
73S. El-Metwally et al., Next Generation Sequencing Technologies
and Challenges in Sequence Assembly, SpringerBriefs in Systems Biology 7,
DOI 10.1007/978-1-4939-0715-1_8, © The Authors 2014

 Abstract Next-generation sequence assembly can be viewed as a fi ve-stage process
of data processing and computational challenges. These stages are error correction,
graph construction, graph simplifi cation, scaffolding, and the assembly assessment
stage. These stages communicate with each other to produce the fi nal assembled
sequences. Each stage receives a set of inputs from the preceding one and passes its
output to the following stage. In this chapter, we will briefl y introduce the basic
functions of each stage and provide a coherent framework of the communications
that occur between them.

8.1 Introduction to Next-Generation Sequence Assembly

 The sequence assembly process was developed to resolve the limitations of current
technologies that prevent the sequencing of the whole genome/chromosome during
a single read. In fi rst- and next-generation sequencing methods (see Chap. 3), the
whole genome is sheared into short random fragments with short overlaps. Each
fragment is sequenced independently and the resulting sequences are individually
called a “read”. Hence, the process of repositioning these random reads to recon-
struct the whole genome is known as the “sequence assembly process” [1 , 2].

 According to the sample and type of raw data generated by sequencing instru-
ments and the aim of the study, the assembly process may take many fl avors includ-
ing genome, transcriptome, or metagenome sequence assembly. If the raw data in
the sequencing experiment is genomic DNA, the process is called genome assem-
bly. Likewise, if the raw data is mRNA, the process is called transcriptome assembly,
whereas assembling reads resulting from sequencing environmental samples that
contain a mixture of organisms is called metagenome assembly. The ever- increasing
number of applications in genomics, transcriptomics, metagenomics, and single-
cell sequencing exhibits the need to acquire sequences from the viral, microbial,
bacterial, or eukaryotic communities [3]. While the details of the assembly process

 Chapter 8
 Next-Generation Sequence Assembly
Overview

http://dx.doi.org/10.1007/978-1-4939-0715-1_3

74

and employed assembly tools are different in each case, the sequence assembly
process always shares the same stages.

 The process of sequence assembly starts with fi ltering the reads to remove or
correct errors and then computing a set of overlaps among them to discover their
arrangement. These overlaps are used to connect the reads together into long con-
tiguous structures called “contigs”. Similarly, contigs can also be connected together
to form even longer sequence stretches called “scaffolds” [4].

 According to the availability of the reference sequences, the sequence assembly
process has two main approaches, comparative sequence assembly and de novo
sequence assembly. In comparative sequence assembly (also known as reference-
based sequence assembly), reference sequences from the same organism or closely
related species help to guide the reconstruction process [5]. On the other hand, de
novo assembly does not involve reference sequences and consequently is a more
complicated process [1].

8.2 Sequence Assembly Framework

 Sequence assembly is a multiphase process. These phases communicate together in
order to produce the fi nal assembled sequence. Not only does the organization of
these phases differ from one assembly to another, but some phases are completely
missing in certain assembly processes in accordance with various issues (Fig. 8.1) [6].

 The fi rst phase, commonly known as the error correction phase, aims at fi ltering
erroneous reads by removing or correcting sequencing errors. The fi ltered reads are

 Fig. 8.1 Schematic representation of the fi ve stages of next-generation sequence assembly process
(Note : G ″ is a repairing version of graph G with N nodes and E edges)

8 Next-Generation Sequence Assembly Overview

75

then fed into the second phase that formulates them into a graph of nodes with their
relationships represented as graph edges. This representation overcomes the limita-
tion of available computational resources that are necessary to manage the high
throughput nature of next-generation sequencers. However, the resulting graph may
contain erroneous nodes or structures that were overlooked during the fi rst phase.
Hence, these erroneous structures must be removed or resolved, in the so called
graph simplifi cation phase, before the construction of the contigs. Following
the graph simplifi cation phase, the contigs are produced by fi nding the paths on the
graph that connect the reads together. Subsequently, the scaffolding phase involves
the fi ltering of the contigs, the detection of misassembled contigs and uncovering
the relationships between them to build scaffolds [6]. Finally, the assembly assess-
ment phase evaluates the assembled contigs/scaffolds in accordance with different
metrics that refl ect the quality, consistency, and accuracy of the algorithm used in
the reconstruction process [7 , 8].

 There are many differing viewpoints when designing an assembler. Some design-
ers rely on the early correction of errors in order to facilitate the remaining phases
of the assembly process (i.e., graph building and simplifi cation) [9 – 15]. Other
designers propose to delay the error correction phase to the graph simplifi cation
process since both these phases aim at removing errors. Moreover, merging these
two phases would reduce the overall computation time [16 – 22]. Hence, there are
stand-alone error correction tools, scaffolding tools, and assessment tools that per-
form these phases independently from the other assembly phases. Certain designers
rely on these independent tools to complete the missing parts in their assemblers.

8.2.1 Error Correction Phase

 Correcting the errors that result from sequencing platforms represents one of the
major challenges in the next-generation environment. These errors vary from the
presence of simple ambiguous bases to the occurrence of substitution and indel
errors (see Chap. 4). By detecting these errors early, the assembly process can be
more effi cient during the latter stages. The general approach followed by most error
correction algorithms is examining the richness of the reads (i.e., read coverage)
produced by the next-generation sequencers as a key to distinguish between correct
and incorrect reads. This approach can be disrupted by repeats and non-uniform
sampling of genomic sequences, which can lead to ambiguous choices during error
correction [23].

8.2.2 Graph Construction Phase

 There are diverse paradigms for graph construction in accordance with different
graph models. These paradigms must overcome a host of computational challenges
in relation to graph representation and path-fi nding algorithms for the contigs build-
ing (algorithms and challenges are discussed in detail in Chap. 9). Paradigms can

8.2 Sequence Assembly Framework

http://dx.doi.org/10.1007/978-1-4939-0715-1_4
http://dx.doi.org/10.1007/978-1-4939-0715-1_9

76

generally be categorized into four main categories: overlap-based construction,
 k -mers-based construction, greedy-based construction, and hybrid-based construc-
tion [24 , 25]. Each of these paradigms and their accompanying challenges are dis-
cussed in more detail in Chap. 9 as well.

8.2.3 Graph Simplifi cation Phase

 As mentioned previously, some errors are not recognized during the error correction
phase and can subsequently complicate the efforts of path-fi nding algorithms that
attempt to connect reads and assemble accurate contigs. These errors form diverse
structures in the assembly graph which must be fi ltered through identifi cation and
correction before the building of contigs is initiated.

8.2.4 Scaffolding Phase

 The process of creating scaffolds is not as simple as the process of creating contigs.
The goal of the scaffolding process is to order and orient contigs that result from the
assembly process. The scaffolding process is guided by paired-end reads that fi lter
contigs, detect misassembled ones, and allow accurate contig extension into the
repeated regions [6 , 26].

8.2.5 Assembly Assessment Phase

 Assessing the performance of an assembler is dependent on the metric(s) used
during the evaluation process. One of these approaches targets the contiguity of
the resulting contigs/scaffolds and utilizes different statistical metrics to assess
the fi nal assembled sequence [27 – 34]. Another approach scrutinizes the accuracy
of the assembled contigs/scaffolds and uses one of the previously fi nished genomes
as a reference to assess the draft sequence [29 , 31]. Additional evaluative strate-
gies include examining the constraints imposed by paired-end libraries, the nature
of the sequences being assembled and the sequencing experiments themselves
[31 , 35 , 36].

 Since the assembler is a software program with a set of functionalities, it must be
assessed not only in terms of its output but also in relation to other factors. These
include responsiveness to user commands, the friendliness of the user interface
components, and setup requirements. The evaluation of such functionalities allows
the targeted assessment of the usability features of an assembler [37 – 39].

8 Next-Generation Sequence Assembly Overview

http://dx.doi.org/10.1007/978-1-4939-0715-1_9

77

 References

 1. Pop M (2009) Genome assembly reborn: recent computational challenges. Briefi ngs in bioin-
formatics 10 (4):354-366. doi: 10.1093/bib/bbp026

 2. Alkan C, Sajjadian S, Eichler EE (2011) Limitations of next-generation genome sequence
assembly. Nat Methods 8 (1):61-65. doi: 10.1038/nmeth.1527

 3. Nagarajan N, Pop M (2013) Sequence assembly demystifi ed. Nat Rev Genet 14 (3):157-167.
doi: 10.1038/nrg3367

 4. Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing
data. Genomics 95 (6):315-327. doi: 10.1016/j.ygeno.2010.03.001

 5. Pop M, Phillippy A, Delcher AL, Salzberg SL (2004) Comparative genome assembly. Briefi ngs
in bioinformatics 5 (3):237-248

 6. El-Metwally S, Hamza T, Zakaria M, Helmy M (2013) Next-generation sequence assembly:
four stages of data processing and computational challenges. PLoS Comput Biol
9 (12):e1003345. doi: 10.1371/journal.pcbi.1003345

 7. Earl D, Bradnam K, St John J, Darling A, Lin D et al. (2011) Assemblathon 1: a competitive
assessment of de novo short read assembly methods. Genome research 21 (12):2224-2241.
doi: 10.1101/gr.126599.111

 8. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M et al. (2013) Assemblathon 2:
evaluating de novo methods of genome assembly in three vertebrate species. Gigascience
2 (1):10. doi:2047-217X-2-10

 9. Ilie L, Fazayeli F, Ilie S (2011) HiTEC: accurate error correction in high-throughput sequenc-
ing data. Bioinformatics 27 (3):295-302. doi: 10.1093/bioinformatics/btq653

 10. Kao WC, Chan AH, Song YS (2011) ECHO: a reference-free short-read error correction algo-
rithm. Genome research 21 (7):1181-1192. doi: 10.1101/gr.111351.110

 11. Kelley DR, Schatz MC, Salzberg SL (2010) Quake: quality-aware detection and correction of
sequencing errors. Genome Biol 11 (11):R116. doi: 10.1186/gb-2010-11-11-r116

 12. Medvedev P, Scott E, Kakaradov B, Pevzner P (2011) Error correction of high-throughput
sequencing datasets with non-uniform coverage. Bioinformatics 27 (13):i137-i141.
doi: 10.1093/bioinformatics/btr208

 13. Salmela L, Schroder J (2011) Correcting errors in short reads by multiple alignments.
Bioinformatics 27 (11):1455-1461. doi: 10.1093/bioinformatics/btr170

 14. Schroder J, Schroder H, Puglisi SJ, Sinha R, Schmidt B (2009) SHREC: a short-read error
correction method. Bioinformatics 25 (17):2157-2163. doi: 10.1093/bioinformatics/btp379

 15. Yang X, Dorman KS, Aluru S (2010) Reptile: representative tiling for short read error correction.
Bioinformatics 26 (20):2526-2533. doi: 10.1093/bioinformatics/btq468

 16. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled
contigs using SSPACE. Bioinformatics 24 (4):578-579

 17. Dayarian A, Michael TP, Sengupta AM (2010) SOPRA: Scaffolding algorithm for paired reads
via statistical optimization. BMC bioinformatics 11:345. doi: 10.1186/1471-2105-11-345

 18. Donmez N, Brudno M (2013) SCARPA: scaffolding reads with practical algorithms.
Bioinformatics 29 (4):428-434. doi: 10.1093/bioinformatics/bts716

 19. Gao S, Sung WK, Nagarajan N (2011) Opera: reconstructing optimal genomic scaffolds with
high-throughput paired-end sequences. J Comput Biol 18 (11):1681-1691. doi: 10.1089/
cmb.2011.0170

 20. Gritsenko AA, Nijkamp JF, Reinders MJ, de Ridder D (2012) GRASS: a generic algorithm for
scaffolding next-generation sequencing assemblies. Bioinformatics 28 (11):1429-1437.
doi: 10.1093/bioinformatics/bts175

 21. Koren S, Treangen TJ, Pop M (2011) Bambus 2: scaffolding metagenomes. Bioinformatics
27 (21):2964-2971. doi: 10.1093/bioinformatics/btr520

 22. Salmela L, Makinen V, Valimaki N, Ylinen J, Ukkonen E (2011) Fast scaffolding with
small independent mixed integer programs. Bioinformatics 27 (23):3259-3265. doi: 10.1093/
bioinformatics/btr562

References

http://dx.doi.org/10.1093/bib/bbp026
http://dx.doi.org/10.1038/nmeth.1527
http://dx.doi.org/10.1038/nrg3367
http://dx.doi.org/10.1016/j.ygeno.2010.03.001
http://dx.doi.org/10.1371/journal.pcbi.1003345
http://dx.doi.org/10.1101/gr.126599.111
http://dx.doi.org/10.1093/bioinformatics/btq653
http://dx.doi.org/10.1101/gr.111351.110
http://dx.doi.org/10.1186/gb-2010-11-11-r116
http://dx.doi.org/10.1093/bioinformatics/btr208
http://dx.doi.org/10.1093/bioinformatics/btr170
http://dx.doi.org/10.1093/bioinformatics/btp379
http://dx.doi.org/10.1093/bioinformatics/btq468
http://dx.doi.org/10.1186/1471-2105-11-345
http://dx.doi.org/10.1093/bioinformatics/bts716
http://dx.doi.org/10.1089/cmb.2011.0170
http://dx.doi.org/10.1089/cmb.2011.0170
http://dx.doi.org/10.1093/bioinformatics/bts175
http://dx.doi.org/10.1093/bioinformatics/btr520
http://dx.doi.org/10.1093/bioinformatics/btr562
http://dx.doi.org/10.1093/bioinformatics/btr562

78

 23. Yang X, Chockalingam SP, Aluru S (2013) A survey of error-correction methods for next-
generation sequencing. Briefi ngs in bioinformatics 14 (1):56-66. doi: 10.1093/bib/bbs015

 24. Medvedev P, Brudno M (2009) Maximum likelihood genome assembly. J Comput Biol 16
(8):1101-1116. doi: 10.1089/cmb.2009.0047

 25. Medvedev P, Georgiou K, Myers G, Brudno M (2007) Computability of Models for Sequence
Assembly. In: Giancarlo R, Hannenhalli S (eds) Algorithms in Bioinformatics, vol 4645.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp 289-301.
doi: 10.1007/978-3-540-74126-8_27

 26. Chaisson MJ, Brinza D, Pevzner PA (2009) De novo fragment assembly with short mate-
paired reads: Does the read length matter? Genome research 19 (2):336-346. doi: 10.1101/
gr.079053.108

 27. Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S et al. (2009) Lineage-specifi c
biology revealed by a fi nished genome assembly of the mouse. PLoS Biol 7 (5):e1000112.
doi: 10.1371/journal.pbio.1000112

 28. Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A et al. (2011) The ecorespon-
sive genome of Daphnia pulex. Science 331 (6017):555-561. doi: 10.1126/science.1197761

 29. Li R, Fan W, Tian G, Zhu H, He L et al. (2010) The sequence and de novo assembly of the
giant panda genome. Nature 463 (7279):311-317. doi: 10.1038/nature08696

 30. Lin Y, Li J, Shen H, Zhang L, Papasian CJ et al. (2011) Comparative studies of de novo assem-
bly tools for next-generation sequencing technologies. Bioinformatics 27 (15):2031-2037.
doi: 10.1093/bioinformatics/btr319

 31. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB et al. (2005) Genome
sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438
(7069):803-819. doi:nature04338

 32. Liu Y, Qin X, Song XZ, Jiang H, Shen Y et al. (2009) Bos taurus genome assembly. BMC
genomics 10:180. doi: 10.1186/1471-2164-10-180

 33. Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV et al. (2011) Comparative and
demographic analysis of orang-utan genomes. Nature 469 (7331):529-533. doi: 10.1038/
nature09687

 34. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A et al. (2008) The draft genome of the trans-
genic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452 (7190):991-996.
doi: 10.1038/nature06856

 35. Huson DH, Halpern AL, Lai Z, Myers EW, Reinert K et al. Comparing Assemblies Using
Fragments and Mate-Pairs. In: WABI ‘01 Proceedings of the First International Workshop on
Algorithms in Bioinformatics Århus, Denmark, 2001. Springer Berlin Heidelberg, pp 294-306

 36. Phillippy AM, Schatz MC, Pop M (2008) Genome assembly forensics: fi nding the elusive mis-
assembly. Genome Biol 9 (3):R55. doi: 10.1186/gb-2008-9-3-r55

 37. Golovko G, Khanipov K, Rojas M, Martinez-Alcantara A, Howard JJ et al. (2012) Slim-Filter:
an interactive windows-based application for illumina genome analyzer data assessment and
manipulation. BMC bioinformatics 13:166. doi: 10.1186/1471-2105-13-166

 38. Powell DR, Seemann T (2013) VAGUE: a graphical user interface for the Velvet assembler.
Bioinformatics 29 (2):264-265. doi: 10.1093/bioinformatics/bts664

 39. Zhang W, Chen J, Yang Y, Tang Y, Shang J et al. (2011) A practical comparison of de novo
genome assembly software tools for next-generation sequencing technologies. PLoS One
6 (3):e17915. doi: 10.1371/journal.pone.0017915

8 Next-Generation Sequence Assembly Overview

http://dx.doi.org/10.1093/bib/bbs015
http://dx.doi.org/10.1089/cmb.2009.0047
http://dx.doi.org/10.1007/978-3-540-74126-8_27
http://dx.doi.org/10.1101/gr.079053.108
http://dx.doi.org/10.1101/gr.079053.108
http://dx.doi.org/10.1371/journal.pbio.1000112
http://dx.doi.org/10.1126/science.1197761
http://dx.doi.org/10.1038/nature08696
http://dx.doi.org/10.1093/bioinformatics/btr319
http://dx.doi.org/10.1186/1471-2164-10-180
http://dx.doi.org/10.1038/nature09687
http://dx.doi.org/10.1038/nature09687
http://dx.doi.org/10.1038/nature06856
http://dx.doi.org/10.1186/gb-2008-9-3-r55
http://dx.doi.org/10.1186/1471-2105-13-166
http://dx.doi.org/10.1093/bioinformatics/bts664
http://dx.doi.org/10.1371/journal.pone.0017915

	Chapter 8: Next-Generation Sequence Assembly Overview
	8.1 Introduction to Next-Generation Sequence Assembly
	8.2 Sequence Assembly Framework
	8.2.1 Error Correction Phase
	8.2.2 Graph Construction Phase
	8.2.3 Graph Simplification Phase
	8.2.4 Scaffolding Phase
	8.2.5 Assembly Assessment Phase

	References

