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          Abstract     Next-generation sequencing technologies have pushed the envelope 
beyond the primary goal of identifying the sequence of nucleotides within a given 
DNA molecule to a whole new multitude of applications. In this chapter, we describe 
select novel applications of next-generation sequencing in relation to large-scale 
sequencing-based projects, cell and cell compartments sequencing and disease- 
targeted sequencing.  

7.1               Introduction 

 The applications of the next-generation sequencing technologies and the recently 
introduced third-generation sequencing methodologies are nearly limitless. The 
determination of the constituents of a DNA sequence itself was the primary aim of 
the fi rst-generation of sequencing methods. With the availability of next-generation 
technologies, sequencing of the genome went from being a research aim to an 
important discovery tool. Thus, the utilization of whole genome sequencing (WGS), 
which is the primary application of these technologies, experienced a remarkable 
growth in the last few years. For instance, the number of genome sequencing proj-
ects in the Genome Online Database (GOLD) increased from 10,420 projects in 
May 2011 to 37,540 projects in January 2014 [ 1 ,  2 ]. The completed and published 
genomes in the above periods were 1,700 and 12,720 genomes, respectively, which 
demonstrated an incredible 720 % increase in a span of just 3 years. Clearly, this 
increase refl ects the improved availability, affordability, and effi ciency of the exist-
ing sequencers and methods. 

 The increased ease at which genome sequencing could be acquired opened the 
fl oodgates for applications and discoveries that went well beyond the initial goals of 
identifying the order of nucleotides or gene structure. Next-generation sequencing 
is presently being used in the WGS of humans [ 3 ], animals [ 4 ,  5 ], plants [ 6 ,  7 ], 
microbes [ 8 ,  9 ] and viruses [ 10 ]. In addition to WGS, next- and third-generation 
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sequencing technologies are also employed in genome resequencing [ 11 ], 
RNA sequencing (RNA-seq) [ 12 ], whole exome sequencing (WES) [ 13 ], targeted 
sequencing [ 14 ], single-nucleotide variations discovery, analysis and validation 
[ 15 ], chromatin immunoprecipitation sequencing (ChIP-seq) [ 16 ], epigenetics [ 17 ], 
proteogenomics [ 18 ,  19 ], diseases and disorders targeted sequencing [ 20 ], muta-
tions discovery [ 21 ], cancer research [ 22 ,  23 ] and numerous other clinical and 
health applications [ 24 ]. Several reports have extensively reviewed the genome 
sequencing applications [ 25 ,  26 ]. Furthermore, Nature Reviews Genetics has dedi-
cated an ongoing article series to the applications of next-generation sequencing 
since 2009 [ 27 ]. Here, we will focus on the discussion of select novel applications 
that have been approached on a radically different scale since the advent of newer 
sequencing technologies.  

7.2     Large-Scale Applications 

 Scientists design their research projects based on the availability and affordability 
of research tools and technologies. Thus, the availability of faster, cheaper, and 
more accurate tools and technologies leads to the planning of projects at an even 
higher level. The developments in genome sequencing technologies over the last 
decade have led to massive strides in sequencing power at an affordable cost and 
within a reasonable timeframe. This success has encouraged more expansive 
research projects where next-generation sequencing is used as a tool to discover 
diversities among individuals within large populations and to understand the funda-
mentals of life and biological systems. Here, we will take a few examples of large- 
scale genome projects that only became possible through the inception of 
next-generation sequencing and its subsequent development. 

7.2.1     Genome 10K Project 

 In the year 2009, a group of genomics scientists established the Genome 10K 
Community of Scientists (G10KCOS) and announced the Genome 10K Project 
[ 28 ,  29 ]. The Genome 10K Project aims to sequence and annotate the genomes of 
about 10,000 vertebrate species that will amount to almost one species from each 
vertebrate genus. The project was inspired by the human genome project and the 
subsequent availability of 56 vertebrate (32 mammals and 24 nonmammalian) 
genomes that are appropriate for comparative genomic analyses [ 29 ]. The stated time-
frame for the  project is quite short as the community aims to assemble such a “genomic 
zoo” by 2015. The targeted species are distributed between all the vertebrates, includ-
ing mammals, birds, non-avian reptiles, amphibians, and fi shes. After 1 year, the 
G10KCOS announced the fi rst 101 species to be sequenced [ 30 ]. Since fi shes repre-
sent more than 50 % of extant vertebrates, the Genome 10K Project intends to sequence 
the genomes of about 4,000 fi sh species, 160 of which are currently in progress [ 31 ]. 
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It is likely that the Genome 10K Project may take longer than expected. Nevertheless, 
it is a staggering effort that promises unique comparative study opportunities that is 
only possible through the use of modern genome sequencing technologies.  

7.2.2     Tree of Life Sequencing Project 

 Another example of large-scale genome sequencing projects is the Tree of Life 
Sequencing Project that was announced by Beijing Genome Institute (BGI) in 2010. 
BGI has the most powerful sequencing capacity worldwide, and is the main con-
tributor to the 1000 Genomes and Genome 10K projects as well. The Tree of Life 
Sequencing Project is also known as the 1000 Plant & Animal Reference Genomes 
Project, a name that is more descriptive of the intended goals of the venture. The 
project aims to target 1,000 reference genomes from 500 animals and 500 plants of 
various economically and scientifi cally important species such as rice, silkworm, 
cucumber, panda, camel, oyster, ant, grouper, goose, crested ibis, and potato 
genomes. To date, 106 genomes have been completed and published while another 
200 are in progress, representing about 30 % of the targeted species [ 32 ].   

7.3     Cell and Cell Compartments Applications 

 The projects discussed in the previous section shared the tendency to sequence a 
huge number of organisms and provide their genomes as reference genomes. In 
contrast, we will now examine the application of next-generation sequencing on a 
much smaller scale, such as a single cell or even a cell compartment. The main aims 
of such applications are to sequence the genomes of species that are diffi cult to grow 
in the lab environment, or when the availability of samples is limited. Another inter-
esting possibility is the determination of the heterogeneity between single cells in 
normal or tumorous tissues. 

7.3.1     Single-Cell Genome Sequencing 

 Preparation of sequencing samples is initiated with a group of cells, e.g., cell cultures 
of bacteria or archaea. However, culturing attempts have failed in the case of several 
microorganisms, making full genome sequencing of such organisms unlikely [ 33 ,  34 ]. 
Thus, methods to sequence a single cell were developed using PCR-based amplifi cation 
of the single bacterial cell genome with accuracy approaching 97 % [ 35 ]. 
Another technique that increased accuracy to 99.6 % [ 36 ] involved PCR-based ampli-
fi cation with multiple displacement amplifi cation (MDA) [ 34 ] followed by post-
amplifi cation normalization and assembly with the reference genome. These methods 
can be used to sequence the genomes of either single cells or individual cells from a 
variety of samples (with different treatments or from different environmental sources). 
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 Single-cell sequencing applications have also expanded to include the study of 
diseases with genetic alterations and to fi nd variations (heterogeneity) between dif-
ferent cells in diseased tissue. For instance, the amount of cancer-related genomic 
mutations in the Catalogue Of Somatic Mutations In Cancer (COSMIC) database 
number over one million to date [ 37 ]. The heterogeneity of tumor cells can result in 
several complications such as developing rare chemo-resistant cells that can resist 
chemotherapy. Such cells can regrow and result in the formation of a chemo- 
resistant tumor [ 38 ]. Several attempts have been made to apply single-cell sequenc-
ing to cancer genomics, allowing the possibility to sequence up to 200 single cells 
independently during a single run [ 39 ]. The numerous single-cell sequencing appli-
cations in cancer can include the pinpointing of chemo-resistant cells, the early 
detection of tumor cells, measuring intratumor heterogeneity, monitoring of circu-
lating tumor cells (CTCs) and in drug target discovery [ 40 ,  41 ]. Furthermore, the 
techniques may also be utilized to develop a guided form of chemotherapy that is 
appropriate against the measured heterogeneity of the tumor [ 39 ]. In the later sec-
tions, we will discuss further details on the applications of sequencing in cancer.  

7.3.2     Mitochondrial Genome Sequencing 

 Mitochondria are cellular organelles that can be found in eukaryotic cells. They are 
responsible for producing most of the cell’s energy by supplying it with adenosine 
triphosphate (ATP) through the phosphorylation of adenosine diphosphate (ADP). 
Mitochondria have their own genome and genetics that are independent from the 
cell nucleus genome. Therefore, it has its own proteome that is about 615 proteins 
[ 41 ]. Most of the mitochondria are inherited from the mother, and there is group of 
diseases known as mitochondrial diseases that are caused by dysfunctional mito-
chondria or genes that are inherited through the mitochondrial genome [ 42 ,  43 ]. 
These structures are also attributed to play an important role in aging and cancer 
[ 44 ,  45 ]. Moreover, they have a special genetic code for tryptophan and methionine 
as well as a distinct stop codon. This allows the mitochondrial genome to be per-
fectly suited for forensic investigations and human phylogenic studies [ 44 ,  45 ]. 
Hence, advancements in next-generation sequencing [ 43 ,  46 ] have been aptly 
refl ected in the utility of human mitochondrial genome sequencing during forensic 
investigations and cancer [ 45 ,  46 ] as well as the study of plants [ 47 ] and fi sh [ 48 ].   

7.4     Disease-Targeted Sequencing 

 Several diseases are associated with genetic mutations or genetic disorders while 
others are inherited from carrier parents to their offspring. The ongoing discovery of 
disease-related genes has made disease-targeted sequencing tests an important diag-
nostic tool [ 49 ]. With Sanger sequencing, tests were designed for diseases with a 
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single causative gene in order to confi rm the diagnosis. On the other hand, design-
ing tests for diseases with enormous genetic heterogeneity is far more diffi cult [ 49 ]. 
With the introduction of next-generation sequencing, the signifi cant increase in 
throughput and reduction in technical costs greatly aid the design of tests for a wide 
spectrum of diseases and genetic disorders, as well as the discovery of new disease- 
related genes and mutations (Table  7.1 ). In this section, we will introduce some of 
the recent applications of next-generation sequencing in understanding inherited 
and complex diseases, including the study of disease-related genes and mutations.

7.4.1       Sequencing in Cancer 

 Cancer is widely known to be associated with somatic mutations [ 22 ]. The Sanger 
Institute launched the Cancer Genome Project (CGP) as one of the earliest attempts 
to identify cancer genes and mutations [ 50 ]. The CGP currently represents one of 
the main resources of cancer genomics and mutations with its several databases and 
resources, including the COSMIC database [ 51 ], the Cancer Gene Census [ 52 ], 
COSMIC whole genomes and the COSMIC cell-line project [ 37 ]. To date, over a 

   Table 7.1    Clinically available disease-targeted tests a    

 Disease area  Disease type 
 Number 
of genes 

 Cancer  Hereditary cancers (for example, breast, colon, and ovarian)  10–50 
 Cardiac diseases  Cardiomyopathies  50–70 

 Arrhythmias (for example, long QT syndrome)  10–30 
 Aortopathies (for example, Marfan’s syndrome)  10 

 Immune disorders  Severe combined immunodefi ciency syndrome  18 
 Periodic fever  7 

 Neurological, 
neuromuscular and 
metabolic disorders 

 Ataxia  40 
 Cellular energetics, metabolism  656 
 Congenital disorders of glycosylation  23–28 
 Dementia (for example, Parkinson’s disease 

and Alzheimer’s disease) 
 32 

 Developmental delay, autism, intellectual disability  30–150 
 Epilepsy  53–130 
 Hereditary neuropathy  34 
 Microcephaly  11 
 Mitochondrial disorders  37–450 
 Muscular dystrophy  12–45 

 Sensory disorders  Eye disease (for example, retinitis pigmentosa)  66–140 
 Hearing loss and related syndromes  23–72 

 Other  Rasopathies (for example, Noonan’s syndrome)  10 
 Pulmonary disorders (for example, cystic fi brosis)  12–40 
 Short stature  12 

   a  Data is derived from [ 49 ]  
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million identifi ed mutations in cancer have been cataloged in the COSMIC database, 
including all types of known genetic mutations such as single-nucleotide mutations, 
insertions, deletions, and chromosomal rearrangements [ 37 ,  51 ]. Although the pri-
mary technology utilized at the commencement of the CGP was Sanger sequencing, 
the project also utilized the power of next-generation sequencing in later phases. 

 Several other large-scale projects have been conceived through international 
consortiums aided by public and private funding. These projects also aim to identify 
cancer-related mutations and genes as well as categorize fi ndings based on impor-
tance and recurrence. For example, the International Cancer Genome Consortium 
(ICGC) is a huge publicly funded cancer genome-sequencing project. The ICGC 
aims to sequence the whole genome of 50 different types and subtypes of cancer 
that are clinically important [ 53 ]. The most recent data release from the project 
(Release 14) provides the results of 41 different cancer projects from over 8,500 
donors. In this case, sequencing studies resulted in the identifi cation of over two 
million mutations from 54,682 mutated genes. 

 With relation to privately funded projects, the Pediatric Cancer Genome Project 
(PCGP) was announced in 2010 by St. Jude Children’s Research Hospital and the 
Genome Institute at Washington University [ 54 ]. This project targeted the sequenc-
ing of 600 pediatric tumors and matched non-tumor germline samples (totaling 
1,600 genomes) with high resolution sequencing in an aim to catalog somatic muta-
tions of pediatric tumors and defi ne the major subtypes in pediatric cancers [ 54 ]. 
The most recent data release from the PCGP (June 2013) contained the whole 
genomes of 15 different cancer types from over 360 patients that were analyzed and 
revealed novel fi ndings [ 55 ].  

7.4.2     Sequencing in Inherited Human Diseases 

 Inherited human diseases are disorders that result from single-gene mutations. They 
are also known as monogenic disorders or Mendelian disorders. There are around 
5,000 known monogenic disorders though the genetic causes of most of them are 
still unknown [ 56 ]. Most of these cases resulted from exonic mutations (mutations 
that occur in the exon) or splice-site mutations (mutations that affect the splicing 
pattern of the mRNA). Both types of mutations affect the resulting protein sequence 
following translation of the affected gene [ 57 ]. Thus, whole exome sequencing 
(WES) using next-generation sequencing is an effi cient methodology to identify 
both these types of mutations without the need of whole genome sequencing (WGS). 
Furthermore, the utilization of WES saves time and reduces cost since the human 
exome represents ~1 % of the human genome. However, certain other mutations 
that cannot be identifi ed without sequencing the whole genome may also result 
from deletions [ 57 ]. The 1,000 Mendelian Disorders Project is a large-scale effort at 
the Beijing Genome Institute (BGI) that aims to sequence the genome of 1,000 
Mendelian disorders to identify the causative genes behind them using next- 
generation sequencing rather than traditional techniques such as positional cloning, 
physical mapping, and candidate-gene sequencing [ 56 ].  
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7.4.3     Sequencing in Complex Human Diseases 

 Next-generation sequencing has provided novel approaches in locating common 
and rare variants that infl uence the risk of developing complex diseases such as 
cancer, diabetes, cardiovascular disease, and psychiatric disorders [ 25 ]. Several 
Genome-Wide Association Studies (GWAS) have used next-generation sequencing 
technologies in examining complex trait genetics [ 58 ,  59 ]. Such studies demon-
strated the utility of next-generation sequencing applications in understanding com-
plex diseases such as hypertrophic cardiomyopathy [ 59 ], brain disease [ 60 ] and 
diabetes [ 61 ]. Moreover, the investigations provided novel insight into understand-
ing the genetics mechanisms behind disorders of sex development (DSD) [ 62 ].      
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