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Abstract Recently, high-dimensional classification problems have been ubiquitous
due to significant advances in technology. High dimensionality poses significant sta-
tistical challenges and renders many traditional classification algorithms impractical
to use. In this chapter, we present a comprehensive overview of different classifiers
that have been highly successful in handling high-dimensional data classification
problems. We start with popular methods such as Support Vector Machines and
variants of discriminant functions and discuss in detail their applications and
modifications to several problems in high-dimensional settings. We also examine
regularization techniques and their integration to several existing algorithms. We
then discuss more recent methods, namely the hybrid classifiers and the ensemble
classifiers. Feature selection techniques, as a part of hybrid classifiers, are intro-
duced and their relative merits and drawbacks are examined. Lastly, we describe
AdaBoost and Random Forests in the ensemble classifiers and discuss their recent
surge as useful algorithms for solving high-dimensional data problems.
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1 Introduction

In the past decade, technological advances have had a profound impact on society
and the research community [45]. Massive amounts of high-throughput data can
be collected simultaneously and at relatively low cost. Often, each observation
is characterized with thousands of variables/features. For example, in biomedical
studies, huge numbers of magnetic resonance images (MRI) and functional MRI
data are collected for each subject [66]. The data collected from gene expression
microarrays consist of thousands of genes that constitute features [17]. Various kinds
of spectral measurements including Mass Spectroscopy and Raman Spectroscopy
are very common in chemometrics, where the spectra are recorded in channels that
number well into the thousands [30, 80]. Satellite imagery has been used in natural
resource discovery and agriculture, collecting thousands of high-resolution images.
Examples of these kinds are plentiful in computational biology, climatology,
geology, neurology, health science, economics, and finance among others. In several
applications, the measurements tend to be very expensive and hence the number of
samples in many datasets are on the order of tens, or maybe low hundreds. These
datasets, often called the high-dimension low-sample size (HDLSS) datasets, are
characterized with a large number of features p and a relatively small number of
samples n; with p >> n [98]. These massive collections of data along with many
new scientific problems create golden opportunities and significant challenges for
the development of mathematical sciences.

Classification is a supervised machine learning technique that maps some
combination of input variables, which are measured or preset, into predefined
classes. Classification problems occur in several fields of science and technol-
ogy like discriminating cancerous cells from non-cancerous cells, web document
classification, categorizing images in remote sensing applications among many
others. Several algorithms starting from Neural Networks [44], Logistic Regression
[57], linear discriminant analysis (LDA) [64], support vector machines (SVM)
[92] and more recently ensemble methods like Boosting [33] and Random Forests
[8], have been proposed to solve the classification problem in different contexts.
However, the availability of massive data along with new scientific problems arising
in the fields of computational biology, microarray gene expression analysis, etc.,
have reshaped statistical thinking and data analysis. The high-dimensional data
has posed significant challenges to standard statistical methods and have rendered
many existing classification techniques impractical [53]. Hence, researchers have
proposed several novel techniques to handle the inherent difficulties of high-
dimensional spaces that are discussed below.
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1.1 Statistical Challenges of High-Dimensional Data Spaces

1.1.1 Curse of Dimensionality

The accuracy of classification algorithms tends to deteriorate in high dimensions due
to a phenomenon called the curse of dimensionality [27, 60]. This phenomenon is
illustrated by Trunk [90] using an example in [90]. Trunk found that (1) the best test
error was achieved using a finite number of features; (2) using an infinite number
of features, test error degrades to the accuracy of random guessing; and (3) the
optimal dimensionality increases with increasing sample size. Also, a naive learning
technique (dividing the attribute space into cells and associating a class label with
each cell) that predicts using a majority voting scheme requires the number of
training samples to be an exponential function of the feature dimension [50]. Thus,
the ability of an algorithm to converge to a true model deteriorates rapidly as the
feature dimensionality increases.

1.1.2 Poor Generalization Ability

A further challenge for modeling in high-dimensional spaces is to avoid overfitting
the training data [17]. It is important to build a classification model with good
generalization ability. It is expected that such a model, in addition to performing well
on the training set, would also perform equally well on an independent testing set.
However, often the small number of samples in high-dimensional data settings cause
the classification model to overfit to the training data, thereby having poor gener-
alization ability for the model. Two of the more common approaches to addressing
these challenges of high-dimensional spaces are reducing the dimensionality of the
dataset or applying methods that are independent of data dimensionality. We discuss
several classifiers pertaining to these two approaches in subsequent sections.

In this survey, we present several state-of-the-art classifiers that have been very
successful for classification tasks in high-dimensional data settings. The remainder
of the chapter is organized as follows. Section 2 talks about SVM and its variants.
Discriminant functions and their modifications including regularized techniques
are discussed in Sect. 3. Section 4 discusses hybrid classifiers that include sev-
eral feature selection techniques combined with other traditional classification
algorithms. Recent developments in ensemble methods and their applications to
high-dimensional data problems are discussed in Sect. 5. Some software packages
implementing the methods in different programming languages are discussed in
Sect. 6. Concluding remarks are presented in Sect. 7.



122 V. Pappu and P.M. Pardalos

2 Support Vector Machines

2.1 Hard-Margin Support Vector Machines

In the last decade, SVM [92] have attracted the attention of many researchers with
successful application to several classification problems in bioinformatics, finance
and remote sensing among many others [13, 69, 89]. Standard SVM construct a
hyperplane, also known as decision boundary, that best divides the input space �

into two disjoint regions. The hyperplane f W � ! <, is estimated from the training
set S . The class membership for an unknown sample x 2 � can be based on the
classification function g.x/ defined as:

g.x/ D
� �1; f .x/ < 0

1; f .x/ > 0
(1)

Consider a binary classification problem with the training set S defined as:

S D f.xi ; yi /jxi 2 <p; yi 2 f�1; 1gg; i D 1; 2; : : : ; n (2)

where yi is either �1 or 1 depending on the class that each xi belongs to.
Assume that the two classes are linearly separable and hence there exists atleast one
hyperplane that separates the training data correctly. A hyperplane parameterized by
the normal vector w 2 <p and bias b 2 < is defined as:

hw; xi � b D 0 (3)

where the inner product h�; �i is defined on <p �<p ! <. The training set S satisfies
the following linear inequality with respect to the hyperplane:

yi .hw; xi i � b/ � 1 8i D 1; 2; : : : ; n (4)

where the parameters w and b are chosen such that the distance between the
hyperplane and the closest point is maximized. This geometrical margin can be
expressed by the quantity 1

jjwjj . Hence, for linearly separable set of training points,
SVM can be formulated a linearly constrained quadratic convex optimization
problem given as:

minimize
w;b

jjwjj22
subject to yi .hw; xi i � b/ � 1 8i D 1; 2; : : : ; n

(5)
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This classical convex optimization problem can be rewritten (using the
Lagrangian formulation [5]) into the following dual problem:

maximize
˛2<n

nX
iD1

˛i � 1

2

nX
iD1

nX
j D1

˛i ˛j yi yj .hxi ; xj i/

subject to
nX

iD1

˛i yi D 0; and; ˛i � 0; i D 1; 2; : : : ; n

(6)

where the Lagrange multipliers ˛i .i D 1; 2; : : : ; n/ expressed in (6) can be
estimated using quadratic programming (QP) methods [22]. The optimal hyperplane
f can then be estimated using the Lagrange multipliers obtained from solving (6)
and the training samples, i.e.,

f .x/ D
X
i2S 0

˛i yi .hx � xi i/ � b (7)

where S 0 is the subset of training samples called support vectors that correspond
to non-zero Lagrange multipliers ˛i . Support vectors include the training points
that exactly satisfy the inequality in (5) and lie at a distance equal to 1

kwk from the
optimal separating hyperplane. Since the Lagrange multipliers are non-zero only for
the support vectors and zero for other training samples, the optimal hyperplane in (7)
effectively consists of contributions from the support vectors. It is also important to
note that the Lagrange multipliers ˛i qualitatively provide relative weight of each
support vector in determining the optimal hyperplane.

The convex optimization problem in (5) and the corresponding dual in (6)
converge to a global solution only if the training set is linearly separable. These
SVM are called hard-margin support vector machines.

2.2 Soft-Margin Support Vector Machines

The maximum-margin objective introduced in the previous subsection to obtain
the optimal hyperplane is susceptible to the presence of outliers. Also, it is often
difficult to adhere to the assumption of linear separability in real-world datasets.
Hence, in order to handle nonlinearly separable datasets as well as be less sensitive
to outliers, soft-margin support vector machines are proposed. The objective cost
function in (5) is modified to represent two competing measures namely, margin
maximization (as in the case of linearly separable data) and error minimization (to
penalize the wrongly classified samples). The new cost function is defined as:

‰.w; �/ D 1

2
jjwjj22 C C

nX
iD1

�i (8)
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where � is the slack variable introduced to account for the non-separability of data,
and the constant C represents a regularization parameter that controls the penalty
assigned to errors. The larger the C value, the higher the penalty associated to
misclassified samples. The minimization of the cost function expressed in (8) is
subject to the following constraints:

yi .hw; xi i � b/ � 1 � �i ; 8i D 1; 2; : : : ; n

�i � 0; 8i D 1; 2; : : : ; n
(9)

The convex optimization problem can then be formulated using (8) and (9) for
the nonlinearly separable data as:

minimize
w;b;�

1

2
jjwjj22 C C

nX
iD1

�i

subject to yi .hw; xi i � b/ � 1 � �i ; �i � 0; 8i D 1; 2; : : : ; n

(10)

The optimization problem in (10) accounts for the outliers by adding a penalty
term C �i for each outlier to the objective function. The corresponding dual to (10)
can be written using the Lagrange formulation as:

maximize
˛2<n

nX
iD1

˛i � 1

2

nX
iD1

nX
j D1

˛i ˛j yi yj .hxi ; xj i/

subject to
nX

iD1

˛i yi D 0; and; 0 � ˛i � C; i D 1; 2; : : : ; n

(11)

The quadratic optimization problem in (11) can be solved using standard QP
techniques [22] to obtain the Lagrange multipliers ˛i .

2.3 Kernel Support Vector Machines

The idea of linear separation between two classes mentioned in the subsections
above can be naturally extended to handle nonlinear separation as well. This is
achieved by mapping the data through a particular nonlinear transformation into
a higher dimensional feature space. Assuming that the data is linearly separable in
this high dimensional space, a linear separation, similar to earlier subsections, can be
found. Such a hyperplane can be achieved by solving a similar dual problem defined
in (11) by replacing the inner products in the original space with inner products in
the transformed space. However, an explicit transformation from the original space
to feature space could be expensive and at times infeasible as well. The kernel
method [12] provides an elegant way of dealing with such transformations.
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Consider a kernel function K.�; �/, satisfying Mercer’s theorem, that equals an
inner product in the transformed higher dimensional feature space [65], i.e.,

K.xi ; xj / D hˆ.xi /; ˆ.xj /i (12)

where ˆ.xi / and ˆ.xj / correspond to the mapping of data points xi and xj from
the original space to the feature space. There are several kernel functions defined
in literature that satisfy Mercer’s conditions. One such kernel, called the Gaussian
kernel is given by:

K.xi ; x/ D exp.�� jjxi � xjj2/ (13)

where � is a parameter inversely proportional to the width of the Gaussian radial
basis function. Another extensively studied kernel is the polynomial function of
order p expressed as

K.xi ; x/ D .hxi ; xi C 1/p (14)

Such kernel functions defined above allow for efficient estimation of inner
products in feature spaces without the explicit functional form of the mapping ˆ.
This elegant calculation of inner products in higher dimensional feature spaces, also
called the kernel trick, considerably simplifies the solution to the dual problem. The
inner products between the training samples in the dual formulation (11) can be
replaced with a kernel function K and rewritten as:

maximize
˛2<n

nX
iD1

˛i � 1

2

nX
iD1

nX
j D1

˛i ˛j yi yj K.xi ; xj /

subject to
nX

iD1

˛i yi D 0; and; 0 � ˛i � C; i D 1; 2; : : : ; n

(15)

The optimal hyperplane f obtained in the higher dimensional feature space can be
conveniently expressed as a function of data in the original input space as:

f .x/ D
X
i2S 0

˛i yi K.xi ; x/ � b (16)

where S 0 is a subset of training samples with non-zero Lagrange multipliers ˛i . The
shape of f (x) depends on the type of kernel functions adopted.

It is important to note that the performance of kernel-based SVM is dependent
on the optimal selection of multiple parameters, including the kernel parameters
(e.g., � and p parameters for the Gaussian and polynomial kernels, respectively)
and the regularization parameter C . A simple and successful technique that has
been employed involves a grid search over a wide range of the parameters.
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The classification accuracy of SVM for every pair of parameters is estimated
using a leave-one-out cross-validation technique and the pair corresponding to
the highest accuracy is chosen. Also, some interesting automatic techniques have
been developed to estimate these parameters [15, 16]. They involve constructing
an optimization problem that would maximize the margin as well as minimize the
estimate of the expected generalization error. Optimization of the parameters is
then carried out using a gradient descent search over the space of the parameters.
Recently, more heuristic-based approaches have been proposed to deal with this
issue. A continuous version of Simulated Annealing (SA) called Hide and Seek SA
was employed in [61] to estimate multiple parameters as well as select a subset
of features to improve the classification accuracy. Similar approaches combining
particle swarm optimization (PSO) with SVM are proposed in [39,62]. Furthermore,
a modified Genetic Algorithm (GA) was also implemented along with SVM to
estimate the optimal parameters [47].

2.4 SVM Applied to High-Dimensional Classification Problems

Support vector machines have been successfully applied to high-dimensional classi-
fication problems arising in fields like remote sensing, web document classification,
microarray analysis etc. As mentioned earlier, conventional classifiers like logistic
regression, maximum likelihood classification etc., on high-dimensional data tend to
overfit the model using training data and run the risk of achieving lower accuracies
on testing data. Hence, a pre-processing step like either feature selection and/or
dimensionality reduction techniques are proposed to alleviate the problem of curse
of dimensionality while working with these traditional classifiers. Surprisingly,
SVM have been successfully applied to hyperspectral remote sensing images
without any pre-processing steps [69]. Researchers show that SVM are more
effective that the traditional pattern recognition approach that involves a feature
selection procedure followed by a conventional classifier and are also insensitive
to Hughes phenomena [49]. This is particularly helpful as it avoids the unnecessary
additional computation of an intermediary step like feature selection/dimensionality
reduction to achieve high classification accuracy.

Similar observations were reported in the field of document classification in [52],
where SVM were trained directly on the original high-dimensional input space.
Kernel SVM (Gaussian and polynomial kernels) were employed and compared
with other conventional classifiers like k-NN classifiers, Naive-Bayes Classifier,
Rocchio Classifier and C4.5 Decision Tree Classifier. The results show that Kernel
SVM outperform the traditional classifiers. Also, in the field of microarray gene
expression analysis, SVM have been successfully applied to perform classification
of several cancer diagnosis tasks [9, 74].

The insensitivity of SVM to overfitting and the ability to overcome the curse
of dimensionality can be explained via the generalization error bounds developed
by Vapnik et al. [93]. Vapnik showed the following generalization error bounds for
Large Margin Classifiers:
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� D QO
�

1

m

�
R2

�2
C log

1

ı

��
(17)

where m is the number of training samples, � is the margin between the parallel
planes, and (R; ı/ 2 <C with 0 < ı � 1. This error bound is inversely dependent
on the sample size m and the margin � . For a finite sample size, maximizing the
margin � (or minimizing the weight vector) would reduce the generalization error �.
Interestingly, this error bound does not depend on the dimensionality of the input
space. Since, it is highly likely to linearly separate the data in higher dimensions,
SVM tend to perform well with classification tasks in high dimensions.

3 Discriminant Functions

A discriminant function g W <p ! f�1; 1g assigns either class 1 or class 2 to an
input vector x 2 <p . We consider here a class of discriminant functions G that are
well studied in literature and traditionally applied to binary classification problems.

3.1 Quadratic and Linear Discriminant Analysis

Consider a binary classification problem with classes C1 and C2 and prior probabil-
ities given as �1 and �2. Assume the class conditional probability densities f1.x/

and f2.x/ to be normally distributed with mean vectors �1 and �2 and covariance
matrices †1 and †2, respectively:

fk.x/ D 1

.2�/p=2j†kj1=2
exp

�
�1

2
.x � �k/T †�1

k .x � �k/

�
k D 1; 2: (18)

where, j†kj is the determinant of the covariance matrix †k . Following Bayes

optimal rule [3], quadratic discriminant analysis (QDA) [64] assigns class 1 to an
input vector x if the following condition holds:

�1f1.x/ � �2f2.x/ (19)

Linear discriminant analysis [64] further assumes the covariances †1 and †2

are equal to † and classifies an input vector again in accordance to Bayes optimal
rule. The condition in (19) can then be rewritten as:

log
�1

�2

C .x � �/T †�1.�1 � �2/ � 0; � D 1

2

�
�1 C �2

�
: (20)
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Assuming the prior probabilities to be equal, (20) is equivalent to:

.x � �1/T †�1.x � �1/ � .x � �2/T †�1.x � �2/ (21)

It is interesting to note that LDA compares the squared Mahalanobis distance
[21] of x from the class means �1 and �2 and assigns the class that is closest. The
squared Mahalanobis distance of a point x from a distribution P characterized by
mean vector � and covariance matrix † is defined as:

dM .x;P/ D .x � �/T †�1.x � �/ (22)

This distance measure, unlike Euclidean distance measure, accounts for correlations
among different dimensions of x. Equation (21) shows how LDA differs from
other distance-based classifiers like k-NN classifier [3] which measures Euclidean
distance to assign the class.

3.2 Fisher Linear Discriminant Analysis

Fisher linear discriminant analysis (FLDA) [3], unlike LDA, does not make
assumptions on the class conditional densities. Instead, it estimates the class means
from the training set. In practice, the most commonly used estimators are their
maximum-likelihood estimates, given by:

O�1 D 1

N1

X
k2C1

xk; O�2 D 1

N2

X
k2C2

xk: (23)

Fisher linear discriminant analysis attempts to find a projection vector w that
maximizes the class separation. In particular, it maximizes the following Fisher
criterion given as:

J.w/ D wT S Bw
wT S W w

(24)

where S B is the between-class covariance matrix and is given by:

S B D . O�2 � O�1/. O�2 � O�1/T (25)

and S W is the within-class covariance matrix and is given by:

S W D
X
k2C1

.xk � O�1/.xk � O�1/T C
X
k2C2

.xk � O�2/.xk � O�2/T (26)
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The optimal Fisher discriminant w� can be obtained by maximizing the Fisher
criterion:

maximize
w

J.w/ (27)

An important property to notice about the objective function J.w/ is that it is
invariant to the rescalings of the vector w ! ˛w; 8˛ 2 <. Hence, w can be chosen
in a way that the denominator is simply wT SW w D 1, since it is a scalar itself. For
this reason, we can transform the problem of maximizing Fisher criterion J into the
following constrained optimization problem,

maximize
w

wT S Bw

subject to wT S W w D 1

(28)

The KKT conditions for (28) can be solved to obtain the following generalized
eigenvalue problem, given as:

S Bw D �S W w (29)

where � represents the eigenvalue and the optimal vector w� corresponds to the
eigenvector with the largest eigenvalue �max and is proportional to:

w� / S �1
W . O�2 � O�1/ (30)

The class of an input vector x is determined using the following condition:

hw�; xi < c (31)

where c 2 < is a threshold constant.

3.3 Diagonal Linear Discriminant Analysis

Diagonal linear discriminant analysis (DLDA) extends on LDA and assumes
independence among the features [35]. In particular, the discriminant rule in (20)
is replaced with:

log
�1

�2

C .x � �/T D�1.�1 � �2/ � 0 (32)

where D D diag.†/. The off-diagonal elements of the covariance matrix † are
replaced with zeros by independence assumption.
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Similarly, diagonal quadratic discriminant analysis (DQDA) [28] assumes the
independence rule for QDA. The discriminant rule in this case is given by:

log
�1

�2

C .x � �2/T D�1
2 .x � �2/ � .x � �1/T D�1

1 .x � �1/ � 0 (33)

where D1 D diag.†1/, and D2 D diag.†2/.
Diagonal quadratic discriminant analysis and DLDA classifiers are sometimes

called “naive Bayes” classifiers because they can arise in a Bayesian setting [2].
Additionally, it is important to note that FLDA and Diagonal Discriminant analysis
(DLDA and DQDA) are commonly generalized to handle multi-class problems as
well.

3.4 Sparse Discriminant Analysis

The optimal discriminant vector in FLDA (30) involves estimating the inverse of
covariance matrix obtained from sample data. However the high dimensionality
in some classification problems poses the threat of singularity and thus leads to
poor classification performance. One approach to overcome singularity involves
a variable selection procedure that selects a subset of variables most appropriate
for classification. Such a sparse solution has several advantages including better
classification accuracy as well as interpretability of the model. One of the ways to
induce sparsity is via the path of regularization. Regularization techniques have been
traditionally used to prevent overfitting in classification models, but recently, they
have been extended to induce sparsity as well in high-dimensional classification
problems. Here, we briefly discuss some standard regularization techniques that
facilitate variable selection and prevent overfitting.

Given a set of instance-label pairs (xi ; yi ); i D 1; 2; : : : ; n; a regularized
classifier optimizes the following unconstrained optimization problem:

minimize
ˇ

ˆ.x; y; ˇ/ C �jjˇjjp (34)

where ˆ represents a non-negative loss function, (p; �/ 2 < and ˇ is the coefficient
vector. Classifiers with p D 1 (Lasso-penalty) and p D 2 (ridge-penalty) have been
successfully applied to several classification problems [99].

In a regression setting, Tibshirani [85] introduced variable selection via the
framework of regularized classifiers using the l1-norm. This method, also called
least absolute shrinkage and selection operator (LASSO), considers the least-
squares error as the loss function. The user-defined parameter � balances the
regularization and the loss terms. The l1-norm in Lasso produces some coefficients
that are exactly 0 thus facilitating the selection of only a subset of variables useful
for regression. The Lasso regression, in addition to providing a sparse model, also
shares the stability of ridge regression. Several algorithms have been successfully
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employed to solve the Lasso regression in the past decade. Efron et al. [29] showed
that, starting from zero, the Lasso solution paths grow piecewise linearly in a
predictable way and hence exploit this predictability to propose a new algorithm
called Least Angle Regression that solves the entire Lasso path efficiently. The
Lasso framework has been further extended to several classification problems by
considering different loss functions, and has been highly successful in producing
sparse models with high classification accuracy.

A Lasso-type framework, however, is not without its limitations. Zou and Hastie
[99] mention that a Lasso framework, in high-dimensional problems, suffers from
two drawbacks namely, the number of variables selected is limited by the number
of samples n, and in the case of highly correlated features, the method selects
one of them, neglecting the rest and also does not care about the one selected.
The second limitation, also called the grouping effect, is very common in high-
dimensional classification problems like microarray gene analysis where a group of
variables are highly correlated to each other. The authors propose a new technique
that overcomes the limitations of Lasso. The technique, called elastic-net, considers
a convex combination of l1 and l2-norms to induce sparsity. In particular, in an
elastic-net framework, the following optimization problem is minimized:

minimize
ˇ

ˆ.x; y; ˇ/ C �jjˇjj1 C .1 � �/jjˇjj2 (35)

where ˆ is the loss function, and 0 � � � 1. When � D 0 (or = 1), the
elastic-net framework simplifies to Lasso (or ridge) frameworks. The method could
simultaneously perform variable selection along with continuous shrinkage and also
select groups of correlated variables. An efficient algorithm, called LARS-EN, along
the lines of LARS, was proposed to solve the elastic-net problem. It is important to
note that these regularized frameworks are very general and can be added to models
that suffer from overfitting. They provide better generalization performance by
inherently performing variable selection and thus also producing better interpretable
models.

Sparsity can be induced to the solution of FLDA using regularization techniques
described above. One such method called sparse linear discriminant analysis
(SLDA), is inspired from penalized least squares where regularization is applied to
the solution of least squares problem via Lasso-penalty. The penalized least squares
problem is formulated as:

minimize
ˇ

jjy � Xˇjj22 C �jjˇjj1 (36)

where X represents the data matrix and y is the outcome vector. The second term
in (36) is assumed to induce sparsity to the optimal ˇ.

In order to induce sparsity in FLDA via the l1 penalty, the generalized eigenvalue
problem in (29) is first reformulated as an equivalent least squares regression
problem and is shown that the optimal discriminant vector of FLDA is equivalent to
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the optimal regression coefficient vector. This is achieved by applying the following
theorem:

Theorem. Assume the between-class covariance matrix S B 2 <p�p and the
within-class covariance matrix S W 2 <p�p be given by (25) and (26). Also, assume
S W is positive definite and denote its Cholesky decomposition as S W D RT

W RW

where RW 2 <p�p is an upper triangular matrix. Let H B 2 <n�p satisfy
S B D H T

BH B . Let v1; v2 : : : ; vq.q � min.p; n � 1// denote the eigenvectors of
problem (29) corresponding to the q largest eigenvalues �1 � �2 � � � � � �q . Let

A 2 <p�q D Œ˛1; ˛2; : : : ; ˛q	 and B 2 <p�q D Œˇ1; ˇ2; : : : ; ˇq	. For � > 0, let OA

and OB be the solution to the following least squares regression problem:

minimize
A;B

nX
iD1

kR�T
W H B;i � ABT H B;i k2 C

qX
j D1

ˇT
j S W ˇj ;

subject to AT A D I (37)

where, H B;i is the i th row of H B . Then Ǒ
j ; j D 1; 2; : : : ; q; span the same

subspace as vj ; j D 1; 2; : : : ; q. [refer to [73] for the proof].

After establishing the equivalence, the regularization is applied on the least
squares formulation in (37) via the Lasso-penalty as shown below:

minimize
A;B

nX
iD1

kR�T
W H B;i � ABT H B;i k2 C

qX
j D1

ˇT
j S W ˇj ; C

qX
j D1

�j;1kˇj k1;

subject to AT A D I (38)

Since (38) is non-convex, finding the global optimum is often difficult. Qiao et al.
[73], suggest a technique to obtain a local optimum by alternating optimization over
A and B. We refer readers to their article for details on their implementation.

Clemmensen et al. [18] also propose a similar sparse model using FLDA for
classification problems. They also follow the approach of re-casting the optimization
problem of FLDA into an equivalent least squares problem and then inducing spar-
sity by introducing a regularization term. However, the reformulation is achieved
via an optimal scoring function that maps categorical variables to continuous
variables via a sequence of scorings. Given a data matrix X 2 <n�p and the
samples belonging to one of the K classes, the equivalent regression problem can
be formulated as:



High-Dimensional Data Classification 133

minimize
ˇk ;�k

jjY �k � Xˇkjj22

subject to
1

n
�T

k Y T Y �k D 1

�T
k Y T Y � l D 0; 8l < k;

(39)

where �k is the score vector and ˇk is the coefficient vector. It can be shown that
the optimal vector ˇk from (39) is also optimal to FLDA formulation in (28). Sparse
discriminant vectors are then obtained by adding an l1-penalty to the objective
function in (39) as:

minimize
ˇk ;�k

jjY �k � Xˇkjj22 C �ˇT
k �ˇk C �jjˇkjj1

subject to
1

n
�T

k Y T Y �k D 1

�T
k Y T Y � l D 0; 8l < k;

(40)

where � is a positive-definite matrix. The authors propose a simple iterative
algorithm to obtain a local minima for the optimization problem in (40). The
algorithm involves holding �k fixed and optimizing with respect to ˇk , and holding
ˇk fixed and optimizing with respect to �k until a pre-defined convergence criteria
is met.

3.5 Discriminant Functions for High-Dimensional Data
Classification

Linear discriminant analysis and QDA require the covariance within classes to be
known a priori in order to establish a discriminant rule in classification problems. In
many problems, since the covariance is not known a priori, researchers often attempt
to estimate the covariance from the sample data. However, in high-dimensional
problems, the sample covariance matrix is ill-conditioned and hence induces
singularity in the estimation of the inverse covariance matrix. FLDA also faces
similar challenges since within-scatter and in-between scatter are estimated from
the sample data. In fact, even if the true covariance matrix is not ill-conditioned, the
singularity of the sample covariance matrix will make these methods inapplicable
when the dimensionality is larger than the sample size. Several authors performed
a theoretical study on the performance of FLDA in high-dimensional classification
settings. Bickel and Levina [2] showed that under some regularity conditions, as
the ratio of features p and the number of samples n tend to infinity, the worst case
misclassification rate tends to 0.5. This proves that as the dimensionality increases,
FLDA is only as good as random guessing.
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Several alternatives have been proposed to overcome the problem of singularity
in LDA and QDA. Thomaz and Gillies [84] propose a new LDA algorithm (NLDA),
which replaces the less reliable smaller eigenvalues of the sample covariance matrix
with the grand mean of all eigenvalues and keeps larger eigenvalues unchanged.
NLDA has been used successfully in face recognition problems. Xu et al. [94] state
the lack of theoretical basis for NLDA and introduced a modified version of LDA
called MLDA, which is based on a well-conditioned estimator for high-dimensional
covariance matrices. This estimator has been shown to be more accurate than the
sample covariance matrix asymptotically.

The assumption of independence in DLDA greatly reduces the number of
parameters in the model and often results in an effective and interpretable classifier.
Despite the fact that features will rarely be independent within a class, in the case of
high-dimensional classification problems, the dependencies cannot be estimated due
to lack of data. DLDA is shown to perform well for high-dimensional classification
setting in spite of this naive assumption. Bickel and Levina [2] theoretically showed
that it will outperform classical discriminant analysis in high-dimensional problems.
However, one shortcoming of DLDA is that it uses all features and hence is not
convenient for interpretation. Tibshirani et al. [86] introduced further regularization
in DLDA using a procedure called nearest shrunken centroids (NSC) in order to
improve misclassification error as well as interpretability. The regularization is
introduced in a way that automatically assigns a weight zero to features that do not
contribute to the class predictions. This is achieved by shrinking the classwise mean
toward the overall mean, for each feature separately. We refer readers to [86] for a
complete description of the method. DLDA integrated with NSC was applied to gene
expression array analysis and is shown to be more accurate than other competing
methods. The authors prove that the method is highly efficient in finding genes
representative of small round blue cell tumors and leukemias. Several variations of
NSC also exist in literature, for example [19,87]. Interestingly, NSC is also shown to
be highly successful in open-set classification problems [77, 78] where the number
of classes is not necessarily closed.

Another framework applied to high-dimensional classification problems include
combining DLDA with shrinkage [71, 88]. Pang et al. [71] combined the shrinkage
estimates of variances with diagonal discriminant scores to define two shrinkage-
based discriminant rules called shrinkage-based DQDA (SDQDA) and shrinkage-
based DLDA (SDLDA). Furthermore, the authors also applied regularization to
further improve the performance of SDQDA and SDLDA. The discriminant rule
combining shrinkage-based variances and regularization in diagonal discriminant
analysis showed improvement over the original DQDA and DLDA, SVM, and k-
Nearest Neighbors in many classification problems. Recently, Huang et al. [48]
observed that the diagonal discriminant analysis suffers from serious drawback of
having biased discriminant scores. Hence, they proposed bias-corrected diagonal
discriminant rules by considering unbiased estimates for the discriminant scores.
Especially in the case of highly unbalanced classification problems, the bias
corrected rule is shown to outperform the standard rules.
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Recently, SLDA has shown promise in high-dimensional classification problems.
In [73], SLDA was applied to synthetic and real-world datasets including wine
datasets and gene expression datasets and is shown to perform very well on training
and testing data with lesser number of significant variables. The authors in [18]
compared SLDA obtained via optimal scoring to other methods like shrunken
centroid regularized discriminant analysis, sparse partial least squares regression
and the elastic-net regression on a number of high-dimensional datasets and is
shown to have comparable performance to other methods but with lesser number
of significant variables.

4 Hybrid Classifiers

We now discuss an important set of classifiers that are frequently used for
classification in the context of high-dimensional data problems. High dimensional
datasets usually consist of irrelevant and redundant features that adversely effect
the performance of traditional classifiers. Also, the high dimensionality of the data
makes the estimation of statistical measures difficult. Hence, several techniques
have been proposed in the literature to perform feature selection that selects relevant
features suitable for classification [46]. Generally, feature selection is performed as
a dimensionality reduction step prior to building the classification model using the
traditional classifiers. Unlike other dimensionality reduction techniques like those
based on transformation (e.g., principal component analysis) or compression (e.g.,
based on information theory), feature selection techniques do not alter the original
dimensional space of the features, but merely select a subset of them [76]. Thus,
they offer the advantage of interpretability by a domain expert as they preserve
the original feature space. Also, feature selection helps to gain a deeper insight
into the underlying processes that generated the data and thus plays a vital role
in the discovery of biomarkers especially in biomedical applications [30]. Thus the
classification framework can be viewed as a two-stage process with dimensionality
reduction via feature selection being the first step followed by a classification model.
We call these set of classifiers as hybrid classifiers, as different techniques pertaining
to two stages have been combined to produce classification frameworks that have
been successful in several high-dimensional problems. We briefly describe various
feature selection techniques and also review the hybrid classifiers developed using
these techniques for high-dimensional data problems.

4.1 Feature Selection Methods

Recently, feature selection has been an active area of research among many
researchers due to tremendous advances in technology enabling collecting samples
with hundreds and thousands of attributes in a single experiment. The goal of
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feature selection techniques is to find an optimal set of features based on different
measures of optimality. Irrespective of the measure of optimality, the selected subset
of features should ideally possess the following characteristics [40]:

• The cardinality of the subset should be minimal such that it is necessary and
sufficient to accurately predict the class of unknown samples,

• The subset of features should improve the prediction accuracy of the classifier
run on data containing only these features rather than on the original dataset with
all the features,

• The resulting class distribution, given only the values for the selected features, is
as close as possible to the original class distribution given all feature values.

Based on the above feature characteristics, it is obvious that irrelevant features
would not be part of the optimal set of features, where an irrelevant feature with
respect to the target class is defined as follows [97].

Let F be the full set of features and C be the target class. Define Fi 2 F and
Si D F � Fi .

Definition 1 (Irrelevance). A feature Fi is irrelevant if and only if

8S
0

i � Si ; P.C jFi ; S
0

i / D P.C jS 0

i /

Irrelevance simply means that it is not necessary for classification since the class
distribution given any subset of other features does not change after eliminating the
feature.

The definition of relevance is not as straightforward as irrelevance. There have
been several definitions for relevance in the past; however, Kohavi and John
[58] argued that the earlier definitions weren’t adequate to accurately classify the
features. Hence, they defined relevance in terms of an optimal Bayes classifier.
A feature Fi is strongly relevant if removal of Fi alone will result in decrease of
performance of an optimal Bayes classifier. A feature Fi is weakly relevant if it is not
strongly relevant and there exists a subset of features, S

0

i , such that the performance
of a Bayes classifier on S

0

i is worse than the performance on S
0

i U {Fi }.

Definition 2 (Strong Relevance). A feature Fi is strongly relevant if only and if:

P.C jFi ; S
0

i / ¤ P.C jS 0

i /; S
0

i � Si (41)

Definition 3 (Weak Relevance). A feature Fi is weakly relevant if only and if:

P.C jFi ; Si / D P.C jSi / and; 9S
0

i � Si ; P.C jFi ; S
0

i / ¤ P.C jS 0

i / (42)

Strong relevance implies that the feature is indispensable and is required for
an optimal set, while weak relevance implies that the feature may be required
sometimes to improve the prediction accuracy. From this, one may conclude that the
optimal set should consist of all the strongly relevant features, none of the irrelevant
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features and some of the weakly irrelevant features. However, the definitions do
not explicitly mention which of the weakly relevant features should be included
and which of them excluded. Hence, Yu and Liu [97] claim that the weakly
relevant features should be further classified to discriminate among the redundant
features and the non-redundant features, since earlier research efforts showed that
along with irrelevant features, redundant features also adversely affect the classifier
performance. Before we provide definitions, we introduce another concept called
feature’s Markov Blanket as defined by Koller and Sahami [59].

Definition 4 (Markov Blanket). Given a feature Fi , let Mi � F.Fi … Mi /; Mi is
said to be a Markov blanket for Fi if only and if:

P.F � Mi � fFi g; C jFi ; Mi / D P.F � Mi � fFi g; C jMi / (43)

The Markov blanket Mi could be imagined as a blanket for the feature Fi that
subsumes not only the information that Fi possesses about target class C , but also
about other features. It is also important to note that the strongly relevant features
cannot have a Markov Blanket. Since the irrelevant features do not contribute to
classification, Yu and Liu [97] further classified the weakly relevant features into
either redundant or non-redundant using the concept of Markov blanket:

Definition 5 (Redundant Feature). Given a set of current features G, a feature
is redundant and hence should be removed from G if and only if it has a Markov
Blanket within G.

From the above definitions, it is clear that the optimal set of features should
consist of all of the strongly relevant features and the weakly relevant non-redundant
features. However, an exhaustive search over the feature space is intractable since
there are 2p possibilities with p being the number of features. Hence, over the past
decade, several heuristic and approximate methods have been developed to perform
feature selection. In the context of classification, feature selection techniques can
be organized into three categories, depending on how they combine the feature
selection search with the construction of the classification model: filter methods,
wrapper methods and embedded methods [76]. While all methods define some
criterion measure to eliminate the irrelevant features, very few methods attempt to
eliminate the redundant features as well. Here, we briefly describe methods in each
of the three categories.

4.1.1 Filter Methods

Filter methods assess feature relevance from the intrinsic properties of the data. In
most cases the features are ranked using a feature relevance score and the low-
scoring features are removed. The reduced data obtained from considering only
the selected features are then presented as an input to the classification algorithm.
Filter techniques offer several advantages including scalability to high-dimensional
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datasets, being computationally efficient, and are independent of the classification
algorithm. This independency offers the advantage of performing feature selection
only once and then evaluating different classifiers.

Some univariate filter techniques perform simple hypothesis testing like Chi-
Square (�2) test or t -test to eliminate the irrelevant features, while other techniques
estimate information theoretic measures like information gain and gain-ratio to
perform the filtering process [1]. Although these techniques are simple, fast and
highly scalable, they ignore feature dependencies which may lead to worse classi-
fication performance as compared with other feature selection techniques. In order
to account for feature dependencies, a number of multivariate filter techniques were
introduced. The multivariate filter methods range from accounting for simple mutual
interactions [4] to more advanced solutions exploring higher order interactions. One
such technique called correlation-based feature selection (CFS) introduced by Hall
[42], evaluates a subset of features by considering the individual predictive ability
of each feature along with the degree of redundancy between them:

CFSS D kˆcfp
k C k.k � 1/ˆff

(44)

where CFSS is the score of a feature subset S containing k features, ˆcf is the
average feature-to-class correlation (f 2 S ), and ˆff is the average feature-
to-feature correlation. Unlike the univariate filter methods, CFS presents a score
for a subset of features. Since, exhaustive search is intractable, several heuristic
techniques like greedy hill-climbing or best-first search have been proposed to find
the feature subset with the highest CFS score.

Another important multivariate filter method called Markov blanket filtering was
introduced by Koller and Sahami [59]. The idea here being that once we find a
Markov blanket of feature Fi in a feature set G, we can safely remove Fi from
G without compromising on the class distribution. Since estimating the Markov
blanket for a feature is hard, Koller and Sahami propose a simple iterative algorithm
that starts with the full feature set F D G and then repeatedly eliminates one feature
at a time based on cross-entropy of each feature until a pre-selected number of
features are removed.

Koller and Sahami further prove that in such a sequential elimination process in
which unnecessary features are removed one by one, a feature tagged as unnecessary
based on the existence of a Markov blanket Mi remains unnecessary in later stages
when more features have been removed. Also, the authors claim that the process
removes all the irrelevant as well as redundant features. Several variations to the
Markov blanket filtering method like Grow-Shrink (GS) algorithms, incremental
association Markov blanket (IAMB), Fast-IAMB and recently �-IAMB have been
proposed by other authors [36]. Due to space constraints, we mention other interest-
ing multivariate filter methods like fast-correlation-based feature selection (FCBF)
([96]), minimum redundancy-maximum relevance (MRMR) [26], and uncorrelated
shrunken centroid (USC) [95] algorithms.
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Statnikov et al. [82] recently performed a comprehensive comparative study
between Random Forests [8] and SVM for microarray-based cancer classification.
They adopt several filter methods like sequential filtering techniques as a pre-
processing step to select a subset of features which are then used as input to
the classifiers. It is shown that on an average, SVM outperform Random Forests
on most microarray datasets. Recently, Pal and Moody [68] studied the effect of
dimensionality on performance of SVM using four feature selection techniques
namely CFS, MRMR, Random Forests and SVM-RFE [41] on hyperspectral data.
Unlike earlier findings, they show that dimensionality might affect the performance
of SVM and hence a pre-processing step like feature selection might still be useful
to improve the performance.

4.1.2 Wrapper Methods

As seen in the earlier section, filter methods treat the problem of finding a good
feature subset independently of the classifier building step. Wrapper methods, on
the other hand, integrate the classifier hypothesis search within the feature subset
search. In this framework, a search procedure in the feature space is first defined,
and various subsets of features are generated and evaluated. The evaluation of a
specific feature subset is obtained by training and testing a specific classification
model, making this approach tailored to a specific classification algorithm [58, 76].
Advantages of wrapper methods include consideration of feature dependencies and
the ability to include interactions between the feature subset search and model
selection. A common drawback includes the risk of higher overfitting than the
filter methods and could be computationally intensive if the classification model
especially has a high computational cost.

The wrapper methods generally employ a search algorithm in order to search
through the space of all feature subsets. The search algorithm is wrapped around
the classification model which provides a feature subset that can be evaluated by
the classification algorithm. As mentioned earlier, since an exhaustive search is not
practical, heuristic search methods are used to guide the search. These search meth-
ods can be broadly classified as deterministic and randomized search algorithms.
Deterministic search methods include a set of sequential search techniques like
the Sequential Forward Selection [56], Sequential Backward Selection [56], Plus-
l Minus-r Selection [31], Bidirectional Search, Sequential Floating Selection [72]
etc., where the features are either sequentially added or removed based on some
criterion measure. Randomized Search algorithms include popular techniques like
Genetic Algorithms [20], Simulated Annealing [55], Randomized Hill Climbing
[81], etc.
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4.1.3 Embedded Methods

Embedded methods integrate the search for an optimal subset of features into the
classifier construction and can be seen as a search in the combined space of feature
subsets and hypotheses. Similar to wrapper methods, embedded approaches are also
specific to a given learning algorithm. The advantages of embedded methods include
the interaction with the classification model, but unlike the wrapper methods, also
has the advantage to be less computationally intensive [76].

Recently embedded methods have gained importance among the research com-
munity due to their advantages. The embedded characteristic of several classifiers
to eliminate input features futile to classification and thus select a subset of features,
has been exploited by several authors. Examples include the use of random forests
(discussed later) in an embedded way to calculate the importance of each feature
[24, 51]. Another line of embedded feature selection techniques uses the weights
of each feature in linear classifiers, such as SVM [41] and logistic regression [63].
These weights are used as a measure of relevance of each feature, and thus allow
for the removal of features with very small weights. Also, recently regularized
classifiers like Lasso and elastic-net have also been successfully employed in
performing feature selection in microarray gene analysis [99]. Another interesting
technique called feature selection via sparse SVM has been recently proposed by
Tan et al. [83]. This technique called the feature Generating machine (FGM) adds
a binary variable for every feature in the sparse formulation of SVM via l0-norm
and the authors propose a cutting plane algorithm combined with multiple kernel
learning to efficiently solve the convex relaxation of the optimization problem.

5 Ensemble Classifiers

Ensemble classifiers have gained increasing attention from the research community
over the past years, ranging from simple averaging of individually trained neural
networks to the combination of thousands of decision trees to build Random
Forests [8], to the boosting of weak classifiers to build a strong classifier where
the training of each subsequent classifier depends on the results of all previously
trained classifiers [75]. The main idea of an ensemble methodology is to combine
a set of models, each of which solves the same original task, in order to obtain
a better composite global model, with more accurate and reliable estimates or
decisions. They combine multiple hypotheses of different models with the hope to
form a better classifier. Alternatively, an ensemble classifier can also be viewed
as a technique for combining many weak learners in an attempt to produce a
strong learner. Hence an ensemble classifier is itself a supervised learning algorithm
capable of making prediction on unknown sample data. The trained ensemble
classifier, therefore, represents a single hypothesis that is not necessarily contained
within the hypothesis space of the constituent models. This flexibility of ensemble
classifiers can theoretically overfit to the training data more than a single model
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would, but however surprisingly, in practice, some ensemble techniques (especially
bagging and Random Forests) tend to reduce problems related to overfitting of the
training data.

In the past few years, experimental studies show that combining the outputs of
multiple classifiers similar to ensemble methods reduces the generalization error
[25]. Ensemble methods are particularly effective due to the phenomenon that
various types of classifiers have different inductive biases. Additionally, ensemble
methods can effectively make use of such diversity to reduce the variance-error
while keeping the bias-error in check. In certain situations, an ensemble can also
reduce bias-error, as shown by the theory of large margin classifiers. So, diversified
classifiers help in building a lesser number of classifiers, especially in the case
of Random Forests. The increase in prediction accuracy does come at a cost of
performing more calculations in comparison to a single model. So, the ensemble
methods can be thought of as a way to compensate for a poor learner by performing
a lot of computations. So, a fast poor learner like decision trees have certainly gained
from ensemble methods; although slow algorithms can also benefit from ensemble
techniques.

Recently, ensemble methods have shown promise in high-dimensional data
classification problems. In particular, bagging methods, random forests and boosting
have been particularly impressive due to their flexibility to create stronger classifiers
from weak classifiers. Here, we describe two methods: AdaBoost and Random
Forests, and show their importance in high-dimensional problems.

5.1 AdaBoost

Boosting [33, 79] is a general method which attempts to boost the accuracy of
any given learning algorithm. The inception of boosting can be traced back to a
theoretical framework for studying machine learning called the “PAC” learning
model, [91]. Kearns and Valiant [54] were among the first authors to pose the
question of whether a weak learner which is only slightly correlated with the true
classification and performs just slightly better than random guessing in the PAC
model can be boosted into an accurate strong learning algorithm that is arbitrarily
well-correlated with true classification. Schapire [79] proposed the first provable
polynomial-time boosting algorithm in 1989. A year later, Freund [32] developed a
much more efficient boosting algorithm which, although optimal in a certain sense,
nevertheless suffered from certain practical drawbacks.

Boosting encompasses a family of methods that produces a series of classifiers.
The training set used for each member of the series is chosen based on the
performance of the earlier classifier(s) in the series. Unlike other committee methods
like bagging [6], in boosting, the base classifiers are trained in sequence, and
each base classifier is trained using a weighted variant of the dataset in which the
individual weighting coefficient depends on the performance of previous classifiers.
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In particular, points that are misclassified by one of the base classifiers are given
greater weight when used to train the next classifier in the sequence. Once all the
classifiers have been trained, their predictions are then combined through a weighted
majority voting scheme.

AdaBoost, short for Adaptive Boosting, formulated by Yoav Freund and Robert
Schapire [33], solved many of the practical difficulties of earlier boosting algo-
rithms. It can be considered as classification framework that can be used in
conjunction with many other learners to improve their performance. AdaBoost is
adaptive in the sense that subsequent classifiers built are tweaked in favor of those
instances misclassified by previous classifiers. The framework provides a new weak
classifier with a form of training set that is representative of the performance of
previous classifiers. The weights of those training samples that are misclassified by
earlier weak learners are given higher values than those that are correctly classified.
This allows the new classifier to adapt to the misclassified training samples and
focus on predicting them correctly. After the training phase is complete, each
classifier is assigned a weight and their outputs are linearly combined to make
predictions on the unknown sample. Generally, it provides a significant performance
boost to weak learners that are only slightly better than random guessing. Even
classifiers with a higher error rate could also be useful as they will have negative
coefficients in the final linear combination of classifiers and hence behave like their
inverses.The precise form of the AdaBoost algorithm is described below.

Consider a binary classification problem, in which the training data comprises
input vectors x1; x2; : : : ; xN along with corresponding binary target variables given
by t where tn 2 f�1; 1g. Each data point is given an associated weighting parameter
wn, which is initially set 1/N for all data points. We assume that we have a procedure
available for training a base classifier using weighted data to give a function y.x/ 2
f�1; 1g.

• Initialize the data weighting coefficients {wn} by setting w.1/
n D 1=N for n D

1; 2; : : : ; N .
• For m D 1; : : : ; M :

(a) Fit a classifier ym.x/ to the training data by minimizing the weighted error
function

Jm D
NX

nD1

w.m/
n I.ym.xn/ ¤ tn/ (45)

where I.ym.xn/ ¤ tn/ is the indicator function and equals 1 when
(ym.xn/ ¤ tn) and 0 otherwise.

(b) Evaluate the quantities

�m D
PN

nD1 w.m/
n I.ym.xn/ ¤ tn/PN

nD1 w.m/
n

(46)
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and then use �m to evaluate

˛m D ln

�
1 � �m

�m

�
(47)

(c) Update the data weighting coefficients

w.mC1/
n D w.m/

n expf˛mI.ym.xn/ ¤ tn/g (48)

• Make predictions using the final model, which is given by:

Y
.x/

M D sign

 
MX

mD1

˛mym.x/

!
(49)

We see that the first weak learner y1.x/ is trained using weighting coefficients
w.1/

n that are all equal and hence is similar to training a single classifier. From (48),
we see that in subsequent iterations the weighting coefficients w.m/

n are increased
for data points that are misclassified and decreased for data points that are correctly
classified. Successive classifiers are therefore forced to focus on points that have
been misclassified by previous classifiers, and data points that continue to be
misclassified by successive classifiers receive even greater weight. The quantities
�m represent weighted measures of the error rates of each of the base classifiers on
the dataset. We therefore see that the weighting coefficients ˛m defined by (47) give
greater weight to more accurate classifiers when computing the overall output for
unknown samples given by (49). AdaBoost is sensitive to noisy data and outliers. In
some problems, however, it can be less susceptible to the overfitting problem than
most learning algorithms. We refer readers to [34] for a more theoretical discussion
on the performance of the AdaBoost algorithm.

Boosting framework in conjunction with several classifiers have been success-
fully applied to high-dimensional data problems. As discussed in [7] boosting
framework can be viewed as a functional gradient descent technique. This analysis
of boosting connects the method to more common optimization view of statistical
inference. Bühlmann and Yu [11] investigate one such computationally simple
variant of boosting called L2Boost, which is constructed from a functional gradient
descent algorithm with the L2-loss function. In particular, they study the algorithm
with cubic smoothing spline as the base learner and show empirically on real and
simulation datasets the effectiveness of the algorithm in high-dimensional predic-
tors. Bühlmann [10] presented an interesting review on how the boosting methods
can be useful for high-dimensional problems. He proposes that inherent variable
selection and assigning variable amount of degrees of freedom to the selected
variables by boosting algorithms could be a reason for high performance in high-
dimensional problems. Additionally, he suggests that boosting yields consistent
function approximations even when the number of predictors grow fast to infinity,
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where the underlying true function is sparse. Dettling and Bühlmann [23] applied
boosting to perform classification tasks with gene expression data. A modified
boosting framework in conjunction with decision trees that does pre-selection was
proposed and shown to yield slight to drastic improvement in performance on
several publicly available datasets.

5.2 Random Forests

Random forests are an ensemble classifier that consists of many tree-type classifiers
with each classifier being trained on a bootstrapped sample of the original training
data, and searches only across a randomly selected subset of the input variables to
determine a split (for each node). For classification, each tree in the Random Forest
casts a unit vote for the most popular class at input x. The output of the Random
Forest for an unknown sample is then determined by a majority vote of the trees.
The algorithm for inducing Random Forests was developed by Leo Breiman [8] and
can be summarized as below:

Assume the number of training samples be N , and the number of features be
given by M. Also, assume that random m number of features (m < M ) used for
decision at each split. Each tree in the Random Forest is constructed as follows:

• Choose a training set for this tree by bootstrapping the original training set n

times. The rest of the samples are used as a testing set to estimate the error of the
tree.

• For each node of the tree, the best split is based on randomly choosing m features
for each training sample and the tree is fully grown without pruning.

For prediction, a new sample is pushed down the tree. It is assigned the label of the
training sample in the terminal node it ends up in. This procedure is iterated over all
trees in the ensemble, and the class obtained from majority vote of all the trees is
reported as Random Forest prediction.

Random Forests are considered one of the most accurate classifiers and are
reported to have several advantages. Random Forests are shown to handle many
features and also assign a weight relative to their importance in classification tasks
which can be further explored for feature selection. The computational complexity
of the algorithm is reduced as the number of features used for each split is bounded
by m. Also, non-pruning of the trees also helps in reducing the computational
complexity further. Such random selection of features to build the trees also limits
the correlation among the trees thus resulting in error rates similar to those of
AdaBoost. The analysis of Random Forests shows that its computational time is
cT

p
MN log(N ) where c is a constant, T is the number of trees in the ensemble,

M is the number of features and N is the number of training samples in the dataset.
It should be noted that although Random Forests are not computationally intensive,
they require a fair amount of memory as they store an N by T matrix in memory.
Also, Random Forests have sometimes been shown to overfit to the data in some
classification problems.
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Random Forests, due to the aforementioned advantages, can handle high-
dimensional data by building a large number of trees using only a subset of
features. This combined with the fact that the random selection of features for a
split seeks to minimize the correlation between the trees in the ensemble, certainly
helps in building an ensemble classifier with high generalization accuracy for high-
dimensional data problems. Gislason et al. [38] performed a comparative study
among Random Forests and other well-known ensemble methods for multisource
remote sensing and geographic data. They show that Random Forests outperform
a single CART classifier and perform on par with other ensemble methods like
bagging and boosting. On a related remote sensing application, Pal [67] investigated
the use of Random Forests for classification tasks and compared their performance
with SVM. Pal showed that Random Forests perform equally well to SVM in terms
of classification accuracy and training time. Additionally, Pal concludes that the
user-defined parameters in Random Forests are less than those required for SVM.
Pang et al. [70] proposed a pathway-based classification and regression method
using Random Forests to analyze gene expression data. The proposed method
allows to rank important pathways, discover important genes and find pathway-
based outlying cases. Random Forests, in comparison with other machine learning
algorithms, were shown to have either lower or second-lowest classification error
rates. Recently, Genuer et al. [37] used Random Forests to perform feature selection
as well. The authors propose a strategy involving ranking of the explanatory
variables using the Random Forests score of importance.

6 Software Packages

We briefly describe some publicly available resources that have implemented the
methods discussed here. These packages are available in several programming
languages including Java, Matlab and R softwares. LibSVM [14] is an integrated
software that implements SVM and offers several extensions to Java, C++, Python,
R and Matlab. Weka [43] is a collection of machine learning algorithms for data
mining tasks implemented in Java. It contains methods to perform classification as
well as feature selection on high-dimensional datasets. The FSelector package in R
language offers several algorithms to perform filter, wrapper and embedded feature
selection. Several packages are also available to perform regularization. Glmnet for
Matlab1 solves for regularized paths in Generalized Linear models while Lasso22

and LARS3 packages provide similar algorithms in R language. Random Forests and
AdaBoost algorithms are also available via randomForest4 and adabag5 packages in
R language.

1http://www-stat.stanford.edu/~tibs/glmnet-matlab/.
2http://cran.r-project.org/web/packages/lasso2/index.html.
3http://cran.r-project.org/web/packages/lars/index.html.
4http://cran.r-project.org/web/packages/randomForest/index.html.
5http://cran.r-project.org/web/packages/adabag/index.html.

http://www-stat.stanford.edu/~tibs/glmnet-matlab/
http://cran.r-project.org/web/packages/lasso2/index.html
http://cran.r-project.org/web/packages/lars/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/adabag/index.html
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7 Concluding Remarks

We have presented several classification problems for high-dimensional data prob-
lems. Several researchers have focused on extended the traditional algorithms like
LDA and Logistic Regression in the context of high-dimensional data settings.
Though some success is seen on this front, recently, the focus has shifted to applying
regularization techniques and ensemble type methods to make more accurate
predictions. Though the progress made so far is encouraging, we believe that high-
dimensional data classification would continue to be an active area of research as
the technological innovations continue to evolve and become more effective.
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