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Preface

This book is a collection of papers written for the International Workshop Clusters,
orders, trees: Methods and applications on the occasion of the 70th Anniversary
of Boris Mirkin, Professor at National Research University Higher School of
Economics (NRU HSE), Moscow Russia, and Birkbeck College University of
London, UK, which was held in NRU HSE Moscow, 12 and 13 December 2012,
with the following schedule.

12 December 2012
11.00–11.20 Opening
11.20–12.00 Fuad Aleskerov (NRU HSE, Moscow, Russia). Interval orders,

semiorders, and their numerical representation.
12.00–12.30 Katya Chernyak (NRU HSE, Moscow, Russia). Scoring extent of

similarity between a string and text using suffix tress: method and applications.
12.30–13.00 Yulia Veselova (NRU HSE, Moscow, Russia).The manipulability

index in the IANC model.
13.00–15.00 Break
15.00–15.40 Fred Roberts (Rutgers University, NJ, USA). Meaningless state-

ments in landscape ecology and sustainable environments.
15.40–16.20 Vladimir Makarenkov (Université de Québec, Montréal, Canada).

Building trees encompassing horizontal transfer events: applications in evolution
and linguistics.

16.20–16.50 Break
16.50–17.30 Trevor Fenner (University of London, UK). Lifting algorithm in a

tree and its applications.
17.30–18.00 Andrey Shestakov (NRU HSE, Moscow, Russia). Least squares

consensus clustering.
13 December
11.00–11.40 Valery Kalyagin (NRU HSE, Nizhniy Novgorod, Russia). Mining

market data: Russian stock market.

v
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11.40–12.20 Sergei Archangelski, Ilya Muchnik (Rutgers University, NJ, USA).
Clustering in registration of 3D point clouds.

12.20–13.00 Ito Wasito (University of Indonesia). Least-squares imputation of
missing data entries.

13.00–14.30 Break
14.30–15.10 Panos Pardalos (University of Florida, USA). High dimensional

data classification.
15.10–15.50 Fred McMorris (IIT, Chicago, USA). The majority decision func-

tion on median semilattices.
15.50–16.10 Break
16.10–16.50 Susana Nascimento (Universidade Nova de Lisboa, Portugal). Data

recovery fuzzy clustering: proportional membership and additive spectral methods.
16.50–17.30 Boris Goldengorin (NRU HSE, Moscow, Russia). Mixed tools for

market analysis and their applications
This workshop has reflected some past and present Boris Mirkin’s research

activities. Boris Mirkin has contributed to the development of all three concepts
with outstanding contributions.

In clustering, among others are

1. deriving and using distance between partitions (1969, in Russian) predating the
popular Rand index (1971) which is the complement of Mirkin’s distance to
unity,

2. proposing the so-called qualitative fuzzy analysis model and methods (1976, in
Russian) which includes the popular additive clustering model by Shepard and
Arabie (1979) and an effective one-by-one approach for identifying it, and

3. principal cluster analysis model and method (1987, in Russian) later converted
by him into the Separate-and-Conquer strategy (1998) and then to Anomalous
Pattern clustering and Intelligent K-Means methods (2005).

A joint paper by R. Amorim and B. Mirkin in this volume relates to a further
extension of the latter approach to Minkowski distances and weighted variables.
A joint paper by Mirkin and Shestakov shows how effective can be an approach
to consensus clustering outlined by B. Mirkin and I. Muchnik back in 1981 (in
Russian), in comparison to recent approaches.

In ordering, among others are:

1. a characterization of the interval orders as those irreflexive relations whose
images are linearly ordered over settheoretic inclusion (1969, in Russian), and

2. extension of the Arrow consensus between rankings approach to equivalence
relations (1971) and then any relations (1973, in Russian, 1979 in English), and
using Arrow axioms for characterization of what he, and then the others, calls
federation consensus rules (1979, in Russian).
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In trees, among others are:

1. a biologically meaningful mapping of gene phylogenetic trees onto a species
evolutionary tree (Mirkin–Muchnik–Smith model 1995) and

2. split vector bases corresponding to binary hierarchies (1996).

A paper by K. Chernyak and B. Mirkin describes further developments in text
analysis based on the usage of two tree-related concepts, suffix tree, and taxonomy.
It should be pointed out that the concepts of cluster, order, and tree are in the core
of all efforts in data analysis, and these are to remain in the core for the foreseeable
future, because they are in the core of any structuring attempts.

Of course, no real-world application can be developed without measuring
features and relations, and B. Mirkin has contributed to this, as well.

Examples include:

1. matrix-based correlation and association measures in the space of mixed scale
variables (1982, in Russian) and

2. least-squares methodology for imputation of missing values. Several papers in
this volume can be attributed to this direction.

Accordingly, we divided all the contributions in three sections:

(a) classification and cluster,
(b) order and tree, and
(c) measurement.

In addition to Boris Mirkin’s startling Ph.D. results in mathematical logic and
algebra, Mirkin’s groundbreaking contributions in various fields of decision-making
theory and practice have marked the fourth quarter of the twentieth century and
beyond. Boris has done pioneering work in group choice, mathematical psychology,
clustering, data mining and knowledge discovery which are activities oriented
towards finding nontrivial or hidden patterns in data collected in databases. Boris
Mirkin has published several books, such as: The Group Choice Problem (in
Russian, 1974), Analysis of Quality Indicators (in Russian, 1976), Graphs and
Genes (in Russian, co-authored with S.N. Rodin, 1977), Group Choice (Wiley-
Interscience, 1979), Analysis of Quality Indicators and Structures (in Russian,
1976), Graphs and Genes (Springer, co-authored with S.N. Rodin, 1984), Clusters
in Social- Economics Research (in Russian, 1985), Mathematical Classification and
Clustering (Kluwer, 1996), Clustering for Data Mining: A Data Recovery Approach
(Chapman and Hall/CRC, 2005; Second Edition, 2012), Core Concepts in Data
Analysis: Summarization, Correlation and Visualization (Undergraduate Topics in
Computer Science) (Springer, 2011).

Our special thanks to all reviewers who made a crucial contribution to the
scheduled production of this volume. Here we would like to list all of them: Fyad
Aleskerov, Rozenn Dahyot, Anuška Ferligoj, Boris Goldengorin, Dmitry Ignatov,
Friedrich Leisch, Vladimir Makarenkov, Boris Mirkin, Sergei Obiedkov, Panos M.
Pardalos, Niel J le Roux, and Yulia Veselova.
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This volume contains the collection of papers reflecting many developments
in theory and applications rooted by Boris’ fundamental contribution to the state
of the art in group choice, mathematical psychology, clustering, data mining, and
knowledge discovery. Researches, students, and engineers will benefit from new
knowledge discovery techniques.

Moscow, Russia Fuad Aleskerov
Groningen, The Netherlands Boris Goldengorin
Gainesville, FL, USA Panos M. Pardalos
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Three and One Questions to Dr. B. Mirkin
About Complexity Statistics

Igor Mandel

Abstract I share my personal thoughts about Boris Mirkin and, as a witness of
his long-term development in data analysis (especially in the area of classification),
pose several questions about the future in this area. They are: about mutual treatment
of the variables, variation of which has very different practical importance; relation-
ship between internal classification criteria and external goals of data analysis; and
dubious role of the distance in clustering in the light of the last results about metrics
in high dimensional space. The key question: the perspective of the “complexity
statistics,” similarly to “complexity economics.”

Keywords Data analysis • Classification • Clustering • Distances
• Complexity • Sociosystemics

: : : animals can be divided into (a) those belonging to the Emperor, (b) those that are
embalmed, (c) those that are tame, (d) pigs, (e) sirens, (f) imaginary animals, (g) wild dogs,
(h) those included in this classification, (i) those that are crazy acting (j), those that are
uncountable (k) those painted with the finest brush made of camel hair, (l) miscellaneous,
(m) those which have just broken a vase, and (n) those which, from a distance, look like
flies. J.L. Borges “The Analytical Language of John Wilkins” (translated by W. Fitzgerald),
1952.

All Job Types: Biotech; Construction; Customer Service; Executive; Entry Level –New
Grads; Inventory. Fragment of the list from the leading job searching website Careerbuilder.
com, 2013.

The famous Borges’ classification of animals is far from being just a sharp parody
on a pseudo-science—it is a reality in many situations all over the place. In a
small example in a second epigraph, at least four foundations are used to describe
jobs—by industry (Biotech, Construction), by specific human activity in any

I. Mandel (�)
Telmar Group Inc., 711 Third Avenue, New York, NY 10017, USA
e-mail: imandel@telmar.com

F. Aleskerov et al. (eds.), Clusters, Orders, and Trees: Methods and Applications:
In Honor of Boris Mirkin’s 70th Birthday, Springer Optimization and Its Applications 92,
DOI 10.1007/978-1-4939-0742-7__1, © Springer ScienceCBusiness Media New York 2014
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2 I. Mandel

industry (Customer Service, Executive); by education (Entry Level—New Grads),
and by production function in any industry (Inventory). At a first glance, such a
classification looks absurd and non-mutually exclusive (while mutual exclusivity
is what everybody expects from the very term “classification”). Executive could
be anywhere, and what Finance CEO should look for: his peer Executives in any
branch, or specific position in Finance? But on the other hand, the website has
existed for many years, it is very popular, and no one seems to care about such
obvious inconsistencies. It tells a lot about human ability to work in an uncertain
situation—the fact confirmed many times in modern psychology. In particular, this
feature, together with others, undermines the whole concept of the human rationality
(assumed in Homo Economicus from the classical economics). Classification theory
assumes that some dividing lines exist and the problem is how to detect them.
Reality asserts that these lines are almost always illusionary and/or imaginary.

Boris Mirkin has been thinking about this dilemma for the last 45 years to the
admiration of many observers, myself included. For these reasons it is a good time to
ask the main character of the book some questions about the activity, which excites
him for such a long time—presumably, if he knows the answers, it could be a nice
present because it would raise his self-esteem, but if he doesn’t—it would be even
a better present, because what could be more valuable for the real scholar than new
questions? But before I get to the questions, I would make a short introduction of
the addressee as I see him.

1 Three Constants in Boris Mirkin’s Life

In 1974, after having been discharged from the Army, I was happy to come back to
normal life, which meant to me to do something about “pattern recognition,” as was
a popular way to refer to the field at that time. I intensively and un-systematically
read on the subject what I could find in Alma-Ata, the capital of Kazakhstan, wrote
letters to some especially interesting to me specialists and, in the end, decided to go
to Novosibirsk Academgorodok to visit Dr. B. Rozin who was very active in this
area. While walking by the Institute of Economics there with my friend, we noticed
an office in which a certain Head of Lab Dr. B. Mirkin was sitting, according to the
plaque. This name did click in my memory (I had read his first book already). So we
knocked at the door. A joyful and smiling, rather young person stepped up and asked
something like, “How can I help you?” (now I caught myself thinking that his look
practically hadn’t changed in all these years : : : ). A smile bordering with a pleasing
laugh and readiness to talk to strangers at a workplace were not quite common at
that time in Russia (it seems still are not). We smiled and laughed in response. Then
in a one hour-long conversation we learned a lot of things about each other without
any particular purpose, as it does happen in Russia—certain patterns, maybe, were
just recognized. So, this is how it started.

Since that time we never lived in the same geographical area, but somehow
often met in Moscow, Alma-Ata, Yalta, Kiev, Paris, Rochester (NY), New York,
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Princeton, Highland Park (NJ), Washington DC, London (and Moscow again just in
2012!). Boris wholeheartedly supported my book [1] and wrote a nice introduction
to it; we published a review of current clustering approaches in the beginning of
1990s; and we discussed tens of topics in the course of all these years on the phone
and Skype and so on.

The best way to learn something about someone’s personality is to observe
what he or she is doing when circumstances are changed. Most people follow the
mainstream, with all its twists. Yet some follow their goals regardless of these
fluctuations. As long as I know Boris, he belongs to the minority. He had changed
a dozen positions in five to six countries in the turbulent times from the end of the
1980s, but one thing remained constant—he worked and reflected his work in his
books. From the first one, “Group Choice” (1974, in Russian), which elevated him
to the top of the analytical community and triggered our meeting, to the latest one
“Clustering” (2012)—he always wrote books (I do not know how many—my lower
estimate is ten). Of course, he wrote many tens of articles as well, but his passion to
write books seems to me unprecedented. I vividly remember how much it cost me
to write just one and can imagine what it is to have ten, on different topics, of the
very high quality, highly original, and almost all as a single author. One may expect
that a person capable of doing that is a kind of gloomy scientist thinking only about
writing mandatory number of pages per day and will be way off.

In fact, all our talks started and ended with jokes and laughing, which seems to be
the second constant element in Boris’ life. He has not only permanently produced
jokes himself, but vividly reacted to those of others. It was the main reason why
most of our scientific discussions quickly went in an unpredictable direction, and
ultimately the original topic could disappear entirely (but new ones emerged). As a
result, we published only one joint work, while another one is still buried under a
pile of jokes for the past 5 years.

The third, and the most surprising constant, is Boris’ tolerance. Since we both
live in the so-called interesting times, what the Chinese wish for their enemies, I
could expect to hear extreme opinions and complaints, from the left, the right, the
top, and the bottom—and I did hear much of them indeed. But never from Boris.
His tolerance was not only towards the politics, but in fact towards everything; his
belief in a good side of the human nature, I’m sure, is a key in helping him to
overcome many troubles and to keep his first and second constants (i.e., writing
and laughing) alive. A wonderful painting by Alexander Makhov hangs on the wall
in Boris’ Moscow apartment—a big fish is spasmodically bent at the beach in the
attempt to get off the hook from the fishing line. I definitely saw it as a symbol of
tragedy and torture—but Boris suddenly said that he bought it because he sees there
the unshakable will to struggle for life. And I agreed that this interpretation was also
possible—actually, might be the only one possible.

Knowing the constants of Boris’ life, I can ask questions and easily predict Boris’
reaction: he would either write a book about the problems, to the pleasure of myself
and others; or he would laugh at them, leaving me bewildered; or he would display
a tolerant view, following the principle, “let baby play with whatever he wants.” So,
encouraged by these predictable options, I came up with my questions.
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2 Questions About Clustering and More

1. Classify or not? Any classification is very tricky, even for one-dimensional data.
Where is the borderline between low and middle incomes, between high and very
high intelligence, and so on? Where does the idea of “discontinuity” start and the
idea of “qualitative difference” end? Can we think that, if data are generated from
one source, which has a perfect (say, normal) distribution (an almost impossible
situation, at least in my practice), they are homogeneous and need no further
division? Many would say, “yes” (the whole logic of kernels approaches in
clustering is based on that idea). But let us assume that we have two normal
variables of that type—one of the results of measuring of the length of the pen,
and another of people’s height. In the first case, the standard deviation could be a
fraction of a percent of the “real length”; in the second—about 20 cm of the true
average height of 170 cm. Why is it intuitively clear that data in the first case are
completely homogeneous and describe certain phenomenon with high precision
(no one will be interested in the separation of the two tales of the distribution),
but in the second case data are heterogeneous, and we do need separate people
of 210 cm in height and more from those whose height is less than 120 cm?

Formally, these two cases are identical, and any density-like procedures
would treat them, respectively (either trimming the data to, say, one standard
deviation interval or leave as it is, since it is proven that they belong to the same
distribution). Statisticians do not relate the standard deviation to the average
levels—these, indeed, are two independent parameters, and why should we
care about their relationship (moreover, when the average is close to zero or
negative, the ratio does not exist). But our common sense and real practical
needs tell something opposite—variation in relation to the average (something
like coefficient of variation) does matter.

Question one: can we formally and substantively distinguish these situations
in clustering, especially remembering that data standardization usually makes all
the standard deviations equal? Can we legitimately say that variables, like length
in the above example, are to be excluded from analysis?

2. Classification and the final goal. On a more fundamental level, any formal
classification, like ones produced in cluster analysis, actually have only
“intermediate” value, dependent on the type of a problem to be solved, no
matter what internal criteria were used in clustering. I found in the literature
about 50 different optimization criteria in clustering in 1980s [1]; now, I’m sure,
there are many more. But anyway, each classification has just an intermediate
value, and the ultimate goal of the process where clustering is just a part having
usually no relation to the internal criteria used.

Let’s take, for example, the celebrated K-means procedures, proposed in
1957–1967 by several authors, which were a topic of B. Mirkin’s studies in
many publications. They are included virtually in all statistical packages and
are by far the most popular among clustering algorithms. The idea is to break
multidimensional data into K clusters in such a way that the squared sum of
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deviations from the cluster centers is minimized. Since it is an NP-hard problem,
many heuristic algorithms were proposed and used. Let’s say one uses this type
of procedure to group the data for so-called market segmentation, which is a
typical problem in marketing.

To make it more concrete, a researcher collects data from about 20,000
respondents who answered couple of tens of “attitudinal” questions like: (a) “I try
to eat a healthy breakfast every day” (the answer 5 means “completely agree with
this statement”, 1—completely disagree, and 2–4 are in the middle); (b) “I enjoy
being creative in the kitchen”; (c) “I often eat my meals on the run”, etc. The
aim of a targeting campaign is to sell cereals ZZZ. The purpose of clustering is
to break potential customers into five groups where they supposedly have similar
attitudes and then target the groups differently, i.e. ultimately apply five different
marketing strategies. For example, if cluster 1 has all 5s for questions (a) and
(b)—they will get the special offer, stressing the importance of ZZZ for healthy
breakfast and enormous number of creative ways to combine ZZZ with every-
thing in a fridge; if in cluster 2 all 5s will be for questions (a) and (c)—the mes-
sage would be that it is extremely easy to take the healthiest cereals in the world,
ZZZ, and eat it on the run, and so on. I deliberately left behind all the questions
related to clustering per se here (why 5, not 4 clusters; how far the solution is
from the global optimum; how beneficial is the fact that we don’t need variables
normalization, etc.). Let’s focus just on one issue: what is the relation between
this obtained cluster solution and the final goal of the marketing campaign?

Let us assume, there is a certain (unknown) function linking answers to these
questions with probability to buy ZZZ if respondent got the advertising: the
probability to buy ZZZ for these with answers 5 for (a) is P(5a); for answers 5
for (b) is P(5b), and so on, like P(4a), P(4b) : : : . Combination of answers, like
(a)D 5 and (b)D 3 also create some kind of unknown probability to buy the
product. Ultimately, what marketer needs is to redistribute her limited budget
between particular strategies in such a way that probability of buying ZZZ for
entire set of potential customers is maximized. They should be then broken into
several groups or not broken at all—it may very well be that one strategy may be
the best in terms of obtained buying rate per dollar spent. The problem then is:
how clustering solution should be formulated in order to meet this external goal.

It is quite clear that K-means minimization has in fact almost nothing to do
with it. Probability functions associated with respondents within each cluster
can vary wildly regardless of how close objects in cluster are to each other
(unless they are all identical). But what kind of relations between the objective
function and variables to be used in clustering should exist in order to solve
the final, not intermediate problem? In its simplest form, the problem could
be presented like that: one has N covariates of X type (independent) and one
variable of Y type (dependent). One can estimate the relations between Y and
X either on the whole data, or in each cluster (maybe, just via regression). What
are the clustering procedures (or strategies) such that the total gain of these two
processes (classification and regression estimation) is maximized?



6 I. Mandel

Similar problems have been handled for a long time via piece-wise data
approximation procedures and even piece-wise mixed models, where instead of
using pre-defined groups, the group membership has to be estimated from the
data. I discussed in [1] the so-called intentional statistical analysis—a general
way to make statistical procedures, including clustering, oriented to the final
goal, which is usually expressed in monetary or other non-statistical terms. The
main idea was to reorganize data in such a way that this external goal is met.
It can easily happen that to reach a goal we don’t even need a whole data set
(keep aside to cluster all data), as it happened in campaigns targeting only the
first percentile of the population ordered by their propensity to respond to the
advertisement. It seems this problem did not lose its importance.

For example, the authors of “Goal oriented clustering” [2] did not use any
clustering logic, but just made certain groups in order to teach a system to make
better prediction (actually making better fitting functions) in each group. Thus
information like distance between objects in X space is not in use at all. Would
it become a common rule? Should we proceed in this way, which is a very big
departure from the classic clustering, but very close to intentional analytics? It
seems plausible because, as mentioned, ultimately any classification is to be used
not for the sake of classification, but for something else in the future. And this
future is “closer than it may appear,” especially in our time of Big Brother with
Big Data on Big Computers. In [2] the goal was to deliver ads immediately—so,
the problem was not about how close objects are to each other in the groups, but
how to obtain any “lift” (in monetary sense) versus traditional clustering and/or
random distribution.

Question two: is there a way to merge clustering goals with external goals? Or
has one to go directly into external criteria not even considering classic clustering
anymore?

3. Clustering in a high-dimensional space. In seminal work [3], it was proven
that the relative difference between maximal and minimal distances goes to one
when the dimensionality rises, regardless on the number of observed data points
and metric used. This fundamental result was later explored under different
angles [4, 5], where some deviations were found (like the one stating that
for Manhattan metric the absolute difference between maximal and minimal
distances is increasing, etc.), but it doesn’t shake the main point—the higher
dimension, the less meaningful any distance based clustering is (surprisingly, as
experiments show, the effects of non-distinguishability starts at dimensionality
(D) as low as 15–20, which is nothing in comparison with some modern problems
where D can be 100 or even 1,000).

It poses an interesting question: why does our intuitively clear perception of
“closeness” via distance between objects work extremely well in the familiar
three dimensions; work presumably well in somewhat higher dimensions, but
does not work at all when D goes big? Does it mean that intuition is wrong and
thus even in small dimensions we miss something by relying on distances—or
that high dimensions bear something, which cannot be captured by the concept of
distance, not just for purely technical reasons (for in high dimensions the degree
of sparseness of objects precludes any possibility of these to form clusters)?
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It seems that both explanations somehow work. The intuition of the distance
goes back to the evolutionary trait of distinguishing food and dangers and
definitely has a vital value for humans and other living creatures. But it was
developed in the real three-dimensional space, not anywhere else, where all three
dimensions are perfectly comparable (not necessarily always equally important).
Any mathematical extension beyond this familiar physical world, however
attractive it may be, could have little relation to reality—just because we have no
way of saying what the “reality” in 100 dimensions is.

By the same token, even if the dimensionality is low, but we try to apply some
rigor principles to formulate what we exactly need from the procedure—we
face some unsolvable difficulties. It is not a coincidence that no one gave the
exact definition of cluster, and all attempts to make definitions “axiomatic” only
resulted in some “impossibility” statements. One of the first of such results was a
theorem by A. Shustorovich (back in 1977, see [1]) about impossibility to create a
distance metric satisfying certain logical criteria. One of the recent findings is the
theorem by J. Kleinberg about the impossibility of finding a clustering solution
satisfying three very logical conditions related to distances [6]. These statements
do not depend on dimensionality, but a controversy is apparently embedded in the
process of translating intuition into a formal mathematical system. Besides, the
irony of any distance calculation in real applications is that here the researcher “in
one shot” apparently “solves” the problem, which otherwise would take months:
usually, the main scientific goal requires to understand which variables are
related to others and this may take a lot of time; here, one takes tens of variables
and simply calculates the distance metric—and goes ahead. In the light of that
the alternative methods of classification—which do not combine many variables
in a single metric—should come forth (and they, of course, started to appear [7]).

Question three: should we correct our typical understanding of clustering
procedures given intrinsic flaws in the concept of distance? Should we move
to completely distance-free algorithms? Or should we continue using distances
as usual in small-dimensional problems and not in high-dimensional (and if
children would ask “Why?” reply “Because”)?

Methodologically, the current situation in clustering (and, more broadly, in
statistics in general) reminds me the situation in modern economics. Historically,
the ideas of perfect rationality, equilibrium, self-interest as the only moving force of
human behavior, invisible hands of markets, and so on, were so intuitively attractive
that played a pivotal role in economics for more than a 100 years. The wonderful
theorems were proven, many Nobel Prizes were awarded, and even impossibility
theorems like famous ones by K. Arrow did not shake the beautiful building of
economics, but just generated a bunch of relaxations and different bypasses. The
only thing which undermined its foundation was the stubborn resistance of reality to
follow these equations. Remarkably, as was brilliantly shown by P. Mirovski [8], the
whole set of concepts in the economics theory was in fact borrowed from physics—
but one of the nineteenth century, without the revolution of twentieth. That is,
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analogously to clustering, the main metaphor came from the same source—physical
intuition—but didn’t work well, remaining just a metaphor, not a really working
tool.

Only in the last couple of decades, economics slowly started to change. An
image of “complexity economics,” which captures the deep evolutionary nature of
human interactions, emerged [9, 10]. It considers the entire corpus of knowledge
about human behavior, economic experiments, agent-based modeling, chaos and
catastrophe theories, self-criticality, and other things to capture the evolution driven
process. In [11] I proposed the term Sociosystemics for the science which would
be adequate to reflect these principal changes in our perception of the human
relationships (not only those economic ones). This science should cover any socially
related issues as an integral whole and require particular approaches to be changed
as well.

Is not time come for creation of the “complexity statistics?” And for recon-
sidering many traditional concepts, such as i.i.d. (because no independent and
identically distributed variables actually exist—at least in social life); distance
between objects (for all the reasons mentioned); Fisherian theory of the testing of
statistical hypotheses (for immense volume of cumulated critiques [12]) and so on?
Many of these questions were discussed in [11], where one can find the references.

Does Dr. Mirkin agree with that view? It is my last but a Big Question. If yes—
there is a hope that all other questions could be resolved as well. The final goal as
a driving tool for classification should prevail; question about acceptable and non-
acceptable variation in the data will be automatically resolved (via this final goal),
and dimensionality curse will be removed thanks to other types of algorithms. Is it
not a wonderful subject for a new book?
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A Polynomial Algorithm for a Class of 0–1
Fractional Programming Problems Involving
Composite Functions, with an Application
to Additive Clustering

Pierre Hansen and Christophe Meyer

Abstract We derive conditions on the functions ', �, v and w such that the 0–1
fractional programming problem max

x2f0I1gn
'ıv.x/

�ıw.x/
can be solved in polynomial time by

enumerating the breakpoints of the piecewise linear function ˆ.�/ D max
x2f0I1gn

v.x/�
�w.x/ on Œ0IC1/. In particular we show that when ' is convex and increasing, �

is concave, increasing and strictly positive, v and �w are supermodular and either v
or w has a monotonicity property, then the 0–1 fractional programming problem can
be solved in polynomial time in essentially the same time complexity than to solve
the fractional programming problem max

x2f0I1gn
v.x/

w.x/
, and this even if ' and � are non-

rational functions provided that it is possible to compare efficiently the value of the
objective function at two given points of f0I 1gn. We apply this result to show that a
0–1 fractional programming problem arising in additive clustering can be solved in
polynomial time.

Keywords 0–1 fractional programming • Submodular function • Polynomial
algorithm • Composite functions • Additive clustering

1 Introduction

We consider the following 0–1 composite fractional programming problem

.CFP / max
x2Bn

' ı v.x/

� ı w.x/
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where Bn D f0I 1gn, ' and � are functions from R to R and v and w are functions
from Bn to R.

In order for the problem (CFP) to be well-defined, we must assume that � ı
w.x/ ¤ 0 for all x 2 Bn. Actually we will make a stronger assumption and assume
that � is of constant sign on the convex hull conv .w .Bn// of the image of Bn by w
(we will see later that there is little hope to obtain a polynomial algorithm to solve
the problem (CFP) when � ı w.x/ can assume both positive and negative values on
Bn). More precisely we assume that:

(C1) � is strictly positive on conv .w .Bn//.

Since the aim of this paper is to identify polynomial instances of problem (CFP),
a natural assumption is:

(C2) evaluation and comparison of the value of the objective function 'ıv
�ıw can be

done in polynomial time for any two points x and x0 of Bn.

We also need to assume that v and w are rational functions. By redefining ' and � if
necessary, we assume that

(C3) v and w take integral values on Bn.

We explore a solution approach for problem (CFP) that consists in two steps: first
we reduce problem (CFP) to the problem of computing a set of points XC � Bn

that define the slopes of the piecewise linear function ˆ.�/ D max
x2Bn

v.x/��w.x/ on

Œ0IC1/; then we consider the problem of computing in an efficient way the set XC.
We show that the reduction step is valid if one of the following sets of assumptions
is satisfied:

(C4) there exists x 2 Bn such that .' ı v/.x/ � 0;
(C5) ' and � are increasing;
(C6) ' and �� are convex;

or:

(C4’) .' ı v/.x/ < 0 for all x 2 Bn;
(C5’) ' and �� are increasing;
(C6’) ' and � are convex.

Actually we will derive a weaker condition than (C6) and (C6’), but this weaker
condition is difficult to exploit as it is expressed in terms of the elements of the set
XC. This weaker condition is implied by (C6) and (C6’).

In order for our algorithm to run in polynomial time, we must be able to
enumerate in polynomial time the breakpoints of the function ˆ. The only nontrivial
class of functions that we know for which this can be done in polynomial time
is related to the concept of supermodularity. Let us introduce this last set of
assumptions:

(C7) v and �w are supermodular on Bn;
(C8) one of the following conditions is satisfied:
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(C8a) v or w takes a polynomial number of distinct values on Bn;
(C8b) v and w are both linear;
(C8c) v or w is monotone and the application x 7! .v.x/; w.x// is weakly

bijective on Bn.

The definitions of supermodularity, monotonicity and weak bijection can be found in
Sect. 2.1.1. Note that since the opposite of a submodular function is a supermodular
function, we could have expressed some of the above assumptions in different equiv-
alent ways. For example, the assumption (“' is increasing and v is supermodular”)
is equivalent to the assumption (“' is decreasing and v is submodular”).

Let T .n/ be the time to compute the set XC and U.n/ be the time to evaluate
and compare the value of the objective function at two given points x and x0 of Bn.
The main results of this paper are:

Theorem 1. If the conditions (C1)–(C8) are satisfied, then problem (CFP) can be
solved in polynomial time O

�
T .n/C jXCjU.n/

�
.

Theorem 2. If the conditions (C1)–(C3), (C4’)–(C6’), (C7) and (C8) are satisfied,
then problem (CFP) can be solved in polynomial time O

�
T .n/C jXCjU.n/

�
.

By polynomial time, we mean a running time that is polynomial in n and in

the size of the number M D max

�
max
x2Bn

jv.x/j; max
x2Bn

jw.x/j; max
x2Bn

j.' ı v/.x/j; max
x2Bn

j.� ı w/.x/j
�

.

The remaining of this paper is organized as follows. In Sect. 2 we collect several
definitions, facts and results from the literature that are pertinent for our work:
the concept of supermodularity is reviewed in Sect. 2.1; Sect. 2.2 is devoted to the
minimum cut problem (with non-negative capacities) and to problems reducible to
it. In Sect. 2.3 we review in more detail the fractional programming problem with
particular emphasis on the so-called Dinkelbach’s algorithm.

Section 3 is the main part of this paper. We start by defining more precisely
the new algorithm in Sect. 3.1. In Sect. 3.2 we present an algorithm to compute the
set XC and identify sufficient conditions on the functions v and w that guarantee
that this algorithm runs in polynomial time. In Sect. 3.3 we determine conditions on
the functions ' and � that guarantee that the set XC computed by the breakpoint
enumeration algorithm of Sect. 3.2 actually contains at least one optimal solution of
problem (CFP). Putting together the results of the two previous subsections, we then
prove Theorems 1 and 2 in Sect. 3.4, where we also discuss the complexity time of
the resulting algorithms.

In Sect. 4 we show how our method can be used to derive a polynomial algorithm
for a problem arising in additive clustering.

Extensions of our results to minimization problems, maximization of product of
composite functions and constrained problems are discussed in Sect. 5, before we
conclude in Sect. 6.
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2 Definitions and Related Works

2.1 Supermodularity

2.1.1 Definitions

A function f is supermodular over Bn if

f .x ^ y/C f .x _ y/ � f .x/C f .y/ 8x; y 2 Bn (1)

where x ^ y is the binary vector whose i th component is the minimum between
xi and yi , and x _ y is the binary vector whose i th component is the maximum
between xi and yi .

A function f is submodular if �f is supermodular. A function that is both
submodular and supermodular is modular. Alternate equivalent definitions exist for
super- and submodularity, see, e.g., Nemhauser and Wolsey [41].

For any two vectors x and y of Rn we write x � y if and only if xi � yi for
i D 1; : : : ; n, and x < y if and only if xi � yi for i D 1; : : : ; n and x ¤ y.
We define similarly the notations x � y and x > y. If neither x � y nor x � y

holds we say that x and y are not comparable. Following Topkis [54], a function
f .x/ from a partially ordered set X to R is increasing (resp. decreasing) if x �
y in X implies f .x/ � f .y/ (resp. f .x/ � f .y/). A function f is monotone
if it is either increasing or decreasing. A function f .x/ from a partially ordered
set X to R is strictly increasing (resp. strictly decreasing) if x < y in X implies
f .x/ < f .y/ (resp. f .x/ > f .y/). In this paper the set X will be either Bn D
f0I 1gn (a partially ordered set that is not totally ordered) or R (a partially ordered
set that is totally ordered). It is common in lattice theory literature (Topkis [54]) to
use the terms isotone and antitone rather than “increasing” and “decreasing” for a
partially ordered set that is not a totally ordered set, but the latter are used herein
in order to have a more uniform terminology between the partially ordered set Bn

and the totally ordered set R. Although we use only functions with value in a totally
ordered set (R or N), in order to be consistent with Topkis [54] we avoid in this
paper the use of the terms “nonincreasing” and “nondecreasing”; in particular the
terms “increasing,” “decreasing,” “strictly increasing” and “strictly decreasing” used
in this paper correspond to what may be called “nondecreasing,” “nonincreasing,”
“increasing” and “decreasing” elsewhere.

Finally we say that the application x 7! .v.x/; w.x// is weakly bijective if for all
x; x0 2 Bn,

.v.x/; w.x// D �v.x0/; w.x0/
� ) x D x0 or x and x0 are not comparable:
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2.1.2 Mathematical Results

The following result, which states some conditions on two functions such that their
composition is supermodular or submodular, is due to Topkis [53].

Proposition 1. Let g be a function defined on Bn, and f be a function defined on
conv .g .Bn//, where conv .g .Bn// denotes the convex hull of the image of set Bn

by g.

a) If f is convex and increasing on conv .g .Bn// and g is supermodular and
monotone on Bn, then f ı g is supermodular on Bn.

b) If f is convex and decreasing on conv .g .Bn// and g is submodular and
monotone on Bn, then f ı g is supermodular on Bn.

c) If f is concave and decreasing on conv .g .Bn// and g is supermodular and
monotone on Bn, then f ı g is submodular on Bn.

d) If f is concave and increasing on conv .g .Bn// and g is submodular and
monotone on Bn, then f ı g is submodular on Bn.

Proof. We only prove a) since the proof for the other assertions is similar. Let x; y

be two elements of Bn. By definition of the operators ^ and _, we have x ^ y �
y � x _ y. Since g is increasing or decreasing, we thus have

g.x ^ y/ � g.y/ � g.x _ y/

or

g.x _ y/ � g.y/ � g.x ^ y/:

In both cases there exists t 2 Œ0I 1� such that

g.y/ D tg.x ^ y/C .1 � t/g.x _ y/: (2)

On the other hand, since g is supermodular and by (2)

g.x/ � g.x ^ y/C g.x _ y/ � g.y/ D tg.x _ y/C .1 � t/g.x ^ y/:

Since f is increasing it follows that

f
�
g.x/

�
� f

�
tg.x _ y/C .1 � t/g.x ^ y/

�

� tf
�
g.x _ y/

�
C .1 � t/f

�
g.x ^ y/

�

D f
�
g.x _ y/

�
C f

�
g.x ^ y/

�
�
�

tf
�
g.x ^ y/

�

C .1 � t/f
�
g.x _ y/

��

� f
�
g.x _ y/

�
C f

�
g.x ^ y/

�
� f

�
g.y/

�

where we used (2) and twice the convexity of f . Hence f ı g is supermodular
on Bn. �
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2.1.3 Supermodular Maximization

Consider the following problem:

Supermodular Function Maximization .SFM/ W max
x2Bn

f .x/

where f is a supermodular function defined on Bn. Note that SFM could also
stand for “Submodular Function Minimization” as for example in [39]. Since
a function f is submodular if and only if �f is supermodular and since the
problem of maximizing f is equivalent to the problem of minimizing �f , the two
interpretations are however largely equivalent regarding complexity.

Grötschel, Lovász, and Schrijver [26] were the first to provide a (weakly)
polynomial time algorithm for SFM which uses the ellipsoid algorithm for linear
programming. It was later shown by the same authors [27] that the ellipsoid
algorithm can be used to construct a strongly polynomial algorithm for SFM that
runs in QO �

n5EOC n7
�

time. Here the notation QO .f .n// hides the logarithmic
factors, i.e., stands for O

�
f .n/ � .log n/k

�
for some fixed k and EO stands for the

time needed for one evaluation of the objective function. However, this result was
not considered very satisfactory since the ellipsoid algorithm is not very practical
and does not give much combinatorial insight [39]. Then nearly simultaneously
two quite different combinatorial strongly polynomial algorithms (combinatorial
in the sense of not using the ellipsoid algorithm) were proposed by Schrijver
[49] and Iwata et al. [36], both building on previous works by Cunningham [14].
A few years later Orlin [42] proposed a fully combinatorial strongly polynomial
algorithm, i.e., an algorithm that does not use multiplication or division. Let M be
an upper bound on max

x2Bn

jf .x/j. According to McCormick [39] the best theoretical

complexity bounds are O
��

n4EOC n5
�

log M
�

for weakly polynomial algorithms
(Iwata [35]), O

�
n5EOC n6

�
for strongly polynomial algorithms (Orlin [42]) and

O
�
n8EO log2 n

�
for fully combinatorial algorithms (Iwata [35]). See McCormick

[39] for a survey of these and other algorithms.
In contrast, maximizing a submodular function is an NP-hard problem as it

contains, for example, the maximum cut problem in a graph. Therefore, the focus
of present works on this problem is to develop good approximation algorithms. This
paper does not consider the submodular maximization problem; we refer the reader
to [18] for a recent reference.

2.1.4 Parametric Supermodular Maximization: The Notion of Monotone
Optimal Solutions

Consider the following parametric supermodular function maximization problem:

SFM.�/ max
x2Bn

h.x; �/
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where � is either a scalar or a vector of parameters, with value in ƒ and h.x; t/

is supermodular in x for every � 2 ƒ. Let S�� be the set of optimal solutions of
problem SFM.�/.

We say that problem SFM.�/ has the Weak Increasing Optimal Solution Property
(respectively, the Weak Decreasing Optimal Solution Property) if for any �0 < �00 2
ƒ and any optimal solution x0 of SFM.�0/ and any optimal solution x00 of SFM.�00/
it holds that x0 ^ x00 (resp. x0 _ x00) is an optimal solution of SFM.�0/ and x0 _ x00
(resp. x0 ^ x00) is an optimal solution of SFM.�00/.

The Weak Increasing (resp. Decreasing) Optimal Solution Property implies the
existence of an optimal solution x0 of SFM.�0/ and the existence of an optimal
solution x00 of SFM.�00/ such that x0 � x00 (resp. x0 � x00). This ordering relation
may, however, not be true for any optimal solutions of SFM.�0/ and SFM.�00/. This
leads to the definition of the Strong Increasing Optimal Solution Property and its
decreasing counterpart.

We say that problem SFM.�/ has the Strong Increasing Optimal Solution
Property (respectively, Strong Decreasing Optimal Solution Property) if for any
�0 < �00 2 ƒ, for any optimal solution x0 of SFM.�0/ and for any optimal solution
x00 of SFM.�00/ it holds that x0 � x00 (resp. x0 � x00).

Finally we say that problem SFM.�/ has the Weak (respectively, Strong) Optimal
Solution Monotonicity Property if SFM.�/ has either the Weak (resp. Strong)
Increasing Optimal Solution Property or the Weak (resp. Strong) Decreasing
Optimal Solution Property.

The Weak and Strong Optimal Solution Monotonicity Property turn out to be
a very useful property to prove that some algorithms run in polynomial time, see
Proposition 3 together with Propositions 2 and 7.

Sufficient conditions on h have been derived by Topkis [53] (see also [54]) for
the problem SFM.�/ to have the Weak Increasing Optimal Solution Property or the
Strong Increasing Optimal Solution Property. A straightforward adaptation of his
results yields also sufficient conditions for the Weak and Strong Decreasing Optimal
Solution Property.

Rather than using these general results, which would require to introduce
additional notions, we directly state and prove a sufficient condition for the Weak
and Strong Optimal Solution Monotonicity Properties in the particular case where
ƒ D f� 2 R W � > 0g and

h.x; �/ D f .x/ � �g.x/: (3)

A slight improvement can be obtained in this case by replacing the strict
monotonicity assumption as a sufficient condition for the Strong Optimal Solution
Monotonicity Property by the monotonicity assumption plus the weak bijection
property. To see that this is indeed an improvement, consider the pair of functions
over B3: f .x/ D x1 and g.x/ D x2 C x3. Both functions are monotone
but none of them is strictly monotone. On the other hand, the application
x 7! .f .x/; g.x// is weakly bijective since the only nontrivial solution of equation
.f .x/; g.x// D .f .y/; g.y// is x D .u; v; 1�v/, y D .u; 1�v; v/ with u; v 2 f0I 1g
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and clearly x and y are not comparable. It is not difficult to show that strict
monotonicity implies the weak bijection property.

Proposition 2. Assume that h has the form (3), where f and �g are supermodular
functions on Bn, and that � D f� 2 R W � > 0g.

If f or g is monotone, then SFM.�/ has the Weak Optimal Solution Monotonic-
ity Property.

If f or g is monotone and the application x 7! .f .x/; g.x// is weakly bijective,
then SFM.�/ has the Strong Optimal Solution Monotonicity Property.

Proof. Let 0 < �0 < �00 and let x0 (respectively, x00) be a maximizer of h.x; �0/
(resp., h.x; �00//. We prove the result first in the case where g is increasing, then in
the case where f is increasing, and finish by saying a few words on how to modify
the proof for the two other cases.

Assume that g is increasing. By optimality of x0 and x00,

f .x0/� �0g.x0/ � f .x0 _ x00/ � �0g.x0 _ x00/ (4)

f .x00/ � �00g.x00/ � f .x0 ^ x00/ � �00g.x0 ^ x00/: (5)

Summing the two inequalities yields

f .x0/C f .x00/� f .x0 _ x00/ � f .x0 ^ x00/

� .�00 � �0/
�

g.x00/ � g.x0 ^ x00/
	

C�0
�

g.x0/C g.x00/ � g.x0 _ x00/� g.x0 ^ x00/
	

: (6)

The left-hand side of (6) is nonpositive by supermodularity of f while the right-
hand side is nonnegative since �00 > �0 � 0 and since g is submodular and
increasing (note that x00 � x0 ^ x00). Hence all inequalities must be satisfied at
equality, i.e.,

f .x0/ � �0g.x0/ D f .x0 _ x00/ � �0g.x0 _ x00/

f .x00/� �00g.x00/ D f .x0 ^ x00/� �00g.x0 ^ x00/

f .x0/C f .x00/ � f .x0 _ x00/� f .x0 ^ x00/ D 0

g.x00/� g.x0 ^ x00/ D 0:

The first two equalities show that y0 D x0 _x00 is a maximizer of h.x; �0/ and y00 D
x0 ^ x00 is a maximizer of h.x; �00/, hence that SFM.�/ has the Weak Decreasing
Optimal Solution Property. From the remaining equalities it follows that g.x00/ D
g.y00/ and f .x00/ D f .y00/. Since x00 and y00 are comparable, the weak bijection
property implies x00 D y00. Since y00 � x0, we conclude that SFM.�/ has the Strong
Decreasing Optimal Solution Property.
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Assume now that f is increasing. By multiplying (4) by 1
�0 and (5) by 1

�00 and
summing, we obtain

g.x0 _ x00/C g.x0 ^ x00/� g.x0/ � g.x00/

� �
�

1

�0
� 1

�00

	�
f .x0 ^ x00/ � f .x00/

	

C 1

�0

�
f .x0 _ x00/C f .x0 ^ x00/� f .x0/� f .x00/

	
: (7)

The left-hand side of (7) is nonpositive by submodularity of g while the right-hand
side is nonnegative since 1

�0
> 1

�00
> 0 and since f is supermodular and increasing.

Therefore all inequalities must hold at equality, in particular inequalities (4)–(5). We
conclude again that x0_x00 is a maximizer of h.x; �0/ and x0^x00 is a maximizer of
h.x; �00/, hence that SFM.�/ has the Weak Decreasing Optimal Solution Property.
The Strong Property follows from the monotonicity of f or g and the weak bijection
property in the same way than for the case where g is increasing.

If f or g is decreasing we replace inequalities (4)–(5) by

f .x0/� �0g.x0/ � f .x0 ^ x00/ � �0g.x0 ^ x00/

f .x00/ � �00g.x00/ � f .x0 _ x00/ � �00g.x0 _ x00/:

The rest of the proof is similar. In both cases we conclude that SFM.�/ has the
Weak or Strong Increasing Optimal Solution Property, depending on whether the
weak bijection property holds or not. �

2.2 The Minimum Cut Problem

2.2.1 Definition

Let G D .V; A/ be a directed graph with vertex set V and arc set A. With each arc
.vi ; vj / 2 A we associate a nonnegative number cij , called the capacity of the arc
.vi ; vj /. Given two subsets S and T of V we denote by .S; T / the set of arcs with
origin in S and destination in T , that is

.S; T / D f.vi ; vj / W vi 2 S and vj 2 T g: (8)

Assume that two distinct vertices s and t are given, s being called the source and t

the sink. An .s; t/-cut, or more simply a cut, is a set .S; S/ (as defined in (8)) with
s 2 T , t 2 S where S D V n S denotes the complement of S . Note that a cut is
a set of arcs induced by a set S of nodes. The quantity c.S; S/ D P

.vi ;vj /2.S;S/ cij

is called the capacity of the cut. The minimum cut problem consists in determining
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the subset S of V that minimizes the capacity c.S; S/. The minimum cut problem
can be solved in polynomial time thanks to the max flow–min cut theorem that
establishes a strong relation with a linear problem, the maximum flow problem, see
e.g., Ahuja et al. [1].

2.2.2 The Selection Problem

Hammer and Rudeanu [29] have shown that every function defined on Bn can be
written in a unique way as

f .x/ D
X

S2A

aS

Y

i2S

xi �
nX

iD1

ci xi (9)

where A is a family of subsets of f1; 2; : : : ; ng of size at least 2 and aS (S 2 A)
and cj .j D 1; : : : ; n/ are real numbers. An important special case is obtained by
adding the restriction

aS � 0; S 2 A: (10)

When the restriction (10) holds, the problem of maximizing f given by (9) is called
a selection problem (Rhys [46], Balinski [3]). It was shown by Rhys and Balinski
that the selection problem can be formulated as a minimum cut problem in a network
defined as follows. With each product of variables

Q
i2S xi we associate a vertex vS

and with each variable xi we associate a vertex vi (i D 1; : : : ; n). There are two
more vertices: a source s and a sink t . There is an arc from the source to each vertex
vS with capacity aS . For each S and for each i 2 S , there is an arc with infinite
capacity from vertex vS to vertex vi . Finally for each i D 1; : : : ; n there is an arc
from vertex vi to the sink vertex t with capacity �ci if ci < 0 or an arc from the
source vertex s to the vertex vi with capacity ci if ci > 0 (no such arc is needed
for vertices vi such that ci D 0). The network has n0 D jAj C n C 2 nodes and
m0 D jAj CPS2A jS j C n arcs.

A network of smaller size exists when the degree of f is � 2 (the degree of f

is defined as the largest cardinality of a subset in A). This network has nC 2 nodes
and nC jAj arcs, see Hammer [34].

It is not difficult to show that the set of functions of degree � 2 that can be
written as (9) with the restriction (10) coincides with the set of functions of degree
� 2 that are supermodular. This is not true anymore for functions of larger degree
as supermodular functions of degree 3 can have negative aS , see Billionnet and
Minoux [5].
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2.2.3 The Parametric Minimum Cut Problem

In several applications the capacities of the arcs in a minimum cut problem depend
on one or more parameters, and we would like to find a minimum cut for all possible
values of the parameters. Gallo et al. [22] have developed an algorithm that solves
a special class of parametric minimum cut problem with a single parameter in the
same complexity time than what would be necessary to solve the minimum cut
problem for a fixed value of the parameter (solving a parametric problem means
here to find an optimal solution for all possible values of the parameter). In this
special class of parametric minimum cut problem, the capacities of the arcs leaving
the source are nondecreasing functions of the (unique) parameter, those of arcs
entering the sink are nonincreasing functions of the parameter, and those of all other
arcs are constant. The complexity of the Gallo, Grigoriadis and Tarjan algorithm is

O
�
m0n0 log.n

02=m0/
�

where n0 denotes the number of nodes and m0 the number of

arcs in the network.
Other classes of the parametric minimum cut problem for which this “all-in-one”

property holds have since been identified: see the recent paper by Granot et al. [25]
and the references therein.

2.3 Single-Ratio Fractional Programming

Problem (CFP) is a 0–1 (single-ratio) fractional programming problem. In general
the (single-ratio) fractional programming problem is defined as

.FP/ max
x2S

F.x/

G.x/
(11)

where F and G are real valued functions on a subset S of Rn and G.x/ > 0 for all
x 2 S .

The single-ratio fractional programming problem has received considerable
attention from the continuous optimization community since the 1960s [10, 16].
According to Frenk and Schaible [19], many of the results on this topic were already
presented in the first monograph on fractional programming published in 1978 by
Schaible [47]. The focus has since shifted to problems involving multiple ratios,
where one, for example, seeks to maximize the sum of several ratios, or maximize
the minimum value of several ratios. Other monographs on fractional programming
are Craven [13] and Stancu-Minasian [51], see also [20, 48, 52].

The discrete version of the problem also received considerable interests. When
S D f0I 1gn, the research focused on the case where F and G are polynomials:
see, for example, Hansen et al. [31] for the linear case, Hochbaum [33] and the
references therein for the quadratic case, Picard and Queyranne [43], Gallo et al.
[22] and Chang [9] for polynomials of larger degree.
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When constraints are allowed, the functions appearing in the ratio are generally
assumed to be linear. Problems that have been considered include the minimum
ratio spanning-tree problem, the maximum profit-to-time ratio cycle problem, the
minimum mean cycle problem, the maximum mean cut problem and the fractional
0–1 knapsack problem: see [45] for references to these problems. See also Correa
et al. [12], Ursulenko [55].

2.3.1 The Parametric Approach

Almost every solution method developed for fractional programming since the
seminal work of Dinkelbach [16] introduces the following auxiliary problem:

FPaux.�/ max
x2S

h�.x/ D F.x/ � �G.x/:

� can be viewed as a “guess” for the optimal value F.x�/

G.x�/
of problem (FP): if �

is smaller than F.x�/

G.x�/
, the optimal value of the auxiliary problem FPaux.�/ will be

positive and its optimal solution will provide a feasible solution with objective value
larger than �; if, on the other hand, � is larger than F.x�/

G.x�/
, the optimal value of the

auxiliary problem will be negative.
We present below Dinkelbach’s algorithm for fractional programming. For

variants of it, see, e.g., Radzik [45]. Note in particular the proximity of this method
with the Newton method for finding roots of polynomial.

DINKELBACH’S ALGORITHM

Step 0. Select some x0 2 S . Compute �0 D F.x0/

G.x0/
. Set k D 0.

Step 1. Solve the auxiliary problem FPaux.�k/. Let xkC1 be an optimal solution.

Step 2. If h�k
.xkC1/ D 0, stop: x� D xk . Otherwise let �kC1 D F.xkC1/

G.xkC1/
, replace k

by k C 1 and go to Step 1.

The complexity of Dinkelbach’s algorithm is determined by the number of
iterations and by the complexity of solving the auxiliary problem FPaux.�/ for
a given �. A property that is very useful to derive polynomial algorithms for the
fractional programming problem is the supermodularity (see Sect. 2.1).

Consider the 0–1 unconstrained case, i.e., the case where S D Bn and assume
that we know that the optimal value of problem (FP) is positive, i.e., that there exists
at least one Qx 2 S such that F. Qx/ � 0. Then we can restrict our attention to � � 0.
If the function h�.x/ is supermodular in x for any � � 0 then the auxiliary problem
FPaux.�/ can generally be solved in polynomial time by one of the algorithms
mentioned in Sect. 2.1.3 for SFM. Moreover if FPaux.�/ has the Strong Optimal
Solution Monotonicity Property (see Sect. 2.1.4), then the number of iterations in
Dinkelbach’s algorithm is bounded by n. More precisely we have:
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Proposition 3. Assume that S D Bn, that F and G are rational functions that can
be evaluated at a given point in polynomial time, that F and �G are supermodular
on Bn, that the optimal value of problem (FP) is positive, that either F or G is
monotone and that the application x 7! .F.x/; G.x// is weakly bijective. Then
problem (FP) can be solved in polynomial time.

3 A New Algorithm

This section is the main part of our paper. We start by defining precisely our
algorithm in Sect. 3.1. In Sect. 3.2 we characterize the breakpoint vertex set, present
an algorithm to compute it and derive conditions on v and w such that this algorithm
is polynomial. In Sect. 3.3 we derive conditions on functions ' and � that guarantees
that our algorithm correctly finds an optimal solution of problem (CFP). Theorems 1
and 2 are proved in Sect. 3.4.

3.1 Description

Let us introduce the function

L�.x/ D v.x/ � �w.x/

and the parametric problem

PARAM.�/ ˆ.�/ D max
x2Bn

L�.x/:

We will denote by Ox.�/ an optimal solution of problem PARAM.�/.
Note that the function L�.x/ coincides with the function h.x; �/ that would be

considered when solving the problem max
x2Bn

v.x/

w.x/
by Dinkelbach’s algorithm.

It is well-known that ˆ.�/ D max
x2Bn

L�.x/ is a convex piecewise linear function on

R (see, e.g., Nemhauser and Wolsey [41, Corollary 6.4]). Let �1 > �2 > � � � > �q

denote the breakpoints of ˆ.�/ and let X D fx0; : : : ; xqg be a subset of Bn such that

ˆ.�/ D
8
<

:

v.xq/� �w.xq/; � 2 .�1; �q�

v.xk/ � �w.xk/; � 2 Œ�kC1; �k� for k D 1; : : : ; q � 1

v.x0/� �w.x0/; � 2 Œ�1;C1/

(12)
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with

w.xk�1/ < w.xk/ k D 1; : : : ; q: (13)

By continuity of ˆ we have easily

�k D v.xk/� v.xk�1/

w.xk/� w.xk�1/
; k D 1; : : : ; q: (14)

We will consider subsets of X . Given an interval I of R, we define the set
XI � X as the set of points xk needed to define ˆ.�/ on the interval I via
the formula (12). In particular, X D X.�1;C1/. The set XI will be called
the breakpoint vertex set for the function ˆ.�/ on interval I . We will be more
particularly interested in the set XŒ0;C1/, that we will denote more concisely by XC.

We propose the following algorithm for problem (CFP):
ALGORITHM HM_CFP

Step 1. Construct the set XC.

Step 2. Compute x� D arg max
x2XC

.' ı v/.x/

.� ı w/.x/
.

In Sect. 3.2 we study the properties of the set XI and present an algorithm
for its computation. We then determine sufficient conditions on v and w for this
algorithm to run in polynomial time in the particular case where I D Œ0IC1/.
One of the properties identified in Sect. 3.2 is used in Sect. 3.3 to derive conditions
on the functions ' and � that guarantee the correctness of the algorithm HM_CFP.
The results of the previous subsections are used in Sect. 3.4 to identify classes of
problems (CFP) that can be solved in polynomial time.

3.2 Computing the Breakpoint Vertex Set

In Sect. 3.2.1 we derive a certain number of properties of the breakpoints and of the
breakpoint vertex set, that will be used both to show the correctness of the Eisner
and Severance algorithm presented in the next subsection and to derive a sufficient
condition on the functions ' and � for the set XC to contain at least one optimal
solution of problem (CFP) in Sect. 3.3. In Sect. 3.2.2 we present the Eisner and
Severance algorithm to compute the breakpoint vertex set XI on a given interval I

with at most 2N.I / evaluations of the function ˆ.�/, where N.I/ is the number
of breakpoints of ˆ on the interval I . Finally in Sect. 3.2.3 we derive conditions on
functions v and w that guarantee that the Eisner and Severance algorithm runs in
polynomial time when I D Œ0IC1/.
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3.2.1 Properties

In this section we give some properties of the breakpoint vertex set X introduced
in Sect. 3.1. It must be noted that the results in this subsection and in the next one
are completely general: no assumption is made on the functions v and w other than
being defined on Bn.

We first observe that the set X (and therefore the set XI for a given interval
I ) may not be unique if there exists x0; x00 2 Bn with x0 ¤ x00 such that
.v.x0/; w.x0// D .v.x00/; w.x00//. However both for the purpose of defining the
function ˆ.�/ and for the algorithm HM_CFP, the two points x0 and x00 are
completely equivalent. By a slight abuse of language we will continue to write “the
set X” (or “the set XI ”) in the sequel of this paper.

We now state without proof three easy lemmas.

Lemma 1. If �0 < �00 then �w. Ox.�0// � �w. Ox.�00//.
Moreover equality holds if and only if L�0. Ox.�00// D ˆ.�0/ and L�00. Ox.�0// D

ˆ.�00/ and in that case we have also v. Ox.�0// D v. Ox.�00//.

Lemma 2. Let �0 < �00 and assume that Qx is an optimal solution of both problems
PARAM.�0/ and PARAM.�00/. Then ˆ.�/ is linear on Œ�0; �00�.

Lemma 3. w.x0/ D min
x2Bn

w.x/. Moreover if there exists more than one optimal

solution, x0 is one of them that maximizes v.x/.
w.xq/ D max

x2Bn

w.x/. Moreover if there exists more than one optimal solution, xq

is one of them that maximizes v.x/.

The next result will be used to establish sufficient conditions on the functions '

and � for the set XC to contain an optimal solution of problem (CFP).

Proposition 4. It holds:

v.x/ � v.xk�1/

w.x/ � w.xk�1/
� v.xk/� v.x/

w.xk/� w.x/
8x 2 Bn W w.xk�1/ < w.x/ < w.xk/:

Proof. By definition of the breakpoints and of the xk we have

v.xk/� �kw.xk/ � v.x/ � �kw.x/ 8x 2 Bn:

In particular for all x 2 Bn such that w.xk�1/ < w.x/ < w.xk/:

v.x/ � �kw.x/ � v.xk/� �kw.xk/

) v.xk/ � v.xk�1/

w.xk/ � w.xk�1/
D �k � v.xk/� v.x/

w.xk/� w.x/

)
�

v.xk/� v.x/
�
C
�

v.x/ � v.xk�1/
�

�
w.xk/ � w.x/

�
C
�

w.x/ � w.xk�1/
� �

�
v.xk/ � v.x/

�

�
w.xk/ � w.x/

�
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where we used (14). Since each term delimited by a pair of parentheses in
the denominators is strictly positive, a simple manipulation gives the announced
inequality. �

We terminate by pointing out that another characterization of the breakpoints
can be found in Gallo and Simeone [21], as well as a different approach to compute
the breakpoint vertex set that requires to solve a constrained version of problem
PARAM.�/.

3.2.2 The Eisner and Severance Algorithm

In this section we present an algorithm to compute the breakpoint vertex set XI of
ˆ.�/ on a (finite) interval I D Œ�; ��, that works for any functions v and w and that
requires at most 2N solutions of the problem PARAM.�/, where N is the number
of breakpoints of ˆ.�/ in the interval I . This algorithm was originally proposed by
Eisner and Severance [17], see also Gusfield [28].

We first give an informal description of the algorithm. Basically the algorithm
partitions the given interval I into subintervals Œ�j ; �jC1� for j 2 J . With each
�j we associate a point Ox.�j / of Bn that is an optimal solution of problem
PARAM.�j /. The algorithm stops when it can be shown that ˆ.�/ is linear on every
interval of the partition. Note that by Lemma 2 a sufficient condition for ˆ.�/ to be
linear on the interval Œ�j ; �jC1� is that Ox.�j / is also an optimal solution of problem
PARAM.�jC1/ or Ox.�jC1/ is also an optimal solution of problem PARAM.�j /. If
it is not possible to show that ˆ is linear on all intervals of the current partition, we
select an interval on which ˆ is not known to be linear and subdivide it.

We now explain the subdivision process. Let Œ�0; �00� be an interval to be
subdivided, and let Ox0 D Ox.�0/ and Ox00 D Ox.�00/ be the optimal solutions associated
with the bounds of the interval. We assume that Ox0 is not an optimal solution of
problem PARAM.�00/ and Ox00 is not an optimal solution of problem PARAM.�0/
since otherwise ˆ would be linear on the interval, which therefore would not have
been selected for subdivision. In particular w. Ox0/ > w. Ox00/ by Lemma 1. Define

Q� D v. Ox0/� v. Ox00/
w. Ox0/� w. Ox00/ : (15)

We argue that Q� 2 .�0; �00/. Indeed

Q� � �0 D
�

v. Ox0/� �0w. Ox0/
�
�
�

v. Ox00/� �0w. Ox00/
�

w. Ox0/ � w. Ox00/ > 0
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Step 1 (initialization) : Assume that I = [λ, λ]. Solve PARAM(λ), obtaining an optimal solution
x̂(λ) and an optimal value Φ(λ). Solve PARAM(λ), obtaining an optimal solution x̂(λ) and an
optimal value Φ(λ). Set L = NL = XI = ∅ and N ew =

{
[λ, λ]

}
.

Step 2 (linearity test) : For each interval I′ = [λ′, λ′′] in N ew, do the following:
If Lλ′′ (x̂(λ′)) = Φ(λ′′), add x̂(λ′) to XI and add I′ to L.
If Lλ′ (x̂(λ′′)) = Φ(λ′), add x̂(λ′′) to XI and add I′ to L.
If none of the above two cases occur, add I′ to NL.

Set N ew to ∅.
Step 3 (optimality test) : If NL = ∅, stop and return XI .
Step 4 (subdivision) : Select an interval I′ = [λ′, λ′′] in NL, compute λ̃ by the formula

(15), solve PARAM(λ̃), obtaining an optimal solution x̂(λ̃) and an optimal value Φ(λ̃). Set
N ew =

{
[λ′, λ̃], [λ̃, λ′′]

}
and NL = NL \ {I′}. Return to Step 2.

Fig. 1 The Eisner and Severance algorithm for computing XI

since the numerator is strictly positive by optimality of Ox0 and non-optimality of Ox00
to problem PARAM.�0/. We show in a similar way that Q���00 < 0. The subdivision
process consists in replacing the interval Œ�0; �00� by the two intervals Œ�0; Q�� and
Œ Q�; �00�.

The algorithm will maintain three sets: L is the subset of intervals of the current
partition on which ˆ was shown to be linear; NL is the subset of intervals of
the current partition on which ˆ is not known to be linear and N ew is the set of
new intervals generated during the last iteration. At Step 3, in every iteration, the
intervals in L [ NL form a partition of the given interval I . A formal description
of the algorithm is given in Fig. 1.

Proposition 5. Let N be the number of breakpoints of ˆ.�/ in interval I , including
the lower and upper bounds of I . The above algorithm is correct and terminates
after solving at most 2N � 1 problems PARAM.�/.

Proof. Consider a point Ox.t/ generated by the algorithm, where t is a bound of an
interval. There are two possibilities for Ox.t/:

• t coincides with a breakpoint. Obviously this case can happen at most N times.
• t lies in the interior of an interval defined by two consecutive breakpoints. To

fix the idea assume that t 2 .�k; �k�1/ for some k. Then Ox.t/ defines the linear
piece on Œ�k; �k�1�, i.e, ˆ.�/ D v. Ox.t// � �w. Ox.t// for all � 2 Œ�k; �k�1�. We
claim that at most one such point will be generated by the algorithm for each
piece of the piecewise linear function ˆ.�/. To show this we will prove that if
there is another point Ox.t 0/ generated by the algorithm that defines the same linear
function, then t 0 must be a breakpoint. Assume that the values of � considered by
the algorithm are �1 < �2 < � � � < �r . Since we have w. Ox.�j // � w. Ox.�jC1//

for j D 1; : : : ; r � 1 by Lemma 1 we can assume that t D �j and t 0 D �jC1

for some j , or the converse. Assume furthermore that �j was generated by the
algorithm before �jC1 (if this is not the case, we simply invert the roles of �j and
�jC1). Then �jC1 corresponds to the Q� of formula (15) for an interval Œ�j ; �00�,
i.e.,
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�jC1 D v. Ox.�00// � v. Ox.�j //

w. Ox.�00// � w. Ox.�j //
D v. Ox.�00// � v. Ox.�jC1//

w. Ox.�00// � w. Ox.�jC1//

where we used the fact that v. Ox.�j // D v. Ox.�jC1// and w. Ox.�j // D
w. Ox.�jC1// as the two points Ox.�j // and Ox.�jC1/ define the same piece of
linear function. We then have

v. Ox.�jC1// � �jC1w. Ox.�jC1// D v. Ox.�00//� �jC1w. Ox.�00//

which shows that Ox.�00/ is an optimal solution of problem PARAM.�jC1/. Hence
ˆ is linear on Œ�jC1; �00� by Lemma 2, more precisely ˆ.�/ D v. Ox.�00// �
�w. Ox.�00// for � 2 Œ�jC1; �00�. Since the interval Œ�j ; �00� was subdivided, Ox.�00/
is not an optimal solution of problem PARAM.�j /, hence we have w. Ox.�j // >

w. Ox.�00// by Lemma 1. This shows that the two pieces of linear functions are
different on the two intervals Œ�j ; �jC1� and Œ�jC1; �00�. We therefore conclude
that �jC1 is a breakpoint. By the monotonicity of the slopes, there can be no �`

for ` > jC1 that defines the same linear part than �j . We can therefore conclude
that the number of generated �j that lies strictly between two consecutive
breakpoints is bounded by N � 1.

Therefore the algorithm generates at most 2N � 1 points, in particular it is finite.
Since the algorithm can only stop when L contains a partition of the given interval
I , we conclude that the algorithm is correct. �

3.2.3 Complexity

Two conditions must be met for the Eisner and Severance algorithm to compute the
set XI in polynomial time: the number of breakpoints N of ˆ.�/ on interval I (or
equivalently the size of XI ) must be polynomial in n, and the problem PARAM.�/

must be solvable in polynomial time for fixed � in I .
In this section we assume that I D Œ0IC1/. Note that the upper bound of

this interval is not finite as assumed in Sect. 3.2.2, which raises two additional
difficulties: we have to find a finite upper bound � such that running the Eisner
and Severance algorithm on Œ0I�� gives a description of ˆ.�/ on the larger interval
Œ0IC1/, and we have to show that the size of � remains polynomial in the size of
the data. By (12) and (14), � should be chosen such that

� > �1 D v.x1/� v.x0/

w.x1/� w.x0/
:

Let us show that

� D 1C
�

max
x2Bn

v.x/

	
� v. Qx/
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where Qx is an optimal solution of problem min
x2Bn

w.x/, is a valid choice. Since x0 is an

optimal solution of problem min
x2Bn

w.x/ that maximizes v.x/ by Lemma 3, we have

v.x0/ � v. Qx/. Since w.x1/ > w.x0/ and w takes integral values on Bn we have then

�1 � v.x1/�v.x0/ �
�

max
x2Bn

v.x/

	
�v. Qx/, hence � > �1. It follows from Sect. 2.1.3

that max
x2Bn

v.x/ and Qx (and therefore �) can be computed in polynomial time if v is

supermodular and w is submodular. Moreover the size of � is polynomial in the size
of max

x2Bn

jv.x/j.
We now consider the condition that problem PARAM.�/ must be solvable in

polynomial time for fixed � � 0. We know of only one sufficiently large class
of functions that can be maximized over Bn in polynomial time: it is the class of
supermodular functions, see Sect. 2.1. The function L�.x/ is supermodular in x for
all � � 0 if and only if v is supermodular and w is submodular on Bn.

Proposition 6. If the functions v and �w are supermodular, then the problem
PARAM.�/ can be solved in polynomial time for any fixed positive �.

Proof. Use one of the SFM algorithms mentioned in Sect. 2.1.3. �
The other necessary condition for the Eisner and Severance algorithm to run in

polynomial time is that the set XC is of polynomial size. This condition is satisfied
in the following cases:

• When the function v or w takes a polynomial number of distinct values on X .
Indeed by (13) the sequence fw.xk/g is strictly increasing; and since we restrict
ourselves to � � 0 and by (14), this is also true for the sequence fv.xk/g. Thus
the number of breakpoints (and hence the size of XC) is bounded by the number
of distinct values taken by v (or w). Examples of such functions are functions that
depend on at most O.log n/ variables;

P

j2J

xj for some subset J of f1; 2; : : : ; ng;
or combination of a fixed number of the above functions.

• When v and w are both linear functions. Indeed it was shown by Hansen et al.
[31] that the number of breakpoints is bounded by nC 1.

• When PARAM.�/ has the Strong Optimal Solution Monotonicity Property:

Proposition 7. Assume that the problem PARAM.�/ has the Strong Optimal
Solution Monotonicity Property for � � 0. Then jXCj � nC 1.

Proof. Let 0 � �1 < �2 � � � < �r be the breakpoints generated by the algorithm,
sorted in increasing order (i.e., we do not consider here the � generated by the
algorithm that are strictly between two breakpoints). Define ˛i D �iC�iC1

2
for

i D 1; : : : ; r � 1, so that each ˛i is in the interior of an interval defined by
two consecutive breakpoints. If PARAM.�/ has the Strong Optimal Solution
Monotonicity Property for � � 0, then either Ox.˛1/ � Ox.˛2/ � � � � � Ox.˛r�1/ or
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Ox.˛1/ � Ox.˛2/ � � � � � Ox.˛r�1/. Since the Ox.˛i / are all distinct as they define
the slopes of the different pieces of the piecewise linear function, we conclude
that r � n. �

We finally get the following sufficient condition for the algorithm described in
Sect. 3.2.2 to run in polynomial time.

Proposition 8. If the functions v and�w are supermodular and one of the following
properties is satisfied:

• v or w takes a polynomial number of distinct values on Bn;
• v and w are both linear;
• v or w is monotone and the application x 7! .v.x/; w.x// is weakly bijective;

then the Eisner and Severance algorithm computes the set XC in polynomial time.

Proof. Follows from Propositions 2, 6 and 7. �

3.3 Correctness of the New Algorithm

Let X D fx0; x1; : : : ; xqg and XC be the sets of points of Bn defined in Sect. 3.1.
Let S� be the set of optimal solutions of problem (CFP). Since min

x2Bn

w.x/ D
w.x0/ < w.x1/ < � � � < w.xq/ D max

x2Bn

w.x/ by Lemma 3 and (12), for any x� 2 S�

there must exist k 2 f1; 2; : : : ; qg such that w.xk�1/ � w.x�/ � w.xk/.
The next result considers the case where w.x�/ coincides with the bound of an

interval Œw.xk�1/; w.xk/�, while Proposition 10 considers the case where w.x�/ lies
strictly in such an interval. We will assume in this section that ' and � are increasing.

Proposition 9. Assume that ' is increasing and � is strictly positive, and let x� be
an optimal solution of problem (CFP). For any k D 0; : : : ; q we have the implication

w.x�/ D w.xk/ ) xk is an optimal solution of problem .CFP/:

Proof. Assume that w.x�/ D w.xk/ for some k. Observe first that v.xk/ � v.x�/.
Indeed, when k D 0, this follows from Lemma 3; when k � 1, ˆ.�k/ D v.xk/ �
�kw.xk/ by (12), hence v.xk/ � �kw.xk/ � v.x�/ � �kw.x�/. Since w.x�/ D
w.xk/, we conclude that v.xk/ � v.x�/.

Now since ' is increasing and since �.w.x// is strictly positive for all x 2 Bn,
we have easily

'.v.xk//

�.w.xk//
� '.v.x�//

�.w.x�//

which shows that xk is an optimal solution of problem (CFP). �
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Proposition 10. Assume that ' and � are increasing, that � is strictly positive and
that max

x2Bn

.' ı v/.x/ � 0 and let x� be an optimal solution of problem (CFP). For

any k D 1; : : : ; q we have the implication

w.xk�1/ < w.x�/ < w.xk/ )
8
<

:

v.xk�1/ < v.x�/ < v.xk/

or
xk�1is an optimal solution of problem .CFP/:

Proof. Assume that w.xk�1/ < w.x�/ < w.xk/ holds. Since � is increasing, we
have

�.w.xk�1// � �.w.x�//

or, using the fact that � is strictly positive,

1

�.w.xk�1//
� 1

�.w.x�//
: (16)

We now show that v.x�/ � v.xk�1/ implies that xk�1 is an optimal solution of
problem (CFP). Assume that v.x�/ � v.xk�1/. The fact that ' is increasing and the
assumption on the sign of the optimal value imply that 0 � '.v.x�// � '.v.xk�1//.

Combining with (16) yields '.v.xk�1//

�.w.xk�1//
� '.v.x�//

�.w.x�//
, which shows that xk�1 is an

optimal solution of problem (CFP). We have thus concluded that either v.x�/ >

v.xk�1/ or xk�1 is an optimal solution of problem (CFP).
In the following we assume that the former is true. Since ˆ.�k/ D v.xk�1/ �

�kw.xk�1/ by (12),

v.xk�1/ � �kw.xk�1/ � v.x�/ � �kw.x�/

) �k

�
w.x�/ � w.xk�1/

� � v.x�/ � v.xk�1/ > 0:

Since w.x�/ > w.xk�1/ we conclude that �k > 0. Now since we have also
ˆ.�k/ D v.xk/ � �kw.xk/,

v.xk/ � �kw.xk/ � v.x�/� �kw.x�/

) v.x�/� v.xk/ � �k

�
w.x�/ � w.xk/

�
< 0:

Hence v.xk�1/ < v.x�/ < v.xk/. �

Propositions 9 and 10 leave open the possibility that x� D xk for some k such
that �k < 0. The next result shows that if that happens, then at least one x` with `

such that �` > 0 is also an optimal solution of problem (CFP).
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Proposition 11. Assume that ' and � are increasing, that � is strictly positive and
that max

x2Bn

.' ı v/.x/ � 0. If S� \ X ¤ ; then S� \XC ¤ ;.

Proof. Recall that by definition �1 > �2 > � � � > �q . If �q � 0 we are done, so
assume that �q < 0. Define r to be such that �r�1 � 0 > �r . Then we have �k < 0

for all k D r; : : : ; q. Since w.xk/ > w.xk�1/ for all k and by (14), it follows that

v.xk/ < v.xk�1/; k D r; : : : ; q: (17)

Now assume that xt is an optimal solution of problem (CFP) with r � t � q. We
will show that xt is also an optimal solution of problem (CFP). Since the sequence
fw.xk/g is strictly increasing and by (17)

v.xt / < v.xr /

w.xt / > w.xr /:

Since ' and � are increasing and � is strictly positive we get

.' ı v/.xt / � .' ı v/.xr /

0 <
1

.� ı w/.xt /
� 1

.� ı w/.xr /
:

Hence, since .' ı v/.xt / � 0,

.' ı v/.xt /

.� ı w/.xt /
� .' ı v/.xr /

.� ı w/.xr /
:

Therefore xr is also an optimal solution of problem (CFP), and xr belongs to XC
as it defines ˆ.t/ over the interval Œ0I�r�1�. �

The next result establishes a sufficient condition on ' and � for the existence of
an optimal solution of problem (CFP) in the set XC.

Proposition 12. Assume that ' and � are increasing and that max
x2Bn

'.v.x// � 0. A

sufficient condition for S� \ XC ¤ ; is

�
t � v.xk�1/

'.t/ � '.v.xk�1//

	�
�.u/� �.w.xk�1//

u � w.xk�1/

	�
'.v.xk//� '.t/

v.xk/� t

	

�
�

w.xk/ � u

�.w.xk// � �.u/

	
� 1

8t W v.xk�1/ < t < v.xk/; 8u W w.xk�1/ < u < w.xk/ (18)

Proof. We will assume that S� \ XC D ; and exhibit a couple .t; u/ that
violates (18).
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Let x� 2 S�. By Propositions 9 and 11, w.x�/ ¤ w.xk/ for all k D 0; 1; : : : ; q.
Therefore since w.x0/ D min

x2Bn

w.x/ and w.xq/ D max
x2Bn

w.x/ by Lemma 3, there

must exist some k such that w.x�/ 2 .w.xk�1/; w.xk//.
To simplify the notations, let v� D v.x�/, w� D w.x�/, v` D v.x`/ and w` D

w.x`/ for ` 2 fk � 1; kg. Since xk�1 62 S� and by Propositions 10 and 11 we have

vk�1 < v� < vk: (19)

By optimality of x� and since xk�1; xk 62 S�,

'.v�/
�.w�/

>
'.vk�1/

�.wk�1/
(20)

'.v�/
�.w�/

>
'.vk/

�.wk/
: (21)

Now by (21)

'.vk/� '.v�/ <
'.v�/
�.w�/

�
�.wk/ � �.w�/

�
: (22)

Since vk > v� and ' is increasing, we cannot have '.v�/ D 0 hence it follows from
the assumptions that '.v�/ > 0. Therefore the fact that ' is increasing implies that
�.wk/� �.w�/ > 0. Inequality (22) can then be written:

'.v�/
�.w�/

>
'.vk/ � '.v�/
�.wk/ � �.w�/

: (23)

Similarly (20) yields

'.v�/� '.vk�1/ >
'.v�/
�.w�/

�
�.w�/ � �.wk�1/

�
: (24)

Since w� > wk�1, � is increasing and '.v�/ > 0, it follows that '.v�/�'.vk�1/ > 0.
Hence (24) can be written

�.w�/
'.v�/

>
�.w�/� �.wk�1/

'.v�/� '.vk�1/
: (25)

By Proposition 4

v� � vk�1

w� � wk�1

� vk � v�

wk � w�

) 1 �
�

v� � vk�1

w� � wk�1

	�
wk � w�

vk � v�

	
: (26)
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Since each factor in inequalities (23), (25) and (26) is nonnegative, we can multiply
these two inequalities memberwise, hence

�
v� � vk�1

'.v�/� '.vk�1/

	�
�.w�/� �.wk�1/

w� � wk�1

	�
'.vk/� '.v�/

vk � v�

	�
wk � w�

�.wk/� �.w�/

	
< 1:

We have shown that the assumption S� \ XC D ; implies that (18) is violated for
t D v� and u D w�. Hence (18) implies that S� \ XC ¤ ;. �

In order to derive a simpler condition on ' and � that implies the sufficient
condition of Proposition 12, we need the following Lemma.

Lemma 4. Let h be a convex function over an interval Œa; b�. Then

h.t/ � h.a/

t � a
� h.b/ � h.t/

b � t
8t W a < t < b: (27)

Proposition 13. Assume that ' and � are increasing. If in addition ' is convex and
� is concave, then the sufficient condition (18) for S� \XC ¤ ; is satisfied.

Proof. Let .t; u/ such that v.xk�1/ < t < v.xk/ and w.xk�1/ < u < w.xk/. If ' is
convex and � is concave, we have by Lemma 4

'.t/ � '.v.xk�1//

t � v.xk�1/
� '.v.xk//� '.t/

v.xk/� t
(28)

�.u/� �.w.xk�1//

u � w.xk�1/
� �.w.xk// � �.u/

w.xk/ � u
: (29)

Since ' and � are increasing, each ratio in these two inequalities is strictly positive.
We then easily derive (18). �

To conclude this section we give an example that shows that the assumption of
convexity is not necessary for (27) to be satisfied in Lemma 4. This in particular
implies that the sufficient condition of Proposition 12 can be satisfied even when '

is not convex and � is not concave.

Example 1. Consider the following piecewise linear function defined on the interval
Œa; b� D Œ0I 5�.

h.t/ D
8
<

:

t if t 2 Œ0I 2�

6t � 10 if t 2 Œ2I 3�

2t C 2 if t 2 Œ3I 5�:

The graph of this function is represented in Fig. 2. Clearly h.t/ is not convex. It can
be verified that for any position of the point T on the curve, the slope of the segment
AT is smaller than the slope of the segment TB . This is exactly what is expressed
by (27).
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Fig. 2 Geometrical interpretation of the inequality of Lemma 4

3.4 Polynomial Solvable Instances

In this section we prove Theorems 1 and 2.

Proof of Theorem 1 Follows from Propositions 8, 12 and 13.

Proof of Theorem 2 Assume that the condition (C4’) is satisfied, i.e., .' ıv/.x/ <

0 for all x 2 Bn. We observe that

max
x2Bn

.' ı v/.x/

.� ı w/.x/
, min

x2Bn

�.' ı v/.x/

.� ı w/.x/
, max

x2Bn

.� ı w/.x/

�.' ı v/.x/

, max
x2Bn

.' 0 ı v0/.x/

.�0 ı w0/.x/

with ' 0.t/ D �.�t/, �0.t/ D �'.�t/ for t 2 R and v0.x/ D �w.x/ and w0.x/ D
�v.x/ for all x 2 Bn. The result then follows from Theorem 1 applied to the
problem max

x2Bn

.'0ıv0/.x/

.�0ıw0/.x/
and by converting the conditions on ' 0; �0; v0 and w0 to

conditions on '; �; v and w.

The equivalent of Proposition 12 for the instances satisfying condition (C4’) is:

Proposition 14. Assume that ' is increasing, that � is decreasing and that
max
x2Bn

'.v.x// < 0. A sufficient condition for S� \XC ¤ ; is
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�
t � v.xk�1/

'.t/� '.v.xk�1//

	�
�.u/� �.w.xk�1//

u� w.xk�1/

	�
'.v.xk//� '.t/

v.xk/� t

	�
w.xk/� u

�.w.xk//� �.u/

	
� 1

8t W v.xk�1/ < t < v.xk/; 8u W w.xk�1/ < u < w.xk/: (30)

In particular, the inequality (30) coincides with (18).
We terminate with some remarks:

• In view of Proposition 5, it is natural to assume that the time T .n/ to compute
the set XC is of the order of jXCjV.n/ where V.n/ is the time needed to solve
the problem PARAM.�/ for some given �. Actually this can often be done in the
order of V.n/ by using a different algorithm, see, for example, Sect. 2.2.3.

• The complexity of our algorithm is essentially determined by the computation
of the set XC, which depends only upon the functions v and w. The lowest
complexities will be obtained when v and w can be represented by low degree
multilinear polynomials. For example, if v and w are both linear, it is possible
to compute the set XC in O.n log n/ by representing implicitly the elements of
XC. If v and �w are quadratic supermodular functions and some monotonicity
property holds, the algorithm of Gallo, Grigoriadis and Tarjan can compute the
set XC in O.n6/, see Sects. 2.2.2 and 2.2.3.

• Conversely, since the functions ' and � are used only to identify the best point
in XC, they can have less attractive properties, for example—they could be non-
rational as illustrated by the additive clustering problem, see Sect. 4.3.

• If an instance .'; �; v; w/ satisfies the assumptions of Theorem 1, one must in
particular have that ' is increasing (condition (C5)) and convex (condition (C6))
and v is supermodular (condition (C7)). By part a) of Proposition 1, only the
absence of the monotonicity property for v prevents us from concluding that ' ıv
is supermodular (and monotone) on Bn. Similarly, by part d) of Proposition 1,
only the absence of the monotonicity property for w prevents us from concluding
that � ı w is submodular (and monotone) on Bn. If both v and w were monotone,
the assumptions of Theorem 1 are thus close to allow a polynomial algorithm for
(CFP) via the direct use of Dinkelbach’s algorithm: we would need in addition
that ' and � are rational functions, and a kind of strict monotonicity for either
' ı v or � ı w but these additional assumptions are relatively minor with respect
to those of Theorem 1. One can even notice that monotonicity of v and w is
present in the assumption of Theorem 1 (condition (C8c)). This suggests that our
new class of polynomially solvable instances extends only marginally the known
class of polynomially solvable instances of the fractional programming problem.

This is not exactly true, because our results do not require either v or w to be
monotone: condition (C8) could be satisfied through either (C8a) or (C8b). And
even if condition (C8c) is satisfied, only one of the functions v or w need to be
monotone. In other words ' ıv and/or��ıw might not have the supermodularity
property when the assumptions of Theorem 1 or 2 are satisfied, in which case
we do not know how to solve efficiently the auxiliary problem that arises in
Dinkelbach’s method.
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4 Application to an Additive Clustering Problem

In this section we show how the results obtained up to now can be used to derive
a polynomial algorithm for a problem arising in additive clustering. We start by
introducing additive clustering in Sect. 4.1. In Sect. 4.2 we reformulate a particular
problem arising in this area as a 0–1 fractional programming problem. An O.n5/

algorithm to solve this later problem is then described in Sect. 4.3.

4.1 Additive Clustering

The additive clustering (ADCLUS) model has been introduced by Shepard and
Arabie [50], Arabie and Carroll [2] in the context of cognitive modeling.1 This
model assumes that the similarity between two objects, measured by a nonnegative
number, is additively caused by the properties (also called features) that these
two objects share. With each property we can associate a cluster, which contains
all objects that have this property. Furthermore with each cluster we associate a
positive weight representing the importance of the corresponding property. The
similarity predicted by the model for a pair of objects is then defined as the sum
of the weights of the clusters to which both objects belong (note that clusters can
overlap). An ADCLUS model is characterized by a set of clusters, together with
their weights. Given a similarity matrix obtained typically by some experiments,
the additive clustering problem consists in constructing a model that explains as
much as possible of the given similarity matrix, under the restriction that the model’s
complexity is limited (if we do not restrict the complexity of the model, we can
reconstruct perfectly the similarity matrix with O.n2/ clusters, see Shepard and
Arabie [50, p. 98]). We will assume here that the complexity of the model is
measured by the number of clusters, see, e.g., Lee and Navarro [38] and references
therein for more elaborated measures of the complexity. In other words, limiting
the complexity of the model amounts to setting an upper bound on the number of
clusters used to construct the approximate similarity matrix. Many authors have
developed algorithms to fit this model (or variants or generalizations of it) with this
definition of the complexity, see, e.g., [4, 7, 11, 15, 37, 40].

The mathematical formulation of the additive clustering problem with m clusters
is the following:

ADCLUS.m/ min f .x; w/ D
X

i<j

 

sij �
mX

kD1

wkxk
i xk

j

!2

1A similar model was developed independently and at the same time in the former USSR; see
Mirkin [40] and the references therein.
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s.t. wk � 0 k D 1; : : : ; m

xk
i 2 f0; 1g k D 1; : : : ; mI i D 1; : : : ; n

where S D .sij / is a n � n symmetrical nonnegative matrix.

4.2 The Additive Clustering Problem with One Cluster

In an attempt to assess the complexity of problem ADCLUS.m/ we studied the
version with one cluster:

ADCLUS.1/ min f .x; w/ D
X

i<j

�
sij � wxi xj

�2

s.t. w � 0

xi 2 f0; 1g i D 1; : : : ; n:

Note that the cluster must have at least two elements in order to define a non-null
reconstructed matrix. This motivates the introduction of the set T :

T D
(

x 2 Bn W
nX

iD1

xi � 2

)

: (31)

We now reformulate problem ADCLUS(1) as a 0–1 fractional programming
problem.

Proposition 15. Problem ADCLUS(1) is equivalent to

ADCLUS0.1/ max
x2T

g.x/ D

 
P

i<j

sij xi xj

!2

�
nP

iD1

xi

	�
nP

iD1

xi � 1

	 :

In particular if x� is an optimal solution of problem ADCLUS0.1/ then .x�; w�/ is
an optimal solution of problem ADCLUS(1) with

w� D

P

i<j

sij x�i x�j
P

i<j

x�i x�j
:

Proof. See Hansen et al. [32]. �
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4.3 A Polynomial Algorithm

We first explain how a straightforward application of the results of this paper lead to
an O.n5/ algorithm to solve problem ADCLUS0.1/. Then we show that with a little
additional effort an O.n4/ algorithm can be obtained.

Problem ADCLUS0.1/ is not a (CFP) problem because its feasible set is a
strict subset of Bn. However note that problem ADCLUS0.1/ can be reduced to
a polynomial number of problems (CFP) of size n�2, each problem being obtained
from ADCLUS0.1/ by fixing two variables to 1. By renumbering the variables if
necessary, the general form of such a problem is

ADCLUS02.1/ max
x2Bn�2

Qg2.x/ D

 
P

i<j

Qsij xi xj C
n�2P

iD1

Qsi i xi C Qc
!2

�
n�2P

iD1

xi C 2

	�
n�2P

iD1

xi C 1

	

where QS is a .n� 2/� .n� 2/ symmetrical matrix with nonnegative entries and Qc is
a nonnegative constant. Clearly solving problem ADCLUS0.1/ in polynomial time
is equivalent to solving problem ADCLUS02.1/ in polynomial time.

Unfortunately problem ADCLUS02.1/ does not satisfy the assumptions of Theo-
rem 1 or 2, so we consider instead the problem:

ADCLUS002.1/ max
x2Bn�2

Qh2.x/ D

P

i<j

Qsij xi xj C
n�2P

iD1

Qsi i xi C Qc
s�

n�2P

iD1

xi C 2

	�
n�2P

iD1

xi C 1

	

Since the matrix S is assumed to be nonnegative, the numerator
P

i<j

Qsij xi xj C
n�2P

iD1

Qsi i xi C Qc is nonnegative for all x 2 Bn�2, hence problem ADCLUS02.1/ is

equivalent to problem ADCLUS002 .1/. Now problem ADCLUS002 .1/ is a problem
(CFP) with ' D Q', � D Q�, v D Qv and w D Qw where

Q'.t/ D t

Q�.t/ D p
.t C 1/.t C 2/

Qv.x/ D
X

i<j

Qsij xi xj C
n�2X

iD1

Qsi i xi C Qc

Qw.x/ D
n�2X

iD1

xi

and it can be verified that . Q'; Q�; Qv; Qw/ satisfies the conditions of Theorem 1.
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The corresponding problem PARAM.�/ can be reformulated as a parametric
minimum cut problem in a network with n vertices and O.n2/ arcs, which can be
solved by the Gallo, Grigoriadis and Gallo algorithm, see Sect. 2.2.3. Hence the
time needed to compute the set XC is T .n/ D O.n3/. Step 2 of the HM_CFP
algorithm consists in identifying the best feasible point among the points computed
in Step 1. In order to avoid problems with the square-root function, we evaluate� Qh2.x/

�2

instead of Qh2.x/. An evaluation costs O.n2/ time, hence the complexity of

Step 2 is in O.n3/. Thus the overall complexity for solving ADCLUS02.1/ is O.n3/.
Since we need to solve O.n2/ of such problems to solve problem ADCLUS(1), the
complexity of this latter problem is O.n5/. Hence we have shown:

Proposition 16. There exists an O.n5/ algorithm to solve problem ADCLUS(1).

Proposition 16 suffices to show that problem ADCLUS(1) can be solved in
polynomial time. The question is now whether we can lower the order of the
complexity. A little attention shows that we can obtain an O.n4/ algorithm by
working with problems obtained by fixing one variable to 1 rather than two. The
resulting problems are problems (CFP) with Bn replaced by Bn n f.0/g. By looking
at the proofs, we observe that the analysis made for the unconstrained case remains
valid, hence yielding an O.n4/ algorithm. We believe that this complexity can still
be improved but let this be for further research. Let us only note that working
directly with problem ADCLUS0.1/ by setting �.t/ D p

t.t � 1/ does not work,
as shown by the following example.

Example 2. Let n D 8 and consider the following instance of ADCLUS0.1/ where
we maximize the square-root of the original objective function:

max
18x1x5 C 15x1x6 C 8x2x7 C 16x3x5 C 22x4x6 C 15x6x8s�

8P

iD1

xi

	�
8P

iD1

xi � 1

	

s:t:
8X

iD1

xi � 2

xi 2 f0I 1g i D 1; : : : ; 8:

Then

ˆ.�/D max
x2B8

(

18x1x5 C 15x1x6 C 8x2x7 C 16x3x5 C 22x4x6 C 15x6x8 � �

 
8X

iD1

xi

!)

:

Applying the Eisner and Severance algorithm yields
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ˆ.�/ D
8
<

:

94� 8� 0 � � � 4

86� 6� 4 � � � 14:33

0 14:33 � �

with XC D f.11111111/; .10111101/; .00000000/g. The best point among these
three can easily be shown to be .10111101/ with a value for the (squared-rooted)
objective function equal approximately to 11.5962. However the optimal solution of
problem ADCLUS0.1/ is x� D .10011100/ with an (square-rooted) objective value
of approximately 15.8771.

As observed in Sect. 3.4, all instances of problem (CFP) solvable by our method
do not satisfy the property that ' ı v and �� ı w are monotone supermodular
functions, but it turns out that this is true for problem ADCLUS002.1/. Thus it seems
that Dinkelbach’s algorithm would be polynomial too. In fact the only assumption

of Proposition 3 that is not satisfied is that x 7!
s�

n�2P

iD1

xi C 2

	�
n�2P

iD1

xi C 1

	
is

a rational function. We now discuss why the non-rationality of this function is a
serious difficulty if we want to show that Dinkelbach’s algorithm is polynomial.
Recall that Dinkelbach’s algorithm requires the solution of the following auxiliary
problem

FPaux1=2.�/ max
x2Bn�2

h�;1=2.x/ DX

i<j

Qsij xi xjC
n�2X

iD1

Qsi i xiCQc��

vuu
t
 

n�2X

iD1

xi C 2

! 
n�2X

iD1

xi C 1

!

for some �. This auxiliary problem is solved typically by one of the SFM
algorithms mentioned in Sect. 2.1.3. Such an algorithm requires from time to time
the evaluation of the objective function h�;1=2 at some points of Bn�2. The question
that arises is what is the precision needed for � and for the evaluation of the
objective function value at a point of Bn�2 in order to guarantee that the solution
returned by the SFM algorithm is indeed optimal (note that from the point of view
of the correctness of Dinkelbach’s algorithm, the optimality of the solution returned
by the SFM algorithm is required only at the last iteration; however, if the SFM
algorithm returns non-optimal solutions at other iterations, the number of iterations
might not anymore be polynomial)? Let us approach this question differently. It
is easy to see that the �k are of the form b

p
c where b is a rational and c is an

integer of the form .t C 1/.t C 2/ with t 2 f0; : : : ; ng, hence the value of the
objective function h�;1=2.x/ can be written as a0 C b0

p
c0 where c0 is a square-

free integer less than n2.n C 1/2, in particular the objective function value can be
outputed exactly by specifying the triple .a0; b0; c0/. Now these values are likely to
be added, subtracted and compared together by the SFM algorithm (if we restrict
ourselves to a fully strongly combinatorial algorithm we do not have to care about
multiplication and division). To represent exactly a sum of such numbers, we can
introduce a basis that spans the set of numbers

S

1�c0�n2.nC1/2

fpc0g. The question is
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now: what is the complexity of comparing two numbers written in this basis? Up to
now, no polynomial algorithm is known for this comparison problem [6, 44]. It is
not impossible that a finer analysis, taking into account what operations exactly are
done on these numbers by the SFM algorithm as well as the structure of the numbers
forming the basis, would yield a polynomial algorithm by this approach, but this
might not be easy. Even if it is possible, the best complexity we could hope for the
problem ADCLUS(1) by applying Dinkelbach’s algorithm in conjunction with a
generic SFM algorithm is O.n9/ if we use Orlin’s strongly polynomial algorithm
(that uses multiplication and division) or O.n12 log2 n/ if we use Iwata’s fully
strongly combinatorial algorithm, which is much higher than the O.n5/ algorithm
described in this section.

5 Discussions: Limitations and Extensions

In the previous section we have shown that the problem (CFP) can be solved in
polynomial time if the functions ', �, v and w satisfy the conditions of Theorem 1
or 2. In this section we discuss various extensions (or impossibility of them) of
these polynomial solvable classes. Using NP-hardness results, we start by arguing
in Sect. 5.1 that some of the assumptions of Theorem 1 or 2 can hardly be relaxed.
We then discuss the extension of our results to minimization problems (Sect. 5.2),
maximization of product of two functions (Sect. 5.3) and constrained problems
(Sect. 5.4).

5.1 Limitations

In this section we show that unless NP D P we generally cannot hope to solve
problem (CFP) in polynomial time if we modify one assumption while keeping the
other assumptions unchanged.

• It is not possible to replace the assumption “v is supermodular” by “v is sub-
modular”, while keeping all others assumptions unchanged: indeed by choosing
'.t/ D t and �.t/ D 1, the problem (CFP) would become equivalent to
maximizing a submodular function, which is known to be NP-hard. A similar
restriction holds for the assumption “w is submodular”.

• By the equivalence of the assumptions “' is increasing and v is supermodular”
and “' is decreasing and v is submodular” (see Sect. 1), it follows that it is not
possible to replace the assumption “' is increasing” by “' is decreasing”. A
similar statement could be made for the function �.

• It is not possible to remove the assumption that �.t/ > 0 for all t . This follows
from the following result of Hansen et al. [31]:
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Proposition 17. The problem

max
x2Bn

a0 C
nP

jD1

aj xj

b0 C
nP

jD1

bj xj

is NP-hard unless the denominator is of the same sign for all x 2 Bn.

(If the denominator is of the same sign for all x 2 Bn, the above problem can be
solved in linear time as shown by Hansen et al. [31]).

• The following observation involves two assumptions: it is not possible to replace
the assumption “' is convex” by the assumption “' is concave”, while at the
same time removing the assumption that ' is increasing. To show this, we need
to introduce the following well-known NP-hard problem SUBSET SUM (Garey
and Johnson [23]):

Input: n positive integers s1; s2; : : : ; sn; an integer S .
Question: does there exist a subset I of the index set f1; 2; : : : ; ng such thatP

i2I si D S ?

We define '.t/ D �jt j, �.t/ D 1 and v.x/ DPi2I si xi � S . Clearly the answer
to SUBSET-SUM is yes if and only if the maximum of problem (CFP) is 0. The
function ' is concave for all t and is increasing for t < 0 and decreasing for
t � 0. A similar observation can be made for function �.

5.2 Minimization Problems

Consider the minimization version of problem (CFP):

.CFPmin/ min
x2Bn

.' ı v/.x/

.� ı w/.x/
:

If ' ı v is strictly positive on Bn, we can use the equivalence

min
x2Bn

.' ı v/.x/

.� ı w/.x/
, max

x2Bn

.� ı w/.x/

.' ı v/.x/
(32)

to derive sufficient conditions on .'; �; v; w/ for polynomial solvability of problem
(CFPmin) from Theorem 1. However if ' ı v can take positive and negative values
on Bn, equivalence (32) is not anymore true.

A similar analysis to the one done for the maximization problem results in the
polynomial solvable classes described by Fig. 3. Figure 3 must be read as follows:
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1. (ρ ◦ w)(x) > 0 for x ∈ Bn;
2. it is possible to evaluate the objective function in polynomial time;
3. v and w take integral values on Bn;
4. v and −w are submodular;
5. one of the following conditions is satisfied:

• v or w takes a polynomial number of distinct values on Bn;
• v and w are both linear;
• v or w is monotone and the application x �→ (v(x), w(x)) is weakly bijective;

6. min
x∈Bn

(ϕ ◦ v)(x) ≤ 0;

7. ϕ and −ρ are increasing;
8. −ϕ and −ρ are convex;

9. (ϕ ◦ v)(x) > 0 for all x ∈ Bn;
10. ϕ and ρ are increasing;
11. −ϕ and ρ are convex.

Fig. 3 Description of the polynomial solvable classes for the minimization problem

1. (ϕ1 ◦ v1)(x) > 0 for x ∈ Bn;
2. it is possible to evaluate the objective function in polynomial time;
3. v1 and v2 take integral values on Bn;
4. v1 and v2 are supermodular;
5. one of the following conditions is satisfied:

• v1 or v2 takes a polynomial number of distinct values on Bn;
• v1 and v2 are both linear;
• v1 or v2 is monotone and the application x �→ (v1(x), v2(x)) is weakly bijective;

6. max
x∈Bn

(ϕ2 ◦ v2)(x) ≥ 0;

7. ϕ1 and ϕ2 are increasing;
8. ϕ1 and ϕ2 are convex;

9. (ϕ2 ◦ v2)(x) < 0 for all x ∈ Bn;
10. ϕ1 and −ϕ2 are increasing;
11. ϕ1 and −ϕ2 are convex.

Fig. 4 Description of the polynomial solvable classes for the problem of product maximization

if an instance of problem (CFPmin) satisfies the conditions 1–8 or satisfies the
conditions 1–5 and 9–11, then the instance can be solved in polynomial time.

5.3 Maximization of the Product of Two Composed Functions

Consider the function �.t/ D 1
�.�t /

: if � is increasing and concave, function
� is increasing and convex. Problem (CFP) can then be reformulated as the
maximization of the product of two functions:

max
x2Bn

�
.'1 ı v1/.x/

� �
.'2 ı v2/.x/

�
: (33)

Figure 4 expresses the conditions of Theorems 1 and 2 in this new setting. Note that
since .'1; v1/ and .'2; v2/ play a symmetrical role in (33), the first assumption in
Fig. 4 could be replaced by .'2 ı v2/.x/ > 0 for x 2 Bn. However assumptions 6,
9, 10 and 11 should be modified accordingly.

We mention that the case where '1 and '2 are the identity functions and v1 and
v2 are linear functions was studied by Hammer et al. [30].
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5.4 Constrained Problems

In this last subsection we consider the constrained problem obtained from (CFP) by
replacing the set Bn by a strict subset T � Bn. It can be verified that the sufficient
condition of Proposition 12 remains valid. As soon as submodularity is involved,
however, we usually need that T is a sublattice of Bn. A sublattice of Bn is a set T

such that the following implication holds

x; y 2 T ) x _ y 2 T andx ^ y 2 T:

Most of the algorithms for supermodular maximization can be modified to optimize
over a sublattice T without increase in the complexity, see McCormick [39]. When
T is not a sublattice but can be expressed as the union of a polynomial number of
sublattices, then it is possible to solve the constrained problem in polynomial time
by running a supermodular maximization algorithm on each sublattice of the union
and take the best answer. This is, for example, the case when T D Bn n f.0/; .1/g.
In that case maximizing over T can be done via O.n/ calls to a SFM algorithm. See
again McCormick [39] and also Goemans and Ramakrishnan [24].

When T D T�1;�2 with T�1;�2 D fx 2 Bn W �1 � Pn
iD1 xi � n � �2g where �1

and �2 are fixed integers, it is possible to solve the constrained version of problem
(CFP) in polynomial time by reducing it to

�
n
�1

��
n
�2

�
unconstrained submodular

maximization problems with n � �1 � �2 variables, obtained by considering all
possible ways to fix �1 variables to 1 and �2 variables to 0. We gave an illustration
of this technique for �1 D 2 and �2 D 0 in Sect. 4.3. Note that Bn is equal to T0;0.

6 Conclusion

We have presented a class of 0–1 fractional programming problems that are solvable
in polynomial time. A nice particularity of the algorithm is that the candidate
solution set is defined by only two of the four functions defining the objective
function, which allow for low complexity if these two (supermodular) functions
have a low degree representation (linear, quadratic, etc.). On the other hand, the two
other functions may be more complicated, possibly non-rational, provided that their
value can be evaluated and compared in polynomial time.

A lot of work remains to be done. On the practical side, it would be of course
interesting to find real application problems where this approach can yield a
polynomial algorithm. The additive clustering problem used to illustrate this method
is a potential candidate but much work is needed to pass from 1 cluster (as illustrated
in this paper) to m clusters. More generally, the question of the complexity of this
problem for fixed m or when m is part of the input remains open.

On the theoretical side, several questions seem to worth of further study.
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• The simplest problem (CFP) that is not fully understood occurs when ' and �

are the identity functions, v is a quadratic supermodular function and w is a linear
function, strictly positive on Bn. If neither v nor w is monotone, and each function
takes more than a polynomial number of distinct values on Bn, there is no
guarantee that the function ˆ will have a polynomial number of breakpoints. Is it
possible to either prove that the number of breakpoints will always be polynomial
or to construct an example with a super-polynomial number of breakpoints?
Carstensen [8], building on a result from Zadeh [56], proves that for any n there
exists a parametric minimum cut problem on a graph Gn with 2nC 2 nodes and
n2 C n C 2 arcs that has an exponential number of breakpoints. Unfortunately
this network has some arcs with negative capacity, and thus does not seem to be
usable to answer the above question.

• Except when one of the functions v or w takes a polynomial number of distinct
values, the size of the set XC is always O.n/. This is mostly related to what
we called the Monotone Optimal Solution Property. Does there exist problems
where the size is larger, for example, O.n log n/ or O.n2/?

• We have shown in Sect. 5.3 that problem (CFP) can be reformulated as the
maximization of the product of two functions of supermodular functions. Can
we identify nontrivial polynomially solvable classes of the maximization of the
product of p functions of supermodular functions, with p > 2?

• Can we find a relation between Dinkelbach’s algorithm applied to problem (CFP)
and Dinkelbach’s algorithm applied to problem max

x2Bn

v.x/

w.x/
? More precisely, given

a guess �0 D .'ıv/.x0/

.�ıw/.x0/
for the optimal value of problem (CFP), can we deduce a

�00 such that solving problem PARAM.�00/ will yield an optimal solution x1 2 Bn

that is guaranteed to satisfy .'ıv/.x1/

.�ıw/.x1/
> �0 when some termination criteria is not

satisfied? One of the difficulties in attacking this question is that the functions v
and w can be defined up to an additive constant, resulting in an infinite family of
problems PARAM.�/.
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Experiments with a Non-convex Variance-Based
Clustering Criterion

Rodrigo F. Toso, Evgeny V. Bauman, Casimir A. Kulikowski,
and Ilya B. Muchnik

Abstract This paper investigates the effectiveness of a variance-based clustering
criterion whose construct is similar to the popular minimum sum-of-squares or
k-means criterion, except for two distinguishing characteristics: its ability to
discriminate clusters by means of quadratic boundaries and its functional form, for
which convexity does not hold. Using a recently proposed iterative local search
heuristic that is suitable for general variance-based criteria—convex or not, the
first to our knowledge that offers such broad support—the alternative criterion
has performed remarkably well. In our experimental results, it is shown to be
better suited for the majority of the heterogeneous real-world data sets selected.
In conclusion, we offer strong reasons to believe that this criterion can be used by
practitioners as an alternative to k-means clustering.

Keywords Clustering • Variance-based discriminants • Iterative local search

1 Introduction

Given a data set D D fx1; : : : ; xng of d -dimensional unlabeled samples, the
clustering problem seeks a partition of D into k nonempty clusters such that
the most similar samples are aggregated into a common cluster. We follow the
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variational approach to clustering, where the quality of a clustering is evaluated by a
criterion function (or functional), and the optimization process consists in finding a
k-partition that minimizes such functional [2]. Perhaps, the most successful criteria
for this approach are based on the sufficient statistics of each cluster Di , that is,
their sample prior probabilities OpDi , means O�Di

, and variances O�2
Di

, which yield not
only mathematically motivated but also perceptually confirmable descriptions of the
data. In general, such criteria are derived from the equation

J. OpD1 ; O�D1
; O�2

D1
; : : : ; OpDk

; O�Dk
; O�2

Dk
/ D

kX

iD1

JDi . OpDi ; O�Di
; O�2

Di
/: (1)

In this paper, we focus on functional J3 D Pk
iD1 Op2

Di
O�2
Di

, proposed by
Kiseleva et al. [12]. Other examples include the minimum sum-of-squares criterion
J1 D Pk

iD1

P
x2Di
jjx � O�Di

jj2 D Pk
iD1 OpDi O�2

Di
and Neyman’s [17] variant

J2 DPk
iD1 OpDi O�Di that is rooted in the theory of sampling. The key difference from

the traditional J1 to J2 and J3 lies in the decision boundaries that discriminate the
clusters: those in the latter are quadratic—the intra-cluster variances (dispersions),
derived from the second normalized cluster moments, are also taken into account
upon discrimination—and therefore more flexible than the linear discriminants
employed by the former, which only takes into account the means (centers) of the
clusters.

The distinctive feature of criterion J3 is the lack of convexity, given that both J1

and J2 are convex [15]. This claim has a deep impact in the practical application
of the criterion, given that, to our knowledge, no simple clustering heuristic offers
support for non-convex functionals, including the two-phase “k-means” clustering
algorithm of Lloyd [14]. (It is worth mentioning that the two-phase algorithm was
extended so as to optimize J2, thus enabling an initial computational study of
the criterion [15].) Even though there exist more complex algorithms that provide
performance guarantees for J3 (see, e.g., [7, 21]), we could not find in the literature
any experimental study validating them in practice, perhaps due to their inherent
complexities.

There was, to our knowledge, a gap of more than 25 years between the
introduction of the criterion J3 in 1986 [12] and the first implementation of an
algorithm capable of optimizing it, published in 2012 by Toso et al. [23]. Their
work has introduced a generalized version of the efficient iterative minimum sum-
of-squares local search heuristic studied by Späth [22] in 1980 which, in turn, is a
variant of the online one-by-one procedure of MacQueen [16]. (An online algorithm
does not require the whole data set as input—it reads the input sample by sample.)

This paper serves two purposes: first and foremost, it provides evidence of the
effectiveness of the criterion J3 when contrasted with J1 and J2 on real-world data
sets; additionally, it offers an overview of the local search heuristic for general
variance-based criterion minimization first published in [23]. Since the minimum
sum-of-squares criterion is widely adopted by practitioners—in our view because
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the k-means algorithm is both effective and easy to implement—we offer strong
reasons to believe that J3 can be successfully employed in real-world clustering
tasks, given that it also shares these very same features.

Our paper is organized as follows. In the next section, we establish the notation
and discuss the background of our work. The experimental evaluation appears in
Sect. 3, and conclusions are drawn in Sect. 4.

2 Variance-Based Clustering: Criteria and an Optimization
Heuristic

We begin this section by establishing the notation adopted throughout our work.
Next, we review the framework of variance-based clustering and describe the three
main criteria derived from it, including functional J3. We then conclude with a
brief discussion about the local search heuristic that can optimize any criterion
represented by Eq. (1).

2.1 Notation

Given an initial k-partition of D, let the number of samples in a given cluster Di be
nDi ; this way, the prior probability of Di is estimated as OpDi D nDi

n
. The first and

second sample central moments of the clusters are given by

M.1/

Di
D O�Di

D 1

nDi

X

x2Di

x; and (2)

M.2/
Di
D 1

nDi

X

x2Di

jjxjj2; (3)

respectively, where the former is the sample mean of the cluster Di . It follows that
the sample variance of Di is computed by

O�2
Di
DM.2/

Di
� jjM.1/

Di
jj2: (4)

Here, OpDi 2 R, O�Di
2 R

d , and O�2
Di
2 R, for all i D 1; : : : ; k.
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2.2 Variance-Based Clustering Criteria

Among the criterion functions derived from Eq. (1) is the minimum sum-of-squares
clustering (MSSC) criterion, since

min MSSC D min
kX

iD1

X

x2Di

jjx � O�Di
jj2 (5)

D min
1

n

kX

iD1

nDi

nDi

X

x2Di

jjx � O�Di
jj2

D min
kX

iD1

nDi

n

1

nDi

X

x2Di

jjx � O�Di
jj2

D min
kX

iD1

OpDi O�2
Di
D J1 (6)

The functional form in Eq. (5) is called membership or discriminant function
since it explicitly denotes the similarity of a sample with respect to a cluster. On
the other hand, Eq. (6) quantifies the similarity of each cluster directly. Note that the
former is in fact the gradient of the latter, which, in this case, is convex [2]. In J1,
the separating hyperplane (also known as decision boundary) between two clusters
Di and Dj with respect to a sample x is given by the equation

jjx� O�Di
jj2 � jjx � O�Dj

jj2 D 0: (7)

Let us now turn our attention to a criterion proposed by Neyman [17] for one-
dimensional sampling:

J2 D
kX

iD1

OpDi

q
O�2
Di

: (8)

Recently, J2 was generalized so as to support multidimensional data and proven
to be convex [15]. The decision boundaries produced by criterion J2 are given by
Eq. (9) and, contrary to those of J1, take into account the variance of the clusters for
discrimination.


 O�Di

2
C 1

2 O�Di

.jjx � O�Di
jj2/
�
�
"
O�Dj

2
C 1

2 O�Dj

.jjx � O�Dj
jj2/
#

D 0: (9)
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Finally, Kiseleva et al. [12] introduced the one-dimensional criterion function

J3 D
kX

iD1

Op2
Di
O�2
Di

; (10)

whose decision boundaries are
h
OpDi O�2

Di
C OpDi .jjx � O�Di

jj2/
i
�
h
OpDj O�2

Dj
C OpDj .jjx� O�Dj

jj2/
i
D 0: (11)

The criterion was extended to multidimensional samples [21], but a recent
manuscript has sketched a proof stating that convexity does not hold [15]. On a
positive note, and similarly to J2, the decision boundaries of J3 make use of the
variances of the clusters.

2.2.1 Non-convexity of J3

The aforementioned proof relies on the following:

Theorem 1. Assume that f W Rd ! R is twice continuously differentiable. Then,
f is convex if and only if its Hessian r2f .x/ is positive semidefinite for all x 2
R

d [20]. ut
It is enough to show that J3.Di / D Op2

Di
O�2
Di
D M

.0/

Di
M

.2/

Di
� jjM .1/

Di
jj2 is not

convex, with M
.m/
Di

denoting the m-th non-normalized sample moment of cluster Di .

Theorem 2. Functional J3 is non-convex.

Proof. The partial derivatives of J3.Di / are

@J3.Di /

@M
.0/
Di

D M
.2/
Di

;

@J3.Di /

@M
.1/
Di

D �2M
.1/
Di

; and

@J3.Di /

@M
.2/
Di

D M
.0/
Di

:

Thus, Eq. (12) corresponds to the Hessian of the functional of a cluster.

r2J3.Di / D
0

@
0 0 1

0 �2 1

1 0 0

1

A (12)



56 R.F. Toso et al.

We now proceed to show that the Hessian in Eq. (12) is not positive semidefinite,
as required by Theorem 1.

Definition 1. A matrix M 2 R
d�d is called positive semidefinite if it is symmetric

and x|M x � 0 for all x 2 R
d .

We show that there exists an x such that

xT

0

@
0 0 1

0 �2 1

1 0 0

1

A x < 0;

contradicting Definition 1. Plugging x D .1 2 1/ does the job, so r2J3.Di / is not
positive semidefinite and, by Theorem 1, J3 is non-convex.

2.3 Algorithms

Let us begin with J1. Although exact algorithms have been studied [8,9], minimizing
Eq. (5) is NP-hard [5], and hence their use is restricted to small data sets. In
general, except for approximation algorithms and local search heuristics with
no performance guarantees, no other optimization technique shall be suitable to
minimize Eq. (1) for large data sets unless P D NP.

The so-called k-means clustering algorithm is perhaps the most studied local
search heuristic for the minimization of J1 (disguised in Eq. (5)). In fact, k-means
usually refers to (variants of) one of the following two algorithms. The first is an
iterative two-phase procedure due to Lloyd [14] that is initialized with a k-partition
and alternates two phases: (1) given the set of samples D and the k cluster centers,
it reassigns each sample to the closest center; and (2) with the resulting updated
k-partition, it updates the centers. This process is iteratively executed until a stop-
ping condition is met. The second variant is an incremental one-by-one procedure
which utilizes the first k samples ofD as the cluster centers. Each subsequent sample
is assigned to the closest center, which is then updated to reflect the change. This
procedure was introduced by MacQueen [16] and is a single-pass, online procedure,
where samples are inspected only once before being assigned to a cluster. In [22],
an efficient iterative variant of this approach was given and can also be seen in
Duda et al. [6] (cf. Chap. 9, Basic Iterative Minimum-Squared-Error Clustering).
A comprehensive survey on the origins and variants of k-means clustering algo-
rithms can be found in [3].

The main difference between the two approaches above is when the cluster
centers are updated: in a separate phase, after all the samples have been considered
(two-phase), or every time a sample is reassigned to a different cluster (one-by-
one). It is here that the main drawbacks of the one-by-one method appear: the
computational time required to update the cluster centers after each sample is
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reassigned must increase in comparison with the two-phase approach, whereas the
ability to escape from local minima has also been questioned [6]. Both issues have
been addressed in [23], where the former is shown to be true while the latter is
debunked in an experimental analysis. In contrast, significant improvements have
been made in the two-phase algorithm when tied with the minimum-squared error
criterion, such as tuning it to run faster [11, 18] or to be less susceptible to local
minima [4, 13], and also making it more general [19].

With J2, since convexity holds, the two-phase procedure could be successfully
employed in a thorough evaluation reported in [15].

At last, J3. Lloyd’s [14] two-phase, gradient-based heuristic cannot be applied
due to the non-convexity of the functional, but MacQueen’s [16] online approach
is a viable direction. A randomized sampling-based approximation algorithm was
introduced by Schulman [21], relying on dimensionality reduction to make effective
use of an exact algorithm whose running time grows exponentially with the
dimensionality of the data. Also, a deterministic approximation algorithm appears
in [7]. To our knowledge, no implementations validating these approaches have been
reported in the literature. In conclusion, there was no experimental progress with J3

prior to [23] and this can certainly be attributed to the lack of a computationally
viable algorithmic alternative.

2.3.1 An Iterative Heuristic for Variance-Based Clustering Criteria

In this section, we revisit the local search heuristic appearing in [23] for criteria
in the class of Eq. (1), including those three studied throughout this paper. The
algorithm combines the key one-by-one, monotonically decreasing, approach of
MacQueen [16] with the iterative design of Späth [22], extending the efficient way
to maintain and update the sufficient statistics of the clusters also used in the latter.

We first present in Algorithm 1 an efficient procedure to update a given functional
value to reflect the case where an arbitrary sample x 2 Dj is reassigned to cluster
Di (i ¤ j ); we use the notation J .x!Di / to indicate that x, currently in cluster
Dj , is about to be considered in cluster Di . Similarly to [6, 22], we maintain the
unnormalized statistics of each cluster, namely nDi , the number of samples assigned
to cluster Di , mDi D

P
x2Di

x, and s2
Di
D P

x2Di
jjxjj2. Such equations not only

can be efficiently updated when a sample is moved from one cluster to another but
also allow us to compute or update the criterion function quickly. Note that in [6,22],
only nDi and mDi need to be maintained since the algorithms are tied with J1 as in
Eq. (5) (the minimum sum-of-squares variant).

The main clustering heuristic is shown in Algorithm 2. The procedure is
initialized with a k-partition that is used to compute the auxiliary and the sample
statistics in lines 1 and 2, respectively. In the main loop (lines 5–17), every sample
x 2 D is considered as follows: Algorithm 1 is used to assess the functional value
when the current sample is tentatively moved to each cluster D1; : : : ;Dk (lines 6–8).
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Algorithm 1 Computes J .x!Di /

Input: sample x 2 Dj , target cluster Di , current criterion value J �, and cluster statistics: nDj ,
mDj , s2

Dj
, OpDj , O�Dj

, O�2
Dj

, nDi , mDi , s2
Di

, OpDi , O�Di
, and O�2

Di
.

1: Let n0

Dj
WD nDj � 1 and n0

Di
WD nDi C 1.

2: Let m0

Dj
WD mDj � x and m0

Di
WD mDi C x.

3: Let .s2
Dj

/0 WD s2
Dj
� jjxjj2 and .s2

Di
/0 WD s2

Di
C jjxjj2 .

4: Let Op0

Dj
WD n0

Dj

n
and Op0

Di
WD n0

Di

n
.

5: Let O�0

Dj
WD 1

n0

Dj

mD0

j
and O�0

Di
WD 1

n0

Di

m0

Di
.

6: Let .O�2
Dj

/0 WD 1
n0

Dj

.s2
Dj

/0 � jj O�0

Dj
jj2 and .O�2

Di
/0 WD 1

n0

Di

.s2
Di

/0 � jj O�0

Di
jj2.

7: Compute J .x!Di / with the updated statistics for clusters Di and Dj .

Algorithm 2 Minimizes a clustering criterion function
Input: an initial k-partition.
1: Compute nDi , mDi , and s2

Di
8 i D 1; : : : ; k.

2: Compute OpDi , O�Di
, and O�2

Di
8 i D 1; : : : ; k.

3: Set J � WD J. OpD1 ; O�D1
; O�2

D1
; : : : ; OpDk ; O�Dk

; O�2
Dk

/.
4: while convergence criterion not reached do
5: for all x 2 D do
6: for all i j hDi .x/ D 0 do
7: Compute J .x!Di / via Algorithm 1.
8: end for
9: if 9 i j J .x!Di / < J � then

10: Let min D i j mini J .x!Di /. (i.e., x! Dmin mostly improves J �.)
11: Let j D i j hDi .x/D 1. (i.e., Dj is the current cluster of x.)
12: Set hDmin .x/ WD 1 and hDj .x/ WD 0. (i.e., assign x to cluster Dmin.)
13: Update: nDmin , nDj , mDmin , mDj s2

Dmin
, s2

Dj
.

14: Update: OpDmin , OpDj , O�Dmin
, O�Dj

, O�2
Dmin

, O�2
Dj

.

15: Set J � WD J .x!Dmin/.
16: end if
17: end for
18: end while

If there exists a cluster Dmin for which the objective function can be improved, the
sample is reassigned to such cluster and all the statistics are updated. The algorithm
stops when a convergence goal is reached.

With Algorithm 1 running in �.d/, the running time to execute one iteration
of Algorithm 2 is �.nkd/, the same of an iteration of the simple two-phase
procedure [6]. In practice, though, due to the constant terms hidden in the analysis,
the latter is consistently faster than the former. Results for clustering quality have
shown that the two approaches offer comparable clusterings [23].
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The algorithm is quite flexible and can be extended with one or more regulariza-
tion terms, such as to balance cluster sizes. Given that it is simple to implement and
quick to run, the method can also be employed as a local search procedure with a
global optimization overlay, such as genetic algorithms.

3 Experimental Results

This section offers an overview of the results obtained in [23]. Algorithm 2 was
implemented in CCC, compiled with g++ version 4.1.2, and run on a single
2.3 GHz CPU with 128 GBytes of RAM. The algorithm was stopped when no
sample was moved to a different cluster in a complete iteration.

A visualization-friendly two-dimensional instance illustrating the capabilities
of J3 is depicted in Fig. 1, offering a glimpse of how the decision boundaries of
the three criteria in study discriminate samples. Clearly, J2 and J3 built quadratic
boundaries around the central cluster (of smaller variance) and linear hyperplanes
between the external clusters (of the same variance), since Eqs. (9) and (11) become
linear when O�2

Di
D O�2

Dj
. For J1, all boundaries are linear and thus unable to provide

a proper discrimination for the central cluster.
In Fig. 2 we plot the value of J3 after each sample is inspected by the algorithm

over the course of nine iterations on a synthetic data set, when the algorithm halted.
The figure not only shows that the criterion is consistently reduced up until the
second iteration but also provides a hint for a possible enhancement, suggesting that
the algorithm could be stopped at the end of the third iteration. Since our focus is
on J3 itself, no running-time enhancements were made on the algorithm though.

a b c

Fig. 1 Decision boundaries for a mixture of five equiprobable Gaussian distributions. The central
cluster has a quarter of the variance of the external clusters. (a) Criterion J1. (b) Criterion J2.
(c) Criterion J3



60 R.F. Toso et al.

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

0 1 2 3 4 5 6 7 8 9

cr
ite

rio
n 

va
lu

e

iteration

Fig. 2 Evolution of the criterion value for a randomly generated mixture of Gaussians with n D
10;000, k D d D 50, and �2 D 0:05. Each of the k D 50 centers was randomly placed inside a
d -dimensional unit hypercube

3.1 Clustering Quality Analysis

In the subsequent experiments, we selected 12 real-world classification data sets
(those with available class labels) from the UCI Machine Learning Repository [1]
having fairly heterogeneous parameters as shown in Table 1. The available class
labels from the selected data sets were used in order to compare the functionals
under the following measures of clustering quality: accuracy, widely adopted by
the classification community, and the Adjusted Rand Index or ARI [10], a pair-
counting measure adjusted for chance that is extensively adopted by the clustering
community. (See Vinh et al. [24].)

From the qualitative results in Table 1, we note that J3 significantly outperforms
both J1 and J2 on average, being about 2 % better than its counterparts in
both quality measures. Although we chose not to display the individual standard
deviations for each data set, the average standard deviation in accuracy across all
data sets was 0.0294, 0.0291, and 0.0276 for J1, J2, and J3, respectively; for ARI,
0.0284, 0.0282, and 0.0208, respectively. In this regard, J3 also offered a more stable
operation across the different initial solutions.

4 Summary and Future Research

This paper has shown promising qualitative results for a non-convex criterion
function for clustering problems, obtaining outstanding results on heterogeneous
data sets of various real-world applications including digit recognition, image
segmentation, and discovery of medical conditions. We strongly believe that this
criterion can be an excellent addition to applications involving exploratory data
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Table 1 Description and solution quality for real-world data sets obtained from the UCI
Repository [1]

Parameters Accuracy Adjusted Rand Index

Data set k d n J1 J2 J3 J1 J2 J3

Arcene 2 10000 200 0.6191 0.6173 0.6750 0.0559 0.0536 0.1180
Breast-cancer 2 30 569 0.8541 0.8735 0.8770 0.4914 0.5502 0.5613
Credit 2 42 653 0.5513 0.5865 0.5819 0.0019 0.0226 0.0193
Inflammations 4 6 20 0.6773 0.6606 0.7776 0.4204 0.4008 0.6414
Internet-ads 2 1558 2359 0.8953 0.8279 0.7961 0.4975 0.3434 0.2771
Iris 3 4 150 0.8933 0.8933 0.8933 0.7302 0.7302 0.7282
Lenses 2 6 24 0.6036 0.6011 0.6012 0.0346 0.0326 0.0382
Optdigits 10 64 5619 0.7792 0.7702 0.7959 0.6619 0.6498 0.6810
Pendigits 10 16 10992 0.6857 0.6960 0.7704 0.5487 0.5746 0.6155
Segmentation 7 19 2310 0.5612 0.5516 0.5685 0.3771 0.3758 0.4028
Spambase 2 57 4601 0.6359 0.6590 0.6564 0.0394 0.0773 0.0726
Voting 2 16 232 0.8966 0.8875 0.8865 0.6274 0.5988 0.5959
Average 0.7211 0.7187 0.7400 0.3739 0.3675 0.3959
Wins 4 3 7 3 3 7

Quality measures are averaged over 1,000 runs with random initial k-partitions

analysis, given its ability to discriminate clusters with quadratic boundaries based
on their variance.

Future research paths include a more extensive experimentation with functionals
J2 and J3 while also contrasting them with J1 to better understand their strengths
and weaknesses.
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1 Introduction

A common problem for many location studies is to find a location or set of locations
that satisfies a group of customers in a way that is as good as possible, usually by
maximizing or minimizing various optimization criteria. The customers are often
viewed as “voters” where each one reports a preferred location on a graph, and
the location function returns a set of “winners.” Most of the work done in this
area focuses on developing algorithms to find these optimal location vertices, but
in recent years, there have been axiomatic studies of the procedures themselves.
This is the approach we take in this note. We seek to understand those location
functions that encourage voters/customers to report their true location preferences.
That is, no voter j should be able to improve the outcome (from j ’s point-of-view)
by reporting a suboptimal location in their vote. Standard terminology labels these
functions as being “strategy-proof,” and the literature on this topic is extensive.
For example see [13] for the many references therein. Our goal is to develop the
notion of strategy-proofness as it pertains to the vertex set of a finite graph with
added graph-theoretic structure. We deviate from many studies (e.g. see [1, 12])
by requiring all locations and customers to be on vertices of the graph, and that
the edges have no real-valued lengths assigned to them. We introduce four precise
concepts of strategy-proofness in our context and give some preliminary results
about them. Specifically, we illustrate the concepts by looking at two well-known
location functions, the median and the center, and we study these functions on
several classes of graphs.

2 Preliminaries and an Elementary Result

Throughout we let G D .V; E/ be a finite, connected graph without loops or
multiple edges, with vertex set V and edge set E . The distance d.u; v/ between two
vertices u and v of G is the length of a shortest u; v-path, so that .V; d/ is a finite
metric space. If X � V and v 2 V , then we set d.v; X/ D minfd.v; x/ W x 2 Xg:
Let k be a positive integer. Sequences in V k are called profiles and a generic one
is denoted 	 D .x1; : : : ; xk/. Let f	g be the set of distinct vertices appearing in
	 and j	j be number of elements in f	g. By 	Œxj ! w� we denote the profile
obtained from 	 D .x1; : : : ; xj ; : : : ; xk/ by replacing xj by w. So 	Œxj ! w� D
.x1; : : : ; xj�1; w; xjC1; : : : ; xk/, for 1 < j < k, and 	Œx1 ! w� D .w; x2; : : : ; xk/,
and 	Œxk ! w� D .x1; : : : ; xk�1; w/.

Without any conditions imposed, a location function (of order k) on G is simply
a mapping LV W V k ! 2V nf;g, where 2V denotes the set of all subsets of V . When
the set V is clear from the context, we will write L instead of LV . A single-valued
location function on G is a function of the form L W V k ! V . (Notice that a single-
valued L can be viewed as requiring jL.	/j D 1 for all 	 .) Given a profile 	 , we
can think of xi as the reported location desired by customer (or voter) i , and L.	/



Strategy-Proof Location Functions on Finite Graphs 65

as the set of locations produced by the function L. To measure how “close” a vertex

x is to a given profile 	 D .x1; : : : ; xk/, the values of s.x; 	/ D
kP

iD1

d.x; xi / and

e.x; 	/ D maxfd.x; x1/; : : : ; d.x; xk/g have been used often. We will be concerned
with two well-studied location functions (e.g., see [4–6]) which return vertices close,
in the previous sense, to a given profile. The center function is the location function
Cen W V k ! 2V nf;g defined by Cen.	/ D fx 2 V W e.x; 	/ is minimumg.
The median function is the location function Med W V k ! 2V nf;g defined by
Med.	/ D fx 2 V W s.x; 	/ is minimumg.

A single-valued L is onto if, for any vertex v of G, there exists a profile 	

such that L.	/ D v. A location function L is unanimous if, for each constant
profile .u; u; : : : ; u/ on v consisting only of occurrences of the vertex u, we have
L..u; u; : : : ; u// D fug.

The interpretation of a profile .x1; x2; : : : ; xk/ is that xj represents the most
preferred location for voter j: Assuming that voter j wants to have the decision
rule or location function lead to a choice of xj or at least to include xj in the set
of chosen alternatives, how can a decision rule or location function prevent j from
misrepresenting his or her true preference in order to gain an advantage? This is the
intuitive notion of strategy-proofness and the following is an attempt to make this
precise for location functions. Let L W V k ! 2V nf;g be a location function of order
k on G. Then L is strategy-proof of the type SP i if, for i 2 f1; 2; 3; 4g, L satisfies
the following:

SP1: For every profile 	 D .x1; : : : ; xk/ 2 V k , j 2 f1; : : : ; kg and w 2 V ,

d.xj ; L.	// � d.xj ; L.	Œxj ! w�//:

SP2: For every profile 	 D .x1; : : : ; xk/ 2 V k and j 2 f1; : : : ; kg, if xj … L.	/,
then there does not exist a w 2 V such that xj 2 L.	Œxj ! w�/:

SP3: For every profile 	 D .x1; : : : ; xk/ 2 V k , if xj 2 L.	/ with jL.	/j > 1,
then there does not exist a w 2 V such that fxj g D L.	Œxj ! w�/:

SP4: For every profile 	 D .x1; : : : ; xk/ 2 V k and j 2 f1; : : : ; kg, if xj … L.	/,
then there does not exist a w 2 V; w ¤ xj , such that fxj g D L.	Œxj ! w�/.

Clearly SP1 implies SP2 implies SP4.

Examples.

1. SP2 does not imply SP1: This example draws on ideas found in [11]. Let G

be the path on three vertices denoted in order a1; a2; a3, and let L.	/ D aj

where aj 2 f	g appears most frequently in 	 and j is the smallest index
among such vertices. Now let 	 D .x1; x2; x3/ D .a1; a2; a3/. Then L.	/ D a1

and d.x3; L.	// D 2: But d.x3; L.	Œx3 ! a2�/ D d.a3; L.a1; a2; a2// D
d.a3; a2/ D 1:

2. SP4 does not imply SP2: We will show in Proposition 3 that Cen is such an
example on the path on four vertices.
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If L is single-valued then SP3 does not apply and SP2 and SP4 are equivalent.
Also, when L is single-valued, SP1 corresponds to the definition found in [12]: voter
j will never be able to improve (from her/his point-of-view) the result of applying
the location function by reporting anything other than their peak choice xj . SP2
implies that if voter j ’s top choice is not returned by L, then it cannot be made a
part of the output set by j ’s reporting something else as top choice. SP3 requires
that when j ’s top choice is returned by L along with others, this choice cannot be
made into the unique element in the output set by reporting something else. Finally,
SP4 says that when j ’s top choice is not returned by L; it cannot be the unique
output returned by L if j reports a different choice.

The following result appears to be well-known [2, 12] but we include a proof for
completeness since our context differs, as mentioned previously.

Lemma 1. Let L be a single-valued location function of order k on G that satisfies
SP1. Then L is onto if and only if L is unanimous.

Proof. Clearly, a unanimous location function is onto.
Conversely assume that L is onto and let u be an arbitrary vertex of G.

Because L is onto, there is a profile 	 D .y1; y2; : : : ; yk/ with L.	/ D u. Let
� D .x1; x2; : : : ; xk/ be the profile with xj D u for all j , and let 	0 D �. For
j D 1; 2; : : : ; k, let 	j D 	j�1Œxj ! yj �. Note that 	k D 	 . Since L satisfies
SP1, we have

d.u; L.	j�1// � d.u; L.	j //;

for j D 1; 2; : : : ; k. Hence

d.u; L.�// � d.u; L.	// D 0;

and the proof is complete. ut

3 Strategy-Proof Functions on Paths

We first consider the simplest situation: the graph is a path. This corresponds to
the problem of locating a vertex along a single highway, or street, and is a fairly
standard case to be considered [7, 8]. Let P be a path of length n. Without loss of
generality we may assume that V D f0; 1; : : : ; ng is the vertex set of P with the
vertices on P numbered consecutively so that P D 0 ! 1 ! : : : ! n. Note that
d.u; v/ D ju � vj for u; v 2 V .

We now consider single-valued location functions of order k on P .
Let G be the graph P k , that is, the Cartesian product of k copies of P . Thus V k

is the vertex set of G, and two vertices 	 D .x1; : : : ; xk/ and � D .y1; : : : ; yk/ of G

are adjacent if and only if there is exactly one i such that jxi �yi j D 1, and xj D yj

for all j ¤ i . The distance function on G is given by
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d.	; �/ D
kX

iD1

jxi � yi j

where 	 D .x1; : : : ; xk/ and � D .y1; : : : ; yk/ are vertices of G.
Clearly V is a linearly ordered set under �, the usual ordering on the natural

numbers. This can be used to induce a partial ordering, which we also denote by �,
on V k as follows: for 	 D .x1; : : : ; xk/ and � D .y1; : : : ; yk/ in V k define

	 � � if and only if xi � yi for all 0 � i � k:

We denote the poset .V k;�/ by G�. Note that � D .y1; : : : ; yk/ covers 	 D
.x1; : : : ; xk/ in G� if, for some i , we have yi � xi D 1 with xj D yj for all
j ¤ i . Because we want to focus on the graph structure as well as the order, we use
G� in the sequel.

A location function L W V k ! V is isotone on G� if, for any two vertices 	 and
� of G�, 	 � � implies L.	/ � L.�/.

Theorem 1. Let L be a single-valued location function of order k on the path P of
length n and let G D P k . If L satisfies SP1, then L is isotone on G�.

Proof. First we prove that L is order preserving on each edge of the Hasse diagram
of G�. Let 	� be an edge in G with 	 D .x1; : : : ; xj�1; xj ; xjC1; : : : ; xk/ and
� D .x1; : : : ; xj�1; xj C 1; xjC1; : : : ; xk/. Thus � covers 	 in G�. We have to
prove that L.	/ � L.�/. For convenience we write x D xj and x0j D xj C 1.

Assume to the contrary that L.	/ > L.�/. We consider three cases:

Case 1. L.	/ > L.�/ � x C 1.

Note that we can write � D 	Œxj ! x C 1�. Since L satisfies SP1, this implies that

d.xj ; L.	// � d.xj ; L.	Œxj ! x C 1�/;

which can be written as

d.x; L.	// � d.x; L.�//:

Due to the choice of V and the distance function d of P , this amounts to

L.	/ � x � L.�/ � x;

which is impossible.

Case 2. x � L.	/ > L.�/.

Note that we can write 	 D �Œx0j ! x�. SP1 implies that

d.x0j ; L.�// � d.x0j ; L.�Œx0j ! x�/;
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which can be written as

d.x C 1; L.�// � d.x C 1; L.	//:

Due to the properties of the distance function d on P , this amounts to

x C 1 � L.�/ � x C 1 � L.	/;

which is impossible.

Case 3. L.	/ � x C 1 > x � L.�/.

Note that we can write � D 	Œxj ! x C 1�. Then SP1 implies that

d.xj ; L.	// � d.xj ; L.	Œxj ! x C 1�//;

which can be written as

d.x; L.	// � d.x; L.�//:

Due to the properties of the distance function d on P this amounts to

L.	/ � x � x �L.�/:

Hence we have

L.	/C L.�/ � 2x: (1)

Now we write 	 D �Œx0j ! x�. Then SP1 gives that

d.x0j ; L.�// � d.x0j ; L.�Œx0j ! x�/;

which can be written as

d.x C 1; L.�// � d.x C 1; L.	//:

This amounts to

x C 1 �L.�/ � L.	/ � .x C 1/:

Hence we have

2.x C 1/ � L.	/C L.�/: (2)

Clearly (1) and (2) yield a contradiction, which proves that L preserves order on
the edges of G�.
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Now consider any two vertices 	 and � of G� with 	 � �. Since L is isotone
on edges of G�, it is isotone on all the edges in a shortest ordered path from 	 to �,
which implies that L.	/ � L.�/. ut

The converse of Theorem 1 is not true, even if the isotone location function is
onto.

Example. Define the average function A on P by A.	/ D b 1
k

Pk
iD1 xic, where

	 D .x1; : : : ; xk/. It is straightforward to check that the average function is an
isotone, onto location function on G�, but that it does not satisfy SP1. For a specific
example, consider 	 D .x1; : : : ; xk/ D .0; 1; : : : ; 1; 1/ and 	Œxk ! 2�. Then
A.	/D .k � 1/=k and A.	Œxk ! 2�/ D 1 so d.xk; A.	// > d.xk; A.	Œxk ! 2�/.

Theorem 2. Let L be an onto single-valued location function on the path P of
length n that satisfies SP1. Then

min
xj2	

.xj / � L.	/ � max
xj2	

.xj /;

for any profile 	 on P .

Proof. Set ˛ D minxj2	.xj / and ˇ D maxxj2	.xj /. By Lemma 1, we have
L..˛; ˛; : : : ; ˛// D ˛ and L..ˇ; ˇ; : : : ; ˇ// D ˇ. Then in G� there is an ordered
path from .˛; ˛; : : : ; ˛/ to .ˇ; ˇ; : : : ; ˇ/ passing through 	 . Since L satisfies SP1,
the assertion now follows from Theorem 1. ut

4 Strategy-Proofness of the Center Function

In this section we investigate how Cen behaves on paths, complete graphs, cycles,
and graphs with diameter greater than 2. Let Pn denote the path a1a2 � � �an with n

vertices, and let Kn denote the complete graph on n vertices. Recall that the diameter
of a graph G is the maximum d.x; y/ for x; y 2 V . Since Cen is unanimous,
trivially Cen satisfies SP1, SP2, SP3, and SP4 on P1 D K1.

Proposition 1. Let G D Kn and k > 1. Then Cen satisfies SP1, SP2, SP3, SP4
on G.

Proof. If 	 D .x1; : : : ; xk/ is a profile with j	j D 1, we are done since Cen is
unanimous. So assume j	j > 1. Then Cen.	/ D V and Cen.	Œxj ! w�/ D V or
Cen.	Œxj ! w�/ D fwg. SP1 holds since d.xj ; V / D 0, and therefore SP2 and SP4
hold. SP3 holds because if jCen.	Œxj ! w�/j D 1, then Cen.	Œxj ! w/ ¤ fxj g:

ut
Proposition 2. Let graph G have diameter at least 3 and k > 1. Then Cen violates
conditions SP1 and SP2.
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Proof. Let au1u2 � � � up be a shortest path of length at least 3 from a to up, so p� 3:

Let 	 D .x1; : : : ; xk/ D .a; a; : : : ; a; u2/. Then Cen.	/ D fv 2 V W av 2 E;

u2v 2 Eg: Now Cen..	Œxk ! u3�/ D Cen..a; a; : : : ; u3// contains u1 and u2. In
particular, xk D u2 2 Cen..	Œxk ! u3�/ while xk … Cen.	/: Thus, SP2 fails and
therefore so does SP1. ut

4.1 Paths

We now consider the center function on the path Pn of n vertices, which we will
denote in order on the path as a1a2 � � � an: We may consider n > 2 since n D 2 gives
us a complete graph and so here SP1 through SP4 hold by Proposition 1.

Proposition 3. Suppose Cen is defined on Pn for n > 2, and let k > 1. Then

1. Cen satisfies SP1 if and only if n D 3.
2. Cen satisfies SP2 if and only if n D 3.
3. Cen fails SP3 for all n > 2.
4. Cen satisfies SP4 if and only if n 2 f3; 4g.
Proof. We first observe that SP3 fails for n > 2: If 	 D .x1; : : : ; xk/D .a1;

a1; : : : ; a1; a2/, then Cen.	/ D fa1; a2g: However, Cen.	Œxk ! a3�/DCen..a1;

a1; : : : ; a1; a3// D fa2g; which contradicts condition SP3.
We next consider SP1, SP2, and SP4 for the case n D 3. It suffices to show

that SP1 holds, for then SP2 and SP4 follow. Suppose that d.xj ; Cen.	// >

d.xj ; Cen.	Œxj ! w�/: Because n D 3; d.xj ; Cen.	// is equal to 1 or 2. If it
is 2, then without loss of generality xj D a1 and Cen.	/ D fa3g; so f	g D fa3g
and since Cen is unanimous SP1 cannot fail for this 	 . If d.xj ; Cen.	// D 1,
then xj 2 Cen.	Œxj ! w�/: We may assume that j	j > 1; so without loss of
generality, f	g D fa1; a2g; fa1; a3g; or fa1; a2; a3g. Since xj … Cen.	/; in the first
case xj D a3; and in the second and third cases xj D a1 or a3; without loss of
generality the former. The first case is impossible since xj must be in f	g: In the
second and third cases, since xj D a1 is in Cen.	Œxj ! w�/; we cannot have
a3 in f	Œxj ! w�g; which contradicts f	g D fa1; a3g or f	g D fa1; a2; a3g: We
conclude that SP1 holds.

Suppose n � 4: By Proposition 2, SP1 and SP2 fail. Next consider n � 5

and let 	 D .x1; : : : ; xk/ D .a1; a1; : : : ; a1; a3/. Then Cen.	/ D fa2g. However,
Cen.	Œxk ! a5�/ D Cen..a1; a1; : : : ; a1; a5// D fa3g; so SP4 fails.

It is left to prove that SP4 holds for n D 4: Suppose that Cen.	Œxj !w�/ D
fxj g: Since w 2 f	Œxj !w�g and w¤xj ; we have j	Œxj !w�j > 1: Since
Cen.	Œxj ! w�/ has only one element, this eliminates as f	Œxj ! w�g all
subsets of fa1; a2; a3; a4g except for the four cases: fa1; a3g; fa2; a4g; fa1; a2; a3g;
fa2; a3; a4g. By symmetry, we need only consider the first and the third. In both
of these cases, Cen.	Œxj ! w�/ is fa2g, which means that a2 D xj is also
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in f	g: Thus, since f	Œxj ! w�g is either fa1; a3g; fa1; a2; a3g; f	g is one of
fa1; a2g; fa2; a3g; fa1; a2; a3g: In each case xj D a2 2 Cen.	/; which implies that
SP4 holds. ut

4.2 Cycles

We now consider Cen on the cycle Cn of n vertices, which we will denote in order
on the cycle as a1; a2; : : : ; an: We may consider n > 3 since n D 3 gives K3 and
then, for k > 1, SP1 through SP4 hold by Proposition 1.

Proposition 4. For a cycle Cn with n > 3:

1. Cen satisfies SP1 iff n D 4; k D 2In D 4; k D 3I or n D 5; k D 2:

2. Cen satisfies SP2 iff n D 4; k D 2In D 4; k D 3I or n D 5; k D 2:

3. Cen satisfies SP3 iff n D 4; k D 2:

4. Cen satisfies SP4 iff n D 4; k � 2In D 5; k � 2In D 6; k � 2In D 7; kD 2I
n D 8; k D 2:

Proof. Note that if n � 6; then Cn has diameter at least 3, so by Proposition 2,
SP1 and SP2 fail. Now let n D 4 or 5. Suppose that k � n. Let 	 D .a1; a1;

a2; a3; : : : ; an�1/: Note that since n � 1 � 3; a1 … Cen.	/. However, a1 2
Cen.	Œx1 ! an�/ D V.G/, and thus condition SP2, and hence also SP1, fails.
For SP1 and SP2, this leaves the cases n D 4; k D 2In D 4; k D 3In D 5; k D 2I
n D 5; k D 3In D 5; k D 4; which we consider next.

If n D 4 and k � 3; then up to symmetry, the only possibilities for f	g that we
need to consider are fa1g; fa1; a2g; fa1; a3g; fa1; a2; a3g: In the first case, since Cen
is unanimous, SP1 is satisfied and thus so is SP2. In the second case, Cen.	/ D f	g
so d.xj ; Cen.	// D 0 so SP1 and therefore SP2 holds. In the third case, suppose
without loss of generality that j D 1 and that x1 D a1. Then d.xj ; Cen.	// D
d.xj ; fa2; a4g/ D 1. Since k � 3; the only possibility for f	g is fa1; a3g. It follows
that for w ¤ a1; f	Œx1 ! w�g is either fa3; wg or fa1; a3; wg, and in each case a1

is not in Cen.	Œx1 ! w�/. Hence, SP1 holds and thus so does SP2. In the fourth
case, up to interchange of order, 	 D .a1; a2; a3/ since k � 3: Without loss of
generality, j D 1 or j D 2. Suppose first that j D 1 and, without loss of generality,
x1 D a1: Then d.x1; Cen.	// D d.a1; a2/ D 1: Then f	Œx1 ! w�g D fa2; a3g or
fa2; a3; a4g and a1 … Cen.	Œx1 ! w�/; so d.x1; Cen.	Œx1 ! w�// � 1: If j D 2,
then f	Œx2 ! w�g D fa1; a3g or fa1; a3; a4g and again a1 is not in Cen.	Œx2 ! w�/

and d.x2; Cen.	Œx2 ! w�// � 1: This proves SP1 and thus SP2.
Next, let n D 5; k D 2: Then up to symmetry, 	 D .a1; a1/; .a1; a2/; or .a1; a3/

and we may take x1 D a1: In the first two cases, d.x1; Cen.	// = 0 and so SP1
and therefore SP2 holds. In the third case, d.x1; Cen.	// D 1 and Cen.	Œx1 !
w�/ D fa3g; fa2; a3g or fa3; a4g: In every case, a1 … Cen.	Œx1 ! w�/ and so
d.x1; Cen.	Œx1 ! w�/ � 1; which gives SP1 and thus SP2.
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To complete the proof for SP1 and SP2, there are two more cases. First, let
n D 5; k D 3. Take 	 D .a1; a1; a3/: Then x1 D a1 … Cen.	/ but x1 D a1 2
Cen.	Œx1 ! a5�/ D Cen.a5; a1; a3/ D V.G/: Thus, SP2 fails and, therefore, SP1
fails. Next, let n D 5; k D 4. Take 	 D .a1; a1; a1; a3/: Then x1 D a1 … Cen.	/

but x1 2 Cen.	Œx1 ! a5�/ D V.G/; so SP2 fails and therefore so does SP1.
Now consider SP3. Let n � 4; k � 3: Take 	 D .a1; a1; : : : ; a1; a2/: Then

Cen.	/ D fa1; a2g but Cen.	Œx1 ! an�/ D fa1g, which shows that SP3 fails. Now
let n � 5; k D 2: Let 	 D .a1; an/: Then Cen.	/ D fa1; ang but Cen.	Œx1 !
a2�/ D fa1g; so SP3 fails. Finally, if n D 4; k D 2; suppose Cen.	Œx1 ! w�/ has
only one element, a1. Since n D 4; k D 2; we must have 	 D .a1; a1/; which is
impossible since w ¤ x1: Thus, SP3 holds.

Finally, consider SP4. First, suppose n D 4: If Cen.	Œxj ! w�/ has one element
xj , then without loss of generality f	Œxj ! w�g D fa1g or fa1; a2; a3g: The former
case is impossible since xj D a1 and w ¤ xj must both be in f	Œxj ! w�g: In
the latter case, Cen.	Œxj ! w�/ D fa2g and f	g D fa1; a2g; fa2; a3g; fa1; a3g; or
fa1; a2; a3g: In each case, a2 2 Cen.	/; which implies that SP4 holds.

Next, let n D 5: If Cen.	Œxj ! w�/ has one element xj , then without loss
of generality f	Œxj ! w�g D fa1g; fa1; a3g or fa1; a2; a3g: The former case is
impossible as with n D 4: In the other two cases, fa2g D Cen.	Œxj ! w�/ and
xj D a2: If f	Œxj ! w�g D fa1; a3g; then f	g D fa1; a2g; fa2; a3g; or fa1; a2; a3g:
In each case, a2 2 Cen.	/; which implies that SP4 holds. If f	Œxj ! w�g D
fa1; a2; a3g; then we have the same possible sets f	g and again we get SP4.

Suppose n D 6: If Cen.	Œxj ! w�/ has one element xj , then without loss
of generality f	Œxj ! w�g D fa1g; fa1; a3g; fa1; a2; a3g; or fa1; a2; a3; a4; a5g.
The first three cases are handled as for n D 5: In the fourth case, Cen.	Œxj !
w�/ D fa3g: Now f	g has to be one of the sets fa1; a2; a3; a4; a5g, fa1; a2; a3; a4g,
fa1; a2; a3; a5g, fa1; a3; a4; a5g, fa2; a3; a4; a5g. Since a3 2 Cen.	/ in all cases, SP4
holds.

Next, take n D 7: When k � 4; consider 	 D .a1; a1; : : : ; a1; a2; a3/: Then
Cen.	/ D fa2g: Now Cen.	Œxk�2 ! a6�/ D Cen..a1; a1; : : : ; a1; a6; a2; a3// D
fa1g; so SP4 fails. (Note that k � 4 is used since it implies that k � 2 � 2 and thus
f	g has a1 in it.) When k D 3; consider 	 D .a1; a2; a3/, with Cen.	/ D fa2g:
Then Cen.	Œx3 ! a5�/ D Cen..a1; a2; a5// D fa3g; so SP4 fails. Suppose next
that k D 2 and that f	Œxj ! w�g D fxj g. Since k D 2; without loss of generality
	Œxj ! w� D .a1; a1/ or .a1; a3/. In the former case, xj D a1 is in Cen.	/: In the
latter case, xj D a2 and f	g D fa1; a2g or fa2; a3g; so xj 2 Cen.	/ and SP4 holds.

To handle the case n D 8; suppose first that k � 4; and consider 	 D
.a1; a1; : : : ; a1; a2; a3/: (As in the case n D 7; the assumption k � 4 is used.) Then
Cen.	/ D fa2g: Now Cen.	Œxk ! a5�/ D Cen..a1; a1; : : : ; a1; a2; a5// D fa3g;
so SP4 fails. When k D 3; the same example as with n D 7 shows that SP4 fails.
Finally, take k D 2. That SP4 holds follows in the same way as with n D 7:

To conclude the proof, consider n � 9: Take 	 D .a1; a1; : : : ; a1; a3/: Note that
Cen.	/ D fa2g; but Cen.	Œxk ! a5�/ D Cen..a1; a1; : : : ; a1; a5g/ D fa3g; so SP4
fails. ut
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5 The Median Function on Median Graphs

We now study how the median function behaves on median graphs with respect
to strategy-proofness. Median graphs form a class of bipartite graphs that include
trees and n-cubes. Specifically, a median graph is a connected graph G D .V; E/

such that for every three vertices x; y; z 2 V , there is a unique vertex w on
a shortest-length path between each pair of x; y; z. Let I.x; y/ D fw 2 V W
d.x; w/ C d.w; y/ D d.x; y/g. Then it is easy to see that G is a median graph
if and only if jI.x; y/\ I.x; z/ \ I.y; z/j D 1 for all x; y; z 2 V .

First we present some necessary concepts and results for arbitrary graphs. Then
we concentrate on median graphs and recapitulate some necessary notation and
results from [3, 4, 9, 10].

Let G D .V; E/ be a connected graph. A subgraph H of G is convex if, for
any two vertices x and y of H , all shortest x; y-paths lie completely in H . Note
that convex subgraphs are induced. A subset W of V is convex if it induces a
convex subgraph. A subgraph H is gated if, for any vertex w there exists a unique
vertex x in H such that for each vertex y of H there exists a shortest w; y-path
through x. This vertex x is the gate for w in H . Clearly, if H is gated, then the
gate for w in H is the vertex of H closest to w. It is also the unique vertex z in H

such that any shortest w; z-path intersects H only in w. A gated subset of vertices
is a subset that induces a gated subgraph. Note that gated subgraphs are convex, but
the converse need not be the case. A simple consequence of the theory on median
graphs is that convex sets in a median graph are always gated. Let 	 be a profile on
the median graph G and uv 2 E . By Wuv we denote the subset of V of all vertices
closer to u than to v, by Guv the subgraph induced by Wuv. The subgraphs Guv, Gvu

form a so-called split: the sets Wuv, Wvu are disjoint with V as their union. We call
Guv and Gvu split-sides. Split-sides are convex subgraphs, and hence gated.

Let 	 be a profile, 	uv be the subprofile of 	 consisting of the vertices in 	 closer
to u than v, and let l.	uv/ denote the number of terms in the sequence 	uv. Theorem 3
of [4] tells us that, for any profile 	 and any edge uv with l.	uv/ > l.	vu/ we have
Med.	/ � Guv. An important consequence of this theorem is that

Med.	/ D
\

l.	uv/>l.	vu/

Guv:

Since the intersection of convex subgraphs is again convex, median sets of profiles
are thus convex, and hence also gated.

For any two vertices u; v in G the set of neighbors of u in I.u; v/ is denoted by
N1.u; v/. Loosely speaking these are precisely the vertices that are one step closer to
v from u. Let Gx=v D T

u2N1.v;x/ Gvu, which signifies all vertices that are “behind”
v seen from x, that is, all vertices that can be reached from x by a shortest path
passing through v.



74 F.R. McMorris et al.

Lemma 2. Let x and v be vertices in a median graph G. Then v is the gate for x inT
u2N1.v;x/ Gvu.

Proof. Since split-sides are convex, the subgraph Gx=v D T
u2N1.v;x/ Gvu is convex

and hence gated. By definition, any shortest x; v-path intersects Gx=v only in v. So
indeed v is the gate for x in this subgraph. ut
Corollary 1. Let 	 D .x1; x2; : : : ; xk/ be a profile on a median graph G. If xj

is not in Med.	/, and m is the gate of xj in Med.	/, then Med.	Œxj ! w�/ is
contained in Gxj =m.

Proof. First we show that Med.	/ lies in Gxj =m. Let u be any neighbor of m in
I.xj ; m/. Then u is not in Med.	/, so a majority of 	 lies in Gmu, whence Med.	/

lies in Gmu, and we are done.
Now we replace xj by w, thus obtaining the profile � D 	Œxj ! w�. Take a

neighbor u of m in I.x; m/. Note that a majority of 	 lies in Gmu and a minority lies
in Gum, and xj belongs to this minority. So, no matter where w is located, a majority
of � still lies in Gmu. Hence Med.�/ is contained in Gmu. This settles the proof. ut
Theorem 3. Let G be a median graph. Then Med W V k ! 2V nf;g satisfies SP1
(and therefore SP2 and SP4) for any k.

Proof. Let 	 D .x1; x2; : : : ; xk/ be a profile on G such that xj is not in Med.	/,
and let w be any vertex of G. Let m be the gate of xj in Med.	/. Note that in
G, d.xj ; Med.	// D d.xj ; m/. By Corollary 1, Med.	Œxj ! w�/ lies in Gxj =m.
So each vertex y in Med.	Œxj ! w�/ can be reached from xj via a shortest path
passing through m. Hence d.xj ; m/ � d.xj ; y/ for all y 2 f	Œxj ! w�g, and we
are done. ut

6 Conclusions and Future Work

This note has introduced four notions of strategy-proofness and illustrated them for
several location functions and for several types of graphs. We have only begun to
investigate this subject and, even for this relatively small beginning, have left open
questions to be addressed.

For instance, we have given an example of a function (the average function) that
is an isotone, onto location function but does not satisfy SP1. We believe that under
certain conditions, the converse holds, but leave the investigation of such conditions
to future work.

Proposition 2 shows that for every graph of diameter at least 3, when k > 1; Cen
violates SP1 and SP2. We have left open the question of whether this is also true of
SP3 and SP4.

Section 5 shows that SP1, and therefore SP2 and SP4, hold for median graphs. It
leaves open this question for SP3.
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Section 4 determines the cases where SP1 through SP4 hold for the center
function on paths and cycles. For the median function, since a path is a median
graph, Sect. 5 handles SP1, SP2, and SP4. SP3 remains open. We have not attempted
to categorize when these conditions of strategy-proofness hold for cycles. For trees,
the fact that they are median graphs shows that SP1, SP2, and SP4 hold for the
median function. SP3 remains open. For the center function, the case of trees other
than paths remains an area for future research.
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A Pseudo-Boolean Approach to the Market
Graph Analysis by Means of the p-Median
Model

Boris Goldengorin, Anton Kocheturov, and Panos M. Pardalos

Abstract In the course of recent 10 years algorithms and technologies for network
structure analysis have been applied to financial markets among other approaches.
The first step of such an analysis is to describe the considered financial market
via the correlation matrix of stocks prices over a certain period of time. The
second step is to build a graph in which vertices represent stocks and edge weights
represent correlation coefficients between the corresponding stocks. In this paper
we suggest a new method of analyzing stock markets based on dividing a market
into several substructures (called stars) in which all stocks are strongly correlated
with a leading (central, median) stock. Our method is based on the p-median
model a feasible solution to which is represented by a collection of stars. Our
reduction of the adjusted p-Median Problem to the Mixed Boolean pseudo-Boolean
Linear Programming Problem is able to find an exact optimal solution for markets
with at most 1,000 stocks by means of general purpose solvers like CPLEX. We
have designed and implemented a high-quality greedy-type heuristic for large-sized
(many thousands of stocks) markets. We observed an important “median nesting”
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property of returned solutions: the p leading stocks, or medians, of the stars are
repeated in the solution for p C 1 stars. Moreover, many leading stocks (medians),
for example, in the USA stock market are the well-known market indices and funds
such as the Dow Jones, S&P which form the largest stars (clusters).

Keywords Stock markets analysis • Russia • Sweden • USA • p-Median
problem • Pseudo-Boolean approach • Cluster analysis by stars • Leading stocks

1 Introduction

The main goal of the paper is to introduce a new method to analyze financial markets
based on the correlation matrix of stock prices. Mantegna [1] suggested constructing
the Minimal Spanning Tree (MST) which connects all stocks in a certain portfolio.
He used a simple nonlinear transformation of the correlation matrix where the
correlation coefficient pij between prices of stocks i and j is substituted by the
number dij D

p
2.1� pij /. This number can be used as a distance measure

between stock prices (and between stocks in general). Now this method is a base for
many other variations of this method which modify it in several directions [2–8].
These modifications suggest other network structures instead of the MST including
different metrics (measures).

Boginski et al. [9, 10] suggested to find large highly correlated groups of stocks
in a market graph. The market graph is constructed as follows: each stock is
represented by a vertex and two vertices are connected by an edge if the correlation
coefficient of the corresponding pair of stocks (calculated over a certain period of
time) exceeds a pre-specified threshold 
 2 Œ�1I 1�. The authors search for cliques
and independent sets in the graph and highlight a special economic meaning of the
maximum clique (which is almost a binary equivalence relation) and the maximum
independent set of this graph. In a clique the behavior of all its stocks is similar
but any choice of a single stock acting as a typical representative for all stocks in a
clique is questionable. The p-Median Problem (PMP)-based approach returns stars
which are natural relaxations of cliques and a typical (leading) stock is defined by
its highest degree connections with other stocks within each star.

A number of recent publications are related to analyzing a financial market of a
certain country [11–14]. The main goal of these papers is to find network structures
which can describe the structure of a state-related market.

Our method consists in dividing all stocks presented on a market into several
groups such that the stock prices are strongly correlated. For this purpose we
calculate a correlation matrix P D �

�ij


n�n

of prices for all n stocks on the given
stock market and then use these obtained correlations as input data for further
clustering (see the next section). The main idea of the clustering is to find a
set S of stocks (hereinafter we call this set medians or leading stocks) with the
predefined number p of leading stocks maximizing the total “similarity” over all
stocks clustered by means of p leading stocks. By a “similarity” �.i; S/ between
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the i -th stock and the set S we mean a maximum correlation between a price of this
stock and prices of all stocks in the set jS j D p: �.i; S/ D max

j2S
.�ij /. We do not use

any threshold and thus do not lose any distinctions between the tightness of stocks
within a cluster (star) to the leading stock. For example, if the number of stocks
included in the returned cluster i (star) is equal to ki for all i 2 S (in this notation
every cluster is identified by the median), then the average tightness Ti of all stocks
within a cluster to the leading stock i we define as follows: Ti D .

P
j2Ki

�ij /=ki .
After introducing the “similarity” �.i; S/ we move to solving the following

problem:

max
S�X;jS jDp

nX

iD1

�.i; S/ D max
S�X;jS jDp

 
nX

iD1

max
j2S

.�ij /

!

; (1)

where X is a set of all stocks on the market, n is the number of stocks, and p is the
number of clusters. Applying the following transformation of the entries �ij � 0 in
the correlation matrix P to a complementary matrix C D �

cij


n�n
D �

1 � �ij


n�n

we get an equivalent objective for (1) as follows:

min
S�X;jS jDp

 
nX

iD1

min
j2S

.cij /

!

: (2)

We use the capital C to mark this complementary matrix because it can be
considered as a distance matrix between all stocks. Notice that there are several
ways how to obtain such a distance matrix.

Formula (2) corresponds to the combinatorial optimization formulation of the
PMP where the set of potential locations and the set of customers (clients) are the
same. In this paper both of these sets, namely locations and customers, are stocks.
A detailed overview of the PMP can be found in Reese [15] and Mladenovic et al.
[16]. For solving this problem we apply the Pseudo-Boolean approach originally
introduced by Hammer [17] and Beresnev [18] which further developed and applied
in AlBdaiwi et al. [19, 20], Goldengorin and Krushinsky [21], Goldengorin et al.
[22,23]. This approach gives us the most compact formulation of the Mixed Integer
Linear Programming (MILP) model. The objective function of MILP formulation
is a linearized pseudo-Boolean polynomial (pBp). The MILP formulation for small
financial markets such as Russian and Sweden can be easily solved by means of a
general purpose MILP solver like CPLEX or LPSolve. Large financial markets (e.g.,
the USA market with 3,378 stocks) cannot be clustered within half an hour CPU
time by means of these solvers. So we apply an efficient greedy heuristic which
returns high quality clusters.
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2 Construction of the Correlation Matrix

In this paper we analyze the financial market of the USA, the biggest in the world,
Russian market as a representative of the developing markets, and Swedish market
due to the fact that Sweden is one of the developed countries with a very high income
per person. We take Russian market’s data from an open source, a website of the
“Finam” investment company www.finam.ru. There are about 700 Russian issuers
traded on the Moscow Interbank Currency Exchange (MICEX) but we take into
consideration only those stocks which had been traded at least 80 % of all trading
days from September 3, 2007 till September 16, 2011. This period of time includes
1,000 trading days and 151 companies. In Swedish stock market we take 266 stocks
for the same period of time and with the same requirements. In American stock
market we take 3,378 financial instruments traded for the same period of time and
satisfying the same requirements from about 7,000 companies shares and stock mar-
ket indices. We obtain data for both these markets with Application Programming
Interface (sometimes cited as API) at the website www.finance.yahoo.com.

In order to calculate the correlation matrices for the markets we use the following
formula [10, 14]:

�ij D E
˚
.Ri � E fRi g/

�
Rj �E

˚
Rj

���

q
var .Ri / var

�
Rj

� ; (3)

which gives the correlation coefficient between prices of two stocks i and j . Ri is
a new time series obtained from the original one according to the following rule:
Ri .t/ D ln Pi .t/

Pi .t�1/
, Pi .t/ is a closure price of the financial instrument i at the day t .

The final step consists in obtaining a complementary matrix from the correlation
matrix in order to cluster the market by means of the PMP.

3 The PMP and the Pseudo-Boolean Approach

In this section we show how to obtain a MILP formulation of the model (2).
Let us consider a simple market with four stocks and positive correlation

coefficients computed according to the formula (3). The complementary of the
correlation matrix is listed below:

C D

2

66
4

0 0.2 0.6 0.7
0.2 0 0.8 0.5
0.6 0.8 0 0.1
0.7 0.5 0.1 0

3

77
5 (4)

www.finam.ru
www.finance.yahoo.com
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The idea of clustering is to choose p medians which satisfy the model (2). In this
case the found medians will be the centers of clusters (leading stocks) and inside
each cluster all other stocks will strongly correlate with the corresponding median
(leading) stock. Applying the procedure introduced originally by AlBdaiwi et al.
[19] and developed by Goldengorin and Krushinsky [21], we get a pseudo-Boolean
polynomial (pBp):

f .C / D 0:2y1 C 0:2y2 C 0:1y3 C 0:1y4 C 0:7y1y2 C 0:9y3y4

C 0:1y1y2y3 C 0:3y1y2y4 C 0:2y1y3y4 C 0:2y2y3y4

(5)

where yi is equal to 0 if the stock i is a median (leading) stock and 1, otherwise.
Now we can formulate the problem of clustering the market in terms of the MILP

model.
The pBp can be truncated (see AlBdaiwi et al. [19]) due to the fact that all

monomials (terms) in the pBp with degree (by the degree we mean a number of
multiplied Boolean variables in the monomial) k bigger than n� p can be removed
from the pBp (see for more details in Goldengorin et al. [23]). Indeed, according

to the constraint
nP

iD1

yi D n � p we have only n � p nonzero variables and every

monomial with the degree k > n � p includes at least k � .n � p/ > 0 zero
variables. Thus such monomials are equal to zero and we can remove them from the
original pBp. For example, let p D 2. We can remove from our polynomial f .C /

in (5) all terms with the degree k > 2. AlBdaiwi et al. [19] have termed the obtained
polynomial ft .C / as a truncated polynomial:

ft .C / D 0:2y1 C 0:2y2 C 0:1y3 C 0:1y4 C 0:7y1y2 C 0:9y3y4 (6)

In the next section we show how to incorporate the linearized truncated polyno-
mial ft .C / into a MILP model.

4 Preprocessing and Exact Model

In order to create a MILP model of the original PMP we show how AlBdaiwi
et al. [19] have linearized the truncated pBp by introducing new continuous nonzero
decision variables which in fact will take only Boolean values f0; 1g. In the second
row of Table 1 the number of entries in C is indicated while the third row of
Table 1 shows the number of terms in pBp after elimination the equal entries and
the fourth row of Table 1 shows the number of terms in pBp after aggregation the
similar terms and finally the number of terms in a truncated pBp depending on
the number p indicated in rows p D 2; : : : ; 15. There is an essential distinction
between entries of correlation matrices for Russian and Sweden markets on one
side and USA market on the other side. The American market has more statistically
similar correlation dependencies between different stocks compared to the stocks
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Table 1 Reduction of the
pBp for the financial markets

Country Russia Sweden USA

# of stocks 151 266 3379
# of entries in C 22801 70756 11417641
#T 22768 70582 7943904
#Tr 22292 69874 7739667
Reduction (%) 2.23235823 1.246537396 32.21308149
p D 2 22251 69802 7739533
p D 3 22147 69602 7739181
p D 4 22012 69357 7738620
p D 5 21865 69096 7737856
p D 6 21716 68831 7736944
p D 7 21568 68566 7735935
p D 8 21419 68301 7734867
p D 9 21268 68036 7733742
p D 10 21117 67772 7732512
p D 11 20966 67506 7731239
p D 12 20815 67241 7729880
p D 13 20664 66975 7728474
p D 14 20513 66709 7727102
p D 15 20362 66443 7725750

in Russian and Sweden markets. It means that the American stock market is more
stable and influential compared to Russian and Sweden markets.

A term t with degree k can be substituted by a continuous variable z with two

constraints: z � 0 and z �
kP

iD1

yhi � k C 1 where t D
kQ

iD1

yhi . These constraints

together with the objective to be minimized guarantee that the continuous variable
z D 1 if and only if all Boolean variables yhi D 1. In all other cases, z D 0.
For instance, two terms t1 D y1y2 and t2 D y3y4 of the polynomial (5) can be
substituted by two continuous z1 and z2 and the linearized formulation of the MILP
model with the objective function (6) is:

pt .C / D 0:2y1 C 0:2y2 C 0:1y3 C 0:1y4 C 0:7z1 C 0:9z2 ! min;

s:t: W
z1 � y1 C y2 � 1I
z1 � 0I
z2 � y3 C y4 � 1I
z2 � 0I
y1; y2; y3; y4 2 f0; 1g

(7)

The MILP (7) now can be solved by means of any general purpose solver like
CPLEX or LPSolve. We are interested only in yi values which we take from the
solution: if yi D 0, the stock i is a median. The last step is to cluster stocks: for
each stock we choose a median with the biggest correlation and move this stock to
the cluster of this median.
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5 Greedy Heuristics

For large financial markets such as the USA market the MILP model cannot be
solved by means of CPLEX or LPSolve solvers within reasonable CPU times. In
order to cluster such markets we introduce a new greedy-like heuristic which deals
with the truncated pBp.

After the truncated pBp is obtained our goal is to set exactly p Boolean variables
yi to zero, so that the value of the pBp is minimized. When all the yi are equal to
1 the pBp has its maximal value. When we set, for example, y1 D 0, we remove
all monomials which contain y1 and the value of the pBp is reduced by the sum of
the coefficients of these monomials. For example, for the pBp in formula (6) when
we set y1 or y2 to zero we reduce the value of the pBp by 0:2 C 0:7 D 0:9 and
when we set y3 or y4 to zero we reduce the value of the pBp by 0:1 C 0:9 D 1:0.
In our heuristic we follow a greedy approach. First we set to zero the variable for
which this reduction is maximal (the sum of the coefficients of the terms containing
this variable is maximal). If there are several such variables, we choose the variable
with the smallest index i . Then we remove the monomials containing this variable
and again search for the variable with the maximum reduction of the pBp value. The
greedy heuristic algorithm consists of the following steps:

Step 1. Calculate contributions of all yi to the pBp: sum up coefficients of all
monomials which include yi ; 8i D 1; : : : ; n.

Step 2. Move to the set of medians S the yi which gives the biggest contribution
to the polynomial. If jS j D p, go to step 4. If there are several variables
which have the biggest contribution, choose the first one.

Step 3. Remove from the pBp all monomials which include yi with the biggest
contribution. Go to step 1.

Step 4. Cluster the stocks. End.

We tested our greedy heuristics on benchmark instances of the Uncapacitated
PMP taken from J.E. Beasley operational research library (http://people.brunel.ac.
uk/~mastjjb/jeb/orlib/pmedinfo.html). The results are presented in Table 2. Every
problem has its own name, for instance, “pmed1.” It is the first column of the table.
It has also the number p of clusters (which is not shown in the table but can be found
in the website) and the optimal objective function value (5) which is in the second
column. The third column shows the heuristic objective function value. And the last
column indicates a relative error of the heuristic solution calculated according to the
formula Error D 100 %.Greedy=Exact� 1/.

Notice that despite the fact that we use the set Y D fy1; y2; : : : ; yng of Boolean
variables we have applied standard operations of addition and multiplication defined
on the domain of the real numbers. It implies that the objective function values are
real numbers. Due to that fact Hammer [17] termed such polynomials the pseudo-
Boolean polynomials.

Also we compare our computational results for Russian market by means of our
exact procedure and greedy heuristic (see Table 3).

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html
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Table 2 The greedy heuristic result on OR-Library instances

Name Exact Greedy Error (%) Name Exact Greedy Error (%)

pmed1 5819 5819 0 pmed21 9138 9138 0
pmed2 4093 4118 0.6108 pmed22 8579 8605 0.3031
pmed3 4250 4272 0.5176 pmed23 4619 4629 0.2165
pmed4 3034 3046 0.3955 pmed24 2961 2982 0.7092
pmed5 1355 1378 1.6974 pmed25 1828 1866 2.0788
pmed6 7824 7943 1.521 pmed26 9917 9917 0
pmed7 5631 5646 0.2664 pmed27 8307 8364 0.6862
pmed8 4445 4462 0.3825 pmed28 4498 4518 0.4446
pmed9 2734 2771 1.3533 pmed29 3033 3070 1.2199
pmed10 1255 1274 1.5139 pmed30 1989 2020 1.5586
pmed11 7696 7721 0.3248 pmed31 10086 10086 0
pmed12 6634 6649 0.2261 pmed32 9297 9319 0.2366
pmed13 4374 4391 0.3887 pmed33 4700 4732 0.6809
pmed14 2968 2987 0.6402 pmed34 3013 3058 1.4935
pmed15 1729 1743 0.8097 pmed35 10400 10406 0.0577
pmed16 8162 8194 0.3921 pmed36 9934 9952 0.1812
pmed17 6999 6999 0 pmed37 5057 5075 0.3559
pmed18 4809 4851 0.8734 pmed38 11060 11141 0.7324
pmed19 2845 2889 1.5466 pmed39 9423 9423 0
pmed20 1789 1839 2.7949 pmed40 5128 5163 0.6825

Table 3 Comparison of the greedy and exact PMP solutions on Russian market for different
number of clusters

p Exact Greedy Error (%) p Exact Greedy Error (%)

1 99.8953702 99.8953702 0 16 79.15926 79.29346 0.169532
2 95.69383 95.69383 0 17 78.28544 78.42179 0.17417
3 93.615102 93.615102 0 18 77.41961 77.56736 0.190843
4 91.913129 91.913129 0 19 76.55851 76.715 0.204406
5 90.468442 90.468442 0 20 75.70408 75.86357 0.210676
6 89.101039 89.216384 0.129454 21 74.85172 75.01556 0.218886
7 87.939338 88.072194 0.151077 22 74.00371 74.18343 0.242853
8 86.823678 86.969944 0.168463 23 73.17158 73.35198 0.246544
9 85.757218 85.897973 0.164132 24 72.34013 72.52165 0.250926
10 84.72569 84.85525 0.152917 25 71.51073 71.69225 0.253836
11 83.71731 83.83751 0.143578 26 70.6814 70.86389 0.258187
12 82.78033 82.90053 0.145204 27 69.85814 70.03966 0.259841
13 81.84857 81.96362 0.140564 28 69.03577 69.21729 0.262936
14 80.93123 81.05646 0.154736 29 68.21529 68.39681 0.266099
15 80.03429 80.16783 0.166853 30 67.40807 67.57878 0.253249
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The results obtained by the greedy heuristic are very close to the exact ones. Thus
we can use our greedy heuristic as a powerful tool for large markets clustering. It
allows us to divide the USA market into clusters in at most half an hour.

6 Results and Their Interpretation

Our computational results show that the network structure of financial markets has a
property of “median nesting.” This property means the following: if we find medians
for p and p C 1 clusters, then almost all medians calculated for p clusters can
be found among the medians calculated for p C 1 clusters. Moreover in case of
financial markets all medians for p can be found among medians for p C 10. From
the computational point of view this property gives us a new tool: first we can solve
the problem instance by our either exact or greedy heuristic for a number of clusters
big enough to provide an optimal (high quality) solution (for instance, 2p/ and then
find p medians among already found ones.

We also found a “stable” number of clusters for Russian, Swedish, and American
markets (see Table 4). If we cluster a market and there are no trivial clusters
(clusters which include only one stock—the median) we say that this is a reasonable
clustering. For all markets involved in our computational experiments there exist a
number of clusters such that for all numbers less than this number we obtain a
reasonable clustering and for all greater numbers the trivial clusters appear. So we
believe that these “stable” numbers reflect the best clustering of the markets. The
medians corresponding to the “stable” clustering for Swedish markets are presented
in Table 5.

We also compared our results with the approach of Boginski et al. [9, 10] of
finding the maximum clique in financial markets. For different thresholds we run
the following procedure: we find the maximum clique and if its size is not greater
than 2 we stop, otherwise we remove the stocks of this clique from the market and
repeat the procedure. We have run this procedure on Russian and Swedish markets
and compared the results with “stable” clustering. The comparison shows that all
found cliques are always the subsets of our clusters (more than one clique can be in
one cluster). For example, on Russian market the biggest cluster with 42 stocks of
“stable” clustering includes two largest cliques of the size 17 and 5 and one clique of
size 3 in a smaller cluster (see Fig. 1, where red nodes belong to the largest clique
of size 17, blue nodes—to the clique of size 5, and yellow nodes—to the clique

Table 4 Stable number of
clusters for different countries

Financial market “Stable” number of clusters

USA 31
Russia 15
Sweden 12
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Table 5 Medians for “stable” clustering on Swedish market

Stock’s name Company’s name Cluster’s size

Bili-A.st Bilia AB 11

Fag.st Fagerhult, AB 4

Indu-C.st IND.VAERDEN 39

Inve-B.st Investor AB 64

Kinv-B.st Investment AB Kinnevik 47

Mson-A.st Midsona AB 5

Mtro-SDB-B.st Metro International S.A. 3

NCC-B.st NCC AB 22

Orti-B.st Ortivus AB 3

SSAB-B.st SSAB Swedish Steel AB 33

Svol-B.st Svolder AB 11

Vnil-SDB.st Vostok Nafta Investment Ltd. 24
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Fig. 1 Fifteen clusters and three cliques on Russian market
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Table 6 The tightness in stars on Russian market divided into 15 stars

Cluster Tightness Cluster size Cluster Tightness Cluster size

1 0.519449363 42 9 0.177086487 4
2 0.415963672 40 10 0.153309133 3
3 0.373704426 34 11 0.152456093 4
4 0.278391626 3 12 0.112344314 2
5 0.27505577 2 13 0 1
6 0.22470929 3 14 0 1
7 0.211888944 8 15 0 1
8 0.205771408 3

of size 3). We believe that our approach gives more general information about the
whole structure of the corresponding market since we use all correlation coefficients
without any thresholds.

We have considered separately negative, positive, and absolute correlations for
the markets. Our observations let us make a conclusion that negative correlations
are not important for financial markets because the results for positive and absolute
correlations are almost the same: for every number of clusters the set of medians
are the same and the structure of clusters are almost the same. Thus we can remove
negative correlations from the consideration or better substitute them by absolute
values.

One more interesting result is that many medians in the market of the USA are
the market indices and funds such as the Dow Jones, S&P, and others which form the
largest clusters. But it is not surprising because such indices and funds are “linear
combinations” of the stocks they consist of. Moreover, for the USA market the
ordering of clusters by means of their tightness values in a non-increasing order
is similar to the ordering of the same clusters by means of their cluster sizes (see
Table 7). For the Russian market similar orderings are valid for the first three largest
clusters only (see Table 6). Also the obtained largest clusters for the USA market are
much more stable compared to the obtained largest clusters for the Russian market
by means of the corresponding tightness values (see Tables 6 and 7).

7 Conclusions and Future Research Directions

In this paper we introduce a new method to analyze financial markets based on
the PMP. We have implemented all recent discoveries within the pseudo-Boolean
approach to solve the PMP presented in Goldengorin et al. [23] and have tested
an exact and heuristic algorithms to solve the PMP. The approach we apply allows
us to cluster a market into highly connected components in which stock prices are
strongly correlated. We do not lose any financial information because we don’t use
any thresholds for correlation coefficients to construct a market graph. The method
provides stable clustering of financial markets. Our approach outputs the set of p
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Table 7 The tightness in stars on the USA market divided into 30 stars

Cluster Tightness Cluster size Cluster Tightness Cluster size

1 0.993503666 412 16 0.367195974 96

2 0.985951948 368 17 0.359995482 78

3 0.91563294 309 18 0.338841811 73

4 0.89599758 294 19 0.280333928 68

5 0.875812686 186 20 0.247558649 61

6 0.781924916 143 21 0.222761999 54

7 0.743636731 125 22 0.18101556 46

8 0.725027741 123 23 0.179470838 33

9 0.668988825 120 24 0.170499094 31

10 0.656472908 119 25 0.161527103 28

11 0.515632467 109 26 0.157092122 27

12 0.515098615 107 27 0.086334098 27

13 0.485984984 107 28 0.054689215 12

14 0.44828545 105 29 0.045718395 11

15 0.39236848 100 30 0.023304706 7

clustered submarkets each of which might be represented by a leading stock, number
of stocks within each cluster, and the average correlation coefficient Ti for all
i D 1; : : : ; p.

The PMP-based approach can be used as an efficient aggregation tool for the
further financial market analysis. We are able to substitute all stocks of the market
by the found set p of stocks (called p medians in terms of the original PMP) because
they still reflect the behavior of the whole market. So we can strongly reduce the
size of the problem which is very useful for all computational methods applied to
stock market analysis. Our representation of the whole stock market (with a huge
number of stocks) by means of the p leading stocks might be very useful for traders
as a tool to trade a large number of stocks simultaneously related to the chosen p

leading stocks.
One of the most promising research directions is to apply a similar approach

based on the Generalized PMP which is just the Simple Plant Location Problem with
the fixed number p of opened sites (see AlBdaiwi et al. [20]). Another promising
research direction is to use the bipartite and multidimensional matching of stocks
(see Bekker et al. [24]) combined with the pre-selection of p-median stocks [25].
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Clustering as an Approach to 3D Reconstruction
Problem

Sergey Arkhangelskiy and Ilya Muchnik

Abstract Numerous applications of information technology are connected with
3D-reconstruction task. One of the important special cases is reconstruction using
3D point clouds that are collected by laser range finders and consumer devices
like Microsoft Kinect. We present a novel procedure for 3D image registration
that is a fundamental step in 3D objects reconstruction. This procedure reduces the
task complexity by extracting small subset of potential matches which is enough
for accurate registration. We obtain this subset as a result of clustering procedure
applied to the broad set of potential matches, where the distance between matches
reflects their consistency. Furthermore, we demonstrate the effectiveness of the
proposed approach by a set of experiments in comparison with state-of-the-art
techniques.

Keywords 3D object reconstruction • Cluster analysis applications • Point set
registration

1 Introduction

3D object processing is an area of interest within a lot of applications, including
robotics, engineering, medicine and entertainment. One of the most important tasks
in this area is the reconstruction of 3D objects. Surface registration is the critical
procedure in the process of reconstruction and it got a lot of research attention in
recent years.
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Different devices based on laser scanners [1], time-of-flight sensors [2], or stereo
vision [3] provide surface representations of different quality. The most common 3D
object representation is a point cloud, that actually is just a set of three-dimensional
points. Due to the limited field of view and occlusions the obtained clouds cover
the object only partially. To reconstruct the entire object, a set of point clouds
representing the object from different point of views is taken and then must be
combined.

In this paper we address the problem of registering two point cloud inputs. The
problem of registering several inputs may be reduced to the two-cloud problem by
simple iterative procedure that registers inputs one by one.

There are three major groups of registration methods. First group represented by
[4–6] looks at the problem in probabilistic setting. Each point cloud is represented as
probability distribution, and then some distance between distributions is minimized.
For instance, Tsin and Kanade [4] propose a distance measure proportional to the
correlation of two density estimates. Jian and Vemuri [6] represent each cloud as
Gaussian mixture and align clouds minimizing L2 distance between distributions.
This approach is robust to outliers and can be organically modified to nonrigid
transformations case.

Second and the third group use notion of point correspondences and obtain
the transformation between clouds as the best alignment for the matched points.
Fine registration algorithms are mostly represented by descendants of Iterative
Closest Points (ICP) method, originally proposed by Chen and Medioni [7] and Besl
and McKay [8]. These methods iteratively improve the registration by minimizing
the distance between pairs of selected matching points. Thus the quality of final
registration strongly depends on initial alignment.

The third group—coarse registration methods include a group of algorithms that
leverage from local surface descriptors which are intrinsic to the shape and do not
depend on the initial surfaces alignment. The popular examples of such descriptors
are Point Signatures [9] and Spin Images [10]. Other coarse registration algorithms
like RANSAC-based DARCES [11] and congruent 4-point sets [12] exploit different
ideas.

Most of both fine and coarse registration methods are two-step. On the first step
they detect correspondences between surface points. For example, ICP-like methods
establish matches by finding for each point of one cloud the closest point on another
cloud [8]. Descriptor-based methods perform search in descriptor space and detect
pairs of similar points.

On the second step these algorithms find a rigid transformation that aligns
correspondent points. Most methods obtain it as a solution of the least square
minimization problem using any of existing techniques [13, 14]. In order to get
a meaningful solution, the correspondences have to be geometrically consistent.
Otherwise one or several outliers present in the data can significantly affect the final
registration.
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The problem of extracting the consistent matches subset is not new in 3D
shape registration. Known methods include adapted random sample consensus
(RANSAC) [15–17], genetic algorithms [18, 19], and usage of pairwise correspon-
dence consistency measures [20].

Recently Albarelli et al. suggested another interesting approach for filtering cor-
respondences [21]. They cast the selection problem in a game-theoretic framework,
where mating points that satisfy mutual consistency constraint thrive, eliminating
all other correspondences.

In this paper we propose another method for extracting the globally consistent
matches set. Our method is inspired by the ideas of clustering analysis. The rest
of this paper is organized as follows. In Sect. 2 we define what we call matches
graph, designed to represent the information about geometric consistency between
correspondences. We show how the problem of extracting globally consistent
matches subset is connected with the problem of extracting sparse graph core, that
is known in clustering analysis. Then, in Sect. 3 we propose a variant of Layered
clusters [22, 23] technique that we apply to our graph. In Sect. 4 we use this
technique to solve the registration problem and provide an experimental validation
of our suggestions, including comparison with other state-of-the art methods.

2 Matches Graph

Let C D ˚
x1; x2; : : : ; xjC j

�
be the first point cloud, and D D ˚

y1; y2; : : : ; yjDj
�

be the second point cloud. They both represent parts of the same object. If these
two parts overlap, there are subclouds C 0 and D0 that are images of the overlapping
region. Every point on object surface within the overlapping region has images x 2
C 0 and y 2 D0 that match each other. The rigid transformation T that aligns C 0
with D0 coincides the mating points, i.e. T x 	 y. Non exact equality is the result
of noise and discretization in object measurements.

As we said in previous section, the set of correct matches fŒxi ; yi �g gives us a
way to find the registration T by solving the following optimization problem [14]:

X

i

jjT xi � yi jj2 ! min (1)

Henceforth our goal is to find this subset.
There are jC j � jDj possible matches, but only small share of them is correct.

Following many other coarse registration methods [9, 10, 24], we use surface
descriptor matching to reduce the number of considered putative correspondences.
We chose Fast Point Feature Histograms (FPFH) feature proposed by Rusu et al.
[17] as a descriptor. FPFH Q.x/ of a point x is a 33-dimensional real-valued vector
that is intrinsic to the shape of point vicinity and is invariant to viewpoint changes.
It is designed to be stable to noise and surface discretization errors.
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For every point x 2 C we compute its descriptor Q.x/ and find k points from D

with the closest descriptors (k—is external parameter). Thereby we get k possible
matches for one point, and k � jC j in total. When we take k closest points from C

for every point in D, we get another k � jDj matches. The intersection M of these
two sets contains not more than k �min.jC j; jDj/ assumed correspondences.

Though due to the usage of descriptors M contains only matches with locally
similar points, some of these matches can still be wrong. In order to extract
correct matches we need to exploit some other information despite the local surface
similarity.

Geometric consistency of matches is exactly this type of information. Consider
two matches Œxi ; yi � and Œxj ; yj � and registration T (T xi D yi , T xj D yj ). As far
as T is a rigid transformation, we have:

ˇ
ˇ
ˇ
ˇxi � xj

ˇ
ˇ
ˇ
ˇ D ˇˇˇˇyi � yj

ˇ
ˇ
ˇ
ˇ (2)

More generally, the following inequality holds:

jjT xi � yi jj C
ˇ̌ˇ̌

T xj � yj

ˇ̌ˇ̌

� ˇˇˇˇT xi � yi C yj � T xj

ˇ
ˇ
ˇ
ˇ D ˇˇˇˇT .xi � xj /� .yi � yj /

ˇ
ˇ
ˇ
ˇ

� ˇˇ ˇˇˇˇxi � xj

ˇ
ˇ
ˇ
ˇ � ˇˇˇˇyi � yj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

It means that for every pair of correct matches
ˇ
ˇ
ˇ
ˇxi � xj

ˇ
ˇ
ˇ
ˇ 	 ˇˇˇˇyi � yj

ˇ
ˇ
ˇ
ˇ.

We call continuous function '.xi ; yi ; xj ; yj / a geometric consistency function,
if it satisfies the following properties.

1. Symmetry:

'.xi ; yi ; xj ; yj / D '.xj ; yj ; xi ; yi / (3)

2. Nonnegativeness

'.xi ; yi ; xj ; yj / � 0 (4)

3. Criteria of equality to zero:

' D 0 only if
ˇ
ˇ
ˇ
ˇxi � xj

ˇ
ˇ
ˇ
ˇ D ˇˇˇˇyi � yj

ˇ
ˇ
ˇ
ˇ (5)

4. Monotonicity.

'.x0; y0; x1; y1/ � '.x0; y0; x2; y2/ if and only ifˇ
ˇ jjx0 � x1jj � jjy0 � y1jj

ˇ
ˇ � ˇˇ jjx0 � x2jj � jjy0 � y2jj

ˇ
ˇ (6)
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These functions reflect the notion of consistency, i.e., the matches are more
consistent in some sense if function value is close to 0, and less consistent if it
is big.

The following functions are examples of consistency functions:

'0.xi ; yi ; xj ; yj / D ˇ
ˇ
ˇ
ˇ
ˇ
ˇxi � xj

ˇ
ˇ
ˇ
ˇ� ˇˇˇˇyi � yj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

'1.xi ; yi ; xj ; yj / D
ˇ̌ ˇ̌ˇ̌

xi � xj

ˇ̌ˇ̌� ˇ̌ˇ̌yi � yj

ˇ̌ˇ̌ ˇ̌

max.
ˇ
ˇ
ˇ
ˇxi � xj

ˇ
ˇ
ˇ
ˇ ;
ˇ
ˇ
ˇ
ˇyi � yj

ˇ
ˇ
ˇ
ˇ/

'2.xi ; yi ; xj ; yj / D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇxi � xj

ˇ
ˇ
ˇ
ˇ � ˇˇˇˇyi � yj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1
2
.
ˇ
ˇ
ˇ
ˇxi � xj

ˇ
ˇ
ˇ
ˇC ˇˇˇˇyi � yj

ˇ
ˇ
ˇ
ˇ/

Function '0 may be called absolute consistency function, as its value represents the
absolute difference between distances. In their turn, '1 and '2 are the functions of
relative consistency functions.

In our experiments we use function '1 that we can also be rewritten as:

'1.xi ; yi ; xj ; yj / D 1 �min

"ˇ
ˇ
ˇ
ˇxi � xj

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇyi � yj

ˇ
ˇ
ˇ
ˇ ;

ˇ
ˇ
ˇ
ˇyi � yj

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇxi � xj

ˇ
ˇ
ˇ
ˇ

#

(7)

Now we introduce the matches graph G, which nodes are the matches from M

and that has every pair of nodes connected with an edge. The chosen geometric
consistency function ' defines the weights of edges connecting putative correspon-
dences

wŒxi ;yi �;Œxj ;yj � D '.xi ; yi ; xj ; yj /:

3 Extraction of Graph Sparse Core

As we discussed earlier, every correct correspondences pair is geometrically
consistent. In terms of our graph we may say that the subset of correct matches
is sparse, i.e., weights of edges connecting the nodes within this subset are small.

This observation refers us to the problem of finding the dense (sparse) compo-
nents in a graph [25,26]. In this paper we use layered clusters technique, developed
in the works of Mirkin et al. [22, 23] to approach this problem.

3.1 Layered Clusters

The problem of finding the dense (sparse) core of a finite set I is formalized in terms
of a set function F.H/, where H � I .
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Let us consider the so-called tightness set functions. These functions are defined
using linkage function 	.˛; H/, where ˛ 2 H; H � I . The linkage function
represents how strongly element i is connected with other elements of set H . We say
that function 	.˛; H/ is monotone if for any H1 � H2 � I 	.˛; H1/ � 	.˛; H2/.
In our work we use function

	.˛; H/ D
X

ˇ2H

'.x˛; y˛; xˇ; yˇ/ (8)

though other functions are possible [22].
Function F.H/ defined as

F.H/ D max
˛2H

	.˛; H/ (9)

naturally produces the subset sequence I D H0 
 H1 
 : : : 
 HN D ;, called
layered clusters [23]. In this sequence, each next subset comes out of the previous
one by subtracting one element. This is the element that has the biggest linkage
value among elements of Hi :

˛i D max
˛2Hi�1

	.˛; Hi�1/; (10)

Hi D Hi�1 n f˛i g: (11)

For every set Hi we can compute average distance between points within this
subset:

˚.Hi / D 2

jHi j � .jHi j � 1/

X

ˇ;�2Hi

'.xˇ; yˇ; x� ; y� / (12)

This value reflects how “tight” this subset is. If this value is low, when the matches
within dataset are consistent and “in average,” don’t conflict with each other.

Our algorithm extracts the biggest subset Hi� that has average distance less
than given threshold � as a sparse core of our graph, and consequently as a set
of correct matches. We solve problem (1) using the obtained matches to compute
the registration T .

4 Experimental Results

We have conducted our experiments on model “Armadillo” [27] from Stanford 3D
Repository (Fig. 1). We took one partial point cloud of the model and made further
experiments with it.



Clustering for 3D Reconstruction Problem 97

Fig. 1 Two scans of
Armadillo registered with our
method

Fig. 2 Comparison of our and SAC-IA methods, measuring RMS error as a function of noise

4.1 Sensitivity to Noise

In the first set of experiments we distorted point cloud with Gaussian noise and
randomly changed coordinate frame. Rotation is specified by uniformly sampled
unit quaternion, and translation vector has Gaussian distribution with zero mean and
unit covariance matrix. The noise level is defined as the ratio of the noise standard
deviation and the median distance between neighbor points in the cloud. After that,
we registered the original cloud to the distorted one and measured the root mean
square (RMS) error and the estimation errors of the translation vector and rotation
angle.

In Fig. 2 we compare the performance of our method and sample consensus initial
alignment (SAC-IA) method presented in [17] and implemented in Point Cloud
Library [28].
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Fig. 3 Comparison of our method and RANSAC-method, measuring translation error as a
function of noise

Fig. 4 Comparison of our method and RANSAC-method, measuring rotation error as a function
of noise

In this method we randomly take 3-element subsets from our original matches
set. Using the least-squares method, for each subset we determine the transformation
that aligns chosen three pairs of points. For every transformation we compute the
number of remaining matches that have registration residual below some threshold.
The transformation with the biggest number of such matches is taken as the
registering transformation.

In Figs. 3 and 4 we show the estimation errors of translation vector and rotation
angle for different methods as a function of noise level. In the experiment reflected
in Figs. 2, 3 and 4 we use parameter k D 2 and � D 0:01 (1 %). We may see that our
method is more stable than the reference method starting from 2.5 % noise level.
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Fig. 5 Comparison of our method and Gaussian Mixture Models method, measuring RMS and
rotation error as a function of noise

In the next experiment, we compared our method with the state-of-the-art
Gaussian Mixture Models method [6] using author’s implementation.1 We used
default sequence of scale parameters equal to 0:5, 0:1, and 0:02 of model size, where
model size was estimated as RMS distance from model points to their centroid.
This method is sensitive to the initial alignment, and for big rotation angles it often
converged to wrong alignments. We limited rotation angle by 72ı and didn’t apply
translation to coordinate frame. We also downsampled the cloud from 32,300 to
about 6,500 points.

For every noise level we made 15 alignment experiments with different rotations,
and measured RMS and rotation estimation errors. The results are presented in
Fig. 5. The big confidence interval of GMM method on 12.5 % noise level is
explained by experiment run where GMM method was trapped in local minima
and rotation error reached 36ı. Our method is robust to initial alignment and has
comparable performance.

4.2 Sensitivity to Outliers Presence

In order to estimate robustness of proposed method to the presence of outliers, we
extended two copies of the model with set of points uniformly generated within
bounding box of the model. Each copy was extended with different set of outliers,
and the number of points was changing from 10 to 100 % of original model size.
Similarly to the previous experiment one of the copies was randomly transformed
to another coordinate frame, but in GMM experiment no translation was applied and
rotation angle was limited.

1https://code.google.com/p/gmmreg.

https://code.google.com/p/gmmreg
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Fig. 6 Comparison of our method and Gaussian Mixture Models method, measuring RMS and
rotation error as a function of outliers number

For given amount of outliers each method was tested in 15 experiments, with
different transform and outliers on each run. Both methods, ours and GMM, are
pretty accurate and not sensitive to outlier presence with our method being slightly
better (see Fig. 6).

5 Conclusion

In this paper we have presented a novel approach to the point cloud registration
problem that casts it to the clustering framework. This brings the power of clustering
techniques to the field of three-dimensional reconstruction.

For instance, we applied layered clusters techniques to the matches graph and
demonstrated that the set of inliers detected by our method suffices for the high
quality registration. Our experiments show that the suggested method performance
is on par with an industry state-of-the-art method.

In the future we plan to adapt other clustering methods like K-means and spectral
clustering to the matches graph. We are also working on extending our algorithm to
the case of simultaneous registration of multiple point clouds.
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Selecting the Minkowski Exponent
for Intelligent K-Means with Feature Weighting

Renato Cordeiro de Amorim and Boris Mirkin

Abstract Recently, a three-stage version of K-Means has been introduced, at
which not only clusters and their centers, but also feature weights are adjusted to
minimize the summary p-th power of the Minkowski p-distance between entities
and centroids of their clusters. The value of the Minkowski exponent p appears
to be instrumental in the ability of the method to recover clusters hidden in data.
This paper advances into the problem of finding the best p for a Minkowski metric-
based version of K-Means, in each of the following two settings: semi-supervised
and unsupervised. This paper presents experimental evidence that solutions found
with the proposed approaches are sufficiently close to the optimum.

Keywords Clustering • Minkowski metric • Feature weighting • K-Means

1 Motivation and Background

Clustering is one of the key tools in data analysis. It is used particularly in the
creation of taxonomies when there are no accurate labels available identifying
any taxon, or not enough such labels to train a supervised algorithm. K-Means is
arguably the most popular clustering algorithm being actively used by practitioners
in data mining, marketing research, gene expression analysis, etc. For example, a
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Google search made on the 15th of March 2013 returned 473 mln pages to the
query “k-means” and only 198 mln pages to the query “cluster,” despite the latter
being more general. Thanks to its popularity, K-Means can be found in a number of
software packages used in data analysis, including MATLAB, R and SPSS.

K-Means aims to partition a dataset represented by a matrix Y D .yiv/, where
yiv represents the value of feature v, v D 1; : : : ; V , on entity i 2 I , into K

homogeneous clusters Sk, together with their centroids ck.k D 1; 2; : : : ; K/. Given
a measure of distance d.yi ; ck/, where yi denotes i -th row yi D .yi1; yi2; : : : ; yiV /

of Y , K-Means iteratively minimizes the summary distance between the entities yi

and centroids ck of their clusters

W.S; C / D
KX

kD1

X

i2Sk

d.yi ; ck/ (1)

The minimization process works according to the alternating optimization scheme.
Given the centroids ck , the optimal clusters Sk are found to minimize criterion (1)
over clusters. Given the found clusters Sk, the optimal centroids ck are found by
minimizing criterion (1) over centroids. This is especially simple when the scoring
function d.yi ; ck/ is the squared Euclidean distance d.yi ; ck/ D P

v.yiv � ckv/
2.

In this case, the optimal centroids are the clusters means, and the optimal clusters
consist of entities that are nearest to their centroids, clearly favoring spherical
clusters. The iterations stop when the centroids stabilize; the convergence is
warranted by the fact that the criterion decreases at every step, whereas the number
of possible partitions is finite.

Being much intuitive and simple computationally, K-Means is known to have
a number of drawbacks; among them are the following: (1) the method requires
the number of clusters to be known beforehand; (2) the final clustering is highly
dependent on the initial centroids it is fed; (3) the results highly depend on feature
scaling.

Building on the work by Makarenkov and Legendre [11], Huang et al. [3, 9, 10],
Mirkin [12], and Chiang and Mirkin [4], Amorim and Mirkin have introduced what
they call the intelligent Minkowski Weighted K-Means (iMWK-Means) algorithm
which mitigates the mentioned drawbacks [7]. This approach extends the K-Means
criterion by distinguishing in it the feature weighting component, while using the
Minkowski metric and initializing the process with anomalous clusters.

The superiority of iMWK-Means in relation to other feature-weight maintain-
ing algorithms was experimentally demonstrated on medium-sized datasets [6, 7]
including a record minimum number of misclassified entities, 5, on the celebrated
Iris dataset [2]. Yet choosing the “right” exponent remains an issue. This has been
addressed by Huang et al. [3, 9, 10] (weight exponent), Amorim and Mirkin [7]
(Minkowski exponent) by exploring the similarity between the found clustering and
the “right” partition on a range of possible values of the exponent and choosing
the exponent value corresponding to the best match between the clustering and the
partition.
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In both cases the accuracy of cluster recovery appears to be highly dependent
on the exponent value, which may drastically differ at different datasets. Yet in
real-world problems the clusters in data are not known beforehand so this approach
would not work. There can be two types of real-world scenarios:

1. semi-supervised clustering in which right cluster labels can be supplied for a
small part of the data before the process of clustering;

2. unsupervised clustering in which no cluster labels are supplied beforehand at all.

This paper addresses the problem of choosing the Minkowski exponent in
both scenarios. We experimentally investigate how our semi-supervised algorithm
in scenario (1) works at different proportions of labelled data. We empirically
demonstrate that it is possible to recover a good Minkowski exponent with as low as
5 % of data being labelled, and that large increases in this proportion of labelled data
tend to have a small effect on cluster recovery. In scenario (2), we look at applying
various characteristics of the cluster structure as potential indexes for choosing
the right Minkowski exponent. Among them we introduce an index based on the
iMWK-Means criterion and, also, indexes related to the so-called silhouette width
[13]. It appears our approaches show rather satisfactory results.

The remainder is structured as follows. Section 2 describes the generic iMWK-
Means in greater detail. Section 3 describes adaptations of iMWK-Means to the
semi-supervised and unsupervised clustering situations. Section 4 presents our
experimental setting, with both real-world benchmark data and synthetic datasets,
and the experimental results. Section 5 concludes the paper.

2 Minkowski Weighted K-Means and iMWK-Means

Weighted K-Means (WK-Means) automatically calculates the weight of each fea-
ture conforming to the intuitive idea that features with low within-cluster variances
are more relevant for the clustering than those with high within-cluster variances.
Each weight can be computed both for the entire dataset, wv, or within-clusters,
wkv. We utilize the latter approach involving cluster-specific feature weights. The
WK-Means criterion by Huang et al. [3] is as follows:

W.S; C; w/ D
KX

kD1

X

i2Sk

VX

vD1

wp

kvjyiv � ckvj2 (2)

where V is the number of features in Y ; w D .wkv/, the set of non-negative within-
cluster feature weights such that

PV
vD1 wkv D 1 for each k D 1, 2; : : : ; K; and p,

the adjustable weight exponent. This criterion is subjective to a crisp clustering, in
which a given entity yi can only be assigned to a single cluster. The MWK-Means
[7] is a further extension of the criterion, in which the squared Euclidean distance
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is changed for the p-th power of the Minkowski p-distance. The Minkowski
p-distance between a given entity yi and centroid ck is defined below:

dp.yi ; ck/ D
 

VX

vD1

jyiv � ckvjp
!1=p

(3)

By separating positive measurement scales wkv of features v in the coordinates of
yi and ck , the p-th power of the Minkowski p-distance, hence without the 1=p

exponent, can be expressed as:

dwp.yi ; ck/ D
VX

vD1

wp

kvjyiv � ckvjp (4)

Putting (4) into criterion (2), one arrives at the Minkowski Weighted K-Means
criterion:

W.S; C; w/ D
KX

kD1

X

i2Sk

VX

vD1

wp

kvjyiv � ckvjp (5)

Because of the additivity of the criterion, the weights can be set to be cluster-
specific, so that any feature v may have different weights at different clusters k as
reflected in (5). Given the partition and centroids; the weights are computed accord-
ing to equations derived from the first-order optimality condition for criterion (5):

wkv D 1
P

u2V ŒDkv=Dku�1=.p�1/
(6)

where Dkv DPi2Sk
jyiv�ckvjp and k is an arbitrary cluster [7]. In our experiments

we have added a very small constant to the dispersions, avoiding any issue related
to a dispersion being equal to zero. Equation (6) at p D 1 may seem problematic
at first; however, such case is in fact of simple resolution. At p D 1, Eq. (6) is
equivalent to a weight of one for the feature v with the smallest dispersion, and
weights of zero in the others, all cluster-specific [3, 7]. The MWK-Means iterative
minimization of criterion (5) is similar to the K-Means algorithm, but each iteration
here consists of three stages, rather than the two stages of the generic K-Means, to
take the computation of weights into account.

MWK-Means algorithm

1. Initialization. Define a value for the Minkowski exponent p. Select K centroids
from the dataset at random. Set vik D 1=V .

2. Cluster update. Assign each entity to its closest centroid applying the Minkowski
weighted distance (4).



Minkowski Exponent for iK-Means with Feature Weighting 107

3. Centroid update. Calculate the cluster centroids as the within-cluster Minkowski
centers. Should the centroids remain unchanged, stop the process and output the
results.

4. Weight update. Given clusters and centroids, compute the feature weights using
Eq. (6). Go back to Step 2 for the next iteration.

The original K-Means algorithm makes use of the squared Euclidean distance,
which favors spherical clusters. The MWK-Means criterion (5) favors any interpola-
tion between diamond and square shapes, depending on the value of p. This property
of MWK-Means makes the selection of p rather important for cluster recovery.

The Minkowski centers can be computed using a steepest descent algorithm
from Amorim and Mirkin [7]. More precisely, given a series of reals, y1; : : : ; yn,
its Minkowski p-center is defined as c minimizing the summary value

d.c/ D
nX

iD1

jyi � cjp (7)

The algorithm is based on the property that d.c/ in (7) is convex for p > 1, and it
uses the first derivative of d.c/ equal to 0d.c/ D p.

P
i2I C.c�yi /

p�1�Pi2I �.yi�
c/p�1, where IC is the set of indices i at which c > yi , and I� is the set of indices
i at which c � yi ; i D 1; : : : ; n.

Minkowski center algorithm

1. Sort given reals in the ascending order so that y1 � y2 � : : : � yn.
2. Initialize with c0 D yi� , the minimizer of d.c/ on the set yi and a positive

learning rate � that can be taken, say, as 10 % of the range yn � y1.
3. Compute c0 � �d 0.c0/ and take it as c1 if it falls within the minimal interval

.yi 0 ; yi 00/ containing yi� and such that d.yi 0/ > d.yi�/; d.yi 00/ > d.yi�/.
Otherwise, decrease � a bit, say, by 10 %, and repeat the step.

4. Test whether c1 and c0 coincide up to a pre-specified precision threshold. If yes,
halt the process and output c1 as the optimal value of c. If not, move on.

5. Test whether d.c1/ � d.c0/. If yes, set c0 D c1 and d.c0/ D d.c1/, and go to
step 2. If not, decrease � a bit, say by 10 %, and go to step 3 without changing c0.

Similarly to K-Means, the MWK-Means results highly depend on the choice of
the initial centroids. This problem has been addressed for K-Means by using
initialization algorithms that provide K-Means with a set of good centroids. Taking
this into account, we have adapted the Anomalous Pattern algorithm from Mirkin
[12] to supply MWK-Means with initial centroids. A combination of K-Means
with the preceding Anomalous Pattern algorithm is referred to as the intelligent
K-Means, iK-Means, in Mirkin [12]. The iK-Means has proved superior in cluster
recovery over several popular criteria in experiments reported by Chiang and Mirkin
[4]. The modified Anomalous Pattern algorithm involves the weighted Minkowski
metric (4) with the weights computed according to Eq. (6). Together with the
Anomalous Pattern initialization, MWK-Means forms what is referred to as the
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intelligent Minkowski Weighted K-Means algorithm (iMWK-Means), ceasing to
be a non-deterministic algorithm. Its formulation is as follows.

iMWK-Means algorithm

1. Sort all the entities according to their Minkowski weighted distance (4) to the
Minkowski center of the dataset, cc , using the Minkowski weighted metric and
1=V for each weight.

2. Select the farthest entity from the Minkowski center, ct , as a tentative anomalous
centroid.

3. Assign each of the entities to its nearest centroid of the pair, cc and ct , according
to the Minkowski weighted metric.

4. Compute ct as the Minkowski center of its cluster.
5. Update the weights according to Eq. (6). If ct has moved on step 4, return to step

3 for the next iteration.
6. Set all the entities assigned to ct as an anomalous cluster and remove it from the

dataset. If there are still unclustered entities remaining in the dataset, return to
step 2 to find the next anomalous cluster.

7. Run MWK-Means using the centroids of the K anomalous clusters with the
largest cardinality.

3 Selection of the Minkowski Exponent
in the Semi- and Un-supervised Settings

In this section we present methods for selecting the Minkowski exponent in each of
the two settings, semi-supervised and unsupervised. The first utilizes a small portion
of data that have been labelled; the second, a cluster-scoring function over partitions.

3.1 Choosing the Minkowski Exponent in the Semi-supervised
Setting

The semi-supervised setting relates to the scenario in which the cluster labels are
known not for all, but only for a relatively small proportion q of the dataset being
clustered. Then either of two options can be taken: (a) first, cluster only those
labelled entities to learn the best value for the Minkowski exponent p as that leading
to the partition best matching the pre-specified labels, then using the learnt p, cluster
the entire dataset, or (b) to cluster all the entities and learn the best p at the labelled
part of the dataset. In Amorim and Mirkin [7] the option (a) has been disapproved
rather convincingly. Therefore, only option (b) is tested in this paper at differing
values of q.

The algorithm comprising both learning and testing p runs at a dataset, at which
all the pre-specified clustering labels are known, as follows:
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Run R D 50 times:

1. Get a random sample of labelled entities of size q: cluster labels on this set are
assumed to be known.

2. Run iMWK-Means over the whole dataset with p taken in the interval from 1 to
5 in steps of 0.1.

3. Select the Minkowski exponent with the highest accuracy achieved on the entities
whose labels are known as p�.

4. Calculate the accuracy using p� and the whole dataset by comparing the found
partition and that one pre-specified.

Calculate the average accuracy of the R runs and standard deviation.
Our search for a good p occurs in the interval [1, 5]. We have chosen the lower

bound of one because this is the minimum for which we can calculate a Minkowski
center (median), since Eq. (7) is convex for p > 1. We have chosen the upper bound
of five following our previous experiments [7].

Of course, in a real-life clustering scenario one would not normally have access
to the labels of the whole dataset. Here we utilize it only for evaluation purposes.

3.2 Choosing the Minkowski Exponent in an Unsupervised
Setting

When no prior information of the hidden partition is available, a reasonable idea
would be to find such a scoring function over the iMWK-Means partitions, that
reaches its extreme value, that is, the maximum or minimum, at a resulting partition
that is most similar to the hidden partition.

Under the original K-Means framework, one of the most popular scoring
functions is the output of the K-Means criterion itself. One simply runs K-Means
a number of times and sets the optimal partition to be that with the smallest sum
of distances between the entities and their respective centroids. Unfortunately the
iMWK-Means criterion (5) is not comparable at different ps, making its raw value
inappropriate for a scoring function. However, we can normalize (5) in such a way
that its dependence on p can be disregarded, we called it the Minkowski clustering
index (MCI). For comparison, we also experiment with the so-called silhouette
width [13] which has been reported as a good index in various empirical studies,
one of the latest being by Arbelaitz et al. [1].

Let us define MCI, an index based on the minimized value of the MWK-Means
criterion. We normalize the criterion over what may be called the Minkowski data
p-scatter according to the feature weights found as an output of a run of the iMWK-
Means:

MCI D Wp.S; C; w/
PK

kD1

P
i2Sk

PV
vD1 jwkvyivjp

(8)
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This index is comparable at clusterings with different ps. We choose that p at
which the MCI is at its minimum.

Let us turn now to the silhouette width-based indexes. Given a set of clusters and
an entity-to-entity dissimilarity measure, the silhouette width of an entity is defined
as the relative difference between the average dissimilarity of that entity from the
other entities in its cluster compared to its average dissimilarities to other clusters
according to formula:

S.yi / D b.yi /� a.yi /

maxfa.yi /; b.yi /g (9)

where a.yi / is the average dissimilarity of yi 2 Sk from all other entities in its
cluster Sk, and b.yi / the lowest average dissimilarity of the yi from another cluster
Sl at l ¤ k. The larger the S.yi /, the better the entity yi sits in its cluster. The
silhouette width of the partition is the sum of all S.yi/ over all i 2 I .

We apply the concept of silhouette width over five different measures of
dissimilarity between vectors x D .xv/ and y D .yv/:

1. Squared Euclidean distance d.x; y/ DPv.xv � yv/
2;

2. Cosine 1 � c.x; y/ where c.x; y/ DPv xvyv=
pP

v x2
v

pP
v y2

v ;
3. Correlation 1 � r.x; y) where r.x; y/ D P

v.xv � Nx/.yv � Ny/=
pP

v.xv � Nx/2
pP

v.yv � Ny/2;
4. Power p of Minkowski p-distance d

p
p .x; y/ D P

v jxv � yvjp where p is the
same as in the tested run of iMWK-Means; and

5. A p-related analogue to the cosine dissimilarity defined as

cp.x; y/ D
X

v

j xv

p

qPV
vD1 jxvjp

yv

p

qPV
vD1 jyvjp

jp (10)

This definition is based on an analogue to the well-known equation relating the
squared Euclidean distance and cosine, d.x0; y0/ D 2�2c.x0; y0/, where x0 D x

jjxjj ,
y0 D y

jjyjj are normed versions of the vectors. We select the p with the highest sum
of silhouette widths.

4 Experiments

To validate the Minkowski exponent selection methods we experiment with, we use
both real-world and synthetic datasets. The six real-world datasets taken from the
UCI Irvine repository [2] are those that have been used by Huang et al. [3,9] as well
as by Amorim and Mirkin [7]. Also, versions of these datasets obtained by adding
uniformly random features are used to see the impact of the noise on the recovery
of the Minkowski exponent.
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The datasets are:

1. Iris. This dataset contains 150 flower specimens over four numerical features;
it is partitioned in three groups. We devised two more Iris dataset versions by
adding, respectively, extra two and extra four noise features. These are uniformly
random.

2. Wine. This dataset contains 178 wine specimens partitioned in three groups and
characterized by 13 numerical features that are chemical analysis results. We also
use two more datasets by adding 7 and 13 noise features, respectively.

3. Hepatitis. This dataset contains 155 cases over 19 features, some of them
categorical, partitioned in two groups. Two more versions of this dataset have
been obtained by adding, in respect, 10 and 20 noise features.

4. Pima Indians Diabetes. This dataset contains 768 cases over 8 numerical features,
partitioned in two groups. Two more versions of this dataset have been obtained
by adding, in respect, 4 and 8 noise features.

5. Australian Credit Card Approval. This dataset contains 690 cases partitioned in
two groups, originally with 15 features, some of them categorical. After a pre-
processing step, described later in this section, we had a total of 42 numerical
features.

6. Heart Disease. This dataset contains 270 cases partitioned in two groups referring
to the presence or absence of a heart disease. This dataset has originally 14
features, including categorical ones. After the pre-processing step, there are 32
features in total.

Our synthetic data sets are of three formats: (F1) 1000x8-5: 1000 entities over
8 features consisting of 5 Gaussian clusters; (F2) 1000x15-7: 1000 entities over 15
features consisting of 7 Gaussian clusters; (F3) 1000x60-7: 1000 entities over 60
features consisting of 7 Gaussian clusters.

All the generated Gaussian clusters are spherical so that the covariance matrices
are diagonal with the same diagonal value �2 generated at each cluster randomly
between 0.5 and 1.5, and all centroid components independently generated from the
Gaussian distribution with zero mean and unity variance. Cluster cardinalities are
generated uniformly random, with a constraint that each generated cluster has to
have at least 20 entities.

We standardize all datasets by subtracting the feature average from all its values,
and dividing the result by half the feature’s range. The standardization of categorical
features follows a process described by Mirkin [12] to allow us to remain within the
original K-Means framework. In this, each category is represented by a new binary
feature, by assigning 1 to each entity which falls in the category and zero, otherwise.
We then standardize these binary features by subtracting their grand mean, that is,
the category’s frequency. By adopting this method the centroids are represented by
the proportions and conditional proportions rather than modal values.

Since all class pre-specified labels are known to us, we are able to map the
clusters generated by iMWK-Means using a confusion matrix. We calculate the
accuracy as the proportion of entities correctly clustered by each algorithm.
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Table 1 Results of semi- and fully supervised experiments with the real-world datasets and their
noisy versions

Semi-supervised at different q Supervised

5 % 15 % 25 % 100 %

Acc p Acc p Acc p Acc p

Iris 93.09/6.07 1.14/0.53 95.15/1.94 1.23/0.62 95.60/1.75 1.16/0.44 96.67 1.1
IrisC2 93.55/2.19 1.150.52 94.95/1.97 1.13/0.28 95.81/1.53 1.10/0.06 96.67 1.1
IrisC4 93.39/3.89 1.20/0.73 94.76/1.46 1.10/0.09 95.19/1.21 1.13/0.11 96.00 1.1
Wine 87.64/6.30 1.48/0.84 91.88/2.28 1.88/1.06 92.45/1.09 2.13/1.19 93.82 1.6
WineC7 89.22/4.51 1.13/0.22 91.81/1.77 1.44/0.50 92.85/1.46 1.55/0.48 94.38 2.2
WineC13 90.18/7.40 1.21/0.53 93.24/1.73 1.13/0.10 93.63/1.44 1.13/0.09 94.38 1.1
Hepatitis 65.12/8.78 1.69/0.75 72.65/3.56 2.44/0.73 73.32/2.17 2.61/0.91 74.84 2.1
HepatitisC10 69.16/9.13 2.31/1.52 76.59/7.74 3.46/1.24 80.10/4.09 3.90/1.04 82.58 4.3
HepatitisC20 74.85/9.14 2.2/1.24 81.44/4.29 2.80/1.08 83.25/3.17 2.99/0.80 85.81 3.1
Pima 64.09/4.60 3.2/1.29 67.67/2.33 4.28/0.89 68.09/1.73 4.48/0.57 69.14 4.9
PimaC4 65.86/1.44 2.51/1.14 66.47/1.13 2.61/1.14 66.70/0.97 2.45/0.92 67.71 1.8
PimaC8 66.51/2.90 2.28/0.95 68.06/1.39 2.11/0.72 68.74/1.14 1.93/0.41 69.66 1.8
Austral CC 83.81/3.36 1.66/0.62 84.76/1.14 1.59/0.50 85.07/1.06 1.41/0.42 85.51 1.2
Heart 80.00/5.09 2.27/0.72 82.46/2.58 2.52/0.43 82.61/2.43 2.51/0.43 83.70 2.7

The accuracy and exponent shown are the averages and, after slash, standard deviations, over
R D 50 runs

4.1 Results for the Semi-supervised Settings

Table 1 presents the results of our experiments for the semi-supervised setting at the
real-world data. Different proportions of the labelled data are assumed to be known:
q D 5, 10, 15, 20 and 25 %. For the purposes of comparison, the table also contains
the results of a fully supervised experiment at which q D 100 %—the maximum
accuracy. We have obtained these by running iMWK-Means for every p from the
range of 1 to 5 in steps of 0.1 and checking which one had the highest accuracy using
all the class labels at each dataset. The results using the semi-supervised selection
of p show that at q D 5 % and q D 10 % an increase of 5 % in the size of the
learning data amounts to an increase of about 1 % in the accuracy, with the accuracy
reaching, at q D 15 %, to about 1–2 % within the maximum. Further increases of q

to 20 and 25 % bring almost no increase in the accuracy, except for the case of the
noisy Hepatitis data.

The results of our experiments using the semi-supervised algorithm on the
synthetic datasets, shown in Table 2, present the same pattern as in Table 1. An
increase of 5 % in the learning data produces an increase of around 1 % in the final
accuracy of the algorithm till q D 15 %. In these, even with only 5 % of the data
having been labelled, the algorithm still can reach accuracy of within 1–2 % of the
maximum possible. Moreover, the exponent values stabilize from the very beginning
at q D 5 %. This is an improvement over the real-world datasets, probably, because
of a more regular structure of the synthetic datasets.
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Table 2 Semi-supervised setting experiments with synthetic datasets

Semi-supervised at different q MCI

5 % 15 % 25 % 100 %

Acc p Acc p Acc p Acc p

1000x8-5 80.45/5.34 3.79/0.63 82.40/3.91 3.81/0.64 82.75/3.67 3.82/0.63 82.94 3.83
1000x15-7 92.60/7.11 2.37/0.66 94.56/4.98 2.40/0.49 94.69/4.96 2.44/0.48 94.88 2.45
1000x60-7 99.19/3.09 1.56/0.41 99.87/1.43 1.48/0.22 100.0/0.00 1.47/0.19 100.0 1.48

The accuracy and exponent shown are the averages, accompanied by the standard deviations, over
50 runs for each of 10 Gaussian Model generated datasets

Table 3 The values of Minkowski exponent p and the accuracy obtained at the maximum of the
silhouette width and minimum of MCI at the unsupervised experiments with the real-world datasets
and their noisy versions; the maximum achievable accuracies are in the column on the left

Silhouette width

Max Sq. Euclid. Cos Corr. Mink Cosp MCI

Acc p Acc p Acc p Acc p Acc p Acc p Acc p

Iris 96.67 1.1 93.33 3.7 90.67 5.0 94.00 3.4 96.00 1.3 90.67 2.3 96.67 1.1
IrisC2 96.67 1.1 84.00 4.4 87.33 3.7 90.00 1.8 96.67 1.1 90.00 1.8 96.67 1.1
IrisC4 96.00 1.1 72.00 4.7 72.00 4.7 72.00 4.7 96.00 1.1 93.33 1.9 95.33 1.4
Wine 93.82 1.6 93.82 1.6 93.82 1.6 92.13 2.2 92.70 1.4 92.13 2.2 90.45 1.2
WineC7 94.38 2.2 93.26 2.0 91.57 1.9 90.45 2.5 92.70 1.3 92.13 2.3 89.89 1.2
WineC13 94.38 1.1 93.82 1.3 93.26 1.6 89.89 2.2 94.38 1.1 92.13 1.9 93.82 1.3
Hepatitis 74.84 2.1 70.32 2.2 70.97 4.8 70.97 4.8 47.10 1.1 47.10 2.9 74.19 2.4
HepatitisC10 82.58 4.3 81.94 5.0 63.23 3.6 63.23 3.6 76.13 1.4 62.58 1.8 52.9 1.9
HepatitisC20 85.81 3.1 80.65 5.0 75.48 4.2 75.48 4.2 74.84 1.1 47.10 2.7 79.35 1.5
Pima 69.14 4.9 67.58 4.3 65.49 2.8 60.81 3.6 67.58 4.3 65.76 2.3 57.55 1.4
PimaC4 67.71 1.8 64.06 4.5 66.28 2.8 64.45 2.0 66.02 1.9 66.02 1.9 60.94 1.4
PimaC8 69.66 1.8 63.93 4.8 65.76 1.9 65.76 1.9 65.76 1.9 65.10 4.5 68.49 1.5
Aust CC 85.51 1.2 85.51 1.2 85.55 1.2 85.55 1.2 85.51 1.2 73.33 3.8 78.84 2.4
Heart 83.70 2.7 83.33 2.6 83.33 2.6 83.33 2.6 75.19 1.1 83.33 2.6 75.19 1.9

4.2 Results at the Unsupervised Setting

In this set of experiments there is no learning stage. Because of this we found it
reasonable to take p in the interval from 1.1 to 5 rather than 1 to 5, still in steps of
0.1. At p D 1 iMWK-Means selects a single feature from the dataset [7] putting a
weight of zero in all others. In our view, there are only a few scenarios in which the
optimal p would be 1 and these would be very hard to find without learning data.

Table 3 presents the results of our experiments with the silhouette width for five
dissimilarity measures; three Euclidean: squared distance, cosine, correlation, and
two Minkowski’s: distance and cosine. When using the latter two, the exponent p is
the same as the one used in the iMWK-Means clustering.

For the sake of comparison, the Table 3 also presents the maximum accuracy
for each dataset. The table shows that it is indeed possible to select a good p
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Table 4 The values of Minkowski exponent p and the accuracy obtained at different rules defined
above

Max Sq. Euclid. Mink MCI Consensus

Acc p Acc p Acc p Acc p p Acc

Iris 96.67 1.1 93.33 3.7 96.00 1.3 96.67 1.1 1.20 96.00
IrisC2 96.67 1.1 84.00 4.4 96.67 1.1 96.67 1.1 1.10 96.67
IrisC4 96.00 1.1 72.00 4.7 96.00 1.1 95.33 1.4 1.25 94.67
Wine 93.82 1.6 93.82 1.6 92.70 1.4 90.45 1.2 1.30 92.13
WineC7 94.38 2.2 93.26 2.0 92.70 1.3 89.89 1.2 1.25 89.33
WineC13 94.38 1.1 93.82 1.3 94.38 1.1 93.82 1.3 1.30 93.83
Hepatitis 74.84 2.1 70.32 2.2 47.10 1.1 74.19 2.4 2.30 60.00
HepatitisC10 82.58 4.3 81.94 5.0 76.13 1.4 52.90 1.9 1.65 70.97
HepatitisC20 85.81 3.1 80.65 5.0 74.84 1.1 79.35 1.5 5.00 80.65
Pima 69.14 4.9 67.58 4.3 67.58 4.3 57.55 1.4 4.30 67.58
PimaC4 67.71 1.8 64.06 4.5 66.02 1.9 60.94 1.4 1.65 66.41
PimaC8 69.66 1.8 63.93 4.8 65.76 1.9 68.49 1.5 1.70 69.53
Aust CC 85.51 1.2 85.51 1.2 85.51 1.2 78.84 2.4 1.20 85.51
Heart 83.70 2.7 83.33 2.6 75.19 1.1 75.19 1.9 1.50 75.19

without having labels for a given dataset. For example, silhouette width based on
Minkowski distance works well on Iris and Heart, based on Euclidean squared
distance, on Wine, Pima, and Heart, and MCI works well on Hepatitis. Overall, the
best performance has shown the MCI as it has the best worst case scenario among
all the indexes under consideration. Its highest difference between its accuracy and
the maximum possible is equal to �12:24 % (on Pima), whereas the other indexes
lead to the highest difference between 24 and 38.71 %. Yet none of the indexes is
reliable enough to be used with no reservations. Taking into account the fact that
different indexes lead to different solutions, one may suggest using a consensus rule
(Table 4).

Specifically, let us take the MCI index and two silhouette width indexes, that are
based on the Euclidean squared distance (SWE) and that are based on Minkowski
distance (SWM), and, when they are in disagreement, use the value of p that is
the average of those two that are in agreement (see Table 4).When iMWK-Means
is unable to find the required number of clusters using the p agreed between two
indexes, as with the Hepatitis + 20 at p D 1:3, we use the p from the remaining
index in our experiments

The results of experiments in the unsupervised setting at the synthetic data sets
are presented in Table 5. At the synthetic datasets we can observe a different pattern.
The MCI is no longer the most promising algorithm to select p. In these the cosine
and correlation are those recovering the adequate ps and, thus, having considerably
better results.
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5 Conclusion

The use of weights in K-Means clustering has shown good results [3, 8–11], in
particular when utilizing the Minkowski distance metric [6, 7]. Its version oriented
at determining the number of clusters and the initial centroids, the intelligent
Minkowski Weighted K-Means showed considerably better accuracy results, at
an appropriate Minkowski exponent p, than a number of other algorithms [7].
However, finding an appropriate p remained an open issue. This paper presents a
study regarding the amount of labelled data necessary for a good recovery of p

under a semi-supervised approach, as well as an unsupervised method based on
indexes of correspondence between the found partition and the dataset structure.

We have found that in most datasets it is possible to recover a good p with as
low as 5 % of the data being labelled, and that reasonable results can be obtained by
using individual indexes over the clustering, the MCI or silhouette width indexes,
or a combined “consensus” rule. It is quite likely that these findings can be relevant
for the Minkowski partition around medoids algorithm [5].

However, the iMWK-Means algorithm may have difficulties finding appropriate
weights for datasets containing informative but redundant features. In this case the
algorithm sets the weights of all such features to high values instead of removing
some features by setting some weights to zero. This is an issue that we intend to
address in future research.
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1 Introduction

In the past decade, technological advances have had a profound impact on society
and the research community [45]. Massive amounts of high-throughput data can
be collected simultaneously and at relatively low cost. Often, each observation
is characterized with thousands of variables/features. For example, in biomedical
studies, huge numbers of magnetic resonance images (MRI) and functional MRI
data are collected for each subject [66]. The data collected from gene expression
microarrays consist of thousands of genes that constitute features [17]. Various kinds
of spectral measurements including Mass Spectroscopy and Raman Spectroscopy
are very common in chemometrics, where the spectra are recorded in channels that
number well into the thousands [30, 80]. Satellite imagery has been used in natural
resource discovery and agriculture, collecting thousands of high-resolution images.
Examples of these kinds are plentiful in computational biology, climatology,
geology, neurology, health science, economics, and finance among others. In several
applications, the measurements tend to be very expensive and hence the number of
samples in many datasets are on the order of tens, or maybe low hundreds. These
datasets, often called the high-dimension low-sample size (HDLSS) datasets, are
characterized with a large number of features p and a relatively small number of
samples n; with p >> n [98]. These massive collections of data along with many
new scientific problems create golden opportunities and significant challenges for
the development of mathematical sciences.

Classification is a supervised machine learning technique that maps some
combination of input variables, which are measured or preset, into predefined
classes. Classification problems occur in several fields of science and technol-
ogy like discriminating cancerous cells from non-cancerous cells, web document
classification, categorizing images in remote sensing applications among many
others. Several algorithms starting from Neural Networks [44], Logistic Regression
[57], linear discriminant analysis (LDA) [64], support vector machines (SVM)
[92] and more recently ensemble methods like Boosting [33] and Random Forests
[8], have been proposed to solve the classification problem in different contexts.
However, the availability of massive data along with new scientific problems arising
in the fields of computational biology, microarray gene expression analysis, etc.,
have reshaped statistical thinking and data analysis. The high-dimensional data
has posed significant challenges to standard statistical methods and have rendered
many existing classification techniques impractical [53]. Hence, researchers have
proposed several novel techniques to handle the inherent difficulties of high-
dimensional spaces that are discussed below.
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1.1 Statistical Challenges of High-Dimensional Data Spaces

1.1.1 Curse of Dimensionality

The accuracy of classification algorithms tends to deteriorate in high dimensions due
to a phenomenon called the curse of dimensionality [27, 60]. This phenomenon is
illustrated by Trunk [90] using an example in [90]. Trunk found that (1) the best test
error was achieved using a finite number of features; (2) using an infinite number
of features, test error degrades to the accuracy of random guessing; and (3) the
optimal dimensionality increases with increasing sample size. Also, a naive learning
technique (dividing the attribute space into cells and associating a class label with
each cell) that predicts using a majority voting scheme requires the number of
training samples to be an exponential function of the feature dimension [50]. Thus,
the ability of an algorithm to converge to a true model deteriorates rapidly as the
feature dimensionality increases.

1.1.2 Poor Generalization Ability

A further challenge for modeling in high-dimensional spaces is to avoid overfitting
the training data [17]. It is important to build a classification model with good
generalization ability. It is expected that such a model, in addition to performing well
on the training set, would also perform equally well on an independent testing set.
However, often the small number of samples in high-dimensional data settings cause
the classification model to overfit to the training data, thereby having poor gener-
alization ability for the model. Two of the more common approaches to addressing
these challenges of high-dimensional spaces are reducing the dimensionality of the
dataset or applying methods that are independent of data dimensionality. We discuss
several classifiers pertaining to these two approaches in subsequent sections.

In this survey, we present several state-of-the-art classifiers that have been very
successful for classification tasks in high-dimensional data settings. The remainder
of the chapter is organized as follows. Section 2 talks about SVM and its variants.
Discriminant functions and their modifications including regularized techniques
are discussed in Sect. 3. Section 4 discusses hybrid classifiers that include sev-
eral feature selection techniques combined with other traditional classification
algorithms. Recent developments in ensemble methods and their applications to
high-dimensional data problems are discussed in Sect. 5. Some software packages
implementing the methods in different programming languages are discussed in
Sect. 6. Concluding remarks are presented in Sect. 7.
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2 Support Vector Machines

2.1 Hard-Margin Support Vector Machines

In the last decade, SVM [92] have attracted the attention of many researchers with
successful application to several classification problems in bioinformatics, finance
and remote sensing among many others [13, 69, 89]. Standard SVM construct a
hyperplane, also known as decision boundary, that best divides the input space 

into two disjoint regions. The hyperplane f W ! <, is estimated from the training
set S . The class membership for an unknown sample x 2  can be based on the
classification function g.x/ defined as:

g.x/ D
� �1; f .x/ < 0

1; f .x/ > 0
(1)

Consider a binary classification problem with the training set S defined as:

S D f.xi ; yi /jxi 2 <p; yi 2 f�1; 1gg; i D 1; 2; : : : ; n (2)

where yi is either �1 or 1 depending on the class that each xi belongs to.
Assume that the two classes are linearly separable and hence there exists atleast one
hyperplane that separates the training data correctly. A hyperplane parameterized by
the normal vector w 2 <p and bias b 2 < is defined as:

hw; xi � b D 0 (3)

where the inner product h�; �i is defined on<p�<p ! <. The training set S satisfies
the following linear inequality with respect to the hyperplane:

yi .hw; xii � b/ � 1 8i D 1; 2; : : : ; n (4)

where the parameters w and b are chosen such that the distance between the
hyperplane and the closest point is maximized. This geometrical margin can be
expressed by the quantity 1

jjwjj . Hence, for linearly separable set of training points,
SVM can be formulated a linearly constrained quadratic convex optimization
problem given as:

minimize
w;b

jjwjj22
subject to yi .hw; xi i � b/ � 1 8i D 1; 2; : : : ; n

(5)
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This classical convex optimization problem can be rewritten (using the
Lagrangian formulation [5]) into the following dual problem:

maximize
˛2<n

nX

iD1

˛i � 1

2

nX

iD1

nX

jD1

˛i ˛j yi yj .hxi ; xj i/

subject to
nX

iD1

˛i yi D 0; and; ˛i � 0; i D 1; 2; : : : ; n

(6)

where the Lagrange multipliers ˛i .i D 1; 2; : : : ; n/ expressed in (6) can be
estimated using quadratic programming (QP) methods [22]. The optimal hyperplane
f can then be estimated using the Lagrange multipliers obtained from solving (6)
and the training samples, i.e.,

f .x/ D
X

i2S 0

˛i yi .hx � xi i/� b (7)

where S 0 is the subset of training samples called support vectors that correspond
to non-zero Lagrange multipliers ˛i . Support vectors include the training points
that exactly satisfy the inequality in (5) and lie at a distance equal to 1

kwk from the
optimal separating hyperplane. Since the Lagrange multipliers are non-zero only for
the support vectors and zero for other training samples, the optimal hyperplane in (7)
effectively consists of contributions from the support vectors. It is also important to
note that the Lagrange multipliers ˛i qualitatively provide relative weight of each
support vector in determining the optimal hyperplane.

The convex optimization problem in (5) and the corresponding dual in (6)
converge to a global solution only if the training set is linearly separable. These
SVM are called hard-margin support vector machines.

2.2 Soft-Margin Support Vector Machines

The maximum-margin objective introduced in the previous subsection to obtain
the optimal hyperplane is susceptible to the presence of outliers. Also, it is often
difficult to adhere to the assumption of linear separability in real-world datasets.
Hence, in order to handle nonlinearly separable datasets as well as be less sensitive
to outliers, soft-margin support vector machines are proposed. The objective cost
function in (5) is modified to represent two competing measures namely, margin
maximization (as in the case of linearly separable data) and error minimization (to
penalize the wrongly classified samples). The new cost function is defined as:

‰.w; �/ D 1

2
jjwjj22 C C

nX

iD1

�i (8)
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where � is the slack variable introduced to account for the non-separability of data,
and the constant C represents a regularization parameter that controls the penalty
assigned to errors. The larger the C value, the higher the penalty associated to
misclassified samples. The minimization of the cost function expressed in (8) is
subject to the following constraints:

yi .hw; xi i � b/ � 1 � �i ; 8i D 1; 2; : : : ; n

�i � 0; 8i D 1; 2; : : : ; n
(9)

The convex optimization problem can then be formulated using (8) and (9) for
the nonlinearly separable data as:

minimize
w;b;�

1

2
jjwjj22 C C

nX

iD1

�i

subject to yi .hw; xi i � b/ � 1 � �i ; �i � 0; 8i D 1; 2; : : : ; n

(10)

The optimization problem in (10) accounts for the outliers by adding a penalty
term C �i for each outlier to the objective function. The corresponding dual to (10)
can be written using the Lagrange formulation as:

maximize
˛2<n

nX

iD1

˛i � 1

2

nX

iD1

nX

jD1

˛i ˛j yi yj .hxi ; xj i/

subject to
nX

iD1

˛i yi D 0; and; 0 � ˛i � C; i D 1; 2; : : : ; n

(11)

The quadratic optimization problem in (11) can be solved using standard QP
techniques [22] to obtain the Lagrange multipliers ˛i .

2.3 Kernel Support Vector Machines

The idea of linear separation between two classes mentioned in the subsections
above can be naturally extended to handle nonlinear separation as well. This is
achieved by mapping the data through a particular nonlinear transformation into
a higher dimensional feature space. Assuming that the data is linearly separable in
this high dimensional space, a linear separation, similar to earlier subsections, can be
found. Such a hyperplane can be achieved by solving a similar dual problem defined
in (11) by replacing the inner products in the original space with inner products in
the transformed space. However, an explicit transformation from the original space
to feature space could be expensive and at times infeasible as well. The kernel
method [12] provides an elegant way of dealing with such transformations.
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Consider a kernel function K.�; �/, satisfying Mercer’s theorem, that equals an
inner product in the transformed higher dimensional feature space [65], i.e.,

K.xi ; xj / D hˆ.xi /; ˆ.xj /i (12)

where ˆ.xi / and ˆ.xj / correspond to the mapping of data points xi and xj from
the original space to the feature space. There are several kernel functions defined
in literature that satisfy Mercer’s conditions. One such kernel, called the Gaussian
kernel is given by:

K.xi ; x/ D exp.�� jjxi � xjj2/ (13)

where � is a parameter inversely proportional to the width of the Gaussian radial
basis function. Another extensively studied kernel is the polynomial function of
order p expressed as

K.xi ; x/ D .hxi ; xi C 1/p (14)

Such kernel functions defined above allow for efficient estimation of inner
products in feature spaces without the explicit functional form of the mapping ˆ.
This elegant calculation of inner products in higher dimensional feature spaces, also
called the kernel trick, considerably simplifies the solution to the dual problem. The
inner products between the training samples in the dual formulation (11) can be
replaced with a kernel function K and rewritten as:

maximize
˛2<n

nX

iD1

˛i � 1

2

nX

iD1

nX

jD1

˛i ˛j yi yj K.xi ; xj /

subject to
nX

iD1

˛i yi D 0; and; 0 � ˛i � C; i D 1; 2; : : : ; n

(15)

The optimal hyperplane f obtained in the higher dimensional feature space can be
conveniently expressed as a function of data in the original input space as:

f .x/ D
X

i2S 0

˛i yi K.xi ; x/� b (16)

where S 0 is a subset of training samples with non-zero Lagrange multipliers ˛i . The
shape of f (x) depends on the type of kernel functions adopted.

It is important to note that the performance of kernel-based SVM is dependent
on the optimal selection of multiple parameters, including the kernel parameters
(e.g., � and p parameters for the Gaussian and polynomial kernels, respectively)
and the regularization parameter C . A simple and successful technique that has
been employed involves a grid search over a wide range of the parameters.
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The classification accuracy of SVM for every pair of parameters is estimated
using a leave-one-out cross-validation technique and the pair corresponding to
the highest accuracy is chosen. Also, some interesting automatic techniques have
been developed to estimate these parameters [15, 16]. They involve constructing
an optimization problem that would maximize the margin as well as minimize the
estimate of the expected generalization error. Optimization of the parameters is
then carried out using a gradient descent search over the space of the parameters.
Recently, more heuristic-based approaches have been proposed to deal with this
issue. A continuous version of Simulated Annealing (SA) called Hide and Seek SA
was employed in [61] to estimate multiple parameters as well as select a subset
of features to improve the classification accuracy. Similar approaches combining
particle swarm optimization (PSO) with SVM are proposed in [39,62]. Furthermore,
a modified Genetic Algorithm (GA) was also implemented along with SVM to
estimate the optimal parameters [47].

2.4 SVM Applied to High-Dimensional Classification Problems

Support vector machines have been successfully applied to high-dimensional classi-
fication problems arising in fields like remote sensing, web document classification,
microarray analysis etc. As mentioned earlier, conventional classifiers like logistic
regression, maximum likelihood classification etc., on high-dimensional data tend to
overfit the model using training data and run the risk of achieving lower accuracies
on testing data. Hence, a pre-processing step like either feature selection and/or
dimensionality reduction techniques are proposed to alleviate the problem of curse
of dimensionality while working with these traditional classifiers. Surprisingly,
SVM have been successfully applied to hyperspectral remote sensing images
without any pre-processing steps [69]. Researchers show that SVM are more
effective that the traditional pattern recognition approach that involves a feature
selection procedure followed by a conventional classifier and are also insensitive
to Hughes phenomena [49]. This is particularly helpful as it avoids the unnecessary
additional computation of an intermediary step like feature selection/dimensionality
reduction to achieve high classification accuracy.

Similar observations were reported in the field of document classification in [52],
where SVM were trained directly on the original high-dimensional input space.
Kernel SVM (Gaussian and polynomial kernels) were employed and compared
with other conventional classifiers like k-NN classifiers, Naive-Bayes Classifier,
Rocchio Classifier and C4.5 Decision Tree Classifier. The results show that Kernel
SVM outperform the traditional classifiers. Also, in the field of microarray gene
expression analysis, SVM have been successfully applied to perform classification
of several cancer diagnosis tasks [9, 74].

The insensitivity of SVM to overfitting and the ability to overcome the curse
of dimensionality can be explained via the generalization error bounds developed
by Vapnik et al. [93]. Vapnik showed the following generalization error bounds for
Large Margin Classifiers:
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� D QO
�

1

m

�
R2

�2
C log

1

ı

		
(17)

where m is the number of training samples, � is the margin between the parallel
planes, and (R; ı/ 2 <C with 0 < ı � 1. This error bound is inversely dependent
on the sample size m and the margin � . For a finite sample size, maximizing the
margin � (or minimizing the weight vector) would reduce the generalization error �.
Interestingly, this error bound does not depend on the dimensionality of the input
space. Since, it is highly likely to linearly separate the data in higher dimensions,
SVM tend to perform well with classification tasks in high dimensions.

3 Discriminant Functions

A discriminant function g W <p ! f�1; 1g assigns either class 1 or class 2 to an
input vector x 2 <p . We consider here a class of discriminant functions G that are
well studied in literature and traditionally applied to binary classification problems.

3.1 Quadratic and Linear Discriminant Analysis

Consider a binary classification problem with classes C1 and C2 and prior probabil-
ities given as 	1 and 	2. Assume the class conditional probability densities f1.x/

and f2.x/ to be normally distributed with mean vectors �1 and �2 and covariance
matrices †1 and †2, respectively:

fk.x/ D 1

.2	/p=2j†kj1=2
exp

�
�1

2
.x � �k/T †�1

k .x ��k/

	
k D 1; 2: (18)

where, j†kj is the determinant of the covariance matrix †k . Following Bayes

optimal rule [3], quadratic discriminant analysis (QDA) [64] assigns class 1 to an
input vector x if the following condition holds:

	1f1.x/ � 	2f2.x/ (19)

Linear discriminant analysis [64] further assumes the covariances †1 and †2

are equal to † and classifies an input vector again in accordance to Bayes optimal
rule. The condition in (19) can then be rewritten as:

log
	1

	2

C .x � �/T †�1.�1 � �2/ � 0; � D 1

2

�
�1 C �2

�
: (20)
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Assuming the prior probabilities to be equal, (20) is equivalent to:

.x � �1/T †�1.x � �1/ � .x ��2/
T †�1.x � �2/ (21)

It is interesting to note that LDA compares the squared Mahalanobis distance
[21] of x from the class means �1 and �2 and assigns the class that is closest. The
squared Mahalanobis distance of a point x from a distribution P characterized by
mean vector � and covariance matrix † is defined as:

dM .x;P/ D .x � �/T †�1.x � �/ (22)

This distance measure, unlike Euclidean distance measure, accounts for correlations
among different dimensions of x. Equation (21) shows how LDA differs from
other distance-based classifiers like k-NN classifier [3] which measures Euclidean
distance to assign the class.

3.2 Fisher Linear Discriminant Analysis

Fisher linear discriminant analysis (FLDA) [3], unlike LDA, does not make
assumptions on the class conditional densities. Instead, it estimates the class means
from the training set. In practice, the most commonly used estimators are their
maximum-likelihood estimates, given by:

O�1 D
1

N1

X

k2C1

xk; O�2 D
1

N2

X

k2C2

xk: (23)

Fisher linear discriminant analysis attempts to find a projection vector w that
maximizes the class separation. In particular, it maximizes the following Fisher
criterion given as:

J.w/ D wT S Bw
wT S W w

(24)

where S B is the between-class covariance matrix and is given by:

S B D . O�2 � O�1/. O�2 � O�1/
T (25)

and S W is the within-class covariance matrix and is given by:

S W D
X

k2C1

.xk � O�1/.xk � O�1/
T C

X

k2C2

.xk � O�2/.xk � O�2/
T (26)
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The optimal Fisher discriminant w� can be obtained by maximizing the Fisher
criterion:

maximize
w

J.w/ (27)

An important property to notice about the objective function J.w/ is that it is
invariant to the rescalings of the vector w! ˛w;8˛ 2 <. Hence, w can be chosen
in a way that the denominator is simply wT SW w D 1, since it is a scalar itself. For
this reason, we can transform the problem of maximizing Fisher criterion J into the
following constrained optimization problem,

maximize
w

wT S Bw

subject to wT S W w D 1

(28)

The KKT conditions for (28) can be solved to obtain the following generalized
eigenvalue problem, given as:

S B w D �S W w (29)

where � represents the eigenvalue and the optimal vector w� corresponds to the
eigenvector with the largest eigenvalue �max and is proportional to:

w� / S�1
W . O�2 � O�1/ (30)

The class of an input vector x is determined using the following condition:

hw�; xi < c (31)

where c 2 < is a threshold constant.

3.3 Diagonal Linear Discriminant Analysis

Diagonal linear discriminant analysis (DLDA) extends on LDA and assumes
independence among the features [35]. In particular, the discriminant rule in (20)
is replaced with:

log
	1

	2

C .x ��/T D�1.�1 ��2/ � 0 (32)

where D D diag.†/. The off-diagonal elements of the covariance matrix † are
replaced with zeros by independence assumption.
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Similarly, diagonal quadratic discriminant analysis (DQDA) [28] assumes the
independence rule for QDA. The discriminant rule in this case is given by:

log
	1

	2

C .x ��2/
T D�1

2 .x � �2/ � .x ��1/
T D�1

1 .x � �1/ � 0 (33)

where D1 D diag.†1/, and D2 D diag.†2/.
Diagonal quadratic discriminant analysis and DLDA classifiers are sometimes

called “naive Bayes” classifiers because they can arise in a Bayesian setting [2].
Additionally, it is important to note that FLDA and Diagonal Discriminant analysis
(DLDA and DQDA) are commonly generalized to handle multi-class problems as
well.

3.4 Sparse Discriminant Analysis

The optimal discriminant vector in FLDA (30) involves estimating the inverse of
covariance matrix obtained from sample data. However the high dimensionality
in some classification problems poses the threat of singularity and thus leads to
poor classification performance. One approach to overcome singularity involves
a variable selection procedure that selects a subset of variables most appropriate
for classification. Such a sparse solution has several advantages including better
classification accuracy as well as interpretability of the model. One of the ways to
induce sparsity is via the path of regularization. Regularization techniques have been
traditionally used to prevent overfitting in classification models, but recently, they
have been extended to induce sparsity as well in high-dimensional classification
problems. Here, we briefly discuss some standard regularization techniques that
facilitate variable selection and prevent overfitting.

Given a set of instance-label pairs (xi ; yi ); i D 1; 2; : : : ; n; a regularized
classifier optimizes the following unconstrained optimization problem:

minimize
ˇ

ˆ.x; y; ˇ/C �jjˇjjp (34)

where ˆ represents a non-negative loss function, (p; �/ 2 < and ˇ is the coefficient
vector. Classifiers with p D 1 (Lasso-penalty) and p D 2 (ridge-penalty) have been
successfully applied to several classification problems [99].

In a regression setting, Tibshirani [85] introduced variable selection via the
framework of regularized classifiers using the l1-norm. This method, also called
least absolute shrinkage and selection operator (LASSO), considers the least-
squares error as the loss function. The user-defined parameter � balances the
regularization and the loss terms. The l1-norm in Lasso produces some coefficients
that are exactly 0 thus facilitating the selection of only a subset of variables useful
for regression. The Lasso regression, in addition to providing a sparse model, also
shares the stability of ridge regression. Several algorithms have been successfully
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employed to solve the Lasso regression in the past decade. Efron et al. [29] showed
that, starting from zero, the Lasso solution paths grow piecewise linearly in a
predictable way and hence exploit this predictability to propose a new algorithm
called Least Angle Regression that solves the entire Lasso path efficiently. The
Lasso framework has been further extended to several classification problems by
considering different loss functions, and has been highly successful in producing
sparse models with high classification accuracy.

A Lasso-type framework, however, is not without its limitations. Zou and Hastie
[99] mention that a Lasso framework, in high-dimensional problems, suffers from
two drawbacks namely, the number of variables selected is limited by the number
of samples n, and in the case of highly correlated features, the method selects
one of them, neglecting the rest and also does not care about the one selected.
The second limitation, also called the grouping effect, is very common in high-
dimensional classification problems like microarray gene analysis where a group of
variables are highly correlated to each other. The authors propose a new technique
that overcomes the limitations of Lasso. The technique, called elastic-net, considers
a convex combination of l1 and l2-norms to induce sparsity. In particular, in an
elastic-net framework, the following optimization problem is minimized:

minimize
ˇ

ˆ.x; y; ˇ/C �jjˇjj1 C .1 � �/jjˇjj2 (35)

where ˆ is the loss function, and 0 � � � 1. When � D 0 (or = 1), the
elastic-net framework simplifies to Lasso (or ridge) frameworks. The method could
simultaneously perform variable selection along with continuous shrinkage and also
select groups of correlated variables. An efficient algorithm, called LARS-EN, along
the lines of LARS, was proposed to solve the elastic-net problem. It is important to
note that these regularized frameworks are very general and can be added to models
that suffer from overfitting. They provide better generalization performance by
inherently performing variable selection and thus also producing better interpretable
models.

Sparsity can be induced to the solution of FLDA using regularization techniques
described above. One such method called sparse linear discriminant analysis
(SLDA), is inspired from penalized least squares where regularization is applied to
the solution of least squares problem via Lasso-penalty. The penalized least squares
problem is formulated as:

minimize
ˇ

jjy �Xˇjj22 C �jjˇjj1 (36)

where X represents the data matrix and y is the outcome vector. The second term
in (36) is assumed to induce sparsity to the optimal ˇ.

In order to induce sparsity in FLDA via the l1 penalty, the generalized eigenvalue
problem in (29) is first reformulated as an equivalent least squares regression
problem and is shown that the optimal discriminant vector of FLDA is equivalent to
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the optimal regression coefficient vector. This is achieved by applying the following
theorem:

Theorem. Assume the between-class covariance matrix S B 2 <p�p and the
within-class covariance matrix S W 2 <p�p be given by (25) and (26). Also, assume
S W is positive definite and denote its Cholesky decomposition as S W D RT

W RW

where RW 2 <p�p is an upper triangular matrix. Let H B 2 <n�p satisfy
S B D H T

BH B . Let v1; v2 : : : ; vq.q � min.p; n � 1// denote the eigenvectors of
problem (29) corresponding to the q largest eigenvalues �1 � �2 � � � � � �q . Let
A 2 <p�q D Œ˛1; ˛2; : : : ; ˛q� and B 2 <p�q D Œˇ1; ˇ2; : : : ; ˇq�. For � > 0, let OA

and OB be the solution to the following least squares regression problem:

minimize
A;B

nX

iD1

kR�T
W H B;i �ABT H B;ik2 C

qX

jD1

ˇT
j S W ˇj ;

subject to AT A D I (37)

where, H B;i is the i th row of H B . Then Ǒj ; j D 1; 2; : : : ; q; span the same
subspace as vj ; j D 1; 2; : : : ; q. [refer to [73] for the proof].

After establishing the equivalence, the regularization is applied on the least
squares formulation in (37) via the Lasso-penalty as shown below:

minimize
A;B

nX

iD1

kR�T
W H B;i �ABT H B;ik2 C

qX

jD1

ˇT
j S W ˇj ;C

qX

jD1

�j;1kˇjk1;

subject to AT A D I (38)

Since (38) is non-convex, finding the global optimum is often difficult. Qiao et al.
[73], suggest a technique to obtain a local optimum by alternating optimization over
A and B. We refer readers to their article for details on their implementation.

Clemmensen et al. [18] also propose a similar sparse model using FLDA for
classification problems. They also follow the approach of re-casting the optimization
problem of FLDA into an equivalent least squares problem and then inducing spar-
sity by introducing a regularization term. However, the reformulation is achieved
via an optimal scoring function that maps categorical variables to continuous
variables via a sequence of scorings. Given a data matrix X 2 <n�p and the
samples belonging to one of the K classes, the equivalent regression problem can
be formulated as:
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minimize
ˇk;�k

jjY �k �Xˇkjj22

subject to
1

n
�T

k Y T Y �k D 1

�T
k Y T Y � l D 0; 8l < k;

(39)

where �k is the score vector and ˇk is the coefficient vector. It can be shown that
the optimal vector ˇk from (39) is also optimal to FLDA formulation in (28). Sparse
discriminant vectors are then obtained by adding an l1-penalty to the objective
function in (39) as:

minimize
ˇk ;�k

jjY �k �Xˇkjj22 C �ˇT
k �ˇk C �jjˇkjj1

subject to
1

n
�T

k Y T Y �k D 1

�T
k Y T Y � l D 0; 8l < k;

(40)

where � is a positive-definite matrix. The authors propose a simple iterative
algorithm to obtain a local minima for the optimization problem in (40). The
algorithm involves holding �k fixed and optimizing with respect to ˇk , and holding
ˇk fixed and optimizing with respect to �k until a pre-defined convergence criteria
is met.

3.5 Discriminant Functions for High-Dimensional Data
Classification

Linear discriminant analysis and QDA require the covariance within classes to be
known a priori in order to establish a discriminant rule in classification problems. In
many problems, since the covariance is not known a priori, researchers often attempt
to estimate the covariance from the sample data. However, in high-dimensional
problems, the sample covariance matrix is ill-conditioned and hence induces
singularity in the estimation of the inverse covariance matrix. FLDA also faces
similar challenges since within-scatter and in-between scatter are estimated from
the sample data. In fact, even if the true covariance matrix is not ill-conditioned, the
singularity of the sample covariance matrix will make these methods inapplicable
when the dimensionality is larger than the sample size. Several authors performed
a theoretical study on the performance of FLDA in high-dimensional classification
settings. Bickel and Levina [2] showed that under some regularity conditions, as
the ratio of features p and the number of samples n tend to infinity, the worst case
misclassification rate tends to 0.5. This proves that as the dimensionality increases,
FLDA is only as good as random guessing.
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Several alternatives have been proposed to overcome the problem of singularity
in LDA and QDA. Thomaz and Gillies [84] propose a new LDA algorithm (NLDA),
which replaces the less reliable smaller eigenvalues of the sample covariance matrix
with the grand mean of all eigenvalues and keeps larger eigenvalues unchanged.
NLDA has been used successfully in face recognition problems. Xu et al. [94] state
the lack of theoretical basis for NLDA and introduced a modified version of LDA
called MLDA, which is based on a well-conditioned estimator for high-dimensional
covariance matrices. This estimator has been shown to be more accurate than the
sample covariance matrix asymptotically.

The assumption of independence in DLDA greatly reduces the number of
parameters in the model and often results in an effective and interpretable classifier.
Despite the fact that features will rarely be independent within a class, in the case of
high-dimensional classification problems, the dependencies cannot be estimated due
to lack of data. DLDA is shown to perform well for high-dimensional classification
setting in spite of this naive assumption. Bickel and Levina [2] theoretically showed
that it will outperform classical discriminant analysis in high-dimensional problems.
However, one shortcoming of DLDA is that it uses all features and hence is not
convenient for interpretation. Tibshirani et al. [86] introduced further regularization
in DLDA using a procedure called nearest shrunken centroids (NSC) in order to
improve misclassification error as well as interpretability. The regularization is
introduced in a way that automatically assigns a weight zero to features that do not
contribute to the class predictions. This is achieved by shrinking the classwise mean
toward the overall mean, for each feature separately. We refer readers to [86] for a
complete description of the method. DLDA integrated with NSC was applied to gene
expression array analysis and is shown to be more accurate than other competing
methods. The authors prove that the method is highly efficient in finding genes
representative of small round blue cell tumors and leukemias. Several variations of
NSC also exist in literature, for example [19,87]. Interestingly, NSC is also shown to
be highly successful in open-set classification problems [77, 78] where the number
of classes is not necessarily closed.

Another framework applied to high-dimensional classification problems include
combining DLDA with shrinkage [71, 88]. Pang et al. [71] combined the shrinkage
estimates of variances with diagonal discriminant scores to define two shrinkage-
based discriminant rules called shrinkage-based DQDA (SDQDA) and shrinkage-
based DLDA (SDLDA). Furthermore, the authors also applied regularization to
further improve the performance of SDQDA and SDLDA. The discriminant rule
combining shrinkage-based variances and regularization in diagonal discriminant
analysis showed improvement over the original DQDA and DLDA, SVM, and k-
Nearest Neighbors in many classification problems. Recently, Huang et al. [48]
observed that the diagonal discriminant analysis suffers from serious drawback of
having biased discriminant scores. Hence, they proposed bias-corrected diagonal
discriminant rules by considering unbiased estimates for the discriminant scores.
Especially in the case of highly unbalanced classification problems, the bias
corrected rule is shown to outperform the standard rules.
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Recently, SLDA has shown promise in high-dimensional classification problems.
In [73], SLDA was applied to synthetic and real-world datasets including wine
datasets and gene expression datasets and is shown to perform very well on training
and testing data with lesser number of significant variables. The authors in [18]
compared SLDA obtained via optimal scoring to other methods like shrunken
centroid regularized discriminant analysis, sparse partial least squares regression
and the elastic-net regression on a number of high-dimensional datasets and is
shown to have comparable performance to other methods but with lesser number
of significant variables.

4 Hybrid Classifiers

We now discuss an important set of classifiers that are frequently used for
classification in the context of high-dimensional data problems. High dimensional
datasets usually consist of irrelevant and redundant features that adversely effect
the performance of traditional classifiers. Also, the high dimensionality of the data
makes the estimation of statistical measures difficult. Hence, several techniques
have been proposed in the literature to perform feature selection that selects relevant
features suitable for classification [46]. Generally, feature selection is performed as
a dimensionality reduction step prior to building the classification model using the
traditional classifiers. Unlike other dimensionality reduction techniques like those
based on transformation (e.g., principal component analysis) or compression (e.g.,
based on information theory), feature selection techniques do not alter the original
dimensional space of the features, but merely select a subset of them [76]. Thus,
they offer the advantage of interpretability by a domain expert as they preserve
the original feature space. Also, feature selection helps to gain a deeper insight
into the underlying processes that generated the data and thus plays a vital role
in the discovery of biomarkers especially in biomedical applications [30]. Thus the
classification framework can be viewed as a two-stage process with dimensionality
reduction via feature selection being the first step followed by a classification model.
We call these set of classifiers as hybrid classifiers, as different techniques pertaining
to two stages have been combined to produce classification frameworks that have
been successful in several high-dimensional problems. We briefly describe various
feature selection techniques and also review the hybrid classifiers developed using
these techniques for high-dimensional data problems.

4.1 Feature Selection Methods

Recently, feature selection has been an active area of research among many
researchers due to tremendous advances in technology enabling collecting samples
with hundreds and thousands of attributes in a single experiment. The goal of
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feature selection techniques is to find an optimal set of features based on different
measures of optimality. Irrespective of the measure of optimality, the selected subset
of features should ideally possess the following characteristics [40]:

• The cardinality of the subset should be minimal such that it is necessary and
sufficient to accurately predict the class of unknown samples,

• The subset of features should improve the prediction accuracy of the classifier
run on data containing only these features rather than on the original dataset with
all the features,

• The resulting class distribution, given only the values for the selected features, is
as close as possible to the original class distribution given all feature values.

Based on the above feature characteristics, it is obvious that irrelevant features
would not be part of the optimal set of features, where an irrelevant feature with
respect to the target class is defined as follows [97].

Let F be the full set of features and C be the target class. Define Fi 2 F and
Si D F � Fi .

Definition 1 (Irrelevance). A feature Fi is irrelevant if and only if

8S
0

i � Si ; P.C jFi ; S
0

i / D P.C jS 0

i /

Irrelevance simply means that it is not necessary for classification since the class
distribution given any subset of other features does not change after eliminating the
feature.

The definition of relevance is not as straightforward as irrelevance. There have
been several definitions for relevance in the past; however, Kohavi and John
[58] argued that the earlier definitions weren’t adequate to accurately classify the
features. Hence, they defined relevance in terms of an optimal Bayes classifier.
A feature Fi is strongly relevant if removal of Fi alone will result in decrease of
performance of an optimal Bayes classifier. A feature Fi is weakly relevant if it is not
strongly relevant and there exists a subset of features, S

0

i , such that the performance
of a Bayes classifier on S

0

i is worse than the performance on S
0

i U {Fi}.

Definition 2 (Strong Relevance). A feature Fi is strongly relevant if only and if:

P.C jFi ; S
0

i / ¤ P.C jS 0

i /; S
0

i � Si (41)

Definition 3 (Weak Relevance). A feature Fi is weakly relevant if only and if:

P.C jFi ; Si / D P.C jSi/ and; 9S 0

i � Si ; P.C jFi ; S
0

i / ¤ P.C jS 0

i / (42)

Strong relevance implies that the feature is indispensable and is required for
an optimal set, while weak relevance implies that the feature may be required
sometimes to improve the prediction accuracy. From this, one may conclude that the
optimal set should consist of all the strongly relevant features, none of the irrelevant
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features and some of the weakly irrelevant features. However, the definitions do
not explicitly mention which of the weakly relevant features should be included
and which of them excluded. Hence, Yu and Liu [97] claim that the weakly
relevant features should be further classified to discriminate among the redundant
features and the non-redundant features, since earlier research efforts showed that
along with irrelevant features, redundant features also adversely affect the classifier
performance. Before we provide definitions, we introduce another concept called
feature’s Markov Blanket as defined by Koller and Sahami [59].

Definition 4 (Markov Blanket). Given a feature Fi , let Mi � F.Fi … Mi/; Mi is
said to be a Markov blanket for Fi if only and if:

P.F �Mi � fFig; C jFi ; Mi / D P.F �Mi � fFi g; C jMi/ (43)

The Markov blanket Mi could be imagined as a blanket for the feature Fi that
subsumes not only the information that Fi possesses about target class C , but also
about other features. It is also important to note that the strongly relevant features
cannot have a Markov Blanket. Since the irrelevant features do not contribute to
classification, Yu and Liu [97] further classified the weakly relevant features into
either redundant or non-redundant using the concept of Markov blanket:

Definition 5 (Redundant Feature). Given a set of current features G, a feature
is redundant and hence should be removed from G if and only if it has a Markov
Blanket within G.

From the above definitions, it is clear that the optimal set of features should
consist of all of the strongly relevant features and the weakly relevant non-redundant
features. However, an exhaustive search over the feature space is intractable since
there are 2p possibilities with p being the number of features. Hence, over the past
decade, several heuristic and approximate methods have been developed to perform
feature selection. In the context of classification, feature selection techniques can
be organized into three categories, depending on how they combine the feature
selection search with the construction of the classification model: filter methods,
wrapper methods and embedded methods [76]. While all methods define some
criterion measure to eliminate the irrelevant features, very few methods attempt to
eliminate the redundant features as well. Here, we briefly describe methods in each
of the three categories.

4.1.1 Filter Methods

Filter methods assess feature relevance from the intrinsic properties of the data. In
most cases the features are ranked using a feature relevance score and the low-
scoring features are removed. The reduced data obtained from considering only
the selected features are then presented as an input to the classification algorithm.
Filter techniques offer several advantages including scalability to high-dimensional
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datasets, being computationally efficient, and are independent of the classification
algorithm. This independency offers the advantage of performing feature selection
only once and then evaluating different classifiers.

Some univariate filter techniques perform simple hypothesis testing like Chi-
Square (2) test or t-test to eliminate the irrelevant features, while other techniques
estimate information theoretic measures like information gain and gain-ratio to
perform the filtering process [1]. Although these techniques are simple, fast and
highly scalable, they ignore feature dependencies which may lead to worse classi-
fication performance as compared with other feature selection techniques. In order
to account for feature dependencies, a number of multivariate filter techniques were
introduced. The multivariate filter methods range from accounting for simple mutual
interactions [4] to more advanced solutions exploring higher order interactions. One
such technique called correlation-based feature selection (CFS) introduced by Hall
[42], evaluates a subset of features by considering the individual predictive ability
of each feature along with the degree of redundancy between them:

CFSS D kˆcfp
k C k.k � 1/ˆff

(44)

where CFSS is the score of a feature subset S containing k features, ˆcf is the
average feature-to-class correlation (f 2 S ), and ˆff is the average feature-
to-feature correlation. Unlike the univariate filter methods, CFS presents a score
for a subset of features. Since, exhaustive search is intractable, several heuristic
techniques like greedy hill-climbing or best-first search have been proposed to find
the feature subset with the highest CFS score.

Another important multivariate filter method called Markov blanket filtering was
introduced by Koller and Sahami [59]. The idea here being that once we find a
Markov blanket of feature Fi in a feature set G, we can safely remove Fi from
G without compromising on the class distribution. Since estimating the Markov
blanket for a feature is hard, Koller and Sahami propose a simple iterative algorithm
that starts with the full feature set F D G and then repeatedly eliminates one feature
at a time based on cross-entropy of each feature until a pre-selected number of
features are removed.

Koller and Sahami further prove that in such a sequential elimination process in
which unnecessary features are removed one by one, a feature tagged as unnecessary
based on the existence of a Markov blanket Mi remains unnecessary in later stages
when more features have been removed. Also, the authors claim that the process
removes all the irrelevant as well as redundant features. Several variations to the
Markov blanket filtering method like Grow-Shrink (GS) algorithms, incremental
association Markov blanket (IAMB), Fast-IAMB and recently �-IAMB have been
proposed by other authors [36]. Due to space constraints, we mention other interest-
ing multivariate filter methods like fast-correlation-based feature selection (FCBF)
([96]), minimum redundancy-maximum relevance (MRMR) [26], and uncorrelated
shrunken centroid (USC) [95] algorithms.
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Statnikov et al. [82] recently performed a comprehensive comparative study
between Random Forests [8] and SVM for microarray-based cancer classification.
They adopt several filter methods like sequential filtering techniques as a pre-
processing step to select a subset of features which are then used as input to
the classifiers. It is shown that on an average, SVM outperform Random Forests
on most microarray datasets. Recently, Pal and Moody [68] studied the effect of
dimensionality on performance of SVM using four feature selection techniques
namely CFS, MRMR, Random Forests and SVM-RFE [41] on hyperspectral data.
Unlike earlier findings, they show that dimensionality might affect the performance
of SVM and hence a pre-processing step like feature selection might still be useful
to improve the performance.

4.1.2 Wrapper Methods

As seen in the earlier section, filter methods treat the problem of finding a good
feature subset independently of the classifier building step. Wrapper methods, on
the other hand, integrate the classifier hypothesis search within the feature subset
search. In this framework, a search procedure in the feature space is first defined,
and various subsets of features are generated and evaluated. The evaluation of a
specific feature subset is obtained by training and testing a specific classification
model, making this approach tailored to a specific classification algorithm [58, 76].
Advantages of wrapper methods include consideration of feature dependencies and
the ability to include interactions between the feature subset search and model
selection. A common drawback includes the risk of higher overfitting than the
filter methods and could be computationally intensive if the classification model
especially has a high computational cost.

The wrapper methods generally employ a search algorithm in order to search
through the space of all feature subsets. The search algorithm is wrapped around
the classification model which provides a feature subset that can be evaluated by
the classification algorithm. As mentioned earlier, since an exhaustive search is not
practical, heuristic search methods are used to guide the search. These search meth-
ods can be broadly classified as deterministic and randomized search algorithms.
Deterministic search methods include a set of sequential search techniques like
the Sequential Forward Selection [56], Sequential Backward Selection [56], Plus-
l Minus-r Selection [31], Bidirectional Search, Sequential Floating Selection [72]
etc., where the features are either sequentially added or removed based on some
criterion measure. Randomized Search algorithms include popular techniques like
Genetic Algorithms [20], Simulated Annealing [55], Randomized Hill Climbing
[81], etc.
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4.1.3 Embedded Methods

Embedded methods integrate the search for an optimal subset of features into the
classifier construction and can be seen as a search in the combined space of feature
subsets and hypotheses. Similar to wrapper methods, embedded approaches are also
specific to a given learning algorithm. The advantages of embedded methods include
the interaction with the classification model, but unlike the wrapper methods, also
has the advantage to be less computationally intensive [76].

Recently embedded methods have gained importance among the research com-
munity due to their advantages. The embedded characteristic of several classifiers
to eliminate input features futile to classification and thus select a subset of features,
has been exploited by several authors. Examples include the use of random forests
(discussed later) in an embedded way to calculate the importance of each feature
[24, 51]. Another line of embedded feature selection techniques uses the weights
of each feature in linear classifiers, such as SVM [41] and logistic regression [63].
These weights are used as a measure of relevance of each feature, and thus allow
for the removal of features with very small weights. Also, recently regularized
classifiers like Lasso and elastic-net have also been successfully employed in
performing feature selection in microarray gene analysis [99]. Another interesting
technique called feature selection via sparse SVM has been recently proposed by
Tan et al. [83]. This technique called the feature Generating machine (FGM) adds
a binary variable for every feature in the sparse formulation of SVM via l0-norm
and the authors propose a cutting plane algorithm combined with multiple kernel
learning to efficiently solve the convex relaxation of the optimization problem.

5 Ensemble Classifiers

Ensemble classifiers have gained increasing attention from the research community
over the past years, ranging from simple averaging of individually trained neural
networks to the combination of thousands of decision trees to build Random
Forests [8], to the boosting of weak classifiers to build a strong classifier where
the training of each subsequent classifier depends on the results of all previously
trained classifiers [75]. The main idea of an ensemble methodology is to combine
a set of models, each of which solves the same original task, in order to obtain
a better composite global model, with more accurate and reliable estimates or
decisions. They combine multiple hypotheses of different models with the hope to
form a better classifier. Alternatively, an ensemble classifier can also be viewed
as a technique for combining many weak learners in an attempt to produce a
strong learner. Hence an ensemble classifier is itself a supervised learning algorithm
capable of making prediction on unknown sample data. The trained ensemble
classifier, therefore, represents a single hypothesis that is not necessarily contained
within the hypothesis space of the constituent models. This flexibility of ensemble
classifiers can theoretically overfit to the training data more than a single model
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would, but however surprisingly, in practice, some ensemble techniques (especially
bagging and Random Forests) tend to reduce problems related to overfitting of the
training data.

In the past few years, experimental studies show that combining the outputs of
multiple classifiers similar to ensemble methods reduces the generalization error
[25]. Ensemble methods are particularly effective due to the phenomenon that
various types of classifiers have different inductive biases. Additionally, ensemble
methods can effectively make use of such diversity to reduce the variance-error
while keeping the bias-error in check. In certain situations, an ensemble can also
reduce bias-error, as shown by the theory of large margin classifiers. So, diversified
classifiers help in building a lesser number of classifiers, especially in the case
of Random Forests. The increase in prediction accuracy does come at a cost of
performing more calculations in comparison to a single model. So, the ensemble
methods can be thought of as a way to compensate for a poor learner by performing
a lot of computations. So, a fast poor learner like decision trees have certainly gained
from ensemble methods; although slow algorithms can also benefit from ensemble
techniques.

Recently, ensemble methods have shown promise in high-dimensional data
classification problems. In particular, bagging methods, random forests and boosting
have been particularly impressive due to their flexibility to create stronger classifiers
from weak classifiers. Here, we describe two methods: AdaBoost and Random
Forests, and show their importance in high-dimensional problems.

5.1 AdaBoost

Boosting [33, 79] is a general method which attempts to boost the accuracy of
any given learning algorithm. The inception of boosting can be traced back to a
theoretical framework for studying machine learning called the “PAC” learning
model, [91]. Kearns and Valiant [54] were among the first authors to pose the
question of whether a weak learner which is only slightly correlated with the true
classification and performs just slightly better than random guessing in the PAC
model can be boosted into an accurate strong learning algorithm that is arbitrarily
well-correlated with true classification. Schapire [79] proposed the first provable
polynomial-time boosting algorithm in 1989. A year later, Freund [32] developed a
much more efficient boosting algorithm which, although optimal in a certain sense,
nevertheless suffered from certain practical drawbacks.

Boosting encompasses a family of methods that produces a series of classifiers.
The training set used for each member of the series is chosen based on the
performance of the earlier classifier(s) in the series. Unlike other committee methods
like bagging [6], in boosting, the base classifiers are trained in sequence, and
each base classifier is trained using a weighted variant of the dataset in which the
individual weighting coefficient depends on the performance of previous classifiers.
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In particular, points that are misclassified by one of the base classifiers are given
greater weight when used to train the next classifier in the sequence. Once all the
classifiers have been trained, their predictions are then combined through a weighted
majority voting scheme.

AdaBoost, short for Adaptive Boosting, formulated by Yoav Freund and Robert
Schapire [33], solved many of the practical difficulties of earlier boosting algo-
rithms. It can be considered as classification framework that can be used in
conjunction with many other learners to improve their performance. AdaBoost is
adaptive in the sense that subsequent classifiers built are tweaked in favor of those
instances misclassified by previous classifiers. The framework provides a new weak
classifier with a form of training set that is representative of the performance of
previous classifiers. The weights of those training samples that are misclassified by
earlier weak learners are given higher values than those that are correctly classified.
This allows the new classifier to adapt to the misclassified training samples and
focus on predicting them correctly. After the training phase is complete, each
classifier is assigned a weight and their outputs are linearly combined to make
predictions on the unknown sample. Generally, it provides a significant performance
boost to weak learners that are only slightly better than random guessing. Even
classifiers with a higher error rate could also be useful as they will have negative
coefficients in the final linear combination of classifiers and hence behave like their
inverses.The precise form of the AdaBoost algorithm is described below.

Consider a binary classification problem, in which the training data comprises
input vectors x1; x2; : : : ; xN along with corresponding binary target variables given
by t where tn 2 f�1; 1g. Each data point is given an associated weighting parameter
wn, which is initially set 1/N for all data points. We assume that we have a procedure
available for training a base classifier using weighted data to give a function y.x/ 2
f�1; 1g.
• Initialize the data weighting coefficients {wn} by setting w.1/

n D 1=N for n D
1; 2; : : : ; N .

• For m D 1; : : : ; M :

(a) Fit a classifier ym.x/ to the training data by minimizing the weighted error
function

Jm D
NX

nD1

w.m/
n I.ym.xn/ ¤ tn/ (45)

where I.ym.xn/ ¤ tn/ is the indicator function and equals 1 when
(ym.xn/ ¤ tn) and 0 otherwise.

(b) Evaluate the quantities

�m D
PN

nD1 w.m/
n I.ym.xn/ ¤ tn/
PN

nD1 w.m/
n

(46)
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and then use �m to evaluate

˛m D ln

�
1 � �m

�m

�
(47)

(c) Update the data weighting coefficients

w.mC1/
n D w.m/

n expf˛mI.ym.xn/ ¤ tn/g (48)

• Make predictions using the final model, which is given by:

Y
.x/
M D sign

 
MX

mD1

˛mym.x/

!

(49)

We see that the first weak learner y1.x/ is trained using weighting coefficients
w.1/

n that are all equal and hence is similar to training a single classifier. From (48),
we see that in subsequent iterations the weighting coefficients w.m/

n are increased
for data points that are misclassified and decreased for data points that are correctly
classified. Successive classifiers are therefore forced to focus on points that have
been misclassified by previous classifiers, and data points that continue to be
misclassified by successive classifiers receive even greater weight. The quantities
�m represent weighted measures of the error rates of each of the base classifiers on
the dataset. We therefore see that the weighting coefficients ˛m defined by (47) give
greater weight to more accurate classifiers when computing the overall output for
unknown samples given by (49). AdaBoost is sensitive to noisy data and outliers. In
some problems, however, it can be less susceptible to the overfitting problem than
most learning algorithms. We refer readers to [34] for a more theoretical discussion
on the performance of the AdaBoost algorithm.

Boosting framework in conjunction with several classifiers have been success-
fully applied to high-dimensional data problems. As discussed in [7] boosting
framework can be viewed as a functional gradient descent technique. This analysis
of boosting connects the method to more common optimization view of statistical
inference. Bühlmann and Yu [11] investigate one such computationally simple
variant of boosting called L2Boost, which is constructed from a functional gradient
descent algorithm with the L2-loss function. In particular, they study the algorithm
with cubic smoothing spline as the base learner and show empirically on real and
simulation datasets the effectiveness of the algorithm in high-dimensional predic-
tors. Bühlmann [10] presented an interesting review on how the boosting methods
can be useful for high-dimensional problems. He proposes that inherent variable
selection and assigning variable amount of degrees of freedom to the selected
variables by boosting algorithms could be a reason for high performance in high-
dimensional problems. Additionally, he suggests that boosting yields consistent
function approximations even when the number of predictors grow fast to infinity,
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where the underlying true function is sparse. Dettling and Bühlmann [23] applied
boosting to perform classification tasks with gene expression data. A modified
boosting framework in conjunction with decision trees that does pre-selection was
proposed and shown to yield slight to drastic improvement in performance on
several publicly available datasets.

5.2 Random Forests

Random forests are an ensemble classifier that consists of many tree-type classifiers
with each classifier being trained on a bootstrapped sample of the original training
data, and searches only across a randomly selected subset of the input variables to
determine a split (for each node). For classification, each tree in the Random Forest
casts a unit vote for the most popular class at input x. The output of the Random
Forest for an unknown sample is then determined by a majority vote of the trees.
The algorithm for inducing Random Forests was developed by Leo Breiman [8] and
can be summarized as below:

Assume the number of training samples be N , and the number of features be
given by M. Also, assume that random m number of features (m < M ) used for
decision at each split. Each tree in the Random Forest is constructed as follows:

• Choose a training set for this tree by bootstrapping the original training set n

times. The rest of the samples are used as a testing set to estimate the error of the
tree.

• For each node of the tree, the best split is based on randomly choosing m features
for each training sample and the tree is fully grown without pruning.

For prediction, a new sample is pushed down the tree. It is assigned the label of the
training sample in the terminal node it ends up in. This procedure is iterated over all
trees in the ensemble, and the class obtained from majority vote of all the trees is
reported as Random Forest prediction.

Random Forests are considered one of the most accurate classifiers and are
reported to have several advantages. Random Forests are shown to handle many
features and also assign a weight relative to their importance in classification tasks
which can be further explored for feature selection. The computational complexity
of the algorithm is reduced as the number of features used for each split is bounded
by m. Also, non-pruning of the trees also helps in reducing the computational
complexity further. Such random selection of features to build the trees also limits
the correlation among the trees thus resulting in error rates similar to those of
AdaBoost. The analysis of Random Forests shows that its computational time is
cT
p

MN log(N ) where c is a constant, T is the number of trees in the ensemble,
M is the number of features and N is the number of training samples in the dataset.
It should be noted that although Random Forests are not computationally intensive,
they require a fair amount of memory as they store an N by T matrix in memory.
Also, Random Forests have sometimes been shown to overfit to the data in some
classification problems.
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Random Forests, due to the aforementioned advantages, can handle high-
dimensional data by building a large number of trees using only a subset of
features. This combined with the fact that the random selection of features for a
split seeks to minimize the correlation between the trees in the ensemble, certainly
helps in building an ensemble classifier with high generalization accuracy for high-
dimensional data problems. Gislason et al. [38] performed a comparative study
among Random Forests and other well-known ensemble methods for multisource
remote sensing and geographic data. They show that Random Forests outperform
a single CART classifier and perform on par with other ensemble methods like
bagging and boosting. On a related remote sensing application, Pal [67] investigated
the use of Random Forests for classification tasks and compared their performance
with SVM. Pal showed that Random Forests perform equally well to SVM in terms
of classification accuracy and training time. Additionally, Pal concludes that the
user-defined parameters in Random Forests are less than those required for SVM.
Pang et al. [70] proposed a pathway-based classification and regression method
using Random Forests to analyze gene expression data. The proposed method
allows to rank important pathways, discover important genes and find pathway-
based outlying cases. Random Forests, in comparison with other machine learning
algorithms, were shown to have either lower or second-lowest classification error
rates. Recently, Genuer et al. [37] used Random Forests to perform feature selection
as well. The authors propose a strategy involving ranking of the explanatory
variables using the Random Forests score of importance.

6 Software Packages

We briefly describe some publicly available resources that have implemented the
methods discussed here. These packages are available in several programming
languages including Java, Matlab and R softwares. LibSVM [14] is an integrated
software that implements SVM and offers several extensions to Java, C++, Python,
R and Matlab. Weka [43] is a collection of machine learning algorithms for data
mining tasks implemented in Java. It contains methods to perform classification as
well as feature selection on high-dimensional datasets. The FSelector package in R
language offers several algorithms to perform filter, wrapper and embedded feature
selection. Several packages are also available to perform regularization. Glmnet for
Matlab1 solves for regularized paths in Generalized Linear models while Lasso22

and LARS3 packages provide similar algorithms in R language. Random Forests and
AdaBoost algorithms are also available via randomForest4 and adabag5 packages in
R language.

1http://www-stat.stanford.edu/~tibs/glmnet-matlab/.
2http://cran.r-project.org/web/packages/lasso2/index.html.
3http://cran.r-project.org/web/packages/lars/index.html.
4http://cran.r-project.org/web/packages/randomForest/index.html.
5http://cran.r-project.org/web/packages/adabag/index.html.

http://www-stat.stanford.edu/~tibs/glmnet-matlab/
http://cran.r-project.org/web/packages/lasso2/index.html
http://cran.r-project.org/web/packages/lars/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/adabag/index.html
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7 Concluding Remarks

We have presented several classification problems for high-dimensional data prob-
lems. Several researchers have focused on extended the traditional algorithms like
LDA and Logistic Regression in the context of high-dimensional data settings.
Though some success is seen on this front, recently, the focus has shifted to applying
regularization techniques and ensemble type methods to make more accurate
predictions. Though the progress made so far is encouraging, we believe that high-
dimensional data classification would continue to be an active area of research as
the technological innovations continue to evolve and become more effective.

Acknowledgements This research is partially supported by NSF & DTRA grants

References

1. Ben-Bassat, M.: 35 use of distance measures, information measures and error bounds in feature
evaluation. In: Handbook of Statistics, vol. 2, pp. 773–791. North-Holland, Amsterdam (1982)

2. Bickel, P., Levina, E.: Some theory for fisher’s linear discriminant function, Naive Bayes’,
and some alternatives when there are many more variables than observations. Bernoulli 10(6),
989–1010 (2004)

3. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)
4. Bo, T., Jonassen, I.: New feature subset selection procedures for classification of expression

profiles. Genome Biol. 3(4), 1–11 (2002)
5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge

(2004)
6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
7. Breiman, L.: Prediction games and arcing algorithms. Neural Comput. 11(7), 1493–1517

(1999)
8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
9. Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey, T., Ares, M., Haussler,

D.: Knowledge-based analysis of microarray gene expression data by using support vector
machines. Proc. Natl. Acad. Sci. USA 97(1), 262 (2000)

10. Bühlmann, P.: Boosting methods: why they can be useful for high-dimensional data. In:
Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC)
(2003)

11. Bühlmann, P., Yu, B.: Boosting with the l 2 loss: regression and classification. J. Am. Stat.
Assoc. 98(462), 324–339 (2003)

12. Burges, C.: Advances in Kernel Methods: Support Vector Learning. The MIT Press, Cambridge
(1999)

13. Byvatov, E., Schneider, G., et al.: Support vector machine applications in bioinformatics. Appl.
Bioinformatics 2(2), 67–77 (2003)

14. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell.
Syst. Technol. 2(3), 1–27 (2011)

15. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for
support vector machines. Mach. Learn. 46(1), 131–159 (2002)

16. Chung, K., Kao, W., Sun, C., Wang, L., Lin, C.: Radius margin bounds for support vector
machines with the rbf kernel. Neural Comput. 15(11), 2643–2681 (2003)



High-Dimensional Data Classification 147

17. Clarke, R., Ressom, H., Wang, A., Xuan, J., Liu, M., Gehan, E., Wang, Y.: The properties
of high-dimensional data spaces: implications for exploring gene and protein expression data.
Nat. Rev. Cancer 8(1), 37–49 (2008)

18. Clemmensen, L., Hastie, T., Witten, D., Ersbøll, B.: Sparse discriminant analysis. Technomet-
rics 53(4), 406–413 (2011)

19. Dabney, A.: Classification of microarrays to nearest centroids. Bioinformatics 21(22),
4148–4154 (2005)

20. Davis, L., Mitchell, M.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York
(1991)

21. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.: The mahalanobis distance. Chemometr.
Intell. Lab. Syst. 50(1), 1–18 (2000)

22. Den Hertog, D.: Interior Point Approach to Linear, Quadratic and Convex Programming:
Algorithms and Complexity. Kluwer Academic, Norwell (1992)

23. Dettling, M., Bühlmann, P.: Boosting for tumor classification with gene expression data.
Bioinformatics 19(9), 1061–1069 (2003)

24. Díaz-Uriarte, R., De Andres, S.: Gene selection and classification of microarray data using
random forest. BMC Bioinformatics 7(3), 1–13 (2006)

25. Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems, pp.
1–15. Springer, Heidelberg (2000)

26. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression
data. J. Bioinforma. Comput. Biol. 3(2), 185–205 (2005)

27. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, London (2001)
28. Dudoit, S., Fridlyand, J., Speed, T.: Comparison of discrimination methods for the classifica-

tion of tumors using gene expression data. J. Am. Stat. Assoc. 97(457), 77–87 (2002)
29. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2),

407–499 (2004)
30. Fenn, M., Pappu, V.: Data mining for cancer biomarkers with raman spectroscopy. In: Data

Mining for Biomarker Discovery, pp. 143–168. Springer, Berlin (2012)
31. Ferri, F., Pudil, P., Hatef, M., Kittler, J.: Comparative study of techniques for large-scale feature

selection. In: Pattern Recognition in Practice IV: Multiple Paradigms, Comparative Studies,
and Hybrid Systems, pp. 403–413. IEEE Xplore (1994)

32. Freund, Y.: Boosting a weak learning algorithm by majority. Inf. Comput. 121(2), 256–285
(1995)

33. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proceedings of the
13th International Conference on Machine Learning, pp. 148–156. Morgan Kaufmann, Los
Altos (1996)

34. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J. Jpn. Soc. Artif. Intell.
14(1612), 771–780 (1999)

35. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series
in Statistics. Springer, Berlin (2001)

36. Fu, S., Desmarais, M.: Markov blanket based feature selection: a review of past decade. In:
Proceedings of the World Congress on Engineering, vol. 1, pp. 321–328 (2010). Citeseer

37. Genuer, R., Poggi, J., Tuleau-Malot, C.: Variable selection using random forests. Pattern
Recognit. Lett. 31(14), 2225–2236 (2010)

38. Gislason, P., Benediktsson, J., Sveinsson, J.: Random forests for land cover classification.
Pattern Recognit. Lett. 27(4), 294–300 (2006)

39. Guo, X., Yang, J., Wu, C., Wang, C., Liang, Y.: A novel ls-svms hyper-parameter selection
based on particle swarm optimization. Neurocomputing 71(16), 3211–3215 (2008)

40. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res.
3, 1157–1182 (2003)

41. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using
support vector machines. Mach. Learn. 46(1), 389–422 (2002)

42. Hall, M.: Correlation-based feature selection for machine learning. Ph.D. thesis, The University
of Waikato (1999)



148 V. Pappu and P.M. Pardalos

43. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data
mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

44. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Englewood (2004)
45. Herbert, P., Tiejun, T.: Recent advances in discriminant analysis for high-dimensional data

classification. J. Biom. Biostat. 3(2), 1–2 (2012)
46. Hua, J., Tembe, W., Dougherty, E.: Performance of feature-selection methods in the classifica-

tion of high-dimension data. Pattern Recognit. 42(3), 409–424 (2009)
47. Huang, C., Wang, C.: A ga-based feature selection and parameters optimization for support

vector machines. Expert Syst. Appl. 31(2), 231–240 (2006)
48. Huang, S., Tong, T., Zhao, H.: Bias-corrected diagonal discriminant rules for high-dimensional

classification. Biometrics 66(4), 1096–1106 (2010)
49. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory

14(1), 55–63 (1968)
50. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal.

Mach. Intell. 22(1), 4–37 (2000)
51. Jiang, H., Deng, Y., Chen, H., Tao, L., Sha, Q., Chen, J., Tsai, C., Zhang, S.: Joint analysis of

two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC
Bioinformatics 5(81), 1–12 (2004)

52. Joachims, T.: Text categorization with support vector machines: learning with many relevant
features. In: Machine Learning: ECML-98, pp. 137–142. Springer, Berlin (1998)

53. Johnstone, I., Titterington, D.: Statistical challenges of high-dimensional data. Philos. Trans.
R. Soc. A Math. Phys. Eng. Sci. 367(1906), 4237–4253 (2009)

54. Kearns, M., Valiant, L.: Learning Boolean formulae or finite automata is as hard as factoring.
Center for Research in Computing Technology, Aiken Computation Laboratory, Harvard
University (1988)

55. Kirkpatrick, S., Gelatt, C. Jr., Vecchi, M.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

56. Kittler, J.: Feature set search algorithms. In: Pattern Recognition and Signal Processing, pp.
41–60. Sijthoff and Noordhoff, Alphen aan den Rijn (1978)

57. Kleinbaum, D., Klein, M., Pryor, E.: Logistic Regression: A Self-learning Text. Springer,
Berlin (2002)

58. Kohavi, R., John, G.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324
(1997)

59. Koller, D., Sahami, M.: Toward optimal feature selection. In: Proceedings of the 13th
International Conference on Machine Learning, pp. 284–292 (1996)

60. Köppen, M.: The curse of dimensionality. In: Proceedings of the 5th Online World Conference
on Soft Computing in Industrial Applications (WSC5), pp. 4–8 (2000)

61. Lin, S., Lee, Z., Chen, S., Tseng, T.: Parameter determination of support vector machine and
feature selection using simulated annealing approach. Appl. Soft Comput. 8(4), 1505–1512
(2008)

62. Lin, S., Ying, K., Chen, S., Lee, Z.: Particle swarm optimization for parameter determination
and feature selection of support vector machines. Expert Syst. Appl. 35(4), 1817–1824 (2008)

63. Ma, S., Huang, J.: Regularized roc method for disease classification and biomarker selection
with microarray data. Bioinformatics 21(24), 4356–4362 (2005)

64. McLachlan, G., Wiley, J.: Discriminant Analysis and Statistical Pattern Recognition. Wiley
Online Library, New York (1992)

65. Minh, H., Niyogi, P., Yao, Y.: Mercer’s theorem, feature maps, and smoothing. In: Learning
Theory, pp. 154–168. Springer Berlin Heidelberg (2006)

66. Mourão-Miranda, J., Bokde, A., Born, C., Hampel, H., Stetter, M.: Classifying brain states and
determining the discriminating activation patterns: support vector machine on functional MRI
data. NeuroImage 28(4), 980–995 (2005)

67. Pal, M.: Support vector machine-based feature selection for land cover classification: a case
study with dais hyperspectral data. Int. J. Remote Sens. 27(14), 2877–2894 (2006)



High-Dimensional Data Classification 149

68. Pal, M., Foody, G.: Feature selection for classification of hyperspectral data by svm. IEEE
Trans. Geosci. Remote Sens. 48(5), 2297–2307 (2010)

69. Pal, M., Mather, P.: Support vector machines for classification in remote sensing. Int. J. Remote
Sens. 26(5), 1007–1011 (2005)

70. Pang, H., Lin, A., Holford, M., Enerson, B., Lu, B., Lawton, M., Floyd, E., Zhao, H.: Pathway
analysis using random forests classification and regression. Bioinformatics 22(16), 2028–2036
(2006)

71. Pang, H., Tong, T., Zhao, H.: Shrinkage-based diagonal discriminant analysis and its applica-
tions in high-dimensional data. Biometrics 65(4), 1021–1029 (2009)

72. Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern
Recognit. Lett. 15(11), 1119–1125 (1994)

73. Qiao, Z., Zhou, L., Huang, J.: Sparse linear discriminant analysis with applications to high
dimensional low sample size data. Int. J. Appl. Math. 39(1), 6–29 (2009)

74. Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C., Angelo, M., Ladd, C.,
Reich, M., Latulippe, E., Mesirov, J., et al.: Multiclass cancer diagnosis using tumor gene
expression signatures. Proc. Natl. Acad. Sci. USA 98(26), 15149–15154 (2001)

75. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1–39 (2010)
76. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics.

Bioinformatics 23(19), 2507–2517 (2007)
77. Schaalje, G., Fields, P.: Open-set nearest shrunken centroid classification. Commun. Stat.

Theory Methods 41(4), 638–652 (2012)
78. Schaalje, G., Fields, P., Roper, M., Snow, G.: Extended nearest shrunken centroid classification:

a new method for open-set authorship attribution of texts of varying sizes. Lit. Linguist.
Comput. 26(1), 71–88 (2011)

79. Schapire, R.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)
80. Schoonover, J., Marx, R., Zhang, S.: Multivariate curve resolution in the analysis of vibrational

spectroscopy data files. Appl. Spectrosc. 57(5), 483–490 (2003)
81. Skalak, D.: Prototype and feature selection by sampling and random mutation hill climbing

algorithms. In: Proceedings of the 11th International Conference on Machine Learning, pp.
293–301 (1994). Citeseer

82. Statnikov, A., Wang, L., Aliferis, C.: A comprehensive comparison of random forests and
support vector machines for microarray-based cancer classification. BMC Bioinformatics
9(319), 1–10 (2008)

83. Tan, M., Wang, L., Tsang, I.: Learning sparse svm for feature selection on very high
dimensional datasets. In: Proceedings of the 27th International Conference on Machine
Learning, pp. 1047–1054 (2010)

84. Thomaz, C., Gillies, D.: A maximum uncertainty lda-based approach for limited sample
size problems - with application to face recognition. In: Proceedings of the 18th Brazilian
Symposium on Computer Graphics and Image Processing, pp. 89–96. IEEE, Natal (2005)

85. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B
Methodol. 58, 267–288 (1996)

86. Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple cancer types by
shrunken centroids of gene expression. Proc. Natl. Acad. Sci. 99(10), 6567–6572 (2002)

87. Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Class prediction by nearest shrunken
centroids, with applications to dna microarrays. Stat. Sci. 18, 104–117 (2003)

88. Tong, T., Chen, L., Zhao, H.: Improved mean estimation and its application to diagonal
discriminant analysis. Bioinformatics 28(4), 531–537 (2012)

89. Trafalis, T., Ince, H.: Support vector machine for regression and applications to financial
forecasting. In: Proceedings of the International Joint Conference on Neural Networks, vol. 6,
pp. 348–353. IEEE, New York (2000)

90. Trunk, G.: A problem of dimensionality: a simple example. IEEE Trans. Pattern Anal. Mach.
Intell. 3(3), 306–307 (1979)

91. Valiant, L.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
92. Vapnik, V.: The nature of statistical learning theory. springer (2000)



150 V. Pappu and P.M. Pardalos

93. Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural
Comput. 12(9), 2013–2036 (2000)

94. Xu, P., Brock, G., Parrish, R.: Modified linear discriminant analysis approaches for classifica-
tion of high-dimensional microarray data. Comput. Stat. Data Anal. 53(5), 1674–1687 (2009)

95. Yeung, K., Bumgarner, R., et al.: Multiclass classification of microarray data with repeated
measurements: application to cancer. Genome Biol. 4(12), R83 (2003)

96. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter
solution. In: Proceedings of the 20th International Conference on Machine Learning, pp.
856–863 (2003)

97. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach.
Learn. Res. 5, 1205–1224 (2004)

98. Zhang, L., Lin, X.: Some considerations of classification for high dimension low-sample size
data. Stat. Methods Med. Res. 22, 537–550 (2011)

99. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser.
B Stat. Methodol. 67(2), 301–320 (2005)



Algorithm FRiS-TDR for Generalized
Classification of the Labeled, Semi-labeled
and Unlabeled Datasets

I.A. Borisova and N.G. Zagoruiko

Abstract The problem of generalized classification combines three well-known
problems of machine learning: classification (supervised learning), clustering (unsu-
pervised learning), and semi-supervised learning. These problems differ from each
other based on the ratio of labeled and unlabeled objects in a training dataset. In the
classification problem all the objects are labeled, and in the clustering problem all
the objects are unlabeled. Semi-supervised learning makes use of both labeled and
unlabeled objects for training—typically a small amount of labeled objects with a
large amount of unlabeled objects. Usually these problems are examined separately
and special algorithms are developed for solving each of them. Algorithm FRiS-
taxonomy decision rule based on function of rival similarity examines these three
problems as special cases of the generalized classification problem and solves all
of them. This algorithm automatically determines the number of clusters and finds
effective decision rules independently of the ratio of labeled and unlabeled samples
in datasets.

Keywords FRiS-function • Semi-supervised learning • Clustering
• Classification • Generalized classification

1 Introduction

The clustering and recognition (classification) are considered as close, but different,
problems [1]. In the clustering problem, a set of unlabeled objects Vu D< a1;

a2; : : : aM u > is given as input. It is supplemented with hypotheses that the
training dataset is representative and classes, implicitly presented by the dataset,
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are compact. Under these conditions it is required to find a partition of the dataset
Vu in K compact clusters. The clustering problem has a long history of researching.
A considerable contribution in this domain was made by Boris Mirkin with his
works [2, 3].

In the classification problem, to develop a decision rule, a set of training objects
Vl D< a1; a2; : : : aMl > with given labels (class names) is used. It is supplemented
with hypotheses that the training dataset is representative and classes are distributed
compactly. Under these hypotheses clusters should be compact, which implies the
compactness of both training objects and unseen unlabeled objects within the same
class. Under these conditions it is required to find a classifier which recognizes
both objects in the training dataset Vl and unlabeled objects with minimum errors.
There are many specific methods for solving classification and clustering problems
separately.

The problem of semi-supervised learning is intermediate between clustering and
classification problems. It makes use of a mixture Vmix of labeled Vl and unlabeled
Vu datasets for the analysis. It is supposed, that the mix dataset is representative
and simultaneous distribution of labeled and unlabeled objects from the same
classes is compact. Under these conditions it is required to find decision rule which
divides the dataset Vmix into compact clusters and recognizes all the objects of the
dataset—labeled and unlabeled—with minimum errors. When the volume of the
labeled part Vl is insignificant or it is nonpresentative by itself, using of additional
information from the unlabeled part Vu can considerably extend our idea of the
general distribution and allows constructing decision rules with higher efficiency.

One of the approaches for solving the problem of semi-supervised learning is
the co-training procedure [4], where two or more decision rules are generated
according to the same set of objects, but in different independent feature spaces.
An alternative approach is to model the joint probability distribution of the features
and the labels. For the unlabeled data the labels can then be treated as “missing
data.” It is common to use the EM algorithm [5] to maximize the likelihood of the
model. One more method for solving the problem of semi-supervised learning is
implemented in the taxonomy decision rule (TDR) algorithm [1]. Its main idea is
in using taxonomy algorithms for clustering the mixture of labeled and unlabeled
objects into clusters, which should meet the conditions of geometrical compactness
(the objects of one cluster are close to each other and far from the objects of other
clusters) and uniformity (in one cluster the objects of one class are predominant).
All three problems differ from each over in an input (only labeled objects, only
unlabeled objects, mixture of labeled and unlabeled objects) but they are based
on the same basic hypotheses that the dataset is representative and classes (given
explicitly in supervised and semi-supervised learning or hidden as in clustering)
are distributed compactly. This generality makes it possible to integrate all three
problems into one problem of generalized classification, whose input dataset can
include both labeled and unlabeled objects. If the number of the unlabeled objects
is equal to zero this problem is reduced to the classification problem. If the number
of the labeled objects is equal to zero the task is reduced to the clustering problem.
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In this work, the FRiS-TDR algorithm is presented to tackle the problem of
generalized classification solving. This algorithm is based on the function of rival
similarity (FRiS-function) which efficiency for the classification and clustering
problems has been demonstrated in our preview works [6,7]. In this paper definition
of FRiS-function is extended in case of mixed datasets. Classifier, constructed with
FRiS-TDR algorithm, consists of set of representative objects (“stolps”), placed in
the centers of linearly separable clusters. Each object of the dataset is classified as a
member of cluster rival similarity with which stolp is maximum. The clusters should
be geometrically compact and homogeneous.

Compactness of classes and clusters, presented by training dataset, is a main
requirement for the generalized classification problem. The block for compactness
estimation is an important part of the FRiS-TDR algorithm. In [6] different ways
to calculate compactness of clusters basing on rival similarity of the objects in
the clusters were described. For the generalized classification problem the most
appropriate definition of compactness appears to be the one, where members of
each cluster should be similar to the stolp of that cluster.

At first we describe how to calculate FRiS-function, FRiS-compactness, and
select sets of stolps for labeled datasets in the classification problem, for unlabeled
dataset in the clustering problem, and then how to synthesize these ideas for semi-
supervised learning and generalized classification problem.

2 Function of Rival Similarity

In many Data Mining problems the concept of “similarity,” “closeness” is widely
used. Many decision rules for the recognition of a new object are based on some
measure of “similarity” of an object to a class. In the clustering problem, objects are
united in the clusters of “similar” objects. More information about the importance
of similarity in Data Miming one finds in [2, 3].

But formal measures of “similarity” cannot be defined correctly without consid-
eration of a context. So, Moscow and Washington will appear “close to each other,”
if one compares the distance between them with the distance from Moscow to the
Sun, but “far from each over” if two cities within one state are considered as a
standard of closeness.

So to estimate similarity of an object z to an object a correctly, we should take
into account third object b, which determines the rival situation. If some distance
measure d between objects is given, then a quantitative measure, which estimates
rival similarity of z with a in competition with b, can be defined as follows:

Fa=b.z/ D .d.z; b/� d.z; a//=.d.z; b/C d.z; a//

We had called this measure Function of Rival Similarity or FRiS-function [6].
FRiS-function takes values in range between �1 and C1. If the object z coincides
with the object a, then similarity of these objects equals to 1. And if z coincides with
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the object b, then similarity of z with a equals to �1. When value Fa=b.z/ equals to
0, i.e. d.z; a/ D d.z; b/, it means the object z is equally similar (and is not similar)
to both objects. The determined function of rival similarity is in good agreement
with the similarity and difference perception mechanism intrinsic to human beings.

2.1 FRiS-function on the Labeled Dataset

In the classification problem, it is more important to estimate similarity of an object
to a class, than with another object. If some labeled dataset Vl consists of objects of
two classes A and B , V A—the set of objects of the class A, V B—the set of objects
of the class B , Vl D V A [ V B , then according to given assumptions to evaluate
rival similarity of an object z with the class A it is necessary to consider not only
distance rA from z to this class, but also distance rB to the nearest rival class (in case
of two classes—distance from z to the class B). The measure of rival similarity of
the object z to the class A in competition with the class B is defined as follows:

Fa=b.z/ D .rB.z/� rA.z//=.rB.z/C rA.z//

As a distance from an object z to a class in the simplest case the distance from z
to the nearest object of this class can be used, so rA.z/ D min

x2V A
fd.z; x/g, rB.z/ D

min
x2V B
fd.z; x/g.

The next step of our research is in understanding how one can estimate
compactness of classes with the help of FRiS-function. In case of classification
problem, under FRiS-compactness of a class we assume average rival similarity
of objects with the class. So to estimate FRiS-compactness of the labeled dataset
Vl at first for each object z of the dataset, we calculate the distance r1 to its
“own” class and the distance r2 to the nearest “competing” class, i.e. for z 2 V A,
r1 D rA.z/; r2 D rB.z/, for z 2 V B r1 D rB.z/; r2 D rA.z/. The rival similarity of
the labeled object z with its own class is:

F.z/ D .r2 � r1/=.r2 C r1/ (1)

And then the value of FRiS-compactness of the labeled dataset Vl is calculated
as follows:

F .V1; V A; V B/ D 1=jV1j
X

z2V1

F.z/

This value can be used for estimating local compactness of classes. But our
experience proves what using only typical representatives (stolps) of a dataset
instead all objects gives better compactness estimation. In this case the distance
from an object z to the nearest stolp of a class is used as the distance from z to
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this class. If SA is a set of stolps of the class A, and SB is a set of stolps of
the class B, then rS

A .z/ D min
s2SA
fd.z; s/g, rS

B.z/ D min
s2SB
fd.z; s/g, and for z 2 V A

rS
1 D rS

A .z/; rS
2 D rS

B .z/, for z 2 V B rS
1 D rS

B .z/; rS
2 D rS

A .z/. With the formula (1)
it is possible to calculate values of rival similarity:

F.z; SA; SB/ D .rS
2 � rS

1 /=.rS
2 C rS

1 / (2)

of all objects of sample Vl with the set of stolps S D SA [ SB . Averaging these
values we receive the integrated characteristic:

F .V1; SA; SB/ D 1=jV1j
X

z2V1

F S.z; SA; SB/ (3)

which estimates compactness of the dataset depending on the system of stolps S .
From another point of view this value determines how full S describes the whole

dataset. The higher this value, the higher accuracy of the description is; the more
typical objects are used as stolps. If from all possible systems of stolps of the dataset
we somehow found an optimal system with the given volume L:

S� D arg max
jS jDL

F .Vl; S/;

then value F .Vl; S�/ can be used as a best estimation of compactness of the classes
presented by the dataset Vl. And the system of stolps S� in case of appropriate
choice of L can be considered as an effective decision rule, suitable for recognition
of new objects. Usually for this purpose L, equals to the minimal number of stolps,
which is sufficient for correct recognition of all training objects, is used.

2.2 Algorithm FRiS-Stolp for a Set of Stolps Forming
on the Labeled Dataset

To select the optimal or close to the optimal system of stolps S� for description
of the labeled dataset, algorithm FRiS-Stolp is used. Each stolp in the system has
two peculiarities—defensive capability (high similarity with other objects from the
same class, which allows recognizing these objects correctly) and tolerance (low
similarity with the objects of the rival class, which prevents their misrecognizing as
“own”). Basing on the set of stolps an unseen object z is classified as a member of a
class, and similarity with that stolp is maximal. Value of rival similarity can be used
as an estimation of reliability of the object z recognition.
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This procedure of stolps selection is realized as follows:

1. Some object ai of the class A is tested as a single stolp of this class. All objects
of the class B are considered as the stolps of the rival class. As in compactness
estimation values of similarity F S .aj ; fai g [ V B/ of each object aj .j D 1;

2; : : : ; MA/ of the class A, and distinctiveness F S .bq; V B=fbqg/ [ fai g of each
object bq , .q D 1; 2; : : : ; MB/ of the class B with ai are calculated according
to formula (2) and added to the counter C.ai /. Averaging value C.ai / is used as
efficiency of the object ai in a role of a stolp of the class A.

2. Step 1 is repeated for all objects of the class A. An object a which provides
maximum value C.a/ is selected as a first stolp of the class A. All m1 objects
of the class, which similarity with this stolp is higher than F � (for example,
F � D 0), form first cluster of the class A and are eliminated from the class A.

3. If m1 < MA steps 1–2 are repeated on remaining objects of the class A. As
a result a set SA of kA stolps of the class A is obtained. The dataset V A is
repartitioned into clusters by the following rule. Each object a joins the cluster,
distance to which stolp is minimal.

4. Steps 1–3 are repeated for the class B to construct a list SB of kB stolps of this
class. When the set of stolps S� has been found we can estimate its compactness
with formula (3).

In case of Gaussian distributions most typical objects of the classes, selected
by algorithm FRiS-Stolp, are placed at the points of statistical means. In case of
multimodal distributions and linearly inseparable classes stolps are placed at the
centers of the modes (at the centers of areas of local concentrations of objects).
With distributions complexity in growing the number of stolps increases.

2.3 FRiS-function on the Unlabeled Dataset

Peculiarity of FRiS-function calculation on the unlabeled dataset is in the fact that
class names of training objects are unknown. All objects, as though, should be
treated as belonging to a single class. If some system of stolps S for the dataset
Vu description is given we can determine the distance r1 from an object z to the
“own” class as the distance from z to the nearest stolp from S :

rS
1 D min

s2S
f�.z; s/g

But the absence of rival classes does not allow determining distance r2 from
the object z to the nearest stolp-competitor. In this case a virtual class-competitor
is entered into consideration. Objects of this virtual class are settled on the fixed
distance equal r� from each object of Vu. As a result, instead of usual FRiS-function
we use its modification, which for any object z 2 Vu is:

rF.z; S/ D .r� � rS
1 /=.r� C rS

1 / (4)
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This modification is designated as the reduced function of rival similarity [7].
Average value of reduced function of rival similarity over all objects of the
dataset Vu:

rF .Vu; S/ D 1=jVuj
X

z2Vu

rF.z; S/ (5)

characterizes how precisely and fully the system of stolps S describes the unlabeled
dataset. If from all possible systems of stolps we somehow found an optimal system
with maximal value of average reduced FRiS-function, that system could be used as
a decision of clustering problem. The dataset Vu is partitioned into clusters by the
following rule. Each object a joins that cluster, distance to which stolp is minimal.

2.4 Algorithm FRiS-Clust for a Set of Stolps Selection
from the Unlabeled Dataset

To select the optimal or close to the optimal system of stolps S� in case of an
unlabeled datasets, algorithm FRiS-Clust is used. The described algorithm defines
the number of clusters automatically. A user sets only the maximal number of
clusters kmax. The algorithm searches for decisions of a task for all numbers of
clusters k D 1; 2; : : : ; kmax consistently, to choose from them the most successful
decision. It works as follows:

1. Some object ai of the dataset is tested as a single stolp of this dataset. As in
compactness estimation values of similarity rF.aj ; fai g/ of each object aj .j D
1; 2; : : : ; M / of the dataset Vu with this stolp in competition with a virtual
competitor are calculated according to formula (4). Averaging value of similarity
rF .Vu; fai g/ calculated according to (5) is used as efficiency of the object ai in
a role of stolp.

2. Step 1 is repeated for all objects of the dataset Vu. An object a which provide
maximum value rF .Vu; fag/ is selected as a first stolp s1, S1 D fs1g.

3. Each object ai of the dataset .ai ¤ s1/ is tested as a second stolp of this
dataset. Values rF .Vu; fai ; s1g/ of average similarity with this system of stolps
in competition with a virtual competitor are calculated according to formula (5).
An object a, which provide the maximum value is selected as a second stolp
s2; S2 D fs1; s2g.

4. Number of stolps increases one by one in the same way until runs up to maximal
number kmax. As a result of each step the preliminary set of stolps Sk has
been found. For each number of stolps k we can partition the dataset Vu into
corresponded number of clusters.

5. When we selected stolp si of the system Sk.k D 2; ::; kmax/, we did not take into
account the information about all the stolps that would be selected after it. So for
some clusters, we can find better positions of their stolps by the next procedure:
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5.1. Each object a from the first cluster is tested to be a new stolp of the cluster.
The best one is selected according to the criterion F .Vu; fa; s2; s3; : : : ; sk/

calculated by formula (5). New position s�1 of the stolp of the first cluster is
fixed and compositions of the clusters are recalculated.

5.2. The best object to be a new stolp of the second cluster is selected
according to criterion F .Vu; fs�1 ; a; s2; s3; : : : ; sk/, new stolp is selected,
and compositions of the clusters are recalculated as well. This procedure
is repeated for each cluster until new position of each stolp from the system
Sk is found.

5.3. As a quality of clustering into k clusters value Fk D F .Vu; fs�1 ; s�2 ; : : : ; s�k /

is used.

After the termination of the algorithm one variant of clustering for each number
of clusters k with the calculated clustering quality Fk is found. Our experiments
have shown that best variants of clustering are locally maximal, i.e. .Fk�1 < Fk/

&.FkC1 < Fk/. These variants experts are regarded as “reasonable” ones. “Rea-
sonable” in this situation means that the objects, related to different clusters by the
expert, are in different clusters formed by our algorithm.

3 Calculation of FRiS-function over Mixed Dataset

Consider now how the technique of rival similarity evaluation is changed in case
of operating with mixed dataset Vmix consisting of an labeled Vl as unlabeled Vu

objects. An unlabeled object is an object, for which class name is unknown and
should be restored. In case of two classes A and B , objects of such mixed dataset
Vmix can be divided into three sets Vmix D V A [ V B [ V C . There V A is a set of
objects of the class A, V B is a set of objects of the class B , and V C —is a set of
objects for which class name is unknown, i.e. unlabeled sample .V C D Vu/.

In the simplest case the distance from an object z to a class is calculated as the
distance from z to the nearest object of this class. Presence of unlabeled objects V C

complicates calculating of these distances because for any object the nearest “own”
and the nearest “rival” objects can be among a set of unlabeled objects. Therefore
distance to the nearest “own” neighbour for z 2 V A is r1 D min

x2V A[V C
fd.z; x/g, for

z 2 V B is r1 D min
x2V B[V C

fd.z; x/g.
For objects of sample V C we consider that the nearest “own” for any object

z 2 V C can belong to any class, so r1 D min
x2V A[V B[V C

fd.z; x/g. Such approach is

agreed with a hypothesis of the local compactness approving that close objects most
likely belong to the same class.

To find the nearest competitor for taking into account the fact that it can be among
unlabeled objects, we use the same technique, as in Sect. 2.3, add virtual competitor
in consideration, and assign distance to it equal to r�. In this case for object z 2 V A

r2 D minfr�; min
x2V B
fd.z; x/gg, for object z 2 V B r2 D minfr�; min

x2V A
fd.z; x/gg.
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To find distance r2 from z 2 V C to the nearest competitor we make a choice
between distance rA from z to the nearest object of the class A, distance rB from
z to the nearest object of the class B , and distance r� to the virtual competitor.
The minimal distance from first two values is supposed to be distance from z to the
“own” class. Hence, distance to the competitor is equal to maximal of these two
distances (rA and rB ), or distance r� to a virtual object. As a result for each object
z 2 V C r2 D minfr�; maxfrA; rBgg.

Substituting the received values r1 and r2 in the formula for evaluation of rival
similarity (1) we can calculate it for each object separately, and then receive the
integrated characteristic for estimating compactness of the classes of the given
mixed dataset.

Finally consider a case when the distance from an object z to a class is defined
as the distance from z to the nearest stolp of this class. The system of stolps S for
dataset Vmix in this case can be divided into two parts: SA—the set of the stolps of
the class A, SB—the set of the stolps of the class B . Unlabeled objects from set V C

can be used as stolps of the class A, as stolps of the class B . Therefore the distance
from an object z 2 V A to the nearest “own” and nearest competitor from the set of
stolps S is found as follows:

For object z 2 V A: rS
1 D min

s2SA
fd.z; x/g, rS

2 D minfr�; min
x2SB
fd.z; x/gg,

For object z 2 V B : rS
1 D min

s2SB
fd.z; x/g, rS

2 D minfr�; min
x2SA
fd.z; x/gg,

For object z 2 V B : rS
1 D min

s2SA[SB
fd.z; x/g, rS

2 D minfr�; maxfmin
x2SA
fd.z; x/g;

min
x2SB
fd.z; x/ggg.

Calculating values of rival similarity F mix.z; S/ for each z 2 Vmix with the
formula (2) and averaging them over all objects of the mixed dataset, we receive
value:

F mix.S/ D 1=jVmixj
X

z2V1[Vu

F mix.z; S/ (6)

This value is the characteristic of quality of the description of Vmix by system of
stolps S .

Notice that average value of function of rival similarity calculated on a mixed
dataset can be treated as criterion for a system of stolps S selection: it increases
with increasing of geometrical compactness of received partition of the dataset into
clusters, and with increasing in uniformity of the objects in the cluster. It is explained
by the fact what in cluster of a class function of rival similarity for objects from the
competing classes is negative. The less number of such objects in cluster, the higher
value of criterion Fmix.S/ is. Therefore for solving the problem of generalized
classification we should find the approached decision for next optimization task:

F
mix

.S/! max
S
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If Vl D ¿, the given problem is reduced to the clustering problem, and if Vu D
¿—to the classification problem. Algorithm FRiS-TDR described in following
section solves all the range of the problems from clustering through semi-supervised
learning to classification using unified approach.

4 Algorithm FRiS-TDR

At the first stage of algorithm the base set of the stolps consisting of the best
candidate to be a stolp of the class A and the best candidate to be a stolp of the
class B is found. To estimate efficiency of object in a role of a stolp average value
of function of rival similarity is calculated on the mixed dataset. Thus each class
is considered as described by a single stolp, and the position of a stolp of the rival
pattern varies—each time the nearest object from the rival class is used as a stolp-
competitor. This procedure is realized as follows:

1. Some object a 2 V A is tested as single stolp of the class A. In this condition
distance from any object z to the nearest “own” and the nearest “another’s”
stolps are found by following rules.

If z 2 V A: r1 D d.z; a/; r2 D minfr�; min
x2V B
fd.z; x/gg,

If z 2 V B : r1 D min
x2V B[V C

fd.z; x/g, r2 D minfr�; d.z; a/g
For an object z 2 V C we calculate distance rA from z to the nearest object

of the class A and distance rB from z to the nearest object of the class B .
If rA < rB the object z is supposed to belong to the class A according

to hypothesis of local compactness. So as a distance to the “own” class the
distance from z to a is taken. And as a distance to the rival class value rB if it
does not exceed r� is taken. In such way: r1 D d.z; a/, r2 D minfr�; rBg.

If rA > rB the object z does not belong to the class A and the nearest object
from sets V B and V C is treated as an “own” stolp for it. As a distance to rival
pattern the distance to the object a if it does not exceed r� is taken. In this case
r1 D min

x2V B[V C
fd.z; x/g, r2 D minfr�; d.z; a/g.

Basing on these distances, we calculate function of rival similarity
F mix.z; S/ for all objects of the dataset with the object a. Values F mix.z; S/

for an objects z of the class A characterize protective abilities of the object
a, and for an objects z of the class B ,—tolerance of the object a to the rival
pattern. Therefore, averaging F mix.z; S/ over all objects of the mixed dataset,
we calculate value F A

a of efficiency of object a in a role of a stolp of the
pattern A.

2. Step 1 is repeated for all objects of the class A.
3. The object b 2 V B is tested as single stolp of the class B and distances from

an object z to the nearest “own” and the nearest “rival” stolps are found by
following rules.

If z 2 V A: r1 D min
x2V A[V C

fd.z; x/g, r2 D minfr�; d.z; b/g,
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If z 2 V B : r1 D d.z; b/, r2 D minfr�; min
x2V A
fd.z; x/gg.

For an object z 2 V C we calculate distance rA from z to the nearest object
of the class A and distance rB from z to the nearest object of the class B .

If rA < rB : r1 D min
x2V A[V C

fd.z; x/g, r2 D minfr�; d.z; b/g.
If rA > rB : r1 D d.z; b/, r2 D minfr�; rAg
Basing on these distances, we calculate function of rival similarity F mix.z/

for all objects of the mixed dataset and, averaging it, we receive value F B
b of

efficiency of an object b in a role of a stolp of the class B

4. Step 3 is repeated for all objects of the class B.
5. Since class name for any unlabeled object c is unknown, at first it is tested in a

role of a single stolp of the class A and its efficiency F A
c is calculated. For this

purpose Step 1 is repeated for this object. Then the object c is tested in a role of
a single stolp of the class B and during running Step 3 value F B

c is calculated.
6. Step 5 is repeated for all objects of class V C .
7. An object s1 2 V A [V C which provides maximum value F A

s is selected as the
first stolp of the class A. As the first stolp of the class B the object s2 2 V B[V C

which provides maximum value F B
s is selected.

Thus, at the first stage of work of the algorithm the system of stolps which
contains two stolps is formed. At the second stage this system is widened till
the necessary size. For estimating quality of the system of stolps Sk we can
use directly formula (6). The algorithm of extending the stolps system looks as
follows:

8. Some object a 2 V A is added to the current system of stolps Si consisting of i

stolps as an additional stolp of the class A. With the formula (6) quality of this
system F A

a D F mix.Si [ fag/ is calculated. This procedure is repeated for all
objects of the class A.

9. Some object b 2 V B is added to the current system of stolps Si as an
additional stolp of the class B . With the formula (6) quality of the system
F B

b D F mix.Si [ b/ is calculated. This procedure is repeated for all objects
of the class B .

10. Some object c 2 V C is added the current system of stolps Si as a new stolp
of the class A and quality of this system F A

c is calculated. Then the same
object is considered as object of the second class and for this case the quality
of the system F B

c is calculated too. This procedure is repeated for all objects of
class V C .

11. The object siC1 of the mixed sample V mix in which addition to system of stolps
Si as much as possible improves its quality, is selected as .i C 1/-th stolp. In

the other words SiC1 D Si [ siC1, where siC1 D argmaxfF A

z ; F
B

z g.
12. Process of the stolps system (steps 8–12) extending is repeated until achieve-

ment of one of conditions of stop.

The most widespread condition of stop for decision rule in the form of stolps
construction is in achieving that number of stolps which allows recognizing labeled
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objects with the fixed accuracy. Demand of correct recognition often can lead to
retraining. Other variant is in fixing the maximal admissible number of stolps in the
system. As a criterion for stop of the algorithm in FRiS-TDR the same technique is
used that has been used in a task of taxonomy for the definition of optimum number
of clusters. For this purpose, for any object z its nearest stolp is considered as “own”
and following on affinity as “competitor.” The average value of FRiS-function Fi

calculated under these conditions is compared with to the same values calculated
for smaller and greater sets of stolps Si�1 and SiC1. Fulfilment of condition Fi�1 <

Fi and FiC1 < Fi is considered as the indicator of the fact that the number of
stolps equal i corresponds to one of the most preferable partition set of objects
into clusters. If after termination of the algorithm work only unlabeled objects are
presented in some clusters and it is possible to consider that clusters as realizations
of new unknown patterns. Offered algorithm is linear. Its laboriousness has the order
of complexity equals to kmax �M 2 C N 2, where M is the number of objects in the
mixed dataset, N —is dimension of the features space, and kmax is the maximal
number of stolps.

5 Examples of the Algorithm FRiS-TDR Working

For efficiency of the algorithm FRiS-TDR presentation we show the results of its
work on the elementary two-dimensional tasks with small number of objects which
one can solve “approximately” and compare his decision with the decision offered
by algorithm. In first three figures universality of algorithm FRiS-TDR which solves
the problem of generalized classification for the labeled dataset (Fig. 1), for the
mixed dataset (Fig. 2) and for the unlabeled dataset (Fig. 3) is shown.

Hereinafter the objects of the class A are designated in figures by circles,
the objects of the class B—by squares, and the objects, which class names are

Fig. 1 Results of the
application of the FRiS-TDR
algorithm on the
classification problem
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Fig. 2 Results of the
application of the FRiS-TDR
algorithm on generalized
classification of the mixed
dataset task

Fig. 3 Results of the
application of the FRiS-TDR
algorithm on the clustering
problem

unknown,—by daggers. The objects selected by the algorithm as stolps are encircled
by dotted lines, and borders for clusters are presented by dotted broken lines.
Analyzing the presented results it is possible to see that given algorithm has found
successful decisions for all three tasks.

For the illustration of the fact that construction of decision rule on the basis
of the mixed dataset can improve quality of recognition, the task similar ones
presented on Fig. 2 was solved, but unlabeled dataset was not used for decision rule
construction. Results of this experiment are presented on Fig. 4. On it the border
between classes constructed on mixed sample is presented by a dotted lines, and the
border constructed only on labeled dataset—by continuous lines.

On Fig. 5 results obtained with the offered algorithm on the more complex
task are presented. The number of stolps was determined automatically. Thus two
clusters consisting of only unlabeled objects were allocated. These clusters can be
considered as realizations of some unknown class
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Fig. 4 The decision rules
constructed on the mixed
(a dashed line), and labeled
(a continuous line) datasets

Fig. 5 Results of work of the algorithm FRiS-TDR on the complex mixed dataset

6 Conclusion

Here is a list of some results described in the paper:

1. A unified problem and algorithm for the generalized classification FRiS-TDR,
that builds effective decision rules independently of proportion of labeled and
unlabeled objects, are presented, in contrast to conventional approaches in which
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tasks of analysis of labeled datasets, unlabeled datasets, and mixed datasets are
considered different.

2. To select the best variant of the decision the value of FRiS-compactness of
formed clusters is used.

3. Usage of FRiS-functions allows defining and finding the system of stolps, which
represents the whole dataset fully and precisely.

4. It is shown that if only a small proportion of the dataset is labeled, then using the
unlabeled part for building a decision rule enhances quality of the decisions.

5. Computational intensity of the algorithm FRiS-TDR does not exceed the inten-
sities of FRiS-function based algorithms for solving clustering and classification
problems separately.
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From Separating to Proximal Plane
Classifiers: A Review

Maria Brigida Ferraro and Mario Rosario Guarracino

Abstract A review of parallel and proximal plane classifiers is proposed. We
discuss separating plane classifier introduced in support vector machines and we
describe different proposals to obtain two proximal planes representing the two
classes in the binary classification case. In details, we deal with proximal SVM
classification by means of a generalized eigenvalues problem. Furthermore, some
regularization techniques are analyzed in order to solve the singularity of the
matrices. For the same purpose, proximal support vector machine using local
information is handled. In addition, a brief description of twin support vector
machines and nonparallel plane proximal classifier is reported.

Keywords Support vector machine • Proximal plane classifier • Regularized
generalized eigenvalue classifier

1 Introduction

The aim of this paper is to describe and discuss different planes classifiers starting
from a widely used learning algorithm: support vector machines (SVMs). The
idea of SVMs was firstly introduced by Mangasarian [1] and later developed by
Vapnik [2]. They are used as a learning technique, in particular in a classification
framework. A classification algorithm is in essence an algorithm that learns
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(computes) a model from data divided in two or more classes. The obtained model
is then used to assign the class label to a new unlabeled instance. In the case of
two linearly separable classes, every classification task can be seen as a separation
task, which reduces to the determination of a plane that leaves the points of the
two classes in separate half spaces. The key point is that there can be infinitely
many planes separating the classes, and so external conditions are needed to obtain
a unique solution. The basic idea in SVMs is to choose two parallel planes separating
the classes and maximizing the margin between them. The optimal separating plane
is the midway plane. The solution is based on a quadratic programming problem
(QPP) with linear constraints. SVM classifies unlabeled points by assigning them
to the class in the corresponding half space. SVMs are used in many practical
applications in economics and finance, biomedicine, bioinformatics, social sciences,
and text categorization [3].

In case the classes are not linearly separable, the parallel planes are obtained
maximizing a soft margin, that means some points are allowed to lay between
the two parallel planes, by controlling their distance from the planes. Since the
minimization problem is not twice differentiable, it is not possible to use a fast
Newton method for the solution of the underlying QPP. Lee and Mangasarian [4]
propose to consider an objective function with smoothing approximation. In this
way, taking advantage of the twice differentiable property of an objective function
with smooth terms, it is possible to use a quadratically convergent algorithm for
solving the so called smooth support vector machine (SSVM).

In case of datasets belonging to large dimensional spaces, SVMs need to solve
a quadratic program requiring an extensive computational time. As we will see in
the following, lower computational complexity is traded against theoretical results
regarding the generalization capability of the methods. Fung and Mangasarian
[5] introduce a proximal support vector machine (PSVM) classifier obtained as a
solution of a single system of linear equations. They propose to find two parallel
planes, each one representing one class, such that the points of each class cluster
around the plane, and they are as far as possible. In that case, the classification
of unlabeled points is based on proximity to one of two parallel planes. PSVM
leads to a small reduction of accuracy, that is still statistically comparable with
that of standard SVM classifiers, and to a significantly lower computational time.
Unfortunately, the theoretical error probability estimates for SVM are based on the
margin and are not applicable anymore.

Since the objective is to find two planes representing two different classes, the
idea of parallelism seems to be too restrictive and unrealistic. To this extent, Man-
gasarian and Wild [6] introduce a multisurface PSVM classification via generalized
eigenvalues (GEPSVM). Each plane is obtained as the closest to one class and as
far as possible from the other one. Dropping the parallelism condition, the classical
binary XOR classification problem can be now solved. The optimization problem
to obtain the planes is reduced to the minimization of a Rayleigh quotient, whose
solution is obtained by solving a generalized eigenvalue problem, for which many
well-known results exist in literature. Unfortunately, the matrices involved in the
objective function can be singular, hence the solution can be not unique. There are
different approaches to overcome this drawback. The first consists in introducing a
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regularization term. Mangasarian and Wild [6] propose a Tikhonov regularization
term in two generalized eigenvalue problems. Guarracino et al. [7] introduce a
new regularization technique (ReGEC) in order to solve only one eigenvalues
problem. A completely different approach is introduced by Yang et al. [8]. It solves
the singularity problem arising in PSVM using local information (LIPSVM). In
particular, LIPSVM is robust to outliers and the generation of the proximal planes
is obtained by a standard eigenvalues problem. In addition, it is coherent from a
geometric point of view, whereas the regularization terms make GEPSVM far from
its original geometric interpretation.

In [9], another proximal planes classifier is introduced, known as twin support
vector machine (TWSVM). Although the idea is similar to GEPSVM, the formu-
lation is different. TWSVMs solve two QPPs, whereas SVMs solve only one QPP.
In such sense is close to the idea of SVMs. A modification of TWSVM objective
function is proposed by Ghorai et al. [10]. This proposal is called nonparallel plane
proximal classifier (NPPC).

The rest of the paper is organized as follows. In next section the idea and the
formulation of SVMs are recalled. Section 3 contains a description of Soft SVM,
SSVM, and PSVM. In Sect. 4 GEPSVM is introduced and discussed. Furthermore,
the problem of matrices singularity in GEPSVM is addressed. Section 5 contains
a description of ReGEC and Sect. 6 deals with LIPSVM. TWSVM and NPPC
are briefly recalled in Sect. 7. Finally, Sect. 8 contains some remarks and future
directions.

The notation used in the paper is as follows. All vectors are indicated by lower
case letters and matrices by capital letters. Any vector x is a column vector, unless
transposed to row vector by a prime superscript x0. Given two vectors x and y in
the n-dimensional real space R

n, their scalar (inner) product is denoted by x0y, the
2-norm of x is kxk, a vector of ones of proper dimension is e.

2 Support Vector Machine

Let’s consider a data set composed of k pairs .xi ; yi /, where xi 2 R
n is the feature

vector that characterizes the point xi and yi 2 f�1; 1g is the class label. In a
classification context, SVMs are used to find an hyperplane !0x � � D 0, with
orientation ! 2 R

n and relative location to the origin � 2 R, with the aim to separate
the elements belonging to two different classes. The idea consists in choosing two
parallel planes, x0! � � D ˙1 which leave all points in separate half spaces and
maximize the margin between the two classes. The margin � can be defined as the
distance between the planes:

� D 2

k!k : (1)



170 M.B. Ferraro and M.R. Guarracino

Fig. 1 Two classes perfectly
linearly separable in a
two-dimensional space: the
standard support vector
machine classifier (the
continuous line) and the
support vectors (the bold
ones)

Then, the solution to the following quadratic linearly constrained problem is the
optimal hyperplane with the maximum margin:

min
.!;�/2RnC1

k!k2
2

; (2)

s:t: x0i ! � � � 1; yi 2 class 1;

x0i ! � � � �1; yi 2 class � 1:
(3)

The constraints (3) can be simplified to a single expression:

yi .x
0
i ! � �/ � 1: (4)

Only few points of the training set are needed to determine the hyperplane and they
are called support vectors.

Figure 1 shows the hyperplane that separates the points of the two classes and
the support vectors.

Considering two matrices A 2 R
p�n and B 2 R

m�n, containing one feature
vector on each row, that represent class 1 and class �1, respectively. The quadratic
linearly constrained problem can also be written as:

min
.!;�/2RnC1

k!k2
2

; (5)

s:t: .A! � e�/ � e;

.B! � e�/ � �e:
(6)
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When the two classes are strictly linearly separable, the plane x0! D � C 1 bounds
all of the class 1 points, while the plane x0! D � � 1 bounds all of the class �1

points as follows:

A! � e� C e;

B! � e� � e:
(7)

Consequently, the plane:

x0! D �; (8)

midway between the bounding planes (7), is a separating plane that separates class
1 from class �1 completely.

Since the QPP is convex, any local minimum is global. The solution of this QPP
can be obtained using de facto standard strategies such as those described in Morè
and Toraldo [11].

3 Soft, Smooth, and Proximal Support Vector Machine

Standard SVMs classify points by assigning them to one of two disjoint half spaces.
When the k points of two classes are not strictly linearly separable (Fig. 2) in
the n-dimensional real space R

n, the QPP (5) has no feasible solution. In such
a case, it is possible to relax the constraints, allowing some points to fall the
margin. A nonnegative slack variable � D .�1; ��1/ 2 R

pCm (dim.�1/ D p and
dim.��1/ D m) is added to constraints and a penalty term to the objective function:

a b

Fig. 2 Two classes not perfectly linearly separable in a two-dimensional space: (a) the separation
obtained by soft SVM and (b) the separation obtained by PSVM
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min
.!;�;�/2RnC1Ck

ce0� C k!k
2

2
; (9)

s:t: .A! � e�/C �1 � e;

.B! � e�/ � ��1 � �e;

� � 0;

(10)

If the classes are linearly separable, then � D 0. On the other hand, when they are
linearly inseparable, which is the case shown in Fig. 2, then the two planes bound
the two classes with a “soft margin” (i.e., bound approximately with some errors)
determined by the nonnegative error variable �, that is:

A! C �1 � e� C e;

B! � ��1 � e� � e: (11)

The 1-norm of the error variable � is minimized parametrically with weight c in (9)
resulting in an approximate separating plane (8) as depicted in Fig. 2a (continuous
line). This plane acts as a linear classifier as follows:

x0! � � C � � 0 then x in class 1;

x0! � � � � � 0 then x in class � 1:
(12)

In the smooth approach the square of 2-norm of the slack variable � is minimized
with weight c=2, whereas the margin between the bounding planes is maximized

with respect to both ! and � , that is the distance between planes is, 1
2
k



!

�

�
k2

min
.!;�;�/2RnC1Ck

c
1

2
k�k2 C 1

2
k



!

�

�
k2; (13)

s:t: .A! � e�/C �1 � e;

.B! � e�/� ��1 � �e;

� � 0:

(14)

It has been proven that the formulation (13) has the same performance of the clas-
sical SVM [4]. The problem (13) can be converted in an equivalent unconstrained
problem:

min
.!;�/2RnC1

c
1

2

�k.e � .A! � e�//k2 C k.e � .B! � e�//k2�C 1

2
k



!

�

�
k2: (15)
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Since the objective function in (15) is not twice differentiable, the smoothing
techniques are applied and x is replaced by a very accurate smooth approximation
p.x; ˛/ D x C 1

˛
log.1C "�˛x/ (˛ > 0). In this way a SSVM is obtained:

min
.!;�/2RnC1

c
1

2

�kp.e � .A! � e�/; ˛/k2 C kp.e � .B! � e�/; ˛/k2�

C1

2
k



!

�

�
k2: (16)

The computational time required for solving the quadratic program related to
SVMs can be considerably long. To that extent, Fung and Mangasarian [5] suggest
to use a PSVM classifier obtained as a solution of a single system of linear equations.
Instead of SVMs, the aim is to find two parallel planes, each one representing
one class. In that case, each point is classified on the basis of the proximity to
one of two parallel planes that are moved as far apart as possible. The rates of
classification accuracy are statistically comparable with those obtained by SVM
classifiers. Furthermore, a significant reduction of computational times is reached.
The main idea of PSVM is to replace the inequality constraints in (14) by equalities
as follows:

s:t: .A! � e�/C �1 D e;

.B! � e�/ � ��1 D e:
(17)

There is an important change in the model. Geometrically, this formulation is
depicted in Fig. 2b, which can be interpreted as follows. The planes x0! � � D ˙1

are not bounding planes anymore, but can be seen as “proximal” planes, around
which the points of each class are clustered, and that are pushed as far apart as
possible by the term .!0!C �2/ in the objective function, which is the reciprocal of
the 2-norm distance squared between the two planes in the .!; �/ space RnC1.

4 Generalized Eigenvalue Proximal Support Vector Machine

Since the idea is to find two hyperplanes representing two different classes, it is
useful and more realistic to drop the parallelism condition on the proximal planes,
as proposed by Mangasarian and Wild [6]. The new formulation consists in seeking
the plane

x0!1 � �1 D 0 (18)

in R
n closest to the points of class 1 and furthest from the points in class �1 and

the plane

x0!�1 � ��1 D 0 (19)
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closest to the points in class �1 and furthest from the points in class 1. The first
plane is obtained by solving the following optimization problem:

min
.!;�/¤0

kA! � e�k2=k



!

�

�
k2

kB! � e�k2=k



!

�

�
k2

: (20)

The minimization problem (20) is a ratio between the sum of squares of 2-norm
distances in the .!; �/-space of points in class 1 to the plane representing this class
and the sum of squares of 2-norm distances in the .!; �/-space of points in class �1

to the same plane. By simplifying (20) we obtain:

min
.!;�/¤0

kA! � e�k2
kB! � e�k2 : (21)

With the following positions:

G WD ŒA � e�0ŒA � e�;

H WD ŒB � e�0ŒB � e�;

z WD



!

�

�
; (22)

the optimization problem (21) becomes:

min
z¤0

z0Gz

z0H z
; (23)

where G and H are symmetric matrices in R
.nC1/�.nC1/. The objective function

of (23) is known as the Rayleigh quotient of the generalized eigenvalue problem:

Gz D �H z: (24)

The inverse of the objective function in (23) has the same eigenvectors and
reciprocal eigenvalues. In [6] it is proven that proximal planes are defined by

zmin D Œ!1 �1�
0; zmax D Œ!�1 ��1�

0 (25)

where zmin and zmax are the eigenvectors related to the eigenvalues of smallest and
largest modulo, respectively. Then, x0!1 � �1 D 0 is the closest hyperplane to the
set of points in class 1 and the furthest from those in class �1, in the same way,
x0!�1 � ��1 D 0 is the closest hyperplane to the set of points in class �1 and the
furthest from those in class 1.

Dropping the parallelism condition on the planes enables to solve problems that
are not linearly separable, such as the XOR case depicted in Fig. 3.
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a b

Fig. 3 XOR case: (a) GEPSVM solution and (b) PSVM solution

GEPSVM relaxes the parallelism and aims at obtaining two nonparallel planes
from two corresponding generalized eigenvalue problems, respectively. However, it
faces with the singularity problem. Since the matrices G and H can be deeply rank
deficient, there is a non-zero probability that the null spaces of the two matrices have
a non trivial intersection. In order to solve this problem there are two solutions:

1. to introduce a regularization technique to be applied in order to numerically solve
the problem,

2. to consider a classifier based on local information and obtain as solution an
ordinary eigen-system.

5 Regularized Generalized Eigenvalue Classifier

Mangasarian and Wild propose to regularize the problem, as is often done in least
squares and mathematical programming problems [12,13], by means of a Tikhonov
regularization term [14]. It consists in reducing the norm of the variables .!; �/ that
determine the proximal planes (18) and (19). That is, for nonnegative parameter ı,
problem (21) is regularized in the following way:

min
.!;�/¤0

kA! � e�k2 C ıkzk2
kB! � e�k2 ; (26)

and the proximal hyperplane related to the other class can be obtained as a
solution of

min
.!;�/¤0

kB! � e�k2 C ıkzk2
kA! � e�k2 : (27)
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From a geometric point of view, the plane solution of Eq. (26) is the closest plane
to the data set represented by A, normalized by the sum of the distances to the
points of B . Simultaneously, the plane obtained by (27) is the closest one to the data
set represented by B , normalized by the sum of the distances to the points of A.
Guarracino et al. [7] give a more flexible technique for the regularization parameter
in the kernel case and name so-proposed plane classifier as ReGEC (Regularized
Generalized Eigenvalue Classifier). ReGEC simultaneously finds two planes from
a single generalized eigenvalue equation (the two planes correspond, respectively,
to the maximal and minimal eigenvalues), instead of two equations as in GEPSVM.
In the linear case the new regularization method consists in solving the following
generalized eigenvalue problem:

min
.!;�/¤0

kA! � e�k2 C ık QB! � e�k2
kB! � e�k2 C ık QA! � e�k2 : (28)

Here QA and QB are diagonal matrices whose entries are the main diagonals of the
A and B , respectively. This regularization provides classification accuracy results
comparable to the ones obtained by solving Eqs. (26) and (27) and it is a form of
robustification [15].

6 Proximal Support Vector Machine using Local Information

The classifiers introduced in the previous section adopt a regularization technique.
The introduction of the regularization term in GEPSVM goes away from its original
geometric interpretation. Yang et al. [8] propose a LIPSVM, whose solution is just
an ordinary eigen-system. LIPSVM consists of two steps. In the first step, interior
and marginal points are selected as belonging to the intra-class and the inter-class
graphs. The intra-class graph is composed of edges connecting data points that
are mutually k1-nearest neighbors (k1-NN) for a fixed k1. The resulting graph is
composed of a subset of points from the same class, that can be characterized
as interior points. On the other hand, the inter-class graph is composed of edges
connecting pairs of samples from different classes where one is a k2-NN of the
other. The interior points that lay in high-density regions become more likely
nonzero-degree vertices, while the outliers that lay in low-density regions become
zero-degree points. On the other hand, the marginal points are probably more
nonzero-degree vertices.

In the second step, only those nonzero-degree points are used to train classifier.
Thus, LIPSVM can dominate outliers (see Fig. 4). LIPSVM just requires solving
a standard eigenvalue problem, whereas GEPSVM needs to solve a generalized
eigenvalue problem. Furthermore, the number of the selected points used to train
LIPSVM is smaller than that of the GEPSVM.
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Fig. 4 The planes obtained by GEPSVM (dotted lines) and those obtained by LIPSVM (contin-
uous lines). The intra-class graph for points represented by circles (class 1) and marginal points
(bold triangles) corresponding to class �1

As in Fig. 4, the two adjacent matrices of each plane are, respectively, denoted
by S and R and defined as follows:

Slt D
(

�l .> 0/ xl 2 NeCk1
.t/ ^ xt 2 NeCk1

.l/;

0 otherwise;
(29)

and

Rlt D
(

�t.> 0/ xt 2 Ne�k2
.l/;

0 otherwise;
(30)

where NeCk1
.t/ indicates a set of the k1-NN in the same class of the sample xl ,

and Ne�k2
.l/ a set of data points composed of k2-NN in the different class of the

sample xl . When Slt > 0 or Rlt > 0, an edge between xl and xt is inserted in the
corresponding graph. By using non-zero degree vertices, a linear plane of LIPSVM
can be constructed. The optimal plane of LIPSVM representing class 1 is obtained
by solving the following minimization problem:

min.!1;�1/2RnC1

Pp
jD1

Pp

lD1 Sjl .!
0
1Al � �1/

2 �Pp
jD1

Pm
tD1 Rjt .!

0
1Bt � �1/

2;

s:t: k!1k D 1;

(31)
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where Al is the l-row of A and Bt the t-row of B . By using the weights dl DPm
jD1 Sjl and ft DPp

jD1 Rjt (l D 1; � � � ; p, and t D 1; � � � ; m), problem (31) can
be simplified as follows:

min
.!1;�1/2RnC1

pX

lD1

dl .!
0
1Al � �1/

2 �
mX

tD1

ft .!
0
1Bt � �1/

2: (32)

This optimization problem is reduced to a standard eigenvalue problem. Since
the effect of outliers is eliminated or restrained LIPSVM is a robust method. In
detail, Al will be present in (32) if and only if its weight dl is greater than 0 and,
analogously, Bt , its corresponding marginal point, will be involved in (32) when
ft > 0. The points kept in the optimization problem are generated by S and R.
In most cases the number of the marginal samples is lower than the number of
the original ones. The expression .!01x � �1/

2 in (32) is the square distance of the
points to the plane x0!1��1 D 0. Thus, the aim of LIPSVM is to look for the plane
x0!1��1 D 0 closest to the interior samples in class 1 and furthest from the marginal
samples in class �1.

7 Twin Support Vector Machine and Linear Nonparallel
Plane Proximal Classifier

Jayadeva et al. [9] propose a novel approach to SVM classification, namely
TWSVMs, which are similar to GEPSVMs in that they obtain nonparallel planes
prototyping the data points. Indeed, they are based on a completely different
formulation. Each of the two QPPs in the TWSVM pair has the formulation of
a typical SVM, but not all samples appear in the constraints of each problem at
the same time. The TWSVM classifier is obtained by solving the following pair of
QPPs:

min.!1;�1;��1/2RnC1Cm
1
2
kA!1 � e1�1k2 C c1e

0�1��1;

s:t: � .B!1 � e�1�1/C ��1 � e�1; ��1 � 0;

(33)

and

min.!�1;��1;�1/2RnC1Cp
1
2
kB!�1 � e�1��1k2 C c�1e01�1;

s:t: .A!�1 � e1��1/C �1 � e1; �1 � 0;

(34)

where c1, c�1 > 0 are parameters. The algorithm finds two hyperplanes, one
for each class, and classifies points on the basis of the distance of a given point
to the hyperplane. The first term in the objective function of (33) or (34) is the
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sum of squared distances from the hyperplane to points of one class. Therefore,
its minimization tends to keep the hyperplane close to points of one class. The
constraints lead the hyperplane to be at a distance of at least 1 from points of
the other class. A set of slack variables is used to measure the error wherever
the hyperplane is closer than this minimum distance of 1. The second term of the
objective function minimizes the sum of slack variables, thus acting to minimize
misclassification due to points belonging to the other class.

Ghorai et al. [10] propose a modification of the objective function of TWSVM. In
details, they introduce a NPPC. It aims at putting together the idea of both TWSVM
and PSVM. In the linear case (LNNPC) the formulation is the following

min
.!1;�1;��1/2RnC1Cm

1

2
kA!1 � e1�1k2 C c1e

0�1��1 C c2

2
k��1k2;

s:t: � .B!1 � e�1�1/C ��1 � e�1; ��1 � 0; (35)

and

min
.!�1;��1;�1/2RnC1Cp

1

2
kB!�1 � e�1��1k2 C c3e01�1 C c4

2
k�1k2;

s:t: .A!�1 � e1��1/C �1 � e1; �1 � 0; (36)

where c1, c2, c3, and c4 are the regularization parameters. Naturally, the introduction
of those parameters gives rise to a problem related to the time needed for model
selection, which can only be solved by prior knowledge about the application. On
the other hand the latter methods seem to be suited to solve problems in which
support vectors and inequality constraints can be neglected.

8 Concluding Remarks

In this paper we review planes classifiers starting from the idea of parallel planes
of SVMs. Putting in evidence the limits of parallelism, we describe different
proposals of classifiers that overcome this point. Even if in the last years the use
of nonparallel plane classifiers has increased, there are still many open problems. In
particular, in the drift from discriminating to proximal plane classifier, the concept
of classification is substituted with that of characterization, and the objective is not
anymore to minimize a classification error, but rather to describe a set of samples.
Reintroducing the concept of minimum classification error would greatly improve
accuracy performances of those methods. Furthermore, the introduction of different
norms in the underlying mathematical programming problem is a crucial point. It
would be interesting to determine the impact of a new norm on the results. Finally, as
for SVMs, it would be of great interest to define and discuss an analytic formulation
for the generalization error in the case of nonparallel plane classifiers.
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A Note on the Effectiveness of the Least Squares
Consensus Clustering

Boris Mirkin and Andrey Shestakov

Abstract We develop a consensus clustering framework proposed three decades
ago in Russia and experimentally demonstrate that our least squares consensus
clustering algorithm consistently outperforms several recent consensus clustering
methods.

Keywords Consensus clustering • Ensemble clustering • Least squares

1 Introduction

The problem of finding a partition reconciling a set of pre-specified partitions has
been stated, developed and applied by Mirkin and Cherny in the beginning of the
1970s in the context of “nominal factor analysis” [2,3,8,9]. Yet this work remained
largely unknown until Meila [7] mentioned the so-called Mirkin’s distance, a tip of
the iceberg of the work.

Perhaps the grand start for a consensus clustering approach on the international
scene was made by Strehl and Ghosh [15]. Since then consensus clustering has
become popular in bioinformatics, web-document clustering and categorical data
analysis. According to [5], consensus clustering algorithms can be organized in three
main categories: probabilistic approach [16,17]; direct approaches [1,4,14,15], and
pairwise similarity-based approach [6, 11]. The (i,j)-th entry aij in the consensus
matrix A D .aij / shows the number of partitions in which objects yi and yj are in
the same cluster.

Here we invoke a least-squares consensus clustering approach from the paper
[12] predating the above developments, update it with a more recent clustering
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procedure to obtain an algorithm for consensus clustering and compare the results on
synthetic data of Gaussian clusters with those by the more recent methods. It appears
our method outperforms those with a good margin.

2 Least Squares Criterion for Consensus Clustering

Given a partition of N -element dataset Y on K non-overlapping classes S D
fS1; : : : ; SKg, its binary membership N � K matrix Z D .zik/ is defined so that
zik D 1 if yi belongs to Sk and zik D 0, otherwise. As is known, the orthogonal
projection matrix over the linear space spanning the columns of matrix Z is defined
as PZ D Z.ZT Z/�1ZT D .pij / where pij D 1

Nk
, if yi ; yj 2 Sk and 0 otherwise.

Given a profile of T partitions R D fR1; R2; : : : ; RT g, its ensemble consensus
partition is defined as that with a matrix Z minimizing the sum of squared residuals
in equations

xt
il D

KX

kD1

ct
klzik C et

ik; (1)

over the coefficients ct
kl and matrix elements zik where Xt , t D 1; : : : ; T are binary

membership matrices for partitions in the given profile R. The criterion can be
equivalently expressed as

E2 D kX � PZXk2; (2)

where X is concatenation of matrices X1; : : : ; Xt and k � k2 denotes the sum of
squares of the matrix elements. This can be further transformed into an equivalent
criterion to be maximized:

g.S/ D
KX

kD1

X

i;j2Sk

aij

Nk

; (3)

where A D .aij / is the consensus matrix A from the pairwise similarity-based
approach.

To (locally) maximize (3), we use algorithm AddRemAdd(j ) from Mirkin in [10]
which finds clusters one-by-one. Applied to each object yj this method outputs a
cluster with a high within cluster similarity according to matrix A. AddRemAdd(j )
runs in a loop over all j D 1 : : : N and takes that of the found clusters at which (3) is
maximum. When it results in cluster S.j /, the algorithm is applied on the remaining
dataset Y 0 D Y nS.j / with a correspondingly reduced matrix A0. It halts when no
unclustered entities remain. The least squares ensemble consensus partition consists
of the AddRemAdd cluster outputs: S� DSS.j /. It should be pointed out that the
number of clusters is not pre-specified at AddRemAdd.
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3 Experimental Results

All evaluations are done on synthetic datasets that have been generated using Netlab
library [13]. Each of the datasets consists of 1,000 twelve-dimensional objects
comprising nine randomly generated spherical Gaussian clusters. The variance of
each cluster lies in 0:1–0:3 and its center components are independently generated
from the Gaussian distribution N .0; 0:7/.

Let us denote the thus generated partition as ƒ with kƒ D 9 clusters. The profile
of partitions R D fR1; R2; : : : ; RT g for consensus algorithms is constructed as
a result of T D 50 runs of k-means clustering algorithm starting from random
k centers. We carry out the experiments in four settings: (a) k D 9 D kƒ,
(b) k D 6 < kƒ, (c) k D 12 > kƒ, (d) k is uniformly random on the interval .6; 12/.
Each of the settings results in 50 k-means partitions. After applying consensus
algorithms, adjusted rand index (ARI) [5] for the consensus partitions S and
generated partition ƒ is computed as 'ARI.S; ƒ/.

3.1 Comparing Consensus Algorithms

The least squares consensus results have been compared with the results of the
following algorithms (see Tables 1, 2, 3, and 4):

• Voting Scheme (Dimitriadou, Weingessel and Hornik—2002) [4]
• cVote (Ayad—2010) [1]

Table 1 The average values at, �ARI.S; ƒ/ and the number of classes at kƒ D k D 9 over 10
experiments in each of the settings

Algorithm Average �ARI Std. �ARI Avr. # of classes Std. # of classes

ARA 0.9578 0.0246 7.6 0.5164
Vote 0.7671 0.0624 8.9 0.3162
cVote 0.7219 0.0882 8.1 0.7379
Fus 0.7023 0.0892 11.6 1.8379
Borda 0.7938 0.1133 8.5 0.7071
MCLA 0.7180 0.0786 8.6 0.6992

Table 2 The average values of �ARI.S; ƒ/ and the number of classes at kƒ > k D 6 over 10
experiments in each of the settings

Algorithm Average �ARI Std. �ARI Avr. # of classes Std.# of classes

ARA 0.8333 0.0586 6.2 0.6325
Vote 0.7769 0.0895 5.9 0.3162
cVote 0.7606 0.0774 5.6 0.6992
Fus 0.8501 0.1154 7.7 1.3375
Borda 0.7786 0.0916 6 0
MCLA 0.7902 0.0516 6 0
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Table 3 The average values of �ARI.S; ƒ/ and the number of classes at kƒ < k D 12 over 10
experiments in each of the settings

Algorithm Average �ARI Std. �ARI Avr. # of classes Std.# of classes

ARA 0.9729 0.0313 9 0.9428
Vote 0.6958 0.0796 11.4 0.5164
cVote 0.672 0.0887 10.9 0.7379
Fus 0.6339 0.0827 16 4
Borda 0.7132 0.074 11.1 0.7379
MCLA 0.6396 0.0762 11.9 0.3162

Table 4 The average values of �ARI.S; ƒ/ and the number of classes at k 2 .6; 12/ over 10
experiments in each of the settings

Algorithm Average �ARI Std. �ARI Avr. # of classes Std.# of classes

ARA 0.9648 0.019 6.8 0.7888
cVote 0.5771 0.1695 10.4 1.2649
Fus 0.62 0.0922 11.6 2.0656
MCLA 0.6567 0.1661 10.6 1.3499

• Fusion Transfer (Guenoche—2011) [6]
• Borda Consensus (Sevillano, Carrie and Pujol—2008) [14]
• Meta-CLustering Algorithm (Strehl and Ghosh—2002) [15]

Tables 1, 2, 3, and 4 consistently show that:

• The least-squares consensus clustering algorithm has outperformed the other
consensus clustering algorithms consistently;

• The only exception, at option (c), with kƒ > k D 6 the Fusion Transfer algorithm
demonstrated a better result probably because of the transfer procedure (see
Table 2).

• The average number of clusters in the consensus clustering is lower than k in the
profile R and kƒ

4 Conclusion

This paper revitalizes a 30-years-old approach to consensus clustering proposed
by Mirkin and Muchnik in Russian. When supplemented with updated algorithmic
procedures, the method shows a very good competitiveness over a set of recent
cluster consensus techniques. Our further work will include: (a) extension of the
experimental series to a wider set of consensus clustering procedures, including
those based on probabilistic modeling, (b) attempts at using the approach as a device
for choosing “the right number of clusters,” (c) exploring various devices, such as
random initializations in k-means or bootstrapping of variables, for generation of
ensembles of partitions, etc.
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Single or Multiple Consensus for Linear Orders

Alain Guénoche

Abstract To establish a consensus order, summarizing a profile of linear orders on
the same item set is a common problem. It appears in Social Choice Theory, when
voters rank candidates in an elective process or in Preference Aggregation, when
individuals or criteria put several orders on the items. Often the consensus order is a
median order for Kendall’s distance, but other definitions, more easily computable,
can be used. In the following, we tackle the question of the quality of this summary
by a single consensus order. We study the possibility to represent a given profile
by several linear orders making a Multiple Consensus. We introduce an original
criterion to measure the quality of the single or multiple consensus, and so to decide
if it is preferable to retain one linear order or to adopt several orders making a better
representation. Two applications are described; the first one in Agronomy to select
varieties according to yield estimations in several trials and the second one is about
the event orders along Jesus, life according to the three Gospels of Mark, Luke, and
Matthew.

Keywords Linear orders • Consensus • Median • Preferences • Gospels

1 Introduction

To establish a consensus order, summarizing a set (also denoted as a profile) of
linear orders on the same item set is a common problem. It appears in Social Choice
Theory, when voters rank candidates or in Preference Aggregation, when individuals
or criteria put several orders on the items. These can be competitive products (wines,
perfumes, foods), individuals to select (representative members of a meeting) or to
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reward (students), or some methods dedicated to a specific problem (organizations,
algorithms). The comparison between these items can be based on expert opinions
or marks given after several tests and also according to quantitative criteria. This
gives a set of orders and a decision problem. We will admit that the preferences are
linear orders, but the proposed methods can be adapted to the case of ties.

Among equivalent formulations of this problem, we retain here the one of expert
rankings. Each judge or expert gives its opinion on a set X of items (jX j D n). Each
opinion is a linear order or a permutation on X . The set of experts E (jEj D m)
makes a profile … D fS1; : : : ; Smg, in which the m orders are not necessarily
different but they all span X (every item is ranked).

In both classical frames, Social Choice Theory or Preference Aggregation, one
tries to establish, from the profile, a collective ordering. For that, a consensus 	

summarizing preferences is computed. We focus on the case in which this consensus
is an element of S, the set of linear orders on X , which is a median for the profile
[1,2]. For complexity reasons, other polynomial aggregation strategies can be used,
for instance, the famous Borda ranking method (1784) or the Smith and Payne three-
cycle elimination algorithm [12]. They can also be used as the median orders in the
following.

Orders are binary relations on element pairs of X ; x is preferred to y (denoted
x � y) if x is placed before y. Two experts or opinions can be compared counting
the number of pairs placed the same way in the orders, that is their number
of agreements. The natural distance between orders is the symmetric difference
distance on the whole pair set that commonly share the relation. To measure a
distance between two experts, it is sufficient to count the number of disagreements,
that is Kendall’s distance D.

	 D Argmin
mX

iD1

D.	; Si /

A median element, relatively to profile …, is established using score functions
with integer values W… W S ! N which must be maximized. It is the same as
to minimize the sum of distance values between 	 and the profile orders. The
consensus is a permutation 	 maximizing W… and which is median for …. When
there is a single item to select, it is the first element in this median order. But if
there are k items to retain, rather than keeping the k first ranked elements, it could
be better to decompose the profile into k classes, to compute a median linear order
for each one, and to retain the first ranked item of each order. This is what we call a
Multiple Consensus.

In this text we recall an algorithm to compute a median order from a given set of
linear orders (Sect. 2), then we introduce the Multiple Consensus concept (Sect. 3).
In Sect. 4, we detail methods to subdivide a profile, which will be applied to a real
selection problem in Agronomy described in Sect. 5; several rapeseed varieties are
tested in several trials, each one indicating a yield estimation. These variables, one
by place, make preferences and the selection problem highlights the use of Multiple



Single or Multiple Consensus for Linear Orders 191

Consensus. Finally in Sect. 6, we come back to the linear orders of the events along
Jesus life, as they are reported in the Gospels of Mark, Luke and Matthew. The
three orders are so different that the existence of a single source in questionable.
The larger score of a single consensus order will reassure on this origin.

2 Consensus of Linear Orders

Classically, to compute a median order from a linear order profile on X , a pair
comparison procedure is applied. First, a table T indexed on X �X is established:

T .x; y/ D jfS 2 … such that x �S ygj:

So, T .x; y/ C T .y; x/ D m. To this table corresponds a tournament (complete
directed graph) which is weighted. The arc .x; y/ goes from x to y iff T .x; y/ >

T .y; x/; its weight is equal to w.x; y/ D T .x; y/ � T .y; x/ and w.y; x/ D 0. If
T .x; y/ D T .y; x/ the arc orientation is arbitrary, since both weights are null.

The remoteness of a linear order S D .x1 � x2 � � � � � xn/ from a tournament
T is equal to the sum of weight of the arcs which disagree with the order.

R.S; T / D
X

i<j

w.xj ; xi /

When a tournament is transitive, it corresponds to a linear order, which is not
necessarily unique (if two consecutive elements are linked by a 0 weighted arc). This
linear order is easy to find; it is the decreasing order of the number of dominated
vertices in the tournament. Its remoteness to the tournament is equal to 0.

When there is no such permutation, one seeks to reverse a set of arcs having
minimum sum of weight to make T transitive. This quantity is equal to the
remoteness of the corresponding linear order which is median for the profile defining
table T . This problem is well known as the Kemeny Problem (1959). It can be
formulated as an integer linear program. For linear orders embedded with Kendall’s
distance, median linear order computing is NP-Hard [10].

Heuristics to build linear orders close to a tournament (minimizing remoteness)
are numerous and we have studied since a long time Branch and Bound algorithms
to establish an optimal linear order or to enumerate all of them [3, 4, 7]. The first
step is to apply a heuristic method [12] providing an upper bound Rmax of the
remoteness from the tournament. Then, a search tree is developed; nodes correspond
to beginning sections of linear orders. Each node is valued by the sum of weights of
the reversal arcs it contains. At each step the following operations are performed:

• Find a leaf in the Branch and Bound tree with minimum value,
• Extend this beginning section all the possible ways by an unplaced item if the

value of this extended beginning does not overpass Rmax.
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The first leaf containing n � 1 items determines a linear order 	 at minimum
remoteness from the tournament, so it is a median for profile …. The weight of
this consensus is the sum of the majority opinions on pairs:

W….	/ D
X

x�	 y

T .x; y/ � T .y; x/:

Example 1. Let us consider the profile: … D f.1 � 2 � 3 � 4/; .1 � 3 �
2 � 4/; .1 � 2 � 4 � 3/; .3 � 1 � 4 � 2/; .2 � 3 � 4 � 1/; .4 � 2 � 3 � 1/g.

It corresponds to a tournament T ; the arc weights are given the following table:

w 1 2 3 4

1 � 2 0 2

2 0 � 2 2

3 0 0 � 2

4 0 0 0 �

Clearly, this tournament is transitive and the weight of the natural order is W…..1 �
2 � 3 � 4/ D 10.

This kind of consensus is founded if the experts share a collective opinion, a
majority of them being very close to. Then, there is a strong consensus, the intensity
of which being quantified by function W which counts the majority approvals of pair
comparisons. Now, if the consensus is weak, i.e., there are a few majority opinions
in the median order, it may be due to several divergent collective opinions within
the profile. Added all together they cancel each other out. If we could separate
several groups of experts, several different consensus ordering could appear. This
decomposition makes sense when talking about notations to students or quantitative
criteria corresponding to different variables (price, speed and volume for cars).

This could be important if several items have to be selected. To retain the first
ranked elements of a median linear order is not always founded. For instance, if
criteria are marks given to students in scientific and literary tests and if two rewards
have to be given, it is possible that the first students in sciences are the last ones in
literary domain and reciprocally. So the median order will place average students
at the two first ranks. But if, on the one hand the scientific disciplines and on the
other hand the literary ones are separately considered, the two corresponding median
orders will indicate the best students in the two domains.

So we are looking to cluster the experts to put together close linear orders,
making appear groups of homogeneous experts sharing, within their group, a strong
consensus. There was a first attempt in this direction with the article by Lemaire
[11], in which he compares several aggregation procedures and uses the Nuées
dynamiques algorithm [5] to cluster the profile.
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3 Multiple Consensus

To decide if it is preferable to subdivide the expert set and which subdivision is
the best one, we define the notion of generalized score. Let P q be a partition of …

in q disjoint classes (… D S
kD1;q …k), and 	k the consensus of each cluster (sub-

profile). The generalized score of P q is the sum of the consensus weights, multiplied
by the number of experts in the class.

W.P q/ D
X

kD1;:::;q

j…kj �W…k
.	k/:

This generalized score acts as a ballot quantification. In each class …k, the experts
vote for the 	k order which is as weighted as they agree with this opinion.

The multiple consensus problem is to maximize W over the set of all the
partitions of …. This problem is not easy, since it requires to fix the optimal value
of q and the optimal q-decomposition to evaluate the generalized score. And this
latter can be measured after computing the q consensus orders. We denote Wq the
maximum value of W over the set of partitions with q classes.

Wq D max
P q2Pq

W.P q/

The consensus of … in a single class, gives a generalized score W1 D j…j �
W….	/. If there exists a q-decomposition of … such that Wq > W1, one can claim
that … contains q opinion groups having their own consensus. Thus, Wm is the
generalized score corresponding to the atomic partition of the profile in which there
are only singletons. If score Wm is the largest one, includingW1, it means that there
is no agreement between the m orders in the profile.

Proposition. The generalized score of the atomic partition ˘0 is Wm D m� n.n�1/

2
.

Proof. Each linear order is the median order of the sub-profile it makes alone, and
its weight is equal to the number of item pairs which are all majority.

Corollary. Two linear orders admit a single consensus if they agree on more than
half the number of item pairs

Example 2. Coming back to the linear orders of Example 1, the consensus weight
of all the orders is 10 and so W1 D 60. If these opinions are considered as
irreconcilable, we get a generalized score W6 D 36 lower than the single consensus.
But if we subdivide … into two classes …1 and …2 containing, respectively, the four
first orders and the two last ones, we get two tables:

w1 1 2 3 4 w2 1 2 3 4

1 � 4 2 4 1 � 0 0 0

2 0 � 0 2 2 2 � 2 0

3 0 0 � 2 3 2 0 � 0

4 0 0 0 � 4 2 0 0 �
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The left one designates again the natural order W…1.1 � 2 � 3 � 4/ D 14. The …2

tournament is also transitive and it admits three median orders (depending on the
first item, 2 or 4) having the same weight W…2..2 � 4 � 3 � 1/ D 8.

The generalized score of the decomposition …1j…2 is: W2 D 4�14C2�8 D 72.
Consequently, there is a multiple consensus for profile ….

4 Decomposition Methods for a Profile

To evaluate the generalized score value of a partition, it is necessary to compute
first the consensus of the orders in each class …i or at least its weight, W…i .	i /.
For a linear order profile, the median order problem being NP-Hard, it is impossible
to design a polynomial algorithm for an optimal decomposition. For other types
of consensus, computable by polynomial heuristics, the problem remains open. We
have developed two approximated methods computing first the Kendall’s distance
D over …. Then, we apply one method or the other.

4.1 A Hierarchical Method

Since it begins with an optimization on the number of classes, we develop first
an algorithm computing a series of partitions having fm; .m � 1/; : : : ; 1g classes.
A classical solution consists in an ascending hierarchical procedure (for instance,
UPGMA) generating nested partitions (from one to the next, only two classes are
joined). For each partition, its generalized score is computed and, finally, the one
having the highest value is retained. The atomic partition and also the one with a
single class belong to the series. There is no proof of the optimality of this best
computed partition over the set of them all on ….

4.2 Partitioning by the Fusion–Transfer Algorithm

We have adapted an optimization procedure for graph partitioning to a valued
function on … � … to build directly a partition of …. First, a similarity index is
defined, depending on one parameter. Let D be the average value of D, Dmax be
its maximum value and ˛ a parameter in Œ0; .Dmax=D�. The similarity function
B W … �…! R is defined as

B.Si ; Sj / D ˛ �D �D.Si ; Sj /:

The aim of this clique partitioning algorithm is to maximize the sum of the joined
pairs values within the classes. For a partition P q of … in q disjoint classes
(… D SkD1;q …k), the value of this partition is given by:
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B.P q/ D
qX

kD1

X

Si ;Sj2…k

B.Si ; Sj /:

When ˛ > .Dmax=D/, all the values of B are positive or null and the maximization
gives the partition with a single class; when ˛ D 0 they are all negative and one gets
the atomic partition. Between them, the B values are either positive or negative and
the number of classes is automatically determined by the algorithm.

To maximize the sum of the intra-class pair values, positive or negative, is
a problem which arises in Graph Partitioning when communities are searched,
optimizing a modularity function. We use again our Fusion–Transfer algorithm,
defined for the consensus partition problem [8].

• The first part, Fusion, is a hierarchical ascending method. Starting from the
atomic partition …0, at each step the two classes maximizing the score value
of the resulting partition are merged. The process stops when there is no fusion
increasing B. It leads to partition P q D .…1; : : : ; …q/ such that any partition
obtained from P q merging two classes has a lower B score.

• In the second part, Transfer, the weight of the assignment of any element to
any class is computed. Let A.i; k/ D P

Sj2…k
B.Si ; Sj /. If Si 2 …k, A.i; k/

is the contribution of Si to its own class, and also to B.P q/. Otherwise, the
A.i; k0/ value corresponds to a possible assignment to class …k0 . The difference
A.i; k0/ � A.i; k/ is the B variation resulting from the transfer of Si from class
…k to class …k0 . Our procedure, consists in moving at each step the element
maximizing this difference. Order Si is assigned either to class …k0 if A.i; k0/ �
0 or a new singleton class is created. In this latter case, Si has a null contribution
to B, increasing the criterion value. We have implemented this algorithm, making
a table A, indexed on … and on the classes of the running partition. The transfer
procedure stops when each item has a non negative contribution to its class which
is larger than or equal to its contribution to any other class.

4.3 The Fusion–Transfer Algorithm

• Hierarchical procedure

– Start from 	0

– Compute the variation of score due to the fusion of any pair (B.Si ; Sj /)
– While score B increases

� Join the two classes giving the maximum variation
� Update the fusion gains of the new class with the remaining classes

• Transfer procedure

– Compute the weight of any element in any class (Table A)
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– Memorize the best class (maximum value) for any element
– While there exists an element whose weight in its class is not maximum,

� put it into the class where its contribution is maximum, if � 0, otherwise
make it a singleton;

� update the weights of the elements in both modified classes

The Fusion part is like a hierarchical algorithm and so is in O.m3/; the transfer
part is in O.mq/ at each transfer and much faster than the previous part. This
algorithm is fast enough to subdivide large profiles with hundreds of orders in less
than 1 min. Probably, there is no problem with such size for expert opinions, but it
could be possible for criteria orderings.

5 Agronomical Selection

Many years ago, I have participated in the analysis of agronomical data [9]. The
question was to select promising rapeseed (colza) varieties to put them on the
marketplace or to try to improve them again. These varieties have been tested
along multiple trials in different INRA stations, where the average yield of each
one has been estimated. It was the only criterion. Each trial provides a yield value
distribution and they were very different. In front of these fuzzy measures, we adopt
an ordinal approach, transforming the distributions of yield into orders, and counting
the number of times (trials) one variety has a higher yield than another.

Example 3. To illustrate the profile decomposition interest, I go back to a subset of
these data considering the linear orders established by 22 INRA trials on 6 rapeseed
varieties. The resulting majority tournament is:

1 2 3 4 5 6

1 � 0 0 0 0 0

2 4 � 4 0 0 4

3 4 0 � 0 0 4

4 10 0 4 � 2 6

5 14 4 8 0 � 6

6 0 0 0 0 0 �

It is transitive and provides two median orders: .4 � 5 � 2 � 3 � f1; 6g/ having
weight 74; hence the generalized score of a single consensus is W1 D 22 � 74 D
1628.

But the hierarchical method applied to Kendall’s distance between the 22 linear
orders leads to 2 classes with 13 and 9 trials, respectively. The two corresponding
tournaments are:



Single or Multiple Consensus for Linear Orders 197

1 2 3 4 5 6 1 2 3 4 5 6

1 � 0 0 0 0 1 � 5 5 0 0 0

2 9 � 5 9 1 11 0 � 0 0 0 0

3 9 0 � 5 0 9 0 1 � 0 0 0

4 3 0 0 � 0 3 7 9 9 � 3 3

5 11 0 3 1 � 7 3 5 5 0 � 0

6 0 0 0 0 0 � 1 7 5 0 1 �

The left one is transitive and corresponds to a unique median order .2 � 5 � 3 �
4 � 1 � 6/ with weight 87 while the right one is also transitive for the order
.4 � 6 � 5 � 1 � 3 � 2/ having weight 69. The generalized score of this
bipartition is larger than W1, since W2 D 13� 87C 9� 69 D 1131C 621 D 1752.
With the second method and ˛ D 1, we find back the same decomposition into two
classes and, with a larger value of ˛, we obtain three classes or more with a lower
score value (1463).

Consequently, if agronomists decide to select two varieties, with a single median
order they will retain 4 and 5. But the decomposition improving the generalized
score suggests to retain 2 and 4; the two orders may correspond to different soils or
climatic conditions.

6 Comparing the Event Orders in Jesus, Life

Long time ago, I met Louis Frey, who spent several years to compare the Synoptic
Gospels of Mark, Luke and Matthew. Observing that the narrations are as divergent
as they agree, he interested himself in the orders of the events in Jesus, life according
to the three relations, the fourth from John being not comparable. He wrote an
amazing book containing all necessary data [6].

His first task was to enumerate all the events and to label them, corresponding,
for instance, to speeches (the prediction of the birth of John the Baptist, the straw
and the beam), to maxims (The Talion Law), to miracles or reported facts (the
leper’s healing) by one or the other Evangelists. These events denoted blocks and are
precisely defined according to the number of consecutive verses that can be shared
by two or three narrations or specific to a single one. An annex document ranks, in
the Marc order, the block positions; so it is very easy to establish the permutations.

Since the narrations are far to agree, I wonder if there is a unique or multiple
consensus from these orders. Even common blocks are not sorted in the same way.
At the beginning, there are 428 blocks, but only 87 of them are present in the three
Gospels which, respectively, contain 202, 271 and 297 blocks. This means that many
of them are unique.
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The three permutations are displayed hereafter:

Mark: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87
Luke: 3 2 4 44 5 6 7 11 38 39 9 10 18 8 12 13 14 15 16 17 19 28 1 23 24 25 26
27 29 22 31 32 33 34 35 36 37 40 41 42 43 45 46 47 50 51 52 53 54 55 56 58 57
59 65 77 20 48 49 21 30 67 61 62 60 73 85 63 64 66 68 70 71 82 72 74 75 76 78
79 80 81 83 84 86 87 69
Matthew: 3 2 4 5 6 7 8 11 61 26 62 28 9 12 10 31 32 33 34 13 35 36 37 19 40 41
42 83 27 59 1 14 15 16 17 18 20 21 22 23 29 24 25 30 38 39 43 44 45 46 47 48
49 50 51 52 53 54 73 55 56 58 64 60 63 65 66 67 68 69 57 70 71 72 74 75 76 77
79 78 80 81 82 84 85 86 87

To compare these permutations, Frey makes several diagrams linking the identi-
cal blocks and showing numerous crossings. He also measured Kendall’s distance
between them and assesses that Mark’s Gospel is between the two others of Luke
and Matthew. Using a methodology coming from genome comparison, I computed
the longest common chains between these orders; these are series of blocks, not
necessarily consecutive but placed in the same order. Between Mark and Luke, 63
blocks are sorted in the same order; between Mark and Matthew there are 60 blocks,
but comparing Luke and Matthew, only 47 blocks are found. Looking for a longest
common chain to the three narrations, only 45 blocks can be found, just a little more
than half the common ones: this is one of the longest chains:

2 4 5 6 7 11 28 31 32 33 34 35 36 37 40 41 42 43 45 46 47 50 51 52 53 54 55 56
58 60 63 66 68 70 71 72 74 75 76 79 80 81 84 86 87.

As for Kendall’s distance values, these figures prove that Mark is closer to Luke
and Matthew than the later evangelists are. Consequently we may think, according
to Frey, that Mark’s Gospel was known by the two other evangelists. Although Mark
wasn’t a of Jesus disciple, while Luke and Matthew were, recent studies confirmed
that Luke used Mark’s Gospel as one of his sources. But I am more concerned by
the question “Is there sufficient common information to assess the uniqueness of the
source” rather than “Who wrote his Gospel first.”

Looking to consensus weights, the generalized score of the three evangelists in
one class is much larger (W1 D 29217) than the generalized score of these same
evangelists considered as independent (W3 D 11223). This is a new argument to
claim the unicity of the origin of the Gospels, even if strong divergences remain
unexplained, may be due to the author’s creativity or to the copyist’s extravagance.

7 Conclusions

We have described a simple method, based on the original generalized score
function, to realize a partitioning of a set of orders. It is an ordinal method extending
the consensus of a linear order profile, to a multiple consensus to improve the weight
of the collective opinion.
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The optimal partitioning of the profile is not guaranteed, and for large-size
problems, the computed median orders could be sub-optimal. Nevertheless, if a
generalized score of a partition in several classes is higher than the one of the
whole profile, one can claim this profile is not homogeneous and contains several
different opinions. In that case a multiple consensus provides a better summarizing
of them all.

This decomposition can be very useful in case of selection of several items in a
multicriteria selecting process.
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Choice Functions on Tree Quasi-Orders

F.R. McMorris and R.C. Powers

This paper is dedicated to Boris Mirkin on the occasion of his
70th birthday

Abstract The domain of social choice functions is extended to tree quasi-orders,
and versions of the theorems of Arrow, Muller–Satterthwaite, and Gibbard–
Satterthwaite are proved in this setting.

Keywords Choice function • Consensus function • Tree quasi-order
• Strategy-proof

1 Introduction

Social welfare functions defined on various types of preference relations have been,
and continue to be, well studied. (cf. [1, 6, 9, 13]) Under this formalism, functions
defined on other discrete structures such as tree-like hypergraphs have been called
consensus functions. Consensus functions have been extensively studied and applied
in classification theory, systematic biology, and other areas where aggregation
methods might be used [5]. For example, a direct version of Arrow’s theorem for
consensus functions defined on tree quasi-orders was proved in [11] and an analog
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of Wilson’s theorem for tree quasi-orders was proved in [12]. In the present paper
we consider choice functions on tree quasi-orders and prove analogs of the theorems
of Arrow, Muller–Satterthwaite, and Gibbard–Satterthwaite.

2 Definitions and Axioms

Let A be a finite set of alternatives with jAj � 3, and � a binary relation on A (i.e.,
a subset of A � A). We will write x�y instead of .x; y/ 2 �, :.x�y/ if .x; y/ …
�, and x��y if x�y and :.y�x/. The set of maximal elements of � is Max(�) =
fx 2 A W :.y��x/ for all y 2 Ag. If X � A, then �jX denotes the restriction
� \ X � X . Recall that a binary relation that is reflexive and transitive is a quasi-
order and a complete quasi-order is a weak order. In most models of social choice,
preference relations are required to be weak orders, whereby an individual either
strictly prefers one alternative to another or is indifferent to the two alternatives.
The simplest type of weak order (not allowing indifference) is a linear order, which
is a complete, transitive, anti-symmetric binary relation. To generalize away from
the requirement that a preference relation be complete, and allow alternatives to
be declared incomparable, we consider tree quasi-orders. A tree quasi-order is a
quasi-order � that satisfies the tree condition:

z�y and z�x ) x�y or y�x for any x; y; z 2 A:

Thus if an individual’s preference relation is modeled as a tree quasi-order, then
a comparison is required between x and y when both are less preferred than some
other alternative z; otherwise, it may be possible for x and y to be incomparable.

Let L , W , and T be the set of linear orders, weak orders, and tree quasi-orders
on A, respectively. Clearly, L � W � T .

Social welfare functions and social choice functions are two standard types of
functions encountered in mathematical social sciences when considering a society
of voters each having declared a preference relation. The current terminology used
when the domain extends away from linear or weak orders is the following. Let k

be an integer where k � 2 and K D f1; : : : ; kg. A consensus function on T is a
mapping f W T k ! T while a choice function on T is a mapping g W T k !
A. Elements of T k are called profiles and denoted by P D .�1; : : : ; �k/; P 0 D
.� 01; : : : ; � 0k/, etc. For any profile P and X � A, set P jX D .�1jX; : : : ; �kjX /:

In [11] a direct analog of Arrow’s theorem [2] was established for consensus
functions on tree quasi-orders. In order to contrast the axioms for choice functions
with those for consensus functions, we recall these standard axioms.

Let f W T k ! T be a consensus function.

P: f satisfies the Pareto condition if, for all x; y 2 A and profiles P D
.�1; : : : ; �k/,

x��i y for all i 2 K ) xf .P /�y:
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IIA: f satisfies Independence of Irrelevant Alternatives if, for all x; y 2 A and
profiles P; P 0 2 T k ,

P jfx;yg D P 0jfx;yg) f .P /jfx;yg D f .P 0/jfx;yg:

D: f is a Dictatorship if there exists j 2 K such that for any profile P D
.�1; : : : ; �k/ and x; y 2 A,

x��j y ) xf .P /�y:

We can now state the result in [11], whose proof follows along standard lines
with some modifications needed to account for the lack of completeness in tree
quasi-orders.

Theorem 1. If jAj � 3, a consensus function on T that satisfies IIA and P must be
a dictatorship.

In [12], analogous to results of [10, 17, 18], we investigated consensus functions
on T that satisfied IIA but not P. Replacing P with two simple profile conditions we
showed that if f satisfies IIA and these two conditions, then the symmetric part of
f is oligarchical and the asymmetric part of f is either trivial or quasi-oligarchical.

We now turn our attention to choice functions on T , the main topic of this paper.
As in [3] we use an asterisk to distinguish the choice axioms from the consensus
axioms. Let g W T k ! A be a choice function, and let g.T k/ D fx 2 A W g.P / D
x for some P 2 T kg:
P�: g satisfies the Pareto condition if, for all x; y 2 A and profiles P D

.�1; : : : ; �k/,

x 2 g.T k/ and x��i y for all i 2 K ) g.P / ¤ y:

IIA�: g satisfies Independence if, for all x; y 2 A with x ¤ y and profiles
P; P 0 2 T k ,

g.P / D x and P jfx;yg D P 0jfx;yg ) g.P 0/ ¤ y:

D�: g is a Dictatorship if there exists a j 2 K , called a g-dictator, such that for
any P D .�1; : : : ; �k/ 2 T k , :.x��j g.P // holds for all x 2 g.T k/:

Note that :.x��j g.P // for all x 2 g.T k/ can be stated as g.P / 2
Max.�j jg.T k//.

We will need the following theorem of Arrow for choice functions on linear
orders [3].

Theorem 2. Let g be a choice function g W L k ! A with jg.L k/j � 3. If g

satisfies IIA� and P�, then g must be a dictatorship on L .
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3 Main Result

Our main result will be to extend Theorem 2 from linear orders to tree quasi-orders.

Theorem 3. If g W T k ! A satisfies IIA�, P�, and jg.T k/j � 3, then there is a
g-dictator.

Proof. Assume g is a choice function on T that satisfies IIA� and P�, with
jg.T k/j � 3. Using P� it can be easily shown that g.L k/ D g.T k/ and
so jg.L k/j � 3. Now g restricted to L k satisfies IIA� and P� and so, by
Theorem 2, this restricted map is a dictatorship. Without loss of generality assume
j D 1 to be the dictator when g is operating on L k . Our goal is to show that 1 is a
dictator on the entire domain T k .

�i jfx;zg .� 0

i /jfx;y;zg

Fig. 1 Placing y in P 0 with respect to x and z.
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Suppose j D 1 is not a g-dictator. This means that there exist P D .�1; : : : ; �k/ 2
T k such that g.P / D z and x��1 z for some x 2 g.T k/. We will argue to a
contradiction by using a series of modifications to the profile P . Let y 2 g.T k/ n
fx; zg and define P 0 D .� 01; : : : ; � 0k/ 2 T k based on the four possibilities for �i jfx;zg.
Figure 1 shows how y is inserted when forming � 0i . We also require, for each i 2 K ,
that x.� 0i /�w, y.� 0i /�w, and z.� 0i /�w for every w 2 A n fx; y; zg. It follows from P�
that g.P 0/ ¤ w for all w 2 A n fx; y; zg. Since P 0jfx;zg D P jfx;zg and g.P / D z it
follows from IIA� that g.P 0/ ¤ x. Notice that y.� 0i /�z for all i 2 K . Therefore, by
P�, g.P 0/ ¤ z. Therefore, g.P 0/ D y.

Our next step is constructing another profile P 00 D .� 001 ; : : : ; � 00k / that satisfies the
relationships depicted in Fig. 2 based on the three possibilities for .� 0i /jfx;yg.

.� 0

i /jfx;yg .� 00

i /jfx;y;zg

Fig. 2 Placing z in P 00 with respect to x and y.

We also require x.� 00i /�w, y.� 00i /�w, and z.� 00i /�w for every w 2 A n fx; y; zg.
Since P 00jfx;yg D P 0jfx;yg and g.P 0/ D y it follows from IIA� that g.P 00/ ¤ x.
Since z.� 00i /�y for all i 2 K , P� implies that g.P 00/ ¤ y. Since z.� 00i /�w for all
i 2 K and any w 2 A n fx; y; zg it follows again from P� that g.P 00/ ¤ w for all
w 2 A n fx; y; zg. Thus, g.P 00/ D z.
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The third step is to construct a profile P 3 D .�3
1 ; : : : ; �3

k / that satisfies the
conditions in Fig. 3

.� 00

i /jfx;zg .�3
i /jfx;y;zg

Fig. 3 Placing y in P 3 with respect to x and z.

As in the previous constructions, we will require x.�3
i /�w, y.�3

i /�w, and z.�3
i /�w

for every w 2 A n fx; y; zg. Observe that x.�3
i /�y for all i 2 K and so g.P 3/ ¤ y

by P�. Also we have that x.�3
i /�w for all i 2 K and w 2 A n fx; y; zg so P� implies

g.P 3/ ¤ w for all w 2 A n fx; y; zg. Since P 3jfx;zg D P 00jfx;zg and g.P 00/ D z it
follows from IIA� that g.P 3/ ¤ x and therefore g.P 3/ D z:

Finally construct a fourth profile P 4 such that P 4jfy; zg D P 3jfy; zg and all
other elements of A form a linear order strictly below y and z in every �3

i . Since
either y.�3

i /�z or z.�3
i /�y for all i 2 K it follows that P 4 2 L k . Following what

happens to j D 1 when the profiles are modified we get y.�4
1 /�z. Since g restricted

to L k has dictator j D 1 it follows that g.P 4/ D y. Now P 4jfy;zg D P 3jfy;zg and
g.P 4/ D y so IIA� implies g.P 3/ ¤ z, a contradiction. ut

The role of completeness is subtle when studying Arrovian social choice
functions. The following example shows that if the domain is restricted in a specified
way, then it is possible to have a function satisfying IIA�, P�, and non-dictatorship.

Example. Suppose A D fx; y; zg, � D ı [ f.y; z/g, and � 0 D ı [ f.x; y/; .x; z/g.
The quasi-orders � and � 0 are shown in Fig. 4.
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Fig. 4 The quasi-orders �

and � 0

Let

D D W [ f�; � 0g:

Define g W D2 ! A as follows. For any profile P D .R1; R2/ 2 D2,

g.P / D

8
ˆ̂
<

ˆ̂
:

z if zR�1 y; zR�1 x; and R2 ¤ �

y if yR1z; yR�1 x; and R2 ¤ �

x otherwise:

The choice function g satisfies IIA�, P�, and is not a dictatorship.
Here is an argument for why g satisfies IIA�. Suppose P D .R1; R2/ and P 0 D

.R01; R02/ are two profiles. If P jfy;zg D P 0jfy;zg, then zR�1 y , z.R01/�y and so
f .P / D z implies that g.P 0/ ¤ y.

If P jfx;zg D P 0jfx;zg and g.P / D z, then zR�1 x; and R2 ¤ � . Now
zR�1 x; and R2 ¤ � implies that z.R01/�x; and R02 ¤ � . Observe that z.R01/�x
implies that R01 2 W and so either yR01z or z.R01/�y. If yR01z, then z.R01/�y implies
that z.R01/�x and we get g.P 0/ D y. If z.R01/�y, then we get g.P 0/ D z. In either
case, g.P 0/ ¤ x.

If P jfx;yg D P 0jfx;yg and g.P / D y, then we get y.R01/�x; and R02 ¤ � . Now
y.R01/�x implies that R01 2 W and so either yR01z or z.R01/�y. If yR01z, then we
get g.P 0/ D y. If z.R01/�y, then y.R01/�x implies that z.R01/�x and it follows that
f .P 0/ D z. In either case, g.P 0/ ¤ x. Hence g satisfies IIA�.

Observe that g.P / 2 Max.R1/ [Max.R2/ for any profile P D .R1; R2/ 2 D2.
This implies that g satisfies P�.

To see why g is not a dictatorship, consider the profile P D .R1; R2/ where
R1 D ı[f.y; x/; .x; z/; .y; z/g and R2 D � . Since R2 D � it follows that g.P / D x.
Now yR�1 g.P / with y 2 g.D/ implies that 1 is not a g-dictator. Since it is clear
that 2 is not a g-dictator it follows that g is not a dictatorship.

4 Monotone and Strategy-Proof Choice Functions

There are several other important theorems in addition to Arrow’s theorem on social
choice functions that are now considered classics. Among these are the theorems
of Muller and Satterthwaite [14], and Gibbard–Satterthwaite [8, 16] that present
other reasonable axioms on a social choice function that lead to dictatorships. There
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are many expositions of these theorems, a nice one being [15]. In this section we
establish versions of these theorems for tree quasi-orders. Let g W T k ! A be a
choice function.

M�: g is Monotone if for any x 2 A and profiles P D .�1; : : : ; �k/, P 0 D
.� 01; : : : ; � 0k/

g.P / D x ) g.P 0/ D x

whenever fi W x��i yg � fi W x.� 0i /�yg for all y 2 A with x ¤ y.

The next theorem is our analog for the Muller–Satterthwaite theorem [14].

Theorem 4. If g is a choice function g W T k ! A that satisfies M� and
jg.T k/j � 3, then there is a g-dictator.

Proof. Assume g satisfies the conditions M� and jg.T k/j � 3. We will prove g

satisfies IIA� and P�, so by Theorem 3 the result follows. To show that g satisfies
IIA� let P D .�1; : : : ; �k/ and P 0 D .� 01; : : : ; � 0k/ be profiles such that P jfx;yg D
P 0jfx;yg: Suppose g.P / D x. We must show g.P 0/ ¤ y.

Construct P 00 D .� 001 ; : : : ; � 00k / where each � 00i has x.� 00i /�z and y.� 00i /�z for all
z 2 A with z … fx; yg and also P 00jfx;yg D P jfx;yg.D P 0jfx;yg/. Now g.P / D x

and fi W x��i zg � fi W x.� 00i /�zg for all z ¤ x. So M* gives g.P 00/ D x: Using the
same reasoning we get if g.P 0/ D y, then g.P 00/ D y: Therefore we must have
g.P 0/ ¤ y:

To show g satisfies P�, let x; y 2 A with x 2 g.T k/ and let P D .�1; : : : ; �k/ be
a profile such that x��i y for all i 2 K . We must show g.P / ¤ y. Since x 2 g.T k/,
there exists a profile P 0 D .� 01; : : : ; � 0k/ such that x D g.P 0/. Let P 00 D .� 001 ; : : : ; � 00k /

where each � 00i is a weak order with x.� 00i /�z for all z ¤ x. Then fi W x.� 0i /�zg � fi W
x.� 00i /�zg for all z ¤ x, so M* implies g.P 00/ D x: Since P 00jfx;yg D P jfx;yg and g

satisfies IIA* from the above, we have g.P / ¤ y. ut
SP�: The choice function g is Strategy-Proof if for every profile P D .�1; : : : ;

�k/, � 2 T and every i 2 K , :.g.�1; : : : ; �i�1; �; �iC1; : : : ; �k/��i g.P //.

Theorem 5 is the Gibbard–Satterthwaite theorem for weak orders.

Theorem 5. If g is a choice function on weak orders, g W W k ! A that satisfies
SP� and jg.W k/j � 3, then there is a g-dictator.

This theorem can also be extended easily to tree quasi-orders, following a proof
outline similar to that found in [7]. We note that Campbell [4] has proved something
even more general so that this theorem holds for any domain that contains the linear
orders. Nevertheless we include a proof of Theorem 6.

Theorem 6. If g is a choice function on T that satisfies SP� and jg.T k/j � 3,
then there is a g-dictator.

Proof. Assume g is a choice function on T that satisfies SP� and jg.T k/j � 3. We
first show g.W k/ D g.T k/. Clearly g.W k/ � g.T k/. Assume x 2 g.T k/ but
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x … g.W k/. Then x D g.P / for some P D .�1; : : : ; �k/ 2 T k . Now x … g.W k/

implies that for a particular P 0 D .!1; : : : ; !k/ 2 W k with fxg D Max.!i / for all
i 2 K , we have g.P 0/ ¤ x. If f .!1; �2; : : : ; �k/ ¤ x, then

f .�1; : : : ; �k/!�1 f .!1; �2; : : : ; �k/

contrary to the fact that g satisfies SP�. If f .!1; �2; : : : ; �k/ D x, then there
exists a smallest integer j � 2 such that g.!1; : : : ; !j�1; �j ; : : : ; �k/ D x,
but g.!1; : : : ; !j ; �jC1; : : : ; �k/ D y ¤ x. Since x!�j y, this again leads to a

contradiction to that fact that g satisfies SP�. So we must have x 2 g.W k/.
Let g? D gjW k . Since g? satisfies SP� and jg?.W k/j � 3, by Theorem 5 there

is a g?-dictator. Without loss of generality suppose i D 1 is the g?-dictator. We will
show that g is a dictatorship with i D 1 being the g-dictator. Let P D .�1; : : : ; �k/

be a profile in T k . We must show g.P / 2 Max.�1/:

Construct k weak orders !1; : : : ; !k that satisfy the following: Max.!1/ D
Max.�1/ and Max.!i / D A n Max.�1/ for all i ¤ 1. Consider the profiles
P0 D P D .�1; : : : ; �k/ and for each i 2 K let Pi D .!1; : : : ; !i ; �iC1; : : : ; �k/:

So g?.Pk/ D g.Pk/ 2 Max.�1/ D Max.!1/. Since g.Pk/ 2 Max.�1/, there is a
smallest j such that g.Pj / 2 Max.�1/: If j D 0, then g.P0/ 2 Max.�1/ which
is what we want to prove. If j D 1, then g.P1/.�1/

�g.P / which contradicts SP�.
If j > 1, then g.Pj�1/.!j /�g.Pj / which also contradicts SP�, and the proof is
complete. ut
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Weak Hierarchies: A Central Clustering
Structure
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Abstract The k-weak hierarchies, for k � 2, are the cluster collections such that
the intersection of any .k C 1/ members equals the intersection of some k of them.
Any cluster collection turns out to be a k-weak hierarchy for some integer k. Weak
hierarchies play a central role in cluster analysis in several aspects: they are defined
as the 2-weak hierarchies, so that they not only extend directly the well-known
hierarchical structure, but they are also characterized by the rank of their closure
operator which is at most 2. The main aim of this chapter is to present, in a unique
framework, two distinct weak hierarchical clustering approaches. The first one is
based on the idea that, since clusters must be isolated, it is natural to determine
them as weak clusters defined by a positive weak isolation index. The second one
determines the weak subdominant quasi-ultrametric of a given dissimilarity, and
thus an optimal closed weak hierarchy by means of the bijection between quasi-
ultrametrics and (indexed) closed weak hierarchies. Furthermore, we highlight the
relationship between weak hierarchical clustering and formal concepts analysis,
through which concept extents appear to be weak clusters of some multiway
dissimilarity functions.
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1 Introduction

Cluster analysis, also named clustering, is a basic unsupervised learning task which
is generally understood to be the search for groups in the data set in such a way
that the obtained groups, called clusters, are both homogeneous and well separated.
In a general setting, the degrees of homogeneity and separation of clusters are
computed from a two-way map, called dissimilarity, that generalizes the usual
notion of distance defined between any two entities of the data set. Partition and
hierarchy of clusters,1 also called simply hierarchy, are the most known types of
structure in cluster analysis. Since any two clusters of a partition and of a hierarchy
are either disjoint or nested, one major limitation of these structures is that they do
not allow any overlap between two clusters, which is a drawback since real data
sets may include overlapping clusters. Since the 1980s, several extensions of the
set of hierarchies have been investigated in order to allow overlapping clusters,
e.g. [2, 4, 9, 18, 20, 22, 23]. Among these extensions, two have been considered in
several papers, namely the pyramids, also called sometimes pseudo-hierarchies, and
the weak hierarchies. Given a data set E , a pyramid is a collection of subsets of
E for which there exists a total order, defined on E , such that each cluster is an
interval of this order. A weak hierarchy is any collection W of subsets of E such
that A \ B \ C 2 fA \ B; B \ C; A \ C g for all members A; B; C of W. It is
clear that pyramids are a particular case of weak hierarchies. Since a hierarchy can
be defined as any collection H of subsets of E such that A \ B 2 fA; B;;g for
all members A; B of H, weak hierarchies are a natural extension of the hierarchies.
In addition, they admit interesting combinatorial properties [2, 4, 18] such as the
property that the closure operator associated with a weak hierarchy has rank at most
2. The purpose of this chapter is to present clustering algorithms that generate a
weak hierarchy defined on a data set E , provided that E is equipped with a given
dissimilarity. One of these algorithms, is based on the idea that, since clusters must
be homogeneous, it is natural to define clusters as the subsets that are convex in some
abstract sense. A different approach, proposed in [13], consists in approximating the
given dissimilarity by a quasi-ultrametric, since quasi-ultrametrics and (indexed)
closed weak hierarchies are in one-one correspondence.

The content of this text is as follows: next section reminds to the reader some
basic terminology used in the theory of clustering and elementary properties of
weak hierarchies. Section 3 provides two different algorithms of weak hierarchical
clustering, each of them being derived from a different definition of plausible
clusters, i.e. subsets that are homogeneous and/or well separated according to
an arbitrary given dissimilarity. Section 4 presents a different type of clustering

1The hierarchical structure is a highly versatile structure, as attested by hierarchies in cluster
analysis, ontologies in knowledge representation, decision trees in supervised classification and
by tree-based data structures such as PQ-trees.
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algorithm [13] in the sense that it consists first in computing the weak subdominant
quasi-ultrametric of a dissimilarity, and then in generating the unique closed weak
hierarchy associated with this quasi-ultrametric approximation. Last section is
devoted to a link between weak hierarchies and Galois lattices.

2 Background

2.1 Dissimilarities and Standard Subsets

In the following, E denotes the ground set which is assumed to be arbitrary and
finite. A dissimilarity designates any map d W E �E 7! R

C such that, for each x; y

in E � E , we have

d.x; y/ D d.y; x/ � d.x; x/ D 0:

A dissimilarity is said to be proper if d.x; y/ D 0 implies x D y. Let x; y be
two (not necessarily distinct) elements of E , d be an arbitrary dissimilarity defined
on E , and r be a nonnegative real number. The d -ball (or simply ball) of center
x and radius r is the set Bd .x; r/ (or simply B.x; r/) of elements of E whose
d -dissimilarity degree from x is at most r , i.e., formally,

Bd .x; r/ D B.x; r/ D fz 2 E W d.x; z/ � rg:

The .d; 2/-ball (or simply 2-ball) generated by x; y is the set denoted as Bd
xy (or

simply Bxy) and defined by

Bd
xy D Bxy D B.x; d.x; y// \ B.y; d.x; y//:

Figure 1 illustrates these notions in the case of an Euclidean dissimilarity
function.

The diameter of a nonempty subset A of E , denoted as diamd A, or diam A if
there is no ambiguity on the choice of d , is defined as diam A D maxfd.a; b/ W
a; b 2 Ag. A subset M of E is said to be maximally linked in the sense of d , or
shortly an ML-set, if for all subset N such that M � N , we have diamd M <

x r x y

a b

Fig. 1 (a) A ball of center x

and radius r and (b) a 2-ball
generated by x; y
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diamd N . A subset M is said to be maximally linked at level h (in the sense of d )
if it is maximally linked and if diamd M D h. It is easily checked that a subset of
E is maximally linked if and only if it is a maximal clique for at least one threshold
graph associated with a symmetric binary relation T d.h/ (with h 2 R

C) that is
defined by T d.h/ D f.a; b/ W d.a; b/ � hg. The collection of maximally linked
(in the sense of d ) subsets is denoted as ML.T d/. There exists a close relationship
between the ML-sets and the 2-balls. For any x; y 2 E , let M.x; y/ denote the set
defined by M.x; y/ D fM 2 ML.T d/ W x; y 2 M; diam M D d.x; y/g. Then it
can be proved [10] that we have

Bxy D
[

M.x; y/:

Consider now two elements of E and let M be an ML-set of level h. Because the
dissimilarity degree between these two elements is either less than h if both of them
belong to M , or greater than h if only one of them belongs to M , maximally linked
subsets are both homogeneous and well separated, and thus they are good candidate
for being clusters. Furthermore, there exists a fundamental bijection between col-
lections of ML-sets and dissimilarities. More precisely, the general correspondence
˚ that associates each dissimilarity d with the pair .ML.T d/; diamd / is a bijection
between the set of dissimilarities on E and the collection of pairs of the form .F; f /

where F denotes any collection of nonempty subsets of E that contains E and
where f W F 7! R

C is an increasing map from .F;�/ to .RC;�/ satisfying the
so-called Gilmore condition and another technical condition (see [5, 7] for more
details). The bijection ˚ is, indeed, an extension of bijections that were established
between various classes of dissimilarities and various types of clustering structures:
we will give examples of such bijections in Sects. 2.2 and 2.3.

In what follows, we will consider two types of dissimilarities. First, we will
consider the well-known ultrametrics: a dissimilarity on E is called an ultrametric
if for all x; y; z 2 E ,

d.x; z/ � maxfd.x; y/; d.y; z/g: (U)

Ultrametrics are a particular type of quasi-ultrametrics. A quasi-ultrametric is
any dissimilarity on E which satisfies the so-called four points inequality [1], i.e.
such that, for all x; y; z; t 2 E ,

maxfd.z; x/; d.z; y/g � d.x; y/ ) d.z; t/ � maxfd.t; x/; d.t; y/; d.x; y/g:
(QU)

It is well known that the ultrametric inequality (U) admits a simple geometric
interpretation: (U) is equivalent to assert that each triangle is isosceles with the
length of the basis less than or equal to the common length of the two other sides.
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The four points inequality (QU) is equivalent to the conjunction of two
conditions: the diameter condition and the inclusion condition [18]. These two
conditions are defined as follows:

– Inclusion condition: 8a; b 2 E; Bxy � Bab , for all x; y 2 Bab;
– Diameter condition: 8a; b 2 E; diam Bab D d.a; b/.

2.2 Hierarchies

A collection H of subsets of a finite entity set E is said to be a strong hierarchy if
its members are pairwise either disjoint or nested, i.e.:

(H1) Two members X; Y of H are either disjoint or nested, or equivalently, X \
Y 2 f¿; X; Y g.

The well-known hierarchies are a type of strong hierarchies. More precisely, a
hierarchy, also called hierarchy of clusters, designates any strong hierarchy which
satisfies the following two conditions:

(H2) E 2 H and ¿ … H;
(H3) The minimal members of H partition E .

Each hierarchy is usually visualized by its associated Hasse diagram, which is a
kind of tree diagram that represents the covering relation of the set inclusion order
defined on the set of clusters.

An indexed hierarchy designates any pair .H; f / where H is a hierarchy and
f W H 7! R

C is an increasing map, i.e. f .A/ < f .B/ whenever the strict inclusion
A � B holds true for any two clusters A; B . From a practical point of view, the
index f is used to indicate the degree of heterogeneity of each cluster. An indexed
hierarchy .H; f / is represented by a weighted Hasse diagram, called dendrogram,
that is a Hasse diagram of H where each node A is displayed at a height (in the tree
diagram) which is proportional to its weight f .A/. If some partition of the data set
exists such that clusters are well separated with respect to the dissimilarity related
to the data set E , then most hierarchical clustering methods provide dendrograms
that enable to detect graphically this partition of the data set.

Let us recall the well-known bijection between ultrametrics and indexed hierar-
chies. Note that in the case where a dissimilarity d is ultrametric, then the ML-sets
of d coincide with the balls of d .

Proposition 1 ([6, 25]). The restriction of ˚ to the set U of ultrametrics defines a
bijection from U onto the set of indexed hierarchies.

By condition (H1), the members of hierarchies don’t overlap. This makes them lack
to represent situations where two properly intersecting entity subsets share features,
as can be observed in Table 1 which presents a data set, say D, about five market
baskets and five items: bread (brd), butter (btr), cheese (chs), eggs (egg), milk (mlk);
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Table 1 Example of data set:
description of five basket
entities

brd btr chs egg mlk

1 x x x
2 x x x x
3 x x
4 x x x
5 x x x x

{5}{2} {3} {4}{1}

Fig. 2 Hasse diagram of
hierarchy H1

for instance, the market basket labeled 1 contains butter, cheese and milk. Basket
sets X1 WD f1; 2; 3g, X2 WD f3g and X3 WD f3; 4; 5g can never be members of the
same hierarchy despite the fact that items characterizing basket 3 (butter and cheese)
are shared by baskets in X1 and X3.

Figure 2 represents a hierarchyH1 on the 7-element set E1 WD f1; 2; 3; 4; 5; 6; 7g.
The leaves (bottom-most level) are minimal members of H1: f1g; f2g; f3g; : : : ; every
internal node is the union of its sons.

2.3 Weak Hierarchies

Weak hierarchies have been independently introduced, in the framework of cluster
analysis, by Batbedat, under the name “Médinclus hypergraps,” and by Bandelt and
Dress [2], in the fall 1980s. Bandelt and Dress called them weak hierarchies since
they are defined by weakening the nestedness condition (H1) that characterizes the
so-called strong hierarchies. A weak hierarchy on E is a collection W of subsets of
E , satisfying:

(WH) The intersection of any three members X; Y; Z of W is always the
intersection of two of these three, i.e., X \ Y \Z 2 fX \ Y; X \Z; Y \Zg.

Condition (WH) is equivalent to the following forbidden configuration: there are
no three members X1; X2; X3 and three elements x1; x2; x3 such that xi 2 Xj if
and only if i ¤ j . Figure 3 represents a weak hierarchy W2 on the 4-element set
E2 WD f1; 2; 3; 4g.

A weak hierarchy W is said to be closed if it is closed under nonempty finite
intersections, in other words if, for all A; B 2W, we have A\B 2W[f;g. Given
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{1} {2} {3} {4}

Fig. 3 A weak hierarchy

an arbitrary weak hierarchy W, its closure under nonempty finite intersections
will be denoted as OW. Given an arbitrary collection F of subsets of E , we will
denote as h iF the closure operator that associates each subset A of E withTfF 2 F W A � F g. With these notations, we may then formulate two main
combinatorial properties of weak hierarchies that emphasize the central role of the
weak hierarchical structure in the theory of clustering.

Proposition 2 ([2]). Given a collection F of subsets of E , the following conditions
are equivalent:

(i) F is a weak hierarchy;
(ii) The operator h iF has rank at most 2, i.e. for each nonempty subset A of E ,

there exist a; b 2 A such that hA iF D h a; b iF;
(iii) OF is a weak hierarchy.

Denoting as B2.d/ the set of 2-balls, in the sense of a dissimilarity d , the
following property holds true.

Proposition 3 ([7]). Given a proper dissimilarity d , the following conditions are
equivalent:

(i) ML.T d/ D B2.d/

(ii) The collection B2.d/ is closed;
(iii) ML.T d/ is a closed weak hierarchy.

We close this section with the result of a one-to-one correspondence between the
class of quasi-ultrametrics and the indexed closed weak hierarchies.

Proposition 4 ([18]). The restriction of ˚ to the set Q of quasi-ultrametrics defines
a bijection from Q onto the set of indexed closed weak hierarchies.
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3 Obtaining a Weak Hierarchy from a Dissimilarity Measure

3.1 Weak Clusters

Dissimilarity functions play an important role in cluster analysis where they are
often used for constructing clusters having a weak within-cluster and/or a strong
between-cluster dissimilarity degrees [26]. Weak clusters introduced in [2] in the
framework of pairwise similarity measures are among these clusters. They are said
to be weak in contrast to the so-called strong clusters. A subset X of E is said to
be a strong cluster associated with a pairwise dissimilarity function d (or d -strong
cluster), if its d -strong isolation index

isd .X/ WD min
x;y2X

z…X

fd.x; z/ � d.x; y/g

is strictly positive.
Figure 4 illustrates the configuration satisfied by a strong cluster associated with

a pairwise dissimilarity function, say d : for all x; y within the cluster and z outside,
each of the dissimilarities d.x; z/ and d.y; z/ is greater than the dissimilarity
d.x; y/.

A nonempty subset X of E is said to be a weak cluster associated with a pairwise
dissimilarity function d (or d -weak cluster), if its d -weak isolation index

iwd .X/ WD min
x;y2X

z…X

fmaxfd.x; z/; d.y; z/g � d.x; y/g

is strictly positive. Figure 5 presents the configuration satisfied by a weak cluster
associated with a pairwise dissimilarity function, say d : for all x; y within the
cluster and z outside, at least one of the dissimilarities d.x; z/ and d.y; z/ is greater
than the dissimilarity d.x; y/.

z

yx
Fig. 4 Strong cluster
associated with a pairwise
dissimilarity measure
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z

y yxx

z

Fig. 5 Weak cluster associated with a pairwise dissimilarity measure

It should be noticed that any d -strong cluster is a d -weak one. Moreover, it
is easily shown that the strong (resp. weak) clusters associated with a pairwise
dissimilarity function form a strong (resp. weak) hierarchy [2].

Proposition 5. Let d be a pairwise dissimilarity function on E . Then

(i) The strong clusters associated with d form a strong hierarchy called the strong
hierarchy associated with d .

(ii) The weak clusters associated with d form a weak hierarchy called the weak
hierarchy associated with d .

3.2 Weak Clusters and 2-Balls

In Sect. 3.1, we have seen that weak hierarchies are related to dissimilarity functions
via weak clusters. These weak clusters turn out to be special 2-balls. Below is a
characterization of a weak cluster as a subset containing the 2-balls generated by
each of the pairs of its (not necessarily distinct) elements [17].

Proposition 6 ([17]). Let d be a dissimilarity function on E . A subset X of E is a
d -weak cluster if and only if it satisfies the so-called inclusion property, i.e.,

8x; y 2 X W Bd
xy � X:

From Proposition 6, it can be easily derived that every nonempty weak cluster is
a 2-ball.

Proposition 7 ([17]). Let d be a dissimilarity function on E . If a subset X of E is
a d -weak cluster, then X D Bd

xy , where x; y are such that d.x; y/ D max
u;v2X

d.u; v/.

Finally, it follows from Propositions 5 and 7 that the weak hierarchy associated
with a dissimilarity function d is the set of 2-balls of d satisfying the inclusion
property, augmented with the empty set. This provides us with a way for specifying a
weak hierarchy from any dissimilarity function. Moreover, it has been shown in [17]
that nonempty members of any weak hierarchy are the 2-balls of some dissimilarity
function.
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Algorithm 1 WH(E; d )
Input: A finite nonempty entity set E and a dissimilarity measure d on E .
Output: The weak hierarchy Wd associated with d .
1: Set Wd WD ¿
2: for i; j 2 E do
3: if Bd

ij is not already considered then
4: LWI2B(i; j; E)
5: if Bd

ij is weakly isolated then
6: Wd Wd [ fBd

ij g
7: DWI2B(i; j;Wd )
8: end if
9: end if

10: end for

3.3 Algorithms

3.3.1 The Bandelt and Dress Algorithm

Given a dissimilarity measure d on E , the following algorithm, which was proposed
by Bandelt and Dress [2], computes the weak hierarchy associated with d . This
algorithm can be described as follows. Assume that E D fe1; : : : ; eng, one
successively computes the weak hierarchy Wd

k associated with the restriction of
d to fe1; : : : ; ekg (k � n). Put Wd

0 D ¿. If Wk is determined for k < n, then for
each cluster C belonging to Wk, one checks whether:

(a) maxfd.ei ; ekC1/; d.ej ; ekC1/g > d.ei ; ej / for all i; j � k with ei ; ej 2 C ,
(b) maxfd.ei ; ej /; d.ej ; ekC1/g > d.ei ; ekC1/ for all i; j � k with ei 2 C and

ej … C ,

holds. Then, Wd
kC1 contains C if and only if (a) holds, and it contains C [ fekC1g

if and only if (b) holds. Finally, Wd
n is the weak hierarchy associated with d .

Bandelt and Dress observe that this algorithm executes in O.n5/ even though it
looks exponential.

3.3.2 A 2-Ball Convexity-Based Algorithm

Given a dissimilarity measure d on E , Algorithm 1 is designed for computing the
set of 2-balls of d that satisfy the inclusion property, hence the weak hierarchy
associated with d . The computation of a not already considered 2-ball Bd

ij depends

on the fact that the pair fi; j g is picked from a 2-ball Bd
uv already known to be

weakly isolated or not. If fi; j g is not picked from a 2-ball Bd
uv already known to

be weakly isolated, Algorithm 2 is used for computing Bd
ij , supplying successively

entities picked from E (line 4). Once a weakly isolated 2-ball Bd
ij is computed and

Bd
ij inserted in the current set Wd , Algorithm 3 is called on the triple .i; j;Wd /

(lines 5–8).



Weak Hierarchies: A Central Clustering Structure 221

Algorithm 2 LWI2B(i; j; X )
Input: A finite nonempty entity subset X and an entity pair fi; j g.
Output: The 2-ball Bd

ij if Bd
ij is weakly isolated.

1: Set Bd
ij D fi; j g

2: Set B
d

ij D¿
3: for k 2 X do
4: if maxfd.i; k/; d.j; k/g � d.i; j / then
5: Bd

ij Bd
ij [ fkg

6: for u 2 Bd
ij and v 2 B

d

ij do
7: if maxfd.k; v/; d.u; v/g � d.k; u/ then
8: mark Bd

ij as already considered and go to STOP
9: end if

10: end for
11: else
12: B

d

ij B
d

ij [ fkg
13: for u; v 2 Bd

ij do
14: if maxfd.u; k/; d.v; k/g � d.u; v/ then
15: mark Bd

ij as already considered and go to STOP
16: end if
17: end for
18: end if
19: end for
20: mark Bd

ij as weakly isolated

21: mark Bd
ij as already considered

22: STOP

Algorithms 3 and 2 compute a weakly isolated 2-ball, say Bd
ij , depending on

the entities i and j are chosen or not from a 2-ball known to be weakly isolated.
Let us first describe Algorithm 2. It computes the 2-ball Bd

ij when Bd
ij is weakly

isolated, supplying entities successively picked from an entity set X . The 2-ball Bd
ij

is initially set to its generator (line 1), and its complement B
d

ij is initially set to the
empty set (line 2). Then entities k are picked from X and tested to know whether

they belong to Bd
ij or B

d

ij (line 4). After assigning k to either Bd
ij or B

d

ij (line 5 or

12), we test whether the current set Bd
ij is weakly isolated relatively to the current

set B
d

ij ; if this test is negative, the construction of Bd
ij is stopped (lines 6–10 or

13–17). If Bd
ij[B

d

ij D X , then Bd
ij is weakly isolated. The following straightforward

property will be useful in the computation of weakly isolated 2-balls.

Proposition 8. Let d be a dissimilarity function on E . Let Bd
xy be a weakly

isolated 2-ball containing u; v. If d.u; v/ � d.x; y/ and Bd
uv is weakly isolated,

then Bd
uv D Bd

xy .
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Algorithm 3 DWI2B(i; j;F)
Input: An entity pair fi; j g and a (potentially empty) set F of 2-balls.
Output: A (potentially empty) set F of 2-balls Bd

uv, where u; v 2 Bd
ij and Bd

uv is weakly
isolated.
1: for u; v 2 Bd

ij do
2: if Bd

uv is not already considered then
3: if d.i; j / � d.u; v/ then
4: mark Bd

uv as already considered
5: else
6: LWI2B(u; v; Bd

ij )
7: if Bd

uv is weakly isolated then
8: F F[ fBd

uvg
9: DWI2B(u; v;F)

10: end if
11: end if
12: end if
13: end for

Table 2 A dissimilarity data
on a six-element entity set

x 0
y 3 0
z 4 4 0
t 5 2 3 0
u 1 2 5 1 0
v 4 1 5 6 1 0

x y z t u v

In Algorithm 3, Bd
ij is assumed to be weakly isolated. For u; v 2 Bd

ij , either

(1) d.i; j / � d.u; v/ or (2) d.i; j / > d.u; v/. In case (1), if Bd
uv was weakly

isolated, then by Proposition 8, we would have Bd
uv D Bd

ij and there would be no

need to keep Bd
uv since Bd

ij is assumed to be already considered (lines 3–4). In case

(2), Algorithm 2 is used for the computation of Bd
uv (if weakly isolated), supplying

entities picked successively from Bd
ij (line 6). Indeed, as Bd

ij is assumed to be weakly

isolated, Bd
uv � Bd

ij by Proposition 6. Therefore, entities outside Bd
ij , hence outside

Bd
uv, cannot prevent Bd

uv from being weakly isolated. If Bd
uv is weakly isolated, then

Algorithm 2 is recursively called on the triple .u; v;F/ after insertion of the 2-ball
Bd

uv in F (lines 7–10).

Example 1. As an example, let us consider the following dissimilarity measure, say
d , on the 6-element entity set E D fx; y; z; t; u; vg, which is defined in Table 2. The
weak hierarchy associated with d is given in Table 3.
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Table 3 The weak hierarchy
associated with the
dissimilarity given in Table 2

Cluster size Clusters

0 ;
1 fxg ; fyg ; fzg ; ftg ; fug ; fvg
2 fx; ug ; fy; vg ; fz; tg ; ft; ug ; fu; vg
6 fx; y; z; t; u; vg

4 Obtaining a Weak Hierarchy via the Weak Subdominant
Quasi-Ultrametric of a Dissimilarity

As previously seen in Sect. 2, there exists a bijection between quasi-ultrametrics
and indexed closed weak hierarchies. This bijection has been studied in detail in
[17]. It associates each quasi-ultrametric, say d , with the indexed closed weak
hierarchy .W; f / D .B2.d/; diamd /. Conversely, the inverse bijection associates
each indexed closed weak hierarchy .W; f / with its induced dissimilarity which
is here a quasi-ultrametric. Therefore, an approach to achieve a weak hierarchical
clustering consists in: first, determine a quasi-ultrametric which is an approximation
of the dissimilarity given as an input data, and then compute the indexed weak
hierarchy associated with the obtained quasi-ultrametric. This section is devoted
to an approach of this type, proposed by Brucker [13], which aims to determine a
weak subdominant quasi-ultrametric of any dissimilarity d , the weak subdominant
being an extension of the more classical notion of subdominant.

4.1 Subdominant, Weak Subdominant of a Dissimilarity

Let us consider the set D of all dissimilarities on E . The set D is endowed with the
point-wise order denoted as  and defined as follows. Given two dissimilarities d1

and d2 defined on E , it is said that d1  d2 if for all x; y 2 E , we have d1.x; y/ �
d2.x; y/. The binary relation  is clearly a partial order defined on D. Given a
subset D0 of D and an arbitrary dissimilarity d 2 D, we consider the down set
.# d/ defined by

# d D fd 0 2 D0 W d 0  d g:

The set U of ultrametrics on E and the set Q of quasi-ultrametrics on E will
be considered later as examples of subset D0. From a general point of view,
several types of lower D0-approximations can be investigated according to the three
following possible disjoint cases:

1. .# d/ admits a (unique) greatest element. In this case, this greatest element is, by
definition, called the subdominant in D0 of d , or simply the subdominant of d if
there is no ambiguity on the choice of D0. It is well known that each dissimilarity
d admits a subdominant in U, which is called the subdominant ultrametric of d .
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Table 4 The weak
subdominant
quasi-ultrametric q.d/ of the
dissimilarity d given in
Table 2

x 0
y 3 0
z 4 4 0
t 3 2 3 0
u 1 2 4 1 0
v 3 1 4 2 1 0

x y z t u v

2. .# d/ admits only one maximal element, but this maximal element is not the
greatest. Then this unique maximal element will be called the weak subdominant
in D0 of d , or simply the weak subdominant of d if there is no ambiguity on
the choice of D0. Such a case happens when .# d/ not only admits a maximal
dissimilarity, say d ?, but also contains dissimilarities that are incomparable with
d ? and whose set is not bounded w.r.t. order . It was proved in [13] that
each dissimilarity d admits a weak subdominant in Q, which is called the weak
subdominant quasi-ultrametric of d ; see next Sect. 4.2 for more details.

3. .# d/ admits more than one maximal elements. In this case, such maximal
dissimilarities can be said to be lower maximal dissimilarities in D0 w.r.t. d , or
simply the lower maximal dissimilarities w.r.t. d if there is no ambiguity on the
choice of D0. It was proved in [8] that each dissimilarity d admits lower maximal
dissimilarities in the set D0 of the so-called paired-ultrametrics.

4.2 Algorithm for Computing the Weak Subdominant
Quasi-Ultrametric

We now present Algorithm 4 which is proposed in [13]. This algorithm provides
a constructive proof of the existence of the weak subdominant quasi-ultrametric of
any dissimilarity.

Let us call quatuor of E any subset Q of E of size 4. Moreover, given any
x; y 2 E , let us denote as QŒx; y� the set of all quatuors containing both x and y.
A quatuor Q will be said to be quasi-ultrametric for d whenever the restriction of
d to Q is quasi-ultrametric. In order to introduce Algorithm 4, we need two more
notations. For any subset A of size at least 2, we denote as A.2/ the set of pairs of
(distinct) elements in A. Note that if Q is a quatuor, then jQ.2/ j D 6. We also denote
n DjE j.

Note that, in step 8 of Algorithm 4, the set arg maxfdi .u; v/ W u; v 2 Qg is
reduced to a single element since, if Q is a non-quasi-ultrametrical quatuor for di ,
then there exists a unique pair .uQ; vQ/ from Q such that di .uQ; vQ/ D diamdi.Q/

(see Proposition 6(2) in [13]).
It is easily checked that the complexity of this algorithm is O.n4/. The

next technical lemma is useful in order to prove the main result provided by
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Algorithm 4 WSDQ(E; d )
Input: A finite set E and a dissimilarity d defined on E .
Output: The weak subdominant quasi-ultrametric of d .
1: Set F0 WD ¿
2: Set d0 WD d

3: for i D 0 to n.n� 1/=2 do
4: Set .x; y/ 2 arg minfdi .u; v/ W u; v 62 Fig
5: diC1 D di

6: for Q 2 QŒx; y� do
7: if Q is not quasi-ultrametrical for di AND jQ.2/ \ Fi jD 4 then
8: Set .uQ; vQ/ D arg maxfdi .u; v/ W u; v 2 Qg
9: diC1.uQ; vQ/ D di .x; y/

10: end if
11: end for
12: FiC1 D Fi [ ffx; ygg
13: end for
14: return dn.n�1/=2

Proposition 9. Note that property (i) is trivial and that (ii) implies that the restriction
of di to subset Fi is a quasi-ultrametric.

Lemma 1 ([13]). Denote m D n.n�1/=2 and Œm� D f0; 1; : : : ; n.n�1/=2g. Then,
using the notations defined in Algorithm 4, the following properties hold true.

(i) If i < m, then Fi ¨ FiC1 and diC1 � di , so that Fm D E.2/.
(ii) If .x; y/ D arg minfdi.u; v/ W u; v 62 Fi g and if Q 2 QŒx; y� and jQ.2/ \ Fi j
� 5, then Q is quasi-ultrametrical for di .

(iii) Let d 0 � d be quasi-ultrametric. If there exists i 2 Œm� and fx; yg 2 E.2/ such
that d 0.x; y/ > di .x; y/, then there exists fu; vg 2 E.2/ such that d 0.u; v/ <

dj .u; v/ for all j 2 Œm�.

As a nontrivial consequence of Lemma 1, one can establish the following result
which proves that Algorithm 4 constructs the weak subdominant quasi-ultrametric
of any dissimilarity.

Proposition 9 ([13]). Let d be an arbitrary dissimilarity defined on E . Then
dn.n�1/=2 is the weak subdominant quasi-ultrametric of d .

Example 2 (Continuation). Let us consider again the dissimilarity d whose values
are displayed in Example 1 (Sect. 3.3.2). Applying Algorithm 4, we then obtain the
weak subdominant quasi-ultrametric of d (Table 4).

The closed weak hierarchy associated with q.d/ is given in Table 5: its clusters
are exactly the 2-balls of q.d/.

In this example, one can notice that the closed weak hierarchy associated with
q.d/ (cf. Table 5) does not coincide with the closed weak hierarchy associated with
d (cf. Table 3). However, there exist also dissimilarities d such that these closed
weak hierarchies, which are associated, respectively, with d and q.d/, coincide
(e.g., consider the dissimilarity d provided in Table 1 in [13]).
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Table 5 The (closed) weak
hierarchy associated with
dissimilarity q.d/ given in
Table 4

Cluster size Clusters

0 ;
1 fxg ; fyg ; fzg ; ftg ; fug ; fvg
2 fx; ug ; fy; vg ; fz; tg ; fu; vg ; ft; ug
4 fy; t; u; vg
5 fx; y; t; u; vg
6 fx; y; z; t; u; vg

5 Links to Formal Concept Analysis

5.1 Galois Lattices

5.1.1 The Galois Lattice of a Binary Context

A binary relation from a set E to a set F is a triple .E; F; R/, where R is a subset
of the cross product E � F . In formal concept analysis, a so-called formal context
is a binary relation .E; F; R/, where elements of E are called objects and those of
F attributes [28]. Thus, formal contexts are sometimes called binary contexts.

Let K WD .E; F; R/ be a binary context. Then K induces a Galois correspon-
dence between the partially ordered sets (posets) .P.E/;�/ and .P.F /;�/ by
means of the maps

f W X 7! \
x2X
fy 2 F W .x; y/ 2 Rg

and

g W Y 7! \
y2Y
fx 2 E W .x; y/ 2 Rg:

For X � E , f .X/ is the set of attributes common to objects in X , and for Y � F ,
g.Y / is the set of objects that share attributes in Y . The Galois correspondence
.f; g/ induces, in turn, a closure operator ' WD g ıf on .P.E/;�/ [11]. That is:

(C1) X � '.X/;
(C2) X � Y implies '.X/ � '.Y /;
(C3) '.'.X// D '.X/.

A pair C WD .X; Y / 2 P.E/ � P.F / such that '.X/ D X and f .X/ D Y

is called a formal concept of K. The entity set X is the extent of C and Y its
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intent. The set G.K/ of formal concepts of K, endowed with the order defined by
.X1; Y1/ � .X2; Y2/ if and only if X1 � X2 (or, equivalently Y2 � Y1), is a complete
lattice called the Galois lattice of the binary context K [3] or the concept lattice of
the formal context K [28].

Example 1. The data set given in Fig. 1 can be viewed as representing a binary
context K1 D .E1; F1; R1/, where, for instance, E1 is the set of five market baskets,
F1 the set of five items, and where R1 relates a market basket with an item if that
item is contained in the basket in question. The pair .f1; 2g; fbtr; chs; mlkg/ belongs
to the Galois lattice of K1; but .f2; 3g; fbtr; chsg/ does not belong to G.K1/ because
f2; 3g is not a fixed point of ' since the basket labeled 1 contains the items “egg”
and “cheese” shared by baskets 2 and 3.

5.1.2 The Galois Lattice of a Meet-Closed Description Context

A meet-closed description context is a context where entities are described in a
meet-semilattice. Meet-closed description contexts have been considered by several
authors under various names [14, 19, 24]. We will denote such a context as a triple
.E;D; ı/, where E is the entity set, D the entity description space, and ı a descriptor
that maps E into D. A meet-closed description context K WD .E;D; ı/ induces a
Galois connection between .P.E/;�/ and D by means of the maps

f W X 7! ^ fı.x/ W x 2 Xg

and

g W ! 7! fx 2 E W ! � ı.x/g;

for X � E and ! 2 D. Then, in these conditions, the map 'ı WD g ı f is a closure
operator on P.E/. A subset X of E is said to be 'ı-closed (or a Galois closed
entity set (of K) under 'ı) when 'ı.X/ D X . The Galois lattice of a meet-closed
description context is defined in a similar way as that of a binary context.

Galois closed entity sets play an important role in classification because they
provide easy-to-interpret clusters [21].

When D is a join-semilattice, the join-closed description context .E;D; ı/

induces a Galois connection between .P.E/;�/ and the order-dual of D by means
of the maps

f @ W X 7! _ fı.x/ W x 2 Xg

and

g@ W ! 7! fx 2 E W ! � ı.x/g;
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for X � E and ! 2 D. Similarly, this Galois connection induces the closure
operator '@

ı WD g@ ı f @ on P.E/. Galois closed entity sets under '@
ı have been

considered in the framework of symbolic data analysis [12, 27].

5.1.3 Galois Closed Entity Sets and Weak Clusters

In this section we present a result, established in [15], that links Galois closed
entity sets to weak clusters associated with some pairwise or multiway dissimilarity
measures. These dissimilarity measures satisfy a compatibility condition defined
using a notion of valuation.

A valuation on a poset .P;�/ is a map h W P ! RC such that h.x/ � h.y/ when
x � y. A strict valuation is a valuation h such that x < y implies h.x/ < h.y/. It
may be noticed that an index f on a cluster structure C is nothing else than a strict
valuation on the poset .C;�/.

In all what follows, E will denote a finite entity set, D a meet-semilattice, ı a
descriptor that maps E into D, and K the meet-closed description context .E;D; ı/.
For any X � E , ı.X/ will denote the set of descriptions of entities belonging to X ,
and for any x 2 E , X C x will denote X [ fxg. Let Ik.ı.E// be the subset of D
defined by

Ik.ı.E// D fı.x1/ ^ � � � ^ ı.xk/ W x1; : : : ; xk 2 Eg:

Consider the map hc
k defined on Ik.ı.E// by

hc
k.!/ D #f!0 2 Ik.ı.E// W !0 � !g;

i.e. the number of elements of Ik.ı.E// which are less than or equal to !. It is then
easily observed that hc

k is a strict valuation on Ik.ı.E//.
A pairwise dissimilarity measure d on E is said to be ı-meet compatible if there

exists a valuation h on I2.ı.E// with which it is ı-meet compatible, i.e., such that
d.x; y/ � d.u; v/ () h.ı.u/^ ı.v// � h.ı.x/ ^ ı.y//.

If h is a strict valuation, d will be said to be strictly ı-meet compatible. The
reader may observe that when D is a join-semilattice, a dual compatibility condition,
say ı-join-compatibility, can be defined by reversing the right-hand side inequality
in the above equivalence and replacing meets by joins.

Description-meet compatibility is a kind of natural agreement expressing the
following fact: the less the descriptions of entities x and y have in common, the
larger the dissimilarity degree between x and y.

To fix the ideas, assume that a part of entity description space is that depicted
in Fig. 6. Then any ı-meet-compatible dissimilarity function d must satisfy the
following inequalities: d.x; u/ � d.y; u/ D d.x; y/ � d.u; v/ D d.x; v/,
d.y; v/ � d.u; v/,. . . .
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δ(u)∧δ(v)

δ(v)δ(y)δ(x) δ(u)

δ(x)∧δ(y)

Fig. 6 A part of entity
description space

The canonical ı-meet-compatible pairwise dissimilarity function on E is the
dissimilarity d hc

2;M c
2 defined by

d hc
2;M c

2 .x; y/ DM c
2 � hc

2.ı.x/ ^ ı.y//;

where M c
2 D max

x2E
hc

2.ı.x//.

This notion of ı-meet compatibility generalizes naturally to multiway dissim-
ilarity measures as well; see [16] for a detailed study of compatible multiway
dissimilarities. Moreover, the following result shows that Galois closed entity sets
are weak clusters.

Theorem 1 ([15]). There is an integer k � 2 such that nonempty 'ı-closed entity
sets coincide with weak clusters associated with any strictly ı-meet compatible
k-way dissimilarity measure.
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Some Observations on Oligarchies, Internal
Direct Sums, and Lattice Congruences

Melvin F. Janowitz

Abstract A set-theoretic abstraction of some deep ideas from lattice theory is
presented and discussed. By making use of this abstraction, many results from
seemingly disparate disciplines can be examined, proved, and subtle relationships
can be discovered among them. Typical applications might involve decision theory
when presented with evidence from sources that yield conflicting optimal advice,
insights into the internal structure of a finite lattice, and the nature of homomorphic
images of a finite lattice. Some needed historical background is provided. (Presented
in conjunction with the volume dedicated to the 70th Birthday celebration of
Professor Boris Mirkin.) In particular, there is a connection to some early work
of Mirkin (On the problem of reconciling partitions. In: Quantitative Sociology,
International Perspectives on Mathematical and Statistical Modelling, pp. 441–449.
Academic, New York, 1975).

Keywords Oligarchy • Lattice congruence • Simple lattice • Residual mapping

1 Background

A new look at some ideas that are related to a pair of landmark results is
presented. First among them is Arrow’s Theorem [1]. A connection to simple
lattices is motivated and discussed in [20]. Second, there is John von Neumann’s
famous construction of a continuous generalization of finite dimensional projective
geometries, as presented in his 1936–1937 Princeton lectures (see [32]). These
are geometries whose subspaces can have any dimension in the real interval Œ0; 1�.
The original definition of a continuous geometry insisted that the underlying lattice

M.F. Janowitz (�)
DIMACS, Rutgers University, Center/CoRE Building/4th Floor, 96 Frelinghuysen Road,
Piscataway, NJ 08854-8018, USA
e-mail: melj@dimacs.rutgers.edu

F. Aleskerov et al. (eds.), Clusters, Orders, and Trees: Methods and Applications:
In Honor of Boris Mirkin’s 70th Birthday, Springer Optimization and Its Applications 92,
DOI 10.1007/978-1-4939-0742-7__15, © Springer ScienceCBusiness Media New York 2014

231

mailto:melj@dimacs.rutgers.edu


232 M.F. Janowitz

be irreducible in the sense that it has no nontrivial direct product decomposition.
There was much interest in developing a version that did not have this restriction.
This was especially true in light of Kaplansky’s famous result [18] that every
complete orthocomplemented modular lattice is a continuous geometry. A subdirect
sum representation accomplished this in [21, 22], and at a much later date,
a topological representation was produced in [12]. Many other authors pondered
this question. F. Maeda’s work involved the study of a binary relation which we
shall denote as arb. It will turn out that failure of this relation has a connection
with congruences of an atomistic lattice, and for that reason it is useful in connection
with the study of simple lattices. We shall expand on this connection in the course of
our detailed observations. But first some background material is presented in order
to provide a framework for the results. We will assume a basic knowledge of lattice
theory, but will quickly establish some needed terminology.

We assume the reader is familiar with partial orders. A lattice is a partially
ordered set L in which every pair a; b of elements has a least upper bound a _ b

and a greatest lower bound a ^ b. The smallest member of L will be denoted 0 and
its largest element 1. A bounded lattice has these distinguished members. Thus for
any x in such a lattice, it is true that 0 � x � 1. A congruence relation on L is an
equivalence relation � such that a�b implies a _ c � b _ c and a ^ c � b ^ c for
all a; b; c 2 L.

Definition 1.1. A quotient (denoted s=t) is an ordered pair .s; t/ of elements of L

with s � t . Say that s=t ! u=v in one step if for some w 2 L, u=v D s _ w=t _ w,
or u=v D s ^w=t ^w. Write s=t ! u=v to denote the composition of finitely many
relations of the form xi�1=yi�1 ! xi =yi , each in one step, with x0=y0 D s=t and
the final step ending in xn=yn D u=v. (Definition from Dilworth [8, p. 349].) To say
that s=t ! u=v is to say that the quotient s=t is weakly projective onto the quotient
u=v. Any congruence � is completely determined by the quotients it identifies. The
reason for this is that x�y () x _ y � x ^ y.

For any quotient a=b with a > b here is a formula for the smallest congruence
�ab that identifies a and b. For x > y, x�aby if and only if there exists a finite
chain x D x0 > x1 > � � � > xn D y such that a=b ! xi�1=xi for 1 � i � n.
Though we can keep this in mind, there is a much more concise way of looking at all
this when we are dealing with finite lattices. We assume unless otherwise specified
that L denotes a finite lattice. A join-irreducible member of L is an element j 2 L

such that j > 0 and j >
Wfx 2 L W x < j g. Thus j has a unique largest

element j� below it. Every element of L is the join of all join-irreducibles below
it, so the structure of L is determined by the set J.L/ of all join-irreducibles of L.
There is a dual notion M.L/ of meet-irreducibles. Every m 2 M.L/ is covered by
a unique smallest element m�, and every element of L is the meet of a family of
meet-irreducibles. Note that any congruence � of L is completely determined by
fj 2 J.L/ W j�j�g, so this gives us another way of thinking about congruences.
In particular, we can restrict a congruence to J.L/, and just worry about whether
quotients of the form j=j� are collapsed. Of course there are dual notions involving
meet-irreducibles. We mention [6, 7, 9, 10] where some of this is discussed and
briefly present the items we shall need.
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Remark 1.2. The material in this remark is taken from Day [7, pp. 398–399], and
[6, p. 72].

• For p; q 2 J.L/, Day [7] writes qCp to indicate that for some x 2 L, q � x_p

with q 6� x _ p�, thus forcing q 6� x _ t for any t < p. Note that for any
congruence �, if qCp and p�p�, then q D q ^ .p _ x/�q ^ .p� _ x/ < q

forces q�q�. The idea for the C relation is attributed by Day to material from
[28]. Warning: Some authors write this relation as pDq or qDp.

• A J -set is a subset J � J.L/ such that p 2 J with qCp H) q 2 J .
• JSet(L) is the system of all J -sets of L, ordered by set inclusion.
• There is a natural lattice isomorphism between the congruences on L and

(JSet.L/;�). The association is given by mapping the congruence � to J� D
fj 2 J.L/ W j�j�g. Going in the other direction, we can construct the
congruence associated with a J -set J by using [9, Lemmas 2.33 and 2.34, p. 40],
and defining

x�J y () fa 2 J.L/ W a � x; a 62 J g D fa 2 J.L/ W a � y; a 62 J g:

The ordering of the congruences is given by �1 � �2 () x�1yimplies x�2y.
• For each p 2 J.L/, let ˚p denote the least congruence that makes p congruent

to p�. Then J˚p D fq 2 J.L/ W q OC pg where OC is the reflexive transitive closure
of C . The reader should observe that J˚p is the smallest J -set containing p.

• For p; q 2 J.L/, it is true that ˚q � ˚p () q 2 ˚p () q OC p. Thus
˚p D ˚q () both p OC q and q OCp.

We mention that Leclerc and Monjardet were independently led to a similar idea
in 1990 (see [20, 26] for a discussion of this). For p; q 2 J.L/, they write qıp to
indicate that q ¤ p, and for some x 2 L; q 6� x while q � p _ x. They show in
[20, Lemma 2], that the relations C and ı coincide if and only if L is atomistic. Here
an atom of a lattice L with 0 is a minimal element of L n f0g, and L is atomistic
if every nonzero element of L is the join of a family of atoms. The dual notions of
dual atoms (coatoms) and dual atomistic (coatomistic) are defined in the expected
manner.

2 Results Related to Relations

Think of an underlying finite lattice L, with J D J.L/ the set of join-irreducibles
of L. Though we are interested in the congruences of L, it turns out to be useful to
abstract the situation, see what can be proved, and then later recapture the deep and
natural connection with congruences. This idea was already noted by Grätzer and
Wehrung in [11]. The situation serves to illustrate one of the most beautiful aspects
of mathematics. Looking at an abstraction of a problem can actually simplify proofs
and provide more general results. We ask the reader to bear in mind that though we
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restrict our attention to finite lattices, we hold open the possibility of establishing a
generalization to more general venues.

We begin with some notational conventions. Let J be a finite set, and R � J �J

a binary relation. For a 2 J , let R.a/ D fx 2 J W aRxg, and for A � J , let
R.A/ D SfR.a/ W a 2 Ag. The relation R�1 is defined by aR�1b , bRa. A
subset V of J is called R-closed if R.V / � V , and R�1-closed if R�1.V / � V . It
is easily shown that V is R-closed if and only if its complement J nV is R�1-closed.
We are interested in the set V D VR of R�1-closed sets, ordered by set inclusion. We
chose R�1-closed sets so as to be consistent with the terminology of Remark 1.2.
Clearly .V ;�/ is a sublattice of the power set of J , and has the empty set as its
smallest member, and J as its largest member. It will be convenient to simply call
any P 2 V a J -set to denote the fact that it is R�1-closed. Note that P 2 V has a
complement in V if and only if J nP 2 V . Thus P has a complement if and only if
it is both R�1-closed and R-closed.

Remark 2.1. The relation R is said to be reflexive if jRj for all j 2 J . It is
transitive if hRj; jRk together imply that hRk. A relation that is both reflexive
and transitive is said to be a quasiorder. This is a rather general concept, as every
partial order and every equivalence relation is a quasiorder. If the relation R that
defines V is already a quasiorder, then clearly every set of the form R.a/ or R.A/ is
in fact R-closed. Since R�1 is also a quasiorder, the same assertion applies to R�1.
The relation R \ R�1 is the largest equivalence relation contained in both R and
R�1. The least quasiorder containing both R and R�1 is denoted R _ R�1, and it
is actually also an equivalence relation. The R _ R�1 closed sets are those that are
both R and R�1 closed.

We could now continue the discussion with a fixed quasiorder R, but we
choose instead to have notation that provides an abstract version of Remark 1.2.
Accordingly, we take J to be a finite set, but are thinking it as being the join-
irreducibles of a finite lattice. A relation R on J is called irreflexive if xRx fails for
every x 2 J . We define the relation � to be f.x; x/ W x 2 J g. We then take RC to be
an irreflexive binary relation on J , and R OC the reflexive transitive closure of RC . By
this we mean the transitive closure of �[RC . Thus R OC is a quasiorder of J . Think
of qRC p as the abstraction of qCp, and qR OC p as the abstraction of q OC p. We are
interested in V D fV � J W p 2 V; qRC p H) q 2 V g, order it by set inclusion,
and call V 2 V a J -set. Note that f;; J g � V , and that V is closed under the
formation of intersections and unions. Thus V is a finite distributive lattice. Though
RC is irreflexive, we recall that R OC is in fact reflexive by its very construction.

Some intuition may be gleaned from a quick look at what happens when R OC is
a partial order. We then write q � p to denote the fact that qR OC p. We ask what it
means for P to be in V . We note that p 2 P , q � p implies q 2 P . Thus V is just
the set of order ideals of .J;�/.

Remark 2.2. Here are some basic facts about V . We remind the reader that each
item follows from elementary properties of binary relations; yet, each translates to
a known property of congruences on a finite lattice.
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1. For each p 2 J , there is a smallest J -set containing p. We denote this set by
Vp , and note that Vp D fq 2 V W qR OC pg D R�1

OC .p/. Thus Vp � Vq () p 2
Vq () pR OC q. The J -sets Vp are clearly the join-irreducibles of V .

2. If V 2 V , then V D SfVp W p 2 V g.
3. If A is an atom of V , then p; q 2 A H) pR OC q and qR OC p, so .p; q/ 2 R OC\R�1

OC .
Thus A an atom implies A D Vp for any p 2 A.

4. R OC is symmetric if and only if V is a Boolean algebra.

Proof. Suppose first that R OC is symmetric. We will show that for any V 2 V , it is
true that J n V 2 V . Let p 2 V and q 2 J n V . Suppose rRC q. We claim that
r 62 V . To prove this, we use the symmetry of R OC to see that qR OC r . If r 2 V , then
qR OC r would force q 2 V , contrary to q 2 J n V , thus showing that J n V 2 V . It
follows that V is complemented, so it is a Boolean algebra.

Suppose conversely that V is a Boolean algebra. If Vz is an atom of V , then
a 2 Vz implies Va D Vz, so a; b 2 Vz H) aR OC b. Thus the restriction of R OC to
Vz is symmetric. What happens if a 2 Vz and b 2 J n Vz? Then both aR OC b and
bR OC a must fail. Since J is the union of all atoms of V it is immediate that R OC is
symmetric. �

We note that for congruences on a finite lattice L, this forces the congruence
lattice to be a Boolean algebra if and only if the OC relation on L is symmetric, thus
generalizing many known earlier results that have been established for congruences
on lattices.

Remark 2.3. It is well known that associated with every quasiordered set there is a
homomorphic image that is a partially ordered set. For the quasiorder R OC that we
are considering, here is how the construction goes. We say that p � q for p; q 2 V

if pR OC q and qR OC p. Then� is an equivalence relation on V , and V=� is a partially
ordered set with respect to E defined by Œp� E Œq� if Vp � Vq . One may ultimately
show (see Theorem 2.35, p. 41 of [9]) that .V ;�/ is isomorphic to the order ideals
of .V= �; E/. If R OC is symmetric, then it is an equivalence relation. Though one
often associates with any equivalence relation its family of partitions, the set V of
J -sets determined by R OC is most certainly a different object.

If P 2 V , we want a formula for the pseudo-complement P � of P . This is the
largest member B of V such that P \ B D ;. A finite distributive lattice is called a
Stone lattice if the pseudo-complement of each element has a complement.

Theorem 2.4. For P 2 V ; P � D fq 2 J W R�1
OC .q/\ P D ;g D J n R OC .P /

Proof. We begin by proving the assertion that fq 2 J W R�1
OC .q/ \ P D ;g D

J n R OC .P /. This follows from fq 2 J W R�1
OC .q/\ P ¤ ;g D R OC .P /. To establish

this, note that q 2 R OC .P / , pR OC q with p 2 P , qR�1
OC p with p 2 P ,

R�1
OC .q/\P ¤ ;. The proof is completed by noting that if B 2 V with B \P D ;,

then b 2 B , qR OC b H) q 2 B , so q 62 P . This shows that B � P �. �
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Lemma 1. P 2 V has a complement in V () q 2 J n P; q1RC q implies q1 2
J n P .

Proof. The condition is just the assertion that J n P is a J -set. �
Theorem 2.5. V is a Stone lattice if and only if R OC has the property that for each
P 2 V , q 62 P � implies that either q 2 P or else q 62 P and there exists q1 2 P

such that q1R OC q

Proof. This just applies Lemma 1 to P �. �

Here is yet another characterization of when .V ;�/ is a Stone lattice. The
result for congruences appears in [13], and the proof we present is just a minor
reformulation of the proof that was presented therein. We mention an alternate
characterization in the spirit of Dilworth’s original approach to congruences that
was given in [24]. Note that the arguments in [13] were applied to the set of all
prime quotients of a finite lattice, where the argument given here applies to any
quasiorder defined on a finite set J . We should also mention earlier and stronger
results that appear in [29–31]. So is there anything new in what follows? Only the
fact that the proofs can be reformulated for abstract quasiorders.

Theorem 2.6. V is a Stone lattice if and only if R OC has the property that for each
a 2 V there is one and only one atom Vk of V such that Vk � Va.

Proof. Let P 2 V , a 2 J with Vk the unique atom of V that is � Va. Recall that
Vk � Va () kR OC a.

If k 62 P , we let q 2 V with qRC a. We will show that q 62 P . Let Vj be an atom
under Vq . Then jR OC q; qRC a forces jR OC a. Since there is only one atom under a,
we must have Vj D Vk , so kR OC q. If a 2 P , we note that kR OC a would put k 2 P ,
contrary to k 62 P . Thus a 62 P . Similarly, q 2 P produces a contradiction. Thus
q 62 P for any qR OC a, and this tells us that a 2 P �.

If k 2 P , then k 2 P ��. Replacing P with P � in the above argument now
shows that a 2 P ��. In any case, a 2 J implies a 2 P � [ P �� so P � and P �� are
complements.

Now assume that for some a 2 V there are two atoms Vj and Vk both contained
in Va. If a 2 V ��k , then jR OC a H) j 2 V ��k . But Vj \ Vk D ; implies that
Vj � V �k , a contradiction. If a 2 V �k , then kR OC a would put k 2 V �k , contrary to
k 2 Vk � V ��k . Thus a 62 V ��k [ V �k , so V ��k and V �k are not complements. �
Definition 2.7. Let RC denote an irreflexive binary relation on the finite set J . To
say that V is subdirectly irreducible is to say that there is only one atom in V . This
is a very old and extremely useful notion in Universal Algebra, and dates back at
least to a publication of Birkhoff [2]. It negates the idea of a lattice being subdirectly
reducible in the sense that the lattice is a sublattice of a nontrivial direct product of
lattices. It just states that there is a nontrivial congruence relation that is contained
in any other nontrivial congruence.
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The following finite version of a result due to Radeleczki [29–31] now pops out.

Corollary 2.8. V is the direct product of subdirectly irreducible factors if and only
if for each a 2 J there is only one atom Vk � Va.

3 The “del” Relation

There is a notion of an internal direct sum of a family of lattices. As a tool toward
understanding the internal structure of lattices, there are discussions in [22, pp. 20–
25], and [23, pp. 22–24] of what are called internal direct sum decompositions of a
lattice with 0. It is shown in both references that the notion of xry is crucial to this
discussion, where xry indicates that for all z 2 L, .x _ z/ ^ y D z ^ y. A more
detailed discussion of direct sums occurs in Sect. 4. As we mentioned earlier, this
was motivated by investigations into the structure of continuous geometries. Until
recently, the author saw no connection between the r relation and congruences on
a finite atomistic lattice. But now let’s think of what it means for prq to fail when
p; q are distinct atoms. For some x 2 L, we must have .p _ x/ ^ q > x ^ q. Then
q � p _ x, and q 6� 0 _ x. Thus qCp. So the fundamental connection for a finite
atomistic lattice is given by the fact that for distinct atoms p; q of such a lattice1,

prq fails () qCp (1)

We mention that this is the reason why qRC p is taken as the analog of qCp.
Having established a connection between the r relation and congruences on a finite
atomistic lattice, we look more closely at the del relation on such a lattice. We will
restate some pertinent results that were established in [14] back in the 1960s. We
mention first that the r relation on arbitrary pairs of elements of a finite atomistic
lattice follows quickly from its restriction to pairs of atoms.

Lemma 2. In a finite atomistic lattice L, arb () prq for all atoms p � a

and q � b.

Proof. [14, Lemma 6.1, p. 296]. �

Theorem 3.1. Let L be a finite atomistic lattice. Every congruence relation � of L

is the minimal congruence generated by an element s that is standard in the sense
that .r _ s/ ^ t D .r ^ t/ _ .s ^ t/ for all r; t 2 L. In fact x�y () .x _ y/ D
.x ^ y/ _ s1 for some s1 � s.

Proof. Lemma 6.4, p. 297 and Theorem 6.7, p. 298 of [14]. �

Theorem 3.2. Let L be a finite dual atomistic lattice. Then arb in L if and only if
x D .x _ a/^ .x _ b/ for all x 2 L. It follows that arb H) bra for all a; b 2 L.

1Evidently this was known to B. Monjardet and N. Caspard as early as 1995 (Monjardet, private
communication).
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Proof. Theorem 4.3 of [16]. �

Definition 3.3. The element z of a bounded lattice L is called central if z has a
complement z0 such that L is isomorphic to Œ0; z� � Œ0; z0� via the mapping x 7!
.x ^ z; x ^ z0/. There is a discussion of this in [22, p. 37].

Theorem 3.4. Let L be a finite atomistic lattice in which xry H) yrx for all
x; y 2 L. Then every congruence on L is the congruence generated by a central
element of L. Thus the congruences of L form a finite Boolean algebra.

Proof. This follows immediately from a stronger result that appeared in Remark 2.2.
Nonetheless, we present a direct lattice theoretic proof. By Theorem 3.1, every
congruence on L is the minimal one generated by a standard element s. If q is
an atom disjoint from s, then srq. By symmetry of r, qrs. It is immediate that if
t D Wf atoms q 2 L W q 6� sg, then trs. Thus s and t are complements. For any
x 2 L, we note that x D .x ^ s/_ .x ^ t/. For if this failed there would be an atom
r � x such that r 6� .x ^ s/_ .x ^ t/. But then r ^ s D r ^ t D 0, a contradiction.
Thus s is central [23, Theorem 4.13, p. 18]. �

Corollary 3.5. Every finite atomistic lattice in which r is symmetric is a direct
product of simple lattices. In particular, this is true for any finite lattice that is both
atomistic and dual atomistic.

Here a lattice is called simple if it admits no nontrivial congruence. It follows
immediately from Remark 2.2 that finite simple lattices are characterized by the
fact that for every pair j; k distinct join-irreducibles, j OC k. A distributive lattice
is simple if and only if it has at most two members. One might wonder why
Corollary 3.5 leads to a direct product of simple lattices while Proposition 7.2 of
[31] leads to a direct product of subdirectly irreducible lattices. The reason is that in
the finite case, every congruence relation is the minimal one generated by a central
element of the lattice.

It would be interesting to further investigate generalizations of the del relation
that are valid for finite lattices that are not atomistic. We outline the start of such a
project. For elements a; b of a finite lattice L, we write a}b to denote the fact that
they are not comparable (in symbols a k b) and for all x 2 L, .x _ a/ ^ b D Œx _
.a^b/�^b. Note that if a^b D 0, this just says that arb. The reason for assuming
a k b is that otherwise the assertion that .x _ a/ ^ b D Œx _ .a ^ b/�^ b is trivially
true. In order to obtain a form of separation axiom along the lines of aCb and aıb,
it is convenient to write a�b to indicate that a; b are join-irreducibles with a k b such
that a � b _ x and a 6� .a ^ b/ _ x for some x 2 L. Note that aCb H) a 6� b,
and a�b H) a k b. For a k b, it is evident that aCb H) a�b H) aıb. We might
mention that an obvious modification of the proof of [20, Lemma 2] will establish
that ı D � () L is atomistic. It is interesting to note that by the same lemma,
� D C if and only if L is atomistic. This follows from the fact that if x < j for
any join irreducible j , there must then exist a join-irreducible j 0 with j 0 � x < j .
Though we have defined � and ı to be relations on J.L/, it is true that both relations
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make sense for any elements of L. We begin our discussion of the diamond relation
with a generalization of Theorem 3.2. This result relates equational identities to
conditions that involve implications that involve inequalities.

Theorem 3.6. Let L be a dual atomistic finite lattice. For a; b 2 L with a k b, the
following are equivalent:

(1) x _ .a ^ b/ D .x _ a/ ^ .x _ b/ for all x 2 L.
(2) a}b.
(3) b � a _ x H) b � .a ^ b/ _ x for all x 2 L.
(4) b � a _ d H) b � .a ^ b/ _ d for all dual atoms d of L.

Proof. (1) H) (2)H) (3) H) (4) is obvious, and true for all finite lattices.
(4) H) (1) Suppose (4) holds and x _ .a ^ b/ < .x _ a/ ^ .x _ b/. Using

the fact that L is dual atomistic, there must exist a dual atom d � x _ .a ^ b/

such that d _ Œ.x _ a/ ^ .x _ b� D 1. Then d _ a D d _ b D 1. But now
b � d _ a H) b � .a ^ b/_ d D d , contrary to b _ d D 1. �

Corollary 3.7. Let L be a finite dual atomistic lattice. If a; b 2 L, then a}b ()
for every dual atom d it is true that a ^ b � d H) a � d or b � d .

Proof. By applying the Theorem with x D d any dual atom, we see that a ^ b �
d H) a � d or b � d . Suppose conversely that the condition holds. For arbitrary
x 2 L, we choose d as in the proof of (4) H) (1) of Theorem 3.6, and apply the
condition. �

Corollary 3.8. In any dual atomistic finite lattice a}b implies b}a.

Proof. We apply the Theorem to a}b, and note that if x_.a^b/ D .x_a/^.x_b/

for all x 2 L, then b}a. �

Remark 3.9. Let L be a finite dual atomistic lattice with a; b non-comparable join-
irreducibles. Evidently a ^ b � a� and a ^ b � b�. Suppose a}b. Let x 2 L be
fixed but arbitrary. Using the fact that x _ .a ^ b/ D .x _ a/^ .x _ b/, we see that

.x _ a/ ^ .x _ b/ � x _ a�,

.x _ a/ ^ .x _ b/ � x _ b�, so

.x _ a/ ^ .x _ b/ � .x _ a�/ ^ .x _ b�/.

It is immediate that

.x _ a/ ^ .x _ b/ D .x _ a�/ ^ .x _ b�/, and so

.x _ a/ ^ .x _ b/ D .x _ a�/ ^ .x _ b/ D .x _ a/ ^ .x _ b�/.

Thus a ^ .x _ b/ D a ^ .x _ b�/ and b ^ .x _ a/ D b ^ .x _ a�/.
This shows that a � .x_b/ H) a � .x_b�/ and b � .x_a/ H) b � .x_a�/,

so both aCb and bCa will fail. Thus for a; b non-comparable join-irreducibles of a
finite dual atomistic lattice,

a}b H) aCb and bCa must both fail: (2)
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Fig. 1 A dual atomistic
lattice

Example 3.10. We present an example to illustrate the approach to congruences on
a finite lattice via J -sets. Let L be the five-element non-modular lattice N5 with
coverings 0 < a < b < 1 and 0 < c < 1. The join-irreducibles are then a; b; c with
a� D c� D 0 and b� D a. This example is discussed on p. 38 of [10]. There are
five J -sets: ;; fbg; fa; bg; fb; cg; fa; b; cg. The J -set fbg only produces a single
merger of fa; bg, while the J -set fa; bg has two classes f0; a; bg and fc; 1g. Finally,
the J -set fb; cg has two mergers fa; b; 1g and f0; cg. Note the connection with the
fact that L is isomorphic with its dual.

Example 3.11. We next have an example that illustrates what can go wrong for a
finite lattice that is not dual atomistic. Let L D f0; a; b; c; d; 1g with coverings
0 < a < b < 1 and 0 < c < d < 1. The join-irreducibles are fa; b; c; d g with
a� D c� D 0, b� D a and d� D c. Note that fbg is a J -set since the merger of
b with a is a lattice congruence. Note though that d � b _ c, d � b� _ c, and
d 6� .d ^ b/ _ c D c. Thus d�b does not force d to be a member of the J -set fbg.

We mention the obvious fact that every result involving finite dual atomistic
lattices has a corresponding dual result that is true for finite atomistic lattices.

Example 3.12. In this example, we let L denote the finite lattice depicted in Fig. 1.
This lattice was constructed from 23 (the Boolean cube) by removal of one atom and
all links to that atom. The reader should observe that this lattice is dual atomistic,
but not atomistic. The join-irreducibles are a; b; c; d , while the meet-irreducibles
are b; d , and e. We leave it to the reader to confirm that the C -relation is given by
bCa; bCc; bCd; dCa; dCb; dCc, and that the J -sets are

;; fb; d g; fa; b; d g; fc; b; d g; fa; b; c; d g:
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We now ask what it means for a}b to fail for a; b distinct non-comparable join-
irreducibles on a finite dual atomistic lattice L. By Theorem 3.6, this is equivalent
to the existence of a dual atom d for which b � a _ d with b 6� .a ^ b/ _ d . Thus
failure of a}b is equivalent to b�a. If follows that the �-relation is symmetric. For
a finite atomistic lattice, this should be compared to failure of arb being equivalent
to bCa. Note the connection with Corollary 15, p. 502 of [26].

4 Internal Direct Sums of a Finite Lattice

Let S1; S2; : : : ; Sn be subsets of a lattice L with 0. Following the terminology of
Maeda [21], we say that L is the internal direct sum of the Si if

(1) Each x 2 L may be written as x D W1�i�n xi with xi 2 Si , and
(2) x 2 Si , y 2 Sj with i ¤ j forces xry.

Each Si is called a direct summand of L. There is also a notion of an external direct
product of the Si given by taking the direct product of the family fSi W 1 � i � ng
with the partial order .a1; a2; : : : ; an/ � .b1; b2; : : : ; bn/ () ai � bi 8i . There
is then a natural isomorphism between the external direct product of the family Si

and its internal direct sum. It is given by .a1; a2; : : : ; an/ !W
i ai (see pp. 21–22

of [22]). Having said this, we plan to simplify our notation and identify these two
isomorphic entities.

The key item for thinking about all this appears as Theorem 1, p. 1 of [15]. This
characterizes direct summands of any lattice L with 0 as central elements of the
lattice of ideals of L. For a finite lattice, every ideal is principal, so this tells us
that direct summands are generated by the central elements of the lattice. Here is
the connection with r. By [23, Theorem 4.13, p. 18], in any bounded lattice L, z
central in L is equivalent to the existence of an element z0 such that zrz0, z0rz, and
x D .x^ z/_ .x^ z0/ for all x 2 L. The connection with the} relation comes from
the fact that in any bounded lattice L,

a}b () arb in Œa ^ b; 1�: (3)

If z is central in L, then clearly z _ a is central in Œa; 1�. It would be interesting
to investigate the structure of finite lattices where every central member of any filter
Œa; 1� is of this form. The dual of this condition has been studied for many years, and
is called the relative center property (RCP). This condition was studied in [17] and
examples as well as references were provided therein. The reader might also consult
[5] where a connection is given between RCP and congruences in orthomodular
lattices. Meaningful examples of what we are discussing may be obtained by just
looking at the dual of any lattice that satisfies the RCP. This leads us to investigate
the structure of fx 2 L W x}cg in a finite lattice L. We present a partial result.
Further investigation is called for.
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Lemma 3. Let a; b; c be elements of the finite lattice L. Then a}c; b}c H)
.a _ b/}c.

Proof. Note first that by applying the definition of } twice, we have

.�/ .a_ b/^ c D Œ.a^ c/_ b�^ c D Œ.b^ c/_ .a^ c/�^ c D .a^ c/_ .b^ c/.

Then for any x 2 L, and again making two uses of the definition of }, followed by
an application of .�/, we write

Œ.a _ b/ _ x/� ^ c D Œa _ .b _ x/� ^ c D Œ.a ^ c/ _ .b _ x/� ^ c

D Œb _ .a ^ c/ _ x� ^ c D Œ.b ^ c/ _ x _ .a ^ c/� ^ c

D Œ.a ^ c/ _ .b ^ c/ _ x� ^ c D ŒŒ.a _ b/ ^ c� _ x� ^ c: �

Remark 4.1. We mention that any orthomodular as well as any complemented
modular lattice that satisfies RCP has the stronger property that the center of any
proper interval Œa; b� consists of the set of all .z _ a/ ^ b with z central in L.
This is proved using the natural isomorphism of Œa; b� with an interval of the
form Œ0; c�. It would be interesting if this could be extended to a larger class of
relatively complemented lattices. We also mention Theorem 4.4 of [17] where it is
shown that for a complete orthomodular lattice RCP is equivalent to e central in
Œ0; e _ f � with e ^ f D 0 implies erf .

We turn now to a deeper consideration of the structure of a finite atomistic lattice
L in which ther relation is symmetric. Recall that for each atom a of L, the smallest
J -set containing a is given by Ja D fq 2 J.L/ W q OC ag. We note that Ja generates
the smallest congruence relation �a for which a is congruent to 0. By Theorem 3.4,
this is the congruence generated by the central element e.a/, which is the smallest
central element above a. By Theorem 2.5, the pseudocomplement of Ja is given by
J �a D J n R OC .a/.

In what follows a; b are distinct atoms of L. Since e.a/; e.b/ are atoms of the
center of L, there are only two possibilities: either e.a/ D e.b/, or e.a/^e.b/ D 0.
For the atoms a; b there are three possibilities: bCa, or bCa fails but b OCa, or b OCa

fails. Recall from Eq. (1) that arb fails () bCa.

Lemma 4. b OCa H) e.a/ D e.b/.

Proof. Recall that e.a/; e.b/ are atoms of the center of L. Suppose bCa and that
e.a/ ^ e.b/ D 0. We know that there is an x 2 L such that b � a _ x and b 6� x.
Then

b D b ^ e.b/ � e.b/ ^ .a _ x/ D .e.b/ ^ a/ _ .e.b/ ^ x/ � x;

a contradiction. Since OC is the transitive closure of C , it follows that e.a/ D e.b/,
and this completes the proof. �
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Lemma 5. Suppose b OC a fails and q 2 J.L/ with qCb. Then q OC a fails. It follows
that b 2 J �a , so e.a/ ^ e.b/ D 0.

Proof. If q OC a, then by symmetry of r, bC q with q OC a forces b OCa, a
contradiction. �

Theorem 4.2. Let L be a finite atomistic lattice in which the r relation is
symmetric. Then L is either a Boolean lattice, or it is simple with a OC b for all pairs
of atoms a; b or it is a direct sum of such lattices.

Definition 4.3. In a bounded lattice L, a pair of elements a; b is said to be
perspective if there is an element x such that a_x D b_x and a^x D b^x D 0.
The symbolism for this is a � b. The transitive closure for a perspective to b is
called a projective to b.

Lemma 6. Let L be finite, atomistic, and dual atomistic. If a; b are distinct atoms
of L, failure of arb is equivalent to a � b. Hence a � b () bCa. This is true
also for the dual of L.

Proof. Suppose arb fails. There must exist an x 2 L such that x < .x_a/^.x_b/.
Choose a dual atom t � x such that t 6� .x _ a/ ^ .x _ b/. Then t 6� a and t 6� b,
so t _a D t _b D 1. Since a; b are atoms, we have t ^a D t ^b D 0. Thus a � b.
The converse is obvious. �

Theorem 4.4. Every finite atomistic and dual atomistic lattice is either a Boolean
lattice or is a simple lattice in which any pair of atoms is projective and in the
relation OC and dually for dual atoms, or is the internal direct sum of such lattices.
In particular this is true for any finite relatively complemented lattice.

Remark 4.5. We would be remissing if we did not at least mention the connection
between a direct summand of a finite lattice and the results from Sect. 2. If we let
RC denote an irreflexive relation on the finite set J , we recall that the J -set P is a
direct summand of V if and only if J n P is an J -set. See Lemma 1.

5 Oligarchies

This entire manuscript has as its original inspiration the appearance of the recent
paper [4] by Chambers and Miller. Here is presented a lattice theoretic character-
ization of when a decision algorithm is an oligarchy. An improved result due to
Leclerc and Monjardet appears in [20]. The earliest reference the author could find
where a lattice theoretic background is provided for a consensus of partitions is the
one provided by Mirkin in [25]. This was refined in [19]. See also [27]. We shall
be working in a finite lattice L. Intuition may be provided by thinking of L as a
model for describing the behavior of a partition of society, or of a partial order or
of some concrete decision problem. We shall follow the notation of [20], but will
briefly mention here the relevant terminology and notation.
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Remark 5.1. A consensus algorithm is a mapping F W Ln ! L, where Ln is
the product of N D n copies of L. We agree to let 	 denote a typical profile
	 D .x1; x2; : : : ; xn/ of members of Ln, and Nx.	/ D fi 2 N W x � xi g:
To say that F is Paretian is to say that for any atom a, if Na.	/ D N , then
a � F.	/. To say that F is decisive is to say that if Na.	/ D Na.	 0/ then
a � F.	/ , a � F.	 0/. F is neutral monotone if for all atoms a; a0, and all
profiles 	; 	 0, Na.	/ � Na0.	 0/ implies that if a � F.	/ then a0 � F.	 0/. The
constant function that sends every profile 	 to 0 is denoted F 0.

Finally to say that F is an oligarchy is to say that there is a subset M of
the indexing set N such that for every profile 	 , F.	/ D Vf	i W i 2 M g. For
x 2 L, we agree to let 	x D .x; x; : : : ; x/ denote the constant profile having
each component x. A mapping F W Ln ! L is called residual [3] if it is a meet
homomorphism such that F.	1/ D 1. We mention Theorem 5 of [20] in which
the following conditions are shown to be equivalent for any finite simple atomistic
lattice L having cardinality greater than 2 and any consensus function F W Ln ! L.

Theorem 5.2. The following conditions are equivalent:

1. F is decisive and Paretian.
2. F is neutral monotone and is not F 0.
3. F is a meet homomorphism and F.	/ �V	 for all profiles 	 .
4. F is a residual map and F.	a/ � a for every atom a.
5. F is an oligarchy.

We pause to provide a bit of intuitive motivation for the subject at hand. Suppose
for the moment that you are in charge of production quotas for a large manufacturing
company and that you have an advisory committee consisting of n agents. Each
agent i gives you advice in the form of a partition xi of the space of all possible
actions D you might take, and on the basis of these n partitions for 	 , you must
decide on an action F.	/. The partitions of D may be viewed as a finite simple
lattice that is both atomistic and dual atomistic, so we are in a setting where
Theorem 5.2 may be applied. Further motivation is provided in [4]. This makes
an interesting connection between properties of social choice functions and pure
lattice theoretic ideas. It would be interesting to see if this result could be extended
to a somewhat broader class of lattice. The key observation is in Corollary 3.5.
Making use of this result, we may move from results on a finite simple lattice to
results on a direct product of finite simple lattices. Thus we have a characterization
of oligarchies on any atomistic finite lattice in which the r relation is symmetric,
and in particular for any finite lattice which is both atomistic and dual atomistic.
Here specifically is what we have in mind. Let L1; L2; : : : ; Lk each denote finite
simple lattices having cardinality > 1, and in which the r relation is symmetric.
Let Fi be an oligarchy on Li for each i . Let L D ˘i Li and let F be defined on L

by F.	/ having its i th component the output of Fi applied to the restriction of 	

to Li . Then F is a form of generalized oligarchy. It would be of interest to extend
Theorem 5.2 to this situation.
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6 An Epilogue

We close by reviewing the natural tie between the abstract relation theoretic
approach in Sect. 2 and the deep results developed by a number of authors. We
especially mention Day [6, 7], and the book by Freese et al. [9].

Remark 6.1. Here then are the main ideas that were covered for the study of
congruences on a finite lattice L.

(a) Failure of the r relation on an atomistic lattice and its connection with the C

relation.
This is discussed in Sect. 3. See Eq. (1).

(b) The C relation on an arbitrary finite lattice and its abstraction to an irreflexive
relation RC defined on a finite set V .

This is Sect. 2. Remark 2.1 and Theorems 2.4 and 2.6. The abstract formu-
lation can be used to find a generalization of conditions that guarantee that
the congruences form a Boolean algebra or a Stone lattice. Noting that OC is
always symmetric for any finite simple lattice, it might be interesting to have
an example of a finite simple lattice in which the C relation is not symmetric.
It would also be of interest to apply the results more generally to other finite
quasiordered sets.

(c) In Sect. 3, a generalization of the r-relation was introduced and denoted as
a}b. There are now three types of separation conditions under consideration.
Further work on the connection between these conditions might be appropriate.

Underlying equation 8x 2 L Symbol Separation condition for some x 2 L

.x _ b/ ^ a D .x _ b�/^ a aCb a � b _ x and a 6� b� _ xI a 6� b

.x _ b/ ^ a D .x _ .a ^ b// ^ a a�b a � b _ x and a � .a ^ b/ _ xI a k b

.x _ b/ ^ a D x ^ a aıb a � b _ x and a 6� xI a ¤ b

(d) Section 4 considers internal direct sums of a finite lattice and further explores
the connection between the relations r and }. As an application, the structure
of certain finite atomistic lattices are discussed.

(e) Section 5 gave a quick look at a recent lattice theoretic connection with
oligarchies.
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Thinking Ultrametrically, Thinking p-Adically

Fionn Murtagh

Abstract We describe the use of ultrametric topology and closely associated
p-adic number theory in a wide range of fields that all share strong elements
of common mathematical and computational underpinnings. These include data
analysis, including in the “big data” world of massive and high dimensional data
sets; physics at very small scales; search and discovery in general information
spaces; and in logic and reasoning.

Keywords Data analytics • Multivariate data analysis • Pattern recognition •
Information storage and retrieval • Clustering • Hierarchy • p-Adic • Ultrametric
topology • Complexity

1 Introduction

1.1 Hierarchy and Other Symmetries in Data Analysis

On one level this chapter is about symmetries in data, such that the data represent
complex phenomena, and the symmetries provide a model for understanding these
complex phenomena. Hierarchy gives rise to a rich expanse of symmetries and we
will be concerned mostly with hierarchy in this article.

Partitioning a set of observations [47, 70, 71] leads to some very simple symme-
tries. This is one approach to clustering and data mining. But such approaches, often
based on optimization, are not of direct interest to us here. Instead we will pursue the
theme pointed to by Simon [69], namely that the notion of hierarchy is fundamental
for interpreting data and the complex reality which the data expresses. Our work is
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very different from the marvelous view of the development of mathematical group
theory—but viewed in its own right as a complex, evolving system—presented by
Foote [24].

Weyl [79] makes the case for the fundamental importance of symmetry in
science, engineering, architecture, art and other areas. As a “guiding principle”,
“Whenever you have to do with a structure-endowed entity . . . try to determine its
group of automorphisms, the group of those element-wise transformations which
leave all structural relations undisturbed. You can expect to gain a deep insight in
the constitution of [the structure-endowed entity] in this way. After that you may
start to investigate symmetric configurations of elements, i.e. configurations which
are invariant under a certain subgroup of the group of all automorphisms; . . . ” [79,
p. 144].

1.2 About This Chapter

Theoretical and applied results that are based on ultrametric topology have been
studied in fields such as the following:

• In data analysis, both because of the fitting of tree structures and/or visualizations
to data sets, to provide a possible way to present a range of partitions to the user,
and also to provide for a genealogical model to be fit to data.

• In physics in order to take account of phenomena at very small spatial and time
scales, where it is found that discreteness of structures is represented well by p-
adic number systems; and also for any systems that involve movement between
discrete states that are characterized by their energy levels. p-Adic number
systems can represent ultrametric topology and vice versa.

It can be added that, as a consequence of applications in physics, the future
holds much promise for ultrametric topology-based theory and analysis methods
in quantum computing and quantum information theory.

• A further field of use of ultrametric topology arises from being able to show that
a considerable number of search and discovery algorithms developed in recent
years have an interpretation or vantage point in terms of ultrametric topology.

Computer programming theory also avails of ultrametrics, for example in
order to have a framework for non-monotonic reasoning and for multivalued
logic.

This chapter will review the state of the art in these fields and will stress the
common aspects of methods and applications.

In Sect. 3, we describe ultrametric topology as an expression of hierarchy.
In Sect. 4, we look at the generalized ultrametric context. This is closely linked

with analysis based on lattices.
In Sect. 5, p-adic encoding provides a number theory vantage point on ultramet-

ric topology.
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Section 6 deals with application to search and discovery, including work in
massive and possibly high dimensional spaces.

2 Backgrounders on Hierarchical Clustering, p-Adic
Numbers, Ultrametric Topology

2.1 A Brief Introduction to Hierarchical Clustering

For the reader new to analysis of data a brief introduction is now provided on
hierarchical clustering. Along with other families of algorithm, the objective is
automatic classification, for the purpose of data mining, or knowledge discovery.
Classification, after all, is fundamental in human thinking and machine-based deci-
sion making. But we draw attention to the fact that our objective is unsupervised,
as opposed to supervised classification, also known as discriminant analysis or (in
a general way) machine learning. So here we are not concerned with generalizing
the decision-making capability of training data, nor are we concerned with fitting
statistical models to data so that these models can play a role in generalizing and
predicting. Instead we are concerned with having “data speak for themselves”.
That this unsupervised objective of classifying data (observations, objects, events,
phenomena, etc.) is a huge task in our society is unquestionably true. One may think
of situations when precedents are very limited, for instance.

Among families of clustering, or unsupervised classification, algorithms, we can
distinguish the following: (a) array permuting and other visualization approaches;
(b) partitioning to form (discrete or overlapping) clusters through optimization,
including graph-based approaches; and—of interest to us in this article—(c)
embedded clusters interrelated in a tree-based way.

For the last-mentioned family of algorithm, agglomerative building of the hier-
archy from consideration of object pairwise distances has been the most common
approach adopted. For comprehensive background texts, see [33, 34, 45, 80].

2.2 A Brief Introduction to p-Adic Numbers

The real number system and a p-adic number system for given prime, p, are
potentially equally useful alternatives. p-Adic numbers were introduced by Kurt
Hensel in 1898.

Whether we deal with Euclidean or with non-Euclidean geometry, we are
(nearly) always dealing with reals. But the reals start with the natural numbers,
and from associating observational facts and details with such numbers we begin
the process of measurement. From the natural numbers, we proceed to the rationals,
allowing fractions to be taken into consideration.
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The following view of how we do science or carry out other quantitative study
was proposed by Volovich in 1987 [76, 77]. See also the surveys in [20, 25]. We
can always use rationals to make measurements. But they will be approximate, in
general. It is better therefore to allow for observables being “continuous, i.e. endow
them with a topology”. Therefore we need a completion of the field Q of rationals.
To complete the field Q of rationals, we need Cauchy sequences and this requires
a norm on Q (because the Cauchy sequence must converge, and a norm is the tool
used to show this). There is the Archimedean norm such that: for any x; y 2 Q, with
jxj < jyj, then there exists an integer N such that jNxj > jyj. For convenience here,
we write: jxj1 for this norm. So if this completion is Archimedean, then we have
R D Q1, the reals. That is fine if space is taken as commutative and Euclidean.

What of alternatives? Remarkably all norms are known. Besides the Q1 norm,
we have an infinity of norms, jxjp , labelled by primes, p. By Ostrowski’s theorem
[61] these are all the possible norms on Q. So we have an unambiguous labelling,
via p, of the infinite set of non-Archimedean completions of Q to a field endowed
with a topology.

In all cases, we obtain locally compact completions,Qp, of Q. They are the fields
of p-adic numbers. All these Qp are continua. Being locally compact, they have
additive and multiplicative Haar measures. As such we can integrate over them,
such as for the reals.

2.3 Brief Discussion of p-Adic and m-Adic Numbers

We will use p to denote a prime, and m to denote a non-zero positive integer. A
p-adic number is such that any set of p integers which are in distinct residue classes
modulo p may be used as p-adic digits. (Cf. remark below, at the end of Sect. 5.2,
quoting from [29]. It makes the point that this opens up a range of alternative
notation options in practice.) Recall that a ring does not allow division, while a field
does. m-Adic numbers form a ring; but p-adic numbers form a field. So a priori,
10-adic numbers form a ring. This provides us with a reason for preferring p-adic
over m-adic numbers.

We can consider various p-adic expansions:

1.
Pn

iD0 ai p
i , which defines positive integers. For a p-adic number, we require

ai 2 0; 1; : : : p � 1. (In practice: just write the integer in binary form.)
2.
Pn

iD�1 ai p
i defines rationals.

3.
P1

iDk ai p
i where k is an integer, not necessarily positive, defines the field Qp of

p-adic numbers.

Qp , the field of p-adic numbers, is (as seen in these definitions) the field of
p-adic expansions.

The choice of p is a practical issue. Indeed, adelic numbers use all possible
values of p (see [5] for extensive use and discussion of the adelic number
framework). A biotechnology example is considered as follows, by Dragovich and
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Dragovich [19] and Khrennikov [38]. Desoxyribonucleic acid (DNA) is encoded
using four nucleotides: A, adenine; G, guanine; C, cytosine; and T, thymine. In RNA
(ribonucleic acid) T is replaced by U, uracil. In [19] a 5-adic encoding is used, since
5 is a prime and thereby offers uniqueness. In [38] a 4-adic encoding is used, and
a 2-adic encoding, with the latter based on 2-digit boolean expressions for the four
nucleotides (00, 01, 10, 11). A default norm is used, based on a longest common
prefix—with p-adic digits from the start or left of the sequence. (See Sects. 5.3 and
6.3 where a longest common prefix norm or distance is used.)

3 Ultrametric Topology

3.1 Ultrametric Space for Representing Hierarchy

Consider Fig. 1 illustrating the ultrametric distance and its role in defining a
hierarchy. An early, influential paper is Johnson [37] and an important survey is
that of Rammal et al. [63]. Discussion of how a hierarchy expresses the semantics
of change and distinction can be found in [58].

The ultrametric topology was introduced by Krasner [39], the ultrametric
inequality having been formulated by Hausdorff in 1934. Essential motivation for
the study of this area is provided by Schikhof [66] as follows. Real and complex
fields gave rise to the idea of studying any field K with a complete valuation j:j
comparable to the absolute value function. Such fields satisfy the “strong triangle
inequality” jx C yj � max.jxj; jyj/. Given a valued field, defining a totally
ordered Abelian (i.e. commutative) group, an ultrametric space is induced through

x y z

1.
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1.
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2.
0

2.
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3.
0

3.
5

H
ei

gh
t

Fig. 1 The strong triangular inequality defines an ultrametric: every triplet of points satisfies the
relationship: d.x; z/ � maxfd.x; y/; d.y; z/g for distance d . Cf. by reading off the hierarchy,
how this is verified for all x; y; z: d.x; z/ D 3:5I d.x; y/ D 3:5I d.y; z/ D 1:0. In addition the
symmetry and positive definiteness conditions hold for any pair of points
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jx � yj D d.x; y/. Various terms are used interchangeably for analysis in and over
such fields such as p-adic, ultrametric, non-Archimedean, and isosceles. The natural
geometric ordering of metric valuations is on the real line, whereas in the ultrametric
case the natural ordering is a hierarchical or rooted tree.

3.2 Some Geometrical Properties of Ultrametric Spaces

An ultrametric space is quite different from a metric one. In an ultrametric space
everything “lives” on a tree. For various properties that ensue, see [40, Chap. 0,
part IV].

In an ultrametric space, all triangles are either isosceles with small base or
equilateral. We have here very clear symmetries of shape in an ultrametric topology.
These symmetry “patterns” can be used to fingerprint data sets and time series: see
[51, 54] for many examples of this.

Some further properties that are studied in [40] are: (a) every point of a circle in
an ultrametric space is a centre of the circle. (b) In an ultrametric topology, every
ball is both open and closed (termed clopen). (c) An ultrametric space is zero-
dimensional (see [7, 74]). It is clear that an ultrametric topology is very different
from our intuitive, or Euclidean, notions. The most important point to keep in mind
is that in an ultrametric space everything “lives” in a hierarchy expressed by a tree.

For an n � n matrix of positive reals, symmetric with respect to the principal
diagonal, to be a matrix of distances associated with an ultrametric distance on X , a
sufficient and necessary condition is that a permutation of rows and columns satisfies
the following form of the matrix:

1. Above the diagonal term, equal to 0, the elements of the same row are non-
decreasing.

2. For every index k, if

d.k; k C 1/ D d.k; k C 2/ D � � � D d.k; k C `C 1/

then

d.k C 1; j / � d.k; j / for k C 1 < j � k C `C 1

and

d.k C 1; j / D d.k; j / for j > k C `C 1

Under these circumstances, ` � 0 is the length of the section beginning, beyond
the principal diagonal, the interval of columns of equal terms in row k.
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Table 1 Input data: eight iris flowers characterized by sepal and petal widths and lengths

Sepal.Length Sepal.Width Petal.Length Petal.Width

iris1 5.1 3.5 1.4 0.2
iris2 4.9 3.0 1.4 0.2
iris3 4.7 3.2 1.3 0.2
iris4 4.6 3.1 1.5 0.2
iris5 5.0 3.6 1.4 0.2
iris6 5.4 3.9 1.7 0.4
iris7 4.6 3.4 1.4 0.3

From Fisher’s iris data [23]

1 3 4 2 5 6 7

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

H
ei

gh
t

Fig. 2 Hierarchical
clustering of seven iris
flowers using data from
Table 1. No data
normalization was used. The
agglomerative clustering
criterion was the minimum
variance or Ward one

Table 2 Ultrametric matrix derived from the dendrogram in Fig. 2

iris1 iris2 iris3 iris4 iris5 iris6 iris7

iris1 0 0.6480741 0.6480741 0.6480741 1.1661904 1.1661904 1.1661904
iris2 0.6480741 0 0.3316625 0.3316625 1.1661904 1.1661904 1.1661904
iris3 0.6480741 0.3316625 0 0.2449490 1.1661904 1.1661904 1.1661904
iris4 0.6480741 0.3316625 0.2449490 0 1.1661904 1.1661904 1.1661904
iris5 1.1661904 1.1661904 1.1661904 1.1661904 0 0.6164414 0.9949874
iris6 1.1661904 1.1661904 1.1661904 1.1661904 0.6164414 0 0.9949874
iris7 1.1661904 1.1661904 1.1661904 1.1661904 0.9949874 0.9949874 0

To illustrate the ultrametric matrix format, consider the small data set shown in
Table 1. A dendrogram produced from this is shown in Fig. 2. From the abscissa
height of the lowest node or cluster containing the two terminals, the ultrametric
distances, also termed cophenetic distances, matrix can be read off this dendrogram.
This is shown in Table 2. Finally a visualization of this matrix, illustrating the
ultrametric matrix properties discussed above, is shown in Fig. 3.
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Fig. 3 A visualization of the
ultrametric matrix of Table 2,
where bright or
whiteD highest value, and
blackD lowest value

3.3 Clustering Through Matrix Row and Column Permutation

Direct clustering of the data matrix with no changing of the data matrix values—
“non-destructive”, therefore—also comes under the heading of block model
clustering.

Figure 3 shows how an ultrametric distance allows a certain structure to be visible
(quite possibly, in practice, subject to an appropriate row and column permuting), in
a matrix defined from the set of all distances. A generalization opens up for this sort
of clustering-by-visualization scheme. An optimized way to do this was pursued
in [43, 44]. Comprehensive surveys of clustering algorithms in this area, including
objective functions, visualization schemes, optimization approaches, presence of
constraints, and applications, can be found in [42, 72]. See also [17, 50].

For all these approaches, underpinning them are row and column permutations
that can be expressed in terms of the permutation group, Sn, on n elements.

4 The Generalized Ultrametric and Formal Concept Analysis

In this section, we consider an ultrametric defined on the power set or join
semilattice. Comprehensive background on ordered sets and lattices can be found
in [15]. A review of generalized distances and ultrametrics is in [67].

4.1 Link with Formal Concept Analysis

Typically hierarchical clustering is based on a distance (which can be relaxed often
to a dissimilarity, not respecting the triangular inequality, and mutatis mutandis to a
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Fig. 4 Top: Example data set consisting of five objects, characterized by three boolean attributes.
Bottom: Lattice corresponding to this data and its interpretation

similarity), defined on all pairs of the object set: d W X �X ! R
C; i.e., a distance

is a positive real value. Usually we require that a distance cannot be 0-valued unless
the objects are identical. That is the traditional approach.

A different form of ultrametrization is achieved from a dissimilarity defined on
the power set of attributes characterizing the observations (objects, individuals, etc.)
X . Here we have: d W X � X �! 2J , where J indexes the attribute (variables,
characteristics, properties, etc.) set.

This gives rise to a different notion of distance that maps pairs of objects onto
elements of a join semilattice. The latter can represent all subsets of the attribute set,
J . That is to say, it can represent the power set, commonly denoted 2J , of J .

As an example, consider, say, n D 5 objects characterized by three boolean
(presence/absence) attributes, shown in Fig. 4 (top). Define dissimilarity between
a pair of objects in this table as a set of 3 components, corresponding to the 3
attributes, such that if both components are 0, we have 1; if either component is
1 and the other 0, we have 1; and if both components are 1, we get 0. This is the
simple matching coefficient [36]. We could use, e.g., Euclidean distance for each of
the values sought; but we prefer to treat 0 values in both components as signaling
a 1 contribution. We get then d.a; b/ D 1; 1; 0 which we will call d1,d2. Then,
d.a; c/ D 0; 1; 0 which we will call d2, etc.

We create lattice nodes shown in Fig. 4, as follows.
The set d1,d2,d3 corresponds to: d.b; e/ and d.e; f /

The subset d1,d2 corresponds to: d.a; b/; d.a; f /; d.b; c/; d.b; f /; and d.c; f /

The subset d2,d3 corresponds to: d.a; e/ and d.c; e/

The subset d2 corresponds to: d.a; c/

Clusters defined by all pairwise linkage at level � 2:
a; b; c; f

a; c; e
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Explanation is as follows: a; b; c; f all share a 1 for attribute v1 and a 0 for
attribute v2, or vice versa. Then a; c; e share a 1 for attribute v2 and a 0 for attribute
v3, or vice versa. See this specification of these clusters in the middle part, “Lattice
vertices found”, of Fig. 4.

Finally:
Clusters defined by all pairwise linkage at level � 3:
a; b; c; e; f

In Formal Concept Analysis [15, 28], it is the lattice itself which is of primary
interest. In [36] there is discussion of, and a range of examples on, the close
relationship between the traditional hierarchical cluster analysis based on d W
I � I ! R

C, and hierarchical cluster analysis “based on abstract posets” (a poset
is a partially ordered set), based on d W I � I ! 2J . The latter, leading to clustering
based on dissimilarities, was developed initially in [35].

4.2 Applications of Generalized Ultrametrics

As noted in the previous subsection, the usual ultrametric is an ultrametric distance,
i.e. for a set I, d W I �I �! R

C. The generalized ultrametric is also consistent with
this definition, where the range is a subset of the power set: d W I � I �! � , where
� is a partially ordered set. In other words, the generalized ultrametric distance is a
set. Some areas of application of generalized ultrametrics will now be discussed.

In the theory of reasoning, a monotonic operator is rigorous application of
a succession of conditionals (sometimes called consequence relations). However,
negation or multiple valued logic (i.e. encompassing intermediate truth and false-
hood) requires support for non-monotonic reasoning.

Thus [31]: “Once one introduces negation . . . then certain of the important
operators are not monotonic (and therefore not continuous), and in consequence
the Knaster-Tarski theorem [i.e. for fixed points; see [15]] is no longer applicable
to them. Various ways have been proposed to overcome this problem. One such
[approach is to use] syntactic conditions on programs . . . Another is to consider
different operators . . . The third main solution is to introduce techniques from
topology and analysis to augment arguments based on order . . . [the latter include:]
methods based on metrics . . . on quasi-metrics . . . and finally . . . on ultrametric
spaces”.

The convergence to fixed points that are based on a generalized ultrametric
system is precisely the study of spherically complete systems and expansive
automorphisms discussed in Sect. 5.4 below. As expansive automorphisms we see
here again an example of symmetry at work. (Cf. too the quotation from Weyl at the
end of Sect. 1.1.)
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5 Hierarchy, Ultrametric Topology and the p-Adic
Number System

A dendrogram is widely used in hierarchical, agglomerative clustering, and is
induced from observed data. By expressing a dendrogram in p-adic terms, we open
up a wide range of possibilities for seeing symmetries and attendant invariants.

5.1 p-Adic Numbers and Their Importance

Rizzi [65] considered ultrametrics and ultramines (i.e. an analogous topology for
similarities as opposed to dissimilarities, both of which satisfy the strong triangular
inequality). He also discussed the representation of ultrametrics and ultramines
using p-adic numbers.

The importance of p-adic representation for physics on very small scales has
been made by Volovich from the 1980s. See [20, 78]. Such scales are of the order
of the Planck length, a fundamental constant (1:6� 10�35 m). p-Adic description of
very large scales has similarly been proposed.

A hierarchy, as a branching process, is a very good means of expressing discrete
energy states associated with energy basins requiring at least a requisite quantity of
energy to enable a particle to move to another energy basin and possibly, energy
level.

Volovich [78] poses the general principle that the fundamental physical laws
should be invariant under the change of the number field. Furthermore the p-adic
number fields, it is argued, have great benefit at very small scales and at very large
scales. This leads to the following ambitious statement: “If these ideas are true then
number theory and the corresponding branches of algebraic geometry are . . . the
ultimate and unified physical theory”.

5.2 p-Adic Encoding of a Dendrogram

We will introduce now the one-to-one mapping of clusters (including singletons)
in a dendrogram H into a set of p-adically expressed integers (a fortiori, rationals,
or Qp). The field of p-adic numbers is the most important example of ultrametric
spaces. Addition and multiplication of p-adic integers, Zp (cf. expression in
Sect. 2.3), are well defined. Inverses exist and no zero-divisors exist.

A terminal-to-root traversal in a dendrogram or binary rooted tree is defined as
follows. We use the path x � q � q0 � q00 � : : : qn�1, where x is a given object
specifying a given terminal, and q; q0; q00; : : : are the embedded classes along this
path, specifying nodes in the dendrogram. The root node is specified by the class
qn�1 comprising all objects.
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Fig. 5 Labelled, ranked dendrogram on eight terminal nodes, x1; x2; : : : ; x8. Branches are labelled
C1 and �1. Clusters are: q1 D .x1; x2/; q2 D .x1; x2; x3/; q3 D .x4; x5/; q4 D .x4; x5; x6/; q5 D
.x1; x2; x3; x4; x5; x6/; q6 D .x7; x8/; q7 D .x1; x2; : : : ; x7; x8/

A terminal-to-root traversal is the shortest path between the given terminal node
and the root node, assuming we preclude repeated traversal (backtrack) of the same
path between any two nodes.

By means of terminal-to-root traversals, we define the following p-adic encoding
of terminal nodes, and hence objects, in Fig. 5.

x1 W C 1 � p1 C 1 � p2 C 1 � p5 C 1 � p7

x2 W � 1 � p1 C 1 � p2 C 1 � p5 C 1 � p7

x3 W � 1 � p2 C 1 � p5 C 1 � p7

x4 W C 1 � p3 C 1 � p4 � 1 � p5 C 1 � p7

x5 W � 1 � p3 C 1 � p4 � 1 � p5 C 1 � p7

x6 W � 1 � p4 � 1 � p5 C 1 � p7

x7 W C 1 � p6 � 1 � p7

x8 W � 1 � p6 � 1 � p7 (1)

If we choose p D 2, the resulting decimal equivalents could be the same: cf.
contributions based on C1 � p1 and �1 � p1 C 1 � p2. Given that the coefficients of
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the pj terms (1 � j � 7) are in the set f�1; 0;C1g (implying for x1 the additional
terms: C0 � p3 C 0 � p4 C 0 � p6), the coding based on p D 3 is required to avoid
ambiguity among decimal equivalents.

A few general remarks on this encoding follow. For the labelled ranked binary
trees that we are considering (for discussion of combinatorial properties based on
labelled, ranked and binary trees, see [49]), we require the labels C1 and �1 for
the two branches at any node. Of course we could interchange these labels and have
these C1 and �1 labels reversed at any node. By doing so we will have different
p-adic codes for the objects, xi .

The following properties hold: (a) Unique encoding: the decimal codes for each
xi (lexicographically ordered) are unique for p � 3; and (b) Reversibility: the
dendrogram can be uniquely reconstructed from any such set of unique codes.

The p-adic encoding defined for any object set can be expressed as follows for
any object x associated with a terminal node:

x D
n�1X

jD1

cj pj where cj 2 f�1; 0;C1g (2)

In greater detail we have:

xi D
n�1X

jD1

cij pj where cij 2 f�1; 0;C1g (3)

Here j is the level or rank (root: n � 1; terminal: 1), and i is an object index.
In our example we have used: cj D C1 for a left branch (in the sense of Fig. 5),

cj D �1 for a right branch, and cj D 0 when the node is not on the path from that
particular terminal to the root.

A matrix form of this encoding is as follows, where f�gt denotes the transpose of
the vector.

Let x be the column vector .x1; x2; : : : ; xn/t .
Let p be the column vector .p1; p2; : : : ; pn�1/t .
Define a characteristic matrix C of the branching codes, C1 and �1, and an

absent or non-existent branching given by 0, as a set of values cij where i 2 I , the
indices of the object set; and j 2 f1; 2; : : : ; n � 1g, the indices of the dendrogram
levels or nodes ordered increasingly. For Fig. 5 we therefore have:

C D fcij g D

0

B
BB
B
B
B
B
BB
B
B
@

1 1 0 0 1 0 1

�1 1 0 0 1 0 1

0 �1 0 0 1 0 1

0 0 1 1 �1 0 1

0 0 �1 1 �1 0 1

0 0 0 �1 �1 0 1

0 0 0 0 0 1 �1

0 0 0 0 0 �1 �1

1

C
CC
C
C
C
C
CC
C
C
A

(4)
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For given level j , 8i , the absolute values jcij j give the membership function
either by node, j , which is therefore read off columnwise or by object index, i ,
which is therefore read off rowwise.

The matrix form of the p-adic encoding used in Eqs. (2) or (3) is:

x D C p (5)

Here, x is the decimal encoding, C is the matrix with dendrogram branching codes
(cf. example shown in expression (4)), and p is the vector of powers of a fixed
prime p.

The tree encoding exemplified in Fig. 5, and defined with coefficients in Eqs. (2)
or (3), (4) or (5), with labelsC1 and �1 was required (as opposed to the choice of 0
and 1, which might have been our first thought) to fully cater for the ranked nodes
(i.e. the total order, as opposed to a partial order, on the nodes).

We can consider the objects that we are dealing with to have equivalent integer
values. To show that, all we must do is work out decimal equivalents of the p-adic
expressions used above for x1; x2; : : : . As noted in [29], we have equivalence
between: a p-adic number; a p-adic expansion and an element of Zp (the p-adic
integers). The coefficients used to specify a p-adic number, [29] notes (p. 69), “must
be taken in a set of representatives of the class modulo p. The numbers between 0
and p � 1 are only the most obvious choice for these representatives. There are
situations, however, where ther choices are expedient”.

We note that the matrix C is used in [14]. A somewhat trivial view of
how “hierarchical trees can be perfectly scaled in one dimension” (the title and
theme of [14]) is that p-adic numbering is feasible, and hence a one-dimensional
representation of terminal nodes is easily arranged through expressing each p-adic
number with a real number equivalent.

In [46], what is termed a nest (i.e. cluster nesting) indicator function is defined,
based on the set faw;�bw; 0g; aw; bw 2 R

C in the same way that the set f1;�1; 0g
is used above for the matrix C . Orthonormality properties of the nest indicator
functions are studied.

5.3 p-Adic Distance on a Dendrogram

We will now induce a metric topology on the p-adically encoded dendrogram, H .
It leads to various symmetries relative to identical norms, for instance, or identical
tree distances.

We use the following longest common subsequence, starting at the root: we look
for the term pr in the p-adic codes of the two objects, where r is the lowest level
such that both sequences have non-zero, i.e.C1 or �1 coefficients, for the pr term.

Let us look at the set of p-adic codes for x1; x2; : : : above (Fig. 5 and rela-
tions (1)), to give some examples of this.
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For x1 and x2, we find the term we are looking for to be p1, and so r D 1.
For x1 and x5, we find the term we are looking for to be p5, and so r D 5.
For x5 and x8, we find the term we are looking for to be p7, and so r D 7.

Having found the value r , the distance is defined as p�r [3, 29].
This longest common prefix metric is also known as the Baire distance. In

topology the Baire metric is defined on infinite strings [41]. It is more than just
a distance: it is an ultrametric bounded from above by 1, and its infimum is 0 which
is relevant for very long sequences, or in the limit for infinite-length sequences. The
use of this Baire metric is pursued in [60] based on random projections [75], and
providing computational benefits over the classical O.n2/ hierarchical clustering
based on all pairwise distances. This is further discussed in Sect. 6.3.

The longest common prefix metric leads directly to a p-adic hierarchical
classification (cf. [4]). This is a special case of the “fast” hierarchical clustering
to be discussed in Sect. 6.3.

Compared to the longest common prefix metric, there are other related forms of
metric, and simultaneously ultrametric. In [27], the metric is defined via the integer
part of a real number. In [3], for integers x; y we have: d.x; y/ D 2�orderp.x�y/

where p is prime, and orderp.i/ is the exponent (non-negative integer) of p in
the prime decomposition of an integer. Furthermore, let S.x/ be a series: S.x/ DP

i2N ai x
i . (N is the set of natural numbers.) The order of S.x/ is the rank of

its first non-zero term: order.S/ D inffi W i 2 NI ai ¤ 0g. (The series that
is all zero is of order infinity.) Then the ultrametric similarity between series is:
d.S; S 0/ D 2�order.S�S 0/.

5.4 Scale-Related Symmetry

Scale-related symmetry is very important in practice. In this subsection we introduce
an operator that provides this symmetry. We also term it a dilation operator, because
of its role in the wavelet transform on trees (see [55] for discussion and examples).
This operator is p-adic multiplication by 1=p.

Consider the set of objects fxi ji 2 I g with its p-adic coding considered above.
Take p D 2. (Non-uniqueness of corresponding decimal codes is not of concern to
us now, and taking this value for p is without any loss of generality.) Multiplication
of x1 D C1 � 21C1 � 22C1 � 25C1 � 27 by 1=p D 1=2 gives:C1 � 21C1 � 24C1 � 26.
Each level has decreased by one, and the lowest level has been lost. Subject to the
lowest level of the tree being lost, the form of the tree remains the same. By carrying
out the multiplication-by-1=p operation on all objects, it is seen that the effect is to
rise in the hierarchy by one level.

Let us call product with 1=p the operator A. The effect of losing the bottom level
of the dendrogram means that either (1) each cluster (possibly singleton) remains
the same; or (2) two clusters are merged. Therefore the application of A to all
q implies a subset relationship between the set of clusters fqg and the result of
applying A, fAqg.
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Repeated application of the operator A gives Aq, A2q, A3q, : : : . Starting with
any singleton, i 2 I , this gives a path from the terminal to the root node in the
tree. Each such path ends with the null element, which we define to be the p-adic
encoding corresponding to the root node of the tree. Therefore the intersection of
the paths equals the null element.

Benedetto and Benedetto [1, 2] discuss A as an expansive automorphism of I ,
i.e. form-preserving, and locally expansive. Some implications [2] of the expansive
automorphism follow. For any q, let us take q; Aq; A2q; : : : as a sequence of open
subgroups of I , with q � Aq � A2q � : : : , and I D Sfq; Aq; A2q; : : : g. This is
termed an inductive sequence of I , and I itself is the inductive limit [64, p. 131].

Each path defined by application of the expansive automorphism defines a
spherically complete system [27, 66, 74], which is a formalization of well-defined
subset embeddedness. Such a methodological framework finds application in multi-
valued and non-monotonic reasoning, as noted in Sect. 4.2.

6 Exploiting Ultrametric Embeddings
for Search and Discovery

6.1 Remarkable Symmetries in Very High Dimensional Spaces

In the work of [62, 63] it was shown how as ambient dimensionality increased dis-
tances became more and more ultrametric. That is to say, a hierarchical embedding
becomes more and more immediate and direct as dimensionality increases. A better
way of quantifying this phenomenon was developed in [51]. What this means is that
there is inherent hierarchical structure in high dimensional data spaces.

It was shown experimentally in [51, 62, 63] how points in high dimensional
spaces become increasingly equidistant with increase in dimensionality. Both [30]
and [18] study Gaussian clouds in very high dimensions. The latter finds that “not
only are the points [of a Gaussian cloud in very high dimensional space] on the
convex hull, but all reasonable-sized subsets span faces of the convex hull. This
is wildly different than the behavior that would be expected by traditional low-
dimensional thinking”.

That very simple structures come about in very high dimensions is not as trivial
as it might appear at first sight. Firstly, even very simple structures (hence with
many symmetries) can be used to support fast and perhaps even constant time worst
case proximity search [51]. Secondly, as shown in the machine learning framework
by Hall et al. [30], there are important implications ensuing from the simple high
dimensional structures. Thirdly, [56] shows that very high dimensional clustered
data contain symmetries that in fact can be exploited to “read off” the clusters in a
computationally efficient way. Fourthly, following [16], what we might want to look
for in contexts of considerable symmetry are the “impurities” or small irregularities
that detract from the overall dominant picture.
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Table 3 Typical results, based on 300 sampled triangles from triplets of points

No. points Dimen. Isosc. Equil. UM

Uniform
100 20 0.10 0.03 0.13
100 200 0.16 0.20 0.36
100 2000 0.01 0.83 0.84
100 20000 0 0.94 0.94

Hypercube
100 20 0.14 0.02 0.16
100 200 0.16 0.21 0.36
100 2000 0.01 0.86 0.87
100 20000 0 0.96 0.96

Gaussian
100 20 0.12 0.01 0.13
100 200 0.23 0.14 0.36
100 2000 0.04 0.77 0.80
100 20000 0 0.98 0.98

For uniform, the data are generated on Œ0; 1�m; hypercube vertices are in f0; 1gm,
and for Gaussian on each dimension, the data are of mean 0, and variance 1.
Dimen. is the ambient dimensionality. Isosc. is the number of isosceles triangles
with small base, as a proportion of all triangles sampled. Equil. is the number of
equilateral triangles as a proportion of triangles sampled. UM is the proportion
of ultrametricity-respecting triangles (D 1 for all ultrametric)

See Table 3 exemplifying the change of topological properties as ambient
dimensionality increases. It behoves us to exploit the symmetries that arise when
we have to process very high dimensional data.

6.2 Partial Ultrametric Embedding

In [57], we discuss permutation representations of a data stream. Since hierarchies
can also be represented as permutations, there is a ready way to associate data
streams with hierarchies. In fact, early computational work on hierarchical clus-
tering used permutation representation to great effect (cf. [68]).

To analyse data streams in this way, in [54] we develop an approach to ultrametric
embedding of time-varying signals, including biomedical, meteorological, financial
and other. As opposed to the classical way of inducing a hierarchy, through use
of an agglomerative hierarchical clustering algorithm, we look for the ultrametric
relationship—the strong triangular inequality—and, when found, count such par-
ticular cases of adherence to inherent hierarchical properties in the data. The most
non-ultrametric time series are found to be chaotic ones. Eyegaze trace data was
found to be remarkably high in ultrametricity, which are likely to be due to extreme
saccade movements. Some initial questions were raised in that work [54] in regard
to the EEG data used, for sleeping, petit mal and irregular epilepsy cases.
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This work has been pursued by Khrennikov and his colleagues in modelling
multi-agent systems. See [22]. Furthermore this work uses Bose–Einstein and
Fermi–Dirac statistical distributions (derived from quantum statistics of energy
states of bosons and fermions, i.e. elementary particles with integer, and half odd
integer, spin). In [21, 22] multi-agent behaviours are modelled using such energy
distributions. The framework is an urn model, where balls can move, with loss
of energy over time, and with possibilities to receive input energy, but potentially
shared with other balls. See the cited works for a full description of the Monte Carlo
system set up. Sequences of actions (and moves), viz. their histories, are coded
such that triangle properties can be investigated (cf. also [54]). That leads to a
characterization of how ultrametrically embeddable the data is, ab initio (and not
through imposing any hierarchical or other structure on the data with retrospective
goodness of fit assessment). In [22], the case is presented for such analysis of
behavioural histories being important for study of social and economic complexity.

Quantum statistical distributions have been noted in the foregoing work [21,22].
van Rijsbergen [73] has set out various ways in which a quantum physics formalism
makes clearer what is being done in information retrieval and in data analysis
generally.

The quantifying of the inherent ultrametric content of text, and finding that some
are much more inherently hierarchical than others, was pursued in [59]. As data, the
following were used: tales from the Brothers Grimm, Jane Austen novels, dream
reports, air accident reports, and James Joyce’s Ulysses.

6.3 Ultrametric Baire Space and Distance

A Baire space consists of countably infinite sequences with a metric defined in
terms of the longest common prefix: the longer the common prefix, the closer a
pair of sequences. This longest common prefix metric allows us to define the Baire
distance [11, 48, 60]. In this description of the Baire distance, we consider to begin
with scalar or univariate values. Below we will generalize to multivariate data such
as in the case, for example, of documents with presence or absence, or frequencies
of occurrence, on a term set or some other features.

Take the longest common prefixes at issue here as coming from precision of any
value. Without loss of generality, take these values as decimal, i.e. base 10, or m-
adic with m D 10. We take x and y to be bounded by 0 and 1. Each of them is of
some precision, and we take the integer jKj to be the maximum precision.

Thus we consider ordered sets xk and yk for k 2 K , or, we will write, for k D 1;

2; : : : ; jKj. The cardinality of the set K is the precision with which a number, x, is
measured. So, xk with k D 1 is the first decimal place of precision; with k D 2, we
have the second decimal place; . . . ; and with k D jKj we have the jKjth decimal
place.
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Consider as examples x D 0:478; and y D 0:472. Start from the first decimal
position. For k D 1, we find x1 D y1 D 4. For k D 2, x2 D y2 D 7. But for k D 3,
x3 ¤ y3.

We now introduce the following distance (case of x and y, with 1 attribute, hence
unidimensional, and where subscript k is the digit of precision):

dB.x; y/ � dB.xK; yK/ D
�

1 if x1 ¤ y1

inf 10�k xk D yk; 1 � k � jKj (6)

We call this dB value Baire distance, which can be shown to be an ultrametric [51–
54,60] distance. In the properties of a metric we generally have d.x; y/ D 0 iffx D
y whereas for the Baire distance this reflexivity property is relaxed by having the 0
value replaced by the definably minimal value.

When dealing with binary data, 2 is a convenient base. In definition (6) we used
a base of 10 for ease of coding when working with real numbers.

It is seen that this distance splits a unidimensional string of decimal values into a
10-way hierarchy, in which each leaf is associated with a grid cell. From Eq. (6) we
can read off the distance between points assigned to the same grid cell. All pairwise
distances of points assigned to the same cell are the same.

Relative to agglomerative hierarchical clustering, the Baire-based hierarchy is
such that each node of this tree is associated with a grid (more strictly, in what we
have described, interval) cell. Cell assignments at a particular level can be used
to count the number of values x; y that are associated with that cell, and these
counts define local density. As we have described the inducing of a hierarchy, this
has been in a top-down manner (cf. how agglomerative hierarchical clustering, in
that it is agglomerative, is consequently bottom-up). It follows from this algorithm
that we can read the hierarchy off the data in a single scan, by having the target
data structure—here, a regular 10-way tree—and assigning each value to all its
appropriate nodes in the tree. For ease of characterizing this tree, or hierarchical
clustering, we refer to it as a Baire tree or Baire hierarchy. The minimum Baire
distance corresponds to a partial match of the values at each level [13].

For data with higher dimensionality, random projections can be used. Random
projection is simple. Forming the random matrix R and projecting the d � N data
matrix X into the k dimensions is of order O.dkN /. If X is sparse with c non-zero
entries per column, the complexity is of order O.ckN /.

In fact random projection can be seen as a class of hashing function. Hashing
is much faster than alternative methods because it avoids the pairwise comparisons
required for partitioning and classification. If two points .p; q/ are close, they will
have a very small kp � qk (Euclidean metric) value; and they will hash to the
same value with high probability; if they are distant, they should collide with small
probability.

Clustering using the Baire distance has been successfully applied to areas such
as chemoinformatics [60], astronomy [12] and text retrieval [10].

In [60], this principle of binning data is used on a large, high dimensional
chemoinformatics data set. The application of merging databases of chemical
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compounds is important. In [60] 1.2 million compounds were used, characterized
using a particular coding scheme by 1052-valued presence/absence vector. Use
of the Baire distance and the associated hierarchical clustering were compared in
detail with k-means partitioning (through partitions derived from the hierarchical
clustering).

We studied stability of results, and effectiveness relative to other clustering
methods, in particular k-means partitioning, in [12]. The main domain of application
in that work was astronomy, and in particular clustering of redshifts in order to
facilitate regression of (more expensively observed but better quality) spectroscopic
redshifts on (more easily observed but with less signal resolution) photometric
redshifts.

6.4 Approximating an Ultrametric for Similarity
Metric Space Searching

In [51] we show that, in much work over the years, nearest neighbour searching
has been made more efficient through the use of more easily determined feasibility
bounds. An early example is Fukunaga and Narendra [26], a chapter review is in
[50], and a survey can be found in [9]. Rendering given distances as ultrametric is a
powerful way to facilitate nearest neighbour searching. Furthermore “stretching the
triangular inequality” (a phrase used by [8]) so that it becomes the strong triangular
inequality, or ultrametric inequality, gives a unifying view of some algorithms of
this type.

Fast nearest neighbour finding often makes use of pivots to establish bounds on
points to be searched, and points to be bypassed as infeasible [6, 9].

A full discussion can be found in [51]. Fast nearest neighbour searching in metric
spaces often appeals to heuristics. The link with ultrametric spaces gives rise instead
to a unifying view.

Hjaltason and Samet [32] discuss heuristic nearest neighbour searching in terms
of embedding the given metric space points in lower dimensional spaces. From our
discussion in this section, we see that there is evidently another alternative direction
for facilitating fast nearest neighbour searching: viz., taking the metric space as
an ultrametric one, and if it does not quite fit this perspective, then “stretch” it
(transform it locally) so that it does so.

7 Conclusions

There are many exciting perspectives opened up by our work on the theme of
symmetry-finding through hierarchy in very large data collections, with insights and
perspectives from many application domains that are data-based and motivated, and
indeed driven, by complex problem-solving.
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“My thesis has been that one path to the construction of a nontrivial theory of
complex systems is by way of a theory of hierarchy”. Thus Simon [69, p. 216].
We have noted symmetry in many guises in the representations used, in the
transformations applied, and in the transformed outputs. These symmetries are non-
trivial too, in a way that would not be the case were we simply to look at classes of
a partition and claim that cluster members were mutually similar in some way. We
have seen how the p-adic or ultrametric framework provides significant focus and
commonality of viewpoint.

Furthermore we have highlighted the computational scaling properties of our
algorithms. They are fully capable of addressing the data and information deluge
that we face and providing us with the best interpretative and decision-making tools.
The full elaboration of this last point is to be sought in each and every application
domain, and face to face with old and new problems.
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A New Algorithm for Inferring Hybridization
Events Based on the Detection of Horizontal
Gene Transfers

Vladimir Makarenkov, Alix Boc, and Pierre Legendre

Abstract Hybridization and horizontal gene transfer are two major mechanisms
of reticulate evolution. Both of them allow for a creation of new species by
recombining genes or chromosomes of the existing organisms. An effective detec-
tion of hybridization events and estimation of their evolutionary significance have
been recognized as main hurdles of the modern computational biology. In this
article, we underline common features characterizing horizontal gene transfer and
hybridization phenomena and describe a new algorithm for the inference and
validation of the diploid hybridization events, when the newly created hybrid has
the same number of chromosomes as the parent species. A simulation study was
carried out to examine the ability of the proposed algorithm to infer correct hybrids
and their parents in various practical situations.

Keywords Additive tree • Phylogenetic tree • Horizontal gene transfer
• Hybridization

1 Introduction

Horizontal gene transfer (HGT) and hybridization, which are often followed by
genetic or chromosomic recombination, have been recognized as major forces
contributing to the formation of new species. Both of these evolutionary mecha-
nisms are important parts of the reticulate evolution phenomenon which requires a
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network topology for its correct graphical representation. Phylogenetic networks are
a generalization of phylogenetic (or additive) trees which have been systematically
used in biological and bioinformatics studies since the publication of Darwin’s On
the Origin of Species by Means of Natural Selection [10] in order to represent the
process of species evolution. Phylogenetic trees and networks are usually recon-
structed according to similarities and differences between genetic or morphological
characteristics of the observed species (i.e., taxa or objects). The tree reconstruction
can rely either on distance-based methods [35] or on character-based methods [17].
When distance-based methods are considered, the tree building process is usually
twofold: the distances are first estimated from character data and a tree is then
inferred from the distance estimates. The character-based methods assume that
genetic sequences evolve from a common ancestor by a process of mutation and
selection without mixing (e.g., without HGT or hybridization events).

However, phylogenetic trees cannot be used to represent complex reticulate
evolutionary mechanisms such as hybridization, HGT, recombination, or gene
duplication followed by gene loss. Phylogenetic networks have become the models
of choice when reticulation events have influenced species evolution [18, 19]. One
example of phylogenetic networks is a reticulogram, i.e. reticulated cladogram,
which is an undirected connected graph capable of retracing reticulate evolutionary
patterns existing among the given organisms [23]. Since their introduction in 2002,
reticulograms have been used to portray a variety of phylogenetic and biogeographic
mechanisms, including hybridization, microevolution of local populations within a
species, and historical biogeography of dispersion events [23, 26].

HGT, which is also called lateral gene transfer, is one of the main mechanisms
contributing to the diversification of microbial genomes. HGT consists of a direct
transfer of genetic material from one lineage to another. Bacteria and viruses have
developed complex mechanisms of the acquisition of new genes by HGT to better
adapt to changing environmental conditions [11, 41]. Two main HGT detection
approaches exist in the literature. First of them proceeds by sequence analysis of the
host genome in order to identify the genomic fragments with atypical GC content
or codon usage patterns [22]. The second approach compares a morphology-based
species tree, or a molecular tree inferred from a molecule which is supposed to be
unaffected by HGT (e.g., 16S rRNA), with a phylogeny of the considered gene.
When bacterial or viral data are examined, the observed topological differences
between two trees can be often explained by HGT. The second approach comprises
numerous heuristic algorithms, including the network-based models introduced by
Hein [15], von Haeseler and Churchill [38], and Page and Charleston [9, 31, 32].
Mirkin et al. [28] described a tree reconciliation method for integrating different
gene trees into a unique species phylogeny. Maddison [25] and then Page and
Charleston [32] were first to present the set of evolutionary constraints that should
be satisfied when inferring HGT events. Several recently proposed methods deal
with the approximation of the Subtree Prune and Regraft (SPR) distance which is
used to estimate the minimum possible number of HGTs. Bordewich and Semple
[8] showed that computing the SPR distance between two rooted binary trees is
NP-hard. A model allowing for mapping several gene trees into a species tree was



A New Algorithm for Inferring Hybridization Events 275

introduced by Hallett and Lagergren ([14], LatTrans algorithm). Mirkin et al. [29]
described an algorithm for the reconciliation of phyletic patterns with a species tree
by simultaneously considering gene loss, gene emergence, and gene transfer events.
Mirkin et al. [29] showed that in each situation their algorithm, which can be seen
as one of the main references in this field, provided a parsimonious evolutionary
scenario for mapping gene loss and gain events into a species phylogenetic tree.
Nakhleh et al. [30] and Than and Nakhleh [37] put forward the RIATA-HGT
heuristic based on the divide-and-conquer approach. Boc et al. [6] introduced a
new HGT inference algorithm, HGT-Detection, and showed that it is considerably
faster than the exhaustive HGT detection strategy implemented in LatTrans, while
being identical in terms of accuracy. HGT-Detection was also proved to be faster
and generally more reliable than RIATA-HGT. The HGT-Detection algorithm will
be considered as a backbone procedure for the hybrid detection technique that we
introduce in this article.

Hybridization is another major process of reticulate evolution [2]. It is very
common among plants, fish, amphibians, and reptiles and is rather rare among other
groups of species, including birds, mammals, and most arthropods [27]. The new
species is created by the process of recombination of genomes of different parent
species. When the new species has the same number of chromosomes as its parents,
the process is called diploid hybridization. When the new species has the sum of the
number of the parent’s chromosomes, the process is called polyploid hybridization.
In this study, we will assume that new species has been created by the process of
diploid hybridization. Most of the hypotheses and conclusions about hybridization
rely on morphological data, and in many situations, these hypotheses have not been
rigorously tested by simulations [20]. The majority of the works addressing the issue
of the hybrids detection aim at calculating the minimal number of hybridization
events that are necessary to reconcile the given tree topologies [3, 8]. Some of them
proceed by estimating the SPR distance between a pair of rooted trees [1, 39, 40].
The main drawback of these methods is that most of them can deal only with a small
number of hybrids and none of them offers the possibility of a statistical validation
of the obtained hybridization events.

In this article, we propose a new algorithm for inferring a minimum number of
statistically validated hybridization events that are necessary to reconcile the set of
gene trees belonging to different parents (i.e., male and female gene trees) under
the hypothesis of diploid hybridization. The new method will use the common
features characterizing HGT and hybridization processes by separating the task
of detecting hybridization events into several sub-tasks, each of which could be
tackled by solving an equivalent HGT detection problem. A statistical validation
procedure allowing one to assess the bootstrap support of the proposed hybrids and
their parents will be incorporated into the new algorithm. A simulation study along
with an application example will also be presented in the article.
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2 Definitions and Basic Concepts

This section recalls some basic definitions concerning phylogenetic trees and tree
metrics following the terminology of Barthélemy and Guénoche [4]. The distance
ı(x,y) between two vertices x and y in a phylogenetic tree T is defined as the sum
of the edge lengths of the unique path connecting x and y in T . Such a path is
denoted (x,y). A leaf is a vertex of degree one.

Definition 1. Let X be a finite set of n taxa. A dissimilarity d on X is a nonnegative
function on (X �X ) such that for any x, y from X :

(1) d.x; y/ D d.y; x/, and
(2) d.x; y/ D d.y; x/ � d.x; x/ D 0.

Definition 2. A dissimilarity d on X satisfies the four-point condition if for any x,
y, z, and w from X :

d.x; y/C d.z; w/ � Maxfd.x; z/C d.y; w/I d.x; w/C d.y; z/g: (1)

Definition 3. For a finite set X , a phylogenetic tree (i.e., an additive tree or an X -
tree) is an ordered pair (T , ') consisting of a tree T , with vertex set V , and a map
': X ! V with the property that, for all x 2 X with degree at most two, x 2 '.X/.
A phylogenetic tree is called binary if ' is a bijection from X into the leaf set of T

and every interior vertex has degree three. The main theorem linking the four-point
condition and phylogenetic trees (i.e., phylogenies) is as follows:

Theorem 1 (Zarestskii, Buneman, Patrinos, Hakimi, and Dobson).
Any dissimilarity satisfying the four-point condition can be represented by a
phylogenetic tree T such that for any x, y from X , d.x; y/ is equal to the length
of the path linking the leaves x and y in T . This dissimilarity is called a tree metric.
Furthermore, this tree is unique.

Figure 1 presents an example of a tree metric on the set X of five taxa and the
corresponding phylogenetic tree. Note that raw biological data rarely give rise
directly to a tree metric (i.e., to a phylogenetic tree) but rather to a dissimilarity
not satisfying the four-point condition. Biologists have to infer tree metrics and the
corresponding trees by fitting the given dissimilarity with a tree metric according to
a specific criterion.
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x2
2

2

1 1

2

2

 2

x2   x3   x4   x5
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 6     5     4    6
5     6    4

5    5
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Fig. 1 A tree metric on the set X of five taxa and the associated phylogenetic tree with five leaves
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3 HGT Detection Problem and Related
Optimization Criteria

The problem of finding the minimum number of HGTs that are necessary to
transform one phylogenetic tree into another (i.e., also known as Subtree Transfer
Problem) has been shown to be NP-hard [16]. Here we recall the main features of
the HGT-Detection algorithm [6] intended for inferring HGT events. This algorithm
proceeds by a progressive reconciliation of the given species and gene phylogenetic
trees, denoted T and T 0, respectively. Usually, the species tree T is inferred from
the gene that is refractory to HGT and genetic recombination. This tree represents
the direct, or tree-like, evolution. The gene tree T 0 represents the evolution of the
given gene which is supposed to undergo horizontal transfers.

At each step of the algorithm, all pairs of edges of the species tree T are tested
against the hypothesis that a HGT has occurred between them. Thus, the original
species phylogenetic tree T is progressively transformed into the gene phylogenetic
tree T 0 via a series of SPR moves (i.e., gene transfers). The topology of the gene tree
T 0 is fixed throughout the transformation process. The goal of the method is to find
the minimum possible sequence of trees T , T1, T2, . . . , T 0 transforming T into T 0.
Obviously, a number of necessary biological rules should be taken into account. For
example, the transfers within the same lineage should be prohibited [14,25,32]. The
subtree constraint we consider here (see Appendix) allows us to take into account
all necessary evolutionary rules.

We will consider the four following optimization criteria which can be used to
select optimal transfers at each step of the algorithm: least-squares, the Robinson
and Foulds topological distance, the quartet distance, and the bipartition dissimilar-
ity. The first employed optimization criterion is the least-squares function Q. It is
defined as follows:

Q D
X

i

X

j

.d.i; j /� ı.i; j //2; (2)

where d.i; j / is the distance between the leaves i and j in the species tree T at the
first step of the algorithm (or the transformed species trees at the following steps
of the algorithm) and ı.i; j / is the distance between the leaves i and j in the gene
tree T 0.

The second criterion we use in the transfer detection part of our algorithm is the
Robinson and Foulds (RF ) topological distance. The RF metric [33] is an important
and frequently used tool for comparing phylogenetic trees. This distance is equal to
the minimum number of elementary operations, consisting of merging and splitting
nodes, which are necessary to transform one tree into the other. This distance is
twice the number of bipartitions present in one of the trees and absent in the other.
When the RF distance is considered, we use it as the optimization criterion in the
following way: all possible transformations of the species tree, consisting of SPR
moves of its subtrees satisfying the biological constraints, are evaluated in such a
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Fig. 2 Trees T and T 0 and their bipartition tables. Each row of the bipartition table corresponds
to an internal edge of the tree. Arrows indicate the correspondence between the bipartition vectors
in the two tables. Value in bold near each vector indicates the corresponding distance

way that the RF distance between the transformed species tree T1 and the gene
tree T 0 is computed. The subtree transfer yielding the minimum of the RF distance
between T1 and T 0 is then selected.

The third considered criterion is the quartet distance (QD). QD is the number
of quartets, or subtrees induced by four leaves, which differ between the compared
trees. We can use this criterion in the same way that the RF metric.

The fourth optimization criterion is the bipartition dissimilarity (BD), first
defined in Boc et al. [6]. Assume that T and T 0 are binary phylogenetic trees on
the same set of leaves. A bipartition vector (i.e., split or bipartition) of the tree T is
a binary vector induced by an internal edge of T . Let BT be the bipartition table of
the internal edges of T and BT0 be the bipartition table of the internal edges of T 0.
The bipartition dissimilarity bd between T and T 0 is defined as follows:

bd D
 
X

a2BT

Min
b2BT0

.Min.d.a; b/I d.a; Nb///C
X

b2BT0

Min
a2BT

.Min.d.b; a/I d.b; Na///

!

=2;

(3)

where d.a; b/ is the Hamming distance between the bipartition vectors a and b ( Na
and Nb are the complements of a and b, respectively). The bipartition dissimilarity
can be seen as a refinement of the RF metric which takes into account only the
identical bipartitions. For example, the bipartition dissimilarity between the trees
T and T 0 with six leaves presented in Fig. 2 is computed as follows: bd.T; T / D
..0C 1C 1/C .0C 1C 2//=2 D 2:5.

In our simulation study described below we presented the results obtained using
the bipartition dissimilarity as the optimization criterion because it provided the best
overall simulation performances compared to the RF and QD distances and least-
squares.
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4 Algorithm Description

In this section we describe the main features of the new algorithm for detecting
hybridization events. The statistical bootstrap validation will be performed for each
hybrid species and only the hybrids with a significant bootstrap support will be
included in the final solution. The new algorithm for identifying hybridization events
proceeds by a reconciliation of the given pairs of gene trees, constructed for genes
inherited from different parents. A modified version of the procedure for detecting
HGTs described in Boc et al. [6] will be integrated in our new algorithm. Let Gm

be the set of genes that can be inherited from a male parent only and Gf be the set
of genes that can be inherited from a female parent only. In practice, nuclear and
chloroplast genes often play the roles of Gm and Gf, respectively. We assume that
for each given gene there exists a set of orthologous gene sequences (i.e., sequences
that originated from a single gene of the last common ancestor) that can be used to
build a phylogenetic gene tree. Each gene is thus originally represented by a multiple
sequence alignment of amino acids or nucleotides.

Step 1. For the multiple sequence alignments characterizing the male genes in
Gm we infer a set of phylogenetic male gene trees Tm and for the multiple sequence
alignments characterizing the female genes in Gf we infer a set of phylogenetic
female gene trees Tf; one gene tree by alignment is reconstructed. The trees can
be inferred using methods such as Neighbor-Joining [34], PhyML [13], RaxML
[36], or one of the phylogenetic inference algorithms from the PHYLIP package
[12]. We then root all the trees in Tm and Tf according to biological evidence or
using the outgroup or midpoint strategy and select the optimization criterion, which
can be least-squares, the Robinson and Foulds topological distance [33], the quartet
distance, or the bipartition dissimilarity [6].

Step 2. For each pair of gene trees T and T 0, such that T 2 Tm and T 0 2 Tf,
we use the HGT-Detection algorithm [6] to identify first HGTs that are required to
transform T into T 0. The HGT-Detection program carries out a fast and accurate
heuristic algorithm for computing a minimum-cost SPR transformation of the given
(species) tree T into the given (gene) tree T 0. Figure 3 shows how a species tree is
transformed into a gene tree by applying a transfer (SPR move) between its subtrees
(i.e., edges adjacent to the species C and E). After this SPR move, T and T 0 have the
identical topology. Second, we repeat the procedure by inversing the roles of T and
T 0. Now we look for HGTs that are necessary to transform T 0 into T . The statistical
bootstrap support of each obtained transfer is then assessed as defined in Boc et al.
[6] and Boc and Makarenkov [5]. We identify as potential hybrids the species that
receive transfers from different parents in T and T 0 (e.g., species H in Fig. 4 which
receives a transfer from the species C and B; here, C and B can be viewed as the
parents of H).
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Fig. 3 Horizontal gene transfer (i.e., SPR move) from species C to species E is necessary to
transform the topology of the species tree T into the topology of the gene tree T 0

Final Step. All the obtained horizontal transfers are classified according to their
statistical support to establish a ranked list of predicted hybrid species and their
parents. In our algorithm, a confirmed hybrid species is a species that receives a
transfer stemming from different parents in at least two gene trees (such that at
least one of them is from Tm and at least one of them is from Tf) with a fixed
minimum confidence score (i.e., average bootstrap support). When multiple trees
from Tm and Tf are involved, this score is computed as the mean value of the
average bootstrap scores found for the two groups of parents. If the gene trees are
considered without uncertainties (i.e., no bootstrap validation performed), then all
hybrid species found by the algorithm can be included in the final solution. The
main steps of the new algorithm are presented below (see Algorithm 1). Its time
complexity is the following:

O.m � f � r � .C.TreeInf/C n4//; (4)

where m and f are the cardinalities of the sets Gm and Gf, respectively, r is the
number of replicates in bootstrapping, C.TreeInf/ is the time complexity of the tree
inferring method used to infer trees from the gene sequences, and n4 is the time
complexity of the HGT-Detection algorithm [6] applied to the given pair of species
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Fig. 4 The main idea of the hybrid inference method: the species H that receives transfers (Step
2) in both gene trees T 0 and T 00 is identified as a hybrid. The hybridization network N is thus
obtained (Step 3)

and gene trees with n leaves. Given that the time complexity of the PhyML [13]
method which we used in our simulation study is O.pnl/, where p is the number
of refinement steps being performed, n is the number of species and l is the sequence
length, the exact time complexity of our implementation is the following:

O.m � f � r � n � .p � l C n3//: (5)
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Algorithm 1 Main steps of the hybrids detection algorithm. See Appendix for
the definition of the subtree constraint which allows one to take into account all
necessary biological rules and for Theorems 2 and 3 which allow one to select
optimal transfers in different practical situations
Infer all gene trees Tm for the set of the male genes Gm and all gene trees Tf for the set of the
female genes Gf ;
Root all the trees in Tm and Tf according to biological evidence or using the outgroup or midpoint
strategy;
Select the optimization criterion OC = Q (least-squares), or RF (Robinson and Foulds distance),
or QD (quartet distance), or BD (bipartition dissimilarity);

for each tree T from the set of the male gene trees Tm do
for each tree T ’ from the set of the female gene trees Tf do

if there exist identical subtrees with two or more leaves in T and T ’ then
Decrease the size of the problem by collapsing them in both T and T ’;

end if
Compute the initial value of OC between T0 and T ’;
(*) T0 = T ; // or T0 = T ’ - when repeated
k = 1; // k is the step index

while OC ¤ 0 do
Find the set of all eligible horizontal transfers (i.e., SPR moves) at step k (denoted as
EHTk );
The set EHTk contains only the transfers satisfying the subtree constraint;
while transfers satisfying the conditions of Theorems 3 and 2 exist do

if there exist transfers 2 EHTk and satisfying the conditions of Theorem 3 then
Carry out the SPR moves corresponding to these transfers;

end if
if there exist transfers 2 EHTk and satisfying the conditions of Theorem 2 then

Carry out the SPR moves corresponding to these transfers;
end if

end while
Carry out all remaining SPR moves corresponding to transfers satisfying the subtree
constraint;
Compute the value of OC to identify the direction of each transfer;
k D k C 1;
Collapse the same subtrees in Tk and T ’; // or in Tk and T - when repeated
Compute the value of OC between Tk and T ’; // or between Tk and T - when repeated

end while

Repeat the procedure above by inversing the roles of T and T ’, starting from (*);
Identify species (potential hybrids) such that they receive transfers from different species
in T and T ’;

end for
end for

Classify all horizontal transfers and potential hybrids found;
Repeat the procedure above twice using the replicates of T and T ’ (obtained from the replicates
of the multiple sequence alignments corresponding to T and T ’) to establish the list of predicted
hybrid species and their parents with their bootstrap support.
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5 Simulation Study

A Monte Carlo study was conducted to test the capacity of the new algorithm to
identify correct hybrid species. Gene trees were assumed not to contain uncertainties
and thus the simulations were carried out with tree-like data only (i.e., sequence
data were not involved). We examined how the new algorithm performs depending
on the number of observed species, the rate of hybridization, and the number of
hybrid species artificially added. The measured hybridization rate is the ratio of
genes originating from the different parents (i.e., male and female species).

First, a binary gene tree T was generated using the random tree generation
procedure described in [21]. An improved version of this procedure was included in
our T-Rex package [7]. As we did not consider sequence data in these simulations,
the edge lengths of the trees were not taken into account here. In each experiment,
we considered ten replicates of the gene tree T , assuming that some of them
originated from the male and some of them from the female parent species.

Second, for a fixed hybridization rate h (h varied from 1 to 5 in our simulations)
we randomly selected in the first h replicates of T the same species (or group of
species) as Parent P1 and in the remaining (10-h) replicates of T another species
(or group of species) as Parent P2. Obviously, when the groups were considered,
all the species in P1 were different from the species in P2. A new edge with the
hybrid species H was then added to each of the first h gene trees. It was connected
to the edge separating P1 from the rest of the tree. Similarly, the edge with the
same hybrid species H was added to each of the remaining (10-h) gene trees, and
connected each time to the edge separating P2 from the rest of the tree. This step
was repeated sh times, where sh denotes the number of integrated hybrid species.
In our simulations, sh varied from 1 to 10.

Third, we carried out the introduced hybrid detection algorithm having as input
ten replicates of the gene tree T with the hybrids added as discussed above.
As the gene trees were considered without uncertainties, all transfers detected in
the process were considered as relevant and were taken into account in the final
solution. The bipartition dissimilarity [6] was used as the optimization criterion
in the HGT-Detection procedure. The results illustrated in Figs. 5 and 6 were
obtained from simulations carried out with random binary phylogenetic trees with
8, 16, 32, and 64 leaves. For each tree size (8–64), each number of hybrid
species (1–10) and each hybridization rate (10–50 %), 1,000 replicated datasets were
generated.

The true detection rate (i.e., true positives) was measured as a percentage of the
correctly recovered hybrid species that were generated. The performances of the
new algorithm are more noticeable for large trees (see Figs. 5 and 6, cases c–d)
and a small number of hybrids. The quality of the obtained results decreases
when the number of species decreases. For instance, to detect 10 hybrids in trees
with 8 possible parental species seems to be a very tricky task, especially when
the hybridization rate varies from 10 to 30 % (i.e., h D 1; 2 and 3; see Figs. 5
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Fig. 5 Average true positive hybrid detection rate obtained for binary trees with 8 (a), 16 (b), 32
(c), and 64 (d) leaves. The five presented curves correspond to the hybridization rate h of 50 %
(open square), 40 % (open diamond), 30 % (open triangle), 20 % (times symbol), and 10 % (open
circle). The abscissa axis reports the number of hybrid species. Each presented value is an average
computed over 1,000 replicates

Fig. 6 Average false positive hybrid detection rate obtained for binary trees with 8 (a), 16 (b), 32
(c), and 64 (d) leaves. The five presented curves correspond to the hybridization rate h of 50 %
(open square), 40 % (open diamond), 30 % (open triangle), 20 % (times symbol), and 10 % (open
circle). The abscissa axis reports the number of hybrid species. Each presented value is an average
computed over 1,000 replicates
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and 6, case a). Another general trend that could be noticed is that the number of true
positives increases and the number of false positives decreases as the hybridization
rate grows (i.e., the best results were always observed for h D 4 and 5).

6 Application Example

6.1 Detecting Hybrid Species in the New Zealand’s Alpine
Ranunculus Dataset

We studied the evolution of 6 different genes belonging to 14 organisms of the
alpine Ranunculus plants originally described in Lockhart et al. [24], and then
analyzed in Joly et al. [20]. The latter authors presented a novel parametric approach
for statistically distinguishing hybridization from incomplete lineage sorting based
on minimum genetic distances of nonrecombining genes. Joly and colleagues
applied their method to detect hybrids among the New Zealand’s alpine buttercups
(Ranunculus). Fourteen individuals of Ranunculus belonging to six well-defined
species were sequenced in five chloroplast regions (trnC-trnD, trnL-trnF, psbA-
trnH, trnD-trnT, and rpL16). Those sequences were concatenated in the analysis
conducted by Joly et al. [20]. In this study, they will be analyzed separately using our
new algorithm. Note that in most flowering plants, chloroplast genes are inherited
by hybrids from the female parent only. In contrast, the sequences from another
considered gene, the internal transcribed spacer (nrITS) region, were assumed to be
inherited from the male parent only.

We first reconstructed from the original sequences the topology of the nrITS

gene tree (Fig. 7) as well as those of the psbA, rpL16, trnC, trnD, and trnL gene
trees (Fig. 8).

The hybrid species detection was performed by the new algorithm and five
possible hybrid species were identified (see Table 1) along with their parents and
the corresponding bootstrap scores. All transfers found, when gradually reconciling
the nrITS gene tree with the psbA, rpL16, trnC, trnD, and trnL gene trees, are
illustrated in Fig. 9. As a backbone tree topology here we used the species tree
built with respect to the species chronogram of the alpine Ranunculus presented
in [20, Fig. 5]. The most significant hybrid species we found was the R. insignis Mt
Hutt. The species R. crithmifolius Ben Ohau and R. crithmifolius Mt Lyndon were
identified as its parents with the bootstrap scores of 76 and 75 %, respectively. Thus,
the bootstrap support of this hybrid, computed as the average of its parents bootstrap
scores, is equal to 75.5 %.

Our algorithm also suggested multiple hypotheses for an eventual hybrid species
R. crithmifolius Mt Lyndon. The first hypothesis assumes that its parents could be
R. crithmifolius Castle Hill (47 %) and R. insignis Mt Hutt (84 %), combining for
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Fig. 7 Phylogenetic tree of the gene nrI TS built for 14 organisms of alpine Ranunculus using
the PhyML method [13]. The bootstrap scores of the internal edges of the tree are indicated

the average bootstrap support of 65.5 %. The second hypothesis suggests that its
parents could be the ancestor of R. haastii, R. lyallii 6329, R. lyallii Mt Anglem, R.
lyallii Mt Cook, R. sericophyllus Mt Memphis, and R. sericophyllus Temple Basin
as the first parent, with the bootstrap of 45.5 %, and R. insignis Mt Hutt as the
second parent, with the bootstrap support of 84 %, providing the average support
of 64.5 %. The third hypothesis concerning R. crithmifolius Mt Lyndon states that
the parents of this organism could be in fact the ancestor of R. haastii, R. lyallii
6329, R. lyallii Mt Anglem, R. lyallii Mt Cook, R. sericophyllus Mt Memphis,
and R. sericophyllus Temple Basin, with the bootstrap score of 45.5 %, and the
species R. crithmifolius Castle Hill (47 %), giving the average bootstrap support of
46 %. As discussed in [20], hybridization is a likely hypothesis for the chloroplast
lineage present in R. crithmifolius from Mt Lyndon and R. insignis from Mt Hutt.
Our analysis supported both these hypotheses while suggesting an additional hybrid
possibility in this dataset, concerning R. insignis Torlesse Range (see Table 1). The
latter species was also identified as a potential hybrid with the bootstrap support of
52.5 %, whereas R. insignis Mt Hutt (58 %) and R. enysii Sugarloaf Peak (47 %)
were categorized as its parents.
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Fig. 8 Phylogenetic trees of the genes psbA, rpL16, trnC, trnD, and trnL built for 14 organisms
of alpine Ranunculus using the PhyML method [13]. The bootstrap scores of the internal edges of
the tree are indicated

7 Conclusion

We described a new algorithm for detecting and validating diploid hybridization
events and thus for identifying the origins of hybrid species. To the best of our
knowledge no algorithms including a statistical validation of the retraced hybrids
and their parents by bootstrap analysis have been proposed in the literature.
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Fig. 9 Species tree for the 14 considered Ranunculus organisms with horizontal transfers
mapped into it. Dashed arrows depict the transfers stemming from the gene nrI TS . Full arrows
depict the transfers stemming from the genes psbA, rpL16, trnC, trnD, and trnL. A potential hybrid
species should be a receiver of at least one dashed arrow and at least one full arrow originating
from different sources

We showed that the problem of detecting HGTs can be viewed as a sub-problem of a
hybrid detection problem when multiple male and female genes are considered. The
introduced algorithm subdivides the multi-gene reconciliation problem on several
sub-problems searching for optimal scenarios of SPR moves that are required to
reconcile gene trees associated with genes originating from different parents (male
or female species). To find such optimal tree reconciliation scenarios, we use a
specific version the HGT-Detection [6] algorithm, which is a fast and accurate
heuristic for inferring HGT events. Our simulation study suggests that the best
detection results are constantly obtained with large trees and a small number of
hybrids. Regarding the optimization criterion, the bipartition dissimilarity usually
provided better results compared to the classical criteria, such as the Robinson and
Foulds distance, the quartet distance, and least-squares. As a future development,
it would be interesting to see how the hybrid detection results would change if the
trees with uncertainties (i.e., trees inferred from the sequence data) are considered.
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Appendix

This appendix includes the definition of the subtree constraint (Fig. 10) used in the
hybrid detection algorithm (Algorithm 1). This constraint, originally formulated in
[6], allows one to take into account all evolutionary rules that should be satisfied
when inferring horizontal gene transfers. This appendix also includes Theorems 2
and 3 allowing one to select optimal transfers during the execution of the hybrid
detection algorithm (Algorithm 1) (see [6] for their proofs).

Gene
subtree 1

Gene
subtree 2

Gene
subtree 1

y w
a b

Gene
subtree 2

y w
a

T T1

x z x z

Fig. 10 Subtree constraint: the transfer between the branches .x; y/ and .z; w/ in the species tree
T is allowed if and only if the cluster rooted by the branch .x; a/, and regrouping both affected
subtrees, is present in the gene tree. A single tree branch is depicted by a plane line and a path is
depicted by a wavy line

Theorem 2. If the newly formed subtree Subyw resulting from the HGT (horizontal
gene transfer) is present in the gene tree T 0, and the bipartition vector associated
with the branch (x,x1) in the transformed species tree T1 (Fig. 11) is present in the
bipartition table of T 0, then the HGT from (x,y) to (z,w), transforming T into T1, is
a part of a minimum-cost HGT scenario transforming T into T 0 and satisfying the
subtree constraint.

x

y

z

w

x' z'
x1

Fig. 11 HGT from the branch (x,y) to the branch (z,w) is a part of a minimum-cost HGT scenario
transforming the species tree T into the gene tree T 0 if the bipartition corresponding to the branch
(x,x1) in the transformed species tree T1 is present in the bipartition table of T 0 and the subtree
Subyw is present in T 0
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Theorem 3. If the newly formed subtree Subyw resulting from the HGT is present in
the gene tree T 0, and all the bipartition vectors associated with the branches of the
path (x0,z0) in the transformed species tree T1 (Fig. 12) are present in the bipartition
table of T 0, and the path (x0,z0) in T1 consists of at least three branches, then the
HGT from (x,y) to (z,w), transforming T into T1, is a part of any minimum-cost
HGT scenario transforming T into T 0 and satisfying the subtree constraint.

x

y

z

w

x' z'
x1 x2 xkxk-1

y1 y2 yk-1 yk

Fig. 12 HGT from the branch (x,y) to the branch (z,w) is a part of any minimum-cost HGT
scenario transforming the species tree T into the gene tree T 0 if all the bipartitions corresponding
to the branches of the path (x0,z0) in the transformed species tree T1 are present in the bipartition
table of T 0 and the subtree Subyw is present in the tree T 0
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Part III
Measurement



Meaningful and Meaningless Statements
in Landscape Ecology and Environmental
Sustainability

Fred S. Roberts

Abstract The growing population and increasing pressures for development lead
to challenges to life on our planet. Increasingly, we are seeing how human activities
affect the natural environment, including systems that sustain life: climate, healthy
air and water, arable land to grow food, etc. There is growing interest (and
urgency) in understanding how changes in human activities might lead to long-
term sustainability of critical environmental systems. Of particular interest are
large ecological systems that affect climate, air and water, etc. Landscape Ecology
is concerned with such systems. Understanding the challenges facing our planet
requires us to summarize data, understand claims, and investigate hypotheses. To
be useful, these summaries, claims, and hypotheses are often stated using metrics
of various kinds, using a variety of scales of measurement. The modern theory of
measurement shows us that we have to be careful using scales of measurement and
that sometimes statements using such scales can be meaningless—in a very precise
sense. This paper summarizes the theory of meaningful and meaningless statements
in measurement and applies it to statements in landscape ecology and environmental
sustainability.

Keywords Measurement • Meaningfulness • Landscape ecology
• Environmental sustainability • Biodiversity • Indices

1 Introduction

The growing population and increasing pressures for development lead to challenges
to life on our planet. Increasingly, we are seeing how human activities affect the
natural environment, including systems that sustain life: climate, healthy air and
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water, arable land to grow food, etc. There is growing interest (and urgency) in
understanding how changes in human activities might lead to long-term sustain-
ability of critical environmental systems. Of particular interest are large ecological
systems that affect climate, air and water, etc. Landscape Ecology is concerned
with such systems. Understanding the challenges facing our planet requires us to
summarize data, understand claims, and investigate hypotheses. To be useful, these
summaries, claims, and hypotheses are often stated using metrics of various kinds,
using a variety of scales of measurement. The modern theory of measurement shows
us that we have to be careful using scales of measurement and that sometimes
statements using such scales can be meaningless—in a very precise sense. We will
summarize the theory of meaningful and meaningless statements in measurement
and apply it to statements in landscape ecology and environmental sustainability.

The modern theory of measurement was developed in part to deal with measure-
ment in the social and biological sciences, where scales are not as readily defined
as in the physical sciences. Extensive work has been done to understand scales
measuring utility, noise, intelligence, etc. The theory of measurement was developed
as an interdisciplinary subject, aiming at putting the foundations of measurement on
a firm mathematical foundation. The theory traces its roots to work of Helmholtz
in the late nineteenth century and was widely formalized in the twentieth century
in such books as Krantz et al. [8], Luce et al. [10], Pfanzagl [16], Roberts [19],
and Suppes et al. [33]. Measurement theory is now beginning to be applied in a
wide variety of new areas. Traditional concepts of measurement theory are not well
known in the landscape ecology world or in new investigations in environmental
sustainability. They are finding new applications there and, in turn, problems of
landscape ecology and environmental sustainability are providing new challenges
for measurement theory.

We will seek to answer questions such as the following:

• Is it meaningful to say that the biodiversity of an ecosystem has increased
by 10 %?

• Is the average health of forests in South Africa higher than the average health of
forests in Kenya?

• For measuring the health of grasslands using vegetation indices such as leaf
area index or normalized difference vegetation index, which optical instrument
is best?

All of these questions have something to do with measurement. In the next
section, we provide a brief introduction to the theory of measurement. Then,
in Sect. 3, we formalize the concept of meaningful statement. The rest of the
paper describes a variety of meaningful and meaningless statements, starting with
measures of biodiversity, scales of average forest health, and vegetation index.
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2 Scales of Measurement

Measurement has something to do with numbers. In the theory of measurement, we
think of starting with a set A of objects that we want to measure. We shall think
of a scale of measurement as a function f that assigns a real number f .a/ to each
element a of A. More generally, we can think of f .a/ as belonging to another set
B . The “representational theory of measurement” gives conditions under which a
function is an acceptable scale of measurement. For an exposition of this theory,
see, for example, Krantz et al. [8] or Roberts [19]. Following ideas of Stevens
[26–28], we speak of an admissible transformation as a function that sends one
acceptable scale into another, for example Centigrade into Fahrenheit and kilograms
into pounds. In most cases, we can think of an admissible transformation as defined
on the range of the scale of measurement. Suppose that f is an acceptable scale
on A, taking values in B . Then a function � that takes f .a/ into .� ı f /.a/ is
called an admissible transformation if .� ı f /.a/ is again an acceptable scale. For
example, �.x/ D .9=5/x C 32 is the transformation that takes Centigrade into
Fahrenheit and �.x/ D 2:2x is the transformation that takes kilograms into pounds.
Stevens classified scales into types according to the associated class of admissible
transformations. For instance, the class of admissible transformations of the form
�.x/ D ˛x, ˛ > 0, defines the class of scales known as ratio scales. Thus, a
scale f is a ratio scale if and only if every transformation �.x/ D ˛x, ˛ > 0, is
admissible and every admissible transformation is of the form �.x/ D ˛x, ˛ > 0.
Such transformations change the unit. Mass is an example of a ratio scale, where
admissible transformations take kilograms into pounds, ounces into milligrams,
grams into kilograms, etc. Time intervals are another example: we can change from
years to days, from days to minutes, etc. Length is another example, with changes
from meters to yards, inches to kilometers, meters to millimeters, etc. Volume
is another example and so is temperature on the Kelvin scale, where there is an
“absolute zero.”

A second important type of scale is an interval scale, where the class of
admissible transformations is the class of transformations of the form �.x/ D
˛x C ˇ, ˛ > 0. Here, we can change not only the unit but also the zero point.
Temperature as in Centigrade to Fahrenheit is an example of an interval scale. So is
time on the calendar, where we set a zero point and can change it. For example, this
is the year 2014, starting from a given year as 0.

We say a scale is an ordinal scale if the admissible transformations are the
(strictly) monotone increasing transformations. Grades of leather, wool, etc. define
ordinal scales. The Mohs scale of hardness is another ordinal scale. On this scale,
every mineral gets a number between 1 and 10, but the only significance of these
numbers is that a mineral with a higher number “scratches” a mineral with a lower
number, and so we can use any 10 numbers rather than 1, 2; : : : ;10 as long as
we keep the principle that a mineral assigned a higher number “scratches” one
assigned a lower number. Some people feel that “preference” judgments, which
lead to numbers called “utilities” in economics, only define an ordinal scale, while
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some think utilities define an interval scale under certain circumstances. Subjective
judgments of quality of vegetation probably also only define an ordinal scale.

We say that we have an absolute scale if the only admissible transformation is
the identity. Counting defines an absolute scale. For definitions of some other scale
types, see Roberts [19].

3 Meaningful Statements

In measurement theory, we speak of a statement as being meaningful if its truth or
falsity is not an artifact of the particular scale values used. The following definition
is due to Suppes [30] and Suppes and Zinnes [32]:

Definition. A statement involving numerical scales is meaningful if its truth or
falsity is unchanged after any (or all) of the scales is transformed (independently?)
by an admissible transformation.

A slightly more informal definition is the following:

Alternate Definition. A statement involving numerical scales is meaningful if its
truth or falsity is unchanged after any (or all) of the scales is (independently?)
replaced by another acceptable scale.

In some practical examples, for instance those involving preference judgments
under the “semiorder” model, it is possible to have two scales where one cannot
go from one to the other by an admissible transformation, so one has to use this
alternate definition. (See Roberts [19], Roberts [21].) There is a long literature of
more sophisticated approaches to meaningfulness to avoid situations where either
of the above definitions may run into trouble, but we will avoid those complications
here. Our emphasis is on the notion of “invariance” of truth value. Our motivation
is that scales used in practice might be somewhat arbitrary, involving choices about
zero points or units or the like. We would not want conclusions or decisions to be
different if the arbitrary choices made are changed in some “admissible” way.

To start, let us consider the following statement:

Statement S. “The duration of the most recent drought in a given ecological
reserve was three times the duration of the previous drought.”

Is this meaningful? We have a ratio scale (time intervals) and we consider the
statement:.

f .a/ D 3f .b/: (1)

This is meaningful if f is a ratio scale. For, an admissible transformation is �.x/ D
˛x; ˛ > 0. We want Eq. (1) to hold iff

.� ı f /.a/ D 3.� ı f /.b/: (2)
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But Eq. (2) becomes

f̨ .a/ D 3 f̨ .b/ (3)

and (1) iff (3) since ˛ > 0. Thus, the statement S is meaningful.
Consider next the statement:

Statement T. “The high temperature in a given ecological reserve in 2012 was 2
per cent higher than it was in 1912.”

Is this meaningful? This is the statement

f .a/ D 1:02f .b/:

This is meaningless. It could be true with Fahrenheit and false with Centigrade, or
vice versa. In general, for ratio scales, it is meaningful to compare ratios:

f .a/=f .b/ > f .c/=f .d/:

For interval scales, it is meaningful to compare intervals:

f .a/ � f .b/ > f .c/ � f .d/:

For ordinal scales, it is meaningful to compare size:

f .a/ > f .b/:

Sometimes in ecology, we try to weigh samples. We might have two equal size
baskets, one containing feathers and one containing (elephant) tusks. Consider the
claim:

Statement W. “The total weight of my basket of feathers is 1000 times that of my
basket of tusks.”

Is this statement meaningful? Yes, since it involves ratio scales and is presumably
false no matter what unit is used to measure weight. The point is that meaningfulness
is different from truth. It has to do with what kinds of assertions it makes sense to
make, which assertions are not accidents of the particular choice of scale (units, zero
points) in use.

4 Biodiversity

Next we ask if it is meaningful to say that the biodiversity of an ecosystem has
increased by 10 %. Evidence about the health of ecosystems is often obtained
by measuring the biodiversity. Loss of biodiversity is considered an indicator of
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declining health of an ecosystem and there is great concern that climate change
and other environmental stressors—natural and man-made—are leading to such a
loss. One way of measuring progress in controlling the unwanted environmental
effects of human activities—effects of human systems on natural systems—is to
determine the extent to which the loss of biodiversity has been controlled. An index
of biodiversity allows us to set specific goals and measure progress toward them.
The 1992 Convention on Biological Diversity (CBD) (http://www.biodiv.org) set
the goal that, by 2010, we should achieve a significant reduction of the current state
of biodiversity loss at the global, regional, and national level [34]. How can we tell
if we have achieved this goal? We need to be able to measure biodiversity.

There have been hundreds of papers attempting to define biodiversity precisely.
Traditional approaches consider two basic determinants of biodiversity: Richness
is the number of species and evenness is the extent to which species are equally
distributed [11]. These concepts assume that all species are equal, that all individuals
are equal (we disregard differences in size, health, etc.), and that spatial distribution
is irrelevant. These may not be appropriate assumptions. We shall concentrate here
on the notion of evenness, which is based on ideas going back in the economic
literature to the work of Gini [3, 4] on measures of even income distribution and of
Dalton [1] on measures of inequality. Some measures of biodiversity or evenness go
back to work in communication theory, in particular the work of Shannon [24] on
entropy in information theory.

Let S be the number of species in an ecosystem and xi be the number of
individuals of species i found (the abundance of species i ). In some cases, xi is
not a number, but some measure of biomass, e.g., grams per square meter. The
vector x D .x1; x2; : : : ; xS / is called the abundance vector and we seek a measure
of evenness f .x/ D f .x1; x2; : : : ; xS /. We shall take f .x/ to be low if very even,
high if very uneven. Finally, let ai be the proportion of the population represented
by species i , i.e., ai D xi =

P
j xj . In the literature, there are many proposed

measures of evenness. We give a few examples. The Simpson index [25] is given by
� D P

i ai
2. It measures the probability that any two individuals drawn at random

from an infinite population will belong to the same species. The Shannon–Wiener
Diversity Index is given by �Pi ai ln.ai /. In information theory, the negative of
this index is called the Shannon entropy. The Shannon entropy is maximized if each
xi is the same, so the Shannon–Wiener Diversity Index is minimized in this case.

Let us consider the statement that the biodiversity of an ecosystem has increased
by 10 % as the following:

Statement E. “The evenness of an ecosystem has increased by 10%.”

If xi is the number of individuals of species i , then we have an absolute scale and
the only admissible transformation of scale is the identity, so ai does not change and
neither does either of the indices of evenness we are looking at. So, the statement is
meaningful. However, what if xi is the biomass of species i , for example kilograms
of i per square meter? Both mass and length are ratio scales, so we can change, for
example, from kilograms per square meter to grams per square centimeter, and so
on. What happens if we multiply mass by a constant ˛ and length by a constant ˇ?

http://www.biodiv.org
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Let yi be the new abundance value and bi be the new abundance proportion for
species i . We have

yi D .˛=ˇ2/xi ; (4)

so

bi D yi =
X

j

yj D .˛=ˇ2/xi =
X

j

.˛=ˇ2/xj D ai : (5)

It follows that neither the Simpson Index nor the Shannon Index changes after
we change units, and so the Statement E is meaningful.

5 Averaging Judgments of Forest Health

Suppose we study two groups of forests, one in South Africa and one in Kenya. Let
f .a/ be the health of forest a as judged by an “expert” on a subjective forest health
scale using values 1–5 or 1–6, as is sometimes done. Suppose that data suggests that
the average health of the forests in South Africa is higher than that of the forests in
Kenya. Is this meaningful? Let a1; a2; : : : an be forests in the South African group
and b1; b2; : : : ; bm be forests in the Kenyan group. Note that m could be different
from n. Then we are (probably) asserting that

1

n

nX

iD1

f .ai / >
1

m

mX

iD1

f .bi /: (6)

We are comparing arithmetic means. The statement (6) is meaningful if and only if
under admissible transformation �, (6) holds if and only if

1

n

nX

iD1

.� ı f /.ai / >
1

m

mX

iD1

.� ı f /.bi / (7)

holds. If forest health defines a ratio scale, then (7) is the same as

1

n

nX

iD1

f̨ .ai / >
1

m

mX

iD1

f̨ .bi /; (8)

for some positive ˛. Certainly (6) holds if and only if (8) does, so (6) is meaningful.
This kind of comparison would work if we were simply comparing biomass of
forests.

Note that (6) is still meaningful if f is an interval scale. For instance, we could
be comparing utility or worth of a forest (e.g., in terms of “ecosystem services”)
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f .a/. Some economists think that in some cases, utility defines an interval scale. It
is meaningful to assert that the average health of the first group is higher than the
average health of the second group. To see why, note that (6) is equivalent to

1

n

nX

iD1

Œ f̨ .ai /C ˇ� >
1

m

mX

iD1

Œ f̨ .bi /C ˇ�;

where ˛ > 0.
However, (6) is easily seen to be meaningless if f is just an ordinal scale. To

show that comparison of arithmetic means can be meaningless for ordinal scales,
note that we are asking experts for a subjective judgment of forest health. Suppose
that f .a/ is measured on a 5-point scale: 5D very healthy, 4D healthy, 3D neutral,
2D unhealthy, 1D very unhealthy. In such a scale, the numbers may not mean
anything; only their order matters. Suppose that group 1 has three members with
scores of 5, 3, and 1, for an average of 3, while group 2 has three members with
scores of 4, 4, and 2 for an average of 3.33. Then the average score in group 2 is
higher than the average score in group 1. On the other hand, suppose we consider
the admissible transformation � defined by �.5/ D 100, �.4/ D 75, �.3/ D 65,
�.2/ D 40, �.1/ D 30. Then after transformation, members of group 1 have scores
of 100, 65, 30, with an average of 65, while those in group 2 have scores of 75,
75, 40, with an average of 63.33. Now, group 1 has a higher average score. Which
group had a higher average score? The answer clearly depends on which version
of the scale is used. Of course, one can argue against this kind of example. As
Suppes [31] remarks in the case of a similar example having to do with grading
apples in four ordered categories, “surely there is something quite unnatural about
this transformation” �. He suggests that “there is a strong natural tendency to treat
the ordered categories as being equally spaced.” However, if we require this, then
the scale is not an ordinal scale according to our definition. Not every strictly
monotone increasing transformation is admissible. Moreover, there is no reason,
given the nature of the categories, to feel that this is demanded in our example. In
any case, the argument is not with the precept that we have stated, but with the
question of whether the five-point scale we have given is indeed an ordinal scale as
we have defined it. To complete this example, let us simply remark that comparison
of medians rather than arithmetic means is meaningful with ordinal scales: The
statement that one group has a higher median than another group is preserved under
admissible transformation.

Let us return to forest health, but now suppose that each of n observers is asked to
rate each of a collection of forests as to their relative health. Alternatively, suppose
we rate forests on different criteria or against different benchmarks. (A similar
analysis applies with performance ratings, importance ratings, etc.) Let fi .a/ be
the rating of forest a by expert i (or under criterion i ). Is it meaningful to assert that
the average rating of forest a is higher than the average rating of forest b? A similar
question arises in expert-judged ratings of health of individual species, quality of
water in a stream, severity of pollution, etc.
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We are now considering the statement

1

n

nX

iD1

fi .a/ >
1

n

nX

iD1

fi .b/: (9)

Note in contrast to statement (6) that we have the same number of terms in each sum
and that the subscript is now on the scale value f rather than on the alternative a or
b. If each fi is a ratio scale, we then ask whether or not (9) is equivalent to

1

n

nX

iD1

f̨i .a/ >
1

n

nX

iD1

f̨i .b/;

˛ > 0. This is clearly the case.
However, we have perhaps gone too quickly. What if f1, f2, . . . , fn have indepen-

dent units? In this case, we want to allow independent admissible transformations
of the fi . Thus, we must consider

1

n

nX

iD1

˛i fi .a/ >
1

n

nX

iD1

˛i fi .b/; (10)

all ˛i > 0. It is easy to find ˛0i s for which (9) holds but (10) fails. Thus, (9)
is meaningless. Does it make sense to consider different ˛i ‹ It certainly does in
some contexts. Consider the case where the alternatives are animals in an ecosystem
and one expert measures their health in terms of their weight gain while a second
measures it in terms of their height gain.

The conclusion is that we need to be careful when comparing arithmetic
mean ratings, even when we are using ratio scales. Norman Dalkey (personal
communication) was the first person to point out to the author that, in many cases,
it is safer to use geometric means, a conclusion which by now is “folklore.” For,
consider the comparison

n

vu
u
t

nY

iD1

fi .a/ > n

vu
u
t

nY

iD1

fi .b/: (11)

If all ˛i > 0, then (11) holds if and only if

n

vu
ut

nY

iD1

˛i fi .a/ > n

vu
ut

nY

iD1

˛i fi .b/:

Thus, if each fi is a ratio scale, then even if experts change the units of their rating
scales independently, the comparison of geometric means is meaningful even though
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the comparison of arithmetic means is not. An example of an application of this
observation is the use of the geometric mean by Roberts [17,18]. The problem arose
in a study of air pollution and energy use in commuter transportation. A preliminary
step in the model building involved the choice of the most important variables to
consider in the model. Each member of a panel of experts estimated the relative
importance of variables using a procedure called magnitude estimation. (Here, the
most important variable is given a score of 100, a variable judged half as important
is given a score of 50, and so on.) There is a strong body of opinion that magnitude
estimation leads to a ratio scale, much of it going back to Stevens [29]. (See the
discussion in Roberts [19, pp. 179–180].) How then should we choose the most
important variables? By the discussion above, it is “safer” to combine the experts’
importance ratings by using geometric means and then to choose the most important
variables as those having the highest geometric mean relative importance ratings,
than it is to do this by using arithmetic means. That is why Roberts [17, 18] used
geometric means.

6 Evaluation of Alternative Optical Instruments
for Measuring Vegetation Indices

Various indices have been developed to characterize type, amount, and condition
of vegetation present. Remote sensing is often used for this purpose. Among the
indices of interest are the leaf area index and the normalized difference vegetation
index, both based on spectral reflectance [7]. Recent developments have provided a
variety of new types of optical remote sensing equipment for estimating reflectance
characteristics and thus calculating indices (see e.g., [36]). What if we want to
compare alternative remote sensing devices that are candidates for this use? How
might we do it?

One common procedure for comparing alternative instruments, machines, treat-
ments, etc. is the following. A number of instruments are compared on different
criteria/benchmarks. Their scores on each criterion are normalized relative to the
score of one of the instruments. The normalized scores of an instrument are
combined by some averaging procedure and average scores are compared. If the
averaging is the arithmetic mean, then consider the statement:

Statement N. “One instrument has a higher arithmetic mean normalized score than
another instrument.”

Statement N is meaningless: The instrument to which scores are normalized can
determine which has the higher arithmetic mean. Similar methods are used in com-
paring performance of alternative computer systems or other types of machinery.
To illustrate, consider a number of potential criteria for optical instruments for
measuring vegetation indices: Accuracy on cloudy days, accuracy with low-stature
vegetation, accuracy for extremely diverse forests, ease of use, reliability, etc.
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Table 1 Score of instrument i on criterion j

Instrument/Criterion A B C D E

I 417 83 66 39,449 772
II 244 70 153 33,527 368
III 134 70 135 66,000 369

Table 2 Normalizing relative to instrument I

Instrument/Criterion A B C D E
Arithmetic
mean

Geometric
mean

I 1.00 1.00 1.00 1.00 1.00 1.00 1.00
II .59 .84 2.32 .85 .48 1.01 .86
III .32 .85 2.05 1.67 .45 1.07 .84

Table 3 Normalizing relative to instrument II

Instrument/Criterion A B C D E
Arithmetic
mean

Geometric
mean

I 1.71 1.19 .43 1.18 2.10 1.32 1.17
II 1.00 1.00 1.00 1.00 1.00 1.00 1.00
III .55 1.00 1.88 1.97 1.08 1.07 .99

Table 1 shows three instruments I, II, III and five criteria A, B, C, D, E, with the
i; j entry giving the score of the i th treatment on the j th criterion. Table 2 shows
the score of each instrument normalized relative to treatment I, i.e., by dividing by
instrument I’s score. Thus, for example, the 1,2 entry is 83=83 D 1, while the 2,2
entry is 70=83 D :84. The arithmetic means of the normalized scores in each row
are also shown in Table 2. We conclude that instrument III is best.

However, let us now normalize relative to Instrument II, obtaining the normalized
scores of Table 3. Based on the arithmetic mean normalized scores of each row
shown in Table 3, we now conclude that Instrument I is best. So, the conclusion
that a given instrument is best by taking arithmetic mean of normalized scores is
meaningless in this case: Statement N is meaningless.

The numbers in this example are taken from Fleming and Wallace [2], with
data from Heath [6], and represent actual scores of alternative “instruments” in a
computing machine application.

Sometimes, geometric mean is helpful. The geometric mean normalized scores
of each row are shown in Tables 2 and 3. Note that in each case, we conclude that
Instrument I is best. In this situation, it is easy to show that the conclusion that
a given instrument has highest geometric mean normalized score is a meaningful
conclusion. It is even meaningful to assert something like: A given instrument has
geometric mean normalized score 20 % higher than another instrument.

Fleming and Wallace give general conditions under which comparing geometric
means of normalized scores is meaningful. We have now given several examples
where comparing geometric means leads to meaningful conclusions while com-
paring arithmetic means does not. However, there are situations where comparing
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arithmetic means leads to meaningful conclusions and comparing geometric means
does not. It is a research area in measurement theory, with a long history and large
literature, to determine what averaging procedures make sense in what situations.
For some further details on this topic, and in particular for an example where
arithmetic mean comparison is meaningful while geometric mean is not, see
Roberts [23].

The message from measurement theory is: Do not perform arithmetic operations
on data without paying attention to whether the conclusions you get are meaningful.

7 Optimization Problems in Landscape Ecology

Raster datasets represent geographic features by dividing the world into discrete
square or rectangular cells laid out in a grid. Each cell has a characteristic value that
is used to represent some characteristic of that location. As noted by Zettenberg [37],
a GIS raster can be seen as a network, with grid cells as nodes and a link (edge) from
each cell to its vertical, horizontal, and diagonal neighbors. The links might have
weights or costs on them. According to Zettenberg, the least-cost path in between
two nodes can represent a “geodesic path” between two points “(approximated
by grid cells) on a projected surface. . . . Even though the straight line Euclidean
distance is a lot shorter, it may be functionally shorter for example to follow a
detour along a preferred habitat.” As Zettenberg also says, within the raster, the
“cost-distance value at any point (i.e., grid cell) is the least-cost distance from that
point to the closest specified source point.” Sometimes we seek “patches” made up
of cells with cost-distance value below some threshold that corresponds to some
ecologically relevant value. The problem of finding the shortest distance between
two nodes in a network (where the “length” of a path is the sum of weights on edges
in it) is a widely studied problem in operations research and there are very efficient
algorithms for solving it. The shortest path problem occurs widely in practice. In
the USA, just one agency of the US Department of Transportation in the federal
government has applied algorithms to solve this problem literally billions of times
a year [5].

Consider a simple network with nodes x; y, and z and edges from x to y with
weight 2, y to z with weight 4, and x to z with weight 15. What is the shortest path
from x to z in this network? The shortest path is the path that goes from x to y to
z, with a total “length” of 6. The alternative path that goes directly from x to z has
total “length” 15. Is the conclusion that x to y to z is the shortest path a meaningful
conclusion?

The conclusion is meaningful if the weights on edges define a ratio scale, as they
do if they are physical distances or monetary amounts. However, what if they define
an interval scale? This could happen if the weights are utilities or values, rather
than dollar amounts or physical lengths. As noted earlier, utilities might be defined
on interval scales. If the weights define an interval scale, consider the admissible
transformation �.x/ D 3xC 100. Now the weights change to 106 on the edge from
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x to y, 112 on the edge from y to z, and 145 on the edge from x to z. We conclude
that going directly from x to z is the shortest path. The original conclusion was
meaningless.

The shortest path problem can be formulated as a linear programming problem.
Thus, the conclusion that A is the solution to a linear programming problem can
be meaningless if cost parameters are measured on an interval scale. Note that
linear programming is widely used in landscape ecology as well as in other areas of
application. For example, it is used to determine optimal inventories of equipment,
assignments of researchers to projects, optimization of the size of an ecological
reserve, amount to invest in preventive treatments, etc.

Another very important practical combinatorial optimization problem is the
minimum spanning tree problem. Given a connected, weighted graph or network,
we ask for the spanning tree with total sum of costs or weights as small as possible.
(A spanning tree is a tree that includes all the nodes of the network.) This problem
has applications in the planning of large-scale transportation, communication,
and distribution networks, among other things. Minimum spanning trees arise in
landscape ecology in the following way. Following Urban and Keitt [35], consider
a landscape of habitat patches. Build a graph whose nodes are the patches, with
an edge between patches if there is some “ecological flux” between them, e.g., via
dispersal or material flow. Put weights on the edges to reflect flow rates or dispersal
probabilities. Next, the patches are rated in terms of their “importance.” We consider
patterns of habitat loss and degradation. In a simplified model, we remove patches
in entirety one at a time, i.e., remove available habitat gradually, one patch at a time.
This amounts to removing one node from the graph at a time. We study preservation
of species by asking how much habitat must be removed before that species becomes
extinct (at least in the system being modeled).

Urban and Keitt studied the following patch-removal algorithm: Find a minimum
spanning tree that has a “leaf” (node with only one neighbor) of smallest importance
and remove the patch corresponding to that leaf. Then repeat the process on the
remaining graph. Urban and Keitt studied this process for the Mexican Spotted Owl.
In 1993, this subspecies was listed as threatened under the Endangered Species
Act in the USA. Habitat distribution for this species is highly fragmented in the
US Southwest. By using this patch-removal algorithm, Urban and Keitt found in
simulation models that the Mexican Spotted Owl population actually increased until
nearly all the habitat was removed. By way of contrast, if patches were removed in
random order, the owl population declined dramatically as habitat was removed.
Urban and Keitt explain their algorithm by noting that the spanning tree “maintains
the integrity of the landscape by not only providing large core populations, but also
by providing dispersal routes between core habitats.”

It is natural to ask if the conclusion that a given set of edges defines a minimum
spanning tree is meaningful. (In Urban and Keitt’s work, determining the scale type
of the edge-weights is a rather complex issue.) It is surprising to observe that even
if the weights on the edges define only an ordinal scale, then the conclusion is
meaningful. This is not a priori obvious. However, it follows from the fact that
the well-known algorithm known as Kruskal’s algorithm or the greedy algorithm
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gives a solution. In Kruskal’s algorithm [9, 13], we order edges in increasing order
of weight and then examine edges in this order, including an edge if it does not
form a cycle with edges previously included. We stop when all nodes are included.
Since any admissible transformation will not change the order in which edges are
examined in this algorithm, the same solution will be produced.

Many practical decision-making problems in landscape ecology, environmental
sustainability, and other fields involve the search for an optimal solution as in
the shortest path and minimum spanning tree problems. Little attention is paid to
the possibility that the conclusion that a particular solution is optimal may be an
accident of the way that things are measured. For the beginnings of the theory of
meaningfulness of conclusions in combinatorial optimization, see Mahadev et al.
[12], Pekeč [14, 15], and Roberts [20–22].

There is much more analysis of a similar nature in the field of landscape ecology
or the study of sustainable environments that can be done with the principles of
measurement theory. The issues involved present challenges both for theory and for
application.

Acknowledgments The author gratefully acknowledges the support of the National Science
Foundation under grant number DMS-0829652 to Rutgers University. A number of ideas and
some of the examples and language in this paper are borrowed from my papers Roberts [21, 23],
which explore meaningful and meaningless statements in operations research and in epidemiology
and public health, respectively. The author gratefully and thankfully acknowledges the many
stimulating and fruitful scientific interchanges with Boris Mirkin over a period of many years,
and wishes him many years of continued good health and success.

References

1. Dalton, H.: The measurement of inequality of incomes. Econ. J. 30, 348–361 (1920)
2. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: the correct way to summarize

benchmark results. Commun. ACM 29, 218–221 (1986)
3. Gini, C.: Il diverso accrescimento delle classi sociali e la concentrazione della richezza.

Giornale degli Economist, serie II, 2 (1909)
4. Gini, C.: Variabilite mutabilita. Studi Economicoaguridic della Facotta di Giurisprudenza dell

Univ. di Cagliari III. Parte II. (1912)
5. Goldman, A.J.: Discrete mathematics in government. Lecture presented at SIAM Symposium

on Applications of Discrete Mathematics, Troy, NY, June 1981
6. Heath, J.L.: Re-evaluation of RISC I. Comput. Archit. News 12, 3–10 (1984)
7. Jackson, R.D., Huete, A.R.: Interpreting vegetation indices. Prev. Vet. Med. 11, 185–200

(1991)
8. Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement, vol. I.

Academic, New York (1971)
9. Kruskal, J.B.: On the shortest spanning tree of a graph and the traveling salesman problem.

Proc. Am. Math. Soc. 7, 48–50 (1956)
10. Luce, R.D., Krantz, D.H., Suppes, P., Tversky, A.: Foundations of Measurement, vol. III.

Academic, New York (1990)



Meaningful and Meaningless Statements in Landscape Ecology: : : 311

11. Magurran, A.E.: Ecological Diversity and its Measurement. Chapman & Hall, London (1991)
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Nearest Neighbour in Least Squares Data
Imputation Algorithms for Marketing Data

Ito Wasito

Abstract Marketing research operates with multivariate data for solving such
problems as market segmentation, estimating purchasing power of a market sector,
modeling attrition. In many cases, the data collected or supplied for these purposes
may have a number of missing entries.

The paper is devoted to an empirical evaluation of method for imputation of
missing data in the so-called nearest neighbour of least-squares approximation
approach, a non-parametric computationally efficient multidimensional technique.
We make contributions to each of the two components of the experiment setting:
(a) An empirical evaluation of the nearest neighbour in least-squares data imputation
algorithm for marketing research (b) experimental comparisons with expectation–
maximization (EM) algorithm and multiple imputation (MI) using real marketing
data sets. Specifically, we review “global” methods for least-squares data imputation
and propose extensions to them based on the nearest neighbours (NN) approach.
It appears that NN in the least-squares data imputation algorithm almost always
outperforms EM algorithm and is comparable to the multiple imputation approach.

Keywords Least squares • Nearest neighbours • Singular value decomposition
• Missing data • Marketing data

1 Introduction

Marketing research operates with multivariate data for solving such problems as
market segmentation, estimating purchasing power of a market sector and modeling
attrition [7]. In many cases, the data collected or supplied for this may have a number
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of missing entries. For example, in the popular commercial demographic databases
like Infobase the level of population of some fields (variables) falls down to 40 %.
The probability for each individual data point to be missed may be considered
random: our experience did not show any significant correlation between missing
entries in different fields [23].

Although some statistical methods, especially those in regression analysis,
provide for built-in treatment of missing entries, the problems in marketing research
cannot be reduced to application of individual methods and involve complex
processing [11]. The filling of missing values or even correction of mistakes in data
is not a self-dependent goal. This is just prelude to further going statistical analysis.
And if this statistical analysis is used to fill out the data in order to use corrected
data again for almost the same purposes, there is always a danger, that it will bring
some element of tautology in the whole process.

Consider a simple example. What is happening in widely used method, when
missing values replace by average value, counted by existing ones, well-known
effect is, that new average after that replacement is equal to old one. It is obvious
that for variable with replaced value it did not give new information: if analysis of
data is limited just by analysis of means, it is just trivial (the same value remains);
if it goes further to the level of analysis of deviation, correlation and so on, just
losses are obvious, because this replacement may distort all those parameters in
any (unknown) proportion. This proportion, in principle, may be more definite just
under some kind of assumptions about mechanism of data generation, distribution,
etc., but even in that case just general estimation of distortion, not caused by each
particular replacement.

This example shows one important aspect of missing values problem, which is
usually ignored: it is important to fill them out (versus case wise deletion). There
could be two different purposes for that [11, 12, 18].

(1) The filling of missing value is considered as procedure of “approximation”,
where new found value is important itself for this particular object. It makes sense
in situations like regression estimation on each object. (2) The filling of missing
data is good, because it allows to get back that part of information about non-
missing values, which otherwise will be case-wise deleted. This second aspect is
really positive in many situations, but it was not investigated at all.

The data we used is a sample from the typical database of the large manufacturer
and devoted to the problem of retention of existing customers. There are many
variables describing customers behavior and service features, and there is a target
binary variable (“refused the service or not”). The problem is to create a satisfactory
recognition rule(-s) to predict those who will cancel the service agreement. The data
set and the problem formulated are quite typical for many applications, and in that
sense the reconstruction of missing values for such a data is of big practical interest.

In [22, 23] the authors reviewed and compared various least-squares-based
algorithms and proposed a number of their modifications involving the nearest
neighbourhood methods, then carried out a series of computational experiments
involving uniformly random missing entries. In our experiments we separately
generate a complete data matrix and a set of entries that are considered missing in it.



Nearest Neighbour in Least Squares Data Imputation Algorithms for Marketing Data 315

This design enables us, for any data set and pattern of missing data, to compare the
imputed values with those originally generated: the smaller the difference, the better
the method. According to experiments showed in [22], the two different data models
lead to different results. With the unidimensional data generator, the best imputation
methods are those using just one factor. Nearest neighbour-based modifications do
not improve results in this case, even at high levels of noise. In contrast, with data
generated according to the Gaussian mixture distribution, methods involving the
nearest neighbours are the best.

In this paper we extend the study published in [22,23] for marketing data research
as explained above.

The paper is organized as follows. Section 2 gives a brief description of the
global least-squares imputation methods and also our NN versions of the imputation
methods will be described. In Sect. 3, we will review EM-based algorithm for data
imputation. Section 4 provides for the setting of experiments and results discussions.
and Sect. 5 concludes the paper.

2 Nearest Neighbour in the Least-Squares Data
Imputation Algorithm

Before describing the algorithm, first, some theoretical background of iterative SVD
and the iterative majorization least-squares (IMLS) algorithm will be introduced.

2.1 Notation

The data is considered in the format of a matrix X with N rows and n columns. The
rows are assumed to correspond to entities (observations) and columns to variables
(features). The elements of X are denoted by xik (i D 1; : : : ; N , k D 1; : : : ; n). The
situation in which some entries .i; k/ in X are missed is modeled with an additional
matrix M D .mik/ where mik D 0 if the .i; k/-th entry is missed and mik D 1,
otherwise.

The matrices and vectors are denoted with boldface letters. A vector is always
considered as a column; thus, the row vectors are denoted as transposes of the
column vectors. Sometimes we show the operation of matrix multiplication with
symbol �.

2.2 Iterative Singular Value Decomposition

Let us describe the concept of singular value decomposition of a matrix (SVD)
in terms of a bilinear model for factor analysis of data. This model assumes the
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existence of a number p � 1 of hidden factors that underlie the observed data as
follows:

xik D
pX

tD1

ctkzi t C eik; i D 1; : : : N; k D 1; : : : ; n: (1)

The vectors zt D .zi t / and ct D .ctk/ are referred to as factor t scores for entities
i D 1; : : : ; N and factor loadings for variables k D 1; : : : ; n, respectively .t D
1; : : : ; p/ [5,9,13]. Values eik are residuals that are not explained by the model and
should be made as small as possible.

To find approximating vectors ct D .ctk/ and zt D .zi t /, one minimizes the
least-squares criterion:

L2 D
NX

iD1

nX

kD1

 

xik �
pX

tD1

ctkzi t

!2

(2)

It is proven that minimizing criterion (2) can be done with the following one-by-
one strategy, which is, basically, the contents of the method of principal component
analysis, one of the major data mining techniques [5, 9] as well as the so-called
power method for SVD.

According to this strategy, computations are carried out iteratively. At each
iteration t , t D 1; : : : ; p, only one factor is sought. The criterion to be minimized at
iteration t is

l2.c; z/ D
NX

iD1

nX

kD1

.xik � ckzi /
2 (3)

with respect to condition
Pn

kD1 c2
k D 1. It is well known that it is the singular triple

.�; z; c/ such that Xc D �z and XTz D �c with � D
qPN

iD1 z2
i , the maximum

singular value of X, which solves the problem. The found vectors c and z are stored
as ct and zt and next iteration t C 1 is performed. The matrix X D .xik/ changes
from iteration t to iteration t C 1 by subtracting the found solution according to the
rule xik  xik � ctkzt i .

To minimize (3), the method of alternating minimization can be utilized. This
method also works iteratively. Each iteration proceeds in two steps: (1) given a
vector .ck/, find optimal .zi /; (2) given .zi /, find optimal .ck/, which can be done
according to equations:

zi D
Pn

kD1 xikckPn
kD1 c2

k

(4)
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and

ck D
PN

iD1 xikzi
PN

iD1 z2
i

(5)

that follow from the first-order optimality conditions.
This can be wrapped up by the following algorithm for finding a pre-specified

number p of singular values and vectors.

Iterative SVD Algorithm
0. Set number of factors p and specify � > 0, a precision threshold.
1. Set iteration number t=1.
2. Initialize c� arbitrarily and normalize it. (Typically, we take c�0 D .1 : : : ; 1/.)
3. Given c�, calculate z according to (4).
4. Given z from step 3, calculate c according to (5) and normalize it.
5. If jjc� c�jj < �, go to 6;

otherwise put c� D c and go to 3.
6. Set � D jjzjj, zt D z, and ct D c.
7. If t DD p, end; otherwise, update xik D xik � ctkztk , set t D t C 1 and go to step 2.

Note that zt is not normalized in the described version of the algorithm, which
implies that its norm converges to the singular value �t indeed. This method always
converges if the initial c does not belong to the subspace already taken into account
in the previous singular vectors.

2.3 IMLS Algorithm

This method is an example of application of the general idea that the weighted
least-squares minimization problem can be addressed as a series of non-weighted
least-squares minimization problems with iteratively adjusting found solutions
according to a so-called majorization function [4, 6]. In this framework, Kiers [10]
developed the following algorithm that in its final form can be formulated without
any concept beyond those previously specified. The algorithm starts with a complete
data matrix and updates it by relying on both non-missing entries and estimates of
missing entries.

It employs a different iterative procedure for finding a factor, which will be
referred to as Kiers algorithm and described first. Kiers algorithm operates with
a completed version of matrix X to be denoted by Xs where s D 0; 1; :: is the
iteration’s number. At each iteration s, the algorithm finds the best factor of SVD
for Xs and imputes the results into missing entries, after which the next iteration
starts.
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Kiers Algorithm
1. Set c0 D .1; : : : ; 1/ and normalize it.
2. Set s D 0 and define matrix Xs by putting zeros into missing entries of X.

Set a measure of quality hs DPN
iD1

Pn
kD1 xs

ik
2.

3. Find the first singular triple z1, c1, � for matrix Xs by applying
the Iterative SVD algorithm with p D 1 and take the resulting
value of criterion (2) as hsC1.

4. If jhs � hsC1j > � � hs for a small � > 0, set s D s C 1, put zi1c1k

for each missing entry .i; k/ in X and go back to step 3.
5. Set z1 and c1 as the output.

Now we can formulate IMLS algorithm [10] as follows:

IMLS Algorithm
0. Set the number of factors p.
1. Set iteration number t=1.
2. Apply Kiers algorithm to matrix X with the missing structure M.

Denote results by zt and ct .
3. If t < p, for each .i; k/ such that mik D 1, update xik D xik � ctkztk ,

put t=t+1 and go to step 2.
4. Impute missing values xik at mik D 0 according to (1) with eik D 0.

Theoretical properties of the IMLS method remain to be explored.

2.4 Nearest Neighbour-Based Data Imputation

2.4.1 Lazy Learning and Nearest Neighbour

In this section, we are going to apply the so-called lazy learning approach to least-
squares methods as described above.

The term “lazy learning” applies to a class of local learning techniques in
which all the computation is performed in response to a request for prediction.
The request is addressed by consulting data from only a relatively small number
of entities considered relevant to the request according to a distance measure [1]. In
this framework, the imputations are carried out sequentially, by analyzing entities
with missing entries one-by-one. An entity containing one or more of missing
entries which are to be imputed is referred to as a target entity. A most popular
version of lazy learning is the so-called nearest neighbour (NN) approach (see, for
instance, [14]). According to this approach, a distance measure is computed between
the target entity and each of the other entities and then K entities nearest to the
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target are selected. The imputation model such as (1), for the target entity, is found
by using a shortened version of X to contain only KC1 elements: the target and K
selected neighbours.

Further we consider NN-based versions for the algorithms above.
To apply the NN approach, the following two issues should be addressed.

1. Measuring distance. There can be a multitude of distance measures considered.
We choose Euclidean distance squared as this measure is compatible with the
least-squares framework. The distance between a target entity Xi and an entity
Xj is defined as:

D2.Xi; Xj; M/ D
nX

kD1

Œxik � xjk�2mikmjk I i; j D 1; 2; : : : N (6)

where mik and mjk are missingness values for xik and xjk , respectively. This
distance was also used in [15, 21].

2. Selection of the neighbourhood. The principle of selecting the nearest entities
can be implemented, first, as is, on the set of all entities, and, second, by
considering only entities with non-missing entries in the attribute corresponding
to that of the target’s missing entry. The second approach was applied in [21]
for data imputation with the method Mean. We apply the same approach when
using this method. However, for IMLS, the presence of missing entries in the
neighbours creates no problems, and, with these methods, we select neighbours
among all entities.

2.5 Global–Local Learning Imputation Algorithm

Now, we are ready to introduce the global–local learning of least-squares impu-
tation. This approach involves two stages. First stage: Use a global imputation
technique to fill in all the missings in matrix X. Let us denote the resulting matrix
X�. Second stage: Apply a lazy learning technique to fill in the missings in X again,
but, this time, based on distances computed with the completed data X�. These
distances will be referred to as the prime distances.

We specify this global–local approach by involving IMLS at both of the stages,
which will be referred to as algorithm INI in the remainder. The algorithm INI
consists of four main steps. First, impute missing values in the data matrix X by
using IMLS with p D 4. Then compute the prime distance metric with thus found
X�. Take a target entity according to X and find its neighbours according to the
prime distance. Finally, impute all the missing values in the target entity with NN
version of IMLS algorithm (this time, with p D 1).
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INI Algorithm
1. Apply IMLS algorithm to X with p D 4 to impute all missing entries

in matrix X; denote resulting matrix by X�.
2. Take the first row in X that contains a missing entry as the target entity Xi.
3. Find K neighbours of Xi on matrix X�.
4. Create a data matrix Xc consisting of Xi and rows of X corresponding to

the selected K neighbours; the missing pattern is assumed inherited from
the original data.

5. Apply IMLS algorithm with p D 1 to Xc and impute missing values in Xi.
6. If no missing entries remain, stop; otherwise go back to step 2.

3 EM Algorithm for Imputation of Incomplete
Multivariate Normal Data

Maximum-likelihood estimates can often be calculated directly from the incomplete
data by specialized numerical methods such as the expectation–maximization (EM)
algorithm which was introduced in [2]. Further development of the implementation
of EM algorithm for handling missing data was explored in [12,18]. Indeed, the EM
algorithm is derived from the old-fashioned idea of handling missing values through
iterative steps:

1. Impute the missing values using ad-hoc values.
2. Estimate the parameters of distribution.
3. Re-impute the missing values using the parameters from step 2.
4. Repeat steps 2 and 3 until the iteration converges for pre-specified threshold

values.

Formally, the EM algorithm can be illustrated mathematically as follows:
suppose the variables and the current estimate of parameter denoted by X and 
.t/,
respectively, then the completed-data likelihood, which is composed from missing
and observed values, is written as `.
 jX/. The E-step of t-th iteration of EM
algorithm can be computed as: Q.
 j
t / D R

`.
 jX/f .XmisjXobs; 
 D 
t /dXmis

where Xmis, Xobs and f denote the missing values, observed values and probability
density function, respectively. The f .::/ usually represents multivariate normal
distribution. Then 
tC1 is chosen as the value of 
 which maximize Q. This
algorithm has been implemented in [18, 20].

Given a complete-data log likelihood from E-step, M-step finds the parameter
estimates to maximize the complete-data log likelihood as:

O
 D SWP Œ0�N�1E.UjXobs; 
/ (7)
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The formal approach of EM algorithm can be summarized as follows:

EM Imputation Algorithm

1. Impute the missings values using ad-hoc values.

2. E-Step: Compute the conditional expectation of complete-data log likelihood, U ,
which is operated as E.UjXobs ; 
/.

3. M-Step: Given complete-data log likelihood from step 2, calculate the parameter
estimates O
 from (7).

4. Set 
 D O
 , then repeat steps 2 and 3 until the iteration converges for
pre-specified threshold value.

5. Impute missing values using an appropriate approach based on the
found parameters from step 4.

3.1 EM with Different Mechanisms

There are two popular approaches to fill in missing values as shown in step 5 of
EM imputation algorithm. In the first approach, the missings are imputed with
random values generated from parameters those to be found in the EM computation.
This approach is implemented in “Norm” software developed by Schafer which is
freely available in [19]. Indeed, this approach is mainly to be implemented within
multiple imputation method. In this framework, the missings are imputed more than
once using specific simulation. Then, several imputed data sets are analyzed using
ordinary statistical techniques (see, for instance, [16–18]).

In either approach, the imputation of missing entries is accomplished under mul-
tiple regression scheme using parameters those to be found in the EM computation.
This technique is demonstrated by Strauss in [20].

3.2 Multiple Imputation with Markov Chain Monte-Carlo

Multiple imputation method was first implemented in an editing of data survey
to create widely public-use data sets to be shared by many end-users. Under this
framework, the imputation of missing values is carried out more than once, typically
three to ten times, in order to provide valid inferences from imputed values. Thus,
MI method is designed mainly for statistical analysis purposes and much attention
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has been paid to it in the statistical literature. As described in [17], MI method
consists of the following three-step process:

1. Imputation: Generate m sets of reasonable values for missing entries. Each of
these sets of values can be used to impute the unobserved values. Thus, there
are m “completed” data sets. This is the most critical step since it is designed
to account for the relationships between unobserved and observed variables.
Thus the missing at random (MAR) assumption is the central issue to the
validity of the multiple imputation approach. There are a number of imputation
models that can be applied. Probably the imputation model via the Markov
Chain Monte-Carlo (MCMC) is the most popular approach. This simulation
approach is demonstrated within the following IP (Imputation-Parameter steps)
algorithm [18]:

I-step: Generate Xmis;tC1 from f .XjXobs; 
 t /.
P-step: Generate 
tC1 from f .
 jXobs; Xmis;tC1/.

The above steps produce Markov chain .fX1; 
1g; fX2; 
2g; : : : ; fXtC1;


 tC1g; : : :/ which converge to the posterior distribution.
2. Analysis: Apply the ordinary statistical method to analyze each “completed” data

sets. From each analysis, one must first calculate and save the estimates and
standard errors. Suppose that b
j is an estimate of a scalar quantity of interest
(e.g. a regression coefficient) obtained from data set j .j D 1; 2; : : : ; m/ and
�b
;j

2 is the variance associated with b
j .
3. Combine the results of analysis.

In this step, the results are combined to compute the estimates of the within-
imputation and between-imputation variability [16]. The overall estimate is the
average of the individual estimates:

N
 D 1=m

mX

jD1


j (8)

For the overall variance, one must first calculate the within-imputation variance:

N�

2 D 1=m

mX

jD1

�2

b
;j
(9)

and the between-imputation variance:

B D 1=.m� 1/

mX

jD1

.b
j � N
/2 (10)
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then the total variance is:

�2
pool D N�


2 C .1C 1=m/B (11)

Thus, the overall standard error is the square root of �2
pool. Confidence intervals

are found as: N
 ˙ �pool with degrees of freedom:

df D .m � 1/

 

1C m N

.mC 1/B

!

(12)

In the context of data imputation, in our view, MI can be applied to estimate
missing data as average, estimates of the multiple imputations.

4 Experimental Setting

In this experiments, the benchmarking of global–local least-squares imputation,
INI, and two versions of EM imputation as described in previous section will be
evaluated. The comparison is accomplished on number samples generated from one
real large-scale database.

4.1 Selection of Algorithms

The following three algorithms are selected to expose the experimental study

1. INI: the global–local versions of least-squares imputation [22, 23].
2. EM-Strauss: EM algorithm with multiple regression imputation [3, 20].
3. EM-Schafer: EM algorithm with with random imputation as implemented

in [3, 18].
4. MI: Multiple imputation with Markov-Chain Monte Carlo simulation using ten

imputations [3, 19]

4.2 Description of Data Set

The data set is produced from the real-world marketing research activity. This
original data set consists of 5,001 entities and 65 attributes which consist of mostly
numeric (60), categorical (2) and binary attributes (3).
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4.3 Generation of Missings

The missings are generated randomly on the original real data set (size 5001 � 65)
at three levels of missings: 1, 5 and 10 %.

4.4 Samples Generation

This experiment utilizes 50 samples (size:250�20) which generated randomly from
original database for each missing generation.

4.5 Data Pre-processing

Within the imputation techniques while the experiment running, the data pre-
processing, especially for real data sets, is calculated in the following procedures:

xik D .xik � �k/

rangek

(13)

where �k and rangek defined as mean and range of attribute, respectively, and they
are calculated as:

�k D
PN

iD1 xik �mik

N
(14)

rangek D maxi .xk/�mini .xk/ (15)

4.6 Evaluation of Results and Performance

Since the data and missings are generated separately, we can evaluate the quality
of imputation by comparing the imputed values with those generated at the stage
of data generating. We use the squared imputation error, IE, to measure the
performance of an algorithm. The measure is defined as follows:

IE D
PN

iD1

Pn
kD1.1 �mik/.xik � x�ik/2

PN
iD1

Pn
kD1.1 �mik/x2

ik

(16)
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Table 1 The comparative results of the performances of three algorithms according to their
occurrences within specified ranges of error of imputation and their average CPU time (in seconds)
where 1, 2, 3 and O� denote INI, EM-Strauss, EM-Schafer and average in interval, respectively

1% 5% 10%

Error (%) O� 1 2 3 1 2 3 1 2 3

� 35 25 11 9 3 5 10 3 6 6 1
(1.23) (54.82) (0.04) (2.34) (292.76) (0.72) (2.94) (1,293.60) (1.45)

� 100 70 27 9 10 38 22 13 37 24 16
(0.96) (28.94) (0.17) (2.22) (310.91) (0.33) (3.03) (1,856.80) (0.81)

� 1;000 750 9 25 18 6 15 22 6 17 21
(0.87) (36.23) (0.28) (2.10) (0.61) (379.65) (3.98) (1,502.60) (0.70)

> 1;000 1,300 3 7 18 1 3 7 0 2 5
(0.96) (31.33) (0.11) (1.65) (2,082.2) (0.25) (–) (1,185.30) (0.25)

NaN – 0 0 1 0 0 5 1 1 7
(–) (–) (–) (–) (–) (–) (–) (–) (–)

where mik is the missingness matrix entry and x�ik an entry in the data matrix X�
with imputed values. To evaluate the performance of the imputation methods, the
elapsed CPU time for running the program at Pentium III 733 MHz is recorded.

4.7 Results

The experiments are carried out in two settings: (1) Experiments involving INI and
two EM imputation versions: EM-Strauss and EM-Schafer. In these experiments,
50 samples are used for each level of missings. Thus there are 150 samples in the
experiments; (2) Experiments involving INI, EM-Strauss, EM-Schafer and multiple
imputation with ten times imputation for each data sample. In these experiments,
20 samples are used for two levels of missings: 5 and 10 %. The results of each
experiment will be shown in turn.

4.7.1 The Experiments with INI and Two EM Imputation Versions

The results of series experiments are summarized in Table 1. The error of imputation
is classified into five groups including in case the algorithms cannot be proceeded
which is labeled as “NaN”. The failing of computation is caused by the nature of
algorithm. It can be described as follows. INI cannot be implemented in case the
subset of data matrix that to be found by k-NN algorithm contains all zeros elements
in one column or more. Thus, the Eqs. (4) and (5) cannot be computed. Finally,
the imputed values cannot be found. On the other hand, for both versions of EM
algorithm, the full covariance matrix that to be found from EM computation should
be positive definite; otherwise, imputed values cannot be calculated.
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Fig. 1 The average error of imputation

According to Table 1, at level 1 % missings, for error of imputation is 100 % or
less, INI surpasses both EM algorithms. Furthermore, followed by EM-Strauss as
second winner and the EM-Schafer to be the worst. On the other hand, regarding
CPU time performance, EM-Schafer algorithm provides the most fastest of rate of
convergence and INI to be the second fastest.

As the level of missings increased to 5 %, for 100 % or less of error of imputation,
INI, still, surpasses both EM-Strauss and EM-Schafer. However, at level 35 % or less
of error of imputation, EM-Strauss beats INI. According to CPU time measurement,
the EM-Strauss produces the most slowest rate of convergence. Thus, overall, INI
still surpasses the other methods.

Finally, at level of 10 % missings, for 100 % or less of error of imputation, again,
INI surpasses the EM-Strauss and EM Schafer. Furthermore, at level 35 % or less
of error of imputation, INI and EM-Strauss provide the same occurrences and the
EM-Schafer consistently to be the worst. In contrast, according to the CPU time
measurement, EM-Schafer consistently to be the fastest method.

Figure 1 shows how average error changes. It is clear that INI outperforms two
others for all situations. Figure 2 shows also that standard deviation of INI is much
smaller than that for others two. Figures 3, 4, and 5 show the performance of
algorithms for three levels of missing values. It is seen that INI’s distribution is,
first, much sharper (the mode is more than 75 % twice and more than 50 % once
versus 35–50 % for others), and, second, is much more consistent in shape than that
of two other methods. It tells, in general, about better stability of the approach when
data is changed.

Table 2 shows the coefficient of variation for INI is always larger than for two
others, which is to be explained by the fact that smaller level of average error (in
denominator) is not surrounded with respected decrease of standard deviation (the
share of high fluctuations in zone of very large errors, > 1;000 %, is more significant
for smaller levels).
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Fig. 3 The performance of INI algorithm

4.7.2 The Experiments with INI, Two EM Imputation Versions and MI

This time, the experiments are carried out using 20 samples out of 50 samples which
are used in the previous experiments. The samples are chosen from “population”
with level of missings: 5 and 10 %. The error of imputation for each method is
presented in Table 3.

The result of experiment is summarized according to the pair-wise comparison
of imputation methods: INI, EM-Strauss, EM-Schafer and MI with ten times
imputation for each sample. The comparison is shown in Table 4.

Table 4 shows that at level 5 %, three methods, INI, EM-Strauss and MI, provide
almost the similar results. However, in the close range, EM-Strauss appears as the
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Fig. 5 The performance of EM-Schafer algorithm

Table 2 The various statistical measurement of the performances of three algorithms where 1, 2
and 3 denote INI, EM-Strauss, EM-Schafer, respectively

1% 5% 10%

Stats 1 2 3 1 2 3 1 2 3

Average 256 574 769 172 339 591 148 351 544
Standard deviation 374 435 487 275 397 436 225 379 421
Coefficient of variance (%) 146 76 63 160 117 74 153 108 77

best method. Then MI appears as the second best. However, as the level of missings
increases to 10 %, INI surpasses the other methods. Then it is followed by EM-
Strauss. As shown in the previous experiments, the EM-Schafer consistently to be
the worst method.
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Table 3 The squared error of imputation (in %) of INI, EM-Strauss, EM-
Schafer and MI on 20 samples at 10 % missings entry where NN denotes the
methods fail to proceed

Methods

Samples INI EM-Strauss EM-Schafer MI

1 73.78 91.35 NN 28.32
2 95.98 835.21 575.87 24.45
3 57.78 53.89 58.21 545.72
4 43.68 45.10 73.88 129.34
5 NN NN NN 40.99
6 48.35 59.94 58.20 144.32
7 61.28 51.40 89.86 99.91
8 142.80 307.59 1,048.37 95.52
9 97.29 86.93 128.11 126.62
10 53.79 56.70 109.95 50.52
11 73.56 92.00 235.75 NN
12 75.86 293.90 184.65 389.28
13 134.05 840.37 5,429.77 57.07
14 62.17 41.53 136.28 49.51
15 78.97 360.20 NN NN
16 67.80 113.21 723.93 57.63
17 44.93 63.34 62.96 50.76
18 74.37 71.53 NN 333.34
19 72.44 78.21 150.24 87.83
20 78.68 115.89 542.38 51.86

Table 4 The pair-wise comparison of methods; an entry .i; j / shows how many
times in % method j outperformed method i on 20 samples generated from
database with 5 and 10 % random missing data where 1,2,3 and 4 denote INI,
EM-Strauss, EM-Schafer and MI, respectively

5% 10%

Methods of imputation 1 2 3 4 1 2 3 4

INI – 50 30 55 – 26 0 47
EM-Strauss 50 – 25 45 74 – 25 47
EM-Schafer 70 75 – 80 100 75 – 67
MI 45 55 20 – 53 53 33 –

5 Conclusion

We described a number of least-squares data imputation techniques. These methods
extend the one-by-one extraction strategy of the principal component analysis to
the case of incomplete data and combine it with the nearest neighbour approach
as proposed in [22, 23]. We also reviewed expectation–maximization (EM)-based
approach and multiple imputation for handling missing data as described in [18,20].
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We carried out experimental comparisons on marketing research data within
simulation framework. It appears, overall, the global–local two-stage NN-based
method INI overwhelmingly outperforms EM-based methods and is comparable
with multiple imputation (MI) approach.
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AST Method for Scoring String-to-text
Similarity

Ekaterina Chernyak and Boris Mirkin

Abstract A suffix-tree-based method for measuring similarity of a key phrase to
an unstructured text is proposed. The measure involves less computation and it does
not depend on the length of the text or the key phrase. This applies to:

1. finding interrelations between key phrases over a set of texts;
2. annotating a research article by topics from a taxonomy of the domain;
3. clustering relevant topics and mapping clusters on a domain taxonomy.

Keywords Suffix tree • Unstructured text analysis • String similarity measures

1 Introduction

Typically, string-to-text similarity measures are defined using the vector space
model (VSM) text representing model. Here, a richer text model, the suffix tree, is
used to keep the sequential nature of sentences and make text analysis independent
from the natural language and its grammar [3, 9, 12]. Conventional suffix-tree-
based similarity measures also suffer from drawbacks related to the intensity of
computations and their sensitivity to the lengths of both texts and strings. We
propose a measure that allows relaxing these limitations. Then we apply our
similarity measure to two types of problems:

1. Analysis of interrelations between key phrases over a text collection;
2. Annotation of research articles by a corresponding domain taxonomy topics;
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3. Analysis of teaching syllabuses and resident complaints by mapping them to
taxonomies, clustering the taxonomy topics, and lifting the clusters over the
taxonomy tree.

These three problems may look close to traditional information retrieval task
as stated in [10, 11], where the main task is to find all relevant documents for the
given query or even to rank them according to their relevance to the query. The key
difference is that:

1. We fix the set of queries (e.g., key phrases or taxonomy). What is more, in
problem of type 1 we investigate the structure of this set. In [10] no queries
are looked at, expect the given one, which is the matter of document ranking
problem.

2. We consider all the words occurred in the texts, not only those, which appear in
the queries as it is done in [10, 11].

Hence we treat the set of queries, Q, and the set of txt or documents, D, as a
two fixed sets of words, further combined in the so-called strings, of equivalent
importance for the analysis.

Section 2 describes our method for an annotated suffix tree (AST) construction
and the scoring function. Section 3 briefly explains the basic concept of the ST table
used throughout in computations. Section 4 presents methods for solving a problem
of type (1). Section 5 applies this to a problem of type (2). Two problems of type (3)
are described in Section 6. The conclusion completes the text.

2 AST method

The suffix tree is a data structure used for storing of and searching for symbolic
strings and their fragments [4]. In a sense, the suffix tree model is an alternative to
the VSM, arguably, the most popular model for text representation [12]. When the
suffix tree representation is used, the text is considered as a set of strings, where
a string may be any semantically significant part of the text, like a word (like it is
done in the Bag-of-Words model), a phrase, or even a whole sentence. An AST is a
suffix tree whose nodes (not edges!) are annotated by the frequencies of the strings
fragments.

We split texts into short fragments, “strings”, to reduce the computation. Usually
we take the strings to be of three sequential words [2]. An AST for a string is a
rooted tree, in which each node is labeled with one of the string symbols so that
each path from the root to a leaf encodes one of the string suffixes. AST for a set of
strings stores all the fragments of all the strings and their frequencies (see Fig. 1).
Using AST representation of texts, one is able to find the most frequent fragments
in the text and their length.

To build an AST for a text, for its every string, its suffixes are added to the AST,
starting from an empty set. To add a suffix to the AST, first check whether there is
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Fig. 1 AST for two strings
XABXAX and BABXAC.
Note that the strings differ
only in the first position and
have common five suffixes

already a path in the AST that encodes the whole suffix or its prefix. If such a path
(a match) exists, we increase all the frequencies in the match and append new nodes
with frequencies 1 to the last node in the match, if it doesn’t cover the whole suffix.
If there is no match, we create a new chain of nodes in the AST with frequencies 1.

To score similarity of a string to an AST, we match all its fragments with the AST
and score each match as the sum of conditional probabilities of matching nodes
divided by the length of the match. The conditional probability is the ratio of the
node frequency to that of its parent. If no match is found, define the zero score.
Then the average of all the scores is computed:

scoreMatch.string; AST/ D
P

suffix score.suffix; AST/

length.string/

D
P

suffix

P
u2match fu=fparent.u/

length.match/

length.string/
(1)

The VSM-based models are based on finding word-to-word exact coincidence: a
phrase, which is a set of words, may be considered relevant to a text, if a significant
part of that set occurs in the text. The AST measure avoids searching for exact
occurrences. It takes all matching fragments into account, so that a word may match
two or more times to the text. Hence, when estimating string-to-text similarity, we
deal not with the space of words, but with the space of different matching fragments.
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3 Building an ST Table

To analyze the relationship between a set of strings and a collection of texts, we
build a string-to-text similarity table (ST table) by constructing an AST for each of
the texts and estimating similarity of each of the strings to this AST. The rows of ST
table correspond to the strings and columns, to the texts. Using an ST table allows
us to treat strings as numerical attributes and exploit thus conventional data analysis
techniques.

4 Analysis of Interrelations on a Set of Strings
over a Related Text Collection

Consider a collection of web publications about current business processes in Russia
and a set of key phrases that describe local events like “publishing financial reports”
or “replacement of the finance management.” To find relations between these events,
an ST table key_phrase–to–web_ publication is built first. There can be three types
of web publications:

1. those related to only one key phrase;
2. those related to two or more key phrases;
3. those related to no key phrases.

By specifying a threshold, we assign each of the key phrases A with a subset F(A)
of related web publications.

Key phrase A implies B, if proportion of F(B) in F(A) is greater than 60 %. Thus,
one can draw a graph of the implications. For example, in the analysis of 960 web
publications on business processes in 2009 with about 40 key phrases, we discovered
that only 12 of them are of type (2) (see Fig. 2).

5 Annotation of Journal Articles by Topics from a Taxonomy
of the Domain

Another application of the AST method is indexing scientific papers with topics of a
taxonomy of the domain. Consider the association of computing machinery (ACM)
journals and the ACM developed taxonomy “Computing Classification System”
[1] (ACM-CCS). To represent the contents of their papers, authors of the ACM
journals annotate the papers manually with topics from the ACM-CCS taxonomy.
To automate this procedure using the AST method one has to:

1. Extract key elements of a paper, such as its heading, abstract, keywords if given.
2. Build an AST for the extracted elements.
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Fig. 2 Graph of the interrelation between the key phrases over a text collection. Codes: 1:
Introduction of automated manufacturing; 2: Issuing news bulletins; 3: Change of the size of
the shares belonging to the institutional investor; 4: Change of the extent of the ownership
concentration; 5: Personnel training; 6: Vertical merger; 7: Brand selling/buying; 8: Entering
international markets; 9: Change of the legal organizational form; 10: More effective cost control;
11: Making the finance reports publicly available; 12: Change of the finance director

Table 1 Profile A

Bojanczyk M., et al., Two-variable logic on data trees and XML reasoning
Journal of the ACM, 2009, Vol. 56(3), pp. 2–48

AST found profile ACM-CCS index terms (manual annotation)

ID S ACM-CCS topic ID Rank ACM-CCS topic

I.6.2 0.4969 Simulation languages F.4.3 3 Formal languages
I.1.3 0.4415 Languages and systems H.2.3 4 Languages
F.4.3 0.3796 Formal languages H.2.1 13 Logical design
H.2.3 0.3757 Languages F.4.1 28 Mathematical logic
D.4.5 0.2738 Reliability I.7.2 53 Document preparation

3. Estimate the similarity of every ACM-CCS topic to the text. The topic similarity
values form what we refer to as the AST-profile of the publication.

4. Choose the ACM-CCS topics with the highest scores.

There are two examples of the so-called ACM abstract profiles. We put on the left
side of each profile the top five taxonomy topics, sorted according to taxonomy
topic to abstract similarity measure. The manual annotation chosen by authors is
on the right side. The ID stands for the topic ID in the ACM-CCS taxonomy, S is
the similarity value, ACM-CCS topic is the topic itself, Rank is the place where the
manual annotation has been placed in the AST profile. Ranks can help us to estimate
the quality of profiles: the higher ranks manual annotations get, the better the profile
is. Hence the Profile A can be thought of as a rather good one and the Profile B as a
poor one (Tables 1 and 2).

Unfortunately, AST profiles are not always close to the manual annotations. This
may happen because:
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Table 2 Profile B

Grohe M., et al., Lower bounds for processing data with few random accesses to external memory
Journal of the ACM, 2009, Vol. 56(3), pp. 1–58

AST found profile ACM-CCS index terms (manual annotation)

ID S ACM-CCS topic ID Rank ACM-CCS topic

J.1 0.5991 Administrative data
processing

F.1.3 161 Complexity measures
and classes

I.2.7 0.4757 Natural language
processing

H.2.4 166 Systems

H.2.5 0.4704 Heterogeneous databases F.1.1 220 Models of computation
H.2.8 0.3419 Database applications
C.5.1 0.3146 Large and medium

computers

A. The method evaluates common words, such as “theorem,” “method,” or prob-
lem” too high. This issue can be addressed by using a stop list of common words.

B. The method works when the formulations of topics use similar letters. It doesn’t
cope with synonyms. A solution to this issue would be taking into account a set
of synonyms and near synonyms for each of the taxonomy topics.

C. The authors sometimes go too far in their annotations by assuming implications
of their methods which are not much considered in the text.

6 Clustering Relevant Topics and Mapping Clusters
on a Domain Taxonomy

Suppose we have a collection of texts and a taxonomy, which belong to the same
topic domain. We treat taxonomy as a set of topics, each presented by only one
string, organized in a rooted tree. The higher the topic is, the more general it is.
Hence we can employ the AST method to construct the ST table. In such a table
rows, i.e. strings, stand for leaf taxonomy topics, and columns for the texts. Note that
we restrict ourselves only to leaf topics, because it is essential for further analysis.
However all the topics might be used in the way as it is described in the previous
section. According to the AST table we may find groups of similar topic which
match with the text in almost the same fashion by means of some cluster analysis
methods. First of all, the clusters may be of their own interest, because they consist
of topics that appear in texts similarly although they don’t necessarily belong to one
branch of taxonomy. Secondly, using the lifting method, we can map these clusters
into the taxonomy. The lifting method outputs a few taxonomy topics of higher
levels which cover the cluster of leaf topics in the best possible way. This allows to
interpret the whole collection of texts in terms of several taxonomy topics of higher
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levels, that is a way of data aggregation over hierarchically organized taxonomy. Let
us enumerate the main steps of the cluster-lift method:

1. constructing the leaf_taxonomy_topic text ST table
2. finding clusters of leaf taxonomy topics
3. mapping the clusters into higher levels of the taxonomy structure.

To cluster the ST table we may first find leaf_taxonomy_topic leaf_taxonomy_topic
similarity matrix by taking dot products of rows of the ST and apply then Additive
Fuzzy Spectral Clustering (FADDIS) method [6,7] that uses the Spectral Clustering
approach to the Additive Fuzzy Clustering Model to find clusters of leaf taxonomy
topics. The other possible way to cluster leaf taxonomy topics is to use iK-Means [5]
method to extract clusters one by one from the ST table. The final step is to “lift”
the clusters in the taxonomy. The lifting algorithm [7] proceeds according to the
assumption that if all or almost all elements of a cluster could be covered by a topic
on a higher levels than the whole cluster “lifts” to that very topic. If the assumption
does not hold, then lifting is impossible. More details on all the methods used are
provided in [6]. Below two applications of the cluster-lift method are presented.

6.1 Teaching Syllabuses and the Taxonomy of Mathematics
and Informatics

The input is twofold. First, we take the most extensive taxonomy of mathematics
and informatics domain in Russian [8], that is called the VINITI taxonomy. It is
an unbalanced and rather messy rooted tree of mathematics and informatics topics,
provided with a lot of cross-references. Second, we downloaded from the web page
(www.hse.ru) of our university a collection of teaching syllabuses. These syllabuses
correspond to all courses related to Mathematics and/or Informatics as they are
taught in the School of Applied Mathematics and Informatics of NRU HSE. The
study of the VINITI taxonomy and the collection of teaching syllabuses shows
several shortcomings, both of the syllabuses and of the taxonomy: almost every
cluster we get after applying the method to the data contained topics from the
Topology branch of the taxonomy. It means that one or another notion form topology
is studied during almost all mathematical courses. But there is no such a subject in
the curriculum.

As the VINITI taxonomy has not been updated since the early 1980s, it was
expected that it may have issues in covering more modern topics in mathematics and
informatics. With the help of teaching syllabuses we establish several nests of topics
that should be possibly added to the ontology. For example, the topic “Lattices” is
by now a leaf in the taxonomy. According to our results, it should be a parent node
with three offsprings: “Modular lattices”, “Distributive lattices,” and “Semimodular
lattices.”

www.hse.ru
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The taxonomy has been found of rather imbalanced in the coverage. The
“Differential Equations” and “Mathematical Analysis” branches are significantly
more saturated than the other branches and comprise almost the half of the
taxonomy. Yet less classical branches as “Game Theory” or “Programming Theory”
are way too small and not comprehensive at all. They build up a very small part
of the taxonomy, especially in comparison with the giant branches “Differential
Equations” and “Mathematical Analysis”. We thought that the main teaching
syllabuses should be named after the first-level or second-level taxonomy topics.
On the contrary, we found that such topics as “Discrete Mathematics” have not been
set among the high-layer taxonomy topics in the VINITI taxonomy.

In this study we used the FADDIS model to cluster the leaf taxonomy clusters.
Unfortunately, because of cluster elements being from disconnected branches of
taxonomy, the lifting procedure almost failed. We only achieved one layer up lift
in a few situations, such as “Continuous distributions” and “Discrete distributions”
being lifted to their common parent “Probability distributions”.

6.2 Resident Complaints and the Taxonomy
of Community Facilities

During the last years special systems for submitting any kind of complaints
from residents are introduced in some cities in Russia. One of those systems is
exploited in Nizhniy Novgorod for the residents complaining on the problems
with community facilities. Our colleagues from the Nizhniy Novgorod NRU HSE
campus developed a taxonomy that describes almost all constituents of community
facilities in order to automate the analysis of the flow of complaints.

First we noticed that there are many significant concepts missing from this
taxonomy. For example, there were topics about “Elementary school” and “Middle
school”, while the “Kindergarten” topic was missing. We manually extracted some
frequent nouns or collocations from the given collection of complaints and updated
the taxonomy with these extracted topics.

Second we built the leaf_taxonomy_topic resident complaint ST table by means
of the AST method and then applied the cluster-lift method. We used iK-means
method [5] to extract clusters of taxonomy topics from the ST table. We cleaned
the clusters from extra large or small clusters. The rest of the clusters were
parsimoniously lifted. For example, cluster 1 in Fig. 3 consisted of four taxonomy
topics: 1.2.1. Hot water problems, 1.2.2 Cold water problems, 1.2.3 Water meter
problems, 1.11.2 Public water pump. On the first iteration of the lifting method the
cluster was mapped to 1.2 Water Supply and to 1.11 Urban landscaping and public
amenities. These two were then mapped on the second iteration to the first level
topic 1. Housing services.
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Fig. 3 Lifting cluster to higher levels

7 Conclusion

The AST method used for estimating string-to-text similarity has several advantages
over the VSM-based methods. It doesn’t require any complicated preprocessing
procedure like stemming or POS-tagging and is then independent from grammar.
By using the string concept, we can explore long enough text fragments, so that
short semantical links aren’t lost. The experimental computations lead us to the
number of issues that are to be subject of the further developments:

1. the AST method deals only with matching strings. To make it more efficient we
should take synonyms or near synonyms into account.

2. we have done so far some manual attempts to improve taxonomies so that they
would become more balanced and up to date. It is, perhaps, possible to automate
the process of improving or refining taxonomies using either given collections of
texts or some external sources.

3. by now we have assumed that the set of strings that is further used for matching
with the texts and building the ST table is given by some experts or is taken from
some official source. We may extract these strings from the texts by using some
well-known methods of long key phrases extraction.
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terms (keywords) and mines the available source domains for new terms associated
with these entities. These new terms are formed in several steps. First the snippets
of answers generated by the search engine are parsed producing parsing trees.
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algorithm. These commonality expressions then form new keywords as parameters
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match NL expressions between source and target domains, the proposed algorithm
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1 Introduction

The goal of this paper is improving relevance of web search by adding specific types
of semantic information. Consider a web search task with query Q and answers
a1; a2; : : : an that are produced by some conventional search engine. Assume that
an automatic semantic analysis algorithm F is applied to the query question Q and
produced a statement “Q is about X ,” e.g., “query Q is about Tax.” We will denote
such statement as S.Q; X/, where S can be viewed as a predicate “is_about( , ).”
Thus, F.Q/ D S.Q; X/.

Similarly assume that the algorithm F is applied to each answer ai and produced
statements: “a1 is about X1,” “a2 is about X2,”: : :, “ai is about Xi ,”: : :, “an is
about Xn.” Thus, we have F.ai / D S.ai ; Xi / for all answers. Let also L be
a score function that measures the similarity between pairs hQ; S.Q; X/i and
hai ; S.ai ; Xi/i, L.hQ; S.Q; X/i;hai ; S.ai ; Xi /i/ as a mapping to the interval Œ0; 1�.
Then we can re-rank answers ai obtained by a conventional search engine, relative
to L value. The answers with the highest scores

max
iD1;2;:::;n

L.hQ; S.Q; X/i; hai; S.ai ; Xi /i/

are considered as the most relevant.
The proposed measure of similarity takes into account the traditional approach,

which takes all keywords from questions and answers, with our specific method of
matching the keywords we determine as being essential. The above similarity will
be assessed via mapping both hQ; S.Q; X/i and hai ; S.ai ; Xi/i into a constructed
structure which we refer to as taxonomy. Instead of keywords or bag-of-words
approaches, we will also be computing similarity between parse trees for questions
and answers.

This paper elaborates this approach and is organized as follows. We start from the
design of the analysis algorithm F that performs the taxonomy-supported search,
then we design the similarity measure L to further improve search relevance. After
that we demonstrate the efficiency of the proposed method on real web searches.
The paper concludes with a detailed analysis of the related works, advantages of the
proposed method, and expected future work.

The algorithm uses a structured taxonomy of keywords. The taxonomy con-
struction process starts from the seed terms (keywords) and mines the available
source domains for new terms associated with these terms. These new terms are
formed in several steps that involve the search engine results, parsing trees, and a
machine learning algorithm. To match NL expressions between source and target
domains, the algorithm uses syntactic generalization, an operation which finds a set
of maximal common sub-trees of constituency parse trees of these expressions.

The industrial evaluation of a hybrid system reveals that the proposed algorithm
is suitable for integration into industrial systems. The algorithm is implemented as
a component of Apache OpenNLP project.
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2 Method

2.1 Defining is_about Relation

The is_about relation helps to “understand” the root concepts of the query Q and
obtain the best answer ai . In other words, this relation sets up the set of essential
keywords for Q or ai . Let K.Q/ be a set of keywords of Q (the function that
extracts meaningful keywords from a sentence, depending on the current choice of
stop-words). S.Q; X/ is defined as is_about.K.Q/; X/,

S.Q; X/ D is_about.K.Q/; X/;

where X is a subset of K.Q/. Similarly, for the answer ai , we have S.ai ; Xi/ D
is_about.K.ai /; X/.

Let query Q be about b and K.Q/ D fabcg, i.e., is_about.fa; b; cg; b/. Then we
understand that other queries with fabg and fbcg are relevant or marginally relevant
to query Q, and a query with keywords facg is irrelevant to Q. In other words, b is
essential in Q and the other query without b term is meaningless relative to Q, and
an answer which does not contain b is irrelevant to the query which includes b.

Example 1. Let the set of keywords fcomputer, vision, technologyg, fcomputer;
visiong, vision, technology be relevant to the query Q, and computer; technology
are not, thus the query Q is about fvisiong.

Notice that for keywords in the form of a noun phrase or a verb phrase the
head or a verb may not be a keyword. Also we can group words into phrases when
they form an entity, e.g., bill-gates: is_about.fvision, bill-gates, in-computingg;
fbill-gatesg/.

A set of keywords as called essential if it occurs on the right side of is_about.
is_about relation as a relation between a set of keywords and its ordered subset.

Example 2. Let b be essential for Q with K.Q/ D fa; b; c; d g, is_about.fa; b;

c; d g, fbg/ and c also be essential when b is in the query, is_about.fa; b; c; d g;
fb; cg/. Here b and c are ordered with b being more essential than c. Then queries
and answers with fa; b; cg, fb; c; d g, fb; cg are considered to be relevant to Q

because they contain both essential keywords. In contrast, queries and answers with
fa; bg, fb; d g are considered to be (marginally) relevant to Q because c is missed
and they are likely less specific. Accordingly queries and answers with fa; d g only
are considered to be irrelevant to Q.

This example gives an idea that we use to define the relevance similarity score
L between the query and its answers. It is based on the order of how essential
are the keywords, not only on a simple overlap of keywords or essential keywords
between Q and ai . Hence, for a query Q with K.Q/ D fa; b; c; d g and two answers
(snippets) with K.a1/ D fb; c; d; : : : ; e; f; gg and K.a2/ D fa; c; d; : : : ; e; f; gg,
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the former is relevant and the latter is not because c to be essential requires such
keyword b that has a higher rank of essentiality than c for the query Q with ordered
essential keywords fb; cg.

Above we defined it using an ordered set of essential keywords. This definition
works for two essential keywords. For more than two keywords we may have
multiple essentiality orders, e.g., for three essential keywords fb; c; d g we can have
ordered sets fb; cg and fb; d g without fb; c; d g that c is not required for d to be
essential. To encode this essentiality order, we need to employ a tree structure,
which is going to be a taxonomy. For a query, we build a structure of its keywords
with essentiality relations on them by the function K , introduced above. For two
keywords, one is more essential than the other if there is a path in the taxonomy tree
(starting from the root) which includes the nodes with these keywords as labels, and
the first node is between the second node and the root.

2.2 Defining Essential Keywords

Definition. A set of keywords E is called essential if it occurs on the right side
of is_about relation and E is a structured subset of the set of keywords, that is the
partial order essentiality relation “<E” is defined for every pair of elements of E ,
hE; <Ei. In this paper we limit the essentiality structure to a tree structure that we
call a keyword taxonomy.

Now we need to define a method to construct essential keywords E for the
query Q. Assume that all queries are from a vertical domain, e.g., tax domain. Then
we can build a common tree of concepts for the domain (domain taxonomy) T , e.g.,
for tax domain. Later on in this paper we will describe the method for building T .
The tree T includes paths which correspond with typical queries. We rely on an
assumption for a vertical domain that for two words in a given domain, one word
is always more essential than the other for all queries. Based on this assumption, a
single taxonomy can support a search in the whole vertical domain.

Having T we can define E by set-intersection T as a set and Q, E D T \ Q.
This gives us the relation cover is_about.K.Q/; E/. Thus one of the ways to define
a query analysis algorithms F that produces is_about relation, from Q using T ,
F.Q/ D is_about.Q; T \ Q/. Alternative ways to get E is to intersect keywords
K.Q/ of Q with T , E D T \K.Q/ or to intersect Q with an individual path Tp in
T , getting E D Tp \Q and is_about.Q; Tp \Q/.

We say that a path Tp covers a query Q if the set of keywords for the nodes
of Tp is a super-set of Q. If multiple paths cover a query Q producing different
intersections Q\Tp , then this query has multiple meanings in the domain; for each
such meaning a separate set of acceptable answers is expected.

The search based on such tree structures is typically referred to as the taxonomy-
based search [7]. It identifies terms that should occur in the answer and terms that
must occur there, otherwise the search result is irrelevant. The keywords that should
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occur are from the taxonomy T , but the keywords that must occur are from both the
query Q and taxonomy T . This is a totally different mechanism than a conventional
TF*IDF-based search [21].

2.3 Constructing Relevance Score Function L

The introduction of the essentiality order for keywords leads to the specification of
the relevance score function L.hQ; S.Q; X/i; hai; S.ai ; Xi /i/, where now X and
Xi are trees of essential keywords derived by the function K . Below we discuss a
method to build this function.

Consider a situation where all essential words X from the query Q are also
present in the answer, X � Xi the answer ai is called partially acceptable for
query Q. This can be defined as:

If X � Xi then L.hQ; S.Q; X/i; hai; S.ai ; Xi /i/ D 1:

However, this is a semantically shallow method especially for common situations
where X and Xi contain only few words. A better way is to use a common tree of
concepts for the domain T and use it to measure similarity between X and Xi . Now
we can define L given T for the acceptable case,

If X � Xi � T; then L.hQ; S.Q; X/i; hai; S.ai ; Xi/i/ D 1:

This means that tree X is a subtree of tree Xi and both trees are subtrees of tree T .
The requirement of weak acceptability, that X is a subtree of T , is desirable, but

very restrictive. Therefore, we define acceptability in the following way. An answer
ai 2 A is acceptable if it includes all essential (according to is_about) keywords
from the query Q as found in the taxonomy path Tp � T . For any taxonomy path
Tp which covers the question q (intersections of their keywords is not empty), these
intersection keywords must be in the acceptable answer ai .

8Tp 2 T W Tp \ X ¤ Ø) Xi � Tp \ X:

In other words, X is a set/tree of keywords for a question, which are essential in
this domain (covered by a path in the taxonomy). X also must be a subset of Xi ,
the set/tree of keywords for this answer i . This is a more complex requirement than
X � Xi . 2 used here to denote a path in a tree. For the best answer (most accurate)
we write

abest W max
i

.jXi \ .Tp \X/j/; Tp 2 T:
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tax

file return
extension-of-time

deduct
decrease-by

on-income

on-property

business

medical-expense

sales-tax

401-k

office-expense

travel

medical-expense

Fig. 1 An example of a snapshot of a domain taxonomy

Accordingly, we define a taxonomy-based relevance score L as the value of
cardinality jXi \ .Tp \ X/j, computed for all Tp which cover Q. Then the best
answer is found among the scores for all answers A. The score L can be normalized
by dividing it by jX j to get it in Œ0; 1� interval.

The taxonomy-based score can be combined with the other scores such as
TF*IDF, temporal/decay parameter, location distance, pricing, linguistic similarity,
and other scores for the resultant ranking, depending on search engine architecture.
In our evaluation we will be combining it with the linguistic similarity score
(Sect. 2.6). Hence L indeed depends not only on X and Xi but also on Q and ai .

Example. Consider a taxonomy T presented in Fig. 1 for the query Q D
How can tax deduction be decreased by ignoring office expense, with a set of
keywords K.Q/Dfhow, can, tax, deduct(ion), decreas(ed)-by, ignor(ing), office,
expenseg and a set of tree answers A D a1; a2; a3 presented as keywords:

a1Dfdeduct, tax, business, expense, while, decreas(ing), holiday, travel, away,
from, officeg,
a21Dfpay, decreas(ed), sales-tax, return, trip, from, office, to, holiday, no,
deduct(ion)g,
a31Dfwhen, file, tax, return, deduct, decrease-by, not, calculate, office,
expense, and, employee, expenseg.

Notice that a2 includes the multiword sales-tax from the taxonomy, which is also
counted as a set of two words {sales, tax}. However, in a3 decrease-by is considered
as a single word because our function K considers prepositions as stop words
and does not count them separately. We show ending in brackets for convenience,
omitting tokenization and word form normalization. In terms of keyword overlap,
a1, a2, and a3 all look like good answers.

In accordance with given T query Q is covered by the path Tp D fhtaxi �
hdeducti � hdecrease-byi � hoffice-expenseig.
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We calculate the similarity score for each answer with Q:

score.a1/ D cardinality.a1 \ .Tp \Q// D cardinality.ftax, deductg/ D 2I
score.a2/ D cardinality.ftax, deductg/ D 2I
score.a3/ D cardinality.ftax, deduct, decrease-by, office-expenseg/ D 3I

The answer a3 is the best answer in this example. Our next example is about
disambiguation of keywords.

Example. Consider a query q D “When can I file extension of time for my tax
return?” with two answers:

a1 D “You need to file form 1234 to request a 4-month extension of time to file
your tax return”
a2 D “You need to download file with extension “pdf”, print and complete it to
do your taxes”

and the closest taxonomy path: Tp D fhtaxi � hfilei � hreturni � hextension-of-
timeig. In this example both a1 and a2 contain word extension, but the keyword is
“extension-of-time” not extension. Resolving this ambiguity leads to a higher score
for a1.

2.4 Taxonomy-Based Relevance Verification Algorithm

We now outline the algorithm, which takes a query Q, runs a search (outside of this
algorithm), gets a set of candidate answers A, and finds the best acceptable answer
according to the definitions given above.

The input: query Q

The output: the best answer abest and the set of acceptable answers Aa

1. For a query Q, obtain a set of candidate answers A by available means (using
keywords, using internal index, or using external index of search engine’s APIs);

2. Find a path of taxonomy Tp which covers maximal number of terms in Q, along
with other paths, which cover Q, to form a set P D fTp1; Tp2; : : : g. Unless
acceptable answer is found:

3. Compute the set Tp \Q. For each answer ai 2 A

4. Compute ai 2 .Tp 2 Q// and test if all essential words from the query, which
exists in Tp are also in the answer (acceptability test)

5. Compute similarity score of Q with or each ai

6. Compute the best answer abest and the set of acceptable answers Aa . If no
acceptable answer found, return to 2 for the next path from P .

7. Return abest and the set of acceptable answers Aa if available
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This algorithm filters out irrelevant answers by searching for taxonomy path
(down to a leaf node if possible) which is closest to the given query in terms of
the number of entities from this query. Then this path and leave node specify most
accurate meaning of the query, and constrain which entities must occur and which
should occur in the answer to be considered relevant. If the n-th node entity from
the question occurs in answer, then all k < n entities should occur in it as well.

2.5 Building Taxonomy

The domain tree/taxonomy is built iteratively. The algorithm starts from a “taxon-
omy seed” that contains at least two to three initial nodes (keywords) including
the root of the tree. Each next iteration step k adds edges and nodes to specify
existing nodes known at the step k � 1. A seed taxonomy can be made manually.
An alternative way is using external sources, such as a glossary of that knowledge
domain, e.g., http://www.investopedia.com/categories/taxes.asp for tax domain.

Example. The seed for the tax domain can contain tax as a root of the tree
(a domain-determining entity), and {deduct, income, property} as nodes of the next
level of the tree that are main entities in this domain. Another option for the seed
taxonomy is presented in Fig. 1 with tax as a root, and file and deduct as child nodes
at the next level.

Each iteration step is accomplished as a learning step using web mining to learn
next nodes such as sales-tax, 401k, etc. (Fig. 1).

The learning algorithm:

(1) takes a pair (root node, child node), such as (tax, deduct),
(2) uses it as a search query via a search engine, e.g., Bing,
(3) extracts words and expressions which are common among search results

(Sect. 2.6),
(4) expands the tree with these common words as new terminal nodes,
(5) takes a triple of nodes (node, child, grandchild) and repeat steps (2)–(4) for

this triple.

This process can continue for k-tuples (paths on the tree) with k > 3 to get a
deeper domain taxonomy. Here common words are single verbs, nouns, adjectives
and even adverbs, prepositional phrases or multi-words, including propositional,
noun, and verb phrases, which occur in multiple search results. The details of the
extraction of common expressions between search results are explained later.

Example. Figure 2 shows some search results on Bing.com for the tree path tax-
deduct-decrease. For example, for the path tax - deduct newly learned entities can be

tax � deduct! decrease-by tax � deduct! of-income

tax � deduct! property-of tax� deduct! business

tax � deduct! medical-expense.

http://www.investopedia.com/categories/taxes.asp
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How to Decrease Your Federal Income Tax | eHow.com
the Amount of Federal Taxes Being Withheld; How to Calculate a Mortgage 
Rate After Income Taxes ; How to Deduct Sales Tax From the Federal 
Income Tax

Itemizers Can Deduct Certain Taxes
... may be able to deduct certain taxes on your federal income tax return? 
You can take these deductions if you file Form 1040 and 
itemize deductions on Schedule A. Deductions decrease...

Self Employment Irs Income Tax Rate Information & Help 2008, 2009 ...
You can now deduct up to 50% of what has been paid in self 
employment tax. · You are able to decrease your self employment income 
by 7.65% before figuring your tax rate.

How to Claim Sales Tax | eHow.com
This amount, along with your other itemized deductions, 
will decrease your taxable ... How to Deduct Sales Tax From Federal Taxes; 
How to Write Off  Sales Tax; Filling Taxes with ...

Prepaid expenses and Taxes
How would prepaid expenses be accounted for in determining taxes and 
accounting for ... as the cash effect is not yet determined in the net 
income, and we should deduct a decrease, and ...

How to Deduct Sales Tax for New Car Purchases: Buy a New Car in ...
How to Deduct Sales Tax for New Car Purchases Buy a New Car in 2009? 
Eligibility Requirements ... time homebuyer credit and home improvement 
credits) that are available to decrease the ...

Fig. 2 Search results on Bing.com for the current taxonomy tree path tax-deduct-decrease

The format here is existing_entity! new_entity, “!” here is an unlabeled edge of
the taxonomy extension at the current learning step.

Next we run triples getting:

tax � deduct-decrease-by! sales

tax-deduct-decrease! sales-tax

tax-deduct-decrease-by! 401-K

tax-deduct-decrease-by! medical

tax-deduct� of-income! rental

tax-deduct� of-income! itemized

tax-deduct� of-income! mutual-funds
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We outline the iterative algorithm, which takes a taxonomy with its terminal nodes
and attempts to extend them via web mining to acquire a new set of terminal nodes.
At the iteration k we acquire a set of nodes, extending current terminal node ti with
tik1; tik2; : : :. This algorithm is based on the operation of generalization, which takes
two texts as sequences hlemma(word); part-of-speechi and gives least general set of
texts in this form (Sect. 2.6). We outline the iterative step:

The input: Taxonomy Tk with terminal nodes ft1; t2; : : : ; tng
A threshold for the number of occurrences to provide sufficient evidence for inclusion into

Tk : th.k; T /.
The output: extended taxonomy TkC1 with terminal nodes ft1k1; t1k2; : : : ; t2k1; t2k2; : : : tnk1; tnk2g
For each terminal node ti :

1. Form a search query as a path from the root to ti , q D ftroot; : : : ; tig;
2. Run web search for q and get a set of answers (snippets) Aq .
3. Compute a pair-wise generalization (Sect. 2.6) for answers Aq : ƒ.Aq/ D a1 ^ a2; a1 ^

a3; : : : ; a1 ^ am; : : : ; : : : ; am�1 ^ am,
4. Sort all elements (words, phrases) of ƒ.Aq/ in descending order of the number of occurrences

in ƒ.Aq/. Retain only the elements of ƒ.Aq/ with the number of occurrences above a
threshold th.k; T /. We call this set ƒhigh.Aq/.

5. Subtract the labels from all existing taxonomy nodes from ƒhigh.Aq/: ƒnew.Aq/ D ƒhigh

.Aq/=Tk . We maintain the uniqueness of labels of taxonomy to simplify the online matching
algorithm.

6. For each element of ƒhigh.Aq/, create a taxonomy node tihk , where h 2 ƒhigh.Aq/, and k is
the current iteration number, and add the taxonomy edge .ti ; tihk/ to Tk .

The input: Taxonomy To with nodes ft1; t2; : : : ; tng which are main entities.
The output: resultant taxonomy T with terminal nodes
Iterate through k:
Apply iterative step to k. If TkC1 has an empty set of nodes to add, stop

The default value of th.k; T / is 2. However there is an empirical limit on how
many nodes are added to a given terminal node at each iteration. This limit is 5
nodes per iteration, so we take the five highest numbers of occurrences of a term
in distinct search results. This constraint helps to maintain the tree topology for the
taxonomy being learned. The resultant taxonomy is a tree which is neither binary
nor sorted or balanced.

Given the algorithm for the iteration step, we apply it to the set of main entities
at the first step, to build the whole taxonomy:
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2.6 Algorithm to Extract Common Words/Expressions
Among Search Results

The word extraction algorithm is applied to a pair of sentences from two search
results. These sentences are viewed as parsing trees. The algorithm produces a set of
maximal common parsing sub-trees that constitute structured set of common words
in these sentences. We refer the reader to further details in [8, 12].

For a given pair of words, only a single generalization exists; if words are the
same in the same form, the result is a node with this word in this form. We refer to
the generalization of words occurring in a syntactic tree as a word node. If the word
forms are different (e.g., one is single and the other is plural), only the lemma of the
word remains. If the words are different and only the parts of speech are the same,
the resultant node contains only the part-of-speech information with no lemma. If
the parts of speech are different, the generalization node is empty.

For a pair of phrases, the generalization includes all the maximum ordered sets
of generalization nodes for the words in the phrases so that the order of words is
retained. Consider the following example:

To buy the digital camera today, on Monday
The digital camera was a good buy today, the first Monday of the month

The generalization is fhJJ-digital, NN-camerai; hNN-today, ADV, NN -Mondayig,
where the generalization for the noun phrase is followed by the generalization for
the adverbial phrase. The verb buy is excluded from both generalizations because

The input: a pair of sentences
The output: a set of maximal common sub-trees

1. Obtain the parsing tree for each sentence, using OpenNLP. For each word (tree
node), we have a lemma, a part of speech and the form of the word’s information.
This information is contained in the node label. We also have an arc to the other
node.

2. Split sentences into sub-trees that are phrases for each type: verb, noun, prepo-
sitional and others. These sub-trees are overlapping. The sub-trees are coded so
that the information about their occurrence in the full tree is retained.

3. All the sub-trees are grouped by phrase types.
4. Extend the list of phrases by adding equivalence transformations [9].
5. Generalize each pair of sub-trees for both sentences for each phrase type.
6. For each pair of sub-trees, yield an alignment [14], and generalize each node for

this alignment. Calculate the score for the obtained set of trees (generalization
results).

7. For each pair of sub-trees of phrases, select the set of generalizations with the
highest score (the least general).

8. Form the sets of generalizations for each phrase type whose elements are the sets
of generalizations for that type.

9. Filter the list of generalization results: for the list of generalizations for each
phrase type, exclude more general elements from the lists of generalization for a
given pair of phrases.
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it occurs in a different order in the above phrases. Buy-digital-camera is not a
generalization phrase because buy occurs in a different sequence in the other
generalization nodes.

We can see that the multiple maximum generalizations occur depending on
how the correspondence between words is established; multiple generalizations are
possible. Ordinarily, the total of the generalizations forms a lattice. To obey the
condition of the maximum, we introduce a score for generalization. The scoring
weights of generalizations are decreasing, roughly, in the following order: nouns
and verbs, other parts of speech, and nodes with no lemma, only a part of speech.
In its style, the generalization operation follows the notion of the “least-general
generalization” or anti-unification, if a node is a formula in a language of logic.
Therefore, we can refer to the syntactic tree generalization as an operation of anti-
unification of syntactic trees.

3 Results on Improving Web Search Relevance

3.1 An Example of Taxonomy Learning Session

Let G D fgi g be a fixed set of linguistic relations between the pairs of terms.
For instance, we may have a relation gi .taxdeduction; reduces/. In this relation
“reduces” serves as an attribute of “tax deduction” term. An attribute of the term
t that occurs in more than one answer is called a parameter of t .

Consider a seed taxonomy as a pair (tax-deduct). The taxonomy learning session
consists of the following steps:

1. Getting search results A D fai g for the pair (tax-deduct) using some web search
engine.

2. Finding in each search results Ai the terms that are candidate attributes of “tax”
and/or “deduct” (highlighted in Fig. 3).

3. Turning candidate attributes into parameters of “tax” and “deduct” (common
attributes between different search results ai in A) that are highlighted in dark-
gray, like “overlook.”

4. Extending the pair (tax-deduct) to a number of triples by adding, in particular,
the newly acquired attribute “overlook”: Tax-deduct-overlook.

Figure 4 shows some answers for the extended path tax-deduct-overlook.
The learning steps now are as follows:

1. Get search results for “tax deduct overlook”;
2. Select candidate attributes (now, modifiers of terms from the current taxonomy

path)
3. Turn candidate attributes into parameters by finding common expressions such

as “PRP-mortgage” in our case
4. Extend the taxonomy path by adding newly acquired parameters
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Fig. 3 First step of taxonomy learning, given the seed tax-deduct

Fig. 4 Search of extension of the taxonomy tree for the path tax-deduct-overlook

Tax-deduct-overlook - mortgage,
Tax-deduct-overlook - no_itemize.

Having built the full taxonomy, we can now apply it to filter out search results,
which are not covered by the taxonomy paths properly. Consider a query Can I
deduct tax on mortgage escrow account? Fig. 5 shows the answers obtained. Two
answers (shown in an oval frame) are irrelevant, because they do not include the



354 B.A. Galitsky and B. Kovalerchuk

Fig. 5 Filtering out irrelevant Google answers using the built taxonomy

sell_hobby=>[[deductions, collection], [making, collection], [sales, business, collec-

tion], [collectibles, collection], [loss, hobby, collection], [item, collection], [selling,

business, collection], [pay, collection], [stamp, collection], [deduction, collection],

[car, collection], [sell, business, collection], [loss, collection]]

benefit=>[[office, child, parent], [credit, child, parent], [credits, child, parent], [sup-

port, child, parent], [making, child, parent], [income, child, parent], [resides, child,

parent], [taxpayer, child, parent], [passed, child, parent], [claiming, child, parent],

[exclusion, child, parent], [surviving, benefits, child, parent], [reporting, child, par-

ent]]

hardship=>[[apply, undue], [taxpayer, undue], [irs, undue], [help, undue], [deduc-

tions, undue], [credits, undue], [cause, undue], [means, required, undue], [court,

un-due]].

Fig. 6 Three sets of paths for the tax topic entities sell hobby, benefit, hardship

taxonomy nodes {deduct, tax, mortgage, escrow_account}. Notice that the closest
taxonomy path to the query is tax - deduct - overlook - mortgage - escrow_account.

Figure 6 shows the snapshot of taxonomy tree for three entities. For each
entity, given the sequence of keywords, the reader can reconstruct the meaning in
the context of tax domain. This snapshot illustrates the idea of taxonomy-based
search relevance improvement: once the particular meaning (content, taxonomy
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path in our model) is established, we can find relevant answers. The head of the
expression occurs in every path it yields (like {sell_hobby - deductions - collection},
{sell_hobby - making - collection}).

3.2 Generalization of Sentences to Extract Keywords

Consider three sentences:

I am curious how to use the digital zoom of this camera for filming insects.
How can I get short focus zoom lens for digital camera?
Can I get auto focus lens for digital camera?

Figure 7 shows the parse trees for these sentences. We generalize them by
determining their maximal common sub-trees. Some sub-trees are shown as lists
for brevity. The second and third trees are quite similar. Therefore, it is simple to
build their common sub-tree as an (interrupted) path of the tree (Figs. 7 and 8)

f MD-can, PRP-I, VB-get, NN-focus, NN-lens, IN-for JJ-digital NN-camerag:

At the phrase level, we obtain:
Noun phrases: [ [NN-focus NN-* ], [JJ-digital NN-camera
]]
Verb phrases: [ [VB-get NN-focus NN-* NN-lens IN-for
JJ-digital NN-camera ]]. Here the generalization of distinct values is
denoted by “*”.

The common words remain in the maximum common sub-tree, except “can,”
which is unique to the second sentence, and the modifiers of “lens,” which are
different between the two sentences (shown as NN-focus NN-* NN-lens). We
generalize sentences that are less similar than sentences two and three on a phrase-
by-phrase basis. Below, the syntactic parse tree is expressed via chunking [2], using
the format <posi-tion (POS - phrase)>

Parse 1 0(S-I am curious how to use the digital zoom of
this camera for filming insects), 0(NP-I), 2(VP-am
curious how to use the dig-ital zoom of this camera for
filming insects), : : : 2(VBP-am),

Parse 2 [0(SBARQ-How can I get short focus zoom lens for
digital camera), 0(WHADVP-How), 0(WRB-How), 4(SQ-can I
get short focus zoom lens for digital camera),
4(MD-can), 8(NP-I), 8(PRP-I), 10(VP-get short focus
zoom lens for digital camera),: : :

Next, we group the above phrases by their phrase type [NP, VP, PP, ADJP,
WHADVP]. The numbers at the beginning of each phrase encode their character
positions. Each group contains the phrases of the same type because the matches
occur between the same types.
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Fig. 7 Parse trees for three sentences. The curve shows the common sub-tree (in this case, there
is only one) for the second and third sentences

Grouped Phrases 1

[[NP [DT-the JJ-digital NN-zoom IN-of DT-this NN-camera
], NP [DT-the JJ-digital NN-zoom ], NP [DT-this
NN-camera ], NP [VBG-filming NNS-insects ]], [VP
[VBP-am ADJP-curious WHADVP-how TO-to VB-use DT-the
JJ-digital NN-zoom IN-of DT-this NN-camera IN-for
VBG-filming NNS-insects ], VP [TO-to VB-use DT-the
JJ-digital NN-zoom IN-of DT-this NN-camera IN-for
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Fig. 8 Generalization results for the second and third sentences

VBG-filming NNS-insects ], VP [VB-use DT-the JJ-digital
NN-zoom IN-of DT-this NN-camera IN-for VBG-filming
NNS-insects]]]

Grouped Phrases 2

[[NP [JJ-short NN-focus NN-zoom NN-lens ], NP
[JJ-digital NN-camera ]], [VP [VB-get JJ-short NN-focus
NN-zoom NN-lens IN-for JJ-digital NN-camera ]], [], [PP
[IN-for JJ-digital NN-camera ]],]

Generalization Between Phrases

The resultant generalization is shown in bold below for verb phrases (VP).

Generalization Result

NP [ [JJ-* NN-zoom NN-* ], [JJ-digital NN-camera ]]
VP [ [VBP-* ADJP-* NN-zoom NN-camera ], [VB-* JJ-*
NN-zoom NN-* IN-for NN-* ]
PP [ [IN-* NN-camera ], [IN-for NN-* ]]
Next we compute score for the generalizations:

score(NP) D .W<POS;�> C WNN C W<POS;�>/C .WNN C WNN / D 3:4;

score(VP) D .2*W<POS;�>C2*WNN /C.4W<POS;�>CWNNCWPRP / D 4:55;

and
score(PRP) D .W<POS;�> C WNN / C .WPRP C WNN / D 2:55, therefore,
scoreD 10:5.
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Thus, such a common concept as digital camera is automatically generalized
from the examples, as well as the verb phrase be some-kind-of zoom camera. The
latter generalization expresses a common meaning between this pair of sentences.

Note the occurrence of the expression [digital-camera] in the first sentence:
although digital does not refer to camera directly, when we merge the two noun
groups, digital becomes one of the adjectives of the resultant noun group with
the head camera. It is matched against the noun phrase reformulated in a similar
way (but with the preposition for) in the second sentence with the same head noun
camera.

At the phrase level, generalization starts from setting correspondences between
as many words as possible in the two phrases. Two phrases are aligned only if
their head nouns are matched. A similar integrity constraint applies to aligning verb
phrases, prepositional phrases, and other types of phrases.

We now generalize two phrases and denote the generalization operator as “^.”
Six mapping links between the phrases correspond to the six members of the
generalization result phrase

[VB-* JJ-* NN-zoom NN-* IN-for NN-* ]

Notice that only NN-zoom and IN-for remain as the same words, for the rest only
part-of-speech information is retained.

3.3 Evaluation of Search Relevance Improvement

3.3.1 Experimental Setup

We evaluated relevance of taxonomy and syntactic generalization-enabled search
engine based on Yahoo and Bing search engine APIs for the vertical domains of tax,
investment, and retirement [7].

For an individual query, the relevance was estimated as a percentage of correct
hits among the first ten hits, using the values: {correct, marginally correct, incorrect}
that is in line with the approach in [27]. Accuracy of a single search session is
calculated as the percentage of correct search results plus half of the percentage
of marginally correct search results. Accuracy of a particular search setting (query
type and search engine type) is calculated, averaging through 20 search sessions.
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We also used customers’ queries to eBay entertainment and product-related
domains, from simple questions referring to a particular product, a particular user
need, as well as a multi-sentence forum-style request to share a recommendation.
The set of queries was split into noun-phrase class, verb-phrase class, how-to class,
and also independently split in accordance with query length (from three keywords
to multiple sentences). We ran 450 search sessions for evaluations of Sects. 2.4
and 2.6.

To compare the relevance values between search settings, we used first 100 search
results obtained for a query by Yahoo and Bing APIs, and then re-sorted them
according to the score of the given search setting (syntactic generalization score
and taxonomy-based score). To evaluate the performance of such a hybrid system,
we used the weighted sum of these two scores (the weights were optimized in an
earlier search sessions).

3.3.2 Evaluation of Improvement of Vertical Search

Table 1 shows the results of evaluation of search relevance in the domain of vertical
product search. One can see that taxonomy contributes significantly in relevance
improvement, compared to domain-independent syntactic generalization. Relevance
of the hybrid system that combines both of these techniques is improved by
14:8˙ 1:1 %.

The general conclusion is that for a vertical domain, a taxonomy should be def-
initely applied, and the syntactic generalization possibly applied, for improvement
of relevance for all kinds of questions. Notice from the Table 1 results that syntactic
generalization usually improves the relevance on its own, and as a part of a hybrid
system in a vertical domain where the taxonomy coverage is good (most questions
are mapped well into taxonomy).

Taxonomy-based method is always helpful in a vertical domain, especially for
a short queries (where most keywords are represented in the taxonomy) and multi-
sentence queries (where the taxonomy helps to find the important keywords for
matching with a question).

3.3.3 Evaluation of Horizontal Web Search Relevance Improvement

In a horizontal domain (searching for broad topics in finance-related and product-
related domains of eBay) contribution of taxonomy is comparable to syntactic
generalization (Table 2). Search relevance is improved by a 4:6˙ 0:8 % by a hybrid
system and is determined by a type of phrase and a query length.

The highest relevance improvement is for longer queries and for multi-sentence
queries. Noun phrases perform better at the baseline (Yahoo and Bing search engine
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APIs) and a hybrid system, than the verb phrases and the how-to phrases. Note that
generalization can decrease relevance for short queries, where linguistic information
is not as important as frequency analysis.

One can see from Table 2 that the hybrid system almost always outperforms the
individual components. Thus, for a horizontal domain, syntactic generalization is a
must and taxonomy is helpful for some queries, which happen to be covered by this
taxonomy, and is useless for the majority of queries.

We observed that a taxonomy is beneficial for queries in many forms, and their
complexities. In contrast, syntactic generalization-supported search is beneficial for
rather complex queries, exceeding three to four keywords. Taxonomy-based search
is essential for a product search without requiring explicit use of their features
and/or needs. Conversely, syntactic generalization is sensitive to proper handling
of phrasings in product names, matching the template:

product_name for super-product with parts-of-product.

We conclude that building taxonomy for such domain as product search is a
plausible and rewarding task, and should be done for all kinds of product searches.

3.4 Multi-Lingual Taxonomy Use

Syntactic generalization was deployed and evaluated in the framework of a Unique
European Citizens’ attention service (iSAC6+) project, an EU initiative to build a
recommendation search engine in a vertical domain. As a part of this initiative, a
taxonomy was built to improve the search relevance (easy4.udg.edu/isac/eng/index.
php, [5]). Taxonomy learning of the tax domain was conducted in English and then
translated to Spanish, French, German, and Italian. It was evaluated by project
partners using the tool in Figs. 9 and 10. To improve search precision a project
partner in a particular location modifies the automatically learned taxonomy to fix
a particular case, upload the taxonomy version adjusted for a particular location
(Fig. 9) and verify the improvement of relevance. An evaluator is able to sort search
results by the original Yahoo score, the syntactic generalization score, and the
taxonomy score to get a sense of how each of these scores works and how they
correlate with the best order of answers for the best relevance (Fig. 10 ).

3.5 Commercial Evaluation of Taxonomy-Based
Text Similarity

We subject the proposed technique of taxonomy-based and syntactic generalization-
based techniques to commercial mainstream news analysis at AllVoices.com

easy4.udg.edu/isac/eng/index.php
easy4.udg.edu/isac/eng/index.php
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Fig. 9 Tool for manual taxonomy adjustment for citizens recommendation services

Fig. 10 Sorting search results by taxonomy-based and syntactic generalization scores for a given
query “Can Form 1040 EZ be used to claim the earned income credit?”

(Fig. 11). The task is to cluster relevant news items together by means of finding
similarity between the titles and first paragraphs, similarly to what we have done
with questions and answers. By definition, multiple news articles belong to the
same cluster if there is a substantial overlap in geographical locations, the names of
individuals, organizations, other agents, and the relationships between them. Some
of these can be extracted using entity taggers and/or taxonomies built offline, and
some are handled in real time using syntactic generalization (the bottom of Fig. 12).
The latter is applicable if there is a lack of prior entity information.

In addition, syntactic generalization and taxonomy match was used to aggregate
relevant images and videos from different sources, such as Google Image, YouTube,
and Flickr. It was implemented by assessing their relevance given their textual
descriptions and tags. The precision of the text analysis is achieved by the site’s
usability (click rate): more than nine million unique visitors per month. If the
precision were low, we assume that users would not click through to irrelevant
“similar” articles. Recall is accessed manually; however, the system needs to find at
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Fig. 11 News articles and aggregated images found on the web and determined to be relevant to
this article

least a few articles, images, and videos for each incoming article. Recall is generally
not an issue for web mining and web document analysis (it is assumed that there is
a sufficiently high number of articles, images, and videos on the web for mining).

Relevance is ensured in two steps. First, we form a query to the image/video/blog
search engine API, given an event title and first paragraph and extracting and
filtering noun phrases by certain significance criteria. Second, we apply a similarity
assessment to the texts returned from images/videos/blogs and ensure that substan-
tial common noun, verb, or prepositional sub-phrases can be identified between the
seed events and these media (Fig. 13).

The precision data for the relevance relationships between an article and other
articles, blog postings, images, and videos are presented in Table 3. Note that
by itself, the taxonomy-based method has a very low precision and does not
outperform the baseline of the statistical assessment. This baseline is based on
TF*IDF model for keyword-based assessment of relevance. However, there is a
noticeable improvement in the precision of the hybrid system, where the major
contribution of syntactic generalization is improved by a few percentage points by
the taxonomy-based method [10,11]. We can conclude that syntactic generalization
and the taxonomy-based methods (which also rely on syntactic generalization) use
different sources of relevance information. Therefore, they are complementary to
each other.

The objective of syntactic generalization is to filter out false-positive relevance
decisions made by a statistical relevance engines. This statistical engine has been
designed following [19, 20]. The percentage of false-positive news stories was
reduced from 29 to 17 % (approximately 30,000 stories/month, viewed by nine
million unique users), and the percentage of false-positive image attachment was
reduced from 24 to 20 % (approximately 3,000 images and 500 videos attached
to stories monthly). The percentages shown are (100 %—precision values); recall
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Fig. 12 Syntactic generalization result for the seed articles and the other article mined for on the
web

values are not as important for web mining, assuming there is an unlimited number
of resources on the web and that we must identify the relevant ones.

Our approach belongs to the category of structural machine learning. The
accuracy of our approach is worth comparing with the other parse tree learning
approach based on the statistical learning of SVM. For instance, Moschitti [22]
compares the performances of the bag-of-words kernel, syntactic parse trees and
predicate argument structures kernel, and the semantic role kernel, confirming that
the accuracy improves in this order and reaches an F-measure of 68 % on the TREC
dataset. Achieving comparable accuracies, the kernel-based approach requires
manual adjustment. However, it does not provide similarity data in the explicit form
of common sub-phrases. Structural machine learning methods are better suited for
performance-critical production environments serving hundreds millions of users
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Fig. 13 Explanation for relevance decision while forming a cluster of news articles for the one
in Fig. 11. The circled area shows the syntactic generalization result for the seed articles and the
given one

because they better fit modern software quality assurance methodologies. Logs of
the discovered commonality expressions are maintained and tracked, which ensures
the required performance as the system evolves over time and the text classification
domains change.
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Table 3 Improvement in the precision of text similarity

Media/method
of text similarity
assessment

Full size
news
articles

Abstracts
of articles Blog posting Comments Images Videos

Frequencies of
terms in
documents
(baseline)
(%)

29.3 26.1 31.4 32.0 24.1 25.2

Syntactic gener-
alization
(%)

19.7 18.4 20.8 27.1 20.1 19.0

Taxonomy based
(%)

45.0 41.7 44.9 52.3 44.8 43.1

Hybrid syntactic
generaliza-
tion and
taxonomy
based (%)

17.2 16.6 17.5 24.1 20.2 18.0

3.6 Opinion-Oriented Open Search Engine

The search engine based on syntactic generalization is designed to provide opinion
data in an aggregated form obtained from various sources. This search engine uses
conventional search results and Google-sponsored link formats that are already
accepted by a vast community of users.

The user interface is shown in Fig. 14. To search for an opinion, a user specifies
a product class, a name of particular products, and a set of its features, specific
concerns, needs, or interests. A search can be narrowed down to a particular source;
otherwise, multiple sources of opinion (review portals, vendor-owned reviews,
forums and blogs available for indexing) are combined.

The opinion search results are shown on the bottom left. For each result, a
snapshot is generated indicating a product, its features that the system attempts
to match to a user opinion request, and sentiments. In case of multiple sentence
queries, a hit contains a combined snapshot of multiple opinions from multiple
sources, dynamically linked to match the user request.

Automatically generated product ads compliant with the Google-sponsored link
format are shown on the right. The phrases in the generated ads are extracted from
the original products’ web pages and may be modified for compatibility, compact-
ness, and their appeal to potential users. There is a one-to-one correspondence
between the products in the opinion hits on the left and the generated ads on the
right (unlike in Google, where the sponsored links list different websites from those
presented on the left).

Both respective business representatives and product users are encouraged to
edit and add ads, expressing product feature highlights and usability opinions,
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respectively. This feature assures openness and community participation in provid-
ing access to linked opinions for other users. A search phrase may combine multiple
sentences: for example: “I am a beginning user of digital cameras. I want to take
pictures of my kids and pets. Sometimes I take it outdoors, so it should be waterproof
to resist the rain.”

Obviously, this type of specific opinion request can hardly be represented by
keywords like “beginner digital camera kids pets waterproof rain.”

For a multi-sentence query, the results are provided as linked search hits:

Take Pictures of Your Kids? . . . Canon 400D EOS Rebel XTI digital SLR
camera review$ I am by no means a professional or long-time user of SLR
cameras.

How To Take Pictures Of Pets And Kids . . . Need help with Digital slr
camera please!!!? - Yahoo! Answers$ I am a beginner in the world of the
digital SLR : : :

Canon 400D EOS Rebel XTI digital SLR camera review (Website Design
Tips) / Animal, pet, children, equine, livestock, farm portrait and stock$ I
am a beginner to the slr camera world.$ I want to take the best picture
possible because I know you.

Linking ($) is determined in real time to address each part of a multi-sentence
query, which may be a blog posting seeking advice. Linked search results provide
comprehensive opinions on the topic of the user’s interest, obtained from various
sources and linked on the fly.

The problem of matching user needs while product search has been addressed in
[3, 13]. An example of such user need expression would be “a cell phone which fits
in my palm.”

This need depends on the item’s nature, the user’s preferences, and time. Blanco-
Fernández et al. [3] present a filtering strategy that exploits the semantics formalized
in an ontology in order to link items (and their features) to time functions; the shapes
of these functions are corrected by temporal curves built from the consumption
stereotypes which are personalized to users.

4 Related Work

4.1 Transfer Learning Paradigm for Vertical
and Horizontal Domains

In this paper we approached taxonomy building from the standpoint of transfer
learning paradigm [25, 28]. Although we build our taxonomy to function in a
vertical domain, we use a horizontal domain for web mining to build it. For
building taxonomies, transfer learning allows knowledge to be extracted from a wide
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Blogs, forums, chats
opinion

Source domains
Product descriptions

Target domain

taxonom
y-

building searches

taxonom
y-

assisted
search

Built taxonomy

Fig. 15 Taxonomy-assisted search viewed from the standpoint of transfer learning

spectrum of web domains and be used to enhance taxonomy-based search in a target
domain. We will call these web domains auxiliary domains.

For transfer learning we compute the similarity between phrases in auxiliary
and target domains using syntactic generalization as an extension of bag-of-words
approach. The paper introduced a novel way for finding the structural similarity
between sentences, to enable transfer learning at a structured knowledge level.
This allows learning a nontrivial structural (semantic) similarity mapping between
phrases in two different domains when they are completely different in terms of
their vocabularies.

It is usually insufficient to web mine documents for building taxonomies for
vertical domains in this vertical domain only. Moreover, when a target domain
includes social network data, micro-text, it is usually hard to find enough such data
for building taxonomies within this domain, so a transfer learning methodology is
required, which mines a wider set of domains with similar vocabulary. The transfer
learning is then needed to be supported by matching syntactic expressions from
distinct domains. In this study we perform it on the level of constituency parse trees
(Fig. 15).

4.2 Taxonomies

WordNet is the most commonly used computational lexicon of English for word
sense disambiguation, a task aimed to assigning the most appropriate senses (i.e.,
synsets) to words in context [23]. It has been argued that WordNet encodes sense
distinctions that are too fine-grained even for humans. This issue prevents WSD
systems from achieving high performance. The granularity issue has been tackled
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by proposing clustering methods that automatically group together similar senses
of the same word. Though WordNet contains a sufficiently wide range of common
words, it does not cover special domain vocabulary. Since it is primarily designed
to act as an underlying database for different applications, those applications cannot
be used in specific domains that are not covered by WordNet.

A number of currently available general-purpose resources such as DBPEdia,
Free-base, Yago assist entity-related searches, but are insufficient to filter out
irrelevant answers concerning certain activity with an entity and its multiple
parameters. A set of vertical ontologies, such as last.fm for artists, are also helpful
for entity-based searches in vertical domains; however, their taxonomy trees are
rather shallow, and usability for recognizing irrelevant answers is limited.

As text documents are massively available on the web as well as an access
to them via web search engine APIs, most researchers have attempted to learn
taxonomies on the basis of textual input. Several researchers explored taxonomic
relations explicitly expressed in texts by pattern matching [16, 24]. One drawback
of pattern matching is that it involves the predefined choice of semantic relations to
be extracted.

In this study, to improve the flexibility of pattern matching we used transfer learn-
ing based on parse patterns, which is higher level of abstraction than sequences
of words. We extend the notion of syntactic contexts from a partial cases such as
noun + modifier and dependency triple [18] towards finding a parse sub-tree in a
parse tree. Our approach also extends handling of internal structure of noun phrases
used to find taxonomic relations [4]. Many researchers follow Harris’ distributional
hypothesis of correlation between semantic similarity of words or terms, and the
extent to which they share similar syntactic contexts [15]. Clustering only requires
a minimal amount of manual semantic annotation by a knowledge engineer, so
clustering is frequently combined with pattern matching to be applied to syntactic
contexts in order to also extract previously unexpected relations. We improve
learning taxonomy on the web by combining supervised learning of the seed with
unsupervised learning of the consecutive sets of relationships, also addressing such
requirements of a taxonomy building process as evolvability and adaptability to new
query domains of search engine users.

The current challenge in the area of taxonomy-supported searches is how to apply
an imperfect taxonomy, automatically compiled from the web, to improve search.
Lightweight keyword-based approaches cannot address this challenge. This paper
addresses it by using web mining to get training data for learning, and syntactic
generalization as a learning tool.

This paper presented an automated taxonomy building mechanism which is
based on initial set of main entities (a seed) for given vertical knowledge domain.
This seed is then automatically extended by mining of web documents which
include a meaning of a current taxonomy node. This node is further extended
by entities which are the results of inductive learning of commonalities between
these documents. These commonalities are extracted using an operation of syntactic
generalization, which finds the common parts of syntactic parse trees of a set of
documents, obtained for the current taxonomy node. Syntactic generalization has
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been extensively evaluated commercially to improve text relevance [9–11], and in
this study we also apply it in the transfer learning setting for automated building of
taxonomies.

Proceeding from parsing to semantic level is an important task towards natural
language understanding and has immediate applications in tasks such as information
extraction and question answering [1,6,26,30]. In the last 10 years there has been a
dramatic shift in computational linguistics from manually constructing grammars
and knowledge bases to partially or totally automating this process by using
statistical learning methods trained on large annotated or non-annotated natural
language corpora. However, instead of using such corpora, in this paper we use
web search results for common queries, since their accuracy is higher and they
are more up-to-date than academic linguistic resources in terms of specific domain
knowledge, such as tax.

The value of semantically enabling search engines for improving search rele-
vance has been well understood by the commercial search engine community [17].
Once an “ideal” taxonomy is available, properly covering all important entities in a
vertical domain, it can be directly applied to filtering out irrelevant answers.

4.3 Comparative Analysis of Taxonomy-Based Systems

Table 4 presents the comparative analysis of some of taxonomy-based systems. It
includes description of the taxonomy type, building mode, and its properties with
respect to support of search, including filtering irrelevant answers by matching them
with the query and taxonomy. In this table the current approach is the only one
directly targeting filtering out irrelevant answers obtained by other components of
search engines.

5 Conclusion

We conclude that full-scale syntactic processing approach based on keyword
taxonomy learning, and iterative taxonomy extension, is a viable way to enhance
web search engines. Java-based OpenNLP component serves as an illustration of
the proposed algorithm, and it is ready to be integrated with existing search engines.

In the future studies we plan to proceed from generalization of individual
sentences to the level of paragraphs, deploying discourse theories and deeper
analyzing the structure of text.



374 B.A. Galitsky and B. Kovalerchuk

Table 4 Comparative analysis of taxonomy-based systems with respect to support of search

Textual
infer-
ence
based
sup-
port of
search
[29]

Probabilistic
approximate textual
inference over tuples
extracted from text.
Utilizes sizable
chunks of the Web
corpus as source
text. Taxonomy is
constructed as a
Markov network.
The input a
conjunctive query, a
set of inference rules
expressed as Horn
clauses, and large
sets of ground
assertions extracted
from the Web,
WordNet, and other
knowledge bases

No real
time
syn-
tactic
match
is con-
ducted

Utilizes logical
inference to
find the
subset of
ground
assertions and
inference
rules that may
influence the
answers to
the query—
enabling the
construction
of a focused
Markov
network

Finds correct
answers on its
own, but does not
filter incorrect
ones

This work Search-oriented
taxonomies are built
via web mining by
employing machine
learning of parse
trees.
Semisupervised
learning setting in a
vertical domains,
using search engine
APIs

Facilitates
match
between
query
and
candi-
date
answer

Features in parse
tree and
limited
reasoning

Specifically
designed for this
purpose
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Elastic Net that the values of regularization parameters completely determine a
partition of the variable set into three subsets of negative, positive, and strictly
zero values, so that the former two subsets and the latter subset are, respectively,
associated with “informative” and “redundant” features. We propose in this paper
to treat this partition as a secondary structural parameter to be verified by leave-
one-out cross validation. Once the partitioning is fixed, we show that there exists a
non-enumerative method for computing the leave-one-out error rate, thus enabling
an evaluation of model generality in order to tune the structural parameters without
the necessity of multiple training repetitions.

Keywords Elastic Net regression • Partitioning of the feature set • Secondary
structural parameter • Feature selection • Non-enumerative leave-one-out

E. Chernousova (�) • N. Razin
Moscow Institute of Physics and Technology, Moscow, Russia
e-mail: elchernousova@inbox.ru; nrmanutd@gmail.com

O. Krasotkina
Tula State University, Tula, Russia
e-mail: o.v.krasotkina@yandex.ru

V. Mottl
Computing Centre of the Russian Academy of Sciences, Moscow, Russia
e-mail: vmottl@yandex.ru

D. Windridge
University of Surrey, Guildford, UK
e-mail: d.windridge@surrey.ac.uk

F. Aleskerov et al. (eds.), Clusters, Orders, and Trees: Methods and Applications:
In Honor of Boris Mirkin’s 70th Birthday, Springer Optimization and Its Applications 92,
DOI 10.1007/978-1-4939-0742-7__22, © Springer ScienceCBusiness Media New York 2014

377

mailto:elchernousova@inbox.ru
mailto:nrmanutd@gmail.com
mailto:o.v.krasotkina@yandex.ru
mailto:vmottl@yandex.ru
mailto:d.windridge@surrey.ac.uk


378 E. Chernousova et al.

1 Introduction

The Elastic Net regularization principle, proposed by Zou and Hastie in [1] as
a generalization of Tibshirani’s previous Lasso principle [2], is a convenient
and effective means of feature selection in machine learning that proceeds via
double penalization of both the squared and absolute values of the coefficients
under estimation. It improves on alternative methods by virtue of its ability to
assign strictly zero values to redundant coefficients, thereby enabling the subset
of informative features to be determined without discrete search. Having been
developed originally for use in regression, it was later successfully incorporated
into training criteria for pattern recognition in the SVM formulation [3, 4], as well
as in terms of logistic regression [5, 6].

In this paper, we restrict our attention to the problem of regression estimation.
Our aim is to find a computationally effective algorithm for computing the
leave-one-out error rate so as to determine model generality for tuning structural
parameters while avoiding multiple training repetitions.

Assuming a centered and normalized training set

˚
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the initial Elastic Net criterion, referred to in [1] as the “naive” Elastic Net, consists
in estimating the real-valued coefficients a D .a1 � � �an/T 2 R

n of the regression
model Oy.x/ D aT x as the minimum point of the convex objective function:
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In contrast to the “naive” Elastic Net, an improved training criterion is proposed
in [1] as the “proper” Elastic Net, which may be straightforwardly shown to differ
from (3) only by the quadratic penalty term:
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where a� D .1=N /XT y is vector of preliminary independent estimates of regression
coefficients derived from the normalized training data (4) as a set of observed
covariances
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Use of bias within the quadratic regularization term is motivated in [1] by the
intention of decorrelating the feature vectors in the training set .xj ; j D 1; : : : ; N /.
However, what is actually analyzed in [1] is the lasso-like form of (5):
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1C �2=N
a � 2yT Xa

�
! min.a/: (8)

Theorem 1. The training criteria (5) and (8) are equivalent.

(Proof is given in Appendix A1).
It is clear that the “naive” Elastic Net (3) is a special case of (5) with a� D 0, just

as the Lasso criterion is a further special case with �2 D 0.
In order to tune the structural parameters �1 and �2, tenfold cross-validation is

applied in [1], since determining the more reliable leave-one-out error rate proves
to be computationally too expensive for large training sets.

In this paper, we propose to retain the full leave-one-out procedure omitted by
Zou and Hastie [1] without, however, multiplying the computational complexity of
the training procedure. To do this, we exploit the inherent capacity of the Elastic Net
training criterion (5) to partition the set of input variables into three subsets defined
by negative, positive, and zero values of their corresponding regression coefficients.

We thus, in Sect. 2, treat the input-variable partitioning at the minimum of
the Elastic Net criterion as a secondary regularization parameter produced by
the primary parameters �1 and �2, one which completely determines the variable

1In [1], denominators in (5) have the form 1C �2 instead of 1C �2=N . This is a consequence
of a specific normalization of the training set

PN
jD1x2

ij D 1 as distinct to the commonly adopted

normalization .1=N /
PN

jD1x2
ij D 1 accepted in this paper (2).
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selection. The resulting partition enforces a strictly quadratic Elastic Net criterion
with respect to the active regression coefficients.

In Sect. 3, the latter property allows for non-enumerative computation of the
leave-one-out error rate, thereby avoiding the multiple training repetitions that
would otherwise be required to determine model generality for tuning the structural
parameters. This approach is well known in mathematical statistics [7] but needs
detailed elaboration when applied to the Elastic Net.

Finally, the results of a simulation study are presented in Sect. 4. The proposed
methodology is verified in the same ground-truth experimental framework that was
used by Zou and Hastie in their original paper on the Elastic net [1].

2 Optimal Partitioning of the Set of Regression Coefficients:
A Secondary Non-numeric Structural Parameter

Let
˚
.xj ; yj /; j D 1; : : : ; N

�
be the training set, centered, and normalized in

accordance with (1). Let, further, I D f1; : : : ; ng be the set of indices of real-
valued features xi 2 R, i 2 I , assigned to each entity, so that xij 2 R. The Elastic
Net training criterion (5) is a convex function JEN.aj�1; �2/ W RN ! R, whose
minimum point Oa�1;�2 D . Oai;�1;�2 ; i 2 I / (6) is the vector of regression coefficients
to be inferred from the training set.

It is shown in [1] that an intrinsic property of the Elastic Net at its minimum is
a natural partitioning of the feature set I D f1; : : : ; ng into three nonintersecting
subsets associated with negative, positive, and strictly zero values of the estimated
regression coefficients:

8
ˆ̂
<

ˆ̂:

OI��1;�2
D ˚i 2 I W Oai;�1;�2 < 0

�
;

OI 0
�1;�2
D ˚i 2 I W Oai;�1;�2 D 0

�
;

OIC�1;�2
D ˚i 2 I W Oai;�1;�2 > 0

�
;

I D OI��1;�2

S OI 0
�1;�2

S OIC�1;�2
: (9)

In the following, we shall use the notations

On�1;�2 D n � j OI 0
�1;�2
j D j OI��1;�2

j C j OIC�1;�2
j;

On0
�1;�2
D j OI 0

�1;�2
j; On��1;�2

D j OI��1;�2
j; OnC�1;�2

D j OIC�1;�2
j;

n D On0
�1;�2
C On�1;�2 D On0

�1;�2
C On��1;�2

C OnC�1;�2
; (10)

to denote, as appropriate, the numbers of zero-valued, negative, and positive
regression coefficients, and more generally, the total number of passive and active
regressors, determined by the partition (9). This partition is an integral part of
the output produced, for instance, by the well-known algorithm LARS-EN [1],
developed specifically for solving the Elastic Net problem defined in (5) as a
generalized version of the LARS algorithm previously developed for the Lasso
problem with �2 D 0 [8].
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The particular subset of On�1;�2 active (i.e., nonzero) regression coefficients arrived
at, i.e. OI��1;�2

S OIC�1;�2
� I , thus explicitly manifests the principal aim of the Elastic

Net regularization, namely the selection of informative features and the suppression
of redundant ones. Since the partition (9) is explicitly tied to the Elastic Net
parameters �1 and �2, it would appear natural to consider it as a secondary non-
numeric structural parameter of the regression estimation.

Having been specified, the resulting partition (9) along with the primary struc-
tural parameters .�1; �2/ jointly make the Elastic Net criterion (5) strictly quadratic
with respect to the active regression coefficients:

JEN
�
ai ; i … OI 0

�1;�2
j�1; �2

� D �2

X

i… OI 0
�1;�2

�
ai � a�i

�2 � �1

X

i2 OI �

�1;�2

ai C �1

X

i2 OI C

�1;�2

ai

C
NX

jD1

�
yj �

X

i… OI 0
�1;�2

ai xij

�2! min
�
ai ; i … OI 0

�1;�2

�
; a�i D

1

N

NX

jD1

yj xij : (11)

It will be convenient to introduce the following notation for the two subvectors
and one submatrix (corresponding to two vectors and one matrix a 2 R

n, xj 2 R
n

and X.N � n/ (4)) “cut out” by the formation of the partition:

Qa�1;�2 D
�
ai ; i … OI 0

�1;�2

� 2 R
On�1;�2 ; Qxj;�1;�2 D

�
xij ; i … OI 0

�1;�2

� 2 R
On�1;�2 ;

QX�1;�2 D
�Qx1 � � � QxN

�T
.N � On�1;�2 /:

In addition, special notation will be required for the vector indicating membership
of regression features in subsets OI��1;�2

and OIC�1;�2

Qe�1;�2 D
�
ei ; i … OI 0

�1;�2

� 2 R
On�1;�2 ; Qei D

(
C1; i 2 OIC�1;�2

;

�1; i 2 OI��1;�2
;

as well as for the subvector cut out of a� (7):

Qa��1;�2
D �a�i ; i … OI 0

�1;�2

� 2 R
On�1;�2 : (12)

Theorem 2. The solution Oa�1;�2 D
� Oai;�1;�2 ; i 2 I

� 2 R
n of the Elastic Net training

problem (5) is a combination of the solution OQa�1;�2 D
� Oai;�1;�2 ; i … OI 0

�1;�2

� 2 R
On�1;�2

of (11) with respect to the partition (9) and equalities
� Oai;�1;�2 D 0; i 2 OI 0

�1;�2

�
. In

turn, vector OQa�1;�2 is a solution

OQa�1;�2 D
� QXT

�1;�2
QX�1;�2 C �2

QI On�1;�2

��1
h QXT

�1;�2
y � �1

2
Qe�1;�2 C �2 Qa�

i
(13)
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of the system of On�1;�2 linear equations over the same number of variables:

� QXT
�1;�2
QX�1;�2 C �2

QI On�1;�2

�Qa D QXT
�1;�2

y � �1

2
Qe�1;�2 C �2 Qa�: (14)

(Proof is given in Appendix B).
It would not, in itself, make sense to directly solve the equation system (14)

for estimating the active regression coefficients once again, because the full set of
estimates Oa�1;�2 D

� Oai ; i 2 I
� 2 R

n can be found by any appropriate algorithm for
minimizing the convex function (5). However, the format of Theorem 2 suggests
the possibility of considering the optimal feature partition of the set of regression
coefficients as constituting just that structural parameter associated with .�1; �2/

which is to be verified by the leave-one-out criterion.
The larger the subset of excluded features OI 0

�1;�2
� I , the lower the complexity of

the class of regression models expressed by criterion (11). In particular, the LARS-
EN algorithm of [1] explicitly yields the feature partitioning induced by the primary
parameters .�1; �2/. Thus, this partitioning may serve as the secondary structural
parameter of the regression model, one that quantitatively acts a proxy for the overall
model complexity.

3 Non-enumerative Leave-One-Out Verification
of the Structural Parameters

3.1 Leave-One-Out Verification of the Feature Partitioning

We will assume that the Elastic Net problem (5) has been solved for the given
training set (1) at certain values of structural parameters .�1; �2/, and that estimates
of regression coefficients Oa�1;�2 D

� Oai ; i 2 I
�

(6) along with the feature partition (9)
have been found. The corresponding average least squares residual is given by:

OS.�1; �2/ D 1

N

NX

jD1

Oı2
j;�1;�2

; (15)

Oıj;�1;�2 D yj �
X

i… OI 0
�1;�2

Oai;�1;�2 xij D yj � QxT
j
OQa�1;�2 D yj � Oyj;�1;�2 : (16)

As applied to the hypothetical training criterion (11) regularized by the structural
parameters .�1; �2/ with the related feature partition (9), leave-one-out verification
consists, generally speaking, in an N -fold execution of the following steps:

• delete one entity, say the k th feature vector xk, from the training set (1), and
recompute the vector of preliminary estimates in (11) and (12):
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a
�.k/
i D �1=.N � 1/

�P
jD1;j¤k yj xij , Qa�.k/ D �a�.k/

i ; i … OI 0
� 2 R

On�1;�2 ;

• estimate the regression coefficients in accordance with
PN

jD1;j¤k.yj � : : :/2

in (11) from the remaining set of entities OQa.k/

�1;�2
D � Oa.k/

i;�1;�2
; i … OI 0

�1;�2

� 2 R
On�1;�2 ;

• compute the prediction error at the deleted entity Oı.k/

k;�1;�2
D yk � Oy.k/

k;�1;�2
.

Finally, average the squared errors over the entire training set k D 1; : : : ; N .
The resulting leave-one-out rate OSLOO.�1; �2/, in contrast to (15), constitutes the

average risk estimate computed from the training set available to the observer:

OSLOO.�1; �2/ D 1

N

NX

kD1

. Oı.k/

k;�1;�2
/2; (17)

Oı.k/

k;�1;�2
D yk � Oy.k/

k;�1;�2
D yk � QxT

k
OQa.k/

�1;�2
: (18)

It should be noted that deletion of one entity from the training set (1) potentially
destroys centering and normalization (2). Generally speaking, recentering and
renormalizing is therefore required before computing each leave-one-out residual
Oı.k/

k;�1;�2
in (17) for maximal performance. However, we omit these operations for the

sake of simplicity.

3.2 The Efficient Leave-One-Out Procedure

At first glance, it would appear that computing each leave-one-out residual (18)
would require a separate instantiation of the solution to the problem (11) withPN

jD1;j¤k.yj � : : :/2. Fortunately, however, the quadratic form of criterion (11)
allows us to avoid multiple optimizations when computing the leave-one-out error
rate (17). The principle we shall employ for rapid computation of the leave-one-
out error rate for quadratic training criteria is given in [7]. The aim of the current
paper is thus to adapt this approach to the particular case of Elastic Net regression
regularization.

The following theorem demonstrates that each leave-one-out residual Oı.k/

k;�1;�2
(18)

in (17) can be easily computed from the respective residual Oık;�1;�2 estimated from
the entire training set (16).

Theorem 3. Assume that the Elastic Net problem (5) has been solved for the
entire training set with structural parameters �1 and �2, i.e., the smallest residuals
Oıj;�1;�2 (16) have been found along with the feature partition I D OI��1;�2

S OI 0
�1;�2S OIC�1;�2

(9). Then the leave-one-out rate (17) allows the following representations
for, respectively, the “naive” (3) and “proper” Elastic Net (5) formulations:
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OSNEN
LOO .�1; �2/ D 1

N

NX

kD1

 Oık;�1;�2

1 � qk;�1;�2

!2

.NaiveElasticNet/; (19)

OSEN
LOO.�1; �2/ D 1

N

NX

kD1

0

B
@
Oık;�1;�2 C

1

N � 1
�2

�
ykqk;�1;�2 � hk;�1;�2

�

1 � qk;�1;�2

1

C
A

2

.ElasticNet/;

(20)

where Qa� is the initial preliminary estimate of the regression coefficients over the
entire training set (7),

qk;�1;�2 D QxT
k

� QXT
�1;�2
QX�1;�2 C �2

QI On�1;�2

��1 Qxk;

hk;�1;�2 D QxT
k

� QXT
�1;�2
QX�1;�2 C �2

QI On�1;�2

��1 Qa�: (21)

(Proof is given in Appendix C).
It may be seen from (21) that the inverse matrix

� QXT
�1;�2

QX�1;�2 C �2
QI On�1;�2

��1

is computed only once when estimating the regression coefficients over the entire
training set (13); furthermore, it remains the same for all k D 1; : : : ; N , from which
the efficiency of our method derives.

4 Experimental Study with Simulated Data

We illustrate the operation of both versions of our non-enumerative leave-one-out
procedure (19) and (20) with the synthetic data used by Zou and Hastie in their
original paper [1] in order to demonstrate the efficiency of their method with respect
to standard Lasso.

In the same manner as Zou and Hastie, we thus randomly simulate data sets˚
.xj ; yj /; j D 1; : : : ; N

�
from the ground-truth model:

y D XaC �"; y; " 2 R
N ; a 2 R

n; " � N .0; I/; (22)

where X D �
x1 � � � xN

�T
.N � n/ is a sample of independent random vectors xj D

.x1j � � �xnj /T 2 R
n normally distributed in accordance with the covariance matrix�

Cov.i; l/; i; l D 1; : : : ; n

, Cov.i; i/ D 1.

As in [1], four experimental examples are selected; however, certain necessary
differences occur due to the use of leave-one-out verification. In the original
paper, the simulated data within each example consisted of a training set, an
independent validation set, and an independent test set with respective magnitudes
Ntr=Nval=NTest, with the initial training set only once divided into the two sub-
sets used for training and validation. In contrast to [1], we apply leave-one-out
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cross-validation, i.e. executing as many divisions as the number of training entities.
Thus, the simulated data set within each of our experiments consists of a training
set and an independent test set with respective magnitudes NTr=NTest, where NTr D
Ntr CNval.

Other than the above, the details of the four example scenarios are the same
as in [1]:

(1) In Example 1, we simulate 50 data sets consisting of 40/200 observations,
instead of 20/20/200 as in [1], and employ 8 predictors: xj D .x1j � � �x8j /,
n D 8. We let

a D �3:0; 1:5; 0:0; 0:0; 2:0; 0:0; 0:0; 0:0
� 2 R

8:

The covariance between xi and xl is given by Cov.i; l/ D 0:5ji�lj.
(2) Example 2 is identical to Example 1, except that ai D 0:85 for all i .
(3) In Example 3, we simulate 50 data sets consisting of 200/400 observations,

instead of 100/100/400 as in [1], and employ 40 predictors xj D .x1j � � �x40j /,
n D 40. We set

a D � 0:0; : : : ; 0:0„ ƒ‚ …
10

; 2:0; : : : ; 2:0„ ƒ‚ …
10

; 0:0; : : : ; 0:0„ ƒ‚ …
10

; 2:0; : : : ; 2:0„ ƒ‚ …
10

� 2 R
40;

� D 15, and Cov.i; l/ D 0:5 for all i and l .
(4) In Example 4, we simulate 50 data sets consisting of 100/400 observations,

instead of 50/50/400 in [1], and 40 predictors. We choose

a D � 3:0; : : : ; 3:0„ ƒ‚ …
15

; 0:0; : : : ; 0:0„ ƒ‚ …
25

� 2 R
40;

and � D 15. The predictors x D �x1 � � �x40

�
were generated as follows:

xi D z1 C "x
i ; z1 � N .0; 1/; i D 1; : : : ; 5;

xi D z2 C "x
i ; z2 � N .0; 1/; i D 6; : : : ; 10;

xi D z3 C "x
i ; z3 � N .0; 1/; i D 11; : : : ; 15;

9
=

;
"x

i � N .0; 0:01/; i:i:d:;

xi � N .0; 1/; i:i:d:; i D 16; : : : ; 40:

This model consists of three equally important groups each containing five
members, and, additionally, 25 pure noise features.

For each of the 50 random data sets in each of the four examples, we twice solve
the Naive Elastic Net and Elastic Net problems (3) and (5) using the versions of
LARS-EN available on the sites
http://www-stat.stanford.edu/~tibs/glmnet-matlab/ for naive Elastic Net and
http://cran.r-project.org/web/packages/elasticnet/index.html for Elastic net.

http://www-stat.stanford.edu/~tibs/glmnet-matlab/
http://cran.r-project.org/web/packages/elasticnet/index.html
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Table 1 Median root-mean-square test error based on 50 replications for the four methods

Median root-mean-square test error, percentMethod of regression estimation/cross-validated
choice of structural parameters Example 1 Example 2 Example 3 Example 4

Naive Elastic Net, onefold cross validation 3.47 3.40 16.80 24.21
Naive Elastic Net, leave-one-out cross

validation
3.33 3.29 16.79 19.20

Elastic Net, onefold cross validation 3.44 3.44 17.45 24.21
Elastic Net, leave-one-out cross validation 3.33 3.29 16.79 19.20

At each run of the program, the regularization parameter �2 was set to be
constant. As to the parameter �1, its n C 1 tentative values, where n is the full
number of variables in the data model (22), were produced by the regularization
path inbuilt in the program. The resulting decrement in the values of �1 determines
the respective succession of n C 1 feature partitionings (9)–(10), starting with
OI 0
�1;�2

D I , On�1;�2 D 0, and ending with OI 0
�1;�2

D ¿, On�1;�2 D n. Additionally,
we varied the preset structural parameter �2.

In the first experimental phase, this procedure was applied to the unified training
set of magnitude NTr D Ntr C Nval, the structural parameters .�1; �2/ were chosen
as the values providing the minimum value of the quick leave-one-out indicator (19)
or (20), and the mean-square error was computed over the test set of size NTest.

In the second phase, the same procedure was applied to the initial training set
of half size, i.e. Ntr D NTr=2, and the structural parameters were derived by
minimization of the error over the validation set of the same size Nval D NTr=2, i.e.,
in accordance with the onefold cross validation principle, just as was done in [1].
The final error rate was computed on the test set.

Table 1 summarizes the prediction results in the above four examples, averaged
over all the 50 random data sets. It can be seen, as expected, that the leave-one-
out verification of tentative pairs .�1; �2/ provides a better choice of structural
parameters in terms of the mean-square error rate on the test set than the onefold
cross validation.

5 Conclusion

We propose, in this paper, a computationally efficient non-enumerative algorithm
for computation of the leave-one-out error rate in Zou and Hastie’s Elastic Net
regularization [1], one which enables determination of model generality for tuning
structural parameters in situ while avoiding multiple training repetitions. To do so,
we consider the partitioning of features at the minimum of the Elastic Net criterion
as a secondary regularization parameter, such that the resulting partition comprises
a strictly quadratic Elastic Net criterion.

The proposed methodology is applied to the ground-truth experimental frame-
work used by Zou and Hastie in their original paper [1]. We determine that
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the accuracy of the two methods is essentially identical, with a slight advantage
for the leave-one-out verification. However, the computation time is significantly
reduced by the explicit incorporation of the non-enumerative leave-one-out error
rate calculation.
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Appendix

Proof of Theorem 1

Let us open out the brackets in (5):

JEN.aj�1; �2/ D �1kak1 C �2aT a � 2
�2

N
aT XT y

C �2

N 2
yT XXT yC yT y

„ ƒ‚ …
const

�2aT XT yC aT XT Xa! min.a/:

Summands not depending on a may be omitted from the optimization. Collecting
the remaining summands gives:

JEN.aj�1; �2/ D �1kak1 C aT
�
XT XC �2I

�
aC

�
1C �2

N

�
aT XT y! min.a/:

Division of the last equality by the constant .1C �2=N / yields (8). The theorem is
proven.

http://publik.tuwien.ac.at/files/PubDat_179921.pdf
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Proof of Theorem 2

Differentiation of (11) by the active regression coefficients ai , i … OI 0
�1;�2

, leads to
the equalities

@

@ai

JEN
�
al ; l … OI 0

�1;�2
j�1; �2

�

D 2�2.ai � a�i /2 C
 

�1; i 2 OIC�1;�2

��1; i 2 OI��1;�2

!

� 2

NX

jD1

�
yj �

X

l… OI 0
�1;�2

al xlj

�
D 0;

which make a system of linear equations over i … OI 0
�1;�2

�2ai C
X

l… OI 0
�1;�2

 
NX

jD1

xij xlj

!

al D
NX

jD1

xij yj � �1

2

 
1; i 2 OIC�1;�2

�1; i 2 OI��1;�2

!

C �2a�:

The matrix form of this system in accordance with (12), (13), and (14) is just (16),
with (13) its solution. The theorem is proven.

Proof of Theorem 3

Let the feature set partitioning
˚ OI��1;�2

; OI 0
�1;�2

; OIC�1;�2

�
(9) at the minimum point of (5)

be treated as fixed, and the k th entity .xk; yk/ be omitted from the training set (1). In
terms of notation (4) and (2), this implies deletion of the k element from the vector
y 2 R

N and the kth row from the matrix QX�1;�2 .N � On�1;�2 /:

y.k/ 2 R
N�1; QX.k/

�1;�2

�
.N � 1/ � On�1;�2

�
:

The vector of preliminary estimates of regression coefficients a� 2 R
n (12)

occurs only in the Elastic Net (EN) training criterion (5), and equals zero in the
naive Elastic Net (NEN) (3) a� D 0 2 R

n. Its subvector cut out from a� by deletion
of the kth entity will be:

Qa�.k/

�1;�2
D

8
ˆ̂
<

ˆ̂
:

1

N � 1

NX

jD1;j¤k

yj Qxj;�1;�2 D
1

N � 1
. QX.k/

�1;�2
/T y.k/ 2 R

On�1;�2 ; EN

0 2 R
On�1;�2 ; NEN
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Correspondingly, the solution (13) of the optimization problem (11) will take the
form (lower indices .�1; �2/ are omitted below):

OQa.k/ D �. QX.k//T QX.k/ C �2
QI On
��1

�
. QX.k//T y � �1

2
QeC



�2 Qa�.k/; EN
0; NEN

��
: (23)

Notice here that
8
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:̂

. QX.k//T QX.k/ D QXT QX � QxT
k Qxk;

. QX.k//T y.k/ D QXT y � yk Qxk;

Qa�.k/ D 1

N � 1

� QXT y � yk Qxk

 D N

N � 1
Qa� � 1

N � 1
yk Qxk

D Qa� � 1

N � 1

�
yk Qxk � Qa�

�
:

(24)

Application of the Woodbury formula1

.AC BC/�1 D A�1 �A�1B
�
IC CA�1B

��1
CA�1

and (24) to (23) yields:

OQa.k/ D
� QXT QXC �2QI„ ƒ‚ …

A

C .�Qxk/
„ƒ‚…

B

QxT
k„ƒ‚…

C

�
�1

�
8
<

:
QXT y� yk Qxk � �1

2
QeC �2

2

4 Qa� � 1

N � 1

�
yk Qxk � Qa�

�
; EN

0; NEN

3

5

9
=

;

D OQaC
� QXT QXC �2QI��1Qxk QxT

k
OQa

1� QxT
k

� QXT QXC �2QI��1Qxk

� yk

1� QxT
k

� QXT QXC �2QI��1Qxk

� QXT QXC �2QI��1Qxk

� �2

N � 1

2

6
4

� QXT QXC�2QI��1 C
� QXT QXC�2QI��1Qxk QxT

k

� QXT QXC�2QI��1

1� QxT
k

� QXT QXC �2QI��1Qxk

�
yk Qxk � Qa�

�
; EN

0; NEN

3

7
5 :

Algebraic transformation of this expression with respect to the notation Oyk D
QxT

k
OQa (16) and Oy.k/

k D QxT
k
OQa.k/ (18) leads to the equality

QxT
k
OQa.k/ D Oyk

1 � QxT
k

� QXT QXC �2
QI��1 Qxk

� yk

QxT
k

� QXT QXC �2
QI��1 Qxk

1 � QxT
k

� QXT QXC �2
QI��1 Qxk

� �2

N � 1

2

6
4

QxT
k

� QXT QXC �2
QI��1

.yk Qxk � Qa�/
1 � QxT

k

� QXT QXC �2
QI��1 Qxk

; EN

0; NEN

3

7
5 :

1http://en.wikipedia.org/wiki/Woodbury_matrix_identity.

http://en.wikipedia.org/wiki/Woodbury_matrix_identity
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Thus, the leave-one-out residuals Oı.k/

k in (17) and (18) permit the representation

Oı.k/

k D yk � QxT
k
OQa.k/

D yk � Oyk

1 � QxT
k

� QXT QXC �2
QI��1 Qxk

� yk

QxT
k

� QXT QXC �2
QI��1 Qxk

1 � QxT
k

� QXT QXC �2
QI��1 Qxk

� �2

N � 1

2

6
4

QxT
k

� QXT QXC �2
QI��1

.yk Qxk � Qa�/
1 � QxT

k

� QXT QXC �2
QI��1 Qxk

; EN

0; NEN

3

7
5

D yk � Oyk

1 � QxT
k

� QXT QXC �2
QI��1 Qxk

C �2

N � 1

2

6
4

QxT
k

� QXT QXC �2
QI��1

.yk Qxk � Qa�/
1 � QxT

k

� QXT QXC �2
QI��1 Qxk

; EN

0; NEN

3

7
5

D
ık C �2

N � 1

"
QxT

k

� QXT QXC �2
QI��1

.yk Qxk � Qa�/; EN

0; NEN

#

1 � QxT
k

� QXT QXC �2
QI��1 Qxk

:

Substitution of Oı.k/

k into (17) with respect to notations (21) yields (19) and (20).
The theorem is proven.



The Manipulability Index in the IANC Model

Yuliya A. Veselova

Abstract Procedures aggregating individual preferences into a collective choice
differ in their vulnerability to manipulations. To measure it, one may consider the
share of preference profiles where manipulation is possible in the total number of
profiles, which is called Nitzan–Kelly’s index of manipulability. The problem of
manipulability can be considered in different probability models. There are three
models based on anonymity and neutrality: impartial culture model (IC), impartial
anonymous culture model (IAC), and impartial anonymous and neutral culture
model (IANC). In contrast to the first two models, the IANC model, which is based
on anonymity and neutrality axioms, has not been widely studied. In addition, there
were no attempts to derive the difference of probabilities (such as Nitzan–Kelly’s
index) in IC and IANC analytically. We solve this problem and show in which cases
the upper bound of this difference is high enough, and in which cases it is almost
zero. These results enable us to simplify the computation of indices.

Keywords Anonymity • Neutrality • IC • IANC • Manipulability

1 Introduction

A social choice rule is manipulable, if there exist at least one voter and a preference
profile, such that voter can achieve a better voting result by misrepresenting his/her
preferences. It is obvious that only one preference profile is enough to make
a social choice rule vulnerable to manipulations. The first important result is
Gibbard–Satterthwaite theorem [7, 16] that states that any non-dictatorial social
choice rule with at least three possible outcomes is manipulable. Satterthwaite
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introduced the definition of a strategy-proof procedure, i.e. voting scheme in
which no manipulation can occur. Since every non-dictatorial social choice rule
is manipulable, the question is how to compare procedures in their vulnerability
to manipulations? The first approach introduced in [13] and [9] is measuring the
probability that in a randomly chosen preference profile manipulation is possible,
we call this measure the Nitzan–Kelly’s index. Kelly also considers an approach
that takes into account the number of profiles where manipulation is very unlikely to
occur, although still possible. In [10] the first method was developed and supported
by computational results on the relative manipulability of social choice rules.

The authors of [2] and [1] continued this line of research. The first paper contains
the results of computational experiments that reveal the degree of manipulability
of social choice rules. In addition, the authors introduced some new indices for
evaluating manipulability. In [1], which is fundamental to this study, manipulability
is studied in two ways. First, non-singleton choice is considered, then, it extends
the number of voters in the computational experiment and uses different methods
of expanding preferences. All the listed articles focus on individual manipulations
under impartial culture (IC) assumption. In the impartial culture model, introduced
in [8], a set of all preference profiles is used for generating voters’ preferences.
Another important probabilistic model is the impartial anonymous culture model
(IAC), first described in [11] and [6]. The question of manipulability of social choice
rules in the IAC model was thoroughly investigated by [5, 12, 15], and [17]. These
four publications study coalitional manipulations.

In this paper, we consider the impartial anonymous and neutral culture model
(IANC), in which both names of voters and names of alternatives do not matter.
In this model, some preference profiles are regarded as equivalent in terms of
permutations of individuals and alternatives. Therefore, the set of all preference
profiles splits up into equivalence classes. The investigation of this model was
started in [3] and extended in [4]. They introduced a way of calculating the number
of anonymous and neutral equivalence classes and an algorithm for their uniform
random generation. However, this model has not been thoroughly analyzed yet.
Particularly, a way of analyzing the difference of indices in IC and IANC without
conducting a computational experiment has not been investigated in the literature.
In the IC model, the Nitzan–Kelly’s index is a proportion of manipulated profiles
in the set of all preference profiles. In the IANC model we consider not profiles,
but equivalence classes, and the Nitzan–Kelly’s index in IANC is a proportion of
manipulated equivalence classes.

One of the arguments for considering such model is that every unbiased social
choice rule satisfies both anonymity and neutrality. It means that any two preference
profiles that differ in permutation of voters and (or) names of alternatives will
be both either manipulable or not with respect to those rules. We can regard an
equivalence class as a type of group preference, so, considering only representatives
of equivalence classes, we do not count preference profiles of the same type twice.
If one looks for rules that minimize the number of public preference types, then
manipulability index should be considered in IANC. The number of preference pro-
files grows exponentially with the number of voters and as factorial with the number
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Fig. 1 The number of preference profiles, AECs and ANECs for 3 alternatives, log scale

of alternatives, while the growth of the number of anonymous equivalence classes
(AECs) and anonymous and neutral equivalence classes (ANECs) is polynomial
(see Fig. 1). It means that in some cases total enumeration of ANECs is possible,
while the enumeration of preference profiles is not. For example, when we have
4 alternatives and 7 voters, the number of ANECs is 84,825, and the number of
preference profiles is 4:586 � 109. In other cases, Monte-Carlo scheme in IANC will
give more accurate results than in IC. To conduct computational experiments in
the IANC, the algorithm for generating representatives of equivalence classes was
introduced in [3]. However, we should know whether the results of computational
experiments in IANC differ from those in the basic IC model. Assume that in some
cases the upper bound of difference between the values of the index in IC and IANC
is almost zero. Then, on the one hand, there is a plenty of results already calculated
in IC, and we do not need additional computations in IANC. On the other hand, we
could do computations in IANC first, because they will give more accurate results
for large parameters, and put corresponding indices in IC equal to those in IANC.

Using combinatorial methods and elements of the group theory, we study
properties of equivalence classes with maximal and minimal number of elements
and derive the difference of indices in IANC and IC models for some cases. To
illustrate it, we evaluate the maximal difference of probabilistic measures such as
Nitzan–Kelly’s index for the number of voters and alternatives up to 10.

We show for which number of voters and alternatives this difference is almost
zero and, consequently, any probabilistic measure in the IANC model is equal to the
same measure in the IC model. At the same time, for some cases this difference
could be large enough to cause changes in the relative manipulability of social
choice rules. We give an example of such a situation and compute the Nitzan–Kelly’s
indices of four social choice rules in IC and IANC for the case of three alternatives.
We compare the relative manipulability of these rules and compute the difference
of indices for each rule in both models. After that, we explain it in terms of the
anonymous and neutral culture model.
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2 The Basic Definitions and Notations

2.1 Impartial Anonymous and Neutral Culture Model

A set of alternatives consisting of m elements is denoted by A, and a set of voters
is N D f1; 2; : : : ; ng containing n elements. Preferences of the i -th individual are
expressed by a linear order, Pi . A preference profile is defined as an ordered set of
individual preferences P D .P1; P2; : : : ; Pn/. Can also be thought as a matrix with
n columns and m rows.

The set of all preference profiles with n voters and m alternatives is denoted by
�.m; n/ and has the cardinality .mŠ/n. Impartial culture model assumes that each
voter independently chooses his or her preferences out of mŠ possible linear orders
and thus, all .mŠ/n preference profiles are equally likely.

In the impartial anonymous culture model there is no difference between voters.
Consequently, those preference profiles that differ only in the permutation of voters
(or columns in the matrix representing preference profile) are regarded as the same
type of collective preferences. Then we get the partition of the set �.m; n/ into
anonymous equivalence classes (AECs).

The impartial anonymous and neutral culture model assumes that both names of
voters and names of alternatives do not matter. Thus, the set �.m; n/ is divided into
anonymous and neutral equivalence classes (ANECs). ANEC is a set of preference
profiles that can be generated from each other by permuting voters’ preferences and
renaming alternatives, and every preference profile in ANEC can be taken as a root,
or representative profile of this class.

The permutation of voters (or columns) is denoted by � , which is an element
of the symmetric group Sn, and a permutation on the set of alternatives is � 2
Sm. These two directions in permuting preference profile are united in the pair of
permutations � and � , which is denoted by g D .�; �/. G D Sn � Sm is the group
of all ordered pairs of permutations g D .�; �/. G acts on the set of all preference
profiles. There are nŠ permutations of voters and mŠ permutations of alternatives
and, therefore, the number of elements in G is

jGj D nŠmŠ:

A partition � of n is a weakly decreasing sequence of positive integers � D
.�1; �2; �3; ::; �˛/, such that .�1 � �2 � �3 � : : : � �˛/ and �1C�2C: : :C�˛ D n,
where �i is a part of �. For example, (3,1,1) and (3,2) are the partitions of 5 into 3
parts. The type of partition is denoted by 1˛12˛2 : : : n˛n , which means that a partition
� has ˛i parts of size i for each i from 1 to n. Thus, the types of (3,1,1) and (3,2)
are 1231 and 2131, respectively.

Any permutation can be represented via cycle decomposition. The permutation
� defines a partition � of n, and � defines a partition � of m in such a way that parts
of partitions � and � are the lengths of cycles in � and � , respectively. The sum
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˛1 C ˛2 C : : :C ˛n D ˛ is the total number of cycles in permutation in � . For any
partition � we define a number

z� D 1˛12˛2 : : : n˛n ˛1Š˛2Š : : : ˛nŠ:

The set of all permutations of a given cycle type 1˛12˛2 : : : n˛n is called a
conjugacy class. The number of permutations in a conjugacy class is

z�1
� nŠ

Pg is the image of a profile P under the permutation g D .�; �/. 
P is anonymous
and neutral equivalence class and defined as a subset of �: fPgjg 2 Gg. Profiles
P1; P2 are equivalent if there exists a pair of permutations g 2 G such that Pg

1 D P2.
Pg is called a fixed-point of g if for a given permutation g there exists a profile

P, such that Pg D P. A set of all fixed points for g is

Fg D fP 2 �jPg D Pg (1)

A stabilizer of P is a set of all permutations that do not change P. A stabilizer of
P is a subgroup of G and is defined as

GP D fg 2 GjPg D Pg

Take any representative P of ANEC (
P ). The number of elements in this
equivalence class can be evaluated as a ratio

j
Pj D jGj=jGPj (2)

As usual, GDC.�/ is the greatest common divisor of the parts of �, LCM.�/

is a least common multiple of the parts of �. Binomial coefficient for an integer k,
0 � k � x is defined as

 
x

k

!

D C k
x D

(
xŠ

kŠ.x�k/Š
; x 2 N

x … N

An indicator function .S/ of statement S

.S/ D
(

1; if S isTrue;

0; if S isFalse:

The number of anonymous and neutral equivalence classes for n voters and m

alternatives, R.m; n/, was found in [3].
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R.m; n/ D
X

�

z�1
�

 
n=t CmŠ=t � 1

mŠ=t � 1

!

where t D LCM.�/. This formula is simplified for n and mŠ being relatively prime

R.m; n/ D 1

mŠ

 
nCmŠ� 1

mŠ� 1

!

2.2 Manipulability

This subsection provides some definitions on manipulability. Let P D .P1; P2;

: : : ; Pn/ be a profile of sincere preferences. Now assume that i -th individual
misrepresents his/her preferences. Such a preference profile is denoted by P�i D
.P1; : : : ; Pi�1; P 0i ; PiC1; : : : Pn/, where P 0i is the deviation of the i -th individual
from his/her true preferences Pi .

Let C.P/ be the outcome of aggregating procedure on a profile P. As in [1] we
consider the case of multiple choice, which means that C.P/ � A. Consequently, we
have to define the way of comparing subsets. For this purpose we use lexicographic
method of expanding preferences, Leximin, introduced in [14]. These methods build
expanded preferences on the basis of a linear order representing voter’s preferences
on the set of alternatives. According to the Leximin method, the worst alternatives
of two sets are compared, and the set where the better alternative is contained is
considered as the better set. If they are the same, then the second-worst alternatives
are compared and so on. EPi denotes the expanded preferences of individual i .

Let us take preferences xPi yPi z, then, according to the Leximin method,

fxgEPi fx; ygEPi fygEPi fx; zgEPi fx; y; zgEPi fy; zgEPi fzg

Thus, manipulation is defined as follows: if for individual i C.P�i /EPi C.P/,
then manipulation takes place.

The Nitzan–Kelly’s index of manipulability is the share of manipulable profiles
in the set of all preference profiles

NKIC D d0

.mŠ/n
; (3)

where d0 is the number of manipulable profiles.
In the IANC we consider the ratio of the number of roots (or equivalence classes)

where manipulation is possible (r0) to the total number of roots

NKIANC D r0

R.m; n/
: (4)
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3 Estimating Maximal Difference of Probabilistic
Measures in IC and IANC

This section provides the main theoretical results concerning impartial anonymous
and neutral culture model. The aim is to estimate maximal possible difference of any
probabilistic measures (such as Nitzan–Kelly’s index of manipulability) in IC and
IANC model. Then, if we know maximal possible difference, the actual difference
will be always less. First, we consider some properties of anonymous and neutral
equivalence classes. Further the problem of maximal difference is discussed in
terms of manipulability, but all these results are applicable to the study of any other
probability in the IC and IANC models.

First, let us reveal what properties cause this difference. Consider an abstract
example of a set � consisting of ten preference profiles. Assume that there are four
ANECs: two classes of cardinality 2, one class of cardinality 5, and the last one has
only one preference profile (Fig. 2).

Then assume that only profiles from the largest equivalence class are manipula-
ble. According to (1) and (2), the manipulability index in the IC model, NKIC, is
0.5, in the IANC model NKIANC D 0:25, because only 1 of 4 equivalence classes
is manipulable. The absolute difference is 0.25 and results from an inequality of
equivalence classes. In the IANC model all equivalence classes are equally likely
and preference profiles are not. As it can be easily seen, the manipulability index
in IC exceeds (is less than) the index in IANC if the average cardinality of the set
of manipulable equivalence classes exceeds (is less than) the average cardinality of
the set of all equivalence classes. First, let us consider the cardinality of minimal
and maximal equivalence classes. For any preference profile belonging to minimal
(maximal) equivalence class, the number of stabilizing permutations is maximal
(minimal). Proofs of all theorems could be found in [18] in the appendix.

Theorem 1 (Anonymous and neutral equivalence class with the minimal num-
ber of elements). The minimal number of elements in an anonymous and neutral
equivalence class is mŠ. This class is unique for the case of n � 3.

Theorem 2 (Anonymous and neutral equivalence class with the maximal num-
ber of elements). If mŠ � n, then the maximal number of elements in an
anonymous and neutral equivalence class is mŠnŠ.

The number of maximal equivalence classes is not calculated precisely, but
there is an estimation by the number of equivalence classes with pairwise different
columns. First, we denote the set of preference profiles consisting of pairwise

0.5 0.2 0.2 0.1

Fig. 2 A hypothetical
example of four equivalence
classes
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different columns by Q�. The number of equivalence classes on this set is QR.m; n/.
Similarly to (1), QFg is a set of fixed points P from Q�,

QFg D fP 2 Q�jPg D Pg:

Lemma 1. The number of fixed points from Q̋ for some permutation g.�; �/ is
equal to

j QFgj D
(Q˛

jD0.mŠ� j � t/; if �1 D �2 D : : : D �˛ D t;

0; otherwise:
(5)

where t D LCM.�/.

The number of ANECs on Q� can be calculated precisely.

Theorem 3. For any m and n such that mŠ > n, the number of equivalence classes
on Q̋ is equal to

QR.m; n/ D
X

�

X

�

z�1
� z�1

� .S.�; �//

˛�1Y

jD0

.mŠ� j � t/;

where S.�; �/ D f�1 D �2 D : : : D �˛ D tg.
Using Theorem 3, we estimate the number of maximal equivalence classes by

the interval. This interval is very small and its bounds converge when m tends to
infinity.

Corollary 1. For any m and n such that mŠ > n (a) The number of the maximal
ANEC satisfies the following inequality

2.mŠ� 1/Š

.mŠ� n/ŠnŠ
� QR.m; n/ � Rmax.m; n/ � QR.m; n/

(b) If m and n are such that n > m and n is a prime number, then the number of
maximal ANEC is equal to QR.m; n/.

Next we apply the results above to the problem of evaluating the maximal
difference of manipulability indices. Actually, we solve it for a limited number of
voters since with the growing number of voters other mechanisms work. We have
already mentioned that the inequality of ANECs’ cardinality causes this difference.
Then, the manipulability index in IC exceeds (is less than) the index in IANC when
the average cardinality of equivalence classes that are manipulable exceeds (is less
than) the average cardinality of all equivalence classes. Thus, the absolute value of
difference is maximal when all the classes 
 , such that j
 j > j
avj, and only they are
either manipulable or not manipulable. Let max�INAC be the maximal difference of
manipulability indices.
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max�IANC D
ˇ
ˇ
ˇ̌ d�

.mŠ/n
� r�

R.m; n/

ˇ
ˇ
ˇ̌ ;

where d� is the number of profiles in all equivalences classes 
 , such that j
 j > j
avj
(or j
 j < j
avj) and r� is the number of such classes.

Assume that mŠ > n and the cardinality of maximal equivalence class is mŠnŠ.
Here we suggest evaluating maximal difference by calculating the number of classes
with cardinality that exceeds the average since for small n the only classes such that
j
 j > j
avj are the classes with a maximal number of elements.

Let n2 be such value of n for which the second maximal cardinality of ANECs
also begins to exceed the average. For example, if m D 3, then n2 D 4; if m D 4,
then n2 D 7; if m D 5, then n2 D 14; and if m D 6, n2 D 33. Thus, when n < n2,
it is enough to know the cardinality and the number of maximal ANEC to evaluate
the maximal difference of manipulability indices in IC and IANC.

In this case the difference is calculated as

max�IANC D Rmax.m; n/ �mŠnŠ

.mŠ/n
� Rmax.m; n/

R.m; n/

Using Corollary 1, we get the difference in the case of mŠ > n estimated by the
interval

�
2.mŠ � 1/Š

mŠ � n/ŠnŠ
� QR.m; n/

	
�
�

nŠ

.mŠ/n�1
� 1

R.m; n/

	
� max�IANC

� QR.m; n/ �
�

nŠ

.mŠ/n�1
� 1

R.m; n/

	

In the case when m and n such that and n is a prime number an exact value of the
maximal difference can be calculated strictly by

max�IANC D Rmax.m; n/

�
nŠ

.mŠ/n�1
� 1

R.m; n/

	
:

Figures 3 and 4 illustrate the difference for the number of alternatives and voters
from 3 to 10. In the case when n � n2 we calculate the number of second and third
maximal equivalence classes in each case solving separate combinatorial problem.
As can be seen, for the case of three and four alternatives, this difference is large
enough to cause changes in the relative manipulability of social choice rules. While
for the case of six or more alternatives and n < 10, it becomes so small and
insignificant that we can take indices in the IC model equal to those in the IANC
model.

It is obvious that maximal difference tends to zero, when the number of
alternatives grows. However, it should be taken into account that this difference
increases up to a certain value when the number of voters grows. So, we can only
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Fig. 3 Maximal difference of indices in the IC and IANC models

Fig. 4 Maximal difference of indices in the IC and IANC models, log scale

say that this value is not zero. If n o mŠ, then equivalence classes include large
numbers of profiles, and the cardinality of maximal equivalence class increases
faster than the average cardinality of classes, while the minimum number of
elements in equivalence class remains mŠ.

4 Calculating Manipulability of Social Choice Rules
in the IANC Model

In this section we provide the results of computational experiments in IANC model
of calculating manipulability indices of four social choice rules. Then we compare
the difference of Nitzan–Kelly’s index in IC and IANC with maximal difference
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estimated in the previous section. The rules considered are plurality rule, approval
voting (with fixed quota of 2), Borda’s rule, and Black’s procedure.

1. Plurality Rule. This rule chooses the alternative which is the best for the maximal
number of voters.

a 2 C.P/, Œ8x 2 A; nC.a; P/ � nC.x; P/�

where nC.x; P/ D card fi 2 N j 8y 2 A; xPi yg.
2. Approval Voting. Social choice is an alternative at the place of q or higher in the

preferences of the maximal number of voters.

a 2 C.P/, Œ8x 2 A; nC.a; P; q/ � nC.x; P; q/�

where nC.x; P; q/ D card fi 2 N j card fy 2 A j xPi yg � q � 1g.
3. Borda’s Rule. For each alternative in the i -th individual preferences the number

ri .x; P/ is calculated as follows:

ri .x; P/ D card fb 2 A j xPi bg:

The sum of ri .x; P/ over all i 2 N is called a Borda’s count.

r.x; P/ D
nX

iD1

ri .x; P/

Borda’s rule chooses an alternative with the maximal Borda’s count.

a 2 C.P/, Œ8x 2 A; r.a; P/ � r.x; P/�

4. Black’s Procedure. Chooses a Condorset winner, if it exists, and, if it does not
exist, the winner of Borda’s rule is chosen.

We restrict our scope to the case of three alternatives. First, we compute the
Nitzan–Kelly’s indices in the impartial culture model (Fig. 5), impartial anonymous
and neutral culture model (Fig. 6) using the Leximin method. After that, we
calculate the difference of these indices

�NKIANC D d0

.mŠ/n
� r0

R.m; n/
;

which is represented in Fig. 7.
The maximal difference is lowest and the highest boundary on Fig. 7. The

difference of manipulability indices is negative only for approval voting rule. This
fact can be explained as follows: preference profiles in which manipulation is
possible often belong to equivalence classes with a small number of elements.
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Fig. 5 The Nitzan–Kelly’s index for the Leximin method in the IC model

Fig. 6 The Nitzan–Kelly’s index for the Leximin method in the IANC model

Fig. 7 The difference of the Nitzan–Kelly’s index in IC and IANC, Leximin
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The plurality rule has the highest level of difference for 3 � n � 10. These
two facts cause the changes in the relative manipulability of social choice rules. The
approval rule turns out to be the most manipulable in the IANC model, while under
the IC assumption it is the second least manipulable rule. The relative manipulability
of the plurality rule and approval voting rule changed to the opposite in most cases.
However, Black’s procedure is the least manipulable in both cultures.

5 Concluding Remarks

Anonymity and neutrality are the basic axioms in social choice theory. The IANC
model, based on these axioms, assumes that both names of voters and names
of alternatives do not matter. In the IC model, the Nitzan–Kelly’s index is the
probability that any preference profile independently drawn from the set of all
preference profiles will be manipulable. In the IANC model, it is the same prob-
ability on the set of anonymous and neutral equivalence classes. The representatives
of equivalence classes could be considered as “types” of public preferences.
Consequently, minimizing manipulability index in IANC means minimizing types
of preferences that allow manipulations.

We study to what extent the value of manipulability index in IANC could differ
from index in IC. We reveal some properties of IANC model. Using methods
of combinatorics and group theory, we evaluate the number and cardinality of
anonymous and neutral equivalence classes with a maximal and minimal number
of elements. Then we estimate the maximal possible difference between Nitzan–
Kelly’s index (and, consequently, any other probabilistic measure) for small number
of voters and conclude that it is not zero for large number of voters. At the same
time, maximal difference tends to zero, when the number of alternatives grows and
increases up to a certain positive value with growing number of voters.

This theoretical study allows us to avoid additional highly complex computa-
tions, when indices in IC model are equal to the same indices in IANC. To illustrate
such cases when transition from IC to IANC can change the situation, we analyze
the actual difference of manipulability indices of four social choice rules in the IC
and IANC models with Leximin extension method.
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