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         Introduction 

 The main goal of pharmacogenomics is to 
understand the infl uence of genetic varia-
tions between individuals on drug effi cacy, 
metabolism, and toxicity. For some, the 
terms pharmacogenomics and pharmacoge-
netics are interchangeable but for others 
both terms carry different meanings with 
the term pharmacogenetics having a more 
limited defi nition, being reserved for the 
study of inherited differences in drug 
response [ 1 ,  2 ]. The study of variations in 

drug response between individuals can be 
dated back to Pythagoras at around 510 
B.C.E. [ 2 ]. More recently, English physiolo-
gist, Archibald Garrod, has been the fi rst to 
propose in 1923 that genetic variants that 
affect metabolism of endogenous molecules 
may affect drug metabolism [ 3 ]. In 1932, 
Snyder reported the fi rst inherited trait asso-
ciated with an exogenous chemical com-
pound (phenylthiourea nontaster trait) in a 
cohort of 800 families [ 4 ,  5 ]. The pace of 
progress in the fi eld of pharmacogenomics 
has accelerated with the completion of the 
human genome project [ 6 ] and at the time 
of this writing, the Table of Pharmacogenomic 
Biomarkers in Drug Labels contained 118 
entries [ 7 ].With the current advances in the 
fi elds of -omics, the anticipated benefi ts of 
pharmacogenomics are closer to realization 
than ever before. A better understanding of 
the interaction between drugs and genetic 
variants will lead to discovery of drugs that 
are more powerful, effi cacious, and safer. 
Physicians will be able to prescribe not just 
the right drug but also the correct dose for a 
patient, thus maximizing the effi cacy while 
minimizing the adverse effects. Vaccines 
created making use of genetic information 
will be able to activate the immune system 
to a large number of pathogens without 
exposing an individual to the risk of an 
infection. With all these and other benefi ts, 
the promise is that overall cost of health 
care will decrease.  
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    Use of Genomics 
in Designing 
Pharmacogenomic Studies  

    Study Design 
 The choice between a candidate gene study, 
genome-wide association study (GWAS), 
exome sequencing (ES), and whole-genome 
sequencing (WGS) study is usually dictated 
by the hypothesis, approach (discovery versus 
targeted), and available resources. In an ideal 
setting where resources are not a constraint, a 
WGS study design is comprehensive and pro-
vides more data than are obtainable from the 
other three study designs. However, obtaining 
WGS in a sizeable number of patients is pro-
hibitively expensive (although the cost of 
WGS is coming down rapidly) and analyzing 
the vast amounts of data generated by WGS 
requires extensive bioinformatic support.  

    Candidate Gene Study Designs 
 Based on the prior knowledge of drug target 
molecules, metabolism, and excretion, inves-
tigators may hypothesize that a certain gene 
or a group of genes determines the observed 
effect of a particular drug. Although each 
drug is likely to have a unique set of genes 
that determine its response in any individual, 
certain genes are more likely to be involved in 
the absorption, distribution, metabolism, and 
excretion (ADME) of a wide variety of drugs. 
A group of 32 genes has been designated as 
the core ADME genes (Table  31.1 ) by 
PharmaADME Working Group, a panel of 
industry and academic experts, and includes 
genes for several enzymes in the cytochrome 
P450 system and genes for several proteins 
that belong to solute carrier family [ 8 ]. An 
extended ADME gene list contains 267 addi-
tional genes for proteins responsible for the 
modifi cation of functional groups of drugs, 
conjugation of drugs with endogenous moi-
eties, the uptake and excretion of drugs in 
and out of cells, and those that can either 
alter the expression of other ADME genes or 
affect the biochemistry of ADME enzymes 
[ 8 ]. Commercially available gene chips 
include variants within the core ADME genes 
such as the DMET™ chip by Affymetrix 
(containing 1,936 variants across 231 genes) 

and the VeraCode ®  ADME Core Panel by 
Illumina (184 variants in 34 genes). In addi-
tion, microarray chips that contain variants 
from specifi c gene list can be custom-built.

   Whereas this type of assay design can be 
used for a study with a small number of 
patients and limited resources, a more likely 
use is in the drug development process where 
early identifi cation of drug safety issues may 
save lives and cost. The biggest challenge with 
this type of study design is that often our 
knowledge of a drug’s pharmacodynamics 
and pharmacokinetic pathways is incomplete, 
making selection of all relevant genes very 
diffi cult, if not impossible. Therefore, an asso-
ciation of drug responses with variants that 
are not included on the chip cannot be 
discovered.  

    Genome-Wide Association 
Study Designs 
 Whereas in a candidate gene study different 
sources of information are incorporated to 
develop a list of genes potentially involved in 

   Table 31-1     List of ADME (Absorption, 
Distribution, Metabolism, 
and Excretion) Genes [ 8 ]   

 Phase I  Phase II  Transporter 

 CYP1A1  GSTM1  ABCB1 

 CYP1A2  GSTP1  ABCC2 

 CYP2A6  GSTT1  ABCG2 

 CYP2B6  NAT1  SLC15A2 

 CYP2C19  NAT2  SLC22A1 

 CYP2C8  SULT1A1  SLC22A2 

 CYP2C9  TPMT  SLC22A6 

 CYP2D6  UGT1A1  SLCO1B1 

 CYP2E1  UGT2B15  SLCO1B3 

 CYP3A4  UGT2B17 

 CYP3A5  UGT2B7 

 DPYD 

  Phase I is a type of drug metabolism in which drug 
chemical structure is modifi ed by addition of polar or 
reactive groups such as hydroxyl (OH) groups. Phase II 
is a type of metabolism in which drug chemical 
structure is conjugated with other charged small 
molecules such as glycine or glucuronic acid  
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a drug’s metabolic pathways, in GWAS a 
comprehensive and unbiased search through-
out the whole genome is performed, with the 
goal of identifying relatively frequent genetic 
variants that may be associated with drug 
response [ 9 ,  10 ]. Thus, GWAS allows the dis-
covery of novel genetic variants that are not 
in the known pathways. As the cost of per-
forming microarrays to conduct a genome- 
wide scan has come down recently and the 
currently available microarray chips have 
good coverage across much of the genome, 
GWAS designs should typically be used for 
identifying genomic regions of interest. The 
identifi cation of a genetic variant responsible 
for variability in drug response depends on 
several factors such as the effect size and 
allele frequency of the genetic variant, as well 
as the sample size of the study [ 11 ]. Genetic 
variants associated with drug response tend 
to have larger effect sizes and hence are easier 
to discover than variants associated with dis-
ease phenotypes. However, the often rela-
tively small sample size of pharmacogenomic 
studies makes it diffi cult to discover genetic 
variants. Because of the relatively large effect 
sizes of genetic variants that are identifi ed in 
pharmacogenomic GWAS, it is much easier 
to translate these fi ndings into clinical prac-
tice [ 12 ]. GWAS can be used to examine the 
role of different biological pathways and can 
thus provide important insights into the 
mechanisms underlying drug response. 
Several commercially available genotyping 
arrays provide a wide range of options to 
choose from, based on one’s experimental 
needs and budget. 

 GWAS provides an unbiased approach to 
scanning the whole genome for genetic vari-
ants associated with drug response, but there 
are important limitations. One limitation of 
GWAS is the penalty for performing a large 
number of statistical tests. GWAS test the 
association of drug response with about a 
million single nucleotide polymorphisms 
(SNPs) spread across the genome and, due to 
the large number of tests, result in a very high 
type I error with a conventional statistical sig-
nifi cance threshold. To decrease the risk of 
infl ated type I error, a much lower threshold 
is often employed, thus requiring a large 
effect size and/or sample size [ 13 ]. Moreover, 
the effect of variants with a low minor allele 
frequency (MAF) cannot be studied with 
currently available sample sizes. Thus, only 

the effect of relatively common variants 
(with a minor allele frequency greater than 
1 %) on drug response is studied [ 14 ]. This 
limitation is especially evident in studying 
the cytochrome P450 family of genes that 
play an important role in drug metabolism. 
The genes in this family have several iso-
forms, are polymorphic and have a wide 
range of allele frequencies including variants 
with very low MAFs [ 15 ]. As a result, there is 
limited coverage with the currently available 
GWAS platforms [ 16 ]. To summarize, an 
interesting aspect of pharmacogenomic stud-
ies is that an interaction between drug, dis-
ease, and genetic variants is potentially 
possible but a complete examination of this 
interaction requires very large sample sizes, 
well beyond those used today.  

    WES Study Designs 
 Not only are GWAS limited to examining 
alleles with relatively higher MAFs, but the 
association between a variant and a pheno-
type (such as drug response) is only an  asso-
ciation  and often the identifi ed variants only 
“tag” the causal variant, requiring further 
examination of the region around the identi-
fi ed variant. Moreover, whereas heritability 
estimates of drug response are relatively large, 
the amount of variability explained by the 
variants discovered through GWAS is quite 
small, sending researchers to search for “miss-
ing heritability” [ 17 – 20 ]. Some have argued 
that the drug response may not be deter-
mined by common variants (or variants 
tagged to common variants) but by rare vari-
ants. Because GWAS have poor coverage of 
rare variants, a different method is needed to 
discover these. 

 Ideally, sequencing the whole genome 
should reveal all variants that contribute to 
drug response. However, despite recent 
advances in sequencing technology, WGS 
remains too expensive for large studies. An 
alternative, in between GWAS and WGS, is to 
sequence only the exonic regions of the 
genome, or roughly the 2–3 % of the genome 
that encodes proteins. By capturing and 
sequencing only exons, the cost of sequencing 
decreases signifi cantly, yet our ability to iden-
tify rare variants increases markedly [ 21 ]. 

 When designing a WES study, a researcher 
should pay attention to several important 
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aspects of the study design. Sample selection 
for WES usually is limited to enrolling unre-
lated individuals because it is not possible to 
expose unaffected individuals in a family to a 
drug. Once a DNA sample is obtained from 
participants, one of several different methods 
(such as hybridization, circularization, or 
PCR) can be used to capture the exonic 
regions of the genome. Few commercial kits 
(such as those from Agilent, Illumina, and 
Nimblegen) are available that employ one of 
these methods for capture. Of note, these kits 
differ in their defi nition of “exome” and cover 
slightly different parts of the genome. 
Deciding the depth of coverage is the next 
step and depends on several factors; for most 
experiments, coverage between 20× and 50× 
at each nucleotide will suffi ce. Once data are 
available, the fi rst step is alignment to the 
genome followed by variant calling. Several 
quality control measures are considered 
throughout the alignment and variant calling 
process. Data on called variants are usually 
saved in a variant call format (VCF), which is 
then annotated. The annotations may include 
genomic coordinates, population frequencies, 
conservation throughout evolution, effect on 
protein structure, expected severity due to 
protein change, and any known clinical asso-
ciations. This is followed by several heuristic 
fi ltering algorithms to narrow down the list of 
variants of interest [ 21 ,  22 ]. Non-synonymous 
variants are of particular interest for obvious 
reasons and various statistical and computa-
tion methods have been developed to assess 
the functional impact on proteins [ 23 – 32 ]. 
Because the majority of the identifi ed variants 
are rare, statistical methods used for GWAS 
studies have very low power to detect an 
effect. An alternative is to analyze a group of 
rare variants within a defi ned region, usually a 
gene, and several statistical methods have 
been proposed to use this approach [ 22 ,  33 –
 40 ]. Although we are still waiting to see a 
report of a pharmacogenomic study utilizing 
WES, it is likely that such studies will provide 
new and important insights into drug response.  

    WGS Study Design 
 Exome sequencing focuses on those parts of 
the genome about which we have better 
knowledge, the exons from the known coding 

regions, but leaves out regulatory components 
that may control whether a gene will be 
expressed and the extent of its level of expres-
sion. Furthermore, it is very likely that our 
current knowledge of the protein-coding 
regions of the genome is incomplete and, 
therefore, undiscovered but important genes 
would not be captured by commercial exome 
capture kits. In contrast to WES, WGS pro-
vides information about all identifi ed variants 
irrespective of the location in the genome and 
provides the opportunity to discover a large 
number of genetic variants important to drug 
response. The study design issues as well as 
analytical issues are similar to WES except 
that the volume of data is much bigger and 
the ultimate number of variants obtained per 
sample much larger. If GWAS are any guide, 
WGS is likely to identify a large number of 
rare variants in the noncoding regions or in 
pseudogenes, forcing us to further understand 
how these variants control gene expression.  

    Other Study Designs 
 Other genomic methods, such as RNA 
sequencing (RNA-seq), DNA methylation 
studies and other epigenetic methods, can be 
used to study the effect of genomics on drug 
response, as well. For most drugs, our current 
knowledge of molecular targets is limited at 
best. This is true even for drugs that have 
been in common use for many decades and 
have been studied extensively, such as aspirin. 
For example, RNA-seq may identify genes 
that are upregulated or downregulated in 
those individuals who respond to a drug as 
compared to those who do not [ 41 ].  

    Choice of Study Population 
 Perhaps the most economical way of conduct-
ing a pharmacogenomic study to identify 
genetic variants is in the setting of a clinical 
trial. In clinical trials, patients are already 
enrolled to receive a particular drug at (a) cer-
tain dose(s), or an alternative drug or placebo, 
and are being followed for outcomes. 
Genotyping all or a subset of patients may 
provide an opportunity to study the effect of 
genetic variants on drug response phenotypes. 
Patients for genotyping can be selected at the 
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end of the study when it is known which 
patients did or did not have a particular out-
come during the clinical trial. Clinical trials 
are a good setting for studying candidate genes, 
but a single clinical trial may not provide a 
large enough number of participants to con-
duct a pharmacogenomic GWAS. Therefore, 
results from several clinical trials may need to 
be combined to get to the needed sample size. 
While combining clinical trials, usually in a 
meta-analysis framework, certain issues may 
arise, however. These include the use of differ-
ent doses of the drugs, use of concomitant 
drugs, or underlying differences in study pop-
ulations. In these instances, decisions may 
need to be made as to which studies should or 
can be included. 

 An example of the use of a clinical trial 
cohort for conducting a pharmacogenomic 
study is the Trial to Assess Improvement in 
Therapeutic Outcomes by Optimizing 
Platelet Inhibition with Prasugrel–
Thrombolysis in Myocardial Infarction 38 
(TRITON-TIMI 38) trial. This trial compared 
two antiplatelet agents (clopidogrel and pra-
sugrel) in patients with acute coronary syn-
dromes who were scheduled to have 
percutaneous coronary interventions [ 42 ]. 
The drug response phenotype was a compos-
ite of clinical outcomes (cardiovascular 
deaths, myocardial infarction, or stroke). 
While the overall study enrolled 13,608 
patients, 1 candidate-gene pharmacogenomic 
study examined 1,477 subjects who were in 
the clopidogrel arm and found that carriers of 
a reduced function allele in the  CYP2C19  
gene were associated with a 53 % increased 
risk of the composite clinical outcome [ 43 ]. 
Another candidate-gene pharmacogenomic 
study from the same clinical trial included 
2,932 patients (1,471 from the clopidogrel 
arm and 1,461 from the prasugrel arm) and 
found that the TT genotype of the c.3435C > T 
variant in the  ABCB1  gene was associated 
with a 72 % increased risk of a composite 
clinical outcome in individuals treated with 
clopidogrel but not with prasugrel [ 44 ]. 

 An example of the use of GWAS in a clini-
cal trial setting is a study by Ramsey et al. This 
study was conducted to identify genetic vari-
ants determining methotrexate clearance in 
children with acute lymphoblastic  leukemia 
and used data from two studies (P9904 and 
P9905). Investigators found that methotrex-

ate clearance was associated with polymor-
phisms in the organic anion transporter gene 
 SLCO1B1  and further confi rmed their fi nd-
ings in independent cohorts [ 45 ]. Phase I/II 
clinical studies also provide an opportunity to 
perform candidate-gene  pharmacogenomic 
studies (for examples see [ 46 – 48 ]). 

 Another important source for pharma-
cogenomic studies are clinical cohorts in 
which information is collected from elec-
tronic health records (EHR) [ 49 ]. In these 
studies, data are collected from hospital or 
other clinical records and DNA is collected 
for research at the time of contact with the 
patient. This model has several advantages. 
The data are collected on patients who are 
receiving regular medical care and are neither 
self-selected nor selected on the basis of some 
criteria. Thus, these subjects provide a “real 
world” opportunity for pharmacogenomic 
studies. As the data are extracted from already 
existing medical records, the cost of acquiring 
data is minimal although the cost of DNA 
isolation genotyping remains the same. 
However, the genotype information obtained 
for one study can be used for additional stud-
ies on the same patient cohort (especially if 
genotyping is performed using a genome- 
wide scan) and by doing so can potentially 
reduce costs further. The disadvantages 
include that data are not collected for the 
purposes of research and as a result data may 
not be of high quality. However, certain types 
of data are likely to be of reasonably good 
quality. This would include parameters such 
as vital signs, laboratory data, medication 
records, and billing information. Perhaps the 
most prominent example of the use of EHR 
is in the Electronic Medical Records and 
Genomics (eMERGE) network [ 50 ].   

    Application of Genomics 
in Determining Drug 
Effi cacy  

    Finding the Right Drug 
 Some patients respond poorly to typically 
very effective medicines and often the under-
lying reason for this is based on differences in 
our genome. Poor responsiveness may stem 
from the effect of genomic variations on drug 
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pharmacodynamics (such as changes in drug 
receptors) or on pharmacokinetics (such as 
drug metabolism). For example, β2 agonists, 
such as albuterol and salmeterol, are quite 
effective for the treatment of asthma but may 
not be as effective in a small group of indi-
viduals with a certain SNP in the  ADRB2  gene 
[ 51 ]. Identifi cation of such asthmatic patients 
and treatment with alternative therapies may 
improve treatment response and decrease 
morbidity. Similarly, while clopidogrel is very 
effective in reducing adverse cardiac events in 
patients who undergo percutaneous coronary 
intervention with stent implantation, individ-
uals with the  CYP2C19 *2 allele remain at an 
increased risk of future events even with clop-
idogrel therapy [ 52 ]. Identifying individuals 
with this allele may result in the prescription 
of alternative anti-platelet agents for an ade-
quate inhibition of platelet function.  

    Finding the Right Dose 
 As currently practiced, physicians look at cer-
tain features in determining the right dose of 
drugs for their patients. These include a 
patient’s age, sex, and body weight. This 
becomes especially an issue when the thera-
peutic window of a drug is small, such as is 
the case with warfarin. Warfarin is the most 
commonly prescribed anticoagulant drug for 
the prevention and treatment of venous 
thromboembolism and for the prevention of 
stroke in atrial fi brillation and with mechani-
cal heart valves. Variants in the  CYP2C9  and 
 VKORC1  genes have been shown to deter-
mine warfarin metabolism and a warfarin 
dosing regimen based on the genotype has 
been developed and validated [ 53 ,  54 ].   

    Application of Genomics 
in Minimizing Adverse 
Drug Reactions  

 Use of almost all drugs is associated with 
some adverse reactions ranging from very 
mild ones to very serious ones resulting in 
severe illness or even death. Identifi cation of 
genetic variants that may predict these 
adverse events and choosing alternative ther-
apies for patients with these variants may 
result in more optimal drug responses. 

 The earliest examples of the use of phar-
macogenomics are studies of severe adverse 
drug reactions such as seen with the use of 
mercaptopurine, succinylcholine, and perhexi-
line [ 55 ]. More recent examples include stud-
ies of statins, which are a group of lipid- lowering 
agents that have been consistently shown to 
reduce cardiovascular morbidity and mortality 
in patients with coronary artery disease or in 
patients at risk of developing coronary artery 
disease [ 56 ]. However, some patients develop 
myopathy while taking statins. A GWAS iden-
tifi ed rs4363657, a SNP in the  SLCO1B1  gene 
(gene product responsible for hepatic uptake 
of statins), linked to the development of 
myopathy. Using an alternative lipid-lowering 
agent or using lower doses of statins in patients 
with this SNP may avert the development of 
statin- induced myopathy [ 57 ,  58 ]. Similarly, 
polymorphisms in  CYP2D6  and  CYP2C19  
genes affect the effi cacy and safety of tricyclic 
antidepressants and presence of these variants 
may require either reduced dosing or alterna-
tive therapies [ 59 ].  

    Application of Genomics 
in Vaccinomics  

 The application of pharmacogenomics to vac-
cine design has been labeled as “vaccinomics” 
and this new fi eld is using the tools of genom-
ics and bioinformatics to develop novel vac-
cines. Some of the recent approaches in 
vaccinomics include the use of epitope deter-
mination and prediction algorithms for 
exploring the use of peptide epitopes as 
immunogens [ 60 ]. In addition to developing 
new vaccines, genomic applications can help 
to identify individuals who are likely to 
develop an adequate immune response with a 
particular vaccine and who will develop 
adverse effects [ 61 ].  

    Genomic Applications 
in Research  

    Drug Discovery 
 Genomic applications can help the pharma-
ceutical industry from the very beginning of 
the drug-discovery process [ 62 ]. Genomic 
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approaches can identify suitable gene targets 
and may identify potential molecules that can 
be evaluated as drugs [ 63 ]. Furthermore, 
knowledge of genetic variants may allow for 
more appropriate and ultimately safer inclu-
sion and exclusion criteria, resulting in a more 
successful passage of drugs through the phar-
maceutical pipeline. Lastly, the interaction of 
drugs that are currently in clinical use with 
newly discovered gene targets can be exam-
ined and we may discover new uses of previ-
ously approved drugs whose safety has 
already been shown [ 64 ].  

    Discovery of Biological 
Mechanisms 
 The use of genomic applications in studying 
drugs is improving our understanding of bio-
logical mechanisms in two main ways. First, 
whereas drugs are exogenous molecules that 
are introduced from outside, these molecules 
may have certain similarities with endoge-
nous molecules of the body. These similarities 
may include aspects of drug/ligand receptors 
and metabolic pathways. Identifi cation of 
receptors and enzymes involved in the 
metabolism of a drug may provide insights 
into the metabolism of endogenous mole-
cules. For example, the cytochrome P450 
family of genes was initially discovered as 
encoding detoxifying enzymes, but subse-
quent studies have highlighted the impor-
tance of these enzymes in the metabolism of 
endogenous molecules [ 65 ]. Second, because 
our understanding of the pathophysiology 
underlying most diseases is incomplete, his-
torically the presence or absence of signs and 
symptoms has been used to classify diseases. 
It is quite possible that different pathophysi-
ological mechanisms may culminate in a sim-
ilar set of signs and symptoms and hence 
become defi ned into one disease process. The 
use of genomics tools to increase our under-
standing of drug responses and biological 
mechanisms will deepen our understanding 
of the pathophysiological basis of disease and 
is likely to result in better classifi cation of dis-
eases and more appropriate and targeted 
therapy for patients.   

    Conclusions 

 Whereas there are several drugs with phar-
macogenomic warnings from the Food and 
Drug Administration (FDA), challenges 
abound regarding the identifi cation of rele-
vant genetic variants, and in every step on the 
road to clinical implementation (Table  31.2 ). 
The full benefi t of genomics in clinical prac-
tice can only be realized when drug therapy 
for each individual can be personalized to 
his/her lifestyle and genome. Advances in sev-
eral fi elds are needed before this dream of 
personalized medicine can be realized [ 66 ]. 
At the same time, application of genomics 
principles in pharmacogenomics holds prom-
ise for not only personalized medicine but 
also new drug discovery and development 
and novel insights into the biological 
mechanisms.

   Table 31-2     Challenges in 
Pharmacogenomics Research   

 Identifi cation of genetic variant 
 − Issues with current technology 
 − Need for large sample sizes 
 − Requirements for validation studies 
 − Cost of WGS 
 − Variable defi nitions of drug response 
 − Large number of potential hits 
 − Need for better statistical tests and algorithms 
 − Bioinformatics support 

 Demonstration of Effi cacy and Effectiveness of 
Pharmacogenomic Approaches 

 − Defi ning drug response 
 − Need for large sample size especially studies 

with hard clinical outcomes, such as death or 
myocardial infarction 

 − Need for large validation studies 
 − Need for technology that can be applied at the 

point of use 
 − Statistical methods 
 − Genotype-guided studies 
 − Concomitant use of other drugs 
 Implementation in Clinical Practice 
 − Patient and physician education 
 − Privacy and ethical concerns 
 − Regulatory and legal issues 
 − Bioinformatics support 
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