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          Abstract     Next-generation sequence assembly can be viewed as a fi ve-stage  process 
of data processing and computational challenges. These stages are error correction, 
graph construction, graph simplifi cation, scaffolding, and the assembly assessment 
stage. These stages communicate with each other to produce the fi nal assembled 
sequences. Each stage receives a set of inputs from the preceding one and passes its 
output to the following stage. In this chapter, we will briefl y introduce the basic 
functions of each stage and provide a coherent framework of the communications 
that occur between them.  

8.1               Introduction to Next-Generation Sequence Assembly 

 The sequence assembly process was developed to resolve the limitations of current 
technologies that prevent the sequencing of the whole genome/chromosome during 
a single read. In fi rst- and next-generation sequencing methods (see Chap.   3    ), the 
whole genome is sheared into short random fragments with short overlaps. Each 
fragment is sequenced independently and the resulting sequences are individually 
called a “read”. Hence, the process of repositioning these random reads to recon-
struct the whole genome is known as the “sequence assembly process” [ 1 ,  2 ]. 

 According to the sample and type of raw data generated by sequencing instru-
ments and the aim of the study, the assembly process may take many fl avors includ-
ing genome, transcriptome, or metagenome sequence assembly. If the raw data in 
the sequencing experiment is genomic DNA, the process is called genome assem-
bly. Likewise, if the raw data is mRNA, the process is called transcriptome  assembly, 
whereas assembling reads resulting from sequencing environmental samples that 
contain a mixture of organisms is called metagenome assembly. The ever- increasing 
number of applications in genomics, transcriptomics, metagenomics, and single-
cell sequencing exhibits the need to acquire sequences from the viral, microbial, 
bacterial, or eukaryotic communities [ 3 ]. While the details of the assembly process 

    Chapter 8   
 Next-Generation Sequence Assembly 
Overview 

http://dx.doi.org/10.1007/978-1-4939-0715-1_3


74

and employed assembly tools are different in each case, the sequence assembly 
process always shares the same stages. 

 The process of sequence assembly starts with fi ltering the reads to remove or 
correct errors and then computing a set of overlaps among them to discover their 
arrangement. These overlaps are used to connect the reads together into long con-
tiguous structures called “contigs”. Similarly, contigs can also be connected together 
to form even longer sequence stretches called “scaffolds” [ 4 ]. 

 According to the availability of the reference sequences, the sequence assembly 
process has two main approaches, comparative sequence assembly and de novo 
sequence assembly. In comparative sequence assembly (also known as reference- 
based sequence assembly), reference sequences from the same organism or closely 
related species help to guide the reconstruction process [ 5 ]. On the other hand, de 
novo assembly does not involve reference sequences and consequently is a more 
complicated process [ 1 ].  

8.2     Sequence Assembly Framework 

 Sequence assembly is a multiphase process. These phases communicate together in 
order to produce the fi nal assembled sequence. Not only does the organization of 
these phases differ from one assembly to another, but some phases are completely 
missing in certain assembly processes in accordance with various issues (Fig.  8.1 ) [ 6 ].

   The fi rst phase, commonly known as the error correction phase, aims at fi ltering 
erroneous reads by removing or correcting sequencing errors. The fi ltered reads are 

  Fig. 8.1    Schematic representation of the fi ve stages of next-generation sequence assembly  process 
( Note :  G ″ is a repairing version of graph  G  with  N  nodes and  E  edges)       
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then fed into the second phase that formulates them into a graph of nodes with their 
relationships represented as graph edges. This representation overcomes the limita-
tion of available computational resources that are necessary to manage the high 
throughput nature of next-generation sequencers. However, the resulting graph may 
contain erroneous nodes or structures that were overlooked during the fi rst phase. 
Hence, these erroneous structures must be removed or resolved, in the so called 
graph simplifi cation phase, before the construction of the contigs. Following 
the graph simplifi cation phase, the contigs are produced by fi nding the paths on the 
graph that connect the reads together. Subsequently, the scaffolding phase involves 
the fi ltering of the contigs, the detection of misassembled contigs and uncovering 
the relationships between them to build scaffolds [ 6 ]. Finally, the assembly assess-
ment phase evaluates the assembled contigs/scaffolds in accordance with different 
metrics that refl ect the quality, consistency, and accuracy of the algorithm used in 
the reconstruction process [ 7 ,  8 ]. 

 There are many differing viewpoints when designing an assembler. Some design-
ers rely on the early correction of errors in order to facilitate the remaining phases 
of the assembly process (i.e., graph building and simplifi cation) [ 9 – 15 ]. Other 
designers propose to delay the error correction phase to the graph simplifi cation 
process since both these phases aim at removing errors. Moreover, merging these 
two phases would reduce the overall computation time [ 16 – 22 ]. Hence, there are 
stand-alone error correction tools, scaffolding tools, and assessment tools that per-
form these phases independently from the other assembly phases. Certain designers 
rely on these independent tools to complete the missing parts in their assemblers. 

8.2.1     Error Correction Phase 

 Correcting the errors that result from sequencing platforms represents one of the 
major challenges in the next-generation environment. These errors vary from the 
presence of simple ambiguous bases to the occurrence of substitution and indel 
errors (see Chap.   4    ). By detecting these errors early, the assembly process can be 
more effi cient during the latter stages. The general approach followed by most error 
correction algorithms is examining the richness of the reads (i.e., read coverage) 
produced by the next-generation sequencers as a key to distinguish between correct 
and incorrect reads. This approach can be disrupted by repeats and non-uniform 
sampling of genomic sequences, which can lead to ambiguous choices during error 
correction [ 23 ].  

8.2.2     Graph Construction Phase 

 There are diverse paradigms for graph construction in accordance with different 
graph models. These paradigms must overcome a host of computational challenges 
in relation to graph representation and path-fi nding algorithms for the contigs build-
ing (algorithms and challenges are discussed in detail in Chap.   9    ). Paradigms can 
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generally be categorized into four main categories: overlap-based construction, 
 k -mers-based construction, greedy-based construction, and hybrid-based construc-
tion [ 24 ,  25 ]. Each of these paradigms and their accompanying challenges are dis-
cussed in more detail in Chap.   9     as well.  

8.2.3     Graph Simplifi cation Phase 

 As mentioned previously, some errors are not recognized during the error correction 
phase and can subsequently complicate the efforts of path-fi nding algorithms that 
attempt to connect reads and assemble accurate contigs. These errors form diverse 
structures in the assembly graph which must be fi ltered through identifi cation and 
correction before the building of contigs is initiated.  

8.2.4     Scaffolding Phase 

 The process of creating scaffolds is not as simple as the process of creating contigs. 
The goal of the scaffolding process is to order and orient contigs that result from the 
assembly process. The scaffolding process is guided by paired-end reads that fi lter 
contigs, detect misassembled ones, and allow accurate contig extension into the 
repeated regions [ 6 ,  26 ].  

8.2.5     Assembly Assessment Phase 

 Assessing the performance of an assembler is dependent on the metric(s) used 
during the evaluation process. One of these approaches targets the contiguity of 
the resulting contigs/scaffolds and utilizes different statistical metrics to assess 
the fi nal assembled sequence [ 27 – 34 ]. Another approach scrutinizes the accuracy 
of the assembled contigs/scaffolds and uses one of the previously fi nished genomes 
as a reference to assess the draft sequence [ 29 ,  31 ]. Additional evaluative strate-
gies include examining the constraints imposed by paired-end libraries, the nature 
of the sequences being assembled and the sequencing experiments themselves 
[ 31 ,  35 ,  36 ]. 

 Since the assembler is a software program with a set of functionalities, it must be 
assessed not only in terms of its output but also in relation to other factors. These 
include responsiveness to user commands, the friendliness of the user interface 
components, and setup requirements. The evaluation of such functionalities allows 
the targeted assessment of the usability features of an assembler [ 37 – 39 ].      
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