b). The total input impedance is
therefore the sum of the three component impedances,
so that

Zmech = R+ iωm− i

ωC
= R+ im

ω

(
ω2− 1

mC

)
,

(19.7)

which has an impedance minimum, and thus maximum
motion, at the resonance frequency ω∗ = 1/(mC)1/2. In
example (c), the displacement of the top of the spring is
the sum of the compressive displacement of the spring
and the motion of the suspended mass, and so the analog

a) Force

Mass

Spring Viscous
drag

c) Force

Spring Viscous
drag

Mass

b)

d)

Force

Force

Mass

Mass

Spring Drag

Spring Drag

Fig. 19.10 (a) A simple resonant assembly with an oscil-
lating force applied to a mass that is resting on a rigidly
supported spring, the spring having internal viscous losses.
(b) Analog electric network for the system shown in (a).
(c) An alternative assembly with the mass being freely
suspended from the spring and the oscillating force being
applied to the free end of the spring. (d) Analog electric
network for the system shown in (c). (Note the potential
source of confusion in that an electrical inductance symbol
looks like a physical spring but actually represents a mass)

current is split between the spring on the one hand and
the mass on the other, the viscous drag having the same
motion as the spring, leading to the parallel resonant
circuit shown in (d). There is an impedance maximum,
and thus minimum motion of the top of the spring, at the
resonance frequency, which is again ω∗ = 1/(mC)1/2.
In a simple variant of these models, the spring could be
undamped and the mass immersed in a viscous fluid, in
which case the resistance R would be in series with the
inductance rather than the capacitance. These analogs
can be extended to include things such as levers, which
appear as electrical transformers with turns ratio equal
to the length ratio of the lever arms.

While such combinations of mechanical elements
are important in some aspects of animal acoustics, such
as the motion of otolith detectors, most of the sys-
tems of interest involve the generation and detection
of acoustic waves rather than of mechanical vibrations.
The important physical variables are then the acoustic
pressure p and the acoustic volume flow U , both being
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functions of the frequency ω. By analogy with mechan-
ical systems, the acoustic impedance is now defined as
Zacoust = p/U . For a system with a well-defined mea-
surement aperture of area S, it is clear that p = F/S
and U = vS, so that Zacoust = Zmech/S2, and once again
we can define both the impedance at an aperture and
the transfer impedance between two apertures. In what
follows, the superscript acoust will be omitted for sim-
plicity.

Consider first the case of a circular diaphragm un-
der elastic tension and excited by an acoustic pressure
peiωt on one side. This problem can easily be solved
using a simple differential equation [19.9], but here we
seek a network analog. The pressure will deflect the
diaphragm into a nearly spherical-cap shape, displac-
ing an air volume as it does so. If the small mass of
the deflected air is neglected, then deflection of the
diaphragm will be opposed by its own mass inertia,
by the tension force and by internal losses. The mass
contributes an acoustic inertance (or inductance in the
network analog) with magnitude about 2ρsd/S, where
ρs is the density of the membrane material, d is the
membrane thickness, and S is its area, while the tension
force T contributes an equivalent capacitance of magni-
tude about 2S2/T . This predicts a resonance frequency
ω∗ ≈ 0.5(T/Sρsd)1/2, while the rigorously derived fre-
quency for the first mode of the diaphragm replaces the
0.5 with 0.38. Because biological membranes are not
uniform in thickness and are usually loaded by neural
transducers, however, it is not appropriate to worry un-
duly about the exact values of numerical factors. For
a membrane there are also higher modes with nodal
diameters and nodal circles, but these are of almost
negligible importance in biological systems.

The next thing to consider is the behavior of cav-
ities, apertures, and short tubes. The air enclosed in
a rigid container of volume V can be compressed by
the addition of a further small volume dV of air and the
pressure will then rise by an amount p0γ dV/V where
p0 is atmospheric pressure and γ = 1.4 is the ratio of
specific heats of air at constant pressure and constant
volume. The electric analog for this case is a capaci-
tance of value γ p0/V = ρc2/V where c is the speed of
sound in air and ρ is the density of air.

In the case of a tube of length l and cross-section S,
both very much less than the wavelength of the sound,
the air within the tube behaves like a mass ρlS that is
set into motion by the pressure difference p across it.
The acoustic inertance, or analog inductance, is then
Z = ρl/S. For a very short tube, such as a simple aper-
ture, the motion induced in the air just outside the two

a)

U1 p1

S
p2 U2

I

p1 p2U1 U2Zij

b)

Fig. 19.11 (a) A simple uniform tube showing the acoustic
pressures pi and acoustic volume flows Ui . (b) The electri-
cal analog impedance element Zij . Note that in both cases
the current flow has been assumed to be antisymmetric
rather than symmetric

ends must be considered as well, and this adds an end-
correction of 0.6–0.8 times the tube radius [19.47] or
about 0.4S1/2 to each end of the tube, thus increasing
its effective length by twice this amount.

These elements can be combined simply by consid-
ering the fact that acoustic flow must be continuous and
conserved. Thus a Helmholtz resonator, which consists
of a rigid enclosure with a simple aperture, is modeled
as a capacitor and an inductor in series, with some re-
sistance added due to the viscosity of the air moving
through the aperture and to a less extent to radiation re-
sistance. The analog circuit is thus just as in Fig. 19.10b
and leads to a simple resonance.

If any of the components in the system under
analysis is not negligibly small compared with the
wavelength of the sound involved, then it is necessary
to use a more complex analysis. For the case of a uni-
form tube of length l and cross section S, the pressure
and flow at one end can be denoted by p1 and U1 re-
spectively and those at the other end by p2 and U2.
The analog impedance is then a four-terminal element,
as shown in Fig. 19.11. The equations describing the
behavior of this element are

p1 = Z11U1− Z12U2 ,

p2 = Z21U1− Z22U2 . (19.8)

Note that the acoustic flow is taken to be inwards at
the first aperture and outwards at the second, and this
asymmetry gives rise to the minus signs in (19.8). Some
texts take both currents to be inflowing, which removes
the minus signs. For a simple uniform tube, symmetry
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demands that Z21 = Z12 and that Z22 = Z11. The first
of these relations, known as reciprocity, is universal and
does not depend upon symmetry, while the second is not
true for asymmetric tubes or horns.

For a uniform tube of length l and cross-section
S, consideration of wave propagation between the two
ends shows that

Z11 = Z22 =−iZ0 cot kl ,

Z21 = Z12 =−iZ0 csc kl , (19.9)

where Z0 = ρc/S is the characteristic impedance of the
tube. The propagation number k is given by

k = ω
c
− iα (19.10)

where α represents the attenuation caused by viscous
and thermal losses to the tube walls, and has the ap-
proximate value

α≈ 10−5ω
1/2

a
(19.11)

where a is the tube radius. Since auditory systems often
involve quite narrow tubes, this term can become very
important.

Similar but much more complicated relations apply
for horns of various shapes, the simplest being conical,
exponential or parabolic in profile [19.9]. As discussed
elsewhere [19.47], horns act as acoustic transformers,
basically because Z22 �= Z11, and can raise the acoustic
pressure in the narrow throat by about the ratio of the
mouth diameter to the throat diameter. This amplifica-
tion is limited, however, to frequencies high enough that
the horn diameter does not change greatly over an axial
distance of about one wavelength.

With the aid of these electric circuit element analogs
it is now possible to construct an analog network to
represent the whole acoustic system, as shown by the
example in Fig. 19.2. The major guiding principle in
constructing such a network is the conservation of
acoustic flow, or equivalently of electric current. In
the case of an auditory system, there may be several
openings connecting to the environment, and the acous-
tic pressures at these openings will generally differ in
both phase and amplitude, depending upon the direction
from which the sound is coming. Phase differences are
generally more important for directional discrimination
than are amplitude differences, particularly for small an-

imals, just as in directional microphones [19.47] and the
combination of tubes, cavities and membranes in the
system provides additional phase shifts. The sensory in-
put is normally generated by the motion of tympanic
membranes on the two sides of the animal, with the
combination of external and internal pressure determin-
ing the motion of each membrane, as shown for example
in Figs. 19.7 and 19.8.

When sound production is considered, it is usual to
make the approximation of separating the basic sound-
generation mechanism, such as the air flow through
vibrating vocal folds, from the acoustics of the sub-
sequent tubes and cavities, thus leading to a source/
filter model. With this simplification, the source can be
assumed to produce an oscillating acoustic flow at a par-
ticular frequency ω, generally accompanied by a set
of harmonics at frequencies nω generated by nonlin-
earity in the vibration of the flow valve. The sound
production at each frequency is then determined by the
final acoustic flow U(nω) through an aperture into the
surroundings. The square of this flow, multiplied the
acoustic radiation resistance of the aperture, which de-
pends upon its size, [19.47] then determines the radiated
acoustic power at that frequency. In a much more com-
plex model, the pressure generated by the acoustic input
flow can be recognized to act back upon the acoustic
source itself, thus modifying its behavior. Typically this
results in a small shift in the source frequency to align it
more closely with a neighboring strong resonance of the
filter. Such interactions are well known in other systems
such as musical wind instruments and probably assist in
coupling the oscillations of the syrinx to the resonance
of the vocal filter in pure tone birdsong.

Finally, it is worthwhile to emphasize that biolog-
ical acoustic systems do not consist of straight tubes
of uniform diameter with rigid walls, unloaded circu-
lar membranes, or other idealized elements. While it
is possible in principle to include such refinements in
a computational model, this will generally make that
model so complex to analyze that it reveals little about
the actual operation of the system. It is usually better,
therefore, to construct the simplest possible model that
includes all the relevant acoustic elements and to ex-
amine its predictions and the effect that changing the
dimensions of some of those elements has on the overall
behavior. In this way the behavior of the real biological
system can be largely understood.
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19.11 Information Transfer

The purpose of animal bioacoustics is essentially infor-
mation transfer. Sometimes, as with sonar, the target
information is overlaid on an initial signal sent from
the animal, sometimes it involves collecting informa-
tion about prey, but most often it involves information
transfer between two or more individuals of the same
species, and this is what is considered here. At the
lowest level, a sound signal indicates existence and lo-
cation, provided the receiver has an auditory system
capable of directional discrimination. The frequency of
a steady signal or the repetition frequency of a periodic
signal may also convey information about animal status,
territorial claim, or reproductive state. Of more inter-
est, however, is the way in which variable information
can be encoded in a vocal signal, ranging from birdsong
to human speech, and this is what is considered briefly
here. A more detailed account has been given else-
where [19.48] and an excellent exposition is provided
by Bradbury and Vehrenkamp [19.2]. For background
information see Chap. 14.14.

Because of the way in which they are produced,
most animal signals have a harmonic spectrum and
information is encoded in time variations of the ampli-
tude, the fundamental frequency, the spectral envelope
of the harmonics (e.g. vowels in human speech pro-
duced by modifying the vocal tract shape with the
tongue and lips) and by brief bursts of broadband noise
(e.g. consonants produced by releasing a burst of air
through a small constriction). The total possible infor-
mation content of the signal depends upon the rate at
which these components can be varied in a detectable
manner but the received signal may be partly obscured
by environmental noise and by the limitations of the
auditory system.

While some auditory signals, such as those of
insects, are very simple and repetitive, birds and mam-
mals usually have much more complex vocalizations.
Suppose the sound signal can be divided into small el-
ements, such as syllables, and that there can be n(T )
meaningful combinations of these elements in a signal
of length T , then by Shannon’s formal definition [19.49]
the information conveyed by this time-limited sig-
nal is log 2n(T ) bits, where a bit is a binary digit 0
or 1. For non-repetitive human speech n(T ) increases
exponentially with T so that the rate at which in-
formation is transmitted is constant and is typically
about 30 bits per second. In the case of a repetitive
signal, such as insect stridulation or many varieties
of birdsong, the repetition conveys no extra informa-
tion, so n(T ) is constant once T exceeds the repetition
time and the rate of information transfer is then in-
versely proportional to the time considered. Repetition,
however, can ensure the accurate reception of the in-
formation and can also transmit the signal to a wider
community.

The study of information transfer by different va-
rieties of animals is a very rich field that continues to
excite the interest of a large number of biologists. Such
studies can greatly enrich our knowledge of the animal
world.

Further Reading
The number of books and papers published in this

field is very large, so that the reference list below is
a rather eclectic selection. Generally descriptive and be-
havioral references have not been included, and the list
concentrates on those that apply physical and mathe-
matical analysis to bioacoustic systems.
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Cetacean Acou20. Cetacean Acoustics

Whitlow W. L. Au, Marc O. Lammers

The mammalian order cetacea consist of dol-
phins and whales, animals that are found in all
the oceans and seas of the world. A few species
even inhabit fresh water lakes and rivers. A list
of 80 species of cetaceans in a convenient table
is presented by Ridgway [20.1]. These mammals
vary considerably in size, from the largest liv-
ing mammal, the large blue whale (balaenoptera
musculus), to the very small harbor porpoise
(phocoena phocoena) and Commerson’s dol-
phin (cephalorhynchus commersonnii), which are
typically slightly over a meter in length.

Cetaceans are subdivided into two suborders,
odontoceti and mysticeti. Odontocetes are the
toothed whales and dolphins, the largest being
the sperm whale (physeter catodon), followed by
the Baird’s beaked whale (berardius bairdii) and
the killer whale (orcinus orca). Within the suborder
odontoceti there are four superfamilies: platanis-
toidea, delphinoidea, ziphioidea, and physe-
teridea. Over half of all cetaceans belong to the su-
perfamily delphinoidea, consisting of seven species
of medium whales and 35 species of small whales
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also known as dolphins and porpoises [20.1].
Dolphins generally have a sickle-shaped dorsal fin,
conical teeth, and a long rostrum. Porpoises have
a more triangular dorsal fin, more spade-shaped
teeth, and a much shorter rostrum [20.1].

Mysticetes are toothless, and in the place of teeth they
have rigid brush-like whalebone plate material called
baleen hanging from their upper jaw. The baleen is used
to strain shrimp, krill, micronekton, and zooplankton.
All the great whales are mysticetes or baleen whales
and all are quite large. The sperm and Baird’s beaked
whales are the only odontocetes that are larger than the
smaller mysticetes such as Minke whales and pygmy
right whales. Baleen whales are subdivided into four
families, balaenidae (right and bowhead whales), es-
chrichtiidae (gray whales), balaenopteridae (Minke,
sei, Bryde’s, blue, fin, and humpback whales), and
neobalaenidae (pygmy right whale).

Acoustics play a large role in the lives of cetaceans
since sound travels underwater better than any other

form of energy. Vision underwater is limited to tens of
meters under the best conditions and less than a frac-
tion of a meter in turbid and murky waters. Visibility
is also limited by the lack of light at great depths dur-
ing the day and at almost any depth on a moonless
night. Sounds are used by marine mammals for myr-
iad reasons such as group cohesion, group coordination,
communications, mate selection, navigation and locat-
ing food. Sound is also used over different spatial scales
from tens of km for some species and tens of meters
for other species, emphasizing the fact that different
species utilize sound in different ways. All odontocetes
seem to have the capability to echolocate, while mys-
ticetes do not echolocate except in a very broad sense,
such as listening to their sound bouncing off the bot-
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tom, sea mounts, underwater canyon walls, and other
large objects.

The general rule of thumb is that larger animals tend
to emit lower-frequency sounds and the frequency range
utilized by a specific species may be dictated more
from anatomical constraints than any other factors.
If resonance is involved with sound production, then
anatomical dimensions become critical, that is, larger
volumes resonate at lower frequencies than smaller vol-
umes. The use of a particular frequency band will also

have implications as to the distance other animals, in-
cluding conspecifics, will be able to hear the sounds.
Acoustic energy is lost in the propagation process by ge-
ometric spreading and absorption. Absorption losses are
frequency dependent, increasing with frequency. There-
fore, the sounds of baleen whales such as the blue whale
that emit sounds with fundamental frequencies as low as
15 Hz can propagate to much longer distances than the
whistles of dolphins that contain frequencies between 5
and 25 kHz.

20.1 Hearing in Cetaceans

One of the obvious adaptations for life in the sea is the
absence of a pinna in cetaceans. The pinna probably dis-
appeared through a natural selection process because it
would obstruct the flow of water of a swimming ani-
mal and therefore be a source of noise. In the place of
a pinna, there is a pin-hole on the surface of a dolphin’s
head which leads to a ligament inside the head, essen-
tially rendering the pinna nonfunctional in conducting
sounds to the middle ear. So, how does sounds enter into
the heads of cetacean? Several electrophysiological ex-
periments have been performed in which a hydrophone
is held at different locations on an animal’s head and
the electrophysiological thresholds are determined as
a function of the position of the hydrophone [20.2–4].
All three studies revealed greatest sensitivity on the dol-
phin’s lower jaw.
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Fig. 20.1 (a) The experimental geometry used by Møhl et al. [20.2], (b) results of the auditory brainstem response (ABR)
threshold measurements. The numerical values represent the amount of attenuation of the sound needed to obtain an
ABR threshold. Therefore, the higher the number the more sensitive the location

The experimental configuration of Møhl et al. [20.2]
is shown in Fig. 20.1a, which shows a suction-cup hy-
drophone and attached a bottlenose dolphin’s lower
jaw and the surface contact electrodes embedded in
suction cups used to measure the auditory brainstem
potential signals for different levels of sound intensity.
The important differences in the experiment of Møhl
et al. [20.2] are that the subject was trained and the
measurements were done in air so that the sounds were
limited to the immediate area where they were applied.
The results of the experiment are shown in Fig. 20.1b.
The location of maximum sensitivity to sound is slightly
forward of the pan-bone area of the lower jaw, a loca-
tion where Norris [20.5] hypothesized that sounds enter
the head of a dolphin. Numerical simulation work by
Aroyan [20.6] suggest that sounds enter the dolphin’s
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head forward of the pan bone, but a good portion of the
sound propagates below the skin to the pan bone and en-
ters the head through the pan bone. The fact that sounds
probably propagate through the lower jaw of dolphins
and other odontocetes does not necessarily mean that
the same or a similar propagation process is occurring
with baleen whales.

20.1.1 Hearing Sensitivity of Odontocetes

Almost all our knowledge of hearing in cetaceans comes
from studies performed with small odontocetes. The
most studied species is the Atlantic bottlenose dolphin
(tursiops truncatus). Despite the amount of research
performed with the bottlenose dolphin, our understand-
ing of auditory processes in these animals lags consider-
ably behind that for humans and other terrestrial mam-
mals. There are still many large gaps in our knowledge
of various auditory processes occurring within the most
studied odontocetes. The first audiogram for a cetacean
was measured by Johnson [20.9] for a tursiops trunca-
tus. Since then, audiograms have been determined for
the harbor porpoise (phocoena phocoena) by Ander-
sen [20.10] and Kastelein et al. [20.11], the killer whale
(orcinus orca) by Hall and Johnson [20.12] and Szy-
manski et al. [20.13], the beluga whale (delphinapterus
leucas) by White et al. [20.14], the Pacific bottlenose
dolphin (tursiops gilli) by Ljungblad et al. [20.15], the
false killer whale (pseudorca crassidens) by Thomas
et al. [20.16], the Chinese river dolphin (lipotes vexil-
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Fig. 20.2 Audiogram for different odontocetes species (after [20.7, 8])

lifer) by Wang et al. [20.17], Risso’s dolphins (grampus
griseus) by Nachtigall et al. [20.18], the tucuxi (sotalia
fluviatilis) by Sauerland and Dehnhardt [20.19], and
the striped dolphin (stenella coeruleoalba) by Kastelein
et al. [20.20]. The audiograms of these odontocetes are
shown in Fig. 20.2. It is relatively striking to see how
similar the audiograms are between species consider-
ing the vastly different habitats and areas of the world
where some of these animals are found and the large
differences in body size. All the audiograms suggest
high-frequency hearing capabilities, with the smallest
animal, phocoena phocoena having the highest hear-
ing limit close to 180 kHz. However, the orcinus orca,
which is over 95 times heavier and about six times
longer can hear up to about 105 kHz. The actual thresh-
old values shown in Fig. 20.2 should not be compared
between species because the different methods of de-
termining the threshold can lead to different results and
because of the difficulties of obtaining good sound pres-
sure level measurements in a reverberant environment.
For example, Kastelein et al. [20.11] used a narrow-
band frequency-modulated (FM) signal to avoid multi-
path problems and the FM signals may provide
additional cues not present in a pure-tone signal. Never-
theless, the audiograms shown in Fig. 20.2 suggest that
all the animals had similar thresholds of 10–15 dB.

A summary of some important properties of the
different audiograms depicted in Fig. 20.2 is given in
Table 20.1. In the table, the frequency of best hearing
is arbitrary defined as the frequency region in which
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Table 20.1 Some important properties of the audiograms plotted in Fig. 20.2

Species Maximum sensitivity
(dB re 1 : Pa)

Frequency of best hearing
(kHZ)

Upper frequency limit
(kHz)

phocoena phocoena 32 18–130 180
stenella coeruleoalba 42 30–125 160
tursiops truncatus 42 15–110 150
tursiops gilli 47 30–80 135
sotalia fluviatilis 50 35–50 135
delphinapterus leucas 40 11–105 120
pseudorca crassidens 39 17–74 115
orcinus orca 34 15–40 110
inia geoffrensis 51 12–64 100
lipotes vexillifer 55 15–60 100
grampus griseus – – 100

the auditory sensitivity is within 10 dB of the maximum
sensitivity depicted in each audiogram of Fig. 20.2.
With the exception of the Orcinus and the Lipotes, the
maximum sensitivity of the rest of the species repre-
sented in Fig. 20.2 and Table 20.1 are very similar,
and within experimental uncertainties, especially for au-
diograms obtained with the staircase procedure using
relatively large step sizes of 5 dB or greater. At the fre-
quency of best hearing, the threshold for Orcinus and
Phocoena are much lower than for the other animals.
It is not clear whether this keen sensitivity is a reflec-
tion of a real difference or a result of some experimental
artifact. The data of Table 20.1 also indicate that Pho-
coena phocoena, Stenella coeruleoalba and Tursiops
truncatus seem to have the widest auditory bandwidth.

20.1.2 Directional Hearing in Dolphins

Sound Localization
The ability to localize or determine the position of
a sound source is important in order to navigate, detect
prey and avoid predators and avoid hazards produc-
ing an acoustic signatures. The capability to localize
sounds has been studied extensively in humans and in
many vertebrates (see [20.21]). Lord Rayleigh in 1907
proposed that humans localized in the horizontal plane
by using interaural time differences for low-frequency
sounds and interaural intensity differences for high-
frequency sounds. The sound localization acuity of
a subject is normally defined in terms of a minimum
audible angle (MAA), defined as the angle subtended at
the subject by two sound sources, one being at a refer-
ence azimuth, at which the subject can just discriminate
the sound sources as two discrete sources [20.22]. If
the sound sources are separated symmetrically about
a midline, the MAA is one half the threshold angu-

lar separation between the sound sources. If one of the
sound sources is located at the midline, then the MAA
is the same as the threshold angular separation between
the two sources.

Renaud and Popper [20.23] examined the sound
localization capabilities of a tursiops truncatus by mea-
suring the MAA in both the horizontal and vertical
planes. During a test trial the dolphin was required to
station on a bite plate facing two transducers positioned
at equal angles from an imaginary line running through
the center of the bite plate. An acoustic signal was then
transmitted from one of the transducers and the dol-
phin was required to swim and touch the paddle on
the same side as the emitting transducer. The angle be-
tween the transducers was varied in a modified staircase
fashion. If the dolphin was correct for two consecu-
tive trials, the transducers were moved an incremental
distance closer together, decreasing the angle between
the transducer by 0.5◦. After each incorrect trial, the
transducers were moved an incremental distance apart,
increasing the angle between the transducers by 0.5◦.
This modified staircase procedure allowed threshold de-
termination at the 70% level. The threshold angle was
determined by averaging a minimum of 16 reversals.
A randomized schedule for sound presentation through
the right or left transducer was used.

The localization threshold determined in the hori-
zontal and vertical planes as a function of frequency
for narrow-band pure-tone signals is shown in Fig. 20.3.
The MAA had a U-shaped pattern, with a large value
of 3.6◦ at 6 kHz, decreasing to a minimum of 2.1◦
at 20 kHz and then slowly increasing in an irregular
fashion to 3.8◦ at 100 kHz. MAAs for humans vary be-
tween 1◦ and 3.7◦, with the minimum at a frequency
of approximately 700 Hz [20.24]. The region where the
MAA decreased to a minimum in Figs. 20.19 and 20.20
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Fig. 20.3 (a) Localization threshold determined in the hor-
izontal plane as a function of frequency. The mean ± one
standard deviation is shown for seven determinations per
frequency. The animal faced directly ahead at 0◦ azimuth.
(b) Localization threshold determined in the vertical plane
as a function of frequency. Standard deviation are indicated
for 30, 60 and 90 kHz vertical data (seven sessions each).
The dolphin’s azimuth was 0◦ (after Renauld and Popper,
[20.27]) Figs. 20.19 and 20.20

(about 20 kHz) may be close to the frequency at which
the dolphin switches from using interaural time differ-
ence cues to interaural intensity difference cues. The
MAAs for the bottlenose dolphin were smaller than the
MAAs (in the horizontal plane) of 3.5◦ at 3.5 kHz and
6◦ at 6 kHz for a harbor porpoise measured by Dudok
van Heel [20.25], and 3◦ at 2 kHz, measured by Ander-
sen [20.26] also for a harbor porpoise.

In order to measure the MAA in the vertical plane,
the dolphin was trained to turn to its side (rotate its body
90◦ along its longitudinal axis) and to bite on a sheet
of plexiglass which was used as the stationing device.
The MAA in the vertical plane varied between 2.3◦ at

20 kHz to 3.5◦ at 100 kHz. These results indicate that
the animal could localize in the vertical plane nearly as
well as in the horizontal plane. These results were not
expected since binaural affects, whether interaural time
or intensity, should not be present in the vertical plane.
However, the dolphin’s ability to localize sounds in the
vertical plane may be explained in part by the asym-
metry in the receive beam patterns in the vertical plane
discussed in the next section.

Renaud and Popper [20.23] also determined the
MAA for a broadband transient signal or click signal,
having a peak frequency of 64 kHz and presented to
the dolphin at a repetition rate of 333 Hz. The MAA
in the horizontal plane was found to be approximately
0.9◦ and 0.7◦ in the vertical plane. It is not surprising
that a broadband signal should result in a lower MAA
than a pure-tone signal of the same frequency as the
peak frequency of the click. The short onset time and
the broad frequency spectrum of a click signal should
provide additional cues for localization.

Receiving Beam Patterns
Having narrow transmission and reception beams
allows the dolphin to localize objects in a three-
dimensional volume, spatially separate objects within
a multi-object field, resolve features of extended or
elongated objects, and to minimize the amount of inter-
ference received. The amount of ambient noise from an
isotropic noise field and the amount of reverberation in-
terference received is directly proportional to the width
of the receiving beam. The effects of discrete or par-
tially extended interfering noise or reverberant sources
can be minimized by simply directing the beams away
from the sources.

The receiving beam pattern of a dolphin was de-
termined by measuring the masked hearing threshold
as a function of the azimuth about the animal’s head.
The relative masked hearing threshold as a function
of azimuth is equivalent to the received beam pattern
since the receiving beam pattern is the spatial pattern
of hearing sensitivity. Au and Moore [20.28] measured
the dolphin’s masked hearing threshold as the position
of either the noise or signal sources varied in their an-
gular position about the animal’s head. The dolphin
was required to voluntarily assume a stationary posi-
tion on a bite plate constructed out of a polystyrene
plastic material. The noise and signal transducers were
positioned along an arc with the center of the arc lo-
cated approximately at the pan bone of the animal’s
lower jaw. In order to measure the dolphin’s receiving
beam in the vertical plane, the animal was trained to turn
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Fig. 20.4 Receive beam patterns in the vertical and horizontal planes for frequencies of 30, 60 and 120 kHz. The relative
masked thresholds as a function of the elevation angle of the asking noise source are plotted for each signal frequency
(after Au and Moore, [20.28])

onto its side before biting the specially designed vertical
bite-plate stationing device. For the measurement in the
vertical plane, the position of the signal transducer was
fixed directly in line with the bite plate and its acous-
tic output was held constant. Masked thresholds were
measured for different angular position of the noise
transducer along the arc. The level of the noise was
varied in order to obtain the masked threshold. A thresh-
old estimate was considered complete when at least 20
reversals (10 per session) at a test angle had been ob-
tained over at least two consecutive sessions, and if
the average reversal values of the two sessions were
within 3 dB. After a threshold estimate was achieved,
the noise transducer was moved to a new azimuth over
a set of randomly predesignated azimuths. As the az-
imuth about the dolphin’s head increased, the hearing
sensitivity of the dolphin tended to decrease, requiring
higher levels of masking noise from a transducer located
at that azimuth to mask the signal from a source located
directly ahead of the animal.

The receiving beam patterns in both the vertical and
horizontal plane are plotted for signal frequencies of 30,
60 and 120 kHz in Fig. 20.4. The radial axis of Fig. 20.4

represents the difference in dB between the noise level
needed to mask the test signal at any azimuth and the
minimum noise level needed to mask the test signal at
the azimuth corresponding to the major axis of the verti-
cal beam. The shape of the beams in Fig. 20.4 indicates
that the patterns were dependent on frequency, be-
coming narrower, or more directional as the frequency
increased. The beam of a planar hydrophone also be-
comes narrower as frequency increases. The 3 dB beam
widths were approximately 30.4◦, 22.7◦, and 17.0◦ for
frequencies of 30, 60, and 120 kHz, respectively. There
was also an asymmetry between the portion of the beam
above and below the dolphin’s head. The shape of the
beams dropped off more rapidly as the angle above the
animal’s head increased than for angles below the an-
imal’s head, indicating a more rapid decrease in the
animal’s hearing sensitivity for angles above the head
than for angles below the head. If the dolphin receives
sounds through the lower jaw, the more rapid reduction
in hearing sensitivity for angles above the head may
have been caused by shadowing of the received sound
by the upper portion of the head structure including air
in the nasal sacs [20.29]. There is a slight peculiarity in
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Cetacean Acoustics 20.1 Hearing in Cetaceans 849

the 60 kHz beam which shows almost the same masked
threshold values for 15◦ and 25◦ elevation angles.

The radial line passing through the angle of maxi-
mum sensitivity is commonly referred to as the major
axis of the beam. The major axis of the vertical beams
is elevated between 5◦ and 10◦ above the reference axis.
The 30 and 120 kHz results show the major axis at 10◦
while the 60 kHz results showed the major axis at 5◦.
It will be shown in a later section that the major axis
of the received beam in the vertical plane is elevated at
approximately the same angle as the major axis of the
transmitted beam in the vertical plane.

In the horizontal beam pattern measurement, two
noise sources were fixed at azimuth angles of±20◦. The
level of the noise sources was also fixed. The position of
the signal transducer was varied from session to session.
Masked thresholds were determined as a function of the
azimuth of the signal transducer, by varying the sig-
nal level of the signal transducer in a staircase fashion.
A threshold estimate was considered completed when at
least 20 reversals at a test angle had been obtained over
at least two consecutive sessions, if the average reversal
values were within 3 dB of each other. After a thresh-
old estimate was determined, the signal transducer was
moved to a new azimuth over a set of randomly pre-
designated azimuths. Two noise sources were used in
order to discourage the dolphin from internally steer-
ing its beam in the horizontal plane. If the animal could
steer its beam, it would receive more noise from one
of the two hydrophones, and therefore not experience
any improvement in the signal-to-noise ratio. The mask-
ing noise from the two sources was uncorrelated but
equal in amplitude. The radial axis represents the dif-
ference in dB between the signal level at the masked
threshold for the various azimuths and the signal level
of the masked threshold for 0◦ azimuth (along the major
axis of the horizontal beam). The horizontal receiving
beams were directed forward with the major axis be-
ing parallel to the longitudinal axis of the dolphin. The
beams were nearly symmetrical about the major axis.
Any asymmetry was within the margin of experimental
error involved in estimating the relative thresholds. The
horizontal beam patterns exhibited a similar frequency
dependence as the vertical beam patterns, becoming
narrower or more directional as the frequency increased.
The 3 dB beam widths were 59.1◦, 32.0◦, and 13.7◦ for
frequencies of 30, 60, and 120 kHz, respectively.

Zaytseva et al. [20.30] measured the horizontal
beam pattern of a dolphin by measuring the masked
hearing threshold as a function of azimuth. Their beam
width of 8.2◦ for a frequency of 80 kHz was much nar-

rower than the 13.7◦ for a frequency of 120 kHz. The
difference in beam width is even larger if the results
of Au and Moore [20.28] are linearly interpolated to
80 kHz. We calculated an interpolated beam width of
25.9◦ at 80 kHz, which was considerably greater than
the 8.2◦ obtained by Zaytseva et al. [20.30]. The dif-
ference in beam width measured by Zaytseva et al. and
Au and Moore may be attributed to the use of only one
noise source by Zaytseva et al. compared to the two
noise sources used by Au and Moore. With a single
masking noise source in the horizontal plane, there is
the possibility of the animal performing a spatial filter-
ing operation by internally steering the axis of its beam
in order to maximize the signal-to-noise ratio. Another
possibility is that Zaytseva et al. did not use a fixed
stationing device. Rather, the dolphin approached the
signal hydrophone from a start line, always oriented in
the direction of the signal hydrophone. The animal re-
sponded to the presence or absence of a signal by either
swimming or not swimming to the hydrophone. In such
a procedure, it is impossible to control the orientation
of the animal’s head with respect to the noise masker
so that the dolphin could move its head to minimize the
effects of the noise.

Directivity Index
The directivity index is a measure of the sharpness of
the beam or major lobe of either a receiving or trans-
mitting beam pattern. For a spherical coordinate system,
the directivity index of a transducer is given by the
equation [20.31]

DI = 10 log
4π

2π∫

0

π/2∫

−π/2

(
p(θ,φ)

p0

)2
sin θ dθ dφ

. (20.1)

Although the expression for directivity index is rela-
tively simple, using it to obtain numerical values can
be quite involved unless transducers of relatively sim-
ple shapes (cylinders, lines and circular apertures) with
symmetry about one axis is involved. Otherwise, the
beam pattern needs to be measured as a function of
both θ, and φ. This can be done by choosing various
discrete values of θ and measuring the beam pattern
as a function of φ, a tedious process. Equation (20.1)
can then be evaluated by numerically evaluating the
double integral with a digital computer. The directivity
indices associated with the dolphin’s beam patterns in
Fig. 20.4 were estimated by Au and Moore [20.28] using
(20.1) and a two-dimensional Simpson’s 1/3-rule algo-
rithm [20.32]. The results of the numerical evaluation of
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Fig. 20.5 Receiving directivity index as function of fre-
quency for a tursiops truncatus

are plotted as a function of frequency in Fig. 20.5. DIs
of 10.4, 15.3 and 20.6 dB were obtained for frequencies
of 30, 60, and 120 kHz, respectively. A linear curve fit-
ted to the computed DIs in a least-square-error manner
is also shown in the Fig. 20.5. The equation of the line is

DI(dB) = 16.9 log f (kHz)−14.5 . (20.2)

The results of Fig. 20.5 indicate that the dolphin’s re-
ceive directivity index increased with frequency in
a manner similar to that of a linear transducer (Bob-
ber, 1970). The expression in (20.2) is only valid for
frequencies at which DI(dB) is greater or equal to 0.

Although the directivity index expressed by (20.1) is
for a tursiops, it can also be used to estimate the direc-
tivity index of other dolphins by applying an appropriate
correction factor, so that (20.2) can be rewritten as

DI(dB) = 16.9 log f (kHz)−14.5+CF(dB) ,

(20.3)

where CF(dB) is a correction factor taking into account
different head sizes. The directivity index of a planar
circular plate is proportional to its diameter so if we let
dT be the diameter of the head of a tursiops at about
the location of the blowhole and dD be the diameter
of the head of a different species of dolphin, then the
correction factor can be expressed as

CF(dB) = 20 log(dD/dT) . (20.4)

The correction factor will be positive for a dolphin with
a larger head and negative for a dolphin with a smaller
head than tursiops.

20.1.3 Hearing by Mysticetes

Our knowledge of the hearing characteristics of baleen
whales is extremely limited. We do not know how they
receive sounds, the frequency range of hearing, and
the sensitivity of hearing at any frequency. Much of
our understanding of hearing in baleen whales comes
from anatomical studies of the ears of different species.
Baleen whales have occluded external auditory canals
that are filled with a homogeneous wax [20.33]. The
lower jaws of mysticetes are designed for sieving or
gulp feeding and have no evident connection to the
temporal bones [20.33] making it very difficult to un-
derstand how sounds enter into the ears of these whales.

Various types of whales have been observed by
many investigators to react strongly and drastically
change their behavior in the presence of boats and low-
flying aircraft, however, the sound pressure levels at
the whales’ locations are often difficult to define and
measure. In some situations, the sound levels of the
aversive sound could be estimated and a data point ob-
tained. Bowhead whales were observed fleeing from a
13 m diesel-powered boat having a noise level at the
location of the whales of about 84 dB re 1 μPa in the
dominant 1/3-octave band, or about 6 dB above the
ambient noise in that band [20.34]. Playback experi-
ments with bowhead whales indicated that they took
evasive action when the noise was about 110 dB re
1 μPa or 30 dB above the ambient noise in the same
1/3-octave band [20.35]. Playback experiments with
migrating gray whales indicated that about 10% of the
whales made avoidance behavior when the noise was
about 110 dB in a 1/3 octave band, 50% at about 117 dB
and 90% at about 122 dB or greater. These playback sig-
nals consisted of anthropogenic noise associated with
the oil and gas industry.

Frankel [20.36] played back natural humpback
whale sounds and a synthetic sound to humpback
whales wintering in the waters of the Hawaiian islands.
Twenty seven of the 1433 trials produced rapid ap-
proach response. Most of the responses were to the
feeding call. Feeding call and social sounds produced
changes in both separation and whale speed, indicat-
ing that these sounds can alter a whale’s behavior.
The humpback whales responded to sounds as low as
102–105 dB but the strongest responses occurred when
the sounds were 111 to 114 dB re 1 μPa.

All of the playback experiments suggest that sounds
must be between 85 and 120 dB before whales will react
to them. These levels are very high compared to those
that dolphins can hear and may suggest that it is very
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difficult to relate reaction to hearing sensitivity. Whales
may not be reacting strongly unless the sounds are much
higher than their hearing threshold.

Determining the hearing sensitivity or audiogram of
baleen whales represents an extremely difficult chal-
lenge and will probably require the use of some sort
of electrophysiological technique as suggested by Ridg-
way et al. [20.37]. Perhaps a technique measuring
auditory-evoked potentials with beached whales may
provide a way to estimate hearing sensitivity. Even with
evoked potential measurements, there are many issues
that have to be considered. For example, if an airborne
source is used, the results cannot be translated directly
to the underwater situation. If a sound source is placed

on a whale’s head, relating that to a whale receiving
a plane wave will also not be simple. Measurement of
evoked potentials themselves may not be simple be-
cause of the amount of flesh, muscles and blubber that
the brain waves would have to travel through in or-
der to reach the measurement electrodes. Ridgway and
Carder [20.38] reported on some attempts to use the
evoked potential method with a young gray whale held
at Sea World in California. They also showed that the
pygmy whale auditory system was most sensitive to
very high frequencies (120–130 kHz) in the same range
as their narrow-band echolocation pulses. A young
sperm whale was most sensitive in the 10–20 kHz re-
gion of the spectrum [20.38].

20.2 Echolocation Signals

Echolocation is the process in which an organism
projects acoustic signals and obtains a sense of its sur-
roundings from the echoes it receives. In a general
sense, any animal with a capability to hear sounds
can echolocate by emitting sounds and listening to the
echoes. A person in an empty room can gain an idea of
the size and shape of the room by emitting sounds and
listening to the echoes from the different walls. How-
ever, in this chapter, echolocation is used in a more
specific sense in which an animal has a very special-
ized capability to determine the presence of objects
considerably smaller than itself, discriminate between
various objects, recognize specific objects and local-
ize objects in three-dimensional space (determine range
and azimuth). Dolphins and bats have this specialized
capability of echolocation.

The echolocation system of a dolphin can be broken
down into three subsystems: the transmission, reception
and signal processing/decision subsystems. The recep-
tion system has to do with hearing and localization.
The transmission system consist of the sound produc-
tion mechanism, acoustic propagation from within the
head of the dolphin to into the water, and the char-
acteristics of the signals traveling in the surrounding
environment. The third subsystem has to do with pro-
cessing of auditory information by the peripheral and
central nervous system. The capability of a dolphin to
detect objects in noise and in clutter, and to discriminate
between various objects depends to a large extent on the
information-carrying capabilities of the emitted signals.

Dolphins most likely produce sounds within their
nasal system and the signals are projected out through
the melon. Although there has been a long-standing
controversy on whether sounds are produced in the lar-

ynx or in the nasal system of odontocetes, almost all
experimental data with dolphins indicate that sounds
are produced in the nasal system [20.39]. For example,
Ridgway and Carder [20.40] used catheters accepted
into the nasal cavity by trained belugas. The belugas
preformed an echolocation task in open water, detecting
targets and reported the presence of targets by whistling.
Air pressure within the nasal cavity was shown to be
essential for echolocation and for whistling [20.40].

The melon immediately in front of the nasal plug
may play a role in channeling sounds into the wa-
ter, a notion first introduced by Wood [20.41]. Norris
and Harvey [20.42] found a low-velocity core ex-
tending from just below the anterior surface towards
the right nasal plug, and a graded outer shell of
high-velocity tissue. Such a velocity gradient could
channel signals originating in the nasal region in
both the vertical and horizontal planes. Using both
a two-dimensional [20.43] and a three-dimensional
model [20.6] to study sound propagation in a dolphin’s
head, Aroyan has shown that echolocation signals most
likely are generated in the nasal system and are chan-
neled into the water by the melon. Cranford [20.44]
has also collected evidence from nasal endoscopy of
trained echolocating dolphins that suggest that echolo-
cation signals are most likely produced in the nasal
system at the location of the monkey-lips, dorsal bursae
complex just beneath the blow hole.

20.2.1 Echolocation Signals of Dolphins
that also Whistle

Most dolphin species are able to produce whistle sig-
nals. Among some of the species in this category
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in which echolocation signals have been measured
include the bottlenose dolphin (tursiops sp), beluga
whale (delphinapterus leucas), killer whale (orcinus
orca), false killer whale (pseudorca crassidens), Pa-
cific white-sided dolphin (lagenorhynchus obliquidens),
Amazon river dolphin (inia geoffrensis), Risso’s dol-
phin (grampus griseus), tucuxi (sotalia fluviatilis),
Atlantic spotted dolphin (stenella frontalis), Pacific
spotted dolphin (Stenella attenuata), spinner dolphin
(Stenella longirostris), pilot whale (globicephala sp),
rough-toothed dolphin (steno bredanesis), Chinese river
dolphin (lipotes vexillifer) and sperm whales (physeter
catodon). However, most of the available data have been
obtained for three species: the bottlenose dolphin, the
beluga whale and the false killer whale.

Prior to 1973, most echolocation signals of tursiops
were measured in relatively small tanks and the re-
sults provided a completely different picture of what
we currently understand. It was not until the study of
Au et al. [20.45] that certain features of biosonar sig-
nals used by tursiops and other dolphins in open waters
were discovered. We discovered that the signals had
peak frequencies between 120 and 130 kHz, over an
octave higher than previously reported peak frequen-
cies between 30 and 60 kHz [20.46]. We also measured
an average peak-to-peak click source level on the or-
der of 220 dB re 1 μPa at 1 m, which represents a level
30 to 50 dB higher than previously measured for tur-
siops. Examples of typical echolocation signals emitted
by tursiops truncatus are shown in Fig. 20.6 for two sit-
uations. The top signal is typical of signals used in the
open waters of Kaneohe Bay, Oahu, Hawaii, and the
second signal represents typical signals for a tursiops
in a tank. Signals measured in Kaneohe Bay regularly
have duration between 40 and 70 μs, 4 to 10 positive
excursion, peak frequencies between 110 and 130 kHz
and peak-to-peak source levels between 210 and 228 dB
re 1 μPa. The signals in Fig. 20.6 are not drawn to
scale; if they were, the tank signal would resemble a flat
line.

Au et al. [20.47] postulated that high-frequency
echolocation signals were a byproduct of the animals
producing high-intensity clicks to overcome snapping
shrimp noise. In other words, dolphins can only emit
high-level clicks (greater than 210 dB) if they use high
frequencies. The effects of a noisy environment on the
echolocation signals used by a beluga or white whale
(Delphinapterus leucas) was vividly demonstrated by
Au et al. [20.47]. The echolocation signal of a beluga
was measured in San Diego Bay, California before the
whale was moved to Kaneohe Bay. The ambient noise

U( f )

Frequency (kHz)

0
2000 100

0.5

1.0

0

250μs0

Kaneohe bay
SL = 210 – 227dB re 1 μPa

Tank
SL = 170 –185dB re 1 μPa

250μs

Fig. 20.6 Example of echolocation signals used by tur-
siops truncatus in Kaneohe Bay (after Au [20.45]), and in
a tank

in Kaneohe Bay is between 15 to 20 dB greater than
in San Diego Bay. The whale emitted echolocation sig-
nals with peak frequencies between 40 and 60 kHz and
with a maximum averaged peak-to-peak source level of
202 dB re 1 μPa in San Diego Bay. In Kaneohe Bay,
the whale shifted the peak frequency of its signals over
an octave higher to 100 and 120 kHz. The source level
also increased to over 210 dB re 1 μPa [20.47]. Exam-
ples of typical echolocation signals used by the whale in
San Diego and in Kaneohe Bay are shown in Fig. 20.7a.
Here, the signals are drawn to scale with respect to
each other. Echolocation signals used by belugas in
tanks also resemble the low-frequency signals shown
in Fig. 20.2a [20.48, 49]. Turl et al. [20.50] measured
the sonar signals of a beluga in a target-in-clutter de-
tection task in San Diego Bay and found the animal
used high-frequency (peak frequency above 100 kHz)
and high-intensity (greater than 210 dB re 1 μPa) sig-
nals. Therefore low-amplitude clicks of the beluga had
low peak frequencies and the high-amplitude clicks
had high peak frequencies. The data of Moore and
Pawloski [20.51] for Tursiops also seem to support the
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Fig. 20.7 (a) Example of beluga echolocation signals measured in San Diego Bay and in Kaneohe Bay (after Au
et al. [20.47]); (b) Examples of pseudorca echolocation signals, Sl is the averaged peak-to-peak source level (after Au
et al. [20.52])

notion that the shape of the signal in the frequency do-
main is related to the intensity of the signal.

Recent results with a false killer whale showed
a clear relationship between the frequency content
of echolocation signals and source level [20.52]. The
Pseudorca emitted four basic types of signals, which are
shown in Fig. 20.7b. The four signal types have spec-
tra that are bimodal (having two peaks); the spectra in
Fig. 20.2 are also bimodal. The type I signals were de-
fined as those with the low-frequency peak (< 70 kHz)
being the primary peak and the high-frequency peak be-
ing the secondary peak with its amplitude at least 3 dB
below that of the primary peak. Type II signals were de-
fined as those with a low-frequency primary peak and
a high-frequency secondary peak having an amplitude
within 3 dB of the primary peak. Type III signals were
those with a high-frequency primary peak (> 70 kHz),
and a low-frequency secondary peak having an ampli-
tude within 3 dB of the primary peak. Finally, type IV
signals were those with a high-frequency primary peak

having an amplitude that was at least 3 dB higher than
that of the secondary low-frequency peak.

The data of Thomas et al. [20.53, 54] also indi-
cated a similar relationship between intensity and the
spectrum of the signal. The echolocation signals of
a pseudorca measured in a tank had peak frequencies
between 20 and 60 kHz and source levels of approx-
imately 180 dB re 1 μPa [20.53]. Most of the sonar
signals used by another pseudorca performing a detec-
tion task in the open waters of Kaneohe Bay had peak
frequencies between 100 and 110 kHz and source levels
between 220 and 225 dB re 1 μPa [20.54].

A bimodal spectrum is best described by its cen-
ter frequency, which is defined as the centroid of the
spectrum, and is the frequency which divides the spec-
trum into two parts of equal energy. From Fig. 20.7, we
can see that, as the source level of the signal increased,
the frequency components at higher frequencies also in-
creased in amplitude, suggesting a relationship between
source level and center frequency. This relationship
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can be examined by considering the scatter diagram
of Fig. 20.8 showing center frequency plotted against
source level. The solid line in the figure is a linear-
regression curve fit of the data and has a correlation
coefficient of 0.80.

The bimodal property of the echolocation signals
of Fig. 20.7 seems to suggest that the response of the
sound generator may be determined by the intensity of
the driving force that eventually causes an echolocation
signal to be produced. When the intensity of the driving
force is low, only signals with low amplitudes and low-
frequency peak are produced. Therefore, in small tanks,
the signals resemble the tank signal of Fig. 20.1, and the
bimodal feature is suppressed since the high-frequency
portion of the source cannot be used for a low driving
force. As the driving force increases to a moderate level,
the low-frequency peak also increases in amplitude, and
the high-frequency portion of the signal begins to come
into use. As the driving force increases further the am-
plitude of the high-frequency peak becomes larger than
that of the low-frequency peak, resulting in type III
signals. As the driving force continues to increase
to a high level, the amplitude of the high-frequency
peak becomes much greater than the amplitude of
the low-frequency peak and completely dominates the
low-frequency peak causing the bimodal feature to be
suppressed. Recent field measurements of free-ranging
dolphins [20.55–57] suggest that the majority of echolo-
cation clicks emitted by dolphins are bimodal.

The largest odontocete species is the sperm whale
(Physeter catodon) and it too emits echolocation sig-
nals. Prior to the late 1990s the most prevalent
understanding of sperm whale signals is that the clicks
were broadband with peak frequencies between 4 and
8 kHz [20.58–61]. There were only two reports on
source levels. Dunn [20.62] using sonobouys measured
148 sperm whale clicks from a solitary sperm whale
and estimated an average peak-to-peak source level of
183 dB re 1 μPa. Levenson [20.59] estimated peak-to-
peak source level of 180 dB re 1 μPa. The clicks were
also thought to be essentially nondirectional and pro-
jected in codas [20.63]. Therefore, the notion of sperm
whales echolocating was somewhat questionable. Part
of the problem was the lack of measurements of sperm
whale signaling in conjunction with foraging and the
fact that click signals can have more than one function,
such as communications and echolocation. In a review
paper Watkins [20.63] spelled out his rational for not
supporting the notion of a sonar function for sperm
whale clicks, Other features of their sounds however, do
not so easily fit echolocation: Watkin’s rational included
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Fig. 20.8 Center frequency of echolocation signals emit-
ted by a pseudorca as a function of the peak-to-peak source
level (after Au et al. [20.52])

his observations that clicks do not appear to be very di-
rectional, the inter-click interval does not varied as if
a prey or obstacle is being approached, solitary sperm
whales are silent for long periods, the level of their
clicks appears to be generally greater than that required
for echolocating prey or obstacles and the individual
clicks are usually too long for good range resolution.
It is important to state that most of Watkins measure-
ments were conducted at low-temperate latitudes where
females and calves are found.

Sperm whale echolocation began to be more fully
understood with data obtained in ground-breaking work
by Bertel Møhl and his students from the University of
Aarhus, along with other Danish colleagues. They be-
gan to perform large-array aperture measurements of
large bull sperm whales foraging along the slope of the
continental shelf off Andenes, Norway beginning in the
summer of 1977 [20.64]. Up to seven multi-platforms
spaced on the order of 1 km apart were used in their
study with hydrophones placed at depths varying from
5 to 327 m [20.65]. They also came up with a unique but
logistically simple scheme of obtaining global position-
ing system (GPS) information to localize the position of
each platform. Each platform continuously logged its
position and time stamps on one track of a digital au-
dio tape (DAT) recorder, the other track being used for
measuring sperm whale clicks [20.64]. The GPS signals
were converted to an analog signal by frequency-shift
keying (FSK) modulation. In this way, each platform
can be operated essentially autonomously and yet its lo-
cation and time stamps could be related to all the other
platforms.
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An important finding of Møhl et al. [20.64] is the
monopulsed nature of on-axis clicks emitted by the
sperm whales that were similar in shape and spectrum
to dolphin echolocation signals but with peak frequen-
cies between 15 and 25 kHz (this peak frequency range
is consistent with the auditory sensitivity observed from
evoked potential responses by a young sperm whale
to clicks presented by Ridgway and Carder [20.38]).
Møhl et al. [20.64] also estimated very high source lev-
els as high as 223 dB re 1 μPa per RMS (root mean
square). The per RMS measure is the level of a continu-
ous sine wave having the same peak-to-peak amplitude
as the click. This measure is clearly an overestimate
of the RMS value of a sperm whale click. Never-
theless, the 223 dB reported by Møhl et al. [20.64]
can easily be given a peak-to-peak value of 232 dB
(adding 9 dB to the per-RMS value). In a follow-on
study, Møhl et al. [20.65] measured clicks with RMS
source levels as high as 236 dB re 1 μPa using the
expression

pRMS =

√√√√√ 1

T

T∫

0

p2(t)dt . (20.5)

For this measurement, they used a time interval cor-
responding to the 3 dB down points of the signal
waveform. For this waveform, an RMS source level
of 236 dB corresponds to a peak-to-peak source level
of 243 dB re 1 μPa. Finally, they found that the
clicks were very directional, as directional as dolphin
clicks.

20.2.2 Echolocation Signals of Smaller
Odontocetes that Do not Whistle

The second class of echolocation signals are produced
by dolphins and porpoises that do not emit whistle
signals. Not many odontocetes fall into this category
and these non-whistling animals tend to be smaller
than their whistling cousins. Included in this group
of non-whistling odontocetes are the harbor porpoise
(phocoena phocoena), finless porpoise (neophocaena
phocaenoides), Dall’s porpoise (phocoenoides dalli),
Commerson’s dolphin, cephalorhynchus commersonii),
Hector’s dolphin (cephalorhynchus hectori) and pygmy
sperm whale (kogia sp).

Examples of harbor porpoise and Atlantic bot-
tlenose dolphin echolocation signals presented in
a manner for easy comparison are shown in Fig. 20.9.
There are four fundamental differences in the two types

of echolocation signals. The non-whistling animal emit
a signal with longer duration, narrower band, lower am-
plitude and single mode. The length of the Phocoena
phocoena signal vary from about 125–150 μs compared
to 50–70 μs for the tursiops truncatus signal. The band-
width of the Phocoena signal is almost 0.2–0.3 that of
the tursiops signal. Since the non-whistling dolphins
are usually much smaller in length and weight than the
whistling dolphins, the smaller animals might be ampli-
tude limited in terms of their echolocation signals and
compensate by emitting longer signals to increase the
energy output. This issue can be exemplified by charac-
terizing an echolocation click as [20.39]

p(t) = As(t) , (20.6)

where A = |p|max is the absolute value of the peak
amplitude of the signal and s(t) is the normalized wave-
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Fig. 20.9 Examples of typical echolocation signals of pho-
coena phocoena and tursiops truncatus (after [20.8])
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Fig. 20.10 The transmission beam pattern of a tursiops truncatus planes with the waveform of a click measured by 5–7
hydrophones (after Au [20.39]) in the vertical and horizontal planes

form having a maximum amplitude of unity. The source
energy (SE)-flux density of the signal in dB can be
expressed as

SE = 10 log

⎛

⎝
T∫

0

p(t)2 dt

⎞

⎠

= 10 log(A)+10 log

⎛

⎝
T∫

0

s(t)2 dt

⎞

⎠ , (20.7)

where T is the duration of the signal. Letting 2A ≈
be the peak-to-peak sound pressure level, (20.4) can be
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rewritten as

SE = SL−6+10 log

⎡

⎣
T∫

0

s(t)2 dt

⎤

⎦ , (20.8)

where SL is the the peak-to-peak source level and is
approximately equal to 10 log(2A). From Fig. 20.9, the
Tursiops can emit signals with peak-to-peak source
levels in open water that are greater than 50 dB for
phocoena. The portion of the source energy that can
be attributed to the length of the signal is only about
2–4 dB greater for phocoena than Tursiops [20.39].
Therefore, one can conclude that the target detection
range of phocoena is considerably shorter than for
Tursiops. This has been demonstrated by Kastelein
et al. [20.67] who measured a target detection threshold
range of 26 m for a 7.62 cm water-filled sphere in a quiet
environment. The target detection range in a noisy envi-
ronment and a similar 7.62 cm water-filled sphere was
113 m [20.68].

The echolocation signals of other non-whistling
odontocetes are very similar to the Phocoena phocoena
signal shown in Fig. 20.9. Examples of the echolo-
cation signals of other non-whistling odontocetes can
be found in Au [20.7, 39, 69]. Unfortunately, reliable
source-level data have been collected only for Phocoena
phocoena [20.70] and Kogia [20.69].
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Fig. 20.11 The transmission beam pattern of a delphinapterus leucas (after Au et al. [20.66]) and a pseudorca crassidens
(after Au et al. [20.52]) in the vertical and horizontal planes

20.2.3 Transmission Beam Pattern

The outgoing echolocation signals of dolphins and
other odontocetes are projected in a directional beam
that have been measured in the vertical and horizon-
tal planes for the bottlenose dolphin [20.39], beluga
whale [20.66] and the false killer whale [20.52]. The
composite beam pattern from the three measurements
on Tursiops along with the averaged waveform from
a single trial measured by 5 or the 7 hydrophones
are shown in Fig. 20.10. The 3 dB beam width for
the bottlenose dolphin was approximately 10.2◦ in the
vertical plane and 9.7◦ in the horizontal plane. The
waveforms detected by the various hydrophones in
Fig. 20.10 indicate that signals measured away from
the beam axis will be distorted with respect to the
signals measured on the beam axis. The further away
from the beam axis the more distorted the signals
will be. This distortion come from the broadband
nature of the click signals emitted by whistling dol-
phins. This characteristics also make it difficult to
get good measurements of echolocation signals in
the field even with an array of hydrophones since it
is extremely difficult to obtain on-axis echolocation
signals and also to know the orientation of the ani-
mal with respect to the measuring hydrophones. The
frequencies shown with each waveform are the fre-
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Fig. 20.12 Beam patterns in the vertical and horizontal
planes for phocoena phocoena (Au et al. [20.70])

quencies of local maxima in the spectrum. At some
angles the averaged signal had multiple peaks in
the spectrum and these peaks are listed in order of
prominence.

The beam patterns for the beluga and false killer
whale are shown in Fig. 20.11. The beam width for the
beluga whale was approximately 6.5◦ in both planes.
Four beam patterns corresponding to the four signal
types described in Fig. 20.7 are shown for the false killer
whale. For the highest frequency (type IV signal) the
3 dB beam width in the vertical plane was approxi-
mately 10◦, and 7◦ in the horizontal plane. The beam
axis in the vertical plane for the bottlenose dolphin
and the beluga whale was +5◦ above the horizontal
plane. For the false killer whale, 49% of the beam axis
was at 0◦ and 32% at −5◦. The four beam patterns
for the false killer whale indicate that, like a linear
transducer, the lower the frequency the wider the beam
pattern. The type I signal has a peak frequency of about
30 kHz and has the widest beam. However, even though
the peak frequency of the type IV signal is about 3.5
times higher than the type I signal, the beam does
not seem to be substantially larger. This property can
be used when discussing lower-frequency whistle sig-
nals to suggest that whistle signals are also emitted in
a beam.
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Fig. 20.13 Transmission directivity index and 3 dB beam
width for four odontocetes. The directivity index and beam
width for Tursiops truncatus and delphinapterus leucas
came from Au [20.39] and for pseudorca crassidens after
Au et al. [20.52]. The wavelength λ corresponds to the av-
erage peak frequency of the animals’ echolocation signals.
The directivity index is fitted with a second-order polyno-
mial curve the the beam width is fitted with a linear curve
(after Au et al. [20.70])

The only transmission beam pattern for a non-
whistling odontocete, a phocoena phocoena, was meas-
ured by Au et al. [20.70]. Their results are shown in
Fig. 20.12 in both the horizontal and vertical planes.
One of the obvious difference between the beam pat-
terns in Fig. 20.12 and those in Figs. 20.10 and 20.11
is the width of the beam. Although the harbor por-
poise emitted the highest-frequency signals, its small
head size caused the beam to be wider than for the
other animals. The beam patterns of Figs. 20.10–20.12
were inserted into (20.1) and numerically evaluated to
estimate the corresponding directivity index for tur-
siops and delphinapterus [20.39] and for pseudorca
by Au et al. [20.52] and for phocoena [20.70], and
the results are shown in Fig. 20.13 plotted as a func-
tion of the ratio of the head diameter (at the blow
hole) of the subject and the average peak frequency
of the animals echolocation signal. Also shown in
Fig. 20.13 are the 3 dB beam width, where the 3 dB
beam width in the vertical and horizontal planes were
averaged.

The second-order polynomial fit of the directivity
index is given by the equation

DI = 28.89−1.04

(
d

λ

)
+0.04

(
d

λ

)2

. (20.9)
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The linear fit of the 3 dB beam width data is given by
the equation

BW = 23.90−0.60

(
d

λ

)
. (20.10)

The results of Fig. 20.13 provides a way of estimat-
ing the directivity index and 3 dB beam width of other
odontocetes by knowing their head size and the peak
frequency of their echolocation signals.

Another interesting characteristics of the beam pat-
tern measurement on the phocoena phocoena is that
the off-axis signals are not distorted in comparison to
the on-axis signal. This is consistent with narrow-band
signals whether for a linear technological transducer
or a live animal. Therefore, measurements of echolo-
cation signals of non-whistling odontocetes in the
field can be performed much easier than for whistling
odontocetes.

20.3 Odontocete Acoustic Communication

Members of the Odontocete suborder are an intriguing
example of the adaptability of social mammalian life to
the aquatic habitat. Most odontocetes, particularly ma-
rine dolphins, live in groups ranging from several to
hundreds of animals in size, forage cooperatively, de-
velop hierarchies, engage in alloparental care and form
strong pair bonds and coalitions between both kin and
non-kin alike (see [20.71–73] for a review of the lit-
erature on dolphin societies). These social traits are
analogous to patterns found in many avian and terres-
trial mammalian species. It is not surprising, therefore,
that odontocetes mediate much social information via
communication. Some river dolphins are usually found
as solitary individuals or mother–calf pairs although
they may occasionally congregate into larger groups.

Odontocetes communicate through a combination
of sensory modalities that include the visual, tactile,
acoustic and chemosensory channels [20.74]. Visual
signals in the form of postural displays are thought to
convey levels of aggression, changes in direction of
movement, and affiliative states [20.72, 75]. Tactile in-
teractions vary in purpose from sexual and affiliative
signals to expressions of dominance and aggres-
sion [20.76, 77]. Although not well documented yet, it
is thought that a derivative of chemosensory perception,
termed quasiolfaction allows dolphins to relay chemical
messages about stress and reproductive status [20.78,
79]. However, it is the acoustic communication channel
in particular that is believed to be the main communica-
tion tool that enables odontocetes to function cohesively
as groups in the vast, visually limited environment of
the open sea [20.80]. Examining how odontocetes have
adapted their use of sound is therefore an important
step to understanding how social marine mammal life
evolved in the sea and how it has found a way to thrive
in a habitat so drastically different from our own.

When compared to all that has been learned about
dolphin echolocation over the past several decades,

surprisingly little is still known about how dolphins
and other odontocetes use acoustic signals for com-
munication. A major reason for this is that it is very
difficult to observe the acoustic and behavioral inter-
actions between the producer and the receiver(s) of
social signals in the underwater environment. Sound
propagation in the sea makes even a simple task like
identifying the location of a sound source very chal-
lenging for air-adapted listeners. Therefore, matching
signals with specific individuals and their behavior in
the field is problematic without the use of sophisti-
cated recording arrays [20.57, 76, 81, 82], or directional
transducers. In addition, many questions remain unan-
swered about the nature of social signals themselves.
Much still remains unknown about the functional de-
sign of dolphin social sounds. This is largely due to the
fact that most species specialize in producing and hear-
ing sounds with frequencies well beyond the limits of
the human hearing range. Limitations in the technology
available to study social signaling in the field have until
recently restricted most analyses to the human audi-
tory bandwidth (< 20 kHz). Yet, despite these significant
challenges, a great deal of progress has been made in
our understanding of odontocete acoustic communica-
tion. Rapidly advancing technologies are contributing
greatly to our ability to study social signaling both in the
field and in the laboratory. The emerging picture reveals
that odontocetes have adapted their acoustic signaling
to fit the aquatic world in a remarkably elegant way.

20.3.1 Social Acoustic Signals

Odontocetes have evolved in both marine and freshwa-
ter habitats for over 50 million years. Over such a long
period of adaptive radiation one might expect that a va-
riety of signaling strategies would have evolved among
the approximately 65 species of small toothed whales
and dolphins. Yet, remarkably, the vast majority of these
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species have either conserved or converged on the pro-
duction of two types of sounds: whistles and short pulse
trains.

Whistles
Whistles are frequency- and amplitude-modulated tones
that typically last anywhere from 50 ms to 3 s or more,
as illustrated in Fig. 20.14. They are arguably the most
variable signals produced by dolphins. Both within and
across species they range widely in duration, bandwidth
and degree of frequency modulation. How whistles
are used in communication is an ongoing topic of
debate among researchers, but most agree that they
play an important role in maintaining contact between
dispersed individuals and are important in social inter-
actions [20.85].

Dolphin whistles exhibit both species and geo-
graphic specificity [20.86–90]. Differences are greatest
between distantly related taxa and between species of
different size. As a general rule, larger species tend
to produce whistles with lower fundamental frequen-
cies than smaller ones [20.88]. Geographic variations
within a species are usually smaller than interspecific
differences [20.87], but some species do develop re-
gional dialects between populations [20.89, 90]. These
dialects tend to become more pronounced with increas-
ing geographic separation. In addition, pelagic species
tend to have whistles in a higher-frequency range
and with more modulation than coastal and riverine
species [20.86, 88]. Such differences have been pro-
posed as species-specific reproductive-isolating charac-
teristics [20.86], as ecological adaptations to different
environmental conditions and/or resulting from restric-
tions imposed by physiology [20.88]. On the other
hand, it must also be noted that numerous whistle
forms are also shared by both sympatric and allopatric
species [20.91]. The communicative function of shared
whistle forms is unknown, but it is intriguing as it sug-
gests a further tendency towards a convergence in signal
design.

Dolphins produce whistles with fundamental fre-
quencies usually in the human audible range (below
20 kHz). However, whistles typically also have harmon-
ics (Fig. 20.14), which occur at integer multiples of
the fundamental and extend well beyond the range of
human hearing [20.84]. Harmonics are integral com-
ponents of tonal signals produced by departures of the
waveform from a sinusoidal pattern. Dolphin whistle
harmonics have a mixed directionality property, which
refers to the fact they become more directional with in-
creasing frequency [20.83,92]. It has been proposed that
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Fig. 20.14a–c Variations in whistle forms produced by
Hawaiian spinner dolphins (a) and Atlantic spotted dol-
phins (b,c) exhibiting multiple harmonics (after Lammers
et al. [20.83, 84])

this signal feature functions as a cue, allowing listening
animals to infer the orientation and direction of move-
ment of a signaling dolphin [20.83,92]. Harmonics may
therefore be important in mediating group cohesion and
coordination.

Burst Pulses
In addition to whistles, most odontocetes also produce
pulsed social sounds known as burst pulse signals. Burst
pulse signals are broadband click trains similar to those
used in echolocation but with inter-click intervals of
only 2–10 ms [20.93]. Because these intervals are con-
siderably shorter than the processing period generally
associated with echolocation and because they are of-
ten recorded during periods of high social activity, burst

Part
F

2
0
.3



Cetacean Acoustics 20.3 Odontocete Acoustic Communication 861

kHz

0.55s

50

100

a)

2

0

–2

V

kHz

0.11s

50

100

b)

2.5

0

–2.5

V

Time

Fig. 20.15a,b Examples of (a) high-quantity and (b) low-
quantity burst pulses produced by Atlantic spotted dolphins
(stenella frontalis). Click train a has 255 clicks with
mean ICI (interclick interval) of 1.7 ms. Click train b
has 35 clicks with a mean ICI of 2.9 ms (after Lammers
et al. [20.83, 84])

pulse click trains are thought instead to play an impor-
tant role in communication.

Burst pulses vary greatly in the inter-pulse inter-
val and in the number of clicks that occur in a train,
which can number anywhere from three to hundreds
of pulses, as depicted in Fig. 20.15. This variation
gives them distinctive aural qualities. Consequently,
burst pulse sounds have been given many subjec-
tive labels, including yelps [20.94], cracks [20.95],
screams [20.96] and squawks [20.97]. Their produc-
tion has been reported in a variety of odontocete
species including: the Atlantic bottlenose dolphin (tur-
siops truncatus) [20.95], the Hawaiian spinner dolphin

(stenella longirostris) [20.72], the Atlantic spotted dol-
phin (stenella frontalis) [20.98], the narwhal (monodon
monoceros) [20.99], Hector’s dolphin (cephalorhyn-
chus hectori) [20.100], the pilot whale (globicephala
melaena) [20.101], and the harbor porpoise (phocoena
phocoena) [20.101]. To date, much remains unknown
about how burst pulses function as communication sig-
nals. It is generally believed that they play an important
role in agonistic encounters because they are commonly
observed during confrontational head-to-head behav-
iors between individuals [20.95, 102–104]. However,
some authors have suggested they may represent emo-
tive signals in a broader sense [20.97,105,106], possibly
functioning as graded signals [20.107].

Given that dolphins have temporal discrimination
abilities well within the range required to resolve indi-
vidual clicks in a burst pulse [20.39, 108], it is possible
that the quantity of clicks and their temporal spac-
ing could form an important basis for communication.
However, as with whistles, no data presently exist on the
classification and discrimination tendencies of dolphins
with respect to different burst pulses.

20.3.2 Signal Design Characteristics

Although much remains unknown about how odon-
tocetes use acoustic signals for communication, the
communicative potential of their signals can, in part, be
inferred by considering the design characteristics that
have been uncovered thus far. Signal features such as
their detectable range, the production duty cycle, the
identification level, the modulation potential and the
form–content linkage provide useful clues about how
odontocetes might use whistles and burst pulses.

The Active Space of Social Signals
The effective range of signals used for communication
is generally termed the active space. Janik [20.109]
investigated the active space of whistles produced by
bottlenose dolphins in the Moray Firth, Scotland, using
a dispersed hydrophone array to infer geometrically the
location of signaling animals and establish the source
level of their whistles. The mean source level was cal-
culated to be 158 dB ± 0.6 re 1 μPa, with a maximum
recorded level of 169 dB. By factoring in transmission
loss, ambient noise levels, the critical ratios and audi-
tory sensitivity of the species involved the active space
of an unmodulated whistle between 3.5 and 10 kHz in
frequency was estimated to be between 20 and 25 km in
a habitat 10 meters deep at sea state 0. At sea state 4 the
estimated active space ranged from 14 to 22 km, while
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for whistles at 12 kHz it dropped to between 1.5 and
4 km. These estimations were made for dolphins occur-
ring in a relatively shallow, mostly mud-bottom, quiet
environment. Presently, no data exist on the active space
characteristics of delphinid whistles in pelagic waters
and comparatively louder tropical near-shore environ-
ments. Similarly, no estimates have yet been made for
the active space of burst pulses.

The Duty Cycle of Social Signals
Duty cycle refers to the proportion of time that any
given signal or class of signals is on versus off. Signals
can vary in the fine structure of their temporal patterning
(e.g. duration), in their temporal spacing within a bout,
and in their occurrence within a larger cyclical time
frame, such as a 24 hour day. Each of these aspects of
the temporal delivery of signals carries its own implica-
tion for communication. Fine-scale characteristics can
define the nature of the signal itself and provide infor-
mation about its relationship to other signals as well
as constraints associated with its mechanism of produc-
tion. The occurrence and timing of a signal within a bout
can help convey information about the urgency of a sit-
uation, the level of arousal, the fitness of an individual
and can assist the receiver in the task of localization. Fi-
nally, the periodicity of signals over hours or days can
be an indicator of variables such as activity levels and
reproductive state.

Murray et al. [20.110] investigated the fine-scale
duty-cycle characteristics of delphinid social signals.
Using a captive false killer whale (pseudorca cras-
sidens) as their subject, they examined the temporal
relationship between the units of a click train (individ-
ual clicks) and tonal signals. Their analysis revealed that
false killer whales modulate the temporal occurrence
of clicks to the point of grading them into a continu-
ous wave (CW) signal such as a whistle. This finding
was interpreted as evidence that pseudorca may employ
graded signaling for communication (a topic discussed
in more detail below), as well as to suggest that clicks
and whistles are produced by the same anatomical
mechanism.

The timing of signals within a bout has not been
investigated with much success among delphinids. The
primary obstacle towards this line of work has been the
difficulty of identifying the signaler(s) involved for even
short periods of time under field conditions. Early work
by Caldwell and Caldwell [20.111] on a group or four
naïve captive common dolphins (delphinus delphis)
suggests that whistle exchanges do have temporal struc-
ture. In whistling bouts involving more than one sig-

naler, the onset of a whistle specific to an individual was
followed within two seconds by that of another. Further-
more, initiation of a whistle by two animals within 0.3 s
of one another always resulted in the inhibition of one of
them, with some individuals deferring more than others.
Initiations separated by 0.4–0.5 s caused inhibition less
frequently while those longer than 0.6 s resulted in al-
most no inhibition. Repeated whistles produced without
an intervening response by another animal were usually
delayed by less than one second. Thus, the duty cycle of
whistling bouts and chorusing behavior among common
dolphins does appear to follow certain temporal rules,
but their significance is not clear.

Periodicity in social signaling has been investi-
gated in captive bottlenose dolphins and common
dolphins [20.112–114], as well as free-ranging spin-
ner dolphins (stenella longirostris) [20.72] and common
dolphins [20.115]. In the captive studies, signaling ac-
tivity was linked to feeding schedules, nearby human
activities and responses to different forms of introduced
stress [20.113]. For spinner and common dolphins in
the wild, the occurrence of social acoustic signals was
highest at night, when both species were foraging, and
lowest in the middle of the day.

The Identification Level of Social Signals
The role of delphinid whistles as individual-specific sig-
nals has been the focus of more scientific attention than
any other aspect of their social acoustic signaling. Cald-
well and Caldwell [20.116] were the first to propose
that individual dolphins each possess their own distinct
signature whistle. The idea was borne out of the ob-
servation that recently captured dolphins each produce
a unique whistle contour that makes up over 90% of the
individual’s whistle output. Since being proposed, the
so-called signature whistle hypothesis has emerged as
the most widely accepted explanation for whistling be-
havior among dolphins. The idea has received support
from numerous studies involving captive and restrained
animals [20.85, 117–121] as well as from field stud-
ies of free-ranging animals [20.97, 122, 123]. Some,
however, have argued that a simple signature function
for dolphin whistling cannot account for the diver-
sity of signals observed in socially interactive dolphin
groups [20.124, 125]. While not denying the presence
of signature whistles per se, these authors have argued
that the large percentage of stereotyped signature sig-
nals observed in other studies may be an artifact of the
unusual circumstances under which they were obtained
(isolation, temporary restraint, separation, captivity).
The debate over the prevalence of signature whistles
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among captive and free-ranging dolphins remains a con-
tested topic in the literature and at scientific meetings.
On the other hand, no evidence or formal discussions
presently exist suggesting burst pulse signals carry any
individual-specific information.

The Modulation Potential of Social Signals
The modulation potential describes the amount of vari-
ation present in any given signal as measured by its
position along a scale from stereotyped to graded sig-
naling [20.126]. Stereotyped signals are repeats of
structurally identical forms and vary discretely between
one another. They are used most often for communi-
cation when the prospect of signal distortion is high,
such as in noisy or reverberant environments or for
communicating over long ranges. Graded signals have
more variants than stereotyped ones and are encoded
by changing one or more signal dimensions. These
can include intensity, repetition rate and/or frequency
and amplitude modulation. Graded signals are usu-
ally employed when a continuous or relative condition
must be communicated in a favorable propagation
environment.

Many studies to date have made an a priori as-
sumption that dolphin signaling is categorical in nature,
with signals belonging to mutually exclusive classes
on the basis of their shared similarities. Some evi-
dence in support of this assumption comes from the
signature-whistle hypothesis work, where restrained
and isolated individuals are often observed producing
highly stereotyped bouts of signaling. However, few
data are presently available to suggest how dolphins
perceive and distinguish social signals [20.127]. There-
fore, it is unclear whether an assumption based on the
occurrence of signature whistles is broadly applicable
towards other forms of social acoustic signaling (i. e.
non-signature whistles and burst pulses).

A few studies have explored the occurrence of
graded signaling in the communication of delphinids
and the larger whales. Taruski [20.128] created a graded
model for the whistles produced by North Atlantic pi-
lot whales (globicephala melaena). He concluded that
these signals could be arranged as a continuum or ma-
trix (of signals) from simple to complex through a series
of intermediates (Taruski [20.128, p. 349]). Murray
et al. [20.110], examining the signals of a captive false
killer whale (Pseudorca crassidens), came to a sim-
ilar conclusion and proposed that Pseudorca signals
were also best represented along a continuum of sig-
nal characteristics, rather than categorically. Finally,
Clark [20.129], examining the call signals of south-

ern right whales (a mysticete), made the observation
that . . . the total repertoire of calls is best described
as a sequence of intergraded types along a continuum
(Taruski [20.128, p. 1066]). Therefore, graded signal-
ing may well play a role in odontocete communication.
Controlled perceptual experiments and a better under-
standing of the acoustic environment dolphins inhabit
are needed to test how odontocetes discriminate and
classify social sounds.

The Form–Content Linkage of Social Signals
The degree to which the form of a signal is linked to
its content depends on how information is coded and
on proximate factors associated with the signal’s pro-
duction. The relationship between a signal’s structural
form and its message can range from being rather ar-
bitrary to tightly linked to a specific condition [20.126].
Among odontocetes, a clear relationship between signal
form and content has only been demonstrated for sig-
nature whistles (discussed above). Dolphins have been
experimentally shown to be capable of labeling ob-
jects acoustically (also known as vocal learning), as
well as mimicking model sounds following only a sin-
gle exposure [20.130]. Additional evidence of vocal
learning exists from culturally transmitted signals in
the wild [20.131] and in captivity [20.132], as well as
from the spontaneous production of acoustic labels in
captivity [20.127]. Context-specific variations in signa-
ture whistle form have also been demonstrated [20.121].
However, to date, no semantic rules have been iden-
tified for naturally occurring social signals among
odontocetes.

Geographic Difference and Dialect
There is a distinct difference between geographical
difference and dialect. Geographical differences are as-
sociated with widely separated populations that do not
normally mix. Dialect is best reserved for sound emis-
sion differences on a local scale among neighboring
populations which can potentially intermix [20.133].
Geographic variations are generally considered to result
from acoustic adaptations to different environments, or
a functionless byproduct of isolation and genetic di-
vergence caused by isolation [20.134]. The functional
significance of dialects is controversial, with some
maintaining that dialects are epiphenomena of song
learning and social adaptation, whereas others believe
that they play a role in assorted mating and are of evo-
lutionary significance [20.134]. Dialects are known to
occur in many species of birds [20.135] but appear to
be very rare in mammals.
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Fig. 20.16a,b Spectrograms of call types (a) N7 and (b) N8 for clan A. Above each spectrogram is the subtype identi-
fication and the pods that produce the variant, and below certain spectrograms are division marks separating calls into
their component parts (after Ford [20.134])

Killer Whale
Killer whales (orcinus orca) produce a specific type of
burst pulse termed the discrete call. Discrete calls are
thought to serve as contact calls between individuals,
much like whistles in other odontocete species [20.136].
Discrete calls are population specific and even pod spe-
cific. The dialects of resident killer whales (Orcinus
orca) in the coastal waters of British Columbia and
Washington have been studied over a prolonged period
by Ford and his colleagues [20.134, 137, 138]. They
used photographic identification techniques, keying on
unique natural markings on the whales to identify 16
pods or stable kin groups of 232 resident killer whales.
Differences in acoustic behavior formed a system of re-
lated pod-specific dialects within the call tradition of
each clan. Ford [20.134] has proposed that each clan
is comprised of related pods that have descended from
a common ancestral group and pod-specific repertoires
probably serve to enhance the efficiency of acoustic
communications within the group and act as behavioral
indicators of pod affiliation.

Killer whale calls are typically made up of rapidly
emitted pulses that to the human ear have a tonal qual-
ity [20.134]. Many calls have several abrupt shifts in
pulse repetition rate allowing them to be divided into
different segments or parts. Although all pods belong-
ing to a clan share a number of calls, these calls were

often rendered in consistently different form by differ-
ent pods. Also, certain pods produced calls that were
not used by the rest of the clan. Such variations pro-
duced a set of related group-specific dialects within the
call tradition of each clan.

Spectrograms of call types N7 and N8 are shown
in Fig. 20.16. In this example, we can see that different
pods produce similar but different versions of call type
N7 and N8. Pods A1, A4 and A5 produced two versions
of call type N7 and pod B and I1 produced two versions
of call type N8. All of the spectrograms have two parts
except for call type N7ii, which had three parts.

Ford [20.134] contended that pod-specific reperto-
ries can be retained for periods in excess of 25 years.
Discrete calls generally serve as signals for maintain-
ing contact within the pod and that the use of repertoire
of pod-specific calls enhances this function by con-
veying group identity and affiliation [20.134]. Killer
whales, like most other small dolphins are able to
learn and mimic a wide variety of sounds. Even from
a young age, killer whale infants can selectively learn
specific calls, especially the calls of their mothers.
Bowles et al. [20.139] studied the development of calls
of a captive-born killer whale calf and found that it
learned and reproduced only the calls of its mother and
ignored the calls of other killer whales in the same
pool. Ford [20.134] also observed killer whales imi-
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tating the call types of different pods, and even those
from other clans. These instances were rare, but it does
show a capacity for learning and mimicry of acoustic
signals.

Sperm Whales
Sperm whales live in a matrilineal family unit where
there exist cooperative behaviors including communal
care of the young in ways similar to killer whales.
The family units are very stable and females may live
as long as 60–70 y [20.140]. One type of signals that
sperm whales emit are denoted as codas, which are se-
quences of click signals that may be the primary means
of acoustic communications for these animals [20.58].
Weilgart and Whitehead [20.141] recorded, for over
a year, codas from a number of sperm whales around the
South Pacific and in the Caribbean Sea. Photographic

identification also allowed them to assign recording ses-
sions to particular groups. They found that the coda
repertoire recorded from the same group on the same
or different days were much more similar than those
recorded from different groups in the same place.
Groups recorded in the same place had more similar
coda repertoire than those in the same broad area but
different places. Groups from the same area were in turn
marginally similar to those in the same ocean but differ-
ent than those in different oceans. Coda class repertoires
of groups in different oceans and in different areas
within the same ocean were statistically significantly
different. They concluded that strong group-specific di-
alects were apparently overlaid on weaker geographic
variation. Sperm whales, killer whales and possibly bot-
tlenose dolphins are the only cetaceans known to have
dialects.

20.4 Acoustic Signals of Mysticetes

There are eleven species of mysticetes or baleen whales
and sounds have been recorded from all but the
pygmy right whale [20.142]. The vocalization of baleen
whales can be divided into two general categories:
(1) songs and (2) calls [20.142]. The calls can be fur-
ther subdivided into three categories: (1) simple calls,
(2) complex calls and (3) clicks, pulses, knocks and
grunts [20.142]. Simple calls are often low-frequency,
frequency-modulated signals with narrow instantaneous
bandwidth that sound like moans if a recording is
speeded up or slowed down, depending on the specific
animal. Amplitude modulation and the presence of har-
monics are usually part of a simple call, with most of
the energy below 1 kHz. Complex calls are pulse-like
broadband signals with a variable mixture of amplitude
and/or frequency modulation. They sound like screams,
roars, and growls, with most of the energy between
500–5000 Hz. Clicks, pulses, knocks and grunts are
short-duration (< 0.1 s) signals with little or no fre-
quency modulation. Clicks and pulses are very short
(< 2 ms) signals with frequencies between 3–31 kHz,
while grunts and knocks are longer (50–100 ms) signals
in the 100–1000 Hz range [20.142].

20.4.1 Songs of Mysticete Whales

Songs are defined as sequences of notes occurring in
a regular sequence and patterned in time [20.142].
Songs are easily discriminated from calls in most

instances. Four mysticetes species have been re-
ported to produce songs; the blue whale (balaenoptera
musculus) [20.143], the fin whale (balaenoptera
physalus) [20.144, 145], the bowhead whale (balaena
mysticetus) [20.15], and the humpback whale [20.146].
Songs of humpback whales have without a doubt re-
ceived the most attention from researchers. Part of the
reason for this is the relative ease for investigators to
travel and do research in the summer grounds of hump-
back whales, especially in Hawaii in the Pacific and
Puerto Rico in the Atlantic.

Time (min)
Phrase

DDEE DDEEE DDEEE DA::BC AA::BC

AA::BCDDEEDDEEDDEEEDDEE

D D E E

Aural classification
A–Moan (variable)
B–Low moan
C–Low rumble
D–High downward moan
E–Low downard moan

Theme

Fig. 20.17 Examples of two themes from a humpback
whale song (after Frankel [20.36])
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Fig. 20.18 An example of a portion of a humpback whale song. The individual pulse sounds are defined as units and
units are aurally categorized based on how they sound. In this example, there are five units. Phrases are formed by
a combination of units and themes are formed by a combination of phrases. The whole song consist of a combination of
themes that are continuously repeated for the length of the song

Humpback Whale Songs
The list of studies involving humpback whale songs is
long and extends from 1971 to the present time, Helweg
et al. [20.147]. Although some songs may sound almost
continuous to human listeners the basic units in a song
are pulsed sounds. Songs are sung only by males and
consist of distinct units that are produced in some se-
quence to form a phrase and a repeated set of phrases
form a theme and repeated themes form a song. A song
can last from minutes to hours depending on the dispo-
sition of the singer. An example of a portion of song is
shown in Fig. 20.17. Example of two themes of a song
in spectrogram format are shown in Fig. 20.18. The vari-
ation in frequency as a function of time is clearly shown
in the figure.

Some general properties of songs and the whales
that are singing are:

1. Songs from the North Pacific, South Pacific and At-
lantic populations are different.

2. Singing peaks during the winter months when
humpback whales migrate to warmer waters at
lower latitudes.

3. Whales within a population sing the same basic
song in any one year, although the song may un-
dergo slight changes during a breeding season.

4. Changes in songs are not due to forgetting during
the summer months, which are non-singing months,
since songs recorded early in the winter breeding
season are nearly the same as songs recorded late in
the previous breeding season.

5. Songs from consecutive years are very similar but
songs across nonconsecutive years will have fewer
similarities.

6. Singers are most probably only males, since no fe-
males have been observed singing.

7. Some singing also occurs during the summer and
fall.

8. Singing whales are often alone, although they have
been occasionally observed singing in the presence
of other humpback whales.

9. Singers tend to remain stationary. However, they
have also been observed singing while swimming.

Other Mysticetes
Bowhead whales emit a variety of different types of
simple and complex sounds that sound like moans to the
human ear. They also emit sequential sounds that con-
tain repeatable phrases that can be classified as songs
during their spring migration [20.15] but not during the
summer or autumn [20.148]. The bowhead song had
just one theme with basically only two sounds repeated
over and over. Ljungblad et al. [20.15] reported that
songs were very tonal with clear pitch even though they
were produced by pulsive moans, whereas Cummings
and Holliday [20.149] described songs as sounding
like raucous elephant roars and trumpeting in discrete
repetitions or phases that were put together to form
longer sequences. Differences in the songs recorded by
Ljungblad et al. [20.15] and by Cummings and Holli-
day [20.149] may be due to bowhead whales changing
their songs from year to year.

The sounds from finback whales include single
20 Hz pulses, irregular series of 20 Hz pulses, and
stereotyped 20 Hz signal bouts of repetitive sequences
of 20 Hz pulses [20.145]. The 20 Hz signals are emit-
ted in bouts that can last for hours. The pulse intervals
in a bout were very regular. In general, signals are pro-
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Table 20.2 Characteristics of mysticete whales vocalizations

Species Signal type Frequency Dominat Source level References
of whales limits(HZ) frequency (dB re 1 μPa)

(Hz) at 1 m

Blue FM moans 12.5–200 16–25 188 Cummings, Thompson [20.150],
Edds [20.151]

Songs 16–60 16–60 – McDonald et al. [20.152]
Bowhead Tonal moans 25–900 100–400 129–178 Cummings, Holliday [20.149];

Pulses 25–3500 152–185 Wursig, Clark [20.148]
Songs 20–500 158–189 Cummings, Holliday [20.149];

Ljungblad et al. [20.15]
Bryde‘s FM moans 70–245 124–132 152–174 Cummings et al. [20.153];

Edds et al. [20.154]
Pulsed moans 100–930 165–900 – Edds et al. [20.154]
Discrete pulses 700–950 700–950 – Edds et al. [20.154]

Finback FM moans 14–118 20 160–186 Watkins [20.145], Edds [20.155],
Cummings, Thompson [20.156]

Tonals 34–150 34–150 – Edds [20.155]
Songs 17–25 17–25 186 Watkins [20.145]

Gray Pulses 100–2000 300–825 – Dalheim et al. [20.157];
Crane et al. [20.158]

FM moans 250–300 250–300 152 Cummings et al. [20.159];
Dalheim et al. [20.157]

LF-FM-moans 125–1250 < 430 175 Cummings et al. [20.159];
Dalheim et al. [20.157]

PM pulses 150–1570 225–600 Cummings et al. [20.159];
Dalheim et al. [20.157]

Complex moans 35–360 35–360 Cummings et al. [20.159]
Humpback Grunts (pulse & FM) 25–1900 25–1900 176 Thompson et al. [20.160]

Pulses 25–89 25–80 144–174 Thompson et al. [20.160]
Songs 30–8000 120–4000 – Payne, Payne [20.161]

Minke FM tones 60–130 60–130 165 Schevill, Watkins [20.162],
Thumps 100–200 100–200 – Winn, Perkins [20.163]
Grunts 60–140 60–140 151–175 Winn, Perkins [20.163]
Ratchets 850–6000 850 – Winn, Perkins [20.163]

Right-N Moans < 400 – – Schevill, Watkins [20.162]
Right-S Tonal 30–1250 160–500 – Cummings et al. [20.164],

Clark [20.129, 165]
Pulses 30–2200 50–500 172–187 Cummings et al. [20.164],

Clark [20.129, 165]
Sei FM sweeps 1500–3500 1500–3500 – Knowlton et al. [20.166]

duced in a relatively regular sequence of repetitions at
intervals ranging from about 7–26 s, with bouts that can
last as long as 32.5 h. During a bout, periodic rests aver-
aged about 115 s at roughly 15 min intervals and some-
times longer irregular gaps between 20 and 120 min
were observed. There was also some variability in the
20 Hz signals in that they were never exactly replicated.

The songs of the blue whales (balaenoptera
musculus) have been observed by a number of re-
searchers [20.143, 152, 167]. A typical two-part blue

whale song time series and corresponding spectrogram
is shown in Fig. 20.18. The spectrogram of the first part
of the two part song had six spectral lines separated
by about 1.5 Hz. This type of spectrogram is typically
generated by pulses. Cummings and Thompson [20.150]
previously reported on the pulsive nature of some blue
whale moans. The second part of the song was tonal in
nature with a slight FM down sweep varying from 19 Hz
to 18 Hz in the first 3–4 s. The 18 Hz tone is then car-
ried until the last 5 s when there is an abrupt step down
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to 17 Hz. The amplitude modulation in the second part
of the song was probably caused by multi-path propa-
gation of the signal from the whale to the hydrophones.
These two-part songs basically follow a pattern of a
19 s pulsive signal followed by a 24.5 s gap and a 19 s
monotonic signal [20.152, 167].

Calls of Mysticete Whales
The calls of mysticete whales have been the sub-
ject of much research over the past three decades.
As with dolphin sounds, there is also a lack of any
standard nomenclature for describing emitted sounds.
Similar calls are often given different names by differ-
ent researchers. A summary of some of the acoustic
properties of the different baleen whales is indicated
in Table 20.2. Calls and songs are most likely used

for some sort of communication, however, at this time
the specific meanings of these sounds are not known.
It is extremely difficult to study the context and func-
tions of baleen whale vocalization. The sounds of
mysticete whales have also been summarized nicely
by Richardson et al. [20.34]. Instead of discussing the
characteristics of various sounds, the properties of calls
are summarized in Table 20.2. The calls of mysticete
whales are mainly in the low-frequency range, from an
infrasonic frequency of about 12.5 Hz for the blue whale
to about 3.5 kHz for the sei whale. There are a vari-
ety of different types of calls, from FM tones to moans,
grunts and discrete pulses. How these sounds are used
by whales is still an open question since it is often very
difficult to observe behavior associated with different
calls.

20.5 Discussion

Cetaceans use a wide variety of sounds from brief
echolocation signals used by dolphins having durations
less than 100 μs to very long duration songs that can
last for hours by are emitted by humpback whales.
The range of frequency is also very large, from low-
frequency (infrasonic) sounds between 10–20 Hz used
by blue and finback whales to high-frequency echolo-
cation signals that extend to 130–140 kHz or perhaps
higher (see earlier mention of 180 kHz). It is quite
clear that acoustics is important in the natural history
of cetaceans since all species regularly emit sounds
throughout their daily routine. Yet, it is not at all
clear how sounds are used by these animals. The dif-
ficulty in observing the behavior of these animals has
made it difficult to attach any function to a particular
or specific sound. It is nearly impossible to deter-
mine a one-to-one relationship between the reception or
transmission of a specific sound to specific behavioral
response. There are many possible functions of sounds,
some of which may include providing contact infor-
mation in a population of animals, signaling alarm or
warning of approaching predators, attracting potential
mates, echolocation for prey detection and discrimina-
tion while foraging, a way of establishing a hierarchy,
providing individual identification, and a method for
disciplining juveniles. Although researchers have not
been successful in uncovering the role or function of
specific sounds in any cetacean species, researchers
should not be discouraged but should be innovative
and imaginative in designing experiments that can be

conducted in the wild to delve deeper into this prob-
lem. Even with echolocation sounds, there are many
unanswered question. It seems logical that echolocation
sounds are used to detect and discriminate prey and to
navigate, yet we still know very little about how often
they are emitted during a daily routine for dolphins in
the field.

In this chapter, we have seen that the characteris-
tics of the sounds emitted by cetaceans depends a lot
on the size of the animals. Therefore the active space
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Fig. 20.19 Time series and spectrogram of a typical blue
whale song (after [20.152])
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of different species is indirectly related to the size of
the animals since the amount of sound absorption by
sea water increases with frequency. Dolphins and small
whales usually emit echolocation signals that can have
peak frequencies up to 120–140 kHz and whistles be-
tween 10–20 kHz. These signals are not meant to travel
large distances so that the active space is rather small,
tens of meters for echolocations and burst pulse signals
and several hundred meters for whistles. These signals
will certainly propagate to much shorter distances than
the low-frequency signals used by many of the baleen
whales. The sound pressure level (SPL) of an emitted
signal at any range from the animal is given by the
equation

SPL = SL−geometric spreading loss−αR ,

(20.11)

where SL is the source level in dB, α is the sound
absorption coefficient in dB/m and R is the distance
the sound has traveled. The geometric spreading loss
does not depend on frequency but is affected by the
sound velocity profile, the depth of the source and the
receiver. The most severe geometric spreading loss is
associated with spherical spreading loss in which the
amount of geometric spreading loss is equal to 20 log R.
The least severe geometric spreading loss is associ-
ated with sound channels, such as the sound fixing and
ranging (SOFAR) channel. In order to gain an appre-
ciation of the effects of absorption losses for different
types of cetacean signals, −αR in (20.9) was calcu-
lated as a function of range and the results are shown in
Fig. 20.20. The results indicate that the low-frequency
sounds used by baleen whales do not suffer as much
absorption loss as the sounds of small odontocetes.
Therefore, baleen whale signals can propagate long dis-

Reduction to SPL by absorption (dB)
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Baleen
whale
calls
»1kHz
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signals

Mid-frequency
echolocation
signals

Dolphin
whistles

Fig. 20.20 Reduction to sound pressure level caused by
sound absorption for different types of cetacean signals.
The curve for the high-frequency echolocation signals was
calculated at 120 kHz, and for the mid-frequency echolo-
cation signals at 50 kHz. The curve for the dolphin whistle
was calculated at 15 kHz. The baleen whale signal curve
was determined at 1 kHz.

tances if some type of channel is present in the water
column.

We have just scraped the top of the iceberg in
regards to our understanding of cetacean acoustics.
There is much to learn and understand about how
these animals produce and receive sounds and how
acoustics is used in their daily lives. The future looks
extremely promising as new technology arrives on the
scene that will allow researchers to delve into the
many unanswered questions. As computer chips and
satellite transmission tags get smaller and we apply
state-of-the-art technologies to the study of cetaceans,
our knowledge and understanding can but increase.
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Medical Acous21. Medical Acoustics

Kirk W. Beach, Barbrina Dunmire

Medical acoustics can be subdivided into di-
agnostics and therapy. Diagnostics are further
separated into auditory and ultrasonic methods,
and both employ low amplitudes. Therapy (exclud-
ing medical advice) uses ultrasound for heating,
cooking, permeablizing, activating and fracturing
tissues and structures within the body, usually at
much higher amplitudes than in diagnostics. Be-
cause ultrasound is a wave, linear wave physics
are generally applicable, but recently nonlinear
effects have become more important, even in
low-intensity diagnostic applications.

This document is designed to provide the non-
medical acoustic scientist or engineer with some
insights into acoustic practices in medicine. Aus-
cultation with a stethoscope is the most basic
use of acoustics in medicine and is dependent
on the fields of incompressible (circulation) and
compressible (respiration) fluid mechanics and
frictional mechanics. Detailed discussions of tri-
bology, laminar and turbulent hemodynamics,
subsonic and supersonic compressional flow, and
surfactants and inflation dynamics are beyond
the scope of this document. However, some of
the basic concepts of auscultation are presented
as a starting point for the study of natural body
sounds. Ultrasonic engineers have dedicated over
half a century of effort to the development of
ultrasound beam patterns and beam scanning
methods, stretching the current technical and
economic limits of analog and digital electron-
ics and signal processing at each stage. The depth
of these efforts cannot be covered in these few
pages. However, the basic progression of progress
in the fields of transducers and signal process-
ing will be covered. The study of the interaction
of ultrasound with living tissues is complicated by
complex anatomic structures, the high density of
scatterers, and the constantly changing nature of
the tissues with ongoing life processes including
cardiac pulsations, the formation of edema and

intrinsic noise sources. A great deal of work remains
to be done on the ultrasonic characterization
of tissues. Finally, the effect of ultrasound on
tissues, both inadvertent and therapeutic will be
discussed.

Much of the medical acoustic literature pub-
lished since 1987 is searchable online, so this
document has included key words that will be
helpful in performing a search. However, much of
the important basic work was done before 1987. In
an attempt to help the reader to access that liter-
ature, Denis White and associates have compiled
a complete bibliography of the medical ultrasound
literature prior to 1987. Under Further Reading in
this chapter, the reader will find a link to a com-
plete compilation of 99 citations from Ultrasound
in Medicine and Biology which list the thousands of
articles on medical acoustics written prior to 1987.

The academically based authors develop, use
and commercialize diagnostic ultrasonic Doppler
systems for the benefit of patients with cardiovas-
cular diseases. To translate ultrasonic and acoustic
innovation into widespread clinical application
requires as much knowledge about the economics
of medicine, the training and practices of medi-
cal personnel, and the pathology and prevalence
of diseases as about the diffraction patterns of ul-
trasound beams and signal-to-noise ratio of an
echo. Although a discussion of these factors is be-
yond the scope of this chapter, a few comments
will help to provide perspective on the likely fu-
ture contribution of medical acoustics to improved
public health.
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Standard Symbols
c sound propagation velocity [km/s = mm/μs]
p acoustic pressure fluctuation [d/cm2;

Pa = N/m2]
t time [s]
Z tissue impedance [Rayles = ρc = kg/(m2s) =

0.1 g/(cm2s)]
λ acoustic wavelength [m]
ρ tissue density [g/cm3]
σ surface tension [d/cm = mN/m]

Special Symbols
d diameter
f frequency [Hz]
fD Doppler frequency [Hz]
fus ultrasound center frequency [MHz]
fd vibration frequency [Hz]
P total instantaneous pressure [d/cm2, kPa]
q acoustic molecular displacement [cm]
Q volume flow [cm3/s]
R reflection coefficient
T transmission coefficient
vf fluid velocity [cm/s]
v molecular velocity [cm/s]
w transducer element width [cm]
x distance in propagation direction [cm]

κ tissue stiffness [d/cm2]
θ angle of sound propagation from the normal at

a refraction interface
Ψ distance to transition zone
θD Doppler angle of sound propagation to vessel axis

or velocity vector axis
Δφ ultrasound echo phase shift
Δτ ultrasound echo time shift [ns]
PRF pulse repetition frequency [Hz]
D thermal dose

Subscripts
i incident
r reflected
s shear wave
t transmitted
1 incident material
2 second material

Dimensionless Numbers
St Strouhal number St = ( fD)/V
Re Reynolds Number (DVρ)/μ= (4Qρ/πD)/μ

Units
Np nepers
dB decibels
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21.1 Introduction to Medical Acoustics

Medical acoustics covers the use of sub-audio vibration,
audible sound and ultrasound for medical diagnostics
and treatment. Sound is a popular and powerful tool
because of its low cost, noninvasive nature, and wide
range of potential applications from passive listening
to the application of high-energy pulses used for the
destruction of kidney stones.

There are four frequency ranges of sound and
three levels of intensity that will be presented in this
chapter:

1. Infrasound, acoustic waves with frequencies below
the level of human hearing. These vibrations, called
thrills, are often caused by turbulent blood flow
(which is abnormal). At the lowest extreme, the
pulse can be considered infrasound with a frequency
below 2 Hz. With fingertips, the physician can feel
vibrations with amplitudes of 1 μm.

2. Audible sound, acoustic waves with frequencies
in the range of human hearing. The audible
frequency range for the average human is ap-
proximately 20 Hz–20 kHz, with a peak sensitivity

Table 21.1 Medical frequencies

Title Period Frequency Power/Intensity

Generation 25 years

Ovulation 28 days

Diurnal 1 day

Respiration 6 s 0.15 Hz

Heart Rate 1 s 1 Hz

ECG surface bandwidth 10 ms 100 Hz

ECG intramyocardial BW 250 μs 4 KHz

Tremor 100 ms 3–18 Hz

Electromyography surface 5 ms 200 Hz

Electromyography intramuscle 100 μs 10 kHz

Flicker fusion (visual) 60 ms 16 Hz

Vibration sensation 10 ms 100 Hz

Sound low 50 ms 20 Hz

Telephone sound speech 3–0.3 ms 0.3–3 kHz

Sound high 50 μs 20 kHz

Electro-encephalography (EEG) surface waves

Delta waves 300 ms < 3.5 Hz

Theta waves 200 ms 3.5–7.5 Hz

Alpha waves 100 ms 7.5–13 Hz

Beta waves 50 ms 13–30 Hz

Intracerebral EEG 100 μs 10 kHz

around 3–4 kHz. At 1 kHz, the standard refer-
ence frequency, the ear is able to detect pressure
variations on the order of one billionth of an at-
mosphere. This corresponds to intensities of about
0.1 fW/cm2 (10−16 W/cm2 = 10−12 W/m2). The
oscillatory velocity of air molecules carrying such
sound intensities is v= 50 nm/s (1 nm = 10−9 m)
and the maximum pressure fluctuation is 20 μN/m2

or 0.2 nanoatmospheres (nanobar). At 1 kHz, the air
molecules oscillate back and forth about 0.05 nm.
The intensity of conversation is 0.1 nW/cm2

(1 μW/m2) causing molecules to oscillate with
amplitudes of 50 nm, and oscillatory pressures of
20 mN/m2.

3. Low-frequency ultrasound, which is used for clean-
ing and tissue disruption.

4. Radio-frequency ultrasound, acoustic waves with
frequencies near 1 MHz and wavelengths in the
body near 1 mm.

A list of interesting frequencies in medicine is pro-
vided for reference Table 21.1.

Part
F

2
1
.1



880 Part F Biological and Medical Acoustics

Table 21.1 (continued)

Title Period Frequency Power/Intensity

Ultrasound cleaners 42 kHz 100 W, 1 W/cm2

Ultrasound bacteriocidal 22.5 kHz

Ultrasound therapeutic 0.5 μs 1 3 MHz 15 W, 3 W/cm2

Ultrasound diagnostic

Transcranial 1–3 MHz 100 mW/cm2

Heart, abdomen 2–5 MHz 100 mW/cm2

Vascular, skeletal 4–10 MHz 100 mW/cm2

Skin, eye 10–40 MHz 8 mW/cm2

Ultrasound high intensity focused (HIFU) 2–6 MHz 2000 W/cm2

Diathermy, shortwave, physiotherapy 13–40 MHz 2–15 W

Diathermy, shortwave, cell destruction 300 kHz 100 W

Diathermy, cancer ablation 500 kHz 500 W

Diathermy microwave 0.4–2.5 GHz

Light 1014 Hz

X-ray 1 × 1018 Hz

4 × 1018 Hz

21.2 Medical Diagnosis; Physical Examination

The most valuable application of acoustics in medicine
is the communication from a patient to their physician.
In the modern world of efficient medicine, however,
physicians are encouraged to avoid wasting time listen-
ing to the patient so that objective tests can be ordered
without delay. This approach avoids physician frustra-
tion from sorting out the complaints and symptoms of
the patient, even though the patient initiated the appoint-
ment with the physician.

Having gathered background information, the
physician can proceed to the physical examination,
which includes optical methods, olfaction, palpation,
testing the mechanical response of tissues and systems
to manipulation, percussion, remote listening and aided
auscultation, and acoustic transmission and reflection
techniques. Only those techniques related to medical
acoustics will be discussed further here. Of future im-
portance in medical practice though, are those methods
that can be performed remotely, via the internet.

21.2.1 Auscultation – Listening for Sounds

Sounds in the body are generated through the presence
of disturbed flow, such as eddies and turbulence, by
frictional rubs, and/or by other sources with high accel-
erations. There are both normal and abnormal sounds

within the body. Auscultation is the act of listening for
sounds within the body for diagnostic purposes. This
may be conducted on any part of the body from head to
toe (Fig. 21.1). Anesthesiologists even use esophageal
stethoscopes for convenient acquisition of chest sounds.
Information gathered during auscultation includes the
frequency, intensity, duration, timing, and quality of the
sound.

Lung
Both normal and abnormal sounds can be present in
the lungs. The source of normal lung sounds is turbu-
lent flow associated with air movement through orifices
along the airways. These are large, low-frequency os-
cillations that cause the surrounding tissues to vibrate
within the audible frequency range. The respiratory
system is naturally optimized to minimize the work
needed to exchange air, so little energy is converted
into acoustic power, resulting in low-amplitude sounds.
With constriction of the airways, in such conditions as
asthma, the air velocity through the airways increases
(conservation of mass). Through conservation of energy
and momentum, an increase in flow velocity results in
an increase in pressure loss, raising the power needed
to drive the system. The energy is of course not lost,
but converted, in part, into acoustic power. The increase

Part
F

2
1
.2



Medical Acoustics 21.2 Medical Diagnosis; Physical Examination 881

Temporal

High
Mid

Right & left
sternal border

Cervical Subclavian
Low

Cardiac apex

Upper lung
quadrant

Lower lung
quadrant

Epigastrum

Abdominal
quadrants

Antecubital
fossa

Umbilical

Forearm

Inguinal

Thigh

Popliteal fossa

Joints

Scrotum

Heart valves
and murmurs

Arterial bruits

Lung breath sounds

Bowel sounds

Joint crepitus

Blood pressure
cuff

Auscultation
location

in flow velocity results in an increase in turbulent dif-
fusion, or the transfer of energy from the flow to the
surrounding tissues through a growing chain of turbu-
lent eddies. When the passages are smaller, the eddies
decrease in size, causing an increase in the frequency of
the audible sound. The pressure drop caused by a small
lumen is higher, causing an increase in eddy velocity
and therefore an increase in acoustic power, and the flow
rate is decreased, causing a longer duration of flow to
fill and empty the lungs. Thus the breath sounds are
louder, longer, higher-pitched sounds compared with
normal lung sounds. In some medical conditions, the
flow dynamics may be just right to produce coherent
eddy structures, such as one would see in a smoke stack.
These signals result in a narrow-band frequency tone.

Abnormal snapping or popping sounds may also be
present in the lung. In the normal lung, the alveoli (ter-
minal air sacks, 280 μm in diameter, 3 × 108 in lung)

Fig. 21.1 Auscultation sites. Arterial bruits can be heard bi-
laterally indicating arterial stenoses. Heart valve sounds
and heart murmurs are primarily heard in the perister-
nal intercostal spaces indicating cardiac timing, and valve
stenosis and incompetence (insufficiency or regurgitation).
Breath sounds in the lung indicate both airway sufficiency,
lung inflation, alveolar inflation and pleural friction. Bowel
sounds (after [21.1, 2]) indicate normal peristalsis; bowel
in the scrotum indicate intestinal hernia. Crepitus on mo-
tion indicates air in the tissue, bone fracture or joint
(after [21.3–6]) cartilage damage. Auscultation in the an-
tecubital fossa during blood pressure cuff deflation yields
Korotkoff sounds (after [21.7, 8]), 1 – a sharp sound each
systolic peak when the cuff pressure equals the systolic
pressure indicating the momentary separation of the artery
walls and the onset of blood flow, 2 – a loud blowing sound
due to blood turbulence, 3 – a soft thud when the artery
under the cuff is exhibiting maximum change in arterial
diameter, 4 – a soft sound indicating slight arterial defor-
mation near diastolic pressure, 5 – silence when the cuff
pressure is below the diastolic arterial pressure �

are filled with air. In pneumonia, regions of alveoli are
filled with fluid, which prevents a rapid increase in size
without the introduction of a gas phase. The rapid in-
troduction of a gas phase when the lung is expanded
during the inspiration phase of respiration causes a tiny
snapping sound (broadband acoustic impulse) in each
alveolus; many snaps together cause the sound of rales.

Because of the lubricant normally present in the
pleura located between the lungs and the chest wall,
there are normally no sounds generated through a fric-
tion rub due to the sliding of the lung along the chest
wall. When the pleura are inflamed, coarse rubbing
sounds can be heard during breathing.

Cardiac
The cardiovascular system also generates normal and
abnormal sounds that can be heard in the chest
with a stethoscope [21.9] (Table 21.2). Normal heart
sounds [21.10–12] are caused by rapid blood decelera-
tions resulting from the closure of the heart valves. Each
of the four heart valves, the tricuspid, pulmonic, mitral
and aortic (in order from the venous circulation to the
arterial circulation), are flaccid sheets of tissue securely
tethered in the closed position to form check (one-
way) valves. Like a parachute opening, the valve leaflets
move with the reversing blood flow until the tethers
become taught, then the leaflets force a rapid decelera-
tion of the blood which generates a sudden (broadband)
thump with an acoustic power of several watts. No sim-
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Table 21.2 Diagnosing valve disease from heart murmurs

Time Side Location Position

Tricuspid stenosis Diastolic Parasternal 3rd ICS Supine

Tricuspid regurgitation Systolic Parasternal 3rd ICS Supine

Pulmonic stenosis Systolic Right Superior Supine

Pulmonic regurgitation Diastolic Right Superior Seated

Mitral stenosis Diastolic Left Apex Supine

Mitral regurgitation Systolic Left Apex-Axilla Supine

Aortic stenosis Systolic Parasternal Superior Supine

Aortic regurgitation Diastolic Parasternal Superior Seated

Side parasternal: in the intercostal spaces on either side of the sternum
Location 3rd ICS: the space between the 3rd and 4th rib, Erb’s point
Position seated: Seated, leaning forward, breath in expiration

ilar rapid acceleration is associated with valve opening.
Because the sounds are primarily radiated along the axis
of acceleration and conduct better through tissue than
the air-filled lungs, the sound of each valve is most
prominent at a particular location on the chest wall.

Though four valves are present, usually only two
thumps are heard, and they occur at vary precise times
in the cardiac cycle. 20 ms after the onset of ventric-
ular contraction, the tricuspid and mitral valves close,
causing the first heart sound. 50 ms after closure of the
atrioventricular valves, the pulmonic and aortic valves
open silently. 320 ms after the onset of ventricular con-
traction, when ventricular ejection is complete and the
ventricular pressures drop below the pulmonary trunk
and aortic pressures, the pulmonic and aortic valves
snap shut, generating the second heart sound. These
times do not vary with heart rate; each cardiac cycle acts
like an independent impulse-response system. The sys-
tolic ejection volume does vary with the diastolic filling
period from the prior cardiac cycle.

Thus, each of the two heart sounds is generated
by two valve closures, one in the left heart and one
in the right heart. These usually occur simultaneously,
however, the sounds do split into two if the inflow
valves (tricuspid and mitral) or outflow valves (pul-
monic and aortic) close at different times. These split
heart sounds [21.13] can be indicative of an abnormal-
ity. The closure of the tricuspid valve is dependent on
contraction of the right ventricle, which in turn is de-
pendent on the electrical conduction system from the
pacemaker of the heart. As a result, a delay in conduc-
tion or a slow response of the right ventricular muscle
(myocardium) will delay the tricuspid sound, causing
splitting. Similarly, if there is a delay in the conduction
system of the left heart, or the left ventricular my-
ocardium contraction is slow, then the mitral sound is

delayed. The closure of the outflow valves is dependent
on contraction strength, pressure in the outflow vessels,
and ejection volume. A mismatch of any of those factors
will cause the pulmonic and aortic valves to close at dif-
ferent times, splitting the second sound. Even the effects
of respiration on the filling and emptying of the heart
chambers cause some normal heart sound splitting.

Abnormal sounds that occur in the cardiovascu-
lar system are called bruits and murmurs [21.14–17].
A murmur is a sound lasting longer than 10 ms heard
by a cardiologist from the heart; a bruit is a similar
sound, but heard by an angiologist from an artery. Veins
rarely make sounds; venous sounds are called hums be-
cause they are continuous. A thrill is a similar vibration
felt by the hand. Because these represent power dissipa-
tion from the cardiovascular system, all are considered
abnormal. The absence of normal bruits and murmurs
results from a biological feedback that forms the shape
of the cardiovascular system. The feedback mechanism
is not well understood. In fluid mechanics, the transi-
tion from laminar flow to turbulent flow occurs near
a Reynolds number of 2000. Turbulent flow is highly
dissipative while laminar flow is minimally dissipative.
Coincidentally, peak flow through the cardiovascular
system maintains a condition of Reynolds number less
than 2000. If a heart valve or an artery is required
to carry higher flow rates, then the conduit will dilate
until the Reynolds number (proportional to the flow di-
vided by the diameter) becomes less than 2000. Distal to
a stenosis, where turbulence occurs, the conduit dilates,
causing post-stenotic dilation. Thus, it appears that sus-
tained turbulence, which dissipates power, is the driving
force for remodeling to avoid turbulence and make the
hemodynamic system more energy efficient.

The vibrations indicate the presence of disturbed
blood flow, caused by deceleration of the blood beyond
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a narrow stenosis. The vibrations are associated with
a pressure drop across the stenosis because of a transfer
of hydraulic power to acoustic power through a cascade
of eddies. In turbulent flow, the vibrations are broad-
band. When coherent eddies are present, the vibrations
are narrow band, and the frequency of the eddies can
be related to the flow velocity (vf) and vessel diameter
(d) through the Strouhal number (St = fd/vf). In addi-
tion to the location and power of a bruit, the frequency
of the bruit is also helpful in evaluating its clinical im-
portance. The Strouhal number has been used for the
prediction of the residual lumen diameters of carotid
stenoses. If the frequency of a bruit is divided into the
number 500 [mm Hz], the result is the minimum lu-
men diameter [21.18–25] in mm. In clinical testing, this
method accurately predicted the stenosis in hundreds of
cases. However, because cumbersome technology is in-
volved, and because the method fails in tight stenoses,
which are most clinically important, this clever method
has been abandoned.

Heart murmurs are auscultated at a series of loca-
tions on the precordium (the front middle of the chest
around the sternum). They are graded from grade 1
(barely audible) to grade 6 (no stethoscope needed).
Murmurs may result from leaky (incompetent, regur-
gitant) valves, stenotic (narrow) valves, or other holes
between heart chambers. The differential diagnosis of
heart murmurs is based on the timing of the mur-
mur and the locations on the chest wall [21.26, 27]
where the murmur is best heard. A murmur can be
early systolic, mid-systolic, late systolic, or early di-
astolic, or mid-diastolic. If a murmur is best heard in
the left second intercostal space (the space between
the second rib and the third rib along the left boarder
of the sternum), it is most probably an aortic steno-
sis [21.28–30]. Each of the other valve pathologies
has a corresponding location where the murmur is
likely to be highest. Of course, there is a great deal
of variability between patients, and the examiner must
apply a full set of detective skills to sort out a proper
diagnosis.

There are some common systolic heart murmurs.
Athletes, with temporary increased blood flow due to
exercise programs have physiologic systolic heart mur-
murs, as do pregnant women, who have a 30% increase
in cardiac output to supply the placenta. Hemodialysis
patients also often have systolic heart murmurs because
of the increased cardiac output required to supply the
dialysis access shunt [21.31] in addition to the supply to
the body. In these cases, remodeling of the blood vessels
to increase the flow diameter has not had time to occur.

Bruits are almost always associated with stenoses in
arteries, which often require treatment. They are classi-
fied by their pitch and duration. The occurrence of bruits
in the head, in the abdomen after eating and in the legs
are all indications of arterial stenoses, or high-velocity
blood entering vascular dilations. The presence of a bruit
heard in the neck is usually indicative of a carotid steno-
sis. The carotid arteries are the major vessels located on
the left and right side of the neck that supply blood to
the brain. The development of an atherosclerotic plaque
causes luminal narrowing and the corresponding onset
of disturbed flow. This lesion is associated with a 20%
risk of stroke in two years from material that can be re-
leased by the atherosclerotic plaque and travels to the
brain to occlude a branch artery.

Carotid bruits are usually present when the resid-
ual lumen (stenotic) diameter is greater than 50% of the
original lumen diameter (called a 50% diameter reduc-
tion), but less than 90% of the original lumen diameter
(90% diameter reduction) In this range, the blood flow
rate to the brain through the carotid artery is approxi-
mately 5 cm3/s. If the pressure [21.32] drop across the
stenotic region is about 20 mmHg, then the power dis-
sipation at the stenosis is 13 mW, which can appear as
sound energy in a bruit. Unfortunately, as the stenosis
becomes more severe, the flow rate along the artery de-
creases, reducing the acoustic power for the bruit, so
the bruit is no longer detectable, even though this more
severe stenosis carries a higher risk for stroke. The de-
creased blood flow will not cause symptoms in most
people because 95% of the population have collateral
connections (the circle of Willis) that can provide the
required blood flow that is not delivered by the stenotic
artery. In the remaining 5% of the population, a severe
carotid stenosis causes impaired mental function.

One of the barriers to new methods in the classi-
fication of carotid stenosis is that the first description
of the relationship between carotid artery stenosis and
apoplexy (stroke) was provided by Egaz Moniz in 1938.
Moniz used percent diameter reduction and everyone
has followed suit, through a confusing and contentious
evolution, even when more-rational and useful alterna-
tives have been developed. Thus, a new method that
predicts residual lumen diameter will not be easily
adopted by the medical community because of the tra-
dition of using percent diameter reduction.

Bruits may be generated in the abdomen by stenoses
in the renal arteries, which supply the kidneys. A renal
artery stenosis will cause renovascular hypertension be-
cause the kidney is a transducer for detecting low blood
pressure. The pressure drop across a renal artery steno-
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sis causes the kidney to measure a low pressure, and
deliver the signals to raise blood pressure in the arterial
system, causing hypertension in all arteries except those
in the affected kidney. The transduction system is called
the renin-angiotensin-aldosterone system.

Some cardiovascular sounds are so loud that they
cannot be missed. A patient in renal failure, refus-
ing dialysis, had a cardiac friction rub (friction in the
pericardial sack from inflammation). The 1 kHz squeak
occurring with each systole could be heard from the
doorway of the patient’s room.

A stethoscope can also be used to detect bowel
sounds from the abdomen. These sounds are generated
by the liquid and gaseous contents of the bowel being
forced from one intestinal segment to another through
an orifice created by peristaltic action. The same fluid
eddies described above are responsible for these sounds.
The presence of bowel sounds is an important indicator
of a normally functioning gut. It is common, the day af-
ter abdominal surgery, to check to be sure that normal
bowel sounds are present.

Palpation, though not an acoustic technique, is used
to feel, rather than hear, the same vibrations. Hemodial-
ysis patients have a vascular access shunt created by
tying an artery directly to a vein. This shunt may have
a flow rate of 3 liters per minute, half of the cardiac out-
put. The pressure drop is equal to the systolic blood
pressure 120 mmHg. So the hemodynamic power dis-
sipated in the shunt is 800 mW of power. This energy is
converted to a vibration (thrill) which can be felt with
the fingers.

Acoustic Stethoscope
Auscultation may be performed directly, but is most
commonly conducted with a stethoscope. The device
was invented by Dr. Rene Theophile Hyacinthe Laennec
in 1816. While examining a patient, Dr. Laennec rolled
up a sheet of paper and placed one end over the pa-
tient’s heart and the other end over his ear. Dr. Laennec
later replaced the rolled paper with a wooden tube (sim-
ilar in appearance to a candlestick), which was called
a stethoscope from the Greek words stethos (chest) and
skopein (to look at). Two modern versions of the stetho-
scope are notable: the binaural stethoscope and the fetal
stethoscope. The common binaural stethoscope consists
of a bell connected by flexible tubing to a pair of ear-
pieces. Each earpiece is sealed into the corresponding
external auditory meatus. The bell is sometimes cov-
ered with a diaphragm, which acts as a high-pass filter.
For example, normal heart sounds have frequencies near
50 Hz while heart murmurs have frequencies exceed-

ing 100 Hz. Filtering out the normal heart sounds with
the diaphragm of the stethoscope often allows patho-
logic murmurs to be detected. When using an open bell
stethoscope, a diaphragm can be formed by pressing the
bell tighter to the skin, stretching the skin and deeper tis-
sue, which attenuates the lower frequencies [21.33–36].

The fetal stethoscope is designed for use in the aus-
cultation of fetal heart sounds, which can be detected
during the final half of a 40 week pregnancy. The fetal
stethoscope uses a rod connecting the mother’s abdom-
inal wall to the examiner’s forehead to transmit the
sound by bone conduction in the examiner’s head to the
inner ear where it is converted into nerve impulses. This
avoids the impedance changes between tissue and air at
the skin surface and then again from air to tissue in the
middle ear.

For the last 20 years, small ultrasonic Doppler ultra-
sound stethoscope systems have been available to detect
the fetal heart beat [21.37, 38]. They operate like the
ultrasound imaging phono-angiograph to easily detect
solid tissue vibrations from deep in the body. These
continuous-wave instruments allow the pregnant mother
to perform easy self-examination. They are available on
a rental basis without a medical prescription.

Electronic Stethoscope
Electronic stethoscopes [21.39–41] provide improved
amplification and background noise cancelation over
traditional stethoscopes. Some also have recording ca-
pabilities to provide quantitative, rather than just qual-
itative, assessment of the sounds heard. For exam-
ple, by listening to the neck with a phono-angiograph
(Fig. 21.2), the location and duration of the bruit can be
documented. A phono-angiograph is just an electronic
stethoscope with an attached oscilloscope. If applied to
the heart, then it is called a phono-cardiograph. This
bruit (Fig. 21.2), is a pan-systolic bruit (lasting all of sys-
tole) but not a pan-diastolic bruit (lasting all of systole
and diastole). Since arterial blood velocities are higher
during systole than diastole, all arterial bruits include
systole. The exceptions, where arterial flow in a collat-
eral pathway is reversed due to a steal syndrome are so
rare that common names have not been adopted for this
condition. To be sure that the bruit is systolic, the exam-
iner can palpate the pulse at the wrist while listening, to
associate the bruit timing with systolic arterial motion.

However, if such an image were gathered with
a phono-cardiograph (Fig. 21.3) from the heart, it would
be impossible to know whether the murmur was com-
ing from aortic or pulmonic stenosis (during systole),
aortic or pulmonic regurgitation (during diastole), from
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a)

b)

Fig. 21.2a,b Carotid phono-angiography (CPA) (a) A mi-
crophone fitted with an acoustic coupling to the neck
gathers sounds, which are displayed on an oscilloscope and
captured with an instant camera. (b) The sounds displayed
are classified by the location, amplitude, and duration of
the bruit. A similar method, phono-cardiography, was used
for the heart. A method, quantitative phono-angiography
(QCPA) provided an analysis of the frequency content of
the bruit

Fig. 21.3 Phono-cardiograph transducer. To avoid sounds
and motions introduced by the examiner’s hand on the
chest, this phonocardiography transducer is fitted with
a suction ring and elastic strap to secure the transducer el-
ement to the chest. Early echocardiographs had provision
for amplifying and displaying the phono-cardiograph sig-
nals, which were filtered to display audible frequencies or
infrasonic frequencies

tricuspid or mitral regurgitation (during systole), or
tricuspid or mitral stenosis (during diastole), unless
there were some indication of the timing of the car-
diac cycle. A phono-cardiogram displays an associated
electro-cardiograph (ECG) tracing to provide that tim-
ing information.

Unfortunately, electronic stethoscopes, phono-an-
giographs and phono-cardiographs are considered too
complicated for use in everyday medical practice. Al-

though they do provide a graphical output for the
patient chart (required documentation to receive pay-
ment for diagnostic procedures), a separate current
procedural terminology (CPT) code is not available for
phono-angiography, phonocardiography or for stetho-
scope examination. Like the stethoscope examination,
these procedures, if performed, are considered part of
a standard office visit. Physicians are reluctant to use
technical examination methods if they cannot charge
for the extra time involved. Although a few research fa-
cilities documented bruits and murmurs detected with
these systems between 1965 and 1985, the systems have
nearly disappeared from medical practice. Like the first
half of the 20th century, physicians today are trained to
use acoustic stethoscopes. Of course, as physicians be-
come more experienced and more mature, their hearing
deteriorates. Even the most respected cardiologist will
fail to correctly diagnose cardiac valve disease in 50%
of patients. Bruits with 35 μm, 300 Hz vibrations from
the jugular vein (Fig. 21.4) documented by a new ul-
trasound imaging phono-angiograph were not detected
by stethoscopic auscultation. So, in spite of the ubiq-
uitous use of stethoscopes for bruit/murmur detection,
their sensitivity may not be adequate for the task.

21.2.2 Phonation and Auscultation

In addition to listening for sounds with a stethoscope,
an examiner may cause the generation of sounds to
assess transmission or resonance. During auscultation
of the lungs, an examiner may ask the patient to
phonate (make voice sounds) at different frequencies
“Say ‘eeeeeee’, now say ‘aaaaaaaa’”. During that pe-
riod, the examiner will either palpate the chest wall for
vibration or listen to the chest wall with a stethoscope.
Poor sound transmission may indicate that the airways
are obstructed, enhanced sound transmission (enhanced
fremitus) indicates fluid has filled a space normally oc-
cupied by air.

21.2.3 Percussion

Percussion is another method of sound generation by
striking the chest or abdomen to assess transmission or
resonance. The skin may be struck with the hand or fin-
ger, or one hand may be placed on the skin and struck
with the other hand. A higher-frequency shorter pulse
can be generated by placing a coin on the skin and strik-
ing the coin with another coin. The resultant sound can
be assessed by listening to the resonance through the
air or by using a hand or stethoscope to assess trans-
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VibrometryColor Doppler

Jugular Vein

Carotid Artery

7.5 cm/s

–7.5 cm/s

300 Hz Vibrations around jugular vein 35 µm

0 µm100 Hz Vibrations around tortuous carotid

Image Computing Systems Laboratory. Electrical Engineering

a)

c)

b)

d)

Fig. 21.4a–d Imaging vibrometry of the neck. (a) Color Doppler image, (b) vibration image, (c) jugular vein Doppler and
(d) carotid artery Doppler of a patient complaining of vibrations in the head. The 300 Hz vibrations with an amplitude of 35 μm
could not be heard with a stethoscope by either of two experienced examiners (courtesy M. Paun, S. Sikdar)

mission of the impulse. Percussion that results in a dull
sound indicates a fluid-filled space below the skin; a res-
onant sound indicates an air-filled space below the skin.
These methods are often used to find the lower boarder
of the lungs, to identify fluid-filled consolidation in the
lungs, and to find the edge of the liver (fluid-filled) in
the abdomen (air-filled intestines).

These acoustic examination techniques have been
developed in medical practice over centuries, and al-

though efforts have been made to use electronic aids
for diagnosis and for training, still, the common prac-
tice is to learn these methods from a mentor. In the
last quarter of the 20th century, ultrasound has become
adopted in specialty medical practice, but has not made
inroads in general practice. It is likely that, if and when
ultrasound diagnostic methods become widely used in
general medical practice, it will be used with the same
level of skill as stethoscope auscultation.

21.3 Basic Physics of Ultrasound Propagation in Tissue

The vibrations of molecules at any location (or time) in
a sound wave can be characterized by four parameters:
the pressure fluctuation from the mean static pressure

(p), the molecular velocity (v), the displacement of the
molecules from the resting location (d), and the mo-
lecular acceleration (a). The two most basic parameters,
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Fig. 21.5 Typical acoustic parameters of a 300 mW/cm2,
5 MHz ultrasonic wave in tissue impedance. Input parame-
ters: Tissue impedance = Z = 1.5 MRayles = 1.5 MN s/m3

= 1.5 × 106 kg/(m2s), pressure amplitude = p = 1 atm (bar)
= 101 kPa (kN/m2) = 760 mmHg (Torr), frequency =
5 MHz; resultant wave parameters: intensity = 0.33 W/cm2

= p2/2Z, peak molecular velocity = 6 cm/s = p/Z, mo-
lecular displacement = 1.9 nm, molecular acceleration of
0.19 million times the acceleration of gravity

pressure deviation and molecular velocity are depen-
dent only on the intensity of the sound. Their ratio, p/v,
is determined by the acoustic impedance (Z = p/v),
a property of the tissue. At the sound level shown
in Fig. 21.5, 300 mW/cm2 (3 kW/m2), the maximum
acoustic pressure fluctuation equals 1 atm. If the sound
intensity is increased, then the negative peaks represent
a pressure below zero. Most ultrasound examinations
are performed at pulse peak intensities 25 times this
high, and therefore, peak amplitudes five times atmo-
spheric pressure, making the compressions 6 atm and
the decompressions −4 atm.

The linear acoustic relationships can be easily de-
rived using a simple linear elastic model of tissue
(Fig. 21.5) and Newton’s first law of motion on the
molecules. The molecules in the tissue will accelerate

along the axis of the ultrasound propagation (x) and dis-
place a distance (q) away from equilibrium because of
a gradient in pressure (dp/dx), which is related to the
tissue compression (dq/dx) and the tissue stiffness (κ).

p =−κ dq

dx
=−κq′ , (21.1)

κ
d2q

dx2
=− dp

dx
= ρ dq2

dt2
. (21.2)

Solving this equation with the variable q(x−Ct) pro-
duces

κq′′ = ρC2q′′ , (21.3)

so

C =
√
κ

ρ
. (21.4)

The molecular velocity (v = dq/dt = −Cq′) and the
tissue pressure (p =−κq′) form an important ratio

Z = p

v
= κ

c
=√

κρ = ρC . (21.5)

Although the tissue density (ρ) and stiffness (κ) de-
termine the acoustic impedance (Z) and acoustic wave

3.000

2.500

2.000

1.500

1.000

0.500

0

12.00
11.00
10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00

1.0000 2.000 3.000 4.000 5.000 6.000 7.000

Density (g/cm3)

Ultrasound speed (mm/μs)

Impedance (MRayles)

Skull
Bone

Bone
Lucite

Styrene
Skin

Lung

Air

Tooth
dentine

Tooth
enamel

PVDF

Silicone
rubber

PZT = 7.7 g/cm3, 35MRayles

PZT

c = 2

Lens



Wave velocity and density of materials

Fig. 21.6 Acoustic properties of materials of medical inter-
est. Empirically, the acoustic properties of tissues fall on
a line relating ultrasound speed (c) and tissue density (ρ);
c = 2ρ. Using the equation for impedance Z = ρc, then
Z = c2/2 = 2ρ2. Polyvinylidene fluoride (PVDF) trans-
ducer material has acoustic properties near soft tissue,
lead zirconate titanate (PZT) transducer material has much
higher density and acoustic impedance
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Fig. 21.7 Acoustic properties of soft tissues

speed (C), it is more convenient to measure the den-
sity and wave speed of a material and compute the
impedance.

A good deal of effort has been devoted to measuring
the properties of tissues (Figs. 21.6–21.8). Measure-
ment differences between laboratories and differences
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Fig. 21.8 Detailed acoustic properties of soft tissues

in tissue preparation contribute to the variability of
tissue property values. While living mammalian body
tissues are held to a temperature near 37 ◦C, and have
blood flow that swells the tissue and changes the av-
erage composition with the heart rate and respiratory
rate, it is convenient to measure properties of dead tis-
sue at bench-top temperatures (25 ◦C). Fortunately, the
exact acoustic properties of tissues have not proven very
useful in clinical diagnostic applications. Ultrasound
imaging methods have not been able to differentiate
tissue types in spite of a half century of efforts. The
identification of disease with ultrasound imaging uses
the shapes of large structures as the primary diagnostic
tool.

21.3.1 Reflection of Normal-Angle-Incident
Ultrasound

When ultrasound intersects an interface between two
materials with differing acoustic impedances (Z1 and
Z2), perpendicular to the interface, then the amplitude
of the reflection of ultrasound at the interface can be
computed from the requirement that the pressure change
and molecular velocity of the incident wave (pi, vi)
must equal sum of the pressure changes and molecular
velocities of the transmitted and reflected waves (pt, pr,
vt, vr). The impedances of the materials relate the pres-
sures and molecular velocities (Z1 = pi/vi =−pr/vr,
Z2 = pt/vt). The pressure reflection and transmission
coefficients are

pr

pi
= R = Z2− Z1

Z2+ Z1
, (21.6)

pt

pi
= T = 2

Z2

Z2+ Z1
. (21.7)

Note that if the acoustic impedance of the second ma-
terial is lower than the acoustic impedance of the first
material, then the reflected wave is inverted. The sum of
the transmitted and reflected power equals the incident
power.

21.3.2 Acute-Angle Reflection of Ultrasound

If the ultrasound is incident on the interface at an acute
angle, the ultrasound that passes into the second tis-
sue is tilted to a new direction according to Snell’s law
(Fig. 21.9).

C1

sin θ1
= C2

sin θ2
. (21.8)
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λ1 = c1 / fus

θ1
θ1

θ2

λ2 = c2 / fus

λ1 / sin θ1 = λ2 / sin θ2 c1 / sin θ1 = c2 / sin θ2

Fig. 21.9 Refraction of ultrasound as it passes from one
material to another. Dark brown: incident compressional
wavefronts and wave vector incident at angle θ1. Light
brown: reflected compressional wavefronts and wave vec-
tor reflecting at angle θ1. Gray: transmitted compressional
wave. The interfacial shear wave increases in intensity as
the ultrasound beam cross section coherently contributes
to the wave; attenuation of the shear wave causes a rapid
decrease in amplitude outside the beam

Because the component of molecular velocity normal to
the surface must be preserved:

pr

pi
= R =

Z2
cos θ2

− Z1
cos θ1

Z2
cos θ2

+ Z1
cos θ1

. (21.9)

In this case, not all of the ultrasound power is found
in the sum of the reflected wave and the transmitted
wave. The remaining portion of the power appears as
a surface capillary wave propagating along the sur-
face of the interface. This capillary wave is subject to
high attenuation. Because tissue has an interface on
every cell boundary and every tissue boundary, this
mechanism is responsible for some of the conversion
of incident ultrasound power into heat as ultrasound
propagates into tissue. It is important to notice that
the propagation speed of the capillary wave is not the
same as that of the component of the compressional
wave directed along the interface, so the capillary wave
is out of phase with the ultrasound wave, contribut-
ing to the transfer of energy into the capillary wave.
Outside the ultrasound beam, the capillary wave takes
on its conventional wavelength (cs/ f ), where f is the
ultrasound frequency. The propagation speed of the
capillary wave (cs) is proportional to the interfacial
tension.

21.3.3 Diagnostic Ultrasound Propagation
in Tissue

Diagnostic ultrasound uses ultrasound frequencies of
1–30 MHz. (MHz = cycles per μs). The speed of ul-
trasound in most tissues is near 1.5 mm/μs (1500 m/s).
There are some notable exceptions. In bone the speed is
between 3.5 mm/μs and 4 mm/μs, and in air the speed
is 0.3 mm/μs. In cartilage the speed is 1.75 mm/μs
which of course varies with composition. In fat the
speed is 1.45 mm/μs (Table 21.3). In muscle, the speed
of ultrasound varies by about 1.5%, depending on the
angle of propagation to fiber orientation.

Although most authors focus attention on ultra-
sound frequency, ultrasound wavelength may be more
convenient for understanding the important issues.
There are three issues of importance:

• Ultrasound cannot resolve structures smaller than
the wavelength.• Scattering and attenuation [21.42] both depend on
ultrasound wavelength and its relationship to the
size of the scatterers.• The focusing properties of ultrasound beam patterns
and the formation of side-lobes depend on the ra-
tio between the wavelength and the width of the
transducer.

21.3.4 Amplitude of Ultrasound Echoes

Red blood cells (erythrocytes) are 0.007 mm in diam-
eter and about 0.001 mm thick. The largest cells in the
body, nerve axons, may be 1 m long, but their diam-
eter is about 0.001 mm. A liver cell is about 0.04 mm in
diameter. The smallest structures imaged by ultrasound
in clinical practice are layers less than 1 mm thick, such
as the media lining major arteries (the intima-media
thickness, IMT) [21.43], corneal layers (with 30 MHz
ultrasound) and skin surfaces. However, these struc-
tures can only be observed in the range (depth) direction
because resolution is best in that direction. Lateral res-
olution is dependent on the numeric aperture of the
ultrasound beam pattern and the relationship between
the object of interest and the focus as well as the ul-
trasound wavelength. Only the ultrasound wavelength
affects depth resolution. The result is that ultrasound
images are anisotropic, with much better resolution in
the depth direction than in the lateral direction. The im-
age is delivered to the examiner as a pictorial map in
two dimensions. In our optical experience, resolution
is equal in the two dimensions. Therefore, we expect
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Table 21.3 Ultrasound wavelength versus tissue thickness. To resolve the thickness of these structures, the ultrasound
frequency must be much higher than listed in this table. Much lower-frequency ultrasound passes through with little
interaction. For particles or cells, lower-frequency ultrasound is subject to Rayleigh scattering

Tissue Property Dimension (mm) Ultrasound

Speed (mm/μs) Frequency (MHz)

Trachea Lumen diameter 25 0.32 0.013

Aorta Lumen diameter 30 1.57 0.063

Fat layer Subcutaneous 20 1.45 0.080

Myocardium Thickness 10 1.6 0.16

Skull Thickness 10 4 0.4

Brain Cortex 3 1.5 0.5

Artery Wall 0.8 1.6 2

Trachea Wall 0.6 1.75 2.9

Bone Cortex 1 4 4

Eye Cornea 0.6 1.64 2.73

Skin Dermis 0.3 1.73 5.76

Fat Cell 0.1 1.45 14.5

Brain Cell, large 0.1 1.5 15

Skin Epidermis 0.05 1.73 35

Erythrocyte Cell 0.007 1.57 225

Bacteria Cell, large 0.005 1.5 300

Brain Cell, small 0.004 1.5 375
Notes:
1. Trachea lumen: for phonation below 13 kHz, the trachea diameter is smaller than the wavelength so that the trachea acts like

a waveguide, bounded by cartilage with acoustic velocity and impedance higher than the luminal air.
2. Bone cortex and thin skull have thicknesses near the wavelength of transcranial ultrasound and a much higher ultrasound

impedance, so the skull can act as an interference filter reflecting some wavelengths and passing others.
3. As the upper limit of most medical ultrasound systems is 15 MHz, small animal research instruments image at frequencies as high

as 70 MHz, high enough to resolve the epidermis and large brain cells, but not high enough to image most cells.

that, if we can see detail in one dimension, we can also
see the detail in the other, even when we cannot. This
gives the impression that ultrasound has higher resolv-
ing power in the lateral direction than it in fact does.
This is particularly important in measurements such as
the IMT and measuring the thickness of the atheroscle-

rotic cap. Such structures can only be visualized when
the ultrasound beam is oriented perpendicular to the
structure.

To identify tissues and organs, the lateral dimen-
sions must by at least 10 wavelengths wide. This
number varies depending on the numeric aperture of
the imaging system and on the acoustic contrast with
the surrounding material. Small round structures such

Fig. 21.10 Near-field versus far-field difference in ultra-
sound image. This is an image taken with a diagnostic
scanner using a 5 MHz ultrasound transducer (wave-
length = 0.3 mm) with a concavity radius of 16 mm and
a transducer diameter of 6.4 mm. The computed transition
zone is d2/4λ = 34 mm. The focus must be less than the
34 mm distance to the transition zone to be effective. With
a fixed-focus fixed-aperture ultrasound transducer, the tran-
sition from the near field to the far field is marked by lateral
spreading of the speckle in the far field. There is no effect
on the range (depth) speckle dimension �
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as tendons can be imaged using tricks, such as watch-
ing for motion, but most objects successfully imaged by
ultrasound are larger. It is important to remember that it
is possible to see an object that you cannot resolve. For
instance, you are able see stars or lights at night, even
though you cannot resolve closely spaced pairs of stars.
When the signal from a target is strong, the target can
be detected and located, even though a pair of targets
cannot be resolved as two. If Doppler demodulation is
used, rather than amplitude demodulation (used for B-
mode), small vessels with blood flow can be resolved if
the signals are strong enough.

Ultrasound imaging is a coherent process that gen-
erates speckle in the image. This is often called tissue
texture, but the spacing of the speckle is about equal
to the burst length of the ultrasound pulse, which is up
to several wavelengths, and this is much greater than
the fine cellular structure of the tissues under observa-
tion. Our visual processing is so good that we integrate
prior knowledge, and outline shape seamlessly into our
recognition process, while believing that we are recog-
nizing texture.

Ultrasound imaging and aeronautical radar imaging
are electronically identical. However, in aeronautics,
the space between aircraft is very large compared to
the size of the aircraft and to the wavelength of the
radar wave. In medical ultrasound imaging, the cells
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Fig. 21.11a–c Geometry of transition zone between near field (Fresnel zone) and far field (Fraunhofer zone) (a) A trans-
ducer consists of a piezoelectric element (PZT) with electrodes on the face with an impedance matching layer and on
the back with a backing material. For computation, only the wave intersection with the matching layer face needs to be
considered. (b) By geometry, the distance to the transition zone (Ψ ) between the Fresnel zone and the Fraunhofer zone
for a flat transducer can be estimated. The transition zone is located at the furthest distance from the transducer that the
origin of a compression half-cycle of a wave can completely envelope the transducer face. r = transducer radius, Ψ = dis-
tance to transition zone, λ/2 = half wavelength, H = hypotenuse of transition radius. H2 = Ψ 2+ r2, H −Ψ = λ/2. If
λ/4 
 Ψ , then Ψ = r2/λ= d2/4λ, the accepted formula for the transition zone. A wave originating from a closer loca-
tion (Fresnel zone), will always produce a combination of compressions and decompressions at the transducer surface.
(c) Drawings can be made for focused transducers whether concave, lens or phased focus array, but the algebra is more
complex. The equivalent concave curvature is shown by the dotted circle. F = transducer focal radius, J = hypotenuse
of focal radius

are tight packed together, and the cell size (10 μm) is
smaller than the wavelength of ultrasound (500 μm) so
that the scattering is complex. In addition, ultrasound
medical imaging systems often generate images from
the complex near field (Fresnel zone) of the ultrasound
transducer (Fig. 21.10). This becomes particularly con-
fusing when tissues are moving laterally through an
array of ultrasound beams. Because of the Moire ef-
fect of this system, tissue motions from left to right can
cause speckle patterns to move right to left.

21.3.5 Fresnel Zone (Near Field),
Transition Zone,
and Fraunhofer Zone (Far Field)

The transition between the Fresnel and Fraunhofer
zones can be computed from geometric considerations
(Fig. 21.11). As in the computation of the basic wave
equations, we assume that ultrasound propagation is
a linear process and that superposition holds (pressure
fluctuations and molecular velocity fluctuations can be
added). Although some authors use Huygens’ princi-
ple [21.44], dividing the transducer into tiny segments
and adding the contribution of each to the wave, the
computation is simplified if reciprocity is used (the
transmitted ultrasound beam pattern and the received
ultrasound beam pattern are the same), and the wave is
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assumed to be emitted from a test point in the ultrasound
beam and received by the transducer.

A wave propagating from a stationary point will ex-
pand as a series of concentric spherical surfaces, spaced
by the ultrasound wavelength with the source at the cen-
ter. If the source is close to a planar transducer face,
then at every time point some compressional spher-
ical regions and some rarefactional spherical regions
will simultaneously be present on the transducer face
plane. This provides a mixed signal to the transducer,
the compressions and rarefactions destructively interfer-
ing. There are some locations of the source point that
result in equal areas of compression and decompres-
sion of the transducer surface at all times. These are
locations where the transducer has no sensitivity, and
are called null points. By reciprocity, if the transducer

Lens focus

Focus

a)

b) Apodization amplification

Focus
time
delay

Backing
Electrode

Electrode
PZT

emitted a wave, a null point will have no sound inten-
sity from the transducer. Ultrasound transducer beam
plots often show these null locations along the axis of
the ultrasound beam. There may be several of these null
points along the beam axis, and at other points in the
beam pattern. The near field or Fresnel zone is the re-
gion of the ultrasound beam pattern where these null
points are present. In the Fresnel zone, there is always
some destructive interference of the ultrasound wave.
The Fresnel zone is the region where beam focusing can
be achieved.

When the source point is at a greater distance from
the transducer plane, these regions of compression and
rarefaction become nearly planar. There are times when
the planar transducer surface can be completely con-
tained in either a compression zone or a decompression
zone. At this range, at least near the axis of the ultra-
sound beam pattern, there are no regions of destructive
interference. This is the far field or Fraunhofer zone.

There is a transition between the Fresnel and Fraun-
hofer zones along the ultrasound beam axis, where
it is first possible for the ultrasound transducer to
be just barely completely contained in a compression
half-wave region at some time within the ultrasound
wave period. Half a period later, the transducer will
be completely contained in a decompression half
wave. This location is easily diagrammed geometrically
(Fig. 21.11b) and the distance to the transition zone
computed. Although the geometry for a similar com-
putation for a concave transducer can be easily drawn
(Fig. 21.11c), the algebraic solution for the focused

Fig. 21.12a,b Mechanical lens focusing and electronic de-
lay focussing. (a) A low acoustic velocity in the lens allows
the ultrasound traveling along the shorter central path to be
delayed so that the ultrasound along the longer marginal
paths can catch up, aligning the compressions and decom-
pressions to provide the highest voltage excursions in the
piezoelectric transducer element for ultrasound waves orig-
inating from the focal region. (b) Electronic delay lines in
the signal path after the piezoelectric elements provide the
same focusing function as the lens. Apodization shading
of the sensitivity of the transducers at the edge of the aper-
ture suppresses aperture diffraction side-lobes in the beam.
The mechanical focus depth is determined at the time that
the ultrasound transducer is manufactured; it cannot be al-
tered by the examiner. The electronic focus depth can be
adjusted to a different depth in a microsecond, the time
that ultrasound travels 1.5 mm, so that the electronic fo-
cus can be adjusted to each depth during the time that the
ultrasound is traversing the tissue �
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transition, which is now retracted toward the transducer,
is more difficult.

In addition to using a concave transducer, focusing
of the ultrasound beam pattern can also be achieved
by the use of a lens on the front of the transducer
(Fig. 21.12a). The lens is often made of silicone rub-
ber because of the low ultrasound propagation speed.
Currently, most ultrasound scan heads consist of a lin-
ear array of 128 transducer elements; each element is
2 cm long and 0.5 mm wide arranged in a side-by-side
row with a footprint of 2 cm by 6.4 cm. Focus is pro-
vided in the image thickness direction by a cylindrical

P

λ

�

�

a)

b)

c)

d)

silicone rubber lens and in the lateral image direction by
adjusting the relative phase of the adjacent transducers
(Fig. 21.12b).

21.3.6 Measurement
of Ultrasound Wavelength

Modern diagnostic ultrasound systems use sophisti-
cated transducers and filters to improve resolution by
shifting and broadening the ultrasound frequency band
used for imaging, Doppler and other methods. It is pos-
sible, however, to use basic wave physics to measure
the effective ultrasound wavelength of the system. In
addition to refraction, ultrasound waves are also sub-
ject to diffraction. By placing a diffraction grating in the
ultrasound image path in water, and imaging a point re-
flector, the diffraction pattern of the wave can be imaged
and the wavelengths computed (Figs. 21.13, 21.14).

21.3.7 Attenuation of Ultrasound

As ultrasound passes through tissue as a pulse or as
a continuous wave along the beam pattern, some of the
ultrasound energy is converted to heat in the tissue and
some is reflected or scattered out of the beam pattern.
In addition, nonlinear propagation converts some of the
energy to higher harmonics (2 f , 3 f . . . ) of the funda-
mental frequency ( f ) of the wave. Attenuation increases
with frequency, and the harmonic frequencies also may
be outside the bandwidth of the detection system. These
factors contribute both to actual and apparent atten-
uation of the ultrasound energy in the pulse and the
average power passing through a cross section of the
ultrasound beam as a function of depth. Changes in in-
tensity are related to these changes in power, but the

Fig. 21.13a–d Grating diffraction. Like any wave, an ul-
trasound beam can be tilted by a diffraction grating. The
angle of tilt can be computed using Huygens’ principle. If
the pitch spacing of the grating is P, and the wavelength
is λ, then the angle of deflection of the wave is expressed
as sinϕ = P/λ. An ultrasound transducer array can act as
a diffraction grating. This should be avoided. A diffraction
grating in a water tank can be used to measure the wave-
length of ultrasound. An image of a reflector deeper than
the grating appears three times in the image, once at the
true location and once for each of the diffraction orders.
(a) Plane wave diffracted by grating. (b) Computaion of
diffraction angle. (c) Ultrasound scanhead, diffraction grat-
ing and target. (d) Expected ultrasound image for a single
frequency transducer �
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Fig. 21.14 Measuring ultrasound frequency and bandwidth by view-
ing a reflecting rod through a diffraction grating. The cross section
of a rod forms the zeroth-order spot in the image. In addition to
passing the ultrasound beam pattern directly (the zeroth image) the
diffraction grating forms a+1 branch of the beam pattern (shown in
yellow), which makes an image of the rod to the left (+1 diffraction
image) and a symmetrical −1 image on the right. By measuring
the geometric sine of the deflection angle, (1.30/1.74), the ultra-
sound wavelength can be computed using the spacing of the grating.
The grating is made of monofilament fishing line wound on a frame
made of 10–32 threaded screws (32 threads per inch, pitch spacing
= 0.8 mm)

intensity is power divided by the cross-sectional area
of the beam, so changes in beam cross-sectional area
cause intensity changes that are not related to attenua-
tion. Focusing the beam pattern can decrease the area,
increasing intensity; diffraction and refraction increase
the area, decreasing intensity.

Ultrasound attenuation is usually expressed as a ra-
tio of the output power divided by the input power.
In linear systems, this ratio is constant for all ultra-
sound intensities. In nonlinear systems, the relationship
is more complicated. The attenuation rate of ultrasound
in tissue can be computed using base 10 (dB/cm, for
engineers), base “e” (Np/cm, for scientists), compound
percentage (% per cm, for physical therapists) or base 2
(half-value layers, for systems designers). The decibel,
derived from the bel can be traced to Alexander Graham
Bell, and the neper to John Napier. The bel is a factor
of 10 in power, the neper is a factor of e (2.718) in am-
plitude. Ultrasound attenuation in soft tissue is between
3 dB/(MHz cm) and 0.3 dB/(MHz cm). Using intensity
as the dependent variable in attenuation computations
is complicated by changes in beam area. Some authors
apply the bel to intensity. In acoustics the pressure am-
plitude of the wave, which is proportional to the square
root of intensity (assuming constant impedance) is often
used. The base 2 system is used to identify the thickness
of tissue that attenuates the power by half, the intensity
by half or the amplitude by half. The thickness is called
the half-value layer, often without qualifying whether
it is half power, half intensity or half amplitude. Inten-
sity is proportional to the square of the amplitude, which
is a multiplier of 2 in logarithms. If the cross-sectional
area of the ultrasound beam is constant

0.7 nepers = 6 dB

= 1 half-amplitude layer

= 2 half-power layers . (21.10)

Often the attenuation rate is nearly proportional
to frequency, and frequency is inversely proportional
to wavelength, so the attenuation can be most easily

Table 21.4 Ultrasound attenuation

Tissue
type

Half
amplitude
(quarter
power)
thickness in
wavelengths

60 dB
pulse-echo
attenuation
depth in wave-
lengths (10 bit
dynamic range)

Attenuation
dB/(cm MHz)

Bone 1 5 30

Cartilage 8 40 10

Tendon 8 40 10

Skin 25 125 3

Muscle 25 125 3

Fat 80 400 1

Liver 80 400 1

Blood 300 1500 0.25
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λ = (1.30/1.74) × (25.4 mm/32) = 0.593 mm

F = (1.5 mm/µs) / (0.593 mm) = 2.53 MHz
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plane
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expressed in wavelength (Table 21.4). The use of half-
value layers has the advantage that it can be related
directly to the number of bits in a digitizer, simplifying
computation.

Because of the high instantaneous intensities used
in pulse-echo diagnostic ultrasound, all of the ultra-
sound propagation is nonlinear. The commonly used
linear equations do not apply. The beam patterns are
not as predicted, because the wave propagation speed in
the higher-pressure regions is faster than in the lower-
pressure regions. The waves convert from sinusoidal to
sawtooth, introducing a series of harmonic frequencies
into the wave. The change in frequency (wavelength)
affects the ultrasound beam pattern. The conversion
of ultrasound energy into harmonic frequencies also
increases the attenuation because the attenuation in-
creases with frequency.

A significant development was the use of tissue-
generated harmonic signals for diagnostic imaging. The

utility of these harmonics was discovered by accident
when investigators were searching for better methods
of detecting ultrasound contrast agents. Ultrasound con-
trast agents consist of microbubbles that have natural
oscillation frequencies near diagnostic frequencies. The
bubbles therefore oscillate in response to incident ul-
trasound. The bubble oscillation stores some energy,
which is reradiated at the original ultrasound frequency
as well as at harmonics of that frequency. Older ultra-
sound systems were, by nature, insensitive to the second
harmonic of the natural transducer frequency. By using
a transducer with an increased bandwidth (3 MHz center
frequency transducer manufactured with the quality fac-
tor reduced spreading the bandwidth to 1.9–4.1 MHz)
then lowering the transmit frequency (2 MHz) and rais-
ing the receive frequency (4 MHz), a system sensitive to
the harmonic emissions from the contrast bubbles can be
achieved. Surprisingly, harmonic echoes are generated
by tissues even when contrast bubbles are not present.

21.4 Methods of Medical Ultrasound Examination

Over the half century of ultrasonic medical examina-
tion, a variety of examination methods have been tried,
discarded, with some to be resurrected and honed for
use.

A passive method was evaluated to detect local
ultrasound emissions above background due to local
temperature elevations of cancerous tumors. The emis-
sions of about 10−13 W/cm2 (1 nW/m2) are present in
all warm tissues and provide a minimum intensity for
the operation of active ultrasound systems. Transmis-
sion ultrasound systems have been developed using an
ultrasound transmitter on one side of a body part and
a receiver on the other side to detect differences in atten-
uation (like X-ray imaging). These systems determine
ultrasound attenuation and ultrasound speed through the
intervening tissues. One version of this system used an
acousto-optical holographic system to form the image.
Several systems have been explored to insonify tissue
from one direction and gather the scattered ultrasound
from another direction. Such systems usually require an
array of receiving transducers.

The only ultrasound systems that have gained wide
acceptance in clinical use are: (1) the continuous-wave
(CW) backscatter Doppler system, and (2) common-
axis pulse-echo backscatter imaging and Doppler sys-
tems. The reason for the failure of the other systems
is due to two features of medical ultrasound exami-

nation: refraction of ultrasound in tissue and the cost
of receiving and processing data from array receivers.
The CW methods are used only for Doppler measure-
ments. The first of these systems was constructed before

Ultrasound
contact gel

Ultrasound
transmitting
transducer

Ultrasound
receiving
transducer

Patient

Blood
vessel

Transmitter Receiver

Fig. 21.15 Nondirectional continuous-wave Doppler. In
a typical CW 5 MHz nondirectional Doppler, the incident
ultrasound beam is scattered by stationary tissue forming
a 5 MHz echo and by moving blood forming a 5.0004 MHz
echo. The two echoes arrive at the receiving transducer si-
multaneously. By constructive and destructive interference
between these waves, the received 5 MHz signal is ampli-
tude modulated by the 5.0004 MHz echo. The frequency
of the amplitude modulation is the difference frequency
5.0004−5 MHz or 400 Hz, which is amplitude demodu-
lated, providing a 400 Hz audio signal to the speaker
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Received ultrasound frequency

Transmitted frequency reference

Received ultrasound frequency

Transmitted frequency reference

Demodulation and low pass filter

Demodulation and low pass filter

Audio output

Audio output

Doppler frequency
down shift

Doppler frequency
up shift

a)

b)

Fig. 21.16a,b Interference between echoes to produce au-
dio frequencies. Constructive interference between the
Doppler frequency-shifted echo and the original frequency
wave increases the resultant amplitude; destructive inter-
ference reduces the amplitude. This occurs whether the
Doppler shift is downward (a) due to reflections from blood
cells receding from the transducer, or is upward (b) due to
reflections from blood cells advancing toward the trans-
ducer. By amplitude demodulating the result, an audio
frequency signal results. Amplitude demodulation can be
done by multiplying the two ultrasound frequency signals
together and low-pass filtering the result or by squaring
(rectifying) the sum of the two ultrasound signals and low-
pass filtering the result

1960 [21.45, 46]; their application in medical diagnosis
was well established by 1970 [21.47–52]. Pulse-echo
methods have been under continuous development since
1950. The majority of medical diagnostic imaging ex-
aminations in the world are performed with pulse-echo
instruments.

21.4.1 Continuous-Wave Doppler Systems

Continuous-wave Doppler was used in one of the
earliest ultrasound systems to be commercialized. De-
veloped independently in Japan in 1957 (Satamura and
Koneko), and in the US in 1959 (Baker et al.), a system
can be constructed from an radio frequency (RF) trans-
mitter, transmitting piezoelectric transducer, receiving
piezoelectric transducer and amplitude demodulating
receiver (Fig. 21.15). In the region of tissue where the
transmitting beam pattern overlaps with the receiving
beam pattern, the reflected wave from moving tissue
will combine to interfere with the reflected wave from
stationary tissue. The reflected wave from moving tis-

sue has a Doppler shift. The Doppler-shifted frequency
will interfere with the reflected wave from stationary tis-
sue to cause an amplitude modulation in the combined
wave. The frequency of that modulation is within the
hearing range.

Ultrasonic Doppler examination produced an audi-
ble frequency by chance. The best ultrasound frequency
to reflect by Rayleigh scattering from blood at a depth
of 2 cm is 5 MHz. This frequency is shifted by the ratio
of twice the blood speed (2 × 0.75 m/s= 1.5 m/s) to the
ultrasound speed 1500 m/s (1.5/1500= 0.001) to cause
a downshift in the ultrasound frequency of 5 kHz. The
interference between the unshifted and shifted waves
causes a 5 kHz modulation in the amplitude of the
5 MHz wave. This modulation is converted to sound by
common amplitude modulation (AM) radio circuitry.

The introduction of the transistor in 1960 allowed
this simple circuit to be produced in a palm-size pack-
age so that convenient clinical examination could be
done. Whether the blood is approaching the transducer
or receding from the transducer (Fig. 21.16), the audio
signal is the same, with audio frequency proportional to
the blood velocity.

These CW Doppler systems allowed the detec-
tion of narrow arterial stenosis by the high velocities
present in the stenotic lumen. Normal velocities are be-
low 125 cm/s, causing a Doppler shift of 4 kHz if the

Ultrasound contact gel

Ultrasound
transmitting
transducer

Patient

Blood
vessel

Transmitter Receiver

Q Quadrature reference

I Quadrature reference

Ultrasound
receiving
transducer

Fig. 21.17 Directional continuous-wave Doppler. By using
a pair of reference waves at the transmitted ultrasound fre-
quency, but phase shifted with respect to each other, the
receiver Doppler demodulation can be performed against
each of the reference waves. This allows the instrument
to differentiate Doppler shifted echoes with increased fre-
quency due to blood cells approaching the transducer from
those with decreased frequency due to blood cells receding
from the transducer
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Fig. 21.18a,b Quadrature Doppler demodulation. (a) De-
modulation of the of a Doppler down shifted echo against
an-I reference and Q reference produces a quarter-wave
advanced signal (shifted to the right) on the I product
compared to the Q product. (b) Demodulation of the of
a Doppler upshifted echo against an I reference and Q ref-
erence produces a quarter wave delayed signal (shifted to
the left) on the I product compared to the Q product �

Doppler angle is 60◦. The blood velocity in a stenosis
is limited by the blood pressure via the Bernoulli ef-
fect; the velocity can be no greater than 500 cm/s for
a systolic blood pressure of 100 mmHg. A blood veloc-
ity of 500 cm/s causes a Doppler shift of 16 kHz. These
CW Doppler systems also allow the detection of venous
obstruction by the loss of variations in venous velocity
synchronized with respiration, and the testing of venous
valve incompetence by the detection of reverse flow re-
sulting from distal compression release or sudden proxi-
mal compression. An examiner with one year of training
and experience can diagnose all superficial arterial
obstructions and venous obstructions and reflux with
accuracies exceeding 95% against any gold standard.

The addition of directional detection by Fran
McLeod in 1968 simplified the separation of mixed
arterial and venous flow, and allowed more-objective
evaluation of velocities (Fig. 21.17). Directional detec-
tion was accomplished by providing a pair of quadrature
signals derived from the transmitted frequency directly
to the demodulator in the receiver. Quadrature sig-
nals differ only in phase by a quarter cycle. When the
Doppler-shifted ultrasound echo is demodulated against
each of the quadrature reference signals, the pair of
difference waves produced are phase shifted by 90◦
(Fig. 21.18). If the reflecting blood is advancing toward
the transducer then audio frequency (AF) I wave is ad-
vanced compared to the AF Q wave, if the reflecting
blood is receding, then the AF I wave is delayed with
respect to the Q wave. By further delaying the AF Q
wave by a quarter cycle (the shift time is dependent
on frequency), and adding or subtracting the resultant
AF I and AF Q delayed, the sound channels can be
separated (Fig. 21.19). After separation, the Doppler
signal representing advancing flow can be delivered to
one ear and the Doppler signal representing receding
flow can be delivered to the other ear. Although these
continuous-wave Doppler systems are simple and have
not changed substantially since 1970, they still have
tremendous clinical utility and are used by angiologists
and vascular surgeons in daily practice. A CW Doppler
transducer is provided with modern echo-cardiology

a)

b)

Received
ultrasound
frequency

Doppler frequency
Down shift = Receding flow

Doppler frequency
Up shift = Advancing flow

Q Quadrature reference

I Quadrature referenceAudio frequency I mix delayed

Audio frequency Q mix advanced

Q Quadrature reference

I Quadrature referenceAudio frequency I mix advanced

Audio frequency Q mix delayed

systems (Fig. 21.20) for the measurement of cardiac
output and for accurate velocity measurements of blood
flow jets associated with valve disease.

During 1970–1985, several arterial mapping an-
giographs (Fig. 21.21) were developed to associate
high-velocity Doppler signals, indicating stenoses with
arterial landmarks such as bifurcations. These an-

a)

b)

Received
ultrasound
frequency

Doppler frequency
Down shift =
Receding flow

Doppler frequency
Up shift =
Advancing flow

Subtract the signals

Add the signals
Shifted 1/4 “audio frequency” period

Subtract the signals

Add the signals
Shifted 1/4 “audio frequency” period

Doppler sound

No sound

Doppler sound

No sound

Fig. 21.19a,b Audio direction separation. By retarding the I quadra-
ture channel by 1/4 of the period of the audio frequency, and then
adding or subtracting the resultant pairs, the directions of flow
can be separated. (a) The added pair results in sound for only the
downshifted Doppler signals representing receding flow. (b) The
subtracted pair results in sound for only the upshifted Doppler sig-
nals representing advancing flow
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10 cm

Fig. 21.20 Dual-element continuous-wave Doppler trans-
ducer for cardiac output measurements. This transducer is
designed to fit in the supersternal notch between the clavi-
cles at the base of the neck. From this location, the Doppler
ultrasound beam patterns can be nearly aligned with the
axes of the cardiac valves. The ultrasound avoids the lungs
by passing directly down through the mediastinum

Caudad cephalad

Right Left

Ultrasound
transducer

Ultrasound
contact gel

Position encoders

2 dimensional surface-map
Doppler static scan
and image

Fig. 21.21 Doppler arteriography. By monitoring the posi-
tion of a Doppler ultrasound transducer, transferring the
position on a storage image screen, and marking the dis-
play screen only when the Doppler detects blood flow, an
image of the flow can be generated. Most of these systems
used continuous-wave Doppler; the Hokanson system used
pulsed Doppler

giographs used mechanical or other methods to track
the location of the ultrasound beam and display the
results on an image that could be compared with an
X-ray angiogram. Modern, large-field-of-view three-
dimensional ultrasound imaging systems use extensions
of this method.

21.4.2 Pulse-Echo Backscatter Systems

Pulse-echo ultrasound consists of sending a pulse of
ultrasound into tissue and receiving the echoes from

various depths. The length of the transmitted pulse may
be as short as 0.5 μs (for B-mode imaging) or as long
as 5 μs (for trans-cranial Doppler). Usually the same
transducer or transducer aperture is used for both trans-
mitting and receiving. The depth of each reflector is
determined by the time of flight between the transmit-
ted pulse and the received echo: a reflector 3 cm deep
returns an echo at 40 μs; a reflector 15 cm deep re-
turns an echo at 200 μs. If the system is examining
to a depth of 18 cm, then a new pulse can be trans-
mitted after 240 μs. In that case, an echo returning at
40 μs after the later transmit pulse might come from
21 cm deep (280 μs) rather than 3 cm. Tissue attenua-
tion will suppress the echo from deep tissue by about
54 dB (3 MHz ultrasound) compared to the echo from
3 cm.

To perform a pulse-echo examination, an ultrasound
transducer (or array of transducers) is positioned to
form a beam pattern along an axis, which is assumed to
penetrate tissue in a single straight line. A short ultra-
sound burst is launched along that line. After allowing
for the round-trip travel time to the depth of inter-
est (Table 21.5), the ultrasound echo from a segment
of tissue in the beam pattern is received, demodulated
and prepared for display (Fig. 21.22). The ultrasound
transmit pulse can be adjusted for frequency, duration
(Fig. 21.23), energy, and aperture size and shape to fine-
tune the examination if needed. The ultrasound echo
can be demodulated to yield the amplitude (Fig. 21.24)
and/or the phase. The results of multiple pulse-echo cy-
cles along a single beam pattern can be combined. The
echo is usually amplified with a fast-slew programmed
amplifier to increase the gain of later echoes coming
from deeper tissues, because they will be attenuated
more than shallow echoes. If tissue visualization is de-
sired, the echo strength is displayed in an image along

Table 21.5 Ultrasound examination parameters

Maximum Ultra- Ultra- Pulse repetition

Examin- sound sound Period Frequency
ation wave- frequency (μs) (kHz)
depth length (MHz)
(cm) (mm)

3 0.075 20 40 25

5 0.125 12 67 15

6 0.15 10 80 12.5

10 0.250 6 133 7.5

12 0.3 5 160 6.25

15 0.375 4 200 5

20 0.5 3 266 3.75
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c)

d)

Time gain = 2a

15 cm depth PRF = 5kHz

200 μs

100

0

a)

b)

V

200 μs 200 μs 200 μs 200 μs

mV

10

0

a = 13

a = 3
Off

mV

100

0

Fig. 21.22a–d Time gain compensation (TGC). (a) A new
ultrasound pulse is transmitted each pulse repetition period
(200 μs in this case). (b) Echoes from shallow and deep
depths return at known times because of the speed of ul-
trasound and the expected round-trip travel time. The later
echoes received from deeper tissues are weaker than the
echoes received from shallow tissues because the echoes
from deeper tissues have passed through more-attenuating
tissue. (c) An amplifier programmed to increase the gain
for deep echoes more than for shallow echoes is used to
compensate for attenuation. This depth gain compensation
(DGC) or TGC amplifier is under operator control. (d) The
echoes, after TGC are ready for demodulation by analog or
digital methods

a line representing the direction of the ultrasound beam,
with the location along the line (representing depth) de-
termined by the time after transmission that the echo
returns. If a measurement of tissue motion is desired,
then additional identical pulses are transmitted along the
same beam pattern to obtain a series of nearly identical
echoes from each depth of interest. These echoes are
examined for changes in phase, which is the most sen-
sitive indicator of displacement of the tissue reflecting
the ultrasound.

This simple model places constraints on the ultra-
sound examination. First, at any depth, the strongest
echoes from a bone or air interface perpendicular to the

15 cm depth PRF = 5kHz
100

0

V

200 μs 200 μs 200 μs 200 μs 200 μs

Imaging
(broad band)

Doppler
(narrow band)

Transcranial doppler
(high energy, low MI)

100 V

2 μs

Fig. 21.23 Different ultrasound transmit bursts for imaging
and Doppler applications. Short broadband transmit bursts
are used for B-mode imaging; long narrow-band transmit
bursts are used for Doppler applications. A longer trans-
mit burst contains more energy if the maximum acoustic
negative pressure (mechanical index) are limiting factors.
A short transmit burst allows better depth resolution and
also spreads the diffraction side-lobes of the beam pat-
tern, suppressing lateral ambiguity. A longer transmit burst
is preferable for Doppler applications where echoes from
blood are weak and coherence length is important for de-
modulation

beam are 106 (60 dB) stronger than the weakest echoes
from cells in liquid (blood). So, a 10 bit digital echo-
processing system is the minimum to handle the range
of echo strengths expected in an image. Second, be-
cause the speed of ultrasound is about 1.5 mm/μs in
most tissues, echoes returning from 15 cm deep arrive
200 μs after ultrasound pulse transmission. A new pulse
cannot be sent into the tissue along the same line or
along another line until all of the echoes from the first
pulse have returned. So, the maximum pulse repetition
frequency (PRF) for an examination to a depth of 15 cm
is 5 kHz (1/200 μs). Ultrasound energy is attenuated to
1/4 of the incident energy in most body tissues after
passing through a depth of 80 wavelengths. So after
passing through a depth of 400 wavelengths and re-
turning through 400 wavelengths, the echo strength is
only 0.2510 or 10−6 of the strength of a similar echo
from the shallowest tissue. To compensate for this at-
tenuation, an amplifier must amplify the deep echoes
60 dB more than the shallow echoes (Fig. 21.22). An
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15 cm depth PRF = 5kHz
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Fig. 21.24 Preparing the amplitude demodulated bright-
ness mode echo for display. The amplitude of the amplified
echo can be converted into brightness values by a digitizer.
In early B-mode scanners, the display could show bright
(echo) or dark (no echo) based on a one bit threshold de-
tector (dark line). A two-bit digitizer allows four levels of
gray scale (scale on right), making the result less sensitive
to the setting of the TGC amplifier. Modern ultrasound B-
mode imaging systems use an eight-bit digitizer to display
256 levels of gray. Depending on the method of presenta-
tion, the eye can distinguish no more than 64 stepped levels
of gray or 16 isolated levels of gray

alternative is to digitize the echoes with a 20 bit digi-
tizer, 10 bits for the dynamic range of the echoes from
different tissues and 10 bits to account for attenuation.
In either case, the maximum depth of an examina-
tion is limited to 400 wavelengths of ultrasound. An
ultrasound depth resolution cell (a pixel) is equal to
about twice the wavelength of ultrasound. So, an ul-
trasound image can contain 200 pixels in the depth
direction (Table 21.5). These considerations provide
a practical relationship between the ultrasound fre-
quency and the PRF, based on the attenuation of tissue.
The PRF is 1/800 of the ultrasound frequency in most
applications.
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Fig. 21.25 B-mode static scanner. The traditional B-
scanner restricted the transducer position and direction to
movements in one plane that would form a cross-sectional
image through the patient. The position of the transducer
was located on the image display, and a line projected from
the origin along the display in the direction of sound beam
propagation. During the scan a marker was moved along
the ultrasound beam direction at a speed of 0.75 mm/μs,
representing the time that an echo would return after
a round trip to each depth when traveling at 1.5 mm/μs.
If a strong echo was detected, then a mark was stored
on the screen to contribute to the image. The transducer
was scanned across the skin to form an ultrasound scan
cross-sectional image of the tissue

21.4.3 B-mode Imaging Instruments

A series of B-mode (brightness mode) ultrasound imag-
ing methods have been developed over the last 40 years.
The methods have used the latest electronic technolo-
gies to improve the speed, convenience, capability and
utility of the systems. The original imaging systems
were based on radar technology and analog electronic
parts. Today, ultrasound systems are personal comput-
ers using standard operating systems with specialized
display software coupled to custom ultrasound circuitry
on the front end. A review of the history is useful be-
cause the modern instruments keep incorporating older
methods.

Two-Dimensional Static B-mode
The original B-scanners (Figs. 21.25, 21.26) consisted
of a single ultrasound transducer element coupled to
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Fig. 21.26 B-mode calibration phantom. Analog electron-
ics were not stable at the time that static B-scanners were
constructed. Calibration phantoms were used to assure that
a target would appear in the same location when viewed
from different locations. Adjustments were provided to
align the electronics

a mechanical system to track the origin and direction
of the ultrasound beam. The systems had the advan-
tage that large fields of view could be scanned, such
as a plane through a full-term fetus, and the sonog-
rapher could return to portions of the image to paint
in anatomical features by approaching each of the re-
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Fig. 21.27 Real-time two-dimensional ultrasound images.
Motor-driven ultrasound transducers were able to rapidly
tilt to a series of angles obtaining data from a series of lines
in a plane of tissue to form a new two-dimensional image
10 times or 30 times per second

Fig. 21.28 Two-dimensional B-mode (brightness mode) common
carotid artery image. The lumen of the common carotid artery
in longitudinal section appears as a darker streak (wide arrow)
bounded by the superficial and deep walls separated by 6 mm. The
walls appear brighter where the ultrasound scan lines are perpendic-
ular to the walls (narrow arrow) because of the specular backscatter.

flecting interfaces from a perpendicular direction. As
the image display system showed the brightest echo for
each anatomic location, compound scanning was used
to obtain echoes from a variety of directions at each
tissue location to render a useful image. Since a scan

Fig. 21.29 Duplication of aorta (after [21.53]) in the image. Re-
fractive tissues composed of fat (c = 1.45 mm/μs) and muscle
(c = 1.58 mm/μs) at the midline of the abdomen form two prisms.
Each prism allows the aorta to be viewed resulting in two images
of the aorta. This effect has also caused double viewing of a single
pregnancy
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10 cm

Transducer

Oil filling port

TransducerWheel

Fig. 21.30 Mechanical scan head. Three transducers are
mounted around a rotating wheel encased in a cover filled
with oil. Two of the 3 transducers can be seen in the im-
age. Between the transducers is an air bubble in the oil;
the air bubble must be removed through the oil filling
port before scanning. Under the bubble is a rectangular
shape that is the housing for a switch. Each of the trans-
ducers has a switch mounted opposite the transducer on
the wheel which is activated magnetically to connect the
transducer when the transducer is pointed toward the pa-
tient. The transducer wheel is driven by a motor in the
white housing through a belt. A control knob on a joy-
stick allows adjustment of the Doppler ultrasound beam,
when needed; swinging the arm tilts the beam, rotating the
knob advances the sample volume along the line. Electri-
cal coupling to the transducer was accomplished by using
a transformer aligned on the axle of the wheel with one coil
stationary and one rotating. The magnet-activated switches
mentioned above selected the proper transducer that was
pointing at the patient

might take 5 min, movement of the patient during the
scanning period was a problem, rendering the image
useless. Because these systems used analog electronic
devices, which were subject to deterioration over time,
the stability and alignment of the instruments was im-
portant. In addition, since the same tissue was examined
from multiple locations, the co-registered alignment of
the tissue voxels (small volumes of tissue) on the im-
age was critical. Regular testing of the instrument on
alignment phantoms was required. The speed of ultra-
sound in the phantoms was controlled by the chemical

5 cm

Fig. 21.31 Mechanically steered annular array scan head.
The circular transducer is divided into concentric circles
with each segment having the same area. By delaying by
different amounts, the signals to the more central trans-
ducers, the depth of focus can be adjusted. A 10 ns delay
between the transducer rings with the central transducer
operating last will retract the focus a centimeter. The oil
between the transducer and the dome shaped cap pro-
vides refractive focus in addition to the focus provided
by the delays to the transducer. To point the ultrasound
beam along different lines, the transducer wobbled back
and forth rather than rotated. A rotating motion was not
possible because the four coaxial cables could not cross
the rotating axis. The arrow is pointing at the transducer
along its axis

composition of the phantom at the time of fabrication
and the temperature of the phantom at the time of use.
Of course, because the speed of ultrasound is not the
same in different tissues, the success of the phantom
in controlling image distortions in the depth direction
during actual examination was limited. In addition, be-
cause the ultrasound beam can bend due to refraction
as it passes from tissue to tissue, a factor ignored in
the phantom, preventing lateral image distortions was
impossible. However the phantoms did serve to prevent
huge errors. Modern real-time ultrasound scanners that
complete a scan in 30 ms (Fig. 21.27) form each image
without overlapping beams so object co-registration is
not tested. Thus, the value of phantoms has diminished.
They still retain educational value.

Two-Dimensional Real-Time B-mode
Mechanical Scanning

The earliest real-time systems scanned the ultrasound
beam by tilting the ultrasound transducer, tracking the
position and direction of the ultrasound beam with tim-
ing or an optical encoding system. The images had
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10 cm

10 cm

a)

b)

c)

Fig. 21.32a–c Intracavity scan heads. (a) Intracavity wob-
bler scan head for transvaginal or transrectal examination.
To provide acoustic coupling between the transducer and
the housing, the scan head is filled with liquid. The trans-
ducer, at the left end of the image, is pointing out of the
page. (b) Trans-esophageal (TEE) ultrasound scan head.
The patient swallows the end with the transducer array (up-
per right in the picture) mounted in the end of the flexible
esophageal probe. Marks every 10 cm (arrows) allow the
cardiologist to monitor the location of the transducer array
from the patient’s teeth. (c) The trans-esophageal ultra-
sound transducer 5 MHz linear phased array has a circular
boarder so that the array can be rotated to rotate the scan
plane once the transducer is in the esophagus. A pair of
control handles ((b) at bottom) allows the cardiologist to
rotate the transducer array and to tilt the tip housing the ar-
ray to examine the heart in different planes. Some patients
tolerate this procedure well with little anesthesia, others
require more sedation

tremendous utility (Fig. 21.28) in spite of the poor
lateral resolution compared to the depth resolution.
Unfortunately, neither phantoms nor digital tracking
of the ultrasound beam direction avoid image distor-
tions due to refraction of the ultrasound beam in tissue
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Fig. 21.33 M-mode (motion-mode) examination. For the
study of cardiovascular wall motion, a single ultrasound
beam is directed through the heart or other tissue. A hor-
izontal mark showing the depth of each reflecting tissue
in the vertical direction is shown on each vertical image
line. By transmitting a new ultrasound pulse every mil-
lisecond, the echoes from tissue interfaces can be plotted
for each pulse with time on the horizontal axis. By placing
the lines side by side, the trajectories of tissue motion along
the ultrasound beam are displayed. Speed of the reflecting
tissue interface along the direction of the ultrasound beam
is shown as a tilt or slope of an interface displayed on the
image

(Fig. 21.29). These distortions, which are still a problem
in the lateral direction, are ignored.

The ultrasound scan heads were convenient, er-
gonomic and compact (Fig. 21.30), located at the end
of a cable attached to the ultrasound scanner. A va-
riety of scan heads were developed including some
with electronic focusing (Fig. 21.31) and specialized
shapes for placement in the esophagus, rectum, vagina
(Fig. 21.32), and some 1 mm in diameter for insertion
inside blood vessels.

M-mode Ultrasound
Among the early applications of ultrasound was the
study of the motions of the heart using M-mode (motion
mode) imaging [21.54, 55] (Fig. 21.33). By holding the
ultrasound beam stationary and plotting the image width
as a function of time, motions of the heart and other vas-
cular structures could be documented. The velocity of
a valve could be determined (Fig. 21.34) by measuring
the slope of the trajectory on the M-mode tracing.

Two-Dimensional Real-Time B-mode
Electronic Scanning

An alternative to moving the ultrasound transducer to
point in different directions, is to have an array of trans-
ducers [21.56]. By switching to each transducer in turn
to acquire echoes from the corresponding beam pattern,
a two-dimensional (2-D) image is formed (Fig. 21.35).
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Fig. 21.34 M-mode (motion mode). Motion of a tissue interface along the ultrasound beam line is shown as depth
(vertical) versus time (horizontal). The speed of the heart structure can be computed from the slope of the tracing.
In this example, the speed is 158−16 mm/0.4 s = 355 mm/s. The green line across the bottom of the image is the
Electrocardiograph (ECG, EKG) timing signal

Several ultrasound scanners developed between 1970
and 1980 used low-density arrays like this. A scanhead
with more transducer elements, spaced closely together
(Fig. 21.36), could use groups of transducers to form

Left

Po
st

er
io

r 
 A

nt
er

io
r

RightPatient

Organ

Ultrasound
transducer

Right Left

Anterior

Posterior

Ultrasound
contact

Fig. 21.35 Low-density linear-array two-dimensional B-
mode. If the tissue does not move very much during the
acquisition of an image, and the ultrasound beam pat-
tern is moved across the tissue by successively activating
different transducers and plotting the echoes with depth
along the lines of the corresponding beam patterns, a two-
dimensional image is formed. By convention in radiologic
images, the images are usually displayed as if the patient is
facing the physician. There is disagreement between clinics
about how images should be oriented

an aperture. These high-density arrays permit phase fo-
cusing to a series of depths (Figs. 21.36–21.38), phase
tilting of the ultrasound beam patterns (Fig. 21.39) and
apodization of the aperture to smooth the ultrasound
beam pattern (Fig. 21.40). The transducer array is usu-
ally formed from a single rectangular piezoelectric
crystal, cut into a row of thin rectangles to form an
array in one direction. Because of the cuts, the array
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Fig. 21.36 High-density linear-array scan head. The trans-
ducers can be spaced more closely than the width of the
ultrasound beam. Then each ultrasound aperture is formed
by multiple transducers at the scan head face. The beam
patterns overlap. The use of multiple transducers in the
aperture allows the shaping of the aperture and electronic
focusing of the ultrasound beam pattern
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a)

Pin A

Pin B

Pin A

Pin B

Ultrasound
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b)

Fig. 21.37a,b Echoes received by each transducer in an array. By imaging highly reflective pins in a phantom, the effect
of distance on travel time from a reflector to each transducer element in an array can be appreciated. By applying an
appropriate delay on each of the transducer signals so that the echoes from the target align in time, and then adding the
transducer signals together, a receiver beam pattern is formed, which is focused on the target. The time delays can be
adjusted in 6 ns steps. (a) The transmit pulse was launched along the red ultrasound line. The echoes are displayed for
data gathered from within the green box. (b) Radio-frequency echoes from each of 32 transducers are displayed for the
echoes returning from a single transmit pulse (courtesy Ultrasonix Medical Corp., Burnaby, www.ultrasonix.com)

becomes flexible in the long dimension and can be
curved (Fig. 21.41) to form a sector scan. Each of the
128 elements is connected via an electrical impedance-
matching network to a coaxial cable, which forms part
of the scan-head cable running back to the scanner. The
plug connecting the 128 coaxial connectors to the ultra-
sound scanner has separate contacts for all 128 cables.
Behind the plug in the scanner are separate ultrasound
transmitters and receivers for each transducer element.
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Fig. 21.38 Adjustable focus with large aperture. Using
a high-density linear array to generate a large aperture and
focus at a deep depth

Often each of the receivers will have a separate digi-
tizer to convert the TGC-amplified signal into digital
form. The receivers and digitizers together form the ul-
trasound beam former for receive mode. Early array
transducers had 32 elements, and the electronics were
located in the scan head. Current instruments have 128
elements, a number limited by the costly cable con-
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Fig. 21.39 Steering of the ultrasound beam pattern. Multi-
ple transducers in the aperture allows the ultrasound beam
to be steered at an angle for either imaging or Doppler
by introducing phase delays in the signals to and from the
transducers progressively along the transducer array
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taining 128 coaxial leads that connects the array to the
receivers and transmitters in the console. The number of
transducers will increase in the future as higher-capacity
cables become available or, alternatively as it becomes
possible to house the transmitting and receiving elec-
tronics in the ultrasound scan head.

a)

c)

d)

e)

f)

b)

Fig. 21.41a–f Scan head details. This curved linear-array scan head consists of an array of 128 transducer elements
cut from a single block of PZT piezoelectric ceramic. The array block is 64 mm long and 5 mm wide, cut into elements
0.4 mm long and 5 mm wide with a 0.1 mm kerf between. The block is curved to form a curved linear array. (a) Transducer
in housing with cable; (b) Transducer housing removed showing the copper foil shielding over the internal electronics;
(c) Shielding removed to show the 64 electronic matching circuits on this side of the circuit board; (d) 128 individual
coaxial cables housed in the ultrasound scan head cable; (e) Scan head plug showing the connector electrodes for the 128
coaxial cables; (f) Front panel of the ultrasound scanner showing the sockets for the scan head connections. The front
panel also shows connectors for other instruments including: electrocardiograph, plethysmograph, phonocardiograph
microphone and computer disk drive for data exchange

Fig. 21.40 Apodized aperture. Apodization is used to limit
the side-lobes of the ultrasound beam pattern. Transduc-
ers near the edge of the aperture are excited with a low
voltage during transmit compared to the central transducers
and are amplified with a lower gain compared to the cen-
tral transducers during receive. The drawing on the right
shows the image line corresponding to the beam pattern
with the superficial and deep echoes plus the mark on the
right, indicating the focal depth �

A linear array transducer allows for adjustment of
the transmit focus and aperture separate from the re-
ceive focus and aperture (Fig. 21.42). Because during
the receiving period the relationship between depth and
time is 0.75 mm/μs, a system can change receive focus
every 20 μs, advancing the focus 15 mm each time along
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Fig. 21.42 Adjustable focus with large aperture. Using
a high= density linear array to generate a large aperture
allows electronic adjustment of the focal depth by adjust-
ing the electronic delay of the transmit and receive signals
so that the signal at the center transducers is delayed more
than the signal at the edge transducers in both transmit and
receive. Dual transmit focal depths, indicated by the pair
of arrows on the right of the image, require that separate
transmit pulses be sent into tissue for each of the two fo-
cal depths. On receive, the focus can be changed between
the time that shallow echoes are received and the time that
deep echoes are received

with the corresponding aperture. This focal adjustment
is called dynamic focusing and is similar in concept to
time-gain compensation. It is also possible to acquire
data along the ultrasound line using several pulse-echo
cycles, each with a transmit burst that is focused at a dif-
ferent depth. Although dynamic receive focusing takes
no more time than static focusing, using double trans-
mit focusing to further improve the lateral resolution of
the image at a greater range of depths does reduce the
frame rate by half. The location of the transmit focus is
indicated by a carrot on the right of the image.

Because a linear array can steer the ultrasound
beam, it is possible to form an image of each voxel in the
tissue plane from different views, combining the results
into a compound image (Fig. 21.43). The algorithm for
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Fig. 21.43 Compound real-time imaging. By tilting the
beam patterns to cross during acquisition of the image
plane, system can take advantage of the specular backscat-
ter of planar reflectors in the tissue

combining the data from different angles is important in
creating a pleasing image.

Phased Array Transducers. By applying a selected time
delay to each transducer in an array, the ultrasound
beam can be focused or tilted as desired (Fig. 21.39).
Phased array transducers (Fig. 21.44) form the ultra-
sound image by tilting the ultrasound beam using
selected delays on each transducer on transmit and
receive to achieve the desired tilt. A scanhead with
a transducer array of width D can tilt an ultrasound
beam to an angle θ in tissue with an ultrasound ve-
locity of c by applying a time delay gradient along the
transducer of

tc

D
= sin θ . (21.11)

The time t is often represented as a function of the phase
of the ultrasound φ for the ultrasound frequency fus

t =
φ

2π

fus
. (21.12)

To allow the ultrasound beam to tilt to θ degrees, the
width of each transducer element must be less than λ/2
but the pitch (w = center to center spacing of the el-
ements) must be λ/4 in order that, at the maximum
deflection angle, a single beam pattern is defined when
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Fig. 21.44 Phased-array scan head. A phased-array scan
head is able to use the same aperture for all ultrasound
scan line beam patterns, directing the beam along differ-
ent lines by adjusting the relative phase of the signals to
the transducers
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ultrasound intersects the array at angle θ

w <
λ

4 sin θ
= c

4 fus sin θ
. (21.13)

A 3 MHz scan head tilting the ultrasound beam 30◦
to the left and to the right requires a transducer element
pitch of 0.3 mm.

Pulsed Doppler [21.57]
The series of echoes from a single ultrasound trans-
mit pulse provides information about the echogenicity
of the tissue along the ultrasound beam pattern at vari-
ous depths. The echogenicity of the tissue at each depth
is determined by amplitude demodulation (Fig. 21.45).
The measurement of the velocity of blood or tissue re-
quires pairs of echoes from two (or more) ultrasound
transmit pulses along the same beam pattern line, sepa-
rated by a short time (0.1 ms). By comparing a second
echo series from the same transducer beam pattern from
a later time to the echo series from the first pulse, mo-
tion of the echogenic tissue along the beam pattern
can be detected and measured. If the second echo se-

1

0

Low pass
filtering

0.075 mm in tissue depth

Rectification

Ultrasound
echo

μV

1

0

1

0

μs0.1μs

Fig. 21.45 Amplitude demodulation. To create a B-mode
image of tissue anatomy, the strength or amplitude of
the received ultrasound echo is determined as a function
of depth. The RF echo is rectified (converting 5 MHz to
10 MHz) and low-pass-filtered with a 1 MHz cutoff to yield
a depth resolution of 0.75 mm. That is effective if the ul-
trasound transmit burst is shorter than 1 μs. Amplitude
demodulation requires one pulse-echo cycle along each
ultrasound beam pattern line

ries is identical to the first echo series, then none of
the tissue along the ultrasound beam pattern has moved
or changed during the period. However, if the second
echo series is different, then the tissue has moved or
changed. Motion in the direction of ultrasound propaga-
tion causes a simple time shift in the echo series, lateral
motion or a change in tissue properties results in a loss
of coherence between the echoes.

If the tissue has moved toward the ultrasound
transducer, then the second echo pattern will arrive
earlier after the transmit pulse compared to the first
(Fig. 21.46). If the difference is detected by Doppler
processing, then the echoes from each region of tis-

First series
of echoes

t = 0

Second series
of echoes
t = 0.1 ms

Phase
difference

μs0.1

0.075 mm in tissue depth

μs

Fig. 21.46 Phase demodulation. To measure blood veloc-
ity, or tissue displacement or strain, the change in phase
(or echo displacement) between successive pulse-echo cy-
cles at a particular depth must be determined. In this
case, a phase change of π/4 of 5 MHz ultrasound repre-
sents an echo time shift of 0.05 μs/8 = 0.00625 μs, which
is equivalent to a displacement of the scatterers toward
the transducer of 0.00625 μs × 0.75 mm/μs = 0.0047 mm
in the time between pulse-echo cycles or 0.1 ms, yield-
ing a velocity of 0.047 mm/ms or 0.047 m/s. The Doppler
equation, time-domain velocimetry and strain imaging are
all based on this computation. In Doppler demodulation,
the phase and amplitude of the echo at any depth can be
represented as a vector on a phase diagram. These vec-
tors can be represented as complex numbers if the vertical
direction is represented as the imaginary (

√−1) direction
and the horizontal direction represents the real direction
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sue are characterized by a vector in a complex plane
(Fig. 21.46). One rotation of the vector is equivalent to
the reflector moving toward the transducer to shorten
the round-trip path by one wavelength of the ultra-
sound. If the ultrasound is 5 MHz, then the wavelength
is 320 μm so one rotation represents a shortening of
the round trip ultrasound travel distance of 320 μm,
or 160 μm each way. A phase rotation of one quar-
ter of a cycle (π/2 rad) represents 40 μm of motion.
Doppler processing cannot tell the difference between
20 and 180 μm of motion because the vector is pointed
in the same direction after the 160 μm displacement.
This is called aliasing and is responsible for a wave-
form with the highest forward velocities incorrectly
shown as reverse velocities (Fig. 21.47). Doppler sys-
tems cannot tell the difference between displacements
of 100 μm toward the transducer and 60 μm away from
the transducer, because both are represented by the
same phase shift. A motion of 20 μm will result in
a rotation of the phase vector by 45◦ (π/4 rad). Of-
ten the interval between the first echo and the second
echo is 0.1 ms. The velocity of the tissue in this case is
20/0.1 μm/ms = 200 mm/s = 20 cm/s = 0.2 m/s.

The Doppler frequency is the phase change of
the echo in cycles during the pulse interval di-
vided by the pulse interval. In this case the phase
change is 1/8 cycle, so the Doppler frequency is
0.125/0.1 ms = 1250 cy/s = 1.25 kHz.

Usually, pulsed Doppler systems are used to mea-
sure blood velocity. Unfortunately, it is rarely conve-
nient to align the ultrasound beam pattern along the axis
of a blood vessel so typically the angle between the ul-
trasound beam pattern and the vessel axis is 60◦. This
is called the Doppler angle. The ultrasound system can
only measure the projection of the blood velocity vector
along the ultrasound beam. That projection is the cosine
of the angle between the velocity vector and the ultra-
sound beam. The Doppler equation relating velocity to
the ultrasound echo is:

f = 2vf fus cos θD

c
or vf = c

f
fus

2 cos θD
. (21.14)

where f is the Doppler frequency that you hear, the fac-
tor of 2 accounts for the round-trip of the ultrasound, vf
is the velocity of the blood, fus is the ultrasound fre-
quency, θD is the angle between the blood velocity and
the ultrasound beam, and c is the speed of ultrasound in
tissue. The form

vf

c
=

f
fus

2 cos θD
(21.15)

Fig. 21.47 Aliasing. Blood velocities that cause high phase shifts
(greater than 180◦ or π radians) between pairs of pulsed Doppler
echoes cause the Doppler system to mistake high-velocity forward
flow for reverse flow. Continuity in blood flow allows the examiner
to detect this error

emphasizes the relationship between the ratio of the
blood velocity to the ultrasound velocity and the
Doppler frequency to the ultrasound frequency. Since
the ultrasound wavelength λ= c/ fus,

vf = f λ

2 cos θD
. (21.16)

To provide a measurement of blood velocity, ul-
trasound instruments have a cursor on the screen to
align with the axis of the vessel under examination
(Fig. 21.48). The associated Doppler data, here repre-
sented as a spectral waveform, is provided with a scale
showing the angle-adjusted velocity based on the pro-
jection of the measured velocity onto the vessel axis.
Although this adjustment is theoretically justified by the
geometry, unfortunately, it does not provide a useful ve-
locity value. If a Doppler angle of zero degrees is used,
then the value is correct, however, if other angles be-
tween the ultrasound beam and the presumed velocity
vector are used, then the value of the velocity is not cor-
rect. The reason is that blood velocity vectors are rarely
aligned with the axis of the artery. Instead, blood veloc-
ities form helical patterns along the artery [21.58–60].
Angle-adjusted Doppler velocity measurements are sys-
tematically higher as the Doppler angle increases from
zero to 70 degrees or more. Although at a Doppler angle
of zero, velocities are accurately used to determine both
the volume flow rate and the Bernoulli pressure drop,
neither result is correct when Doppler angles other than
zero are used [21.61–63].

Pulsed Doppler Range of Measurement. The high-
est Doppler frequency shift that can be measured with
pulsed Doppler occurs when the phase change of the
echoes during the interval between echo acquisitions
(pulse repetition interval (PRI)) is 180◦ (half a cycle).
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Fig. 21.48 Duplex Doppler image and waveform of a carotid artery. The axis of the ultrasound beam pattern used for
Doppler is shown crossing the artery at an angle of 60◦ to the vessel axis. A cursor is aligned parallel to the vessel axis
to provide θD for the Doppler equation. The Doppler frequency, which is produced by the speakers of the instrument, is
shown by a scale drawn on the left. The scale showing the speed at which the blood is approaching the transducer is drawn
adjacent to the frequency scale. The instrument computes the scale on the screen by dividing the cosine of the Doppler
angle into the approach speed. Along the lower edge of the image is the electrocardiograph tracing (ECG) showing the
QRS complex (small up and down) indicating the onset of ventricular contraction in each cardiac cycle. The lump in the
trace 200 ms later is the T wave indication the end of ventricular contraction. The fourth beat is too early and the QRS
has an odd shape. This is a premature ventricular contraction (PVC) originating from an abnormal spot on the ventricle.
The PVC causes the ventricle to contract before filling is complete, producing a low-volume contraction, and low systolic
blood velocities. The ventricle overfills before the next normal contraction, causing elevated systolic velocities

The Doppler frequency at that condition is half of the
pulse repetition frequency (PRF, the Doppler sampling
frequency). This is called the Nyquist limit, after Harry
Nyquist. This establishes the highest velocity that the
Doppler can detect, although since the signal is ana-
lyzed as a complex number with twice the data (half
as a real number and half as an imaginary number)
Doppler frequencies between + 0.5 PRF and − 0.5 PRF
are reported. As long as there is no reverse flow the
range of Doppler frequencies available is equal to the
PRF. If the phase vector is characterized by a 2 bit com-
plex number into four values, then the smallest phase
change that can be classified is 1/4 cycle. So, a 5 MHz
Doppler system with the data recorded as 2 bits,
and a PRF of 10 kHz, can only report four Doppler
frequency ranges, −1.25 to +1.25 kHz, +1.25 to
+3.75 kHz, +3.75 to +6.25 kHz, and +6.25 to
+8.75 kHz. −1.25 kHz is equal to +8.75 kHz. Such
a Doppler system would probably classify −1.25 to
+1.25 kHz as no motion. By increasing the number of

bits in the digitizers representing the phase vector, the
resolution of the phase shift is increased, and the num-
ber of possible measured velocities is increased. This
does not increase the Nyquist limit.

Another way to increase the number of velocities
that can be measured is to increase the number of pulse-
echo cycles or Doppler phase samples that are gathered.
The number of samples used to resolve the velocity is
called the ensemble length or packet length. In a typi-
cal spectral waveform pulsed Doppler system, Doppler
samples will be gathered from a voxel at a PRF of
12.8 kHz for 10 ms to provide 128 Doppler samples
for frequency analysis. The Nyquist limit (upper fre-
quency limit) is 6.4 kHz. The lowest frequency that can
be detected is 100 Hz, one full Doppler cycle in the
10 ms acquisition period. If the signals are digitized
into 2 bit complex numbers, then each of the 128 pos-
sible frequencies can be tested to see whether each is
present or absent, but no information is available about
the strength of each frequency signal. To determine the
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strength of each frequency, the signals must be digitized
into numbers with more binary bits. Spectral waveform
analysis assumes that there are many Doppler frequen-
cies present in the Doppler signal from the voxel of
interest.

Pulsed Doppler Pulse-Pair analysis. The Doppler
frequency shift can be measured from just two echo
samples separated by a known time. The assumption
is that only a single Doppler frequency is present in
the signal. The phase change divided by the sample in-
terval time provides the Doppler frequency. The upper
limit of the Doppler frequency is the Nyquist limit. To
resolve the Doppler frequency, the phase angle change
must be resolved. Representing the phase angle by a two
bit complex number only resolves the phase angle into
four divisions. For 5 MHz ultrasound, displacements of
40 μm can be resolved. For a 10 kHz PRF sample fre-
quency, this allows a velocity of ±40 cm/s (±0.4 m/s)
to be detected. However, if the phases are represented
by 10 bit complex numbers, the phase angles can be
resolved into 1000 divisions and the displacement and
velocities can also be resolved. With 10 bit quadrature
digitizers, velocities between plus and minus 80 cm/s
can be measured with a resolution of 0.8 cm/s, equiva-
lent to displacements of 80 nm during the pulse interval.

Pulsed Doppler Wall/Clutter Filtering. The measure-
ment of blood velocity with ultrasound is complicated
by the containment in vascular walls. The echogenicity
of the blood is 60 dB less than the echogenicity of the
walls at 5 MHz. The blood cells are Rayleigh scatter-
ers because they are smaller (7 μm) than the wavelength
of ultrasound (300 μm for 5 MHz). The strength of the
echo from blood increases with the fourth power of
the frequency. However, frequency-dependent attenua-
tion of the ultrasound by overlying tissues limits most
Doppler ultrasound studies to frequencies of 2–6 MHz.
5 MHz produces the strongest echoes for vessels un-
der 2 cm of tissue, deeper vessels, and those behind the
skull require 2 MHz ultrasound waves to penetrate these
tissues [21.64–66].

In many examinations, Doppler measurements from
blood adjacent to the wall are desired, so Doppler
echoes from the voxel next to the wall will include
strong wall echoes as well as weak echoes from the ad-
jacent blood. Unfortunately, vascular walls move with
velocities near 2 mm/10 ms or 0.2 m/s (20 cm/s). The
strong echoes from these moving walls must be rejected
to reveal the adjacent blood velocity, which may be only
slightly higher than 20 cm/s. The strong echoes from

the wall are called clutter. 10 bits of the system dynamic
range are required to handle the clutter and the blood
echoes must be resolved above that, so most ultrasound
systems now utilize a 14–16 bit dynamic range, which
is achieved by combining the outputs of separate digitiz-
ers (one for each transducer) and digitizing faster than
the required four times the ultrasound center frequency,
then filtering the result for processing.

Pulsed Doppler Spectral Analysis. To measure the
Doppler frequency shift, any method of frequency
analysis can be used. Zero-crossing rate meters and
zero-crossing time interval histograms have been re-
placed with real-time spectrum analyzers. Although the
time-compression analyzer produces identical results,
the popular fast Fourier transform (FFT) analyzer is
used to produce spectral waveforms of Doppler signals
(Figs. 21.47, 21.48). The FFT analyzer is coupled to
the pulsed Doppler so that the FFT analyzer receives
a quadrature pair of data from the depth of interest
for each pulse-echo cycle. The advantage of the spec-
tral analysis is that if the voxel contains several flow
velocities, the FFT spectrum will display the Doppler
frequency for each velocity. Unfortunately, in blood
flow, eddy oscillation frequencies up to 500 Hz occur;
the typical FFT length of 10 ms (100 spectra per second)
is only capable of resolving eddies of 50 Hz or lower.
When a voxel contains higher-frequency eddies, the re-
sult appears as spectral broadening or as harmonics on
the spectral waveform.

Pulsed Doppler Autocorrelation. Autocorrelation is
a frequency analysis method which is an extension of
pulse-pair analysis. Autocorrelation analysis assumes
that there is only one valid Doppler frequency in the
blood flow. Autocorrelation analysis identifies that fre-
quency. However, to reject the stationary and slow
moving strong echoes of the wall, a clutter filter must
be applied. Clutter is a stationary echo superimposed on
the changing Doppler echo. The analysis is based on an
ensemble of N echoes, usually eight echoes. The dif-
ference between adjacent pairs of echoes n and n−1
(for n = 2, N) creates a new group of N −1 vectors
(Fig. 21.49). By taking the average of the change in an-
gles, a Doppler velocity can be obtained. Sometimes
two filtering steps are required rather than one. Such fil-
ters are called finite impulse response (FIR) and infinite
impulse response (IIR) filters.

Time-Domain Velocimetry. The Doppler equation
contains the Doppler frequency and the phase an-
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Fig. 21.49a–d Autocorrelation clutter (high-pass) filter.
By representing each pulse-echo from a particular depth as
a point on a phase diagram, the trajectory of the echo phase
in time can be plotted. (a) The Doppler echo comes from
two types of reflectors, strong reflecting stationary struc-
tures (clutter) and weak reflecting moving blood cells. In
each of the five pulse-echo cycles (ensemble or packet of
5), the contribution from the strong reflectors is the same.
The moving blood cells reflect the same amplitude (vec-
tor length) but a different phase during each pulse-echo
cycle. (b) The ultrasound receiver cannot differentiate the
clutter contributed by the stationary structures from the
signal contributed by the moving blood cells. High-pass fil-
ter. (c) By taking the difference between successive results,
the effect of the clutter is eliminated. (d) By centering the
resultant vectors on a new phase diagram, the phase an-
gle change between each pulse-echo cycle can be used to
compute the blood velocity

gle. Doppler signals are subject to aliasing when the
between-pulse phase angle change (Δφ, a circular vari-
able) has a value greater than π. In addition, echoes
from deep tissues have a lower center frequency than
echoes from shallow tissues, causing confusion about
the correct value of the ultrasound frequency fus to use
in the equation.

vf

c
=

Δφ
Δt
fus

2 cos θD
. (21.17)

Echo 2

Echo
comparison

Echo 2
minus

Echo 1

Echo 1

t

Fig. 21.50 Time-domain demodulation removing clutter.
To remove clutter in time-domain demodulation, the RF
echo signal from each pulse-echo cycle is subtracted from
the preceding RF echo signal to yield the residual due to
tissue motion

Of course, the center frequency of deep echoes
is still within the bandwidth of the transmitted ultra-
sound; the center frequency is depressed because of the
greater attenuation of the higher-frequency portions of
the transmitted bandwidth.

Echo
comparison

Echo 2
minus
Echo 1

and
Echo 3
minus
Echo 2

t

Time shift
Δt

Fig. 21.51 Time-domain demodulation measuring the ve-
locity component. By measuring the time shift between
successive echo pairs, multiplying by half the ultrasound
velocity and dividing by the pulse repetition interval time,
the velocity of the tissue along the ultrasound beam
results
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a)

b)

c)

d)

Fig. 21.52a–d Ultrasound images from a conventional
carotid artery Doppler examination in the neck (af-
ter [21.67]). Orientation: a linear array transducer located
at the top of each image acquires the 128 vertical scan
lines in sequence across the 35 mm-wide image. Two of
the monochrome B-mode images (c) and (d) were acquired
in 24 ms (42 frames per second) so the scan lines progress
across the image at a speed of (35/24) 1.46 m/s, a speed
similar to blood velocity. The color flow image (a) was
acquired at 12 fps; the other monochrome image (b) was
acquired at 23 fps. Anatomy: (a) ECA external carotid
artery supplying the face, ICA internal carotid artery sup-
plying the brain, CCA common carotid artery from the
heart via the Brachiocephalic trunk. (a) Color Doppler im-
age of the carotid bifurcation. The color scale on the left of
the image shows that forward flow is shown as red and re-
verse flow is shown as blue. The flow directions are with
respect to the transducer array at the top of the image rather
than with respect to the heart to the right of the image. The
blue region at the origin of the external carotid artery shows
that the vertical component of the velocity vector is point-
ing toward the ultrasound transducer rather than showing
that flow is reversed toward the heart. Notice that this re-
gion is bounded by black bands indicating zero velocity
toward the transducer. The blue spots in the lumen of the
internal carotid artery are aliasing (Fig. 21.47). Notice that
each of those regions is surrounded by an orange color
indicating high blood velocity components with respect
to the transducer. Doppler waveform orientation: each of
the three Doppler waveforms is acquired from an ultra-
sound beam pattern that is tilted at an angle with respect
to the transducer, selected by the examiner to form an an-
gle of 60◦ with respect to the artery axis. (b) lower Normal
Doppler spectral waveform from the internal carotid artery
with high diastolic flow. Because the brain continuously re-
quires 10% (10 ml/s) of the cardiac output (100 ml/s), the
peripheral resistance is low so blood flows to the brain dur-
ing systole and diastole. (c) lower Normal Doppler spectral
waveform from the external carotid artery with low dias-
tolic flow. Because the face at rest requires little blood flow
but when active (chewing, blushing) requires more blood
flow, at rest the arteriolar sphincters are constricted, only
accepting blood flow during systole. When the arteriolar
resistance decreases, the external carotid also has flow dur-
ing diastole. (d) lower Normal Doppler spectral waveform
from the common carotid artery which has the combined
internal and external flow waveform. A pulsatility index
showing the ratio between the diastolic and systolic veloc-
ities is sometimes used to classify waveforms
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SB

PS

Fig. 21.53 Stenotic internal carotid artery. Even after 25 years of exploring the meaning of carotid artery spectral wave-
forms, there is no agreement on how the data should be interpreted. Although this color Doppler image shows an
interruption in the color flow image of the lumen, the interruption is not due to an arterial occlusion, but to a local
region of high ultrasound attenuation which causes the color Doppler signal to drop out. Thus, the diameter of the color
Doppler streak cannot be used to assess the lumen. In this case, the vessel walls cannot be easily seen. A stenosis is
present at the Doppler sample volume as indicated by the high velocity. The spectral waveform is confusing. The highest
Doppler frequency shift which was measured by the examiner 220 ms after the onset of systole at 497.3 cm/s is probably
not accurate because the measurement is at the time of greatest spectral broadening (SB), indicating eddies in the flow.
Use of the Doppler equation is not appropriate for these eddy velocities because the heading of the vectors is not known.
The true peak systolic (PS) velocity probably occurs 100 ms after the onset of systole where the measurement is near
4 m/s and the Doppler equation is probably accurate if the velocity vector is assumed to be parallel to the artery axis. An
appreciating of the difference between the believed accuracy of 497.3 cm/s versus “bout 4 m/s” is important because of
the clinical decisions that result. The PSV is used to decide whether a patient with symptoms of mini-stroke should have
surgery. In this case, the end diastolic velocity (EDV) is measured at 135.2 cm/s. An EDV value exceeding 140 cm/s in
a single measurement would cause a vascular surgeon to schedule the patient for carotid endarterectomy surgery even if
the patient has no symptoms

Since bandwidth is inversely proportional to pulse
duration and pulse duration is related to spatial res-
olution, it is desirable to have a short pulse duration
so that spatial resolution is as small as possible. This
means broadband pulses, permitting depression of the
center frequency of the echo. The desire for improved
resolution and the desire to avoid aliasing combine in
the use of time-domain velocimetry as an alternative to
Doppler.

vf

c
=

Δτ
Δt

2 cos θD
. (21.18)

In time-domain velocimetry, two successive ultra-
sound echoes are compared to see if a time shift (Δτ)
has occurred in the echo in the intervening time (Δt),

which indicates tissue motion. By measuring the time
shift, the velocity can be calculated. Of course, clutter
from solid tissue in the voxel may provide a substan-
tial stationary echo superimposed on the small shifted
echo. To remove the clutter echo, subtraction of adja-
cent pairs of echoes (Fig. 21.50) provides the difference
waveform containing the motion information. Then the
time shift between difference waveforms can be meas-
ured (Fig. 21.51).

A comparison between the time-domain equation
and the Doppler equation shows that Δτ = Δφ/ fus.
This indicates that it is the demodulator frequency,
not the frequency of the echo, that is relevant for
the Doppler equation; the former must be close (and
is usually equal) to the transmitted center frequency,
i. e., the frequency required in the Doppler equation.
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Fig. 21.54 Doppler spectral waveform signals from the in-
ferior vena cava showing augmented flow. Doppler spectral
waveforms show velocity (vertical axis) versus time (hori-
zontal axis). In addition to the difference in flow direction,
venous flow is differentiated from cardiac flow because the
venous flow varies with respiration and with manual com-
pressions of the tissues. Here the sudden increase in venous
flow in the distal inferior vena cava was created by releas-
ing an occlusion of the venous outflow from the legs. ECG
tracing (green) shows cardiac timing. The heart beat to the
right of center is due to a premature ventricular contrac-
tion, an abnormal heart rhythm which does not affect the
venous flow �

There are substantial differences between the Doppler
and time-domain systems. First the time-domain system
usually transmits a broadband, short ultrasound pulse.
The signal-to-noise ratio of the echo is determined by
the transmit pulse energy. To achieve the same energy
in a short pulse, the temporal peak power must be high,
leading to a high acoustic pressure. When analyzing
the time shift between the echoes, it is easiest to test

Fig. 21.55 Duplex echocardiogram of a heart with an atrial septal defect. The jet of blood from the left atrium to the
right atrium can easily be seen on the color flow image. The Doppler spectral waveform taken at the center of the jet
orifice at a Doppler angle of 25◦ to the jet shows velocities as high as 1.4 m/s when the inter-atrial pressure difference
is the greatest. Correcting the velocity for the Doppler angle (cos 25 = 0.906) increases the velocity value to 1.54 m/s.
Cardiologists usually attempt to orient the Doppler transducer to align the jet with the Doppler ultrasound beam to achieve
a zero Doppler angle. The pressure difference between the chambers can be computed using the Bernoulli equation for
blood velocity Δp[mmHg] = 4 [mmHg/(m/s)2]V2. The pressure difference here is near 9 mmHg (courtesy Frances
DeRook and Keith Comess)

for the time-lagged correlation by stepping one digi-
tizing interval at a time. So, if the echo is digitized at
a rate of 20 MHz, the digitizing interval is 50 ns (Δτ),
equivalent to a tissue displacement of 0.0375 mm. If
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Fig. 21.56 Vibration from the mitral valve. Signals from blood flow are mixed with signals from solid tissue motion. Here,
the signal of solid tissue motion is suppressed by the wall filter, which suppresses clutter at frequencies below 400 Hz.
However, in this case with the Doppler sample volume in the mitral orifice, as the mitral valve closes for the fourth time,
the valve vibrates at a frequency of 2 kHz for a period of 8 ms causing the harmonic (Bessel function) spectral pattern
with seven harmonic terms, indicating that the amplitude of the vibration is high (courtesy Frances DeRook and Keith
Comess)

the pulse repetition frequency is 10 kHz, so the inter-
pulse interval is 100 μs (Δt), the velocity resolution is
38 cm/s (0.4 m/s). Time-domain systems usually dig-
itize at a higher frequency and usually interpolate the
wave between the measurements to improve velocity

Fig. 21.57 Duplex echocardiogram tissue Doppler of myocardium. Like velocity measurements from blood flow, veloci-
ties of solid tissues can also be measured. Low velocities of the intra-ventricular septum of the heart indicates abnormal
muscle contraction (courtesy Frances DeRook and Keith Comess)

resolution. For large time shifts, when noise is present,
the time domain system usually has trouble with peak
hopping, associating the wrong cycles in the wave when
determining the time shift. This results in a measure-
ment error identical to aliasing. So, the advantages of
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Fig. 21.58 Tissue strain in calf muscles. During tissue perfusion, different strain waveforms indicate resting perfusion
(red) with high peripheral (arteriolar) resistance or hyperemic perfusion (blue) with low peripheral resistance. In this case,
the calf muscle was imaged at rest, and then at intervals for a period of 5 min following a toe stand exercise. Immediately
after exercise, the peripheral resistance is low to make up for the metabolic oxygen deficit after exercise. Five minutes
after exercise, most of the muscle tissue has returned to the resting state (courtesy John Kucewicz)

time-domain processing over Doppler processing, while
promising, have not been fulfilled.

Clinical Applications of Ultrasound Velocimetry
The most common application of pulse Doppler ultra-
sound spectral waveform analysis is the examination
of the carotid arteries [21.68] for stenoses that might
lead to stroke (Figs. 21.52, 21.53). The measurement
of high systolic (> 125 cm/s) carotid blood veloc-
ity is associated with a 20% chance of stroke in
two years in a patient reporting stroke-like symptoms

(TIA = transient ischemic attack, RIND = reversible
ischemic neurological deficit). The measurement of
a high-end diastolic velocity (> 140 cm/s) in any pa-
tient is associated with a 20% chance of stroke in two
years from emboli released from the carotid stenosis.
Such findings, by themselves, can direct a patient to
treatment that will prevent devastating disability.

Examination of the veins of the legs with Doppler
for the detection of deep venous thrombosis (DVT) is
another popular examination that can lead to life sav-
ing therapy. Because venous pressures are near 5 mmHg
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918 Part F Biological and Medical Acoustics

Fig. 21.59 Tissue pulsations in brain measured with ultrasonic phase gradient demodulation. Using ultrasound to measure tissue
displacement over time with a resolution of 0.05 μm and differentiating motion with depth to measure strain, perfusion waveforms
can be obtained. Independent component analysis of the brain perfusion signal reveals the cardiac and respiration contributions to
the natural tissue strain (courtesy Lingyun Huang)

in the supine patient, normal venous flow is associated
with respiration and minor local compression rather
than pulsatile with the cardiac cycle (Fig. 21.54). Pul-
monary embolus from venous emboli released from
a DVT may account for one-third of sudden cardiac
death cases [21.69]. A venous Doppler examination
failing to show spontaneous venous flow with respira-
tion indicates a venous obstruction that may be a DVT
that could progress to threaten life if not treated with
anticoagulation.

Cardiac Doppler examinations for blood flow are
perfectly suited to characterize narrow holes between

the cardiovascular structures in the chest (Fig. 21.55).
By measuring the velocity of blood flow jets and apply-
ing the Bernoulli equation, the instantaneous pressure
difference between the associated chambers of the heart
can be measured. This works for all heart valves and wall
defects so the method can be used to identify pulmonary
artery hypertension as well as cardiac valve failure.

Although blood velocity through valves can be
measured (Fig. 21.56), the dynamics of solid structures
such as valve vibration, can also be characterized. By
measuring the velocity of the cardiac wall, regions of
poor myocardial function can be identified (Fig. 21.57).
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Fig. 21.60 Tissue vibrations of a punctured artery. Flow through any small orifice which results in a pressure drop can
cause vibrations. Arterial bleeding can be detected by searching Doppler signals for such vibrations (courtesy M. Paun,
M. Plett)

Tissue Strain Imaging
A number of laboratories are exploring the ultrasound
measurement of tissue strain [21.70] for diagnostic
purposes. The most popular examinations involve the
measurement of tissue response to externally applied
vibration or pressure. These methods are called elastog-
raphy or elastometry. During ultrasound examination,

Fig. 21.61 Vibration of a coronary artery stenosis. Flow
through any small orifice which results in a pressure drop
can cause vibrations. Flow though a stenosis causes a bruit
(Fig. 21.2), or murmur which can be detected and measured
with ultrasound. These 4.5 μm-amplitude 300 Hz vibra-
tions on the surface of the heart at the location of a stenosis
in the right coronary artery occur only in diastole when
the coronary flow rates are the highest (courtesy S. Sikdar,
T. Zwink, S. Goldberg) �

the ultrasound scan head or a nearby device is pressed
on the tissue to induce a strain of several percent, either

10 cm

4.5 m

0 m

300 Hz

Center frequency: 2 MHz; PRF = 1 kHz; ensemble = 10

Image Computing Systems Laboratory, Electrical Engineering
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static or vibrating. By monitoring the relative motions
of the tissues in response to the applied strain using
Doppler or time-domain methods, the relative elastic
properties of the tissues can be determined. The com-
putation simply takes the derivative of the motion as
a function of depth. To achieve 10% resolution on
a 1% applied strain in 1 mm voxels requires that the ul-
trasound motion detection system resolve 1 μm tissue
displacements. This requires a 1 GHz digitizing rate for
a time-domain system without interpolation. A Doppler
system with 6 bits of dynamic range can achieve a 1 μm
displacement resolution.

More challenging is to examine the natural tissue
strain that occurs as the tissue fills and empties of blood
each cardiac contraction and each respiratory cycle.
Normal tissue strain for arteriolar filling is 0.1%. To re-
solve 0.1% strain with 10% resolution in 1 mm voxels
requires the resolution of 0.1 μm displacements. This
requires Doppler demodulation of a 5 MHz echo with
at least 9 bits of dynamic range. Ultrasound pulsatil-
ity images can be made of most body tissues including
muscle (Fig. 21.58) showing physiological responses to
stresses, and brain [21.71] (Fig. 21.59) showing the sep-
arate effects of pulse and respiration.

Tissue Vibration Imaging
Several pathological conditions are associated with the
presence of tissue vibrations. These were discussed at
the beginning of the chapter where the detection of
the vibrations with a stethoscope was described. Of
particular interest are vibrations associated with ar-
terial stenosis and vibrations and motions associated
with internal bleeding [21.72]. Using the same Doppler
demodulation methods, but filtering for the cyclic
motions of the highly echogenic solid tissues rather
than the continuous motions of the poorly echogenic
blood, vibrations can be detected and rendered as
an image showing pathologies such as arterial bleed-
ing (Fig. 21.60). The amplitude and frequency of the
vibrations are characteristic of the rate of bleeding.
Arterial stenoses including stenoses of the coronary
arteries (Fig. 21.61) can be demonstrated in vibration
images.

Fig. 21.62 Modern ultrasound imaging system. During the
quarter century between 1975 and 2000, ultrasound sys-
tems retained the same exterior design, mounted on wheels,
narrow enough to fit through a doorway, light enough that
a sonographer could push the system, short enough so
that a sonographer could see over the top and powered
by a 1.5 kW outlet. To the right is the key to good ul-
trasound diagnosis, the well-trained, certified, experienced
ultrasound examiner

Modern Ultrasound Scanners
Real-time diagnostic ultrasound scanners changed little
on the outside between 1975 and 2000; they are nar-
row enough to fit through a doorway (Fig. 21.62) and
draw less than 1.5 kW of electrical power from a stan-
dard power outlet in the hospital wall. However, inside
the systems have evolved from analogue devices to dig-
ital devices (Fig. 21.63), with the conversion to digital
processing determined by cutting-edge computer tech-
nology. Now an ultrasound scanner with a full array of
functions is constructed from software, using a Win-
dows laptop computer (Fig. 21.64) or a custom box.
Ultrasound systems can be produced inexpensively and
can obtain the diagnostic results automatically, so that
a patient can use the system for self-management of
some conditions (Fig. 21.64).

21.5 Medical Contrast Agents

Contrast agents are used in medical imaging to make
invisible structures visible. Contrast agents can be clas-
sified by anatomic/application: intraluminal/intracavity,
excretory, diffusional, and chemotactic. Contrast mech-

anisms include reflection, absorption, fluorescence,
emission and nuclear resonance frequency shift.

Intraluminal/intracavity agents are used to visual-
ize the cardiovascular system, gastrointestinal system,
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reproductive system, body cavities, and other spaces.
The contrast agent is injected into the space, where it
spreads throughout the structure of interest. Excretory
systems are used to visualize the renal system (ex-
cretory urogram or intravenous pyelogram (IVP)) or
gall bladder and bile duct (cholangiopancreaticogram).
The contrast agent is injected into the venous system
and is excreted in concentrated form by the target or-
gan. Because of the concentrating action of the kidney,
a contrast agent in the urine will be 100 times more
concentrated than in the blood. Diffusional agents are
injected into the venous system and diffuse into the in-
terstitial space through leaky capillaries. Newly formed
capillaries are leaky, and such diffusion may mark local
angiogenic factors secreted by tumors or retinopathy.
Contrast magnetic resonance imaging (MRI) for breast
tumor detection and fluorescene angiography of the
retina are examples of diffusional agents. Chemotactic
agents are injected into the veins and diffuse into the in-
terstitial space through normal capillaries, where they
bind to tissues of interest such as tumor cells. The time
between the injection of a chemotactic contrast agent
and the imaging study is several hours. This method is
common in nuclear medicine imaging.

Ultrasound contrast agents cause increased backscat-
ter of ultrasound and often cause the generation
of harmonics. X-ray contrast agents contain heavy
nuclei which absorb X-rays to provide contrast. Fluo-
rescene, indocyanine green and other dyes are activated
by high-energy (short-wavelength) photons and emit
longer-wavelength photons, which are detected by op-
tical camera systems. Chemotactic chemicals prepared
with short-half-life (hours) nuclear isotopes are pre-
pared and injected within a few hours. After allowing
time for the agents to accumulate in the tissues of in-
terest, the sources of radiation are imaged with pinhole
or collimation nuclear radiation cameras. Gadolinium is
used as a contrast agent in nuclear magnetic resonance
imaging. The paramagnetism of gadolinium decreases
the T1 and T2 relaxation times, which are displayed in
the MR image.

21.5.1 Ultrasound Contrast Agents

The first intravenous ultrasound contrast agents [21.73]
were large bubbles generated by intravenous injection
of indocyanine green [21.74], other injectable liquids
including saline and blood [21.75–77], and finally ag-
itated saline [21.78]. These bubbles were so large that
they would not pass through capillaries, so appear-
ance in the left heart or arteries was proof of a shunt
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Fig. 21.63 Diagnostic ultrasound signal processing history. The
amount of data transferred between the stages of the ultrasound
signal-processing chain is a minimum around the display, the dis-
play systems were converted to digital processing during the early
years of digital technology development. Beam forming occurs in
two directions: in the plane of the image, where the evolution
from mechanical to analog to digital proceeded with time, and per-
pendicular to the plane of the image, where mechanical focusing
was replaced by digital electronic focusing and then steering with
the advent of transducers segmented into two-dimensional arrays.
Pointing of the ultrasound beam between 1980 and 1990 was done
digitally in linear array raster scans by switching on selected trans-
ducers in the array, but in phased-array sector scans the direction
of the beam was determined by adjusting the phase delay with
nanosecond resolution on each transducer. Because analog signals
have a continuum of possible signal levels, small differences in ana-
log signals can be extracted as long as the differences are greater
than the noise in the signal. Once a signal is digitized, no noise
is added to the signal by processing. The 10 GBit/s data rate on
the receiving path is based on the assumption that the transducer is
divided into an array

bypassing the lungs. These bubbles were generated in-
advertently or deliberately by flow-induced cavitation.
The bubbles contained air that was dissolved in the
blood. These bubbles generated strong ultrasound re-
flections because of the large difference in ultrasound
impedance between the body (water) and the air in the
bubbles. Small bubbles were not stable, so only large
bubbles survived.

Currently, most commercial ultrasound contrast
agents are small bubbles or particles, which are able
to pass through the capillaries of the lungs but are
confined to the vascular system. Some ultrasound con-
trast agents are solid particles smaller than a micron
in diameter. These are Rayleigh scatters of ultrasound
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a)

b)

c)

at the fundamental frequency. Most ultrasound contrast
agents are bubbles about 3 μm in diameter (Fig. 21.65)
so that they will pass through pulmonary capillaries
and recirculate in the cardiovascular system. They are
also Rayleigh scatters, but because they oscillate, they
convert the fundamental ultrasound frequency into har-

Fig. 21.64a–c Two small ultrasound imaging systems,
based on the request of the Defense Advanced Research
Project Administration for general-purpose handheld sys-
tems with full function (a) and (b) and an application-
specific imaging system. (a) Terason scanner using a laptop
computer; (b) SonoSite scanner using custom electronics;
(c) Application-specific ultrasound scanners (BladderScan)
are palm-sized and fully automatic. This instrument shows
no image, but displays the volume of urine in the bladder
as a number or an alarm, depending on the application �

monics because of the nonlinear properties of their
oscillation.

21.5.2 Stability of Large Bubbles

The size of stable bubbles can be estimated from physi-
cal principles. The gas inside a stable bubble of radius r
(Fig. 21.65) is under a pressure equal to the sum of the
ambient atmospheric pressure plus the fluid pressure
(1 atm = 10 m of water), and the pressure generated by
the surface tension of the interface between the con-
tained gas and the external fluid (water). In the body
and in carbonated beverages, the depth of the bubbles is
small compared to 10 m of water, so the pressure added
because of the depth of the fluid can be ignored com-
pared to atmospheric pressure. A force balance on the

Pressure
MPa

0.2

0.1

0

rr
r

Fig. 21.65 Contrast agent bubble. An ultrasound contrast
bubble is a system consisting of a gas inside the bubble,
a surfactant, a surrounding liquid, and solutes including
gases and surfactants in the liquid solvent. Thermodynam-
ics and the transport of heat and of the dissolved gasses and
dissolved surfactant materials all contribute to the response
of a bubble to ultrasound exposure. Interactions between
bubbles are also important factors in contrast agent dy-
namics. Here are the expected sizes for a bubble based on
an isothermal ideal gas model without considering surface
tension for an ultrasound intensity of 87.5 kPa
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equator of the bubble equates the pressure force Pπr2

to the surface tension force σ2πr. Thus the pressure in
the bubble above the ambient pressure is P = 2σ/r. In
the absence of a surfactant, the surface tension of water
is 70 d/cm. When r = 1.4 μm, P = 1 atm; this is a huge
chemical potential to drive the contained gas into solu-
tion. If a bubble is 0.14 mm in diameter, too large to pass
through a capillary (red blood cells are 8 μm in diam-
eter), then the pressure elevation in the bubble caused by
surface tension is 0.01 atm and the gas contained in the
bubble has a low driving force to diffuse into solution.
So, large bubbles are more stable than small bubbles. If
the surface tension is reduced by applying a surfactant
(shell) to the bubble, then small bubbles become stable.
If the gas contained in the bubble is less soluble in blood
and/or has a low diffusion constant, then the bubble has
a longer life.

21.5.3 Agitated Saline
and Patent Foramen Ovale (PFO)

Agitated saline contrast bubbles are generated by forc-
ing fluid rapidly through a small orifice, such as an
injection needle. They have an important diagnostic ap-
plication: to determine whether there is a shunt from
the right heart to the left heart, bypassing the lungs.
The most common of these shunts is the patent fora-
men ovale (PFO). PFO may be a cardiovascular defect
of considerable medical importance. If a person under
the age of 50 has a stroke due to occluded vessels in
the brain (ischemic stroke), the most likely cause is
a PFO. One affected group is divers, who return from
great depths with large amounts of gas dissolved in
their body tissues, especially in fat. Bubbles which form
in the low-pressure venous system as the gas is trans-
ported toward the lungs, might pass through a PFO
during a cough, releasing these large bubbles into the
arterial system where they cause occlusion of arter-
ies and ischemia of the tissues that were supplied by
the arteries. Ischemia of some tissues might be un-
noticed. Ischemia of other tissues might cause pain
that is ignored. Ischemia of some portions of the brain
might result in undetected changes in personality or
memory. Only ischemia of the motor and sensory cor-
tices of the brain causes loss of sensory and motor
function that are recognized as stroke symptoms. In
divers, these symptoms are called neurological symp-
toms of the bends, in others they are called transient
ischemic attacks (TIA) or stroke, depending on whether
the symptoms last less than 24 h or longer than 24 h,
respectively.

The foramen ovale is a normal structure before
birth, along with the ductus arteriosus, allowing the
blood to circulate in parallel through the fetal body,
lungs and placenta. At birth, with the muscular con-
striction of the ductus arteriosus to obliterate the lumen,
pressure shifts cause the flap valve of the foramen ovale
to close and over time it will seal in most people. How-
ever, in some people the foramen ovale does not seal,
opening occasionally when the person coughs or strains.
The prevalence of PFO in the general population is 30%
at age 20 and 10% at age 70. The reason for the decline
in prevalence is either because in some people the fora-
men seals after age 20 or because these people suffer
repeated embolic events from the venous to the arterial
circulation, which progressively damage body organs
leading to failure and death. In the absence of PFO, such
venous emboli pass to the lungs where they temporarily
occlude portions of the lung, but resolve over time.

The importance of the diagnosis of PFO is currently
disputed, but two factors may make testing for PFO
a part of every physical examination:

1. The cost of the contrast agent is only the 2 min that
it takes to handle off-the-shelf saline and

2. Recently catheter methods of sealing a PFO have
been released for testing, avoiding the need for
open-chest heart surgery to seal the defect. If 2/3 of
the people with PFO at age 20 die before the age of
70, this diagnosis would be an issue of considerable
importance.

21.5.4 Ultrasound Contrast Agent
Motivation

The case for the development of stable ultrasound
contrast bubbles small enough to pass through the
capillaries of the lungs and appear in the systemic
arteries is based on the wide use of ultrasound in
medical imaging. Over half of all medical imaging
is done with ultrasound, so there are many potential
applications for contrast agents. Because these mechan-
ical agents are confined to the vascular space, they
cannot provide contrast in excretory, diffusional or ex-
travascular chemotactic applications. Blood is a poor
reflector of ultrasound, generating echoes 60 dB be-
low the echoes from vascular walls. Contrast agents
increase the backscatter. In most cases, the detection
of blood flow is easy by Doppler methods which can
reject the high-intensity stationary echoes from vas-
cular walls and detect the moving echoes of blood
using Doppler methods. However, in cases where the
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blood is moving slowly, these methods are more diffi-
cult and there is an advantage from the increased echo
signals produced by contrast agents. Thus, in identi-
fying the exact location of endocardium (Fig. 21.66),
in regions deep within strong attenuators (such as
skull) and for blood flow in capillaries, contrast agents
promise to provide important additional diagnostic
information.

21.5.5 Ultrasound Contrast Agent
Development

Ultrasound microbubble contrast agents have been un-
der development for a quarter century [21.79]. The first
task in the development of microbubble contrast agents
was to make stable bubbles small enough so that they
could pass through the capillaries of the lungs (about
3 μm in diameter) after injection into the venous system,
and stable enough to survive long enough to be useful
(more than 1 min, preferably 30 min). Three strategies
are available to stabilize the microbubbles:

1. Lower the surface tension,
2. Form bubbles of a gas with low solubility or diffu-

sivity in water/blood and
3. Produce a gas-impermeable barrier at the gas–liquid

interface.

Surfactants lower surface tension; fluorocarbons have
low solubility in water/blood; polymeric shells can be

5

10

5

10

Va) b) V

Fig. 21.66a,b Two-dimensional B-mode real-time echocardiogram of the left ventricle. (a) Left ventricle without ultra-
sound contrast agent; (b) left ventricle with intravenously infused Optison ultrasound contrast agent (courtesy Frances
DeRook and Keith Comess)

impermeable to gas diffusion. A series of contrast agents
have been developed based on various combinations of
surfactant, contained gas and method of formation.

The behavior of ultrasound contrast agent mi-
crobubbles is complicated and can easily consume an
entire career. Only a few factors will be mentioned here.
A microbubble consists of three phases: the contained
gas, the surfactant, and the surrounding fluid. The size
distribution of the bubbles is determined by the method
of formation. Air-filled albumin-coated microspheres
can be formed by whipping a mixture of albumin and
water in a blender. This forms a broad distribution
of microspheres. The desired size can be selected by
centrifugation or flotation. A more nearly uniform mi-
crobubble size can be achieved by metering the relative
volume of surfactant and gas through a calibrated noz-
zle orifice. The relative amounts of gas and surfactant
are determined by the desired surface to volume ratio.
The speed of bubble extrusion is crucial to the forma-
tion of bubbles of stable size. If prepared for medical
use, in addition to a sterile preparation, formed using
Food and Drug Administration (FDA)-approved good
manufacturing practice, the agent must have sufficient
stability and shelf life to permit distribution, storage and
timely preparation for use.

When released into blood, the contained gas is usu-
ally not at equilibrium with the dissolved gases in the
blood. A microbubble filled with fluorocarbon will take
up nitrogen, oxygen and carbon dioxide without releas-
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ing much fluorocarbon, so the microbubble will swell
after injection. The amount of swelling will depend, in
part, on the amount and properties of the surfactant. If
the bubble swells so that the surface area begins to ex-
ceed the available surfactant, the surface tension rises.
This may favor bubble coalescence. As the microbubble
passes through the lungs, some of the contained fluo-
rocarbon will be released. Gas exchange between the
microbubble and the dissolved gas in the blood is con-
tinuous during the life of the bubble. Some surfactants
and some contained gases have chemical or physical
affinities for the interior surfaces of the cardiovascular
system of the lungs, arteries, capillaries or veins. The
bubbles may become specifically adsorbed to the endo-
luminal surfaces of these vessels. This can be accidental
or deliberate, and can become part of the functional-
ity of the contrast agent. When specifically adsorbed,
the surfactant may migrate to the vascular surface or
may take on molecules from the vascular surface or sur-
roundings. Of course, the contrast agent might be taken
up by cells, transported by those cells and/or retained in
particular tissues or organs.

21.5.6 Interactions Between Ultrasound
and Microbubbles

When exposed to ultrasound at diagnostic frequen-
cies (1–20 MHz), the contrast bubbles will oscillate
at the driving frequency of the ultrasound, emitting
the fundamental frequency as well as harmonics of
the fundamental frequency. Microbubbles have a natu-
ral resonance frequency, primarily determined by their
size, surface tension, shell rigidity (if any) and the den-
sity of surrounding material. If stimulated at a frequency
near the resonant frequency, the amplitude of oscilla-
tions will be greater. The pressure of the interior gas
varies with volume according to the rules of adiabatic
compression and expansion, at least to the extent that
the process is too fast for heat transfer. Although the
waveform of the oscillation is primarily determined by
the waveform of the driving ultrasound, the surfactant
forces also play a great role in this process. When the
ultrasound pressure is high (for 0.3 μs) the gas com-
presses, the temperature raises, the water vapor pressure
increases as does the pressure of other gases. The gas
pressures rise above the surrounding partial pressures
of gas, providing a driving force to move gas out of
the bubble into solution. Because the bubble is small,
the surface area available for heat and mass transfer
is small, and the amount of loss of heat and gas is
small. Alternatively, when the ultrasound pressure is

low (the subsequent 0.3 μs), the pressures and temper-
ature drops, providing driving forces for heat and gas
to enter the bubble. Now the surface area is large and it
is easy for transport into the bubble, leading to rectified
diffusion of gas and heat into the bubble.

At the body temperature of 37 ◦C, the vapor pres-
sure of water is 6.2 kPa, 6% of atmospheric pressure.
An acoustic wave of 285 mW/cm2 SPTP (spatial peak
temporal peak) intensity drops the pressure in a bubble
below the vapor pressure of water (ignoring surface ten-
sion) which will cause the water to vaporize, filling the
bubble with water vapor in addition to the other con-
tained gasses. The latent heat of evaporation lowers the
temperature of the bubble. On compression, the recon-
densing of the water adds heat to the bubble. When the
ultrasound is compressing the bubble, the surfactant acts
as a stable skin. The skin may even exhibit negative sur-
face tension. Like the hull of a submarine deep in the
ocean, the surfactant may hold the bubble gas pressure
lower than the surrounding pressure. Similarly, when
the ultrasound pressure has dropped below ambient, and
the bubble expands to form a larger surface area, the
surfactant, which is often a monolayer of molecules
on the surface, will change in configuration, become
patchy and result in increased surface tension, holding
the internal gas pressure higher than expected from the
surrounding pressure. As there is a driving force for
the gaseous contents of the microbubble to experience
rectified diffusion, there is also a driving force for the
surface phase to experience rectified diffusion, chang-
ing the composition of the surface. A stable molecular
monolayer on the surface of the bubble at one bubble
volume will become compressed when the bubble be-
comes small, providing a driving chemical potential to
both change the phase of the monolayer to a multilayer
and to drive some of the surfactant into solution. The
monolayer will be expanded when the bubble becomes
large, providing a driving chemical potential to draw
surfactant from solution. The solution my provide sur-
factant materials that are similar to or different from the
original surfactant on the microbubble. Unless the con-
centration of potential surfactants in solution is high,
this process is too slow to affect bubble behavior. In ex-
perimental solutions, such concentrations may be low,
but the complex mixture of complex molecules in blood
may favor such a process.

21.5.7 Bubble Destruction

The first experiments with microbubble contrast agents
were disappointing. Contrast agents did not produce re-
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flections as bright as expected. Increasing the transmit
intensity did not improve the strength of the echoes
coming from the agents. In an effort to improve the
signal strength, broadband ultrasound transducers were
used to form harmonic images. An ultrasound trans-
ducer oscillates at a resonant fundamental frequency
determined by the thickness. The transducer has no ef-
ficiency or sensitivity at double the frequency, although
it does have one-third the efficiency and sensitivity at
triple the frequency. By damping the transducer, a trans-
ducer with a center resonant frequency of 3 MHz can
be made to operate at frequenciesof 1.9–4.1 MHz. In
harmonic imaging to detect contrast bubbles, a 2 MHz
transmit burst is applied to this broadband transducer
and the receiver is tuned to 4 MHz. Echoes from tissue
are expected at 2 MHz, echoes from contrast microbub-
bles are expected at 2 MHz and 4 MHz. By selecting
only echoes at 4 MHz, clear visualization of the contrast
bubbles was expected. Unfortunately, for this applica-
tion, because ultrasound transmit intensities are so high,
ultrasound transmission in tissue is nonlinear, gener-
ating harmonics in the transmit beam on the way to
the reflectors. So even without contrast microbubbles,
tissue echoes contain 4 MHz, 6 MHz and 8 MHz com-
ponents when exposed to 2 MHz transmit pulses. Even
more disturbing, real-time B-mode images still did not
show brighter echoes from contrast-filled blood spaces
than from the same spaces before the introduction of
the contrast agent. The reason for this puzzling result
is that the transmitted ultrasound pulse destroys the
echogenic bubbles, bleaching the contrast effect. Only
bubbles of a particular size are bleached by the particu-
lar incident ultrasound frequency used, some becoming
larger by coalescence and some dividing into smaller
sizes, so they are not strongly echogenic at the incident
frequency. The process of bubble destruction takes sev-
eral milliseconds after exposure to a single ultrasound
transmit burst. This provided the basis for two new
methods of imaging with ultrasound contrast microbub-
bles: interrupted imaging and color Doppler imaging.
If 2-D real-time B-mode imaging is used at a typical
frame rate of 30 images per second, the interval be-
tween one pulse-echo cycle along an image line and
the next is 33 ms, so the echogenic bubbles are gone
after the first frame, and any new echogenic bubbles
that enter the image field are destroyed as the imag-
ing continues. This led to interrupted imaging of the
heart muscle. In interrupted imaging, a series of ECG-
triggered images is recorded for later analysis. Each
image is acquired at the same time during the cardiac

cycle so that successive images are separated by at least
one cycle. During the sequence of ECG-triggered ac-
quisition of images from a single plane, an initial image
is obtained (i0), after an interval of five cardiac cycles
a second image is obtained (i5), after the next inter-
val of four cardiac cycles the next image is obtained
(i4), then after three cycles (i3) and after two cycles
(i2) and finally after an interval of one cycle the fi-
nal image is obtained (i1). In theory, the prior image
bleaches all of the contrast while acquiring the image.
For contrast to appear in the next image, perfusion must
carry the contrast bubbles into the image. By subtract-
ing i5 from i0, all regions with significant perfusion
are dark. By subtracting i1 from i2, only the regions
that are filled with contrast within a second are dark,
those that fill during the time between 1 and 2 s are
bright. By subtracting i4 from i5, the bright regions
showing contrast bubbles in the image i5 that are not
present in i4 show the regions that are filling slowly with
blood.

During a color Doppler or color power angiography
ultrasound examination, the ultrasound system sends
an ensemble of eight transmit bursts at intervals of
0.2 ms along the ultrasound beam pattern to measure
the changes in phase of the ultrasound echoes. In that
1.6 ms period, the contrast bubbles will begin and com-
plete the process of vanishing. Thus there will be a large
change in the echoes received from each depth during
the period of the ensemble. This will be interpreted by
the ultrasound system as a Doppler signal and displayed
as color in the image.

The exact role of ultrasound contrast agents in med-
ical diagnosis remains to be developed. However, there
are a number of efforts to develop nanoparticles for use-
ful applications. These nanoparticles are the same size
as ultrasound contrast agents and may contain gas as
well as liquid. The National Cancer Institute Uncon-
ventional Innovations Program supports some of this
work for the diagnosis, treatment and monitoring of
cancer. Nanoparticles can act as machines, using ultra-
sound energy as the supply to do useful work. This can
be achieved using protein mechanics. Protein folding
confirmations can change in nanoseconds, the molecu-
lar volume is different for each conformation and the
energy states of folding change under high and low pres-
sure, so ultrasound can be used to drive proteins from
one conformational state to another. Nanoparticles can
be used to deliver drugs [21.80] to target tissues, with
ultrasound serving to trigger the release of the drug at
desired times.
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21.6 Ultrasound Hyperthermia in Physical Therapy

One of the earliest medical applications of ultrasound
was the therapeutic heating of deep tissue because ab-
sorption of ultrasound by tissue results in the conversion
of ultrasound energy into heat. In common practice,
an ultrasound transducer 3 cm in diameter transmitting
20 W at a frequency of 3 MHz is applied to the skin
(Figs. 21.67, 21.68).

As a rule, the size of the treatment area should
be less than twice the surface area of the transducer.
Because of diffraction effects, the ultrasound field has

1 cm diameter
ultrasound transducer

Ultrasound contact gel Output power
calibration well

1 cm diameter
ultrasound
transducer

Annual electrical
safety sticker

3 cm diameter
ultrasound transducer

3 cm diameter
ultrasound
transducer

Fig. 21.67 Ultrasound therapy system

Fig. 21.68 Combined ultrasound diathermy and elec-
trotherapy system. Deep heating of tissue can be achieved
by using ultrasound or by using radio-frequency electric
currents. This system is capable of delivering both kinds
of heating. The two transducers shown are for ultrasound,
but since the metallic surface is in contact with the pa-
tient, either can also apply RF diathermy when used with
a counter-electrode
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Fig. 21.69 5 MHz ultrasound is attenuated more in a short
distance than 2 MHz ultrasound (upper lines). At shal-
low depths 5 MHz ultrasound delivers more heat because
of greater absorption (lower interrupted line), but at the
deepest depths, 2 MHz ultrasound provides greater heat-
ing (lower solid line). Because of the low absorption of
ultrasound by fat, little heating occurs in fat
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a complex pattern of peaks and valleys. The best trans-
ducers have a beam nonuniformity ratio (BNR) of 2 : 1
in intensity. A BNR of 6 : 1 is clinically acceptable.
Some instruments have a BNR of 8 : 1.

The ultrasound passes through skin and subcu-
taneous fat to the muscles and connective tissues
below. Because the attenuation of ultrasound in ten-
don is 10 times the attenuation in fat, the majority of
the heating is in the tendon (Fig. 21.69). Heating is
more superficial when a higher ultrasound frequency is
used.

The attenuation in muscle and tendon is higher than
in fat, favoring the heating of these tissues even when

they are covered by fat. However, the attenuation of skin
is quite variable; some reports show skin attenuation
higher than tendon. The variability of the attenuation
in skin results from two factors, the thin and nonuni-
form character of skin, and the variable air content of
the stratum corneum, the outermost layer of skin. With
careful application of ultrasonic gel, the air can be re-
moved from the stratum corneum layer, lowering the
attenuation.

Although ultrasound diathermy as well as other
diathermy methods are often used in physical therapy,
the effectiveness of the treatments beyond the placebo
effect is questioned by some.

21.7 High-Intensity Focused Ultrasound (HIFU) in Surgery
Starting in 1950, William J. Fry and colleagues at the
University of Illinois, Urbana, developed an ultrasound
method to heat small volumes of deep tissue to high
temperatures. Using a 10 cm-diameter transducer oper-
ating at 2 MHz focused at a depth of 10 cm, tissue the
size of a grain of rice can be heated at 25 ◦C per sec-
ond, causing the tissue to boil in 2.5 s. This method
allowed Fry to create thermal lesions in the brain for

Fig. 21.70 3.5 MHz HIFU transducer used in abdominal
surgery research. Notice that the black transducer face is
concave (the reflection of the fluorescent light fixture is
curved). The transducer is fitted with a signal cable (black),
a pair of tubes to deliver and return cooling water (clear),
and a thermocouple cable (thin) to monitor the temperature
of the transducer. A plastic cone filled with water fits on the
front of the transducer to conduct the sound to the tissue

the treatment of brain tumors and other neurological
conditions.

The technology is still in evolution, but holds
promise of allowing the cautery of deep tissue without

10 mm

1 mm

Fig. 21.71 Histology of a HIFU lesion overlaid onto the
ultrasound image. 5 s high-intensity focused ultrasound
cautry at a depth of 5 cm under tissue in porcine spleen.
Typical lesions are 10 mm long (in depth from the trans-
ducer) and 1 mm in diameter
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damaging the overlying superficial tissue. A 35 mm-
diameter 5 MHz concave ultrasound transducer focused
at a depth of 35 mm (Fig. 21.70) delivering 30 W of
acoustic power to a treatment volume 1 mm in diameter
and 10 mm long can deliver an intensity of 3 kW/cm2

(30 MW/m2) to form a lesion (Fig. 21.71). At such
intensities the nonlinearity of the tissue causes much
of the ultrasound to be converted to higher harmon-
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Fig. 21.72 Computed central beam instantaneous pressures
from a HIFU transducer. The high acoustic pressures in the
focal zone create nonlinear effects that generate harmonics
in the transmitted ultrasound beam (courtesy F. Curra)
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Fig. 21.73 Typical HIFU ultrasound beam profile. High-
intensity focused ultrasound beam profile showing increase
in beam intensity, not accounting for attenuation. The small
circles post focus represent bubbles formed by a com-
bination of mechanical-index-induced cavitation boiling.
They are pushed into the post-focus zone by radiation pres-
sure. As the exposure continues, more bubbles will be
formed at shallower depths. Post-focal bubbles may pro-
vide a safety shield, preventing HIFU exposure of deeper,
healthy tissue

ics (Fig. 21.72), increasing the fraction of the incident
power absorbed in the treatment volume. During HIFU
treatment, ultrasound images of the treatment volume
show a spot of increased echogenicity caused by bub-
bles filled with water vapor (boiling) or with gas
coming out of solution. When the HIFU treatment stops,
the hyper-echogenic zone quickly becomes anechoic.
During treatment, the bubbles may act as a shield, re-
stricting the delivery of ultrasound to deeper tissues
(Figs. 21.73, 21.74).

a)

b)

c)

Fig. 21.74a–c B-mode imaging of high-intensity focused
ultrasound lesion formation. Focal intensity1000 W/cm2.
(a) B-mode image of tissue before HIFU therapy.
(b) Echogenic region at HIFU treatment zone after 15 s of
exposure. (c) Echogenicity vanishes with time after cessa-
tion of HIFU exposure
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HIFU treatment can coagulate blood to stop bleed-
ing or to render tissue ischemic, causing necrosis. The
method holds promise for:

1. Stopping internal bleeding of the liver or spleen,
2. Stopping bleeding due to catheter procedures,
3. Reducing the size of tissues such as uterine fibroids

and prostate hypertrophy,
4. Destroying cancer cells and tumors,
5. Birth-control procedures such as vasectomy and

tubal ligation,
6. Tissue welding, and
7. Pushing tissues using radiation force to stretch or

compress them.

Thermal dose is one way to summarize hyperther-
mia treatment conditions. Thermal dose implies that
tissue changes occur above 43 ◦C, and that the effect is
increased with increasing time and increasing tempera-
ture. One empirical formula for thermal dose has been

given [21.81] as:

D =
t2∫

t1

n(T )(T−43) dt ,

where t1 and t2 are the initial and final times of the heat-
ing profile, respectively, and n(T ) is 4 for T< 43 ◦C
and 2 for T> 43 ◦C. The temperature is determined by
the rate of heat delivery per tissue volume, which is the
product of the intensity times the attenuation minus the
rate at which heat is removed from the tissue by conduc-
tion through tissues, and convection via the blood.

The most difficult issue with HIFU is the small treat-
ment volume versus the relatively large access window.
Under ideal conditions, the treatment of a single volume
of tissue 10 mm3 takes about 2 s. A cubic region 50 mm
on a side has a volume of 125 000 mm3 and requires
nearly 4 h to treat. These long treatment times present
a considerable economic problem for the adoption of
the technology.

21.8 Lithotripsy of Kidney Stones

Explosive ultrasound can be used to fracture kidney
stones in the renal pelvis where the urine is collected
from the kidney and directed down the ureter to the
bladder. Stones which form in the renal pelvis from
solutes in the urine are very painful. The pain occurs
because urine is moved down the ureter by peristaltic
action, and the peristalsis cannot handle a bolus the
size of a stone. One type of ultrasound lithotripter uses
a 10 cm-diameter concave reflector with a spark gap at
the source focus. The elliptical curvature forms a tar-
get focus 12 cm from the face of the reflector. Equally
intense ultrasound pulses can be formed using focused
piezoelectric transducers or electromagnetically driven
membranes with the ultrasound focused using an acous-
tic lens.

A water path is used to couple the reflector to
the skin nearest the affected kidney so that the tar-

get focus can be positioned on the kidney stone. By
firing the spark gap in the water at the source fo-
cus, pressures of +100 MPa followed by −10 MPa
are achieved at the target focus. Treatment of a kid-
ney stone may require 3000 shocks delivered over
an hour. The object of the treatment is to break
a large stone (≥ 1 cm in diameter) into smaller pieces
(≤ 2 mm diameter) that the ureter can carry to the
bladder. The mechanism of stone destruction includes
erosion, spallation, fatigue, shear and circumferential
compression associated with the primary shock wave
or resulting cavitation. Erosion is caused by cavitation.
Spallation is the ejection of the distal portion of the
stone, resulting from a decompression wave reflected
from the distal portion of the stone. Unfortunately,
lithotripsy is often associated with injury to the kidney
parenchyma [21.82].

21.9 Thrombolysis

A new therapeutic application of ultrasound is the
destruction of blood clots occluding vessels. Two
mechanical methods may contribute to clot destruc-
tion [21.83–85]: the formation of microbubbles in

the clot (cavitation) and differential radiation force
on the clot squeezing and expanding the clot like
a sponge to take up thrombolytic drugs. There are
research reports of successful thrombolysis in coro-
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nary arteries [21.86], intracranial arteries [21.87, 88]
and vascular access shunts for dialysis. The ultra-
sound intensities required for thrombolysis are similar

to those used in diagnostic ultrasound. The mech-
anisms include streaming and disaggregation of the
clot [21.89].

21.10 Lower-Frequency Therapies

Lower-frequency ultrasound is used for tissue disrup-
tion and cleaning purposes. To remove an opacified lens
(cataract) from the eye through a small incision, a nee-
dle oscillating at 25–60 kHz is used to emulsify the
lens (phacoemulsification), which is then removed by
aspiration (suction).

Dental scaling is performed with a similar instru-
ment operating at frequencies of 18–30 kHz and applied
power of 30 W. Cavitation is an important mecha-
nism in the cleaning process. Chemical additives such
as toothpaste can suppress cavitation and degrade the
cleaning efficiency.

21.11 Ultrasound Safety

Undoubtedly, ultrasound is safe. In over a half cen-
tury of widespread use of diagnostic ultrasound, there
are no currently accepted reports of harm to patients or
examiners from the use of diagnostic ultrasound. How-
ever, in 1950, unamplified X-ray fluoroscopic imaging
was considered so safe that it was used for shoe fitting
in nearly all shoe stores, and for the entertainment of
children waiting to be served. In 1950, smoking was
considered to be so beneficial to health that nearly all
doctors smoked. Although there are reports that ul-
trasound examination in pregnancy is associated with
increased birth complications in retrospective studies
where ultrasound was applied to high-risk pregnancies,
a causative effect is unlikely. Fewer complications were
found in pregnancies randomized to ultrasound exami-
nation compared to those with conventional care [21.90]
because of the increased knowledge of physicians about
the expected date of delivery. In one discussion of
the safety of Doppler ultrasound examination of the
ophthalmic artery through the eye, an experienced in-
vestigator stated If the patient doesn’t see flashes of
light, I figure that the exam is safe. Still today, diag-
nostic ultrasound is considered so safe that, although
there are occasional disclaimers such as to be used
only under the supervision of a physician, ultrasound
examinations are performed for educational purposes
on students, demonstrated on hired actors at trade
shows, available for home use, and advertised for en-
tertainment purposes. One prominent ultrasound safety
expert warned that driving to the examination car-
ried more risk than the risk associated with ultrasound
examination.

In 1976, the United States congress passed the Med-
ical Device Amendments providing that the Food and
Drug Administration should have authority over med-
ical devices [21.91]. At that time, any medical device
in clinical use, in the absence of evidence of haz-
ard, was considered safe. Any new medical device that
was substantially equivalent to a pre-enactment de-
vice could be approved for distribution in interstate
commerce and use by filing a 510k application show-
ing equivalence. Devices that were not substantially
equivalent required pre-market approval (PMA) as an
investigational device. This started a search for existing
ultrasound systems that had been sold across state lines
so that the ultrasound output levels could be measured.
These old systems are called pre-enactment systems.
New ultrasound devices that had similar or lower acous-
tic outputs were considered equivalent and could be
approved by the FDA under a 510k application, which
was simpler and far less costly than the PMA process.

In 1976, continuous-wave (CW) Doppler systems
were in use, pulsed Doppler systems were in use,
M-mode, 2-D static B-mode and 2-D real-time B-mode
systems were also in use. One CW Doppler system at
the time caused red spots on the skin that were called
Doppler hickies, but were still considered safe because
there were no complaints.

The task was to characterize the equivalent acoustic
output. Over the quarter century since enactment, vari-
ous methods have been developed to describe the effect
of ultrasound on tissue, to establish equivalence. Be-
cause of the common use of therapeutic ultrasound to
create tissue hyperthermia, the first consideration was
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the heating effect of the ultrasound; later mechanical
effects were included in the analysis.

The heating of tissue is governed by the bioheat
equation. This equation relates the increase in tissue
temperature to the rate of heat deposit minus the rate
of heat removal divided by the heat capacity of the
tissue. The rate of heat deposit is proportional to the
incoming ultrasound power minus the outgoing ultra-
sound power, per unit mass. In a simple computation,
the heat capacity of tissue is the same as water, 1 cal/gm
or 4.2 J/gm ◦C = 4.2 J/cm3 ◦C = 4.2 W s/cm3 ◦C. So,
if ultrasound at an intensity of 4.2 W/cm2 is completely
absorbed by a layer of tissue (water) that is 1 cm thick,
the temperature will rise 1 ◦C per second, if no heat is
carried away. 42 mW/cm2 (420 W/m2) will raise the
temperature by only 0.01 ◦C per second, allowing 100 s
of exposure to raise the temperature from the normal
body temperature of 37 ◦C to 38 ◦C, well below fever
temperature considered safe by most people. Since at
4 MHz, only half of the ultrasound power is converted
to heat in one cm, the heating rate is half of the values
above.

Until 1985, ultrasound exposure levels were quoted
in terms of W/cm2 related to tissue heating. Based
on pre-enactment levels, diagnostic ultrasound systems
had a temporal average (TA) acoustic intensity at the
transducer focal zone measured in a water-filled test
tank of 100 mW/cm2 (1 kW/m2) or less. The major
exception was ultrasound systems for the examina-
tion of the eye, which had pre-enactment intensities of
7 mW/cm2 (70 W/m2). So, the generally accepted tem-
poral average allowable intensities became: 7 mW/cm2

(70 W/m2) for the eye and 100 mW/cm2 (1 kW/m2)
for all other diagnostic applications. The maximum in-
tensity of sunlight is about 50 mW/cm2 (500 W/m2),
but the attenuation of sunlight at the skin is near 100%.
Acceptable physical therapy ultrasound intensities were
about 30 times higher: 3 W/cm2 (30 kW/m2).

Ultrasound beam patterns are not uniform, espe-
cially in the Fresnel zone (near field). The intensities
at the focus in diagnostic ultrasound beams are often
three times higher than the average intensities. Because
of this, ultrasound intensities were reported as spatial
peak (SP) intensities, to indicate the variations, or spa-
tial average (SA) intensities.

With pulsed-echo ultrasound imaging, the trans-
mitted ultrasound is on for less than 0.5 μs every
millisecond along the same ultrasound beam pattern
in M-mode examination; thus the ultrasound was on
only 1/2000 of the time (duty factor or duty cycle of
0.05%). For a spatial peak temporal average intensity of

100 mW/cm2, (1 kW/m2) the pulse average (PA) was
2000 times as great or 200 W/cm2 (2 kW/m2) (SP PA)
and the temporal peak (TP) intensity was twice that
value (SPTP, Fig. 21.23, broadband pulse). A conven-
tional pulsed Doppler examination with a 1 μs transmit
burst every 50 μs has a duty factor of 2% and an SPTP
intensity of 5 W/cm2 (50 kW/m2). In both M-mode and
Doppler examinations, the ultrasound beam pattern is
held stationary for several seconds. But in real-time 2-D
B-mode imaging, each successive beam axis is along
a different line. Typically, the ultrasound is directed
along the same line at the frame rate, about 30 times
per second.

Over the next decade, the guidelines for ultrasound
intensities in different applications became more so-
phisticated, separating application-specific output levels
into four categories: general, cardiac, vascular, and
ophthalmic. The motivation was to allow higher in-
tensity levels to be used for Doppler blood velocity
measurements because the echoes returned by blood
were 0.000001 (60 dB) lower than those from tis-
sue. Rather than accepting the intensities measured at
the focal zone in a water tank, the intensities were
derated by computing the expected intensity if the
water were replaced by attenuating tissue with an at-
tenuation rate of 0.3 dB/(MHz cm). Derating allows
a 3 MHz cardiac Doppler system focused at a depth
of 11 cm to derate the intensity by 10 dB, thus al-
lowing a tenfold increase in transmit power. The
derated SPTA limits were: fetal, neonatal and other
general-purpose applications −94 mW/cm2; cardiac
−430 mW/cm2; peripheral vascular −720 mW/cm2;
ophthalmic −17 mW/cm2; the SPPA limits were
190 W/cm2 for the first three categories and 28 W/cm2

for ophthalmic exams.
Working together, the US Food and Drug Ad-

ministration (FDA), National Electronic Manufacturers
Association (NEMA) and the American Institute of
Ultrasound in Medicine (AIUM) began to agreed on
output display standards (ODS) for ultrasound instru-
ments, including the thermal index (TI, the intensity
required to raise the temperature of tissue by 1 ◦C) pre-
dictive of tissue heating, and the mechanical index (MI)
predictive of cavitation and interactions with ultrasound
contrast agents. The TI was further divided into sub-
categories for soft tissue (TIS), bone near the focus
(TIB) and cranial bone near the skin (TIC) based on the
expected absorption of ultrasound in the tissue. These
values also include the fact that the ultrasound beam is
scanning across the tissue in 2-D imaging. The com-
putation of MI is based on the SPTP intensity values,
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includes attenuation derating but not the scanning of the
ultrasound beam.

To better understand the MI values, refer to
Fig. 21.5 which indicates that the amplitude of the pres-
sure fluctuation for a 0.3 W/cm2 wave is 1 atm, or
100 kPa = 100 kN/m2. The pressure increases by the
square root of intensity, for a linear system (which
this cannot be). So, for the M-mode SPTP intensity
of 200 W/cm2, (2 MW/m2) the pressure amplitude
is 26 atm, making the peak positive pressure 27 atm
(2.7 MPa) and the peak negative pressure (below zero)
−25 atm (−2.5 MPa). The MI is defined as the negative
pressure amplitude [MPa] divided by the square root of
the ultrasound frequency [MHz]. This provides a basis
for the estimation of the chance of an adverse nonther-
mal event. At 3 MHz, the MI for this case is 1.5. An MI
less than 1.9 is acceptable for obstetrical examinations
in the absence of ultrasound contrast agents our other
sources of gas bubbles.

In 1991, the FDA released its 510k guid-
ance [21.92], establishing a new track for approval of
non-PMA devices, regulatory track 3. This permitted
increased outputs for devices implementing the output
display standard developed jointly by the AIUM and
NEMA [21.93]. This standard recognized two general
classes of mechanisms by ultrasound could adversely
affect biological tissue, thermal and mechanical, and
provided simple metrics for the likelihood of such ef-
fects, the thermal index (TI) and mechanical index
(MI).

Similar standards have been addressed in other
countries by organizations and agencies including
Health Canada, the European Committee for Medi-
cal Ultrasound Safety (ECMUS), the British Medical
Ultrasound Society (BMUS), the European Federa-
tion of Societies for Ultrasound in Medicine and
Biology (EFSUMB), the Australasian Society for Ul-
trasound in Medicine (ASUM), the Asian Federation
for Societies of Ultrasound in Medicine and Biology
(AFSUMB), the Latin American Federation of Ultra-
sound in Medicine and Biology (FLAUS), the Mediter-
ranean and African Society of Ultrasound (MASU), and
the World Federation for Ultrasound in Medicine and
Biology (WFUMB).

In spite of the confidence that ultrasound is ab-
solutely safe, all ultrasound agencies subscribe to the
policy of using ultrasound exposure levels that are as

low as reasonably achievable (ALARA) for diagnostic
ultrasound examinations.

In the presence of ultrasound contrast agents or gas
in the lungs or gut, there is a risk of damaging capillaries
and creating interstitial hemorrhaging in tissues when
high-MI examinations are performed.

However, there are some other considerations. In
addition to heating tissue and the compression/de-
compression mechanical factors related to mechanical
index, an ultrasound wave exerts radiation pressure on
tissue as it passes through. The radiation pressure is
proportional to intensity. Radiation force is used in
the measurement of acoustic output. The body force is
equal to the [power entering a region minus the power
transmitted through and exiting the region] divided by
the speed of sound. At a pulsed Doppler focus in the
examination of the fetus, a temporal peak radiation pres-
sure of 1700 Pa can be generated at a frequency equal
to the pulse repetition frequency (PRF) of 5 kHz, which
is well within the hearing range. If the ultrasound beam
pattern is directed to intersect the ear, the radiation pres-
sure oscillation can be heard by the fetus and cause
increased fetal activity [21.94].

Of more serious concern is the increase in perme-
ability in cell membranes and other biologic barriers to
small and large molecules that can be induced by ultra-
sound [21.95]. This may prove useful for the delivery of
therapeutic drugs through the skin (sonoporation) and
genes across membranes including the placental bar-
rier and the blood–brain barrier, but it might also allow
the inadvertent transfer of pathogens. The effect is en-
hanced in the presence of gas and ultrasound contrast
agents. It is possible that such effects have escaped de-
tection by current monitoring methods.

The conceptual simplicity of the pulse-echo system
has allowed instrument engineers to devote all efforts
toward lowering the cost and improving the diagnostic
utility of these instruments. Unlike most other medical
imaging methods, ultrasound is low-cost, portable, real-
time, and considered safe in most applications.

Further Reading
Please find a complete compilation of citations from Ul-
trasound in Medicine and Biology which list the thou-
sands of articles on medical acoustics written prior to
1987: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
CMD=Display&DB=pubmed
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Structural Aco22. Structural Acoustics and Vibrations

Antoine Chaigne

This chapter is devoted to vibrations of struc-
tures and to their coupling with the acoustic field.
Depending on the context, the radiated sound
can be judged as desirable, as is mostly the case
for musical instruments, or undesirable, like noise
generated by machinery. In architectural acoustics,
one main goal is to limit the transmission of sound
through walls. In the automobile industry, the en-
gineers have to control the noise generated inside
and outside the passenger compartment. This can
be achieved by means of passive or active damp-
ing. In general, there is a strong need for quieter
products and better sound quality generated by
the structures in our daily environment.

Structural acoustics and vibration is an inter-
disciplinary area, with many different potential
applications. Depending on the specific problem
under investigation, one has to deal with material
properties, structural modifications, signal pro-
cessing and measurements, active control, modal
analysis, identification and localization of sources
or nonlinear vibrations, among other hot topics.

In this chapter, the fundamental methods for
the analysis of vibrations and sound radiation
of structures are presented. It mainly focuses on
general physical concepts rather than on spe-
cific applications such as those encountered in
ships, planes, automobiles or buildings. The fluid–
structure coupling is restricted to the case of light
compressible fluids (such as air). Practical examples
are given at the end of each section.

After a brief presentation of the properties of
the basic linear single-degree-of-freedom os-
cillator, the linear vibrations of strings, beams,
membranes, plates and shells are reviewed.
Then, the structural–acoustic coupling of some
elementary systems is presented, followed by
a presentation of the main dissipation mecha-
nisms in structures. The last section is devoted
to nonlinear vibrations. In conclusion, a brief
overview of some advanced topics in structural
acoustics and vibrations is given.
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In this chapter, the fundamental methods for the anal-
ysis of vibrations and sound radiation of structures are
presented. It mainly focuses on general physical con-
cepts rather than on specific applications such as those
encountered in ships, planes, automobiles or buildings.
The fluid–structure coupling is restricted to the case of
light compressible fluid (such as air). The case of strong
coupling with heavy fluid (water) is not treated.

If the magnitude of the vibratory and acoustical
quantities of interest can be considered as sufficiently
small, then the equations that govern the structural–
acoustics phenomena can be linearized. The linear the-
ory of vibrations applied to simple continuous elastic
structures, such as bars, membranes, shells and plates,
forms a reference framework for numerous studies in-
volving more-complex geometries. In some practical
situations, it is not necessary to know the exact vibratory
shape at each point of a given system: to take advantage
of this, a continuous structure can often be represented
as a discrete system built with rigid masses connected
to springs and dampers. The main results of the linear
theory for the vibration of discrete and continuous sys-
tems are presented in Sects. 22.1–22.4. Section 22.1 is
devoted to the linear single-degree-of-freedom (DOF)
oscillator for which the fundamental results are derived
with the help of the Laplace transform. In Sect. 22.2,
the case of discrete systems with multiple DOFs is
used to introduce the concepts of eigenmodes, eigen-
frequencies, the admittance and modal analysis. As an
illustration, one example of coupled oscillators is solved
in detail. Also the fundamental energy equation of statis-
tical energy analysis (SEA) that governs the mean power
flow between coupled oscillators is summarized. Sec-
tion 22.3 deals with the transverse vibrations of strings
and membranes, which can be viewed as limiting cases
of prestressed structures with negligible stiffness. In
Sect. 22.4, longitudinal and transverse vibrations of bars
are presented. The case of flexural vibrations is extended
to two-dimensional (2-D) structures such as plates and

shallow shells. In this latter case, the influence of curva-
ture is emphasized using the example of a spherical cap
for which analytical results can be obtained.

The three remaining sections focus on specific prob-
lems of great significance in structural acoustics. The
case of vibroacoustic coupling is treated in Sect. 22.5
through examples of increasing complexity. Starting
from the simple case of a longitudinally vibrating bar
coupled to a semi-infinite tube, it is shown that modes
of the structure are coupled to the radiated field, and
that eigenfrequencies and modal shapes of the in vacuo
structure are modified by this coupling. An energetic
approach to the structural–acoustic coupling allows the
introduction of radiation filters and radiation efficien-
cies. A state-space formulation of the phenomena is
presented, which is of particular interest for the con-
trol of radiated sound. The example of a single-DOF
oscillator coupled to a tube illustrates the coupling be-
tween a structure and a cavity. Finally, attention is paid
to fluid–plate coupling, with the introduction of the con-
cept of the critical frequency. Section 22.6 is devoted
to the presentation of important causes of damping in
structures. Also some indications are given with regard
to the validity of the modal approach for damped dis-
crete and continuous systems.

For structures subjected to motion with large am-
plitude, most of the concepts and methods developed
for linear vibrations no longer apply. Specific methods
must be used to account for the observed phenomena of
distortion, amplitude-dependent resonance, jump, hys-
teresis, instability and chaos. Section 22.7 introduces
the basic concepts of nonlinear vibrations with some
examples. The Duffing equation and the example of
two nonlinearly coupled oscillators are analyzed in de-
tail. These examples illustrate the use of perturbation
methods for solving nonlinear equations of motion for
vibrating systems. Finally, some equations for the vibra-
tions of nonlinear continuous systems (strings, beams,
shells and plates) are briefly reviewed.
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22.1 Dynamics of the Linear Single-Degree-of-Freedom (1-DOF) Oscillator

In the low-frequency range, the linear motion of an
electrodynamical loudspeaker, for example, can be
described by a single-degree-of-freedom (SDOF) oscil-
lator. This is also the case for any complex structure
considered as a rigid body for which the equivalent stiff-
ness is represented by a unique spring, and where all the
dissipation mechanisms are approximated by a unique
dashpot or fluid damping constant; one can think of the
rigid-body mode of vibration of an automobile. Also the
1-DOF oscillator has fundamental mathematical prop-
erties of great interest in the field of vibrations, since
linear vibrations of discrete and continuous structures
can be represented by a set of oscillators, as will be
shown in the following sections.

The motion of a standard 1-DOF oscillator is gov-
erned by a second-order differential equation involving
an excitation force F(t) and the response of the struc-
ture. Using a formulation with the velocity v(t), we get

F = M
dv

dt
+ Rv+K

∫
vdt . (22.1)

This equation accounts for the motion of a mass M
subjected to a restoring force due to a linear spring of
stiffness K and a dashpot R which represents a linear
viscous fluid damping (Fig. 22.1).

Equation (22.1) can be written alternatively, using
the mass displacement ξ(t) and the usual reduced para-
meters

F = M

(
d2ξ

dt2
+2ζ0ω0

dξ

dt
+ω2

0ξ

)
, (22.2)

where ω0 =√
M/K is the eigenfrequency of the loss-

less system and ζ0 = R/2Mω0 is the nondimensional
damping coefficient.

F

M

RK

Fig. 22.1 Single-DOF oscillator

22.1.1 General Solution

One strategy for solving a linear equation such as (22.2)
is to make use of the Laplace transform [22.1]. Using
this transform, (22.2) becomes

s2X(s)− sξ(0)− ξ̇(0)+2ζ0ω0 [sX(s)− ξ(0)]

+ω2
0X(s) = F (s)

M
, (22.3)

where X(s) and F (s) are the Laplace transforms of ξ(t)
and F(t), respectively. Using the tables and properties of
the Laplace transforms, we obtain the general solution

ξ(t) = 1

M

t∫

0

F(θ)G(t− θ)dθ

+ [2ζ0ω0ξ(0)+ ξ̇(0)
]

G(t)+ ξ(0)Ġ(t) ,

(22.4)

where G(t) can take different forms, depending on the
value of the damping coefficient ζ0:

• If ζ0 < 1, which corresponds to the so-called under-
damped case, then

G(t) = e−ζ0ω0t
sinω0

√
1− ζ2

0 t

ω0

√
1− ζ2

0

. (22.5)

• If ζ0 = 1, which corresponds to the critical case, we
obtain

G(t) = t e−ω0t . (22.6)

• Finally, if ζ0 > 1, which corresponds to the over-
damped case, we get

G(t) = e−ζ0ω0t
sinhω0

√
ζ2

0 −1 t

ω0

√
ζ2

0 −1
. (22.7)

22.1.2 Free Vibrations

Free vibrations are characterized by the absence of an
external force. With F(t) = 0 in (22.4), we get

ξ(t) = [2ζ0ω0ξ(0)+ ξ̇(0)
]

G(t)+ ξ(0)Ġ(t) , (22.8)
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• if ζ0 < 1, the displacement ξ(t) is given by

ξ(t) = e−ζ0ω0t

⎧
⎪⎨

⎪⎩
ξ(0) cosω0

√
1− ζ2

0 t

+
⎡

⎣ξ(0)
ζ0√

1− ζ2
0

+ ξ̇(0)
1

ω0

√
1− ζ2

0

⎤

⎦

× sinω0

√
1− ζ2

0 t

⎫
⎪⎬

⎪⎭
. (22.9)

In this case, the free regime is characterized
by a damped sinusoid with oscillation frequency

ω0

√
1− ζ2

0 and decay time τ = 1/ζ0ω0. The total
energy of the system decreases with time.• If ζ0 = 1, we obtain

ξ(t) = e−ω0t[ξ(0)(1+ω0t)+ ξ̇(0)t] . (22.10)

The motion exhibits no oscillation. This critical case
corresponds to the situation where we get the fastest
non-oscillatory motion toward equilibrium;• if ζ0 > 1 the displacement ξ(t) becomes

ξ(t) = e−ζ0ω0t

⎧
⎪⎨

⎪⎩
ξ(0) coshω0

√
ζ2

0 −1t

+
⎡

⎣ξ(0)
ζ0√
ζ2

0 −1
+ ξ̇(0)

1

ω0

√
ζ2

0 −1

⎤

⎦

× sinhω0

√
ζ2

0 −1 t

⎫
⎪⎬

⎪⎭
. (22.11)

Here again, no oscillation exists. The decay is gov-
erned by the combination of two exponentials with

decay time τ such that 1/τ = ω0
(
ζ0±

√
ζ2

0 −1
)
.

22.1.3 Impulse Response
and Green’s Function

Consider now the case where ξ(0)= ξ̇(0)= 0 and where
F(t) is the Dirac delta function δ(t) whose fundamental
property is

∞∫

−∞
u(t)δ(t−a)dt = u(a) , (22.12)

where u(t) is a test function. The response ξ(t) can
therefore be written as

ξ(t) = 1

M

t∫

0

δ(θ)G(t− θ)dθ

= 1

M

t∫

0

δ(t− θ)G(θ)dθ = G(t)

M
. (22.13)

The function G(t) defined in Sect. 22.1.1 can therefore
be defined as the impulse response of the oscillator with
mass equal to unity. This function is also referred to as
the Green’s function of the oscillator. For an oscillator
initially at rest and excited by an arbitrary time function
F(t), the response is given by the convolution integral
of F(t) and the Green’s function G(t). Equation (22.4)
shows, in addition, that for F(t) = 0 and ξ(0) = 0, the
displacement is given by

ξ(t) = ξ̇(0)G(t) . (22.14)

Therefore, we can see that the solution obtained with
a Dirac delta force is proportional to the one obtained
with an initial velocity ξ̇(0).

22.1.4 Harmonic Excitation

For harmonic excitation, F(t)= FM sinΩt, of the oscil-
lator in the underdamped case, (22.4) gives

ξ(t) = FM

M

(
ω2

0−Ω2
)

sinΩt−2ζ0ω0Ω cosΩt
(
ω2

0−Ω2
)2+ (2ζ0ω0Ω

)2

+αG(t)+βĠ(t) , (22.15)

where α and β are constants that depend on the ini-
tial conditions. The Green’s function G(t) and its time
derivative are proportional to e−ζ0ω0t and become negli-
gible for ζ0ω0t � 1. With this assumption, the response
to the forcing term at frequency Ω is given by the first
term on the right-hand side of (22.15). This term can be
written alternatively as

ξ(t) = A(Ω) sin [Ωt−Φ(Ω)] (22.16)

with

A(Ω) = FM

M

1√(
ω2

0−Ω2
)2+ (2ζ0ω0Ω)2
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Fig. 22.2 Magnitude and phase of the mass displacement
for the forced underdamped oscillator as a function of the
normalized frequencyΩ/ω0

and

tanΦ(Ω) = 2ζ0ω0Ω

ω2
0−Ω2

. (22.17)

Figure 22.2 shows the variations of A and Φ with Ω
in the underdamped case. The amplitude A reaches

its maximum for frequency Ω = ω0

√
1−2ζ2

0 , which is
very close to ω0 for ζ0 
 1. The maximum is equal to
FM/2Mζ0ω0Ω.

22.1.5 Energetic Approach

The instantaneous mechanical power pm(t) into the sys-
tem is given by the scalar product of F and v, which
yields

pm = d

dt

(
1

2
Mv2+ 1

2
Kξ2

)
+ Rv2 . (22.18)

The terms on the right-hand side of (22.18) represent the
kinetic energy of the mass M, the elastic energy of the
spring K and the energy dissipated in the mechanical
resistance R, respectively. In a number of applications,
we are mostly interested in the time-averaged value of
pm(t) rather than in details of its time evolution. In au-
dio acoustics, for example, the human ear is sensitive
to the sound level, which is correlated to the average
value of the instantaneous acoustic power, after integra-
tion over a duration of nearly 50 ms. Therefore, after
defining an integration duration T , whose appropriate

selection is discussed later in this section, we can define
the average mechanical power Pm(T ) as

Pm(T )

= 1

2T
[Mv2(T )+Kξ2(T )−Mv2(0)−Kξ2(0)]

+ 1

T

T∫

0

Rv2(t)dt . (22.19)

In a conservative system, the sum of the kinetic and
elastic energy remains constant over time, so that the
term between the square brackets in (22.19) is equal
to zero. As a consequence, the average input power
becomes

Pm(T ) = 1

T

T∫

0

Rv2(t)dt =Ps(T ) , (22.20)

where Ps(T ) represents the mean structural power dis-
sipated in the mechanical resistance R.

22.1.6 Mechanical Power

A particular case of importance is the steady-state
harmonic motion of the mechanical oscillator with an-
gular frequency ω. Given an excitation force F(t) =
FM sinωt, then, due to the assumed linearity of the sys-
tem, the mass velocity is written v(t) = VM sin(ωt+φ).
Therefore, Pm(T ) is given by

Pm(T ) = 1

T

T∫

0

FMVM sinωt sin(ωt+φ)dt . (22.21)

Denoting the period of motion by τ = 2π/ω, we can
write T = nτ+ τ0, where n is a positive integer. In this
case, the mean power can be rewritten

Pm(T ) = 1

2
FMVM cosφ+ FMVM

4(2πn+ τ0ω)
× [sinφ− sin(2ωτ0+φ)] . (22.22)

Comment
This equation (22.22) shows that the mean (or average)
power Pm(T ) is nearly equal to 1/2FMVM cosφ only
if the average duration T contains a sufficiently large
number n of periods. If T is equal to nτ , then the pre-
vious result is strict. In what follows, it will be assumed
that this condition is fulfilled, so that the dependence
versus integration time T of the mean power terms will
be suppressed. For a given force, the velocity amplitude
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VM and phase angle φ are given by

VM = FM

M

ω√(
ω2−ω2

0

)2+4ζ2
0ω

2ω2
0

, (22.23)

cosφ = 2ζ0ω0ω√(
ω2−ω2

0

)2+4ζ2
0ω

2ω2
0

, (22.24)

and the mean power becomes

Pm = F2
M

2R

4ζ2
0ω

2
0ω

2

(
ω2−ω2

0

)2+4ζ2
0ω

2ω2
0

. (22.25)

Equation (22.25) shows that the maximum of the dissi-
pated power, and thus the maximum of the input power,
is obtained for ω = ω0, i. e. when the excitation fre-
quency is equal to the eigenfrequency of the oscillator.
In this case, we obtain

Max
(
Pm

)= F2
M

2R
. (22.26)

Since FM is known, in general, (22.26) can be used for
estimating the mechanical resistance R.

Remark
Recall that (22.25) is only valid in the dynamic equilib-
rium, which does not correspond to many experimental
(or numerical) situations where, for obvious causality
reasons, the force is applied at a given instant of time,
usually taken as origin. In this more realistic case, the
force signal should be written as F(t) = FM H(t) sinωt,
where H(t) is the Heaviside function. In this case, the
Laplace transform of the velocity is

V (s) = FM

M

sω

(s2+ω2)(s2+2ζ0ω0s+ω2
0)
. (22.27)

From which the velocity is derived

v(t) = FMω

M
√

D(ω)
+ A(ω) exp(−ζ0ω0t)

× sin
[
ω0

√
1− ζ2

0 t+ψ(ω)
]
, (22.28)

where D(ω) = (ω2−ω2
0

)2+4ζ2
0ω

2ω2
0. A(ω) and ψ(ω)

are also functions of the excitation frequency whose
exact expressions do not add significant matter to the
present discussion. The first term in the expression of
v(t) corresponds to the steady-state regime. The impor-
tant features of the second term are the following:

• It is non-negligible as long as the time is small
compared to the decay time (ζ0ω0)−1. For lightly
damped structural modes, the decay time can be of

the order of 0.1 ms or more. The second term can-
not then be neglected during the first 0.5–1.0 s of
the sound, if one wants to estimate the mean sound
power correctly.• When multiplying v(t) by F(t) and integrating over

time, terms with frequencies ω+ω0

√
1− ζ2

0 and∣∣∣ω−ω0

√
1− ζ2

0

∣∣∣ appear in the expression of Pm.
As a consequence, the mean power fluctuates at low
frequency, which is another cause of difficulty for
estimating its value properly.

22.1.7 Single-DOF Structural–Acoustic
System

We now investigate the simple example of a mechanical
oscillator acting as a piston at one end of an air-filled
semi-infinite tube presenting an additional acoustical
resistance Ra = ρcS. The oscillator motion is now gov-
erned by the equation

F = M
dv

dt
+ Rv+

∫
vdt+ Rav . (22.29)

The instantaneous input power is given by

pm(t) = d

dt

(
1

2
Mv2+ 1

2
Kξ2

)
+ (R+ Ra)v2 .

(22.30)

The average input power becomes

Pm(T ) = 1

T

T∫

0

Rv2(t)dt+ 1

T

T∫

0

Rav
2(t)dt

=Ps(T )+Pa(T ) , (22.31)

where Pa(T ) is the acoustic mean power radiated in the
tube. The acoustical efficiency of the system is given by

η= Pa(T )

Pm(T )
= Pa(T )

Ps(T )+Pa(T )
= Ra

R+ Ra
(22.32)

Some remarks can be formulated with regards to
(22.32).

• The expression for the acoustical efficiency is inde-
pendent of the integration time T .• Though (22.32) appears simple in form, the ex-
perimental (or numerical) determination of the
efficiency is generally not straightforward. R can
be estimated through calculation of the mechanical
power in vacuo Pmo(T ).• In the simple example discussed here, the acoustical
resistance, and hence the acoustic power, is known.
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This does not include the case where the acoustic
power is not known, and has to be estimated by mea-
surements of the acoustic intensity in the fluid, for
example.

Link Between Sound Power
and Free-Vibration Decay Times

For a single-DOF system, an alternative method for
estimating the sound power consists of estimating the
decay times of free vibrations through experiments or
numerical calculations. Let us take the example of
the previously described oscillator loaded by the semi-
infinite tube. We consider the case F(t) = 0, with the
mass initially moved from equilibrium by a quantity
ξ(0) = ξ0 and released with zero velocity at t = 0. The
equation of motion is written as

d2ξ

dt2
+2ζω0

dξ

dt
+ω2

0ξ = 0 (22.33)

with

ζ = R+ Ra

2Mω0
.

The Laplace transform of the displacement is given by

ξ(s) = ξ0 s+2ζω0

s2+2ζω0s+ω2
0

(22.34)

from which the time evolution of the mass displacement
is obtained (assuming ζ < 1)

ξ(t) = exp(−ζω0t)

[
cos

(
ω0

√
1− ζ2t

)

+ ζ√
1− ζ2

sin

(
ω0

√
1− ζ2t

)]
. (22.35)

Equation (22.35) shows that the decay factor α

(equal to the inverse of the decay time) is equal to
ζω0 = (R+ Ra)/2M. The same mathematical deriva-
tions applied to the oscillator in vacuo yields α0 =
ζ0ω0 = R/2M. In conclusion, this shows that, for the 1-
DOF system studied here, the acoustical efficiency can

M

K

Fig. 22.3 Accelerometer

be estimated in the time domain by the expression

η= α−α0

α
. (22.36)

22.1.8 Application: Accelerometer

Accelerometers are piezoelectric transducers which are
widely used for vibration measurements. An accelerom-
eter has a base, a piezoelectric crystal and a seismic
mass (Fig. 22.3). It delivers an electric signal which is
proportional to the compression force applied to the
crystal. Such a device can be modeled by a 1-DOF
oscillator equation. Let us denote by k the equivalent
stiffness of the crystal, by m the seismic mass, and by
ω0 =√

k/m the resonance frequency of the accelerom-
eter. Internal damping is neglected here, for simplicity.
For a sinusoidal excitation A sinΩt of the base, the
compression force is [22.2]

F �− kΩ2

ω2
0−Ω2

A sinΩt . (22.37)

Therefore, we can see that if Ω
 ω0, then the signal
delivered by the accelerometer is proportional to the ac-
celeration of the base. The frequency response curve of
an accelerometer is flat below its resonance frequency,
which gives the upper limit of its valid frequency range.

22.2 Discrete Systems

In a number of applications, real structures can
be approximated by an assembly of discrete rigid
substructures, which leads to enormous computa-
tional simplifications. In fact numerical modeling
(finite elements, finite differences) is such an ex-
ample where continuous structures are replaced by

an equivalent set of discretely connected elements.
In experimental techniques, such as modal analy-
sis, measurements are taken at discrete positions on
the structure under study, and thus the measure-
ments are treated by methods applicable to discrete
systems.
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22.2.1 Lagrange Equations

For a discrete system with n degrees of freedom, the
kinetic energy Ek can be formulated as a function of
the generalized coordinates qn and velocities q̇n

Ek = Ek(q1, q2, . . . , qn, q̇1, q̇2, . . . q̇n) = Ek(q, q̇)

(22.38)

Thus, given virtual vectors of displacements δq and ve-
locities δq̇, the variation of the kinetic energy is written

δEk =
n∑

k=1

∂Ek

∂qk
δqk + ∂Ek

∂q̇k
δq̇k . (22.39)

Remark
Recall that δq has to be kinematically compatible with
the system, though not necessarily equal to a real dis-
placement, so that the partial derivatives of T versus δq
and δq̇ are independent.

Applying Hamilton’s principle, with δq = 0 at t1 and
t2, we can write the minimization integral as

t2∫

t1

(δEk− δV + δWnc)dt = 0 (22.40)

where V is the potential energy of the system and Wnc
is the energy of the nonconservative applied external
forces. Through integration by parts, we can write

t2∫

t1

∂Ek

∂q̇k
δq̇k dt =

[
∂Ek

∂q̇k
δqk

]t2

t1

−
t2∫

t1

d

dt

(
∂T

∂q̇k

)
δqk dt

=−
t2∫

t1

d

dt

(
∂Ek

∂q̇k

)
δqk dt . (22.41)

Assuming that V = V (q), which corresponds to a large
class of problems in dynamics and vibrations,

δV =
n∑

k=1

∂V

∂qk
δqk . (22.42)

Finally, the virtual work δWnc can be written as
the scalar product of the vectors F of generalized
forces and virtual displacement δq in the form δWnc =∑n

k=1 Fkδqk, so that (22.40) becomes

n∑

k=1

t2∫

t1

[
∂Ek

∂qk
− d

dt

(
∂Ek

∂q̇k

)
− ∂V
∂qk

+ Fk

]
δqk dt = 0 .

(22.43)

Since the integral in (22.43) must be equal to zero for
any δq this implies, for each k

d

dt

(
∂Ek

∂q̇k

)
− ∂Ek

∂qk
+ ∂V
∂qk

= Fk . (22.44)

The set of n differential equations (22.44) are the La-
grange equations of the discrete system. This set yields
the equations of motion in a very elegant and practical
manner.

Small Displacements. Linearization
For small perturbations from equilibrium, we can write
qk = Qk +εXk, where ε
 1. Assuming that Q is given
by the Lagrange equations and that the generalized
forces F are independent of q, a first-order approxima-
tion of (22.44), for each k, gives

∂2 Ek

∂q̇k∂q̇ j
Ẍk

+
[

d

dt

(
∂2 Ek

∂q̇k∂q̇ j

)
+ ∂2 Ek

∂qk∂q̇ j
− ∂2 Ek

∂q̇k∂q j

]
Ẋk

+
[

d

dt

(
∂2 Ek

∂qk∂q̇ j

)
+ ∂2V

∂qk∂q j
− ∂2 Ek

∂qk∂q j

]
Xk = 0 ,

(22.45)

which becomes in matrix form

MẌ+CẊ+KX = 0 . (22.46)

1. Since the kinetic energy Ek is a positive quadratic
form of the velocity, the mass matrix M is a sym-
metric positive operator.

2. The matrix C is a generalized damping matrix made
up of three terms:
– The first, with generic element Ck j1 = d

dt

×
(
∂2 Ek
∂q̇k∂q̇ j

)
is associated with the temporal vari-

ation of the mass matrix;
– The two other terms ∂2 Ek

∂qk∂q̇ j
− ∂2 Ek
∂q̇k∂q j

relate to gy-
roscopic forces. This part of the matrix C is
antisymmetric and does not lead to dissipation.

3. The stiffness matrix K also is a sum of three terms:
– The first is associated with the time variation of

the first gyroscopic term in C;
– The second is governed by the q dependence

of V ;
– The third is governed by the q dependence of

Ek.

In what follows, we restrict our attention to conser-
vative systems where Ek is independent of q and where
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the mass matrix is taken to be constant with time. In this
case, (22.46) becomes

MẌ+KX = 0 (22.47)

with
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Mk j = M jk = ∂2 Ek

∂q̇k∂q̇ j

Kk j = K jk = ∂2V

∂qk∂q j

. (22.48)

22.2.2 Eigenmodes
and Eigenfrequencies

Natural modes (or eigenmodes) are the sinusoidal (or
harmonic) solutions of (22.47) with frequency ω in the
absence of a driving term. As a consequence, the natural
modes are solutions of the equation

(
−ω2M+K

)
X = 0 (22.49)

with roots (or eigenvalue, or eigenfrequency) ωn solu-
tions of the characteristic equation

det
(
−ω2M+K

)
= 0 . (22.50)

The eigenvector Φn associated to each eigenfre-
quency ωn is given by

(
−ω2

nM+K
)
Φn = 0 . (22.51)

Φn is defined with an arbitrary multiplicative constant.
The natural modes are defined by the set of eigen-
values ωn and associated eigenvectors Φn . Spectral
analysis theory shows that the Φn form an M and K
orthogonal basis set, so that

tΦmMΦn = 0

and

tΦmKΦn = 0 for m �= n (22.52)

The orthogonality properties of the eigenmodes mean
that the inertial (stiffness) forces developed in a given
mode do not affect the motion of the other modes.
The modes are mechanically independent. As a con-
sequence, it is possible to expand any motion onto the
eigenmodes. Given a force distribution F, the motion of
the system is governed by the equation

MẌ+KX = F . (22.53)

The modal projection is written in the form

X =
∑

n

Φnqn(t) . (22.54)

The functions qn(t) in (22.54) are the modal partici-
pation factors. Inserting (22.54) into (22.53) and, after
taking the scalar product of both sides of the equation
with an eigenfunction Φm , we find

〈Φn,MΦn〉q̈n +〈Φn,KΦn〉qn = 〈Φn, F〉 (22.55)

where the notation 〈A, B〉 denotes the scalar product
t A.B between vectors the A and B. Equation (22.55)
shows that the generalized displacements are uncou-
pled. Each qn is governed by a single-DOF oscillator
differential equation. The quantity

mn = 〈Φn,MΦn〉 (22.56)

is the modal mass associated with the mode n. These
coefficients are defined with an arbitrary multiplicative
constant. Similarly,

κn = 〈Φn,KΦn〉 (22.57)

is the modal stiffness, related to the modal mass through
the relationship

κn = mnω
2
n . (22.58)

Finally, the quantity

fn = 〈Φn, F〉 (22.59)

is the projection of the nonconservative forces onto
mode n. Each independent oscillator equation can then
be rewritten as

q̈n +ω2
nqn = fn

mn
. (22.60)

Remark
Since the eigenvectors are defined with arbitrary mul-
tiplicative constants Cn , (22.56) shows that the modal
mass is proportional to C2

n . In addition, (22.58) shows
that fn is also proportional to Cn . Therefore, through
(22.60), qn is proportional to C−1

n and from (22.54), X
is independent of Cn .

Normal Modes
The normal modes Ψn correspond to the case where the
arbitrary constant is such that the modal masses become
unity. In this case, we can write

Ψn = Φn√
mn

. (22.61)
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Consequently, (22.57) becomes

〈Ψn,KΨn〉 = ω2
n . (22.62)

22.2.3 Admittances

In general, a given structure vibrates as a result of the
action of localized and distributed forces and moments.
For both numerical and experimental reasons, one often
has to work on a discrete representation of the structure.
In practice, the geometry of the structure is represented
by a mesh consisting of a number N of areas with
dimensions smaller than the wavelengths under consid-
eration. This results in having to consider the structure
as an N-DOF system. At each point of the mesh, the
motion is defined by three translation components plus
three rotation components. Similarly, the action of the
external medium on the structure can be reduced to
three force components plus three moment components,
here denoted by Fl . The translational and rotational ve-
locity components Vk at each point are thus related to
the forces and moments through a 6 × 6 admittance ma-
trix, such that

V = YF . (22.63)

For each force component at a given point j on the
structure, denoted Fj|l , a motion at another point i, de-
noted by Vi|k, can be generated. As a consequence one
can define the transfer admittance

Yij|kl = Vi|k
Fj|l with 1 ≤ i, j ≤ N

and 1 ≤ k, l ≤ 6 .

In summary, the transfer admittance matrix is defined
by 6N × 6N coefficients such as Yij|kl .

Notation
In what follows, the indices (k, l) are omitted, for the
sake of simplicity. The transfer admittances are written
as Yij , which reduces to Yii (or, even to Yi ) in the case
of a driving-point admittance. Attention here is mostly
focused on translation, though the formalism remains
valid for rotation.

The previous results obtained on modal decom-
position are now used to investigate the frequency
dependence of the admittances. Here, X(xi )≡ Xi is one
component of displacement at point xi and F(x j ) ≡ Fj
is one force component at point x j . The structure is
subjected to a forced motion at frequency ω. We have

(
K−ω2M

)
Xi = Fj , (22.64)

where Xi =
∑
Φn(xi )qn(t) and

(
ω2

n −ω2)qn = fn

mn
=

tΦn(x j )Fj (ω)

mn
. (22.65)

For a structure discretized on N points, the displace-
ment at point xi is given by

Xi (ω) =
N∑

n=1

Φn(xi ) tΦn(x j )

mn
(
ω2

n −ω2
) Fj (ω) . (22.66)

The complete set of functions Xi (ω) given in (22.66)
is the operating deflexion shape (ODS) at frequency ω.
The transfer admittance between points xi and x j is
written

Yij (ω) = iω
N∑

n=1

Φn(xi ) tΦn(x j )

mn
(
ω2

n −ω2
) . (22.67)

The driving-point admittance at point xi becomes

Yi (ω) = iω
N∑

n=1

[Φn(xi )]2

mn
(
ω2

n −ω2
) . (22.68)

Remark
To include damping, (22.67) can be written

Yij (ω) = iω
N∑

n=1

Φn(xi ) tΦn(x j )

mn
(
ω2

n +2iζnωnω−ω2
) , (22.69)

where ζn is a nondimensional damping factor. The phys-
ical origin of the damping terms will be presented in
more detail in Sect. 22.6.1.

Frequency Analysis and Approximations
For weak damping, and low modal density, the modulus
of Yij (ω) passes through maxima at frequencies close to
the eigenfrequencies ω= ωn (Fig. 22.4).

• For ω≈ ωn , the main term in Yij (ω) is equal to

iω
Φn(xi ) tΦn(x j )

mn
(
ω2

n −ω2
) . (22.70)

• For ω� ωn , the admittance becomes

Yij ≈ iω
∑

l>n

Φl(xi ) tΦl(x j )

−mlω2
≈ 1

iMω

with
1

M
=
∑

l>n

Φl(xi ) tΦl(x j )

ml
. (22.71)

It can be seen that the modes with a rank larger than
a given mode n play the role of a mass M.
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Fig. 22.4 Typical frequency dependence of an admit-
tance modulus for a lightly damped structure (after
Derveaux et al. [22.3])

• Similarly, for modes with a rank smaller than n, we
find

Yij ≈ iω
∑

l<n

Φl(xi ) tΦl(x j )

mlω
2
l

≈ iω

K

with

1

K
=
∑

l<n

Φl(xi ) tΦl(x j )

mlω
2
l

. (22.72)

Here, the contribution of the modes is equivalent to
a stiffness K .

In summary, in the vicinity of a resonance of mode n,
the transfer admittance can be written

Yij (ω) ≈ iω
Φn(xi ) tΦn(x j )

mn
(
ω2

n −ω2
) + iω

K
+ 1

iMω
. (22.73)

22.2.4 Example:
2-DOF Plate–Cavity Coupling

To illustrate the previous concepts, a simple example
of structural–acoustic coupling represented by a moving
plate over a cavity with a hole is considered. This cor-
responds to a crude low-frequency model for stringed
instruments or vented boxes [22.4]. V is the volume of
the cavity, Ah is the section of the air piston of mass
mh and displacement xh, and mp is the mass of the plate
with area Ap (Fig. 22.4). It is assumed that all points
of the plate move in phase with the displacement xp;

F
Ap

V

Ah

Fig. 22.5 Two-DOF plate–cavity coupling

kp is the equivalent stiffness of the elastic plate and
ωp,0 =

√
kp/mp denotes its eigenfrequency in the ab-

sence of coupling to the cavity. As the plate and piston
are set in motion, the change of volume in the cavity is
equal to ΔV = Apxp+ Ahxh. Consequently, the pres-

sure change in the cavity is Δp = − ρc2ΔV
V . F is the

vertical external force applied to the plate, Rp and Rh
are fluid damping coefficients. The equations that gov-
ern the motion of the coupled oscillators can be written

⎧
⎨

⎩
mp ẍp = F− kpxp− Rp ẋp+ ApΔp ,

mh ẍh = AhΔp− Rh ẋh

. (22.74)

Let us write μ = c2ρ/V . If the cavity is closed
(Ah = 0), then the eigenfrequency of the plate is given

by ωp =
√(

kp+μA2
p

)
/mp. If the stiffness kp of the

plate tends to zero, then the eigenfrequency of the
plate coupled to the cavity becomes ωa =

√
μA2

p/mp.
Finally, if the plate is assumed to be completely
rigid (xp = 0), then the eigenfrequency of the cavity–

hole system (Helmholtz resonance) is ωh =
√
μA2

h/mh.
Solving (22.74) for a sinusoidal excitation F eiωt , with
γp = Rp/mp and γh = Rh/mh, yields for the plate ve-
locity up and air velocity uh in the piston

up = iω
F

mp

(
ω2

h−ω2+ jωγh
)

D
(22.75)

and

uh =−iω
F

mp

Ap

Ah

ω2
h

D
(22.76)

with

D = (ω2
p−ω2+ iωγp

)(
ω2

h−ω2+ iωγh
)−ω4

ph ,

(22.77)

where

ω4
ph = ω2

hω
2
a .
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Fig. 22.6 Driving-point admittance of a plate loaded
by a cavity. Ap = 0.01 m2; V = 0.1 m3; fh = 100 Hz;
fp = 200 Hz; γh = 1.0 s−1; γp = 2.0 s−1; mp = 0.4 kg; Ad-
mittance Y (in dB) = 20 log |up/F|

The eigenfrequencies of the coupled system correspond
to the roots of the denominator D. Neglecting the influ-
ence of losses, these eigenfrequencies are solutions of
the equation

(
ω2

p−ω2)(ω2
h−ω2)−ω4

ph = 0 . (22.78)

The solutions ω+ and ω− satisfy the relation

ω2++ω2− = ω2
p+ω2

h , (22.79)

which shows that the difference between the eigen-
frequencies increases due to the coupling between the
plate and the Helmholtz resonator, compared to the un-
coupled case. Figure 22.6 shows the modulus of the
driving-point admittance |up/F| of the plate, showing
two maxima at ω+ and ω− and a zero at ωh.

In stringed instruments and vented boxes, the main
effect of the open cavity is to enhance the radiated sound
in the low-frequency range, below the lowest resonance
of the moving structure (the top plate or loudspeaker
diaphragm).

22.2.5 Statistical Energy Analysis

The aim of statistical energy analysis (SEA) is to use
power flows as a means for estimating the responses of
complex systems. It is of particular interest for the anal-
ysis of coupled structures such as those encountered in

the transportation industry. It is often used for the pre-
liminary design of structures, or for identifying energy
transmission paths [22.5].

One main advantage of SEA is that it usually leads
to a substantial reduction of the number of degrees
of freedom. The price to pay is that results are only
given in terms of average and variance over frequency
and space. It is particularly suitable when structural
details are not known, or when measurements yield
uncertainty in the modal parameters. SEA techniques
focus on the analysis of energy levels in resonant modes
of dynamical systems. Its main principle is based on
the property that the average power flow between two
coupled systems (or subsystems) is proportional to the
difference in the average modal energies of each sys-
tem. In order to illustrate this basic concept of SEA,
the case of two coupled 1-DOF oscillators is sum-
marized below. Detailed developments can be found
in [22.6].

To consider a general case, it is assumed that
both oscillators are coupled by means of a coupling
spring with stiffness coefficient k12 and a gyroscopic
constant B. The equations of motion of this system are
given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m1
d2ξ1

dt2
+ r1

dξ1
dt

+ s1ξ1+ B
dξ2
dt

+ k12ξ2 = F1 ,

m2
d2ξ2

dt2
+ r2

dξ2
dt

+ s2ξ2− B
dξ1
dt

+ k12ξ1 = F2 ,

(22.80)

where m1 and m2 are the masses of the oscillators, r1 =
2δ1m1 and r2 = 2δ2m2 are the mechanical resistances,
s1 = k1−k12 and s2 = k2−k12 are stiffness coefficients,
and F1 and F2 are the magnitudes of the forces applied
to each mass. For a harmonic motion with frequency ω,
the power flow between the oscillators is given by

P12 = 1

2
Re
(
F12v

∗
2

)
, (22.81)

where v∗2 is the complex conjugate of the velocity for
the second oscillator and F12 is the force applied by os-
cillator 1 to oscillator 2. Using (22.80), the power flow
at frequency ω is written [22.6]

P12 = ω
2s2

12+ω4 B2

m2
1m2

2|D(ω)|2
(
m2δ2|F1|2−m1δ1|F2|2

)
,

(22.82)
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where

D(ω) = ω4−2iω3(δ1+ δ2
)

−ω2
(
ω2

1+ω2
2+4δ1δ2+ B2

m1m2

)

+2iω

(
δ1ω

2
2+ δ2ω2

1

)
− k12

m1m2
+ω2

1ω
2
2 .

(22.83)

In (22.83), ω1 and ω2 are the natural frequencies of the
undamped uncoupled oscillators. It can be shown that
(22.82) can be generalized to a broadband excitation
with frequency bandwidth Δω. One basic property of
SEA follows from the fact that P12 is proportional to
the energy difference W1−W2 of the oscillators. For
a broadband excitation, these energies are given by

Wi = mi

2Δω

+∞∫

−∞
|vi (ω)|2 dω (22.84)

and the basic SEA equation becomes

P12 = β(W1−W2)

with

β = 2

m1m2

(
δ1ω

2
2+ δ2ω2

1

)
B2+ (δ1+ δ2

)
k2

12(
ω2

1−ω2
2

)2+2
(
δ1+ δ2

)(
δ1ω

2
2+ δ2ω2

1

) .

(22.85)

Equation (22.85) shows that β is positive and depends
on the parameters of the oscillators and on the coupling
parameters B and k12. This equation can be general-
ized to the coupling between any mode m1 of a given
subsystem with N1 modes and a mode m2 of another
subsystem with N2 modes. Considering a frequency
band with central frequency ωc, the generalization leads
to the following expression for the power flow from
subsystem 1 to subsystem 2

P12 = ωc(η12W1−η21W2) , (22.86)

where η12 and η21 are the coupling loss factors obtained
through averaging of the parameters βm1m2 analogous to
that defined in (22.85)

η12 = N2

ωc
〈βm1m2〉N1 N2

and η21 = N1

N2
η12 . (22.87)

W1 = N1Wm1 and W2 = N2Wm2 are the total modal en-
ergies in both subsystems, averaged over a frequency
band, with the assumption that both energies are equally
divided among the modes. The coupling loss factors
give the rate at which energy is transferred from one
subsystem to the other. The SEA theory can be used, for
example, for predicting the vibration level of coupled
plates over a large frequency range, where standard nu-
merical methods, such as the finite-element method are
too costly [22.6].

22.3 Strings and Membranes

Strings and membranes belong to that category of struc-
tures where the stiffness is due to external tension. This
is sometimes called geometrical stiffness, in contrast
with the elastic stiffness of most vibrating solids. In
practice, strings and membranes also are made of elastic
materials and, consequently, show more or less elas-
tic stiffness due to their Young’s moduli. This elastic
stiffness will be neglected in the present section. The
relative contributions of both stiffnesses will be dis-
cussed in Sect. 22.4 in the case of prestressed beams.

22.3.1 Equations of Motion

Consider a small element at a given point of Carte-
sian coordinates x on a stretched membrane of density
ρ(x). The membrane is assumed to be in equilibrium
in the plane ex , ey and subjected to a tension field
τ(x) so that the resulting forces per unit length are

(Fig. 22.7)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

on both sides oriented in the ex direction:

τx = τ11ex + τ21ey ,

on both sides oriented in the ey direction:

τy = τ12ex + τ22ey ,

(22.88)

where τ12 = τ21 to ensure the moment equilibrium (reci-
procity principle). In the general case, τij are functions
of the coordinates x. The membrane is subjected to
a small displacement in the direction ez and released,
so that its vertical motion u(x, y, t) is governed by the
balance between inertial forces and elastic forces due to
tension. Gravity is neglected. After balance of forces on
the four sides of the membrane element and projection
on the vertical axis, with the assumption of small dis-
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τ22

τ12

τ21

τ11

ey

ex

Fig. 22.7 Balance of forces on a membrane element

placements, one obtains the equation that governs the
flexural motion of a nonuniformly stretched membrane

ρ(x)hü = ∂

∂x

(
τ11
∂u

∂x
+ τ12

∂u

∂y

)

+ ∂

∂y

(
τ12
∂u

∂x
+ τ22

∂u

∂y

)
, (22.89)

where h is the thickness. The tension field

τ =
[
τ11 τ12

τ12 τ22

]
(22.90)

is a symmetric tensor of order two, and

grad u = ∂u
∂x

ex + ∂u
∂y

ey . (22.91)

The previous equation can be written in the more com-
pact form

div
(
τ. grad u

)= ρ(x)hü , (22.92)

where this last formulation has the advantage of being
independent of the selected system of coordinates.

One-Dimensional (1-D) Approximation:
Transverse Motion of Strings

Strings can be viewed as membranes where one dimen-
sion (the length) is much larger than the other two,
so that a 1-D approximation is justified. Thus, rewrit-
ing (22.89) after integrating mass and tension along the
axis ey, one obtains the equation of transverse motion
for a string with nonuniform tension

μ(x)ü = ∂

∂x

[
T (x)

∂u

∂x

]
, (22.93)

where μ= ρS is the linear mass density, S is the cross-
sectional area and T is the tension.

Remark

1. A similar equation can be obtained for the trans-
verse motion v(x, t) of the string in the direction
ey. Therefore, two transverse motions polarized in
orthogonal directions can exist on a string.

2. In the absence of coupling terms, u and v are in-
dependent. However, induced motion at the ends
and/or nonlinear terms usually lead to coupling be-
tween these motions (Sect. 22.7).

3. Strings and membranes are also subjected to longi-
tudinal motion. This motion is due to the variation
of tension resulting from the variation in strain as-
sociated with the motion.

Homogeneous and Uniformly Stretched Strings
and Membranes

For a uniformly stretched and homogeneous membrane,
(22.92) reduces to

τdiv
(
grad u

)= τΔu = ρhü , (22.94)

where the Laplacian is written in Cartesian coordinates
as

Δu = ∂
2u

∂x2
+ ∂

2u

∂y2
. (22.95)

For a string, we get the well-known wave equation

μü = T
∂2u

∂x2
. (22.96)

22.3.2 Heterogeneous String:
Modal Approach

Extending the previous results to continuous structures
shows that, in the linear regime, these structures have
an infinite number of eigenmodes with similar proper-
ties of orthogonality with respect to mass and stiffness
to those presented in Sect. 22.2 for discrete systems.
In this case, the previously defined eigenvectors Φn
become continuous functions of the space coordinates
Φ(x). To illustrate the modal approach for continuous
systems, consider the case of an heterogeneous string
(i. e., a nonuniformly stretched string with variable den-
sity), rigidly fixed at both ends and subjected to a force
density f (x, t)

ρ(x)S(x)
∂2 y

∂t2
− ∂

∂x

[
T (x)

∂y

∂x

]
= f (x, t) , (22.97)

Φn(x) are the eigenfunctions of the string, which ac-
count for the boundary conditions. We seek solutions of
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the form

y(x, t) =
∑

n

Φn(x)qn(t) . (22.98)

Multiplying both sides of (22.97) by the eigenfunc-
tion Φm(x) and integrating over the length of the string
yields

∑

n

q̈n(t)

L∫

0

Φn(x)Φm (x)ρ(x)S(x)dx

−
∑

n

qn(t)

L∫

0

Φm(x)
d

dx

[
T (x)

dΦn(x)

dx

]
dx

=
L∫

0

Φm(x) f (x, t)dx , (22.99)

which can be written in symbolic form as

M
(
ÿ, Φm

)+K
(
y, Φm

)= 〈 f, Φm〉 . (22.100)

Equation (22.100) is general and can be applied to all
conservative systems. M denotes the mass operator and
K the stiffness operator.

Orthogonality Properties of the Eigenmodes
Each eigenmode Φn(x) is a solution of the equation

−ω2
nρ(x)S(x)Φn(x) = d

dx

[
T (x)

dΦn(x)

dx

]
.

(22.101)

These eigenfunctions are orthogonal with respect to the
mass

L∫

0

Φn(x)Φm(x)ρ(x)S(x)dx = 0 (22.102)

and orthogonal with respect to the stiffness

L∫

0

T (x)
dΦm(x)

dx

dΦn(x)

dx
dx = 0 . (22.103)

Generalized Coordinates
Taking the orthogonality properties of the eigenmodes
into account, we can write

− d

dx

[
T (x)

dΦ

dx

]
= ω2ρ(x)S(x)Φ(x) , (22.104)

so that (22.100) becomes

q̈n(t)+ω2
nqn(t) = fn(t)

mn
, (22.105)

where the modal mass is given by

mn =
L∫

0

Φ2
n(x)ρ(x)S(x)dx (22.106)

with

fn(t) =
L∫

0

f (x, t)Φn(x)dx . (22.107)

The equations that govern the generalized displace-
ments are therefore formally identical to those obtained
for discrete systems. For continuous systems, truncation
of the theoretically infinite number of differential equa-
tions has to be performed. The truncation criteria are
often determined by the frequency domain under con-
sideration. For a lossless string of length L with perfect
boundary conditions excited by a source term f (x, t),
the general solution can be written in the modal domain
as

y(x, t) =
∑

n

Φn(x)qn(t) , (22.108)

where

q̈n(t)+ω2
nqn(t) = fn(t)

mn

with

fn(t) = 〈 f (x, t), Φn(x)〉 =
L∫

0

Φn(x) f (x, t)dx .

Let us assume an initial shape y(0, t) and an initial ve-
locity ẏ(0, t). The initial values of the qn(t) are thus
given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qn(0) = 1

mn

L∫

0

ρ(x)S(x)y(0, t)Φn(x)dx

and

q̇n(0) = 1

mn

L∫

0

ρ(x)S(x)ẏ(0, t)Φn(x)dx

.

(22.109)
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Denoting the Laplace transform of qn(t) by Qn(s), we
have

Qn(s) = 1

s2+ω2
n

[
Fn(s)

mn
+ sqn(0)+ q̇n(0)

]
,

(22.110)

where Fn(s) is the Laplace transform of fn(t). The first
term of Qn(s) is a product of two transforms which, in
the time domain, corresponds to a convolution. Using
transform tables, we obtain

qn(t) = 1

mnωn

t∫

0

fn(θ) sinωn(t− θ)dθ

+qn(0) cosωnt+ q̇n(0)
sinωnt

ωn
. (22.111)

If fn(t) is a Dirac delta function of the form fn0δ(t),
the Laplace transform reduces to Fn(s) = fn0 Equation
(22.111) can then be written

qn(t) = fn0

mn

sinωnt

ωn

+qn(0) cosωnt+ q̇n(0)
sinωnt

ωn
. (22.112)

From the above impulse response for mode n of the
string, we note the following:

1. There is an equivalence between qn(t) from the im-
pulse source term and the initial velocity term. In
other words, the motion of the string induced by
an initial velocity profile is equivalent if the string
is excited by a spatial distribution of Dirac delta
function forces.

2. A source term localized at a given point x0 can
be written f (x, t) = Aδ(x− x0)δ(t). In this case,
fn(t) = 〈 f (x, t), Φn(x)〉 = AΦn(x0)δ(t). Therefore,
the mode n will not be excited if the force is applied
on a node of vibration.

3. The first term of the function gn(t) = sinωnt/mnωn
is the Green’s function of mode n.

String with a Finite Mass at One End
To present general results, the string is still assumed
to be heterogeneous. The purpose of this section is to
give the orthogonality properties of the modes for a het-
erogeneous string terminated by a finite mass M. The
boundary conditions are

y(0, t) = 0 and −T (x)
∂y

∂x
= M

∂2 y

∂t2
,

at x = L . (22.113)

The eigenfunctions Φ(x) therefore have to satisfy

ρ(x)S(x)ω2Φ(x) =− d

dx

[
T (x)

dΦ(x)

dx

]
= 0 ,

for 0< x < L

with Φ(0) = 0

and T (x)
dΦ

dx
= ω2 MΦ(x) ,

at x = L .

For n �= m, the orthogonality condition with respect to
mass becomes

L∫

0

ρ(x)S(x)Φ(x)Φm (x)dx+MΦn(L)Φm(L) = 0

(22.114)

and the orthogonality condition with respect to stiffness
remains

L∫

0

T (x)
dΦn(x)

dx

dΦm(x)

dx
dx = 0 . (22.115)

For a homogeneous string with uniform tension and
constant diameter, these conditions reduce to

L∫

0

Φn(x)Φm(x)dx =− M

ρS
Φn(L)Φm(L) (22.116)

and

L∫

0

dΦn(x)

dx

dΦm(x)

dx
dx = 0 . (22.117)

22.3.3 Ideal String

To solve initial-boundary problems in simple cases, we
assume that the lossless string is homogeneous with
density ρ, constant tension T and constant cross sec-
tion S. In this case, the vertical displacement is given by
the wave equation

1

c2

∂2u

∂t2
= ∂

2u

∂x2
, (22.118)

where c =√
T/ρS is the transverse wave velocity.

D’Alembert’s Solution in the Time Domain
In order to show the correspondence between the wave
and modal approaches, a time-domain method is used
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first to solve the wave equation (22.118) with initial
conditions [22.7]

u(x, 0) = f (x) and
∂u

∂t
(x, 0) = g(x) . (22.119)

Using the change of variables ξ = x−ct and η= x+ct,
we have

u(x, t) =U(ξ, η) (22.120)

from (22.120), we obtain
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2u

∂t2
= c2

(
∂2U

∂ξ2
−2

∂2U

∂ξ∂η
+ ∂

2U

∂η2

)

∂2u

∂x2
= ∂

2U

∂ξ2
+2

∂2U

∂ξ∂η
+ ∂

2U

∂η2

. (22.121)

Inserting (22.121) into (22.118) yields
(
∂2U

)
/
(
∂ξ∂η

)

= 0 which implies

u(x, t) = F(x− ct)+G(x+ ct) , (22.122)

where F and G are are two twice-differentiable func-
tions. F(x− ct) represents a travelling wave moving to
the right (direction of increasing values for x), while
G(x+ ct) is a travelling wave moving to the left. Using
(22.119) implies that F and G must fulfill the conditions

⎧
⎨

⎩
F(x)+G(x) = f (x)

−cF ′(x)+ cG ′(x) = g(x)
. (22.123)

Solving (22.123) yields
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(x) = 1

2
f (x)− 1

2
[−F(0)+G(0)]

− 1

2c

x∫

0

g(s)ds

G(x) = 1

2
f (x)+ 1

2
[−F(0)+G(0)]

+ 1

2c

x∫

0

g(s)ds

. (22.124)

Finally, the solution of the wave equation is written
explicitly

u(x, t) = 1

2
[ f (x− ct)+ f (x+ ct)]

+ 1

2c

x+ct∫

x−ct

g(s)ds . (22.125)

Semi-infinite String. For a semi-infinite string rigidly
fixed at x = 0, we have the boundary condition
u(0, t) = 0. This requires

F(−ct)+G(ct) = 0 (22.126)

and, finally, with the appropriate change of variables

u(x, t) =−G(x− ct)+G(x+ ct)

= F(x− ct)− F(−x− ct) . (22.127)

Equation (22.127) expresses the fact that, due to the
fixed end at x = 0, the left-traveling wave is reflected
with a change of sign and becomes a right-traveling
wave. The validity domain for (22.127) is 0 ≤ x <+∞
and t> 0.

String of Finite Length. In the case of an ideal string
fixed at both ends, the wave approach can still be used,
with the additional boundary condition u(L, t) = 0,
which yields

u(L, t) =−G(L − ct)+G(L + ct)

= F(L − ct)− F(−L − ct)= 0 . (22.128)

Equation (22.128) can be rewritten F(z) = F(z−2L),
which shows that F (and G) are now periodic functions
with spatial period 2L or, equivalently, temporal period
2L/c. The validity domain of (22.128) is now 0≤ x ≤ L
and t> 0. Equations (22.126)–(22.128) can be used for
step-by-step constructions of the string shape at succes-
sive instants of time.

String Fixed at Both Ends. Eigenmodes
Injecting a harmonic wave of the form u(x, t) =
ei(ωt−kx) in (22.118), we find the dispersion equation
D(ω, k) that governs the relationship between fre-
quency ω and wavenumber k. Here, we obtain

D(ω, k) = ω2− c2k2 = 0 . (22.129)

This equation shows that the ratio between the fre-
quency and wavenumber is constant, which is a char-
acteristic property of a nondispersive medium. If we
assume further that the string is rigidly fixed at both
ends, the eigenmodes must satisfy the equation

d2Φ(x)

dx2
+ ω

2

c2
Φ(x) = 0 (22.130)

with the boundary conditions Φ(0) = Φ(L) = 0 from
which we obtain

Φn(x) = sin kn x . (22.131)
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The only possible values for the wavenumber are given
by the discrete series

kn = nπ

L
so that ωn = nπc

L
. (22.132)

Using (22.106), the modal mass is mn = ρSL/2 =
Ms/2, where Ms is the total mass of the string. Recall,
however, that the ratio mn/Ms = 1/2 is purely arbitrary
since the modal masses are defined with an arbitrary
multiplicative constant. The important result here is that
all modal masses are equal and do not depend on the
rank n of the mode.

Application: Plucked String. Modal Approach
The particular case where the string is released from an
initial triangular shape at the origin of time without ini-
tial velocity is now examined. With the assumption of
no stiffness, the initial profile of the string is given by

u(0, t) =

⎧
⎪⎪⎨

⎪⎪⎩

hx

x0
for 0 ≤ x ≤ x0

h(L − x)

L − x0
for x0 ≤ x ≤ L

. (22.133)

The modal method consists of looking for solutions of
the form

u(x, t) =
∑

n

Φn(x)qn(t) . (22.134)

At the origin of time, we can write

u(0, t) =
∑

n

Φn(x)qn(0) . (22.135)

The unknowns of the problem are the functions qn(0).
Exploiting again the orthogonality properties of the
eigenmodes, we find

qn(0) = 2hL2

n2π2x0(L − x0)
sin kn x0 . (22.136)

The functions qn(t) are given by the oscillator equations

q̈n +ω2
nqn = 0 (22.137)

which, in the case of zero initial velocity, leads to
qn(t) = qn(0) cosωnt. In summary, the transverse dis-
placement of the string is given by

u(x, t) =
∑

n

2hL2

n2π2x0(L − x0)

× sin kn x0 sin kn x cosωnt . (22.138)

Despite the simplicity of this example, a number of
important issues can be derived from this result:

1. The eigenfrequencies are integer multiples of the
fundamental f1 = c/2L . The solution is periodic
and the fundamental frequency is the inverse of the
period of vibration.

2. The amplitudes of the modal components decrease
as 1/n2 with the rank n of the modes.

3. Because the magnitude is proportional to sin kn x0,
a modal component n can be suppressed by select-
ing the plucking point x0 = pL/n, where p is an
integer < n.

4. The excitation point x0 and observation point x can
be interchanged in (22.138). This is an illustration
of the reciprocity principle.

Moving End
To a first approximation, a vibrating string radiates as
a dipole. Because of its small diameter compared to
the acoustic wavelength, it is a poor radiator. If signifi-
cant sound is to be radiated, one end of the string must
be coupled to a component with a considerable vibrat-
ing area (plate, shell, etc.). In Sect. 22.3.2, the general
properties of a heterogeneous string attached to a mass
were obtained. In this section, the simple example of
an ideal string coupled to a spring will be consid-
ered to illustrate the influence of such coupling on the
eigenmodes, eigenfrequencies and modal masses. We
consider a string fixed at point x = 0 to a spring of
stiffness K0. The boundary condition at this end is then

T

(
∂u

∂x

)

x=0
= K0 u(0, t) . (22.139)

The string is rigidly fixed at the other end, so
that u(L, t) = 0. We look for solutions of the form
u(x, t) = Φ(x) cosωt. Following (22.118), the eigen-
functions Φ(x) must satisfy the equation

d2Φ

dx2
+ k2Φ = 0 (22.140)

and the boundary conditions. Thus, we derive the equa-
tion for the eigenvalues kn

tan(kn L) =−knT

K0
with kn > 0 . (22.141)

The graphical representation of (22.141) shows that the
kn are no longer integer multiples of k1 (Fig. 22.8). As
a consequence, the free vibration of the string is no
longer periodic. Note that the spring decreases the eigen-
frequencies relative to those of a perfectly rigid end.

The eigenfunctions become

Φn(x) = sin kn x+ knT

K0
cos kn x = sin kn(L − x)

cos kn L
(22.142)
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Fig. 22.8 Graphical resolution of the eigenvalue problem
for a string attached to a spring (22.141)

from which the initial values qn(0) and the modal
masses can be derived. We obtain

mn =
L∫

0

ρS

(
sin kn x+ kn T

K0
cos kn x

)2

dx

= Ms

2

[
1+

(
kn T

K0

)2
]
. (22.143)

Equation (22.143) shows here that the modal masses
increase with the rank n of the mode. In the case of
a mass termination, a similar procedure would lead to
the eigenvalue equation

tan(kn L) = ρS

M0kn
. (22.144)

Here, the inertial load at the end leads to an increase of
the eigenfrequencies.

Application to Stringed Instruments. In plucked and
struck strings instruments (guitar, piano, harp, etc.), the
main part of the sound is due to the free regime of vibra-
tion, and the spectrum is composed of the eigenfrequen-
cies of the vibrating system. Previous considerations
show that the coupling between the strings and the ra-
diating body (top plate, soundboard) alters the frequen-
cies, compared to the perfect harmonic case. Though
this alteration is usually relatively small, it has the con-
sequence that the waveform is not perfectly periodic
anymore. This might have in turn some perceptual ef-
fects on the produced sound. See the chapter on musical
acoustics (Chap. 15) in this Handbook for more details.

22.3.4 Circular Membrane in vacuo

Membranes are used in percussion instruments, micro-
phones, loudspeakers and wall resonators. Because of
their small thickness, the influence of air loading can-
not be neglected in most applications. However, we
limit ourselves here by solving the equation for trans-
verse vibrations of a homogeneous membrane in vacuo.
Fluid-loading effects on structures are discussed in later
sections. From (22.94) the membrane equation, in cir-
cular geometry, is

σ
∂2u

∂t2
= τΔu = τ

(
∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2

)
,

(22.145)

where σ = ρh. Equation (22.145) can be solved by us-
ing the method of separation of variables [22.8]. For
zero displacement at the edge, z(r = a, θ, t) = 0, and
neglecting losses, the expansion of the displacement on
the eigenmodes can be expressed as

u(r, θ, t) =
∞∑

m=1

[ ∞∑

n=0

Unm (r, θ)

×
(

Anm cosωt+ Bnm sinωt
)

+
∞∑

n=1

Ũnm(r, θ)

×
(

Ãnm cosωt+ B̃nm sinωt
)]
.

(22.146)

In (22.146), the eigenfunctions are

Unm(r, θ) = Jn(βnmr) cos nθ

and

Ũnm(r, θ) = Jn(βnmr) sin nθ , (22.147)

where Jn is the order-n Bessel function of the first
kind [22.9]. The indices n and m refer to the num-
ber of nodal lines and to the number of nodal circles,
respectively (Fig. 22.9).

The fixed edge corresponds to one nodal circle. The
symmetrical modes are those where there are no nodal
diameters. In this case, the eigenfunctions are of the
form Jn(β0mr). All other modes can be viewed as pairs
of modes with the same eigenfrequency and the same
dependence versus r. They only differ by an angle of
π/2n. The discrete values βmn of the wavenumbers are
derived from the boundary condition at the edge, such
that

Jn(βa) = 0 . (22.148)
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960 Part G Structural Acoustics and Noise

For each value of n, we obtain an infinite series of
roots βnm . For n = 0, for example, J0(βa) = 0 yields
β0ma = 2.405, 5.520, 8.654, 11, 792, 14, 931, . . ..
Similarly, the roots of J1(βa) = 0 are given by
β1ma = 3.832, 7.016, 10.173, 13.324, 16.471, . . ..

Finally, the eigenfrequencies ωnm are obtained from
the 2-D wave equation (22.145):

ωnm = cβnm , where c =
√
τ

σ
. (22.149)

Unlike the case of ideal strings, the eigenfrequencies of
a circular membrane in vacuo are not harmonically re-
lated. It has been shown by different authors that the
fluid and cavity loading both contribute to restore the
harmonic character of timpani sound, although the fun-
damental is missing [22.10, 11].

01 02 12

11 21 31

Fig. 22.9 Eigenmodes (n,m) of a circular membrane
in vacuo

22.4 Bars, Plates and Shells

In this section, we consider the flexural vibrations of
bars, plates and shells, since these structures are of the
most practical use for the radiation of sound. First, the
longitudinal vibrations of bars are presented, to show
the analogies with the string wave equation, and also
because this example will be used in Sect. 22.5.1 to
illustrate the basic concepts of fluid–structure interac-
tions.

22.4.1 Longitudinal Vibrations of Bars

The longitudinal vibrations of a 1-D bar in vacuo,
clamped at one end and free at the other, are governed
by the equations

⎧
⎪⎪⎨

⎪⎪⎩

ρsS
∂2ξ

∂t2
= ES

∂2ξ

∂x2
,

ξ(0, t) = 0 ; ∂ξ

∂x
(L, t) = 0 .

(22.150)

The eigenfunctions are

φn(x) = sin (2n−1)
πx

2L
= sin kn x (22.151)

with kn = ωn/cL and thus the linear solution can be
written as

ξ(x, t) =
∑

n

φn(x)qn(t) , (22.152)

where the generalized displacements obey

q̈n +ω2
nqn = 0 . (22.153)

Equation (22.153) yields a harmonic solution with
eigenfrequency ωn .

22.4.2 Flexural Vibrations of Beams

The flexural vibrations of a slender isotropic beam are
presented, within the framework of the Euler–Bernoulli
assumptions [22.8]. The beam is oriented along the x-
axis, and the cross section S(x) is in the (y, z) plane. The
flexural displacement v(x, t) is in the direction of the y-
axis. E(x) is the Young’s modulus, ρ(x) is the density,
and Iz(x) is the moment of inertia of a cross section
with respect to its neutral midplane. f (x, t) represents
a source term. Applying Hamilton’s principle, we obtain
the well-known equation

ρ(x)S(x)v̈+ ∂2

∂x2

[
E(x)Iz(x)

∂2v

∂x2

]
= f (x, t)

(22.154)

with the additional conditions to be satisfied
[

E(x)Iz(x)
∂2v

∂x2

∂v

∂x

]L

0
= 0

and
[
∂

∂x

(
E(x)Iz(x)

∂2v

∂x2

)
v

]L

0
= 0 . (22.155)

Equation (22.154) is fourth order in the spatial co-
ordinate. Therefore, four boundary conditions (two
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conditions at each end) are necessary to solve the
boundary-value problem. Following (22.155), four dif-
ferent situations are compatible at each end

Supported v= 0

and M(x) = E(x)Iz(x)
∂2v

∂x2
= 0 ;

Clamped
∂v

∂x
= 0

and v= 0 ;
Free T (x) = ∂

∂x

[
E(x)Iz(x)

∂2v

∂x2

]
= 0

and M(x) = E(x)Iz(x)
∂2v

∂x2
= 0 ;

Guided T (x) = ∂

∂x

[
E(x)Iz(x)

∂2v

∂x2

]
= 0

and
∂v

∂x
= 0 ,

where M(x) is the bending moment and T (x) is the
shear force.

Free–Free Beam with a Constant Section
As a specific example of (22.154), we consider a homo-
geneous and isotropic beam of length L , thickness h,
width b, with a constant rectangular section S = bh
whose moment of inertia with respect to the z-axis is
Iz = I = bh3/12 (Fig. 22.10).

In this case, (22.154) reduces to

EI
∂4v

∂x4
+ρS

∂2v

∂t2
= 0 . (22.156)

Looking for solutions for (22.156) of the form v(x, t)=
Φ(x) cosωt yields the general solution

Φ(x) = A cosh
ωx

c
+ B sinh

ωx

c

+C cos
ωx

c
+D sin

ωx

c
(22.157)

x

z

y

L

b

h

Fig. 22.10 Geometry of a beam with constant section

with

c =√
ωcL

4

√
I

S
and cL = E

ρ
. (22.158)

This expression shows that the phase velocity c of the
flexural waves is proportional to

√
ω. The dispersion

relationship is given by

EIk4+ρSω2 = 0 . (22.159)

From (22.159), we can see that the group velocity
cg = dω/dk is also proportional to

√
ω. The group

velocity refers to the propagation velocity of wave en-
ergy and envelope of slowly varying amplitude. Flexural
waves in the beam are thus dispersive with the higher
frequencies propagating faster than the lower ones.

Remark
There is a paradox in (22.157) in the sense that the
group velocity tends to infinity as the frequency tends
to infinity. This results from the Euler–Bernoulli as-
sumptions, where shear and rotation inertia of the cross
sections are neglected. Introducing these two effects in
the model (the Timoshenko model) leads to a bounded
asymptotic value of the group velocity as frequency in-
creases.

For a beam free at both ends, the boundary condi-
tions are

∂2 y

∂x2
(0, t) = ∂

2 y

∂x2
(L, t) = 0 (22.160)

and
∂3 y

∂x3
(0, t) = ∂

3 y

∂x3
(L, t) = 0 , (22.161)

1

0.5

0

–0.5

–1

20181614121086420
X

Fig. 22.11 Graphical resolution of the eigenfrequency
equation for a free–free beam, with X = ωL/c
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which yields the equation of the eigenfrequencies
(Fig. 22.11)

cos
ωL

c
cosh

ωL

c
= 1 . (22.162)

The numerical resolution of (22.162) shows that the
eigenfrequencies fn (in Hz) are

fn ≈
√

EI

ρS

π

8L2

[
3.0112, 52, 72, . . . , (2n+1)2

]
.

(22.163)

The eigenfrequencies are not harmonically related so
that the impulse response of the beam is not periodic.

Beam with a Variable Cross Section
As another example, we consider the flexural vibrations
for a beam with variable cross section. Here, we de-
scribe the Galerkin method [22.12]. It has the advantage
that it remains valid even in the case of nonconserva-
tive systems. In this method, the eigenfunctionsΦ(x) of
(22.154) are approximated by a finite sum of p terms

Φ(p)(x) =
p∑

j=1

a jφ j (x) , (22.164)

where φ j (x) are arbitrary functions that satisfy the
boundary conditions at both ends of the beam. Insert-
ing (22.164) in (22.154), and defining λ(p) = (ω2)(p) as
the approximate eigenvalues of order p, one can define
the Galerkin residue

R
[
Φ(p)(x)

]
= d2

dx2

(
EI (x)

d2Φ(p)

dx2

)

−λ(p)ρ(x)S(x)Φ(p) (22.165)

following (22.164), this can be written as

R
[
Φ(p)(x)

]
=

p∑

j=1

a j

×

{
d2

dx2

[
EI (x)

d2φ j (x)

dx2

]
−λ(p)ρ(x)S(x)φ j (x)

}
.

(22.166)

The weak formulation of the problem is given by

L∫

0

φi (x)
p∑

j=1

a j

{
d2

dx2

[
EI (x)

d2φ j (x)

dx2

]

−λ(p)ρ(x)S(x)φ j (x)

}
dx = 0 .

(22.167)

The goal of the method is to find the coefficients a j for
which the residue R

[
Φ(p)(x)

]
is equal to zero. Thus

(22.167) becomes
p∑

j=1

kija j −λ(p)
p∑

j=1

mija j = 0

for i = 1, 2, . . . p , (22.168)

where the mass and stiffness coefficients are

kij =
L∫

0

φi (x)
d2

dx2

[
EI (x)

d2φ j (x)

dx2

]
dx (22.169)

and

mij =
L∫

0

φi (x)ρ(x)S(x)φ j (x) dx . (22.170)

Equation (22.168) can be written equivalently in matrix
form

[K−λM] a = 0 , (22.171)

where a is a vector with dimension p and K and M
are matrices with dimension p × p. The problem to be
solved is therefore equivalent in form to the eigenvalue
problem for a p-component discrete system (22.49).

Prestressed Beam or Stiff String
The flexural motion for a beam subjected to tension (or
prestressed beam) is governed by the same equation as
a string with stiffness. For a homogeneous and isotropic
beam of constant section subjected to a uniform ten-
sion T , we have

ρS
∂2v

∂t2
= T

∂2v

∂x2
− EI

∂4v

∂x4
. (22.172)

For a propagating wave of the form y(x, t) = ei(ωt−kx),
we obtain the dispersion relationship

ω2 = k2c2
(

1+ EI

T
k2
)
. (22.173)

For a stiff string of length L , the usual order of mag-
nitude generally implies ε= EI

TL2 
 1 so that (22.173)
can be written

ω2 = k2c2(1+ εk2L2) . (22.174)

For a stiff string with hinged ends the boundary
conditions impose

sin kL = 0 so that kn L = nπ (22.175)
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from which we can derive through (22.174) the eigen-
frequencies

ωn ≈ nπc

L

(
1+ εn2π2

2

)
. (22.176)

The eigenfrequencies are raised by the stiffness. The
difference increases as n2. The inharmonicity coeffi-
cient can be defined as

i = εn2π2

2
. (22.177)

22.4.3 Flexural Vibrations of Thin Plates

The thin plate, or Kirchhoff–Love plate, described be-
low is a generalization of the Euler–Bernoulli beam
in 2-D [22.13]. The general case of orthotropic plates
is treated here. The problem is solved in Cartesian
coordinates, wherew(x, y, t) denotes the transverse dis-
placement. It is assumed that the coordinates coincide
with the symmetry axes of the material. The assumption
of orthotropy leads to the following relations between
plane stresses σij and plane strains εkl

⎛

⎜⎝
σxx

σyy

σxy

⎞

⎟⎠=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ex

1−νxyνyx

νyx Ex

1−νxyνyx
0

νyx Ex

1−νxyνyx

Ey

1−νxyνyx
0

0 0 2Gxy

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛

⎜⎝
εxx

εyy

εxy

⎞

⎟⎠ . (22.178)

These relations involve two elastic moduli Ex and
Ey, two Poisson’s ratios νxy and one torsional mod-
ulus Gxy. In addition, we have the property Exνyx =
Eyνxy [22.14]. The bending and twisting moments are
obtained by integration of the elementary moments over
the thickness h of the plate

Mx =
h/2∫

−h/2

zσxx dz ;

My =
h/2∫

−h/2

zσyy dz ;

Mxy =Myx =
h/2∫

−h/2

zσxy dz (22.179)

which leads to the matrix relation between the moments
and curvatures

⎛

⎜⎝
Mx

My

Mxy

⎞

⎟⎠=−

⎛

⎜⎜⎜⎜⎝

D1
D2

2
0

D2

2
D3 0

0 0
D4

2

⎞

⎟⎟⎟⎟⎠
×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2w

∂x2

∂2w

∂y2

∂2w

∂x∂y

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(22.180)

where

D1 = Exh3

12(1−νxyνyx)
;

D2 = Exνyxh3

6(1−νxyνyx)
= Eyνxyh3

6(1−νxyνyx)
, (22.181)

D3 = Eyh3

12(1−νxyνyx)
;

D4 = Gxyh3

3
. (22.182)

Again, the equation of motion can be obtained using
Hamilton’s principle [22.12]. Finally, given an external
force density term f (x, y, t), we obtain the equation of
motion for the plate

ρph
∂2w

∂t2

= ∂
2Mx

∂x2
+ ∂

2My

∂y2
+2
∂2Mxy

∂x∂y
+ f (x, y, t) .

(22.183)

Boundary Conditions
As for the beam, the boundary conditions follow from
integration by parts of the elastic energy. The number
of possible conditions depends on the selected geome-
try. For rectangular plates, for example, Leissa lists 21
possible boundary conditions [22.15]. Along the prin-
cipal directions, for example, the conditions of greatest
practical interest are:

1. Clamped edge: displacement w = 0 and rotation
∂w
∂x = 0.

2. Simply supported edge: displacement w = 0 and
bending moment Mx = 0.

3. Free edge: bending moment Mx = 0 and shear force
∂Mx
∂x +2 ∂Mxy

∂y = 0.
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Example: Homogeneous Rectangular Simply
Supported Plate

From (22.180) and (22.183), we obtain for a homoge-
neous orthotropic plate

ρph
∂2w

∂t2
+D1

∂4w

∂x4
+ (D2+D4)

×
∂4w

∂x2∂y2
+D3

∂2w

∂y4
= 0 . (22.184)

For a rectangular plate of length a and width b, simply
supported at its edges, the boundary conditions are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

W(0, y, t) = W(a, y, t) = W(x, 0, t)

= W(x, b, t) = 0 ,

Mx (0, y, t) =Mx(a, y, t) =My(x, 0, t)

=My(x, b, t) = 0 .

(22.185)

The eigenfunctions satisfying (22.185) are of the form

Φmn(x, y) = sin
mπx

a
sin

nπy

b
(22.186)

and the associated eigenfrequencies are given by

ωmn = π2

√
1

ρph

×

√

D1
m4

a4
+D3

n4

b4
+ (D2+D4)

m2n2

a2b2
.

(22.187)

In both expressions, m and n are positive integers. As
for strings and beams, the eigenfunctions Φmn are or-
thogonal with respect to mass and stiffness, so that

a∫

0

b∫

0

ρphΦmn(x, y)Φm′n′ (x, y)dx dy

=
⎧
⎨

⎩
0 if m �= m′ or n �= n′ ,
Mmn if m = m′ and n = n′ ;

(22.188)

where Mmn is the modal mass for the mode (m, n).
The eigenfrequencies for the orthotropic plate are dis-
tributed between two limiting curves in the (k, f )-plane
(Fig. 22.12).

Particular Case: Isotropic Plate
In the isotropic case, the rigidity coefficients become

D1 = D3 = D = Eh3

12(1−ν2)
(22.189)

50

40
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1009080706050403020100

Frequency (kHz)

Wavenumber

Fig. 22.12 Dispersion curves for an orthotropic plate
made of carbon fibers with D1 = 8437 MPa; D2 =
463 MPa; D3 = 852 MPa; D4 = 2267 MPa; h = 2 mm;
ρp = 1540 kg/m3; a = 0.4 m; b = 0.2 m

and

D4 = Eh3

6(1+ν) ,

D2 = 2D1−D4 = Eνh3

6(1−ν2)
. (22.190)

Here, the elastic behavior of the material is fully deter-
mined by two constants: the Young’s modulus E and
the Poisson’s ratio ν. The eigenfunctions Φmn(x, y) are
the same as in (22.186). However, the eigenfrequencies
now reduce to

ωmn = π2

√
D

ρph

(
m2

a2
+ n2

b2

)
. (22.191)

Prestressed Isotropic Plate. If a tension (or com-
pression) Tx in the x-direction and, simultaneously,
a tension (or compression) Ty in the y-direction are ap-
plied in the plate plane, then the flexural equation is
modified as follows [22.1]

ρph
∂2w

∂t2
+D

(
∂4w

∂x4
+2

∂4w

∂x2∂y2
+ ∂

2w

∂y4

)

−Tx
∂2w

∂x2
−Ty

∂2w

∂y2
= 0 . (22.192)
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In this case, the eigenfrequencies become

ωmn =
√

1

ρph

×

√

D

(
π2m2

a2
+ π

2n2

b2

)2

+Tx
m2π2

a2
+Ty

n2π2

b2
.

(22.193)

22.4.4 Vibrations
of Thin Shallow Spherical Shells

One interest of presenting the vibrations of shallow
spherical shells is to show the influence of curva-
ture, compared to the case of flat plates. The present
section focuses on the particular case of free edge,
which is scarcely treated in the literature [22.16]. Lin-
ear vibrations of cymbals and gongs, for example, are
conveniently described by such an idealized structure.

An isotropic spherical cap is considered, with thick-
ness h, radius of curvature R and whose projection
on a plane is a circle of radius a (Fig. 22.13). Us-
ing the Donnell–Mushtari–Vlasov assumptions for thin
(h 
 a) and shallow (a 
 R) shells, the equations of
motion for the free transverse displacement w(r, θ, t) of
the cap is given by [22.17]

D∇6w+ Eh

R2
∇2w+ρh∇2ẅ= 0 , (22.194)

where E is the Young’s modulus, ρ is the density,
ν is the Poisson’s ratio and D = Eh3/12(1−ν2) is the
flexural rigidity of the shell. Equation (22.194) can be
conveniently put into nondimensional form using the re-
duced variables w = w/w0, r = r/a and t = t/t0 with
t0 = a2√ρh/D. In this case, (22.194) becomes

∇6w+χ∇2w+∇2ẅ= 0 ,

h

a
H r

M

R

M

a

r
θ

Fig. 22.13 Spherical cap

where

χ = 12(1−ν2)
a4

R2h2
. (22.195)

Notice that w0 can be selected arbitrarily in the linear
case. For nonlinear vibrations, this parameter should be
selected in accordance with the order of magnitude of
the nonlinear perturbation terms (Sect. 22.7).

Remark
In what follows, the nondimensional equation is solved
but the overlines are removed from the variables, for
convenience.

Eigenmodes of the Spherical Cap
with Free Edge

We look for harmonic solutions of (22.195) of the form
w(r, θ, t) = Φ(r, θ)q(t). The solutions must fulfill one
of the two following cases [22.18]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if ω2−χ = ζ4 > 0

then ∇2
(∇4− ζ4

)
Φ = 0 case 1 ,

if ω2−χ =−ζ4 < 0

then ∇2
(∇4+ ζ4

)
Φ = 0 case 2 .

(22.196)

In case 1, the eigenfunctions are given by

Φnm(r, θ) =
[
Anrn + Bn Jn(ζnmr)+Cn In(ζnmr)

]
∣∣∣∣∣
cos mθ

sin mθ
,

(22.197)

where An, Bn and Cn are constants, ζnm are determined
by the boundary conditions, Jn are the Bessel functions
of the first kind and In are the modified Bessel functions
of the first kind. In case 2, the eigenfunctions are given
by

Φnm(r, θ) =
[
Anrn + Bnbern(ζnmr)+Cnbein(ζnmr)

]
∣∣∣∣∣
cos mθ

sin mθ
,

(22.198)

where bern and bein are the Kelvin functions defined
by [22.9]

bern(x)+ ibein(x) = Jn

[
x exp

(
3iπ

4

)]
. (22.199)

For a free edge, the eigenvalues ζmn are determined
from the equation obtained by expressing that forces
and moments are equal to zero at the edge r = a. The
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four possible situations for the eigenfrequencies are
summarized below [22.19]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for n ∈ 0, 1, ∀m ≥ 1

ωnm =
√
χ+ω(0)2

nm ,

for n ≥ 2, m = 0 and χ < χ lim
n

ωn0 =
√
χ+ ζ4

n0 ,

for n ≥ 2, m = 0 and χ > χ lim
n

ωn0 =
√
χ− ζ4

n0 ,

forn ≥ 2, m ≥ 1,

ωnm =√χ+ ζ4
nm ,

(22.200)

where ω(0)
nm are the eigenfrequencies obtained in the case

of the circular plate with free edge, corresponding to the
limiting case of the spherical shell with no curvature.
The limiting value χ lim

n that separates the Bessel from
the Kelvin axisymmetric modes is given by [22.18]

χ lim
n = (1−ν)(3+ν)n2(n2−1)

1+ 1
4 (1−ν)(n−2)− n2(n−1)(1−ν)(4n−ν+9)

16(n+2)2(n+3)

.

(22.201)

22.4.5 Combinations
of Elementary Structures

Interesting and powerful models of complex structures
can be obtained by combining together elementary
components. One-dimensional models of intersecting
walls, for example, can be modeled by means of con-
nected bars, with appropriate boundary conditions at
the junctions: equality of displacements, angles, forces
and moments. This allows calculations of reflection
and transmission coefficients in the different parts of
a wall or a frame. Other examples of interest are sand-
wich plates. A sandwich is usually made of two plates

with a thin viscoelastic (absorbing) layer between them.
Again, the model contains the equation of motion for
each layer plus additional boundary conditions. As a re-
sult, one can calculate, for example, the equivalent
complex stiffness of the sandwich. One main advan-
tage of such a configuration is that one can obtain
a substantial increase of loss factor over a relatively
wide frequency range, compared to a sytem of equal
thickness composed by only one plate with a simple
viscoelastic layer. However, the main drawback is that
each application needs careful design of a specific sand-
wich in order to be effective in the frequency range of
interest [22.13, 20].

Periodic structures can be found in many applica-
tions, such as ships, planes or roofs where a relatively
light plate (or shell) is reinforced by stiffeners and ribs
at uniform intervals. Such problems have been studied
extensively in recent decades. A simple example of such
a structure is the periodically supported infinite beam
subjected to bending motion. By generalizing methods
previously applied to atomic chains and crystals by Bril-
louin, different authors represent the spatial part of the
wave propagation in such a beam by an equation of the
form

w(x+ L) = exp (λ)w(x) , (22.202)

where w is the transverse displacement, L is the spa-
tial period of the structure and λ is the propagation
constant to be determined. The problem is solved by
expressing the continuity and equilibrium equations at
the junctions. Two situations may occur: if λ is purely
imaginary, the bending wave can propagate freely in the
periodic structure. The corresponding frequency range
is called the pass band. If λ contains a real part, then
the wave becomes evanescent, and the corresponding
frequency range is called the stop band. Recently, some
authors have shown that SEA can by useful for tackling
such problems [22.21].

22.5 Structural–Acoustic Coupling

If the sound is generated by a light and flexible struc-
ture, then the effect of the acoustic loading back on the
structure cannot be neglected, and the system has to be
considered as a whole [22.22]. In the general case, the
action of a fluid on a structure has several effects: radia-
tion damping and modification of the eigenfrequencies.
Approximations can be made in the case of a light
fluid and weak coupling. These points are examined in

Sect. 22.5.1. The simple example of a 1-D bar coupled
to a semi-infinite tube is selected in order to facilitate
the presentation of the various concepts. In a number of
applications, the goal is to control the amount of energy
radiated by a vibrating structure. This forms the heart of
Sect. 22.5.2. In particular, the state-space formulation of
structural–acoustic coupling facilitates the development
of active noise-reduction systems [22.23]. The concept

Part
G

2
2
.5



Structural Acoustics and Vibrations 22.5 Structural–Acoustic Coupling 967

of radiation modes and their link with sound power and
efficiency is also presented in this section [22.24, 25].

In the case of structure–cavity coupling, the ef-
fects of the cavity field are different from those of the
free field. Strong structural–acoustic modes can appear,
which may contribute to a substantial modification of
the radiated spectrum. These features are illustrated in
Sect. 22.5.3 for the example of a 1-DOF oscillator cou-
pled to a finite tube.

The concept of coincidence (or critical) frequency
is essential in the radiation of sound by structures. By
comparing the dispersion equations for the structure and
fluid, respectively, one can make a distinction between
frequency domains where the radiation efficiency of the
structure is strong and where it is weak. This is treated
in Sect. 22.5.4 for an isotropic plate.

22.5.1 Longitudinally Vibrating Bar
Coupled to an External Fluid

Model and Modal Projection
We consider here the simple case of a longitudinally
vibrating bar of length L coupled at one end to a 1-D
infinite tube filled with air, which presents a resistive
loading Ra = ρcS at the end of the bar. It is assumed
throughout this section that the bar has a constant cross-
sectional area S and that it is clamped at one end (x = 0)
and free at the other (x = L). ρs is the density of the bar,
E its Young’s modulus, cL =√

E/ρs is the longitudinal
wave speed and ξ(x, t) the longitudinal displacement at
a point M at position x along the bar (0 ≤ x ≤ L). Sim-
ilarly, ρ denotes the air density, c the speed of sound
and p(x, t) the sound pressure in the tube (L < x <∞)
(Fig. 22.14). In the absence of an exciting force (free
vibration), the equations of the problem are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρsS
∂2ξ

∂t2
= ES

∂2ξ

∂x2
− Sp(L, t)δ(x− L)

for 0 ≤ x ≤ L ,

p(L, t) = ρcξ̇(L, t) ,

ξ(0, t) = 0 ,

p(x, t) = ρcξ̇
(
L, t− x−L

c

)

for L < x <∞

.

(22.203)

We look for the solution ξ(x, t) expanded in terms of
the in vacuo modes φn(x) of the bar. Both sides of the
first equation in (22.203) are multiplied by any eigen-
function and integrated over the length of the bar. This

gives
L∫

0

ρsS

[∑

m

φm(x)q̈m(t)

]
φn(x)dx

−
L∫

0

ES

[∑

m

φm
′′(x)qm(t)

]
φn(x)dx

=
L∫

0

Sρc

[∑

m

φm(L)q̇m(t)

]
φn(x)δ(x− L)dx .

(22.204)

This equation can be rewritten in a simpler form, by
using the definition of the modal mass

mn =
L∫

0

ρsSφ2
n(x)dx . (22.205)

Because of the mass orthogonality property of the
eigenfunctions, the terms of the series in the first inte-
gral on the left-hand side of (22.204) are zero for m �= n,
so that the integral reduces to mnq̈n(t). The second inte-
gral can be rewritten

−
L∫

0

ES
ω2

m

c2
L

[∑

m

φm(x)qm(t)

]
φn(x)dx (22.206)

which, due to stiffness orthogonality properties of the
eigenfunctions, reduces to −ω2

nmnqn(t). Finally, due to
the properties of the delta function, the third integral can
be rewritten

−Raφn(L)
∑

m

φm(L)q̇m(t) , (22.207)

where Ra = ρcS is the acoustic radiation resistance.

Remark. In the case of the clamped–free bar, we would
get φn(L)= (−1)n+1 and, similarly, φm(L)= (−1)m+1.
However, in what follows, we choose to retain the more
general formulation of (22.207) so that the equations
remain general.

For a 1-D bar of length L coupled to a semi-infinite
tube, the displacement is given by

ξ(x, t) =
∑

n

φn(x)qn(t) , (22.208)

where the functions of times qn(t) obey the set of cou-
pled equations

mnq̈n(t)+mnω
2
nqn(t)

=−Raφn(L)
∑

m

φm(L)q̇m(t) . (22.209)
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Once the displacement of the bar ξ(x, t) is known, we
can calculate the velocity ξ̇(x, t) at each point of the
bar and, in particular, at the point x = L and thus de-
rive the radiated sound pressure inside the tube through
(22.203). We now examine the consequences of the
coupling on systems of small dimensions, to better un-
derstand its physical meaning.

Single-DOF System. Suppose that, for various reasons,
we can reduce the previous system to one single mode.
In this case, (22.209) reduces to

q̈1(t)+ Raφ
2
1(L)

m1
q̇1(t)+ω2

1q1(t) = 0 . (22.210)

This is simply the equation of a damped oscillator,
where the dimensionless damping factor ζ1 is given by

2ζ1ω1 = Raφ
2
1(L)

m1
. (22.211)

Thus, for a single-DOF system, the acoustic coupling
adds a radiation damping to the structure. This damping
represents the amount of acoustic energy radiated by the
vibrating bar.

Two-DOF System. Now, we truncate the system to the
two lowest modes of the structure. In this case, (22.209)
reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̈1+2ζ1ω1q̇1+ω2
1q1 =− Raφ1(L)φ2(L)

m1
q̇2

= C12q̇2 ,

q̈2+2ζ2ω2q̇2+ω2
2q2 =− Raφ2(L)φ1(L)

m2
q̇1

= C21q̇1 .

(22.212)

Several conclusions can be drawn from this last result:

• The acoustic radiation introduces damping terms
2ζiωi q̇i in each equation.• The time functions are coupled by the radiation. In
general, the coupling coefficients C12 and C21 are
not equal.

Taking the Laplace transform of the system in (22.212)
leads to the characteristic equation

(
s2+2ζ1ω1s+ω2

1

)(
s2+2ζ2ω2s+ω2

2

)

−4ζ1ζ2ω1ω2s2 = 0 . (22.213)

Equation (22.213) shows that the structural–acoustic
coupling modifies the eigenfrequencies and damping
factors of the system, compared to the in vacuo case.

Light-Fluid Approximation. For ζ1ω1 
 1 and ζ2ω2 

1 one can find first-order approximations for both
the eigenfrequencies and decay times, due to the air–
structure coupling. Denoting s = σ + iω and replacing
it in (22.213) yields the new damping factors

σ1 ≈−
(
ζ1ω1− ω2

2ω1
C12

)
,

σ2 ≈−
(
ζ2ω2− ω1

2ω2
C21

)
. (22.214)

Similarly, the new eigenfrequencies become
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω
′2
1 ≈ ω2

1 −
[
2ζ2

1ω
2
1− (ζ1+ ζ2)ω2C12

+ ω1

2ω2
C21C12

]
,

ω
′2
2 ≈ ω2

2 −
[
2ζ2

2ω
2
2− (ζ1+ ζ2)ω1C21

+ ω2

2ω1
C21C12

]
.

(22.215)

Forced Vibrations
The transfer function between the excitation force
and the bar displacement is now examined. Equation
(22.203) is modified through the introduction of a force
term F(x0, t) at point x0

ρsS
∂2ξ

∂t2
= ES

∂2ξ

∂x2
− Sp(L, t)δ(x− L)

+ F(x0, t)δ(x− x0)

for 0 ≤ x ≤ L

and 0 ≤ x0 ≤ L . (22.216)

Using the same modal projection as in the previous sec-
tion, we find

q̈n +2ζnωnq̇n +ω2
nqn

=
∑

m �=n

Cnmq̇m + F(x0, t)
φn(x0)

mn
(22.217)

or, equivalently, using Laplace transforms, as

q̃n(s) = Hn(s)F̃(x0, s)+
∑

m �=n

Knm(s)q̃m(s) (22.218)

with

Hn(s) = φn(x0)

mn
(
s2+2ζnωns+ω2

n

)

and

Knm(s) = sCnm

s2+2ζnωns+ω2
n
. (22.219)
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Finally, the displacement is

ξ̃(x, s) =
∑

n

q̃n(s)φn(x)

= F̃(x0, s)
∑

n

φn(x)Hn(s)

+
∑

n

φn(x)
∑

m �=n

Knm(s)q̃m(s) . (22.220)

Matrix Formulation. Equation (22.218) can then be
rewritten (removing the tilde from the Laplace trans-
forms, for convenience) as

⎛

⎜⎜⎜⎝

1 −K12 . . . −K1n

−K21 1 . . . −K2n

. . . . . . . . . . . .

−Kn1 −Kn2 . . . 1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

q1

q2

. . .

qn

⎞

⎟⎟⎟⎠= F

⎛

⎜⎜⎜⎝

H1

H2

. . .

Hn

⎞

⎟⎟⎟⎠

(22.221)

which can be formulated in the more compact form

KQ = F H . (22.222)

The displacement of the bar is

ξ = Qt.φ= Q.φt = (K−1 H)t.φF = (K−1 H).φt F

(22.223)

In some applications, it is interesting to write (22.218)
in a form that allows the characteristic equation to be
determined immediately. In this case, (22.221) becomes

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s2+ω2
1

+2ζ1ω1s
−sC12 . . . −sC1n

−sC21
s2+ω2

2

+2ζ2ω2s
. . . −sC2n

. . . . . . . . . . . .

−sCn1 −sCn2 . . .
s2+ω2

n

+2ζnωns

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

q1

q2

. . .

qn

⎞

⎟⎟⎟⎠

= F

⎛

⎜⎜⎜⎝

β1

β2

. . .

βn

⎞

⎟⎟⎟⎠ , (22.224)

where βn = φn(x0)

mn
. The equivalent matrix notation is

CQ = Fβ . (22.225)

The displacement of the bar is given by

ξ = (C−1β)t.φF = (C−1β).φt F . (22.226)

Inversion of the Matrix C. Finding explicit solutions for
the generalized displacements qi in (22.224) requires
inversion of the matrix C. An example is given be-
low for a subsystem of order two, where we write for
convenience Dn = s2+2ζnωns+ω2

n . We obtain easily

q1 = β1 D2+ sC12β2

D1 D2− s2C12C21
F

and

q2 = β2 D1+ sC21β1

D1 D2− s2C12C21
F . (22.227)

Or, using the (H,K) formulation

q1 = H1+K12 H2

1−K12K21
F = L1 F

and

q2 = H2+K21 H1

1−K12K21
F = L2 F (22.228)

from which the displacement ξ can be derived. The cou-
pling appears in (22.224) through the fact that q1 is
not zero, even if β1 vanishes. In other words, one can
excite vibrations at ωn even if the structure is excited
at a node of the associated in vacuo mode. The new
eigenfrequencies and damping factors modified by the
coupling are now given by the roots of the denominator
D1 D2− s2C12C21.

Orthogonalization of the Matrix C. The question is
now to study whether one can find an appropriate basis
for decoupling the system. Approximate formulations
in the case of weak coupling are derived below. We start
with a 2-DOF system before generalization. The matrix
C is

(
D1 −sC12

−sC21 D2

)

with

Di = s2+2ζiωi s+ω2
i . (22.229)

The corresponding diagonal matrix � is written
(
λ1 0

0 λ2

)
, (22.230)

where the λi are solutions of the equation
∣∣∣∣∣
D1−λ −sC12

−sC21 D2−λ

∣∣∣∣∣

= (D2−λ)(D1−λ)− s2C12C21 = 0 . (22.231)
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Denoting by ei the corresponding eigenvectors and
T = (e1 e2), then we have the following matrix equa-
tions

T� = CT ⇔ � = T−1CT . (22.232)

In the general case, the λi are given by

λ1,2 = 1

2

[
D1+D2±

√
(D1−D2)2+4s2C12C21

]
.

(22.233)

Weak-Coupling Approximation. It is convenient to de-
fine the nondimensional coupling parameter

ε= C12C21

D2−D1

= C12C21

ω2
2−ω2

1+2s(ζ2ω2− ζ1ω1)
(22.234)

so that, for ε
 1, the eigenvalues of C can be written
to first-order approximation as

λ1 = D1− εs2 ; λ2 = D2+ εs2 . (22.235)

This approximation is justified if the Cij are small, as
in the case of a light fluid, or if the in vacuo eigen-
frequencies ωi and ω j are not too close to each other
(Sect. 22.6.1). In this case, the previously defined matri-
ces become

T =
⎛

⎜⎝
1 − εs

C21
εs

C12
1

⎞

⎟⎠ ⇒

T−1 = C12C21

C12C21+ ε2s2

×

⎛

⎜⎝
1

εs

C21

− εs

C12
1

⎞

⎟⎠ . (22.236)

Defining further the vectors γ = T−1β and R= T−1 Q,
(22.225) and (22.226) can be rewritten as

�R= Fγ ⇒
ξ = T�−1γ φt F . (22.237)

Here, we have

�−1 = 1

D1 D2− s2C12C21

×

[
D2+ εs2 0

0 D1− εs2

]
, (22.238)

γ = C12C21

C12C21+ ε2s2

⎛

⎜⎝
β1+ εs

C21
β2

β2− εs

C12
β1

⎞

⎟⎠

and

R= C12C21

C12C21+ ε2s2

⎛

⎜⎝
q1+ εs

C21
q2

q2− εs

C12
q1

⎞

⎟⎠ . (22.239)

To a first-order approximation, it can be shown that

�−1 ≈�−1
0 + ε�−1

c , (22.240)

where �−1
0 is the in vacuo diagonal matrix given by

�−1
0 =

⎛

⎜⎝

1

D1
0

0
1

D2

⎞

⎟⎠ (22.241)

and �−1
c is the coupling diagonal matrix given by

�−1
c =

⎛

⎜⎜⎝

(
s

D1

)2

0

0 −
(

1

D2

)2

⎞

⎟⎟⎠ . (22.242)

This result is of particular interest for computing the
perturbation due to air loading of all significant vari-
ables of the system.

Generalization. Equation (22.235) can be generalized
to n coupled modes. In this case, the eigenvalues be-
come

λi = Di + εi

with εi =−s2
∑

j

CijC ji

D j −Di

and 1 ≤ j ≤ n

and j �= i . (22.243)

Approximate Expressions for Displacement and Mode
Shapes. From the above results, we can now find
a first-order approximate expression for the bar dis-
placement ξ . As in the previous sections, we start with
the simple example of a 2-DOF system. Let us write
first the in vacuo displacement

ξ0 = φ10q10+φ20q20 . (22.244)

N.B. The notation φi0, denotes the eigenmode in vacuo
and should not be confused with φi (x0), which denotes

Part
G

2
2
.5



Structural Acoustics and Vibrations 22.5 Structural–Acoustic Coupling 971

the value of this eigenmode at one particular point of
the structure. For the structure vibrating in air, the dis-
placement becomes

ξ = φ10q1+φ20q2 . (22.245)

From (22.226) one can derive a first-order approxima-
tion for the bar displacement

ξ = φ10

(
q10+ sC12

D1
q20

)
+φ20

(
q20+q10

sC21

D2

)
.

(22.246)

Operating Deflexion Shapes. Equation (22.246) can be
rewritten

ξ = q10

(
φ10+ sC21

D2
φ20

)

+q20

(
φ20+φ10

sC12

D1

)

with qi0 = φi0

mi Di
F . (22.247)

In experiments on structures, sinusoidal excitation is
often used. Imagine that we apply a sudden harmonic
force F(t) = H(t) sinωt at time t = 0 to the structure,
with excitation location and frequency such that q20 is
negligible compared to q10. H(t) is the Heaviside func-
tion. In this case, the spatial pattern of the structure is
given by

φ1 = φ10+φ20
sC21

D2
. (22.248)

Because of the time dependence of the second term
(through the Laplace variable s), the spatial shape
evolves with time. Here, we can use the Laplace limit
theorem, which states that the value of φ(t) as time tends
to infinity is given by the product of sφ(s) as s tends to
zero. Since s2C12/D2 tends to zero as s tends to zero,
the second term on the right-hand side of (22.248) van-
ishes after some time. Calculating the inverse Laplace
transform shows that this decay time is of the order of
the magnitude of the decay time of the second struc-
tural mode. After this transient regime, the spatial shape
is nearly equal to the spatial shape in vacuo φ10. In the
more general case, (22.247) shows that F excites both
q10 and q20. After a transient regime, the bar displace-
ment then finally converges to

ξ(ω, x) =
[
φ10β1

D1(iω)
+ φ20β2

D2(iω)

]
. (22.249)

The quantity between in square brackets is called the
operating deflexion shape (ODS) of the structure at

frequency ω. Since it is very difficult in practice to ex-
cite a single qi0, the ODS describes the multi-mode
shapes that are observed for sinusoidal excitation of
structures.

State-Space Formulation
The transfer function formulation is convenient if the
system is initially at rest, and for time-invariant sys-
tems. For other applications, such as sound control, it is
useful to express the results in terms of state-space vari-
ables [22.26–29]. In most cases, the mechanical state
of the system is given by the position and the velocity
of the DOFs. Since the unloaded structure is described
by its eigenmodes φn , all useful information about the
state of the system is contained in the modal participa-
tion factors qn and in their first derivatives with time
q̇n . This allows us to rewrite the equations for a 2-DOF
coupled system as follows

d

dt

⎛

⎜⎜⎜⎝

X1

X2

X3

X4

⎞

⎟⎟⎟⎠=

⎛

⎜⎜⎜⎝

0 0 1 0

0 0 0 1

−ω2
1 0 −2ζ1ω1 C12

0 −ω2
2 C21 −2ζ2ω2

⎞

⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎝

X1

X2

X3

X4

⎞

⎟⎟⎟⎠+

⎛

⎜⎜⎜⎝

0

0

β1

β2

⎞

⎟⎟⎟⎠ F , (22.250)

where

X1 = q1 ; X2 = q2 ; X3 = q̇1 ; X4 = q̇2 . (22.251)

Equation (22.250) can then be formulated equivalently
as

Ẋ = AX+ BF , (22.252)

where F is the input and X is the state vector. The out-
put Y depends on the investigated mechanical problem.
If we decide, for example, to investigate the displace-
ment, then we can write for the output

Y =
(
φ1 φ2 0 0

)t
X = � X . (22.253)

Equations (22.252) and (22.253) are general expres-
sions for a linear system expressed in terms of
state-space variables.

Remark 1. The representation presented in (22.250) is
not unique. Selecting, for example

X1 = q1; X2 = q̇1; X3 = q2; X4 = q̇2 (22.254)

leads to different values for A and B.
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–pn

0 L x

Fig. 22.14 Longitudinally vibrating bar coupled to a semi-
infinite tube

Remark 2. Denoting by M, R, and K, the mass, resis-
tance and stiffness matrices, respectively, of the 2-DOF
system, the matrix A can be rewritten more generally
using submatrices as

A =
(

0 I
−M−1K −M−1R

)
, (22.255)

where I is the identity matrix.

22.5.2 Energetic Approach
to Structural–Acoustic Systems

Two-DOF System
We now consider a 2-DOF structure coupled to a radiat-
ing wave, but now include damping terms in the struc-
ture r1 and r2, to compare the power dissipated in vacuo
and air, respectively. The damping terms ra1 and ra2
are due to radiation. Modal masses and stiffnesses are
written explicitly, so that comparison with the case of
a single oscillator becomes easier. We can then write

⎧
⎨

⎩
m1q̈1+ (r1+ ra1)q̇1+ k1q1+γ q̇2 = φ1(x0)F ,

m2q̈2+ (r2+ ra2)q̇2+ k1q2+γ q̇1 = φ2(x0)F ,

(22.256)

where γ = −C12m1 = −C21m2. In what follows, we
use the notations⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ζ1ω1 = r1+ra1
m1

;
2ζ10ω1 = r1

m1
;

ω2
1 = k1

m1

2ζ2ω2 = r2+ra2
m1

;
2ζ20ω2 = r2

m2
;

ω2
2 = k2

m2

(22.257)

to make a distinction between the damping factors in air
and in vacuo. The force F is applied at point x = x0 so
that the mechanical input power is given by

pm(t) = F
dξ

dt
(x0, t) = F[φ1(x0)q̇1+φ2(x0)q̇2].

(22.258)

Using (22.256) allows pm(t) to be written as

pm(t) = m1q̈1q̇1+ (r1+ ra1)q̇2
1 + k1q1q̇1

+2γ q̇1q̇2

+m2q̈2q̇2+ (r2+ ra2)q̇2
2 + k2q2q̇2 .

(22.259)

Integrating pm(t) over a duration T and removing the
conservative energy terms yields the mean input power

Pm(T ) = 1

T

T∫

0

(r1+ ra1)q̇2
1 + (r2+ ra2)q̇2

2

+2γ q̇2q̇1 dt . (22.260)

The input power is now seen as the sum of three terms:

1. The mean power

Ps(T ) = 1

T

T∫

0

r1q̇2
1 + r2q̇2

2 dt

dissipated in the structure
2. The mean acoustic power

Pa(T ) = 1

T

T∫

0

ra1q̇2
1 + ra2q̇2

2 dt

radiated in the air
3. The mean coupling power

Pc(T ) = 2

T

T∫

0

γ q̇2q̇1 dt

due to the exchange of energy between the two os-
cillators via the fluid.

Let us denote the steady-state excitation frequency
by ω. The transient regime is neglected, and the integra-
tion time T is supposed to be taken equal to an integer
multiple of the period T = nτ = n2π/ω. The mean in-
put power can then be written as

Pm = 1

2

[
(r1+ ra1)|q̇1|2

+ (r2+ ra2)|q̇2|2+2γ |q̇2||q̇1|
]
. (22.261)

Pm can be written in matrix form. Writing Q̇ =
(

q̇1

q̇2

)
,

Rs =
(

r1 0

0 r2

)
and Ra =

(
ra1 γ

γ ra2

)
, we have
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Pm = Q̇H [Rs+Ra] Q̇ , (22.262)

where Q̇H is the Hermitian conjugate (conjugate trans-
pose) of Q̇.

Generalization
The mean power for a multiple-DOF system is written

Pm(T ) =
1

T

T∫

0

[ n∑

i=1

(ri + rai )q̇
2
i +

n∑

i=1

n∑

j=1
j �=i

γij q̇i q̇ j

]
dt

with γij =−miCij . (22.263)

This mean power can be written in the same form as
(22.262), where the resistance matrix is defined as

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1+ ra1 . . . γ1i . . . γ1 j . . . γ1n

. . . . . . . . . . . . . . . . . . . . .

γi1 . . . ri + rai . . . γij . . . γin

. . . . . . . . . . . . . . . . . . . . .

γ j1 . . . γ ji . . . r j + ra j . . . γ jn

. . . . . . . . . . . . . . . . . . . . .

γn1 . . . γni . . . γn j . . . rn + ran

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(22.264)

Remark. The resistance matrix can again be viewed
as the sum of a structural resistance matrix Rs and an
acoustical resistance matrix Ra. This leads to the ex-
pression for the mean acoustic power

Pa = Q̇HRa Q̇ (22.265)

and acoustical efficiency

ηm = Q̇H [Ra] Q̇

Q̇H [Rs+Ra] Q̇
(22.266)

which generalizes (22.32). Note that we have assumed
that the structural resistance matrix Rs is diagonal,
which is usually a reasonable assumption for lightly
damped structures. However, strong structural damp-
ing can also be the source of intermodal coupling. In
this case, Rs is no longer diagonal, but the general re-
sults expressed in (22.262) and (22.266) remain valid.
A comparison of efficiencies between the cases of light
and heavy fluids, respectively has been conducted by
Rumerman [22.30].

Radiation Filter
Because Ra is real, symmetric and positive definite, we
can write this matrix in the form

Ra = Pt�P , (22.267)

where � is a diagonal matrix [22.25]. As a conse-
quence, the acoustic power becomes, removing for
simplicity the integration time T ,

Pa = bH�b

where

b = PQ̇ . (22.268)

This can be written explicitly as

Pa =
∑

n

Ωn |bn |2 . (22.269)

Equation (22.269) shows that, defining the appropriate
basis, the acoustic power can be expressed as a sum
of quadratic terms, thus removing the cross products
between the qi in the previous subsections. Another in-
teresting consequence of the properties of Ra is that the
acoustic power can be decomposed using the Cholesky
method. This leads to the expression

Pa = Q̇HRa Q̇

= Q̇HGHGQ̇ = zHz =
∑

n

|zn |2 , (22.270)

where, by comparison with (22.269), the vector z(ω)
can be viewed as the output of a set of radiation filters
whose transfer functions G(ω) are given by

G(ω) =√� (ω)P(ω) (22.271)

with input vector Q̇, so that

z = GQ̇ . (22.272)

Impulsively Excited Structure:
Total Radiated Energy

For an impulsively excited structure, the total radiated
energy is given by

ET =
∞∫

0

Q̇HRa Q̇ dω=
∞∫

0

zH(ω)z(ω)dω (22.273)

which, by Parseval’s theorem, is equivalent to [22.31]

ET =
∞∫

0

zt(t)z(t)dt . (22.274)
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State-Space Analysis
The interest of formulating structural acoustic coupling
in terms of state-space variables is now emphasized us-
ing an example. Denoting by r the internal state of
filter G with input X (or Q̇) and output z, we can use
a state-space realization of the form

⎧
⎨

⎩
ṙ = AGr+BG X ,

z = CGr+DG X .
(22.275)

Combining these equations with the equations of mo-
tion of the structure gives

(
Ẋ
ṙ

)
=
(

A 0
BG AG

)(
X
r

)
+
(

B
0

)
F (22.276)

with the output

z =
(

DG CG

)(X
r

)
. (22.277)

If, for example, the purpose is to minimize the total en-
ergy radiated by a source, then the cost function can be
defined as

C f =
∫∞

0 zt(t)z(t)dt

max{ET} . (22.278)

22.5.3 Oscillator Coupled to a Tube
of Finite Length

Presentation of the Model
The purpose of this section is to present the fundamental
concepts for a vibrating structure coupled to an acoustic
cavity. As a simple example, we consider a single-
DOF oscillator coupled to a 1-D tube of cross-sectional
area S and finite length L loaded at its end x = L by
an impedance ZL, defined here as the ratio between the
pressure and acoustic velocity. The selected structure is
a mechanical oscillator of mass M, stiffness K = Mω2

0
and dashpot R = 2Mζ0ω0 driven by a force T (0, t) at

ZL

T

K

R

M

0 L x

Fig. 22.15 Single-DOF mechanical oscillator coupled to
a finite loaded tube

position x = 0 (Fig. 22.15). The amplitude of the motion
of the mass is assumed to be small, so that the acoustic
velocity v(0, t) is equal to the mechanical velocity ξ̇(t).
We assume lossless wave propagation in the tube itself.
The set of equations for the model is written

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

c2

∂2 p

∂t2
= ∂

2 p

∂x2
for 0< x < L ;

ρ
∂v

∂t
=−∂p

∂x
p(L, s) = ZLv(L, s) ; v(0, t) = ξ̇(t)
M
(
ξ̈+2ζ0ω0ξ̇+ω2

0ξ
)=−Sp(0, t)+T (t)

(22.279)

Mass Displacement
Using the Laplace transforms, we obtain

⎧
⎪⎨

⎪⎩

p(x, s) = exp
(
− sx

c

)
F(s)+ exp

( sx

c

)
G(s) ,

v(x, s) = 1

ρc

[
exp

(
− sx

c

)
− exp

( sx

c

)
G(s)

]
,

(22.280)

where F(s) and G(s) are two functions to be deter-
mined. The boundary condition at x = L gives

G(s) = F(s)
ZL−ρc

ZL+ρc
exp

(
−2Ls

c

)
. (22.281)

The continuity of the displacement at position x = 0
yields

v(0, s) = 1

ρc
F(s)

[
1− ZL−ρc

ZL+ρc
exp

(
− 2Ls

c

)]

= sξ(s) . (22.282)

Finally, the equation governing the oscillator motion
becomes

(
s2+2ζ0ω0s+ω2

0

)
ξ(s)

= T (s)

M
− s

Ra

M

zL+ tanh
( sL

c

)

1+ zL tanh
( sL

c

)ξ(s) (22.283)

with

zL = ZL

ρc
and Ra = ρcS . (22.284)

Equation (22.283) shows that, due to the loading of the
oscillator by the finite tube, the damping term 2ζ0ω0
becomes

2ζ0ω0+2ζaω0 Z(s) , (22.285)
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where
Ra

M
= 2ζaω0

and

Z(s) = zL+ tanh
( sL

c

)

1+ zL tanh
( sL

c

) (22.286)

so that we can write

ξ(s) = T (s)

M

1

s2+2ω0 [ζ0+ ζa Z(s)] s+ω2
0

.

(22.287)

F(s) is derived from (22.282)

F(s) = ρcsξ(s)[
1− zL−1

zL+1 exp
(
− 2sL

c

)]

= ρcsξ(s) exp
( sL

c

)
(zL+1)

2
[
zL sinh

( sL
c

)+ cosh
( sL

c

)] . (22.288)

Equations (22.280) and (22.281) yield the pressure in
the tube

p(x, s) = ρcsξ(s)

×
zL cosh

(
s(x−L)

c

)
− sinh

(
s(x−L)

c

)

cosh
( sL

c

)+ zL sinh
( sL

c

) .

(22.289)

The pressure p(0, s) acting on the oscillator is

p(0, s) = ρcsξ(s)
zL cosh

( sL
c

)+ sinh
( sL

c

)

cosh
( sL

c

)+ zL sinh
( sL

c

)

= ρcsξ(s)Z(s) . (22.290)

Taking the inverse Laplace transform of (22.289) and
(22.287) yields the pressure in the tube and the mass
displacement in the time domain.

Discussion of Z(s). Several interesting limiting cases can
be examined:

• If the load at the end of the tube at x = L is such that
ZL = ρc, then G(s) = 0 and F(s) = ρcsξ(s). This
means that when the tube is loaded by its charac-
teristic impedance there is no returning wave. In this
case Z(s)= 1, and the only effect of the tube is to in-
crease the damping of the oscillator, which becomes
equal to ξ0+ ξa. The increase of damping is entirely
due to radiation and is, of course, identical to that
obtained for the 1-DOF approximation of the vibrat-
ing bar loaded by the semi-infinite tube presented in
Sect. 22.5.1.

• If the tube is closed at x = L , then zL tends to
∞ so that Z(s) = 1/ tanh(sL/c). If, in addition, the
length L of the tube is sufficiently small so that
we can make the approximation tanh(sL/c)≈ sL/c,
then the displacement can be written

ξ(s) = T (s)

M

1

s2+2ω0ζ0s+ω2
0+ 2ω0ζac

L

.

(22.291)

This is equivalent to the tube acting as an added
stiffness Ka = 2ω0 Mζac/L , which increases the
eigenfrequency of the mechanical oscillator.• If the tube is open at x = L and if we neglect radia-
tion, then zL = 0 and Z(s)= tanh(sL/c). For a small
tube, or more generally for sL/c 
 1, we obtain

ξ(s) = T (s)

M

1

s2+2ω0ζ0s+ω2
0+ 2ω0ζas2 L

c

.

(22.292)

so that the tube acts as an added mass Ma =
2Mω0ζaL/c, which decreases the eigenfrequency of
the oscillator.

In the most general case, the coupling between
a structure and a cavity yields new vibroacoustic (or
structural–acoustic) modes that differ from the in vacuo
modes of the structure and from the cavity modes with
rigid walls [22.32]. For the present example, assuming
light damping, these modes are the poles of ξ(ω), which
are obtained from the equation

−ω2+ω2
0−2ζaω0ω Im[Z(ω)] = 0 . (22.293)

For a lossless tube closed at x = L , the eigenmodes are
the solutions of

(
ω2

0−ω2) tan
ωL

c
+2ζaω0ω= 0 . (22.294)

For high frequencies, i. e., for ω� ω0, the displacement
of the oscillator tends to zero and (22.294) reduces to

tan
ωL

c
≈ 0 . (22.295)

In this regime, the eigenfrequencies tend to those of the
tube closed at both ends.
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22.5.4 Two-Dimensional Elasto–Acoustic
Coupling

We now turn to the case of 2-D systems. First, the
case of an infinite isotropic plate is examined to intro-
duce the concept of critical frequency. The presentation
used the wave formalism and is inspired from Filippi
et al., [22.33] and Lesueur [22.34]. We then consider
the case of a finite plate using the wavenumber Fourier-
transform method [22.35, 36].

Infinite Isotropic Plate. Critical Frequency
The case of thin plates submerged in compressible flu-
ids and subjected to a transverse flexural displacement
ξ(x, y, t) is considered. Kirchhoff–Love approxima-
tions are assumed, so that shear stresses and rotary
inertia are neglected. The infinite plate is located in the
plane z = 0. In what follows, h is the plate thickness, E
the Young’s modulus, ν the Poisson’s ratio and ρs the
density of the plate. In the half-space z < 0, the pres-
sure field is p1(x, y, z, t) in fluid 1 of density ρ1 where
the speed of sound is c1. For z > 0, the pressure field
is p2(x, y, z, t) in fluid 2 of density ρ2 with speed of
sound is c2. The motion of the plate is harmonic with
frequency ω. The equations of the problem are written
in Cartesian coordinates:

• For z < 0

∇2 p1+ ω
2

c2
1

p1 = 0 (22.296)

with the continuity condition

∂p1

∂z
(x, y, 0−) = ω2ρ1ξ(x, y) . (22.297)

• For z > 0

∇2 p2+ ω
2

c2
2

p2 = 0 (22.298)

with the continuity condition

∂p2

∂z
(x, y, 0+) = ω2ρ2ξ(x, y) . (22.299)

• For z = 0, we have the loaded-plate equation

p1(x, y, 0−)− p2(x, y, 0+)

=−ω2ρshξ(x, y)+D∇4ξ(x, y) , (22.300)

where D = Eh3

12(1−ν2)
.

General Solution. The continuity conditions yields the
following equalities for the wavenumber components

k1
x = k2

x = kx and k1
y = k2

y = ky . (22.301)

Therefore the general solution of the problem can be
written in the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(x, y, z) = (A1
x e−ikx x + B1

x eikx x
)

(
A1

y e−iky y + B1
y eiky y

)
B1

z eik1
z z ,

p2(x, y, z) = (A2
x e−ikx x + B2

x eikx x
)

(
A2

y e−iky y + B2
y eiky y

)
A2

z e−ik2
z z ,

ξ(x, y) = (Cx e−ikx x +Dx eikx x
)

(
Cy e−iky y +Dy eiky y

)
,

(22.302)

where the constants A, B, C, and D depend on the initial
conditions. The wavenumbers in both fluids are written

k2
1 =

ω2

c2
1

= k2
x + k2

y + k1
z

2

and

k2
2 =

ω2

c2
2

= k2
x + k2

y + k2
z

2
. (22.303)

From (22.296–22.303) we derive the dispersion equa-
tion for the fluid-loaded plate

iω2

⎛

⎜⎜⎝
ρ1√

ω2

c2
1
− k2

x − k2
y

+ ρ2√
ω2

c2
2
− k2

x − k2
y

⎞

⎟⎟⎠

+D
(
k2

x + k2
y

)2−ω2ρsh = 0 (22.304)

and the expressions for the pressure fields
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 =− iωρ1c1k1√
k2

1 − k2
x − k2

y

ξ(x, y)e
+i
√

k2
1−k2

x−k2
yz

with k1 = ω

c1
,

p2 =+ iωρ2c2k2√
k2

2 − k2
x − k2

y

ξ(x, y)e
−i
√

k2
2−k2

x−k2
yz

with k2 = ω

c2
.

(22.305)

Equation (22.305) shows that the acoustic waves can
be either progressive or evanescent, depending on the
values of the wavenumber components kx and ky.
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Radiated Power. The mean acoustic power in the fluids
are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈P1〉 = ∫(S)
1
2 Re

(
p1 [iωξ]∗

)
dS

=− 1
2ω

2ρ1c1
∫

(S) Re

(
k1√

k2
1−k2

x−k2
y

)

×
∣∣ξ(x, y)

∣∣2 dS ,

〈P2〉 = ∫(S)
1
2 Re

(
p2 [iωξ]∗

)
dS

=+ 1
2ω

2ρ2c2
∫

(S) Re

(
k1√

k2
2−k2

x−k2
y

)

×
∣∣ξ(x, y)

∣∣2 dS .

(22.306)

The minus sign in 〈P1〉 follows from the fact that the
acoustic intensity vector in fluid 1 is oriented towards
the negative direction of the z-axis. The radiation effi-
ciencies σi of the plate in both fluids (with i ∈ [1, 2])
are defined as

σi =
∣∣∣∣

〈Pi〉
ρi ci〈V 2〉

∣∣∣∣

with

〈V 2〉 = 1

2

∫

(S)

ω2 |ξ(x, y)|2 dS (22.307)

which gives

σi = Re

(
ki

ki
z

)
. (22.308)

These quantities represent the ratio between the amount
of acoustic energy radiated in fluid and the total kinetic
energy of the plate. Equation (22.308) shows that, if kz

i
is real, we have a propagating acoustic wave and the
mean radiated power is different from zero. In the oppo-
site case, the acoustic wave is evanescent and the mean
radiated power is equal to zero.

Particular Case of Two Identical Fluids. One particu-
lar case of interest corresponds to the practical situation
where the plate is coupled to the same fluid on both
sides. In this case, the dispersion equation becomes

2iω2 ρ√
k2− k2

F

−ω2ρsh+Dk4
F = 0 , (22.309)

where kx = kF cos θ and ky = kF sin θ. kF is the flexu-
ral wavenumber coupled to the fluid, θ is the angle of
propagation and k = ω/c is the acoustic wavenumber.

For a plate vibrating in vacuo, the flexural wavenumber
is written

kF0 =
(
ω2ρsh

D

)1/4

(22.310)

so that the dispersion equation can be rewritten

k4
F

k4
F0

= 1− 2iρ

ρshkz
(22.311)

Light-Fluid Approximation. The light-fluid approxi-
mation corresponds to

∣∣∣∣
2iρ

ρshkz

∣∣∣∣
 1 . (22.312)

In this case, the wavenumbers are given by

kF = kF0 or kF = ikF0 . (22.313)

The case kF = kF0 corresponds to propagating waves. In
this case, the radiation efficiency becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ = Re

(
k

kz

)
= 1
√

1− k2
F0
k2

= 1√
1− ωc

ω

if ω > ωc

with ωc = c2

h

√
12(1−ν2)μ

E

= 0 if ω < ωc ;

(22.314)

15

10

5

0
5 643210

σ

ω/ωc

Fig. 22.16 Radiation efficiency σ for progressive flexural
waves in an infinite isotropic plate submerged in a light
fluid, ωc is the critical frequency
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2.0

1.5

1.0

0.5

0
5 643210

σ

ω/ωc

Fig. 22.17 Radiation efficiency for evanescent flexural
waves in an infinite isotropic plate submerged in a light
fluid

ωc is the critical (or coincidence) frequency of the plate
coupled to the light fluid. For this frequency, the wave-
length in the plate is equal to the wavelength in the fluid.
For ω>ωc (kF0 < k), the flexural waves are supersonic.
The radiation efficiency tends to infinity asω tends toωc
and tends to unity as ω tends to infinity (Fig. 22.16). σ
tends to infinity for ω= ωc because we are dealing with
an infinite plate.

For ω < ωc, the flexural waves are subsonic. The
radiation efficiency is equal to zero which means that
the plate does not radiate sound. This result follows
from the fact that acoustic pressure and velocity are in
quadrature.
The solution kF = ikF0 corresponds to evanescent waves
in the plate. In this case, the radiation efficiency be-
comes

σ = Re

(
k

kz

)
= 1
√

1+ k2
F0
k2

= 1√
1+ ωc

ω

. (22.315)

Equation (22.315) shows that the radiation efficiency
of a flexural evanescent wave increases with frequency
and tends to unity as the frequency tends to infinity
(Fig. 22.17).

Simply Supported Radiating Isotropic Plate
Equations of Motion. We address the problem of
structural–acoustic interaction for a 2-D, rectangular,
baffled, simply supported isotropic thin plate radiating
in air (Fig. 22.18).

The system is described by the equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D∇4ξ(x, y, t)+ρsh
∂2ξ

∂t2
(x, y, t)

= p(x, y, 0−, t)− p(x, y, 0+)

for 0< x < Lx and 0< y< L y ,

ξ(0, y, t) = ξ(Lx , y, t) = ξ(x, 0, t)
= ξ(x, L y, t) = 0 ,

ξ ′′(0, y, t) = ξ ′′(Lx , y, t) = ξ ′′(x, 0, t)
= ξ ′′(x, L y, t) = 0 ,

vz(x, y, 0+, t) =−vz(x, y, 0−, t) = ξ̇(x, y, t)

for 0< x < Lx and 0< y< L y ,

v(x, y, 0) = 0

for x �∈ ]0, Lx[ or y �∈ ]0, L y[ ,
ρ
∂v

∂t
+∇ p = 0 ,

∇2 p− 1

c2

∂2 p

∂t2
= 0 ,

(22.316)

where h is the thickness of the plate, D= EI = Eh3

12(1−ν2)
is the flexural rigidity factor, E is the Young’s modu-
lus, ν is the Poisson’s ratio and ρs is the plate’s density.
The transverse displacement of the plate is denoted
by ξ(x, y, t). The acoustic variables are the pressure
p(x, y, z, t) and the velocity v(x, y, z, t). ρ is the air
density and c is the speed of sound in air.

Eigenmodes in Vacuo. Solving the plate equations
in vacuo with simply supported boundary conditions
yields the eigenmodes

φmn(x, y) = φm(x)φn(y) = sin
πmx

Lx
sin
πny

L y

(22.317)

allowing the displacement to be expanded as follows

ξ(x, y, t) =
∑

m,n

φmn(x, y)qmn(t)

= φm(x)φn(y)qmn(t) . (22.318)

Defining the vectors
⎧
⎪⎪⎨

⎪⎪⎩

Qt = (q01 q10 q11 ... qMN ) ,

and

Φt = (φ01 φ10 φ11 ... φMN ) ,

(22.319)
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(22.318) can be written

ξ(x, y, t) = QtΦ (22.320)

which is similar in form to the 1-D systems studied
in Sect. 22.5.1. In (22.318), the number of considered
modes (with indices M and N in both directions, respec-
tively) depends on the nature and frequency content of
the practical problem to be solved.

Calculation of the Radiated Sound Field Using
Wavenumber Fourier Transform. Using the spatial
Fourier transform enables the pressure on the plate sur-
face to be easily determined [22.36]. For any 2-D spatial
function f (x, y), the transform is defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(kx , ky) =
+∞∫

−∞

+∞∫

−∞
f (x, y)ei(kx x+ky y) dx dy ,

f (x, y) = 1

(2π)2
×

+∞∫

−∞

+∞∫

−∞
F(kx , ky)e−i(kx x+ky y) dkx dky .

(22.321)

This allows us to transform the wave equation for a har-
monic sound pressure in space as follows

+∞∫

−∞

+∞∫

−∞
(∇2+ k2)p(x, y, z)ei(kx x+ky y) dx dy = 0 .

(22.322)

This leads to
(

k2− k2
x − k2

y +
∂2

∂z2

)
P(kx , ky, z) = 0 (22.323)

with a solution given by

P(kx , ky, z) = ωρΞ̇(kx , ky)

kz
e−ikz z

with

kz =
√

k2− k2
x − k2

y , (22.324)

where Ξ̇(kx , ky) is the wavenumber transform of the
transverse plate velocity ξ̇(x, y). The complex sound
pressure in space is obtained by using the inverse trans-

form, so that

p(x, y, z) = ωρ

(2π)2

+∞∫

−∞

+∞∫

−∞

Ξ̇(kx , ky)

kz

× e−i(kx x+ky y+kz z) dkx dky . (22.325)

This equation can be solved by using the method of
stationary phase or the fast Fourier transform algo-
rithm [22.37].

Radiated Sound Power and the Radiation Impedance
Matrix. In the harmonic case, the total sound power
radiated by the plate is given by

Pa = 1

2
Re

⎡

⎣
+∞∫

−∞

+∞∫

−∞
p(x, y, 0) ξ̇∗(x, y)dx dy

⎤

⎦ ,

(22.326)

where (∗) denotes the complex conjugates. Using Par-
seval’s theorem and (22.324) yields

Pa = ωρ

8π2
Re

⎡

⎣
+∞∫

−∞

+∞∫

−∞

|Ξ̇(kx , ky)|2
kz

dkx dky

⎤

⎦ .

(22.327)

Notice that this last result is only valid for wavenumbers
such that

√
k2

x + k2
y ≤ k. Alternatively, the sound power

can be written in terms of the wavenumber transform of
the acoustic pressure, such that

Pa = 1

8ωρπ2

∫∫

k2
x+k2

y≤k2

|P(kx , ky)|2 kz dkx dky .

(22.328)

Using (22.320) for the plate velocity and Φ(kx , ky) as
the wavenumber transform of Φ(x, y) yields the squared
modulus of the velocity field

|Ξ̇(kx , ky)|2 = |Q̇tΦ(kx , ky)|2
= Q̇HΦ∗(kx , ky)Φt(kx , ky)Q̇ .

(22.329)

Finally, substituting this result into (22.327), the acous-
tic power can be written as

Pa = Q̇HRa Q̇ . (22.330)
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Fig. 22.18 Geometry of the thin isotropic baffled radiating
plate

The radiation impedance matrix Ra is defined as

Ra = ωρ

8π2
Re

⎛

⎝
∫∫

Φ∗(kx , ky)Φt(kx , ky)
√

k2− k2
x − k2

y

dkx dky

⎞

⎠

(22.331)

which generalizes the results obtained in (22.265) to 2-D
systems. Each element (Ra)ij of the matrix Ra quantifies
the mutual radiation resistance resulting from the inter-
ference between the fields of modes (m, n) and (m′, n′),
respectively. If (m, n) = (m′, n′), we obtain the self-
radiation resistances, which are the diagonal terms of the
matrix Ra. These terms can be written explicitly as

(Ra)ij = (Ra)mn,m′n′

= ωρ

8π2
Re
∫∫

Φ∗m (kx ) Φ∗n (ky)Φm′ (kx ) Φn′ (ky)√
k2−k2

x−k2
y

dkx dky .

(22.332)

For a baffled simply supported plate (Fig. 22.18), the
radiation resistances become

(Ra)mn,m′n′ = mm′nn′ωρπ2

8L2
x L2

y

× Re

(∫∫
( fmm′ (kx Lx) fnn′ (ky L y)dkx dky)

/{[
k2

x −
(

m
π

Lx

)2
][

k2
x −

(
m′ π

Lx

)2
]

×

[
k2

y −
(

n
π

L y

)2
][

k2
y −

(
n′ π

L y

)2
]})

,

(22.333)

where the functions of the form fmm′ (kx Lx) are given
by

fmm′ (kx Lx) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(1− cos kx Lx) for m even, m′ even

2(1+ cos kx Lx) for m odd, m′ odd

2i sin kx Lx for m odd, m′ even

−2i sin kx Lx for m even, m′ odd

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

(22.334)

For the application of the radiation modal expansion
to active structural control of sound, see, for exam-
ple, the work by Gibbs et al.[22.38]. In a recent
work, Kim investigated structural–acoustic coupling for
active control purpose, using an impedance/mobility
approach [22.39]. Alternative techniques make use
of multipole expansion of the radiated sound pres-
sure [22.40].

22.6 Damping

In this section, we start by summarizing briefly the
conditions for modal decoupling in discrete damped
systems, and the concept of proportional damping is
introduced. The modal approach is convenient for treat-
ing the case of localized damping (Sect. 22.6.1). The
following example of a string with a dissipative end
illustrates the limit of the modal approach, and shows
that such a system cannot exhibit stationary solu-
tions. A physical interpretation is presented in terms of
damped propagating waves. Other authors use a state-
space modal approach to address the analysis of damped
structures [22.41, 42].

The section continues with the presentation of
three damping mechanisms in plates: thermoelastic-

ity, viscoelasticity and radiation, with emphasis on
the time-domain formulation. The section ends with
a brief presentation of friction, stick–slip vibrations
and hysteretic damping, which are often encountered in
structural damping models.

22.6.1 Modal Projection in Damped Systems

Discrete Systems
For a linear system with multiple degrees of freedom,
with a dissipation energy of the form

ED = 1

2
t ẊCẊ , (22.335)
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where C is a symmetric damping matrix with positive
elements, the equations of motion can be written as

MẌ+CẊ+KX = F . (22.336)

Denoting the eigenfrequencies and eigenfunctions of
the associated conservative system by ωn and Φn , re-
spectively, we use the expansion X =∑m Φmqm(t).
Denoting by ζnm the intermodal coefficients, the gen-
eralized coordinates are governed by the system of
coupled differential equations

q̈n +2ωnζnq̇n +ω2
nqn = fn

mn
−2ωn

∑

m �=n

ζnmq̇m .

(22.337)

Weakly Damped Systems. In the case of weak damping,
a first-order development of both the eigenfrequencies
and eigenvectors of the form

ω′n = ωn +Δωn ; Φ′
n =Φn +ΔΦn (22.338)

in (22.336), with F = 0, leads to the matrix equation
(
K−ω2

nM
)
ΔΦn +ωn

(−2ΔωnM+C
)
Φn � 0

(22.339)

from which we get

Δωn � iζnωn . (22.340)

Equation (22.340) yields two significant results:

1. The correction frequency is purely imaginary. As
a consequence, the eigenmode is transformed into
a damped sinusoid of the form eiωn t e−ζnωn t .

2. To first order, the correction frequency is indepen-
dent of the intermodal coefficients, thus the damping
matrix is diagonal.

The perturbation of the eigenvectors due to damping
is given by

ΔΦn =
∑

m �=n

αmΦm

with

αm = 2iζmn
mnω

2
n

mm
(
ω2

n −ω2
m

) . (22.341)

Consequently, in the presence of damping, the eigen-
vectors become

Φ′
n =Φn +2imnω

2
n

∑

m �=n

Φm
ζmn

mm
(
ω2

n −ω2
m

) .

(22.342)

Equation (22.342) shows that

1. If the eigenfrequencies of the associated conserva-
tive system are sufficiently different from each other
then, to first order, the perturbation of the eigen-
vectors are of the same order of magnitude as the
intermodal damping ζmn . If ωn ≈ ωm , terms of the
form ω2

n −ω2
m in the denominator can lead to signif-

icant corrections.
2. The correction terms for the eigenvectors are also

purely imaginary. Thus, the eigenmodes are no
longer in phase (or in antiphase) as for the conser-
vative case.

Proportional Damping. The system can be decou-
pled without any approximations if the damping matrix
can be written in the form of a linear combination
of mass and stiffness matrices C = αM+βK where
α and β are real constants. This corresponds to the
so-called proportional damping case. In this case, we
obtain

q̈n +2ωnζnq̇n +ω2
nqn = fn

mn

with

ζn = α

2ωn
+ βωn

2
. (22.343)

We therefore obtain a frequency-dependent modal
damping that decreases with frequency below ω =√
α/β, and increases with frequency above this value.

This damping law does not correspond to particular
physical phenomena, but is rather used for practical
mathematical considerations. It can be useful in some
cases for fitting experimental curves over a restricted
frequency range.

Localized Damping in Continuous Systems
In some applications, the damping of the vibrations of
continuous systems is localized at discrete points of the
structure. In this section, this problem is illustrated by
the case of a string of finite length L with eigenfre-
quencies ωn and eigenfunctionsΦn(x). A fluid damping
term is introduced at position x = x0, with 0< x0 < L ,
so that this term is of the form −Rẏ(x, t)δ(x− x0). The
equation of motion can therefore be written

ρ(x)S(x)
∂2 y

∂t2
+ R

∂y

∂t
δ(x− x0)

− ∂

∂x

[
T (x)

∂y

∂x

]
= f (x, t) . (22.344)
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Applying the usual scalar products, we can write

∑

m

q̈m(t)

L∫

0

Φm(x)Φn(x)ρ(x)S(x)dx

+
∑

m

q̇m(t)

L∫

0

Rδ(x− x0)Φm(x)Φn(x)dx

−
∑

m

qm(t)

L∫

0

Φn(x)
d

dx

(
T (x)

dΦm(x)

dx

)
dx

=
L∫

0

Φn(x) f (x, t)dx . (22.345)

The generalized displacements are governed by the
equations

q̈n +2ωn

∑

m

ζnmq̇m +ω2
nqn = fn

mn
, (22.346)

where the intermodal coefficients are written here

ζnm = RΦn(x0)Φm(x0)

2mnωn
. (22.347)

For weak damping, we have

q̈n +2ωnζnq̇n +ω2
nqn � fn

mn
, (22.348)

where the modal damping coefficient are given by

ζn = RΦ2
n(x0)

2mnωn
. (22.349)

Example. For a homogeneous string rigidly fixed at
both ends, we have Φn(x) = sin kn x and ωn = ckn =
nπc/L . With a damper fixed at position x0 = L/2, we
get ζn = R sin2(nπ/2)

2mnωn
. Two cases can be differentiated:

1. If n is odd, sin2(nπ/2) = 1 and ζn = R
2mnωn

.
2. If n is even, ζn = 0.

In this case, only the odd modes are damped.

String With a Dissipative End. The case of a dissipa-
tive end is slightly more delicate to handle since the
dissipation is localized at a boundary, and thus is di-
rectly involved in the definition of the eigenmodes. The
equations of the problem are

ρS
∂2 y

∂t2
−T

∂2 y

∂x2
= 0 (22.350)

with the boundary conditions

y(0, t) = 0 and T
∂y

∂x
(L, t) =−R

∂y

∂t
(L, t) .

(22.351)

One strategy consists of looking for complex solutions
of the separate variables y(x, t) = f (x)g(t). The time
dependence is assumed to be of the form

g(t) = A e−st + B est , (22.352)

with A, B and s ∈ C. Inserting (22.352) into (22.350),
we find that f (x) is of the form

f (x) = C e−sx/c+Desx/c

with c =
√

T

ρS
, (22.353)

where C and D ∈ C. The boundary solution at x = 0
yields C =−D. The boundary condition at x = L yields
two possible cases

⎧
⎪⎪⎨

⎪⎪⎩

cosh
sL

c
= r sinh

sL

c
and B = 0 ,

cosh
sL

c
=−r sinh

sL

c
and A = 0 ,

(22.354)

where r = R/Zc and Zc = T/c is the characteristic
impedance of the string. Defining s = iω+α, we find
two sets of solutions depending on whether R is larger
or smaller than Zc.

1. For r < 1,

⎧
⎪⎪⎨

⎪⎪⎩

cos
ωL

c
= 0 , tanh

αL

c
= r and B = 0 ,

cos
ωL

c
= 0 , tanh

αL

c
=−r and A = 0 .

(22.355)

2. For r > 1,

⎧
⎪⎪⎨

⎪⎪⎩

sin
ωL

c
= 0 , tanh

αL

c
= 1

r
and B = 0 ,

sin ωL
c = 0 , tanh

αL

c
=−1

r
and A = 0 .

(22.356)
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Fig. 22.19 Temporal evolution of a string with one dissipa-
tive end

We focus on the case r > 1. Defining a = AC and b =
BC, and taking (22.355) into account, we obtain

y(x, t) = e−αt
∑

n

an e−iωn t

×
(

e−(iωn+α)x/c− e(iωn+α)x/c)

+ e−αt
∑

n

bn eiωn t

×
(

e−(iωn−α)x/c− e(iωn−α)x/c
)

(22.357)

which can be rearranged, in condensed form, as

y(x, t)= e−αt
[

e−αx/c F
(

t+ x

c

)
− eαx/c F

(
t− x

c

)]

(22.358)

with

F(t) =
∑

n

(
an e−iωn t −bn eiωn t) . (22.359)

The complex constants an and bn are determined by the
initial conditions of the problem. It can be shown that
(22.359) yields a real function F(t). Several conclusions
can be drawn from this example:

1. The mechanical resistance R yields a decay time
1/α which is independent of frequency.

2. The term in square brackets in (22.358) corresponds
to two traveling waves in opposite directions with
different amplitudes, except at x = 0 where the

rigidly fixed boundary condition must be fulfilled.
As a consequence, we cannot get a steady-state
solution.

In conclusion, as shown in Fig. 22.19, the string
with a dissipative end cannot exhibit stationary wave
solutions. We cannot make reference to nodes and antin-
odes, since the points of maximum (and minimum)
amplitude are moving with time, though first-order ap-
proximations can be made for weak dissipation.

22.6.2 Damping Mechanisms in Plates

In vibrating structures, the dissipation of energy is
partly due to radiation, and partly due to other inter-
nal damping mechanisms such as thermoelasticity and
viscoelasticity. The relative prominence of these mech-
anisms is dependent on the material. In this section,
models for these three mechanisms are briefly reviewed
in the particular case of free rectangular plates, for
which the losses at the boundaries are neglected.

Thermoelasticity
Thermoelastic damping affects the vibrations of plates
with significant thermal conductivity, such as metallic
plates. A model for such damping can be derived from
the equations that govern the coupling between plate vi-
brations and the diffusion of heat [22.43, 44]. Here, the
method previously used by Cremer for isotropic bars is
extended to orthotropic plates to derive the expressions
for the complex rigidity constants [22.20]. The tempera-
ture change θ is assumed to be sufficiently small, so that
the stress–strain relationships can be linearized. The
plate is located in the (x, y) plane and is subjected to
transverse flexural vibrations.w(x, y, t) is the transverse
displacement. The stress components are given by

σxx =−12z

(
D1w,xx + D2

2
w,yy

)
−φxθ ,

σyy =−12z

(
D3w,yy + D2

2
w,xx

)
−φyθ ,

σxy =−6zD4w,xy , (22.360)

where φx and φy are the thermal coefficients of the ma-
terial. In the particular case of an isotropic material, we
have φx = φy = φ. Equation (22.360) has to be comple-
mented by the heat diffusion equation. Assuming that θ
only depends on z, we have

κθ,zz −ρCsθ =−zT0s(φxw,xx +φyw,yy) ,

(22.361)
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where T0 is the absolute temperature, C is the specific
heat at constant strain, and κ is the thermal conductiv-
ity. It is assumed that θ(z) is given by an equation of the
form [22.20]

θ(z) = θ0 sin
πz

h
for z ∈

[
−h

2
,

h

2

]
, (22.362)

which takes into account the fact that there is no heat
transmission between plate and air. Through integra-
tion of zσij over the thickness h of the plate, one
obtains, in the Laplace domain, the relationship between
the bending and twisting moments Mij and the par-
tial derivatives of the transverse displacement w of the
plate. The rigidity factors are now complex functions of
the form [22.45]

D̃1(s) = D1+φ2
x

sζ

1+ τs
,

D̃2(s) = D2+2φxφy
sζ

1+ τs
,

D̃3(s) = D3+φ2
y

sζ

1+ τs
,

D̃4(s) = D4 , (22.363)

where the thermoelastic relaxation time τ and the ther-
mal constant ζ are given by

τ = ρCh2

κπ2
and ζ = 8T0h2

κπ6
. (22.364)

As a consequence of (22.364), the thermoelastic losses
decrease as the thickness h of the plate increases. Notice
also that D4 is real. As a consequence, the particu-
lar flexural modes of the plate, such as the torsional
modes, which involve this rigidity factor will be rela-
tively less affected by thermoelastic damping than the
other modes. In other words, the thermoelastic damp-
ing factors depend on the modal shapes [22.46]. The
complex rigidities can be rewritten in the form

D̃i (s) = Di
[
1+ d̃it(s)

]= Di

[
1+ sRi

s+ c1/h2

]
,

i = [1, 2, 3] ,
D̃4(s) = D4 . (22.365)

Because the thermoelastic damping is small for most
materials, the d̃it(s) can often be considered as pertur-
bation terms of the complex rigidities. For convenience,
these terms are written in (22.365) using the following

nondimensional numbers

R1 = 8T0φ
2
x

π4 D1ρC
;

R2 = 16T0φxφy

π4 D3ρC
;

R3 =
8T0φ

2
y

π4 D3ρC
. (22.366)

The decay factor 1/τ is written here in the form c1/h2 in
order to highlight the fact that this factor is proportional
to the inverse squared thickness of the plate.

Viscoelasticity
A large class of materials is subject to viscoelastic
damping [22.47]. A convenient method for representing
viscoelastic phenomena is to use a differential formu-
lation between the stress σ and strain ε tensors of the
form

σ +
N∑

w=1

qw
∂wσ

∂tw
= E

(
ε+

N∑

v=1

qv
∂vε

∂tv

)
. (22.367)

As a consequence, the differential equations involv-
ing the flexural displacements and moments in thin
plates contain time derivatives up to order N . By tak-
ing the Laplace transform of both sides in (22.367) and
inserting it into the plate equation, one obtains the com-
plex rigidities due to viscoelasticity

D̃i (s) = Di
[
1+ d̃iv(s)

]= Di
1+∑N

v=1 sv piv

1+∑N
w=1 swqw

.

(22.368)

Equation (22.368) is a particular class of representation
for the complex rigidities. The operator is bounded by
the condition [22.48]

qN �= 0 . (22.369)

Another restrictive condition on the coefficients in
(22.368) follows from the fact that the energy for de-
forming the material from its initial undisturbed state
must be positive. For a generalized viscoelastic strain–
stress relationship, the Laplace transform is given by

σ̃ij =
∑

k,l

ãijkl(s)ε̃kl . (22.370)

Gurtin and Sternberg [22.48] have proven that one nec-
essary condition for the model to be dissipative is

Im[Xij ãijkl(iω)Xkl] ≥ 0 for ω≥ 0 (22.371)
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for any real symmetric tensor Xij . For the viscoelas-
tic orthotropic plate model, (22.371) together with
(22.368) yield the following conditions

⎧
⎪⎨

⎪⎩

p1N > 0 , p3N > 0 , p4N > 0 ,

p1N p3N − D2 p2N
2

4D1 D3
> 0 .

(22.372)

As for thermoelastic damping, if the viscoelastic losses
in the materials are sufficiently small, the correspond-
ing terms can be viewed as first-order corrections to the
rigidity.

Time-Domain Model of Radiation Damping
in Isotropic Plates

In this section, an approximate time-domain model
for isotropic plates is presented that takes the effect
of radiation into account. The leading idea is to use
a differential operator for the radiation losses (i. e.,
a polynomial formulation in the Laplace domain), sim-
ilar to that presented in the previous paragraphs for
thermoelastic and viscoelastic damping. Experiments
performed on freely suspended plates show that in
the low-frequency domain (i. e., below the critical fre-
quency), viscoelastic and/or thermoelastic losses are the
main causes of damping [22.45]. Above the critical fre-
quency, damping is mainly governed by radiation.

The equations that govern the flexural motion
of an isotropic plate surrounded by air are given
in (22.316). For a travelling wave of the form
w(x, y, t) = W(x, y) exp[i(ω̃t− k.x)], where k is the
wavenumber and ω̃= ω+ iαr is the complex frequency,
one obtains the dispersion equation

−ω̃2

⎛

⎝1+ 2ρa

ρh

1√
k2− ω̃2

c2

⎞

⎠+ Dh2

ρ
k4 = 0 .

(22.373)

With the assumption of a light fluid, one can derive the
radiation decay factor αr from (22.373) by reformulat-
ing this equation through the introduction of a rigidity
modulus D̃ of the form

D̃ � D

(
1− 2ρac

ωcρh

1√
Ω−Ω2

)

with

ωc = c2
√
ρ

h2 D

and

Ω = ω

ωc
. (22.374)

200

150

100

50

0
121086420

Damping factor (s–1)

Frequency (kHz)

Fig. 22.20 Comparison between damping model (solid
line) and measurements ( ) for a free rectangular alu-
minum plate. Damping factors (in s−1) as a function of
frequency (in kHz) (after Chaigne et al. [22.45])

The complex rigidity D̃ can be rewritten in the form of
a third-order Padé development

D̃(s) =̂ D

(
1+ 2ρac

ωcρh

∑3
m=1 bm

( s
ωc

)m
∑3

n=0 an
( s
ωc

)n

)

= D
[
1+ d̃r(s)

]
(22.375)

with

a0 = 1.1669 , a1 = 1.6574 ,

a2 = 1.5528 , a3 = 1 ,

b1 = 0.0620 , b2 = 0.5950 ,

b3 = 1.0272 .

Figure 22.20 shows a comparison between this asymp-
totic model and experimental data in the case of an
aluminum plate. The present formulation of radiation
damping cannot be easily generalized to anisotropic
plates where the dispersion equation depends on the
direction of wave propagation [22.14].

22.6.3 Friction

Elementary 1-DOF Oscillator
with Coulomb Damping

The Coulomb damping corresponds to the simple mod-
eling of a friction force applied to a solid sticking and/or
sliding on dry surfaces. Figure 22.21 shows a 1-DOF
oscillator subjected to Coulomb damping. For an initial
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M

K

Fd = μd Mg

Mgd�/dt

Fig. 22.21 One-DOF oscillator subjected to Coulomb
damping

displacement ξ(0) = ξ0, the motion of the mass M can
occur under the condition that the restoring force Kξ0
due to the spring is larger than the static friction force
Fs = μs Mg, where μs is the static friction coefficient
with 0< μs < 1. After the motion has started, the mass
is subjected to a dynamic frictional force Fd = μd Mg
where μd < μs. This force is in the opposite direction
to the velocity, so that the equation of motion can be
written [22.12]

M
d2ξ

dt2
+ Fd sgn

(
dξ

dt

)
+Kξ = 0

where sgn

(
dξ

dt

)
=

dξ
dt∣∣∣ dξ
dt

∣∣∣
. (22.376)

During the initial part of the motion, we have

d2ξ

dt2
+ω2

0ξ = ω2
0

Fd

K
(22.377)

whose solution is

ξ(t) =
(
ξ0− Fd

K

)
cosω0t+ Fd

K

for 0 ≤ t ≤ t1 = π

ω0
. (22.378)

The solution (22.378) remains valid until the time t1 =
π/ω0 where the velocity reduces to zero. At that time,
the displacement is ξ(t1) = ξ1 = 2Fd/K − ξ0. If Kξ1 >
μs Mg, then the motion is governed by

d2ξ

dt2
+ω2

0ξ =−ω2
0

Fd

K
(22.379)

whose solution is

ξ(t) =
(
ξ0−3

Fd

K

)
cosω0t− Fd

K

for t1 ≤ t ≤ t2 = 2π

ω0
. (22.380)

At the time t2 = 2π/ω0, the displacement is ξ(t2) =
ξ2 = ξ0−4Fd/K . The motion decreases linearly with
time and the equation of the envelope is ξ0 −
(2Fd)/(π

√
K M)t. The motion stops abruptly at time tn

where ξ(tn)< μs Fd/μd K .

Stick–Slip Vibrations
A number of acoustic sources are due to frictional ef-
fects [22.49]. The sounds produced can be perceived as
noise (such as squeal) or music (like for violin bowed
strings). In all cases, the vibrations are the result of self-
sustained oscillations. The simplest example of such
systems is a 1-DOF oscillator whose mass is resting on
a belt moving at constant velocity V0 (Fig. 22.22).

The equation of motion of such an oscillator can be
written in a general form

Mξ̈+ Rξ̇+Kξ = F(vr, ξ)

with vr = V0− ξ̇ . (22.381)

The previous Coulomb model presented in Sect. 22.6.3
does not account for the energy exchange between os-
cillator and belt. One widely used semi-empirical model
assumes a friction force F(t) ≤ Fs = μs Mg during the
sticking phase, while the sliding frictional force de-
creases with relative mass-belt velocity (Fig. 22.23).
Various mathematical formulations have been proposed
for such frictional forces. Leine et al. [22.50], for exam-
ple, make use of the following model

F(vr, ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F(ξ) = min(|Kξ|, Fs) sgn(Kξ) ,

vr = 0 stick ,

F(vr) = Fssgnvr

1+ δ|vr|
vr �= 0 slip ,

(22.382)

where δ is an arbitrary constant. In fact, the energy ex-
change depends on many factors: material properties,

M

K

R

VO

Fig. 22.22 One-DOF oscillator in stick–slip vibrations
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Fig. 22.23 Typical frictional force versus relative mass/belt
velocity

surface roughness, thermal properties of the mater-
ials in contact [22.51], etc. See, for example, [22.52]
and [22.49] for a review of friction models.

A periodic oscillation can be obtained for specific
ranges of belt velocity and friction parameters. In many
cases, such a complex system leads to bifurcations and
chaos [22.53].

22.6.4 Hysteretic Damping

Hysteretic damping is a widely used model of struc-
tural damping. In the frequency domain, it corresponds
to the case of a frequency-dependent dashpot that leads
to a loss factor independent of frequency. Recall that the
loss factor η is defined as the ratio between the energy
lost in the system during a period and the maximum of
the potential energy [22.54]. For a 1-DOF system, the
equation of motion is written in the frequency domain

as

[−Mω2+ iωR(ω)+K ]Ξ(ω) = F(ω) (22.383)

or, equivalently,

{
−Mω2+K

[
1+ iη sgn(ω)

]}
Ξ(ω) = F(ω) .

(22.384)

This formulation accounts for steady-state oscilla-
tions of the system. However, its major drawback
follows from the fact that the corresponding time-
domain description is not causal. In the frequency
domain, the dashpot force is Fd(ω) = iωR(ω)Ξ(ω) =
iKη sgn(ω)Ξ(ω). Taking the inverse Fourier transform
of Fd(ω) yields [22.54]

fd(t) = iKη

2π

+∞∫

−∞
sgn(ω)eiωt dω

+∞∫

−∞
ξ(τ)e−iωτ dτ .

(22.385)

Inverting (22.385) yields the displacement of the mass

ξ(t) = 1

2πKη

+∞∫

−∞

eiωt

isgn(ω)
dω

+∞∫

−∞
fd(τ)e−iωτ dτ .

(22.386)

Selecting, for example, fd(t) = δ(t) where δ(t) is the
Dirac delta function leads to

ξ(t) = 1

πKη

1

t
−∞< t<+∞ (22.387)

which is clearly not causal, since the response antici-
pates the excitation [22.54]. Thus, hysteretic damping
is generally not appropriate in the time domain, and
one has to find other strategies for modeling frequency-
dependent damping while preserving the causality.

22.7 Nonlinear Vibrations

Nonlinearities in structures can be either due to non-
linear properties of the material or to large amplitude of
vibration affecting the equations of motion. We limit our
attention to this latter case, which is called geometrical
nonlinearity. The most frequently encountered nonlin-
ear terms are cubic and quadratic. These nonlinearities
are responsible for many important phenomena: exis-

tence of harmonics of the excitation frequency in the
response, combination of modes, jumps and hysteresis
in response curves, instability and chaos. The purpose
of this section is to introduce most of these properties
for simple systems: single and coupled nonlinear os-
cillators. Finally, a number of nonlinear equations for
continuous structures are briefly reviewed.
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22.7.1 Example of a Nonlinear Oscillator

Equation of Motion
To introduce the fundamental concepts of nonlin-
ear vibrations, we start with a simple example of
a nonsymmetrical oscillator: the interrupted pendulum
(Fig. 22.24). The oscillator consists of a point mass m
suspended by a massless thread of length L and sub-
jected to gravity g. The length of the thread varies with
time, as it moves around the pulley of radius R [22.55].

The equation of motion can be derived from the
Lagrange equations (Sect. 22.2). Selecting the angle θ

θ < 0

θ > 0

θL

m

R

g

Fig. 22.24 Interrupted pendulum (after Denardo [22.55])

0.6

0.4

0.2

0

–0.2

–0.4

1086420
Time t (1/ω0)

Displacement θ (rad)

Fig. 22.25 Interrupted pendulum (after Denardo). Wave-
form: exact solution (solid line). Perturbative solution to
the third order (dashed line)

between the vertical axis and the actual direction of the
thread as the parameter of the system, the kinetic energy
is written Ek = 1/2m(L − Rθ)2θ̇2 and the equation of
motion becomes

θ̈+ω2
0 sin θ = ρ d

dt
(θθ̇) , (22.388)

where ω2
0 = g/L and ρ = R/L . As R tends to zero in

(22.388), we find the well-known equation for a pendu-
lum where the only nonlinear term is due to sin θ. The
nonlinear right-hand side member of the equation is due
to the rigid support. The validity domain of this equa-
tion is θ ∈ [0, θmax] where θmax = min

(
1/ρ, π/2

)
. We

assume that the pendulum is released at time t = 0 from
its initial position θ0 with zero initial velocity.

Resolution with the Harmonic Balance Method
It is observed experimentally that the solution is pe-
riodic for small amplitudes with ρ < 1, with a period
of oscillation that depends on amplitude (Fig. 22.25).
With increasing amplitude, the solution departs more
and more from the linear harmonic reference motion.
This encourages us to look for solutions of the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ = εA cosωt+ ε2 B cos 2ωt

+ε3C cos 3ωt+ . . .
= εθ1+ ε2θ2+ ε3θ3+ . . .

ω2 = ω2
0+ εω2

1+ ε2ω2
2+ ε3ω2

3+ . . .

. (22.389)

In (22.389), the solution is expanded in the form of
a Fourier series, where the amplitudes of the expansion
terms are proportional to increasing powers of a nondi-
mensional parameter ε
 1. Similarly, the frequency ω
is expanded in terms of increasing power of ε. The ba-
sic principle of the harmonic balance method used here
for solving this nonlinear equation consists of insert-
ing (22.389) in (22.388) and matching sinusoidal terms
to calculate the unknowns (A, B,C, ω1, ω2, ω3) from
the equations, obtained separately for each power of
ε [22.55]. An example up to the third order in ε is given
below. We start by defining a nondimensional time vari-
able τ = ωt. Limiting the development of sin θ to the
third order, we obtain

ω2 d2θ

dτ2
+ω2

0

(
θ− θ

3

6

)
= ρω2 d

dτ

(
θ

dθ

dτ

)
.

(22.390)

Inserting (22.389) in (22.390) and equating terms of
equal power in ε, we find

d2θ1

dτ2
+ θ1 = 0 (22.391)
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whose solution is θ1 = A cosωτ . With the same proce-
dure applied to the term in ε2, one obtains

d2θ2

dτ2
+ θ2 = ω

2
1

ω2
0

θ1+ρ d

dτ

(
θ1

dθ1

dτ

)
. (22.392)

Equation (22.392) yields the following relation

−3B cos 2τ = ω
2
1

ω2
0

A cos τ−ρA2 cos 2τ . (22.393)

Using the harmonic balance method for each compo-
nent nτ leads to

ω1 = 0 and B = ρA2

3
. (22.394)

At this stage, (22.394) shows that the pulley is respon-
sible for a nonlinear quadratic perturbation. To first
order, the quadratic nonlinearity has no effect on the fre-
quency. However, extending the calculations to the third
order in ε, we get

d2θ3

dτ2
+ θ3 = ω

2
2

ω2
0

θ1+ θ
3
1

6
+ρ d2

dτ2
(θ1θ2) . (22.395)

Using the harmonic balance method in (22.395) now
yields

C = A3

192

(
36ρ2−1

)

and

ω2
2

ω2
0

= A2

24

(
4ρ2−3

)
. (22.396)

In summary, by defining θ10 = εA as the amplitude of
the fundamental, we find the third-order perturbation
solution

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ = θ10 cosωt+ ρθ
2
10

3
cos 2ωt

+(36ρ2−1)
θ3

10

192
cos 3ωt

and

ω2 = ω2
0

[
1+ θ

2
10

24

(
4ρ2−3

)]

. (22.397)

The following comments can be made:

• To third order, θ10 is linked to the initial angle θ0 by
the relation

θ0 � θ10+ ρθ
2
10

3
+ (36ρ2−1)

θ3
10

192
. (22.398)

• Figure 22.25 shows that the third-order approxi-
mation yields a good estimation of the period. In
addition, the waveform is also correctly predicted
for θ > 0. However, the estimation is less good for
θ < 0.• For ρ = 0, we have ω � ω0(1− θ2

10/16), and the
term cos 2ωt is equal to zero. The system exhibits
a cubic nonlinearity due to gravity.• For 0 < ρ <

√
3/2, the oscillation frequency de-

creases as the amplitude increases. A softening
effect is obtained.• For ρ >

√
3/2, the oscillation frequency increases

with amplitude we have an hardening effect.• For ρ =√
3/2, it is observed that the frequency is

independent of the magnitude. The softening effect
due to gravity is compensated by the hardening ef-
fect due to the rigid pulley. This result remains valid
up to fourth order.

Many of the nonlinear effects derived for this simple
oscillator, such as amplitude-dependent frequency and
softening/hardening effects, are found in more-complex
systems.

22.7.2 Duffing Equation

A number of nonlinear vibrations are governed by the
Duffing equation. This presentation starts with the ex-
ample of an elastic pendulum. General results for this
cubic nonlinearity are then discussed.

Elastic Pendulum
To illustrate the Duffing equation, the elastic pendulum
shown in Fig. 22.26 is considered [22.56]. The mass M
moves horizontally due to the harmonic force F cosΩt.
Two springs with stiffness k, and length L0 at rest, are

F

L0 L

M

x

Fig. 22.26 Elastic pendulum
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stretched to the length L when attached to the mass.
The displacement of the mass from its equilibrium po-
sition is x. We introduce the dimensionless parameters
λ= L0/L < 1 and y = x/L . During the motion, the ac-
tual length of the spring is l(y) = L

√
1+ y2 and the

elastic potential energy is V = 1/2k(l− L0)2. By dif-
ferentiating this expression with respect to y, the elastic
force is obtained from which the equation of motion for
the mass is derived

M
d2 y

dt2
+2ky

(
1− λ√

1+ y2

)
= F

L
cosΩt .

(22.399)

With the additional assumption of small amplitude
(ymax 
 1), and defining further ω2

0 = 2k/M we obtain
the first-order approximation

d2 y

dt2
+ω2

0(1−λ)y+ ω
2
0λ

2
y3 = F

ML
cosΩt

(22.400)

which can be written in nondimensional form, after
defining τ = ωt with ω2 = ω2

0(1−λ) and γ =Ω/ω, as

d2 y

dτ2
+ y+ηy3 = α cos γτ , (22.401)

where η = λ/(2(1−λ)) and α = F/MLω2. Equation
(22.401) is a forced Duffing equation with a hardening
cubic coefficient (η > 0).

Forced Vibrations
We consider the case where η > 0 and α defined in
(22.401) are small compared to unity. By analogy with
the linear case, a first approximation of the solution
is y1(t) = A cos γτ , where A is the unknown. Inserting
y1 into (22.401), we get the differential equation that
governs the second-order approximation y2(t)

d2 y2

dτ2
=−A cos γτ−ηA3 cos3 γτ+α cos γτ .

(22.402)

Using the equality 4 cos3 γτ = 3 cos γτ + cos 3γτ and
selecting the appropriate origin of time to avoid constant
terms, we get

y2(t) = A+ 3ηA3

4 −α
γ 2

cos γτ+ ηA3

36γ 2
cos 3γτ .

(22.403)

5

4

3

2

1

0
210

A

γ

Fig. 22.27 Frequency response curve of the undamped
Duffing equation with η > 0. γ =Ω/ω is the reduced fre-
quency

Using the method originally used by Duffing, we look
for the value of A that is equal to the lowest terms of the
series in (22.403), which yields

(1−γ 2)A+ 3ηA3

4
= α . (22.404)

In order to plot the resonance curve, this can be written
as

(γ 2−1) = 3ηA2

4
± α

|A| . (22.405)

With α = 0, the free regime is obtained. For α �= 0,
two branches of solution are obtained, depending on
whether A is positive or negative. A nonlinear os-
cillator of the hardening type is obtained here, since
the resonance frequency increases with the amplitude
(Fig. 22.27).

Duffing Equation with a Viscous Damping Term. With
the introduction of a viscous damping term, we obtain
the nondimensional equation

d2 y

dτ2
+β dy

dτ
+ y+ηy3 = α cos γτ . (22.406)

In this case, the response curves are governed by the
equation

[
(1−γ 2)A+ 3ηA3

4

]2

+β2 A2 = α2 (22.407)

which corresponds to the curves shown in Fig. 22.28.
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Fig. 22.28 Response curves of the damped Duffing
equation

Jump and Hysteresis. It can be seen from Fig. 22.28
that a frequency range exists where three different val-
ues for |A| correspond to one single value of the reduced
frequency γ . Only the two extreme solutions are stable,
while the intermediate value is unstable. As a con-
sequence, on decreasing or increasing the frequency,
a jump phenomenon is observed at points correspond-
ing to the vertical tangents. The hysteresis cycle include
these two jumps in addition to the stable portions of the
upper and lower resonance curves.

Generation of Subharmonics. An important property
of nonlinear oscillators is that they exhibit spectral
components that are not present in the forcing terms,
and which are also distinct from their eigenfrequen-
cies. The generation of subharmonics is examined here.
The Duffing equation with a forcing term at reduced
frequency 3γ is considered

d2 y

dτ2
+ y+ηy3 = α cos 3γτ (22.408)

with η
 1. We look for solutions of the form

y(τ) = y0(τ)+ηy1(τ) with γ 2 = 1+ηγ 2
1 .

(22.409)

By inserting (22.409) in (22.408) and eliminating the
higher-order terms in η, we get

d2 y0

dτ2
+γ 2 y0−ηγ 2

1 y0+η d2 y1

dτ2
+ηγ 2 y1+ηy3

0

= α cos 3γτ . (22.410)

The linear solution (zero-order term) is obtained by im-
posing η= 0 in (22.410), which yields

d2 y0

dτ2
+γ 2 y0 = α cos 3γτ . (22.411)

With the appropriate initial conditions, we obtain the
zero-order solution y0(τ) = A cos γτ +C cos 3γτ with
C =−α/8γ 2. By pursuing the mathematical derivations
iteratively, we obtain the first-order approximation y1

d2 y1

dτ2
+γ 2 y1 = γ 2

1 y0− y3
0 . (22.412)

Inserting the expression for y0(τ) in (22.412) it is found
that y1(τ) must be a solution of the equation

d2 y1

dτ2
+γ 2 y1

= A

[
γ 2

1 −
3

4

(
A2+ 3α2

64γ 4
− Aα

8γ 2

)]
cos γτ

+ terms in 3γ , 5γ , 7γ , 9γ . (22.413)

The first term on the right-hand side of (22.413) is a res-
onant excitation term or secular term, which leads to
an infinitely growing solution. As such a solution is not
physically possible, this secular terms must be elimi-
nated, which leads to the condition

γ 2
1 =

3

4

(
A2+ 3α2

64γ 4
− Aα

8γ 2

)
. (22.414)

Equation (22.414) yields the condition of existence, in
terms of amplitude A and nonlinear strength η, for sub-
harmonics of order three

γ 6−γ 4− 3η

256
(64A2γ 4−8Aαγ 2+2α2) = 0 .

(22.415)

Similarly, one can show that the Duffing oscillator can
yield superharmonics of order three. The method con-
sists of imposing a forcing term with reduced frequency
γ and looking for the condition of existence of solutions
with frequency 3γ .

22.7.3 Coupled Nonlinear Oscillators

Continuous systems and discrete systems with several
degrees of freedom subjected to large amplitude of mo-
tion show multiple nonlinear coupling effects. In this
section, we limit ourselves to nonlinear coupling be-
tween two oscillators, which represents a significant
step forward in terms of complexity compared to the
single-DOF nonlinear oscillator.
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Example of a Quadratic Nonlinear Coupling
Here, the case of a quadratic nonlinear coupling be-
tween two oscillators is investigated using the multiple-
scales method [22.57]. The equations are

⎧
⎨

⎩
ẍ1+ω2

1x1 = ε(−β12x1x2−2μ1 ẋ1) ,

ẍ2+ω2
2x2 = ε(−β21x2

1 −2μ2 ẋ2+ P cosΩt
)
,

(22.416)

where x1 and x2 are the displacements, ω1 and ω2
are the eigenfrequencies of the oscillators in the lin-
ear range. The perturbation terms are grouped on the
right-hand side of (22.416). The nondimensional pa-
rameter ε 
 1 indicates that these terms are small. The
quadratic nonlinear coupling is due to the presence of
the terms β12x1x2 and β21x2

1. It is assumed that the sys-
tem has a so-called internal resonance in the sense that
ω2 = 2ω1+ εσ1, where σ1 is the internal detuning pa-
rameter. The forcing frequency Ω is close to ω2 so that
we can writeΩ = ω2+εσ2 where σ2 is the external de-
tuning parameter, and μ1 and μ2 are viscous damping
parameters.

Resolution with the Method of Multiple Scales
Solving the above equations involves calculating the
amplitudes a1 and a2 of both oscillators as a function
of the external detuning parameter σ2. Another goal
is to determine the values of the threshold in terms of
amplitude and frequency, at which the nonlinear set of
oscillators exhibit bifurcations and unstable behavior.
The present example contains most of the concepts and
methods used in the theory of multiple scales applied to
nonlinear oscillators. The main steps of the calculations
are the following:

1. Definition of time scales and general form of the
solution

2. Solvability conditions. Elimination of secular terms
3. Autonomous system and fixed points
4. Stability of the system
5. Amplitudes and phases of the solution.

Definition of Time Scales and General Form of the
Solution. The time scales are defined as

Tj = ε j t with j ≥ 0 (22.417)

and the solutions are expanded into
⎧
⎨

⎩
x1(t) = x10(T0, T1)+ εx11(T0, T1)+O(ε2)

x2(t) = x20(T0, T1)+ εx21(T0, T1)+O(ε2)
,

(22.418)

where the expansion is limited here to the first order
in ε. The differentiation operators can be written

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂

∂t
= ∂

∂T0
+ ε ∂
∂T1

,

∂2

∂t2
= ∂2

∂T 2
0

+2ε
∂

∂T0

∂

∂T1
.

(22.419)

In what follows, we write D j = ∂/∂Tj . Inserting
(22.419) into (22.416) and matching the coefficients of
terms with the same power in ε yields:

• For the zero-order term ε0 = 1

D2
0x10+ω2

1x10 = 0 ; D2
0x20+ω2

2x20 = 0 ;
(22.420)

• For the first-order term ε

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2
0x11+ω2

1x11

=−2D0 D1x10−β12x10x20−2μ1 D0x10 ,

D2
0x21+ω2

2x21

=−2D0 D1x20−β21x2
10

−2μ2 D0x20+ P cosΩt .

(22.421)

The solutions of (22.420) can be written

x10(t) = A1(T1)eiω1t + A∗1(T1)e−iω1t ;
x20(t) = A2(T1)eiω2t + A∗2(T1)e−iω2t , (22.422)

where the (∗) indicates the complex conjugate.

Solvability Conditions. In order to calculate the com-
plex terms A1(T1) and A2(T1), the expressions (22.422)
are inserted into (22.421). Then, conditions are deter-
mined so that no secular terms, such as t cosωt, exist
in the solution. This leads to the so-called solvability
conditions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−2iω1

(
∂A1

∂T1
+μ1 A1

)
−β12 A∗1 A2 eiσ1T1 = 0 ,

−2iω2

(
∂A2

∂T1
+μ2 A2

)
−β21 A2

1 e−iσ1T1

+ P

2
eiσ2T1 = 0 .

(22.423)
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Equations (22.423) are usually written in polar form

A1(T1) = a1

2
eiθ1 ;

A2(T1) = a2

2
eiθ2 , (22.424)

where the amplitudes ai and phases θi are functions
of T1. Substituting (22.424) in (22.423) yields the sys-
tem that governs the slow temporal evolution of the
response, with scale T1 = εt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂a1

∂T1
=−μ1a1− β12a1a2

4ω1

sin(σ1T1+ θ2−2θ1) ,

a1
∂θ1

∂T1
= β12a1a2

4ω1
cos(σ1T1+ θ2−2θ1) ,

∂a2

∂T2
=−μ2a2+ β21a2

1

4ω2
sin(σ1T1+ θ2−2θ1)

+ P

2ω2
sin(σ2T1− θ2) ,

a2
∂θ2

∂T2
= β21a2

1

4ω2
cos(σ1T1+ θ2−2θ1)

− P

2ω2
cos(σ2T1− θ2) .

(22.425)

Autonomous System and Fixed Points. Now, the sys-
tem is written in autonomous form, i. e. in the form
Ẋ = F(X). In practice, this is achieved with the changes
of variables γ1 = σ2T1− θ2 and γ2 = σ1T1+ θ2−2θ1.
As a consequence (22.425) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂a1

∂T1
=−μ1a1− β12a1a2

4ω1
sin γ2 ,

∂γ1

∂T1
= σ2− β21a2

1

4ω2a2
cos γ2+ P

2ω2a2
cos γ1 ,

∂a2

∂T2
=−μ2a2+ β21a2

1

4ω2
sin γ2+ P

2ω2
sin γ1 ,

∂γ2

∂T2
= σ1− β12a2

2ω1
cos γ2+ β21a2

1

4ω2a2
cos γ2

− P

2ω2a2
cos γ1 .

(22.426)

The fixed points correspond to the steady-state solu-
tions, which are those of interest in the case of forced
vibrations. These solutions are obtained through cance-

lation of the time derivatives in (22.426), which gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1

(
μ1+ β12a2

4ω1
sin γ2

)
= 0 ,

σ2− β21a2
1

4ω2a2
cos γ2+ P

2ω2a2
cos γ1 = 0 ,

−μ2a2+ β21a2
1

4ω2
sin γ2+ P

2ω2
sin γ1 = 0 ,

σ1+ β21a2
1

4ω2a2
cos γ2− P

2ω2a2
cos γ1

−β12a2

2ω1
cos γ2 = 0 .

(22.427)

Imposing a1 = 0 in (22.427) yields the response
curve a2 of the second oscillator in the linear case
(Fig. 22.29)

a2 = P

2ω2

√
σ2

2 +μ2
2

. (22.428)

Stability of the Nonlinear Coupled System. Intuitively,
a physically unstable system behaves in such a way that,
subjected to a small departure from equilibrium, its mo-
tion will never bring it back to its initial position but will
rather continue its deviation. From a mathematical point
of view, the deviations from an equilibrium position for
a system with multiple variables such as (22.427) are
calculated from the partial derivatives of each equation
with regard to all variables of the system. This leads to
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Mode 1

Fig. 22.29 Frequency response curves of the nonlinearly
coupled oscillators as a function of the external detuning
parameter
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the definition of the Jacobian matrix J of the system

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ f1

∂a1

∂ f1

∂γ1

∂ f1

∂a2

∂ f1

∂γ2

∂ f2

∂a1

∂ f2

∂γ1

∂ f2

∂a2

∂ f2

∂γ2

∂ f3

∂a1

∂ f3

∂γ1

∂ f3

∂a2

∂ f3

∂γ2

∂ f4

∂a1

∂ f4

∂γ1

∂ f4

∂a2

∂ f4

∂γ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (22.429)

In our case, the eigenvalues of this Jacobian are
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 =−μ2+ iσ2 ;
λ2 =−μ2− iσ2 ;
λ3 =−β12a2

4ω1
sin γ2−μ1 ;

λ4 = β12a2

2ω1
sin γ2 .

(22.430)

The system is unstable if the real part of any one of these
eigenvalues is positive. In (22.430), the real parts of λ1
and λ2 are negative, because of the damping term μ2.
However, calculating the product of the two other eigen-
values yields

λ3λ4 =−μ1β12a2

2ω1
sin γ2− β

2
12a2

2

8ω2
1

sin2 γ2 .

(22.431)

This product can be negative, leading to an instability,
if

a2 >
2ω1

|β12|
√

4μ2
1+ (σ1+σ2)2 . (22.432)

The instability domain corresponding to (22.432) is the
shaded area in Fig. 22.29.

Amplitudes and Phases of the Solution. Solutions for
the nonlinear coupled system are obtained by combin-
ing (22.422) with (22.424), taking the definitions of T1,
σ1, σ2 γ1 and γ2 into account. We then obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x10 = a1 cos(ω1t+ θ1)

= a1 cos

(
Ω

2
t− γ1+γ2

2

)
,

x20 = a2 cos(ω2t+ θ2) = a2 cos(Ωt−γ1) ,

(22.433)

where, by solving the system (22.427), the amplitudes
of the oscillators are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 = 2ω1

|β12|
√

(σ1+σ2)2+4μ2
1 ,

a1 = 2

[
−Γ1±

√
P2
/(

4β2
21

) −Γ 2
2

]1/2

,

with Γ1 = 2ω1ω2

β12β21
[2μ1μ2−σ2(σ1+σ2)] ,

and Γ2 = 2ω1ω2

β12β21
[2μ1σ2−μ2(σ1+σ2)] .

(22.434)

Equation (22.433) shows that, for steady-state oscil-
lations, the forcing frequency Ω is the same as the
oscillation frequency of the second oscillator whereas,
for appropriate conditions of instability, the first one os-
cillates with frequencyΩ/2, as a result of the nonlinear
coupling. Figure 22.29 shows the resonance curves of
the coupled nonlinear oscillators as a function of σ2.
By increasing this parameter progressively, successive
phenomena occur:

1. First the resonance curve is that of the second oscil-
lator. No subharmonics are observed as long as the
amplitude remains below the instability region.

2. As the amplitude of the second oscillator reaches the
instability limit given in (22.432), the first oscillator
starts to oscillate. In our example, its magnitude a1
is larger than a2.

0.12

0.10

0.08
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Amplitudes (mm)

Excitation frequency (Hz)

Mode 1

Mode 2

Fig. 22.30 Experimental response curves for two nonlin-
early coupled degrees of freedom of a harmonically forced
spherical shell (after Thomas et al. [22.19])
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3. As the amplitude reaches the top of the resonance
curve 1, it suddenly jumps back to the resonance
curve 2, and oscillation at Ω/2 disappears.

4. Following the frequency axis in the reverse direc-
tion, similar phenomena are observed, although the
jumps do not occur at the same frequencies. Also
the values of the instability thresholds are different.

To illustrate this theoretical part, Fig. 22.30 shows
an example of experimental results for nonlinear cou-
pling between two particular degrees of freedom of
a spherical shell with free edge subjected to large-
amplitude motion [22.19].

22.7.4 Nonlinear Vibrations of Strings

As an example of nonlinear coupling in a continu-
ous system, the forced vibrations of a homogeneous
elastic string is examined. Following the presenta-
tion by Murthy and Ramakrishna, only the coupling
between the two polarizations y(x, t) and z(x, t) is pre-
sented [22.58, 59]. Other complicating effects such as
torsional and longitudinal motions are neglected. See,
for example, [22.60] for a more complete description of
the nonlinear vibrating string.

Equations of Motion
As a result of the initial tension T0 applied to the string,
the length of a small element dx increases by a rel-
ative quantity λ, so that the actual length ds is given
by

ds− dx = λdx . (22.435)

As a result, for a string with a Young’s modulus of E and
cross-sectional area of A, the actual tension becomes

T = T0+ E Aλ . (22.436)

In the general case, we have ds = [dx2+ dy2+ dz2]1/2,
which, by means of a second-order development is writ-
ten

ds = dx

{
1+ 1

2

[(
∂y

∂x

)2

+
(
∂z

∂x

)2]

− 1

8

[(
∂y

∂x

)2

+
(
∂z

∂x

)2]2

+ . . .
}
.

(22.437)

With the additional assumption that E A � T0, the po-
tential energy of the string of length L rigidly fixed at

both ends is written [22.58]

V =
L∫

0

{
T0

2

[(
∂y

∂x

)2

+
(
∂z

∂x

)2]

+ E A

8

[(
∂y

∂x

)2

+
(
∂z

∂x

)2]2}
dx . (22.438)

The kinetic energy of the string is given by

Ek = μ
2

L∫

0

[(
∂y

∂t

)2

+
(
∂z

∂t

)2
]

dx . (22.439)

Using Hamilton’s principle, and considering further that
a sinusoidal force f (x) cosωt is applied to the string
in the y-direction, we get the coupled equations of mo-
tion, where the derivatives are written with subscripts
for convenience

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ytt − c2
0 yxx = c2

1

2

[
3yxx y2

x +
∂

∂x

(
yx z2

x

)]

+ f (x)

μ
cosωt ,

ztt − c2
0zxx = c2

1

2

[
3zxx z2

x +
∂

∂x

(
zx y2

x

)]
,

(22.440)

where c0 =√
T0/mu and c1 =√

E A/μ are the trans-
verse and longitudinal velocities in the linear case. It
can be seen that the nonlinear terms on the right-hand
side of (22.440) are negligible, as long as the slopes
yx and zx are small. The terms on the left-hand side
of (22.440) correspond to the linear case. The coupling
between the two polarizations is due to the presence
of the nonlinear terms. As a consequence, a force ap-
plied in the y-direction can give rise to a motion in the
z-direction.

Forced Vibrations
Neglecting the nonlinear terms in (22.440) is generally
not justified near resonance. We assume that the ex-
citation frequency ω is close to one particular (linear)
eigenfrequency ωn = nπc0/L of the string. If the cou-
pling between the modes is neglected (which might not
always be justified, see [22.59]) then the motion of the
string can be described, to a first approximation by

y(x, t) = any sin
nπx

L
cosωt

and

z(x, t) = anz sin
nπx

L
sinωt . (22.441)
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This leads to the following relations between the ampli-
tudes any and anz

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ω2

n −ω2)any + 9c2
1

32

(nπ

L

)4
a3

ny

+3c2
1

32

(nπ

L

)4
anya2

nz =
αn

μ
,

(
ω2

n −ω2)anz + 9c2
1

32

(nπ

L

)4
a3

nz

+3c2
1

32

(nπ

L

)4
anza2

ny = 0 ,

(22.442)

where αn is the projection of the excitation force onto
the nth mode of the string.

Planar Motion. The case of planar motion for the string
is obtained by setting anz = 0 in (22.442). In this case,
the amplitude in the y-direction is governed by the non-
linear equation

(
ω2

n −ω2)any + 9c2
1

32

(nπ

L

)4
a3

ny =
αn

μ
(22.443)

which is similar in form to (22.404), obtained in the case
of a discrete Duffing oscillator. Therefore, all properties
of Duffing oscillators of the hardening type presented in
Sect. 22.7.2 can be transposed here.

Nonplanar Motion. Eliminating anz between the two
equations in (22.442) yields first for any

(
ω2

n −ω2)any + 3c2
1

8

(nπ

L

)4
a3

ny =
αn

μ
, (22.444)

which is similar in form to (22.443) except that the non-
linear term has increased by a factor of 4/3 compared
to the planar case. The second equation can be written
in the form

a2
nz = a2

ny −
16

3

αn

μc2
1

( nπ
L

)4
any

. (22.445)

Equation (22.445) shows that the string can exhibit non-
planar motion under the condition

any > acrit
ny =

(
16αn

3μc2
1

( nπ
L

)4

)1/3

. (22.446)

This condition can be obtained either by increasing the
excitation force or by varying the frequency to come
closer to resonance.

22.7.5 Review of Nonlinear Equations
for Other Continuous Systems

Beams
In this paragraph, the influence of amplitude on the
flexural equations of beams is summarized. For more-
extensive developments, one can refer to the review by
Nayfeh [22.57]. The same notations as in Sect. 22.4.2
are used. The case of a homogeneous beam with
constant cross section is considered. The plane cross
sections remain plane during the motion. The radius
of gyration r =√

Iz/S is assumed to be small com-
pared to the wavelength so that transverse shear and
rotary inertia are neglected. We assume planar motion,
and the losses are simply modeled by a linear viscous
term. Given an arbitrary characteristic length w0, we
can define the set of dimensionless variables [22.57]

x∗ = x

w0
, w∗ = w

w0
, L∗ = L

w0
,

r∗ = r

w0
, t∗ = t

r

w2
0

√
E

ρ
. (22.447)

In this case, the nonlinear flexural equation of a beam
hinged at both ends is written in nondimensional form
(removing the asterisk for convenience)

r2(wtt +μwt +wxxxx
)

=
⎛

⎝ 1

2L

L∫

0

w2
x dx

⎞

⎠wxx + f (x, t) , (22.448)

where μ is the dimensionless viscous damping param-
eter, and where the indices refer to the derivatives.
Equation (22.448) shows that the nonlinear term is due
to the increase in axial tension consecutive to large-
amplitude motion. Expanding the solution on the linear
eigenmodes w(x, t) =∑

n Φn(x)qn(t), we obtain, for
the special case of the hinged–hinged beam, the follow-
ing set of nonlinearly coupled differential equations

q̈n+ω2
nqn =−ε

(
μq̇n + ω2

n

2n2
qn

∞∑

m=1

m2q2
m

)
+ fn(t) ,

(22.449)

where ε is a small dimensionless parameter indicat-
ing that the slenderness ratio of the beam is small.
Equation (22.449) generalizes (22.416) obtained for
two nonlinearly coupled oscillators, though an impor-
tant difference is that we have to deal here with cubic
nonlinear terms, instead of the quadratic terms in the
previously mentioned 2-DOF nonlinear system.
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Shallow Spherical Shells and Plates
Similarly, the case of large deflections for transverse vi-
brations of shallow spherical shells is now examined.
The same notations and assumptions as in Sect. 22.4.4
are used. The only difference is that we assume here
large displacements and moderate rotations. Moderate
rotations mean that it is justified to linearize the an-
gular functions sin θ and cos θ in the equations. The
definition of large displacement depends on the order of
magnitude of the characteristic length used for obtain-
ing the dimensionless equations of motions (see below).
These standard assumptions lead to the well-known von
Kármán equations, also called Marguerre’s or Koiter’s
equations in the literature [22.19, 61]. Hamdouni and
Millet have shown recently that these equations can also
be obtained through an asymptotic method applied to
the general equations of elasticity [22.62]. Like in the
linear case (Sect. 22.4.4), the assumption of thin shal-
low shell allows one to write the equations of motion
as a function of the circular coordinates (r, θ) that refer
to the projection of a current point of the shell on the
horizontal plane. Finally, we obtain [22.19]

⎧
⎪⎪⎨

⎪⎪⎩

∇4w+ ∇2 F

R
+ρhẅ= L(w, F)−μẇ+ p ,

∇4 F− Eh

R
∇2w=− Eh

2
L(w,w) ,

(22.450)

where F is the Airy stress function, and where L is
a bilinear quadratic operator which is written in circular
coordinates as

L(w, F) = wrr

(
Fr

r
+ Fθθ

r2

)
+ Frr

(
wr

r
+ wθθ

r2

)

−2

(
wrθ

r
− wθ

r2

)(
Frθ

r
− Fθ

r2

)
.

(22.451)

In (22.450), F contains linear and quadratic terms in w.
Therefore, L(w, F) contains quadratic and cubic terms
in w. In total, the nonlinear equations of the shell con-
tain linear, quadratic and cubic terms. With R →∞,
(22.450) reduces to the nonlinear plate equations. In this
case, only cubic terms are present.

Equation (22.450) can be put into nondimensional
form with the change of variables [22.19]

r = ar ,

t = a2

√
ρh

D
t ,

w= h3

a2
w ,

F = Eh7

a4
F ,

μ=
(

2Eh4

Ra2

)√
ρh

D
μ ,

p = Eh7

Ra6
p . (22.452)

Equation (22.450) becomes, with the overbars dropped
for convenience,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇4w+ εq∇2 F+ ẅ
= εcL(w, F)+ εq

(−μẇ+ p
)
,

∇4 F− a4

Rh3
∇2w=−1

2
L(w,w) .

(22.453)

Equation (22.453) has the advantage of highlight-
ing a quadratic perturbation coefficient εq = 12(1−
ν2)h/R and a cubic perturbation coefficient εc = 12(1−
ν2)h4/a4. In view of the assumptions of a thin shallow
shell, the cubic nonlinear terms are much smaller than
the quadratic ones. The quadratic terms are due to the
curvature of the shell.

Expanding the solution on the linear eigenmodes

w(r, θ, t) =
∑

n

Φn(r, θ)qn(t) (22.454)

yields the set of coupled differential equations

q̈n +ω2
nqn = εq

(
−
∑

p

∑

q

αn pqqpqq −μq̇+ pn

)

+ εc

∑

q

∑

q

∑

r

βn pqrqpqqqr ,

(22.455)

which shows multiple cubic and quadratic coupling.
For a plate, the coefficients αn pq are equal to zero. For
shells, one can see an analogy with the interrupted pen-
dulum presented in Sect. 22.7.1 in the sense that the
quadratic nonlinearity is due to the asymmetry arising
from the curvature.
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22.8 Conclusion. Advanced Topics

A number of applications of interest in the field of
structural acoustics and vibrations were not described
in this chapter, since they are exhaustively presented in
other chapters; this is, for example, the case of near-
field acoustical holography and modal analysis. Also
the area of active control of sound was only briefly men-
tioned, since the presentation of this technique would
need a significant part devoted to signal processing.

In recent years, new theories have been developed
in order to allow better prediction and modeling of
structures and the related acoustic field in the medium
frequency range, i. e., when modes overlap due to both
damping and increasing modal density. In this context,
a new model and the associated numerical method based
on the theory of structural fuzzy has been given by
Soize [22.63]. Fuzzy structures are systems composed
by a well-defined master structure with other smaller
subsystems attached on it, whose location, geometry
and material properties are not known with certainty.
One can think of the main body of a ship (or of a plane),
with some attached equipment and/or ribs. The gen-
eral idea is to describe the behavior of the subsystems
with a probabilistic law; the input data are given in
terms of mean value and dispersion. The advantage
of such a technique is to greatly reduce the number
of degrees of freedom. A recent paper by Lyon shows
the analogy between SEA and structural fuzzy frame-
work [22.64].

Several analytical models of structural acoustics and
vibrations have been presented in this chapter. However,
one should be aware of the fact that analytical solutions
are generally hard to obtain in engineering applications.
Therefore, numerical methods are required, and consid-
erable work has been done in the field of computational
structural dynamics over the last decades. Notice that
analytical results are nonetheless very useful for test-
ing the validity of numerical models. One can refer,
for example, to the review by Wachulec et al. in or-
der to get a comprehensive overview of the advantages
and drawbacks of the main numerical methods applied
to structure-borne sound, depending on the frequency
range and structural complexity [22.65].

Finally, the design of smart materials for the ac-
tive control of vibrations and sound is an active field
and a good example of interdisciplinary work in struc-
tural acoustics. The goal in this area is often to use
appropriate actuators and sensors in order to reduce
the noise generated by structures. However, other ap-
plications such as enhancing or modifying intentionally
some modal parameters, for example in musical instru-
ments, are also potential applications. One difficulty is
finding the appropriate locations for the actuators. An-
other problem is to find transducers that are insensitive
to external electromagnetic fields. The interested reader
can refer to a recent work by Shih et al. for more infor-
mation [22.66].
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Noise 23. Noise

George C. Maling Jr.

Noise is discussed in terms of a source–path–
receiver model. After an introduction to sound
propagation and radiation efficiency, the quanti-
ties measured for noise control are defined, and
the instruments used for noise measurement and
control are described.

The noise emission of sources is discussed
with emphasis on the determination of the sound
power level of a variety of sources. The properties
of two very significant sources of environmental
noise, aircraft and motor vehicles, are presented.
Tire noise is identified as a major noise source for
motor vehicles. Criteria for the noise emission of
sources are given, and the basic principles of noise
control are presented. A section on active control
of noise is included.

The path from the source to the receiver in-
cludes propagation in the atmosphere, noise
barriers, the use of sound-absorptive mater-
ials, and silencers. Guidance is given on the
determination of sound pressure level in a room
when the sound power output of the source is
known.

At the receiver, the effects of noise are pre-
sented, including both hearing damage and
annoyance. A brief section is devoted to sound
quality.

Finally, noise regulations and policies are
discussed. Many activities of the US government
are discussed, and information on both state and
local noise policies and regulations are presented.
The activities of the European Union are included,
as are the noise policies in many countries.
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23.1 Fundamentals

23.1.1 The Source–Path–Receiver Model

The standard definition of noise is unwanted sound.
This definition implies that there is an observer who
hears the noise and makes a judgment based on a num-
ber of factors that what is heard is not wanted. This
judgment may be made because the sound is too loud,
is annoying, or has an unpleasant quality. In all cases,
the receiver applies some metric to what is heard in or-
der to characterize sound as noise. In other cases, the
level of the sound is high enough to cause hearing dam-
age, and the listener may accept the noise levels, as in
an industrial situation, or may actually want the sound,
as at a loud concert or in an automobile with a very loud
audio system. The concept of unwanted sound also im-
plies that there is a person who wants the sound level
reduced; hence, the field of noise control has been de-
veloped to satisfy these needs. In some cases, control of
noise is an administrative matter such as setting hours of
operation for noisy outdoor activities or otherwise man-
aging noise sources to make the levels acceptable. In
most cases, however, a technical analysis of the source,
an understanding of the propagation of sound from the
source to the receiver, and application of one or more
psychoacoustic metrics is required to find a solution
to a noise problem. This process may be called noise
control engineering. This source–path–receiver model
was first proposed by Bolt and Ingard in 1956 [23.1],
and has proved to be very useful as a systematic way
to approach noise control problems. There are many
situations where the distinction between a source and
a path is not clear; for example when sound travels
from a source through a structure and is radiated by the
structure Chap. 22. Nevertheless, the above model has
proved to be useful in many practical situations.

Another concept that has proved to be useful is the
distinction between emission and immission. The verb
emit is common in the English language, and means to
send out. The verb immit is currently much less com-
mon, but has a long history, and means to receive [23.2].
Noise control then deals with noise emission from
sources – using a variety of metrics – and noise im-
mission is the reception of sound by an observer –
expressed as some metric based on sound pressure level.

23.1.2 Properties of Sound Waves

Noise propagation, for the purposes of this chapter,
can be described in terms of linear acoustics Chap. 3.

Exceptions include propagation of sonic booms and
very-high-amplitude sound waves such as in gas tur-
bines and other devices. For such problems, nonlinear
acoustical theory is needed Chap. 8, which will not be
covered here. The physical quantities most often used
in noise control are sound pressure, particle velocity,
sound intensity and sound power. A one-dimensional
treatment serves to illustrate the principles involved.
The linear one-dimensional wave equation may be ex-
pressed in terms of sound pressure as

∂2 p

∂x2
− 1

c2

∂2 p

∂t2
= Q , (23.1)

where p is the sound pressure, x is distance, and t is
time. The speed of sound c is given by

c = 20.05
√

T , (23.2)

where T is the temperature in Kelvin. At 20 ◦C,
c = 343.3 m/s, rounded to 344 m/s for most noise con-
trol problems.

The source term Q in (23.2) represents the various
sources of sound, and may be in the form of fluctuations
in mass, force, or heat introduced into the medium. Or,
it may be nonlinear terms placed on the right-hand side
of the equation as in the acoustic analogy proposed by
Lighthill [23.3] which explains the generation of sound
by turbulence Chap. 3.

For Q = 0 in an unbounded medium at rest, any
function f (x− ct) a propagating wave, satisfies the
wave equation. The exact solution is determined by the
nature of the sources and the boundary conditions. The
particle velocity (for one-dimensional propagation) is
found from

ρ
∂u

∂t
=−∂p

∂x
. (23.3)

Where u is the particle velocity. As will be shown be-
low, the sound pressure and particle velocity in almost
all cases are small compared with atmospheric pressure
and the speed of sound, respectively. Therefore, air can
be considered a linear medium for the propagation of
sound waves, and the sound pressures as a function of
time from two (or more) sources can be added to find
the total pressure p

p(t) = p1(t)+ p2(t) . (23.4)

However, the quantity measured by sound level me-
ters and other analyzers is the root-mean-square (RMS)
pressure over some time interval, which may be very
short. In this case, the way two sound pressures are com-
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bined depends on the correlation coefficient between
them. The total mean-square pressure is

p2 = p2
1+ p2

2+2p1 p2 , (23.5)

where the overbars represent time averages. When p1
and p2 are uncorrelated, the cross-term in (23.5) is zero,
and it is the mean square pressures that add. This is the
case in most noise control situations where the noise
comes from one or more different sources. When p1 =
p2, it is the pressures that add. When p1 =−p2, gen-
erally the objective in active noise control, the resulting
mean-square pressure is zero. For sinusoidal signals, the
mean-square pressure depends on the amplitudes of the
waves and the phase difference between them.

Other quantities of importance are the intensity I of
the sound wave, a vector in the direction of propagation
that is the sound energy per unit of area perpendicular to
an element of surface area dS, Chap. 6. For a source of
sound, the total sound power W radiated by the source
is given by

W =
∫

S
I · dS , (23.6)

where the integral is over a surface that surrounds
the source. Sound power is a widely used measure
of the noise emission of the source. Its determination
using sound intensity is advantageous in the pres-
ence of background noise because, in the absence
of sound-absorptive materials inside the surface, any
sound energy that enters the surface from the outside
also leaves the surface from the inside, and thus does
not affect the radiated power. In practice, the sound in-
tensity on the surface is determined by scanning or by
measurements at a finite number of measurement posi-
tions, and only an approximation to the ideal situation
is obtained Chap. 6. Other techniques for the determi-
nation of the sound power of sources depend on an
approximation of the intensity in terms of mean-square
pressure, and are discussed later in this chapter.

The Decibel as a Unit of Level
As will be shown below, the magnitude of the quanti-
ties associated with a sound wave described above vary
over a very wide range, and it is convenient to use loga-
rithms to compress the scale. Logarithms are also useful
in many noise transmission problems because quanti-
ties that are multiplicative in terms of the quantities
themselves are additive using logarithms. The decibel
is a unit of level, and is defined as

Lx = 10 log
X

X0
, (23.7)

where X is a quantity related to energy, X0 is a reference
quantity, and log is the logarithm to the base 10. In the
case of sound pressure X = p2 the mean square pressure
and X0 = p2

0. The reference pressure p0 is standardized
at 20 μPa (2 × 10−5 N/m2). The sound pressure level
can then be written as

Lp = 10 log
p2

(2 × 10−5)2
dB . (23.8)

For sound power and sound intensity, the reference lev-
els are 10−12 W and 10−12 W/m2, respectively, and the
corresponding sound power and sound intensity levels
are

LW = 10 log
W

10−12
dB , (23.9)

L I = 10 log
I

10−12
dB . (23.10)

Note that all three quantities above are expressed in
decibels; the decibel is a unit of level, and may be used
to express a variety of quantities related to energy rela-
tive to a reference level. This fact often causes confusion
because the quantity being expressed in decibels is of-
ten not stated (The level is 75 dB.), and the meaning
of the statement is not clear. The wide use of sound
power level as a measure of noise emission can easily
cause confusion between sound power level and sound
pressure level. In this situation, it is convenient, and
common in the information technology industry, to omit
the 10 before the logarithm in (23.9), and express the
sound power level in bels, where one bel = 10 dB.

Relative Magnitudes
As mentioned above, the quantities associated with
a sound wave are small. For example, a sound pressure
level of 90 dB is relatively high and corresponds to an
RMS sound pressure of

pA =
√
[(4 × 10−10) × 1090/10] = 0.63 Pa . (23.11)

Since atmospheric pressure pat is nominally 1.01 ×
105 Pa, the ratio p0/pat is very small: 0.62 × 10−5.

The particle velocity can be determined from (23.3)
assuming plane wave propagation of a sinusoidal wave
having a radian frequency ω (ω= 2π f ). In this case,
(23.3) reduces to p = ρcu where ρ is the density of air,
nominally 1.18 kg/m2. The particle velocity is then

u = 0.63

(1.18 × 344)
= 1.6 × 10−3 m/s (23.12)

and the ratio u/c is 4.7 × 10−6. The particle velocity is
very small compared with the speed of sound, and the
model of a wave traveling with speed c and having a par-
ticle velocity u is justified. When this is not the case, the
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compressional portion of the wave travels with speed
c+u and the rarefaction travels with speed c−u. This
phenomenon is important when considering the propa-
gation of sonic booms and other finite-amplitude waves.

23.1.3 Radiation Efficiency

The radiation efficiency of ideal sources is best de-
scribed in terms of the sound power radiated by
higher-order sources relative to monopole radiation, as

a)

d

b) c)

Fig. 23.1a–c Schematic of loudspeakers in an enclosure.
(a) Two loudspeakers operating in phase to form a mono-
pole. (b) Two loudspeakers operating out of phase to form
a dipole. (c) Four speakers that form a quadrupole
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Fig. 23.2 A-weighted sound power versus mechanical
power (after Shaw [23.4] with permission, courtesy or AIP)

discussed below. For actual sources, the radiation effi-
ciency can be expressed in terms of the sound power
output of the source relative to the mechanical power in-
put. As shown below, the acoustic power radiated by an
actual source is a very small fraction of the mechanical
power of the source.

Radiation Efficiency of Ideal Sources
One way of classifying sources and determining the
efficiency of the radiation of sound is in terms of
a monopole and higher-order sources. If a sinusoidal
source, such as two small baffled loudspeakers op-
erating in phase having a radian frequency ω = 2π f
injects mass per second with amplitude Qo into the air,
the power Wm radiated by the combination of the two
sources can be shown to be [23.6]

Wm =
(
ω2 Q2

o

)

8πρc
. (23.13)

The situation is illustrated in Fig. 23.1.
The plus signs indicate that the two loudspeakers are

operating in phase. The distance between all loudspeak-
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Fig. 23.3 Typical levels for indoor and outdoor environ-
ments (after Burgé [23.5], with permission)
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Fig. 23.4 Comparison of outdoor A-weighted levels in dif-
ferent environments (after Miller [23.7], with permission)

ers is d. In the second case (b) the two loudspeakers are
operated out of phase and form a dipole with a dipole
moment in the direction shown. In this case, the total
power radiated relative to monopole radiation can be
shown [23.6] to be

Wd = 1

24
(kd)2 Wm , (23.14)

where k is the wave number (ω/c) and d is the dis-
tance between the two sources. If two dipoles with
opposite dipole moments are combined, the result is

a quadrupole – as illustrated in (c). In this case, the to-
tal power radiated relative to monopole radiation can be
shown [23.6] to be

Wq = 1

120
(kd)4 Wm . (23.15)

It can be seen that at small values of kd (low frequen-
cies), dipole and quadrupole sources of sound are much
less efficient in radiating sound than monopoles. The
dipole case is especially important because one way to
reduce the source noise level is to create a secondary
source of opposite phase near the primary sources. The
sound radiated by the secondary source partially can-
cels the sound radiated by the primary source, and the
radiation efficiency is reduced.

Radiation Efficiency of Machines
The sound power radiated by a source is also a very
small fraction of the mechanical power driving the
source. Shaw [23.4] studied the radiation efficiency of
a number of practical sources, and found that only
a small fraction of the mechanical power was converted
to sound. Figure 23.2 shows the relationship between A-
weighted sound power and mechanical power for a wide
variety of sources.

23.1.4 Sound Pressure Level
of Common Sounds

Many authors have shown the relationship between
sound pressure level and many common sounds. Data
adapted from Burgé [23.5] are shown in Fig. 23.3. A-
weighted sound pressure levels range from about 25
to 110 dB, which is a range in sound pressure of ap-
proximately 1 : 18 000. Similar data, but at lower sound
pressure levels, have been adapted from Miller and are
shown in Fig. 23.4. The vertical scales are labeled dif-
ferently to conform to the practice of each author. As
can be seen, there is a considerable difference for certain
common terms; environmental levels may vary greatly
in urban and suburban areas.

23.2 Instruments for Noise Measurements

23.2.1 Introduction

The most common quantity for control and assessment
of noise is the frequency-weighted sound level, as meas-
ured by a sound level meter. Exponential time weighting
may also be employed for measurements of frequency-

weighted sound level. Sound pressure levels are usually
measured through constant-percentage-bandwidth fil-
ters. Sound intensity is commonly used for localization
of noise sources and for direct determination of sound
power level. As discussed in Sect. 23.3.1, measure-
ments of time-average sound pressure levels are also
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widely used for the determination of sound power lev-
els. The time-average sound level is also known as the
equivalent-continuous sound level.

23.2.2 Sound Level

Sound pressure almost always varies with the position
of the receiver in space and with time. When meas-
ured by a sound level meter, the instantaneous sound
pressure signal is frequency weighted, squared, time
integrated, and time averaged before the logarithm is
taken to display the result in decibels relative to the stan-
dard reference pressure. The process is illustrated by
the following expression for a time-averaged frequency-
weighted sound level LwT in decibels

LwT = 10 log

⎛

⎜⎝

[(
1
T

) ∫ t
−T p2

w(ξ)dξ
]1/2

p0

⎞

⎟⎠

2

,

(23.16)

where T is the duration of the averaging time inter-
val, ξ is a dummy variable for time integration over the
averaging time interval ending at the time of observa-
tion t, pw(ξ) is the instantaneous frequency-weighted
sound pressure signal in Pascals, and p0 is the standard
reference pressure of 20 μPa.

The numerator of the argument of the logarithm
in (23.16) represents the root-mean-square frequency-
weighted sound pressure over the duration of the
averaging time interval. In principle, there is no time
weighting involved in a determination of a root-mean-
square sound pressure.

The frequency weighting applied to the instant-
aneous sound-pressure signal could be either the
standard A or C weighting described below, or the
weighting of a bandpass filter, in which case the re-
sult is a band sound pressure level. When reporting the
result of a measurement of sound level, the frequency
weighting should always be stated.

In general, for measurements of time-average sound
level, it is important to record both the duration of
the averaging time interval and the time of observation
at the end of the averaging time. Sound level meters
that display time-average sound levels are integrating–
averaging sound level meters.

For applications such as determining estimates of
the sound level that would have been indicated if the
contaminating influence of background noise had not
been present, for combining narrow-band sound pres-
sure levels into wider-bandwidth sound pressure level,

or for calculating sound power levels from measure-
ments of corresponding sound pressure levels, it is
necessary to work with mean-square sound pressures,
not with root-mean-square sound pressures.

Before the development of digital technology, sound
level meters utilized a dial-and-pointer system to dis-
play the level of the sound pressure signal. These
instruments employ exponential time weighting as
illustrated by the following expression for exponential-
time-weighted frequency-weighted sound level Lwτ (t)
in decibels

Lwτ(t) =

× 10 log

⎛

⎜⎝

[(
1
τ

) ∫ t
−∞ p2

w(ξ)e−(t−ξ)/τ dξ
]1/2

p0

⎞

⎟⎠

2

,

(23.17)

where τ is one of the standardized time constants, ξ
is a dummy variable of time integration from some
time in the past, as indicated by the −∞ for the lower
limit of the integral, to the time t when the level is
observed, and the other terms are as described above
for the time-average sound level. The numerator in
the argument of the logarithm in (23.17) represents an
exponentially-time-weighted quasi-RMS sound pres-
sure. The exponential time weighting de-emphasizes the
contributions to the integral from sound-pressure sig-
nals at earlier times, with the degree of de-emphasis
increasing as the time constant increases.

By international agreement, the two standardized
exponential time constants are 125 ms for fast or F
time weighting and 1000 ms for slow or S time weight-
ing. The time weighting is applied to the square of
the instantaneous frequency-weighted sound-pressure
signal. Instruments that measure time-weighted sound
levels are conventional sound level meters.

Note that in contrast to a time-average sound level,
indications of exponential-time-weighted sound level
vary continuously on the display device of the sound
level meter.

A maximum sound level is the highest time-
weighted sound level occurring within a stated time
interval. A hold capability is needed to display an in-
dication of a maximum sound level on a conventional
sound level meter. Maximum sound levels are not the
same as peak sound levels.

Although a proper description of a measurement of
a sound level is, for example, the A-weighted sound
level was 90 dB, the statement the sound level was
90 dB(A) is widely used, and implies that the level is
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Noise 23.2 Instruments for Noise Measurements 1007

A-weighted. The instantaneous sound pressure signal is
frequency weighted, not the decibel.

23.2.3 Sound Exposure
and Sound Exposure Level

For transient sounds (including the sounds produced by
many different kinds of machines, the sound of the pass
by of an automobile or motorcycle or the overflight of
an aircraft, the sound from blasting or explosions, and
sonic booms), the most appropriate quantity to measure
is sound exposure or sound exposure level. Instruments
that measure sound exposure level are integrating sound
level meters. Sound exposure may be measured with
one of the standardized frequency weightings.

Sound exposure encompasses the magnitude or
level of the sound pressure and its duration in a sin-
gle quantity. The expression for a frequency-weighted
sound exposure Ew, in Pascal-squared seconds, is as
follows

Ew =
t2∫

t1

p2
w(t)dt (23.18)

with running time in seconds. In principle, no time
weighting is involved in a determination of sound ex-
posure according to (23.18).

The frequency-weighted sound exposure level LwE
in decibels, is given by

LwE = 10 log

(
Ew

E0

)
, (23.19)

where E0 is the reference sound exposure equal to
(p2

0T0) = (20 μPa)2 × (1 s) or the product of the square
of the reference pressure and the reference time for
sound exposure of T0 = 1 s.

It is often necessary to make use of the link be-
tween a measurement of the sound exposure level for
a transient sound occurring in a given time interval
and the corresponding time-average sound level. For
a given frequency weighting, the relation is given by the
following

LwT = LwE−10 log

(
T

T0

)
, (23.20)

where T is the averaging time for the determination of
time-average sound level, in seconds, and T0 is the ref-
erence time of 1 s. The relationship of (23.20) may be
extended to the determination of the time-average sound
level corresponding to the total sound exposure of a se-
ries of transient sounds occurring within a given time
interval such as 8 h or 24 h.
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Fig. 23.5 Design goals for A- and C-frequency weightings

23.2.4 Frequency Weightings

Specifications for A- and C-weighting as well as a new
Z-weighting are given in IEC 61672-1:2002 [23.8]. De-
sign goals for the A- and C-weightings are shown in
Fig. 23.5. The design goal for the Z-weighting is flat
(transmission level = 0 dB) over the frequency range
10–20 kHz.

23.2.5 Octave and One-Third-Octave Bands

In general, frequency-weighted sound levels are not
adequate for the diagnosis of noise problems and the de-
sign and implementation of engineering controls. Sound
levels do not contain enough information to calculate
measures of human response such as loudness level
or ratings of room noise such as those obtained from
noise criterion (NC) and other criteria by means of
a curve-tangent method (Chap. 11). In these cases, a set
of bandpass filters covering octave- or one-third-octave
frequency bands should be used. The filters may be
implemented by analog or digital techniques. Idealized
octave-band filter shapes are shown in Fig. 23.6 for the
125 Hz to 8 kHz range of nominal midband frequencies.
This range is adequate for many noise problems. Sound
pressure levels in the octave bands with nominal mid-
band frequencies of 31.5 Hz and 63 Hz are important for
many applications, e.g., noise from heating, ventilating,
and air-conditioning equipment in rooms.

There are three one-third-octave bands in each oc-
tave band. Nominal midband frequencies are shown in
Table 23.1. The standardized midband frequencies in-
crease by a factor of ten in each decade. Specifications
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Fig. 23.6 Idealized octave-band filters for nominal mid-
band frequencies from 125 Hz to 8 kHz

Table 23.1 Nominal octave and one-third-octave midband
frequencies in Hz

ob (1/3)ob ob (1/3)ob ob (1/3)ob

31.5 16 250 200 2000 1600
31.5 250 2000
40 315 2500

63 50 500 400 4000 3150
63 500 4000
80 630 5000

125 100 1000 800 8000 6300
125 1000 8000
160 1250 10000

ob = octave band

for octave-band and fractional-octave-band filters are
given in IEC 61260:1995.

23.2.6 Sound Level Meters

A sound level meter consists of a microphone, an
amplifier and means to process the waveform of the
sound-pressure signal from the microphone according
to the equations above. There may be an analog or a dig-
ital readout or other device to indicate the measured
sound levels. Extensive analog, or digital, or a combi-
nation of analog and digital signal processing may be
utilized. Storage devices may include digital memory,
computers, and printers.

A sound level meter should conform to the re-
quirements of IEC 61672-1:2002 [23.8]. This standard
provides design goals for various electroacoustical re-
quirements along with appropriate tolerance limits
around the design goals for class 1 and class 2 perfor-

mance categories. The two performance classes differ
mainly in the tolerance limits and the ranges of environ-
mental conditions over which an instrument conforms
to the requirements within the tolerance limits.

Sound level meters are intended for measurement of
sounds that are audible to humans, generally assumed
to be in the frequency range from 20 Hz to 20 kHz.

Microphones are covered in detail in Chap. 24.
Sound level meters generally use a condenser micro-
phone, either with a direct-current (DC) polarizing
voltage or pre-polarization to provide the electrostatic
field between the diaphragm and back plate.

The acoustical sensitivity of a measuring system
should be checked using a class 1 or class 2 sound cali-
brator that produces a known sound pressure level at
a specified frequency in the cavity of a coupler into
which the microphone is inserted [23.9]. More details
on means to establish the sensitivity of acoustical in-
struments may be found in Chap. 15.

In the presence of turbulent airflow, pressure fluc-
tuations at the microphone diaphragm will occur that
are not related to the sound pressure in the sound field.
In this case, a windscreen – which may be made from
an open-cell material, a metal, or a nonmetallic fab-
ric – may be used. The insertion loss of a windscreen is
the difference between the sound pressure level meas-
ured without and with the windscreen (in the absence of
airflow), and may be determined in a free or a diffuse
sound field. A standard for measurement of windscreen
performance is available [23.10]. The insertion loss of
windscreens that do not have spherical shapes may vary
with sound incidence angle.

Microphones are generally designed to have their
best frequency response from a specified reference di-
rection of sound incidence in a free sound field or
in response to sounds incident on the microphone
from random directions, i. e., so-called free-field or
random-incidence microphones. The specifications in
IEC 61672-1:2002 apply equally to either microphone
type when installed on a sound level meter.

A free-field microphone should be used when there
is a principal direction from which the sound is incident
on the microphone. A random-incidence microphone is
preferred for applications where the direction of sound
incidence is unknown, unpredictable, or varies with
time, a situation commonly encountered when measur-
ing noise levels in a factory or community.

In addition to the time-average, time-weighted, and
peak sound levels described above, many sound level
meters can record maximum and minimum levels in
a given time interval, as well as statistical measures
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Digital signal
processor

and
storage device

Microphone, amplifier and A/D converter
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Fig. 23.7 Block diagram of a multichannel instrument us-
ing digital signal processing

such as the sound level exceeded at various percent-
ages of a time interval, e.g., 10% of the time in an
hour of observations. Performance specifications for the
measurement of percentile sound level are not stan-
dardized, and the results may vary depending on the
manufacturer of the instrument and the percentile of in-
terest, with the greatest variations at the extremes of the
percentiles.

23.2.7 Multichannel Instruments

Many applications for noise control are best satisfied
by use of a microphone array. These include mea-
surement of sound pressure level at multiple positions
on a measurement surface for determination of sound
power, and measurements at several locations around
a time-varying sound source. In the first case, several
microphones may be connected to a multiplexer, and
the outputs sampled sequentially. In the second case, the

pA
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OutΔr

Pre-amp Filter

Pre-amp Filter
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Add
inputs

Subtract
inputs

pB
mike Integrate A/D

converter

A/D
converter
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and
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( pA + pB)/2

u

Fig. 23.8 Block diagram of an analog-to-digital sound intensity analyzer with octave-band filters. Alternatively, the
preamplifier outputs of the microphones could be suitably amplified and converted to digital format; all further processing
would then be done digitally

microphones may each be connected to an amplifier and
analog-to-digital (A/D) converter. High sampling rates
(e.g., greater than 40 kHz) are required. The data are
sent to a digital signal processor and storage device, for
example, a digital computer. A block diagram of such
a system is shown in Fig. 23.7.

The number of samples of sound pressure level data
that can be stored in a multichannel measurement sys-
tem depends on the available storage capacity, which
can be quite large in the case of systems used for moni-
toring noise in the community and around airports.

23.2.8 Sound Intensity Analyzers

Sound intensity is covered in detail in Chap. 25. Sound
intensity analyzers often use two closely spaced micro-
phones to approximate the pressure gradient in a sound
field. Particle velocity is found by integration of the time
derivative of the sound-pressure gradient (23.3). Sound
pressure is the average of the pressures at the two mi-
crophones. A block diagram of a sound intensity meter
is shown in Fig. 23.8. Processing of the sampled sig-
nals may be accomplished either with analog circuits
or digitally. Standards for sound intensity analyzers are
available [23.11, 12].

23.2.9 FFT Analyzers

Unlike octave-band and one-third-octave band filters,
which are proportional (or constant-percentage) band-
width filters, a fast Fourier transform (FFT) analyzer is
essentially a set of fixed-bandwidth filters. The FFT is
a computational implementation of the discrete Fourier
transform that produces a set of discrete-frequency
spectral lines. The number of spectral lines in a given
frequency interval depends on the number of samples
of the time series obtained from digital sampling of the

Part
G

2
3
.2



1010 Part G Structural Acoustics and Noise

sound-pressure signal. If a periodic wave is sampled
with a sampling period that is not an integral number
of wavelengths of the wave, spectral leakage occurs.
FFT analyzers contain windows to improve spectral es-
timates – the Hanning window is the most common.

There are no national or international standards for the
performance of FFT analyzers. The results of measure-
ments by FFT analyzers may vary depending on the
design implementation by the manufacturer or com-
puter programmer.

23.3 Noise Sources

In this section, methods for the specification of noise
emissions are given, noise emission criteria are de-
scribed, and some basic principles of noise control are
presented. A general description of noise control for sta-
tionary sources is presented, and some information on
vehicle noise and aircraft noise is given. A short section
on the principles of active noise control is included.

23.3.1 Measures of Noise Emission

This section is an edited version of a textbook chapter
of [23.13].

Two quantities are needed to describe the strength of
a noise source, its sound power level and its directivity.

The sound power level is a measure of the total
sound power radiated by the source in all directions and
is usually stated as a function of frequency, for exam-
ple, in one-third octave bands. The sound power level is
then the preferred descriptor for the emission of sound
energy by noise sources.

The directivity of a source is a measure of the vari-
ation in its sound radiation with direction. Directivity is
usually stated as a function of angular position around
the acoustical center of the source and also as a function
of frequency.

From the sound power level and directivity, it is pos-
sible to calculate the sound pressure levels produced
by the source in the acoustical environment in which
it operates. In Sect. 23.4.2, a classical method for this
calculation is presented – as is an alternative method for
long and flat rooms.

A source may set a nearby surface into vibration if
it is rigidly attached to that surface, causing more sound
power to be radiated than if the source were vibration
isolated. Both the operating and mounting conditions
of the source therefore influence the amount of sound
power radiated as well as the directivity of the source.
Nonetheless, the sound power level alone is useful for:
comparing the noise radiated by machines of the same
type and size as well as by machines of different types
and sizes; determining whether a machine complies
with a specified upper limit of noise emission; planning

in order to determine the amount of transmission loss or
noise control required; and engineering work to assist
in developing quiet machinery and equipment.

Expanding the dot product in (23.6) allows the sur-
face integral to be written in terms of scalar quantities

W =
∫

S
In dS , (23.21)

where In = I cos(θ) is the component of sound intensity
normal to the surface at the location of dS; dS is the
magnitude of the elemental surface area vector.

The integral may be carried out over a spherical or
hemispherical surface that surrounds the source. Other
regular surfaces, such as a parallelepiped or a cylinder,
are also used in practice, and, in principle, any closed
surface can be used. If the source is nondirectional and
the integration is carried out over a spherical surface
having a radius r and centered on the source, sound
intensity and sound power are related by

I (at r) = In(at r) = W

S
= W

4πr2
, (23.22)

where I is the magnitude of intensity on the surface (at
radius r), In is the normal component of intensity on the
surface (at radius r), W is the sound power, S is the area
of spherical surface (4πr2), and r is the radius of the
sphere.

In general, a source is directional, and the sound
intensity is not the same at all points on the surface.
Consequently, an approximation must be made to eval-
uate the integral of (23.21). It is customary to divide
the measurement surface into a number of subsegments,
each having an area Si , and to approximate the nor-
mal component of the sound intensity on each surface
subsegment. The sound power of the source may then
be calculated by a summation over all of the surface
subsegments

W =
∑

i

Ini Si , (23.23)

here Ini is the normal component of sound intensity av-
eraged over the i-th area segment, Si is the i-th area
segment, and i is the number of segments.
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When each segment of the measurement surface has
the same area,

W = S
∑

i

Ini = S〈In〉 , (23.24)

where 〈In〉 is the average value of the normal sound in-
tensity over the measurement surface, and S is the total
area of the measurement surface.

The sound power level is then

LW = 10 log
W

W0
, (23.25)

where W0 is the standard reference power, 10−12 W.
Equation (23.24) is usually used to determine the

sound power of a source from the sound intensity level
except when the source is highly directional. For direc-
tional sources, the subareas of the measurement surface
may be selected to be unequal and (23.23) should be
used.

Table 23.2 A-frequency weightings for octave- and one-
third-octave bands

Mid band One-third Octave-band

center frequency octave band weightings

(Hz) weightings (dB)

(dB)

50 –30.2 –26.2

63 –26.2

80 –22.5

100 –19.1 –16.1

125 –16.1

160 –13.4

200 –10.9 –8.6

250 –8.6

315 –6.6

400 –4.8 –3.2

500 –3.2

630 –1.9

800 –0.8 0

1000 0

1250 0.6

1600 1.0 1.2

2000 1.2

2500 1.3

3150 1.2 1.0

4000 1.0

5000 0.5

6300 –0.1 –1.1

8000 –1.1

10000 –2.5

A-Weighted Sound Power
All procedures described in this section apply to the
determination of sound power levels in octave or
one-third-octave bands. The techniques are indepen-
dent of bandwidth. The A-weighted sound power level
is obtained by summing (on a mean-square basis)
the octave-band or one-third octave-band data after
applying the appropriate A-weighting corrections. A-
weighting values are listed Table 23.2.

Measurement Environments
Three different types of laboratory environments in
which noise sources are measured are found in mod-
ern acoustics laboratories: anechoic rooms (free field),
hemi-anechoic rooms (free field over a reflecting plane),
and reverberation rooms (diffuse field). In an anechoic
room, all of the boundaries are highly absorbent, and the
free-field region extends very nearly to the boundaries
of the room. Because the floor itself is absorptive, ane-
choic rooms usually require a suspended wire grid or
other mechanism to support the sound source, test per-
sonnel, and measurement instruments. A hemi-anechoic
room has a hard, reflective floor, but all other boundaries
are highly absorbent. Both anechoic and hemi-anechoic
environments are used to determine the sound power
level of a source, but the hemi-anechoic room is clearly
more practical for testing large, heavy sources.

In a reverberation room, where all boundaries are
acoustically hard and reflective, the reverberant field
extends throughout the volume of the room except for
a small region in the vicinity of the source. The sound
power level of a source may be determined from an es-
timate of the average sound pressure level in the diffuse
field region of the room coupled with a knowledge of
the absorptive properties of the boundaries, or by com-
parison with a reference sound source of known sound
power output. A standard for the calibration of reference
sound sources is available [23.14].

Free-Field Approximation
for the Determination of Sound Power

For the far field of a source radiating into free space, the
magnitude of the intensity at a point a distance r from
the source is

I (at r) = p2
RMS(at r)

ρc
, (23.26)

where ρc is the characteristic resistance of air equal to
about 406 MKS Rayl at normal room conditions, and
pRMS is the root-mean-square sound pressure, at r.
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Strictly speaking, this relationship is only correct
in the far field of a source radiating into free space.
Good approximations to free-space, or free-field, con-
ditions can be achieved in properly designed anechoic
or hemi-anechoic rooms, or outdoors. Hence, (23.26)
is approximately correct in the far field of a source
over a reflecting plane, provided that the space above
the reflecting plane remains essentially a free field
at distance r. Even if the free field is not perfect,
and a small fraction of the sound is reflected from
the walls and ceiling of the room, an environmental
correction may be introduced to allow valid measure-
ments to be taken in the room. The relations below
are widely used in standards that determine the sound
power of a source from a measurement of sound pres-
sure level.

If a closed measurement surface is placed around
a source so that all points on the surface are in the far
field, and if the intensity vector is assumed to be essen-
tially normal to the surface so that I = In at all points on
the surface, then (23.23) and (23.26) can be combined
to yield

W = 1

ρc

∑

i

p2
i Si , (23.27)

here pi is the average RMS sound pressure over area
segment Si .

The sound power level is as expressed in (23.25). If
all segments are of equal area,

W = S

ρc

1

N

∑

i

p2
i =

S

ρc
〈p2〉 , (23.28)

where S is the total area of the measurement surface,
N is the number of area segments, and 〈p2〉 is the
average mean square pressure over the measurement
surface.

In logarithmic form with reference power 10−12 W
and reference pressure 20 μPa, the sound power level is

LW = Lp+10 log
S

S0
+10 log

400

ρc
, (23.29)

where S0 = 1 m2.
For ρc = 406 MKS Rayl, the last term in (23.29) is

−0.064, and can usually be neglected.
Hence, the sound power level of a source can

be computed from sound pressure level measurements
made in a free field. Equation (23.29) is widely used
in standardized methods for the determination of sound
power levels in a free field or in a free field over a re-
flecting plane.

Sound Power Determination in a Diffuse Field
The sound power level of a source can also be computed
from sound pressure level measurements made in an en-
closure with a diffuse sound field because in such a field
the sound energy density is constant; it is directly re-
lated to the mean-square sound pressure and, therefore,
to the sound power radiated by the source. The sound
pressure level in the reverberant room builds up until
the total sound power absorbed by the walls of the room
is equal to the sound power generated by the source.
The sound power is determined by measuring the mean-
square sound pressure in the reverberant field. This
value is either compared with the mean-square pressure
of a source of known sound power output (comparison
method) or calculated directly from the mean-square
pressure produced by the source and a knowledge of
the sound-absorptive properties of the reverberant room
(direct method).

The procedure for determining the sound power
level of a noise source by the comparison method re-
quires the use of a reference sound source of known
sound power output. The procedure is essentially as
follows.

With the equipment being evaluated at a suitable lo-
cation in the room, determine, in each frequency band,
the average sound pressure level (on a mean-square ba-
sis) in the reverberant field using the microphone array
or traverse described above.

Replace the source under test with the reference
sound source and repeat the measurement to obtain the
average level for the reference sound source.

The sound power level of the source under test LW
for a given frequency band is calculated from

LW = LWr+
(〈Lp〉−〈Lp〉r

)
(23.30)

where LW is the one-third-octave band sound power
level for the source being evaluated, 〈Lp〉 is the space-
averaged one-third octave band sound pressure level of
source being evaluated, LWr is the calibrated one-third-
octave band sound power level of the reference source,
and 〈Lp〉r is the space-averaged one-third-octave band
sound pressure level of the reference sound source.

The direct method does not use a reference sound
source. Instead, this method requires that the sound-
absorptive properties of the room be determined by
measuring the reverberation time in the room for each
frequency band. Measurement of T60 is described in
Chap. 11.

With this method, the space-averaged sound pres-
sure level for each frequency band of the source being
evaluated is determined as described above for the com-
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parison method. The sound power level of the source is
found from

LW = Lp+
[

10 log
A

A0
+4.34

A

S

+10 log

(
1+ S c

8V f

)

−25 log

(
427

400

√
273

273+ θ
B

B0

)
−6

]

× dB re 10−12 W , (23.31)

where LW is the band sound power level of the sound
source under test, Lp is the band space-averaged sound
pressure level of the sound source under test, A is the
equivalent absorption area of the room, given by

A = 55.26

c

(
V

Trev

)
,

V is the room volume, Trev is the reverberation time for
the particular band, A0 is the reference absorption area,
S is the total surface area of the room, f is the midband
frequency of the measurement, c is the speed of sound
at temperature θ in ◦C, B is the atmospheric pressure,
with B0 = 1.013 × 105 Pa, V0 = 1 m3, T0 = 1 s.

Diffuse sound fields can be obtained in laboratory
reverberation rooms. Sufficiently close engineering ap-
proximations to diffuse-field conditions can be obtained
in rooms that are fairly reverberant and irregularly
shaped. When these environments are not available or
when it is not possible to move the noise source under
test, other techniques valid for the in situ determination
of sound power level may be used and are described
later in this section.

Non-steady and impulsive noises are difficult to
measure under reverberant-field conditions. Measure-
ments on such noise sources should be made under
free-field conditions.

Sound Power Determination
in an Ordinary Room

The sound pressure field in an ordinary room such as
an office or laboratory space that has not been designed
for acoustical measurements is neither a free-field nor
a diffuse field. Here the relationship between the sound
intensity and the mean-square pressure is more compli-
cated. Instead of measuring the mean-square pressure,
it is usually more advantageous to use a sound inten-
sity analyzer that measures the sound intensity directly
(Sect. 23.2.8). By sampling the sound intensity at de-
fined locations in the vicinity of the source, the sound

power level of the source can be determined. A stan-
dard for the in situ determination of sound power is also
available, and is described below.

Source Directivity
Most sources of sound [23.15, 16] of practical inter-
est are directional to some degree. If one measures the
sound pressure level in a given frequency band a fixed
distance away from the source, different levels will gen-
erally be found for different directions. A plot of these
levels in polar fashion at the angles for which they were
obtained is called the directivity pattern of the source.

The directivity factor Qθ is defined as the ratio
of the mean-square sound pressure p2

θ at angle θ and
distance r from an actual source radiating W and the
mean-square sound pressure p2

S at the same distance
from a nondirectional source radiating the same acous-
tic power W . Alternatively, Qθ is defined as the ratio
of the intensity in the direction of propagation W/m2 at
angle θ and distance r from an actual source to the inten-
sity at the same distance from a nondirectional source,
both sources radiating the same sound power W . It must
be assumed that the directivity factor is independent of
distance from the source.

The directivity index DIθ of a sound source on
a rigid plane (radiating into hemispherical space) at an-
gle θ and for a given frequency band is computed from

DIθ = Lpθ −〈Lp〉H+3 dB , (23.32)

where Lpθ is the sound pressure level measured a dis-
tance r and angle θ from the source, and 〈Lp〉H is the
sound pressure level of the space-averaged mean-square
pressure averaged over a test hemisphere of radius r
(and area 2πr2) centered on and surrounding the source.

The 3 dB in this equation is added to 〈Lp〉H be-
cause the measurement was made over a hemisphere
instead of a full sphere. The reason for this is that the
intensity at radius r is twice as large if a source radi-
ates into a hemisphere as compared to a sphere. That
is, if a nondirectional source were to radiate uniformly
into hemispherical space, DIθ = DI = 3 dB. Equations
are available for sound radiation into a sphere and into
a quarter sphere [23.15, 16].

23.3.2 International Standards for the
Determination of Sound Power

The International Organization for Standardization
(ISO) has published a series of international standards,
the ISO 3740 series [23.17–26], which describes sev-
eral methods for determining the sound power levels of
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Noise 23.3 Noise Sources 1015

noise sources. Table 23.3 summarizes the applicability
of each of the basic standards of the ISO 3740 series.
The most important factor in selecting an appropriate
noise measurement method is the ultimate use of the
sound power level data that are to be obtained.

In making a decision on the appropriate measure-
ment method to be used, several factors should be
considered:

1. The size of the noise source
2. The moveability of the noise source
3. The test environments available for the measure-

ments
4. The character of the noise emitted by the noise

source
5. The grade (classification) of accuracy required for

the measurements.

The methods described in this chapter are consistent
with those of the ISO 3740 series. A set of standards
with the same objectives is available from the American
National Standards Institute (ANSI) or the Acoustical
Society of America (ASA).

Determination of Sound Power
in a Free Field

The basis for sound power level in a free field us-
ing sound pressure is the approximate relationships in
(23.28) and (23.29) above. Essentially, a measurement
surface is chosen and microphone positions are defined
over this surface. Sound pressure level measurements
are taken at each microphone position for each fre-
quency band, and from these, the sound power levels
are computed. The relevant ISO standards are ISO 3744,
ISO 3745, and ISO 3746.

Selection of a Measurement Surface. The international
standards allow a variety of measurement surfaces to be
used; some are discussed here. In selecting the shape
of the measurement surface to be used for a particu-
lar source, an attempt should be made to choose one
where the direction of sound propagation is approxi-
mately normal to the surface at the various measurement
points. For example, for small sources that approximate
a point source, the selection of a spherical or hemispher-
ical surface may be the most appropriate; the direction
of sound propagation will be essentially normal to this
surface. For machines in a hemi-anechoic environment
that are large and in the shape of a box, the paral-
lelepiped measurement surface may be preferable. For
tall machines in a hemi-anechoic environment having
a height much greater than the length and depth, a cylin-

0.99r
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17  19 7  9

4  5 14  15

12  13 2  3
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y
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6060
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Measurement
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Fig. 23.9 Microphone positions for a hemispherical mea-
surement surface according to ISO 3744 (ISO CD 3744
(N1497)) (courtesy of the International Organization for
Standardization, Geneva, Switzerland)

drical measurement surface [23.27,28] may be the most
appropriate.

Measurement in Hemi-anechoic Space. The sound
power determination in a hemi-anechoic space may be
performed according to ISO 3744 for engineering-grade
accuracy or according to ISO 3745 for precision-grade
accuracy. ISO 3744 is strictly for hemi-anechoic en-
vironments, while ISO 3745 includes requirements
for both hemi-anechoic and fully anechoic environ-
ments. These standards specify requirements for the
measurement surfaces and locations of microphones,
procedures for measuring the sound pressure levels
and applying certain corrections, and the method for
computing the sound power levels from the surface-
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Fig. 23.10 Microphone positions for a rectangular mea-
surement surface according to ISO 3744 (ISO CD 3744
(N1497)) (courtesy of the International Organization for
Standardization, Geneva, Switzerland)

average sound pressure levels. In addition, they provide
detailed information and requirements on criteria for
the adequacy of the test environment and background
noise, calibration of instrumentation, installation and
operation of the source, and information to be re-
ported. Several annexes in each standard include
information on measurement uncertainty and the qual-
ification of the test rooms. ISO 3746 is a survey
method.

As examples, microphone positions for a hemi-
spherical measurement surface, a rectangular measure-
ment surface, and a cylindrical measurement surface are
shown in Figs. 23.9–23.11, respectively.

Determination of Sound Power
in a Diffuse Field

ISO 3741 is a precision method for the determination
of sound power level in a reverberant test environ-
ment. The standard includes both the direct method and
the comparison method described above. Requirements
on the volume of the reverberation room are speci-
fied. Qualification procedures for both broadband and
discrete frequency sound, are included, the minimum
distance between the source and the microphone(s) are
specified, and other measurement details are given.

Determination of Sound Power in Situ
In ISO 3747, engineering or survey methods are given
for determination of the sound power of a source in situ,
when the source cannot be moved.

Top path 1

2R = l1 + 2d12R = l2 + 2d2
d1

l1l2

d2

Side path 6
Side path 5
Side path 4
Side path 3
Side path 2
Side path 1

Top path 2

Top path 3

H = l3 + d3

d3

l3

Reference box

Reflecting plane

Fig. 23.11 Microphone positions for a cylindrical measure-
ment surface

Determination of Sound Power
Using Sound Intensity

Sound intensity is discussed in detail in Chap. 25. The
fundamental procedures for the determination of sound
power from sound intensity are discussed above. The
sound intensity is measured over a selected surface en-
closing the source. In principle, the integral over any
surface totally enclosing the source of the scalar product
(dot product) of the sound intensity vector and the asso-
ciated elemental area vector provides a measure of the
sound power radiated directly into the air by all sources
located within the enclosing surface.

The use of sound intensity to determine sound
power has several advantages over the free-field meth-
ods described above using sound pressure.

1. It is not necessary to make the approximation
I = p2/ρc. Therefore, it is not necessary to make
any assumption about the direction of sound inten-
sity relative to the measurement surface. What is
required is proper orientation of the intensity probe.

2. If there is no sound absorption within the mea-
surement surface, the sound energy that enters the
measurement surface from the outside also exits.
Therefore, the sound power measurement is less
sensitive to background noise levels and reflec-
tions from room surfaces than the pressure methods
described above. The pressure methods require cor-
rections for background noise and, in some cases,
environmental corrections for reflections from room
surfaces.
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Noise 23.3 Noise Sources 1017

3. Measurements can often be made in an ordinary
room.

There are, however, disadvantages to the intensity
method.

An intensity analyzer is more complex than a sound
level meter in the sense that the two channels required
for the measurements (Sect. 23.2.8) must be carefully
matched in phase. When using discrete microphone po-
sitions, a very large number of microphone positions
may be required to obtain a specified accuracy in the
measurements. Mean square sound pressures on a mea-
surement surface are always positive, whereas sound
intensity may be outward from the measurement surface
(positive) or inward (negative). Thus, the summation
of sound intensities over the measurement surface may
produce a small number, and the accuracy of the mea-
surement may be difficult to determine.

Standards have been developed to overcome these
disadvantages. Instrument standards have been devel-
oped [23.11, 12] and there are standards available for
the determination of sound power via sound intensity
both for fixed intensity-probe positions [23.29] and for
scanning [23.30–32] with an intensity probe over the
measurement surface. The standards also describe field
indicators that can be used to estimate the accuracy of
the sound power determination, and technical informa-
tion on the use of field indicators is available [23.33,34].

After substantial experience with the determination
of sound power via sound intensity has been achieved,
it is expected that these standards will be revised.

Determination of Sound Power in a Duct
The most common application of in-duct measurements
is to determine the sound power radiated by air-moving
devices. The sound power level of a source in a duct
can be determined according to ISO 5136 [23.35] from
sound pressure level measurements, provided that the
sound field in the duct is essentially a plane progressive
wave, using the equation

LW = Lp+10 log
S

S0
, (23.33)

where LW is the level of total sound power traveling
down duct, Lp is the sound pressure level measured just
off centerline of duct, S is the cross-sectional area of
duct, and S0 = 1 m2.

The above relation assumes not only a nonreflecting
termination for the end of the duct opposite the source
but also a uniform sound intensity across the duct. At
frequencies near and above the first cross resonance of

the duct the latter assumption is no longer satisfied.
Also, when following the measurement procedures of
ISO 5136, several correction factors are incorporated
into (23.33) to account for microphone response and
atmospheric conditions.

Equation (23.33) can still be used provided Lp, is
replaced by a suitable space average 〈Lp〉 obtained by
averaging the mean square sound pressures obtained
at selected radial and circumferential positions in the
duct, or by using a traversing circumferential micro-
phone. The number of measurement positions across the
cross section used to determine 〈Lp〉 will depend on the
accuracy desired and the frequency [23.36].

In practical situations, reflections occur at the open
end of the duct, especially at low frequencies. The ef-
fect of branches and bends must be considered [23.37].
When there is flow in the duct, it is also necessary
to surround the microphone by a suitable windscreen.
This is necessary to reduce turbulent pressure fluctua-
tions at the microphone, which can cause an error in the
measured sound pressure level.

23.3.3 Emission Sound Pressure Level

Another measure of the noise emission of a source
is the emission sound pressure level. The sound pres-
sure level measured in the vicinity of a noise source
is dependent not only on its operating condition, but
also the distance from the source and the acoustical
environment – primarily reflections from the room sur-
faces – but also on the presence of other nearby sources.
There are, however, cases where the noise emissions of
a source can be described using sound pressure levels.
These levels may be specified at an operator’s position
and at selected bystander positions, and in a controlled
acoustical environment. Peak C-weighted sound levels
(Sect. 23.2.4) may also be important when the levels are
high enough to cause hearing damage, and these lev-
els are not determined when using sound power level as
a measure of noise emissions.

A series of international standards has been de-
veloped to ensure consistency in the measurement
process and to estimate emission sound pressure levels
when only sound power level information is avail-
able. ISO 11200 [23.38] provides an introduction and
overview of the series. ISO 11201 [23.39] provides
guidance for measurements at the operating position
and bystander position when the acoustical environment
is a free field over a reflecting plane. If the measure-
ments cannot be made in a free field over a reflecting
plane, it may be necessary to use a semi-reverberant
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environment. Using this method, A-weighted or C-
weighted peak sound levels may be measured using
ISO 11202 [23.40]. When only the sound power level
of the source is available, it may be necessary to make
estimates of the emission sound pressure level, and
this procedure is covered in ISO 11203 [23.41]. As
in the case of engineering and survey methods for
determination of sound power level, environmental cor-
rections may be needed in the measurement of emission
sound pressure level, and this subject is covered in
ISO 11204 [23.42]. Sound intensity level may be used
to determine sound power level of a source, as described
in the previous section. Sound intensity measurement
may also be used in the determination of emission
sound pressure level. The procedures are standardized
in ISO 11205 [23.43].

23.3.4 Other Noise Emission Standards

Many standards organizations, trade associations, and
other organizations have developed standards to de-
termine the noise emissions of specific sources. This
section is devoted to a brief description of such stan-
dards.

ISO Standards
The ISO has many standards for specific noise sources:

• Noise emitted by road vehicles [23.44–50]• Information technology equipment [23.51–53]• Noise emitted by rotating electrical
machinery [23.54]• Shipboard noise [23.55, 56]• Aircraft noise [23.57, 58]• Industrial plants [23.59, 60]• Construction machinery [23.61]• Agricultural machinery [23.62, 63]• Earth-moving machinery [23.64–67]• Lawn care equipment [23.68]• Air terminal devices [23.69]• Pipes and valves [23.70]• Brush saws [23.71].

For other equipment, the ISO has published stan-
dards related to the writing of noise test codes [23.72].

American National Standards
The determination of noise emissions from a wide
variety of mechanical equipment is the subject of
two American national standards. ANSI S12.15-
1992 [23.73] defines microphone positions and other
information for determining noise emissions from

a wide variety of tools. It defines measurement surfaces
for portable tools and gives information on determina-
tion of sound power level for stationary tools. The tools
covered include the following.

Portable Electric Tools.

• Circular hand saws• Drills• Grinders• Polishers• Reciprocating saws• Nibblers• Screwdrivers• Nut settlers and tappers• Hedge trimmers• Shears• Grass shears• Routers• Planers• Edge trimmers• Rotary cultivators.

Stationary and Fixed Electric Tools.

• Drill presses• Scroll saws• Scroll saws• Disk sanders• Joiner/planers• Bench grinders• Belt sanders• Radial saws• Hacksaws• Band saws.

A second American national standard, ANSI S12.16-
1992(R2002) [23.74], gives guidance to users on how to
request noise emission data for machinery, and refers to
industry standards for a wide variety of equipment. The
applicable standard is given and the data to be reported.
Examples of equipment included in the standard are:

• Fans• Hydraulic fluid power pumps• Hydraulic fluid power motors• Pneumatic tools• Gear drives and gear motors• Mechanical equipment (general)• Liquid immersed transformers• Dry type ventilated and non ventilated and sealed
transformers• Control valves and associated piping
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• Air-conditioning equipment; refrigeration equip-
ment, chillers, etc.• Stationary heavy duty internal combustion engines• Electric motors, turbines, and generators• Machine tools.

23.3.5 Criteria for Noise Emissions

Criteria for noise emissions can be divided into stan-
dards for making a noise declaration, specific criteria
for both indoor and outdoor sources, and criteria for
obtaining an environmental label for a product.

General Noise Declaration Standards
After the sound power level of a product has been de-
termined, the results are usually communicated to users
either in the form of a product noise declaration pub-
lished in product literature, on the manufacturer’s web
site, or a physical label attached to the product. The
emission sound pressure level may also be declared
(Sect. 23.3.3). Noise declarations are generally in terms
of a statistical upper limit determined according to na-
tional or international standards. The basic statistical
procedures are contained in ISO 7574, a four-part series
of standards [23.75–78].

The preferred descriptor of product noise emissions
is the declared A-weighted sound power level, LWAd.
A widely used international standard is ISO 4871:1996
[23.79] for machinery in general. This standard is an
implementation of ISO 7574 and must be followed by
noise test codes. ISO 9296:1998 [23.80] is an example
of such a code specifically for computer and business
equipment (information technology equipment).

Noise Emission Limits
Below, two examples of upper limits for noise emis-
sions are given, one for office equipment widely used
for specification of noise emissions of information tech-
nology equipment, and the other for specification of
outdoor equipment.

Indoor Equipment. Since the middle of the 1980s,
recommended limits for equipment in the informa-
tion technology industry have been published by the
Swedish Agency for Public Management, Statskon-
toret [23.81]. The recommended upper limits are given
in Table 23.4. The limits are in terms of the statisti-
cal upper-limit A-weighted sound power level of the
equipment in bels. Since a wide variety of products are
produced in this industry, it is necessary, in addition to
upper limits, to specify the environment in which the

equipment will be operated. A category 1 product is in-
tended for use in a large data-processing installation,
either generally attended or generally unattended, where
the installation noise level is determined by a large num-
ber of machines. Category 2 products are intended for
use in a business office where many persons operate
workstations. A category 3 product is intended for use in
a private office where, for example, personal computers
or low-noise copiers are operated. Users are encouraged
to obtain the latest version of the standard; it contains
a great deal of information in addition to the recom-
mended upper limits in the table below. Information on
the presence of impulsive noise and prominent discrete
tones is also required in the version below, and there
is information on determination of the emission sound
pressure level determined according to the ISO 11200
series of international standards [23.38–43]. While the
limits in the table below are recommended, they can
become a requirement when written into a purchase
contract or other document.

Note that in the table below, the sound power level
is expressed in bel (1 bel = 10 decibel).

Outdoor Equipment. A source of noise emission re-
quirements for outdoor equipment may be found in
European Union directive 2000/14/EC [23.82]. The
directive specifies demanding noise limits and noise
markings for about 55 different types of equipment (Ta-
ble 23.5). The intent is that the state of the art in noise
reduction permits manufacturers to meet these limits
without excessive additional costs. The limits are stated
in terms of the A-weighted sound power level LWA and
the measurements are to be made according to Euro-
pean standards (EN) that correspond to ISO standards
3744 and 3746 [23.17–26].

The permissible sound power level shall be rounded
to the nearest whole number (less than 0.5 use the lower
number, greater than or equal to 0.5 use the higher num-
ber).

Fig. 23.12 German Blue Angel logo
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Environmental Labels
An alternative to the declaration of a specific noise level
is the submission of product noise emission data to an
independent body, which makes a judgment of the data
relative to other similar products and allows an environ-
mental label to be used. Such labels are not limited
to noise levels, but are issued to products that display
a variety of favorable environmental characteristics. The
general objective of environmental labels (eco-labels)
is to provide a voluntary system to both allow manu-
facturers to identify environmentally friendly products
and to provide the public with a recognizable label that
designates environmental quality.

The first eco-label was the German Blue Angel
label [23.83]. Noise as a requirement to obtain the
Blue Angel label, illustrated in Fig. 23.12, is covered in

Table 23.4 Recommended upper limits of declared A-weighted sound power level (after [23.81, Table 1])

Product description Recommended upper limit
A-weighted sound power level in bel
LWAd LWAd

Operating Idle

Category I: Equipment for use in data processing (DP) areas

A. Products in unattended DP areas 8.0+ L 8.0+ L

B. Products in generally attended DP areas 7.5+ L 7.5+ L

Category II: Equipment for use in general business areas

A. Fully-formed character typewriters and printers 7.2 5.5

B. Printers and copiers more than 4 m distance from workstations 7.2 6.5

C. Tabletop printers and tabletop copiers 7.0 5.5

D. Processors, controllers, disk and tape drives, etc. 7.0+ L 7.0+ L

(more than 4 m distant from workstations)

E. Processors, controllers, disk and tape drives, etc. 6.8 6.6

(less than 4 m distant from workstations)

Category III: Floor-standing use in quiet office areas

A. Printers, typewriters, plotters 6.5 5.0

B. Keyboards 6.2 N/A

C. Processors 6.0 5.5

D. Tabletop processors, controllers, system units including built-in disk 5.8 5.0

drives and/or tapes, display units with fans 4

E. Display units (no moving parts) 4.5 4.5

Notes:
1. L = log(S/S0). S is the footprint area of the product, in square meters. S0 is the reference footprint area, equal to 1 m2. If S< 1 m2,
S shall be set equal to 1.0. (Thus the specification will not get lower than 8.0 and 7.5 and 7.0 bels for Category IA and IB and IID,
respectively)
2. For products comprised of multiple racks or frames of equal footprint areas linked together, the reference footprint area S0 shall
be set equal to the footprint area of the individual racks or frames, or to 1.0 m2, whichever is smaller
3. The calculated value of the recommended upper limit (for Category IA, IB, and IID) may be rounded to the nearest upper 0.1 bel
4. For Category IIID products, especially for personal computers to be used in the home, lower values are often recommended
(e.g., LWAd = 5.5 B operating and LWAd = 4.8 B idle; see, for instance, European Commission decision 2001/686/EC and Swedish
TCO 99)

Fig. 23.13 European Union (EU) Flower logo

specific documents for a number of products. The veri-
fication criteria are prepared by the German Institute for
Quality Assurance and Certification (RAL).
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Table 23.5 Table of limit values from EU directive 2000/14/EC

Type of equipment Net installed power P Permissible sound power level
(in kW); Electric (dB/1 pW)
Electric power Pel in kW; Stage I Stage II
Mass of appliance m in kg; as from as from
cutting width L in cm 3 January 2002 3 January 2006

Compaction machines (vibrating rollers, P ≤ 8 108 105

vibrating plates, vibratory hammers 8< P ≤ 70 109 106

P> 70 89+11 log P 86+11 log P

Tracked dozers, tracked loaders, P ≤ 55 106 103

tracked excavators–loaders P> 55 87+11 log P 84+11 log P

Wheeled dozers, wheeled loaders, P ≤ 55 104 101

dumpers, graders, loader-type P> 55 85+11 log P 82+11 log P

landfill compactors, combustion-

engine driven counterbalanced lift

trucks, mobile cranes, compaction

machines (non-vibrating rollers)

paver finishers, hydraulic power packs

Excavators, builder’s hoists for the P ≤ 15 96 93

transport of goods, construction winches P> 15 83+11 log P 80+11 log P

motor hoes

Hand-held concrete breakers and picks m ≤ 15 107 105

15< m < 30 94+11 log P 92+11 log m

m ≥ 30 96+11 log P 94+11 log m

Tower cranes 98+ log P 96+ log P

Welding and power generators Pel ≤ 2 97+ log Pel 95+ log Pel

2< Pel ≤ 10 98+ log Pel 96+ log Pel

Pel > 10 97+ log Pel 95+ log Pel

Compressors P ≤ 15 99 97

P> 15 97+2 log P 95+2 log P

Lawnmowers, lawn trimmers/ L ≤ 50 96 94(2)

lawn edge trimmers 50< L ≤ 70 100 98

70< L ≤ 120 100 98(2)

L > 120 105 103(2)

Notes:
1. Pel for welding generators: conventional welding current multiplied by the conventional load voltage for the lowest value of the
duty factor given by the manufacturer
2. Pel for power generators: prime power according to ISO 8528-1:1993, point 13.3.2
3. Indicative figures only. Definitive figures will depend on amendment of the directive following the report required in article 20(3).
In the absence of any such amendment, the figures for stage I will continue to apply for stage II

Table 23.6 shows product categories and document
numbers for products with noise emission requirements.

A review of Blue Angel requirements specifically
for noise emissions of construction equipment is avail-
able [23.84].

A more recent eco-label is the European Union
EU Flower designation [23.85]. Currently, only per-
sonal computers [23.86] and portable computers [23.87]
have noise emissions included with other environmental

requirements. The EU Flower label is illustrated in
Fig. 23.13.

Other European countries with eco-label programs
include Austria, France, and the Nordic countries.

23.3.6 Principles of Noise Control

As illustrated in the previous section, the noise emis-
sions of a wide variety of equipment are of importance,
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Table 23.6 German Blue Angel product categories with
noise criteria

Product category Relevant
document

Automobile tires, low noise RAL-UZ 89

Commercial vehicles and buses RAL-UZ 59a
and RAL-UZ 59b

Workstation computers RAL-UZ 78

Construction machinery RAL-UZ 53

Garden shredders RAL-UZ 54

Portable computers RAL-UZ 93

Printers RAL-UZ 85

Copiers RAL-UZ 62

Low-noise and low-pollutant chain saws RAL-UZ 83

Low-noise waste-glass containers RAL-UZ 21

and it is not possible to present noise reduction on each
type here. It is however, possible to present general prin-
ciples of noise reduction. A widely distributed set of
principles was prepared by Ingemansson [23.88]. One
principle and its application is shown in Fig. 23.14.

The text below is partly organized according to
those principles. In the following section, examples of
the control of stationary noise sources are given.

As discussed in Sect. 23.1.2, sources of sound in the
wave equation include mass introduced into a region,
the application of a fluctuating force, transfer of heat,
or stresses induced by turbulence. A fluctuating force
or excess force produced by the speed of moving me-
chanical parts produce noise, and reduction of this force
will reduce noise levels. In particular, high-frequency
noise is generated by abrupt changes in force. Lower-
frequency noise is produced by more gradual changes in
force. Heavy objects impacting at high speeds generally
produce less noise than lighter objects at low speeds.

Forces transmitted to large radiating surfaces also
cause sound to be radiated, and these forces can be
reduced by vibration isolation. Practical vibration isola-
tors include rubber–plastic materials, cork, and various
types of springs.

A reduction in the area of vibrating surfaces also re-
duces noise levels. When a plate, such as a cover over
a portion of a rotating machine is not used to provide
transmission loss, a perforated plate will reduce the vi-
brating area and reduce the radiation from the plate.
Sound cancelation takes place between the front and
back of a vibrating device such as a loudspeaker or
a plate. Cancelation is more effective for a long narrow
plate than for a square plate having the same area. This
may have applications, for example, in the design of belt

drives. Cancelation is also more effective for plates with
free edges rather than edges which are clamped. Plates
may also be covered with materials with a high degree
of internal damping, thus producing absorption of sound
that might otherwise be radiated as sound. This may ap-
ply, for example to objects that resonate such as saw
blades. In general, damping is most effective at high
frequencies.

In solid structures, structure-borne sound may travel
over long distances, and its effect on radiated sound
can be reduced by vibration isolation. Flexible connec-
tions are useful for prevention of noise transmission
from a machine into a pipeline. Separate isolation pads
may be used for mounting machinery, and heavy rigid
foundations are generally most effective.

When the wavelength of sound is small (high-
frequency sound), sound-absorptive materials are most
effective, and enclosures may be an effective means
of noise control. The sound attenuation in air is also
greater for high-frequency sound than low-frequency
sound, which means that there can be additional at-
tenuation due to the distance between a source and an
observer (Sect. 23.4.1 and Chap. 4). However, a high-
frequency sound pressure level is perceived to be
louder than a low-frequency sound of the same level.
This difference is expressed in the A-weighting curves
in Sect. 23.2.4. Thus, conversion of a high-frequency
sound to a low-frequency sound may result in a reduc-
tion in perceived noise level, and a reduction measured
using A-weighting on a sound level meter.

Tones can be produced when air flows past an ob-
ject. An example is wind passing over high tension
wires. Vortices are shed from the wire (Karman vor-
tex street), and this produces a fluctuating force on the
wire, which results in radiation of sound. Adding an ir-
regular structure to the object may reduce the strength
of such forces and reduce the noise level. Tones can also
be generated by wind passing over resonators, and noise
levels may be reduced by altering the geometry of the
resonator.

In pipes carrying fluid, constrictions, as may be
produced by a valve, bends, and other obstructions
generate forces in the system which lead to sound ra-
diation. Noise can be reduced by gradual changes in
bends, cross sections, and pipe lengths that are long
enough to allow the levels of turbulence to be reduced.
Lower exhaust air flows also result in reduced noise
levels, especially in high-Mach-number regions where
the noise is generated aerodynamically, and the radi-
ated noise is proportional to the eighth power of the
Mach number. Another way to reduce noise from ex-
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a)

Air flows
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to rotor

b)

Weak turbulence
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Fig. 23.14a,b An example of how fans make less noise when placed in smooth undisturbed air streams. Illustrations
courtesy of Ingemansson Technology, Gothenburg, Sweden. (a) Principle, (b) application with ventilation

haust air flows is to add secondary flow of a lower speed
around a high-speed exhaust jet. This is the principle of
the high-bypass-ratio jet engine, and may also apply to
compressed-air nozzles when used as part of a cleaning
system in industrial applications. In air-moving devices,
particularly axial flow fans, turbulence in the inlet air
stream causes the angle of attack of the flow incident on
the fan blades (airfoils) to vary, and generates fluctuat-
ing lift forces on the blades. Thus, obstructions in inlet
air streams should be avoided.

The presence of solid surfaces affects the radiation
of sound. For idealized sources such as monopoles,
dipoles, and quadrupoles (Sect. 23.1.3), the reflected
pressure from one or more surfaces may be in phase
with the particle velocity of the source on a small sur-
face surrounding the source and thus produce a radiated
sound power that is greater than the sound power that

would be radiated by the source in a free field [23.89].
For actual machines, placement in, for example, a cor-
ner results in reflected sound waves that increase the
measured sound pressure level. Thus, machines should
be spaced a distance from walls and corners to reduce
noise level. This effect is included in the prediction al-
gorithm described in Sect. 23.4.3.

Acoustical materials for noise reduction are de-
scribed in Sect. 23.4.3. Because good sound absorption
requires a particle velocity in the material, and the par-
ticle velocity in a sound wave is small near a rigid
surface, thick materials tend to be better sound ab-
sorbers than thin materials when placed on a rigid
surface. Also, an air gap between a rigid wall and sound-
absorptive material tends to increase sound absorption
(Sect. 23.4.3). A layer of perforated metal with rela-
tively large perforations is effective in protecting the
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surface of the material from abrasion, and has relatively
little effect on the sound-absorptive performance of the
material. The shape of the perforations may take many
different forms. Sound-absorptive material is also effec-
tive when used on ceilings in conjunction with screens
in an office environment, since sound transmitted over
the screen may be reflected before reaching an observer
on the other side of the screen.

When sound travels in a tube, an expansion chamber
as part of the tube may reduce noise levels. This prin-
ciple may be used in reactive silencers. An example of
a generic reactive silencer is given in Sect. 23.4.4. Such
silencers with added sound-absorptive material may
provide additional sound absorption. Dissipative si-
lencers contain sound-absorptive materials, as discussed
in the same section. Sound cancelation at selected fre-
quencies may be achieved by using a tube with a side
path which is long enough to produce sound cancela-
tion between the wave that travels down the duct and
the wave that travels over the side path.

The effect of wall constructions on noise reduction
is covered in Chap. 11.

23.3.7 Noise from Stationary Sources

One of the most pervasive sources of noise is noise gen-
erated by air-moving devices. The general principles of
control of noise from these devices is described below.
Noise from other stationary sources is the subject of
current research.

Air-Moving Device Noise
Air moving devices (AMDs) (e.g., fans and blowers) are
widely used in a variety of equipment, and are a perva-
sive source of noise. These devices (AMDs) may have
a very large diameter, and used in ventilating systems
for buildings as well as in industrial processes. Large
fans are usually axial devices and large blowers are cen-
trifugal devices that may have either forward-curved or
backward-curved blades. Smaller units may be used for
home heating and ventilating as well as in industrial
equipment such as that produced for the information
technology industry. Axial fans are most common, but
centrifugal blowers are also used when the system resis-
tance (see below) is relatively high. Other air-moving
devices, such as cross-flow fans, motorized impellers,
or mixed-flow devices may also be used.

The primary source of noise is fluctuating lift forces
on the blades as turbulent air passes through the unit.
For high values of inlet turbulence, there is a fluctu-
ating angle of attack on the blades, and this leads to

fluctuating lift forces. Forces are also produced by flow
separation from the blade, and by vortices being shed
from the blades. The radiated noise is broadband in
character with discrete frequency components at the
blade passage frequency and its harmonics. The blade
passage frequency is

f = B
N

60
, (23.34)

where f is the frequency in Hz, B is the number of
blades and N is the device speed in revolutions per
minute (rpm).

A performance curve is common to all types of
air-moving devices, illustrated in Fig. 23.15 for a small
centrifugal device. All systems have a resistance to air
flow, and the system resistance can generally be defined
as a quadratic function of air flow, as illustrated in the
figure. The intersection of these two curves is the op-
erating point for the device. If the flow rate is zero, the
condition is known as shutoff, and when the static pres-
sure is zero, the condition is known as free delivery.
The air flow through the blades under either condition
is poor, the noise level tends to rise as discussed below.

The static efficiency of an air-moving device is gen-
erally defined as

ηs = PQ

Win
, (23.35)

where P is the static pressure rise in Pa (N/m2), Q is
the volume flow rate in m3/s, and Win is the input power
to the device in W. The static efficiency is a maximum
at some point on the performance curve, as illustrated
in Fig. 23.16 for a constant input power. An operating
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Fig. 23.15 Performance curve for a small centrifugal
blower
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Fig. 23.16 Illustration of air-moving device static effi-
ciency for a constant input power

point near the point of maximum static efficiency is de-
sirable for low noise radiation, and is usually a design
goal for large devices. In the design of small ventilating
systems, the system resistance is often not known accu-
rately, and optimal design may be difficult to achieve.
However, an operating point to the left of the point of
maximum static efficiency is usually undesirable, both
from the viewpoint of flow instability and increased
noise.

The choice of a type of air-moving device is usually
dictated by the desired specific speed Ns defined as

Ns = NQ1/2

P3/4
, (23.36)

where N is the rotational speed of the air moving de-
vice, and P and Q are defined above. Axial flow devices
are generally used at low pressures and high-volume
flow rates (high specific speed), and centrifugal devices
are usually used at relatively high pressures and low-
volume flow rates (low specific speed).

For noise radiation from large air-moving devices,
it is often useful to use a sound law first proposed by
Madison [23.90]. Its validity depends on the point of
rating for a homologous series of air-moving devices.
For such a series, it is useful to define dimensionless
parameters, the pressure coefficient ψ and the flow co-
efficient φ as

ψ = 2P

ρ (πDN)2
, (23.37)

φ = Q

πD3 N
, (23.38)

where D is a characteristic dimension (diameter), and
N is the rotational speed of the device. Then, the per-
formance curve for any device in the series can be
expressed as a single curve of ψ versus φ and the oper-
ating point discussed above becomes the point of rating
for the series.

The sound law is then

W = Ws
P2 Q

P2
0 Q0

, (23.39)

where Ws is the specific sound power, and W is the radi-
ated sound power of the device P0 and Q0 are 1 Pa and
1 m3/s, respectively.

No frequency dependence was given in (23.39), but
values of Ws are often published in octave bands. It
must be emphasized that (23.39) is valid only at a given
point of rating. If the operating point goes from shutoff
(P = 0) to free discharge (Q = 0), the point of rating is
changing, and the radiated sound power does not go to
zero at these extremes; in fact, it generally increases, as
illustrated in Fig. 23.17. The above sound law is most
useful in the design of large systems when the system
resistance is known and the air-moving device oper-
ates near its point of maximum static efficiency. Using
(23.37), (23.38), and (23.39), it can be shown that at
a given point-of-rating, the sound power is proportional
to the fifth power of the speed of the device.

For small air-moving devices, it is most meaning-
ful to obtain sound power level data on the device
itself, usually as a function of speed, operating point,
or both. An apparatus for determination of sound power
of small devices has been standardized both nation-
ally and internationally [23.91, 92] and is shown in
Fig. 23.18 [23.93]. The AMD is mounted on a flexible
membrane for airborne noise tests. Small fans mounted
on lightweight structures are known to transmit energy
into the structure, which can then be radiated as sound.
The same test apparatus can also be used for evalu-

3.50
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1.00
0.50

0.1200.1000.0800.0600.0400.0200

Relative A-weighted sound power level (dB)

Flow rate (m3/s)

Fig. 23.17 An illustration of relative sound power level as
a function of flow for a small air-moving device
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1026 Part G Structural Acoustics and Noise

Fig. 23.18 Test plenum for determination of the sound
power level of small air-moving devices (In 1962, an early
version of this apparatus was first used to determine the
sound power output of centrifugal blowers (after [23.93]))

ation of the structure-borne vibration of small AMDs
if the membrane is replaced by a specially designed
plate [23.94].

A history of noise control in small air-moving de-
vices is available [23.95]. The following guidelines
have proved to be useful for the design of cooling sys-
tems for electronic equipment [23.96].

1. Design the system to be cooled to have the lowest
possible static pressure rise for the required air flow.
A low static pressure rise indicates that the AMD
can operate at a low tip speed, resulting in a low
noise level. The static pressure rise across a system
is caused by several sources of resistance such as
the devices being ventilated and finger guards which
may be required for safety. If unnecessary sources
of resistance can be eliminated, the air flow will in-
crease. It should then be possible to reduce the tip
speed of the device (speed of the outer edge of the
AMD blade) to obtain the desired air flow at a lower
noise level.

2. Select an AMD so that it operates near its point of
maximum static efficiency, considering the required
air flow rate and the pressure drop through the sys-
tem. Operation away from the point of maximum
static efficiency should be in the direction of lower
static pressure rise and higher air flow (see point 3).

3. Select a point of operation of a fan that is away from
the best efficiency point in the direction of higher

air flow and lower static pressure rise. Small fans
are often unstable when operated at air flow rates
less than the air flow rate at the best efficiency point.
They are often very noisy under conditions of high
static pressure rise and low air flow rate.

4. Select a fan or blower with a low sound power level
and avoid devices that have high level peaks in their
one-third-octave-band sound power spectrum. Such
peaks usually indicate the presence of discrete fre-
quency tones in the spectrum. Such tones can be
difficult to eliminate and are generally a source of
annoyance.

5. Select a fan or blower having the lowest speed and
largest diameter consistent with the other require-
ments.

6. Minimize system noise levels by designing the sys-
tem so that obstructions are not present within one
fan diameter of the inlet to axial-flow fans so that
the airflow into the inlet of axial-flow fans [23.97]
is as spatially uniform as possible. Avoid the direct
attachment of the AMD to lightweight sheet-metal
parts.

7. Axial-flow fans should generally be mounted so that
the air-flow direction is toward the equipment be-
ing cooled. Pulling air over equipment being cooled
usually causes undesirable turbulence at the fan in-
let, and produces an increase in noise level. See also
item 6 above.

8. When possible, consider operating the AMD at
a lower rotational speed. Then noise generally varies
as the fifth power of the rotational speed, speed
reductions produce significant reductions in noise
level.

Active Noise Control
As shown in Sect. 23.1.2, in a linear medium sound
pressures at a given point in space add. Therefore, in
theory, if one sound pressure is created by a source and
another pressure equal in amplitude and of opposite sign
is created by a second source, the resulting sound pres-
sure is zero. This is the principle of active control of
noise. In practice, active control is difficult to achieve,
and there are many technical issues involved.

The electronic sound absorber of Olson and
May [23.98] was a very early attempt to produce ac-
tive noise control. At the time, only analog circuits were
available, it was necessary to control the low-frequency
phase shift of both the loudspeaker and microphone
used in the experiments – a subject of interest to both
of the authors. With the introduction of signal process-
ing techniques in the late 1960s and 1970s, and its
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rapid development in the 1980s and 1990s, active con-
trol became more practical, in spite of many limitations
which still exist. Nevertheless, there have been success-
ful applications. Good results are obtained only at low
frequencies (long wavelengths) and for sources that are
small compared with the wavelength of sound. In gen-
eral, discrete-frequency noise is easier to cancel than
broadband noise.

There are several configurations of a source and one
or more loudspeakers that can produce active noise re-
duction:

1. Noise control in a duct. This generally requires a mi-
crophone to determine the sound coming along the
duct, a loudspeaker mounted at the side of the duct,
an error microphone, and signal processing to deter-
mine the signal to the loudspeaker which will reduce
the sound pressure level at the error microphone
(ideally) to zero. This configuration is most suc-
cessful for low-frequency sound and for plane-wave
propagation in the duct.

2. Reduction of radiation efficiency. Placement of one
or more canceling sources very close to the noise
source. In the case of a single canceling source, the
effect of the canceling source is to create a dipole
source and to reduce the radiation efficiency of the
combined noise source – canceling source. In prin-
ciple, one could use three canceling sources which,
with proper phasing, reduces the radiation efficiency
even further by creating a quadrupole source.

3. Creation of an outgoing wave field. Using several
loudspeakers around a source, and processing the
driving signals to the loudspeakers in such a way as
to produce an outgoing wave equal in amplitude and
opposite in phase to the wave field of the source.

4. Creation of a zone of silence. Using one or more
loudspeakers to cancel the noise generated by
a source at a point in space, creating a zone of si-
lence in the vicinity of the point. Such zones are
small compared with the wavelength of sound, and
in any practical application, many loudspeakers are
needed.

5. Global reduction inside an enclosed space. Investi-
gation of the modal structure of an enclosed space
and placement of a large number of microphones
and cancelation sources within the space. A complex
signal-processing system is then used to create a net
noise reduction in the space. This technique has been
used in the cabins of small turboprop aircraft.

6. Active headsets. A cancellation field is created in
the ear canal when a headphone is worn, thereby

creating a noise-canceling headset. Such headsets
are commercially available.

The literature on active noise control includes books
[23.99, 100], articles [23.101, 102], conference papers
[23.103–107], and collected works [23.108].

Other Stationary Sources
Noise from other stationary sources covers a very wide
variety of machinery and equipment. Many examples
of noise control may be found in the Noise Control
Engineering Journal and in the INTER-NOISE and
NOISE-CON series of international congresses and
conferences on noise control engineering(Sect. 23.7).

23.3.8 Noise from Moving Sources

Vehicle Noise
Noise emissions from motor vehicles are an impor-
tant source of environmental noise in almost every
industrialized country in the world, and many steps
have been taken to reduce these levels. Unlike aircraft
noise, vehicle noise affects populations in a very wide
geographical area, and is pervasive in any area with
a well-defined roadway network. In recreational areas,
noise from snowmobiles and other recreational vehi-
cles is a major source of annoyance. However, in this
section, emphasis is on road vehicles – passenger cars,
buses, and trucks. Aside from reduction of the noise
emissions of the vehicles themselves, noise barriers and
buffer zones are the primary methods of shielding per-
sons from motor vehicle noise. The properties of noise
barriers are discussed briefly in Sect. 23.4.1, and in
more detail in Chap. 4.

The major sources of vehicle noise can be divided
into power-train noise (cooling fan, engine, drive train,
exhaust), tire–road interaction noise, and wind noise.
The latter is not a major source of noise. Fan noise has
been described in Sect. 23.3.7. Engine noise is produced
by pressure fluctuations within the engine due to com-
bustion, their interactions with mechanical components,
transmission into the engine block and subsequent ra-
diation. Gear noise is produced by the drive train, and
exhaust noise is attenuated by the muffler. The relative
importance of these sources is highly dependent on the
type of vehicle and its design. Considerable progress
has been made in the reduction of all of these sources,
partly because of the development of regulatory limits
on pass-by noise in nearly every industrialized country
in the world, but also because of the desire of man-
ufacturers to reduce the interior noise in vehicles. As
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a result, tire–road interaction noise has become a ma-
jor source of exterior vehicle noise, especially at high
speeds.

As part of a study on the effect of noise regula-
tions on traffic noise [23.109], the International Institute
of Noise Control Engineering summarized some of the
noise reduction measures that have been taken to re-
duce the noise emissions of motor vehicles. Examples
are given in Table 23.7 below.

The international standard for the determination of
pass-by noise, a common descriptor of vehicle noise
emissions, is ISO 362 [23.110], which specifies mea-
surement methods, including microphone position, the
characteristics of the test area in the immediate vicinity
of the vehicle, driving mode, and the area of the site that
must be free from obstructions. In summary, this docu-
ment specifies that the test vehicle is driven over a des-
ignated test area with a standardized road surface. Fixed
microphones are located 7.5 m from the vehicle path
center line (In the United States, the microphone dis-
tance is 15 m and the relevant standards are SAE J986
and SAE J366.). Vehicles approach the test area at
a constant speed, usually 20–50 km/h, but the throttle

Table 23.7 Examples of noise reduction measures in motor vehicles (after [23.109, Table 1])

Engine in general Other vehicle components

• Switchover to turbo-charged engines
• Optimization of the engine combustion process,

e.g., by using electronics or by improving the
shape of the combustion chamber

• Encapsulation or shielding of entire engines or
especially noisy parts of them

• Use of hood blankets or laminated covers
• Sound-absorptive material in the engine

compartment
• Optimization of the stiffness of the cylinder block
• Use of structure-borne noise-reducing material

• Improvement of gearboxes, damped propeller
shafts

• Improved rear-axle transmission
• Shielding of transmission components
• Regulation of the fan by thermostat
• Decreased speed of fan by using a larger fan

or optimization of fan shape
• Silencers for air compression outlet noise
• Improvements of brakes for reduction of brake

squeal
• Improved aerodynamics
• Selection of suitable tires (low noise at

acceleration)

Exhaust system Induction system

• Minimization of outlet and mantle emission of
exhaust silencers, e.g., by increased volume

• Introduction of more than one silencer
• Optimization of pipes to/from the silencer, e.g.,

by equal length pipes or air gap pipes
• Dual-mode mufflers
• Use of absorptive materials
• Active noise control

• 1/4-wave tuners or other resonators
• Thicker duct walls, and/or lined ducts
• Increased volume of air cleaner
• Intake covers or shields
• Active noise control

is fully open when the vehicle is within ±10 m of the
microphone positions. The maximum A-weighted fast
sound level during the acceleration is measured.

The relative importance of power train and tire/road
interaction noise has been studied by Sandberg and Ejs-
mont [23.111]. The relative importance of these sources
depends on the year of vehicle manufacture, the type
of vehicle (cars, heavy trucks), and engine speed. The
characteristics of the tire itself (tread, sidewall stiffness,
etc.) are also important – as is the character of the road
surface. The relative importance of these sources may
be described in terms of a crossover speed – the speed
at which tire–road noise becomes more important than
power train (power unit) noise.

It can be seen from Table 23.8 that at normal speeds
on major highways, tire–road interaction noise is the
dominant source of vehicle noise emissions. In the table
caption, SMA refers to a stone mastic asphalt surface
and chippings refers to stones in an asphalt concrete
surface that also consists of sand, filler, and an asphalt
binder.

A qualitative description of the sources of noise
radiation from tires includes radial and tangential vibra-
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Table 23.8 Crossover speeds for various cases. According
to Sandberg [23.111]: The table assumes that normal tires
are used, and that the road surface is a dense asphalt con-
crete or an SMA with max 10–14 mm chippings. Cruising
is constant speed, and Accelerating means an average way
of accelerating after a stop, but not as much as in the ISO
362 driving mode. (after [23.111, Table 5.1])

Vehicle type Cruising Accelerating

Cars made 1985–1995 30–35 km/h 45–50 km/h

Cars made 1996– 15–25 km/h 30–45 km/h

Heavy trucks made 40–50 km/h 50–55 km/h

1985–1995

Heavy trucks made 1996– 30–35 km/h 45–50 km/h

tion of the tire treads, axial vibrations of the sidewalls,
air pumping due to the deformation of the tread by ir-
regularities in the road surface, and possibly vibration of
the rim of the tire. At low frequencies, there is evidence
that the tire treadband can be considered to be a cylindri-
cal beam elastically supported by the sidewall [23.112].

A quantative description of tire–road noise is best
obtained by development of a model of the sound ra-
diation. A history of past modeling attempts has been
given by Kuijpers and van Blokland [23.113], and more
generalized models are also available [23.114, 115].

The road surface itself has a significant effect on the
generation of tire noise. The roughness of the surface
affects the excitation of the tire and subsequent gener-
ation of noise; the porosity of the surface effectively
changes the compressibility of trapped air, and if the
acoustic impedance is in the range to absorb sound, en-
ergy can be absorbed by the surface. Information on the
characteristics of porous surfaces is given in [23.111].

Tire–road interaction noise is currently the subject
of intensive research. Bernhard et al. have given a sum-
mary of research [23.116], Sandberg et al. [23.117]
have discussed poroelastic road surfaces, and Thornton
et al. [23.118] have studied the variability of existing
pavements. Although porous surfaces have been shown
to provide noticeable reductions in traffic noise levels,
questions remain about the durability of these surfaces,
especially in cold climates. The durability of such sur-
faces in a warm climate has been studied by Donavan
et al. [23.119].

Traffic Noise Prediction Models. The US Federal High-
way Administration has released version 2.5 of the
traffic noise model, which may be used for a wide
variety of calculations related to traffic noise. The char-

acteristics of the model are described in Sect. 23.4.1 on
outdoor noise barriers.

Aircraft Noise
Exterior noise emissions of aircraft are of major impor-
tance to persons on the ground, and interior noise emis-
sions are a concern of both airline passengers and crews.

Aircraft Noise Emissions. Noise emissions from civil
aircraft have been regulated for more than 35 years, first
by the Federal Aviation Administration in the United
States, and later, internationally, by the International
Civil Aviation Organization (ICAO). Nevertheless, al-
though the noise from individual airplanes has been
significantly reduced, the total exposure to aircraft noise
for residents in communities near many airports has in-
creased because of the growth in the number of aircraft
operations at airports throughout the world. Conse-
quently, operators of the airplanes and the airports
continue to face limitations because of aircraft noise.
This section discusses the noise emissions of aircraft;
noise at the receiver is discussed in Sect. 23.5.4. Re-
quirements for the noise levels that may be produced by
aircraft are given in title 14 of the US Code of Federal
Regulations, 14CFR part 36 [23.120] and in annex 16 to
the Convention on International Civil Aviation (ICAO
annex 16) [23.121].

The methodology of determining the noise emission
of aircraft for certification purposes is well developed.
Certification noise levels are not intended to, and do not,
represent noise levels that may be measured in commu-
nities around airports.

Certification noise limits, in terms of effective per-
ceived noise level (EPNL), are specified at three points –
known as lateral, flyover, and landing approach.
The limits are a function of the maximum design
takeoff gross mass, and apply to both jet-powered
and propeller-driven transport-category airplanes, busi-
ness/executive airplanes, and helicopters. The limits
apply to new-design airplanes and to retrofit modifica-
tions of old-design aircraft.

Perceived noise levels are determined from 500 ms-
average one-third-octave-band sound pressure levels, at
500 ms intervals, and are adjusted for the additional
noisiness caused by prominent tones, if present, or
other spectral irregularities. For each of the three noise-
measurement points, effective perceived noise levels are
determined from the time integral of tone-corrected per-
ceived noisiness and adjusted to reference atmospheric
conditions, reference flight paths, reference airspeeds,
and reference engine power settings.
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The first issue of 14CFR part 36 became effective
in 1969; ICAO annex 16 was first issued in 1971. The
main objective of those regulations was to ensure that
noise produced by new aircraft designs would be less
than the noise produced by earlier designs. In the years
since the initial issue, the certification noise level limits
have been gradually reduced in stages.

Stage 1 airplanes are the noisiest, and include the
as-manufactured versions of the Boeing 707 and Mc-
Donnell Douglas DC8 and various business/executive
jets. Stage-2-compliant airplanes have lower noise lev-
els than stage 1 airplanes. Noise levels from airplanes
that comply with stage 3 requirements are even lower.
An airplane that complies with the Stage 1, 2, or 3 re-
quirements of 14CFR Part 36 also complies with the
corresponding Chap. 1, 2 or 3 requirements of ICAO
Annex 16.

ICAO Annex 16 recently introduced the Chap-
ter 4 requirements for jet-propelled airplanes and for
propeller-driven airplanes having a takeoff gross mass
of more than 8618 kg. The FAA is considering adop-
tion of similar stage 4 requirements. Noise-level limits
for chapter 4 compliance are the same as for chap-
ter 3 compliance but compliance was made more
stringent by eliminating the tradeoff provisions that had

120

110

100

90
199519901980197019601950

Noise level, EPNdB (1500' sideline)

Year of initial service

A321

A330
737-500

777-200
MD90-30

767-300
A320-100

747-400

A340
MD-11737-300

767-200
737-200

A310-300

747-300
MD80

L-1011

A300B2-101

DC10-30

BAC-146-200

DC10-10

747-200

747-100

727-200727-100

737-200
737-100DC8-61

DC9-10

BAC-111

707-300B
Caravelle

DC8-20
Comet 4

707-100

B-52

720
CV990A

CV880-22

• Normalized to 100 000 lb thrust
• Noise levels are for airplane/engine
configurations at time of initial service

Second generation turbofan

First generation
turbofan

Turbojet

Fig. 23.19 Progress in aircraft noise reduction. Effective perceived noise level at the 450 m lateral noise-measurement
point normalized to a total static thrust of 444 800 N for the noted airplane/engine configurations at the time of initial
service. (After Willshire [23.122]; adopted from Condit [23.123])

been part of the chapter 2 and 3 (or stage 2 and 3)
requirements.

As an example of the changes to the certification
noise-level limits, the effective perceived noise level
limit at the lateral position for a takeoff gross mass
of 200 000 kg (441 000 lbf) is 107.1 dB for a chap-
ter 2/stage 2 airplane at 650 m to the side of the takeoff
flight path, and 100.4 dB for a chapter 3/stage 3 air-
plane (or a chapter 4 airplane) at 450 m to the side of
the takeoff flight path. Changes in lateral noise levels
are representative of improvements in the technology of
aircraft noise reduction.

Figure 23.19 illustrates trends in the progress in re-
ducing the noise emission from commercial jet aircraft.
There are no chapter 1/stage 1 airplanes operating in
most of the industrialized countries of the world and
only a few chapter 2/stage 2 airplanes.

For jet-powered and propeller-driven airplanes, the
engines are the principal sources of noise during ground
roll, climb-out, and landing. Sound produced by vor-
tices shed by the extended landing gear and by wing
leading-and trailing-edge devices (flaps) contributes to
the noise level under landing-approach flight paths,
and is an important consideration as engine noise is
reduced.
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Reduction of airplane engine noise during departure
operations (as illustrated in Fig. 23.19) was achieved
primarily by increasing the bypass ratio, and hence the
diameter of the fan stage at the front of the turbofan en-
gines. Bypass ratio is the ratio of the mass flow rate of
the air that passes through the fan-discharge ducts to the
mass flow rate through the turbine stages in the core of
the engine. Thrust is provided by moving a large amount
of air at a lower exhaust-gas velocity and hence with
lower levels of jet-mixing noise at high engine-power
settings. Higher bypass ratios also result in better fuel
efficiency for the same thrust, although at an increase in
engine weight and diameter.

Discrete-frequency noise from the fan, compressor,
and turbine stages is reduced by means of sound-
absorptive linings in the engine inlet and discharge
ducts. Tonal components in the sound from the fan
stages are minimized or eliminated by careful selection
of the number of blades and vanes and by increasing the
spacing between the fan stage and the fan-outlet guide
vanes. Inlet guide vanes ahead of the fan blades are no
longer used in modern turbofan engines.

A summary of technology for engine noise-control
designs is available [23.124]. A summary of retrofit
applications intended to allow chapter 2/stage 2 air-
planes to meet a phase-out deadline of the year 2000
for stage 3 (ICAO chapter 3) compliance has been pub-
lished [23.125].

Interior Aircraft Noise. The engines and pressure fluc-
tuations in the turbulent boundary layer outside the
fuselage of an aircraft during flight are sources of noise
in the interior of an airplane. Vibration from jet engines
or propellers can cause the fuselage to vibrate and be
radiated as sound into the cabin of an aircraft or heli-
copter. The air-conditioning system is often a source of
noise in the interior of an aircraft.

Noise from external sound sources can be partially
controlled by the design and construction of the fuse-
lage. Sound-absorptive material is installed between the
skin of the fuselage and the interior trim panels; this
material also acts as a thermal insulation barrier to the
cold outside air. Some propeller-driven airplanes have
successfully used active noise and vibration control sys-
tems.

Control of noise in the interior of an aircraft requires
a balance between the desire to achieve low cabin inte-
rior noise levels for the comfort of the passengers and
the flight and cabin crews, while maintaining a degree
of privacy, and an increase in airplane empty weight and
maintenance costs.

Cabin noise levels vary greatly with seat location
and operation of the aircraft (takeoff, cruise, and land-
ing). Standardized test methods are now available for
the specification of procedures to measure aircraft in-
terior noise under specified cruise conditions [23.126,
127].

23.4 Propagation Paths

23.4.1 Sound Propagation Outdoors

Sound propagation in the atmosphere is discussed in
Chap. 4, and only general information will be presented
here. Geometrical spreading is the most important effect
that reduces the sound pressure level as distance from
a source is increased. There are, however, several other
factors which influence outdoor sound propagation.

1. Atmospheric absorption. At long distances and at
high frequencies, the effects of atmospheric ab-
sorption are significant. These effects are usually
described by an attenuation coefficient in decibels
per meter Chap. 4.

2. Ground effects. When the sound source is located
above a ground surface, sound waves that reflect
from the ground will constructively and destruc-
tively interfere with those propagating directly from

the source. In general, the ground is partially reflect-
ing; the reflected wave is modified in amplitude and
phase by its interaction with the ground surface. The
amount of attenuation attributable to this ground in-
teraction, and its variation with frequency, depend
on the surface characteristics, the source and re-
ceiver heights, and their separation. The effects of
the ground are largest for intermediate frequencies
(≈ 500 Hz) when the source is above the ground
(1 m or more). If the source is very close to the
ground, all frequencies above about 500 Hz are
highly attenuated.

3. Temperature gradients and wind speed gradients.
The speed of sound is proportional to the square root
of the absolute temperature of the medium. The nor-
mal temperature lapse with height above the ground
means that a sound wavefront moves more rapidly
near the ground surface. This causes the wavefront
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to bend upwards, creating a shadow zone of low
sound pressure level near the surface. The opposite
effect occurs when the temperature lapse is abnor-
mal. Wind velocity gradients have a similar effect
since the speed of the wave is the wind speed plus
the speed of sound. Since the wind speed is usually
lower close to the ground, propagation upwind tends
to bend the wavefront upwards, creating a shadow
zone similar to that produced by a normal temper-
ature lapse. For sound propagation downwind, the
opposite effect occurs, and the wavefront is bent to-
ward the ground; there is no significant attenuation
of the sound wave relative to the attenuation in the
absence of wind.

4. Turbulence. Since turbulence always accompanies
wind outdoors, the effects of atmospheric turbu-
lence must be included in any analysis of sound
propagation outdoors. There are three major effects
of turbulence. First, at single frequencies, atmo-
spheric turbulence affects the coherence between
waves that propagate directly from the source and
waves that are reflected from the ground surface.
This results in sound pressure levels that are higher
than would be expected in the absence of turbu-
lence at those points where destructive interference
between the waves occurs. Second, atmospheric tur-
bulence produces scattering into the shadow zones
caused by air-temperature and wind-speed gradi-
ents that tends to raise the sound pressure level in
these areas. Third, in a highly directive sound beam,
the presence of turbulence results in an excess at-
tenuation produced by sound scattering out of the
beam.

A review of sound propagation outdoors has been given
by Embleton [23.128].

Outdoor Noise Barriers
Information on the design of noise barriers may be
found in Chap. 4. In this section, the current use of
outdoor noise barriers is described, and a summary
of the effectiveness of these barriers is given. Barri-
ers are widely used for the control of highway traffic
noise, and are also used to control noise from rail
vehicles and airport ground operations. Two com-
mon alternatives to barriers exist: sound insulation of
buildings when noise indoors is the problem, and the
use of quiet (porous) road surfaces. Information on
tire–road interaction noise is presented in Sect. 23.3.8.
However, noise barriers are currently the preferred so-
lution for the reduction of traffic noise, and they have

been constructed along many highways, as described
below.

Barrier Characteristics. A typical noise barrier is shown
in Fig. 23.20.

The most important parameter to describe the effec-
tiveness of the noise barrier is the Fresnel number N

N = (d1+d2−d3)
λ
2

. (23.40)

The distances d1, d2, and d3 are defined in Fig. 23.20;
λ is the wavelength of sound. The noise reduction per-
formance of the barrier for single source and receiver
points may be described in terms of its insertion loss
L i; L i = Lpb− Lpa.

Lpb is the sound pressure level before installation
of the barrier, and Lpa is the sound pressure level
after installation. These levels may be described in
octave- or one-third-octave bands, or for an overall
sound level with frequency weightings such as A or C.
Since the insertion loss depends on the location of both
the sound source and the receiver, standardization of
the measurement procedures must be available to allow
specification of barrier performance (see below). Large
Fresnel numbers lead to high insertion loss, and there-
fore performance is best at high frequencies. A technical
assessment of the performance of many noise barri-
ers [23.129] found insertion losses (A-weighted sound
levels) to be in the range 5–25 dB. Barrier heights are
typically 3–8 m. The performance of a barrier depends
on its height, thickness, shape, edge conditions at the
top of the barrier, and ground impedance on both sides
of the barrier (because ground reflections contribute to
the insertion loss). The transmission loss of the barrier
material itself should exceed about 25 dB, but it is often
of secondary importance because structural considera-
tions usually require massive walls.

Barrier

Receiver

d1

d2

Source
d3

Fig. 23.20 A basic schematic showing the source of noise,
barrier, and receiver
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A variety of materials are used to construct barri-
ers – precast concrete, block, earth berms, wood, metal,
and plastics (including transparent plastics). Barriers
with sound-absorptive surfaces have two advantages:
the sound at the receiver point may be lowered, and re-
flections from the barrier are reduced. The latter may
be of importance where barriers are installed on both
sides of a highway and multiple reflections between the
barriers can compromise insertion loss. Also, absorptive
surfaces are useful where a barrier is installed on only
one side of a highway, and neighbors on the opposite
side may perceive increased noise due to reflections.

Determination of Barrier Insertion Loss. One method
to determine the insertion loss of barriers is described in
ANSI S12.8 [23.130]. The most reliable method is the
direct method that uses data measured at the same site
before and after construction of the barrier. Two indi-
rect methods are described – one using before data at an
equivalent site, and a second using a prediction method
to obtain before data.

Steps must be taken to ensure that the source level is
the same for the before and after measurements by using
a reference microphone position not influenced by the
barrier. The atmospheric conditions must be constant,
the microphones must be calibrated, and corrections
must be applied for calibration differences before and
after a series of measurements. The standard specifies
microphone heights and distances at which measure-
ment must be made to determine the insertion loss.

Noise Barrier Construction. Data on noise barrier per-
formance in many countries is available [23.129]. In
the United States, construction of noise barriers is
the responsibility of State Departments of Transporta-
tion guided by criteria specified by the US Federal
Highway Administration (FHWA). According to the
FHWA [23.131], by the end of 2001, the 10 states with
the most noise barriers had constructed 8.53 × 106 m2 of
noise barriers (1993 linear km) at a cost of 1.89 billion
US dollars (2001 dollars). Many of the barriers have
been constructed using a combination of materials.
However, the materials most used in single-material
barriers are:

• Concrete/precast• Block• Wood/post and plank• Concrete• Berm• Wood/glue laminated

• Metal and• Other wood construction.

A more detailed analysis of barrier construction by
state, including area, length, and cost has been made
by Polcak [23.132]. He concluded that cost figures are
reliable only in general terms, and that many costs are
variable from project to project. These include drainage,
excavation, guard rails, utility relocation, landscaping,
and the cost of the barrier system itself.

Noise Barrier Prediction Methods. Prediction of the
performance of noise barriers is included in a more gen-
eral noise model used to predict traffic noise, the Traffic
Noise Model (TNM). According to the sponsor of the
model, the US FHWA [23.133], the model contains the
following components:

• Modeling of five standard vehicle types, including
automobiles, medium trucks, heavy trucks, buses,
and motorcycles, as well as user-defined vehicles• Modeling of both constant-flow and interrupted-
flow traffic using a 1994/1995 field-measured
database• Modeling of the effects of different pavement types,
as well as the effects of graded roadways• Sound level computations based on a one-third-
octave-band database and algorithms• Graphically interactive noise barrier design and op-
timization• Attenuation over/through rows of buildings and
dense vegetation• Variable ground impedance• Multiple diffraction analysis• Parallel barrier analysis• Contour analysis, including sound level contours,
barrier insertion loss contours, and sound level dif-
ference contours.

The TNM replaced the STAMINA/OPTIMA pro-
gram, and several early versions were produced. Expe-
rience with the TNM and elements of its design have
been described by Menge et al. [23.134], and compar-
isons of model predictions with experimental data have
been made by Rochat [23.135].

23.4.2 Sound Propagation Indoors

In this section, the primary objective is to relate the
sound pressure level measured in a room having spec-
ified acoustical characteristics to the sound power
radiated by one or more sources in the room. Sound
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transmission through walls, window and other building
elements is discussed in Chap. 11.

Classical Theory
of Sound Propagation in Rooms

It is important to relate the sound pressure level in
rooms to the sound power output of a source, and there-
fore the path indoors between the source and receiver
should be discussed. In the classical theory of room
acoustics, reflections from all of the surfaces in the
room are equally important, and the difference between
the sound pressure level Lp, and sound power level LW
at a distance r from a source emitting sound power LW
may be expressed as

Lp− LW = 10 log

(
Q

4πr2
+ 4

R

)
, (23.41)

where Q is the directivity of the source in the direction
of the receiver point (Sect. 23.3.1), and R is the room
constant (Chap. 9). The first term on the right of the
equation is the direct sound, and the second term is the
reverberant sound – the sound reflected from all of the
room surfaces. For an omnidirectional source (Q = 1),
the difference between sound pressure level and sound
power level is as shown in Fig. 23.21.

In many rooms of practical interest, reflections from
the room surfaces are not of equal importance, and the
noise emission of one or more sources in the room has
been determined according to the methods described
earlier in this chapter. Rooms almost always contain ob-
jects that scatter the sound waves, and this scattering
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Fig. 23.21 Difference between sound pressure level and
sound power level as a function of distance from an om-
nidirectional source

is not taken into account in (23.41). Therefore, a more
detailed theory must be used to characterize the path
between the source and the receiver.

Prediction of Installation Noise Levels
One procedure for determining the path attenuation in
real rooms has been published by the European Com-
puter Manufacturers’ Association (ECMA) [23.136].
This method allows for the prediction of sound lev-
els in rooms, and, while it was developed for use
with information technology equipment, it is appli-
cable to other noise sources when the A-weighted
sound power level of the source is known. The method
predicts A-weighted sound pressure levels, and the
sound-absorptive properties are described in terms of
a sound absorption coefficient α, which is the average
of the absorption coefficients in the 250, 500, 1000, and
2000 Hz octave bands.

Three different shapes of rooms are defined in the
procedure:

An ordinary room has a length L and a width W ,
smaller than 3 H, where H is the height of the room.
For this room, classical theory is used with the modifi-
cations described below.

A flat room has L > 3H and W > 3H . For such
a room, it is assumed that the sound absorption of only
the floor and ceiling is important.

A long room has L > 3H and W < L/2. For such
rooms, reflections from the sidewalls are assumed to be
important.

For an ordinary room, the classical theory is used
with the following modifications.

In a free field, the radiation from the source is
through a hemispherical surface, since widely used
methods for the determination of sound power level
depend on sound pressure level measurements on the
surface of a hemisphere.

The measured directivity of the source itself is as-
sumed to be unity because the source directivity is not
normally reported with the sound power level. How-
ever, a directivity Q is included in the calculations if
the source is near a wall (Q = 2) or in a corner (Q = 4).

With these modifications, the difference LpA− LWA
as a function of distance r from the source in an ordinary
room is

LpA− LWA = 10 log

(
Q

2πr2
+ 4

Sα

)
, (23.42)

where Sα is the total absorption in the room weighted
according to the area and absorption of each room sur-
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Fig. 23.22 Correction term for a furnished flat room having
a density factor q = 2 as a function of distance from the
source for several values of α

face and piece of furniture. Curves similar to those
shown in Fig. 23.21 above may be plotted for this case.

Similar, but more complex equations are given
in [23.136] for flat rooms and long rooms. As an exam-
ple, in a flat room with scattering objects, the absorption
of the scatterers is assumed to be αs = 0.1 and the den-
sity factor of scattering objects q is given by

q = SE

4SF
,

where SE is the total area of scatterers as viewed from
the source in m2, and SF is the surface area of the room
floor in m2.

The difference LpA− LWA in a flat furnished room
is then given by

LpA− LWA =−20 log H+ΔLF , (23.43)

where ΔLF is a complicated function of distance from
the source, density factor, and average absorption of
the ceiling and floor. As an example, ΔLF is given in
Fig. 23.22 as a function of absorption coefficient for
a density factor q = 2.

Other equations are given in [23.136], and cor-
rection terms are defined, both as equations and in
graphical form.

Calculations for Multiple Sources
In general, there are several sources in a room at dif-
ferent distances from the receiver. In this case, the
A-weighted sound pressure level is calculated for each
source and distance, and converted to mean-square

pressure. These mean-square pressures are added and
converted to a total A-weighted sound pressure level at
a given receiver position.

23.4.3 Sound-Absorptive Materials

Sound-absorptive materials are widely used for the
control of noise in a variety of different situations.
These include addition of absorptive materials to room
surfaces to control reverberant sound generated by ma-
chinery and other equipment, installation of duct liners
to increase the sound attenuation in air-conditioning
ducts, liners for machine enclosures to reduce the sound
radiated from the machine, hanging baffles for reduction
of reverberant sound, and other applications.

Sound-absorptive materials exist in many different
forms. These include:

• Glass-fiber materials• Open-cell acoustical foams (urethane and similar
materials, reticulated and partially reticulated)• Fiber board as frequently used for acoustical ceil-
ings• Hanging baffles used to reduce reverberation in fac-
tories, and other enclosed spaces• Felt materials• Curtains and drapes• Thin porous sheets, often mounted on a honeycomb
structure• Hollow concrete blocks with a small opening to the
outside – to create a Helmholtz resonator• Head liners for automobiles – of various materials,
and• Carpets.

One characteristic common to nearly all sound-
absorptive materials is that they are porous. That is,
there is air flow through the material as a result of a pres-
sure difference between the two sides of the material.
Porous materials are frequently fragile, and, as a re-
sult, it is necessary to protect the exposed surface of the
material. Typical protective surfaces include:

• Thin impervious membranes of plastic or other ma-
terial• Perforated facings of metal, plastic, or other mater-
ial• Fine wire-mesh screens• Sprayed-on materials such as neoprene, and• Thin porous surfaces.

A full description of propagation in porous materials,
the relationship between the propagation parameters
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and the physical properties of materials, and the match-
ing of boundary conditions when composite structures
are created is beyond the scope of this chapter. However,
some of the properties of sound-absorptive materials
will be discussed, methods of measurement of normal
impedance will be presented, and some results of calcu-
lations on composite structures will be shown.

A key parameter is the flow resistance r which can
be defined as the ratio of the pressure drop across a sam-
ple of a material and the velocity through it

r = Δp

u
. (23.44)

The flow resistance is usually measured for steady flow
through the material, the assumption being made that
this value is equivalent, at least at low frequencies, for
the particle velocity in a sound wave.

The unit of of flow resistance is N s/m3, the
MKS Rayl. Actual values are often specified as a dimen-
sionless quantity, the specific flow resistance rs, where
rs = r/ρc = r/406 for a density of air ρ of 1.18 kg/m3

and a speed of sound c of 344 m/s. It is also common to
specify the flow resistance per unit thickness.

Another property of sound-absorptive materials is
that they can often considered to be locally reacting.
When a sound wave is incident on a locally react-
ing material, the local pressure at the surface produces
a particle velocity normal to the surface. When the two
are sinusoidal and expressed as complex numbers the
ratio is the normal impedance of the surface

zN = p

u
. (23.45)

The normal impedance is independent of the angle of
incidence of the sound wave.

Two mechanisms are mainly responsible for the ab-
sorption of sound. First, friction in the boundary layer
between the air and the internal structure of the material
absorbs energy, and a large particle velocity is needed
for effective absorption. Second, the temperature rise
during the compression phase of the sound wave re-
sults in conduction of heat into the material, further
absorbing energy from the sound wave. The former is
generally most important.

The sound absorption coefficient α is the ratio of the
sound energy absorbed by the surface and the incident
sound energy. In general, it is a function of the angle of
incidence of the sound wave on the material. It varies
from 0 to 1.0, although some measurement methods –
described later in the section – result in values of α > 1.
The unit of sound absorption is the metric Sabine, S.
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Fig. 23.23 Normal incidence sound absorption coefficient
for a thin, rigid sound absorber having a flow resistance ρc
placed 50 mm from a rigid termination. Calculated using
a program by Ingard [23.137]

Material with an area of 1 m2 and α = 1 has 1 Sabine
of sound absorption (10.8 Sabins in English units). The
sound-absorptive properties of, for example, hanging
baffles are frequently expressed in Sabins.

Sound absorption coefficients are frequently meas-
ured in octave bands, and the noise reduction coefficient
(NRC) is the average absorption in the 250, 500, 1000,
and 2000 Hz octave bands.

The importance of particle velocity can be illus-
trated for the case where a thin sound absorber having
a flow resistance ρc is placed in a tube at a distance
50 mm from a rigid termination. The normal incidence
absorption coefficient calculated as a function of fre-
quency is shown in Fig. 23.23. It can be seen that the
absorption coefficient is highest when the distance from
the rigid termination is an odd multiple of one-quarter
wavelength of the sound. It is at these distances that the
particle velocity in the absorber is highest.

Galaitsis [23.138] showed that multiple resistive
sheets can be used to improve the sound absorption
at normal incidence, and Ingard [23.137] extended the
analysis to diffuse fields for both locally and non-locally
reacting materials. As an example, Fig. 23.24 shows the
absorption coefficients for two resistive sheets having
a flow resistance 1.5 ρc and a total absorber thickness
of 50 mm. The first sheet is 33 mm from a rigid surface,
and the spacing between the two sheets is 17 mm. The
structure can be made approximately locally reacting
by, for example, using a honeycomb material between
the resistive layers.
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Fig. 23.24 Sound absorption coefficient for a two-screen
sound absorber for normal incidence, a locally react-
ing structure, and a nonlocally reacting structure (af-
ter [23.139])

Most sound-absorptive materials are relatively thick
(e.g., 25 mm), and in this case, it is beneficial to have
an air gap behind the material when it is mounted near
a rigid surface. In the figure below, the sound-absorptive
material is 25 mm thick, and has a total flow resistance
of ρc. It is assumed that the material itself does not
move. The normal incidence sound absorption coeffi-
cient as a function of spacing is shown in Fig. 23.25.

The sound-absorptive properties of flexible ma-
terials can be calculated [23.140], but this requires
a knowledge of properties of the material other than
flow resistance, and is beyond the scope of this chapter.

Measurement of Sound Absorption Coefficients
Two methods are commonly used to measure the per-
formance of sound-absorptive materials, the impedance
tube method and the reverberation room method.

The classic impedance tube method involves two
tubes to cover two frequency ranges, a 100 mm-
diameter tube and a 30 mm-diameter tube. A sample
of the material is mounted at one end of the tube, and
a loudspeaker at the other end is used to create a plane-
wave sound field in the tube. A moving probe is used to
detect the sound pressure an any point. The absorption
coefficient is determined from

α= 1−
∣∣∣R2

∣∣∣ , (23.46)

where |R| is the magnitude of the pressure reflection
coefficient in the tube, the ratio of the incident and re-
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Fig. 23.25 Normal incidence sound absorption coefficient
calculated for a porous material 25 mm-thick with a total
flow resistance of ρc. The spacing between the material
and the rigid backing is shown in the figure. Calculated
using a program by Ingard [23.139]

flected pressure. R is determined from the maximum
and minimum pressures detected in the tube. The dis-
tance to the first minimum of sound pressure can also
be measured, and together with R, can be used to de-
termine the normal impedance of the material at its
surface [23.141].

This method is useful to demonstrate plane-wave
propagation and the interference of sound waves upon
reflection, but it has several disadvantages:

1. The absorption coefficient is determined at single
frequencies; it is therefore time consuming to de-
termine its value as a function of frequency.

2. The sample size is small; 100 mm in diameter or
30 mm in diameter depending on the frequency of
interest. The properties of a small sample may not
be representative of a large sample of the same ma-
terial.

3. The sample must be cut very accurately and very
carefully mounted to achieve consistent results.

The first disadvantage may be eliminated by using
the two-microphone method [23.142, 143] for probing
the sound field. This method uses broadband excita-
tion of the tube and two closely spaced phase-matched
microphones; a digital signal processor is used to
determine the transfer function between them. The ab-
sorption coefficient can then be calculated.

The reverberation room method [23.144] uses
a large sample of material in a reverberation room,
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usually with rotating diffusers. The sound absorption
coefficient is determined from the difference in rever-
beration time in the room with and without the sample
present. The results approximate the diffuse-field ab-
sorption coefficient.

One additional method for measuring the spherical-
wave absorption coefficient in a free field over a reflect-
ing plane has been proposed by Nobile [23.146]. The
method uses the two-microphone technique referenced
above, and makes it possible to measure the absorp-
tion coefficient as a function of the angle of incidence
of the sound wave for samples of absorptive materials,
which can be very large. The method therefore over-
comes the disadvantages of the impedance tube method
and provides more information than the reverberation
room method.

23.4.4 Ducts and Silencers

Attenuation of sound in heating, ventilating, and air-
conditioning ducts is covered in Chap. 11. There are,
however, many other applications for devices to reduce
noise between the source and the receiver. These in-
clude:

• Pumps• Compressors• Fans• Cooling towers• Engines (diesel and gas)• Power plants and• Gas turbines.

A general schematic of a silencer is shown in Fig. 23.26.
It is not always appropriate to describe input and

output parameters in terms of impedances, but is is
convenient for the purposes of illustration. Sources of
sound have an internal impedance which is Z int in the
figure. This can be used to quantify the effect that an
acoustic load has on the power output of a source [23.6].
For example, if a monopole source is characterized by
a volume velocity that is independent of load, then a re-

ZradZdSource Zin

Zint

“Silencer”

Fig. 23.26 Schematic diagram of a silencer

flected pressure at the source which is in phase with
the particle velocity will increase the power output of
a source. In the figure below, the conditions at the inlet
to the silencer are represented by Z in. The conditions
at the output of the silencer looking down the duct are
characterized by Zd. The radiation of sound into a re-
verberation room, hemi-anechoic environment, or an
environment in which reflections are present is charac-
terized by Zrad.

When the silencer does not contain any sound-
absorptive materials (a packless silencer), the only
mechanism that can produce an insertion loss (the ratio
of the sound power radiated with the silencer in place
and the sound power radiated with the silencer re-
moved) is to create a Z in which, in combination with
Z int, reduces the sound power input to the silencer. Such
a reactive silencer works best at low frequencies, and
clearly depends on the internal impedance of the source,
a topic that has been studied for internal combustion en-
gines. At low frequencies, the silencer itself can often be
represented by transmission matrices [23.138]. Trans-
mission matrices for a variety of duct elements have
been defined by Ingard [23.145]. Characterization of
the silencer in terms of lumped parameters (mass, com-
pliance, resistance) is not generally effective. A tube,
for example, is a mass element only if its end is open
(low-impedance termination) whereas it is a compliance
when the end is closed (high-impedance termination).
Thus, a description using transmission lines in the form
of T networks is an alternative. Characterization of the
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Fig. 23.27 Transmission loss in a duct as a function of fre-
quency for two thicknesses of duct liner. Calculated using
the program DuctMltl by Ingard [23.145]
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silencer for complex geometries and high frequencies
requires a computer program.

In most practical applications, the silencer contains
sound-absorptive materials and usually protective fac-
ings. The input impedance of the muffler is usually such
that reflections back to the source are not important.
At high frequencies, the radiation impedance is high
enough that there is little sound power reflected back
down the outlet duct, and the transmission loss of the si-
lencer (the ratio of the sound power at the outlet and the
sound power at the inlet) is a good measure of silencer
performance. This may not be true at low frequencies.

Duct silencers are manufactured in a wide variety of
sizes, with linings, with splitters, and with aerodynamic
shapes on the inlet and outlet. Standards are available
for the measurement of silencer performance and guid-
ance on their use [23.147–151]. The insertion loss of the
silencer is usually measured, and its value may depend
on the direction of air flow relative to the direction of
propagation of sound. When the two are in the same
direction (outlet duct), a sound wave is bent toward

the lining whereas when the two are in opposite direc-
tions (inlet duct), sound is bent toward the center of the
duct [23.152].

Calculation of Duct Transmission Loss
Computer programs for the determination of the trans-
mission loss of ducts are available [23.145]. The duct
lining may consist of air gaps, one or more layers of
porous material, resistive sheets and perforated facings.
As one example, Fig. 23.27 shows the transmission
loss for a duct 2.5 m long having a cross section of
0.6 m × 0.6 m. The sound-absorptive material has a steel
perforated facing 1.6 mm thick with perforations 3 mm
in diameter and a 30% open area. The duct liner is
200 mm thick in one case, and 100 mm thick in the sec-
ond. The transmission loss shown in the figure is from
50 Hz to 500 Hz because the calculation is for plane-
wave transmission only. It can be seen that the peak
attenuation is about the same for both cases, but the
thicker liner provides a much higher transmission loss
at low frequencies.

23.5 Noise and the Receiver

Section 23.3 was devoted to the characterization of
sources in terms of their noise emission. The third
part of the source–path–receiver model involves immis-
sion of sound at the receiver. The sound may not be
unwanted, and is therefore not technically noise, but
this section is generally devoted to the effects of noise
on people. Section 23.5.5 is devoted to sound qual-
ity, a subject of increasing importance in the design of
products.

23.5.1 Soundscapes

As discussed in Sect. 23.1.2, a sound field may be de-
scribed in terms of a sound pressure p(r, t) that varies
both in space and time. In practice, it is the RMS pres-
sure that is measured since the time average of the pres-
sure itself is zero, and several quantities measured by
modern sound level meters are discussed in Sect. 23.2.
The sound field can be described in the time domain or
the frequency domain, or as a short-time spectrum that
varies with time. Other descriptions are also possible.

The sound field p(r, t) may, for the purposes of this
section, be called a soundscape, an overall acoustical
environment – both indoors and outdoors – that includes
all sound, both wanted and unwanted. The interaction
between an observer and this physical soundscape can

then be described in terms of immission of sound. In
some cases, it has been found that this interaction de-
pends not only on the properties of the soundscape
itself, but on the visual environment of the observer
(the landscape). A discussion of this effect is beyond
the scope of this chapter.

The soundscape includes indoor environments such
as living space and industrial plants, urban and sub-
urban areas, parks, and wilderness areas. The effects
of the sound field on observers in different portions
of the soundscape are varied, and in many cases diffi-
cult to quantify. These effects include hearing damage,
annoyance in various forms – which can range from
mild dissatisfaction to frustration and anger – as well as
interference with speech communication in many set-
tings, including meeting rooms and classrooms. Other
effects include interference with sleep, and loss of pro-
ductivity. Since the soundscape includes both wanted
and unwanted sound, the soundscape, when properly
managed can induce a sense of well-being in the ob-
server which can have a positive effect on the quality
of life. Examples include listing to natural sounds in
remote areas where unwanted sound is either nonexis-
tent, or has been reduced to an acceptable level. It is
a fact that acceptable means different things to different
persons.
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A further complication is that using conventional
measures of noise immission, the acceptability of
a sound may depend on the source. For example, it
has been found that the same level of noise from air-
craft, road traffic, and rail traffic produces different
human reactions. In recent years, the quality of the
sound has become an important factor in the design of
machinery, particularly in automobiles and other mo-
tor vehicles. The soundscape created by a snowmobile
may, for example, be quite acceptable to the operator,
but unacceptable to an observer some distance from the
machine.

In this section, various measures of noise level will
be discussed, and generally accepted criteria for the
magnitude of the level will be discussed. The manage-
ment of the soundscape can be thought of as a policy
issue that is partly the responsibility of individuals and
partly the responsibility of federal, state, and local gov-
ernments.

23.5.2 Noise Metrics

The effects of noise on people is a complicated sub-
ject, and extensive research is still in progress. Several
metrics are commonly used to describe noise immis-
sion at the receiver, and most of these are in terms
of the A-weighted sound pressure level. These metrics
work well, both indoors and outdoors provided that the
spectrum of the noise, measured in octave or one-third-
octave bands is somewhat neutral in character; that is, it
is not perceived as rumbly or hissy, does not contain dis-
crete frequency components (tones), is broadband, and
steady without impulsive or time-varying characteris-
tics. Other, more complex, metrics are required when
any of the above characteristics are present.

The A-weighted sound level as a function of time
can be expressed as LAf or LAs, where the subscripts
f and s refer to the dynamic characteristics of a sound
level meter: fast or slow. These dynamic characteristics
are defined in Sect. 23.2.2.

In the early 1970s, the day–night average sound
level (DNL, Ldn) was selected as a long-term measure
of noise exposure. The day–night level is the time-
weighted average level over a 24 hour period, but with
10 dB added to the level during the nighttime hours
from 10:00 to 07:00.

Another time-weighted average level used in Eu-
rope is the day–evening–night level (LDEN, Lden)
where the evening hours are normally between 19:00
and 23:00, the nighttime hours are from 23:00 to 07:00,
and the daytime hours are from 07:00 to 19:00. In this

case, 5 dB is added to the level in the evening hours, and
10 dB is added to the level in the nighttime hours. Ac-
cording to the European environmental noise directive,
2002/49/EC, the evening interval may be shortened by
one or two hours, with corresponding lengthening of the
day and/or night periods.

Other metrics for the sound level include, L10, L50,
and L90, the levels exceed 10%, 50%, and 90% of the
time, respectively. Single events may be described in
terms of the sound exposure level (Sect. 23.2.3).

Indoors, other metrics are commonly used to de-
scribe noise immission. In most of the world, the
equivalent sound level over an eight hour period is the
metric used to relate noise level to hearing loss. This
level is usually described as having a 3 dB exchange
rate because an equivalent level over a time interval T1
is the same as for a level 3 dB higher over a time in-
terval of T1/2. In the United States, the Occupational
Safety and Health Administration (OSHA) has adopted
a 5 dB exchange rate. In this case, the time-weighted av-
erage level over a time interval T1 is equivalent in noise
dose to a level 5 dB higher measured over a time interval
of T1/2.

23.5.3 Measurement
of Immission Sound Pressure Level

Before presenting criteria for noise immission, it is nec-
essary to have procedures for the measurement of sound
pressure level, both indoors and outdoors. For occupa-
tional noise exposure, ANSI S12.19 [23.153] defines
terms used in occupational noise exposure, including
noise dose, exchange rates, and the criterion sound level
used in some cases. The use of sound level meters and
dosimeters are also described.

ANSI S1.13 [23.154] is a very general stan-
dard for description of noise levels. The quantities
discussed in Sect. 23.2 are defined as are various tem-
poral characteristics of noise – continuous and steady,
continuous sound, fluctuating sound, impulsive and
intermittent sound, and other characteristics. Charac-
teristics in the frequency domain are also described –
broadband and narrow-band noise, and noise contain-
ing discrete-frequency sound. The relationship between
discrete-frequency components in a spectrum and the
critical bands (Chap. 14) is discussed, and the promi-
nence ratio and tone-to-noise ratio, measures of the
prominence of discrete tones in noise, are defined.

For the measurement and description of environ-
mental noise, there is a complete series of stan-
dards [23.155–160] available. This series covers such
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topics as basic quantities to be measured, measurement
positions, definition of noise zones, categories of land
use, land-use criteria, treatment of prominent discrete
tones, and measuring positions for determination of the
effect of aircraft noise exposure on sleep.

23.5.4 Criteria for Noise Immission

In this section, criteria are divided into criteria for hear-
ing damage, criteria for annoyance, and other currently
used criteria.

Hearing Damage Criteria
In the United States, permissible levels for industrial
noise exposure are set by the US Department of Labor,
and are described in 29 CFR 1910.95. In summary, an
employer shall administer a hearing conservation pro-
gram when the eight hour time-weighted average level
exceeds 85 dB. The requirements of such a program are
described in detail in the above document – as is the
requirements on audiometers for the determination of
hearing loss, personnel conducting the tests, and hearing
protectors when used to satisfy the requirements below.
More details may be found in the Hearing Conservation
Manual [23.161].

Permissible noise exposures are given in the regula-
tion in Table G-16, reproduced below (Table 23.9) with
an explanation of how the permissible levels are to be
determined.

Currently, engineering controls are required only if
the eight hour noise exposure exceeds 100 dB. For lower
levels, hearing protection is an alternative.

The problem of specifying upper limits for noise
in the workplace has been studied by a technical study
group of the International Institute of Noise Control En-
gineering, and a report has been prepared and approved
by the member societies of that organization [23.162].
Most countries in the world allow a time-weighted av-
erage sound level over eight hours of 85–90 dB as the
upper limit, and an exchange rate of 3 dB. Selection
of this exchange rate is widely believed to be the best
alternative, and it greatly simplifies the measurement
of levels that fluctuate during the working day. Ta-
ble 23.10, from [23.162], shows hearing damage criteria
in a number of countries as of 1997.

I-INCE publication 97-1 [23.162] makes specific
recommendations with respect to allowable levels, ex-
change rate, and hearing conservation programs:

1. It is desirable for jurisdictions without regulations,
or with currently higher limits, to set a limit on the

level of exposure over a workshift, A-weighted and
normalized to eight hours, of 85 dB as soon as may
be possible given the particular economic and soci-
ological factors that are pertinent.

2. This exposure level should include the contribu-
tion from all sounds that are present including
short-term, high-intensity sounds. If such sounds are
further limited in regulations to a maximum sound
pressure level, then regulations should set a limit of
140 dB for C-weighted peak sound pressure level.

3. An exchange rate of 3 dB per doubling or halving of
exposure time should be used. This exchange rate is
implicit when the exposure level is stated in terms
of eight-hour-average sound pressure level;

4. Efforts should be made to reduce levels of noise in
the workplace to the lowest economically and tech-
nologically reasonable values, even when there may
be no risk of long-term damage to hearing. Such ac-
tion can reduce other negative effects of noise such
as reduced productivity, stress and disturbed speech
communication.

5. At the design stage of any new installation, con-
sideration should be given to sound and vibration
isolation between noisier and quieter areas of ac-
tivity. Rooms normally occupied by people should
have a significant amount of acoustical absorption
in order to reduce the increase of sound due to ex-
cessive reverberation.

Table 23.9 Criteria from Table G-16 of 29 CFR 1910.95.
Permissible noise exposuresa

Duration in hours per day Sound level (dBA)

slow response

8 90

6 92

4 95

3 97

2 100

1 1/2 102

1 105

1/2 110

1/4 or less 115
a When the daily noise exposure is composed of two or more
periods of noise exposure of different levels, their combined
effect should be considered, rather than the individual effect of
each. If the sum of the following fractions: C1/T1 +C2/T2 +
. . .Cn/Tn exceeds unity, then, the mixed exposure should be
considered to exceed the limit value. Cn indicates the total time
of exposure at a specified noise level, and Tn indicates the total
time of exposure permitted at each level. Exposure to impulsive
noise should not exceed 140 dB peak sound pressure level
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Table 23.10 Some features of legislation in other countries in 1997. After Embleton [23.162]. See the notes following the
table∗

Some features of legislation in various countries

Country
(Jurisdiction)

Eight hour average
A-weighted sound
pressure level (dB)

Exchange
rate(dB)

8h average A-wtd
limit for engineer-
ing or administra-
tive controls (dB)

Eight hour aver-
age A-wtd limit
for monitoring
hearing (dB)

Upper limit for
peak sound pres-
sure level (dB)

Argentina 90 3 110 A slow

Australia 85 3 85 85 140 unwgtd peak

(varies by State)

Austriaa,c 85 90

Brazil 85 5 90, no exposure > 85 130 unwgtd peak

115 if no protect- or 115 A slow

ion, no time limit

Canada (Federal) 87 3 87 84

(ON, PQ, NB) 90 5 90 85b 140 C peak

(Alta, NS, NF) 85 5 85

(BC) 90 3 90

Chile 85 5 140 unwgtd peak

or 115 A slow

China 70–90 3 115 A slow

Finlandc 85 3 90

Francec 85 3 90 85 135 C peak

Germanyc,d 85 3 90 85 140 C peak

Hungary 85 3 90 140 C peak or

125 A slow

India 90 140 A peak

Israel 85 5 140 C peak or

115 A slow

Italyc 85 3 90 85 140 C peak

Japan 90 85 85

hearing protection

mandatory at 90

Netherlandsc 85 3 90 80 140 C peak

New Zealand 85 3 85 85 140 unwgtd peak

Norway 85 3 80 110 A slow

Poland 85 3 135 C peak or

115 A slow

Spainc 85 3 90 80 140 C peak

Swedenc 85 3 90 80 140 C peak or

115 A fast

Switzerland 85 or 87 3 85 85 140 C peak or

125 ASEL

United Kingdom 85 3 90 85 140 C peak

USAe 90 (TWA) 5 90 85 140 C peak or

USA (army 85 3 85 115 A slow

and air force) 140 C peak

Uruguay 90 3 110 A slow
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Table 23.10 (continued)

Some features of legislation in various countries

Country
(Jurisdiction)

Eight hour average
A-weighted sound
pressure level (dB)

Exchange
rate(dB)

8h average A-wtd
limit for engineer-
ing or administra-
tive controls (dB)

Eight hour aver-
age A-wtd limit
for monitoring
hearing (dB)

Upper limit for
peak sound pres-
sure level (dB)

This Report
recommends

85 for 8 hour normalized
exposure level limit

3 85, see also text
under recommended
engineering controls

on hiring, and at
intervals thereafter,
see text under
audiometric
programs

140 C peak

∗ Information for Austria, Japan, Poland and Switzerland was provided directly by these member societies of I-INCE. For other coun-
tries not represented by member societies participating in the working party the information is taken with permission from [23.14]
a Austria also proposes 85 dB AU-weighted according to IEC 1012 as a limit for high-frequency noise, and a separate limit for
low-frequency noise varying inversely as the logarithm of frequency
b A more complex situation is simplified to fit this tabulation
c All countries of the European Union require the declaration of emission sound power levels of machinery, the use of the quietest
machinery where reasonably possible, and reduced reflection of noise in the building, regardless of sound pressure or exposure levels.
In column 4, the limit for other engineering or administrative controls is 90 dB or 140 dB C-weighted peak (or lower) or 130 dB
A-weighted impulse
d The rating level consists of time-average, A-weighted sound pressure level plus adjustments for tonal character and impulsiveness.
e TWA is the time-weighted average. The regulations in the USA are unusually complicated. Only A-weighted sound pressure levels
of 80 dB or greater are included in the computation of TWA to determine whether or not audiometric testing and noise exposure
monitoring are required. A-weighted sound pressure levels less than 90 dB are not included in the computation of TWA when
determining the need for engineering controls

6. The purchase specifications for all new and replace-
ment machinery should contain clauses specifying
the maximum emission sound power level and emis-
sion sound pressure level at the operator’s position
when the machinery is operating.

7. A long-term noise control program should be estab-
lished and implemented at each workplace where
the level of the daily exposure, normalized to eight
hours, exceeds 85 dB. This program should be re-
assessed periodically in order to exploit advances in
noise control technology.

8. The use of personal hearing protection, either
earplugs or other hearing protection devices, should
be encouraged when engineering and other noise
control measures are unable to reduce the daily A-
weighted exposure level of workers normalized to
eight hours to 85 dB. The use of hearing protection
devices should be mandatory when the exposure
level is over 90 dB.

9. All employers should conduct audiometric testing
of workers exposed to more than 85 dB at least
every three years, or at shorter intervals depend-
ing on current exposure levels and past history of
the individual worker. Records of the results of the
audiometric tests should be preserved in the em-
ployee’s permanent file.

Effect of High Noise Levels on Hearing
The result of exposure to high levels of noise is first
a temporary shift in the hearing threshold (TTS), and
eventually permanent hearing damage called noise-
induced permanent threshold shift (NIPTS). Quantita-
tive data have been published in ISO 1999 [23.163],
and in ANSI S3.44-1996 [23.164]. The two standards
contain the same information except that the ANSI stan-
dard allows exchange rates other than 3 dB through the
calculation of an equivalent level. As one example (in-
formative), exposure to an A-weighted sound level of
95 dB for 20 years is said to result in a NIPTS greater
than 23 dB at 4 kHz in 50% of the population.

Noise Levels and Annoyance
It is difficult to specify criteria for annoyance, even
when the descriptor for the noise is selected – usually
the day–night average sound level Ldn. There is a high
variability in the response of individuals to noise, and
it is difficult to describe a physical soundscape in terms
of a single number. Reporting guidelines for commu-
nity noise were published in 1998 [23.165] – after many
surveys were performed. However, the classic work of
Schultz [23.166] resulted in the Schultz curve that re-
lated the percent of persons highly annoyed and the
day–night sound level. More recent data are also avail-
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Fig. 23.28 USAF logistic curve – together with data from
Schultz [23.166], Fidell et al. [23.168] (after Finegold
et al. [23.167], reprinted with permission)

able, and a logistic curve has been developed by the
US Air Force [23.167]. Figure 23.28 shows this curve
together with data from Schultz [23.166] and Fidell
et al. [23.168].

Fidell et al. [23.168] showed that annoyance also
depends on the source of sound (e.g., road traffic
noise, railway noise, aircraft noise), and more recently
studies by Miedma [23.169] and Midema and Oud-
shoorn [23.170] have quantified this effect with 95%
confidence limits on the data. Their results are shown
in Fig. 23.29.

In spite of the progress that has been made,
there are doubts about the current approach to devel-
oping relationships between noise exposure and annoy-
ance [23.171], and there may be improved methods for
prediction of community response [23.172].

Criteria for Annoyance from Noise
While the figures above relate day–night average sound
level and the percentage of a population annoyed, there
is still the question of criteria that can be used for land-
use planning and other activities for which noise control
is needed.

ANSI standard S12.9 [23.155–160] contains in-
formation on noise levels appropriate for various
categories of land use. The data are a combination of
recommendations from various sources. Table 2 from
the standard is reproduced inTable 23.11.

Schomer [23.173] has studied the recommendations
of several federal agencies in the United States, the
World Health Organization, and the National Research
Council. His recommendation is:

For residential areas and other similarly noise sen-
sitive land uses, noise impact becomes significant in
urban areas when the DNL exceeds 55 dB. In subur-
ban areas where the population density is between
1250 and 5000 inhabitants per square mile, noise
impact becomes significant when the DNL exceeds
50 dB. And in rural areas where the population den-
sity is less than 1250 inhabitants per square mile,
noise impact becomes significant when the DNL ex-
ceeds 45 dB.

Noise in Recreational Areas
Noise immission in recreational areas presents spe-
cial problems. Many individuals expect a very quiet
environment in parks and other recreational areas
whereas others – particularly those who enjoy the use of
motorized vehicles such as snowmobiles and off-road
vehicles – enjoy sound levels, particularly if they are
of good quality. Others enjoy recreational areas from
a distance – such as in helicopters and airplanes, and the
noise of these sources of concern to those on the ground.
Other problems include the measurement of sounds
which are often of very low level (Fig. 23.4), and may
be intermittent. Measurement location is also a problem
because the areas of interest are frequently very large.

A collection of 16 papers covering a variety of top-
ics related to recreational noise is available. The papers
were presented at a symposium on recreational noise
held in New Zealand in 1998. Miller [23.7] has given
a summary of the state of the art in recreational noise as
of 2003.

Other Noise Criteria
A wide variety of noise criteria are discussed in a doc-
ument on community noise prepared for the World
Health Organization.

23.5.5 Sound Quality

In Sect. 23.1.1, noise was defined as unwanted sound.
The field of sound quality or sound quality engineering
has become important for two reasons. Noise often has
characteristics that may make the sound more annoying
than sounds of equivalent level using conventional mea-
sures. These include the presence of discrete-frequency
sound, sound which is impulsive in character, and
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Fig. 23.29 Percentages of highly annoyed (HA), annoyed (A), and lightly annoyed (LA), with 95% confidence limits, for
aircraft noise, road noise, and railway noise (after Miedema [23.169] and Miedema and Oudshoorn [23.170], reprinted
with permission)

Table 23.11 A-weighted day, night, and day–night average sound levels in decibels and corresponding approximate pop-
ulation densities in people per square kilometer or square mile. Reprinted by permission of the Acoustical Society of
America from ANSI S12.9/part 3, annex D [23.157]. This annex is for information, and is not part of the standard

Land-use category DNL Typical Day Night Approximate

range DNL level level population density

dB dB dB dB per km2 per sq.mi.

1 Very noisy urban > 67 70 69 61 24 650 63 840

2 Noisy urban residential 62–67 65 64 57 7722 20000

3 Urban and noisy suburban 57–62 60 58 52 2465 6384

residential

4 Quiet urban and normal 52–57 55 53 47 772 2000

suburban residential

5 Quiet suburban 47–52 50 48 42 247 638

residential

6 Very quiet suburban and < 47 45 43 37 77 200

rural residential
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sounds that create a negative image – such as a noisy
bearing which may indicate that a machine is failing.
Reduction or elimination of such sounds improves the
quality of the noise.

More recent work, particularly in the automobile in-
dustry has focused on the sound of engines and other
automotive components to create a desirable sound
for the consumer. Similarly, consumer products such
as sewing machines and vacuum cleaners have been

studied in an effort to eliminate sounds that the con-
sumer finds objectionable and emphasize sounds that
give a good impression of the quality of the product.
There have been two sound-quality symposia that cover
a wide range of topics in this field. In addition, Lyon has
described the sound-quality design process [23.174],
and has described a methodology by which various at-
tributes of sound can be used to define the quality of that
sound [23.175].

23.6 Regulations and Policy for Noise Control

In this section, an overview of noise policies and regu-
lations is given. First, an overview of noise policy in the
United States is given, and then information on noise
policies in other countries and in the European Union is
presented.

23.6.1 United States Noise Policies
and Regulations

This material has been adapted from paper 302 titled
A Review of Untied States Noise Policy by G. C. Mal-
ing, Jr. and L. S. Finegold. The paper was presented an
INTER-NOISE 04, Czech Republic (2004).

The policies of the United States with respect
to noise emission and noise immission have a long
history. Many of the historical environmental noise doc-
uments produced in the US in the past are well known
throughout the world, and have been reviewed else-
where [23.176–182].

Funding for the US Office of Noise Abatement and
Control of the US Environmental Protection Agency
was discontinued in 1982, and since then there has been
a lack of focus in the implementation of US noise pol-
icy. Since then, noise policies and regulations have been
promulgated by a number of different federal agencies.
There is a variety of state and local noise regulations;
information on selected policies is given below.

Federal Government Noise Policies
The noise policies of the US federal government
have been reviewed in detail elsewhere [23.181, 182].
A database of US noise policy documents has been
published on CD-ROM [23.183].

Federal Aviation Administration. A number of poli-
cies related to aviation noise were in existence before
1969, but the first FAR 36 regulation [23.184] issued in

1969 by the Federal Aviation Administration, an agency
of the US Department of Transportation. This regula-
tion implemented a certification procedure for the noise
emissions of aircraft, and has been amended many times
to reduce noise emissions as the technology of air-
craft engine design improved. More information may
be found in Sect. 23.3.8.

US Environmental Protection Agency. The National
Environmental Policy Act of 1969 established the Of-
fice of Noise Abatement and Control (ONAC) of the
US Environmental Protection Agency (EPA), and in
the early 1970s, ONAC held a series of public hear-
ings to discuss the noise problem. These hearings
led to the passage of the Noise Control Act of 1972
(NCA 72), which was landmark legislation in which the
US Congress declared that it is

the policy of the United States to promote an
environment for all Americans free from noise that
jeopardizes their health and welfare.

The program included:

• Development of standards and criteria• Identification of major sources of noise• Regulation of the noise emissions of certain vehi-
cles, machinery, and equipment• Product noise labeling• Interactions with other federal agencies• The establishment of regional noise technical
centers• Support of research in noise control and• Assistance to state and local governments.

Funding for ONAC was discontinued in 1982. Finegold,
Finegold and Maling [23.181, 182] discussed the suc-
cesses and failures of the program, and a history of the
program has been prepared by Maling [23.185]. A re-
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view of administrative procedures related to NCA 72
and ONAC, and recommendations for future noise
abatement were prepared by the Administrative Confer-
ence of the United States in 1991 [23.186].

US Department of Housing and Urban Development.
It is the policy of the US Department of Housing and Ur-
ban Development (HUD) (24 CFR part 51) to provide
minimum national standards applicable to HUD pro-
grams to protect citizens against excessive noise in their
communities and places of residence. HUD has defined
noise exposure standards for new construction, interior
noise goals, and acoustical privacy in multifamily build-
ings. These standards must be met if federal financing
assistance is to be provided for new construction or res-
idential rehabilitation. It is also HUD’s policy to apply
standards to prevent incompatible development around
civil airports and military airfields. HUD requires that
grantees give adequate consideration to noise exposures
and sources of noise as an integral part of the urban
environment when HUD assistance is provided for plan-
ning purposes. Particular emphasis is placed on the
importance of compatible land-use planning in relation
to airports, highways and other sources of high levels
of noise exposure. HUD assistance for the construction
of new noise sensitive uses is prohibited generally for
projects with unacceptable noise exposures and is dis-
couraged for projects with normally unacceptable noise
exposure. Noise exposure by itself will not result in
the denial of HUD support for the resale and purchase
of otherwise acceptable existing buildings. However,
environmental noise is a marketability factor, which
HUD will consider in determining the amount of insur-
ance or other assistance that may be given.

The Federal Energy Regulatory Commission. The
Federal Energy Regulatory Commission (FERC) is an
agency of the US Department of Energy, and has issued
a regulation that controls noise emitted by compressors
and other sources of noise related to the power industry.
The regulation 18 CFR 157.206(d)(5) states that:

5. The noise attributable to any compressor facility
installed pursuant to the blanket certificate shall not
exceed a day–night sound level (Ldn) of 55 dB(A) at
any noise-sensitive area unless the noise-sensitive
areas (such as schools, hospitals, or residences) are
established after facility construction.

US Department of Labor, Occupational Safety and
Health Administration. Within the US Department

of Labor, OSHA has regulations on occupational
noise exposure which are detailed in the US code of
federal regulations, 29 CFR 1910.95. Additional in-
formation may be found in the hearing conservation
manual [23.187]. Noise policy for exposure to industrial
noise is generally covered by the text in Sect. 23.5.4.

US Department of Labor, Mine Safety and Health
Administration. The Mine Safety and Health Adminis-
tration (MSHA) is part of the US Department of Labor.
Regulations for the control of the noise exposure of
miners is covered in 30 CFR 62. The basic requirements
are:

• The eight hour time-weighted, A-frequency-weight-
ed sound pressure level shall not exceed 90 dB.
Levels below 90 dB and above 140 dB are not in-
cluded in the integration.• A 5 dB exchange rate is used.• Above an action level of 85 dB, hearing protection
must be used, and the individual must be enrolled in
a hearing conservation program.

Additional information on the policies of other govern-
ment agencies vis à vis occupational noise may be found
in a paper by Bruce and Wood [23.188].

Federal Highway Administration. The primary activity
of the Federal Highway Administration is to coordinate
state efforts with regard to the construction of high-
way noise barriers. Noise barrier design in discussed in
Chap. 4. Additional information on noise barriers is in
Sect. 23.4.1, in the section on state policies below, and
in [23.132]. More recently, there have been efforts to
design highways so that tire–road noise is reduced.

State Government Policies
Policies of the state governments can generally be
divided into policies with respect to exposure to occupa-
tional noise, transportation noise, and noise emissions
from industrial plants. In the first case, states may
establish occupational noise policies that are at least
as stringent as federal regulations (see the section on
OSHA).

Highway Noise Barriers. Many State governments have
established noise policies with regard to the erection of
noise barriers along highways [23.132]. Noise barrier
policy is based on a cooperative arrangement between
the federal government and state governments. Federal
policy is set by the Federal Highway Administration, an
agency of the US Department of Transportation, and is
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detailed in an FHWA policy document [23.189]. It is,
however, the responsibility of each State Department of
Transportation (SDoT) to determine the extent of noise
abatement measures and to balance costs and environ-
mental benefits in determining where noise barriers are
to be erected.

Industrial Noise Emissions. The policy situation with
regard to industrial noise immissions varies from state-
to-state. The Internet site maintained by the Noise Pol-
lution Clearing House [23.190] lists 12 states (with links
to the requirements) with regulations on noise. One of
the states not listed is the state of Maine – whose noise
requirements have been described as the most complex
in the United States [23.191]. These requirements show
evidence of being carefully written. Brooks [23.192]
has identified two other states, Illinois [23.193] and
Connecticut [23.194] as two other states with carefully
crafted environmental noise regulations.

The Maine text is in the Department of Environ-
mental Protection regulations 375.10, and is approx-
imately 6000 words in length. The requirements are
written in terms of hourly A-weighed sound levels.
Daytime levels are between 7 a.m. and 7 p.m., and
nighttime levels are between 7 p.m. and 7 a.m. The key
elements are:

• In protected locations that are not predominantly
commercial, transportation, or industrial, 60 dB
daytime and 50 dB nighttime.• In other areas, the required levels are 10 dB higher.• Where pre-development levels are less than 45 dB in
the daytime and 35 dB at night, the required levels
are 5 dB lower.• There are penalties for repetitive sounds and re-
quirements on blast noise.• Maximum levels are specified for construction ac-
tivities.

Local Noise Regulations and Policies. A large number
of cities and towns in the United States have ordinances
and building codes to deal with local noise issues. For
example, noise ordinances from cities and towns in 31
states have been posted on the Internet by the Noise
Pollution Clearing House [23.189]. A model noise or-
dinance published by the EPA and dating from 1975
September has also been posted [23.195]. However,
there is no consistency in how local noise ordinances are
structured. Some use subjective noise exposure criteria,
while others use objective, quantitative criteria. As de-
scribed by Finegold and Brooks [23.196], an American

National Standards Institute (ANSI) working group is
currently developing a new ANSI standard with an up-
dated model community noise ordinance for use by lo-
cal jurisdictions to provide the needed guidance. There
is a strong preference for objective noise standards as
opposed to subjective standards. For example, a require-
ment for the prohibition of excessive and unreasonable
noises without objective limits is difficult to enforce.

As one example of the purpose of local noise or-
dinances, the noise policy statement in the March 1998
New York City noise code [23.197] is reproduced below
(this noise code is being revised):

24-202 Declaration of policy. It is hereby declared
to be the public policy of the city to reduce the ambi-
ent noise level in the city, so as to preserve, protect
and promote the public health, safety and welfare,
and the peace and quiet of the inhabitants of the
city, prevent injury to human, plant and animal life
and property, foster the convenience and comfort of
its inhabitants, and facilitate the enjoyment of the
natural attractions of the city. It is the public policy
of the city that every person is entitled to ambient
noise levels that are not detrimental to life, health
and enjoyment of his or her property. It is hereby
declared that the making, creation or maintenance
of excessive and unreasonable noises within the city
affects and is a menace to public health, comfort,
convenience, safety, welfare and the prosperity of
the people of the city. For the purpose of control-
ling and reducing such noises, it is hereby declared
to be the policy of the city to set the unreasonable
noise standards and decibel levels contained herein
and to consolidate certain of its noise control legis-
lation into this code. The necessity for legislation by
enactment of the provisions of this chapter is hereby
declared as matter of legislative determination.

Noise Policies in Other Countries. Most industrialized
countries have published noise regulations for a vari-
ety of sources. Gottlob [23.198] as well as Flindell
and McKenzie [23.199] have presented information
on community noise regulations in a large number
of countries, and have listed the noise descriptors in
use. More recently, technical study group 3 of the
International Institute of Noise Control Engineering
(I-INCE) prepared a comprehensive draft report on
noise policies and regulations worldwide [23.200]. This
report documents the results of an international survey
on current environmental noise policies and regula-
tions, and describes some similarities and differences
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in noise policies that exist at the global level. It also
provides recommendations for a follow-on project to
estimate national noise exposures in the I-INCE par-
ticipating member countries as a next step towards the
long-term goal of assessing the effectiveness of noise
policies.

23.6.2 European Noise Policy
and Regulations

Early European noise policy emphasized old approach
directives that covered specific noise sources such as
motor vehicles, construction equipment, lawnmowers,
aircraft, and other equipment. The original safety di-
rective, 89/392/EC, contained requirements on emission
sound pressure level (Sect. 23.3.3). This document was
superseded by directive 98/37/EC [23.201], but with the
same acoustical requirements. This directive has been
implemented throughout the European Union – the de-
tails being in European standards (EN). There are now
several hundred of these standards covering a wide va-
riety of machine types [23.202].

More recently, new approach directives give re-
quirements, but are much more general in their ap-
proach to regulation of noise. There are still specific
requirements on machines – as discussed in Sect. 23.3.5.
These approaches have been summarized by Higginson
et al. [23.203] in 1996, the European Union published
a green paper that recognized the fact that in spite of
limits on the noise emissions of individual machines,
the noise to which persons are exposed has been in-
creasing, and that more emphasis should be placed
on noise in communities. A summary of the future
noise policy as presented in the green paper is avail-
able [23.204], as is the green paper itself [23.205]
and an edited version [23.206]. This activity led to
directive 2002/49EC designed to understand noise prob-
lems in communities through noise mapping and other
activities, and to prepare action plans. The directive
instructs the member states to develop a long-range
plan to establish common assessment methods, to de-
velop noise maps, to develop action plans to combat
noise, to keep the public informed about noise is-
sues. It also requires that the European Commission
make regular evaluations of the implementation of the
directive.

Some key action items and implementation dates in
the directive are:

1. Common noise assessment methods will be estab-
lished by the European Commission.

2. By 2005 July 18, the European Commission will
be informed of limit values in force by the member
states.

3. By 2005 June 30 and every five years thereafter,
the member states will inform the European Com-
mission of the major roads that have more than six
million vehicle passages per year, major railways
that have more than 60 000 train passages per year,
and airports and the agglomerations with more than
250 000 inhabitants within their territories.

4. By 2007 June 30, the member states will ensure
that strategic noise maps showing the situation in
the previous year have been made and approved by
competent authorities. By 2008 June 30, all agglom-
erations, major roads, and major railways shall be
identified and by 2012 June 30, noise maps for these
areas will be prepared and updated every five years.

5. By 2008 July 18, competent authorities shall draw
up action plans to manage noise issues in areas de-
fined by item 3 above.

6. By 2013 July 18, action plans for those areas defined
by item 4 above shall be developed.

7. Action plans shall be reviewed whenever the exist-
ing noise situation changes, and at least every five
years.

8. The public will be kept informed about noise maps
and action plans.

9. By 2004 January 18, the European Commission
will submit a report to the European parliament
which reviews existing measures related to sources
of environmental noise. A summary report of strate-
gic noise maps and action plans will be prepared by
2009 July 18 and every five years thereafter. By this
date, a report on the implementation of the directive
will also be submitted.

Six annexes to the directive cover noise indicators,
assessment methods for the noise indicators, assessment
methods for harmful effects, minimum requirements for
strategic noise mapping, minimum requirements for ac-
tion plans, and definitions of data to be sent to the
European Commission.

There are a number of ongoing projects related to
this directive. Further information on EU noise policies
can be found at http://europa.eu.int/comm/environment/
noise/home.htm.
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23.7 Other Information Resources

The following information will be helpful in locating
many of the references below.

American National Standards are available from the
Acoustical Society of America, asa.aip.org.

International Standards on electroacoustics (sound
level meters, etc.) are published by the International
Electrotechnical Commission (IEC), www.iec.ch.

International Standards on noise are published
by the International Organization for Standardization
(ISO), www.iso.ch.

The sponsor of the INTER-NOISE series of inter-
national congresses on noise control engineering is the
International Institute of Noise Control Engineering,
www.i-ince.org.

A technical journal, Noise Control Engineering
Journal (NCEJ), has been published by Institute of
Noise Control Engineering (INCE/USA) since 1973,
and all technical papers from that journal are now
available on CD-ROM and on the Internet. For more
information, go to www.inceusa.org.

The organizer of the INTER-NOISE series when
the congresses are held in North America is the In-
stitute of Noise Control Engineering of the USA
(www.inceusa.org). The institute also sponsors the
NOISE-CON series of national conferences on noise
control engineering. Technical papers on CD-ROM for
both of these series are available from the institute
(www.atlasbooks.com/marktplc/00726.htm).

The Institute of Noise Control Engineering has also
published two public information documents available
for free download: Noisy Motorcycles: An environ-
mental quality of life issue (2013) [23.207] and Cost-
Benefit Analysis: Noise barriers and quieter pavements
(2014) [23.208].

The National Academy of Engineering has prepared
a report titled Technology for a Quieter America which
has been published by the National Academies Press
(NAP) [23.209]. The NAP has also published Protecting
National Park Soundscapes [23.210].
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Microphones24. Microphones and Their Calibration

George S. K. Wong

The condenser microphone continues to be the
standard against which other microphones are
calibrated. A brief discussion of the theory of
the condenser microphone, including its open-
circuit voltage, electrical transfer impedance, and
mechanical response, is given. The most precise
method of calibration, the reciprocity pressure
calibration method for laboratory standard micro-
phones is discussed in detail, beginning with the
principles of the reciprocity method. Corrections
for heat conduction, equivalent volume, capillary
tube, wave motion, barometric pressure and tem-
perature are necessary to achieve the most accurate
open-circuit sensitivity of condenser microphones.

Free-field calibration is discussed briefly, and
in view of the difficulties in obtaining more accu-
rate results than those provided by the reciprocity
method, references are given for more detailed
consideration. Secondary microphone calibra-
tion methods by comparison are described. These
methods include interchange microphone com-
parison, comparison with a calibrator, comparison
pressure and free-field, and comparison with
a precision attenuator. These secondary cali-
bration methods, which are adequate for most
industrial applications, are economically attractive
and less time consuming.

The electrostatic actuator method for frequency
response measurement of working standard mi-
crophones is discussed with some pros and cons
presented. An example to demonstrate the stability
of laboratory standard microphones and the stabil-
ity of a laboratory calibration system is described.

Appendix A discusses acoustic transfer
impedance evaluation, while appendix B contains
physical properties of air, which are necessary for
microphone calibration.

24.1 Historic References on Condenser
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Nomenclature
A′1 numerical coefficient
Ã1, Ã2 complex quantities
a the radius of the capillary tube (m)
a0 to a12 coefficients
B = (η/ραt)

1
2 coefficient

B′1 numerical coefficient
C fixed capacitance (F)
C′

1 shunt capacitance (F)
Cp specific heat capacity at constant pres-

sure (kJ kg−1 K−1)
Cr reference capacitance (F)
Cv specific heat capacity at constant volume

(kJ kg−1 K−1)
Ct shunt capacitance (F)
cc large shunt capacitance (F)
c sound speed (m/s)
c0 reference dry air sound speed at 0 ◦C,

101.325 kPa and 400 ppm CO2 content
(m/s)

ci input capacitance of the preamplifier (F)
cstat static capacitance (F)
cs stray capacitance (F)
ct(t) variable capacitance (F)
Δc capillary correction (Δc(AB),Δc(BC), and

Δc(CA) are the capillary corrections for
the microphone pairs)

D complex function
D1 function for computation of R′
D′

1 numerical coefficient
D2 function for computation of R′
d diameter of microphone cavity (m)
E voltage across the microphone (V)
E0 polarizing voltage (V)
Ev complex temperature transfer function
eA, eB, eC open-circuit voltage (V)
eo output voltage (V)
eoc output voltage as function of the varying

capacitor ct (V)
ei(B) sinusoidal insert voltage (V)
e(t) time-varying voltage (V)
e′B microphone output voltage with micro-

phone shunting capacitance
eBref, eAref open-circuit voltage and the source driv-

ing voltage when the reference micro-
phone is in position

eBx, eAx open-circuit voltage and the source driv-
ing voltage when the test microphone is
in position

e1 driving voltage across Zx (V)
e2 preamplifier output voltage (V)

f frequency (Hz)
fe = 1.00062+ ps(3.14 × 10−8)

+t2(5.6 × 10−7), enhancement factor
f0 resonance frequency (Hz)
g1 gain of the preamplifier
H relative humidity, %
h0 static deflection of diaphragm (m)
ha air gap between the diaphragm and the

backplate when the polarizing voltage is
applied (m)

hs = psv
p0

H
100 fractional molar concentration

of moisture
hc CO2 content (%)
h = H/100 humidity (dimensionless)
ΔH humidity correction (dB/100%)
ΔH complex correction factor
I input current (A)
it time varying current generated by the

microphone (A)
K wave number of sound in the membrane

(m−1)
k = iωZx/(γ Ps)
k0 constant
kc = (−iωρ/η)1/2 complex wave number

(m−1)
L r level reading

of the reference microphone (dB)
L t level reading

of the test microphone (dB)
� volume to surface ratio

of the coupler (m)
�c length of the capillary tube (m)
l0 length of the cavity, i. e. distance be-

tween the two diaphragms (m)
M microphone sensitivity
MA, MB, MC open-circuit sensitivity of microphone

A, B, C (V/Pa)
Mm mechanical response (m/Pa)
Me electrical transfer impedance
M′

A, M′
B, M′

C modified microphone A, B, C sensitivity
(V/Pa)

Mt open-circuit sensitivity of the test micro-
phone (dB re 1 V/Pa)

Mr open-circuit sensitivity of the reference
microphone (dB re 1 V/Pa)

MdB microphone sensitivity (dB re 1 V/Pa)
Mcorr microphone sensitivity with correction

(V/Pa)
Mcom combined level sensitivity of micro-

phone and preamplifier (dB)
n number of capillary tubes
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Ps barometric pressure (Pa)
p alternating pressure inside the cavity

(Pa)
pi incident sound pressure (Pa)
p0 reference pressure = 101.325 kPa
psv saturation water vapor pressure (Pa)
ps static pressure (during calibration ) (Pa)
ΔPc capacitance correction (dB)
ΔPv microphone sensitivity level pressure

correction (dB)
ΔP = (ps− p0) pressure difference (kPa)
R Universal gas constant,

8.31451 J mol−1 K−1. For dry air, 0 ◦C,
400 ppm CO2 content and 101 325 Pa

R′ parameter for computation of heat con-
duction correction

Rp impedance parallel with Rc and Ri (Ω)
Rc high resistance (Ω)
Ri input resistance of the preamplifier (Ω)
ra radius of microphone diaphragm (m)
rb radius of microphone backplate (Ω)
rc capillary tube radius (m)
S parameter for computation of heat con-

duction correction
S0 cross-sectional area of the cavity (m2)
Sw switch
T = (273.15+ t), thermodynamic temper-

ature (K)
Tm membrane tension (N/m)
T0 = 273.15 K
t temperature (◦C)
ΔT microphone sensitivity temperature cor-

rection (db)
Δt (T −273.15), temperature difference (K)
u volume velocity (m3/s)
V equivalent volumes of the cavity (m3)
VeA, VeB, VeC equivalent volumes of the microphones

A, B, C (m3)
VAB = (V +VeA+VeB) (m3)
VBC = (V +VeB+VeC) (m3)
VCA = (V +VeC+VeA) (m3)
ΔV0 small change of volume (m3)
V ′

AB,V ′
BC,V ′

CA equivalent volume including capillary
tubes (m3)

W wave-motion correction (dB)
X ′ parameter for computation of heat con-

duction correction
x = f/ f0 frequency normalized by the resonance

frequency f0 of the individual micro-
phone

xw = psv
ps

feh mole fraction of water vapor in air

xc mole fraction of carbon dioxide in air
Δx variation in depth of the cavity (m)
y0 initial deflection of diaphragm (m)
yr diaphragm deflection (m)
ZAB acoustic impedance of a cavity with

a pair of microphones A and B (N s m−5)
ZAC acoustic impedance of a cavity with

a pair of microphones A and C (N s m−5)
ZCA acoustic impedance of a cavity with

a pair of microphones C and A (N s m−5)
Z ′AB acoustic impedance of a cavity with

a pair of microphones A and B with as-
sumptions (N s m−5)

Z ′AC acoustic impedance of a cavity with
a pair of microphones A and C with as-
sumptions (N s m−5)

Z ′CA acoustic impedance of a cavity with
a pair of microphones C and A with as-
sumptions (N s m−5)

Zx electrical impedance (Ω)
Z = ρcS−1

0
Z compressibility factor for humid air
Za,c impedance of an open capillary tube

(N s m−5)
Za,t complex acoustic wave impedance of an

infinite tube (Pa s m−3)
Z ′a,12 acoustic transfer impedance of a pair of

microphones
αt thermal diffusivity of the gas media

(m2 s−1)
α1, α2 attenuator reading
βAB voltage ratio with microphone pair

A and B
βBC voltage ratio with microphone pair

B and C
βCA voltage ratio with microphone pair

C and A
β0, β1, β2 attenuator reading
β voltage ratio reading
γ ratio of specific heats
γ0 ratio of specific heats of dry air at 0 ◦C,

101.325 kPa and 314 ppm CO2 content
(dimensionless)

η viscosity of air (Pa s)
θ phase angle (deg)
λ wavelength (m)
ξ complex propagation coefficient

(m−1)
ρ density of the gas enclosed (kg/m3)
ρ0 = 1.29295 (dry air, 0 ◦C, 101.325 kPa

and 400 ppm CO2 content) (kg/m3)
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σM membrane surface mass density
(kg/m2)

Δ compensation for dispersion (dB)
Δc(AB) capillary tube correction factor for mi-

crophones A and B
Δc(BC) capillary tube correction factor for mi-

crophones B and C

Δc(CA) capillary tube correction factor for mi-
crophones C and A

ω = 2π f , angular frequency (rad/s)
J0() and J1() zero- and first-order cylindrical Bessel

functions of the first kind for complex
argument

i
√−1

24.1 Historic References on Condenser Microphones and Calibration

In 1917, Wente [24.1] described a microphone close
to what we find today as the modern condenser mi-
crophone. The theory of absolute pressure calibration
for condenser microphones and some of the modern
analyses and implementations including the early im-

plementation of the Western Electric 640AA condenser
microphone have been described [24.2–30]. In 1995,
a comprehensive discussion on the history of con-
denser microphone development and calibration was
published [24.29].

24.2 Theory

The theory of condenser microphone operation has been
investigated [24.1–30], and a brief summary is dis-
cussed in the following.

24.2.1 Diaphragm Deflection

The basic condenser microphone consists of a stretched
diaphragm (Fig. 24.1) over a backplate that is polar-
ized with a voltage E0, usually 200 V. Due to the small
air gap ha (approximately 20 μm for a 25 mm diameter
microphone) between the backplate and the thin (ap-
proximately 1–5 μm) metallic diaphragm, the latter is
deflected by electrostatic charge of the backplate. With
the diameter of the planar (flat) backplate (2rb) smaller
than that of the diameter (2ra) of the diaphragm, the rel-
atively complex initial deflection (y0) of the diaphragm
shape was analyzed by Hawley et al. [24.29, Chap. 2].
It has been shown by Fletcher and Thwaites [24.30]
that it is an advantage to modify the backplate to
have a parabolic profile to accommodate the curva-
ture of the diaphragm and, according to their analysis,
this eliminates distortion and increases the microphone

rb

ra

ha

ho

yo

y(r) o r

Membrane

Backplate

Fig. 24.1 Schematic diagram of a condenser microphone

sensitivity. Until this idea is further developed, the fol-
lowing will concentrate on condenser microphones with
planar backplates.

24.2.2 Open-Circuit Voltage
and Electrical Transfer Impedance

For functional implementation of a condenser micro-
phone, Zuckerwar gave a detailed analysis [24.29,
Chap. 3], and the electrical circuit is shown in Fig. 24.2.
A microphone is represented by a variable capacitance
ct with a static value of cstat, and a stray capacitance
of cs. The polarizing voltage E0 is applied to the
microphone backplate via a high resistance Rc. The
preamplifier is represented by an input impedance con-
sisting of a capacitance ci and a resistance Ri; cc is
a large blocking capacitor to prevent the polarizing volt-
age from overloading the preamplifier.

When a time-varying sound pressure is applied to
the diaphragm, the diaphragm vibrates and the mi-
crophone capacitance ct and the voltage E across the

E{+ +}e0
E0

RC

RiCiCsCt

Cc

Microphone
cartridge

Preamplifier Polarization
voltage

Fig. 24.2 Electrical circuit of a condenser microphone
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iωct E0
+}e0Rc CiCsCt0 Ri

Fig. 24.3 Equivalent small-signal circuit

microphone are represented by their corresponding
static and time-varying components

ct = cstat+ ct(t) , (24.1)

E = E0+ e(t) . (24.2)

The time-varying current it generated by the micro-
phone is

it = E0
dct

dt
+ cstat

de

dt
. (24.3)

For small electrical signals, Fig. 24.2 can be represented
by an equivalent circuit shown in Fig. 24.3 and for small
time-varying (ω) pressure at the diaphragm, the micro-
phone can be represented by a fixed capacitance C and
a current source it, and the output voltage eo is

eo = E0
ct

C

iωCRp

1+ iωCRp
, (24.4)

where Rp is the impedance of Rc in parallel with Ri,
and C is the sum of cstat, ci and cs. The microphone
open-circuit voltage eoc as a function of the varying
capacitance ct is

eoc = E0
ct

cstat

(
1+ ci+ cs

cstat

)−1

. (24.5)

Based on an approximate equation derived by Haw-
ley [24.29, Chap. 2, Eq. 5.8] for the capacitance of
a microphone under the influence of the polarizing
voltage, and assuming that the diaphragm can be mod-
eled as a piston-like displacement, Zuckerwar [24.29,
Chap. 3, Eq. 2.23] has shown that the electrical transfer
impedance Me is

Me = E0

h0

(
1+ r2

b

2r2
a

)(
1+ ci+ cs

cstat

)−1

, (24.6)

where ra and rb are the radii of the diaphragm and the
backplate, respectively.
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Fig. 24.4 Sample amplitude and phase response of a one-
inch microphone (Brüel Kjær 4146). Solid lines: theo-
retical. Symbols: experimental (after Zuckerwar [24.29,
Chap. 3])

Both Hawley et al. [24.29, Chap. 2] and Zucker-
war [24.29, Chap. 3] arrived at the conclusion that the
optimum backplate size is

ra

rb
=
(

2

3

)1/2

= 0.8165 . (24.7)

24.2.3 Mechanical Response

The membrane motion is coupled to the air between
the diaphragm and the backplate. The system exhibits
damping due to the damping holes in the backplate.
Zuckerwar [24.29, Chap. 3, Eq. 3.51] arrived at a so-
lution for the mechanical response as

Mm = [y(r)]
pi

= 1

TK2

J2(Ka)

J0(Ka)+D
, (24.8)

where K is the wave number of sound in the membrane,
given by

K = ω
(
σM

Tm

)1/2

, (24.9)

ω is angular frequency, σM is the membrane surface
mass density, and Tm is the membrane tension. D is
a complex function [24.29, Chap. 3, Eq. 3.50]. With
(24.8) the amplitude and phase response can be realized;
some examples [24.29, Chap. 3, Fig. 3.8] are shown in
Fig. 24.4.
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24.3 Reciprocity Pressure Calibration

24.3.1 Introduction

High precision in acoustical measurements is needed
even though the human ear cannot discern a change
in sound level much smaller than 1 dB. For example,
to certify aircraft for regulations, it is necessary to ob-
tain measurements with a known uncertainty, usually
0.1–0.2 dB (Unless otherwise stated, the uncertainties
referred to in this chapter, may be taken as better
than two standard deviations. However, in most cases,
the quoted statements on uncertainty are unclear in
the source documents. Further complications are intro-
duced when the original data are converted to decibels.
For a more rigorous treatment of uncertainties, one
should consult [24.31]). It is reasonable to assume that
laboratory standard microphones (working standards)
should be approximately an order of magnitude bet-
ter than this, say with an uncertainty ranging from
0.01 to better than 0.1 dB. For research and develop-
ment purposes, including the study of microphones and
monitoring their stability, the primary calibration of
condenser microphones should have an uncertainty no
larger than several thousandths of a decibel.

One of the most accurate techniques to cali-
brate a primary standard condenser microphone is
the absolute method of reciprocity pressure calibration
(sometimes called the coupler method), which currently
has a best uncertainty of less than 0.01 dB at 250 Hz,
under a fully controlled environment under reference
conditions [24.20]. If the calibration were to be per-
formed on a laboratory bench without any control on the
environment, such as barometric pressure, temperature
and humidity, the estimated uncertainty of the coupler
method is approximately 0.05 dB at lower and middle
frequencies.

The theory of absolute pressure calibration methods
for condenser microphones and some of the rela-
tively modern implementations have been described
in [24.1–29].

24.3.2 Theoretical Considerations

The reciprocity method measures the product of the sen-
sitivities of each pair of a set of three microphones in
terms of related electrical and mechanical quantities,
from which the absolute sensitivity of each microphone
can be deduced.

The acoustic impedance ZAB, of a cavity with
a pair of microphones A and B, as shown in Fig. 24.5

is

ZAB = γ Ps[iω(V +VeA+VeB)]−1 , (24.10)

where γ is the ratio of specific heats of the gas in the
coupler, Ps is the barometric pressure, ω equals 2π f ,
where f is the frequency of the driving sinusoidal sig-
nal, and V , VeA and VeB are the equivalent volumes
of the cavity and of microphone A and microphone B,
respectively. Equivalent volumes, as the name implies,
are volumetric measures that represent the physical vol-
umes of the cavity and of the coupled microphones
modified by thermal and finite impedance factors.

The relationship between the alternating pressure p
inside the cavity and the volume velocity u is

p = uZAB = uγ Ps(iωVAB)−1 , (24.11)

where the equivalent volume of the cavity with micro-
phones A and B is

VAB = (V +VeA+VeB) . (24.12)

The reciprocity theorem states that, in a passive lin-
ear reversible (reciprocal) transducer, the ratio of the
volume velocity u in the cavity to the input current I
when used as a sound source is equal to the ratio of the
open-circuit voltage eA across the electrical terminals
to the sound pressure p acting on the diaphragm when
used as a receiver. The theorem enables one to write the

VeA VeB

eA

eB

Zx

From
oscillator

(A) (B)

VAB

I

Fig. 24.5 Calibrating condenser microphones by the reci-
procity method (after Wong [24.29, Chap. 4])
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following equations

MA = u

I
= eA

p
, (24.13)

MB = eB

p
, (24.14)

MC = eC

p
, (24.15)

where MA, MB and MC are the open-circuit sensitivities
of the microphones.

Multiplying (24.13) and (24.14), and substituting p
from (24.11) gives

MA MB = eBiωVAB

Iγ Ps
. (24.16)

Since

I = eA

Zx
(24.17)

and Zx is an electrical impedance, substitution
of (24.17) into (24.16) gives

MA MB = VABkβAB , (24.18)

where

k = iωZx

γ Ps
(24.19)

and

βAB = eB

eA
. (24.20)

By using the microphones A, B and C, configured
in pairs to give equivalent volumes VAB, VBC and VCA,
and by measuring the corresponding voltage ratios βAB,
βBC, and βCA, respectively, the sensitivity product of
three pairs of microphones can be obtained

MA MB = kβABVAB ,

MB MC = kβBCVBC ,

MC MA = kβCAVCA . (24.21)

From (24.21), the open-circuit sensitivities of the indi-
vidual microphones can be derived

MA = [(VCAVAB/VBC)(βCAβAB/βBC)k]1/2 ,
MB = [(VABVBC/VCA)(βABβBC/βCA)k]1/2 ,
MC = [(VBCVCA/VAB)(βBCβCA/βAB)k]1/2 .

(24.22)

It can be seen from (24.22) that the sensitivity of
each microphone can be deduced by measuring the volt-
age ratios if the equivalent volumes for each of the three

pairs of microphones and the numerical value of the
constant k are known.

Similarly, the open-circuit sensitivity shown in
(24.22) can be expressed in terms of the acoustic
impedance of the cavity (24.10)

MA = {[ZBC/(ZCA ZAB)](βCAβAB/βBC)Zx}1/2 ,
MB = {[ZCA/(ZAB ZBC)](βABβBC/βCA)Zx}1/2 ,
MC = {[ZAB/(ZBC ZCA)](βBCβCA/βAB)Zx}1/2 ,

(24.23)

where ZAB, ZBC and ZCA are the acoustic impedances
of the cavities.

An equation for calculating the acoustic impedance
of a coupler is given in Appendix 24.A.

24.3.3 Practical Considerations

The general arrangement for implementation of pres-
sure reciprocity calibration of condenser microphones
is shown in Fig. 24.6. To simplify electrical measure-
ments, it is necessary that the driving microphone A
should be isolated electrically from the receiving mi-
crophone B. The preamplifier has a gain of g1 and
an input capacitance of Ci. Since the receiving micro-
phone is shunted by Ci the microphone output voltage
is modified to e′B. When the switch Sw is at position 2,
an insert voltage can be applied in order to obtain the
open-circuit voltage. For both microphones, a polar-
ization voltage (usually 200 V) is applied via a high
resistance. A small shunt capacitor Ct, which closely
approximates Ci, modifies the driving voltage eA to e1.

Fig. 24.6 Pressure reciprocity calibration method with
provision for insert voltage (after Wong [24.29, Chap. 4])
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The cavity usually has two capillary tubes for at-
mospheric pressure equalization and for the insertion
of gases other than air. Hence the sensitivities of the
microphones shown in (24.22) are modified to

M′
A = [(V ′

CAV ′
AB/V

′
BC)(βCAβAB/βBC)k]1/2 ,

M′
B = [(V ′

ABV ′
BC/V

′
CA)(βABβBC/βCA)k]1/2 ,

M′
C = [(V ′

BCV ′
CA/V

′
AB)(βBCβC A/βAB)k]1/2 ,

(24.24)

where the cavity equivalent volume is marked with
a prime to indicate the inclusion of the equivalent vol-
ume of the capillary tubes. The voltage ratio eB/eA be-
comes e2/e1 and it is represented by βAB in (24.24). The
next section discusses the parameters shown in (24.24).

Open-Circuit Sensitivity
The open-circuit sensitivity of the microphones is ob-
tained with the insert voltage method [24.8]. From
Fig. 24.6, the measurement procedure is as follows.

With the switch Sw at position 1, measure the out-
put voltage e2 from the preamplifier. Next, remove the
drive sinusoidal signal from microphone A, and with
the switch at position 2, apply a sinusoidal insert volt-
age ei(B) to drive the diaphragm of microphone B. The
magnitude of ei(B) is adjusted such that the voltage e2
is repeated at the output of the preamplifier. As the cir-
cuit shows, the insert voltage is identical to the desired
open-circuit voltage of microphone B if the loading of
the preamplifier’s input impedance were to be removed.
The open-circuit sensitivity of the microphones can be
obtained from (24.24) with the voltage ratio ei(B)/e1, for
each pair of microphones, substituted into (24.20). Al-
ternatively, the insert voltage can be computed from an
injected voltage when the switch is at position 2, and
then measuring the corresponding output voltage e2 to
obtain the overall gain that enables the computation of
the proper insert voltage.

Electrical Circuit for Measurement
The basic electrical measurement for pressure reci-
procity calibration is that of the amplitude ratio of two
sinusoidal signals (e1 and e2 in Fig. 24.6) that may not
be in phase. The uncertainty of direct measurement of
each of the two signals is limited by the uncertainty of
the alternating-current (AC) voltmeter. Several practical
circuits for this purpose have been described [24.27].
A higher accuracy can be achieved with voltage ratio
measurements. Two examples are described below to
give some insight into the diversity of the methods of
implementation.

Rectified Signal Null Method
In this method, used in commercial reciprocity cali-
bration apparatus, one of the AC signals is applied to
both inputs (Fig. 24.7). With the attenuator removed but
with the bypass connection in place, the signal is bal-
anced at the amplifier–rectifier circuit, such that a null
reading is indicated by the null-meter. With the two si-
nusoidal signals connected to the inputs, the attenuator
is adjusted for a null reading. The attenuator reading
gives the voltage ratio. The uncertainty of the voltage
ratio is theoretically dependent on the uncertainty of the
precision attenuator. However, the linearity and match-
ing of the amplifiers, amplifier–rectifiers (with RC time
constants, not shown) together with the amplitude dif-
ference of the two signals, also affect the uncertainty of
the circuit. Even with good design, the uncertainty of
the voltage ratio measured is approximately 0.003 dB.
With some modifications, the user of the apparatus may
reduce the uncertainty of measurements by exchanging
the signals at the input, and by shifting the attenuator
from positions A and B to positions C and D, then tak-
ing the mean of the ratio readings for the two attenuator
positions.

Variations on this method have been used; for ex-
ample, the insert voltage (Fig. 24.6) can be derived from
a precision attenuator driven by the same source as the
driving microphone [24.25].

Interchange Reference Method
The amplitude ratio R and the phase θ of two sinu-
soidal signals can be measured very precisely with the
interchange reference method [24.32] (Fig. 24.8). Sig-
nals e1 and e2 are presented to the differential inputs
of a lock-in amplifier via the switch Sw and the attenu-
ators. When the switch is in position 1, e1 is selected
to be the reference signal for the lock-in amplifier.
The attenuator readings β1 and α1 are adjusted for
a null condition. Using the vector diagram in Fig. 24.9,

+

–

Amplifiers Amplifier – Rectifiers

C D

A B

By-pass

Precision
attenuator

Null
detector

Inputs

(1)

(2)

Fig. 24.7 Rectified signal null circuit (after Wong [24.29]
Chap. 4)
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AC null detector
(lock-in amplifier)

α ß

Reference
signal

Inphase quadrature

Attenuators

eAeB

SW

e2e1

(1)

(2)

B A

(A – B)

Fig. 24.8 Interchange reference method (after Wong [24.29,
Chap. 4])

we have

e2β1 cos θ− e1α1 = 0 . (24.25)

Similarly, when e2 is selected as the reference by the
switch at position 2, the null condition with attenuator
readings β2 and α2 provides the following

e1β2 cos θ− e2α2 = 0 . (24.26)

From (24.5) and (24.6), the general equations for the
amplitude ratio R = e2/e1 and cos θ are found

R = [(α1/α2)(β2/β1)]1/2 , (24.27)

cos θ = [(α1α2)/(β1β2)]1/2 . (24.28)

Although for symmetry, Fig. 24.8 shows two atten-
uators, in practice only one attenuator is required. For
the condition in Fig. 24.9, where e2 > e1, α1 = β2 = 1.

e1

+j

–j

e1

e2

e2 ß1

e1α1
Θ

e2

+j

–j

e2

e1 ß2

e2 α2

Quadrature
component
(eA– eB)

Θ

e1

a) b)With e1 as the reference With e2 as the reference

Quadrature
component
(eA– eB)

Fig. 24.9 Vector diagram for the in-phase null condition
(after Wong [24.29, Chap. 4])

The uncertainty of the attenuator that can be a seven-
decade ratio transformer (inductive voltage dividers) is
of the order of 0.1 ppm. The uncertainty of the measured
amplitude ratio is of the order of 1 ppm. Other circuits
employing inductive voltage dividers for voltage ratio
measurements are given in [24.17, 23].

Reference Impedance Selection
The reference impedance Zx shown in Fig. 24.6 needs
to be carefully selected. The nature of the impedance,
either purely resistive or purely capacitive, or a com-
bination of electrical impedances, dictates the mode of
evaluation of the factor k, which is required for the com-
putation of microphone sensitivity in (24.24). If Zx is
a resistance, the angular frequency ω, shown in (24.19),
has to be measured. When the impedance is a capac-
itance Cr the term Zx = 1/(iωCr), and the frequency
terms are canceled. The numerical value of Zx is chosen
such that the magnitudes of e1 and e2 are nearly equal in
order to enhance the measurement of voltage ratios us-
ing null measurement techniques. For precise measure-
ment of Zx , the capacitance of the connecting cables to
the impedance should be taken into consideration.

24.4 Corrections

24.4.1 Heat Conduction Correction

The alternating sound pressure induces compression
and expansion in the gas medium inside the closed
cavity. At sufficiently low frequencies, the induced
temperature changes occur isothermally, and the heat
exchange at the walls of the cavity has to be included
when computing the acoustic impedance of the cavity.
As the frequency increases, heat conduction between

the gas and the walls decreases. Gradually, isothermal
conditions change to adiabatic conditions, at which vir-
tually no heat is exchanged with the walls.

Classical analytical approaches to calculate heat
conduction in cavities are given by Ballantine [24.2]
and Daniels [24.33]. Correction factors for heat con-
duction were obtained by Biagi and Cook [24.34].
Theoretical and experimental data, based on thermal
diffusion, on the acoustic impedance of the cavity, are
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Table 24.1 Tabulated values of Ev for the heat conduction correction (ANSI S1.15: 2005, and IEC 61094-2:1992-03)

Real part of Ev Imaginary part of Ev

R ′ = 0.2 R ′ = 0.5 R ′ = 1 X ′ R ′ = 0.2 R ′ = 0.5 R ′ = 1

0.72127 0.71996 0.72003 1.0 0.24038 0.22323 0.22146

0.80092 0.80122 0.80128 2.0 0.17722 0.16986 0.16885

0.83727 0.83751 0.83754 3.0 0.14818 0.14304 0.14236

0.85907 0.85920 0.85922 4.0 0.13003 0.12614 0.12563

0.87393 0.87402 0.87403 5.0 0.11732 0.11421 0.11380

0.89343 0.89348 0.89349 7.0 0.10030 0.09807 0.09777

0.91082 0.91086 0.91086 10.0 0.08477 0.08321 0.08300

0.93693 0.93694 0.93694 20.0 0.06086 0.06007 0.05997

0.94850 0.94851 0.94851 30.0 0.05002 0.04950 0.04942

0.95540 0.95541 0.95541 40.0 0.04349 0.04310 0.04304

0.96358 0.96359 0.96359 60.0 0.03568 0.03541 0.03538

0.96846 0.96846 0.96846 80.0 0.03098 0.03078 0.03076

0.97179 0.97179 0.97179 100.0 0.02776 0.02761 0.02758

0.98005 0.98005 0.98005 200.0 0.01972 0.01964 0.01963

0.98590 0.98590 0.98590 400.0 0.01399 0.01395 0.01395

0.99003 0.99003 0.99003 800.0 0.00992 0.00990 0.00989

The numerical values given are considered accurate to 0.00001

given by Gerber [24.35]. Ballagh [24.36] took into
consideration heat loss effects due to the microphone
diaphragms at the ends of the cavity. Jarvis [24.37]
pointed out the need to include the impedance of the
driver microphone during computation of the heat con-
duction correction. It is difficult to decide accurately
at which middle frequencies the isothermal–adiabatic
transition occurs, and which portions of the cavity to
include in the impedance of the microphone. The ex-
act nature of this transition depends upon the frequency
of the calibration and the dimensions of the coupler.
The sound pressure generated by the transmitter micro-
phone, i. e. a constant-volume displacement source, will
change accordingly. The effect can be considered as an
apparent increase in the coupler volume expressed by
a complex correction factor ΔH to the geometrical vol-
ume V in Sect. 24.A or to the cross-sectional area S0
defined in Z = ρcS−1

0 in Sect. 24.B.
The heat conduction correction factor is given by

ΔH = γ

1+ (γ −1)Ev
, (24.29)

where Ev is the complex temperature transfer function
defined as the ratio of the space average of the sinu-
soidal temperature variation associated with the sound
pressure to the sinusoidal temperature variation that
would be generated if the walls of the coupler were
perfectly nonconducting (24.30), and γ is the ratio of

specific heats of the gas inside the coupler. Tabulated
values for Ev can be found in Table 24.1 [24.35] as
a function of the parameters R′ and X ′, where R′ is the
length-to-diameter ratio of the coupler, X ′ = f�2/(γαt),
f is the frequency, � is the volume-to-surface ratio of
the coupler and αt is the thermal diffusivity of the gas
enclosed.

For finite cylindrical couplers as described in
[24.38], annex C, the approximation described below
for the complex quantity Ev will be satisfactory

Ev = 1− S+D1S2+
(

3

4

)√
πD2S3 , (24.30)

where

S =
(
−i

1

2πX ′

)1/2

= 1− i

2
√
πX ′ ,

D1 = πR′2+8R′

π(2R′ +1)2
,

D2 = R′3−6R′2

3
√
π(2R′ +1)3

.

The modulus of Ev, as calculated from (24.30), is
accurate to 0.01% within the range 0.125< R′ < 8 and
for X ′ > 5. The first two terms in (24.30) constitute an
approximation that may be used for couplers that are not
right circular cylinders.
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24.4.2 Equivalent Volume

The equivalent volume without heat conduction correc-
tion, as defined in (24.12), consists of the volume of the
cavity plus the equivalent volumes of the microphones.
The volume of the cavity is usually measured with tra-
ditional methods offered by mechanical metrology. The
equivalent volume of a standard microphone, which
includes a small volume occupied by a screw thread
and an effective volume caused by the non-rigidity of
the microphone diaphragm, is very difficult to measure
precisely with conventional mechanical means. Vari-
ous methods for the measurement of the equivalent
volume of microphones are available [24.39]. Optical
techniques, such as the traveling microscope, have been
used to measure the cavity length [24.25]. For higher
precision, interferometric procedures can be applied.

An acoustical resonance method can be used to
determine the front cavity volume of a standard micro-
phone. A three-port coupler accommodates two smaller
microphones (e.g. 1/4 inch microphones), and the stan-
dard microphone. The smaller microphones are used
as a driver–receiver combination to give the electrical
transfer impedance including the cavity volume with the
standard microphone in place. The standard microphone
is replaced with a movable plunger; the displacement of
the plunger is calibrated to indicate volumetric changes
covering the range of actual microphone volumes. The
equivalent front volume of the test microphone can be
deduced from the calibrated position of the plunger at
which the two smaller microphones indicate the same
electrical transfer impedance as when the test micro-
phone is in place. See [24.12] for a similar three-port
procedure and [24.16] for precise measurement of vol-
umetric changes.

Wong and Embleton [24.20] developed a very
precise method that assesses the equivalent volume
with the heat conduction correction and includes the
impedance of the capillary tubes for the coupler and
two microphones in one procedure. The length of the
cavity can be varied with a removable spacer to replace
the electrical insulation, and the voltage ratio β = e2/e1,
as shown in Fig. 24.6, is assessed at the frequency of
interest with the interchange reference method [24.32].
From (24.10) and (24.11), the equivalent volume of the
cavity can be expressed in terms of the volume velocity
u and the alternating pressure p

V = (γ Ps/iω)(u/p) . (24.31)

Since the voltage ratio β is inversely proportional
to the pressure p inside the cavity (an increase of sig-

V

ß1 ßß0 ß2

V0+VeA+VeB+ΔV0

2

V0+VeA+VeB

V0+VeA+VeB– ΔV0

2

ΔV0

Capillary tube

ΔX
2

SpacerVeB

VeA

Fig. 24.10 Arrangement for determining the equivalent
volume, including corrections for capillary tubes, and heat
conduction (after [24.20])

nal magnitude requires a decrease in ratio reading to
maintain a null condition), (24.31) can be modified to

V = k0β , (24.32)

where k0 is a constant.
Three readings, β0, β1 and β2 corresponding to

cavity volume (V0+VeA+VeB), volume (V0+VeA+
VeB−ΔV0/2) and volume (V0+VeA+VeB+ΔV0/2),
are obtained. Here ΔV0 is a small variation in volume
corresponding to a small variation Δx in spacer thick-
ness. Figure 24.10 illustrates the relationship between
changes in volume and the ratio readings. The equiva-
lent volume of the cavity is

V = (V0+VeA+VeB) =ΔV0[β0/(β2−β1)] .
(24.33)

From Fig. 24.10,

V = [β0/(β2−β1)]d2Δxπ/4 , (24.34)

where d and Δx are the diameter and the variation in
depth of the cavity.

For highly accurate measurements, the spacers are
implemented with optical flats whose thicknesses are
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measured by interferometry. The cavity is manufactured
with precision optical fabrication. The uncertainty in
the equivalent volume of such a cavity is estimated
to be approximately 20 ppm. For less stringent appli-
cations the three optical flats can be replaced with
adaptor rings [24.25] or with three cavities of known
volumes. The equivalent volume of the cavity can then
be determined by interpolation. This method has been
commercialized with a similar procedure that relied on
two couplers (long and short couplers) in the Brüel and
Kjær 5998 reciprocity apparatus. With the sensitivities
of the microphone pairs obtained with the two couplers,
the microphone cavity depths are then adjusted numer-
ically until the final microphone sensitivities obtained
with the two couplers are nearly identical or very close.

24.4.3 Capillary Tube Correction

For microphone calibration, the preferred expres-
sion [24.38, 40] adopted for the acoustic input
impedance of an open capillary tube is

Zc = Z t tanh(ζLc) , (24.35)

Table 24.2 Real part of Zc in GPa s/m3 (ANSI S1.15: 2005, and IEC 61094-2:1992-03), tube dimensions in millimeters

�C = 50 Frequency �C = 100

rc = 0.1667 rc = 0.20 rc = 0.25 (Hz) rc = 0.1667 rc = 0.20 rc = 0.25

3.018 1.457 0.597 20 6.041 2.916 1.195

3.019 1.457 0.597 25 6.044 2.919 1.196

3.020 1.458 0.597 31.5 6.049 2.922 1.198

3.022 1.459 0.598 40 6.059 2.928 1.201

3.025 1.460 0.599 50 6.072 2.937 1.205

3.029 1.463 0.600 63 6.094 2.951 1.212

3.036 1.467 0.602 80 6.130 2.975 1.225

3.047 1.473 0.605 100 6.185 3.011 1.243

3.063 1.482 0.610 125 6.270 3.069 1.272

3.093 1.499 0.620 160 6.422 3.173 1.326

3.137 1.524 0.633 200 6.643 3.331 1.408

3.207 1.564 0.654 250 6.989 3.595 1.550

3.326 1.631 0.689 315 7.542 4.066 1.817

3.534 1.750 0.750 400 8.353 4.944 2.381

3.871 1.943 0.849 500 9.068 6.288 3.535

4.504 2.314 1.034 630 8.670 7.336 5.631

5.807 3.113 1.435 800 6.375 5.311 4.375

8.332 4.890 2.378 1000 4.353 3.005 1.925

12.120 9.008 5.385 1250 3.545 2.127 1.146

The data used for this table are: c = 345.7 m/s, γ = 1.40, ρ = 1.186 kg/m3, η= 18.3 × 10−6 Pa s, αt = 21 × 10−6 m2/s

The values given in this table are valid at the reference environmental conditions: 23 ◦C, 101.325 kPa and 50% RH

where Z t is the complex characteristic impedance of
a capillary tube with infinite length, Lc is the length of
the capillary tube, ζ is the complex propagation coeffi-
cient for plane waves in a tube, and

Z t =
(

Ã1/ Ã2
)1/2

, (24.36)

ζ = ( Ã1 Ã2
)1/2

. (24.37)

Ã1 and Ã2 are complex quantities; Ã1 represents vis-
cosity loss at the walls and inertia of the gas medium,
and Ã2 represents heat conduction loss at the walls and
the compliance of the gas medium, where

Ã1 = i
ωρ

πrc
2

(
1− 2J1(kcrc)

kcrc J0(kcrc)

)−1

, (24.38)

Ã2 = iω
πr2

c

ρc2

(
1+ 2

Bkcrc
(γ −1)

j1(Bkcrc)

j0(Bkcrc)

)
,

(24.39)

J0 and J1 are, respectively, the zeroth- and first-order
cylindrical Bessel functions of the first kind for complex
arguments, rc is tube radius (m), kc = (−iωρ/η)1/2 is
the complex wave number (m−1), B = [η/(ραt)]1/2, αt
is the thermal diffusivity of the gas media (m2/s).
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Table 24.2 (continued)

�C = 50 Frequency �C = 100

rc = 0.1667 rc = 0.20 rc = 0.25 (Hz) rc = 0.1667 rc = 0.20 rc = 0.25

9.191 7.926 6.740 1600 4.171 2.410 1.196

4.326 3.021 1.951 2000 6.325 4.409 2.527

2.694 1.637 0.893 2500 4.979 3.717 2.768

2.807 1.580 0.783 3150 4.411 2.661 1.392

5.923 3.536 1.749 4000 5.238 4.019 3.075

5.946 4.825 3.903 5000 5.059 3.262 1.770

3.306 1.939 1.011 6300 4.578 2.920 1.672

6.571 5.375 4.137 8000 4.695 3.034 1.749

4.184 2.465 1.258 10 000 4.977 3.363 1.952

3.902 2.539 1.540 12 500 4.760 3.331 2.271

4.043 2.590 1.534 16 000 4.753 3.263 2.137

4.535 2.813 1.517 20 000 4.844 3.324 2.023

0.097 0.074 0.049 20 0.096 0.114 0.090

0.122 0.092 0.061 25 0.120 0.143 0.112

0.153 0.116 0.077 31.5 0.151 0.180 0.141

0.195 0.147 0.098 40 0.191 0.228 0.180

0.244 0.184 0.123 50 0.238 0.285 0.225

0.307 0.232 0.155 63 0.299 0.359 0.283

0.390 0.295 0.197 80 0.376 0.455 0.360

0.488 0.369 0.246 100 0.465 0.569 0.452

0.610 0.461 0.308 125 0.569 0.710 0.567

0.782 0.592 0.396 160 0.701 0.905 0.731

0.980 0.743 0.496 200 0.824 1.123 0.923

1.228 0.933 0.623 250 0.916 1.380 1.170

1.556 1.186 0.792 315 0.888 1.664 1.500

1.990 1.527 1.021 400 0.479 1.842 1.922

2.511 1.948 1.306 500 –0.684 1.11 2.200

3.189 2.532 1.711 630 –2.739 –0.777 0.926

3.987 3.353 2.325 800 –3.890 –3.152 –2.510

4.280 4.213 3.186 1000 –3.031 –2.595 –2.130

1.338 3.162 3.730 1250 –1.382 –1.157 –0.944

–5.333 –4.384 –3.281 1600 0.429 0.456 0.282

–4.500 –3.768 –2.956 2000 0.260 0.971 1.221

–1.996 –1.663 –1.280 2500 –1.702 –1.552 –1.344

0.491 0.244 0.051 3150 0.205 0.199 0.053

2.428 2.283 1.692 4000 –1.074 –0.864 –0.524

–2.803 –2.434 –1.954 5000 0.208 0.438 0.406

0.186 –0.037 –0.190 6300 –0.070 –0.095 –0.219

–1.245 –0.607 0.209 8000 –0.041 –0.027 –0.138

0.872 0.643 0.336 10 000 –0.056 0.152 0.212

–0.542 –0.699 –0.764 12 500 –0.281 –0.295 –0.281

–0.210 –0.399 –0.532 16 000 –0.174 –0.187 –0.228

0.430 0.349 0.142 20 000 –0.109 –0.001 0.035

The data used for this table are: c = 345.7 m/s, γ = 1.40, ρ = 1.186 kg/m3, η= 18.3 × 10−6 Pa s, αt = 21 × 10−6 m2/s

The values given in this table are valid at the reference environmental conditions: 23 ◦C, 101.325 kPa and 50% RH
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For n capillary tubes the correction factors Δc(AB),
Δc(BC) and Δc(CA) for the respective cavity impedances
in (24.23) are

Δc(AB) = 1+n(ZAB/Zc) ,

Δc(BC) = 1+n(ZBC/Zc) ,

Δc(CA) = 1+n(ZCA/Zc) . (24.40)

Equation (24.40) assumes that the heat conduction cor-
rection (Sect. 24.4.1) has been applied.

At a temperature of 23 ◦C, a relative humidity of
50% and a static pressure of 101.325 kPa, for a typi-
cal range of parameters and frequencies, the real and
imaginary parts of Zc are as shown in Table 24.2, re-
spectively. The computation of the air density ρ, sound
speed c in humid air and other physical quantities are
discussed in Sect. 24.B.3.

It should be noted that the numerical values given
in these tables are relatively sensitive to the change in
the viscosity of air η. For example, when η deviates by
0.5%, the numerical values changes by approximately
1% in the real part of Zc and approximately 8% in the
corresponding imaginary part. Since the original data
for the computation of η (Sect. 24.B.4) may have an un-
certainty of several percent, the Table 24.2a,b should be
used with caution.

24.4.4 Cylindrical Couplers
and Wave-Motion Correction

Two types of couplers (cavities) are used for mi-
crophone calibration: plane-wave couplers, where the
diameter of the cavity equals the diameter of the mi-
crophone diaphragm; and large-volume couplers, where
the cavity diameter is larger than that of the diameter
of the microphone diaphragm and the cavity volume is
much larger than the sum of the equivalent volume and
front volumes of the microphones. In reciprocity cali-
bration, the dimensions of the large-volume coupler are
chosen such that the pressure increase at the diaphragm
of the receiving microphone, due to the first longitudi-
nal mode, is partially canceled by the pressure decrease
due to the lowest radial mode, whose maximum pres-
sures occur at the side walls of the cavity and hence
are removed from the vicinity of the microphone di-
aphragm. A generally accepted rule to ensure that the
pressure is sufficiently uniform over the microphone di-
aphragm is that the maximum dimension of the cavity
should not exceed λ/20, where λ is the wavelength in
the gas. With a large-volume coupler there is less in-
fluence from the equivalent volumes of the capillary
tubes and the microphones. However, with larger di-

mensions, the coupler is restricted to lower-frequency
applications. In a plane-wave coupler with relatively di-
mensions there are smaller wave-motion effects, and the
coupler can be used at higher frequencies. To extend
the range of calibration frequency, a gas with a higher
sound speed should be used. Theoretical and experi-
mental data [24.38, 42–44] on wave motion in couplers
have been published. In practice, it is difficult to obtain
a precise theoretical expression for wave-motion cor-
rection. However, for experimental determination, the
following method [24.44] has been used.

Assuming that the sensitivity of the microphones
remains constant, the microphone sensitivity is meas-
ured with air as the gas at relatively high frequencies for
which the pressure distribution in the cavity is nonuni-
form. The measurements are repeated with hydrogen or
helium, which have higher sound speeds and for which
the wave motion correction is correspondingly smaller.
Changes in the apparent sensitivity of the microphones

Table 24.3 Experimental data on wave-motion corrections
for the air-filled large-volume coupler used with type LS1P
microphones (ANSI S1.15: 2005, IEC 61094-2:1992-03).
LS1P: type designation [24.41] for laboratory standard
(LS) microphones, where the last letter P or F represents
pressure or free-field microphones, and the number 1 or 2
represent mechanical configuration for one-inch and half-
inch microphones, respectively

Frequency (Hz) Correction (dB)

800 and below 0.000

1000 –0.002

1250 –0.013

1600 –0.034

2000 –0.060

2500 –0.087

Capillary
tubes

InsulatorMicrophone

Microphone

�B

�C

�A

E

D

Fig. 24.11 Mechanical configuration of plane-wave cou-
plers (ANSI S1.15: 2005, and IEC 61094-2:1992-03)
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Table 24.4 Nominal dimensions for plane-wave couplers (ANSI S1.15: 2005, and IEC 61094-2:1992-03)

Dimensions (mm) Laboratory standard microphones

Symbol Type LS1P Type LS2aP Type LS2bP

∅A 23.77 13.2 12.15

∅B 18.6 9.3 9.8

∅C 18.6 9.3 9.8

D 1.95 0.5 0.7

E 6.5–8.5 3.5–6 3.5–6

Table 24.5 Nominal dimensions and tolerances for large-volume couplers (ANSI S1.15: 2005, and IEC 61094-2:1992-
03)

Dimensions (mm) Laboratory standard microphones

Symbol Type LS1P Type LS2aP Type LS2bP

∅A 23.77 13.2 12.15

∅B 18.6 9.3 9.8

∅C 42.88±0.03 18.30±0.03 18.30±0.03

D 1.95 0.5 0.7

E 12.55±0.03 3.50±0.03 3.50±0.03

F 0.80±0.03 0.40±0.03 0.40±0.03

Capillary tubes

Insulator

Microphone

Microphone

�B

�A

D

�C
E

F

Fig. 24.12 Mechanical configuration of large-volume cou-
plers (ANSI S1.15: 2005, and IEC 61094-2:1992-03)

give the wave-motion correction W for microphones
calibrated in air.

Recommended [24.38] dimensions for the plane-
wave and large-volume couplers are shown in Fig. 24.11,
Table 24.4 and Fig. 24.12, Table 24.5, respectively. Rep-
resentative wave-motion corrections [24.38] for both
couplers used with LS1P (one-inch) microphones are
shown in Table 24.3. These corrections should be added
to the pressure sensitivity level measured with the cou-
pler filled with air. When the coupler is filled with a gas
other than air, the same correction can be used when
the frequency scale is multiplied by a factor equal to the
ratio of the velocity of sound in the gas to the corre-
sponding velocity in air.

For LS1P microphones, the following empirical
equation [24.25] for the wave-motion correction W , in
decibels, may be used

W =−0.2242F2+1.2145F−1.6473 , (24.41)

where F equals log f , and W should be added to the
pressure sensitivity level of the microphone.

24.4.5 Barometric Pressure Correction

The sensitivity of a condenser microphone ([24.38],
annex D) is inversely proportional to the acoustic
impedance of the microphone. In a lumped parameter
representation, the impedance is given by a serial con-
nection of the impedance of the diaphragm (due primar-
ily to its mass and compliance) and the impedance of the
air behind the diaphragm is mainly determined by the
following: (a) the thin air film between the diaphragm
and the backplate, introducing loss and mass; (b) the air
in slots or holes in the backplate, introducing loss and
mass; and (c) the air in the cavity behind the backplate,
acting at low frequencies as a compliance but at high
frequencies as a mass due to wave motion in the cavity.

The density and the viscosity of air are considered
linear functions of temperature and/or static pressure.
Consequently the acoustic impedance of the micro-
phone also depends upon the static pressure and the
temperature. The resulting static pressure and tempera-
ture coefficients of the microphone are then considered
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Table 24.6 Coefficients of the polynomial for calculating the microphone sensitivity pressure corrections using (24.42) or (24.43),
and temperature corrections using (24.44) for specific LS1P and LS2P microphones (ANSI S1.15: 2005)

Coeffi- Pressure correction (24.42) [24.45, 46] Pressure correction (24.43) Temperature correction (24.44)

cients [24.47] [24.47]

Brüel & Kjær Brüel & Kjær G.R.A.S. Brüel & Kjær Brüel & Kjær Brüel & Kjær Brüel & Kjær

Type 4160 Type 4180 Type 40AG Type 4160 Type 4180 Type 4160 Type 4180

LS1P LS2P LS2P LS1P LS2P LS1P LS2P

a0 −1.625 × 10−2 −4.44613 × 10−3 −3.93458 × 10−3 −0.0152 −0.00519 −0.0020 −0.0012

a1 −1.152 × 10−6 −8.34314 × 10−7 −5.68714 × 10−7 −0.00584 −0.0304 0.00913 0.00633

a2 1.816 × 10−9 −3.51608 × 10−10 −3.00641 × 10−10 0.132 0.5976 −0.245 −0.242

a3 −7.111 × 10−13 −1.60278 × 10−14 −1.43914 × 10−14 −0.596 −3.912 1.673 1.656

a4 2.056 × 10−16 1.763 14.139 −6.058 −6.1833

a5 −2.721 × 10−20 −2.491 −27.561 11.766 11.81

a6 1.188 × 10−24 1.581 29.574 −13.11 −12.1366

a7 −0.358 −17.6325 8.5138 6.875

a8 −0.0364 5.4997 −3.0016 −2.0324

a9 0.01894 −0.7017 0.4426 0.2457

(dB/kPa)

0.1 10

0.02

0.01

0.00

–0.01

–0.02

–0.03

–0.04
0.2 0.5 1 2 f /f0 5

LS1P

LS2P

Fig. 24.13 Examples of static pressure coefficient of LS1P
and LS2P microphones relative to the low-frequency value
as a function of the relative frequency f/ f0 (ANSI S1.15:
2005, and IEC 61094-2:1992-03)

to be determined by the ratio of the acoustic impedance
at reference conditions to the acoustic impedance at the
relevant static pressure and temperature, respectively.

Both the mass and the compliance of the enclosed
air depend on the static pressure, while the resistance
can be considered independent of static pressure. The
static pressure coefficient generally varies with fre-
quency as shown in Fig. 24.13. For frequencies higher
than about 0.5 f0 ( f0 being the resonance frequency
of the microphone), the frequency variation depends

strongly upon the wave motion in the cavity behind the
backplate. In general, the pressure coefficient depends
on constructional details in the shape of the backplate
and back volume, and the actual values may differ
considerably for two microphones of different manufac-
ture although the microphones may belong to the same
type, say LS1P. Consequently the pressure coefficients
shown in Fig. 24.13 should not be applied to individual
microphones.

The low-frequency values of the static pres-
sure coefficient generally lie between −0.01 and
−0.02 dB/kPa for LS1P microphones, and between
−0.003 and −0.008 dB/kPa for LS2P microphones.

For the Brüel and Kjær type 4160 LS1P mi-
crophones, an empirical equation based on precise
measurement of the microphone sensitivity [24.45] at
various static pressures to derive the pressure coeffi-
cient, may be used to correct for microphone sensitivity
variation with static pressure

ΔP =
(

a0+a1 f +a2 f 2+a3 f 3

+a4 f 4+a5 f 5+a6 f 6
)
Δp , (24.42)

where ΔP is the microphone sensitivity level pressure
correction (dB), (to be added to the sensitivity level of
a microphone), a0–a6 are constant coefficients listed
in Table 24.6, f is the frequency (Hz), Δp = (ps− p0)
is the pressure difference (kPa), ps is the static pressure
during calibration (kPa), and p0 is 101.325 kPa.
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The variation of the pressure sensitivity correction
with frequency is shown in Fig. 24.14. At a particu-
lar frequency, if the difference between the standard
pressure and the barometric pressure during calibra-
tion is known, the sensitivity pressure correction can
be obtained from the above equation. Over a pressure
range 94–106 kPa, if (24.42) is used for sensitivity level
pressure correction for a type 4160 microphone, the
maximum deviation between the corrected microphone
sensitivity level and the corresponding measured micro-
phone sensitivities level is within 0.0085 dB over the
frequency range 250–8000 Hz. For a wider frequency
range of 63–10 000 Hz, the corresponding deviation is
within 0.013 dB. Similar corrections can be obtained for
LS2P (half-inch) microphones by applying the coeffi-
cients [24.46] given in Table 24.6.

Users of condenser microphones, particularly for
very precise measurements such as during aircraft cer-
tification that involves huge resources, should be fully
aware of the fact that the sensitivities of condenser
microphones change with frequencies (frequency re-
sponse) and these changes are functions of barometric
pressure [24.45, Fig. 3]. Therefore for two sets of mea-
surements at different barometric pressures, pressure
corrections, such as with (24.43), can be applied at each
frequency to arrive at more-precise measurements.

For LS2P microphones Brüel and Kjær type 4180
and GRAS-type 40AG, the pressure correction curves
similar to that shown in Fig. 24.14 have been pub-
lished [24.46]. With (24.42) their corrections can be
computed from the coefficients shown in Table 24.6.

Alternatively, a similar equation for pressure correc-
tion developed at a later date also based on measure-
ment [24.47], may be used

δp = a0+a1x+a2x2+ . . .+a9x9 , (24.43)

where δp is the microphone sensitivity pressure cor-
rection (dB/kPa), a0–a9 are the constants listed in Ta-
ble 24.6, x = f/ f0 is the frequency normalized to the
resonance frequency f0 of the individual microphone,
and f is the frequency (Hz).

With (24.43), it is necessary to determine the res-
onant frequency f0 of the microphones. With the
assumption of a mean value for f0, the numerical val-
ues obtained with (24.43) and (24.42) differ by a few
thousandths of a decibel per kPa.

24.4.6 Temperature Correction

Both the mass and the resistance of the enclosed air
depend on the temperature, while the compliance can

Pressure coefficient (dB/kPa)

Frequency (Hz)
50 20000

0.000

–0.005

–0.010

–0.015

–0.020

–0.025

–0.030

10000500020001000500200100

S/N 907055
S/N 907045
S/N 907039

Fig. 24.14 Variation of the slopes of sensitivity correction curves
with frequency for three Brüel and Kjær type 4160 microphones.
The curve is obtained with an empirical equation for the compu-
tation of microphone sensitivity pressure correction. See (24.42).
Similar corrections can be obtained for Brüel and Kjær Type 4180
and GRAS 40AG microphones with the coefficients shown in Ta-
ble 24.6 (after [24.48])

be considered independent of temperature. The depen-
dence on temperature is of secondary when compared
with the pressure dependence. The resulting frequency
dependence of the temperature coefficient is shown
in Fig. 24.15.

In addition to the influence on the enclosed air,
temperature variations also affect the mechanical parts
of the microphone. The main effect will generally be
a change in the tension of the diaphragm and thus

(dB/K)

0.1 10

0.02

0.01

0.00

–0.01

–0.02
0.2 0.5 1 2 f /f0 5

LS1P

LS2P

Fig. 24.15 General frequency dependence of the part of the
temperature coefficient for LS1P and LS2P microphones
caused by the variation in the impedance of the enclosed
air (ANSI S1.15: 2005, and IEC 61094-2:1992-03)
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Table 24.7 A numerical example for the calculation of estimated expanded uncertainty of microphone sensitivity level
with a particular microphone calibration arrangement at 250 Hz (ANSI S1.15: 2005)

Source Type Estimated Distribution Sensitivity Standard
contribution (dB) coefficient uncertainty (dB)

Acoustic transfer impedance B 0.025 Rectangular 1 0.0144

Voltage ratio B 0.01 Rectangular 1 0.0058

Reference impedance B 0.0042 Rectangular 1 0.0024

Specific heat ratio B 0.005 Rectangular 1 0.0029

Density of air B 0.001 Rectangular 1 0.0006

Barometric pressure B 0.004 Rectangular 1 0.0023

Heat conduction correction B 0.02 Rectangular 1 0.00115

Wave motion etc. B 0.006 Rectangular 1 0.0035

Insert voltage B 0.001 Rectangular 1 0.0006

Polarizing voltage B 0.001 Rectangular 1 0.0006

Pressure coefficient B 0.002 Rectangular 1 0.0012

Temperature coefficient B 0.001 Rectangular 1 0.0006

Humidity coefficient B 0.001 Rectangular 1 0.0006

Repeatability A 0.004 Normal 1 0.0040

Combined uncertainty 0.0206

Expanded uncertainty (k = 2) 0.0412

Rounded expanded uncertainty 0.042

a change in its compliance. This results in a constant
change in sensitivity in the stiffness-controlled range
and a slight change in the resonance frequency.

The low-frequency values of temperature coefficient
generally lie close to +0.005 dB/K for both LS1P and
LS2P microphones.

An equation developed for the normalized temper-
ature coefficient based on measurements of LS1P and
LS2P microphones [24.47, 49], may be used

ΔT = (a0+a1x+a2x2+ . . .+a9x9)Δt , (24.44)

where ΔT is the microphone sensitivity temperature
correction (dB), a0–a9 are the constants listed in Ta-
ble 24.6, x = f/ f0 is the frequency normalized by the
resonance frequency f0 of the individual microphone,
f is the frequency (Hz), Δt = (T −273.15), the tem-
perature difference from the reference condition (K).

24.4.7 Microphone Sensitivity Equations

In general, based on (24.22) or (24.23), the open-circuit
sensitivity of a microphone expressed in decibels rela-
tive to 1 V/Pa is

MdB = 20 log M+10 logΔc+10 logΔH

+10 log ΔPv+10 log ΔT +10 log Δh+W ,

(24.45)

where M is the microphone sensitivity, and Δc, ΔH,
ΔP, ΔT , Δh and W are the corrections for capil-
lary, heat conduction, pressure, temperature, humidity
and wave motion, respectively. For LS1P and LS2P
microphones, the humidity corrections of the order of
0.0025 dB/100% RH may be ignored.

When expressed in the format of volts per pascal,
and including corrections, the microphone sensitivity is

Mcorr = 10MdB/20 . (24.46)

24.4.8 Uncertainty
on Pressure Sensitivity Level

The uncertainty of the pressure sensitivity level, ex-
pressed as a function of frequency, should be stated as
the expanded uncertainty of measurement obtained by
multiplying the derived standard uncertainty by a cov-
erage factor of two.

It should be noted that not all of the contribut-
ing uncertainty components are known. Some of the
uncertainty components that may be necessary for
consideration for a given calibration arrangement are:
(a) the electrical transfer impedance: series impedance,
voltage ratio, cross-talk and noise, distortion etc., (b) the
acoustic transfer impedance related to the coupler:
coupler dimensions and surface area, capillary tube
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parameters and environmental conditions, and (c) the
microphone parameters, such as loss factor, diaphragm:
mass, compliance, resistance and heat conduction re-
lated to front cavity etc. Details of some of these
uncertainties have been published [24.50].

For the determination of the pressure sensitivity
level, it is estimated [24.33, 39] that a reciprocity
calibration carried out under laboratory conditions
can achieve an uncertainty of approximately 0.05 dB

at low and middle frequencies. The uncertainty in-
creases to about 0.1 dB at 10 kHz and 20 kHz for
LS1P and LS2P laboratory standard microphones,
respectively.

In order to clarify the computation process, a numer-
ical example is given in Table 24.7 for the calculation of
estimated expanded uncertainty of the microphone sen-
sitivity level with a particular microphone calibration
arrangement at 250 Hz.

24.5 Free-Field Microphone Calibration

The theory and procedure for free-field calibration have
been discussed in detail [24.51, 52]. Similarly to pres-
sure reciprocity calibration, one microphone is driven
as a sound source and the microphone pair faces each
other in a free field at a fixed distance. One of the ma-
jor uncertainties in free-field calibration is to measure
the positions of the acoustic centers of the micro-
phones accurately so that the distance between them
can be deduced. Procedures for measuring and esti-
mating values of the positions of the acoustic centers

for laboratory standard microphones have been pub-
lished ([24.52], annex A). For free-field calibration of
half-inch microphones, over a frequency range from
about 1.25 kHz to more than 20 kHz the uncertainty
(three standard deviations) [24.51] is approximately
0.1–0.2 dB.

The manufacturers of the microphones usually sup-
ply free-field corrections for their microphones, to be
added to the pressure reciprocity measurements, for
free-field applications.

24.6 Comparison Methods for Microphone Calibration

Reciprocity microphone calibration discussed in
Sect. 24.3 is a primary method that provides high
accuracy but requires stringent procedures and is rel-
atively time consuming. A more economical approach
to microphone calibration is by means of compari-
son methods with which the performance of the test
microphone is compared with that of a standard micro-
phone that has been calibrated with a primary method.
Secondary methods, such as using comparison, have
higher uncertainties but offer several advantages, such
as simplicity in procedure, are less time consuming and,
depending on the method, require little or no correction,
and are very economically attractive.

24.6.1 Interchange Microphone Method
of Comparison

This economically attractive method was developed to
compare microphones in a cavity or in a small ane-
choic box (Wong and Embleton [24.53] and Wong and
Wu [24.54]). The technique can be applied to micro-
phone phase comparison calibration (Wong [24.55]).

The method has been standardized in an international
standard [24.56].

When two microphones with their diaphragms fac-
ing in close proximity to each other are excited in
a sound field, the difference of level readings, LC12
between the two channels, where microphone 1 is con-
nected to preamplifier 1, and microphone 2 is connected
to preamplifier 2, is

LC12 = (L1+ Lm1+ Ld+ LWA)

− (L2+ Lm2+ Ld+ LWB) , (24.47)

where L1 and L2 are the sensitivity levels of the mi-
crophones 1 and 2, respectively, Lm1 and Lm2 are the
gain sensitivity levels of the measuring systems 1 and 2,
respectively, Ld is the level of the sound excitation,
and LWA and LWB are the wave pattern effects at the
microphone positions A and B, respectively.

When the microphones are interchanged so that mi-
crophone 1 is now connected to preamplifier 2 and
microphone 2 is now connected to preamplifier 1, the
difference of level readings between the two channels
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becomes

LC21 = (L2+ Lm1+ Ld+ LWA)

− (L1+ Lm2+ Ld+ LWB) . (24.48)

Subtracting (24.48) from (24.47), the difference in
level between the two microphones is

(L1− L2) = 1/2(LC12− LC21) . (24.49)

If either L1 or L2 is the sensitivity level of a cali-
brated reference microphone, then the sensitivity level
of the other microphone (the test microphone) can be
deduced. It is interesting to point out that with this
method, the level Ld of the driving sound need not have
a flat response or known levels.

The above relatively simple theoretical considera-
tion has assumed that the input capacitances of the two
microphones are identical, i. e. the same model of mi-
crophones, and the same model of preamplifiers used
for both channels such that their input capacitances have
the same value.

If the input capacitances Cm of the preamplifiers are
the same but the two models of microphones are dif-
ferent, then a correction Lcorr should be added to the
right-hand side of (24.49), where

Lcorr = 20 log[C2/(Cm+C2)]
−20 log[C1/(Cm+C1)] . (24.50)

The two terms in (24.50) are the capacitance cor-
rections for the two microphones; and C1 and C2 are
the capacitances of microphone 1 and microphone 2,
respectively.

It is important to realize that the physical posi-
tions of the reference microphone should be repeated
accurately before and after the microphones are in-
terchanged such that the sound field at the reference
microphone is unchanged. The difference in level read-
ings shown in (24.47) and (24.48) can be measured with
the ratio provision of a precision AC voltmeter.

Uncertainties
The uncertainty for the above method depends on the
reference microphone uncertainty that may be of the
order of 0.05 dB. With very sophisticated measuring
methods such as phase-lock amplifiers the uncertainty
introduced by this comparison method to be added to
the uncertainty of the reference microphone [24.57] is
estimated to be less than 0.1 dB.

24.6.2 Comparison Method
with a Calibrator

In general, there are five components and three ba-
sic steps in this comparison method [24.57]. The
components are the reference microphone, the test mi-
crophone, a stable sound source, which is usually an
acoustical calibrator that generates a constant sound
pressure level, a microphone preamplifier and an acous-
tical level indicator such as a measuring amplifier or
a voltmeter. Since the calibrator is used as a transfer
standard, its sound pressure level need not be known.

The three basic steps are as follows

1. The reference microphone which is connected to the
preamplifier is inserted into the acoustical calibrator
and a level reading L r is noted.

2. The reference microphone is replaced with the test
microphone. With the same acoustical calibrator,
a second level reading L t is noted.

3. The test microphone is removed, and again with
the reference microphone, step 1 is repeated to give
a third level reading.

The agreement between the first and third level read-
ings with the reference microphone is a confirmation
of the validity of the second level reading obtained
with the test microphone, that is, to assure that noth-
ing has changed after the first level reading is taken.
The difference between the level readings, (L t− L r) is
the difference in open-circuit sensitivities (expressed in
decibels) between the two microphones if the following
conditions are satisfied:

1. The equivalent volumes of the two microphones are
identical, or the equivalent volume of the sound cal-
ibrator is much larger than that of the microphones,
such that any difference in the front volumes of the
microphones does not produce a significant change
in the sound pressure levels measured in steps 1 and
2 above.

2. The capacitances of the two microphones are iden-
tical. Since the preamplifier has a finite input
impedance (a very high resistance in parallel with
a small known capacitance), the loading on the
microphone will be different if the microphone
capacitances were to be different, and this will
produce a small change in the overall combined sen-
sitivity of the microphone and preamplifier.

3. The environmental conditions remain constant dur-
ing the measurements.
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Corrections
When it is not possible to satisfy all of the above con-
ditions during the implementation of the comparison
procedure, the following corrections can be applied.

Equivalent Volume Correction
Depending on the type of microphones, the equiva-
lent volume of the test microphone, as specified by the
manufacturer, can differ substantially from that of the
reference microphone. The following correction can be
applied.

ΔPv = 20 log[V/(V +ΔV )]dB , (24.51)

where ΔPv is the volume correction to be added to the
calibrated sensitivity of the microphone, V is the effec-
tive coupler volume of the acoustical calibrator, ΔV is
the difference between the equivalent volumes of the
microphones, i. e., the equivalent volume of the refer-
ence microphone minus the equivalent volume of the
test microphone.

When the combined volume of the calibrator and
the equivalent volume of the microphone increases,
the sound pressure level inside the acoustical calibra-
tor decreases. For example, if ΔV is negative, i. e., the
equivalent volume of the test microphone is larger than
that of the reference microphone the volume correction
ΔPv has a positive sign in order to compensate for the
decrease in sound pressure level when the test micro-
phone is measured. When the correction is added to the
microphone sensitivity (24.45), the apparent sensitivity
of the test microphone increases.

Depending on the frequency of the acoustical
calibrator, the effective coupler volume V should in-
clude the additional volume due to heat conduction
(Sect. 24.4.1). For example at a frequency of 250 Hz,
the additional volume to account for heat conduction for
the Brüel and Kjær type 4220 pistonphone is 0.16 cm3.
There are other acoustical calibrators that have rela-
tively large cavity volumes, such as the Brüel and Kjær
model 4230 (94 dB at 1 kHz, with an equivalent volume
of > 100 cm3 between 10 and 40 ◦C); and the Larson–
Davis model CA250. In these cases, from (24.51), the
correction is negligible since V is much larger than ΔV .
Most calibrators are supplied with adaptors to accom-
modate microphones of various diameters, and these
adaptors are designed to include the volume correction
for the particular types of microphones when used with
the calibrator. If the adaptors and the calibrator are from
different manufacturers, the instruction manual of the
calibrator should be consulted to ensure proper usage.

Capacitance Correction
The combined level sensitivity of the microphone and
preamplifier is

Mcom = Mo+ g1+20 log[C/(C+Ci)] , (24.52)

where Mo is the open-circuit sensitivity of the micro-
phone (dB re 1 V/PA), g1 is the gain of the preamplifier
(dB), C is the capacitance of the microphone, Ci is the
input capacitance of the preamplifier. The input capac-
itance of the preamplifier would load the microphone
and the overall sensitivity decreases. With this compari-
son method, if the capacitances of the two microphones
are different, the capacitance correction is

ΔPc = 20 log[Cr/(Cr+ ci)]−20 log[Ct/(Ct+ ci)] ,
(24.53)

where ΔPc is the capacitance correction to be added
to the calibrated sensitivity of the microphone (dB), Cr
is the capacitance of the reference microphone, ci is
the input capacitance of the preamplifier, and Ct is the
capacitance of the test microphone.

The first and the second term on the right-hand side
of (24.53) are the capacitance corrections for the refer-
ence microphone and the test microphone, respectively.

Environmental Conditions
One of the advantages of a comparison method is that
environmental effects usually remain constant during
measurements outlined in the above three basic steps.
Changes in temperature and humidity affect both mi-
crophones. A rapid variation in barometric pressure
may affect some acoustical calibrators, and precaution
should be taken to avoid opening or closing the doors of
the calibration laboratory during measurements.

Uncertainties
From the above discussion, the open-circuit sensitivity
of the test microphone is

Mt = Mr+ (L t− L r)+ΔPv+ΔPc , (24.54)

where Mr is the open circuit sensitivity of the reference
microphone (dB re 1 V/Pa), L t is the level reading ob-
tained with the test microphone (dB), and L r is the level
reading obtained with the reference microphone (dB).

The uncertainty of Mr depends on the primary reci-
procity procedure that calibrates the reference micro-
phone (Sect. 24.3). If the environmental conditions are
controlled [24.20], the uncertainty of the open-circuit
sensitivity can be less than 0.005 dB. The uncertainty
expectation for reciprocity calibrations based on inter-
national standard [24.38, 40] is approximately 0.05 dB.
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If the magnitudes of the levels L t and L r are nearly
identical, the uncertainty can be much less than 0.05 dB.
However, if it is necessary for the level-measuring de-
vice, such as a measuring amplifier, to engage different
instrument ranges during the measurement of the above
levels, the uncertainties can be up to ±0.1 dB. The
uncertainties of ΔPv and ΔPc are estimated to be ap-
proximately 0.01 dB each, and the overall uncertainty
of calibrator comparison method is estimated to be
0.05–0.2 dB.

For this comparison method, the preamplifier should
have very high input impedance, usually in the order of
gigaohms with a parallel capacitance of a fraction of
a picofarad.

24.6.3 Comparison Pressure
and Free-Field Calibrations

The coupler method described in Sect. 24.3 for pri-
mary reciprocity microphone calibration can be utilized
to implement comparison pressure calibration. A lab-
oratory standard microphone of unknown pressure
response can be calibrated against a reference micro-
phone with a known pressure response. One example of
the coupler arrangement shown in Fig. 24.6 with which
microphone A is the driver that serves as a sound source.
The reference microphone and the test microphone re-
place microphone B in succession on the right-hand side
of the coupler. The ratio of the driving voltage eA ap-
plied to the driver microphone to the open-circuit output
voltage of the receiving microphones eB, is measured
as described in Sect. 24.3.3. The sensitivity of the test
microphone can be calculated as follows

Mt = Mr−20 log(eBref/eAref)+20 log(eBx/eAx) ,
(24.55)

where Mt and Mr are the sensitivities of the test and the
reference microphones, respectively, eBref and eAref are
the open-circuit voltage and the source driving voltage
when the reference microphone is in position, eBx and
eAx are the open-circuit voltage and the source driving
voltage when the test microphone is in position.

With (24.55), unless the equivalent volume of the
coupler is large compared to those of the reference mi-
crophone and the test microphone, and the equivalent
volumes of the reference microphone and the test mi-
crophone are similar, suitable volume correction should
be applied such that the equivalent sound pressure levels
are identical for both the reference and the test micro-
phones.

Uncertainties
The uncertainties of the coupler pressure compar-
ison method are very similar to those described
in Sect. 24.6.2 with the exception that the open-circuit
voltage measurements with the insert voltage method,
capacitance corrections are unnecessary. The uncer-
tainty of the coupler comparison method may approach
approximately two times the uncertainty of the refer-
ence microphone plus the uncertainty involved with the
equivalent volume corrections; assuming that the ref-
erence microphone has been calibrated with a similar
method for open-circuit voltage measurement.

The uncertainty for free-field comparison method
is higher and is due to electrical and mechanical
air-transmitted interferences. Even with narrow-band
filtering, the overall uncertainty for free-field compar-
ison is of the order of 0.5 dB.

24.6.4 Comparison Method
with a Precision Attenuator

A more precise method than that described in
Sect. 24.6.2, comparison with a calibrator, is compari-
son with an attenuator. The acoustical level indicator is
replaced with a calibrated attenuator [24.58]. Over the
usable range of 5–100 mV/Pa of the open-circuit sen-
sitivity of a microphone, the attenuator, i. e., a precision
ten-turn potentiometer, is calibrated with a resolution of
better than 0.05 mV/Pa. The comparison procedure is
as follows:

1. The reference microphone is inserted into a cal-
ibrator. The sensitivity of the reference micro-
phone is entered into the calibrated attenuator, say
50 mV/Pa. An indicator reading is taken.

2. The reference microphone is replaced with the test
microphone, and the calibrated attenuator is ad-
justed until the indicator gives the same reading.
The new attenuator reading gives the sensitivity of
the test microphone.

With this method, it is still necessary to correct
for capacitances and equivalent volumes of the micro-
phones. However, the uncertainty is reduced by the
precision of the attenuator, which may have an uncer-
tainty of a few thousandths of a decibel. If the test
microphone is of the same type and model as the ref-
erence microphones, the uncertainty of this method is
the uncertainty of the reference microphone plus a few
thousandths of a decibel, if the indicator has a resolution
of a thousandth of a decibel.

Part
H

2
4
.6



Microphones and Their Calibration 24.8 Overall View on Microphone Calibration 1083

24.7 Frequency Response Measurement with Electrostatic Actuators

Electrostatic actuators were used by Ballantine [24.2] to
investigate microphone calibration and Koidan [24.59]
gave a comprehensive discussion of the uncertain-
ties between measurements obtained with electrostatic
actuators compared with those measured with the
coupler pressure reciprocity method. The description
and analyses of some commercially available elec-
trostatic actuators for microphone calibration have
been published [24.60–62] and standardized [24.63]
for frequency response measurement for working stan-
dard (WS) microphones. The electrostatic actuator
method, Fig. 24.16, consists of a metal grid polarized
with a high voltage direct-current (DC) supply (usu-
ally 800 V). An AC time-varying sweep signal provides
the electrostatic pressure on the microphone diaphragm.
With the usual amplification and a recorder, the fre-
quency response is displayed graphically.

Madella [24.64] and Nedzelnitsky [24.65] pointed
out that with electrostatic actuator measurements the ef-
fective mechanical radiation impedance loading of the
microphone diaphragm in the presence of the electro-
static actuator is different from that of those used in
a coupler or in a free field. Consequently, at higher fre-
quencies the absolute values of the difference between
the actuator-determined response of type L micro-
phones and pressure calibrations determined in couplers
by reciprocity can be as large as about 1.5 dB [24.65].
In practice, the design of the metal grid can be opti-
mized for a particular microphone type. According to
the IEC standard [24.63], the expanded uncertainty of
the method is 0.1–0.2 dB for frequencies up to 10 kHz
for WS1 (1-inch) and WS2 (half-inch) type micro-
phones. Since the air gap between the metal grid and
the microphone diaphragm is very small (nominally ap-
proximately 0.5 mm) the use of electrostatic actuators
for models of microphones other than those specified is
not recommended. Since the motion of the microphone
diaphragm, caused by electrostatic pressure produce by
the actuator, creates a sound pressure on the outer sur-
face of the diaphragm that adds to the electrostatic

pressure and influences the measure response, precau-
tions should be taken to avoid blocking the actuator
space that opens to the atmosphere.

Apart from being economically attractive, there
are some salient features to the electrostatic actuator
method.

1. The method is ideal for comparing the frequency
responses of microphones, such as those in a pro-
duction line, at which only changes from a nominal
value is important.

2. Since the actuator method is unaffected by atmo-
spheric pressure, humidity and temperature (as-
suming the air gap remains constant) [24.63], the
method may be used to measure the change in mi-
crophone responses with respect to variations in the
environment.

Given the fact that the international standard [24.63]
only discusses type WS1 and WS2 working standard
microphones and not the laboratory types LS1 and LS2
microphones, it is obvious that the electrostatic actua-
tor method still requires further development to reduce
uncertainties.

10 M

5000pF

DC-voltage supply

AC-voltage supply
Microphone

Measurement
amplifier

Actuator

Recorder

Preamplifier

Fig. 24.16 Frequency response measurement with an elec-
trostatic actuator (after Frederiksen [24.29, Chap. 15])

24.8 Overall View on Microphone Calibration

Primary microphone calibrations, such as those per-
formed with the reciprocity method, provide uncertainty
estimations. One may wonder what is the contribution
to the calibration uncertainty from two major sources:

(a) the stability of the microphones and (b) the stability
of the calibration system that performed the microphone
calibration. It is very difficult to separate these two
sources of uncertainties.
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Fig. 24.17 Deviation from the mean sensitivity level of
a transfer standard microphone s/n 907045 (after [24.67])
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Fig. 24.18 Deviation from the mean sensitivity level of
a transfer standard microphone s/n 1734004 (after [24.67])

In connection with an international microphone
calibration comparison [24.66] that involved five Na-
tional Metrology Institutes (NMIs), the pilot laboratory
(Canada) had the opportunity to calibrate the same set of
three laboratory standard LS1P microphones five times
over a period of 31 months. The calibrations were made
in a chamber with a controlled environment [24.45]
at the reference condition of 23 ◦C, 101.325 kPa and
50% RH. The microphone sensitivity levels were meas-
ured at seven frequencies from 125 Hz to 8 kHz. Two
of the microphones (the transfer standards) were hand
carried to and from the pilot laboratory in a star con-

Deviation from mean sensitivity level (dB)
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2000 Hz
4000 Hz
8000 Hz

SN907039

Fig. 24.19 Deviation from the mean sensitivity level of
a transfer standard microphone s/n 907039 (after [24.67])

figuration, i. e., the microphones were calibration by
the pilot laboratory before and after delivery to each
of the participating NMIs. The average of five sets of
readings obtained by the pilot laboratory was taken
as the mean sensitivity level. The deviation from the
mean sensitivity level of the transfer standard micro-
phones (LS1P Brüel and Kjær type 4160 microphones,
s/n 907045 and s/n 1734004) are shown in Fig. 24.17
and Fig. 24.18, and are within approximately 0.011 dB.
It is interesting to show that, for the above reciprocity
calibration, the third type 4160 LS1P microphone s/n
907039 which remained at the pilot laboratory without
the need to endure air transportation to and from the
participating laboratories over the test period, the de-
viations shown in Fig. 24.19 were significantly smaller
for frequencies below 8000 Hz, and are within +0.007
and −0.006 dB. It should be noted that the deviations
shown for the three microphones are the combined
contributions from the sensitivity level stability of the
microphones and the stability of the primary calibration
system. Since the specifications for laboratory stan-
dard microphones [24.41] states that the type 4160
LSIP microphone has a long-term stability coefficient
of < 0.02 dB per year from 250 Hz to 1000 Hz, and
the manufacturer Brüel and Kjær indicated the stability
of their LS1P microphones may have a stability co-
efficient of approximately 0.01 dB per year, one may
conclude that the primary microphones and the cali-
bration system of the pilot laboratory have an excellent
stability of approximately 0.01 dB over the period of 31
months.
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24.A Acoustic Transfer Impedance Evaluation

Assume the sound pressure to be the same at any point
inside the coupler (this will take place when the physi-
cal dimensions of the coupler are very small compared
to the wavelength) the acoustic transfer impedance can
be evaluated theoretically [24.38]. The air in the cou-
pler then behaves as a pure compliance and assuming
adiabatic compression and expansion of the gas

1

Z ′AB
= iω

(
V

γ ps
+ VeA

γ0 p0
+ VeB

γ0 p0

)
, (24.A1)

where values for γ and γ0 can be derived from the
equations given in Sect. 24.B.

The computation of the acoustic transfer impedance
becomes complicated at high frequencies when the di-
mensions of the coupler are not small compared with

the wavelength. When the shape of the coupler is cylin-
drical and the cavity diameter is the same as that of
the microphone diaphragm [24.38], and at frequencies
where plane-wave transmission and adiabatic condi-
tions can be assumed, the acoustic transfer impedance
is

1

Z ′AB
= 1

Z

[(
Z

ZA
+ Z

ZB

)
cosh(ξ�0)

+
(

1+ Z

ZA

Z

ZB

)
sinh(ξ�0)

]
, (24.A2)

where ξ is the complex propagation coefficient (m−1),
and ξ = i(ω/c), approximately.

Allowance should be made for the air volume asso-
ciated with the microphones that is not enclosed by the
circumference of the coupler and the two diaphragms.

24.B Physical Properties of Air

Certain physical properties, characterizing the enclosed
gas in the coupler, enter into the expressions for calcu-
lating the sensitivity of the microphones, see (24.A1)
and Sects. 24.4.1 and 24.4.3. These properties are: the
speed of sound in the gas; the density of the gas; the
ratio of the specific heats of the gas; the viscosity of
the gas; and the thermal diffusivity of the gas. These
properties depend on one or more of the variables: tem-
perature, static pressure and humidity.

A large number of investigations have been pub-
lished in the literature where reference values for the
physical properties can be found for specified environ-
mental conditions, i. e. for standard dry air [24.68] at
0 ◦C and at a static pressure of 101.325 kPa. In the
following, unless otherwise stated, the recommended
calculation procedures with the corresponding esti-
mated uncertainties are valid over the temperature range
0–30 ◦C; barometric pressure of 60–110 kPa, and rela-
tive humidity from 10% to 90%.

24.B.1 Density of Humid Air

An equation for the determination of the density of
moist air was first published by Giacomo [24.69] and
some constants were modified by Davies [24.70]. The
following equation may be used to compute the den-
sity of humid air ρ based on a CO2 content of 400 ppm,
which is slightly higher than the 314 ppm specified for

the ISO standard air [24.68] constituents.

ρ = [3.48349+1.44 (xc−0.0004)]

× 10−3 ps

ZT
(1−0.3780xw) , (24.B1)

where xc and xw are the mole fractions of carbon diox-
ide and water vapor in air, respectively; ps is the static
pressure, Z is the compressibility factor for humid air,
T is the thermodynamic temperature, and

Z = 1− ps

T

[
a0+a1t+a2t2+ (a3+a4t) xw

+ (a5+a6t) x2
w

]+ p2
s

T 2

(
a7+a8x2

w

)
,

xw = psv

ps
feh ,

psv = exp
(

A′1T 2+ B′1T +C′
1+D′

1T−1) ,
fe = 1.00062+ ps(3.14 × 10−8)+ t2(5.6 × 10−7) .

For Z the numerical coefficients are

a0 = 1.58123 × 10−6 , a1 =−2.9331 × 10−8 ,

a2 = 1.1043 × 10−10 , a3 = 5.707 × 10−6 ,

a4 =−2.051 × 10−8 , a5 = 1.9898 × 10−4 ,

a6 =−2.376 × 10−6 , a7 = 1.83 × 10−11 ,

a8 =−0.765 × 10−8 .
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For psv the numerical coefficients are

A′1 = 1.2378847 × 10−5 ,

B′1 =−1.9121316 × 10−2 ,

C′
1 = 33.93711047 ,

D′
1 =−6.3431645 × 103 .

Within the normal range of environmental con-
ditions during calibrations, the following simplified
equation for the density of humid air may be used

ρ = ρ0
ps

p0

T0

T
(1−0.378hs) , (24.B2)

where ρ and ρ0 are the densities of air, p0 and ps are
the reference and static pressure, respectively; T0 and T
are the temperatures in Kelvin and hs is the fractional
molar concentration of moisture.

Uncertainties in ρ
The uncertainty in ρ obtained with (24.B1) has been
estimated [24.69, 70] at approximated 100 ppm. At the
reference conditions of 101.325 kPa and 50% relative
humidity, ρ obtained with (24.B2) are 239 ppm and
293 ppm larger than those obtained with (24.B1) at
23 ◦C and 30 ◦C, respectively.

24.B.2 Computation of the Speed
of Sound in Air

Method 1
The speed of sound in air varies with temperature, car-
bon dioxide content, relative humidity and barometric
pressure. The sequence of the above parameters is listed
roughly in decreasing order of their influence on the
speed of sound with respect to the day-to-day encounter
of environmental conditions. A large number of in-
vestigations related to the speed of sound [24.50, 71–
80] had been published, detailed references have been
given [24.75], and an updated and comprehensive bibli-
ography [24.80, Chap. 17, pp. 265–284], and references
therein) on publications relating to sound speed in air
is included at the end of this appendix. It can be shown
that the speed of sound remains relatively constant with
barometric pressure [24.72]: at 23 ◦C and 50% RH, over
the barometric pressure range 60–110 kPa, the sound
speed varies by less than 76 ppm. In view of this, the
following equation has a relatively small overall un-
certainty, is based on a steady barometric pressure of
101.325 kPa and may be used to compute the variation
of the speed of sound with temperature, carbon dioxide
content and relative humidity.

A general empirical equation has been ob-
tained [24.71] for calculation of the variation of c/c0
with relative humidity h, temperature t and carbon diox-
ide content hc

c/c0 = a0+a1t+a2t2+a3hc+a4hct+a5hct2

+a6h+a7ht+a8ht2+a9ht3+a10(hc)2

+a11h2+a12hthc , (24.B3)

where c and c0 are the sound speed and the reference
dry-air sound speed, respectively; a0–a12 are coeffi-
cient constants listed in Table 24.8. With Table 24.8, the
sound speed can be deduced by multiplying c/c0 with
the corresponding reference dry-air sound speed c0.

For hc values from 0% to 1%, and for t from 0 ◦C
to 30 ◦C, for h from 0 to 1 (relative humidity 0% to
100%), and at a barometric pressure of 101.325 kPa, the
sound speed computed using the numerical coefficients
in Table 24.8 fits the theoretical data with a standard
uncertainty of ±48 ppm.

Uncertainties in c0
Over the temperature range 0–30 ◦C, (24.B3) is fitted
to a computation [24.71] for a real gas at 101.325 kPa at
which the value Cp−Cv is not greatly different from the
universal constant R [24.75]. Based on this approximate
assumption, the dry-air sound speed c0 is 331.29 m/s,
with an uncertainty of approximately 200 ppm [24.75],
which encompasses sound speeds from 331.224 to
331.356 m/s [24.50].

Table 24.8 Coefficient constants for the computation of
c/c0 and γ/γ0 (after [24.71])

Coefficient c/c0 (24.B3) γ/γ0 (24.B5)

constants

a0 1.000100 1.000034

a1 1.8286 × 10−3 –2.8100 × 10−6

a2 –1.6925 × 10−6 –2.1210 × 10−7

a3 –3.1066 × 10−3 –1.01223 × 10−3

a4 –7.9762 × 10−6 –5.2500 × 10−6

a5 3.4000 × 10−9 1.1290 × 10−8

a6 8.9180 × 10−4 –3.4920 × 10−4

a7 7.7893 × 10−5 –2.8560 × 10−5

a8 1.3795 × 10−6 –5.9000 × 10−7

a9 9.5330 × 10−8 –2.9710 × 10−8

a10 1.2990 × 10−5 4.23427 × 10−6

a11 4.8016 × 10−5 8.0000 × 10−7

a12 –1.4660 × 10−6 5.1000 × 10−7
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Method 2
Alternatively, over the temperature range 0–30 ◦C, with
a computation [24.72–74] that is based on the deriva-
tion of real-gas sound speed from virial coefficients, the
dry-air sound speed c0 calculated with 16 coefficients
similar to those shown in Table 24.8, is 331.46 m/s.
The uncertainty is approximately 545 ppm [24.73, 74],
which encompasses sound speeds c0 from 331.279 to
331.641 m/s. It should be noted that the sound speed of
331.29 m/s obtained with the first method is within the
uncertainty range of the second method [24.50].

Within the normal range of environmental con-
ditions during calibration, the following simplified
equation [24.38, 40, 50] for the sound speed in humid
air may be used

c = c0

(
T

T0

)1/2

(1+0.165hs)Δ , (24.B4)

where hs is the fractional molar concentration of mois-
ture, and Δ is a factor to compensate for dispersion.
Values of Δ = 0.99935 and Δ = 0.99965 are found
in [24.81] and [24.82], respectively. A value of 1.0001
has also been obtained [24.72].

Over a frequency range of 10 Hz to 10 kHz, by ig-
noring the dispersion factor Δ, the uncertainty in the
sound speeds obtained with methods 1 and 2 increases
by approximately 300 ppm.

By ignoring dispersion, at the reference conditions
of 23 ◦C, 101.325 kPa and 50% relative humidity, the
sound speed obtained with (24.B4) is 196 ppm higher
than that obtained with (24.B3).

24.B.3 Ratio of Specific Heats of Air

There have been several experimental [24.83, 84] and
theoretical [24.71–74, 85, 86] investigations into the
variation of the ratio of specific heats of air with
temperature, humidity, pressure and carbon dioxide
content [24.75], [24.86, pp. 36–39]. A general empirical
equation has been obtained [24.71] for the calculation of
the variation of γ/γ0 with relative humidity h, temper-
ature t and carbon dioxide content hc

γ/γ0 = a0+a1t+a2t2+a3hc+a4hct+a5hct2

+a6h+a7ht+a8ht2+a9ht3+a10(hc)2

+a11h2+a12hthc , (24.B5)

where a0–a12 are coefficient constants listed in Ta-
ble 24.8. With (24.B5), the above normalized ratio of
specific heats can be deduced by multiplying γ/γ0 by
the corresponding reference dry-air ratio of specific

heats γ0. For CO2 content hc values from 0% to 1%,
and for temperatures of 0–30 ◦C, humidity from 0 to
1 (relative humidity 0% to 100%), and at a barometric
pressure of 101.325 kPa, the ratio of specific heats com-
puted using the numerical coefficients in Table 24.8,
fit the theoretical data with a standard uncertainty of
±17 ppm.

Uncertainties in γ0
Based on method 1 above [24.71], the dry-air specific
heat ratio γ0 is 1.3998. The standard uncertainty in γ0 is
approximately 400 ppm.

Similarly, based on method 2 [24.72–74], the dry-air
specific heat ratio γ0 is 1.4029; the standard uncertainty
in γ0 is over 760 ppm.

24.B.4 Viscosity and Thermal Diffusivity
of Air for Capillary Correction

The viscosity η of air, in the parameters in (24.39)
of Sect. 24.4.3, is a function of temperature t. An em-
pirical equation which is based on a least-squares fit to
published data [24.87] is

η= [17.26797+ (5.0756 × 10−2)t

− (4.4028 × 10−5)t2+ (5.0000 × 10−8)t3]
× 10−6 Pa s . (24.B6)

The equation for the thermal diffusivity αt of
air [24.38, 40] is

αt = η(9κ−5)/(4κρ)m2/s . (24.B7)

Uncertainties in η
Over the temperature range from −80 ◦C to 100 ◦C,
when compared with the published data [24.87], the
maximum deviation in η obtained with (24.B6) is
±1 ppm from the data points. However, the data point
uncertainty may be several percent [24.87].

For standard dry air at a pressure of 101.325 kPa,
the numerical values calculated with the above equa-
tions for the viscosity are 1.7268 × 10−5 Pa s and
1.8413 × 10−5 Pa s, at 0 and 23 ◦C, respectively; and
the corresponding values for the thermal diffusiv-
ity are 1.81234 × 10−5 m2/s and 2.09549 × 10−5 m2/s,
respectively.

Examples. Aiming at the highest accuracies (method 1),
Table 24.9 gives the recommended values of the
quantities given in (24.B2)–(24.B4) for the reference
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Table 24.9 Recommended values for some physical quantities in (24.A1)–(24.B5) (ANSI S1.15: 2005)

Environmental Density of air Speed of sound Ratio of specific heats Viscosity of air Thermal diffusivity of air
conditions ρ (kg/m3) c (m/s) γ η (Pa s) αt (m2/s)

T = 23 ◦C 1.1859997 345.677519 1.39836198 1.841268 × 10−5 2.105344 × 10−5

ps = 101325 Pa

H = 50%

Table 24.10 Recommended reference values applicable to dry air at 0 ◦C and 101.325 kPa. (ANSI S1.15: 2005)

Environmental Density of air Speed of sound Ratio of specific heats Viscosity of air Thermal diffusivity of air
conditions ρ (kg/m3) c (m/s) γ η (Pa s) αt (m2/s)

T = 0 ◦C 1.29296 331.28 1.3998 1.7268 × 10−5 1.8123 × 10−5

p0 = 101325 Pa

conditions. The values in Table 24.9 are shown with
more decimals than necessary and are intended for test-
ing computation programs that are used to calculate
these quantities.

Again, aiming at the highest accuracies (method 1)
and in view of the need to have reference values c0 and
γ0 in (24.B3), (24.B4) and (24.B5), Table 24.10 gives
the recommended values for dry air.
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Sound Intensi25. Sound Intensity

Finn Jacobsen

Sound intensity is a vector that describes the
flow of acoustic energy in a sound field. The
idea of measuring this quantity directly, instead
of deducing it from the sound pressure on the
assumption of some idealized conditions, goes
back to the early 1930s, but it took about 50
years before sound intensity probes and analyzers
came on the market. The introduction of such
instruments has had a significant influence on
noise control engineering.

This chapter presents the energy corollary,
which is the basis for sound power determina-
tion using sound intensity. The concept of reactive
intensity is introduced, and relations between
fundamental sound field characteristics and ac-
tive and reactive intensity are presented and
discussed.

Measurement of sound intensity involves the
determination of the sound pressure and the
particle velocity at the same position simultane-
ously. The established method of measuring sound
intensity employs two closely spaced pressure mi-
crophones. An alternative method is based on
the combination of a pressure microphone and
a particle velocity transducer.
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Both methods are described, and their limi-
tations are analyzed. Methods of calibrating and
testing the two different measurement systems
are also described. Finally the state of the art in
the various areas of practical application of sound
intensity measurement is summarized. These ap-
plications include the determination of the sound
power of sources, identification and rank or-
dering of sources, and the measurement of the
transmission of sound energy through partitions.

Sound waves are compressional oscillatory distur-
bances that propagate in a fluid. Moving fluid elements
have kinetic energy, and changes in the pressure im-
ply potential energy. Thus, there is a flow of energy
involved in the phenomenon of sound; sources of sound
emit sound power, and sound waves carry energy. In
most cases the oscillatory changes undergone by the
fluid are very small compared with the equilibrium val-
ues, from which it follows that typical values of the
sound power emitted by sources of sound, which is
an acoustic second-order quantity, are extremely small.
The radiated sound power is a negligible part of the en-
ergy conversion of almost any source. However, energy

considerations are nevertheless of great practical impor-
tance in acoustics. Their usefulness is mainly due to the
fact that a statistical approach where the energy of the
sound field is considered turns out to give extremely
useful approximations in room acoustics and in noise
control. In fact determining the sound power of sources
is a central point in noise control engineering. The value
and relevance of knowing the sound power radiated by
a source is due to the fact that this quantity is largely
independent of the surroundings of the source in the
audible frequency range.

Sound intensity is a measure of the flow of acoustic
energy in a sound field. More precisely, the sound in-
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tensity is a vector that describes the time average of the
net flow of sound energy per unit area. The units of this
quantity are power per unit area (W/m2).

The advent of sound intensity measurement sys-
tems in the early 1980s had a significant influence on
noise control engineering. One of the most important
advantages of this measurement technique is that sound
intensity measurements make it possible to determine
the sound power of sources in situ without the use of
costly special facilities such as anechoic and reverbera-

tion rooms, and sound intensity measurements are now
routinely used in the determination of the sound power
of machinery and other sources of noise in situ. Other
important applications of sound intensity include the
identification and rank ordering of partial noise sources,
the determination of the transmission losses of parti-
tions, and the determination of the radiation efficiencies
of vibrating surfaces. Because the intensity is a vector
it is also more suitable for visualization of sound fields
than, for instance, the sound pressure.

25.1 Conservation of Sound Energy

In the absence of mean flow the instantaneous sound
intensity is the product of the sound pressure p(t) and
the particle velocity u(t)

I(t) = p(t)u(t) . (25.1)

By combining the fundamental equations that govern
a sound field, the equation of conservation of mass, the
adiabatic relation between changes in the sound pres-
sure and in the density, and Euler’s equation of motion,
one can show that the divergence of the instantaneous
intensity equals the (negative) rate of change of the sum
of the potential and kinetic energy density w(t),

∇ I(t) =−∂w(t)

∂t
. (25.2)

This is the equation of conservation of sound en-
ergy [25.1, 2], expressing the simple fact that if there
is net flow of energy away from a point in a sound
field then the sound energy density at that point is re-
duced at a corresponding rate. Integrating this equation
over a volume V enclosed by the surface S gives, with
Gauss’s divergence theorem,

∫

S

I(t)dS=− ∂
∂t

⎛

⎝
∫

V

w(t)dV

⎞

⎠

=−∂E(t)

∂t
, (25.3)

in which E(t) is the total sound energy in the volume
as a function of time. The left-hand term is the total net
outflow of sound energy through the surface, and the
right-hand term is the rate of change of the total sound
energy in the volume. In other words, the net flow of
sound energy out of a closed surface equals the (nega-
tive) rate of change of the sound energy in the volume
enclosed by the surface because energy is conserved.

In practice we are often concerned with station-
ary sound fields and the time-averaged sound intensity
rather than the instantaneous intensity, that is,

〈I(t)〉t = 〈p(t)u(t)〉t . (25.4)

For simplicity the symbol I is used for this quantity
in what follows rather than the more precise notation
〈I(t)〉t . If the sound field is harmonic with angular
frequency ω= 2π f the complex representation of the
sound pressure and the particle velocity can be used,
which leads to the expression

I = 1

2
Re(pu∗) , (25.5)

where u∗ denotes the complex conjugate of u.
A consequence of (25.3) is that the integral of the

normal component of the time-averaged sound intensity
over a closed surface is zero,∫

S

I · dS= 0 , (25.6)

when there is neither generation nor dissipation of
sound energy in the volume enclosed by the surface, ir-
respective of the presence of steady sources outside the
surface. If the surface encloses a steady source then the
surface integral of the time-averaged intensity equals
the sound power emitted by the source Pa, that is,

∫

S

I · dS= Pa , (25.7)

irrespective of the presence of other steady sources out-
side the surface. This important equation is the basis for
sound power determination using sound intensity.

In a plane wave propagating in the r-direction the
sound pressure p and the particle velocity ur are in
phase and related by the characteristic impedance of air
ρc, where ρ is the density of air and c is the speed of
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sound,

ur (t) = p(t)

ρc
. (25.8)

Under such conditions the intensity is

Ir = 〈p(t)ur (t)〉t = 〈p2(t)〉t
ρc

= p2
rms

ρc
= |p|2

2ρc
,

(25.9)

where p2
rms is the mean square pressure (the square of

the root-mean-square pressure) and p in the rightmost
expression is the complex amplitude of the pressure in
a harmonic plane wave. In the particular case of a plane
propagating wave the sound intensity is seen to be sim-
ply related to the rms sound pressure, which can be
measured with a single microphone. Under free-field
conditions the sound field generated by any source of
finite extent is locally plane sufficiently far from the
source. This is the basis for the free-field method of
sound power determination (which requires an anechoic
room); the sound pressure is measured at a number of
points on a sphere that encloses the source [25.3].

A practical consequence of (25.9) is the following
extremely simple relation between the sound intensity
level (Iref = 1 pW/m2) and the sound pressure level
(pref = 20 μPa),

L I � L p . (25.10)

This is due to the fortuitous fact that

ρc � p2
ref

Iref
= 400 kg/(m2 s) (25.11)

in air under normal ambient conditions. At a static pres-
sure of 101.3 kPa and a temperature of 23 ◦C the error
of (25.10) is about 0.1 dB.

However, it should be emphasized that in the general
case there is no simple relation between the sound inten-
sity and the sound pressure, and both the sound pressure
and the particle velocity must be measured simultane-
ously and their instantaneous product time-averaged as
indicated by (25.4). This requires the use of a more
complicated device than a single microphone.

25.2 Active and Reactive Sound Fields

Some typical sound field characteristics can be iden-
tified. For example, the sound field far from a source
under free-field conditions has certain well-known
properties (dealt with above); the sound field near
a source has other characteristics, and some character-
istics are typical of a reverberant sound field. One of the
characteristics of the sound field near a source is that the
sound pressure and the particle velocity are partly out of
phase. To describe such a phenomenon one may intro-
duce the concepts of active and reactive sound fields.

It takes four second-order quantities to describe the
distributions and fluxes of sound energy in a stationary
sound field completely [25.4–6]: potential energy den-
sity, kinetic energy density, active intensity (the quantity
given by (25.4) and (25.5), usually simply referred to
as the intensity), and the reactive intensity. The last of
these quantities represents the non-propagating, oscilla-
tory sound energy flux that is characteristic of a sound
field in which the sound pressure and the particle veloc-
ity are in quadrature (90◦ out of phase), as for instance
in the near field of a small source. The reactive intensity
is a vector defined as the imaginary part of the product
of the complex pressure and the complex conjugate of
the particle velocity,

J = 1

2
Im(pu∗) (25.12)

with the eiωt sign convention (cf. (25.5)). Units:
power per unit area (W/m2). More-general time-
domain formulations based on the Hilbert transform
are also available [25.7]. Unlike the usual active in-

Source

Directions of reactive intensity

Surfaces of constant pressure

Source

Direction of
active intensity

Surfaces of
constant phase

Fig. 25.1 Surfaces of constant phase and surfaces of con-
stant pressure (after [25.4])
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Pressure and particle velocity

Time (ms)
0 31.25

0

Instantaneous intensity

Time (ms)
0 31.25

0

Intensity

Time (ms)
0 31.25

0

a)

b)

c)

Fig. 25.2a–c Measurement 30 cm from a loudspeaker
driven with one-third octave noise with a center frequency
of 1 kHz. (a) Instantaneous sound pressure (solid line);
instantaneous particle velocity multiplied by ρc (dashed
line); (b) instantaneous sound intensity; (c) the real part of
the complex instantaneous intensity (solid line); the imag-
inary part of the complex instantaneous intensity (dashed
line) (after [25.7])

tensity, the reactive intensity remains a somewhat
controversial issue although the quantity was intro-
duced more than sixty years ago [25.8], perhaps
because the vector J has no obvious physical mean-
ing [25.9], or perhaps because describing an oscillatory
flux by a time-averaged vector seems peculiar to
some. However, even though the reactive intensity
is of no obvious direct practical use it is neverthe-
less quite convenient that we have a quantity that
makes it possible to describe and quantify the partic-
ular sound field conditions in the near field of sources
in a precise manner. This will become apparent in
Sect. 25.3.2.

Pressure and particle velocity

Time (ms)
0 125

0

Instantaneous intensity

Time (ms)
0 125

0

Intensity

Time (ms)
0 125

0

a)

b)

c)

Fig. 25.3a–c Measurement in the near field of a loud-
speaker driven with one-third octave noise with a center
frequency of 250 Hz. Key as in Fig. 25.2 (after [25.7])

It can be shown from (25.5) that the active intensity
is proportional to the gradient of the phase of the sound
pressure [25.10],

I =−|p|
2

2ρc

∇ϕ
k
, (25.13)

where k = ω/c is the wavenumber. Thus the active in-
tensity is orthogonal to surfaces of equal phase, that is,
the wavefronts [25.4]. Likewise it can be shown from
(25.12) that the reactive intensity is proportional to the
gradient of the mean square pressure [25.11],

J =−∇(|p|2)

4ρck
, (25.14)
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Pressure and particle velocity

Time (ms)
0 125

0

Instantaneous intensity

Time (ms)
0 125

0

Intensity

Time (ms)
0 125

0

a)

b)

c)

Fig. 25.4a–c Measurement 30 cm from a vibrating steel
box driven with one-third octave noise with a center fre-
quency of 250 Hz. Key as in Fig. 25.2 (after [25.7])

and thus is orthogonal to surfaces of equal pres-
sure [25.4] (Fig. 25.1).

Very near a sound source the reactive field is of-
ten stronger than the active field at low frequencies.
However, the reactive field dies out rapidly with increas-
ing distance to the source. Therefore, even at a fairly
moderate distance from the source, the sound field is
dominated by the active field. The extent of the reac-
tive field depends on the frequency and the radiation
characteristics of the sound source. In practice, the re-
active field may usually be assumed to be negligible at
a distance greater than, say, half a wavelength from the
source.

The fact that I is the real part and J is the imaginary
part of the product of the pressure and the complex con-
jugate of the particle velocity has led to the concept of
complex sound intensity [25.5, 10],

I+ iJ = 1

2
pu∗ . (25.15)

Pressure and particle velocity

Time (ms)
0 62.5

0

Instantaneous intensity

Time (ms)
0 62.5

0

Intensity

Time (ms)
0 62.5

0

a)

b)

c)

Fig. 25.5a–c Measurement in a reverberation room driven
with one-third octave noise with a center frequency of
500 Hz. Key as in Fig. 25.2 (after [25.7])

Note that

Ir + iJr
1
2 |ur |2

=
1
2 |p|2

Ir − iJr
= p

ur
= Zs , (25.16)

which shows that there is a simple relation between the
complex intensity and the wave impedance of the sound
field Zs [25.6, 10]. It is also worth noting that

I2
r + J2

r
1
4 |p|2 |ur |2

= 1 . (25.17)

Figures 25.1–25.4 demonstrate the physical signifi-
cance of the active and reactive intensities. The figures
show the sound pressure and a component of the par-
ticle velocity as functions of time, the corresponding
instantaneous sound intensity, and the real and imagi-
nary part of the complex instantaneous intensity, that is,
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the quantity

Ic(t) = 1

2
(p(t)+ i p̃(t)) (u(t)− iũ(t)) , (25.18)

where p̃(t) and ũ(t) are the Hilbert transforms of the
pressure and the particle velocity [25.12]. The time av-
erage of this quantity in a steady sound field is the
complex intensity given by (25.15).

In a narrow-band sound field the real and imaginary
parts of the complex instantaneous intensity are low-
pass signals that represent short-time average values of
the two components of (25.15) [25.7].

Figure 25.2 shows the result of a measurement at
a position 30 cm (about one wavelength) from a small
loudspeaker driven with a band of one-third octave
noise. The sound pressure and the particle velocity
(multiplied by ρc) are almost identical; therefore the in-
stantaneous intensity is always positive, and the real part
of the complex instantaneous intensity is much larger
than the imaginary part. This is an active sound field.

Figure 25.3 shows the result of a similar measurement
at a distance of a few centimeters (less than one tenth of
a wavelength) from the loudspeaker cone. In this case
the sound pressure and the particle velocity are almost
in quadrature, and as a result the instantaneous inten-
sity fluctuates about zero, that is, sound energy flows
back and forth, out of and into the loudspeaker, and the
imaginary part of the complex instantaneous intensity
is much larger than the real part. This is an example of
a strongly reactive sound field. Figure 25.4 shows data
measured about 30 cm from a vibrating box made of
3 mm steel plates. It is apparent that the vibrating struc-
ture generates a much more complicated sound field
than a loudspeaker does. And finally Fig. 25.5 shows
the result of a measurement in a reverberant room sev-
eral meters from the loudspeaker generating the sound
field. Here the sound pressure and the particle velocity
appear to be uncorrelated signals; this is neither an ac-
tive nor a reactive sound field; this is a diffuse sound
field.

25.3 Measurement of Sound Intensity

Acousticians have attempted to measure sound intensity
since the early 1930s, but measurement of sound in-
tensity is more difficult than measurement of the sound
pressure, and it took almost 50 years before sound inten-
sity measurement systems came on the market. The first
international standards for measurements using sound
intensity and for instruments for such measurements
were issued in the middle of the 1990s. A description
of the history of the development of sound intensity
measurement up to the middle of the 1990s is given in
Fahy’s monograph Sound Intensity [25.2].

Measurement of sound intensity involves determi-
nation of the sound pressure and the particle velocity at
the same position simultaneously. In the general case
at least two transducers are required. There are three
possible measurement principles: (i) one can determine
the particle velocity from a finite-difference approx-
imation of the pressure gradient using two closely
spaced pressure microphones and use the average of
the two microphone signals as the pressure [25.2, 13]
(the two-microphone or p–p method); (ii) one can com-
bine a pressure microphone with a particle velocity
transducer [25.2] (the p–u method); and (iii) one can
determine the pressure from a finite-difference approxi-
mation of the divergence of the particle velocity [25.14]
(the u–u method). The first of these methods is well es-

tablished. The second method has been hampered by
the absence of reliable particle velocity transducers,
but with the advent of the Microflown particle velocity
sensor in the mid-1990s [25.15,16] it seems to have po-
tential [25.17]. The third method, which involves three
matched pairs of particle velocity transducers, has never
been used in air and is mentioned here for the sake of
completeness.

25.3.1 The p–p Measurement Principle

For more than 25 years the p–p method based on two
closely spaced pressure microphones (or hydrophones)
has dominated sound intensity measurement. This
method relies on a finite-difference approximation to
the sound pressure gradient. Both the International
Electrotechnical Commission (IEC) standard on instru-
ments for the measurement of sound intensity and the
corresponding American National Standards Institute
(ANSI) standard deal exclusively with p–p measure-
ment systems [25.18,19]. The success of this method is
related to the fact that condenser microphones are more
stable and reliable than any other acoustic transducer.

Two pressure microphones are placed close to-
gether. The particle velocity component in the direction
of the axis through the two microphones r is obtained
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from Euler’s equation of motion
∂p(t)

∂r
+ρ ∂ur (t)

∂t
= 0 , (25.19)

where the gradient of the pressure is approximated by
a finite difference. Thus the particle velocity is deter-
mined as

ûr (t) =− 1

ρ

t∫

−∞

p2(τ)− p1(τ)

Δr
dτ , (25.20)

where p1 and p2 are the signals from the two micro-
phones, Δr is the microphone separation distance, and
τ is a dummy time variable. The caret indicates that the
result is an estimate, which of course is an approxima-
tion to the true particle velocity. The sound pressure at
the center of the probe is estimated as

p̂(t) = p1(t)+ p2(t)

2
, (25.21)

and the time-averaged intensity component in the r-
direction is

Îr =
〈
p̂(t)ûr (t)

〉
t

=
〈

p1(t)+ p2(t)

2

t∫

−∞

p1(τ)− p2(τ)

ρΔr
dτ

〉

t

.

(25.22)

Some sound intensity analyzers use (25.22) to me-
asure the intensity in frequency bands (usually one-third
octave bands). Another type calculates the intensity
from the imaginary part of the cross spectrum of the
two microphone signals S12(ω),

Îr (ω) =− 1

ωρΔr
Im [S12(ω)] . (25.23)

The frequency-domain formulation is equivalent to the
time-domain formulation, and (25.23) gives exactly the
same result as (25.22) when the intensity spectrum is in-
tegrated over the frequency band of concern [25.20,21].
The frequency-domain formulation makes it possible
to determine sound intensity with a dual-channel fast
Fourier transform (FFT) analyzer.

The most common microphone arrangement is
known as face-to-face, but another called side-by-side
is occasionally used. The latter arrangement has the
advantage that the diaphragms of the microphones
can be placed very near a radiating surface, but the
disadvantage that the microphones disturb each other
acoustically more than they do in the other configu-
ration. Figure 25.6 shows a three-dimensional (3-D)
intensity probe produced by Ono-Sokki with yet another
configuration. At high frequencies the face-to-face con-

Fig. 25.6 Three-dimensional sound intensity probe for
vector measurements (Ono Sokki, Japan)

Fig. 25.7 Sound intensity probe with the microphones in
the face-to-face configuration (Brüel & Kjær, Nærum)

figuration with a solid plug between the microphones is
superior [25.22]. Such a sound intensity probe produced
by Brüel & Kjær is shown in Fig. 25.7. The spacer be-
tween the microphones tends to stabilize the acoustic
distance between them.

Sources of Error in Measurement of Sound
Intensity with p–p Measurement Systems

It is far more difficult to measure sound intensity than to
measure sound pressure, and a surprisingly large part of
the literature on sound intensity is concerned with iden-
tifying and studying the sources of error. One confusing
problem is that the accuracy of any sound intensity mea-
surement system depends strongly on the sound field
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under study; sometimes such measurements are not very
difficult, but under certain conditions even very small
imperfections of the measuring equipment can have
a significant influence on the results. Another compli-
cation is that small local errors are sometimes amplified
into large global errors when the intensity is integrated
over a closed surface [25.23]. The opposite may also
happen. Yet another problem is that the distribution of
the sound intensity in the near field of a source of sound
often is far more complicated than the distribution of the
sound pressure, indicating that sound fields can be much
more complicated than earlier realized [25.2]. The prob-
lems are reflected in the fairly complicated international
and national standards for sound power determina-
tion using sound intensity, ISO 9614-1, ISO 9614-2,
ISO 9614-3, and ANSI S12.12 [25.24–27].

The most important limitations of sound inten-
sity measurement systems based on the p–p approach
are caused by the finite-difference approximation,
scattering and diffraction, and instrumentation phase
mismatch.

The Finite-Difference Error
The accuracy of the finite-difference approximation ob-
viously depends on the separation distance and the
wavelength. For a plane wave of axial incidence the
finite-difference error can be shown to be [25.22]

Îr

Ir
= sin kΔr

kΔr
. (25.24)

This expression is shown in Fig. 25.8 for various
values of the microphone separation distance. More
complicated expressions for other sound field condi-
tions are available in the literature [25.30]. The upper
frequency limit of p–p intensity probes has gener-
ally been considered to be the frequency at which the
finite-difference error for axial plane-wave incidence
is acceptably small. With 12 mm between the micro-
phones (a typical value) this gives an upper limiting
frequency of about 5 kHz.

Scattering and Diffraction
It is evident that the effect of scattering and diffraction
depends on the geometry of the microphone arrange-
ment. Several configurations are possible, but in the
early 1980s it was shown experimentally that the
face-to-face configuration with a solid spacer between
the two microphones is particularly favorable [25.22].
About 15 years later it was discovered that the effect
of scattering and diffraction in combination with the
resonance of the small cavity between the spacer and

Error in intensity (dB)

Frequency (Hz)
250

0

–5

–10
500 1000 2000 4000 8000

Fig. 25.8 Finite-difference error of an ideal p–p sound
intensity probe in a plane wave of axial incidence for dif-
ferent values of the separation distance: 5 mm (solid line);
8.5 mm (dashed line); 12 mm (dotted line); 20 mm (long
dashes); 50 mm (dash-dotted line) (after [25.28])

the diaphragm of each microphone not only tends to
counterbalance the finite-difference error but in fact for
a certain length of the spacer cancels it almost perfectly
over a wide frequency range under fairly general sound
field conditions [25.28]. (This finding had been antic-

Free field correction (dB)

Frequency (kHz)
1 15

12

8

4

0

2 5 8 10

0 1 2

2
1

2
1

1

2

Fig. 25.9 Pressure increase on the two microphones of
a sound intensity probe with 1

2 inch microphones separated
by a 12 mm spacer for axial sound incidence. Experimental
results (solid line); numerical results (dashed line) (af-
ter [25.29])
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Error in intensity (dB)

Frequency (Hz)

5

0

–5

–10
250 500 1000 2000 4000 8000

Fig. 25.10 Error of a sound intensity probe with 1
2 inch mi-

crophones in the face-to-face configuration in a plane wave
of axial incidence for different spacer lengths: 5 mm (solid
line); 8.5 mm (dashed line); 12 mm (dotted line); 20 mm
(long dashes); 50 mm (dash-dotted line) (after [25.28])

ipated much earlier [25.31].). Figure 25.9 shows the
increase of the pressure on two 1

2 inch microphones
in the face-to-face configuration for axial sound inci-
dence, and Fig. 25.10, which corresponds to Fig. 25.8,
shows the error of the resulting sound intensity estimate.
A practical consequence is that the upper frequency
limit of a sound intensity probe based on two 1

2 inch
microphones separated by a 12 mm spacer in the face-
to-face arrangement is about 10 kHz, which is an octave
higher than the frequency limit determined by the finite-
difference approximation. The combination of 1

2 inch
microphones and a 12 mm spacer is now regarded as op-
timal, and longer spacers are only used when the focus
is exclusively on low frequencies. With a longer spacer
between 1

2 inch microphones the resonance occurs at
too high a frequency to be of any help and the finite-
difference error will dominate; thus an intensity probe
with a 50 mm spacer has an upper frequency limit of
about 1.2 kHz.

Phase Mismatch
Unless the measurement is compensated for phase
mismatch the microphones for measurement of sound
intensity with the p–p method have to be phase-

LedB
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Hz5002501256331,5
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Le =10 log10 =10 log10
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)

kΔr
dB

50 mm

12mm

6 mm


 = 0.3

Fig. 25.11 Error due to a phase error of 0.3◦ in a plane
propagating wave (after [25.32])

matched extremely well, and state-of-the-art sound
intensity microphones are matched to a maximum phase
response difference of 0.05◦ below 250 Hz and a phase
difference proportional to the frequency above 250 Hz
(say, 0.2◦ at 1 kHz) [25.33] The proportionality to the
frequency is a consequence of the fact that phase mis-
match in this frequency range is caused by differences
between the resonance frequencies and the damping of
the two microphones [25.34].

Phase mismatch between the two measurement
channels is the most serious source of error in mea-
surement of sound intensity with p–p measurement
systems, even with the best equipment that is available
today. It can be shown that a small (positive or negative)
phase mismatch error ϕpe gives rise to a bias error that
can be approximated by the following expression,

Îr � Ir − ϕpe

kΔr

p2
rms

ρc
= Ir

(
1− ϕpe

kΔr

p2
rms

/
ρc

Ir

)
,

(25.25)

where Ir is the true intensity (unaffected by phase mis-
match) [25.35]. This expression shows that the effect
of a given phase error is inversely proportional to the
frequency and the microphone separation distance and
is proportional to the ratio of the mean square sound
pressure to the sound intensity. If this ratio (which in
logarithmic form is known as the pressure-intensity in-
dex) is large, say, more than 10 dB, then the true phase
difference between the two pressure signals in the sound
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field is small and even the small phase errors mentioned
above will give rise to significant bias errors. Because
of phase mismatch it will rarely be possible to make re-
liable measurements below, say, 80 Hz unless a longer
spacer than the usual 12 mm spacer is used.

Figure 25.11 shows the effect of a positive phase er-
ror of 0.3◦ in a plane wave of axial incidence, calculated
for different values of the microphone separation dis-
tance Δr. It is apparent that large underestimation errors
occur at low frequencies. Note, however, that still larger
errors will occur when the ratio of the mean square
pressure to the sound intensity takes a larger value than
unity, which is likely to happen unless the measurement
takes place in an anechoic room. It should also be noted
that a frequency-independent value of the phase error
ϕpe is very unlikely [25.34]. Finally it is worth men-
tioning again that state-of-the-art microphone pairs for
sound intensity measurements are much better matched
now than within 0.3◦.

Inspection of (25.25) shows that the simple expe-
dient of reversing a p–p probe makes it possible to
eliminate the influence of p–p phase mismatch; the
intensity changes sign but the error does not [25.20,
36]. Unfortunately, most p–p intensity probes are not
symmetrical and are therefore not suitable for real mea-
surements with the probe reversed.

The ratio of the phase error to the product of the fre-
quency and the microphone separation distance can be
measured (usually in the form of the so-called pressure-
residual intensity index) by exposing the two pressure
microphones to the same pressure. The residual in-
tensity is the false sound intensity indicated by the
instrument when the two microphones are exposed to
the same pressure p0, for instance in a small cavity
driven by a wide-band source. A commercial example
of such a device is shown in Fig. 25.12. When the pres-
sure on the two microphones is the same (in amplitude
as well as in phase) the true intensity is zero, and the
magnitude of the indicated, residual intensity,

I0 =− ϕpe

kΔr

p2
0

ρc
, (25.26)

should obviously be as small as possible. Expressed in
terms of this quantity (25.25) takes the form

Îr = Ir +
(

I0

p2
0

)
p2

rms = Ir

⎛

⎝1+ I0

p2
0
ρc

p2
rms
ρc

Ir

⎞

⎠ .

(25.27)

An alternative form that follows directly from
(25.27) has the advantage of expressing the error in

Fig. 25.12 Coupler for measurement of the pressure-
residual intensity index of p–p sound intensity probes
(Brüel & Kjær, Denmark)

terms of the available, biased intensity estimate [25.37],

Îr = Ir

⎛

⎝1− I0

p2
0
ρc

p2
rms
ρc

Îr

⎞

⎠
−1

. (25.28)

The pressure-residual intensity index of the mea-
surement system can be measured once (and should
be checked occasionally). Combined with the pressure-
intensity index of the actual measurement it makes
it possible to estimate the error. Some analyzers can
give warnings when the error due to phase mismatch
as predicted by (25.28) exceeds a specified level. The
bias error predicted by (25.28) is less than ±10 log(1±
10−K/10)dB if the pressure-intensity index of the
measurement, δpI , is less than the pressure-residual in-
tensity index, δpIo, minus the bias error index K , that is

δpI = 10 log

⎛

⎝
p2

rms
ρc

|Ir |

⎞

⎠< δpIo−K

= 10 log

⎛

⎝
p2

0
ρc

|I0|

⎞

⎠−K . (25.29)

The larger the value of K the smaller the maxi-
mum error that can occur and the stronger and more
restrictive on the range of measurement is the re-
quirement, as demonstrated by Fig. 25.13. Note that
a negative residual intensity (which leads to under-
estimation of a positive intensity component) gives
larger errors (in decibels) than a corresponding posi-
tive residual intensity (which leads to overestimation
of a positive intensity component) unless the error is
small. A bias error index of 7 dB corresponds to the er-
ror due to phase mismatch being less than 1 dB (survey
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Fig. 25.13 Maximum error due to phase mismatch as
a function of the bias error index K for negative residual
intensity (upper curve) and for positive residual intensity
(lower curve) (after [25.38])

accuracy [25.25]), and a bias error index of 10 dB corre-
sponds to the error being less than 0.5 dB (engineering
accuracy [25.25]). These values correspond to the phase
error of the equipment being five and ten times less
than the actual phase angle in the sound field, respec-
tively. The quantity δpIo− K is known as the dynamic
capability of the measurement system.

Many applications of sound intensity measurements
involve integrating the normal component of the inten-
sity over a surface. The global versions of (25.27) and
(25.28) are found by integrating the normal component
over a surface that encloses a source. The result is the
expressions

P̂a =
∫

S

Î dS� Pa

⎛

⎜⎜⎝1− ϕpe

kΔr

∫

S

(
p2

rms
ρc

)
dS

∫

S
I dS

⎞

⎟⎟⎠

= Pa

⎛

⎜⎜⎝1+ I0ρc

p2
0

∫

S

(
p2

rms
ρc

)
dS

∫

S
I dS

⎞

⎟⎟⎠

= Pa

⎛

⎜⎜⎝1− I0ρc

p2
0

∫

S

(
p2

rms
ρc

)
dS

∫

S
Î dS

⎞

⎟⎟⎠

−1

, (25.30)

where Pa is the true sound power of the source within
the surface [25.35]. The condition expressed by (25.29)

Field indicator (dB)

One-third octave band center frequency (Hz)

20

10

0
250 500 1k 2k 4k

Fig. 25.14 Pressure-intensity index on a surface enclosing
a noise source determined under three different condi-
tions: measurement using a reasonable surface (solid line);
measurement using an eccentric surface (dashed line);
measurement with strong background noise at low frequen-
cies (long dashes) (after [25.39])

still applies, although the pressure-intensity index now
involves averaging over the measurement surface.

Sources outside the measurement surface do not
contribute to the surface integral of the true intensity
(the denominator of the second term on the right-hand
side of (25.30)), but they invariantly increase the surface
integral of the mean square pressure (the numerator of
the second term), as demonstrated by the results shown
in Fig. 25.14. It follows that even a very small phase
error imposes restrictions on the amount of extraneous
noise that can be tolerated in sound power measurement
with a p–p sound intensity measurement system.

Other Sources of Error
It can be difficult to avoid that the intensity probe
is exposed to airflow, for example in measurements
near air-cooled machinery. Strictly speaking the p–
p measurement principle is simply not valid in such
circumstances [25.40]. However, practice shows that
the resulting fundamental error is insignificant in air-
flows of moderate velocities (say, up to 10 m/s), and
that the false, low-frequency intensity signals produced
by turbulence are a more serious problem under such
conditions. Turbulence generates pressure fluctuations
(flow noise, unrelated to the sound field) that contam-
inate the signals from the two microphones, and at
low frequencies these signals are correlated and thus
interpreted by the measurement system as intensity.
The resulting false intensity is unpredictable and can
be positive or negative. This is mainly a problem be-
low 200 Hz [25.41]. A longer spacer helps reducing
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Fig. 25.15a–f Measurement 60 cm from a loudspeaker and a fan
producing airflow of about 4 m/s at the measurement position. (a,b)
50 mm spacer; (e,f) 12 mm spacer; (a,c,e) no windscreen; (b,d,f)
windscreen. Asterisk: negative intensity estimate. Nominal sound
power level of source: 100 dB (solid line); 90 dB (dashed line);
80 dB (dotted line); 70 dB (long dashes); 60 dB (dash-dotted line)
(after [25.41])

the problem, but the most efficient expedient is to use
a windscreen of porous foam, as demonstrated by the
results shown in Fig. 25.15. However, windscreens give
rise to errors at low frequencies in highly reactive sound
fields, because the losses of the foam modify Euler’s
equation of motion (25.19) [25.42, 43]. Thus measure-
ments with windscreened probes very near sources
should be avoided.

The finite averaging time used in any measure-
ment results in a random error, and this random error
is usually larger in sound intensity measurements than
in sound pressure measurements – sometimes much
larger [25.44–46]. Thus to maintain the same random
error as in measurement of the sound pressure one will
usually have to average over a longer time. However,
most applications of sound intensity involve integrating
over a measurement surface, and since it can be shown
that it is the total averaging time that matters [25.47],

the problem is less serious in practice than one might
expect from observations at discrete positions.

Yet another source of error is the electrical self-
noise from the microphones and preamplifier circuits.
Although the level of such noise is very low in modern
1
2 inch condenser microphones it can have a serious in-
fluence on sound intensity measurement at low levels.
The noise increases the random error associated with
a finite averaging time at low frequencies, in particular
if the pressure-intensity index takes a large value. The
problem reveals itself by poor or nonexistent repeatabil-
ity [25.48].

Calibration of p–p Sound Intensity
Measurement Systems

Calibration of p–p sound intensity measurement sys-
tems is fairly straightforward: the two pressure mi-
crophones are calibrated with a pistonphone in the
usual manner. However, because of the serious influ-
ence of phase mismatch the pressure-residual intensity
index should also be determined. The IEC standard
for sound intensity instruments and its North Ameri-
can counterpart [25.18, 19] specify minimum values of
the acceptable pressure-residual intensity index for the
probe as well as for the processor; according to the re-
sults of a test the instruments are classified as being
of class 1 or class 2. The test involves subjecting the
two microphones of the probe to identical pressures in
a small cavity driven with wide-band noise. A similar
test of the processor involves feeding the same signal to
the two channels. The pressure and intensity response
of the probe should also be tested in a plane propagating
wave as a function of the frequency, and the directional
response of the probe is required to follow the ideal
cosine law within a specified tolerance.

According to the two standards a special test is
required in the frequency range below 400 Hz: the in-
tensity probe should be exposed to the sound field in
a standing-wave tube with a specified standing wave
ratio (24 dB for probes of class 1). When the sound in-
tensity probe is drawn through this interference field the
sound intensity indicated by the measurement system
should be within a certain tolerance.

Figure 25.16a illustrates how the sound pressure,
the particle velocity and the sound intensity vary with
position in a one-dimensional interference field with
a standing-wave ratio of 24 dB. It is apparent that the
pressure-intensity index varies strongly with the posi-
tion in such a sound field. Accordingly, the influence
of a given phase error depends on the position, as
shown in the calculations presented in Fig. 25.16b. Fig-
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Fig. 25.16 (a) Sound pressure level (solid line), particle
velocity level (dashed line), and sound intensity level
(dash-dotted line) in a standing wave with a standing-wave
ratio of 24 dB (b) Estimation error of a sound intensity
measurement system with a residual pressure-intensity in-
dex of 14 dB (positive and negative residual intensity)
(after [25.50])
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Fig. 25.17 Response of a sound intensity probe exposed to a standing wave: sound pressure, particle velocity, intensity,
and phase-corrected intensity (after [25.51])

ure 25.17 shows an example of measurements with an
intensity probe drawn through a standing-wave tube.
The standing-wave test will also reveal other sources
of error than phase mismatch, for example, the influ-
ence of an unacceptably high vent sensitivity of the
microphones [25.49].

25.3.2 The p–u Measurement Principle

A p–u sound intensity measurement system combines
two fundamentally different transducers, a pressure mi-
crophone and a particle velocity transducer. The sound
intensity is simply the time average of the instantaneous
product of the pressure and particle velocity signal,

Ir = 〈p(t)ur (t)〉t =
1

2
Re
(

pu∗r
)
, (25.31)

where the latter expression is based on the complex ex-
ponential representation. In the frequency domain the
expression takes the form

Ir (ω) = Spu(ω). (25.32)

Equation (25.32) gives the same result as (25.31)
when the intensity spectrum is integrated over the fre-
quency band of concern.

A p–u sound intensity probe that combined a pres-
sure microphone with a transducer based on the
convection of an ultrasonic beam by the particle ve-
locity flow was produced by Norwegian Electronics
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Fig. 25.18 A p–u sound intensity probe (by Microflown
Technologies, The Netherlands)

for some years [25.2, 52], but the device was some-
what bulky, very sensitive to airflow, and difficult to
calibrate, and production was stopped in the middle
of the 1990s. More recently, a micromachined trans-
ducer called the Microflown has become available for
measurement of the particle velocity [25.15], and an in-
tensity probe based on this device in combination with
a small pressure microphone is now in commercial pro-
duction [25.16]; see Fig. 25.18. The Microflown particle
velocity transducer consists of two short, thin, closely
spaced wires, heated to about 300 ◦C [25.15]. Their re-
sistance depends on the temperature. A particle velocity
signal in the perpendicular direction changes the tem-
perature distribution instantaneously, because one of the
wires will be cooled more than the other by the airflow.
The frequency response of this device is relatively flat
up to a corner frequency of the order of 1 kHz caused
by diffusion effects related to the distance between the
two wires. A second corner frequency at about 10 kHz
is caused by the thermal heat capacity of the wires.
Between 1 and 10 kHz there is a roll-off of 6 dB per oc-
tave. The particle velocity transducer is combined with
a small electret condenser microphone in the 1

2 inch
sound intensity probe shown in Fig. 25.18. The veloc-
ity transducer is mounted on a small, solid cylinder, and
the condenser microphone is mounted inside another,
hollow cylinder. The geometry of this arrangement in-
creases the sensitivity of the velocity transducer. Unlike
Norwegian Electronics’ intensity probe the Microflown
probe is very small – in fact much smaller than a stan-
dard p–p probe. Thus it is possible to measure very

Sound power level (dB re 1 pW)
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Bruel & Kjær, large surface
Microflown, large surface
Bruel & Kjær, small surface
Microflown, small surface

Fig. 25.19 Sound power of a source measured using a p–u
intensity probe produced by Microflown and p–p inten-
sity probe produced by Brüel & Kjær. Brüel & Kjær probe
on large measurement surface (solid line); Microflown
probe on large measurement surface (dashed line); Mi-
croflown probe on small measurement surface (dotted line)
(after [25.17])

close to a vibrating surface with this device. At the time
of writing there is still relatively little experimental evi-
dence of the practical utility of the Microflown intensity
probe, but it seems to be promising if difficult to cali-
brate [25.17]. Figure 25.19 shows the results of sound
power measurements with a Microflown intensity probe
in comparison with similar results made with a Brüel &
Kjær p–p sound intensity probe.

A variant of the p–u method, the surface inten-
sity method, combines a pressure microphone with
a transducer that measures the vibrational displacement,
velocity or acceleration of a solid surface, for example
with an accelerometer or a laser vibrometer [25.53–55];
see Fig. 25.20. Obviously, this method can only give the
normal component of the sound intensity near vibrating
surfaces. A disadvantage of the surface intensity method
is that sound fields near complex sources are often very
complicated, which makes it necessary to measure at
many points.

Sources of Error in Measurement of Sound
Intensity with p–u Measurement Systems

Evidently, some of the limitations of any p–u intensity
probe must depend on the particulars of the particle ve-
locity transducer. However, some general problems are
described in the following.
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Fig. 25.20 Hand-held probe for surface intensity measure-
ment (after [25.53])

Phase Mismatch
Irrespective of the measurement principle used in deter-
mining the particle velocity there is one fundamental
problem: the pressure and the particle velocity trans-
ducer will invariably have different phase responses.
One must compensate for this p–u phase mismatch, oth-
erwise the result may well be meaningless. In fact even
a small residual p–u mismatch error can have serious
consequences under certain conditions. This can be seen
by introducing such a small phase error, ϕue, in (25.31).
The result is

Îr = 1

2
Re
(

pu∗r e−iϕue
)

= Re [(Ir + iJr) (cosϕue− i sinϕue)]

� Ir +ϕue Jr , (25.33)

where Jr is the reactive intensity, cf. (25.12). Equa-
tion (25.33) demonstrates that even a small uncom-
pensated p–u phase mismatch error will give rise to
a significant bias error when Jr � Ir . On the other
hand it also shows that substantial p–u phase errors
can be tolerated if Jr 
 Ir . For example, even a phase
mismatch of 35◦ gives a bias error of less than 1 dB
under such conditions. In other words, phase calibra-
tion is critical when measurements are carried out under
near-field conditions, but not at all critical if the mea-
surements are carried out in the far field of a source. The
reactivity (the ratio of the reactive to the active inten-
sity) indicates whether this source of error is of concern
or not.

Whereas phase-mismatching of a p–p sound inten-
sity measurement system can in principle be eliminated
simply by reversing the probe and measuring again, it
can be seen from (25.33) that reversing a p–u probe
simply changes the sign of the result, including the bias

error. In other words, probe reversal does not provide
any new information.

The global version of (25.33) is found by integrating
over a surface that encloses a source,

P̂a =
∫

S

Re [(I+ iJ) (cosϕue− i sinϕue)] · dS

� Pa+ϕue

∫

S

J · dS

= Pa

⎛

⎜⎝1+ϕue

∫

S
J · dS

∫

S
I · dS

⎞

⎟⎠

= Pa

⎛

⎜⎝1−ϕue

∫

S
J · dS

∫

S
Î·dS

⎞

⎟⎠

−1

, (25.34)

and this shows that uncompensated p–u phase mis-
match is a potential source of error when the reactivity
(which in the global case is the ratio of the surface in-
tegral of the reactive intensity to the surface integral
of the active intensity) is large. This will typically oc-
cur at low frequencies when the measurement surface is
close to the source. Thus the reactivity is an important
error indicator for p–u probes [25.17]. In contrast the
pressure-intensity index is not relevant for p–u probes.

Sources outside the measurement surface do not in
general increase the reactivity, and thus they do not in
general increase the error due to p–u phase mismatch.

Other Sources of Error
Airflow, and in particular unsteady flow, is a more se-
rious problem for p–u than for p–p sound intensity
measurement systems, irrespective of the particulars
of the particle velocity transducer, since the resulting
velocity cannot be distinguished from the velocity as-
sociated with the sound waves. Windscreens of porous
foam reduce the problem.

Calibration of p–u Sound Intensity
Measurement Systems

Calibration of p–u sound intensity measurement sys-
tems involves exposing the probe to a sound field with
a known relation between the pressure and the particle
velocity, for example a plane propagating wave, a sim-
ple spherical wave or a standing wave [25.15, 16]. One
cannot calibrate a particle velocity transducer in a cou-
pler. There are no standardized calibration procedures
and no standards for testing such instruments. However,
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recent experimental results seem to indicate the possi-
bility of calibrating the particle velocity channel of the
Microflown intensity probe in the far field of a loud-
speaker in an anechoic room, in the near field of a very
small source (sound emitted from a small hole in a plane
or spherical baffle), and in a rigidly terminated standing
wave tube [25.17, 56].

25.3.3 Sound Field Indicators

A sound field indicator may be defined as a normal-
ized, energy-related quantity that describes a local or
global property of the sound field [25.39]. The pressure-
intensity index defined by (25.29) is an example. The
concept of sound field indicators is closely related to
sound intensity. The idea is that useful information
about the nature of the sound field might be derived
from the signals from an intensity probe. The purpose
can be to derive information that may be helpful in in-
terpreting experimental data, with a view, for example,
to improving measurement accuracy in intensity-based
sound power estimation by choosing another measure-
ment surface, by shielding the surface from extraneous
sources, etc. The international standards on sound

power determination using sound intensity [25.24–26]
prescribe initial measurements of a number of indi-
cators and specify corrective actions on the basis of
the values of these quantities. The corresponding ANSI
standard [25.27] is more pragmatic; no less than 26 in-
dicators are described, but their use is optional and it is
left to the user to interpret the data and decide what to
do.

It is clear from the considerations in Sect. 25.3.1 that
the (global) pressure-intensity index reflects the amount
of extraneous noise in sound power measurements and,
combined with the pressure-residual intensity index of
a p–p sound intensity measurement system, makes it
possible to predict the bias error due to p–p phase
mismatch. Likewise, the considerations in Sect. 25.3.2
show that the reactivity reflects whether the measure-
ment takes place in the near field of the source under test
or not and, combined with knowledge about the residual
phase mismatch of a p–u sound intensity measurement
system, makes it possible to predict the bias error due to
the mismatch. In comparison, most of the many quan-
tities suggested in [25.27] are, as shown in [25.57],
difficult to interpret and only vaguely related to the mea-
surement accuracy.

25.4 Applications of Sound Intensity

Some of the most important practical applications of
sound intensity measurements are now briefly dis-
cussed. In view of the relative lack of experimental
evidence of the performance of p–u sound intensity
measurement systems it is assumed in the following that
p–p measurement systems are used unless otherwise
mentioned.

25.4.1 Noise Source Identification

A noise reduction project usually starts with the identi-
fication and ranking of noise sources and transmission
paths. Before sound intensity measurement systems be-
came available this was often a difficult task, but now
it is relatively straightforward since intensity measure-
ments make it possible to determine the sound power
contribution of the various components separately. Plots
of the sound intensity normal to a measurement sur-
face can be used in locating noise sources. Figure 25.21
shows the results of 3-D sound intensity measurements
near a chain saw, and Fig. 25.22 shows an example of in-
tensity measurements near a ship window. It should be
mentioned, though, that sound intensity measurement

can give misleading results; for example, the intensity
vector will point to a position between two uncorrelated
sources where no source actually exists.

Visualization of sound fields contributes to our
understanding of the sound radiation of complicated
sources, and sound intensity is more suitable for visual-
izing sound fields than sound pressure, which is a scalar.
Figure 25.23 shows a map of the sound intensity in the
sound field generated by a rectangular plate driven in
a certain mode, measured with a microphone array us-
ing near-field acoustic holography. It is apparent that
the generated sound field is fairly complicated. Note
in particular the recirculation of sound energy; a re-
gion of the plate acts as a sink. This phenomenon is
typical of vibrating panels of low radiation efficiency
and demonstrates that spatial averaging of the sound
intensity very near such sources is problematic. The
circulation of sound energy, which implies that some
regions act as sources without actually radiating to the
far field, has led Williams to introduce the concept of
supersonic intensity, which is the part of the sound in-
tensity associated with wavenumber components within
the radiation circle, in other words, the part of the in-
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tensity associated with radiation to the far field [25.58].
One cannot determine the supersonic intensity with an
ordinary sound intensity probe, though; wavenumber
processing of near-field holographic data is required.

25.4.2 Sound Power Determination

One of the most important applications of sound in-
tensity measurement is the determination of the sound
power of operating machinery in situ. Sound power de-
termination using intensity measurements is based on
(25.7), which shows that the sound power of a source
is given by the integral of the normal component of the
intensity over a surface that encloses the source, also in
the presence of other sources outside the measurement
surface. The analysis of errors and limitations pre-
sented in Sect. 25.3.1 leads to the conclusion that the
sound intensity method is suitable for determining the
sound power of stationary sources in stationary back-

y

z
x

4

3

2

1

0

76543210

a)

b)

c)

Fig. 25.21a–c Noise radiation from a chain saw in the
1600 Hz one-third octave band. (a) Sound intensity vec-
tor in the x–y plane; (b) sound intensity vector in the
x–z plane; (c) sound intensity vector in the y–z plane (af-
ter [25.59])

ground noise provided that the pressure-intensity index
is within the dynamic capability of the measurement
system. On the other hand, the method is not suitable

315 Hz

Fig. 25.22 Sound intensity distribution (tangential compo-
nent) near a single cabin window (after [25.60])
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Fig. 25.23 Intensity vector map of the sound field gen-
erated by a rectangular plate excited in its (4, 2) mode
(after [25.61])
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in nonstationary background noise (because the sound
field will change during the measurement); it cannot
be used for determining the sound power of very weak
sources of low-frequency noise (because of large ran-
dom errors caused by electrical noise in the microphone
signals); and the absorption of the source under test
should be negligible compared with the total absorption
in the room where the measurement takes place (other-
wise the sound power will be underestimated because
the measurement gives the net sound power).

The surface integral can be approximated either by
sampling at discrete points or by scanning manually or
with a robot over the surface. With the scanning ap-
proach, the intensity probe is moved continuously over
the measurement surface. A typical scanning path is
shown in Fig. 25.24. The scanning procedure, which
was introduced by Chung in the late 1970s on a purely
empirical basis, was regarded with much skepticism
for more than a decade [25.63], but is now generally
regarded as more accurate and very much faster and
more convenient than the procedure based on fixed
points [25.62, 64, 65]. A moderate scanning rate, say
0.5 m/s, and a reasonable scan line density should be
used, say 5 cm between adjacent lines if the surface is
very close to the source, 20 cm if it is further away.
However, whereas it may be possible to use the method
based on discrete positions if the source is operating in
cycles (simply by measuring over a full cycle at each
position) one cannot use the scanning method under
such conditions; both the source under test and possible
extraneous noise sources must be perfectly stationary.

Usually the measurement surface is divided into
a number of segments that are convenient to scan. The
pressure-intensity index of each segment and the ac-
curacy of each partial sound power estimate depends
on whether (25.29) is satisfied or not, but it follows

Fig. 25.24 Typical scanning path on a measurement sur-
face (after [25.62])

from (25.30) that it is the global pressure-intensity in-
dex associated with the entire measurement surface that
determines the accuracy of the estimate of the (total)
radiated sound power. It may be impossible to satisfy
(25.29) on a certain segment, for example because the
net sound power passing through the segment takes
a very small value because of extraneous noise, but
if the global criterion is satisfied then the total sound
power estimate will nevertheless be accurate.

Theoretical considerations seem to indicate the
existence of an optimum measurement surface that min-
imizes measurement errors [25.66]. In practice one uses
a surface with a simple shape at some distance, say
25–50 cm, from the source. If there is a strong reverber-
ant field or significant ambient noise from other sources,
the measurement surface should be chosen to be some-
what closer to the source under study. One particular
problem is that one might be tempted to forget to close
a measurement surface that is very close to, say, a panel
or a window by measuring only the component of the
intensity normal to the source. This can lead to serious
errors in cases where the panel radiates very weakly, be-
cause the radiation will be nearly parallel to the source
plane.

The three ISO standards for sound power determi-
nation using intensity measurement have been designed
for sources of noise in their normal operating con-
ditions, which may be very unfavorable [25.24–26].
In order to ensure accurate results under such gen-
eral conditions the user must determine a number of
field indicators and check whether various conditions
are satisfied, as mentioned in Sect. 25.3.3. Fahy, who
was the convener of the working group that developed
ISO 9614-1 and 9614-2, has described the rationale,
background, and principles of the procedures specified
in these standards [25.65].

25.4.3 Radiation Efficiency of Structures

The radiation efficiency of a structure is a measure of
how effectively it radiates sound. This dimensionless
quantity is defined as

σ = Pa

ρc
〈
v2

n

〉
S
, (25.35)

where Pa is the sound power radiated by the structure, S
is its surface area, vn is normal velocity of the surface,
and the angular brackets indicate averaging over time
as well as space. Comparing with (25.16) shows the
close relation between this quantity and the real part of
the specific impedance, which can be measured directly
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with a sound intensity probe if it can be placed suffi-
ciently close to the structure [25.67]. The Microflown
p–u probe has an advantage in this respect. However,
measurements very near weak radiators of sound are
difficult because of the circulating energy flow men-
tioned in Sect. 25.4.1.

25.4.4 Transmission Loss
of Structures and Partitions

The transmission loss of a partition is the ratio
of incident to transmitted sound power in logarith-
mic form. The traditional method of measuring this
quantity requires a transmission suite consisting of
two vibration-isolated reverberation rooms. The sound
power incident on the partition under test in the source
room is deduced from the spatial average of the mean
square sound pressure in the room on the assumption
that the sound field is diffuse, and the transmitted sound
power is determined from a similar measurement in
the receiving room where, in addition, the reverberation
time must be determined. The sound intensity method
makes it possible to measure the transmitted sound
power directly. In contrast one cannot measure the in-
cident sound power in the source room using sound
intensity, since the method gives the net sound intensity.
If the intensity method is used for determining the trans-
mitted sound power it is not necessary that the sound
field in the receiving room is diffuse, from which it
follows that only one reverberation room is necessary.
Thus sound intensity is suitable for field measurements
of transmission loss. There are international standards
both for laboratory and field measurements of transmis-
sion loss based on sound intensity [25.69, 70].

Figure 25.25 shows the results of a round robin
investigation in which a single-leaf and a double-leaf
construction were tested by four different laboratories
using the conventional method and the intensity-based
method. Apart from the fact that only one reverbera-
tion room is needed the main advantage of the intensity
method is that it makes it possible to evaluate the
transmission loss of individual parts of the partition.
However, to be reliable each sound power measure-
ment must obviously satisfy the condition expressed
by (25.29). There are other sources of error than phase
mismatch. If a significant part of the absorption in the
receiving room is due to the partition under test then
the net power is less than the transmitted power be-
cause a part of the transmitted sound energy is absorbed
or retransmitted by the partition itself [25.71]. Under
such conditions one must increase the absorption of
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a)

Fig. 25.25a,b Inter-laboratory comparison of measured
transmission loss of a single metal leaf window (lower
curves) and a double metal leaf window (upper curves).
(a) Conventional method; (b) intensity method (af-
ter [25.68])
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the receiving room; otherwise the intensity method will
overestimate the transmission loss because the trans-
mitted sound power is underestimated. In contrast, the
conventional method measures the transmitted sound
power irrespective of the distribution of absorption in
the receiving room.

Deviations between results determined using the
traditional method and the intensity method led sev-
eral authors to reanalyze the traditional method in the
1980s [25.72] and point out that the Waterhouse cor-
rection [25.73], well established in sound power deter-
mination using the reverberation room method [25.74],
had been overlooked in the standards for conventional
measurement of transmission loss. Only recently it has
been showed that a correction very similar to the Water-
house correction should be used not only for the source
room [25.75].

25.4.5 Other Applications

The fact that the sound intensity level is consider-
ably lower than the sound pressure level in a diffuse,

reverberant sound field has led to the idea of replac-
ing a measurement of the emission sound pressure
level generated by machinery at the operator’s posi-
tion by a measurement of the sound intensity level,
because the latter is less affected by diffuse background
noise [25.76]. This method, which involves measuring
three components of the intensity at a specified position
near the source, has recently been standardized [25.77].

In principle, sound intensity may be used for mea-
suring sound absorption in situ. As in measurement of
transmission losses the incident sound power must be
deduced from a spatial average of the mean square pres-
sure in the room on the assumption that the sound field
is diffuse, and the absorbed sound power is measured by
integrating the normal component of the intensity over
a surface that encloses the specimen under test [25.2].
In practice, however, this is one of the least successful
applications of sound intensity, partly because of the as-
sumption of diffuse sound incidence and partly because
estimation errors in the absorbed power will be trans-
lated to relatively large fractional errors in the resulting
absorption coefficients.
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Acoustic Holo26. Acoustic Holography

Yang-Hann Kim

One of the subtle problems that make noise con-
trol difficult for engineers is the invisibility of noise
or sound. A visual image of noise often helps to
determine an appropriate means for noise con-
trol. There have been many attempts to fulfill this
rather challenging objective. Theoretical (or nu-
merical) means for visualizing the sound field have
been attempted, and as a result, a great deal of
progress has been made. However, most of these
numerical methods are not quite ready for practi-
cal applications to noise control problems. In the
meantime, rapid progress with instrumentation
has made it possible to use multiple microphones
and fast signal-processing systems. Although these
systems are not perfect, they are useful. A state-of-
the-art system has recently become available, but
it still has many problematic issues; for example,
how can one implement the visualized noise field.
The constructed noise or sound picture always con-
sists of bias and random errors, and consequently,
it is often difficult to determine the origin of the
noise and the spatial distribution of the noise field.
Section 26.2 of this chapter introduces a brief his-
tory, which is associated with sound visualization,
acoustic source identification methods and what
has been accomplished with a line or surface ar-
ray. Section 26.2.3 introduces difficulties and recent
studies, including de-Dopplerization and de-re-
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verberation methods, both essential for visualizing
a moving noise source, such as occurs for cars or
trains. This section also addresses what produces
ambiguity in realizing real sound sources in a room
or closed space. Another major issue associated
with sound/noise visualization is whether or not
we can distinguish between mutual dependencies
of noise in space (Sect. 26.2.4); for example, we are
asked to answer the question, Can we see two birds
singing or one bird with two beaks?

26.1 The Methodology of Acoustic Source Identification

The famous article written by Kac [26.1], Can one hear
the shape of the drum? clearly addresses the essence
of the inverse problem. It can be regarded as an at-
tempt to obtain what is not available, using what is
available, using the example of the relationship between
sound generation by membrane vibration and its recep-
tion in space. One can find many other examples of
inverse problems [26.2–8]. Often, in the inverse prob-

lem, it is hard to predict or describe data that are not
measured because the available data are insufficient.
This circumstance is commonly referred to as an ill-
posed problem in the literature [26.1–19]. Figure 26.1
demonstrates what might happen in practice; the pre-
diction depends on how well the basis function (the
elephants or dogs in Fig. 26.1) mimics what happens in
reality. When we try to see the shape of noise/sound
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: measured data

: measured data : measured data

Fig. 26.1 The inverse problem and basis function. Are the
measured data the parts of elephants or dogs?

sources, how well we see the shape of a noise source
completely depends on this basis function, because we
predict what is not available by using this selected basis
function.

One of the common methods of classifying meth-
ods used in noise/sound source identification, is by the
type of basis function. According to this classification,
one approach is the nonparametric method, which uses
basis functions that do not model the signal. In other
words, the basis functions do not map the unmeasured
sound field; all orthogonal functions fall into this cat-
egory. One of the typical methods of this kind uses
Fourier transforms. Acoustic holography uses this type
of basis function, mapping the sound field of interest

Prediction plane
(close to source plane)

Backward prediction
Measurement

plane Forward prediction

Prediction plane
(away from source plane)

Fig. 26.2 Illustration of acoustic holography. Near-field acoustic holography measures evanescent waves on the measure-
ment plane. The measurement plane is always finite, i. e. there is always a finite aperture. Therefore, we only get limited
data

with regard to every measured frequency; it therefore
sees the sound field in the frequency domain. In fact,
the ideas of acoustic holography originated from optics
[26.20–30]. Acoustic holography was simply extended
or modified from the basic idea of optical holography.
Near-field acoustic holography [26.31,32] has been rec-
ognized as a very useful means of predicting the true
appearance of the source Fig. 26.2. (The near-field ef-
fect on resolution was first introduced in the field of
microwaves [26.33].) The basis of this method is to in-
clude or measure exponentially decaying waves as they
propagate from the sound source so that the sources can
be completely reconstructed.

Another class of approaches are based on the para-
metric method, which derives its name from the fact that
the signal is modeled using certain parameters. In other
words, the basis function is chosen depending upon the
prediction of the sound source. A typical method of this
kind is the so-called beam-forming method. Different
types of basis functions can be chosen for this method,
entirely depending on the sound field that the basis func-
tion is trying to map [26.34, 35]. In Fig. 26.1, we can
select either the elephants or dogs (or another choice),
depending on what we want to predict. This type of
mapping gives information about the source location.
As illustrated in Fig. 26.1, the basis function maps the
signal by changing its parameter; in the case of forming
a plane-wave beam, the incident angle of the plane wave
can be regarded as a parameter. The main issues that
have been discussed for this kind of mapping method
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Fig. 26.3 The beam-forming method

are directly related to the structure of the correlation
matrix that comes from the measured acoustic pressure
vector and its complex conjugate (see Fig. 26.3 for the
details). In this method, each scan vector has a multi-
plicative parameter; for the plane wave in Fig. 26.3 it is
the angle of arrival. The correlation matrix is given as il-
lustrated in Fig. 26.3. The scan vector is a basis function
in this case. As one can see immediately, this problem is
directly related to the structure of the correlation matrix
and the basis function used. The signal-to-noise (S/N)
ratio of the measured correlation matrix determines the
effectiveness of the estimation. There have been many
attempts to improve the estimator’s performance with

regard to the signal-to-noise ratio [26.35, 36]. These
methods have mainly been developed for applications
in the radar and underwater communities [26.37]. This
technique has also been applied to a noise source lo-
cation finding problem; high-speed-train noise source
estimation [26.38–40] is one such example. Various
shapes of arrays have been tried to improve the spa-
tial resolution [26.41–43]. However, it is obvious that
these methods cannot sense the shape of the sound or
noise source; they only provide its location. Therefore,
we will not discuss the beam-forming method in this
chapter. In the next section, the problems that we have
discussed will be defined.

26.2 Acoustic Holography: Measurement, Prediction and Analysis

26.2.1 Introduction
and Problem Definitions

Acoustic holography consists of three components:
measurement, which consists of measuring the sound
pressure on the hologram plane, prediction of the acous-
tic variables, including the velocity distribution, on the
plane of interest, and analysis of the holographic recon-
struction. This last component was not recognized as
important as the others in the past. However, it yields
the real meaning of the sound picture: visualization.

The issues associated with measurement are all re-
lated to the hologram measurement configuration; we
measure the sound pressure at discrete measurement
points over a finite measurement area (finite aper-
ture), as illustrated in Fig. 26.2. References [26.44–
52] explain the necessary steps to avoid spatial alias-
ing, wrap-around errors, and the effect of including
evanescent waves on the resolution (near-field acoustic
holography). If sensors are incorrectly located on the
hologram surface, errors result in the prediction results.
Similar errors can be produced when there is a mag-
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nitude and phase mismatch between sensors. This is
well summarized in [26.53]. There have been many at-
tempts to reduce the aperture effect. One method is
to extrapolate the pressure data based on the measure-
ments taken [26.50, 52]. Another method allows the
measurement of sound pressure in a sequence and in-
terprets the measured sound pressures with respect to
reference signals, assuming that the measured sound
pressure field is stationary during the measurement and
the number of independent sources is smaller than the
number of reference microphones [26.54–61]. Another
method allows scanning or moving of the microphone
array, thereby extending the aperture size as much as
possible [26.62–65]. This also allows one to measure
the sound pressure generated by moving sound sources,
such as a vehicle’s exterior noise.

The prediction problem is rather well defined and
relatively straightforward. Basically, the solution of the
acoustic wave equation usually results in the sound
pressure distribution on the measurement plane. Pre-
diction can be attempted using a Green’s function, an
example of which may be found in the Kirchhoff–
Helmholtz integral equation. It is noteworthy, however,
that the prediction depends on the shape of the measure-
ment and prediction surfaces, and also on the presence
of sound reflections [26.54, 66–87].

The acoustic holography analysis problem was in-
troduced rather recently. As mentioned earlier in this
section, this is one of the essential issues connected
to the general inverse problem. One basic question is
whether what we see and imagine is related to what
happens in reality. There are two different sound/noise
sources, one of which is really radiating the sound, and
the another that is reflecting the sound. The former is of-

Boundary

x

Sh

Sh

G (x |xh ; f ) Source-free region

nxh

n

Fig. 26.4 The geometry and nomenclature for the Kirch-
hoff–Helmholtz integral (26.1)

ten called active sound/noise, while the latter is called
passive sound/noise. This is an important practical con-
cept for establishing noise control strategies; we want
to eliminate the active noise source. Another concern is
whether the sources are independently or dependently
correlated (Fig. 26.23). The concept of an independent
and dependent source has to be addressed properly to
understand the issues.

26.2.2 Prediction Process

The prediction process is related to how we predict the
unmeasured sound pressure or other acoustic variables
based on the measured sound pressure information. The
following equation relates the unmeasured and meas-
ured pressure

P(x; f ) =
∫

Sh

[
G(x|xh; f )

∂P

∂n

∣∣∣∣
(x=xh; f )

− P(xh; f )
∂G(x|xh; f )

∂n

]
dSh . (26.1)

Equation (26.1) is the well-known Kirchhoff–Helmholtz
integral equation, where G(x|xh; f ) is the free-space
Green’s function. This equation essentially says that we
can predict the sound pressure anywhere if we know
the sound pressures and velocities on the boundary
Fig. 26.4. However, it is noteworthy that measuring the
velocity on the boundary is more difficult than measur-
ing the sound pressure. This rather practical difficulty
can be solved by introducing a Green’s function that

Contribution from the outside of the hologram is assumed to
be zero, or extra-
polation is
used.

Source-free region

y

z

x
Prediction
plane (z)

Hologram
plane (z h)

Source
plane (z s)

�

Fig. 26.5 Illustration of the planar acoustic holography
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Prediction
plane (z)

Hologram
plane (z h)

Source
plane (z s)

Exponentially decaying

Propagating

ky

kx

k

k

Radiation circle

Fig. 26.6 Propagating and exponentially waves in acoustic holography

P(x, y, z h;  f )

P(x, y, z; f )

Space domain Wave number domain

P (kx, ky, z h; f )

«

P (kx, ky, z; f )

«

�e ikz (z–zh)

Fourier
transform

Inverse
fourier
transform

Propagation

Fig. 26.7 The data-processing procedure for acoustic
holography

satisfies the Dirichlet boundary condition: GD(x|xh; f ).
Then, (26.1) becomes

P(x; f ) =
∫

Sh

[
−P(xh; f )

∂GD(x|xh; f )

∂n

]
dSh . (26.2)

This equation allows us to predict the sound pressure
on any surface of interest. It is noteworthy that we can
choose a Green’s function as long as it satisfies the
linear inhomogeneous wave equation, or the inhomo-
geneous Helmholtz equation in the frequency domain.
That is,

∇2G(x|xh; f )+ k2G(x|xh; f ) =−δ(x− xh) .
(26.3)

Therefore, we can select a Green’s function in such
a way that we can eliminate one of the terms on the
right-hand side of (26.1); (26.2) is one such case.

To see what essentially happens in the prediction
process, let us consider (26.2) when the measurement
and prediction plane are both planar. Planar acoustic
holography assumes that the sound field is free from
reflection (Fig. 26.5); then we can write (26.2) as

P(x, y, z; f ) =
∫

Sh

P(xh, yh, zh; f )

× KPP(x− xh,y− yh,z− zh; f )dSh ,

(26.4)

KPP(x, y, z; f ) = 1

2π

z

r3
(1− ikr) exp(ikr) , (26.5)

where r =
√

x2+ y2+ z2 ,

k = 2π f

c
,

x = (x, y, z) ,

xh = (xh, yh, zh) .

KPP can be readily obtained by using two free-field
Green’s functions that are located at zh and −zh, so that
it satisfies the Dirichlet boundary condition.

This is a convolution integral, and therefore we can
write this in the wave-number domain as

ˆ̂P(kx , ky, z; f )

= ˆ̂P(kx , ky, zh; f ) exp[ikz(z− zh)] , (26.6)
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=
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Fig. 26.8 The error due to discrete measurement: the spa-
tial aliasing problem. The microphone spacing determines
the Nyquist wave number. This wave number has to be
smaller than the maximum wave number of the acoustic
pressure distribution on the hologram plane. The micro-
phone spacing, therefore, has to get smaller as the distance
between the hologram (the measurement plane) and source
decrease. The rule of thumb is δ< d �

where
ˆ̂P(kx , ky, z; f )

=
∞∫

−∞

∞∫

−∞
P(x, y, z; f )e−i(kx x+ky y) dx dy , (26.7)

kz =
√

k2− k2
x − k2

y .

This equation essentially predicts the sound pressure
with respect to the wave number (kx , ky). If k2 � k2

x +
k2

y, the wave in z-direction (kz) is propagating in space.
Otherwise, the z-direction wave decays exponentially,
i. e. it is an evanescent wave (Fig. 26.6).

We have derived the formulas that can predict what
we did not measure based on what we measured, by
using a Green’s function. It is noteworthy that we can
get the same results if we use the characteristic solu-
tions of the Helmholtz equation; the Appendix describes
the details. The Appendix also includes discrete expres-
sions for the formula, which are normally used in the
computation.

Equation (26.6) also allows us to predict the sound
pressure on the source plane, when z = zs. This is an
inverse problem because it predicts the pressure dis-
tribution on the source plane based on the hologram
pressure (Figs. 26.3 and 26.6).

Figure 26.7 essentially illustrates how we can pro-
cess the data for predicting what we did not measure
based on what we measure. There are four major ar-
eas that cause errors in acoustic holography prediction.
One is related to the integration of (26.4). Equa-
tion (26.4) has to be implemented on the discretized
surface Fig. 26.8. This surface, therefore, has to be spa-
tially sampled according to the selected surface. This
spatial sampling can produce spatial aliasing, depend-
ing on the spatial distribution of the sound source: the
sampling wave number must be larger than twice the
maximum wave number of interest. It is noteworthy
that, as illustrated in Fig. 26.8, the distance between the

Fig. 26.9 The effect of a finite aperture: the rapid change
at the aperture edges produces high-wave-number noise �
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hologram and source planes is usually related to the
sampling distance d. The closer one is to the source,
the smaller the sampling distance needs to be. We
must also note that the size of the aperture determines
the wave-number resolution of acoustic holography.
The finite aperture inevitably produces very sharp data
truncation, as illustrated in Fig. 26.9. This produces un-
realistic high-wave-number noise (see without window
in Fig. 26.9). Therefore, it is often required that we use
a window, which can result in a smoother data transi-
tion from what is on the measurement plane to what is
not measured (Fig. 26.9).

The spatial Fourier transform that has to be done
in the prediction process (26.6) has to be carried out
in the domain for which data is available, i. e. a finite
Fourier transform. It therefore produces a ghost holo-
gram, as illustrated in Fig. 26.10 [26.46,50]. This effect
can be effectively removed by adding zeros to the holo-
gram data (Fig. 26.11). The last thing to note is what can
happen when we do backward propagation. As we can
see in (26.6), when we predict the sound pressure dis-
tribution on a plane close to the sound source (z < zh
(Fig. 26.5)) and kz has an imaginary value (evanescent
wave), then the sound pressure distribution of the expo-
nentially decaying part will be unrealistically magnified
(Fig. 26.11) [26.47]. Figure 26.12 graphically summa-
rizes the entire processing steps of acoustic holography.

The issues related with the evanescent wave and its
measurement are well addressed in the literature [26.88].
The measurement of evanescent waves essentially al-
lows us to achieve higher resolution than conventional
acoustic holography [26.89–94]. However, it is notewor-
thy that the evanescent-wave component is substantially
smaller than the other propagating components. There-
fore, it is easy to produce errors that are associated with
sensor or position mismatch [26.53]; in other words, it
is very sensitive to the signal-to-noise ratio. Errors due
to position and sensor mismatch are bias errors and ran-
dom errors, respectively. It has been shown [26.53] that
the bias error due to the mismatches is negligible, but
the random error is significant in backward prediction.
This is related to the measurement spacing on the holo-
gram plane (Δh), prediction plane (Δz), and the distance
between the hologram plane and the prediction plane
(d). It is approximately proportional to 24.9(d/Δz)+
20 log10(Δh/Δz) in a dB scale. The signal-to-noise ratio
can be amplified when we try to reconstruct the source
field: a typical ill-posed phenomena. There have been
many attempts to reduce this effect by using a spatial
filter [26.47, 95–99], which is often called the regular-
ization of acoustic holography [26.100–115].

Ghost
holograms

Hologram
aperture Zeros

Extended aperture
by zero padding

Fig. 26.10 The effect of the finite spatial Fourier transform
on acoustic holography: the ghost image is due to the finite
Fourier transform; circular convolution can be eliminated
by adding zeros

Depending on the separable coordinates that we use
for acoustic holography, we can construct cylindrical or
spherical coordinates [26.54, 67, 69] (Figs. 26.13 and

|P (k x, 0, z h; f ) |

«

kx–k k

|P (k x, 0, z s; f ) |

«

kx–k k

|PF (k x, 0, z s; f ) |

«

kx–k k

kx

Backward
prediction Filtering

×

Wavenumber filter

Before
filtering

After
filtering

measured true

Fig. 26.11 Wave-number filtering in backward prediction. Evanes-
cent wave components are magnified without filtering (after
[26.47])
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Wavenumber
filtering

P (kx, ky, zh; f )
«

Zero padding
(wrap around
error)

Inverse
Fourier
transform

Fourier transform

P (x, y, z ; f )

P(x, y, zh; f )

Wave number domainSpace domain

P(kx, ky, z; f )

«

�e ikz (z – zh )Propagation

Fig. 26.12 Summary of the acoustic holography prediction process

Configuration of
microphone array

– Microphone 31 EA
(B&K 4935)

– Aperture length: 1.50 m
– Vertical spacing: 0.05 m
– Measuring radius: 0.32 m

Fig. 26.13 Cylindrical holography

Configuration of
microphone array

– Microphone 17 EA
(B&K 4935)

– Aperture radius: 0.51 m
– Microphone spacing: 10

Fig. 26.14 Spherical holography
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26.14). These methods predict the sound field in ex-
actly the same manner as in planar holography but with
respect to different coordinates. As expected, however,
these methods have some advantages. For example,
the wrap-around error is negligible – in fact, there is
no such error in spherical acoustic holography – and
there is no aperture-related error [26.54]. Recently, the
advantage of using spherical functions has also been
noted [26.79, 81, 86, 87, 113].

26.2.3 Measurement

To construct a hologram, we commonly measure the
sound pressure at discrete positions, as illustrated in
Fig. 26.2. However, if the sound generated by the
source, and therefore the sound field, can be assumed

Last step

First step

Q ( f )

Reference R ( f )

P (xh; f )

a)

um

Q ( f )

Reference R ( f )

P (xh; f )

b)

Fig. 26.15a,b Two measurement methods for the pressure
on the hologram plane: (a) step-by-step scanning (b) con-
tinuous scanning

to be stationary, then we do not have to measure them at
the same time.

Figure 26.15 illustrates one way to accomplish
this measurement. This method normally measures
the sound pressure field using a stepped line array
(Fig. 26.15a). To understand the issues associated with
this measurement system for the sake of its simplicity,
let us see how we process a signal of frequency f when
there is a single source. The relationship between the
sound source and sound pressure in the field, or meas-
urement position (xh), can be written as

P(xh; f ) = H(xh; f )Q( f ) , (26.8)

where Q( f ) is the source input signal and H(xh; f )
is the transfer function between the source input and
the measured pressure. This means that, if we know
the transfer function and the input, we can find the
magnitude and phase between the measured positions.
Because it is usually not practical to measure the in-
put, we normally use reference signals (Fig. 26.15a). By
using a reference signal, the pressure can be written as

P(xh; f ) = H ′(xh; f )R( f ) , (26.9)

where R( f ) is the reference signal. We can obtain
H ′(xh; f ) by

H ′(xh; f ) = P(xh; f )

R( f )
. (26.10)

The input and reference are related through

R( f ) = HR( f )Q( f ) , (26.11)

where HR( f ) is the transfer function between the input
and the reference. As a result, we can see that (26.9) has
the same form as (26.8).

It is noteworthy that (26.8) holds for the case that
we have only one sound source and the sound field is
stationary and random. However, if there are two sound
sources, then (26.8) becomes

P(xh; f ) = H1(xh; f )Q1( f )+H2(xh; f )Q2( f ) ,

(26.12)

where Qi ( f ) is the i-th input and Hi (xh; f ) is its trans-
fer function. There are now two independent sound
fields. This requires, of course, two independent refer-
ence signals. It has been well accepted that the number
of reference microphones has to be greater than the
number of independent sources [26.57]. However, if this
is strictly true, then it means that we have to somehow
know the number of sources, and this, in some degree,
contradicts the the acoustic holography approach.
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A recent study [26.61] demonstrated that the meas-
ured information, the location of the sources, and the
number of independent sources converge to their true
values as the number of reference microphones in-
creases. This study also showed that high-power sources
are likely to be identified even if the number of refer-
ence microphones is less than the number of sources.

Fig. 26.16 Application result of the step-by-step scanning
method to the wind noise of a car. This figure is the pres-
sure distribution at 710 ∼ 900 Hz in a source plane when
the flow velocity is 110 km/h. In this experiment, 17 ref-
erence microphones are randomly located in the car, to
see the coherence between interior noise and what are
measured by the array microphone system. The array mi-
crophone system was initially located at 3 m forward from
the middle point of a car, and moved 6 cm in step until it
reached at 3 m backward from the middle point �

Figure 26.16 shows an example of this method when
there are many independent sound fields. On the other
hand, one study showed that we can even continu-
ously scan the sound field by using a line array of
microphones (Fig. 26.15b) [26.62–65]. This method es-
sentially allows us to extend the aperture size without
any limit as long as the sound field is stationary. In
fact, [26.65] also showed that this method can be used
for a slowly varying (quasi-stationary) sound field.

This method has to deal with the Doppler shift.
For example, let us consider a plane wave in the
(kx0 , ky0 , kz0 ) direction and a pure tone of fre-
quency fh0 . Then the pressure on the hologram plane
can be written as

p(xh, yh, zh; t)

= P0 exp
[
i(kx0 xh+ ky0 yh+ kz0 zh)

]
exp(−i, fh0 t) ,

(26.13)

where P0 denotes the complex magnitude of the plane
wave. Spatial information about the plane wave with
respect to the x-direction can be represented by a wave-
number spectrum, and can be described as

P̂(kx , yh, zh; t) =
∞∫

−∞
p(xh, yh, zh; t)e−ikx xh dxh

= P0 exp
[
i(ky0 yh+ kz0 zh)

]

× δ(kx − kx0 ) exp(−i2π fh0 t)

= P(kx0 , yh, zh)δ(kx − kx0 )

× exp(−i2π fh0 t) , (26.14)

where P(kx0 , yh, zh) = P0 exp[i(ky0 yh+ kz0 zh)] is the
wave-number spectrum of the plane wave at kx = kx0 .

Fig. 26.17 The continuous scanning method for a plane
wave and a pure tone (one-dimensional illustration). fh0
is the source frequency, f is the measured frequency, um

is the microphone velocity, c is the wave speed, kx0 is the
x-direction wave number, and P0 is the complex amplitude
of a plane wave �
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Fig. 26.18 De-Dopplerization procedure for a line spectrum
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Fig. 26.19 The continuous scanning method for a more general case (one-dimensional illustration)
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Fig. 26.20 Experimental configuration and result of the continuous scanning method to vehicle pass-by noise. The tire
pattern noise distribution (pressure) on the source plane is shown when the car passed the microphone array with constant
speed of 50 km/h

What is measured?

Measured data

What it looks like? Who or what makes this?

Information of the
noise source

Predicted data

Fig. 26.21 Illustration of analysis problem in acoustic holography

If a microphone is moving at an x-velocity um, the
measured signal pm(xh, yh, zh; t) is

pm(xh, yh, zh; t) = p(umt, yh, zh; t) . (26.15)

The Fourier transform of (26.15) with respect to time
FT, using (26.13), can be expressed as

FT[pm(umt, yh, zh; t)]

=
∞∫

−∞
pm(umt, ym, zh; t)ei2π ft dt

= P0 exp[i(ky0 yh+ kz0 zh)]
× δ
(um

2π
kx0 − fh0 + f

)

= P(kx0 , yh, zh)δ
(um

2π
kx0 − fh0 + f

)
. (26.16)

Equation (26.16) means that the complex am-
plitude of the plane wave is located at the shifted
frequency fh0 −umkx0/2π, as shown in Fig. 26.17. In
general, the relation between the shifted frequency
f and x-direction wave number kx is expressed as
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Fig. 26.18

kx = 2π( fh0 − f )

um
. (26.17)

We can measure the original frequency fh0 by a fixed
reference microphone. Using the Doppler shift, we can
therefore obtain the wave-number components from
the frequency components of the moving microphone
signal. Figure 26.19 illustrates how we obtain the wave-
number spectrum.

This method essentially uses the relative coordinate
between the hologram and microphone. Therefore, it
can be used for measuring a hologram of moving noise
sources (Fig. 26.20), which is one of the major contri-
butions of this method [26.62–65].

26.2.4 Analysis of Acoustic Holography

Once we have a picture of the sound (acoustic hologra-
phy), the questions about its meaning are the next topic
of interest. What we have is usually a contour plot of the
sound pressure distribution or a vector plot of the sound
intensity on a plane of interest. This plot may help us to
imagine where the sound source is and how it radiates
into space with respect to a frequency of interest. How-
ever, in the strict sense, the only thing we can do from
the two-dimensional expression of sound pressure or in-
tensity distribution is to guess what was really there.
We do not know, precisely, where the sound sources are
(Fig. 26.21).

As mentioned earlier, there are two types of sound
sources: active and passive sound source. The former
is the source that radiates sound itself, while the latter
only radiates reflected sound. These two different types
of sound sources can be distinguished by eliminating
reflected sound [26.116]. This is directly related to the
way boundary conditions are treated in the analysis.

The boundary condition for a locally reacting sur-
face can be written as [26.116–118]

V (xs; f ) = A(xs; f )P(xs; f )+ S(xs; f ) , (26.18)

where V (xs; f ) and P(xs; f ) are the velocity and pres-
sure on the wall. A(xs; f ) is the wall admittance and
S(xs; f ) is the source strength on the wall. The ac-
tive sound source is located at a position such that
the source strength is not zero. This equation says that
we can estimate the source strength if we measure the
wall admittance. To do this, it is necessary to first turn
off the source or sources, and then measure the wall
admittance by putting a known source in the desired
position (Fig. 26.22a). The next step is to turn on the

P (xs; f ) = surface pressure

V (xs; f ) = surface velocity

P (xs; f )
V (xs; f )xs

x

Sin

S

n

Orginal
sound sources

0

Arbitrary
sound source

a)

z

y
x

P (xs; f )
V (xs; f )xs

x

S

n

Orginal
sound sources

b)

z

y
x

Fig. 26.22a,b Two steps to separate the active and passive
source: (a) Admittance measurement, (b) source strength
measurement

Fig. 26.23 Spatially independent or dependent sources

sources and obtain the sound pressure and velocity dis-
tribution on the wall, using the admittance information
(Fig. 26.22b). This provides us with the location and
strength of the source (i. e. the source power; for ex-
ample, see Fig. 26.24).

Another very important problem is whether or not
we can distinguish between independent or dependent
sources, i. e. two birds singing versus one bird with two
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Fig. 26.24 Experiment results that separate the active and passive sources. The top surface is made by the sound
absorption material. The speaker on the bottom surface, which is reflecting sound, is eliminated by this separation
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Fig. 26.25 A two-input single-output system and its partial field
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Fig. 26.26 The conventional method to obtain the partial
field
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Fig. 26.27 Acoustic holography and partial field decompo-
sition
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first source’s contribution

Step 5: Calculation of the
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Step 6: Selection of
maximum pressure

Step 7: Estimation of the
second source’s contribution

Repetition

Fig. 26.28 The procedure to separate the independent and dependent sources
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beaks (Fig. 26.23). This has a rather significant practi-
cal application. For example, to control noise sources
effectively, we only need to control independent noise
sources. This can be achieved by using the statistical
differences between signals that are induced by inde-
pendent and dependent sound sources.

For example, let us consider a two-input single-
output system (Fig. 26.25). If the two inputs are
independent, the spectrum SPP( f ) of the output P( f )
can be expressed as

SPP( f ) = |H1( f )|2SQ1Q1 ( f )+|H2( f )|2SQ2Q2 ( f ) ,

(26.19)

where SQi Qi ( f ) is the spectrum of the i-th input Qi ( f ),
and Hi ( f ) is its transfer function. The first and second
terms represent the contributions of the first and sec-
ond input to the output spectrum, respectively. If we can
obtain a signal as

W1( f ) = C( f )Q1( f ) , (26.20)

then we can estimate the contribution of the first source
as [26.119]

SP1P1 ( f ) = |H1( f )|2SQ1Q1 ( f ) = γ 2
W1P( f )SPP( f ) ,

(26.21)

where γ 2
W1P( f ) is the coherence function between

W1( f ) and Q1( f ) (Fig. 26.26).
We can simply extend (26.21) to the case of mul-

tiple outputs, as in the case of acoustic holography
(Fig. 26.27). The main problem is how to obtain a sig-
nal that satisfies (26.20). We can generally say that, by
putting sensors closer to the source or sources [26.57,
58, 120–123], we may have a better signal that can be
used to distinguish between independent or dependent
sources. However, this is neither well proven nor practi-
cal, as it is not always easy to put the sensors close to the
sources. Very recently, a method that does not require
this [26.124,125] was developed. Figure 26.28 explains
the method’s procedures. The first and second steps are
the same as in acoustic holography: measurement and
prediction. The third step is to search for the maximum
pressure on the source plane. This method assumes that
the maximum pressure satisfies (26.20). The fourth step
is to estimate the contribution of the first source by using
the coherence functions between the maximum pressure
and other points, as in (26.21). The fifth step is to cal-
culate the remaining spectrum by subtracting the first
contribution from the output spectrum. These steps are
repeated until the contributions of the other sources are
estimated (Fig. 26.29).

26.3 Summary

As expected, it is not simple to answer the question
of whether we can see the sound field. However, it is
now understood that the analysis of what we obtained,
acoustic holography, needs to be properly addressed, al-
though little attention was given to this problem in the
past. We now understand better how to obtain informa-

tion from the sound picture. Making a picture is the job
of acoustic holography, but the interpretation of this pic-
ture is the responsibility of the observer. This paper has
reviewed some useful guidelines for better interpreta-
tion of the sound field to deduce the right impression or
information from the picture.

26.A Mathematical Derivations of Three Acoustic Holography Methods
and Their Discrete Forms

We often use the Kirchhoff–Helmholtz integral equa-
tion to explain how we predict what we do not measure
based on what we do measure. It is noteworthy, how-
ever, that the same result can be obtained by using
the characteristic solutions of the Helmholtz equa-
tion. The following sections address how these can
be obtained. Planar, cylindrical, and spherical acoustic
holography are derived using characteristic equations in
terms of a corresponding coordinate system. The equa-
tions for holography are also expressed in a discrete
form.

26.A.1 Planar Acoustic Holography

If we see solutions of the Helmholtz equation

∇2 P+ k2 P = 0 , (26.A1)

in terms of Cartesian coordinate, then we can write them
as

P(x, y, z; f ) = X(x) Y (y) Z(z) , (26.A2)

where k = ω
c = 2π f

c . We assume then P is separable
with respect to X, Y and Z. Equations (26.A1) and
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(26.A2) yield the characteristic equation

ψ(x, y, z; kx, ky, kz)

=
(

eikx x

e−ikx x

)(
eiky y

e−iky y

)(
eikz z

e−ikz z

)
, (26.A3)

where

k2 = k2
x + k2

y + k2
z . (26.A4)

Now we can write

P(x, y, z; f ) =
∫

P̂(k)ψ(x, y, z; kx, ky, kz)dk ,

(26.A5)

where

k= (kx , ky, kz) . (26.A6)

Let us assume that the sound sources are all located at
z < zs and we measure at z = zh > zs. Then we can write
(26.A5) as

P(x, y, z; f )

=
∞∫

−∞

∞∫

−∞

ˆ̂P(kx , ky)ei(kx x+ky y+kz z) dkx dky . (26.A7)

It is noteworthy that we selected only +ikzz. This
is because of the assumptions we made (z < zs and
z = zh > zs). The kx and ky can be either positive or
negative. Therefore it is not necessary to include −ikx x
or −iky y in (26.A3).

In (26.7),

kz =
⎧
⎨

⎩

√
k2− k2

x − k2
y, when k2 > k2

x + k2
y

i
√

k2
x + k2

y − k2, when k2 < k2
x + k2

y .

(26.A8)

Figure 26.6 illustrates what these two different kz values
essentially mean. We measure P(x, y, z = zh; f ), there-
fore we have data of the sound pressure data on z = zh.
A Fourier transform of (26.A7) leads to

ˆ̂P(kx , ky)

=
∞∫

−∞

∞∫

−∞
P(x, y, z; f )e−i(kx x+ky y+kz z) dx dy .

(26.A9)

Using (26.A9) and (26.A7), we can always estimate the
sound pressure on z, which is away from the source.

z

x

y

Δy
Δx

Hologram plane
z = zh

Source plane
z = zs

a)

x = r cosø
y = r sinø
z = z

Source surface

Hologram surface

z

x

y

r = rh r= rs

z = z

ø

b)

x = r sinθ cosø
y = r sinθ sinø
z = r cosθ

rh

rs

ø

θ

Source surface
Hologram surface

y

z

x

c)

Fig. 26.30a–c Coordinates system for acoustic hologra-
phy: (a) planar acoustic holography (b) cylindrical acoustic
holography (c) spherical acoustic holography
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It is noteworthy that (26.A9) has to be preformed
in the discrete domain. In other words, we have to use
a finite rectangular aperture, which is spatially sampled
(26.8 and 26.30a). If the number of measurement points
along the x-and y-directions are M and N , respectively,
and the corresponding sampling distances are Δx and
Δy, then (26.A9) can be rewritten as

ˆ̂P(kx , ky) = 1

(2π)2
e−ikz zhΔxΔy

M−1∑

m=0

N−1∑

n=0

P(xm, yn, zh)e−ikx xm e−iky yn . (26.A10)

where

xm =
(

m+ 1−M

2

)
Δx ,

yn =
(

n+ 1− N

2

)
Δy . (26.A11)

M and N are the number of data points in the x- and
y-directions, respectively.

26.A.2 Cylindrical Acoustic Holography

A solution can also found in cylindrical coordinate, that
is

P(r, φ, z) = R(r)Φ(φ)Z(z) . (26.A12)

Figure 26.1 shows the coordinate systems. Then, its
characteristic solutions are

ψ(r, φ, z; kr , kz)

=
(

H (1)
m (krr)

H (2)
m (krr)

)[
eimφ

e−imφ

][
eikz z

e−ikz z

]
, (26.A13)

where

k2 = k2
r + k2

z . (26.A14)

It is noteworthy that m is a nonnegative integer. H (1)
m and

H (2)
m are first and second cylindrical Hankel functions,

respectively. eimφ and e−imφ express the mode shapes
in the φ-direction.

Using the characteristic function (26.A6), we can
write a solution of the Helmholtz equation with respect
to cylindrical coordinate as

P(r, φ, z; f ) =
∫

P̂m(k)ψm (r, φ, z; kr , kz)dk ,

(26.A15)

where

k= (kr , kz) . (26.A16)

Assuming that the sound sources are all located at r< rs
and that the hologram surface is situated on the sur-
face r = rh, and that rh > rs, then no waves propagate
into the negative r-direction, in other words, toward the
sources. Then (26.A15) can be rewritten as

P(r, φ, z; f )

=
∞∑

m=−∞

∞∫

−∞
P̂m(kz)eimφ eikz z H (1)

m (krr)dkz ,

(26.A17)

and kr has to be

kr =
{ √

k2− k2
z , when k2 > k2

z

i
√

k2
z − k2,when k2 < k2

z .
(26.A18)

We measure the acoustic pressure at r = rh, therefore
P(rh, φ, z) is available. P̂m(kz) can then be readily ob-
tained.

That is

P̂m(kz) = 1

(2π)2

2π∫

0

∞∫

−∞
P(rh, φ, z)e−mφ e−ikz z

×
{

H (1)
m (krrh)

}−1
dz dφ . (26.A19)

Inserting (26.A19) into (26.A17) provides us with the
acoustic pressure at the unmeasured surface at r.

Discretization of (26.A19) leads to a formula that
can be used in practical calculations

P̂m(kz) = 1

(2π)2 H (1)
m (krrh)

2π

L
Δz

×
L−1∑

l=0

N−1∑

n=0

P(rh, φl, zn)e−imφl e−ikz zn ,

(26.A20)

where

φl = (2l+1)π

L
,

zn =
(

n+ 1− N

2

)
Δz . (26.A21)

L and N are the number of data points in the φ- and
z-directions, respectively.
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26.A.3 Spherical Acoustic Holography

The Helmholtz equation can also be expressed in spher-
ical coordinate (Fig. 26.30c). Assuming again that the
separation of variable also holds in this case, we can
write

P(r, θ, φ) = R(r)Θ(θ)Φ(φ) . (26.A22)

Substituting this into (26.A1) gives the characteristic
equation

ψmn(r, θ, φ; k) =
(

h(1)
m (kr)

h(2)
m (kr)

)(
Pn

m cos θ

Qn
m cos θ

)(
einφ

e−inφ

)
. (26.A23)

m is a nonnegative integer and n can be any integer
between 0 and m. h(1)

m and h(2)
m are first and second

spherical Hankel functions. It is also noteworthy that
Pn

m and Qn
m are first and second Legendre polynomials.

Then we can write the solution of the Helmholtz
equation as

P(r, θ, φ) =
∞∑

m=0

m∑

n=−m

P̂mnψmn(r, θ, φ; k) .

(26.A24)

Suppose that we have sound sources at r < rs
and the hologram is on the surface r = rh > rs; then
(26.A24) can be simplified to

P(r, θ, φ) =
∞∑

m=0

m∑

n=−m

P̂mnYmn(θ, φ)h(1)
m (kr) ,

(26.A25)

where

Ymn(θ, φ) = P|n|
m (cos θ)einφ . (26.A26)

This is a spherical harmonic function. It is notewor-
thy that we only have first spherical harmonic functions
because all waves propagate away from the sources.
The second Legendre function was discarded because
it would have finite acoustic pressure at θ = 0 or π.

Similarly, as previously stated, the sound pressure
data on the hologram is available, therefore we can ob-
tain Pmn in (26.A25) by

P̂mn = 2m+1

4πh(1)
m (krh)

(m−|n|)!
(m+|n|)!

×

π∫

0

2π∫

0

P(rh, θ, φ)Y∗
mn(θ, φ) sin θ dφdθ ,

(26.A27)

where we have used the orthogonality property of
Ymn . The ∗ represents the complex conjugate. Using
(26.A27) and (26.A25), we can estimate the acoustic
pressure anywhere away from the sources.

The discrete form of (26.A27) can be written as

P̂mn = Amn
2π2

L Q

L−1∑

l=0

Q−1∑

q=0

P(rh, θl, φq)

× P|n|
m (cos θl)(sin θl)e−inφq , (26.A28)

where

θl = (2l+1)π

2L
,

φq = (2q+1)π

Q
. (26.A29)

where L is the number of data points in θ and Q is what
is in φ-direction.
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Optical Metho27. Optical Methods for Acoustics
and Vibration Measurements

Nils-Erik Molin

Modern optical methods applicable to vibration
analysis, monitoring bending-wave propagation
in plates and shells as well as propagating acoustic
waves in transparent media such as air and water
are described. Field methods, which capture the
whole object field in one recording, and point
measuring (scanning) methods, which measure at
one point (small area) at a time (but in that point as
a function of time), will be addressed. Temporally,
harmonic vibrations, multi-frequency repetitive
motions and transient or dynamic motions are
included.

Interferometric methods, such as time-average
and real-time holographic interferometry, speckle
interferometry methods such as television (TV)
holography, pulsed TV holography and laser vi-
brometry, are addressed. Intensity methods such
as speckle photography or speckle correlation
methods and particle image velocimetry (PIV) will
also be treated.

27.1 Overview............................................. 1139
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27.1 Overview

27.1.1 Chladni Patterns, Phase-Contrast
Methods, Schlieren, Shadowgraph

Visualization of vibration patterns in strings, plates and
shells and propagating acoustic waves in transparent
objects such as air and water have been of great impor-
tance for the understanding and description of different

phenomena in acoustics. Chladni [27.1] (1756–1824)
sprinkled sand on vibrating plates to show the nodal
lines. His beautiful figures challenged the research
community for a theoretical description and Napoleon
provided a prize of 3000 francs for someone that could
give a satisfactory explanation; historical introduction
by Lindsay in Lord Rayleigh’s, Theory of Sound [27.2].
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Chladni patterns are in some applications a simple,
cost-effective way to visualize vibration patterns, of-
ten competitive to and an alternative to modern optical
methods. In certain cases, such as for curved surfaces,
the Chladni patterns may however, give completely mis-
leading results.

Transparent or semitransparent objects such as cells
and bacteria in microscopy, air flow and pressure fields
in fluid mechanics, sound fields in acoustics etc. are
objects that was not readily observed with the un-
aided eye. Zernike [27.3] developed phase-contrast
microscopy, one of many optical, spatial-filtering tech-
niques that operate in the Fourier-transform plane of
imaging systems, to obtain images of such normally
invisible objects. These techniques became very im-
portant in medicine and biology and are today used
both in routine investigations and in research. In
Atlas de phénomènes d‘optique (Atlas of optical phe-
nomena) [27.4] a collection of beautiful photographs
of interference, diffraction, polarization and phase-
contrast experiments are found. In An Album of Fluid
Motion [27.5] different kinds of fluid flows are vi-
sualized. Classical optical filtering methods such as
shadowgraph and Schlieren [27.6] are, together with in-
terferometric methods, used to illustrate phenomena in
turbulence, convection, subsonic and supersonic flow,
shock waves, etc. Some of them, such as shock waves in
air and water, certainly also generate sound fields. Still,
most of those more classical methods only find limited
application in acoustics since they mostly give qualita-
tive pictures only. Practical optical methods with higher
sensitivity, higher spatial resolution and that also give
quantitative data have therefore been developed.

27.1.2 Holographic Interferometry,
Acoustical Holography

In 1965 Horman [27.7], Burch [27.8], Powell and Stet-
son [27.9, 10] proposed to use holography [27.11] for
optical interferometry. With holography a method was
invented by which a wavefront, including phase and
amplitude information, could be recorded and stored in
a hologram. Subsequently a copy of the recorded wave-
front could be reconstructed from the hologram for later
use. At that time most holograms were recorded on spe-
cial, high-resolution photographic plates. In ordinary
photography it is the intensity (the irradiance distribu-
tion) that is recorded and displayed. This quantity is
proportional to the amplitude squared. In that operation
the phase is lost. And it is the phase that carries the in-
formation of the optical path: that is the distance to the

object, or the direction, for light passing through a trans-
parent medium. Now, assume for instance that a holo-
gram was exposed twice in the same setup (a double-
exposed hologram) of an object in two different states,
for instance with a small deformation introduced be-
tween the exposures. Then in the reconstruction both
these two fields were reconstructed and displayed si-
multaneously. The total reconstruction then showed the
object covered with a set of interference fringes (dark
and bright bands) that display the difference in phase.
A measure of the deformation field was thus obtained
by letting an object interfere with itself. The techniques
were called holographic interferometry or just holo-
gram interferometry. Three sub-techniques evolved:
two-exposure (or double exposure), time-average and
real-time holographic interferometry. The research area
evolved rapidly. A thorough, self-contained description
of holographic interferometry of that time, including
pulsed (two-exposure) holographic interferometry, is
found in Vest [27.12]. For the first time diffusely scatter-
ing objects and transparent objects could be subjected
to interferometric analysis. Holograms were, however,
mostly recorded on photographic plates or film. The re-
construction of the recorded field was done optically
and to evaluate data often a new set of photographs
had to be made. All together, this was a quite time-
consuming and complicated task and this fact stopped
or hindered many attempts for industrial use of the tech-
nique. Holographic interferometry methods were also
applied in acoustics quite early on [27.13], in what was
called acoustical holography (see also Chap. 26).

27.1.3 Speckle Metrology:
Speckle Interferometry
and Speckle Photography

Speckle Interferometry and Shearography
The use of video systems to record holograms and
speckle patterns was proposed by several groups in
the early 1970s [27.14–17]. Several different names for
such systems were proposed, among them, electronic
speckle-pattern interferometry (ESPI). But these new
holographic techniques also had quite limited commer-
cial success. One drawback was the rather poor quality
of the interferograms (poor resolution, noisy images);
furthermore quantitative evaluation of deformation and
vibration fields was still difficult to obtain. Any diffuse
object that is illuminated by coherent laser light will
normally appear very grainy (speckled) to an observer.
These randomly distributed spots are called speckles.
They carry information about the fine structure of the
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objects micro-surface and of the optical system (the illu-
mination and the observation system) used. The smaller
aperture of the imaging system is set, the larger the
speckles are. Speckles are of course also present in
ordinary holographic interferometry but, as the aper-
tures used here normally are much larger, the effects
of speckles are not too severe. However, sometimes
the speckles lowered the quality of the interferograms
significantly, especially in early speckle interferometry.
Vibration analysis using speckle interferometry was,
however, developed quite far by a group in Trond-
heim [27.18–21]. With the improved capabilities during
the 1980s of computers, sophisticated high-resolution
charge-coupled device (CCD) cameras, fiber optics
and ingenious piezoelectric devices, quantitative fringe
interpretation became feasible. ESPI became digital
and was renamed digital speckle-pattern interferome-
try (DSPI). Other names are electro-optic holography
(EOH) and television (TV) holography. These meth-
ods are all electronic and they capture images at TV
rate (25 pictures/s). Interferograms are also updated at
such a rate that, for the human eye, they seem to be
displayed in real time even if they are really time-
average interferograms displayed at high rate, all in
one system. Such systems work well both for sinu-
soidal vibrations and two-step motions. The quality of
the interferograms was improved with the introduction
of phase stepping [27.22–25] and speckle averaging
methods [27.18,19], which largely eliminated the noisy,
speckled background.

Pulsed TV holography [27.12, 26–28] has a pulsed
laser as a light source instead of continuous laser as in
the ordinary TV holography system. It was used mainly
for the study of transient and dynamic events both for
solids and transparent objects.

Shearography or speckle shearing interferome-
try [27.29–31] is another branch of speckle metrology
that can directly measure derivatives of surface dis-
placements (without numerical differentiation of defor-
mation fields) of surfaces undergoing a deformation. It
is, for instance, used for nondestructive testing (NDT)
of parts for the airplane industry and for tire testing. It is
a much more robust technique than DSPI or TV holog-
raphy. The laser-illuminated object is imaged twice,
usually before and after some load or deformation is in-
troduced, in such a way that two nearby object points in
the image plane will overlap and interfere. This shear-
ing effect can, for instance, be accomplished by letting
the camera look at the object through a Michelson in-
terferometer setup with the two mirrors slightly tilted
with respect to each other, thus forming two overlapping

sheared images. A more traditional method is to cover
one half of the imaging aperture (the camera lens) with
a thin prism so that two sheared images will overlap
each other in the image plane. Since both these sheared
fields have traveled almost along the same path from the
object to the image plane, they will both be submitted
to about equal disturbances caused by the surround-
ings. In the sheared interferogram, these two fields are
subtracted and therefore such equal disturbances will
disappear and not affect the final interferogram. If, how-
ever, local disturbances exist, for instance an opening
crack causing large in-plane, local deformations, such
events will show up in the interferogram. The setup is
thus quite robust and can be used in the workshop. An-
other advantage is that the measuring sensitivity can
easily be changed by changing the amount of shear (tilt
of mirrors in the Michelson setup) that is introduced.
Even very large deformations or vibration amplitudes
can be measured but since the instrument measures
slope change (surface derivatives) the measured result
has to be integrated to give deformation or vibration am-
plitudes. In [27.31–33] shearography is compared to TV
holography and applied to measure vibration fields.

Several different kinds of speckle interferometry
systems manufactured in Germany, US, Norway etc. are
available on the market.

Laser Doppler Anemometry (LDA)
Parallel to full-field methods, point-measuring, inter-
ferometric methods were developed quite early. Laser
Doppler anemometry (LDA, also named LDV where
V stands for velocimetry) is a technique that meas-
ures flow velocities in seeded fluids such as air or
water. It can also be used to measure the in-plane
motion of solid surfaces. It was proposed as early as
1964 [27.34, 35]. A single laser beam is split into two
beams. The beams are focused at an angle to each other
into a common small volume in the flow, where they
interfere so an interference pattern is formed in this
small volume. Particles moving through this striped in-
terference pattern scatter light with varying intensities
when moving through it. The frequency of this inten-
sity variation is measured. The distance between the
interference stripes is given by the angle between the
interfering beams and the laser wavelength. A measure
of the velocity component of the flow at a right angle
to the striped pattern is therefore obtained. With several
crossing beams at different wavelengths in one point,
it is possible to obtain several velocity components.
Another explanation of the same phenomenon states
that laser-illuminated, moving particles will scatter light
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with a shifted frequency, a Doppler shift, relative to
particles that have zero velocity. The frequency of this
intensity variation is detected despite the very large dif-
ference in frequency between this Doppler signal and
the frequency of undisturbed light by combining inter-
ferometry with heterodyne detection. It can be shown
that this frequency shift is proportional to the flow-
velocity component at a right angle to the interference
pattern.

Laser Doppler vibrometry or just vibrometry [27.36]
is a related interferometric point-measuring method that
also uses a heterodyne technique. It is used to measure
vibration amplitudes, or rather vibration velocities of
vibrating surfaces instead of flow velocities. Here it is
the Doppler shift that laser light experiences when it
is reflected from a moving surface that is detected. It
gives a measure of the out-of-plane velocity component
of the moving object point if it is illuminated also at
a right angle. Both LDA and vibrometry systems can be
equipped with scanning facilities that allow whole-field
measurements. To preserve relative phase information
in the signals when moving from one measuring point
to the next, some kind of reference signal from a micro-
phone, accelerometer or other transducer is necessary.
Hardware and software of point-measuring techniques
are sold by several manufacturers and the equipment is
today quite user-friendly but also rather expensive.

Digital Speckle Photography ( DSP)
Speckle Correlation, Particle Image
Velocimetry (PIV)

Another branch of speckle metrology [27.37–40] in add-
ition to speckle interferometry, is speckle photography
or speckle correlation methods. Speckle photography
measures the bulk motion of the speckle pattern, the ran-
dom noisy pattern that is present. This random pattern
is either created artificially (i.e. sprayed dots of paint),
present naturally (i.e. as fibers in a wood sample) or
caused by laser-light illumination of diffuse objects. In
speckle interferometry it is the phase coded in inten-
sity of the speckles (assumed more or less stationary
in space) and in speckle photography it is the position
of the speckles that is detected. Speckle photography is
based upon the fact that, if the laser-illuminated object is
moved or deformed, then the speckles in the image plane
will also move. So speckle photography in its simplest
form gives a measure of the in-plane motion of the ob-
ject surface. In particle image velocimetry (PIV) a sheet
of light illuminates a flow seeded with suitable scatter-
ing particles [27.41]. These particles follow the flow.
They are imaged twice with a CCD camera at a known

time interval. The distance the particles have moved is
determined with a correlation technique. In this way
a measure of the flow velocity field is obtained [27.42].

27.1.4 Moiré Techniques

The Moiré effect, sometimes also named mechanical
interference, shows up in many practical viewing sit-
uations. It is called mechanical interference since it
is not optical interference between light fields that is
studied; instead two or more striped, meshed, physical
intensity patterns are overlaid and imaged most often in
white light illumination. Folded fine-meshed curtains,
suits of people appearing on TV, netting along roads
etc. sometimes become modulated by a coarse pattern
overlapping the finer mesh itself; in many cases this
finer mesh is not resolved at all only the coarse, so-
called Moiré patterns remain. Moiré as a measuring
technique is quite old [27.43, 44]. It is related to the
more modern speckle photography technique with the
great difference that, instead of a random pattern, a reg-
ular pattern, a grating or a mesh, is used. If two identical
gratings are overlapped and imaged a regular pattern
of so called Moiré fringes will show up. If one of the
gratings is glued onto an object and this object is de-
formed a modulation of the Moiré fringes will appear
when this grating is compared to the stationary grating.
This exemplifies an in-plane measuring technique using
the Moiré effect. Combined with high-speed photogra-
phy this technique has been used for the study of very
fast events in engineering mechanics [27.45].

Techniques to measure out-of-plane deformations,
vibrations, shape (contouring) are also in use as well as
shadow Moiré, projected fringe techniques etc. These
techniques are also named triangulation techniques
since they rely on the fact that, if a regular striped pat-
tern is projected onto a curved object surface, initially
straight fringes will appear curved. A viewer will record
different curved fringe patterns from different positions
in the room. Knowing the geometrical parameters it is
then possible to determine, e.g., the shape of a body il-
luminated by the projected fringes. One great advantage
of Moiré methods is that the sensitivity can be cho-
sen at will by proper selection of the line separation
of the grating lines. This distance can be compared to
the wavelength in optical interferometry. Quite small
up to very large deformation fields can therefore be
studied. A good overview of Moiré techniques can be
found in [27.46], a book in which many other differ-
ent phenomena and methods in optical metrology are
described.
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27.1.5 Some Pros and Cons
of Optical Metrology

In the following, measuring principles for holographic
interferometry, speckle metrology, vibrometry, pulsed
TV holography, Moiré methods and PIV are discussed
together with some applications. The main advantages
of these methods are:

• There are no contact probes. They are non-
disturbing.• Most of them are whole-field, all-electronic meth-
ods. They give pictures.• They give not only qualitative but also quantitative
measures.• The (digital) processing is often very fast, some-
times as if in real time.

• Pulsed lasers give very short light pulses (exposure
times≈ 10 ns), that freezes propagating sound fields
and vibrations as if stationary.

Some disadvantages are:

• Optical equipment and lasers are, in many cases,
still quite expensive.• Trained personnel are needed to get full use of high-
technology equipment.• Speckle interferometry methods such as TV holog-
raphy (DSPI, ESPI) most often need auxiliary
equipment such as vibration-isolated optical tables
placed in rooms that are not too dusty or noisy. Oth-
ers, such as pulsed TV holography and vibrometry
instruments, work well in more hostile environ-
ments without vibration isolation.• Lasers are used and must be handled in a safe way.

27.2 Measurement Principles and Some Applications

27.2.1 Holographic Interferometry
for the Study of Vibrations

With the introduction of holographic interferometry in
1965, amplitude fields of vibrating, diffusely reflect-
ing surfaces could be mapped. Earlier only mirror-like,
polished objects were used in interferometry but now
suddenly all kinds of objects could be studied. The in-
terest in holographic methods increased dramatically.
The most often used technique for vibration studies
was time-average holographic interferometry [27.9,10].
A hologram of the vibrating object was recorded while
the object was vibrating. The exposure time of the pho-
tographic plates was quite long, often about one second.
This time was long compared to the period time of the
object vibration so light fields from many cycles con-
tributed to the total exposure of the photographic plate.
After development this plate is called a hologram. In
the optical reconstruction of the hologram, these object
fields were reconstructed simultaneously. Now, a sinu-
soidally vibrating object spends most of its time in each
cycle at the turning points, where the velocity is mo-
mentarily zero. These parts (at a distance of twice the
amplitude of vibration) therefore contribute the most
(spend the longest time) to the total exposure and there-
fore these parts will also dominate the reconstructed
fields. A time-average field is therefore reconstructed,
and essentially light beams from the turning points in-

terfere with each other. Iso-amplitude fringes that cover
the object surface are mapped using this technique. The
intensity of the reconstructed image of a sinusoidally
vibrating surface can be described by

I (x, y) = I0(x, y)J2
0 (Ω) , (27.1)

where I0(x, y) is the intensity of the object at rest and
J0 is the zero-order Bessel function of the first kind.
The exposure does not have to span many cycles to get
the J2

0 function in time-average techniques. It is also
possible to record time-average interferograms of low-
frequency vibrations.

The argument

Ω = K · L , (27.2)

where K is a sensitivity vector defined as

K = k1−k2 , (27.3)

and L(x, y) is the vibration amplitude field. k1 and k2
are the illumination and observation directions, respec-
tively, measured relative to the normal of the object
surface. With normal illumination and observation di-
rections the maximum sensitivity becomes

|K | = 4π

λ
, (27.4)

where λ is the laser wavelength used.
A deformation field or a vibration field L(x, y) is

however vectorial, that is, it has three components.
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Equation (27.2) implies that it is the projected com-
ponent of L(x, y) along the sensitivity vector K that is
measured. With normal illumination and observation di-
rections only the out-of-plane component is therefore
measured. To obtain the in-plane components the mea-
surements can be performed with two or more inclined
illumination and observation directions. Several refer-
ence beams may also be used; see for instance [27.12,
47, 48]. With two symmetrically placed and inclined il-
lumination directions and with observation along the
object normal, the sensitivity will be zero for the
out-of-plane component and optimal for one in-plane
component [27.49]. A device for planning and eval-
uation of holographic interferometry measurements is
called a holo-diagram [27.50], proposed by Abramson
and in [27.23], Kreis presents computer methods to op-
timize holographic arrangements for different purposes.

For a two-step (double-exposure or double-pulsed)
motion the squared zero-order Bessel function in (27.1)
is replaced by a squared-cosine function with half
the argument, that is, cos2(Ω/2). L(x, y) is now the
displacement of the object field that has taken place
between the two recordings (pulses).

Most studies of vibrating objects, however, involve
a combination of the time-average and real-time holo-
graphic interferometry technique [27.10]. Real-time

S

M

M

LP

LP

BS

M

M

M

H

O

L

Fig. 27.1 A combined real-time and time-average hologram interferometry setup. Abbreviations: laser (L), front surface
mirrors (M), glass wedge beam splitter (BS), beam expander lens–pinhole system (LP), shutter (S), a liquid gate hologram
plate holder and a holder for 35 mm film (H) and an object (O), for instance a herring can or a guitar clamped to a rigid,
heavy jig (J)

observation of the vibration field gives very useful in-
formation to the experimentalist. A search for resonant
modes can be made in real time to find the settings of
frequency, amplitude and position of exciters etc. The
vibration pattern is then recorded by the time-average
technique, which often gives very nice interferograms
that allow a more detailed analysis of the vibration field.
Vibration modes of a violin recorded at different steps
in making the violin [27.51–53] used this combined
technique.

To illustrate these combined traditional techniques,
the following experiment is sketched. The setup used is
pictured in Fig. 27.1.

The laser, optical and mechanical components and
the object are placed on a vibration isolated optical table
in an off-axes holographic setup. In the off-axes tech-
nique there is an angle at the hologram plate between
the object-observation direction and the reference-beam
direction so that the object appears against a dark back-
ground. This way an observer does not have to look
into the bright laser light from the reference beam to
see the object. Beautiful reconstructions are thus ob-
tained [27.54]. First a hologram is recorded of the object
at rest, in this case the bottom of a herring can. The
hologram is recorded on a high-resolution photographic
plate in a special holder, a liquid gate hologram plate
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a) b) c)

Fig. 27.2 (a) The test object, the bottom of a white-painted herring can, observed in its rest position in the real-time hologram
interferometer using the liquid gate hologram holder (H) in Fig. 27.1, (after [27.55]). The object field emanating from the herring
can is transmitted through the hologram and interferes with the field reconstructed by the hologram. These fields are so similar
that no interference fringes are seen (actually it is the same broad white fringe that is covering the whole object). (b) Real-time
interferogram obtained by taking a photo through the liquid gate when the herring can is vibrating in its fundamental mode.
(c) Time-average interferogram obtained from a time-average hologram recording (using the film holder at H in Fig. 27.1) of the
same vibration pattern as in Fig. 27.2b. (courtesy of IOP)

holder [27.55]. It is exposed to the interfering light from
the reference and object beam. The object field at rest
is reconstructed by illuminating the hologram with the
former reference wave or a laser wave proportional to it,
in the same setup as before. The reconstructed station-
ary object field is then observed by looking through the
hologram by eye or with a camera. Compare Fig. 27.2a
which shows the bottom of the elliptical herring can at
rest.

Now, if the original object is also illuminated by
laser light in the same setup as before and observed
through the hologram, the observer will see two im-
ages of the same object through the hologram, one as
it is in real time and one as it was when the holo-
gram was recorded. As both fields are coherent (the
same laser reconstructs and illuminates the object), they
will interfere. If the two fields are identical, no fringes
will appear. To be more correct, since a negative holo-
gram plate (a high irradiation gives a high exposure of
a photographic plate, which is dark (high absorbing)
and not bright) is used for the real-time holographic re-
construction and this field is added to the direct field
observed through the hologram, the total object field
should appear dark since the two fields are identical
but out of phase (one field is negative and the other
positive). If however the hologram plate holder or the
object itself is moved slightly so that the first white co-
sine fringe covers the whole object, then the whole field
will appear bright. Actually Fig. 27.2a is such a record-
ing. The object is at rest but slightly translated from
its initial position. When the object is vibrating it will
become covered with interference fringes – compare
Fig. 27.2b. The contrast of such real-time fringes are,
however, quite low. It is also difficult, without spe-
cial techniques, to avoid spurious fringes caused by

rigid-body motions, emulsion shrinkage etc. of the real-
time interferogram. Therefore a time-average hologram
of interesting patterns is recorded; compare the time-
average interferogram of the same vibrating herring can
in Fig. 27.2c. This time-average hologram is recorded
on 35 mm holographic film in a hologram film holder
(a camera house without lenses), at H in Fig. 27.1. It
is placed close to the real-time hologram liquid gate
on the hologram table. The time-average interferogram
contains twice as many fringes with higher contrast
than the corresponding real-time one. The distance from
peak to peak in a sinusoidal vibration is also twice as
great as the distance from the peaks to the average (the
amplitude) value. This is why the number of fringes
is doubled. This combined real-time and time-average
technique has been applied to many different structures,
such as musical instruments, turbine blades, aircraft and
car structures etc. Figure 27.3 shows an example of

Fig. 27.3 Time-average interferogram of a guitar top plate
vibrating at 505 Hz (Bolin guitar from 1969)

Part
H

2
7
.2



1146 Part H Engineering Acoustics

a time-average recording of a vibration mode of a gui-
tar front plate identified using the real-time technique
and recorded by time-average hologram interferometry.
This picture was used as a Christmas card interferogram
and it appeared in a number of physics textbooks, see
also [27.56, 57]. It may be pointed out that the quality
of interferograms as well as the spatial resolution, ob-
tained in this way was high but it was a time-consuming
task to obtain them compared to today’s methods.

Practical resolution of vibration modes by visual
observation in real time is often better than 100 nm
(λ/10) – compare Fig. 27.2b. Practical maximum mea-
surement range for time-average recordings as in
Fig. 27.2c is about 4 μm, otherwise the fringe density
might be too high to be resolved. The maximum possi-
ble object size in width and depth depends very much
upon the laser used, both its output energy and its
coherence length. The coherence length of the laser de-
termines how big a difference in path length between
the reference wave and the object beam is allowed
if recording high-quality holograms. The difference in
path length between the reference beam, from the laser
via mirrors to the hologram, and the object beam, from
the laser via the object to the hologram, should there-
fore not exceed the coherence length. This is easily
determined with a soft string fastened at the laser and
at the hologram. The power of the laser and the ob-
ject reflectivity determines the width of the object and
the coherence length, and thus the depth of the object
volume. Objects that absorb light might be dusted with
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Fig. 27.4 The optical unit of TV holography (electro-optic holography, DSPI). Abbreviations: beam splitter (BS), speckle
average mechanism (SAM), mirrors on piezoelectric devices used for phase stepping (PS) and sinusoidal phase modu-
lation (PM), relay lenses (R). The distance between the optical head to the left and the object to the right can vary
considerably depending of object size, magnification etc.

chalk or painted white. In difficult cases retro-reflective
paint or tape might be used. The guitar interferogram
shown in Fig. 27.3 was recorded using a 20 mW HeNe
laser having a wavelength of 633 nm and a coherence
length of about 25 cm, the guitar shown in Fig. 27.3 was
recorded. Remember that a holographic setup is sensi-
tive to disturbances; an optical vibration-isolated table
is recommended. Powerful lasers shorten the exposure
time and lower the requirements for vibration isolation.

Holographic interferometry has been further devel-
oped using pulsed or stroboscopic techniques, temporal
phase modulation as well as for studies of transpar-
ent objects such as flames, pressure waves in air and
water. The books by Vest [27.12], Kreis [27.23] and
Hariharan [27.48] are recommended. In practice today,
all electronic, digital speckle interferometry methods
have more or less replaced wet-processing photographic
holographic interferometry, at least for industrial use.
The fundamental ideas are, however, still the same.

27.2.2 Speckle Interferometry –
TV Holography, DSPI and ESPI
for Vibration Analysis
and for Studies of Acoustic Waves

Speckles [27.32–35, 46, 47] are the granular, speckled
appearance that a laser-illuminated diffusely reflecting
object gets, when imaged by an optical system such
as the eye or a camera. The speckles can be viewed
as a fingerprint that is as a unique, random pattern
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generated by the fine structure of the object surface.
One technically important property of the speckles is
that the speckles seem to move as if glued to the ob-
ject surface when the object is moved or deformed.
A change in illumination or observation directions of
the object will however also change the speckle pattern.
Two different observers both see speckles but with dif-
ferent distributions. The speckles were earlier looked
upon as unwanted noise but as they also carry infor-
mation; they also form the basis for techniques such
as speckle photography (SP) and speckle interferome-
try (SI). They both belong to a group of methods named
speckle metrology [27.32–34]. In SP the in-plane mo-
tion of the speckles themselves is measured, and in SI
the change in intensity of the speckles (i. e. the phase
change of interfering beams) are used. Hologram inter-
ferometry is also based on recording the information of
the same speckles.

The optical arrangement of a speckle interferometer
setup called TV holography or electro-optic holog-
raphy [27.25] (also named DSPI or ESPI) is shown
in Fig. 27.4. A special computer board is developed
that allows real-time presentations of phase-stepped
interferograms.

Laser light is divided by a beam splitter (BS) into
an object illumination part and a reference wave part.
The object space, situated to the right, is illuminated
and imaged almost along the z-axis of the object. The
measuring sensitivity of this configuration therefore
also becomes highest along the same direction and con-
sequently zero along the x–y-axes. The object light
amplitude field, Eobj, is imaged by a video lens and
some transferring optics onto the photosensitive surface
of the CCD chip, where the smooth reference beam,
Eref, also emanating from the end of an optical ref-
erence fiber is added. Each pixel of the CCD camera
pictures a small area in the object space, i. e. this can be
described as an in-line, image-plane holographic setup.
Via a special personal computer (PC) image-processor
board, results are presented at the rate allowed by the
digital camera (25 or 30 Hz) on a monitor, which is
a highly valuable feature in many experimental sit-
uations. In the setup there are mirrors mounted on
piezoelectric crystals, allowing phase modulation (PM)
and phase stepping (PS). These options are used to de-
termine the relative phase of vibration fields and to
extract quantitative data from the interferograms.

The optical detectors are so-called quadratic de-
tectors. They measure intensity or irradiance which in
turn is proportional to the square of the sum of the
two interfering electromagnetic amplitude fields. The

instantaneous intensity I (x, y) at a pixel of the CCD
detector can therefore be written

I (x, y) = |(Eobj+ Eref)|2 = I0+ IA cos(ΔΦ) ,

(27.5)

where I0 is the background intensity and IA the mod-
ulating intensity. The desired information however, is
found in ΔΦ, the relative optical phase difference be-
tween the (constant) reference and the object field in
each pixel. A difficulty exists since there are three
unknowns in (27.5); ΔΦ, I0 and IA but only one equa-
tion. This can be solved by Fourier-filtering methods
or phase-stepping (shifting) techniques [27.22–24]. In
the phase-stepping technique, PS in Fig. 27.3 is used to
shift the phase with, for instance, π/2 in steps between
consecutive recorded frames to obtain four equations.
With four equations and three unknowns, ΔΦ can be
calculated with good accuracy. In double-exposure and
pulsed TV holography two series of recordings are
made, one before and one after some deformation or
change is introduced to the object. The correspond-
ing phase changes ΔΦ(x, y) for each of the two states
are determined as above and then subtracted. Since the
same reference beam is used in the recording of both
states, ideally only the difference in object phase will
remain after subtraction. The change in object phase,
Ω =ΔΦ1−ΔΦ2, between the two objects fields are
thus obtained. This quantity, Ω in turn is defined as the
change (Δ) of the product of refractive index n, the ge-
ometrical path length l and the laser wave number k.
That is, the measured change in optical phase between
two object states can be written as

Ω =Δ(knl) = k(nΔl+ lΔn) . (27.6)

The wave number, k = 2π/λ, is (most often) a con-
stant since λ, the laser wavelength, is the same in all
recordings. Equation (27.6) illustrates two main appli-
cation areas: one where the optical phase change is
proportional to the change in path length (i. e. vibration
amplitudes, deformation fields etc.) and one where it is
proportional to the change in refractive index (caused
by, for instance, wave propagation in fluids, flames etc.).

The TV holography system, shown in Fig. 27.4, il-
luminating and observing the object along its normal, is
highly sensitive to out-of-plane vibrations or object mo-
tions and insensitive to in-plane motions. A frequency
doubled, continuous-wave Nd:YAG laser with a wave-
length of 532 nm, is often used. Such lasers often have
a higher output power and a longer coherence length
than most comparable He–Ne lasers, say 50 mW and
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Fig. 27.5 Interferograms of four modes of vibration of
the bottom of the same herring can as in Fig. 27.2, now
recorded using TV holography. Both real-time observation
to find the settings and time-average recordings are made
at once

a few meters in coherence length. The object size can
now vary from a few mm up to meter-sized objects both
in width and depth. With visual observation of the moni-
tor in real time, the resolution of the vibration amplitude
is often better than 100 nm and, if the phase-stepping
technique is used, the resolution limit is of the order
of 20 nm, compare Fig. 27.5. The practical maximum
amplitude range for vibration modes is about 2.5 μm.
To be able to unwrap (numerically evaluate) fringe pat-
terns automatically without problems, fringe densities
should be kept low; not less than 15–20 pixels/fringe
is recommendable. For example, a CCD camera may
have 512 × 512 pixels or more. If the imaged object cov-
ers all 512 pixels this would allow about 25 fringes or
more over the whole object field to be analyzed auto-
matically. So it is preferable that as much as possible
of the CCD chip is used to image the object. This is fa-
vorable both for the unwrapping and also for the spatial
resolution of the imaged object. It is also a great advan-
tage if a vibration-isolated optical table is used for the
experiments.

The TV holography system, like many other com-
mercial systems can also be arranged for maximum
sensitivity for motion in the plane or in some other di-
rection. Dual-beam, symmetric illumination directions
about the object normal and normal object observa-
tion direction are used to achieve maximum in-plane
motion sensitivity and no sensitivity to out-of-plane
motions [27.47–49]. Practical resolution (adjusted for
noise) is now about 30 nm with phase-stepped inter-
ferograms. The maximum measurement range for the
vibration mode is about 2.5 μm. The object size in this

case is often limited by the size of the illuminating
lenses if equal sensitivity (with collimated light) over
the whole object area is important. So, object diameters
smaller than 5–10 cm are often the case, but much larger
objects can be studied if varying sensitivity over the ob-
ject field is allowed. Other 2-D (two-dimensional) and
3-D (three-dimensional) arrangements that measure two
or three vibration components are also commercially
available.

Interferograms of Vibration Modes
Using TV Holography

In normal use the TV holography setup is used for sinu-
soidally vibrating, diffusely reflecting objects, such as
the bottom of the elliptical herring can in Fig. 27.5. This
is the same can that was used in Fig. 27.2, 35 years ear-
lier. Since then the ravage of time has changed the can
somewhat. It has been dropped from the shelf etc. and
despite its rigid construction the mechanical shape and
behavior has changed somewhat during the years. It is
not as symmetrical as before. This experiment is also
an example of nondestructive testing of components,
which is a large application area of TV holography
where vibration analysis is used.

In Fig. 27.5 the setup is arranged so that the change
in index of refraction can be neglected; only the first
part, Ω = knΔl, of (27.6) remains. In this way we get
a measure of the change in geometrical path length Δl.
A complication with sinusoidally vibrating objects such
as the herring can is that the modulation of the inter-
ference fringes is, as in time-average holographic in-
terferometry, not cosinusoidal as with two-step motions
(i. e. double exposure, double-pulsed holographic and
pulsed speckle interferometry) but instead modulated
by a zero-order Bessel function squared J2

0 (Ω), (27.1).
As before, this has to do with the integrated exposure
during several cycles that the detector gets when the pe-
riod time of the sinusoidally vibrating object is much
shorter than the exposure time of the detector (about
1/25 s at a video rate of 25 frames per second). It is,
however, also possible to record time-average interfero-
grams of low-frequency vibrations. It is only at the start
that the fringe function is somewhat dependent on which
part of the vibration the integration spans – after 2–3
periods the difference between the recorded fringe func-
tion and the theoretical is negligible. The white closed
line (fringe) along the rim of the can, in some higher
modes connected to vertical white fringes, indicates zero
amplitude, i. e. a nodal line. The bright and the dark
closed loop fringes connect points with equal vibration
amplitude, increasing towards the center towards a hill
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Fig. 27.6 TV holography interferogram of a baritone gui-
tar showing a top-plate mode at 262 Hz (after [27.58])

or a valley. Measurements such as this are quite sim-
ple to perform since the equipment works well in real
time. Quantitative values of the vibration amplitude and
phase in each pixel is also possible using the modulation
options in the setup. This is exemplified in Figs. 27.6
and 27.7 [27.58]. Figure 27.6 shows an ordinary TV
holography recording of a mode shape of a baritone gui-
tar mode at 262 Hz. Since this is a normal vibration
mode of the front plate, the phase on each side of the
vertical nodal line at the bridge should be in anti-phase.

It must, however, be stressed that, in many practical
vibration situations, normal modes are often replaced by
combinations or superpositions of a number of different
modes. A loudspeaker, for instance, often only shows
uniform, normal-mode behavior at the lowest modes.
At higher frequencies the phase may vary quite a lot
over the field of view; not only object areas vibrating in
anti-phase are present but there is a continuous change
of phase over the loudspeaker membrane. A simple test
to see if mode combinations are present is to observe
if nodal lines are stationary when the driving amplitude
is increased from zero upwards or when the frequency
is varied slightly about an amplitude resonance peak.
If the nodal lines start to move sideways or twist, or
so that nodal points or other peculiar phenomena occur,
then mode combinations can be the source. If the exper-
imentalist is not sure that it is a real normal mode that he
has detected, i.e. one that does not have neighboring vi-
brating areas vibrating in anti-phase, he often calls it an
operation deflection shape (ODS). So, there is a need for
the experimentalist to measure not only the amplitude
distribution but also the phase variation over the field of
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Fig. 27.7 A phase map of the same guitar mode as in
Fig. 27.6 measured by phase-modulated TV holography.
The units for the phase values at the z-axis are radians
(after [27.58])

view to be sure. One technique is to set the mirror (PM
in Fig. 27.4) in vibration at the same frequency and in
phase with one of the vibrating areas of the object. If the
amplitude of the mirror is then increased from zero, the
white nodal line will start to move to new object points
where the difference between the object amplitude and
the mirror amplitude is zero. If, as in Fig. 27.6, a normal
mode is studied, one vibrating area gets smaller (that is,
there are fewer fringes in the area which is in phase with
the mirror) and one area gets larger as the nodal line
moves. Another technique is to use a small frequency
difference, a beat, between the object frequency and the
mirror frequency. By visual inspection, moving nodal
lines are seen. A review of a number of different mea-
surement techniques of mechanical vibrations is given
by Vest in [27.12], by Kreis in [27.47] and by Stetson
in [27.59].

The vibration phase can also be determined quan-
titatively using phase modulated TV holography (again
using PM in Fig. 27.4). The phase difference between
the upper and lower bouts, as shown in Fig. 27.7, was
measured as π with such a method. Phase modulated
TV holography is a technique used to measure phase
and amplitude of small vibrations [27.21]. The method
uses Bessel-slope evaluation of small amplitudes. Here
the vibrating mirror and the object itself are given such
small amplitudes such that the total maximum ampli-
tude is kept within the linear part of the J2

0 fringe
function at low arguments. The vibrating reference
wave is given such amplitude that it forms a work-
ing point, where the slope of the fringe function is
the largest and around which the object amplitude may
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vary. By changing the phase in steps of the reference
wave relative to the object wave a number of record-
ings are made with a known phase difference. From this
the phase and amplitude distribution can be estimated.
A review of such recent developments in speckle inter-
ferometry is given by Lökberg as one chapter in [27.37].
Visual use of the phase-modulated techniques works
in near real time, but calculations based on phase-
modulation take a short time.

Visualization of Aerial Waves
Using TV Holography

To get a measure of the sound field, the geometrical path
length l in (27.6), is kept constant so that the first part
knΔl, equals zero. Then only the klΔn part remains.
Since an increased air density or air pressure gives an
increase to the refractive index Δn the way to see the
sound is simply to let the index of refraction vary along
the probing length l in a measuring volume. This dis-
tance l has to be kept constant to be able to quantify the
results. Figure 27.8 illustrates the measuring principle.

Inside the box a standing aerial wave is generated
by a loudspeaker. The incident plane light wave is mod-
ulated by the aerial pressure and density field in the box.
A curved wavefront is generated to the right of the box.
This phase change may also be measured by the TV
holography system in Fig. 27.4.

Projections of the box are shown in Figs. 27.9 and
27.10. Laser light travels through the measuring vol-

n0
L

n(t, y)

x

y

Fig. 27.8 A plane laser wave is traveling through a trans-
parent box with dimensions 10 cm × 30 cm × 50 cm; the
geometrical path length L is 10 cm (after [27.60], courtesy
of S. Hirzel Verlag)

x

x

0

π/2

–π/2
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c) Phase

Fig. 27.9a–c Air mode (2, 0, 0) in the rectangular trans-
parent box in Fig. 27.8 (after [27.60]). (a) View along the
shortest side (1 dm); (b) View along the next shortest side
(3 dm); (c) phase along the x-axis in (a) measured by phase-
modulated TV holography (courtesy of S. Hirzel Verlag)

ume, in the simplest case a rather flat, 2-D, transparent
box. The light field is phase modulated by a standing
aerial wave inside the box. To increase the modulation
the field is reflected back again by a rigid diffuse wall
(not seen in Fig. 27.8) to pass through the box twice and
then pass on into the interferometer (Fig. 27.4) as the
object beam. The instantaneous phase shift compared
to the undisturbed air (no standing wave) with index of
refraction n0 can then be written as

Ω(t, y) = 4π

λ

∫

L

[n(t, x, y)−n0]dx

∼= 2k[n(t, y)−n0]L . (27.7)

Since L can be measured, the integrated product of
L and Δn = n−n0 in (27.3) is known. The refrac-
tive index n is related to the air density ρ by the
Gladstone–Dale equation, n−1 = Kρ, where K is the
Gladstone–Dale constant [27.12]. If, for instance, adi-
abatic conditions are assumed (p/p0) = (ρ/ρ0)γ , then
the relations between air density ρ and pressure p are
also known. By combining these equations, a quanti-
tative measure of the sound pressure p(x, y, t) at all
points in the projected field of view can be obtained.
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Fig. 27.10a–c Air mode (0, 4, 0) in the rectangular trans-
parent box in Fig. 27.8 (after [27.60]). (a) View along the
shortest side; (b) view along the next shortest side; (c) phase
along the x−axis in (a) measured by phase-modulated TV
holography (courtesy of S. Hirzel Verlag)

Observe that it is the integrated field that is measured;
thus when we have a 2-D distribution of the sound
field like the one in Fig. 27.8, it can be assumed that
the integral in (27.3) is reduced to the simple prod-
uct 2k(n−n0)L . If not, the integral equation in (27.7)
remains and tomography has to be used to reveal the
distribution, see for instance Appendix B in [27.23].
Figs. 27.9 and 27.10 show measured standing waves in-
side the transparent box in Fig. 27.8 for two different

yy

0

Phase

π/2–π/2a) b) c)

Fig. 27.11a–c Standing aerial waves inside a transparent guitar cavity measured by phase-modulated TV holography
(after [27.61]); (a) covered sound hole (1195 Hz); (b) open sound hole (1182 Hz); (c) phase distribution along the y-axis
in (b) (courtesy of S. Hirzel Verlag)

air modes [27.60]. Fig. 27.11 shows standing waves in-
side a guitar body with a transparent top and back plate
measured by phase-modulated TV holography [27.61].

If instead a probing laser ray is passing through the
box in Fig. 27.8 in the x-direction, it will experience
a time-varying phase change. A small frequency shift
is thus generated by the standing aerial waves inside the
box. This shift can be detected by a laser vibrometer;
compare Sect. 27.2.5.

27.2.3 Reciprocity and TV Holography

An indirect pointwise method to measure the sound dis-
tribution from an instrument is to use reciprocity [27.62]
combined with, for instance, TV holography [27.63].
An advantage of this method is that, even in a quite large
spatial volume, radiativity [27.64] can be recorded. This
is valuable since audible acoustical waves at low fre-
quencies can have very long wavelengths.

An experiment using reciprocity and TV hologra-
phy can be performed as follows. A movable loud-
speaker at constant (unit) driving conditions excites, say
a stringed instrument, from different positions outside
it. The corresponding out-of-plane velocity component
at the bridge foot is measured by TV holography for the
specific excited vibration pattern. Then, it can be argued
using reciprocity that, if a constant (unit) driving force
now instead is acting at the bridge foot, it will create
a sound pressure of the same magnitude as the measured
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velocity component at the same place as the loudspeaker
was placed. By moving the loudspeaker around when
measuring the vibration amplitude at the bridge foot, the
radiativity is estimated.

Experiences from the violin experiments in [27.63]
were:

• Radiativity is measured in an ordinary laboratory
both close to and at quite large distances from the
instrument.• The mode shape is simultaneously recorded.• The violin radiativity is measured as being almost
spherical up to the 500 Hz.• Complicated radiativity patterns result at higher
modes.

Important conditions for dynamic reciprocity measure-
ments are that the system is linear, passive and that the
vibration system has stable equilibrium positions.

27.2.4 Pulsed TV Holography –
Pulsed Lasers Freeze
Propagating Bending Waves,
Sound Fields
and Other Transient Events

Pulsed lasers, like the traditional Q-switched ruby laser,
emit one, two or more very short pulses (each pulse
only some tenths of a ns long) of coherent laser light
with a very high intensity. Most mechanical or acous-
tical events are frozen at such short exposure times.
The time between the pulses can be set from about
10 μs to 800 μs with a ruby laser (during the burning
time of the laser exciting flash lamps) and over a much
broader range with a twin-cavity Nd:YAG laser. By dou-
ble exposing a photographic plate of a transient event
with two such pulses, one pulse of the object in the
start position and another some time after the start,
a double-exposed hologram is obtained. Both fields are
reconstructed simultaneously with a continuous He–
Ne laser. The technique is called pulsed holographic
interferometry [27.12] and compares two states of an
object. The optical setups used with pulsed lasers are
in principle the same as with continuous ones with
an object and a reference beam, compare Figs. 27.1
and 27.4. Both traditional recording on photographic
plates (double-exposed hologram interferometry) and
all-electronic methods (pulsed TV holography using
a CCD chip for the recording as in TV holography)
are available, although there are some differences. First,
positive lenses are avoided and usually replaced by
negative ones, since gas ions may otherwise occur at

125 μs

Fig. 27.12 Transient bending wave propagation in a violin
body, 125 μs after impact start. The top of the bridge is
impacted horizontally by a 5 mm steel ball at the end of a
30 cm-long pendulum (seen in the figure as a thin line). In
the top plate a hill and a valley centered on the two bridge
feet can be seen. In the back plate the fringes are centered
at the soundpost, which rapidly transfers the impact from
the bridge to the back of the violin (after [27.65], courtesy
of AIP)

the focal points of positive lenses with the very strong
light irradiances. With negative lenses light rays can be
arranged so they seem to emanate from a virtual fo-
cal point. Secondly, to use the temporal phase-stepping
technique with a moving mirror, such as PM in Fig. 27.4
is not applicable; there is simply not enough time to
move them to record a sequence. Instead quantitative
measuring data are obtained with a Fourier method
where a small angle between the reference light and the
object light is introduced to produce a modulated carrier
wave at the CCD detector [27.66]. By Fourier filtering
it is then possible to extract quantitative data.

In Fig. 27.12 [27.65], the transient bending wave re-
sponse of a violin body to an impact is visualized with
pulsed hologram interferometry. The instrument is im-
pacted at the top of the bridge with a small pendulum.
This is a crude and simple model of one of the pulses
from the pulse train that is produced by the stick–slip
bow–string interaction when the instrument is played.
It is obvious that energy is effectively transferred to the
back plate by the soundpost of the instrument and that
the back is acting more like a monopole source. The
top plate, on the other hand, is excited by the rocking
motion of the bridge with a hill at one foot and a val-
ley at the other, more like a dipole source. Interesting
information about the violin is pictured in this way.
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Fig. 27.13 Measured traveling bending waves on an impacted steel plate surface 7 μs, 32 μs, 57 μs and 82 μs after impact
start. These were recorded with a four-pulse TV holography technique (after [27.67]). The pattern at the upper right side
is a shadow in the illumination path and can be ignored

The pulsed TV holography setup is quite simi-
lar to ordinary TV holography (Fig. 27.4) in that it is
all electronic, it uses fast CCD cameras and is com-
puter operated. In an experiment [27.67], see Fig. 27.13,
a pulsed TV holography setup using a four-pulse
Nd:YAG laser technique is used that presents four in-

Fig. 27.14 The transient sound field outside an impacted
cantilever steel beam 1 mm × 30 mm × 190 mm, clamped
at the bottom. The 1 mm side is seen in the figure. The
laser light passes outside and parallel to the cantilever sur-
face along the 30 mm side. It is impacted at the top right
by an air gun bullet. The interferogram is obtained 230 μs
after impact start by pulsed hologram interferometry. Su-
personic bending waves travel down the beam and create
sound waves, bow waves, moving faster than the spherical
sound wave, centered at the impact point

terferograms of the same transient event. This is in
contrast to double-pulse experiments with, for instance,
the double-pulsed ruby laser, where the experiment
must be repeated at increasing time delays. With the
four pulse technique a short sequence from one single
event is obtained. (Another way to get a time sequence
of the motion but now only in one point at a time is to
use a vibrometer, see the next section.)

What kind of sound field does an impacted plate or
played violin create? It is difficult to measure that in
one projection since it is a 3-D sound distribution. In
principle however it is possible to create a tomographic
picture from many projections [27.68, 69] but such an
experiment is quite complicated to perform. A much
simpler and quite informative way is to use a 2-D struc-
ture instead. A simple cantilever beam or cantilever
plate, much longer than it is wide and thick is used, as
shown from the thinnest side in Fig. 27.14. The tran-
sient sound field outside the cantilever beam [27.70],
which is impacted at the top end by an air gun bul-
let at about 100 m/s is shown. It is obtained by pulsed
hologram interferometry. It is interesting to note that
the impact causes a spherical sound wave to propagate
(at about 340 m/s) around the impact point and also
fast bending waves that move down the cantilever to
act as secondary supersonic sound sources. They cre-
ate a pattern that looks like a bow wave behind a ship. It
differs from that however, since the waves have opposite
phases on each side of the cantilever, as could be ex-
pected. Bending waves are dispersive, that is, fast waves
preceding the slow ones have shorter wavelength than
the slower ones. The figure also shows that the signal
detected by a microphone or the ear from the impacted
plate depends strongly upon the position of the detec-
tor. At some positions the sound from the supersonic
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Fig. 27.15 The figure shows the density fields that are pro-
duced by an air-gun bullet traveling to the right. It emerged
from the muzzle, which is situated at the left border. It has
traveled in open air for 305 μs. Both the air that is pushed
out by the bullet in front of the bullet in the barrel and the
compressed air column behind it are seen, as well as the al-
most spherical and faster sound fields produced when the
bullet emerged from the muzzle. Behind the bullet patterns
reminiscent of vortex streets may be seen. The bullet speed
is about 1/3 the speed of sound. Recorded by pulsed TV
holography (after [27.71], courtesy of SPIE)

bending waves will reach the ear earlier than the direct
impact sound.

Figure 27.15 shows the quite complicated density
fields that are produced when an air gun bullet at
100 m/s leaves the muzzle [27.39, 71]. The air column
pressed out from the barrel preceding the bullet as well
as the air column behind it is seen. The almost spher-
ical sound wave produced when the bullet is leaving
the muzzle is also seen. Behind the bullet another pat-
tern, reminiscent of vortex streets, is seen. A number
of fluid mechanics and acoustical phenomena are thus
visualized in the figure.

27.2.5 Scanning Vibrometry –
for Vibration Analysis
and for the Study of Acoustic Waves

Laser vibrometers are a family of accurate, versatile,
non-contact, optical vibration transducers. They are
used in applications where it is impractical or impos-
sible to use transducers mounted on the object and they
quickly map the structural response at many measure-
ment points in sequence. They are easy-to-use, turnkey

Laser

BS BS
Target

f Δ f

f+Δ f υ(t)

BS
M f+fBBragg cell

Photo-
detector

Doppler
signal processor

i(t)
Current
output

Time

υ(t)

f

Fig. 27.16 Principle of laser vibrometer in a Mach–
Zehnder-type arrangement. BS is the beam splitter, while
M is the mirror. A laser emits light at a frequency f onto an
object and into a reference beam. The target/object to the
top right, is moving with velocity v(t), causing a Doppler
shift of the reflected light of Δ f (t). The photodetector re-
ceives a time-varying signal, the interference between the
object and the reference light, which is processed to give
a measure of the target velocity. The Bragg cell in the ref-
erence beam introduces a known and constant frequency
shift fb to the reference light using which the sign of the
target velocity is determined

systems that include optical and electronic hardware.
With optional software many possibilities exist for ad-
vanced modal analysis, animations etc. Compared to
TV holography scanning laser Doppler vibrometry is
more of an off-the-shelf instrument, developed for in-
dustrial use. One drawback in that comparison is that
it is not a real-time instrument. It is not as simple as
with TV holography to find settings for unknown, in-
teresting vibration patterns in a frequency scan. On
the other hand it is highly sensitive and operates well
not only with harmonic object motions but also with
multi-frequency, repeatable object motions. Interesting
vibration modes can be found by exciting the object
with, for instance, a band-limited random signal and
then performing modal analysis; compare Fig. 27.17.
With scanning it is a full-field method but it has to be
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remembered that the measurements of different object
points are made sequentially. In one measuring point,
very fast events can be recorded as a function of time.
One manufacturer however, makes a special unit that
takes measurements at a limited number of points si-
multaneously. Informative, animated visualizations of
vibrations and sound fields can be obtained. For more
technical information the reader may visit the home
pages of the manufacturers, since a wide variety of op-
tions are available.

Laser light of wavelength λ that is scattered back
from a moving surface with velocity v(t) undergoes
a shift in frequency, a Doppler shift Δ f

Δ f (t) = 2v(t)/λ . (27.8)

In an interferometer, often of the Mach–Zehnder type,
the scattered light from a moving object is mixed with
a reference light from the same laser. In Fig. 27.16 the
optical unit of such a heterodyne vibrometer is pictured
with the Bragg cell mounted in the reference arm of
the interferometer. This instrument is commonly used
for measuring displacement and velocity fields of vibra-
tions of solid objects. The first beam splitter (BS) splits
the laser beam into measuring and reference beams. The
reference beam reaches the photodetector via a mirror
(M) and a second beam splitter. The measuring beam
hits the moving target/object, gets reflected, frequency
shifted and guided by two beam splitters to the photode-
tector. There, the measuring and the reference beams
interfere to give a signal that varies with time.

A fast photodetector measures the time-dependent
intensity, the beat frequency, of the mixed light,

i(t) = Iav+2Imod cos(2πΔ ft+Φ) . (27.9)

Iav and Imod are the average and modulating intensities,
respectively, and Φ is the difference in optical phase
between the diffuse object surface and the smooth refer-
ence beam. The Doppler frequency shift Δ f (t) is meas-
ured with high accuracy. Using (27.8) the target velocity
is calculated. However, a sign ambiguity is present, that
is, it is not obvious from to the sinusoidal nature of the
signal whether the object is mowing towards or away
from the detector. This sign problem is solved by adding
a known optical frequency shift fB (using the Bragg cell
in Fig. 27.16) in the reference arm of the interferome-
ter (the heterodyne technique is described in [27.46]) to
obtain a virtual frequency offset. Another way is to add
polarization components and one more detector (a ho-
modyne technique) to get signals in quadrature.

Modern vibrometers are often equipped with a scan-
ner. These scanning vibrometers scan the surface of

2825 Hz

4258 Hz

Fig. 27.17 Two vibration modes of a lightweight alu-
minium structure measured by scanning vibrometry, with
vibration amplitude coded in grayscale. The structure was
excited by a pseudo-random signal feeding a mechani-
cal exciter. The vibration frequencies are 2825 Hz and
4258 Hz, respectively

a vibrating object pointwise and can present the re-
sults as animated video movies. In Fig. 27.17 two modes
of vibration of a lightweight aluminium structure are
shown. The structure is excited by a pseudo-random
signal feeding a mechanical exciter and the different
modes of vibration are estimated by Fourier analysis of
the complex measuring signal. A reference signal from
an accelerometer is necessary to ensure that phase at
all measuring points are measured relative to the same
reference.

Not only vibration modes but also sound fields are
measured using vibrometry. In Fig. 27.18 the vibration
behavior of the body of a guitar is pictured together with
the emitted sound field from the instrument [27.72].
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a) b) c) d)

Fig. 27.18a–d Measured vibration patterns of a guitar top plate (left) and the projected radiated sound fields from the
guitar (right): (a) and (b) at 600 Hz; (c) and (d) at 1200 Hz. Scanning vibrometry was used for both recordings. Observe
that in (b) and (d) it is the projected sound field across the guitar body that is measured (after [27.72], courtesy of S. Hirzel
Verlag)

Fig. 27.19 The sound field at 1303 Hz inside a saxophone cavity model measured with scanning vibrometry. The model is
a conical transparent model about 54 cm long with a rectangular cross section, excited at the mouthpiece end by a normal
saxophone mouthpiece and it has an artificial mouth

Vibration patterns of a guitar front plate at harmonic ex-
citation are shown in the left part of the figure. A guitar
string was continuously excited by a shaker at 600 Hz
and 1200 Hz, respectively. To measure and visualize the
acoustic waves emitted from the guitar by this vibration,
the guitar is rotated 90◦, so that the probing laser light
rays is passing in front of and in parallel to the top plate.
The probing laser then hits to a heavy, rigid reflector and
is reflected back again into the measuring unit of the vi-
brometer instrument. The reflector must be absolutely
rigid, as in TV holography and pulsed TV holography,
to record sound fields, compare Fig. 27.8.

The temporal and spatial pressure fluctuations
Δp(x, y, z, t), which are connected with acoustic or
fluidic phenomena, cause changes of the optical re-
fractive index Δn(x, y, z, t) = n(x, y, z, t)− n0 and,
consequently, the rate of change of the measured op-
tical phase. In the simplest case a linear acoustic wave
travels in the x-direction in the measuring volume; com-
pare Fig. 27.8. Then the optical phase varies from point
to point but at each point it also varies sinusoidally with
time. This signal therefore behaves as a virtual displace-
ment of the rigid reflector. In real measurements the

acoustic wave is not ideally shaped in the measuring
volume (i.e. it is usually not two-dimensional) and a vi-
brometer senses, by phase demodulation, a projected
virtual reflector displacement,

s(x, z, t) =
∫

L

Δn(x, y, z, t)dy (27.10)

or by frequency demodulation, a virtual reflector
velocity

ν(x, z, t) =
∫

L

ṅ(x, y, z, t)dy , (27.11)

i. e. the reflector seems to vibrate although it is im-
movable. These virtual vibrations represent the acoustic
wave in the measuring volume. But, according to
(27.10) and (27.11), the integrated sum of all fluctua-
tions of the refractive index Δn(x, y, z, t) along the laser
beam contributes to the measured result. An ideal mea-
surement situation is therefore a 2-D acoustic field as in
Fig. 27.8. If not, several projections may be used or, if
possible, enough that a tomographic reconstruction can
be obtained.
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To study the sound generation in, and the sound
propagation from, a saxophone or a clarinet cavity, rect-
angular model pipes (two-dimensional structures) with
one transparent side wall were fabricated. Figure 27.19
shows a standing acoustic wave at 1303 Hz of a model
pipe when it is excited by an artificial mouth at the reed
in a normal saxophone mouthpiece (to the left in the fig-
ure). Different air-column modes inside and at the bell
of the pipe can be observed.

A transient pressure pulse in a water-filled cavity,
25 × 25 × 25 cm3, is shown in Fig. 27.20a. The pres-
sure pulse is recorded through two opposite transparent
walls from one side by pulsed TV holography. The im-
pacted left side wall is made of steel and is hit in the
middle by a pendulum (not seen in the interferogram)
that creates a propagating, almost hemispherical, pres-
sure wave in the water moving to the right at a speed
of about 1500 m/s. The recording is taken 25.4 μs after
the start of the impact. The pendulum is still in contact
with the wall so energy and momentum are still being
transferred to the tank. Figure 27.20b shows a line di-
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Fig. 27.20 (a) A pulsed TV holography recording of the wave propagation 25.4 μs after impact start in a water-filled
transparent channel impacted at the left wall by a pendulum. The pendulum is hitting the left wall from the outside, not
seen in the picture, and is still in contact with the wall when this interferogram was recorded, so energy and momentum
are still being transferred to the water from the impact. The bar to the right shows the coding in optical path difference.
(b) The full line shows the optical path difference along the center horizontal line measured in Fig. 27.20a, using pulsed
TV holography. The circles in the graph are measured points using a vibrometer. The measurements are performed at
different distances from the wall but evaluated at 25.4 μs. The different points are, however, obtained from different ex-
periments (the scanning facility cannot be used since the event is far too rapid). The optical path differences at coincident
time and space point values agree quite well between the two methods

agram of the same wave but now measured along the
center horizontal line. The circles in the graph are meas-
ured using the vibrometer at different distances from
the wall but at the same time instants, as in pulsed TV
holography recording. The different points are recorded
from different experiments (the scanning facility can-
not be used since the event is not repetitive and is far
too rapid). As seen in the figure, the optical path differ-
ences at coincident time and space values agree quite
well between the methods. The pulsed TV holography
experiment measures and compares the disturbed field
with the undisturbed one at one time instant. To ob-
tain a sequence the experiment has to be repeated or
a multiple-pulsed laser has to be used to record sev-
eral time instants of one event. The vibrometer on the
other hand can take measurements of a single transient
event one point at a time as a function of time, and
at several points as a function of time if the event can
be repeated. The vibrometer thus records a time se-
quence of the optical path (or velocity) difference at
each point.
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27.2.6 Digital Speckle Photography ( DSP),
Correlation Methods
and Particle Image Velocimetry (PIV)

The equipment needed in the interferometry-based
methods described above is often rather expensive and
some of the techniques can unfortunately be quite
difficult for an untrained user to apply. Simpler and
cheaper methods have therefore been sought. Less
expensive, less sensitive methods are the speckle pho-
tography (SP) and digital speckle photography (DSP)
methods [27.73], which are also called speckle cor-
relation [27.32–34]. Here the motion of the speckles
themselves is measured, rather than the change in inten-
sity of the stationary speckles as with interferometric
methods. As mentioned before, the speckled random
pattern acts as if glued to the surface of the laser-
illuminated object. This pattern is imaged twice, usually
with a CCD camera on individual frames, before and
after some external or internal load is applied to the
object, which changes the speckle pattern field. The il-
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Fig. 27.21 Defocused digital speckle photography (DSP)
recording, of a transparent helium jet entering air, recorded
using a continuous He-Ne laser

lumination and the camera are left stationary, so it is the
motion of the microstructure of the object surface that
is responsible for the motion of the speckles. The de-
formation field of the object may consist of the sum of
rigid-body motions (translation and rotation) and some
strain-induced deformation field (at crack tips, elastic
and plastic deformation fields etc.). So far this is rem-
iniscent of TV holography (or digital speckle pattern
interferometry (DSPI)) but no reference wave is added
here. The experiments are not as sensitive to distur-
bances as interferometric measurements and can usually
be performed in a workshop without vibration isola-
tion of the quite simple optical setup. It is the position
of each speckle in the speckled object wave that is
recorded and the motion of small sub-images containing
this pattern that is determined.

Two main types of random patterns are in use:
(1) laser speckle, which is the random pattern gener-
ated by the surface microstructure of a laser-illuminated
diffuse object (laser speckles in DSP) together with
the specific illumination and recording geometry; and
(2) white-light speckle in DSP, where there may already
exist a random pattern at the object surface, such as ran-
dom fibers in a paper or wood sample, which is imaged
using an ordinary, broadband incandescent lamp. A ran-
dom dot pattern may also be painted or sprayed onto
the surface and imaged. White-light illumination can be
used so that lasers can be avoided in these cases.

Two main imaging techniques are in use, one where
the object surface is focused by the recording CCD cam-
era and one where the camera is defocused behind or in
front of the object surface. The focused case, which is
the simplest and most commonly used, gives a measure
of the in-plane motion field of the surface. However, it
is important that the object is in focus, otherwise, using
laser speckles, strain fields and rotations may disturb the
result. It must be understood that laser speckles exist in
all space, not only when focused at the object surface.
Therefore, if the camera is defocused, other compo-
nents of the strain tensor that affect the speckle motion
will eventually become important. Using this defocused
technique it has been possible to measure the strain
field directly, i. e. without first measuring the deforma-
tion field and then differentiating the result to obtain the
strain field [27.74].

A digital correlation technique is then used to de-
termine how far small sub-areas in the first recording
have to be moved to correlate as exactly as possible
with those in the second recording. Performing this for
all sub-areas, an in-plane deformation map (for the fo-
cused case) is formed. As well as yielding information
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Fig. 27.22 The principle of particle image velocimetry
(PIV). Pulsed laser light is sent through a cylinder lens
system to form a sheet of light in the measuring volume.
A CCD camera captures the seeded flow in this light sheet
from above at two time instances

on the in-plane motion, the value of the correlation peak
height is measured for each sub-area. This peak value
gives a measure of how similar the sub-images are, even
if they have not moved. If the correlation is high (al-
most 1) then the speckles in the two sub-surfaces are
identical; if not, the correlation value will drop. Rea-
sons for this drop include different kinds of noise and
limitations in the recording system (limited and varying
optical resolution and the digitalization of the intensity
etc.); but it may also be that the microstructure itself has
changed between the two exposures, for instance due to
plastic deformation of parts of the object surface. Fig-
ure 27.21 shows an example of a defocused laser DSP
recording of a transparent helium jet entering air. From
similar recordings [27.75, 76] where pulsed lasers were
used, it is possible to calculate where the gas jet is sit-
uated and how strong the refractive-index field of the
gas is.

Particle image velocimetry (PIV) [27.77, 78] is
highly reminiscent of the focused version of the speckle
photography technique. However, the measurements are
now made of a flow in a transparent medium, usu-
ally water or air. It is a nonintrusive optical measuring
method. Tracer particles are illuminated with pulsed
laser light in a light sheet, for instance smoke in air
that follows the fluid motion. The displacements of the
particles between two exposures are determined with
a cross-correlation technique, as in digital speckle pho-
tography or speckle correlation. Figure 27.22 shows
a PIV setup. Since the time between the exposures is
known (often the time between repetitive pulses from
a pulsed laser) and the motion of the small sub-areas be-
tween exposures of the imaged flow can be calculated,
the velocity fields in the flow are determined.
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Fig. 27.23 Particle image velocimetry (PIV) measure-
ments of the flow field at the labium (the opening to the
left) of an organ pipe. A pulsed laser was used as an illu-
mination source as the flow is quite fast at the labium; see
the reference arrow in the top left

With two cameras viewing the illuminated plane
from two directions and/or illuminating two different
and crossing planes, not only the in-plane compo-
nents but also out-of-plane velocity components can be
estimated, so both 2-D and 3-D stereoscopic PIV tech-
niques are available. With fast repetitive pulsed lasers,
so called time-resolved PIV (TR-PIV), even fast turbu-
lent flows can be measured. Microflow systems have
been developed for flow studies at the microscopic
scale [27.79]. By adding fluorescent particles to the flow
and illuminating in a plane with a laser at a shorter
wavelength and observing it at a longer (fluorescent)
wavelength, concentration and temperatures can also
be measured. This is called planar laser-induced fluo-
rescent (PLIF). Sophisticated PIV systems, including
hardware and software for industrial or research use, are
sold by several manufacturers.

Figure 27.23 shows the flow field at the labium
of a blown organ pipe, measured using PIV with
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a pulsed laser as the illuminating source [27.80]. The
number of papers using PIV and LDA presented at

acoustical conferences is rapidly increasing [27.81,
82].

27.3 Summary

Several new optical, all-electronic measuring tech-
niques and systems have entered the market in recent
decades. The rapid technical development of new lasers,
new optical sensors such as the CCD camera, optical
fibers and powerful and cheap PCs has made this possi-
ble. The demands for optical techniques have increased
because validation of large numerical calculations is
becoming more important. Optical methods have the ad-
vantage over traditional vibration detectors that they are
fast and do not disturb what is being measured, and they
also often yield an image field – for instance a flow ve-
locity field – rather than just measuring values at one
single point.

Equipment can be purchased from many manu-
facturers and in many cases you do not have to be
a specialist in optics to use them. It is also possi-
ble to make, for instance, a speckle interferometer or
a shearing interferometer in most laboratories [27.83].
Methods exist today that have the sensitivity and spatial
resolution needed to visualize and measure sound fields

Table 27.1 Some modern optical measuring methods and their temporal application areas

Optical measuring methods and
their temporal application areas

Static or (slow)
quasistatic events

Harmonic motions,
single frequency

Repetitive motions,
multi-frequencies

Transients, fast,
dynamic events

Real-time holographic int.
with continuous lasers

× ×

Double-exposure holographic int.
with continuous lasers

×

Time-average holographic int.
with continuous lasers

×

TV holography, DSPI, ESPI
with continuous lasers

× ×

Pulsed TV holography and pulsed
DSPI and ESPI with pulsed lasers

(×) (×) × ×

Scanning laser vibrometry × × × (one point, no scanning)

Speckle correlation/photography
(DSP)

× × (with pulsed lasers)

Particle image velocimetry, PIV × (×) (×) × (with pulsed lasers)

int.: interferometry

in musical acoustics. In Table 27.1 some modern optical
measuring methods and their temporal application areas
are indicated.

Optical metrology on the whole is growing in im-
portance and applicability to scientists and engineers
in solid mechanics, fluid mechanics and in acoustics.
Techniques such as phase-modulated TV holography,
pulsed TV holography and scanning vibrometry are
commonly used for modal analysis and increasingly to
measure phase shifts in transparent phase objects such
as sound fields. Flow fields in air and water can be meas-
ured with speckle photography or correlation methods
such as digital speckle photography (DSP) and par-
ticle image velocimetry (PIV); these methods provide
both illustrative images as well as quantitative meas-
ures. Reciprocity methods can also be of great help
in such experiments. Optical measuring methods have
the advantage of being contact-less, non-disturbing and
whole-field methods. The future for optical metrology
in acoustics looks bright.
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Modal Analysi28. Modal Analysis

Thomas D. Rossing

Modal analysis is widely used to describe the dy-
namic properties of a structure in terms of the
modal parameters: natural frequency, damping
factor, modal mass and mode shape. The analysis
may be done either experimentally or mathe-
matically. In mathematical modal analysis, one
attempts to uncouple the structural equations
of motion so that each uncoupled equation can
be solved separately. When exact solutions are
not possible, numerical approximations such as
finite-element and boundary-element methods
are used.

In experimental modal testing, a measured
force at one or more points excites the structure
and the response is measured at one or more points
to construct frequency response functions. The
modal parameters can be determined from these
functions by curve fitting with a computer. Various
curve-fitting methods are used. Several convenient
ways have developed for representing these modes
graphically, either statically or dynamically. By
substituting microphones or intensity probes for
the accelerometers, modal analysis methods can
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be used to explore sound fields. In this chapter
we mention some theoretical methods but we
emphasize experimental modal testing applied to
structural vibrations and also to acoustic fields.

28.1 Modes of Vibration

The complex vibrations of a complex structure can be
described in terms of normal modes of vibration.

A normal mode of vibration represents the motion
of a linear system at a normal frequency (eigenfre-
quency). Each mode is characterized by a natural
frequency, a damping factor, and a mode shape. Normal
implies that each shape is independent of, and orthogo-
nal to, all other mode shapes of vibration for the system.
Any deformation pattern the structure can exhibit can
thus be expressed as a linear combination of the mode
shapes.

In a stricter mathematical sense, normal modes pro-
vide a solution for an undamped system. Each mode

shape is a list of displacements at various places and in
various directions. These normal-mode vectors contain
one real number for each motional degree of free-
dom (DOF) studied. Since real structures are invariably
damped, normal modes represent an approximation that
may prove imprecise when the damping level is signifi-
cant. In instances where the energy absorbing damping
mechanisms are distributed in a manner proportional to
the structural stiffness, normal modes provide an exact
solution. In this case, the damping factor of each mode
is proportional to its associated natural frequency. The
normal modes also provide an exact solution when the
damping is proportional to the mass distribution, but in
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this case each damping factor is inversely proportional
to its associated natural frequency.

A structure is said to be proportionally damped
when the matrix describing its damping can be written
as a linear combination of the corresponding mass and
stiffness matrices. Normal-mode shapes provide the ex-
act solution to such equations, and the damping factors
may be expressed as a linear combination of the natural
frequencies and their reciprocals. When these restric-
tive proportionality conditions do not exist, the structure
may be better modeled by complex mode shapes.

Complex modes result when the instantaneous ve-
locity at each DOF is treated as being independent of the
displacement. This doubles the number of system differ-
ential equations, but simplifies them from second order
to first order. The solution vectors are most commonly
written in terms of complex displacements, one for each
DOF. Expressing the modal displacements in this man-
ner eliminates any constraints between the damping
factors and the natural frequencies. All but the simplest
experimental curve-fitting algorithms can identify com-
plex modes. Most finite-element codes are restricted to
the undamped analysis of structures and can therefore
only identify the approximating real or normal modes.

Each modal vector represents a displacement pat-
tern. A zero in the vector denotes a node, a point and
direction on the structure that does not move in that
mode. The element in a modal vector that is largest
in displacement value is termed an anti-node. A given
mode shape can be readily excited by a sinusoidal force
at or near its natural frequency applied to an anti-node.
The same force applied at a node will impart no motion
in that shape.

It should be noted that the real or complex displace-
ment values in each modal vector are relative numbers.
The mode shape is inferred by the ratio between the
vector elements, not their specific values. The elements

within each modal vector may be scaled by any of
various methods, the simplest of which is division by
the anti-node value. This is useful for display or plot-
ting so that all modes have a common maximum value.
However, the inner product or length of each vector
is related to the modal mass of the mode. For many
analytical purposes, including structural dynamic mod-
ification, it is necessary to choose the length of each
vector so that the corresponding modal mass is equal
to 1. When the shape vectors are scaled in this man-
ner, they are said to be orthonormal or unit modal mass
(UMM) modal vectors.

It is normally possible to excite a mode of vibration
from any point on a structure that is not a node and to
observe motion at all points that are not nodes. A mode
shape is a characteristic only of the structure itself, inde-
pendent of the way it is excited or observed. In practical
terms, however, instrumentation associated with both
excitation and observation may modify the structure
slightly by adding mass or stiffness (or both). This re-
sults in small shifts in frequency and mode shape, which
in most cases are negligible. Acoustic excitation and
optical monitoring are the least intrusive, but mechani-
cal means of driving and observing are frequently more
convenient and less costly.

Mode shapes are unique for a structure, whereas the
deflection of a structure at a particular frequency, called
an operating deflection shape (ODS), may result from
the excitation of more than one normal mode. When ex-
citing a structure at a resonance frequency, the ODS will
be determined mainly by one mode, although if several
modes have nearly the same frequency, special tech-
niques may be required to determine their contributions
to the observed ODS. Modes of a structure are functions
of the entire structure. A mode shape describes how ev-
ery point on the structure moves when it is excited at
any point.

28.2 Experimental Modal Testing

Modal testing is a systematic method for identification
of the modal parameters of a structure. Generally these
include natural frequencies, modal damping, and UMM
mode shapes. In experimental modal testing the struc-
ture is excited with a measured force at one or more
points and the response is determined at one or more
points. From these sets of data, the modal parameters
are determined, often by the use of multidimensional
curve-fitting routines on a digital computer.

Modal testing may use sinusoidal, random, pseudo-
random, or impulsive excitation. The response may be
measured mechanically, optically, or indirectly (by ob-
serving the radiated sound field, for example). The first
step in experimental modal testing is generally to obtain
a set of frequency response functions.

There is a vast amount of good literature describ-
ing experimental modal testing. Ewins [28.1] provides
a good overall introduction. The proceedings of the an-
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nual International Modal Analysis Conference (IMAC),
held every year since 1982, is a gold mine of papers on
the subject [28.2]. The Structural Dynamics Research
Laboratory at the University of Cincinnati has published
many scientific papers and reports on the subject, and
has included several tutorials on their website [28.3].

28.2.1 Frequency Response Function

The frequency response function (FRF) is a funda-
mental measurement that isolates the inherent dynamic
properties of a mechanical structure. The FRF describes
the motion-per-force input–output relationship between
two points on a structure as a function of frequency.
Since both force and motion are vector quantities, they
have directions associated with them. An FRF is ac-
tually defined between a single-input DOF (point and
direction) and a single-output DOF.

In practice, the force and response are usually
measured as functions of time, and transformed into
the frequency domain using a fast Fourier transform
(FFT) analyzer. Due to this transformation, the func-
tions end up as complex numbers; the functions contain
real and imaginary components (or magnitude and
phase components). Depending on whether the re-
sponse motion is measured as displacement, velocity,
or acceleration, the FRF can be expressed as com-
pliance (displacement/force), mobility (velocity/force),
accelerance or inertance (acceleration/force), dynamic
stiffness (1/compliance), impedance (1/mobility), or dy-
namic mass (1/accelerance). Force can be measured
with a piezoelectric force transducer or load cell; accel-
eration can be measured with an accelerometer; velocity
can be measured with a laser velocimeter or obtained
by integrating acceleration; displacement can be deter-
mined by holographic interferometry or by integrating
velocity.

Because it is a complex quantity, the FRF cannot be
fully displayed on a single two-dimensional plot. One
way to present an FRF is to plot the magnitude and the
phase as in Fig. 28.1a. At resonance, the magnitude is
a maximum and is limited only by the damping in the
system. The phase ranges from 0 to 180◦ and the re-
sponse lags the input by 90◦ at resonance. The 3 dB
width of each resonance peak (bounding locations of
0.707 resonance amplitude) is determined by the damp-
ing. At these half-power points the phase angle is ±45◦.

Another way of presenting the FRF is to plot the
real and imaginary parts as in Fig. 28.1b. The imaginary
part has a peak at resonance, while the real part goes
through zero at resonance. The real component exhibits

peaks of opposite sign at the extremes of the half-power
bandwidth.

A third method of presenting the FRF is to plot
the real part versus the imaginary part as shown
in Fig. 28.1c. This is called a Nyquist or vector response

b)

Frequency

a)

Frequency

c)

Imaginary

Real

Θ(ω)

Fig. 28.1a–c Three methods for presenting the frequency
response function (FRF) of a vibrating system graphically.
(a) Magnitude and phase versus frequency; (b) real and
imaginary parts versus frequency; (c) real part versus imag-
inary part (a Nyquist plot)
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plot. Each mode produces a circular pattern. The diam-
eter of the circle is proportional to the product of the
UMM vector elements for the force and response DOFs.
Maximum change in arc length with frequency occurs at
the natural frequency.

If measurements are made at n points, the FRFs can
be arranged in an n × n matrix with elements designated
hij . The diagonal elements denote that the excitation
and observation occurred at the same point. Such mea-
surements are termed driving-point FRFs and they are
of particular importance as at least one driving-point
measurement is required to scale the mode shapes to
UMM form. In a linear system the FRF matrix is sym-
metric: hij = h ji . We do not have to measure all the
terms of the FRF matrix. In practice, it is (generally)
possible to obtain mode shapes from only one row or
column of the FRF matrix.

Theoretically, it does not matter whether the meas-
ured frequency response comes from a shaker test or
an impact test. If the structure is impacted at n points
while the response is measured at one point, one row
of the FRF is obtained. If a shaker is used to excite
it at one point while an accelerometer (or other sen-
sor) is moved from one point to another, one column
of the FRF is obtained. In practice, there may be differ-
ences between the results of the roving hammer and the
roving accelerometer methods, but these are the result
of experimental compromises, not structural properties.
Roving impact and roving response techniques provide
essentially the same answers because a linear structure
exhibits reciprocity. The motion produced at DOF a by
a force applied at DOF b is identical to the motion at b
due to a force at a.

The analog signals obtained from the measuring
devices are generally digitized in an FFT analyzer. Sam-
pling and quantization errors can occur in the process,
but the most worrisome of signal-processing errors is
probably leakage, which will be discussed later.

Serious consideration must be given to the way the
structure is mounted and supported. Boundary condi-
tions can be specified exactly in a completely free or
completely constrained situation. In practice it is gen-
erally not possible to fully achieve these conditions. In
order to approximate a free system, the structure can
be suspended from very soft elastic cords or placed on
a very soft cushion. The structure will be constrained
to a degree and the rigid-body modes will not have
zero frequency. However, they will generally be much
lower than the frequencies of the flexible modes and
will therefore have negligible effect. Some support fix-
tures affect damping as well.

28.2.2 Impact Testing

A roving hammer test is the most common type of im-
pact test. An accelerometer is fixed at a single DOF,
and the structure is impacted at as many DOFs as de-
sired to define the mode shapes of the structure. Using
a two-channel FFT analyzer, FRFs are computed, one
at a time, between each impact DOF and the fixed re-
sponse DOF. A suitable grid is usually marked on the
structure to define the impact points.

Piezoelectric transducers are generally used to sense
both force and acceleration. They generate an electri-
cal charge when mechanically strained. Because of their
high impedance, charge amplifiers are generally used to
amplify the signals. More-modern sensors incorporate
an amplifier within the transducer and power it from
a constant-current source using the same two-conductor
cable that transmits the signal (at low impedance). The
resonant frequencies of the transducers must be well
above the highest frequency that will be measured. The
mass of the accelerometer should be small enough that
the effect of mass loading is small. One way to deter-
mine if mass loading is significant is to measure an
FRF with the accelerometer and compare it to a sec-
ond measurement with an additional accelerometer (or
equivalent mass) attached to it. An obvious advantage
of this testing setup is that the response transducer is
never moved; the structure is subjected to a consistent
mass loading.

In some circumstances, the symmetry of the test
object may produce repeated roots. These are modes
with different mode shapes that have the same natu-
ral frequency. When such modes are encountered, they
may be separated by using two or more fixed refer-
ence accelerometers and multi-reference curve-fitting
techniques. Of course, an analyzer with three or more
channels is required if the data is to be acquired in
a single measurement set.

It is generally impossible to impact a structure in
all three directions at all points, so three-dimensional
(3-D) motion cannot be measured at all points. When
3-D motion at all points is desired, a roving triaxial ac-
celerometer may be used and the structure is impacted at
a fixed DOF with the hammer. Triaxial accelerometers
are usually more massive, however. Since the triaxial
accelerometer must be simultaneously sampled together
with the force data, a four-channel FFT analyzer is re-
quired [28.4]. Note, however, that the roving accelerom-
eter presents a different mass-load to the structure at
each response site. This can lead to inconsistencies in
the data that make an accurate curve fit more difficult.
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Because the impulse signal exists for such a short
period, it is important to capture all of it in the sam-
pling window of the FFT analyzer. To insure that the
entire signal is captured, the analyzer must be able to
capture the impulse and response signals prior to the
occurrence of the impulse. The analyzer must begin
sampling data before the trigger point occurs. This is
called a pre-trigger delay.

Modern FFT analyzers provide very high-resolution
(24 bit) analog-to-digital converters (ADCs) and large
capture block sizes (64 kpoint typical). These charac-
teristics nullify the need to use weighting functions or
windows when performing an impact test. The preferred
analysis is conducted without weighting, also termed
using a rectangular window.

Two common time-domain windows that are used
in impact testing with older equipment are the force and
exponential windows. These windows are applied to the
signals after they are sampled but before the FFT is ap-
plied to them in the analyzer. The force window is used
to remove noise from the force signal. Any nonzero data
following the impulse signal in the sampling window is
assumed to be measurement noise. The force window
preserves the samples in the vicinity of the impulse but
removes the noise from all other samples in the force
signal.

The exponential window is used to reduce leak-
age in the spectrum of the response. The FFT analyzer
assumes that the signal is periodic in the transform
window. This is true of signals that are completely con-
tained within the transform window or cyclic signals
that complete an integer number of cycles within the
transform window. If a time signal is not periodic in
the transform window a smearing of its spectrum will
occur when it is transformed to the frequency domain.
This is called leakage. Leakage distorts the spectrum
and makes it inaccurate. If the response does not de-
cay to zero before the end of the sampling window, an
exponential window can add artificial damping to all
modes of the structure. This artificial damping must be
removed by the subsequent curve-fitting algorithm to
obtain proper damping factors.

It is important that the impact hammer provides
a pulse that is well matched to the frequency span of
the analysis. This is accomplished by fitting a strik-
ing tip of appropriate stiffness to the hammer’s force
gauge. A soft tip produces a broad pulse time-history
with a narrow spectrum. A hard tip increases the force
spectrum bandwidth by applying a narrow pulse. The
spectrum of the force pulse has a lobed structure and
all tests are done using the spectral content of the first

lobe. Trial measurements are made to select a tip that
provides a force spectrum that falls off no more than
25 dB from the direct-current (DC) point to the selected
analysis bandwidth.

It is often difficult to strike at exactly the same place
and angle multiple times. For this reason, averaging is
less useful in an impact test than in other types of exper-
imental modal analysis. Many experienced practitioners
favor conducting tests with a single strike at each target
DOF. This precludes calculating a coherence function,
but that very useful causality measurement often tells
you more about your ability to hit the same place twice
than it does about structural nonlinearities or noise in
measurement. For this reason, it is imperative to in-
spect every measurement set in the time domain before
accepting it. Most analyzers automate this type of ac-
quisition, giving you an accept/reject control.

28.2.3 Shaker Testing

Not all structures can be impact tested. Sometimes the
surface is too delicate. Sometimes the impact force has
too low an energy density over the entire frequency
range of interest. In this case, FRF measurements must
be made by attaching one or more shakers to the
structure.

Since the FRF is a single input function, the shaker
should transmit only one component of force in line
with the main axis of the load cell. Often a structure
tends to rotate slightly when it is displaced along an
axis. To minimize the problem of forces being applied
in other directions, the shaker is generally connected to
the load cell through a slender rod called a stinger to al-
low the structure to move freely in the other directions.
The stinger should have a strong axial stiffness but weak
bending and shear stiffnesses.

A variety of broadband excitation signals have been
developed for making shaker measurements with FFT
analyzers: transient, random, pseudo-random, burst ran-
dom, sine sweep (chirp). A true random signal is
synthesized with a random number generator. Since it
is nonperiodic in the sampling window, a Hanning win-
dow must always be used to minimize leakage.

A pseudo-random signal is specially synthesized
by an FFT analyzer to coincide with the window pa-
rameters. It is synthesized over the desired frequency
range and then passed through an inverse FFT algo-
rithm to obtain a random time-domain signal, converted
to an analog signal and used as the shaker excitation
signal. Since the excitation signal is periodic in the
sampling window, the acquired signals are leakage-free.
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However pseudo-random excitation does not excite
nonlinearities differently between spectrum averages
and will not, therefore, remove nonlinearities from FRF
measurements.

Burst random excitation combines some advantages
of both random and pseudo random testing. Its signals
are leakage free and when used with spectrum averag-
ing, will remove nonlinearities from the FRFs. In burst
random testing, either a true random or time-varying
pseudo-random signal can be used, but it is turned off
prior to the end of the sampling window time period so
that the response decays within the sampling window.
Hence, they are periodic in the window and leakage-
free [28.1].

In large structures more than one shaker may be
needed to obtain sufficient excitation. These are driven
simultaneously so that the structure is subjected to mul-
tiple inputs. The FRFs between each of the inputs and
each of the multiple outputs are calculated by using
a matrix inversion process. This type of measurement
is called multiple-input multiple-output (MIMO) test-
ing. It provides FRFs from multiple columns of the
FRF matrix and two special types of coherence func-
tions. One multiple coherence function is generated for
each shaker used. This function may be thought of as
a generalization of ordinary coherence; it asserts what
fraction of all the response output power spectra may
be attributed to the single measured force power spec-
trum and the FRFs in one column of the FRF matrix.
One partial coherence function is generated for each
FRF; it asserts what fraction of a single response power
spectrum can be attributed to one force power spec-
trum and a single FRF. MIMO data is analyzed using
a multi-reference curve fitter.

28.2.4 Obtaining Modal Parameters

Most experimental modal analysis relies on a modal pa-
rameter estimation (curve-fitting) technique to obtain
modal parameters from the FRFs. Curve fitting is a pro-
cess of matching a mathematical expression to a set of
experimental points by minimizing the squared error be-
tween the analytical function and the measured data.
Curve-fitting methods used for modal analysis fall into
one of the following categories: local single degree of
freedom, local multiple degree of freedom, global, or
multi-reference.

Single-degree-of-freedom (SDOF) methods esti-
mate modal parameters one mode at a time. Mul-
tiple-degree-of-freedom (MDOF), global, and multi-
reference methods can estimate modal parameters for

two or more modes at a time. Local methods are ap-
plied to one FRF at a time. Global and multi-reference
methods are applied to an entire set of FRFs at once.

SDOF methods can be applied to most FRF data sets
with low modal density, but MDOF methods must be
used in cases of high modal density. Global methods
work better than MDOF methods for cases with local
modes. Multi-reference methods can find repeated roots
(very closely coupled modes) where the other methods
cannot [28.4].

Perhaps the simplest of the SDOF methods is the
quadrature or peak-picking method. Modal coefficients
are estimated from the real and imaginary parts of the
frequency response, so the method is really not a curve
fit in the strict sense of the term. First the resonance
peaks are detected on the imaginary plot and the fre-
quencies of maximum response taken as the natural
frequencies of these modes. Then the line width be-
tween the half-power points is determined from the real
plot, from which damping can be estimated. The magni-
tude of the modal coefficient is taken as the value of the
imaginary part at resonance. This method is adequate
for structures whose modes are well separated and have
modest damping [28.5].

Another SDOF method is the circle-fit method. This
is based on the fact that a Nyquist plot of frequency
response of a SDOF system near a resonance is a cir-
cle. Thus the circle that best fits the data points is
determined. Half-power points are those frequencies for
which θ = ±90. The modal coefficient is determined
from the diameter of the circle.

Two of the most popular MDOF methods are the
complex exponential and rational fraction polynomial
methods. The complex exponential method (or Prony
algorithm) fits the impulse response function (IRF),
which is the inverse Fourier transform of the FRF rather
than the FRF itself. A potentially serious error, called
wrap-around error or time-domain leakage, can occur
but can be mitigated by using an exponential window
on the IRF This error is caused by the limited fre-
quency range of the FRF measurement, and distorts the
impulse response. The complex exponential algorithm
works very well for FRFs with high modal density. In
most applications, the algorithm is allowed to fit far
more modes than the FRF form suggests are present.
The resulting extraneous computational modes are then
discarded, normally by using a stability diagram.

The rational fraction polynomial method fits a ra-
tional fraction of polynomials expression directly to an
FRF measurement. Its advantage is that it can be applied
over a user-selected frequency range of data, focusing

Part
H

2
8
.2



Modal Analysis 28.2 Experimental Modal Testing 1171

a)

b)

Fig. 28.2a,b Two ways of representing a vibrational mode
in a Korean pyeongyeong: (a) The shape at maximum bend-
ing; (b) the neutral shape with vectors

its findings upon that frequency interval. It does not
generate computational modes and therefore does not
require the use of a stability diagram or other methods
to filter its outputs.

Global curve fitting divides the curve-fitting process
into two steps: estimating the frequency and damping
parameters, and using these to obtain mode shape es-
timates by a second estimation process. The advantage
of global curve fitting is that more-accurate frequency
and damping estimates can potentially be obtained by
processing all of the measurements rather than relying
on a single measurement. Another advantage is that, be-
cause damping is already known and fixed as a result of
the first step, the modal coefficients are more accurately
estimated during the second step. Both the complex ex-
ponential and rational fraction polynomial methods can
be formulated to obtain global estimates from a set of
measurements [28.6].

28.2.5 Real and Complex Modes

The assumption of proportional viscous damping im-
plies the existence of real, or normal modes. Mathe-
matically, this implies that the damping matrix can be
defined as a linear combination of the physical mass and

0–500 500

μm/s

Fig. 28.3 Gray-scale representation of a vibration mode in
a violin (courtesy of George Bissinger)

stiffness matrices. Physically, all the points in a struc-
ture reach their maximum excursion, in one or the other
direction, at the same time. The imaginary part of the
FRF reaches a maximum at resonance, and the Nyquist
circle lies along the imaginary axis.

Some structures exhibit a more complicated form of
damping, and the mode shapes are complex, meaning
the phase angles can have values other than 0 or 180◦.
Different points on the structure reach their maxima at
various times as in a traveling wave pattern. The imag-
inary part of the FRF no longer reaches a maximum at
resonance nor is the real part zero. The Nyquist circle is
rotated at an angle in the complex plane. When damping
is light, the proportional damping assumption is gener-
ally an accurate approximation, [28.5] although it can
be argued that a complex-mode formulation is essential
to preserve accuracy in damping evaluation [28.7].

28.2.6 Graphical Representation

One of the nice features of experimental modal testing is
the way that the modes can be represented graphically.
Animations of the vibration can be viewed from any an-
gle to comprehend complex mode shapes. Static repre-
sentations include the shape at maximum bending, and
the neutral shape with vectors, as shown in Fig. 28.2.
Another representation is shown in Fig. 28.3.
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28.3 Mathematical Modal Analysis

In mathematical modal analysis, one attempts to uncou-
ple the structural equation of motion by means of some
suitable transformation, so that the uncoupled equations
can be solved. The frequency response of the structure
can then be found by summing the respective modal re-
sponses in accordance with their degree of participation
in the structural motion.

Sometimes it is not possible to obtain exact so-
lutions to the equation of motion. Computers have
popularized the use of numerical approximations such
as finite-element and boundary-element methods.

28.3.1 Finite-Element Analysis

The finite-element method of analysis (FEA or FEM)
started in the late 1940s as a structural analysis tool
useful in helping aerospace engineers design better air-
craft structures. Aided by the rapid increase in computer
power since then, it has become a very sophisticated
tool for a wide array of engineering tasks. It can be
used to predict how a system will react to environmental
factors such as forces, heat, and vibration.

The technique is based on the premise that an ap-
proximate solution to any complex engineering problem
can be reached by subdividing the problem into smaller
more manageable (finite) elements. Using finite ele-
ments, solving complex equations that describe the
behavior of a structure can often be reduced to a set of
linear equations that can be solved using the standard
techniques of matrix algebra.

The finite-element method works by breaking a real
object down into a large number of elements, which are
regular in shape and whose behavior can be predicted
by a set of mathematical equations. The summation of
the behavior of each individual element produces the
expected behavior of the actual object. Finite-element
analysis (FEA) uses a complex system of points called
nodes, which make a grid called a mesh. The mesh is
programmed to include the material and structural prop-
erties that define how the structure will react to certain
loading conditions.

General-purpose finite-element codes, such as
NASTRAN and ANSYS, are programmed to solve
the matrix equation of motion for the structure of the
form

[M] {ü}+ [C] {u̇}+ [K ] {u} = {F cos (ωt+φ)} ,
(28.1)

where [M] is the mass matrix, [C] is the damping ma-
trix, [K ] is the stiffness matrix, {u} is displacement, and
{F} is force.

The model details are entered in a standard format,
and the computer assembles the matrix equation of the
structure. The first step is to solve the matrix equa-
tion [M] {ü}+ [K ] {u} = {0} for free vibrations of the
structure. The solution to this equation gives the natu-
ral frequencies (eigenvalues) and the undamped mode
shapes (eigenvectors). These parameters are the ba-
sic dynamical properties of the structure, and they are
used in subsequent analysis for dynamic displacements
and stresses. For harmonic motions, {ü} = −ω2{u}, so
that [K ]−1[M]{u} = [I ]{u}, where [I ] is the unity ma-
trix. Typically the matrix equations of motion for the
structure contain off-diagonal terms, but they may be
decoupled by introducing a suitable transformation. The
damping matrix may also be uncoupled on the condi-
tion that the damping terms are proportional to either
the corresponding stiffness matrix terms or the corre-
sponding mass matrix terms [28.8].

Finite-element analysis in conjunction with high-
speed digital computers permits the efficient solution
of large, complex structural dynamics problems. Struc-
tural dynamics problems that are linear can generally
be solved in the frequency domain. There are other ap-
plications of finite-element analysis in acoustics. The
sound field produced in an enclosure or by a radiating
surface vibrating at a single frequency can be described
by the Helmholtz equation

∇2 p+ k2 p = 0 , (28.2)

where p is the acoustic pressure, k is the wave number
(k = ω/c) and ∇ is the Hamiltonian nabla operator.

The most common boundary conditions are fixed
pressure and fixed velocity on the surface of the
enclosed or radiating body. Other types of bound-
ary conditions are normal and transfer impedan-
ces [28.9].

Exact analytical solutions of the Helmholtz equation
exist for a very limited number of idealized geometries
corresponding to situations where the geometry of the
radiating surface can be described by orthogonal co-
ordinate systems that are separable. In order to solve
the Helmholtz equation for more general applications,
numerical schemes are necessary.
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28.3.2 Boundary-Element Methods

The boundary-element method (BEM) is also a pow-
erful computational technique, providing numerical
solutions to a wide range of scientific and engineer-
ing problems. Since only a mesh of the boundary of
the domain is required, the method is generally easier
to apply than the finite-element method. The boundary-
element method has found application in stress analysis,
structural vibrations, acoustic fields, heat transfer, and
potential flow. The advantage in the boundary-element
method is that only the boundaries of the domain
of the partial differential equation require subdivision,
compared to FEA in which the whole domain of the
equation requires discretization.

The boundary-element method is especially effec-
tive for calculating the sound radiated by a vibrating
body or for predicting the sound field inside a cavity.
A typical BEM input file consists of a surface mesh,
a normal velocity profile on the surface, the fluid den-
sity, speed of sound, and frequency. The output of the
BEM includes the sound pressure distribution on the
surface of the body and at other points in the field,
the sound intensity, and the sound power. BEM may be
formulated in either the time domain or the frequency
domain [28.10].

In cases where the domain is exterior to the bound-
ary, as in acoustic radiation, the extent of the domain
may be infinite and hence the advantages of BEM
are even more striking [28.11]. The boundary-element
mesh, which consists of a series of points called nodes
connected together to form triangular or quadrilateral
elements, covers the entire surface of the radiating body.
The magnitude and phase of the vibration velocity must
be known at every point. BEM calculates the sound
pressure distribution on the surface of the body from
which the sound pressure and sound intensity at field
points in the acoustic domain can be calculated. BEM
will even calculate the sound pressure in the shadow
zone behind a body due to radiation from the other
side [28.10].

Another class of problems to which the BEM may
be applied is the so-called interior problem, such as
the prediction of the sound field inside an enclosure.
The procedure is similar to the solution of exterior
problems.

There are two different formulations for BEM: di-
rect and indirect methods. The primary variables in the
direct BEM are the acoustic pressure and acoustic ve-
locity, while the indirect method uses the difference in

acoustic pressure and the difference in the normal gra-
dient of acoustic pressure across the boundary [28.12].
There is no distinction between an interior and an
exterior problem when using indirect BEM, since it con-
siders both sides of the boundary simultaneously.

Yet another class of problems is that in which an in-
terior acoustic space is connected to an exterior space
through one or more openings. The radiation of sound
from a source within a partial enclosure is one example
of such a problem. In one approach, the integral equa-
tions for the interior and exterior domains are coupled
using continuity conditions at the interface surface be-
tween the two domains. The integral equations are then
reduced to numerical form using second-order bound-
ary elements [28.13].

To apply BEM to the Helmholtz equation, it must
essentially be reduced to a two-dimensional integral
equation by use of Green’s theorem. This means that
only a description of the radiating surface is necessary
rather than a complete discretization of the surrounding
medium. The technique is suited to both interior- and
exterior-domain problems.

Some methods couple a finite element of the struc-
ture with a boundary-element model of the surrounding
fluid. The surface fluid pressures and normal velocities
are first calculated by coupling the finite-element model
of the structure with a discretized form of the Helmholtz
surface integral equation for the exterior fluid [28.13].

Both BEM and FEM can be computationally in-
tensive if the model has a large number of nodes. The
solution time is roughly proportional to the number of
nodes squared for an FEM analysis and to the number
of nodes cubed for a BEM analysis. The accuracy of
both methods depends on having a sufficient number
of nodes in the model, so engineers try to straddle the
line between having a mesh that is accurate yet can be
solved in a reasonable time. The general rule of thumb
is that six linear or three parabolic elements are needed
per wavelength [28.10].

28.3.3 Finite-Element Correlation

It is often desirable to validate the results of a finite-
element analysis with measured data from a modal test.
This correlation is generally an iterative process incor-
porating two major steps. First the modal frequencies
and mode shapes are compared and the differences
quantified. Then, adjustments and modifications are
made to the finite-element model to achieve more-
comparable results.
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It is useful to graphically compare the sets of fre-
quencies by plotting predicted versus measured frequen-
cies. This shows the global trends and suggests possible
causes of these differences. If the random scatter is too
great, then the finite-element model may not be an accu-
rate representation of the structure. If the points lie on
a straight line, but with a slope other than 1, then the
problem may be a mass loading problem in the modal
test or an incorrect material property such as elastic
modulus or material density in the finite-element model.

Numerical techniques have been developed to per-
form statistical comparisons between mode shapes. The

modal assurance criterion (MAC) is a correlation co-
efficient between the measured and calculated mode
shapes. Another technique, called direct system pa-
rameter identification, is the derivation of a physical
model of a structure from measured force and response
data [28.5]. Various forms of cross-orthogonality tests
have also been employed. In general these methods see
how well the experimental shapes can uncouple the
mathematical model. As with many comparison meth-
ods, difficulty is often encountered in reducing the FEA
degrees of freedom to a set of DOFs consistent with the
experiment.

28.4 Sound-Field Analysis

Although modal analysis developed primarily as a way
of analyzing mechanical vibrations, by substituting
microphones or acoustic intensity probes for accelerom-
eters, experimental modal testing techniques can be
used to explore sound fields. Modal testing has been
used to explore standing acoustic waves inside air
columns and to explore radiated sound fields from
a vibrating structure. It could also be used to explore
acoustical modes in rooms.

Figure 28.4 shows an arrangement for measuring
the sound field inside a flute. The exciter is a loud-
speaker coupled to the flute by a capillary tube.
A pressure microphone probes the sound field at suc-
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Fig. 28.4 Experimental arrangement for measuring the sound field inside a flute using modal analysis (after [28.14])

cessive points, and the input and output signals are
fed to a 2-channel FFT analyzer in the usual man-
ner. The sound pressure amplitudes and phases for
four modes in the flute (D5 fingering) are shown
in Fig. 28.5 [28.14].

The sound field radiated by a piano soundboard
has been similarly explored by driving the soundboard
with a shaker and probing the radiated field at 200
points with a pressure microphone. Figure 28.6 shows
the sound pressure in the radiated sound field at two
frequencies. The sound field shows a 180◦ phase dif-
ference above and below the plane of the soundboard as
expected [28.14].
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Fig. 28.5 The sound pressure amplitudes and phases for four modes in the flute (D5 fingering) (after [28.14])
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Fig. 28.6a,b Sound pressure in the radiated sound field of a piano at (a) 162 Hz and (b) 107 Hz. Note the 180◦ phase
difference above and below the plane of the soundboard (after [28.14])

28.5 Holographic Modal Analysis

Holographic interferometry offers the best spatial reso-
lution of operating deflections shapes. In cases where
the damping is small and the modes are well sep-
aratd in frequency, the operating deflection shapes
correspond closely to the normal mode shapes. Modal
damping can be estimated with a fair degree of accu-
racy from half-power points determined by counting
fringes [28.15]. Phase modulation allows analysis to
be done at exceedingly small amplitudes and also
offers a means to separate modes that overlap in
frequency [28.16]. TV holography allows the ob-
servation of vibrational motion in real time, and
it is a fast, convenient way to record deflection
shapes. Holographic interferograms of several vibra-

tional modes of a Chinese opera gong appear in
Fig. 28.7.

Holographic interferometry was once done on
photographic film, but now electronic TV hologra-
phy [28.17] and electronic speckle pattern interferom-
etry (ESPI) [28.18] allow interferograms to be observed
in real time and to be recorded rapidly. Holographic
interferograms of several modes of a Chinese opera
gong are shown in Fig. 28.7. A relatively inexpensive
setup for ESPI (also known as digital speckle inter-
ferometry or DSI), developed by Moore [28.18], has
been the basis for a number of interferometers now used
for modal analysis of musical instruments. Holographic
techniques are discussed in Chap. 27.
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Fig. 28.7 Holographic interferograms of several vibrational modes in a Chinese gong. Note that some modes are mainly
in the center of the gong, some in the outer portion, and some are global (after [28.19])

28.6 Experimental Modal Analysis for Microsystems

Microsystems also known as microelectromechanical
systems or MEMS, have become increasingly common
in recent years. For example, silicon-based microsys-
tems have been manufactured by surface and bulk
micro-machining. Metal, ceramic, plastic, and polymer
based systems have been produced using lithography,
electro-plating, and molding techniques. Synchrotron
radiation has been used to make molds, which are
then filled by means of electrodeposition. Traditional
modal testing techniques are often not suitable for
microsystems. In this section we will briefly discuss
techniques that can be used for modal testing of mi-
crosystems [28.20].

Direct excitation methods, such as impact ham-
mers or shakers directly attached to the structure,
are generally not satisfactory for testing microstruc-
tures. Indirect, noncontact excitation methods are often
required. In additon, the natural frequencies encoun-
tered in microsystems are typically higher than in
traditional structures, and the exciter must be capa-

ble of exciting the structure in the high-frequency
range.

Induced electrostatic forces can be used for exci-
tation of microstructures. Although relatively easy to
apply, the electrostatic forces may be nonlinear func-
tions of structural motions, and they cannot be easily
measured. Excitation can also be provided by embedded
piezoelectric elements, but these may load the structure.
Magnetic and thermal excitation techniques can also be
used.

Another technique is base excitation using exter-
nal elements [28.21]. In this case, a transducer (such
as a piezoelectric disk or an electromagnetic shaker) is
used to shake the entire structure.

Meaurement of the motion of the microstructure
also presents a considerable challenge, partly due to the
high frequencies involved. Holographic modal analysis
is discussed in Sect. 28.6 and other optical methods are
discussed in Chap. 27. Video imaging techniques can
also be applied for measuring structural motion [28.22].
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Microphone A29. Microphone Array

Rolf Bader

This chapter deals with microphone arrays. It is
arranged according to the different methods avail-
able to proceed through the different problems
and through the different mathematical methods.
After discussing general properties of different
array types, such as plane arrays, spherical ar-
rays, or scanning arrays, it proceeds to the signal
processing tools that are most used in speech
processing. In the third section, backpropagating
methods based on the Helmholtz–Kirchhoff inte-
gral are discussed, which result in spatial radiation
patterns of vibrating bodies or air.
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29.1 Overview

Concert spaces, classrooms and auditoriums, industrial
cites, or the interior of cars, trains, or planes, and even
outdoor spaces like streets or plazas, all are complex
sound environments, where when the position of the lis-
tener changes, the sound perception also often changes
tremendously. Additionally, our acoustical perception is
a binaural one which is able to perceive spaciousness or
envelopment of rooms and spaces. We estimate the dis-
tance to a source, locate this source at a certain angle of
our perceptual field, separate different speakers, and are
able to concentrate on one of them; this is well known
as the cocktail party effect. We are able to separate mu-
sical instruments in a musical piece according to their
position in a musical space. We can estimate the size,

depth, or height of a space using reverberation informa-
tion. Also, we are able to neglect much reverberation
when we want to concentrate on a speaker in a space
and extract the speech, neglecting the reverberation.

In many acoustical applications and problems this
spaciousness occurs and needs to be handled, both with
respect to the recording and analysis, as well as from
the sound-field reconstruction side. Here, microphone
arrays help us to get closer to spatial analysis. The ba-
sic idea is simple, many microphones hear more than
only one or two. With more information collected on
the space, the reconstruction and analysis is easier. Also
some problems can only be solved using multiple mi-
crophones.
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The range of applications where microphone arrays
are used today is very wide. Still it may be split into
two main fields which differ both in terms of their prob-
lems and their mathematical treatment. The first set of
methods is based on signal processing and is referred to
as the family of beamforming methods. A second set is
backpropagating a recorded sound field onto a radiating
body and is mostly based on the Helmholtz–Kirchhoff
integral.

A standard beamforming problem would be a sim-
ple localization of a source which is enhanced by using
many microphones recording this source at different
positions. This is especially the case in reverberant en-
vironments where the source is reflected many times,
and the position of the source is therefore much harder
to find compared to a free space. This problem becomes
even more difficult if there are multiple of sources, e.g.,
several speakers in a room.

To go a step further one might want not to only lo-
calize the source but to use the microphone array to get
rid of noise in the recorded signal. This is a common
application for conference rooms or in a car, where re-
verberation or noise is strong. One might also wish to
dereverberate a signal, so get rid of the reverberation
and only reconstruct the speech signal alone. Although
this, as well as denoising, is a basic task of speech sig-
nal processing using only one channel, many recordings
often help to fulfill the task much better. Installations of
such arrays are found in conference rooms, where the
array is fixed and the reverberation can easily be meas-
ured. There this approach it is very helpful to increase
speech intelligibility [29.1].

Microphone arrays may also be used to record sig-
nals, which are then played back later in another space.
Thus, e.g., when recording a musical piece with sev-

eral musicians, this piece may be reproduced in another
concert hall with similar spaciousness to the original
recording. Here many microphones help to understand
the complex spatial pattern of the sound field and to
reconstruct this pattern in another space.

A different task is to reconstruct the vibration of
a complex radiating source. Musical instruments are
a good example of complex radiating sources. The ra-
diating patterns of the instrument body is caused by the
vibrational behavior of its geometry. Knowing this com-
plex pattern helps to understand the instrument and may
lead to construction rules for instrument builders to alter
the instrument’s sound. It it also interesting to know the
complex radiation pattern of machines, as often multi-
ple source points of a noise signal are present on the
geometry and their interaction may lead to helpful con-
clusions about the internal vibrational relations of this
machine. For solving such problems a very different
family of mathematical methods have been developed,
which allow us to backpropagate a recorded signal to
a radiating body. When this radiation pattern is known,
it is trivial to propagate this radiation to any point in the
surrounding space, which therefore results in a directiv-
ity pattern of the radiating body. The boundary-element
method may be the best known of these methods, where
the geometry of the radiating body needs to be known
in advance to be able to reconstruct the radiation from
it. Still many other methods have been proposed and
all use the Helmholtz–Kirchhoff integral as their ba-
sis, which connects the sound pressure at a point in
space to a radiating surface. Another method, which
also backpropagates the recording of a microphone ar-
ray to a source but not using this integral formulation, is
the method of acoustic holography. It is not treated here
as it is discussed in much detail in Chap. 26.

29.2 Array Geometries

29.2.1 Scanning Arrays

When measuring a complex radiation field or when
backpropagating a complex radiation pattern, as a sim-
ple rule of thumb, the more microphones that are used,
the better the representation. Of course, more micro-
phones mean more recording channels and this may
become quite expensive.

A simple alternative is the scanning array. Here
a small set of microphones, maybe only four or eight,
are placed at all desired positions, recording the field
in parts. For practical reasons, the total configuration

of the array depends on the basic mounting of the mi-
crophones. If they are mounted in a linear array, they
are suitable to be used in a regular grid spacing. If they
are mounted to a half-circle, this circle may be moved
around a center point over 360◦ in equally spaced an-
gles to obtain a full sphere covered with microphone
recordings.

This approach can only be used for static signals,
and one needs to rely on the signal to be the same no
matter at which position the small array is recording.
Often an automatic recording setup is built with a motor
moving the array around and, therefore, it is possible to
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Microphone Array 29.2 Array Geometries 1181

partly record the sound field at the different positions,
one after another.

29.2.2 Plane Microphone Arrays

Historically, plane arrays appeared first [29.4]. Here
a regular grid of microphones is used; this grid may
also have different configurations. A simplification is
the line array, which is often used with small numbers
of microphones, like four to eight. Plane arrays are of-
ten used with the reconstruction of complex radiating
surfaces, as then the array has a similar geometry. Fig-
ure 29.1 shows an example of a near-field recording
of a guitar with a plane array consisting of 121 micro-
phones.

29.2.3 Spherical Microphone Arrays

Spherical microphone array configurations seem attrac-
tive at first when decomposing radiation into spherical

Fig. 29.1 Example of a plane array for recording sound
fields. The array consists of 121 microphones arranged in
a regular grid of 11 × 11 microphones with a grid constant
of 4.75 cm recording a guitar in its near field [29.2]

harmonics. This configuration is known as an open-
sphere array. Still, for the lowest of the harmonics, the
simple monopole radiation, the pressures are all the
same at all microphones. Therefore, the condition of
the transfer matrix, the matrix associating the radiation
points with the microphones, is very bad, with nearly
linearly dependent rows. So for this type of radiation,
a spherical array may not be the best choice [29.5–13].

A dual-sphere array, where two spheres with dif-
ferent radii are used is better in this case. However,
the problem of determining the best radius is often not
easily solved before the recording. Additionally, twice
as many positions need to be scanned. Still, the dual-
sphere array clearly is an improvement over the simple
spherical array.

Spherical arrays are also a natural choice when
it comes to a simple sound field recording around
a source; Fig. 29.2 shows measuring of the radiation di-
rectivity of musical instruments. Then, as the sphere
covers the sound source in a regular angle, the radia-
tion strength of the radiating body is directly measured,
and no complex signal processing or backpropagation
methods need to be applied.

Many alternative spherical array configuration and
signal processing tools have been proposed [29.14–22].
Spherical arrays may also come as compact arrays us-
ing a small sphere in space rather than a large sphere

Fig. 29.2 Example of a spherical array as used at the RWTH
in Aachen, Germany, arranged around a radiating source, here
a musical instrument, to record sound radiation and, therefore, the
directivity pattern of the instruments [29.3]
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Fig. 29.3 Example of a compact array as used at the Cen-
ter for New Music and Audio Technologies (CNMAT) in
Berkeley, where microphones are arranged on the surface
of a small sphere to record the surrounding sound field
[29.3]

surrounding the radiator. Compact arrays may also be
seen as more elaborated microphone recording config-
urations improving the traditional XY or AB recording,
where two directional microphones with different orien-

tation are used to record, e.g., musical instruments. One
example is shown in Fig. 29.3. With more microphones
within a small sphere, a more complex ambient sound
can be recorded and afterwards spatially reconstructed
when playing this recording back in a concert space.
Here wave field synthesis methods are often used to-
day with many speakers to reconstruct an original sound
field in a 3-D space.

29.2.4 Alternative Array Geometries

To take this reasoning a step further, the more irregular
the microphone spacing, the better the transfer matrix
condition [29.8, 23]. Again as a rule of thumb, this is
because regularities in an array means regularities in
a matrix, which is the cause of linear dependencies be-
tween rows and, therefore, a bad matrix condition. Still,
when using a scanning array procedure, this is very dif-
ficult to realize in practice, as all microphones need to
be placed randomly.

Other array arrangements have also been proposed.
A spindle torus array may serve as a good compromise
for a configuration that is not too regular; this is still
possible to perform using an automatic motor driven
experimental setup [29.5, 8, 9, 13].

29.3 Beamforming

The beamforming microphone array technique belongs
to signal processing. It has a wide variety of applica-
tions, from source detection and separation to denoising
or dereverberation. Mathematically, all these have com-
mon ground in delay and filter techniques, which are
discussed in this section. The methods aim at an im-
provement of a signal using a multichannel recording.
Therefore, most often these signal reconstructions be-
come better the more recordings are made, to converge
to good results often only using four to eight mi-
crophones. Many filter techniques known from signal
processing, especially from speech processing, like the
Kalman [29.24–26] or Wiener filters [29.27–32] are
used. These are not discussed in this section in detail
and the reader is referred to the literature for filter tech-
niques in general.

The interfering parameters in all these methods are
measurement noise, additional signals next to the one of
interest, and reverberations. The measurement noise is
assumed to be uncorrelated between the microphones,
and is, therefore, considered as random Gaussian noise.

The additional sources are correlated between the mi-
crophones; they are not correlated to the source of
interest. Last the reverberation is correlated between the
microphones and also with the source in focus. So these
three disturbing signals need to be treated separately,
which each method does differently.

Moreover, the kind of signal expected plays a cru-
cial role when choosing an algorithm suitable for a cer-
tain situation. The signal may be steady, like with indus-
trial noise, or it may be transient, like with speech. Ba-
sically, stationary signals are more simple to deal with,
and transient sources need additional assumptions. Also
the source may be a broad or narrowband signal. Most
often broadband sources are split into single bands,
where each band is treated separately. Then the same
basic algorithm may be used with both kinds of signals.

29.3.1 Sound Source Localization

Here the task is to localize a single sound source in
a distance. The proposed method may also be used for
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near-field sources if these sources are not too close. In
contrast to the equivalent source methods which result
in a complex radiation pattern of a surface or radiator,
the localization estimation results in a single value of
an angle relative to the normal direction of the micro-
phone array, at which the single source is most likely to
be placed.

The most important property to detect such a sig-
nal s(t) is its phase. This needs to be different at each
of N microphones, recording a time series mi (t) with
i = 1, 2, 3, . . . N , where

mi (t) = Ais(t+Δti )+ ξi (t) , (29.1)

where ξi (t) is the noise uncorrelated between the micro-
phones and Δti are the different time delays between
the source point and the i microphones. In Fig. 29.4
the free-field case of a single radiating source is shown
schematically. When a wave arrives at the array travel-
ing from the far field, the difference of arrival times of
this wave at the microphones is

Δtij =Δti −Δt j = ri − r j

c
, (29.2)

where ri and r j are the distances between the source and
the respective microphones and c is the speed of sound.

Mic 2 Mic 3 Mic 4 Mic 5 Mic 6 Mic 7 Mic 8Mic 1

Source

r1 r2 r3 r4 r5 r6 r7 r8

Fig. 29.4 Free-field case of a singe radiating source
recorded using a microphone array consisting of eight mi-
crophones. The different distances r between the source
and the microphones result in eight different time delays
Δti that a wave arrives at the microphones. From this time
delay information the sound source can be localized

A source is to be localized at a direction of arrival
(DOA), the angle ϕi between the source and the micro-
phone array plane at microphone i. Then using three
microphones with distance (or microphone array grid
constant) d

r2
2 = r2

1 +d2+2r1d cos(ϕ1) , (29.3)

r2
3 = r2

1 +4d2+4r1d cos(ϕ1) . (29.4)

Substituting the respective variables for the three micro-
phones in (29.2), the time delay between a sensor i and
its n-th neighbor is

Δti = (n−1)d

c
cos(ϕ) . (29.5)

From the phase difference between the two sensors for
a single frequency the time delay Δti can be estimated.
Then DOA ϕ can be calculated. Additionally, when the
angle is known using (29.4), the distances ri between
the sensors and the source can also be estimated.

29.3.2 Time Difference of Arrival Estimation

As was shown above with localization, the difference
of arrival time of a wavefront at different microphones
is often needed as a parameter for further calculations.
Several other methods have been proposed to estimate
this parameter.

A well-established method is the generalized
cross-correlation (GCC) algorithm, which uses only
N = 2 microphones [29.33, 34] with several deriva-
tives [29.35–37]. The basic idea is to use the maximum
of a two-cannel cross-correlation function to estimate
the time difference of arrival as

Δt = arg max
t

fm1,m2(s) . (29.6)

Here, the fm1,m2 is the cross-correlation between
the two microphones, which is defined as the in-
verse Fourier transform of the weighted cross-spectrum
C[M1( f ),M2( f )] between the Fourier transformed
time series M1 and M2 of the two signals m1 and m2
as

fm1,m2(s) =
+∞∫

−∞
C[M1( f )M2( f )]w( f )ei2π fs d f .

(29.7)

Here w( f ) is a weight function of the Fourier kernel to
improve the effect of sidebands and so to smooth the
cross-correlation function.
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29.3.3 Denoising Using the Delay-and-Sum
Technique

A simple way of reducing the noise ξ in (29.1) using
microphone arrays is to use the assumption of the un-
correlated noise of the different recordings. This method
can be applied if the DOA ϕ and, therefore, the time
delays Δti are known. Then, as the source signal is cor-
related between recordings mi (t) and the noise signal
is not, averaging the time-shifted signals enhances the
source signal and reduces the noise. This is often re-
ferred to as the delay-and-sum technique [29.34,38–44],
where the reconstructed signal s′(t) is

s′(t) = 1

N

N∑

i=1

mi (t+Δti ) ,

= 1

N

N∑

i=1

[Ais(t+Δti )+ ξi (t)] ,

= 1

N

N∑

i=1

Ais(t+Δti )+ 1

N

N∑

i=1

ξi (t) . (29.8)

As the ξi (t) have zero means,

lim
N→∞

1

N

N∑

i=1

ξi (t) = 0 . (29.9)

Furthermore, as the ξi (t) are uncorrelated and the sig-
nals are not,

lim
N→∞

N∑

i=1

1

N
Ais(t+Δti ) = s(t) . (29.10)

If the noise at the different microphones is correlated
to a certain extent the noise reduction is decreased.
This so-called beamforming delay-and-sum algorithm
performs better when more microphones are used, but
the improvement is logarithmic and, therefore, four to
eight microphones reduces the noise considerably. In-
deed, the time delays, and therefore the DOA need to be
known in advance.

29.3.4 Directivity Pattern

Microphone arrays can also be used to determine the
DOA of a sound source by estimating the directivity
pattern. Using a line array, the directivity of the arrival
pattern according to an angle 0< ϕ < π in front of the
microphones can be estimated. Therefore, the time dif-
ference of arrivals Δti of i = 1, 2, 3, . . . N microphones

is

Δti = (n−1)d

c
cos(ϕ) , (29.11)

where d is the grid constant of the array, the distance
between the microphones, and c is the speed of sound
again. The directivity pattern can then be determined by
use of a spatial Fourier transform. This transform needs
the angle 0<Φ < π as a filter. Then the spectrum is

S(ϕ,Ψ ) = 1

N

N∑

i=1

ei2π(n−1) fd/c cosΦe−i2π(n−1) fd/c cosΨ

= 1

N

N∑

i=1

e−i2π(n−1) fd/c(cosΨ−cosϕ) . (29.12)

Here f is the frequency of the wave, since this tech-
nique works for single frequencies only. Therefore, for
each fixed possible arrival angle ϕ, the directivity pat-
tern over the angle Ψ is

D(ϕ,Ψ ) = |S(ϕ,Ψ )|

=
∣∣∣∣∣

sin
[
Nπ f d

c (cosϕ− cosΨ )
]

N sin
[
π f d

c (cosϕ− cosΨ )
]

∣∣∣∣∣ . (29.13)

This directivity pattern has the disadvantage that it de-
pends on the grid constant d. Thus, if the pattern is
to be optimized, the only parameter we can change is
the distance between the microphones, which would
mean rearrangement of the array. This is often not very
practical, and thus other methods are used when an op-
timization of the directivity pattern is to be applied, like
the least-square method of a fixed beamformer [29.45–
48]. The directivity pattern can also be improved by
adaptive beamforming to reduce the signal to noise
ratio (SNR) [29.49] using the minimum variance distor-
tionless response (MVDR) beamformer [29.39, 50–52].
Since the basic idea is equivalent to the linear con-
straint minimum variance (LCMV) filter technique for
sound source separation, this method is discussed in
Sect. 29.3.6.

29.3.5 Dereverberation

Signals recorded in spaces, like speakers in a class-
room or a conference hall, are normally reverberated,
which reduces speech intelligibility. Figure 29.5 shows
the situation of a single source recorded by eight mi-
crophones, where the closed space reflects sound and,
therefore, many more pathways from the source to the
receivers are present, resulting in a reverberated sound.
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Mic 2 Mic 3 Mic 4 Mic 5 Mic 6 Mic 7 Mic 8Mic 1

Source

Fig. 29.5 Closed space case of a single sound source
recorded by eight microphones. More than eight paths be-
tween the source and the receiver exist and the sound is,
therefore, reverberated

Thus, it may be desirable to get rid of the re-
verberation and reconstruct the original signal. The
beamforming time-delay approach uses the impulse re-
sponses Hs,m (t) of all sources s to all microphones m in
the space for dereverberation. Then

m(t) = Hs(t)+ ξ(t) , (29.14)

where m(t) is the vector of microphone recordings, H is
the matrix of all impulse responses, and ξ(t) is the noise
vector. Equation (29.14) has several drawbacks. First,
all impulse responses would need to be known. Then,
estimating s(t) would be an ill-posed problem, which
is discussed in Sect. 29.4. Thus, dereverberation may
be better treated in with the more general approach of
source separation discussed in Sect. 29.3.6.

29.3.6 Source Separation Using Linear
Constraint Minimum Variance (LCMV)
Filters

Separating one source out of M sources can be done
with the use of filter techniques. In Fig. 29.6, an ap-
plication of multiple sources in a free field, recorded
by multiple microphones, is shown. The same setting,
now in a reverberant space, is shown in Fig. 29.7. Many
applications are in closed spaces like concert halls or
classrooms, and therefore, next to additional sources,

Mic 2 Mic 3 Mic 4 Mic 5 Mic 6 Mic 7 Mic 8Mic 1

Source 3Source 2Source 1

Fig. 29.6 Setup of multiple (in this example three) sources
radiating sound which is recorded by multiple microphones
in a free field

the reverberation of the room needs to be taken into
account. Also, most often the recordings have a finite
noise background.

The Frost algorithm [29.53] with modifications
[29.25, 54–56] uses a constraint on a matrix of

Mic 2 Mic 3 Mic 4 Mic 5 Mic 6 Mic 7 Mic 8Mic 1

Source 3Source 2Source 1

Fig. 29.7 Setup of multiple (in this example three) sources
radiating sound recorded by multiple microphones in
a closed space with reverberation
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impulse responses to separate the source from the
signals recorded by the microphone array mi (t) of
i = 1, 2, 3 . . . , N microphones. If M sources s(t) are
present, like, e.g., speakers in a room, there are Rnm im-
pulse responses from each speaker to each microphone.

To reconstruct the signals of one desired source S
from N microphone recordings, a filter h can be used
(assuming constant time delays Δt), like

sS(t+Δt) =
N∑

i=1

hT
Simi (t) . (29.15)

The task is to estimate this filter. When the recordings
are combined to a single vector like

m(t) = {m1(t)m2(t)m3(t) . . .mN (t)}T , (29.16)

and likewise the sources are combined to one source
vector

s(t) = {s1(t)s2(t)s3(t) . . . sN (t)}T . (29.17)

Then the recordings and the sources can be related via
the matrix R of the impulse responses as

m(t) = Rs(t) . (29.18)

One of the tasks is noise reduction, where the basic idea
is similar to the delay-and-sum algorithm mentioned
above, again assuming that the noise is not correlated to
the signal and has a zero mean. Thus, when averaging
over the recordings, the noise will be reduced. This idea
is incorporated in the method by the covariance matrix

C = m(t)mT(t) . (29.19)

Then the noise reduction part means to minimize

hT
SChS = min

hS
. (29.20)

To point to the desired source to reconstruct, the con-
straint

RThS = fS , (29.21)

needs to be applied to this minimization. The constraint
vector fS for the case of a single source extraction
has a single unit entry at the source point and is zero
elsewhere. As the RT matrix contains all the impulse
responses, the filter hS is, therefore, constrained by fS
in such a way that all impulse responses of the other
sources will be orthonormal to the filter vector and only
the one for the subject to extract becomes Rsubject = 1
when applied to the impulse response matrix.

From this constraint, and because R is full range and
positive definite and therefore invertible, calculating the
filter could simply be done as follows

hS = R−1 fS . (29.22)

The the noise reduction should be included, which can
be done by using a pseudo-inverse of the covariance
matrix, using the impulse response matrix, as follows

hS = R−1C
[
CTR−1C

]−1
fS . (29.23)

This is also known as the LCMV method. The method
includes all three problems of source estimation,
noise reduction, dereverberation, and source separation.
Noise reduction is performed by the covariance method.
If hS(1= N)1, with unit vector 1, the delay-and-sum al-
gorithm is present. Dereverberation is performed by the
impulse responses incorporated in a single matrix. The
source separation is done via the constraint vector f ,
which forces the filter h to filter the impulse responses
such that only the desired source remains and all others
are set to zero. All impulse responses need to be known
in advance.

Many alternatives of this method have been pro-
posed. In a nonreverberant environment the impulse
responses may be replaced by simple attenuation fac-
tors between M sources and N microphones. Then
noise reduction and source separation are still car-
ried out. Another simplification is to assume only one
source in a reverberant environment, which simplifies
the impulse response matrix. Then it is a noise reduc-
tion and a dereverberation algorithm. The most simple
form of the Frost algorithm is to assume one source
and a simple attenuation from the source to the mi-
crophones without the impulse response. Then it is
a simple noise reduction and reduces to the delay-and-
sum algorithm.

The length of the impulse response or filter vector
can also be changed with this method. Estimations for
different cases of the number of sources and the number
of receivers have been discussed. In some cases not all
impulse responses need to be known. Also side lobes
can be present, which may be reduced in amplitude.

The problem of blind source separation where sev-
eral sources are present in a space and both the sources
and the transfer matrix are unknown, may be solved
by introducing spherical harmonics. The use of spher-
ical harmonics is discussed in detail in Sect. 29.4.10.
However, it is also used in the world of beamform-
ing [29.6, 9–12, 57, 58], and is often called modal
beamforming. When describing the sources as a set
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Microphone Array 29.4 Equivalent Source Methods 1187

29.4 Equivalent Source Methods

The equivalent source methods represent the radiating
surface using multiple sources [29.59–65]. The real ra-
diation is then approximated by a linear superposition of
such sources with respective amplitudes [29.66]. These
sources are often assumed to be behind the radiating
surface, they may also be on it. Many different versions
of these methods have been proposed and they differ
mostly in the choice of sources and the procedure of
regularization necessary to converge the solution.

The basic equation behind all these methods con-
sists of the sum over N virtual radiation positions
with M poles Ψnm each and their respective amplitudes
Anm , as follows

p(x, y, z) =
N∑

n=1

M∑

m=1

AnmΨnm(x, y, z) . (29.24)

This is the formula of the forward-propagation of
the problem. When all poles are chosen to be at re-
spective positions and all amplitudes are known, the
pressure at any arbitrary position in front of the radi-
ating geometry p(x, y, z) can be calculated as the sum
over all virtual sources. Equation (29.24) holds for only
one frequency.

However, with these methods the problem is vice
versa at first. Normally with the microphone array,
many pressures at several room positions have been
measured and one wants to know the pressures at a ra-
diating surface. Then in (29.24) the left-hand side is
known, the sources Ψnm are chosen, and the amplitudes
Anm are the unknowns. Calculating these amplitudes is
known as backpropagation, propagating the measured
pressure values back to the radiating surface.

So although the forward problem is trivial, the back-
propagation is not. The solution often depends crucially
on the choice of the virtual radiation points, as well as
on their position. The methods proposed mainly use the
following:

• Multiple monopoles at different positions• Multiple mono and dipoles at different positions, or• Only one virtual radiation point with many higher-
order poles.

A second problem is the ill-posedness of (29.24). Al-
though mathematically perfectly sound, solving for the
amplitudes A a matrix equation is built of the kind

� A= p , (29.25)

where p is the vector of all measured pressures, � is
a matrix of all poles assumed at their virtual positions

with respect to the recording positions of the pressures,
and A is the amplitude vector. Solving this equation is
only possible in the absence of any error, otherwise the
solution for A does not converge; a linear equation eas-
ily blows up the solution. This ill-posedness is discussed
below in detail. Many sources for errors are present in
the sound; the most prominent ones are the following:

• Measurement noise• Nonperfect microphone placing• The difference between the real radiation field and
the one reconstructed by the finite amount of virtual
source points.

All these small errors have a fatal effect on the direct so-
lution of the matrix equation and, therefore, regulariza-
tions are necessary to solve the problem. Therefore, all
algorithms proposed to solve the problem are different
kinds of these regulatizations. Before going deeper into
these methods, the poles used will briefly be introduced.

29.4.1 Definition of Sources

The wave equation for a three-dimensional space in its
eigenvalue formulation is

c2
(
∂2 p

∂x2
+ ∂

2 p

∂x2
+ ∂

2 p

∂x2

)
= ω2 p . (29.26)

The solution p̃(x, y, z, t) is decomposed into its spatial
part p(x, y, z) and time-dependent part q(t) as follows

p̃(x, y, z, t) = p(x, y, z)q(t) , (29.27)

assuming q(t) = eiωt . When transformed into spherical
coordinates with radius r, angles ϕ and θ, and pressure
p(r, θ, ϕ), the Helmholtz equation reads

1

r2

∂

∂r

(
r2 ∂p

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)

+ 1

r2 sin2 θ

∂2 p

∂ϕ2
= 1

c2
ω2 p , (29.28)

with the solution

p(r, θ, ϕ) =
∞∑

n=0

n∑

m=−n

Ψnm(k, r, θ, ϕ) , (29.29)

with

Ψnm(k, r, θ, ϕ) =
[

Anmh(1)(kr)+ Bnmh(2)(kr)
]

× Ym
n (θ, ϕ) , (29.30)
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with wave vector k, amplitudes Anm and Bnm , the Han-
kel function of first and second-order h(1) and h(2),
which are complex Bessel functions, and the spherical
harmonic

Ym
n (θ, ϕ) =

√
(2n+1)

4π

(n−m)!
(n+m)! Pm

n (cos θ)eimϕ .

(29.31)

Here, Pm
n are the associated Legendre polynomials.

These spherical harmonic functions are displayed in
Fig. 29.8. The index n = 0, 1, 2, 3 . . . determines the
harmonic order, where n = 0 is a monopole, n = 1 is the
dipole, n = 2 is the quadrupole, etc. The second index
runs from m =−n, . . . , 0, . . . ,+n, determining the dif-
ferent parts of the radiating poles to be able to describe
all possible pole orientations in space. Note that most
spherical harmonics have a real part and an imaginary
part representing phase relations.

29.4.2 Kirchhoff–Helmholtz Integral

The fundamental equation governing many meth-
ods used with microphone arrays is the Kirchhoff–
Helmholtz integral, also called Green’s theorem or
known as the Fresnel integral [29.60, 62, 67–70]. Sup-
pose a sound pressure p(y) travels in free space and
radiates over a volume Ω with surface S, surface co-
ordinate y, and outward surface normal vector n(y).
Then the Gauss theorem, also known as divergence or
Ostogradsky’s theorem, states that the integration of di-
vergence of the gradient of that pressure over Ω is like

a) b) c) d)

Fig. 29.8a–d Eigenmode (2,3) of a membrane. (a) Finite-element solution of 681 Hz of a perfectly isotropic membrane
with perfectly fixed boundary condition, others of a goat skin frame drum with complex distribution of tension and
membrane thickness and with a wooden shell as the boundary, as measured with a microphone array at 741 Hz; (b) back-
propagated using the minimum energy method, taking the ill-posedness into consideration, the solution comes close to
the finite-element solution; (c) raw data as measured at the microphone positions; (d) backpropagated without any reg-
ularization and, therefore, not taking the ill-posedness into consideration, showing considerable artifacts. All plots are
interpolations of discrete positions (nodes with FEM, microphone positions with array)

the integration of the normal gradient n(y) of the pres-
sure over S like

∫
∇2 pdΩ =

∫
∂p

∂n
dS . (29.32)

The pressure p is governed by the Helmholtz equation

∇2 p+ k2 p = 0 . (29.33)

The integral is not easily solved. To arrive at a solu-
tion that can be used in applications like scattering or
radiation problems, a test function is used that scans
the domain. This function is known as Green’s func-
tion. To avoid mathematical conflict at the boundary S
of Ω, concerning Green’s function, several constraints
must be met, namely:

1. It must fulfill the Helmholtz equation∇2G+k2G =
0 on Ω.

2. It must become the pressure when approaching the
source point like limr→0 G = p,

3. Be G = 0 on S, and
4. It must fulfill the Sommerfeld radiation condition

discussed below.

As we formulate the problem for single frequencies,
constraint b means that Green’s function needs to act
like a monopole around the source point.

From here on, omitting the arguments x and y, we
can formulate a new function, where Green’s function
tests the pressure field p

U = G∇ p− p∇G . (29.34)Part
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Because of the Gauss theorem it can also be written as

U = G
∂p

∂n
− p

∂G

∂n
. (29.35)

If the divergence of U is taken, to arrive at the second-
order differentials needed for the Helmholtz equation,
we have

∇(G∇ p) =∇G∇ p+G∇2 p , (29.36)

and

∇(p∇G) =∇ p∇G+ p∇2G . (29.37)

Thus

∇U = G∇2 p− p∇2G , (29.38)

and, therefore, we arrive at
∫ (

G∇2 p− p∇2G dΩ
)
=
∫ (

G
∂p

∂n
− p

∂G

∂n

)
dS ,

(29.39)

again by applying the Gauss theorem of (29.32).
To solve this equation we first find that in the free

field the pressure and Green’s function both need to
satisfy the Helmholtz equation without a source term

∇2 p+ k2 p = 0 , (29.40)

or

∇2G+ k2G = 0 , (29.41)

respectively, and therefore the volume integral on the
left-hand side of (29.39) is zero.

Thus only the surface integral remains, which can be
summed over all surfaces present inΩ. To arrive at a so-
lution, three of these surfaces are assumed. One is the
real radiating (or scattering) surface S of the body. The
other two surfaces are needed to obtain a solution. One
is a sphere SC around the source point. It is necessary
since Green’s function has a singularity and becomes
infinite at r = 0. So integration needs to be done over
a tiny sphere around this source point. The other sphere,
SS, is concentric and close to SC so for SS the Sommer-
feld radiation boundary (29.42) cannot be used as we
still find considerable sound pressure at SS [29.68, 69]

lim|r−r0|→∞ |r− r0|
[
∂G(r, r0)

∂|r− r0| + ikG(r, r0)

]
= 0 .

(29.42)

Finally, the surface integral has the three parts
∫

S+SC+SS

(
G
∂p

∂n
− p

∂G

∂n

)
dS = 0 . (29.43)

When the source point is outside Ω, calculating the
integral for SC with the radius rC → 0, this integral
becomes p [29.67], because first the derivative of p in-
cludes rC, which vanishes, and second, because Green’s
function has rC in its exponent and therefore becomes
1. The integral over SS with rS →∞ becomes zero be-
cause of the Sommerfeld radiation condition. Then the
only integral left is the one of interest, the integration
over the boundary of the body, which is then

∫

S

(
G
∂p

∂n
− p

∂G

∂n

)
dS = p . (29.44)

When the source point is at the boundary of Ω, the
integral over SC is different. If the radiation point is out-
side Ω, the integration needs to be done over the whole
sphere SC of 2π. If it is at the boundary of Ω, this in-
tegration is often performed only over π. Therefore, the
result of this integration is no longer p but 1

2 p. How-
ever, in some cases the geometry of the boundary may
be complicated, especially at corners, where the integra-
tion may only be about a quarter or three fourths of this
sphere. Some textbooks, therefore, give a parameter α
with pressure p instead of 1

2 p.
When the source point is within Ω the integra-

tion over SC becomes zero, as then also the integration
over S becomes zero. This is a necessary consequence
of the constraint c for Green’s function on S discussed
above.

We can also understand this by going back to the
solution for Green’s theorem in an alternative formula-
tion, using (29.36), again together with (29.32), which
gives

∫
∇G∇ pdΩ+

∫
G∇2 pdΩ =

∫
G
∂p

∂n
dS .

(29.45)

If we only discuss one frequency at a time, which is the
case for nearly all microphone-array techniques, we can
set G = p and find

∫
(∇ p)2 dΩ+

∫
p∇2 p =

∫
p
∂p

∂n
dS . (29.46)

This is an important finding when using the theory of
potentials, where ∇2 p = 0, because then

∫
(∇ p)2 dΩ = 0 . (29.47)

As ∇ p2 cannot be negative anywhere in Ω, it needs to
be zero all over Ω. A potential vanishing over a closed
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surface and continuous within the domain vanishes
within the domain completely [29.69].

Thus when using the Gauss theorem, Green’s
function, the Helmholtz equation, the Sommerfeld
radiation condition, the theory of potentials, and sur-
face boundary integration reduction, we arrive at the
Kirchhoff–Helmholtz integral solutions

∫
p(y)

∂G(x, y)

∂n(y)
− ∂p(y)

∂n(y)
G(x, y)dS

=

⎧
⎪⎪⎨

⎪⎪⎩

−p(x), x in Γ

−0.5p(x), x on S

0, x inΩ

. (29.48)

The three possible solutions of the integral have led
to three different methods. The integral at the surface,
which would be the boundary of a radiating structure, is
used in the boundary element method (BEM). The inte-
gration within the structure, which is zero all over, is the
basis for the null-field method, and the solution for the
outside pressure field is used in the full-field method.
All of these methods have advantages and trade-offs,
where again the most critical point is the stability of the
solution, the ill-posed behavior of the integral.

29.4.3 The Ill-Posed Problem

Most backpropagating methods of microphone-arrays
use linear equation solvers to find the pressure or
velocities on or behind the radiating surface or of
the coefficients of spherical harmonics composing the
complex radiation as measured by the microphone ar-
ray. Although today many sophisticated linear equation
solvers are available (e.g., UMFPAK or PARDISO), the
main problem of ill-posed formulations, measurement
noise, or matrices which are badly conditioned, make
alternative methods of solution necessary [29.71–74].
First we discuss the basic problems mathematically and
then turn to alternative solutions of regularizations such
as single-value decomposition and pseudo-inverse tech-
niques. Additional conditioning methods, like the often
used so-called l-shaped method are discussed later in
the respective sections.

Hadamard [29.75] formulates three conditions for
a physical problem to be well-formed or well-posed.
A solution needs to exist, this solution needs to be
unique, and this solution needs to continuously depend
on small data variations. The last point concerns us
here, as when the data only have small deviations from
perfectly measured data, the solution is not only a lit-

tle distorted bit but may blow up completely and show
totally unreasonable, mostly very large values.

As mentioned before and will be shown later in
Sect. 29.4.5, the backpropagation problem most often
leads to a linear equation system of the kind

RpS = pM , (29.49)

where pM is the pressure (it also may be velocities)
measured with the microphone array at different mi-
crophone positions in space, pS is the pressure at the
radiating surface we want to calculate, and R is a tran-
sition matrix connecting both pressures. This is the
mathematical formulation of the ill-posed problem, as
the calculation of pS needs a very precise matrix R and
very accurately measured pressure pM, otherwise the
linear equation system does not hold. This is not a prob-
lem for forward-propagation where we have pS and are
looking for pM somewhere in space. There, small de-
viations in R or pS may lead to small errors in pM,
but do not challenge the equation system. In the back-
propagating case pS are calculated by balancing the
measured pressures pM via the propagation matrix R in
such a way that the correct surface pressures are calcu-
lated. Such balancing is highly sensitive to distortions
or noise and, therefore, the problem is ill posed. This
explains the multiple methods and approaches to this
backpropagation problem; most of them have been pro-
posed to make advances in dealing with this ill-posed
equation.

Figure 29.8 shows an example of this problem. The
(2,3) eigenmode of a membrane was estimated using
a finite-element method as an idealized membrane and
by a microphone array recording the membrane ra-
diation in the near-field of a nonidealized, goat skin
drum. The finite-element calculation assumes a per-
fectly isotropic distribution of the membrane tension
and its thickness, as well as a perfectly fixed boundary
condition, resulting in an eigenmode solution as known
from analytical solutions for a circular membrane of
Bessel functions. The membrane measured is a frame
drum made of goat skin, which has a complex distri-
bution of pressure and membrane thickness and has
a wooden frame that is not perfectly fixed. The recorded
sound pressures in front of the membrane are then back-
propagated to the surface of the membrane (shown in
the middle left plot of the figure), resulting in a complex
mode pattern for this frequency of 741 Hz on the mem-
brane surface, which clearly appears to be very similar
to the perfect (2,3) mode expected from an idealized
membrane. The middle plot of the figure shows the raw
data for this membrane as measured at the microphones.
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Although different phases are present, the mode shape
does not appear. Figure 29.8d again shows a backprop-
agated case but this time without taking the ill-posed
nature of the equation into consideration. The resulting
mode shape does not come close to the real mode shape
but shows many sharp peaks. In this case, the minimum
energy method was used for the backpropagation. Sim-
ilar results would be obtained with any other equivalent
source method.

The basic problems causing such distortions are dis-
cussed below, followed by the most common solution
procedures.

Evanescent Waves
A main problem with backpropagation is a physical
problem that appears mostly with radiations from struc-
tures where the speed of the sound of a wave traveling
over the structure is faster than the speed of sound in
air [29.4, 76–80].

As all backpropagating methods of microphone ar-
rays use single frequencies, the wave vector

k =±
√

k2
x + k2

y + k2
z , (29.50)

of the wave in air can be decomposed in its three spatial
directions. If a wave travels along the x−y plane, where
the z-direction is the radiation normal to the plane, the
free-field Green’s function is

G = 1

r
eikx , (29.51)

where x =√x2+ y2+ z2. If the speed cS of this wave
on the surface compared to its speed in air cA is sub-
sonic, where cS < cA, the wave vector component kz in
the radiation direction is

k2
z = k2− k2

x − k2
y > 0 . (29.52)

Moreover, if cS > cA, k2
x + k2

y > k2, the square root be-
comes negative and, therefore, kz becomes imaginary
like

kz = i
√
|k2− k2

x − k2
y| . (29.53)

Thus, for frequencies with supersonic wave speed
Green’s function for the propagation in the radiating
z-direction

G = 1

r
e−kz z (29.54)

is no longer of a wave-type but a decaying exponential.
Therefore, these waves are only present in the near-field

of the structure and vanish in the far-field. These waves
are called evanescent waves.

Now, if a backpropagation linear equation system
tries to propagate such an evanescent wave it will have
great difficulties to do so, as the assumption is that
of a wave-type radiation of this wave, while in real-
ity it is an exponentially decaying one. So there are
two problems with this wave type. First, it is only
recordable in the near-field and gone in the far-field.
Second, the backpropagation equation assumes it to
be exponentially increasing towards the surface of the
structure, an assumption easily leading to an overes-
timation of its amplitude on the surface. This is the
reason why many backpropagating methods use near-
field recordings, where the microphone array is only
a few centimeters from the radiating surface to be able
to also record the evanescent waves, because from a cer-
tain distance on the radiated sound the pressure is below
the measurement noise.

This phenomenon may also appear with complex
radiation patterns, also of forced oscillations, where
complex phase relations between the radiating areas
may appear and the radiation, therefore, cancels itself
out in such a way that the wave amplitudes have de-
cayed below measurement noise only at about 20 cm in
front of the surface.

Measurement Noise
and Microphone Placement

Another source of distortion of the backpropagation re-
sults leading to great problems when solving the linear
equation system are nonsystematic errors like measure-
ment noise, microphone placements, finite calibration
accuracy, or additional sound sources.

As most measurements assume a steady state of
the radiation and not transient behavior, measurements
average over a certain time span. As most methods
use single frequencies for backpropagation, the signals
measured signals are Fourier transformed, which re-
sults in a complex pressure value. When averaging over
a time span, the measurement noise of the microphone
will result in an overestimation of the absolute pressure,
where the pressure measured is the actual physical one
plus the measurement noise. However, it most likely
preserves the correct phase when the noise is com-
pletely random, as deviations from the phase will cancel
out in the Fourier integral. Thus, often the phase is more
reliable than the absolute pressure. Nevertheless, if the
amplitudes are not correct, the linear equation solver
easily blows up the solution. This is because the solver
tries to understand the measurements as superpositions
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of radiators. Wrong amplitudes easily lead to unphysi-
cal radiation contributions of the single sources, which
the solver can only deal with by assuming very large
source amplitudes, balancing the wrong amplitudes of
the measurement.

The reliability of the phase is good news also in
terms of calibration errors. Most class-A microphones
show a very stable frequency-dependent amplitude
curve, yet none of these is perfect. As normally cali-
bration is performed with a 1 kHz sinusoidal, for other
frequencies the calibration may be different. One should
bear in mind that only small deviations in the measure-
ments lead to a failure of the linear equation system
solution. However, the phase, which is very important
for backpropagation, can be assumed to be stable and,
indeed, is most often not a problem when backpropa-
gating the measured pressures to the radiating surface.

Another issue is the placement of the microphones.
Especially within the near-field of the sound source
a small deviation of the real position of the microphone
to the position used in the backpropagating linear equa-
tion system may blow-up the linear equation solver.
This is a problem that again cannot be solved perfectly,
also because the microphone membranes are a finite
area and, therefore, integrate over the pressures at this
area.

Common with nearly all backpropagation methods
discussed below is that they assume that all radiating
surfaces are described in the linear equation system.
If additional sound sources are present next to the ra-
diating sphere, or if any reflections in the room are
present, of course backpropagation must fail. This is es-
pecially a problem in real environments like classrooms
or manufactories, and therefore microphone array mea-
surements are often done in unechoic chambers or in
the free field. However, often reflections or additional
sources cannot be avoided completely and, therefore,
the methods need to take this into consideration.

The Matrix Condition
When placing the microphones at certain positions in
space and when choosing positions on (or in) the ra-
diating surface, the propagation matrix R of the linear
equation system

RpS = pM (29.55)

is determined [29.81]. This matrix, of course, differs
for each method used, as will be discussed later; how-
ever, in general some problems may occur. One is the
matrix condition. The ill-posed problem also means
that not all rows of R are completely linearly indepen-

dent from each other. Of course, if only two rows are
perfectly linearly dependent, a linear equation solver
cannot be used successfully. Most often, depending on
the method, the spacing of microphones and the choice
of radiation points change this linear dependence of the
matrix rows. The solution will improve considerably
when the rows are as linearly independent from one
another as possible.

This feature is most often described by the condi-
tion C(R) of the matrix R. It can be calculated using its
determinant, but a better way is to define it as the frac-
tion between the highest and the lowest eigenvalue λ of
the matrix as follows

C(R) = λmax(R)

λmin(R)
. (29.56)

The closer these maximum and minimum eigenvalues
are to each other, the better the matrix condition.

In many cases this can be understood quite easily
from a geometrical point of view. Suppose we have
a microphone array with a small grid constant, i.e., the
microphones are placed near each other. Additionally,
suppose that this array is far apart from the geometry.
Then we would expect all microphones to more or less
record the same signal, as a radiation field that small
and that far away will not vary very much. No mat-
ter which method one uses, with such a placement the
rows of the propagation matrix need to be very similar,
although of course not perfectly the same. As there is
not much difference in the relation between the micro-
phones and the surface in this example, the propagation
matrix rows will not have very different information
from microphone to microphone. Therefore, the condi-
tion of the matrix will be bad, as will be the solution.
On the other hand, if the microphones are placed in the
near-field with considerable differences, the rows will
also be considerably different, and the condition of the
matrix is much better. Therefore, the solution is much
improved. Thus, the spacing of the microphones around
the surface is, indeed, a crucial point for improving
backpropagation.

Another important issue that often appears with
backpropagation and the construction of the propaga-
tion matrix is the size of the diagonal elements of R.
As each row of the linear equation system represents
the sum of all radiating points onto one microphone, the
diagonal element of R is the impact of one of these radi-
ation points onto the recorded pressure. Normally, there
is a systematic relation between these diagonal element
radiators and the respective recording microphone. In-
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deed, with some applications these diagonal elements
are very low.

For a linear equation system solver this is a con-
siderable problem, as the diagonal elements are the
coefficients of the solution pressure pS itself. If this
impact is low, the matrix solver often fails. Thus, e.g.,
a simple Gauss elimination procedure for solving a lin-
ear equation system will fail if only one diagonal
element is zero, as it uses this element as denomina-
tor in its calculation algorithm. Hence, an improvement
of this matrix is often performed, which strengthens the
value of the diagonal elements.

29.4.4 Regularization Techniques

To overcome the ill-posed nature of the Fresnel inte-
gral, regularization techniques are applied [29.82]. As
discussed above, these techniques are all necessary to
reduce the behavior of a solver to be crucially dependent
on small deviations in the measurement data. Many reg-
ularization methods have been proposed and the most
used are presented below.

Singular-Value Decomposition
The single-value decomposition achieves to overcome
the blow up appearing with the ill-posed nature of the
Fresnel integral. It represents a radiation matrix, ob-
tained from one of the methods discussed below by
orthonormal functions, its eigenvalues and eigenfunc-
tions. Then, only the lowest of these eigenfunctions are
used to reconstruct a radiation from a sound pressure
field as measured by a microphone array [29.65,83–85].

A radiation matrix R can be decomposed as follows

R =U� V∗ , (29.57)

where the columns of U and V∗, which is a conjugate
transpose of V, are the eigenvectors. They are connected
by the eigenvalues Σi , so that � is a diagonal matrix.
Then a radiation can be formulated, where the sound
power W in the field can be expended by the columns
of V weighted by the velocity vector at the radiating
surface v as

W =
N∑

i=1

Σ2
i |Viv| . (29.58)

This is a complete set and, therefore, within the range of
precision of discretization, the reproduction of a sound
field from the radiating surface is perfect. This is
a forward-propagation, which is not problematic as it
is not ill posed. Moreover, this formulation can also be

used with backpropagation as then the velocity vector v

can be computed when the eigenvectors of the radia-
tion matrix as contained in Vi and the eigenvaluesΣi of
these vectors are known. However, this again results in
solving a linear equation system and is, therefore, again
an ill-posed formulation.

Thus up to here we have only reformulated the old
problem into a new one. The advantage of this new for-
mulation is that the solution is decomposed into a set of
orthonormal solutions. Therefore, we know that we ap-
proach the real solution a bit more each time we add
one of the single solutions. Thus the solution can be
stabilized by only using a few of these eigenvectors
and truncating the rest. As the eigenvalues Σi often de-
cay exponentially, usually only a few eigenvalues are
needed to reconstruct the radiation and the backpropa-
gation with only a small error. Therefore, the ill-posed
nature of the integral is smoothed by discarding com-
plex but very small radiation partitions, which on the
other hand, would blow up the solution altogether.

Tikhonov Regularization
The condition of the radiation matrix is a crucial point.
A well-conditioned matrix, as measured by the fraction
of the highest and lowest matrix eigenvalue, is expected
to lead to much better results.

A common way of error reduction is to formulate an
error function

ε = (Rv− p)2 , (29.59)

which is to be minimized. The Tikhonov method adds
a regularization parameter λ to the error function as

ε = (Rv− p)2+λ2|v| . (29.60)

Then the condition of R can be improved by strength-
ening its diagonal elements via λ by replacing R by

Rλ = R∗R+λ2I , (29.61)

where I is a diagonal unity matrix and R∗ again is
a conjugate transpose of R. As the term R∗R is positive
definite and λ2 is positive, the lowest eigenvalue of Rλ
is increased and, therefore, its condition is improved.

Tikhonov regularization is much faster than
singular-value decomposition as no eigenvalue calcula-
tion needs to be performed.

Pseudo-Inverse Matrix Solution
Another way to solve the linear equation system not us-
ing a linear equation solver is to use the pseudo-inverse
of a matrix [29.81,86]. In principle, the equation system

RpS = pM (29.62)
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could be solved by bringing R to the right-hand side like

pS = R−1 pM . (29.63)

However, then the inverse of R would need to be com-
puted, which often fails. Therefore, a pseudo-inverse R′
can be computed from the transposed matrix RT as fol-
lows

R′ = RT

RTR
. (29.64)

It is much easier to calculate the transposed matrix and
the calculation is most often stable. The terms RTR are
easy to invert, and so we have

pS = R′ pM . (29.65)

This is most convenient to solve as each row can be
calculated on its own. As a consequence, the matrix R
need not be n × m with n = m but may have a different
number of rows and columns. Sometimes, the radiation
field is to be computed using many more shape func-
tions or internal sources than microphones present, or
vice versa, which is not a problem when using a pseudo-
inverse matrix solution.

29.4.5 Wave Superposition Method

The The Kirchhoff–Helmholtz integral can also be un-
derstood as a mathematical formulation of the Huygens
principle of wave superpositions [29.63, 64, 67, 74]. If
the radiation of a surface is substituted by a number of
radiating monopoles placed on this surface, all possible
radiation patterns can be composed by using differ-
ent radiation strengths of the single monopoles. This
approach is clearly close to the numerical splitting of
a continuous surface into a finite number of lines as the
boundary-element method does. Then the Kirchhoff–
Helmholtz integral becomes

p(x) =
∫

p(y)
∂G(x, y)

∂n
dS . (29.66)

This can be rewritten in terms of velocity using the
Euler equation

iω!v= ∇ p , (29.67)

relating pressure and velocity, and using the source’s
strength q(x), like

v(x) =
∫

q(y)
∂G(x, y)

∂n
dS . (29.68)

Therefore, the second part of the integrant vanishes,
which means that the free-field Green’s function is zero.

This can easily be achieved by choosing a radiating
sphere inside an arbitrarily shaped radiating body and
choosing G(x, y) such that it is zero at the surface S of
this body with radius rS. So all radiation is assumed to
have one point r0 in the volume Ω to start from, and
so G(x, y) becomes G(r) with radius r starting from r0
inside Ω. In other words, the Kirchhoff–Helmholtz in-
tegral becomes the Huygens principle of superposition
when a boundary condition of Green’s function is cho-
sen to be zero at the radiating surface S. As this second
part of the Kirchhoff–Helmholtz integrant is associated
with the scattering effect at a surface, with the wave
superposition method this scattering is reasonably as-
sumed not to be part of this radiation problem. Then the
Huygens principle holds alone.

Still another advantage of this formulation is that the
radiating sphere is assumed to be within the medium.
Then Green’s function is never zero, which would lead
to a singularity because of the 1/r part of Green’s
function. As the radiation starts at rS �= 0, this singular-
ity problem, which appears with the boundary element
method, is avoided. It is also assumed that the radiation
continues over the real surface of the complex radiating
geometry without scattering or refraction. This can be
assumed as the radiating sphere inside the body is only
a virtual one that is convenient for calculation.

Equation (29.68) can then easily be formulated in
a discrete way like

p(r) ≈
N∑

i=1

qi
∂G(r− rS)

∂n
. (29.69)

This leads to a matrix equation

RQ =U , (29.70)

with velocity vector U measured outside the body, radi-
ation strength vector Q on the sphere inside the body,
and a so-called dipole matrix R with coefficients

Dij =− 1

4π

ik|r j − ri |−1

|r j − ri |2 eik|r j−ri | cosΘij . (29.71)

The angle Θij is replaced with directivity of the normal
vector derivative. Thus points on the body j orthonor-
mal to points outside the body i do not contribute to the
velocity measured at i, while points j on the body right
opposite points i outside the body contribute fully with
respect to the radiation strength reduction caused by the
distance |r j − ri |.

The procedure of back and forward-propagation is
again the same:
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• Backpropagation: first the velocities at points out-
side the body are measured and stored in the
vector U . Then the linear equation system (29.70)
is solved for Q after the dipole matrix R is built by
simply inserting the spatial points of measurements
on the virtual sphere.• Forward-propagation: the velocities calculated on
the body can then be transformed into pressure val-
ues, again using the Euler equation, and at any point
in space the pressure can then be calculated using
the simplified Kirchhoff–Helmholtz (or Huygens)
equation. This also includes the pressures and ve-
locity on the surface of the body, which are also in
the radiating field of these virtual source points in
the radiating body.

As all of the methods used with microphone array and
backpropagation in the wave superposition method have
the problem of ill posedness. Truncated single-value de-
composition is often used to overcome this problem. As
with most methods, solving the above linear equation
system is not trivial as the problem is ill posed.

29.4.6 Boundary Element Method (BEM)

BEM uses the Kirchhoff–Helmholtz integral in the
form of (29.48) with integration at the boundary
of 1

2 p [29.87, 88]. Therefore, the boundary of the do-
main Ω is split into discrete elements, where the shape
is represented by interpolated isoparametric shape func-
tions. Such shape functions or boundary elements,
are defined in a local coordinate system and are
then transferred to the global coordinate system using
a transformation and rotation matrix. This means that
the Lagrange shape functions of a quadratic isoparamet-
ric element are

N1 = 1

4
(1− ξ)(1−η) , (29.72)

N2 = 1

4
(1+ ξ)(1−η) , (29.73)

N3 = 1

4
(1+ ξ)(1+η) , (29.74)

N4 = 1

4
(1− ξ)(1+η) . (29.75)

Then the interpolation function of this element is

u(ξ) =
N∑

i=1

Ni (ξ)xe , (29.76)

where Ξ = {ξ, η}, with n = 4, since there are four shape
functions, and xe are points in the local coordinate sys-

tem. Here, ξ and η are local coordinates for the x and
y-directions, and the element is defined for

−1 ≤ ξ, η≤ 1 . (29.77)

This element has the advantage that it can be precisely
integrated analytically once for all elements, which later
need to be performed when introducing the integration
over the domain. Each element must then be transferred
from the local to the global coordinate system using
a Jacobian matrix

J =
n∑

i=1

Xi
∂Ni

∂Ξ
, (29.78)

where Xi = {x, y, z} are the coordinates in the global
coordinate system on the domainΩ boundary Γ , which
is also called the reference frame, resulting in N global
shape functions Γi , i = 1, 2, 3, . . . N . Then,

∂

∂X
= J−1 ∂

∂Ξ
, (29.79)

and, therefore, differentiations with respect to the global
coordinate system can be referred to differentiations in
the local coordinate system. Then the integral over the
element can be calculated directly using the determinant
of the Jacobian det(J) = |J| as

dF = |J|dξ dη , (29.80)

which is used in the integration over the domain.
Note that the boundary elements are surfaces and,

therefore, differ from the elements used with the finite
element method for 3-D problems. Moreover, the sur-
face may be placed anywhere in space and, therefore,
the reference frame coordinate system is again three
dimensional.

Then the pressure and the velocity at the boundary
can be written as interpolations like

p(X) =
N∑

i=1

p(Xi )Γi (29.81)

v(X) =
N∑

i=1

v(Xi )Γi . (29.82)

When using the Kirchhoff–Helmholtz integral, also
Green’s functions need to be written in an analog
way. Moreover, four cases need to be computed. As
the boundary element method is used to back and
then forward-propagate the pressure field, first Green’s
functions GB

ij are needed for propagating the recorded
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pressure from microphone positions Xm to the bound-
ary S of Ω, and second, functions GF

ij are needed
to again propagate the resulting pressure field at the
boundary S into a surrounding space point XF. Ad-
ditionally, both are needed once for the plain Green’s
function

GP
ij =

∫

Γi

G(X|XM)Γ j dX (29.83)

GF
ij =

∫

Γi

G(X|XF)Γ j dX , (29.84)

and for their first derivatives

G′P
ij =

∫

Γi

∂G(X|XM)

∂ni
Γ j dX (29.85)

G′F
ij =

∫

Γi

∂G(X|XF)

∂n
Γ j dX . (29.86)

The Kirchhoff–Helmholtz integral is then formulated
for the boundary case additionally, by using the Eu-
ler equation, transforming the pressure derivative into
velocity like

N∑

i=1

iω!GP
ijvi −G ′P

ij pi = 1

2
p(X) . (29.87)

This equation can be written in matrix form as

Pp = Vv , (29.88)

where V is the matrix for the velocity terms iω!GP
ij , and

P = P′ + 1

2
I , (29.89)

summing the pressures on both sides. Equation (29.88)
can be solved for the pressure to obtain the pressure
distribution on the node points on the surface of the
domainΩ.

To forward-propagate this pressure, the Kirchhoff–
Helmholtz integral for the free field

N∑

i=1

iω!GF
ijvi −G ′F

ij pi = p(X) (29.90)

with the free-field Green’s functions is used. Then the
pressures pF can be written as

pF = VFv−PF p . (29.91)

Inserting (29.88) into (29.91) gives

pF = (VF−PFP−1V)v , (29.92)

which can be written as the linear equation system

pF = Rv (29.93)

with

R = (VF−PFP−1V) . (29.94)

The matrix R contains all information to relate the ve-
locities at the radiating surface S to radiation points
outside this surface.

29.4.7 Full-Field Method

To avoid the problem of vanishing diagonal elements
in the radiation matrix, which is a main source for
the ill-posed problem, as an alternative to using the
Kirchhoff–Helmholtz integral for the interior Ω of the
radiating body, the integral for the exterior of such
a body is used [29.60]. As the interior integration be-
comes zero, the diagonal elements of the radiation
matrix are very small. In contrast, exterior integration
with the pressure as the result of the integration leads
to a strengthening of these diagonal elements. There-
fore, the solution is much more stable and one avoids
regularization techniques.

The full-field method uses orthonormal spherical
harmonics Φi to represent any kind of complex ra-
diation by summing over N of these harmonics with
respective amplitudes ci to arrive at a pressure p in the
exterior of Ω like

p =
N∑

i=1

ciΨi . (29.95)

This is the main equation for microphone-array forward
and backpropagation methods. Although spherical har-
monics run over two indices, as discussed above, for the
sake of convenience, a single running index is used here.

To be able to substitute this into the Kirchhoff–
Helmholtz integral, Green’s function needs to be
formulated using spherical harmonics. Therefore, next
to Ψi ,

Ξi = Re{Ψi} (29.96)

as the real part of Ψ is needed to represent a stand-
ing wave in the exterior of the body domain Ω. Then
Green’s function can be written as

G(x, y) = ik
N∑

i=1

Ψi (x)Ξi (y) , (29.97)

with x as a point outside Ω and y a point on the sur-
face S ofΩ.
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To now be able to substitute this into the Kirchhoff–
Helmholtz integral, two additional steps are helpful.
First it is reasonable to integrate the pressure, and, there-
fore, also the Kirchhoff integral over a much larger
exterior body F, including Ω and x. This integral can
later be solved analytically. Secondly, to enhance sta-
bility of the method further, the Galerkin method or
method of weighted residuals is used. Therefore, both
sides are weighted, or multiplied, by a function to again
change the condition of the radiation matrix obtained
in the end. Mathematically, this function is arbitrary, as
both sides of the equation are multiplied by it. More-
over, it is most convenient to use a function which is
already available and, therefore, again the spherical har-
monic function Ψ ∗

j is used in its complex conjugate
form, where j can be chosen arbitrarily. Then we end
up with the equation

∫
pΨ ∗

j dF = ik
N∑

i=1

∫
ΨiΨ

∗
j dF

×
∫ (

p
∂Ξi

∂n
−Ξi

∂p

∂n

)
dS . (29.98)

The integral over F can be performed using the or-
thonormal relation of the spherical harmonics. Then,
integrating this into (29.95), we have

2i

k
c j +

N∑

i=1

ci

∫
Ψi
∂Ψ ∗

j

∂n
dS = iΩ!

∫
vΨ ∗

j dS .

(29.99)

Because of the integration over F and the orthonormal
relation of the spherical harmonics, the Ψ j functions be-
come Ξ j . On the right-hand side of (29.99) the Euler
equation

∂p

∂n
= iω!v (29.100)

was used to substitute the velocity for the pressure.
To solve (29.99) numerically, the left-hand side is

transformed into a matrix. Clearly the strength of the
diagonal elements of this matrix is increased because
of the i/kc j term. This leads to stability of the method
and is an alternative to the Tikhonov regularization tech-
nique, which also adds another term to the diagonal
using a regularization parameter (Sect. 29.4.4).

29.4.8 Null-Field Method

Historically, the null-field was introduced much earlier
than the full-field equations [29.89–93]. However, as the

full-field equations discussed above in some detail are
very similar to the null-field method and additionally
have the problem of small diagonal element strength,
they need further regularization techniques, such as
single-value decomposition [29.59, 94, 95].

When solving the Kirchhoff–Helmholtz integral for
a point in the domain Ω, this integral becomes zero.
When again assuming the basic equation for forward
and backpropagation for microphone arrays (29.95)
and incorporating the spherical harmonics with their
orthonormal properties and the Kirchhoff–Helmholtz
integral, the resulting null-field equation,

N∑

i=1

ci

∫
Ψi
∂Ψ ∗

j

∂n
dS = iΩ!

∫
vΨ ∗

j dS , (29.101)

again over j = 1, 2, 3 . . ., is very similar to that of the
full-field (29.99) with only the first term on the left-hand
side missing. Precisely this term allows for stronger di-
agonal elements of the matrix, which is therefore better
conditioned. Also the complex conjugates Ψ ∗ of the
spherical harmonics Ψ are again used, summed over
with amplitudes ci , as a Galerkin or weighted-residual
approach. It can be shown that the equivalent source
methods differ basically only in using different weight-
ing functions [29.96].

29.4.9 Internal Source Density Methods

Different approaches have been proposed to use mul-
tiple source points in the radiating body instead of
only one [29.2,63–65,82,97–102] or using higher-order
poles [29.86, 103–106]; this is discussed in detail in
Sect. 29.4.10.

One example is the generalized internal source den-
sity method (GISD) [29.107–110]. This method needs
a microphone array placed in a surface of revolution
to meet the virtual source distribution in the radiating
body, which is an axial distribution of the ring sources.
It also results in a Fredholm integral and is, therefore,
ill posed. A single-value decomposition method is used
to make the solution stable.

A multiple distribution of sources within a body has
been proposed [29.61,99] to improve the representation
of the radiation at the boundaries of the body. Often
higher-order spherical harmonics are used with a single
source point within the body, which, when represent-
ing complex radiation patterns, converge only slowly,
needing many higher-order shape functions. This leads
to higher computational cost. When using multiple ra-
diation points at different locations, especially near the
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radiating surface, a much better differentiation of the
radiating source can be obtained more easily.

An approach to represent the radiating surface using
many monopole radiators with continuously sharpening
radiation directivity [29.2, 100–102] has been proposed
as the minimum energy method. This is discussed in
Sect. 29.4.11 below. Because of the multiple source
points it easily represents complex radiation patterns.
Additionally, it overcomes the ill-posed nature of the
problem by slightly releasing the radiation directivity,
which results in a continuous sharpening of the results
with wider directivity of the single sources. It also re-
sults in a frequency-dependent directivity value of the
radiation patterns.

29.4.10 Helmholtz Equation Least Squares
(HELS)

The Helmholtz equation least squares (HELS) method
assumes only one single radiation point behind the ra-
diating surface [29.86, 103–106, 111]. Then, to achieve
a high amount of precision, many higher-order poles
are assumed. The poles used with the HELS method
are, again, the spherical harmonics. Figure 29.9 shows
examples of a monopole, a dipole, and a quadrupole
radiating behind the surface to be investigated and
recorded by microphones in the surrounding space.
These spherical harmonics are a set of orthonormal
functions. Thus, when summing over them with respec-
tive amplitudes, as suggested in the solution above, all
possible radiation patterns can be achieved. On the other
hand, when analyzing a radiation sound field, this sound
field can be decomposed into these poles. Moreover,
when using a microphone array with arbitrary spacing
of the microphones and only covering a finite space
with the array, the harmonic functions at the array points
will no longer be orthonormal to each other. Thus, from
spherical harmonics another set of orthonormal func-
tions Ψ ∗ need to be calculated. When summing over
a discrete set of N points with amplitudes C the result-
ing pressures at the microphone positions are

p∗ = !c
N∑

i=1

CiΨ
∗
i (29.102)

with density of air ρ and speed of sound c. The
orthonormalization proposed is the Gram–Schmidt
method,

Ξ1 = Ψ1 ,

Ψ ∗
1 =

Ξ1

||Ξ1|| ,
Ξ2 = Ψ2− (Ψ2, Ψ

∗
1 )Ψ ∗

1 ,

Ψ ∗
2 =

Ξ2

||Ξ2|| ,
. . . ,

Ξn+1 = Ψn+1−
∑

i=1

n(Ψn+1, Ψ
∗
i )Ψ ∗

i ,

Ψ ∗
n+1 =Ξn+1 = Ξn+1

||Ξn+1|| . (29.103)

Here, out of the spherical harmonics for the spatial sec-
tion where the microphone array is placed, a new set of
functions is built, which is again an orthonormal set by
this iterative method. The orthonormality is re-achieved
by starting with the first function and from each higher
one subtracting the part that these functions have in
common.

Equation (29.102) can also be written in matrix form
as follows

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ ∗
11 Ψ ∗

12 . . . Ψ ∗
1N

Ψ ∗
21 Ψ ∗

22 . . . Ψ ∗
2N

. . . . . . . . . . . . .

Ψ ∗
N1 Ψ

∗
N2 . . . Ψ

∗
NN

. . . . . . . . . . . . .

Ψ ∗
M1 Ψ

∗
M2 . . . Ψ

∗
MN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

C1

C2

. . .

CN

⎞

⎟⎟⎟⎠=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

. . .

pN

. . .

pM

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(29.104)

Here, as is often the case with microphone arrays, solv-
ing this equation system diverges due to measurement
noise and spatial errors. Furthermore, the number of
microphones may not fit the amount of orthonormal
functions used and, therefore, there may be more vari-
ables than equations. To overcome the first problem of
noise a least-squares method is used, where the error
may be expressed by

ε =
M∑

m=1

(
!c

N∑

n=1

CnΨ
∗
nm − pm

)2

. (29.105)

Minimizing this error with respect to the amplitudes
reads as

∂ε

∂Ci
= ∂

∂Ci

⎡

⎣
M∑

m=1

(
!c
∑

n=1

NCnΨ
∗
nm − pm

)2
⎤

⎦

= 2

(
!c

N∑

m=1

Ψ ∗
mi

N∑

n=1

CnΨ
∗
nm −

M∑

m=1

pmΨ
∗
mi

)

= 0 . (29.106)
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Thus both sides have been multiplied by a weighting
function, which can be any reasonable function, most
simply the function itself. Equation (29.106) can then
be written in matrix form as

Ψ ′C = p′ , (29.107)

where the matrix elements are

Ψ ′
mi = !c

N∑

n=1

Ψ ∗
nmΨ

∗
ni , (29.108)

and

p′m =
N∑

n=1

pnΨ
∗
nm . (29.109)

The second problem, that the number of microphones
may not fit the number of harmonic functions, is over-
come by calculating the coefficients directly. Therefore,
the inverse of the matrix Ψ ′ is calculated. As this may
cause problems as discussed above, the pseudo-inverse

Ψ ′+ = Ψ ′T

Ψ ′TΨ ′ (29.110)

of the matrix Ψ ′ is used to finally calculate the coeffi-
cients as follows

C = 1

!c
Ψ ′+ p′ . (29.111)

Once the coefficients are known, the pressure can be
calculated by using (29.102) for all points in space.

The parameters in the HELS method that need to be
treated carefully are the number of spherical harmonics
used and the selection of the virtual source point behind
the radiating surface. Both parameters may change the
results considerably.

In terms of the number of spherical harmonics
used, when reconstructing a complex sound field with
those functions, a large number of them are actually
needed because sharp edges or steep raises in the ra-
diation function need a large number of harmonics to
be constructed. This is equivalent to Fourier analysis or
synthesis; there a very steep raise needs a large num-
ber of Fourier coefficients to be represented. So for
complex spatial representations, the convergence of the
solution may be slow, needing a large number of har-
monic functions.

The selection of a virtual source point behind the
radiating structure may also change the solution, espe-
cially, again, when only a few harmonics are used. The
closer this source point is set to the surface, the sharper
the solution, because the harmonics are more distinct

Re(0,0)

Re(1,0) Re(1,1)Re(1,–1)

Abs(1,0) Abs(1,1)Abs(1,–1)

Im(1,0) Im(1,1)Im(1,–1)

Re(2,0) Re(2,1) Re(2,2)Re(2,–1)Re(2,–2)

Re(3,0) Re(3,1) Re(3,2) Re(3,3)Re(3,–1)Re(3,–2)Re(3,–3)

Abs(3,0) Abs(3,1) Abs(3,2) Abs(3,3)Abs(3,–1)Abs(3,–2)Abs(3,–3)

Im(3,0) Im(3,1) Im(3,2) Im(3,3)Im(3,–1)Im(3,–2)Im(3,–3)

Abs(2,0) Abs(2,1) Abs(2,2)Abs(2,–1)Abs(2,–2)

Im(2,0) Im(2,1) Im(2,2)Im(2,–1)Im(2,–2)

Abs(0,0)

Im(0,0)

Fig. 29.9 Spherical harmonics as solution to the three-dimensional
Helmholtz wave equation in spherical coordinates for a single source
point as needed in the HELS method. Each solution Yn,m (r, k, θ, ϕ)
with n = 0, 1, 2. . . runs through m =−n, . . . , 0, . . . ,+n. So, e.g.,
n = 0 is the monopole, n = 1 for m =−1, 0, 1 are the dipole func-
tions, etc. Each radiation can be completely described by a linear
superposition of these functions with the respective amplitudes

near the source and become wider with increasing dis-
tance. This distinctiveness of the shape functions varies
with the position of the virtual source point behind the
surface and enhances the reconstruction precision in
those regions where the source point is set and decreases
this precision at more distant regions.
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Fig. 29.10 (a) Measurement and (b) reconstruction of the radiation of the front top of a car at a frequency of 323 Hz using
the HELS method (after [29.112])

An example of the reconstruction of a radiating
sound field of the front top of a car at a frequency of
323 Hz is shown in Fig. 29.10 [29.112]. The reconstruc-
tion is compared to a measurement right at the surface
of the structure.

HELS has also been formulated for transient vibra-
tions [29.105], where the sound field is decomposed
into Fourier components; for each frequency backprop-
agation is performed and the single reconstructed sound
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–3 –3
0

0.5

2 2
1

0
–1

–2

XY
1

0
–1

–2

p   0cvn

t = 4.41 ms

–3 –3
0

0.5

2 2
1

0
–1

–2

XY
1

0
–1

–2

p   0cvn

t = 5.88 ms

–3 –3
0

0.5

2 2
1

0.2837
0.3405

0.3972
0.4540

0.5107
0.5675

0.6242
0.6810

0.7377
0.7045

0.85120.0567
0.1135

0.1702
0.2270

0
–1

–2

XY
1

0
–1

–2

p   0cvn

t = 7.35 ms

–3 –3
0

0.5

2 2
1

0
–1

–2

XY
1

0
–1

–2

p   0cvn

Fig. 29.11 A transient solution of the
HELS method showing four time
steps of a sound wave traveling over
a sphere (after [29.105])

fields are then summed to result in a transient solu-
tion (Fig. 29.11). Note that this is different from solving
backpropagation for integration times of maybe 1 s to
also obtain a changing solution. The transient behav-
ior in this case occurs within a few milliseconds. In
Fig. 29.12 a wave traveling over a sphere is shown at
four different time steps. The wave is initiated at the
center point of the circles and expands over the surface
of the sphere.
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29.4.11 Minimum Energy Method

Another approach that uses many virtual source points
right behind the radiating surface is the minimum en-
ergy method [29.2, 100–102]. Again the basic equation
for multipole radiation is used as follows

p j =
N∑

i=1

Rij pi . (29.112)

Here the pressure p j in the free field is assumed to be
the sum over radiating points pi on the radiating surface
with a radiation matrix Rij relating both pressures. With
this method the source points are assumed to be right on
the surface, which avoids the problem of source point
placing in the radiating body. Then although mathemat-
ically the amplitudes are infinite on the surface r = 0,
because of the 1

r amplitude drop of monopoles, the so-
lution is still stable because the calculated sources are
amplitudes and are taken as the radiation strength on
the surface.

This is again an ill-posed formulation. To overcome
the solution overflow, the source points are not assumed
to be perfect monopoles, although they might be, but
may show a directivity, narrowing the radiation in the
normal direction of the radiating surface according to
a directivity value α. Then the radiation matrix is the
free-field Green’s function

Rij = 1

Γ ij
eikrij

, (29.113)

with wave vector k and distances rij between source and
receiver point, where the amplitude attenuation

Γ ij (α) = rij [1+α(1−βij )] , (29.114)

depends on direction via the directivity parameter α,
with

βij =| r ij

|r ij | ·n
i | , (29.115)

determining the direction as the inner product between
the normal vector ni with the normalized distance vec-
tor matrix r ij between microphone j and radiating
point i with

r ij = xi
g− x j

m i, j = 1, 2, 3 . . . N . (29.116)

Figure 29.13 shows the radiation directivity for different
values of α in a polar plot. For α = 0 the radiation is
a monopole and the regular Green’s function holds. For
larger values of α, a directivity in the direction of the
normal vector of the radiation plane is enhanced.

a) b) c)

Fig. 29.12a–c HELS assumes a virtual source behind the actual ra-
diating surface. The radiation from this source is a superposition
of the orthonormal set of spherical harmonics (monopole, dipole,
quadrupole, etc.) as displayed. The black dots on the right represent
the microphones, which are placed in a regular grid here, although
it could have any shape. The virtual source point on the left is radi-
ating in (a) a monopole, (b) a dipole, and (c) a quadrupole spherical
harmonic. This series is continued with higher-order poles with all
their real and imaginary parts. When decomposing the recorded
sound field at the microphones into these spherical harmonics, the
amplitudes of each of these harmonics is determined. Then, again
assuming the same virtual source point, for each point in space the
sound field can be reconstructed

Thus, Γ has the following properties:

• If α= 0, then the radiation is that of a perfect sphere
with an amplitude decay of 1/r independent from
the radiation angle.• If α > 0 and βij = 1, the radiation in the normal
direction is investigated, and then the maximum ra-
diation for a fixed α and rij is achieved.

α = 0
α = 1
α = 30

–1 –0.5 0 0.5 1
Radiation
plane

1

0.8

0.6

0.4

0.2

Fig. 29.13 Polar plot of radiation directivity for different
values of α as used with the minimum energy method for
each virtual radiation point on the surface of the radiating
structure. For α= 0 the radiation is a monopole, for higher
values its directivity is enhanced in the normal direction of
the radiation plane
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Fig. 29.14 Reconstruction of the radiation of a vihuela,
a Renaissance guitar with five sound holes, using the min-
imum energy method. The radiation strength of the sound
holes depends on their position with respect to its distance
from the boundaries of the top plate (after [29.2])

• If α > 0 and βij = 0, radiation in a direction or-
thonormal to the normal direction is investigated
and then the minimum radiation for a fixed α and
rij is achieved.

This directivity of α is needed to overcome the instabil-
ity of the ill-posed nature of the problem. On the other
hand, it is physically associated with the directivity of
the radiating plane.

598 Hz_alpha7 568 Hz_alpha3

620 Hz_alpha5 675 Hz_alpha5

683 Hz_alpha10 765 Hz_alpha8

Fig. 29.15 Example of the modes of a frame drum between
598–765 Hz backpropagated using the minimum energy
method. The different radiation directivities appear through
the values of α, where higher values mean a narrower over-
all radiation directivity

The task is to find an optimum value for α to mini-
mize the reconstruction energy so that α is fixed for all
radiation positions. Only β changes with radiation angle
from the radiation positions to the microphones, where
all of them have the same phase but different radiation
strength, depending on this angle. The maximum radi-
ation is always in the normal direction, the minimum
radiation is always in the directions orthonormal to the
normal direction.

Thus, the radiation matrix is

Rij (α) = eikr 1

rij [1+α(1−βij )] . (29.117)

When writing the pressures as vectors as pg and pm and
the radiation matrix as R, we have the linear equation
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Fig. 29.16a,b A forward propaga-
tion of the sound field in front
of a classical guitar for frequen-
cies between 1771–2215 Hz. Two
surfaces are shown, (a) left/right
cut, (b) top/bottom cut. As the fre-
quencies are in the mid-range, the
radiation patterns are quite complex
(after [29.100])
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system

R(α)pg = pm , (29.118)

which can be solved by initially guessing α. Thus the
correct value of α needs to be evaluated first, which
leads to the basic idea of this method.

The use of α is at the core of backpropagation. If α
is very large, the reconstruction of the radiation on the
surface only considers the recording microphones in
the normal direction of each point alone. So the recon-
struction will look like the recording of the microphone
array. By reducing α, more and more microphones in
the near area of the microphone in the normal direc-
tion of the radiation plane are taken into consideration
to reconstruct the pressure field on the radiating surface.
Thus the solution will improve. This will continue, and
when looking at several reconstructions with lower α,
the blurred and mostly quite smooth pressure field
recorded becomes sharper and sharper, reconstructing
the real radiating surface better and better. Figure 29.9
shows two solutions for one mode on a frame drum that
is a circular membrane for different values of α. When α
is chosen correctly, the solution shows the mode of vi-
bration. When α is too small, the ill-posedness of the
problem leads to an overflow of the solution, which
results in an unreasonable radiation pattern.

However, when α becomes too low, the influence of
radiation points on neighboring microphone points be-
comes too much. In this case, the ill-posed nature of the
problem causes the linear equation solver to blow up the
solution, resulting in unreasonably large reconstructed
pressure values.

With this behavior in mind, the correct value of α,
which needs to be guessed first, can be found by mini-
mizing the reconstruction energy

E ≈
∑

i

| pi
g |2= Min . (29.119)

When α is too low, the ill-posedness of the equation
system will make the linear equation solver end in un-
reasonably large values, so the reconstruction energy is
unreasonably high. On the other hand, if α is too high,
each radiation point is assumed to deliver all the energy
recorded at a microphone in its normal direction, which
is unphysical and, again, leads to a reconstruction en-
ergy that is too high. Thus, the correct value of α is the
one that minimizes the reconstruction energy.

It can be shown that this method deals with measure-
ment noise or misplaced microphones in such a way so
as to balance this by slightly increasing α [29.102]. Then
even strong measurement noise leads to a reasonable re-
construction. As the method is very stable in this respect
and the reconstruction improvement can easily be ob-
served by trying different reconstructions with different
values of α, it is an intuitive way of backpropagation.

An example of a sound field reconstruction of
the sound hole radiation of a vihuela, a Spanish Re-
naissance guitar, is shown in Fig. 29.14 [29.2]. It has
the special feature of five sound holes. The method
determines the radiation pressure strength, which is dif-
ferently distributed over the five holes.

Another example of backpropagation of the modes
of a frame drum is shown in Fig. 29.15 for higher
modes between 598–765 Hz with more complex modes
shapes. The different directivities appear through differ-
ent reconstruction values of α.

An example of forward-propagation is shown in
Fig. 29.16 [29.100]. A tone was plucked on a classi-
cal guitar and backpropagated to the guitar top plate,
which resulted in a radiation pattern of pressure values
on this top plate. Then this radiation pattern was used
to forward-propagate the sound into the space in front
of the guitar, which resulted in a sound field both in
the left/right and top/bottom surfaces. In this example,
tone partials with frequencies between 1771–2215 Hz
are shown, which show a quite complex sound field in
front of the instrument.
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Acoustic Emis30. Acoustic Emission

Kanji Ono

Acoustic emission (AE) originates from mechanical
deformation and fracture, as well as from phase
transformation, corrosion, friction, and magnetic
processes. It refers to the generation of transient
elastic waves due to the rapid release of energy
from a localized source or sources within a mater-
ial or structure. It is an indispensable and effective
nondestructive inspection method and a valuable
tool of materials research, detecting dynamic mi-
croscopic processes of materials. Sensors attached
to the structure detect AE signals, from which the
locations and activity levels of the sources are
evaluated, and structural integrity is assessed.

30.1 Background ........................................ 1209

30.2 Acoustic Emission Signals ..................... 1210
30.2.1 AE Signals and Source Functions.. 1210
30.2.2 Sensors .................................... 1213
30.2.3 Signal Characterization .............. 1215

30.3 Source Location ................................... 1215

30.4 Sources of Emissions
and Materials Behavior ........................ 1216
30.4.1 Plastic Deformation of Metals ..... 1217
30.4.2 Fracture and Crack Growth ......... 1218
30.4.3 Fiber Fracture and Delamination

of Composite Materials............... 1221
30.4.4 Rock and Concrete Fracture ........ 1222
30.4.5 Other Emission Sources .............. 1223

30.5 Structural Integrity Monitoring ............. 1224
30.5.1 Fiber-Reinforced Composite

Pressure Vessels, Tanks,
and Piping ............................... 1224

30.5.2 Metal Pressure Vessels, Tanks,
and Piping ............................... 1225

30.5.3 Aerospace ................................ 1225
30.5.4 Geological Structures ................. 1226
30.5.5 Bridges .................................... 1226

References .................................................. 1227

Acoustic emission (AE) is transient elastic waves pro-
duced by the rapid release of strain energy from
a localized source or sources within a material or
structure [30.1–7]. This term (or microseismic activ-
ity in the geotechnical field) is also used to describe
the class of phenomena that generate such waves per
ASTM (American Society for Testing and Materials)
E610-98A. Under loading, AE typically originates at
cracks in structures of all kind, defective welds and

yielding regions in alloys and at delamination, and
fiber and matrix cracks in fiber-reinforced compos-
ites. Other active sources of AE include fretting at
extant flaws, especially in concrete structures, leaks
of pressurized fluids, and hydrogen gas evolution in
aqueous corrosion. All these AE phenomena provide
the foundation of sensitive, nondestructive evaluation
methods and an effective tool in structural health moni-
toring [30.8].

30.1 Background

A dynamic mechanical event typically produces AE.
When a crack advances under stress, it proceeds in
discrete steps that give rise to AE from the stress re-
laxation at the crack tip [30.9, 10]. AE can originate
from a number of mechanisms in any engineering ma-

terials and structures. AE is also reported in bones and
teeth [30.11] and its use for biomedical studies has ex-
panded to knee and hip joints [30.12, 13] and to soft
tissues and ligaments [30.14–16]. Mechanical deforma-
tion and fracture are the primary sources of AE, while
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phase transformation, corrosion, friction, and magnetic
processes, among others, also produce AE [30.17, 18].
The elastic waves then travel through the structure to
a sensor. Wave propagation and attenuation greatly af-
fect the nature of AE signals at the sensor. For example,
when a section size is comparable to the wavelength, the
wave travels as a guided wave. In thick-walled struc-
tures, the surface wave is often the dominant mode of
propagation, while fluids in tanks and pipes carry waves
efficiently over long distances [30.1]. Wave attenuation
poses serious problems to AE detection in polymeric
materials and biological tissues [30.19]. Weak electri-
cal signals produced by the sensor are amplified and
characterized, relying on the waveform shape, inten-
sity, frequency spectrum, and other features. For a large
structure, like a bridge, hundreds of sensors are used to
cover all the critical sections under scrutiny [30.1, 20].

The detected AE signals are used to determine the
locations and activity levels of the sources in real time.
Results are utilized for the evaluation of the struc-
ture or component. Since AE signals can usually travel
over a long distance, the entire structure can be exam-
ined in a single test sequence, e.g., during preservice

or periodic inspection. AE can continuously monitor
the integrity of a structure in service. AE is a passive
test method, in that no direct excitation is applied, un-
like the ultrasonic test method. However, AE testing
does require the application of a certain stimulus to
a test piece. With bridges, live traffic and loaded trucks
are sufficient. In pressure vessels and piping, hydro-
static pressurization slightly above the operating level
is usually employed to activate AE sources. Acoustic
emission has become the inspection method of choice
for fiber-reinforced composite vessels and for metallic
tanks, especially in the aerospace, petrochemical, and
transport industries [30.1, 3–6, 20].

Materials research is another area where AE is valu-
able because of its sensitivity to dynamic microscopic
processes [30.17,18]. It is difficult, however, to establish
a mechanical phenomenon at the source of a detected
AE signal. This stems from the high sensitivity of AE
techniques (since no other means exist to independently
observe most dynamic source phenomena). Increas-
ingly detailed modeling offers new insights in gaining
the understanding of AE mechanisms and AE signal
propagation [30.21–24].

30.2 Acoustic Emission Signals

We classify AE signals into two types, burst-type
(pulse-like) and continuous-type (random noise-like)
signals. Burst-type emissions arise from distinct events
of elastic energy release, such as crack advances,
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Fig. 30.1 A representative burst acoustic emission signal
waveform of the transverse matrix crack from a cross-
ply carbon fiber composite test. Defined in the figure are
rise time (23 μs), signal duration (205 μs), peak amplitude
(2.9 mV), along with the threshold value used (0.3 mV),
and PAC WD wideband sensor (after [30.25])

fiber fracture and delamination. A representative ex-
ample from a cross-ply composite test is shown in
Fig. 30.1, in which commonly used signal features are
indicated [30.25]. It has a sharp rise, followed by an ex-
ponential decay. This ringing pattern arises from various
resonances in a structure and the resonance of the sen-
sor. Continuous-type emissions are produced by many
overlapping events and observed from the plastic de-
formation of metals and from liquid or gas leaks. For
typical structural monitoring, ultrasonic frequencies of
30 kHz to 2 MHz are detected. Air-borne noise inter-
feres with AE measurements at lower frequencies, while
signal attenuation makes the higher frequency range dif-
ficult to use. In industrial composite testing, the upper
frequency limit is 300 kHz [30.26, 27]. For applications
involving concrete and rocks, a range of several kHz
to 100 kHz is used. For geotechnical monitoring and
soft tissue diagnosis, useful signal frequencies lie below
several kHz [30.2, 19].

30.2.1 AE Signals and Source Functions

An AE signal contains the information on its source,
the propagation medium (sample or structure), AE
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sensor, and electrical instrument used. These can be ex-
pressed by the characteristic or transfer functions of
the source, propagation medium, sensor, and electron-
ics (Hs, Hm, Ht, and He), respectively [30.17,18]. In the
time domain, the source function of a crack is force or
displacement versus time history, describing the normal
displacement of the crack of area A. This is combined
using a convolution integral with the impulse response
of the mechanical system (or Green’s function) to rep-
resent a source. In the frequency domain, the transfer
function of the AE signal, HAE, is given by the product
of the four transfer functions above,

HAE = Hs Hm Ht He . (30.1)

Figure 30.2 shows an example from a model signal in
a fiber composite [30.23]. While the AE source is given
as a smoothly decreasing function with frequency, the
medium has the major effect on the final signal de-
tected. In this example system, even a large change in
Hs is hardly detectable. For a simple geometry, source
functions can be recovered by deconvolution when
wideband sensors are employed and the first motions
of signals are clearly recorded [30.28–30]. However,
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Fig. 30.2 Normalized magnitude of fast Fourier transform (FFT) of various transfer functions in the frequency domain
in log-linear plots (0–2 MHz) (after [30.23])

this approach is limited and impractical for most ap-
plications. AE signals detected with a wideband sensor
can still be classified according to the generating source
types by means of pattern recognition analysis. This
scheme depends on the differences in the excitation of
various modes of resonance and wave propagation and
on their time history.

AE waveforms can be simulated using elastody-
namic formulation or finite element analysis for certain
geometries [30.9, 10, 21, 22]. By varying source pa-
rameters (rise time and source strength or the product
of displacement amplitude and source area), a simu-
lated waveform can be matched to the observed one
for specific test geometry. Elastodynamic displacement
solutions assuming smooth-rising source functions of
varying rise time are given in terms of dislocation mo-
tion, or by using a moment tensor, which is commonly
used in geophysics [30.3–5, 9, 10, 31]. Such model-
ing is most useful for obtaining details of a source
by seeking the best fit of calculated and observed
waveforms. This forward-processing scheme avoids the
deconvolution procedure, which is prone to instability
in the presence of noise. This method has been used
successfully in analyzing various AE signal types in
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Fig. 30.3 Observed and matched calculated waveforms with source parameters. Unidirectional glass fiber composite test
(after [30.32])

composite materials under loading [30.32]. For exam-
ple, Fig. 30.3 shows three types of failure, displacement
signals observed, and matched simulated waveforms for
a unidirectional glass-fiber composite. This led to signal
classification as a function of loading. From the source
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function, crack velocity estimates were also obtained
(Fig. 30.4) [30.32].

The use of the moment-tensor representation of
a source function leads to moment tensor analysis or
moment tensor inversion [30.3–5]. This method is an
extension of a similar method used in geophysics, but
in AE applications it is important to find tensile cracks
in addition to shear cracks, which are the focus in seis-
mology. It relies on the first arriving P-waves at multiple
sensor locations and obtains the tensile and shear com-
ponents of the source motion. This approach is most
suited for large civil engineering structures. In concrete
and rock testing, the source types of AE during crack
propagation have been identified (Fig. 30.5) [30.33]. In
most other materials testing, however, sample sizes are
too small to use this method.

The use of 3-D finite element analysis (FEA) is
effective in characterizing AE signals and their propaga-

Fig. 30.4 Crack volume versus source rise time, giving the
average crack velocity of 6.5 m s−1. Data points are within
the zone between crack velocities of 2.3 and 22 m s−1 (af-
ter [30.32]) �
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Acoustic Emission 30.2 Acoustic Emission Signals 1213

Fig. 30.5 Results of moment tensor analysis of acoustic-
emission signals from simulated corrosion cracks in a large
concrete block. Arrows indicate stress direction and disks
mark the plane of crack. Pink: tensile; blue: mixed mode;
yellow: shear crack (after [30.33])

tion. A wide range of AE signals generated and propa-
gated on a plate, both isotropic metals and anisotropic
composites, are analyzed [30.21–24]. The completed
modeling includes Lamb waves generated by an artifi-
cial source in thin and thick plates, the effects of the
source rise time, monopole versus dipole sources, plate
thickness, and plate width. The FEA method is espe-
cially valuable for modeling interior AE sources as these
cannot be simulated experimentally. Figure 30.6 shows
a result of Lamb wave propagation of 50 mm from a fi-
nite crack source at the mid-plane in a carbon-fiber
composite plate. This signal essentially comprises the
symmetric Lamb wave mode as the crack opening dis-
placement is in the direction of the propagation [30.24].

30.2.2 Sensors

Acoustic emission sensors typically employ a disk of
piezoelectric ceramic or crystal and respond to velocity
or acceleration normal to the face of a sensor. One type
has a broadened frequency response using a backing
material behind a transducer element. This construction
is common to that of the ultrasonic transducers. Another
type enhances the sensitivity by using the thickness
and/or radial resonance of a transducer element with-
out using a backing material. These are resonant or
narrowband sensors and are employed most often in
AE testing because of their high sensitivity. Typical
resonant AE sensors have peak velocity sensitivities
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Fig. 30.6a,b Simulated Lamb wave from a finite crack at
the mid-plane in a carbon-fiber composite plate, propagated
50 mm. (a) Choi–Williams distribution diagram, showing dominant
S0 mode (zeroth order symmetric Lamb mode). (b) waveform of
displacement, normal to the plate [30.24]

of a few tens of kV s/m−1, these are 20–40 dB more
sensitive than those used for conventional ultrasonic
testing. Given a resonant AE sensor with 10.5 kV s/m
peak sensitivity at 200 kHz (−70 dB in reference to
1 V μbar−1), a 1 μV signal corresponds to a 0.1 fm
surface displacement over 1 μs. Since a preamplifier
has the input noise of 0.6 μVrms, this signal is at the
detection limit. Another method to enhance the sen-
sitivity is to place a high impedance amplifier within
the sensor housing. This eliminates the effects of ca-
ble capacitance, allowing the use of long sensor cables.
The frequency responses of AE sensors are usually
characterized (face-to-face) against a secondary stan-
dard using compressional waves at normal incidence.
For many applications, however, surface or plate waves
are dominant and their movements normal to the sur-
face are detected, and the size of a sensor affects its
responses through the aperture effect. Proper sensor se-
lection for frequency ranges or wave modes improves
the sensitivity of AE detection. For concrete, rocks,
and geotechnical applications, low frequency sensors,
such as geo-phones, hydrophones, and accelerometers
are also used. These can have flat frequency responses
and some have good directionality, allowing the con-
struction of tri-axial sensors [30.2–6].
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Fig. 30.7 (a) Frequency response of a conical sensor of Glaser design showing flatness over 10 kHz to 1 MHz. (b,c)
Narrowband AE sensor responses for PAC-R15 and PAC nano30. (d) A broadband velocity response of DW B1025
(after [30.37])

Surface displacements are also measured using a ca-
pacitive sensor or a laser interferometer. Both serve an
important role in sensor calibration, although these are
still impractical for field use due to difficulty of han-
dling and surface preparation (capacitive sensor) and to
their large size, high cost, and low sensitivity (interfer-
ometer). A primary sensor calibration system has been
constructed using a capacitive sensor in combination
with a large steel block and a mechanism to break a fine
glass capillary (≈ 0.2 mm outer diameter) [30.34, 35].
The breaking of the glass capillary produces a sudden
release of force (≈ 20 N within a few tenths of μs) and
provides a reproducible source of body waves and sur-
face waves that match well with theoretical predictions.
Peak surface displacements of ≈ 0.15 nm are gener-
ated at 0.1 m from the capillary break. Here, a sensor

under test is placed at a symmetric position to the ca-
pacitive sensor standard (or a laser interferometer). For
a working calibration of the AE measuring system, the
breaking of pencil lead (0.3 ≈ 0.5 mm outer diameter)
has been used effectively. This is known as the Hsu–
Nielsen source and generates ≈ 1 N force drop over
a 1 μs period [30.36].

High-fidelity capture of signal waveforms is needed
for specialized studies of AE sources. A special sensor
design based on a truncated conical element achieves an
exceptional fidelity in the surface displacement detec-
tion. Proctor at NBS (now NIST) used a small element
with matched backing and obtained a flat (±3 dB) re-
sponse to 2 MHz [30.38]. This design has been refined,
reduced in size to that of a conventional sensor and
ruggedized, thus joining the rank of practical AE sen-
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Acoustic Emission 30.3 Source Location 1215

sors [30.29, 37]. The frequency response of the most
recent design by Glaser exhibits exceptional flatness in
over 10 kHz to 1 MHz, as shown in Fig. 30.7a [30.37],
which also shows two other narrowband AE sensor re-
sponses with resonances (Fig. 30.7b,c) and a broadband
velocity response (Fig. 30.7d).

30.2.3 Signal Characterization

Characteristics of the acoustic-emission signals in com-
mon use are:

1. AE event count (and AE event rates): the number
(and rates) of burst-type emissions (in multisensor
AE detection systems, the term hit is used in place
of event since a single AE event can reach more than
one sensor and is counted each time).

2. The averaged signal intensity of continuous-type
emissions (e.g., root mean square (rms) voltages of
amplified signals).

3. The peak amplitude.
4. Rise time.
5. Duration of burst emissions (defined with the

threshold).
6. The signal strength of burst emission (area of the

signal envelope, Fig. 30.1 for the definition of 3.–5.).

In addition, the distributions of peak amplitude,
rise time, and duration are also obtained, as well
as arrival time differences of burst emissions at dif-
ferent sensors [30.1–7]. Frequency-based parameters
are also useful. These include peak frequency, me-
dian frequency, spectral centroid (or mean frequency),
and partial powers for various frequency bands. These
signal parameters can be acquired in real time with
dedicated hardware. The duration of typical burst emis-
sions is 0.1–1 ms, however, at most several thousand
signals per second can be distinguished from a sensor.
For higher rates of emissions, average intensity mea-
surements are utilized. By recording acoustic-emission
signals digitally, the power density spectrum or more
commonly frequency spectrum and shape parameters
of the signal waveforms can be utilized. Peak intensity
and position in the frequency domain, shifts in dominant
frequency over time and rates of rise and decay of the
waveform are the features of importance. Their values
diminish when narrowband sensors are used. These fea-
tures are also used in constructing intelligent classifiers
of pattern recognition analysis [30.23, 25, 39]. Com-
binations of these and other test parameters, such as
applied force or pressure, time under load, and ground
tilt and displacement are used to evaluate the nature of
AE sources.

30.3 Source Location

A major goal of acoustic-emission testing is to deter-
mine the location of active flaws in a structure. AE
testing uses the structure itself to discover disconti-
nuities through the generation and propagation of AE
signals, which can be continuous (e.g., fluid/gas leaks
and fretting) or burst emissions (e.g., metal fracture and
delamination of composites). Two sensors are used to
locate the source in a linear structure such as a pipe and
a tube (linear location). More sensors are needed when
the linear structure becomes longer or when two or
three-dimensional structures are examined. Figure 30.8
shows typical sensor placements on a storage tank when
complete coverage is desired in AE testing [30.40, 41].
In most applications, the structures can be regarded
as a two-dimensional shell structure, and the surfaces
can be laid out on a plane. For example, a spherical
tank can be represented by an icosahedron and by 20
triangles on a planar display. This method can also
be applied locally on large structures, when expected
damage locations can be anticipated. It is common

to cover an area of a few square meters with several
sensors and as many sets as required are utilized to
monitor the critical zones of a large bridge, for exam-
ple [30.42].

Source location utilizes two general approaches,
i. e., zone location and discrete source location. In the
zone location method, a source is presumed to exist
within the zone that belongs to the sensor receiving
the first hit signal or receiving the strongest AE signal
(typically in peak amplitude). This method is suited for
locating leaks (continuous emissions) and for sources
in a highly attenuating medium (fiber composites and
metals coated with viscous insulation). This method
can be refined by determining which sensor receives
the second-hit signal or the second strongest signal.
In zone location, the zone around each sensor is sub-
divided, and the number of the subdivision is equal
to that of surrounding sensors. When the amplitudes
of the signals received are measured, further improve-
ments in source location accuracy are possible through
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Fig. 30.8 Typical acoustic-emission sensor placements on
a storage tank (after [30.40, 41])

an interpolation technique by taking the attenuation into
account [30.40, 41].

In a discrete source location, the full spatial co-
ordinates of an AE source are defined by measuring
the differences in arrival times of AE signals at mul-
tiple sensors. The AE signals must be burst-type and
strong enough to reach three or more sensors. In atten-
uating media, the sensor spacing must be sufficiently
small. Generally, the wave velocity is assumed constant
and triangulation techniques are used. A pair of sen-
sors defines an arrival time difference and a hyperbola
passing through a source. The location of the source
can be obtained as the intersection of two such hyper-
bolae. Hundreds of sources per second can be located
by typical AE instruments. For this method to be prac-
tical, the attenuation through the structure cannot be
high to avoid the use of excessive sensors and signal
processing channels. Emission rates must be moderate
so that the arrival time differences of a single event
can be detected without interference of the next event.
Several source location algorithms are available in mod-
ern AE systems for optimizing the results [30.44, 45].
A number of more sophisticated algorithms from seis-
mology are also adopted, especially in the geotechnical

–90° view – Back view 90° view – Front view

Locations of energetic events

a) b)Sensors

Fig. 30.9a,b Distribution of energetic acoustic-emission
events in a 24 h period before the final fracture. Kevlar
composite overwrapped pressure vessel (COPV) (af-
ter [30.43])

field. The accurate determination of signal arrival times,
or signal onset, is also important in assuring good
source location. Several automatic onset pickers have
been incorporated, but one based on the Akaike infor-
mation criterion is best suited for AE signals [30.6].
Another important source location approach uses ori-
entation and propagation-mode dependence of wave
velocity [30.45–47], in particular, those of plate waves
that are dominant in thin composite structures [30.48].

In order to evaluate the severity of an AE source,
the intensity and activity of the source and its proxim-
ity to neighboring sources are determined. This requires
the collection of additional data on the AE sources and
typically involves post-test analysis. Such data include
the presence of high amplitude emissions, AE activities
during load hold, those during stress increases, and Fe-
licity ratios (FR) during load cycling [30.49]. Statistical
analysis, e.g., amplitude distribution, of AE signals re-
ceived at individual sensors is also useful. An example
of a located source display is given in Fig. 30.9. This
spherical vessel is a carbon-fiber composite, subjected
to stress rupture testing. Clusters of energetic events
were detected in the final day of a 250-day test prior
to failure [30.43].

30.4 Sources of Emissions and Materials Behavior

Plastic deformation of most structural alloys gener-
ates acoustic emission that reaches a maximum at or
near the yield stress and diminishes with work hard-

ening (4340 steel; Fig. 30.10) [30.50–52]. AE from
plastic deformation is due to dislocation motion, and
AE signals are of the continuous type. Purely elastic
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Fig. 30.10 Acoustic-emission behavior of 4340 steel, oil
quenched and annealed at 600 ◦C. Acoustic-emission in-
tensity is measured using rms voltages. See insert for strain
values (after [30.52])

deformation produces no AE. Once the work hard-
ening begins, the AE activities subside and the rms
voltage is only slightly above the background with occa-
sional spikes due to burst emissions (Fig. 30.10). These
burst emissions originate from microcracks or from
the fracture and decohesion of nonmetallic inclusions.
The latter is active in short transverse loading, even
from the preyield elastic region (Fig. 30.11a) [30.53].
In some alloys, twinning produces burst-type AE.
At high temperatures where work hardening is low,
the AE signal intensity remains strong even at high
strains.
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havior of a copper single crystal
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Fig. 30.11 (a) Acoustic-emission behavior of A533B steel,
quenched and tempered at 550 ◦C. Loaded in short
transverse orientation, showing inclusion-induced acous-
tic emission in the elastic region. (b) Immediate reloading
after the first loading in (a). Kaiser effect is observed (af-
ter [30.53])

30.4.1 Plastic Deformation of Metals

Figure 30.12 shows AE behavior of a copper single
crystal, deformed at 300 K [30.54]. The stress–strain
plot shows typical three-stage behavior, while AE en-
ergy peaked at the start of Stage II. Median frequency
was ≈ 250 kHz in Stage I; it increased with decreas-
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ing AE energy in Stage II and jumped at Stage III. This
trend developed from the reduced glide distance of dis-
locations with work hardening and the resultant increase
in the number of glide loops. Solid solution alloying
shows a reduction in the intensity of AE, which is at-
tributed to the raised frictional stress due to solution
hardening, which in turn increases median frequency as
more dislocations are needed to account for the reduced
dislocation velocity [30.54, 55].

Acoustic emission phenomena are irreversible.
When a sample is deformed, unloaded, and reloaded,
it emits no AE until the previously applied load is
exceeded. This is known as the Kaiser effect. This be-
havior is illustrated in Fig. 30.11a,b where a sample was
loaded, unloaded, and reloaded immediately [30.53].
The Kaiser effect is useful for the determination of
a prior loading level, but it is not permanent. Extended
holding and/or annealing before the second loading may
reduce the load at which AE starts to be emitted again.

Microstructural variation affects the AE behavior.
When a metal or alloy is cold worked, the AE ac-
tivity is suppressed; often it is eliminated completely
as these have high dislocation densities, which limits
glide distances. When the grain size is reduced, AE in-
tensity often increases along with the strength. Other
factors may, however, override the grain size effect.
In most precipitation-hardened alloys, AE intensity de-
creases with aging. In Al alloys, peak AE intensity at
yield decreases by more than a factor of 3 from the
solution-treated condition to the fully aged condition.
When alloys are strengthened by the addition of disloca-
tions or hard precipitates, the mean free path of mobile
dislocations is reduced. When an individual glide mo-
tion of the mobile dislocations is restricted, the AE
intensity diminishes even though the number of such
mobile dislocations increases, raising the median fre-
quency [30.17, 18, 50, 51].

The test temperature affects the AE behavior of ma-
terials undergoing plastic deformation. In pure metals
and dilute alloys, the peak AE level at yield initially in-
creased by 50 to 100% with the test temperature, but
decreased above T/Tm of 0.3–0.4, where Tm is the ab-
solute melting temperature. In normalized steels, the
AE level at yield increased fivefold over −150–150 ◦C,
while the yield strength decreased by 30%. AE from
austenitic stainless steels increased 10–20 times from
room temperature to 1000 K, where the AE level
reached a maximum. The large changes in stainless
steels appear to reflect an increase in the stacking fault
energy, thus altering the slip mode from planar to non-
planar with increasing test temperature [30.17, 18].

Dynamic strain aging or the Portevin–Le Chatelier
effect produces repeated load drops from the locking
and unlocking of gliding dislocations. This effect is
prominent at room temperature in Al alloys, while in
steels, it causes so-called blue-brittleness at ≈ 300 ◦C.
These load drops or serrations result in AE intensity
fluctuations [30.50, 51]. Similarly, Lüders deformation
in steel also exhibits high AE activity, as shown in
Fig. 30.10. Lüders deformation, however, occurs only
once at the start of yielding.

Inclusions and second phase particles are another
important origin of AE during deformation. Inclusions
are significant AE sources during tensile loading of
steels in the short-transverse direction and of most high
strength Al alloys. In steels, decohesion of MnS in-
clusions is the most important (Fig. 30.11a). These are
burst-type emissions and their number is proportional
to the inclusion content. Inclusion-induced AE exhibits
anisotropic behavior, i. e., the strongest AE activities are
found in the short-transverse direction and the lowest in
the longitudinal direction. In many Al alloys, the frac-
ture of Al-Si-Fe and other nonmetallic inclusions causes
most AE observed, often masking the AE activity at
yielding. Here, inclusion-induced acoustic emission is
of continuous-type, since many small particles con-
tribute to the overall activity [30.17, 18, 50, 51].

30.4.2 Fracture and Crack Growth

Most materials and structures produce large, audible
sounds during final fracture. In high strength materials,
strong elastic waves are generated during cracking. AE
can be detected long before final fracture and can be
utilized in preventing catastrophic failures of engineer-
ing structures. This application has been and remains
the major driving force of AE technology develop-
ment [30.1, 20].

Brittle solids under tension or in bending, including
ultra-high strength steels and ceramics, often generate
only a small number (< 100) of AE signals just be-
fore final fracture [30.17, 18]. Subcritical crack growth
is minimal, which limits the AE activities. This be-
havior is unfortunate because these materials are most
likely to fail suddenly and the need for preventing such
failures is the greatest. However, all the microfracture
mechanisms that are operative in these materials, i. e.,
cleavage, quasi-cleavage, and intergranular fracture, can
be detected easily since a large fraction of the AE events
have peak amplitudes above 1 mV or 60 dB, in refer-
ence to 1 μV at the sensor. (This is often denoted as
60 dBAE.) In some brittle materials, subcritical crack
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Fig. 30.13 Acoustic-emission event counts increase with
stress intensity factor

growth (or the fracture process zone ahead of the crack
tip) is found. During subcritical crack growth, AE event
counts increase in proportion to the m-th power of stress
intensity factor KI, which is equal to Yσ

√
a, where Y is

a geometrical factor, σ stress, and a the crack length;

Nc = A(KI)
m , (30.2)

where Nc is the cumulative number of AE events and A
is a constant. The cumulative amplitude distribution of
such AE signals can be approximated by a power-law
distribution of the form,

Nc = B(Vp)−b , (30.3)

where Vp is the peak amplitude, and B and b are
constants. In low toughness materials (e.g., alumina)
showing cleavage and intergranular fracture, m = 4.
In steels, m varies from 2.5 to 10 (Fig. 30.13). The
values of b in brittle materials (alumina, quenched
steels) are 0.5–1, while ductile steels showed b of 1–2
(Fig. 30.14) [30.17, 18, 56]. When plastic flow occurs at
the crack tip or when inclusion failure occurs, different
distribution laws (Weibull types) were found [30.56].

When the J-integral (JI) values increase from 2 to
200 kN/m, as in high strength Al and Ti alloys and in
high strength steels, AE signals are produced as the
plastic zone ahead of the crack tip expands. AE ac-
tivity becomes significant with many high amplitude
emissions (> 60 dB) when the crack starts to grow. In
this stage, various mechanisms of microfracture are in-
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Fig. 30.14 Amplitude distribution of burst AE of A533B
steel for brittle (quenched) and ductile (tempered) condi-
tions (after [30.56])

volved. That is, in addition to those mentioned above,
low energy tear, alternating shear, and microvoid coa-
lescence are observed. Again, AE event counts increase
with the stress intensity factor according to (30.2) with
higher m values of 3–20 (Fig. 30.13) and a power law
amplitude distribution of (30.3) with b = 0.7–1.5. The
exponent m often increases as KI approaches the frac-
ture criticality. Transition in microfracture mechanisms
can be reflected more clearly by plotting cumulative
AE energy against JI (Fig. 30.15). Here, AE energy is
defined as the square of the peak amplitude, and JI
is given by (1− ν)K2

I /E, where E and ν are Young’s
modulus and Poisson’s ratio. The transition is sharp
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Fig. 30.15 Cumulative AE energy against JI for steels and
2024 Al (data from [30.17] and others)

Part
H

3
0
.4



1220 Part H Engineering Acoustics

when cleavage microcracks initiate as in SNCM8 and
as-quenched 4340 steels (4340-Q), but is also visible
when fibrous microfracture begins as in 2024Al, 0.5Mo,
A533B, and quenched and tempered (at 600 ◦C) 4340
(4340-6) steels [30.17, 18].

Higher fracture toughness materials typically fail
under plane stress conditions by microvoid coalescence
and shear mechanisms with some tearing. In these duc-
tile solids, the expansion of plastic zones ahead of
the crack tip initially generates AE, with AE activ-
ity reaching a maximum at general yield just like the
AE behavior of plastic deformation. This is the weak-
est among fracture-related AE with a peak amplitude
of < 40 dBAE. Beyond the general yield, stable crack
growth processes begin. It is often difficult to detect this
by AE, as the AE amplitude is still low (< 60 dBAE),
which reflects the high microscopic ductility of the
materials.

In moderate to high fracture toughness materials,
nonmetallic inclusions exert a substantial influence on
the AE behavior. The decohesion of MnS inclusions
emits moderately strong AE (a peak amplitude of
< 55 dBAE) from the early part of elastic loading and is
the primary source of strong emissions in ductile steels.
This is shown as AE in the nominally elastic loading
range in Fig. 30.11a [30.53]. Plastic flow and fracture
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Fig. 30.16 Fatigue crack growth rate (da/dN) and AE
(event) counts against Kmax for SUJ2 steel f = 20 Hz,
R = 0.1. : ΔK increasing test; : ΔK decreasing test;
solid line: da/dN = 1.35 × 10−10ΔK2.25 (after [30.57])

of inclusions (especially in Al alloys) also produce AE
events. Still, even the maximum AE intensity due to
inclusions is less than that from brittle fracture in low
toughness materials. This inclusion effect is strongest
in samples stressed in the short-transverse direction.
The total counts at the maximum load for the short-
transverse samples are 20–50 times that of longitudinal
samples of the same steel.

Fatigue leads to eventual fracture in a number
of engineering structures under repeated loading. AE
accompanies fatigue crack initiation and subsequent
growth, showing rapid rise just before final fracture.
As shown in Fig. 30.16, AE activity is low in Region
II (the Paris law) fatigue crack growth. As Region III
fatigue begins, AE counts rise [30.57]. Here, SUJ2 high-
strength steel was examined and da/dN matches the
established Paris law. The absence of AE in Region I
is natural, as even fatigue striations are not found at
these low Kmax levels. In [30.57], the crack was trans-
granular until Kmax exceeded 8 MPa

√
m (near Region

III). Above this level, the crack became intergranu-
lar and AE activity increased. Often, the detection of
AE precedes an optical observation of a fatigue crack,
but initial stages of fatigue are hard to detect because
of attendant noise under typical cyclic loading condi-
tions. In cyclically loaded structures, similar trends have
been found. For welded steel cruciform under cyclic
loading, da/dN and dU/dN (= integrated AE en-

log(dU/dN) = 6.09 log(ΔK)–6.65
log(da/dN) = 3.37 log(ΔK)–9.72

0.8 1.61.41.21

log(da /dN), log(dU/dN)

log(ΔK)

8

6

4

2

0

–2

–4

–6

–8

Fig. 30.17 Fatigue crack growth rate (da/dN) and AE en-
ergy per cycle (dU/dN) follow power laws against ΔK
(after [30.58])

Part
H

3
0
.4



Acoustic Emission 30.4 Sources of Emissions and Materials Behavior 1221

ergy per cycle) follow similar power laws against ΔK
(Fig. 30.17) [30.58].

Once a crack develops, different types of AE are
emitted as a function of loading cycle phase:

1. Near a peak tensile load, AE due to crack growth
and inclusion fracture is observed.

2. As the load is reduced to zero, crack closure noise
is detected as AE, i. e., AE from crack face fretting
and crushing of oxide particles.

3. As the load increases again, crack faces that had
stuck together separate, producing AE.

All three types of fatigue AE can be used in de-
tecting the presence of a fatigue crack. Peak load AE
contributes less than 10% of the total AE activity in
some cases, but more when high stress ranges are used.
Initially, AE events are detected over a wide range of
loading, but tend to concentrate at the maximum load
toward the end of fatigue loading. For the detection of
fatigue cracking, frictional AE due to fretting and crack
face separation are important. In addition, particles of
oxides and various corrosion products often form be-
tween the crack faces. Their subsequent fracture also
contributes to AE due to fatigue [30.1].

30.4.3 Fiber Fracture and Delamination of
Composite Materials

Most composite materials in current use are rein-
forced by glass and carbon fibers, which take various
forms, such as short random fibers, mats, woven rov-
ings, and continuous fibers. Aerospace composites use
higher modulus carbon and aramid fibers. Matrix ma-
terials include thermosetting plastics (polyester and
epoxy) and thermoplastics (polypropylene and polysul-
fone). These resin-matrix composites are difficult to
inspect with conventional nondestructive test methods
and AE has been used widely. Main sources of emis-
sions are fiber fracture, delamination (matrix cracks
between reinforcement layers), splitting (matrix cracks
parallel to fibers), and transverse matrix cracks [30.59].

When unidirectionally reinforced composites are
stressed, fiber fracture and matrix cracks contribute to
AE. Glass fibers generate high amplitude emissions
(> 70 dBAE) just prior to composite fracture (> 90%
of the fracture load). Carbon fibers start to fracture lo-
cally above 50% of the fracture load of the composites
and produce low amplitude (30–60 dBAE) emissions,
which reflects their smaller diameters and lower frac-
ture strain. The rate of emissions increases rapidly as
the final fracture load is approached, similarly to the

behavior of brittle solids. Near the final fracture, high
amplitude, long duration signals from splitting are also
observed. Delamination occurs when reinforcement
layers (called plies) have different fiber orientations or
notches. AE signals from delamination are the strongest
(50–130 dBAE peak amplitude) and have the longest
duration (0.1–10 ms) [30.59].

Most composite structures are fabricated with mul-
tiple plies with various combinations of reinforcement
orientations. When they are stressed, complex stress
patterns develop between reinforcing fibers and plies,
and copious emissions are generated, mainly from
the transverse matrix cracks and delamination. Dis-
crimination of individual AE signals relies on peak
amplitude, rise time, and duration. Damage indications
in glass fiber composites include high amplitude emis-
sions (> 70 dBAE), long duration signals, and emissions
during load hold periods. However, signal discrim-
ination is often difficult because of high rates of
emissions and strong signal attenuation. The use of
pattern recognition analysis is essential to differentiate
various sources [30.25, 39].

When a composite sustains damages, the Kaiser ef-
fect is no longer observed. FR is defined as a ratio of
the load, at which AE is observed upon reloading, to
the maximum prior load. FR is 1.0 or higher when the
composite is sound and decreases after severe loading.
As shown in Fig. 30.18, FR drops to 0.75 by stress-
ing to 80% of the fracture load in glass and carbon

Carbon fiber (UD)
Carbon fiber composite
Glass fiber composite

40 50 60 70 80 90 100

Felicity ratio

Stress/fracture strength (%)

1

0.9

0.8

0.7

Fig. 30.18 FR versus applied stress normalized by the frac-
ture load in glass and carbon fiber reinforced composite
vessels. Results for unidirectional carbon fiber composite
retains high FR (data from [30.59] and others)
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Cycle 2
Cycle 3

FR3 = 0.0172 PI + 0.5
(r2 = 0.342)

FR2 = 0.0219 PI + 0.381
(r2 = 0.914)
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Fig. 30.19 Burst pressure–felicity ratio correlation for
Kevlar COPV with different levels of impact damage (af-
ter [30.60])
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Fig. 30.20a,b Loading curve in deviatric stress and sound velocity
versus time for Westerly granite (a). Microcracks develop in A and
B with 30% drop in sound velocity. Fracture nucleus begins at C
and D. Final fracture at F. (b) Observed AE locations for B, D, and
F given in the bottom row (after [30.61])

fiber reinforced composites. Such damage depends on
the ply sequence and is less in simpler ply structures;
a unidirectional carbon fiber composite retains high fe-
licity ratios (> 0.9) up to 95% of the fracture load. The
Felicity effect is a valuable tool in assessing compos-
ite damages. An example is shown in Fig. 30.19, where
burst pressure-Felicity ratio correlation is given [30.60].
This applies to Kevlar-overwrapped pressure vessels,
which shows that this ratio can predict burst pressure
from AE testing at lower stress levels. While several
other AE parameters have been used for this purpose
since the earliest days of AE technology, the Felicity ef-
fect appears most promising. Yet a number of factors
influence FR ratio at burst, and more work is needed, as
is reviewed in [30.59].

30.4.4 Rock and Concrete Fracture

AE monitoring for mine safety is the oldest applica-
tion and started in the 1930s at the US Bureau of
Mines [30.2–6]. Rock fracture initiates throughout the
stressed region from uniformly distributed microcrack
nucleation. This stage corresponds to AE source loca-
tions spread over the entire sample. At close to peak
stress, faults nucleate and propagate by the interaction
of tensile microcracks, when a clustering of AE occurs
and leads to an expanding fracture nucleus with concen-
trated AE activity. This becomes the fracture process
zone of intense tensile cracking, followed by a region
of shear cracking [30.61]. These stages are shown in
Fig. 30.20, where microcracks develop in A and B (ac-
companied by 30% drop in sound velocity), the fracture
nucleus begins at C, and final fracture at F. Observed
AE locations for B, D, and F are indicated in the bottom
row. AE signal characteristics varied with crack devel-
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Fig. 30.21 AE signal characteristics, b values, decreased
with crack development (after [30.61])
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Fig. 30.22 AE behavior of concrete
under repeat-loading (after [30.3])

opment, which is revealed clearly in the decrease of b
values, as shown in Fig. 30.21 [30.61]. The b values
are above 1.5 until shear cracking develops and drop
suddenly when fracture is imminent. A similar trend
in b values was found in steel fracture, as noted in
Sect. 30.4.2.

Concrete fracture is similar to that of rock above.
Here, tensile microcracks initiate at large aggregates
that are mixed with a mortar matrix. At a later
stage of fracture, shear cracks become dominant from
the shearing of crack surfaces. This shearing/fretting
also contributes to AE during unloading in cyclically
stressed concrete. The AE behavior of concrete under
repeat loading is shown in Fig. 30.22 [30.3]. AE events
increase with load and even during unloading beyond
the fourth loading. The Felicity effect is found im-
mediately from the second loading and the load ratio
(this term is used in the concrete field in place of FR)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Calm ratio

Load ratio

Minor
damage

Intermediate
damage

Heavy
damage0.15

0.1

0.05

0

Fig. 30.23 Concrete damage classification using the load
and calm ratios of AE activity (after [30.33])

decreases to 0.3 at the seventh loading. This AE dur-
ing unloading is useful in concrete damage evaluation.
A calm ratio for a load cycle is defined as (unloading
AE activity)/(total AE activity of the particular load cy-
cle) [30.33]. In this case, it started to rise at the fourth
cycle (≈ 0.1) and reached a high value of 0.27 at the
seventh cycle. A low load ratio and a high calm ratio are
indicative of severe damage, while a high load ratio and
a low calm ratio correlate to minor damage, as shown
in Fig. 30.23 [30.33]. The frictional origin of AE during
unloading is manifested as low average frequency and
long duration of AE signals.

30.4.5 Other Emission Sources

Acoustic emission is observed under corrosion from hy-
drogen evolution, pitting, and exfoliation, but anodic
metal dissolution produces no AE. When materials are
subjected to stress corrosion or hydrogen environments,
they produce AE by a number of different mechanisms,
including film breakage, hydrogen-induced cracking,
inclusion and particle fracture at the crack tip, and
plastic deformation. The detection of hydrogen em-
brittlement is one of the early applications of AE
techniques. During crack propagation due to hydrogen
embrittlement, high amplitude emissions are observed
and can be distinguished easily from the active path cor-
rosion process. The latter generates only a small number
of low amplitude emissions. The crack growth rate for
stress corrosion cracking shows a three-stage behav-
ior with respect to the KI applied; that is, an initial
increase above a threshold KI, followed by a region
with a nearly constant rate and the final rise near the
critical KI. AE activities follow a similar trend [30.18,
62].
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An exceptional stress corrosion AE involving poly-
thionic acid and stainless steels should be noted. This
industrially important corrosion occurs via active path
dissolution, yet very strong AE bursts are emitted from
the ejection of individual grains (also called grain drop-
off) [30.62, 63]. Simultaneous monitoring of AE and
corrosion potential fluctuation helps clarify operative
corrosion mechanisms [30.63, 64].

AE monitoring of welding processes can locate
weld cracks and slag inclusions and find the depth
of weld penetration and mistracking. Expulsion and
lack of welds in spot-welding can also be detected.
These in-process monitoring methods may avoid elec-
trical welding noise by using guard sensors and gating
circuits synchronized to the welding steps. Evalu-
ation of welds has been the primary goal of AE
monitoring of welded structures, such as pressure ves-
sels, tanks, and highway bridges. Defective welds can

be located by AE in real time or in post-tests and
further evaluated by other nondestructive test meth-
ods [30.1].

Monitoring of various machining or metal removal
processes detects tool wear, tool fracture, and cutting
conditions. These are based on AE due to friction be-
tween tool and chips or a workpiece, abnormal signals
from chipped tools, plastic deformation, and fracture
of chips. This application is important with automated
manufacturing processes. Other important AE sources
in metals include: martensitic transformation, solidifi-
cation (hot cracking), oxidation (oxide cracking and
spalling). Other sources are gas and fluid leakage, mag-
netization (AE equivalent of the Barkhausen effect),
corona discharges in power transformers, and friction
and rubbing noise from rotating machinery. AE also is
used in detecting crack initiation during scratch testing
of thin films [30.1, 18].

30.5 Structural Integrity Monitoring

Modern AE technology grew from the need to in-
spect glass-fiber reinforced rocket motorcases in the
1960s [30.65]. It developed rapidly and was used ex-
tensively in the US space and defense industries. The
use of AE in the chemical industry followed. AE testing
procedures of fiber reinforced plastic vessels and piping
have been standardized [30.40, 41, 49, 59, 66].

30.5.1 Fiber-Reinforced Composite Pressure
Vessels, Tanks, and Piping

Test vessels and piping are typically pressurized to
110% of the maximum allowable working pressure
to locate substantial flaws. Using the zone location
method, AE activities of flaws within each zone are de-
tected and the zone represents the approximate position
of these flaws. Sensors are positioned to detect struc-
tural flaws at critical sections of the test vessel, i. e.,
high stress areas, geometrical discontinuities, nozzles,
and manways. Pressurization in AE testing of a ves-
sel proceeds in steps with pressure hold periods with
depressure increments. A test is terminated whenever
a rapid increase in AE activities indicates an impending
failure. Detected flaws are graded using several crite-
ria, including emissions during pressure hold periods,
FR, historic index (average signal strength of recent
events divided by that of all events), severity (average
signal strength of ten largest events), and high ampli-

tude events. Emissions during hold indicate continuing
permanent damage and a lack of structural integrity.
For in-service vessels, an FR criterion (when it is less
than 0.95) is an important measure of previous dam-
age. The historic index is a sensitive measure to detect
a sudden increase in signal strength. Large severity val-
ues result from delamination, adhesive bond failure,
and crack growth. High amplitude events indicate struc-
tural (glass-fiber) damages, especially in new vessels.
AE testing of these tanks and vessels has been highly
successful over the last three decades.

A recent technical challenge to AE testing is
the inspection of small, but extremely high-pressure
(100 MPa hydrogen) cylinders. The AE-based ASME
Code Case has now been developed to provide the
accept-or-reject criteria using the curvatures of cumula-
tive events and energy curves [30.67–69]. Another prob-
lem for composite tanks is the inspection of liquefied
natural gas (LNG)/compressed natural gas (CNG) tanks
as well as self contained breathing apparatus (SCBA) air
tanks. Technically, AE can be used for certain. However,
testing these tanks at low cost to assure extended use life
is yet to be resolved. One other challenge is the long-
term uses of composite tanks and how to assure/estimate
their remaining life. Figure 30.24 shows the stress rup-
ture life of three types of composite strands [30.70–73].
The poor stress rupture property of glass fibers is un-
derstandable, but even aramid (Kevlar) fiber loses 1/4
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Fig. 30.24 Stress rupture data for three types of fiber com-
posite strands (data from [30.70])

its strength in a few hundred hours. Recent stress rup-
ture data for Kevlar-overwrapped pressure vessels show
comparable behavior to that of Kevlar strands [30.70–
72]. While AS-4 carbon fiber strands are comparable
to the first generation T-50S, current generation (T-
1000) carbon fiber exhibits vast improvements with the
apparent absence of stress rupture behavior to almost
100 000 h [30.73]. The Felicity effect is the probable
basis for the AE method for remaining life estimation.
Research continues [30.59], but more work is needed.

30.5.2 Metal Pressure Vessels, Tanks,
and Piping

Acoustic emission testing of metallic tanks and pressure
vessels is conducted during pressurization. The tanks
and vessels are pressurized following applicable code
specifications. The maximum pressure is typically up to
110% of the operating pressure. Sources of emissions
are usually crack growth, yielding, corrosion effects
(cracking or spalling of corrosion product, local yield-
ing of thinned section), stress corrosion cracking and
embrittlement. The most likely locations of flaws are
at various weldments. When metals are ductile, AE ac-
tivities are low and AE test results should be evaluated
carefully. Once the metals are embrittled by the envi-
ronment or at low temperatures, even early stages of
stressing activate AE sources. In fact, AE is the best
method for detecting hydrogen-induced cracking and
stress corrosion cracking [30.1].

Highway gas-trailer tubes and chemical and petro-
chemical vessels are monitored with AE periodically
without the vessels being emptied, thus minimizing the
cost of testing. According to current industrial prac-
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Fig. 30.25 Tank bottom thickness data (in color) and ac-
tive AE clusters (a–e). Two AE clusters at a and b matched
well with thinned spots in the third quadrant. No AE was
detected from a spot between Ch. 1 and 8 at 340 ◦C (af-
ter [30.74])

tice, the located flaws are usually confirmed by other
nondestructive test methods. Increasingly, however, AE
testing alone is used to evaluate tanks and pressure ves-
sels. For certain classes of metallic vessels, the use
of AE examination alone can be used to satisfy code-
mandated inspection requirements in lieu of ultrasonic
testing or radiography. After AE testing indicates the
locations of active AE sources, these are graded accord-
ing to criteria similar to those for composite vessels.
These provide real-time indications of defective areas of
the pressure vessel being tested and prevent catastrophic
failure of the vessel. The identified defective areas are
then inspected using other test methods. Acoustic emis-
sion testing is applied on various types of vessels,
including ammonia spheres and tanks, hydroformer re-
actors, and catalytic cracking units [30.1, 75].

In condition monitoring of the bottom plates of
aged petroleum tanks, experience with standard AE test
methods was reviewed [30.76]. These often encounter
difficult conditions and have poor location accuracy.
Lamb wave-based methods can bring the needed im-
provements, accurately positioning corroded sections.
Correlations of active AE areas with thinned sections
are shown in Fig. 30.25 [30.74].

30.5.3 Aerospace

The first application of AE testing was to verify the
structural integrity of filament-wound Polaris rocket
motorcases in 1961 [30.65]. Hydrostatic testing of
rocket motorcases was instrumented using accelerom-
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eters, audio recording, and sound analysis equipment.
Crack initiation and propagation were detected prior to
catastrophic failure. Later, burst pressure was success-
fully predicted based on AE data during proof testing.
The composite rocket motorcases are still successfully
inspected with the use of three (or four) pressurization
cycles. The first cycle is to find leaks at a low pres-
sure. The second goes to 100% (or 80%) of the mean
expected operating pressure, followed by the third to
the 80% level. The AE behavior during the third cycle
is used to examine the Felicity effect and is the deter-
mining factor in the evaluation of the rocket motorcase
integrity.

AE testing is as yet unable to monitor the integrity
of aircraft structures in flight because of the substan-
tial noise generated from structures that are joined
by numerous fasteners and from engines. For specific
components, however, AE can detect the presence of
cracks and incipient fracture. For surveillance of struc-
tural and fatigue damage of aircraft components during
limit load and fatigue testing, AE has demonstrated its
utility. All significant cracks were located during full-
scale fatigue testing, including those emanating from
bolt holes amid a wide range of spurious AE sources.
AE in curved fuselage panes of honeycomb sandwich
composites was monitored, showing the evolution of
notches and a good correlation with accumulated AE.
Strong AE from fiber damage was less than 5% of
the total AE events recorded [30.77]. AE indications
of damage severity vary depending on the particular
component, but include load hold emissions, FR, AE
event rates, and high amplitude emissions. In structural
tests, wave propagation characteristics and the nature
of crack-related (crack growth and crack face fretting)
sources are also essential in evaluating AE observa-
tions. Other developments include fiber sensors capable
of being integrated into composite structures and ac-
tive surveillance schemes using AE sensing for damage
detection [30.78–80].

30.5.4 Geological Structures

AE monitoring has been studied to promote mine safety
by detecting incipient rock bursts and gas outbursts and
by estimating the areas of stress concentration ahead of
mining regions [30.2–6]. For this purpose many AE sen-
sors are placed in and around mine tunnels and monitor
low frequency (below several kHz) AE signals. A min-
ing operation itself can be a stimulus, as underground
rocks have numerous preexisting flaws and are under
geological pressure. Drilling exploratory holes ahead

of a mining region can also activate the areas of high
local stresses. Multichannel AE sensing has also been
applied to the evaluation of hydrofracturing in geother-
mal wells [30.81]. The stability of underground storage
caverns is another area of AE applications [30.5].

By using the Kaiser effect, underground stresses
may be estimated. Compressive stresses are applied on
a sample bored out from underground. When the previ-
ously existing stress is exceeded, AE activities increase
and the preexisting stress can be estimated. Since a high
compressive pressure always exists, the directionality of
stresses must be taken into account. However, loading
methods and relaxation after coring may have effects
on the results [30.82].

AE techniques have been applied to monitoring
the stability of highway slopes, tunnels, and landslide-
prone areas [30.2]. AE measurements utilize waveg-
uides that are driven into the ground. By mapping high
AE activity areas, potential instability regions can be
predicted. Concrete with steel reinforcement is another
material used widely in civil engineering structures. Be-
cause of the large size of concrete structures and high
attenuation rates of AE signals in concrete, suitable AE
techniques for structural integrity monitoring are yet to
be perfected [30.3–6].

30.5.5 Bridges

AE monitoring of thousands of steel bridges has been
conducted, providing operators ample warning of po-
tential disasters [30.83, 84]. Most test sites had no
fatigue indications, but a dozen or so had high AE ac-
tivity in a 10-year period. AE monitoring is applied
to selected locations, not globally to large structures.
These include: hanger connections, link pin connection,
copes and stringers, and stiffener to weld connection.
Loading is supplied by regular rail traffic. Other moni-
toring efforts are summarized in [30.85].

A recent example of large bridge monitoring used
600+AE channels to monitor about 400 critical sites on
the San Francisco-Oakland Bay Bridge [30.86]. Remote
monitoring was implemented and success was achieved.
The system will be transferred to the replacement bridge
opened in 2013 and AE monitoring will be continued.

Many other new and old AE applications to struc-
tural integrity evaluation exist, including off-shore oil
rigs, on-board rocket and spacecraft, continuous moni-
toring of rocket motorcases, cable-stayed bridges, wind
turbine blades, power plants, refinery, factory installa-
tions, and gas tanks. Details are usually inaccessible, but
some references are listed in [30.87–90].
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CPT (current procedural

terminology) 885
crack growth 1219
– rate 1223
crack velocity 1212
cricket 825
– sound production 826
critical
– band 783
– distance-reverberation distance

363
– frequency 412, 978
critical angle 162, 165, 167, 178
– of shadow zone formation 141
cross synthesis 756
cross-correlation 527, 534, 1183
cross-fingering 651
cross-ply composite test 1210
cross-spectral density matrix

(CSDM) 188
cross-synthesizing vocoder 758
crustacean 834
crystalline elastic constant 227
CSDM (cross-spectral-density

matrix) 190
cubic nonlinearity 989
cultivation effects 130
cumulative distribution function

(CDF) 528
cumulative normal distribution

(CND) 528
current procedural terminology

(CPT) 885
cut-off-frequency 651
cylindrical coupler 1074
cylindrical pipe
– closed resonance 636
– tube impedance 636
cylindrical spreading 119
cylindrical wave
– fluid velocity 84
– large distance 84
cymbals 689

D

D’Alembert’s solution 956
DAC (digital-to-analog converter)

748, 805
damage location 1215
damped sound 500
damping
– Coulomb 985
– hysteretic 987
– localized 981
– matrix 948
– modal projection 980
– proportional 981
– weak 981
Darcy mode 48
data processing (DP) 1020
day–night average sound level (DNL)

1040, 1045
decibel (dB) 209
deconvolution 542
deduction of ground impedance 128
deep
– scattering layer (DSL) 168
– sound channel (DSC) 157
– venous thrombosis (DVT) 917
degree of freedom (DOF) 942
Deiter’s cell 463, 464
delamination 1221
– of composite 1215
delay-and-sum technique 1184
denoising 1182
density
– Gaussian 528
depth gain compensation (DGC)

899
dereverberation 1182, 1184
detection threshold (DT) 173
deterministic (sines) components

754
deterministic system 301
detuning parameter 992
DF (directivity factor) 119
DFT (discrete Fourier transform)

754, 764
DI (directivity index) 119, 363
diaphragm, impedance 837
difference limen (DL) 494
diffraction 102, 110, 122, 223
– by a rigid wedge 121
– plane wave 109
– problem 102
– small-angle 110
– special function 108
– term 105
– thin-screen 111

diffraction-assisted rough ground
effect 130

diffuse sound field 1098
Digital Audio Effects (DAFX) 775
digital audio tape (DAT) 854
digital recording 582
– aliasing 582
– dynamic range 582
– files 583
– Nyquist frequency 582
– resolution 582
– sampling rate 582
– sampling system 584
– sound 583
– sound file 583
– windowing functions 583
digital signal processing (DSP)

758, 788, 1009
digital speckle interferometry (DSI)

1175
digital speckle photography (DSP)

1142, 1158
digital speckle-pattern interferometry

(DSPI) 1141, 1146
DigitalDoo 772
digital-to-analog converter (DAC)

554, 748, 805
digitized data 553
diphones 751
Dirac delta function 523, 944, 956
direct current (DC) 522, 1008
directed reflection sequence (DRS)

356
direction of arrival (DOA) 538,

1183
directional sensitivity 445, 447
directional tone colour 633
directionality
– violin 632
directionality pattern 166
directivity 1013, 1034
– factor (DF) 119
– index (DI) 119, 363
– pattern 164, 165, 1184
discharge rate 457, 458
discontinuities 105
– diffraction term 105
discrete
– Fourier transform (DFT) 555,

754, 764
– source location 1215
– spectrum 187
– system 947
disjoint allocation, principle of 509
dispersion equation 961, 962, 976
dispersion relation 287, 290, 533
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dispersive system 532
dissipation 63, 257
distortion tones 466
DLS (downloadable sounds) 748,

770
DOF (degree of freedom) 942
dolphin calls 208
dominance, pitch 498
Doppler
– resolution 195
– sensitivity 200
– shift 180
double diffraction 123
doubling 305
downloadable sounds (DLS) 748,

770
downsampling 750
dramatic and lyric soprano 710
driving-point admittance 950, 952
DRS (directed reflection sequence)

356
drum sticks 679
drums
– air loading 677
– circcular membrane modes 676
– excitation stick 678
– radiation 682
dry air standard 1087
DSC (deep sound channel) 157
DSL (deep scattering layer) 168
DSP (digital signal processing)

758, 788
DSP (digital speckle photography)

1142
DSPI (digital speckle-pattern

interferometry) 1141
dual-sphere array 1181
duct 93
– cylindrical 94
– guided mode 93
– low-frequency model 94
– sound attenuation 95
Duffing equation 989, 990
dulcimer 595
duration discrimination 492
DVT (deep venous thrombosis) 917
dynamic
– capability 1103
– microphone 794
– range 450, 458
dynamical model 544

E

eardrum 445, 446, 448, 449
early decay time (EDT) 323, 394

EARP (equal-amplitude
random-phase) 552

earthquakes
– P-waves and N-waves 2
echo 404
echoe suppression 501
echogram 205
echo-integration 204
echo-location
– bats 832
echolocation clicks 208
echo-sounder 196
ECMUS (European Committee for

Medical Ultrasound Safety) 933
edge tones 671
Edison, Thomas 16
EDT (early decay time) 323, 394
EDV (end diastolic velocity) 914
EEG (electroencephalography) 368
effect of loudness on glottal source

713
effect of subglottal pressure on

fundamental frequency 709
effective
– admittance 126
– area 449
– cross sectional area 446
– perceived noise level (EPNL)

1029
efferent 452
– synapse 465
efficiency
– radiation 1001, 1027
– static 1025
EFSUMB (European Federation of

Societies for Ultrasound in
Medicine and Biology) 933

eigen-decomposition processor 538
eigen-decomposition techniques

538
eigenfrequency 949
eigenmode 949, 954
– string vibration 591
eigenrays 203
eikonal approximation 100
eikonal equation 177
elastic
– energy 945, 990
– solid 37
– wave 64
elasticity effects on ground

impedance 131
elastodynamic displacement 1211
electric circuit analogues
– acoustic transmission line 648
– lumped components 647

electrical self-noise 1104
electrical transfer impedance 1065
electroacoustic power efficiency

165
electrocardiograph (ECG) 910
electroencephalography (EEG) 368
electroglottogram 711
electromotility 463, 464
electronic music 25
electronic speckle-pattern

interferometry (ESPI) 1140,
1146, 1175

electrooptic holography (EOH)
1141

elephant 822
embedded
– data 303
– signal 542
embedding procedure 301
embouchure
– brass instrument 652
emission 1002
– criteria for noise 1019
– noise 1001
– noise emission 1010
– noise standards 1018
– sound pressure level 1017, 1112
emphasis 740
empirical orthogonal function (EOF)

202
enclosures 417
end diastolic velocity (EDV) 914
endolymph 450, 461, 463
endolymphatic potential 460, 461
energy
– conservation 62
– equation 32
– strain 37
energy dissipation 63
– rate 63
energy spectral density 526, 527
– Fourier transform 527
engine 252
– standing-wave 252
– Stirling 248
– thermoacoustic 248
– traveling-wave 254
engineered rough surface effects

151
engineering
– accuracy 1103
– acoustics 5
– structure, catastrophic failure of

1218
entropy 41, 561
– mode 43
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envelope 454, 752
– generator 753
– of signal 531
environmental label 1020
EOF (empirical orthogonal function)

202
EOH (electro-optic holography)

1141
epilaryngeal tube 719
equal-amplitude random-phase

(EARP) 552
equalization method 200
equal-loudness contour 484
equation
– linear acoustic 39
– of state (pressure, density, entropy)

267
equations of continuum mechanics

32
equivalent
– circuit 165
– rectangular bandwidth (ERB) 480
– sound level 715
– source method 1187
errors 1120
ESPI (electronic speckle-pattern

interferometry) 1140
Euler equation
– see continuity equation 248
Euler formula 523
Euler’s equation of motion 1099,

1104
Euler’s identity 754
Eulerian perspective 253
European Commission (EC) 118
European Committee for

Medical Ultrasound Safety
(ECMUS) 933

European Computer Manufacturers’
Association (ECMA) 1034

European Federation of Societies for
Ultrasound in Medicine and
Biology (EFSUMB) 933

European standards (EN) 1019
European Union (EU) 1001
– 2000/14/EC directive 1021
– flower logo 1020, 1021
– green paper 1049
evanescent wave 1120, 1191
excess attenuation (EA) 122
exchange rate 1042
excitation pattern 480
– model 494
excitation strength 712
exclusive or (XOR) 559
expansion 77

experiments in musical intelligence
(EMI) 775

exponential time weighting 1006
expressive power 740
extended reaction 127
external and middle ears 445
external ear 445
extraneous noise 1103

F

face-centered cubic (FCC) 244
face-to-face 1099
fan
– axial flow 1023
– cross-flow 1024
– free delivery 1024
– performance curve 1024
– shutoff 1024
fast field program (FFP) 118, 176,

177
– for layered air–ground systems

(FFLAGS) 133
fast Fourier transform (FFT) 24,

177, 234, 536, 584, 754, 807, 1009,
1099, 1167, 1211

fatigue 1220
FDA (Food and Drug

Administration) 932
FEA (finite element analysis) 627,

1172
– bells 693
– finite-element correlation 1173
– guitar 628
– violin 625, 627
Federal Aviation Administration

(FAA) 1046
– 14CFR part 36 1030
Federal Communications

Commission (FCC) 804
Federal Energy Regulatory

Commission (FERC) 1047
Federal Highway Administration

(FHWA) 1047
Felicity ratio (FR) 1216, 1221
FEM (finite element method of

analysis) 1172
FERC (Federal Energy Regulatory

Commission) 1047
FFLAGS (fast field program

for layered air–ground systems)
133

FFP (fast field program) 118, 176,
177

FFT (fast Fourier transform) 177,
332, 536, 538, 754, 764, 807, 1167

fiber fracture 1221
fiber-reinforced composite vessel

1210
fibrous microfracture 1220
field indicator 1017
field-effect transistor (FET) 802
figure of merit (FOM) 175
film breakage 1223
filter
– acoustic 96
– causality 558
– gain 531
– recursive 558
– stability 558
– vector 1186
filtering 751
final lengthening
– catalexis 735
finite averaging time 1104
finite element analysis (FEA) 627,

1172, 1212
– bells 693
– finite-element correlation 1173
– guitar 628
– violin 625, 627
finite element method of analysis

(FEM) 1172
finite impulse response (FIR) 542,

558
finite-difference error 1100
finite-difference time-domain

(FDTD) 138, 150
finite-element calculation 1190
fish 834, 835
– hearing 834
– school 205
fisheries 203
fission, sequences of sounds 506
FLAUS (Latin American Federation

of Ultrasound in Medicine and
Biology) 933

flaw detection 534
flow
– field 1159
– glottogram 711
– resistance 1036
– resistivity 127
flute 636, 672
– model 767
FM (frequency modulation) 748,

761, 804
FOF (Formes d’onde formantiques)

748, 762, 763
foliage attenuation 137
Food and Drug Administration

(FDA) 932
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formant 467, 716, 761, 762
– birdsong 831
– level 717
– undershoot 736
– vocal 831
Formes d’onde formantiques (FOFs)

748, 762, 763
forward masking 481, 490
Fourier series 521, 555, 578
– fundamental frequency 555
Fourier synthesis 753
Fourier theorem 569, 578
– harmonic partials 569
Fourier transform 50, 523, 524,

555, 556, 581, 757, 1009
– delta-function 581
– derivative 525
– discrete 555, 583
– fast (FFT) 584
– Gaussian 581
– integral 525
– interpolation 555
– modulated sinewave 581
– rectangular pulse 581
– z-transform 556
fracture process zone 1219
free field 406
– conditions 1095
free vibration 943
free-field Green’s function 1194
frequency
– analysis 450, 453, 457, 468
– difference limen (DLF) 494
– discrimination 494
– domain formulation 1099
– line estimator 538
– modulation (FM) 198, 505, 748,

761, 782, 804, 845
– modulation detection limen

(FMDL) 494
– scaling in animals 821, 822
– selectivity 477
– sensitivity 454
– shift keying (FSK) 199, 854
frequency response function (FRF)
– Nyquist plot 1167
frequency weighting
– A-weighting 1006, 1007
– C-weighting 1006, 1007
– Z-weighting 1007
frequency-wavenumber

representation 181
Fresnel
– integral 128
– number 121, 1032
– zone 203

FRF (frequency response function)
– Nyquist plot 1167
friction 986
frog
– auditory system 829
Frost algorithm 1186
FSK (frequency shift keying) 199,

854
Fubini solution 274
full-field method 1190, 1196
function
– special 108
fundamental frequency 520, 716
– role in perceptual grouping 502
fusion, sequences of sounds 506
fuzzystructures 998

G

GA (genetic algorithm) 378
gain
– of amplifier 456
– thermoacoustic 250
Galerkin method 962, 1197
gap detection 489
gases
– properties of 251
Gaussian 524
– density 528
– distribution 546
– function 524
– noise 551
– pulse 530
– turbulence 148
Gauss–Markov
– model 544
– representation 545
general MIDI 769
generalized
– coordinates 955
– cross-correlation (GCC) 1183
– internal source density method

(GISD) 1197
genetic algorithm (GA) 378
geometric spreading 549
– loss 162
geometrical acoustics (GA) 103
geo-phone 1213
German Institute for Quality

Assurance and Certification (RAL)
1020

Gestalt psychology 508
gesturalist 739
gestures 739
GigaPop Project 773
Glaser design 1214

global positioning system (GPS)
854

glottal waveform 712
Goldberg number 277
gongs 690
– pitch glides 691
goniometer system 239
good continuation, principle of 508
gradient of the mean square pressure

1096
gradient of the phase 1096
grain drop-off 1224
Gram–Schmidt
– method 1198
– procedure 544
granular synthesis 764
Green’s function 89, 535, 944, 1118
– time-reversed 534
ground
– attenuation, weakly refracting

conditions 130
– effect 124
– elasticity effects 134
– impedance 127
– impedance and admittance 125
– wave 125
group
– delay 532
– velocity 178, 179, 961
– velocity versus phase velocity

178
growth of masking 482
guitar
– plate-cavity coupling 626
– rose-hole 624, 626
gyroscopic term 948

H

habitat–diffusion border 296
hair bundle motility 463
hair cells 452, 454, 457
hair, sensory 823, 825
hair-bundle movements 465
Hamilton’s principle 44, 948, 960,

963
hand stopping 646, 675
Hankel function 81
harmonic 90
– balance 647, 659
– equations 541
– modes 591
– motion 945
– series 753
– signal 1094
– spectrum 762
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Subject Index 1271

harmonic balance
– method 988
harmonics 577
head shadow 500
headset, noise-canceling 1027
hearing 586
– animal 821, 829, 839
– damage 1041
– directional 830
– frequency response 830
– ISO standards 586
– level (HL) 477
– out partials 483
– phons 586
– sensitivity 586
– vertebrates 829
hearing threshold 784
– level (HTL) 477
heat conduction correction 1070
heating, ventilating, and air

conditioning (HVAC) 5, 419
helicotrema (H) 451, 457
Helmholtz equation 176
Helmholtz equation least squares

(HELS) 1198
Helmholtz modes
– struck 594
– woodwind 660
Helmholtz resonance 951
– brass mouthpieces 652
Helmholtz resonator 97, 408, 756
– bass reflex cabinet 616
– coupling to walls 626
– guitar 626
– resonant frequency 626
– stringed instruments 616
– violin 632
Helmholtz wave equation 1199
Helmholtz waves
– bowed 592, 593
– kinks 592
– plucked 592
– spectra 592
– strings 591
hemi-anechoic room 1011
hemispheric specialization in

listening 375
high resolution beamforming 190
high strength steel 1220
high-angle PE 182
high-fidelity (HI-FI) 638
Hilbert transform 530
hologram 1117, 1148
holographic interferometry 1140,

1143
– double-exposure 1144

– double-pulsed 1144
– real-time 1145
– time-average 1145
holography 605
– cymbals 690
– guitar 620
– violin 630
homogeneous medium 549
Hopf–Cole transformation 277
horizontal level difference 136
horn 673
– equation 643
– impedance matrix 838
horn shapes 644
– Bessel 644
– conical 641
– cylindrical 636
– exponential 644
– flared 646
– hybrid 641
– perturbation models 647
hot cracking 1224
Housing and Urban Development

(HUD) 1047
Hsu–Nielsen source 1214
Huffman sequence 492
human speech 306
human voice 3
humidity 120
HVAC (heating, ventilating, and air

conditioning) 419
hybrid tubes 642
hydraulic radius 250
hydrogen embrittlement 1223
hydrogen-induced cracking 1223,

1225
hydrophone 163, 165, 166, 1213
– array 546
hydrostatic testing 1226
Hyper and Hypo (H & H) theory
– adaptive organization of speech

739
hyperspeech 737
hypospeech 738

I

IACC (interaural cross-correlation
coefficient) 326

IACC (magnitude of the IACF) 367
IACF (interaural cross-correlation

function) 367, 368, 373
IAD (interaural amplitude difference)

786
ICAO (International Civil Aviation

Organization) 1029

ideal
– compressible fluid 36
– gas 36
identification and ranking of noise

sources 1108
identity analysis/resynthesis 760
IDFT (inverse discrete Fourier

transform) 754
IEC standard 1098, 1104
IFFT (inverse fast Fourier transform)

185
IHC (inner hair cells) 450–452,

457, 459, 460
IIC (impact insulation class) 413
IL (insertion loss) 121
IM (intermodulation) 791
immission 1002
impact insulation class (IIC) 413
impedance 64, 71
– acoustic 64, 65, 67, 219, 835,

837, 1036
– cavity 837
– characteristic 64
– cylindrical pipe 639
– discontinuity 128
– mechanical 64, 835, 837
– radiation 65, 71
– transformation 448
impedance matrix 829, 838
– horns 838
– tube 837, 838
impulse response 532, 533, 543,

944, 956
– function (IRF) 1170
impulse solution 106
IMT (intima-media thickness) 889
increment detection 488
incus 445, 449
inertance 249
infinite impulse response (IIR) 558,

758
infinite-duration signals 526
information
– content 562
– theory 561
– transfer ratio 563
infrasound 2
inharmonic spectrum 762
inharmonicity 597, 963
inhomogeneous moving media

100
initial time delay gap (ITDG) 326
– between the direct sound and the

first reflection 367
inner hair cells (IHC) 450–452
innovation 544
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innovations covariance 545
innovations model 548
input impedance 1064
– brass instrument 646
– cylindrical pipe 638
insects 824, 825
– sound production 824
insertion loss (IL) 121
– barrier 1033
inspection method 1210
instantaneous sound intensity 1094,

1097
Institute of Noise Control

Engineering (INCE/USA) 1050
integral equations
– for surface field 92
– in acoustics 91
integral identity
– contour 57
intensity
– discrimination 488
– plane wave 62
interaural
– amplitude difference (IAD) 786
– cross-correlation coefficient

(IACC) 326
– cross-correlation function (IACF)

367, 368, 373
– differences 501
– time difference (ITD) 505, 786
– timing cues 468
interface 43
interference 220, 221
– pattern 448
interferogram 1148
intermediate frequency (IF) 234,

803
intermodulation (IM) 791
internal
– damping 1022
– gravity wave (IW) 160
– resonance 992
International Civil Aviation

Organization (ICAO) 131, 1029
– Annex 16 1030
International Computer Music

Conference (ICMC) 775
International Electrotechnical

Commission (IEC) 1050, 1098
International Institute of Noise

Control Engineering (I-INCE)
1028, 1048

– noise legislation 1042
– workplace noise 1041
International Modal Analysis

Conference (MAC) 1167

International Organization for
Standardization (ISO) 123, 322,
1013

– 11200 series 1018
– 3740 series 1015
internet protocol (IP) 771
interpolation 750
intersecting wall 966
intersymbol interference (ISI) 199
intima-media thickness (IMT) 889
intravenous pyelogram (IVP) 921
invariance issue 728
inverse
– discrete Fourier transform (IDFT)

754
– fast Fourier transform (IFFT) 185
– Fourier transform 550, 1183
– problems 1115
inversion related shadow zone 139
IRF (impulse response function)

1170
ISI (intersymbol interference) 199
ISO standards for sound power

determination 1110
isotropic solid 38
– elastic 40
ITD (interaural time difference) 786
IVP (intravenous pyelogram) 921

J

JND (just noticeable difference)
784

Johnson noise 551
joint
– probability density 529
– signal/parameter estimation 547
jump phenomenon 991
just noticeable difference (JND)

784

K

Kaiser effect 1217, 1218, 1226
Kalman filter 543, 544, 547
– steady-state 548
Kalman gain 545
KDP (potassium dihydrogen

phosphate) 21
Kelvin functions 965
Kettle drums 679
kinetic energy 44, 945
– density 44
Kirchhoff–Helmholtz integral 91,

1188
– equation 91, 1118

KLOrk (Kalamazoo Laptop
Orchestra) 773

Koenig, Rudolph 17
Kramers–Krönig relation 56
Kronecker delta 522
krypton bubble 301
kurtosis 530

L

L2Ork (The Linux Laptop Orchestra
of Virginia Tech) 773

laboratory speech 728
laboratory standard microphone

1066
labyrinth 446
Lagrange equations 948
Lagrange shape function 1195
Lagrangian perspective 253
Lamb wave 1213
land mine detection
– acoustical methods 232
Laplace transform 943, 947, 956
large amplitude effects
– brass 664
– Helmholtz motion (wind) 660
– shock waves 666
– woodwind 660, 664
large-volume coupler 1075
laser Doppler
– anemometry (LDA) 1141
– vibrometer (LDV) 232
– vibrometry (LDV) 1141
laser speckle 1158
laser-induced bubble 300
late lateral strength (LG) 326
lateral energy fraction (LEF) 325
lateral olivocochlear system (LOC)

452
Latin American Federation of

Ultrasound in Medicine and
Biology (FLAUS) 933

layer resonance 133
LDA (laser Doppler anemometry)

1141
LDV (laser Doppler vibrometry)

1141
lead lanthanum zirconate titanate

(PLZT) 21
lead pipe 653
lead zirconate titanate (PZT) 21,

887
leaf-shape concert hall 380
League of Electronic Musical Urban

Robots (LEMUR) 773
learned Green’s function 536
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Subject Index 1273

least-square method 1184
LEED acoustics criteria 440
LEF (lateral energy fraction) 325
Legendre polynomial 73
LEV (listener envelopment) 325
level, effect on pitch 496
Levinson recursion 537
Liljencrants–Fant (LF) model 712
line array 1184
line source
– finite line source 119
linear
– acoustics 29
– constraint minimum variance

(LCMV) 1184–1186
– interpolation 750
– predictive coding (LPC) 759
– predictor 537
– processor 532
linearization process 39
linearized equation
– ideal fluid 40
– viscous fluid 41
lip vibrations
– artificial lips 664
– modelling 664
liquefied natural gas (LNG) 1224
liquid motion 297
listener envelopment (LEV) 325
listener-oriented school 739
listening level (LL) 369, 395
lithotripsy 534
LL (binaural listening level) 367
LL (listening level) 369, 395
Lloyd mirror 161
load ratio 1223
LOC (lateral olivocochlear system)

452
local climate statistics 120
local reaction 125
localization 445
– of sound 500
location
– bats 833
– role in perceptual grouping 505
locus equations 729
logarithmic sound speed profile 145
LOL (Laptop Orchestra of Louisiana)

773
longitudinal vibrations of bars 960
long-play vinyl record (LP) 21
long-range detection 158
long-term-average spectra (LTAS)

715
LORkAS (Laptop Orchestra of

Arizona State) 773

loss
– transmission 1039
loudness 459, 484
– growth 456
– meter 486
– model 486
– perceptual correlates 720
– recruitment 456
– scaling 485
low
– energy tear 1219
– frequency ground impedance 135
– frequency sensor 1213
– pitch 496
– toughness material 1219
low-pass
– filter 531
– resonant filter 532
LP (long-play vinyl record) 21
LPC (linear predictive coding) 759
– vocoder 760
LTAS (long-term-average spectra)

715
Lüders deformation 1218
lung
– reserve volume 705
– residual volume 705
– total capacity 705
– vital capacity 705
Lyapunov exponent 302

M

MAA (minimum audible angle)
846

machine-gun timing 734
machinery
– noise specifications 1043
MAF (minimum audible field) 476
magnetic resonance imaging (MRI)

722
magnetoencephalogram (MEG) 377
magnetoencephalography (MEG)

369
magnitude
– estimation 485
– of the IACF (IACC) 367
– production 485
main lobe 189
main response axis (MRA) 189
malleus 445, 449
MAP (minimum audible pressure)

476
marginal probability density 529
marimba 683, 685, 769
marine animal 203

marine mammal 206
– noise level 207
masking 419, 477
– level difference (MLD) 505
– pattern 480
– spectral 786
– temporal 786
mass
– equation 32
– law 414
– matrix 948
– modal 964
MASU (Mediterranean and African

Society of Ultrasound) 933
matched field processing (MFP)

190, 193
matched filtering 534
matched-field processor (MFP) 548
matched-filter concept 534
matching function 549
matching vector 550
material
– sound absorptive 1035
– sound-absorptive 1024, 1031,

1039
matrix crack 1221
matrix surround 783
maximum
– bubble radius 300
– entropy method (MEM) 537
– flow declination rate (MFDR) 711
– length sequence (MLS) 558
maximum-likelihood method (MLM)

190
MBP (model-based processor) 547
MCR (multi channel reverberation)

365
MDOF (multiple degree of freedom)

1170
mean square error (MSE) 759
measured field 548
measurement 1123
– filter 544
– noise 1191
– principles 1098
measurement surface 1015
– cylindrical 1016
– rectangular 1016
mechanical index (MI) 932
medial olivocochlear system (MOC)

452
medical
– acoustics 6
– imaging 533
– ultrasonography 233
– ultrasound 6
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Mediterranean and African Society of
Ultrasound (MASU) 933

MEG (magnetoencephalogram)
377

MEG (magnetoencephalography)
369

membrane 953
– capacitance 464
– tension 1190
metal
– fracture 1215
– perforated 1023
– pressure vessel 1225
meteorologically-neutral 141
MFDR (maximum flow declination

rate) 711–716
MFP (matched field processing)

190, 549
– approach 550
MI (mechanical index) 932
microcrack 1222
– nucleation 1222
microelectromechanical system

(MEMS) 795, 1176
microfracture 1219
micromechanical models 457
microphone 1179
– acoustic transfer impedance 1084
– coupler 1085
– frequency dependence 1077
– frequency response measurement

1083
– position 1016
microphone array
– plane 1181
– spherical 1181
microphone calibration 1084
– barometric pressure correction

1075
– capillary tube correction 1072
– comparison method 1079
– comparison method with a

calibrator 1080
– cylindrical coupler 1074
– equivalent volume 1071
– free-field calibration 1079
– heat conduction correction 1069
– interchange microphone method

1079
– temperature correction 1077
– wave-motion correction 1074
microphone sensitivity
– correction 1078
– level 1076
– temperature correction 1076
microvoid coalescence 1219

mid/side (M/S) 809
middle ear 448, 449
– bones 445
– ossicles 452
MIDI (musical instrument digital

interface) 748, 769
MIMO (multiple-input

multiple-output) 199
– configuration 201
– mode 199
mine safety 1222
Mine Safety and Health

Administration (MSHA) 1047
minimum
– audible angle (MAA) 846
– audible field (MAF) 476
– audible pressure (MAP) 476
– energy method 1188, 1198, 1201
– phase 533
– variance (MV) 192
– variance distortionless processor

(MV) 190
– variance distortionless response

(MVDR) 537, 1184
MIR (music information retrieval)

773
MIREX (Music Information Retrieval

Evaluation eXchange) 775
missing fundamental 496, 576, 587
mixture separation, thermoacoustic

261
MLM (maximum-likelihood method)

190
MLS (maximum length sequence)

558
mobile dislocation 1218
Mobile Phone Orchestra (MoPho)

773
MOC (medial olivocochlear system)

452, 455, 463–465
modal
– assurance criterion (MAC) 1174
– mass 949
– participation factor 949
– stiffness 949
– synthesis 747, 756
modal analysis 571, 631
– holding instrument 632
– holographic 1175
– mathematical 1172
– sound-field analysis 1174
modal testing 1166
– complex modes 1171
– impact excitation 1168
– multiple-input multiple-output

(MIMO) 1170

– obtaining modal parameters 1170
– pseudo-random signal 1169
– shaker excitation 1169
mode 756
mode cut-off frequency 181
model signal 1211
model-based
– approach 540, 547
– processor (MBP) 540, 541
– signal processing 548
models of temporal resolution 490
modulation
– amplitude 585
– detection 488
– filter bank 491
– frequency/phase 585
– masking 491
– timbre 585
– transfer function (MTF) 328
Moiré techniques 1142
molecular dynamics
– calculation 298
– simulation 297
moment-tensor representation 1212
momentum equation 32
– lossless 248
– thermoacoustic 250
monopole 1005
monostatic operation 534
motional degree of freedom (DOF)

1165
motor equivalence 706
mouthpiece
– brass instruments 652
– Helmholtz resonance 652
– input end-correction 652
– input impedance 652
– lip vibration 662
– popping frequency 652
moving average (MA) 542
– model 537
MRA (main response axis) 189
mrdanga 680
MRI (magnetic resonance imaging)

722
MSE (mean square error) 759
muffler 96, 418
– expansion chamber 97
multibeam SONAR 197, 205
multichannel
– recording 1182
– reverberation (MCR) 365
multilayered partitions 415
multimode system 570
multipath structure 201
multiphonics 306
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Subject Index 1275

multiple
– degree of freedom (MDOF) 1170
– scattering effects 136
– signal classification (MUSIC)

538
multiple-input multiple-output

(MIMO) 199
– configuration 201
– mode 199
multiple-scales method 992
multiplication of frequency functions

525
multipole series 89
multisampling 752
multivariate distribution 529
music information retrieval (MIR)

773
musical
– acoustics 3
– instrument 1180
– instrument digital interface (MIDI)

748, 769
– nomenclature 587
musical interval 576, 577
– perception 495
mutual information 562
MV (minimum-variance

distortionless processor) 190

N

nageln 596
narrow-angle PE 180
narrowband sensor 1213
National Defense Research Council

(NDRC) 22
National Electronic Manufacturers

Association (NEMA) 932
National Metrology Institutes (NMIs)

1084
Navier–Stokes–Fourier equation 35
NC (noise criterion) curves 420
NCB (balanced noise criterion

curves) 420
NDE (nondestructive evaluation)

543, 546, 549
NDT (nondestructive testing) 1141
near field 177, 1096
– acoustic holography 1116, 1117
near miss to Weber’s law 488
negative conductance 657
NEMA (National Electronic

Manufacturers Association) 932
network
– analog 836–838
neurotransmitter 460

New Interfaces for Musical
Expression (NIME) 775

Newton, Isaac 13
Newtonian fluid 34
NIC (noise isolation class) 413
NMI (National Metrology Institutes)

1084
noble gas bubble 300
noise 2, 551, 585
– active control 1026
– aircraft 1029, 1045
– band-limited 551
– barrier 120, 122, 1032
– components 552
– declaration 1019
– directive 118
– Early European noise 1049
– electrical systems 421
– EU limits 1021
– exterior 1029
– from offshore wind turbines 151
– Gaussian 551
– HVAC systems 421
– interior 1029
– isolation class (NIC) 413
– mapping 119
– maps and action plans 1049
– New York City noise code 1048
– notch 169
– plumbing systems 421
– policies 1048
– railway 1045
– random telegraph 551
– recreational 1044
– regulation 1046
– regulations 1048
– road 1045
– silencer 1038
– snowmobile 1027
– thermal 551
– tire/road interaction 1028
– variance 534
noise control
– door design 428
– electrical system 433
– engineering 1093
– floor design 424
– HVAC system 428
– plumbing system 432
– wall designs 422
– windows design 424
noise criterion (NC) 1007
– curves 420
noise immission
– criteria 1041
– metrics 1040

noise level 165, 166
– indoor and outdoor environments

1004
Noise Pollution Clearing House

1048
noise reduction (NR) 303, 409, 416,

804
– by crops 128
– by soft ground 136
– coefficient (NRC) 406, 1036
– due to soft ground 129
– reverberant field 409
noise-induced permanent threshold

shift (NIPTS) 1043
noisy acoustic pulse 534
nondestructive
– evaluation (NDE) 548
– testing (NDT) 1141
nondissolving bubble 295
nonlinear
– capacitance 464
– coupled oscillators 991
– oscillator 988
– Schrödinger (NLS) 291
– time-series analysis 301
– vibration 987
nonlinear acoustics
– in fluids 265
– of fluids 242
– of solids 243
nonlinear waves
– combination frequencies 283
– difference-frequency 283
– interaction 281
– sound–ultrasound interaction 292
nonlinearity
– amplitude dependence 598
– coefficient 270
– hard spring 267
– inharmonicity 598
– mode conversion 598, 688
– orbital motion 599
– origin 266
– parameter 268
– parametric excitation 598
– plate modes 688
– reed excitation 659
– shewed resonances 598
– soft spring 267
– spherical cap 689
non-locally reacting ground 126
nonmetallic inclusion 1220
nonparametric technique 747
non-reflecting dissipative muffler

97
nonsimultaneous masking 481
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1276 Subject Index

NORD2000 119
normal equations 542
normal mode (NM) 162, 187, 949
– expansion 178
– model 177
normal modes 569
– coupled strings 614
– coupling factor 611
– damping 610
– effective mass 569
– string-body 610
– veering 615
– weak/strong-coupling 612
normal modes of vibration
– damping factor 1165
– eigenfrequency 1165
– mode shape 1165, 1166
North Pacific Acoustic Laboratory

(NPAL) 202
notch 448
notched-noise method 479
NRC (noise reduction coefficient)

406, 1036
null-field method 1190, 1197
Nyquist wave number 1120

O

OASES (Ocean Acoustic Seismic
Exploration Synthesis) 182

oboe 656, 672
Obukhov length 145
ocarina 648
Occupational Safety and Health

Administration (OSHA) 1040
ocean
– acoustic environment 159
– acoustic noise 169, 170
– acoustics 546
– surface noise 169
octave 495
octave band
– one-third-octave band 1007, 1008
ODS (operating deflexion shape)

950, 971, 1166
ODS (output display standards) 932
off-frequency listening 479
Office of Noise Abatement and

Control (ONAC) 1046
OHC (outer hair cells) 450–452,

455, 463–465
– motility 463
OITC (outdoor–indoor transmission

class) 413
olivocochlear bundle 452
OLO (Oslo Laptop Orchestra) 773

omnidirectional 164
– microphone 796
one-pole low-pass filter 531
onset asynchrony, role in perceptual

grouping 503
open sound control (OSC) 771
open-sphere array 1181
operating deflexion shape (ODS)

950, 971, 1166
operation deflection shape (ODS)

1149
operation on
– OR 558
– XOR 558
optical
– glottogram 711
– metrology 1139
optically thin plasma 300
optimal time delay 543
organ of Corti 451, 452, 457, 460
orthogonal components 520
orthogonality 955
– condition 542
– with respect to mass 956, 964
– with respect to stiffness 956, 964
orthotropy 963
OSC (open sound control) 771
oscillating bubble 294
oscillating cylinder 85
OSHA (Occupational Safety and

Health Administration) 1040
ossicles 446, 448
otoacoustic emissions 455, 463,

466
otolith 834
ototoxic antibiotics 463
outdoor noise level 1005
outdoor sound level fluctuations

146
outdoor–indoor transmission class

(OITC) 413
outer hair cells (OHC) 450–452
outer scale of turbulence 149
output display standards (ODS) 932
oval window 448, 449
overblowing 637
oxide cracking 1224

P

PA (pulse average) 932
Padé decomposition 182
parabolic equation (PE) 111, 112,

118, 176, 181, 187
– method 111
– model 180

parameter adaptive form 547
parametric 747
– estimator 540
– model 537
– signal processing 537
– synthesis 751
Parseval’s theorem 526
particle
– fracture 1223
– image velocimetry (PIV) 668,

1142, 1158
– models 764
particle velocity 215, 1009
– transducer 1105
Pasquill categories 141
passive
– localization 546
– SONAR 174
patch synthesizer 753
patent foramen ovale (PFO) 923
path length 104
– diffracted 104
pattern recognition analysis 1221
PC (phase conjugation) 190, 191
PCM (pulse code modulation) 747,

751, 805
PD (probability of detection) 173
PDF (probability density function)

173, 528
PE (parabolic equation) 118, 176
– model 180
peak systolic (PS) 914
pedal note 646
Pekeris waveguide 162
pendulum
– elastic 989
– interrupted 988
penetration depth 250
percentage of highly annoyed 1045
perception 586
– violin quality 634
perceptual grouping 501
perceptual organization 508
percussion 675
– bars 682
– membrane 676
– plates 687
– shells 692
perilymph 450, 463, 464
period bubbling 305
period-doubling cascade 304, 305
periodic
– function 522
– signal 526
– structure 966
periodogram 537
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Subject Index 1277

personal
– computer (PC) 331
– hearing protection 1043
perturbation
– bends 648
– bore profiles 647
– finger holes 648
– string vibrations 610
– valves 648
PFA (probability of false alarm)

173
PFO (patent foramen ovale) 923
phase 520
– conjugation (PC) 190, 191
– delay 532
– filter 769
– mismatch 1101
– modulation (PM) 1147
– shift 218
– shift keying (PSK) 199
– stepping (PS) 1146, 1147
– velocity 56, 178, 179, 961
– vocoder 755
phase-contrast methods 1139
phase-locking 458–467
PhISEM 764
phon 484
phonation
– modes of 714
phonation types
– hyperfunctional 714
– hypofunctional 714
phonautograph 780
phoneme 728, 751
phonograph 781
physical
– acoustics 5
– mechanism 163
– model 748
– properties of air 1084
physiological acoustics 4, 475
PI (privacy index) 436
piano 594
– double decay 615
– string doublets/triplets 614
piezoelectric 797
– microphone 794
– transducer 234
pink noise 526, 552
pinna 446, 447
– animal 830
pinna, role in localization 501
pipe
– end-correction 637
– input impedance 638, 639
– Q-valve 639

– radiation impedance 637
– reflection/transmission coefficients

639
– thermal and viscous losses 639
piston 86, 87
– circular 88
– rectangular 88
piston of finite size 87
– in rigid baffle 87
pitch 493, 575
– ambiguity 576
– circularity 588
– glides 691
– hearing range 575
– musical instruments 575
– musical notation 575
– shift 750
– subjective 587
– theory of complex tones 497
PIV (particle image velocimetry)

1142
PL (propagation loss) 183
place theory 493
planar acoustic holography 1119
planar laser-induced fluorescent

(PLIF) 1159
plane of crack 1213
plane propagating wave 1095
plane wave 51, 109, 546, 547
– beamforming 187
– coupler 1075
– diffraction 109
– expansion 77
– intensity 62
– reflection coefficient 125
plane waves 53
– in fluid 51
– in solid 52
plastic deformation 1223
plate modes
– 1-D solutions 617
– 2-D solutions 618
– anisotropy 618, 621
– antielastic bending 618
– arching 622, 687
– boundary conditions 618
– Chladni pattern 619
– circular plate 688
– density of modes 621
– elastic constants 622
– flexural vibrations 616
– longitudinal modes 618
– measurement 619
– mode conversion 690
– mode spacing 621
– non-linearity 688

– rectangular plate 619
– shape dependence 620
– symmetry 605
– torsional modes 618
plate wave 1213
plates
– flexural vibrations 963
– isotropic 964, 978
– prestressed 964
– rectangular 964
player-instrument feedback 589
plenum
– test 1026
plucked string 766, 767
PM (phase modulation) 1147
PMA (pre-market approval) 931
point source 119
pointwise dimension 302
Poisson
– process 764
– ratio 590
polar plot
– open pipe 637
polar waters 159
poles 760
polymeric material 1210
polyvinylidene fluoride (PVDF)

235
popping frequency 652, 662
Portevin–Le Chatelier effect 1218
position and sensor 1121
positional stability diagram 295
positive feedback
– air-jet interactions 669
posterior distribution 544
potassium channels 461
potassium dihydrogen phosphate

(KDP) 21
potential and kinetic energy density

1094
power
– acoustic 62, 63, 251, 258, 972,

973, 977
– mechanical 945
– spectral density (PSD) 526, 548,

810
– spectrum 536, 537
– spectrum model 478
– time-averaged thermal 251
– total 251
p–p method 1098
Prandtl number 251
precedence effect 501, 588
predictability 301
prediction error covariance 544
prediction schemes 151
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1278 Subject Index

predictor-corrector 544
– paradigm 544
preferred delay time of single

reflection 369
preferred horizontal direction of

single reflection 371
pre-market approval (PMA) 931
premature ventricular contraction

(PVC) 910
pressure level (PL) 222
pressure level band 222
pressure-intensity index 1101
pressure-residual intensity index

1102
prestin 463, 464
PRF (pulse repetition frequency)

899
PRI (pulse repetition interval) 909
primary microphone 1084
Princeton Laptop Orchestra (PLOrk)

773
principal-components analysis 774
privacy index (PI) 436
probability 561
probability density function (PDF)

173, 174, 528
probability mass function (PMF)

528
probability of detection (PD) 173,

174
probe reversal 1107
probe source (PS) 194
projected radiated sound 1156
propagating bending waves 1152
propagation 99
– and transmission loss 183
– loss (PL) 183
– plane wave 1037
PS (phase stepping) 1147
PSD (power spectral density) 526,

810
pseudo-inverse matrix solution

1193
pseudo-random (PR) 195
PSK (phase shift keying) 199
psychoacoustics 22, 586
psychological acoustics

(psychoacoustics) 4
psychophysical tuning curve (PTC)

478
p–u
– phase mismatch 1107
– sound intensity measurement

system 1105
pulse
– average (PA) 932

– code modulation (PCM) 747,
751, 805

– repetition frequency (PRF) 899
– repetition interval (PRI) 909
pulsed
– combustion 256, 257
– TV holography 1141, 1152
pulse-tube refrigerator 248
PVDF (polyvinylidene fluoride)

235
PZT (lead zirconate titanate) 887

Q

Q factor 363
Q value 532
quadratic nonlinearity 989, 997
quadrature amplitude modulation

(QAM) 201
quality
– sound 1044
quality factor 165, 569
quantitative description 185
quantitative phono-angiography

(QCPA) 885
quantization 749
– noise 553
quefrency 550
Q-values 571

R

r!g (sensor speader bass) 772
racket 673
radially oscillating
– cylinder 85
– sphere 70
radiation 65
– control 974
– critical frequency 632
– damping 968
– damping in plates 985
– directivity 1181
– efficiency 632, 977, 978, 1004,

1005, 1110
– energy 973
– filter 973
– impedance 637
– impedance matrix 979
– pattern 1180
– polar plot 637
– problem 1188
– tone holes 649
– violin 632
– wavenumber Fourier transform

979

radio
– baton 772
– frequency (RF) 803, 896
Radio Corporation of America

(RCA) 21
ramped sound 500
random
– error 1104
– incidence 1008
– noise 536
– signal processing 536
rapid speech transmission index

(RASTI) 437
RASTI (rapid speech transmission

index) 437
rate-level functions 458
ray 98, 99, 177
– acoustics 98
– diffracted 99
– reflected 99
ray versus modal propagation 186
Rayleigh distribution 552
Rayleigh, Lord 15
rays and spatial region 102
RC (room criterion) curves 420
reactive intensity 1095
reactivity 1107
receiver operating characteristic

(ROC) 174, 194
receptor potentials 462
reciprocity 535, 570, 1151
reconstruction energy 1204
reconstruction filter 554
Recording Industry Association of

America (RIAA) 798
rectilinear propagation 101
recursive
– estimation 540
– filter 760
reed model 767
reeds
– bifurcation 659
– classification 654
– double reed 656
– dynamic characteristics 657
– embouchure 656
– feedback 657
– hysteresis 656
– large-amplitude oscillations 660
– negative resistance 657
– positive feedback 657
– reed equation 656
– single reed 655
– small-amplitude oscillations 658
– static characteristics 654
– streamlined flow 655
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Subject Index 1279

– turbulent flow 655
– wind/brass instruments 654
reference microphone
– acoustical calibrator 1080
– uncertainty 1080
reflected wave possible 103
reflection 65, 448
– at an interface 66
– at plane surface 65
– coefficient of 66, 220
– wave 218
reflectivity 165, 167
refraction 138, 220
refraction versus reflection 161
refrigerator 258
– pulse tube 248
– standing-wave 258
– Stirling 248
– thermoacoustic 248
– traveling-wave 259
regenerator 250, 254, 259
register key 661
regularization 1121
reinforcement layer 1221
Reissner’s membrane 450
REL (resting expiratory level) 704
relationship
– F0 and formant frequencies 725
– F0 and jaw opening 726
– first formant and F0 725
relaxation 54
– distributed 56
repeatability 1104
replica 188
replicant field 548
resampling 750
residual 103, 544
– diffracted wave 103
– intensity 1102
residue pitch 496
resistance
– matrix 973
– matrix, acoustical 973
– matrix, structural 973
– thermal-relaxation 250
– viscous 250
resonance 221, 569, 760
– air column 637
– conical pipe 640
– cylindrical pipe 638
– dispersion 569
– frequency 295
– loss 569
– phase 571
– strings 614
– width 570

resonant
– acoustic emission sensor 1213
– filter 532
– frequency 456
– ultrasound spectroscopy (RUS)

228
resonator 93
respiratory system
– active control 707
– passive control 707
resting expiratory level (REL) 704
reticular lamina 457
reverberant environment 1180
reverberation 410
– room 1011, 1038
– time (RT) 394, 410, 1012
reversed transmission 535
reversible ischemic neurological

deficit (RIND) 917
reversing a p–p probe 1102
revolutions per minute (RPM) 782
ribbon microphone 796
Riemann characteristics 271
Rijke oscillations 254
RIND (reversible ischemic

neurological deficit) 917
RMS (root mean square) signal 528
ROC (receiver operating

characteristic) 194
rock
– burst 1226
– fracture 1222
rocket motorcase integrity 1226
role of biomechanics in speech

production 737
room
– acoustic 635
– criterion (RC) curves 420
– modes 404
– shapes 411
root mean square (RMS) 165, 792,

855, 1002, 1215
roughness
– effects on ground impedance 129
– length 145
rough-sea effects 151
RT (reverberation time) 410
RUS (resonant ultrasound

spectroscopy) 228

S

S/N (signal-to-noise 553
SA (spatial average) 932
SAA (sound absorption average)

407

Sabine
– decay time 571
– equation 410
– reverberation formula 18
Sabine, Wallace Clement 18
SAC (spatial audio coding) 811
SAE International (SAE) 1028
sample mean 544
sample mean estimator 544
sampled data 552
sampling 553, 749
– frequency 185
– rate 749
– rate (SRATE) 749
– synthesis 752
– theorem 554
sandwich plate 966
SAOL (structured audio orchestra

language) 748, 771
SARA (simple analytic recombinant

algorithm) 775
saturation concentration 296
saturation rate 458
SAW (surface acoustic wave) 16,

239
scala
– media (SM) 450, 451
– tympani (ST) 450, 451
– vestibuli (SV) 445, 449–451
scan vector 1117
scanning 1110
– array 1180, 1182
– vibrometry 1154
scattering 77
– and diffraction 1100
– and reverberation 166
– by turbulence 146, 147
– cross section 171
– far-field 78
– Rayleigh 79
– rigid sphere 77
Schlieren 1139
– imaging 236
Schroeder diffuser 385
Schultz curve 1043
scientific scaling 635
SDIF (sound description interchange

format) 771
SDOF (single degree of freedom)

1170
– oscillator 968
SE (signal excess) 175
SEA (statistical energy analysis)

21, 942, 952
sea floor mapping 197
secular term 992
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secure channel 536
segmentation of audio 774
segmentation problem 728
self contained breathing apparatus

(SCBA) 1224
sensation level (SL) 478
sensitivity kernel 203
sensor array 546
sensor placement 1215, 1216
sensory hair 825, 834
sequences of sounds, perception of

506
sequential estimation 539
serpent 675
SG (spiral ganglion) 451
shadow zone 118, 121, 186
– boundary 140
shadowgraph 1139
shallow water 161
– acoustic technology experiment

(SWAT2000) 200
– propagation 160, 184
Shannon entropy 561
shear cracking 1222
shear mode 48
shearography 1141
shells
– bells 692
– blocks 692
– body modes 623
– breathing mode 623
– eigenmode 965
– external constraints 623
– nonlinear vibration 997
– plate modes 623
– spherical 965, 995
– vibrational modes 623
– violin body 625
shift register 559
– tap 560
ship noise 205
shipping noise 546
shock distance 274
shock formation time 274
shock wave 279, 296, 306, 666
– velocity 280
shoe-box concert hall 379
short-range level difference 136
short-time 539
– Fourier transform (STFT) 539,

754
SI (speckle interferometry) 1140,

1147
sibilance 759
side drum
– air loading 681

– directionality 681
– snare 681
side lobe 192
side scan SONAR 197
side-by-side 1099
signal 530
– analog 552
– autocorrelation function 526
– average power 528
– average value 527
– backscattered 198
– conversion 554
– cross-correlation 527
– delays 532
– digitized 528
– envelope 531
– excess (SE) 175
– filter 531
– functions 525
– Gaussian pulse 530
– Hilbert transform 530
– moment of 529
– periodically repeated 555
– processing, model-based 540
– reconstructor 544
– root mean square (RMS) 528
– sampling 553
– standard deviation 528
– to noise ratio (SNR) 174, 553,

750, 793, 1184
– variance 527
signal-based and signal-independent

knowledge in speech perception
739

signal-to-noise (S/N) ratio 1117
SIL (sound intensity level) 216
silencer
– dissipative 1024
– duct 1038
– reactive 1024
similarity, principle of 508
simple analytic recombinant

algorithm (SARA) 775
sinc interpolation 750
singer’s formant 718, 720
– larynx tube 719
singer’s subglottal pressure 710
singing
– coordinative structures 738
single bubble
– collapse 300
– sonoluminescence (SBSL) 296,

300
single degree of freedom (SDOF)

1170
– oscillator 943, 968

single-input single-output mode
(SISO) 199

singular-value decomposition 1193
sinusoidal synthesis 753
sinusoidal waves
– complex numbers 50, 575
SISO (single-input single-output

mode) 199
skeleton curves 623
skewness 529
slip–stick model 593
sloping saturation 458
slow vertex response (SVR) 377
SM (scala media) 450
small piston 86
– in rigid baffle 86
smart materials 998
Snell’s law 161
SNR (signal to noise ratio) 536,

750, 793
SOC (superior olivary complex)

452
SOFAR Channel 158, 160
solid
– isotropic 38
soliton 289
solution
– constant-frequency 81
– factored 83
– general transient 80
solution for diffracted waves 106
SONAR 173, 189, 193
sonar 539
– animals 833
SONAR array processing 187
Sondhauss oscillations 248, 254
sone 485
sonic crystal effects 137
sonoluminescence 6, 20, 294
sonority principle 729
SOSUS (sound ocean surveillance

system) 158
– array 207
sound 306
– absorption coefficient 1037
– absorptive material 1023
– dB sound level 572
– end corrections 572
– fixing and ranging (SOFAR) 6
– in air 59
– in sea water 61
– insulation 411
– localization 447, 459
– multiple sources 1035
– navigation and ranging (SONAR)

6, 157, 281
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Subject Index 1281

– near and far fields 572
– ocean surveillance system

(SOSUS) 158
– period-doubled 305
– pressure 572, 1003
– propagation in rooms 1034
– propagation indoor 1033
– propagation outdoor 1031
– quality 1046
– radiation 571, 572
– refraction 186
– scattering 1035
– specific impedance 571
– speed profile 143, 144, 159, 160
– spherical waves 572, 641
– structure-borne 1022
– transmission class (STC) 412
– transmission through walls 1034
– velocity in solids 228
sound absorber
– electronic 1026
sound absorption 1112
– average (SAA) 407
– coefficient 1034
sound attenuation 53, 95, 1038
– through trees and foliage 137
– through vegetation 135
sound description interchange format

(SDIF) 771
sound exposure
– level 1007
sound field 406
– diffuse 1011, 1012, 1016
– free 1016
– indicator 1108
– spatial factors 368
– temporal factors 368
– trapping of a bubble 294
sound fixing and ranging (SOFAR)

869
sound intensity 572, 1003, 1010,

1093
– analyzer 1009, 1017
– level (SIL) 216
– Robinson–Dadson hearing plots

586
sound level 1006
– meter 1008
– sound power level 1012, 1015
– sound pressure level 1015
sound power (SP) 363, 1003, 1010,

1093, 1094
– A-weighted 1011
– determination 1094, 1109
– determination of 1014
– specific 1025

sound pressure level (SPL) 217,
375, 572, 783, 784, 869, 1004

– peak 1042
sound production
– animal 821, 839
– birds 832
– insects 824
– vertebrates 829
sound propagation
– atmospheric turbulence effects

146
– effects of ground elasticity 131
– ground effect 118, 124
– meteorological classes 141
– rough-sea effects 151
– shadow inversions 138
– spherical acoustic waves 124
– surface wave 126
– wind and temperature gradient

effects 138
sound source
– changing airflow 1
– crossover frequency 574
– dipole 572
– localization 1182
– monopole 572
– pipe 637
– polar plots 573
– quadrupole 572
– reference sound source 1012
– simple 86
– size dependence 574
– supersonic flow 1
– surfaces 574
– time-dependent heat sources 1
– vibrating bodies 1
– volume 86
– wind instruments 575
sound wave 571
– chaotic 304
soundpost 609, 624
soundscape 1039
sound-speed 543
SoundWire 773
source
– detection 1182
– directivity 119
– distributed 86
– energy (SE) 856
– level (SL) 174, 857
– multiple 86
source-filter
– model 759
– theory 710
source-path receiver 1002
source–receive array (SRA) 194

SP (spatial peak) 932
SP (speckle photography) 1140,

1147
space-time
– evolution 299
– matched-filter solution 535
spaciousness 1179
spatial
– aliasing 1120
– audio coding (SAC) 811
– average (SA) 932
– peak (SP) 932
– peak temporal peak (SPTP) 925
– spectral estimation 547
speaking style 735
special function 108
– for diffraction 108
specific impedance 1110
– acoustic 448
specific loudness 486
– pattern 486
speckle
– average mechanism (SAM)

1146
– correlation 1142
– interferometry (SI) 1140, 1146,

1147
– metrology 1140
– photography (SP) 1140, 1147
spectra 579
– Big Ben bell 695
– bowed string 594
– cello 594
– clarinet 579, 662
– cymbal 581
– glockenspiel 684
– gongs 691
– guitar (modelled) 629
– marimba 685
– plucked string 592
– ratchet 581
– steeldrum 692
– struck string 596
– tambla 681
– tam-tam 691
– timpani 581
– triangle 686
– vibraphone 685
– violin 579
– violins 630
– xylophone 685
spectral
– bifurcation 305
– broadening (SB) 914
– cues 447
– density 49
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– description interchange file format
(SDIF) 771

– factorization 548
– modeling 754
– regularity, role in perceptual

grouping 502
– window 536
spectral estimation 538
– technique 537
spectral estimator 537
– broadband power 541
spectrogram 539, 540
– speech and singing 731
spectrotemporal 468
spectrum 522
– autocorrelation 536
speech 23, 539
– coarticulation 728
– control of sound 738
– dynamics 735
– intelligibility 1180
– intelligibility index (SII) 436
– interference level (SIL) 437
– perceptual processing 739
– production 710
– prosodic modulation 728
– prosody 735
– rhythm and timing 733
– superposition model 733
– synthesis 752
– transmission index (STI) 327,

437, 730
speech privacy 435
– office design 438
speed of sound
– computation 1086
– in air 12, 59
– in liquids 13
– in solids 13
– in the atmosphere 118
sphere
– radially oscillating 70
– transversely oscillating 71
spherical
– harmonic 90
– spreading 119
spherical wave 69, 549
– reflection coefficient 122, 125,

128
– symmetric 69
spherical waves
– standing waves 641
spindle torus array 1182
spiral ganglion (SG) 451
SPL (sound pressure level) 217,

375, 572, 784, 869

spontaneous discharge rate (SR)
458

spontaneous emissions 455
SR (spontaneous discharge rate)

458
ST (scala tympani) 450
stability of highway slopes 1226
staccato 710
stack 250, 252, 258
standard minimization approach

542
standards
– building acoustics related 440
standing wave 405
– tube 1104
Stanford Laptop Orchestra (SLOrk)

773
stapes 445, 449
– velocity 453
starting transient 585
State Department of Transportation

(SDoT) 1048
state space variables 971, 974
state variables 543
stationary process 528
statistical energy analysis (SEA)

21, 942, 952
Statskontoret
– noise emission of information

technology equipment 1020
STC (sound transmission class) 412
steelpans 691
stereocilia 459–461
STFT (short-time Fourier transform)

754
STI (speech transmission index)

327, 437, 730
stiffness 456, 465, 768
– matrix 948
Stirling
– engine 248
– refrigerator 248
stochastic (noise) components 754
stochastic system 301
Stokes, George 16
stone mastic asphalt surface (SMA)

1028
strange attractor 303
stream segregation 506
stress corrosion 1223
– cracking 1225
stress rupture 1225
stress timing
– syllable timing 734
stria vascularis 451
striation pattern 183

string vibrations
– bending stiffness 596
– characteristic impedance 590
– D’Alembert solution 590
– dipole source 589
– directional coupling 613
– force on bridge 590
– Helmholtz waves 591
– measurement 614
– non-linearity 597
– perturbation 610
– polarisation 613
– reflection coefficient 591
– sinusoidal 591
– transverse, longitudinal and

torsional 590
– wave equation 589
stringed instrument 959
strings 953
– eigenmodes 957
– heterogeneous 954
– manufacture 597
– nonlinear vibration 995
– nonplanar motion 996
– plucked 958
– semi-infinite 957
– tension 609
– transverse motion 954
– with dissipative end 982
– with moving end 958
structural integrity 1224
structural resonance
– skeleton curve 608
structural vibration 545
structural–acoustic coupling 951,

966
– bar 967
– cavity 974
– energy approach 972
– light fluid 968
– plate 976
– weak-coupling 970
structured audio orchestra language

(SAOL) 748, 771
sub-bands 758
sub-bottom profiling 200
subglottal and oral pressure 706
subglottal pressure 713
– elastic recoil 704
subharmonic 304, 991
subjective difference limen 324
subjective preference
– conditions for maximizing 372
– individual listeners 386
– measured and calculated values

399
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Subject Index 1283

– performers 390
– seat selection 387
– tests in existing halls 396
– theory 369
subsequent reverberation time 367
subspace method 538
subtractive synthesis 748, 758
superharmonic 991
superior olivary complex (SOC)

452
supersonic intensity 1108
supporting cells (s.c.) 451, 460, 463
suppression 466–468
surface acoustic wave (SAW) 16,

239
surface intensity method 1106
surface scattering 168
surface wave 126
surfaces of equal phase 1096
surfaces of equal pressure 1097
survey accuracy 1103
SV (scala vestibuli) 445, 449, 450
SVR (slow vertex response) 377
swim bladder 834, 835
syllable beat
– canonical babbling 730
syllable timing 734
syllables in speech and singing 729
sympathetic strings 614
synapse 452, 460, 462
synaptic ribbon 461
synchronization
– index 459
– sung syllable with piano

accompaniment 732
synthesizer patch 753
synthetic listening 498
syrinx 831
system biological 835

T

TA (temporal average) 932
tabla 680
Taconis oscillations 247, 254
Tait equation 267
tam-tam 690
target strength (TS) 175, 204–206
TDAC (time domain alias

cancellation) 810
TDGF (time-domain Green’s

function) 191
technique
– two-microphone 1038
tectorial membrane 451, 457, 460
telegraph 780

temperature gradient (TG) 142
– critical 253
temperature inversion 139
temporal
– average (TA) 932
– modulation transfer function

(TMTF) 489, 490
– order judgment 507
– peak (TP) 932
– processing 489
– resolution 489
– theory 493
– waveform 459
temporary shift in the hearing

threshold (TTS) 1043
tensile cracking 1222
test environment 1014
testing
– audiometric 1043
THD (total harmonic distortion)

791
thermal conductivity 36, 41
thermal index (TI) 932
thermoacoustic
– engine 231, 248
– oscillator (TAO) 306
– refrigerator 248
thermoacoustics 6, 88, 247, 306
– history 247
– source 88
thermocline 159
thermodynamic
– equilibrium 34
thermodynamic coefficient 35
– ideal gas 36
thermodynamic properties 36
– water 36
thermoelasticity 983
thick-walled structure 1210
three wave interaction 293
three-dimensional (3-D) 205
three-stage shift register 559
threshold 458
thunder plate 687
TI (thermal index) 932
TIA (transient ischemic attack) 917
Tikhonov regularization 1193
timbre
– effect of envelope 499
– effect of spectrum 499
– perception 499
timbregrams 774
time average 51
time delay 549
– beamforming 189
– estimation 543

time gain compensation (TGC) 899
time reversal (TR) 191, 534
– acoustics 191
– communication 536
– mirror 194
– processing 535
– processor 534
time shift 522
time varying spectrum 539
time-/frequency-response equivalence

630
time-averaged sound intensity 1094
time-domain alias cancellation

(TDAC) 810
time-domain analysis
– brass 666
– FFTs 584
time-domain Green’s function

(TDGF) 191
time-domain response
– Big Ben bell 695
– chinese gongs 691
– glockenspiel 684
– gongs 691
– marimba 685
– non-linear string 598
– simple harmonic resonator 571
– steeldrum 692
– tabla 681
– tam-tam 691
– timpani 679
– triangle 686
– vibraphone 685
– violin 631
– violin string 603
– xylophone 685
time-frequency 539
time-series analysis 303
time-varied gain (TVG) 204
timpani 679
– head-air cavity coupling 678
tip link 460, 461
TL (transmission loss) 183, 411,

1111
TLC (total lung capacity) 705
TMTF (temporal modulation transfer

function) 489
TNM (Traffic noise model) 1033
tone holes
– array 649
– mode pertubation 649
– radiation 649
tonotopic 465, 467
– organization 457
total
– harmonic distortion (THD) 791
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1284 Subject Index

– lung capacity (TLC) 705
– power 548
tow fish 198, 203
TP (temporal peak) 932
TR (time reversal) 191
TR (treble ratio) 326
traffic noise model (TNM) 1033
transceiver array 534
transducer 163
– coaxial 236
transduction 450, 459, 460, 463
– channel 460, 461
– current 460, 461
trans-esophageal (TEE) 903
transfer admittance 950
transfer function 202, 446, 532,

558, 1211
transfer standard microphone
– mean sensitivity level 1084
transglottal airflow 714
transient 580, 755
– ischemic attack (TIA) 917
– sound field 1152
– vibrations 1200
transmission 65, 67, 68
– coefficient 411
– control protocol (TCP) 771
– loss (TL) 174, 183, 411, 1111
– through elastic plates 68
– through limp plates 68
– through porous blanktes 68
– through slabs 67
– through walls 67
transponder 164
transport properties 35
– air 35
– water 35
transversely oscillating cylinder 85
trapped bubble 300
traveling bending waves 1153
traveling wave 51, 453, 765
travel-time tomography 200
treble ratio (TR) 326
triangle 685
tri-axial sensor 1213
tristimulus representation 500
trombone 673
trumpet 585, 673
tube impedance 67, 637
– matrix 837
tuning 454, 456, 458, 576
– by sliding tubes 674
– by valves 674
– cents 577
– curves 457, 458, 462
– equal temperament 576

– forks 14
– mean-tone 577
– measurement 577
– Pythagorean 577
– stretched 578
– temperament 577
turbulence 138
– atmospheric 1032
– effects 146
– spectra 148
turbulent eddies 139
TV holography 1141, 1146, 1148
TVG (time-varied gain) 204
two-alternative forced-choice (2AFC)

489
two-pass filter
– design 534
two-pole feedback filter 758
two-pole filter 532
twos-complement 553
two-tone suppression 465
tympanum animal 829
Tyndall, John 14

U

ultrasonic data 543
ultrasonic test method 1210
ultrasound 2
UMM (unit modal mass) vector

1166
uncertainty covariance matrix 544
uncertainty principle 524
uncorrelated (white) noise 533
uncorrelated noise 1184
underwater acoustic imaging 195
underwater propagation 160–163,

165, 166, 176–178, 180, 183, 185,
190, 191

– models 175
underwater travel-time topography

200
uniform asymptotic solution 107
unit
– generator 753
– modal mass (UMM) vector 1166
– rectangle pulse 524
unpredictability 301
upper frequency limit 1100
upsampling 750
up-slope propagation 189
upward spread of masking 480
US Code of Federal Regulations

1029
US Environmental Protection Agency

(EPA) 1046

US Federal Highway Administration
(FHWA) 1033

V

vacuum-tube 781
valves and bends 648
variable bitrate (VBR) 809
VBR (variable bitrate) 809
VC (vital capacity) 705
vegetation effects 124
velocity of sound
– fluids 227
vent sensitivity 1105
vertebrates 826
– hearing 829
very short-range paths 160
vibraphone 685
vibration
– analysis 1146, 1154
– isolation 430
– mode 1148, 1155
vibration field 1143
– phase maps 1149
vibrato 585
violin 585
– admittance measurements 630
– cross-section 609
– directionality 634
– FEA 626
– Helmholtz resonator 626
– octet 635
– quality 606
– signature modes 633
– tonal copies 634
– tone quality 634
virtual pitch 496
viscoelasticity 984
viscosity 34, 36, 300
– bulk 34
– shear 34
visualization of sound fields

1108
vital capacity (VC) 705
vocal
– folds 664
– formant 827, 828
– loudness 715
– registers 714
– valve 827
vocal sac 829
– birds 832
vocal tract 827
– filter 716
vocoder 755, 758, 760
voice 740
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Subject Index 1285

voltage-controlled variable-gain
amplifier (VCA) 803

volume
– attenuation 165, 167
– scattering 168
von Helmholtz, Hermann 14, 15
von Kármán equations 997
vortex-sheet model 671
vortices 671
vorticity 41, 669
– mode 43
vowel 467, 721
vowel articulation 725
– APEX model 722–724

W

water 36
Waterhouse correction 1112
wave
– capillary 824
– constant frequency 49
– cylindrical 79, 84
– cylindrical symmetric outgoing

79
– diffracted 103, 106
– direct 103
– equation 40, 176, 765
– impedance 1097
– number 218
– reflected 103
– spherical 70
– superposition method 1194
– surface 825
– train envelope 290
– velocity 215
wave propagation 99, 1210
– in fluids 223

– in solids 225
– in water 1157
– nonlinear Schrödinger equation

291
waveform 553, 578
– binary form 553
– envelope 584
– non-repetitive 580
– periodic 578
– sawtooth 578, 579
– square 578, 579
– symmetry 79, 522
– triangular 578, 579
wavefront 99, 1096
– propagation 99
– steepening 272
waveguide 93
– filter 765
– invariant 178, 179
wavelength 218
wavelet 748, 763
– transform 763
wave-motion correction

1074
waves
– finite-amplitude 272
– in poroelastic media 131
– thermoviscous 276
wave-table synthesis 752
weak refraction 141
Weber’s law 488
WFUMB (World Federation for

Ultrasound in Medicine and
Biology) 933

white noise 560
white-light speckle 1158
whitening filter 544
wideband sensor 1211

Wiener filter 542, 547, 1182
Wiener–Hopf equation 542
Wiener–Khintchine relation 527,

536
wind
– and temperature profile 144
– instruments 635, 671
window 1121
windscreen 1104
wolf note 306, 591
wood
– elastic constants 622
working standard (WS) 1083
Workshop on Applications of Signal

Processing to Audio and Acoustics
(WASPAA) 775

World Federation for Ultrasound in
Medicine and Biology (WFUMB)
933

WS (working standard) 1083

X

XOR 558
– operation on 558
xylophone 683, 685

Y

zeroes 760
zeroth order symmetric Lamb mode

(S0 mode) 1213
zither 596
zone location 1215
z-transform 536
– convergence 557
– inverse 557
– pairs 557
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