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5.1 Chemical and Electrochemical Sensors in LivingWorld

Living world offers a lot of examples of sensors consisting in biological receptors

(proteins, nucleic acids, signaling molecules) located everywhere, in the cell

(nucleus, mitochondria, cell membrane), in all the tissues, in organs, or even in

the circulating bloodstream. Muscular and nervous activities are accompanied by

electrical currents which can be measured by electrocardiography or electroenceph-

alography, for example. The transmission of the nervous stimuli represents in fact a

true electrochemical process, during which an electrical current is carried all along

the neuronal axon to the synapse, where a chemical entity (acetylcholine, adrena-

line, etc.) is released. This chemical species passes through the synapse space where

it is discharged to the next neuron, generating a new electrical current, in picosec-

onds, or even in a shorter time. In fact, the whole metabolism, cell division, growth

and apoptosis, immune response by antibody synthesis, or even pathologic pro-

cesses like inflammation are controlled by an outstanding network of receptors and

signaling molecules in a sensor-actuator manner. This extremely important feature

is common to all living organisms, from microorganisms like viruses and bacteria,

to the plant and animal world. In other words, one can say that electrochemistry is

surrounding and controlling us in every moment.

Mitochondria are the power plants of the living cell; their most important roles

are to produce the energy of the cell, adenosine triphosphate (ATP) (i.e., phosphor-

ylation of adenosine diphosphate (ADP) by a chain of reactions known as the citric

acid cycle or the Krebs cycle) through respiration, and to regulate the cellular

metabolism (Fig. 5.1).1
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The outer protein-phospholipidic mitochondrial membrane contains a large

number of integral proteins called porins, which form channels that allow relatively

small molecules (5,000 Da or less in molecular mass) to freely diffuse from one side

of the membrane to the other.2 Larger proteins are transferred by the protein of the

outer membrane called translocase which binds a signaling sequence at their

N-terminus, and actively moves them across the membrane.3

The intermembrane space situated between the outer membrane and the inner

membrane has the same composition as the cytosol, because the outer membrane is

freely permeable to small molecules. Large proteins (cytochrome c) must have a

specific signaling sequence to be transported across the outer membrane.4

The inner mitochondrial membrane contains proteins2 that perform the redox

reactions of oxidative phosphorylation, generate ATP in the matrix (ATP synthase),

regulate the metabolite passage into and out of the matrix by specific transport, and

allow the protein passage across the inner membrane (inner membrane translocase),

the protein fusion, and fission.

The production of ATP is achieved by glucose, pyruvate, and NADH oxidation

in the presence of oxygen (aerobic respiration). In the absence or in the presence of

limited amounts of oxygen, the glycolytic products will be metabolized by anaer-

obic fermentation using alternative substrates such as nitrite.5

Pyruvate produced by glycolysis is actively transported across the inner mito-

chondrial membrane into the matrix where it is oxidized and combined with

coenzyme A to form CO2, acetyl-CoA, and NADH.

Fig. 5.1 Mitochondrial tricarboxylic acid (TCA) cycle or Krebs cycle
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During Krebs cycle acetyl-CoA is oxidized to carbon dioxide. The reduced

cofactors (three molecules of NADH and one molecule of FADH2) that result

from the Krebs cycle are a source of electrons for the electron transport chain,

and the molecule of guanosine triphosphate (GTP) is converted to ATP.1

Protein complexes in the inner membrane (NADH dehydrogenase, cytochrome c

reductase, and cytochrome c oxidase) transfer the redox energy from NADH and

FADH2 to O2 in several steps via the electron transport chain. The released energy

is used to pump H+ into the intermembrane space. Electrons may also reduce

oxygen, forming reactive oxygen species such as superoxide, which is a cause of

oxidative stress associated with the aging process.6

A strong electrochemical gradient occurs across the inner membrane, as the

proton concentration increases in the intermembrane space. The protons can return

to the matrix through the ATP synthase complex, their energy being used to

synthesize ATP from ADP and inorganic phosphate.1

Living organisms developed outstanding and very complex networks of biolog-

ical sensors distributed all over, from single cells and tissues to specialized organs

like the eyes, ear, skin, nasal mucous, or tongue. The skin-sensitive fibers are in fact

the dendrites of the sensitive neurons that emerge from spinal ganglions and receive

external signals like pressure, coldness, or heat. These signals are sent to and from

the brain through efferent and afferent neurons. Transmission of nerve impulses

constitutes the most convincing example of electrochemistry in the living world.

Neurons do not touch each other; a gap called a synapse or synaptic cleft
separates the axon of one neuron and the dendrites of the next neuron. All the

signals must cross the synapse to continue on its path through the nervous system.

In the brain, the nervous impulse is carried across synapses by electrical conduc-

tion, while in other parts of the body impulses are carried across synapses by an

electrochemical process. When an impulse comes, the membrane at the end of the

axon depolarizes, opening the gated ion channels, and calcium ions are allowed to

enter the cell. The presence of calcium ions determines the release into the synapse

of a chemical species called neurotransmitter which moves across the synapse and

binds to specific receptors (different proteins serve as receptors for different

neurotransmitters) on the postsynaptic neuron membrane that is about to receive

the impulse.

Excitation or inhibition depends on the neurotransmitter and the receptor. For

example, if the neurotransmitter causes the opening of the Na+ channels, the neuron

membrane becomes depolarized and the impulse is carried through that neuron. If

the K+ channels open, the neuron membrane becomes hyperpolarized and inhibition

occurs.

When a neuron is not stimulated its membrane is polarized; the outside of the

membrane containing Na+ ions is positively charged while the electric charge on

the inside of the membrane containing K+ ions, negatively charged proteins, and

nucleic acid molecules is negative. The neuron is inactive and polarized until a

stimulus comes. Then, the Na+/K+ pumps on the membrane pump the Na+ back

outside the membrane and the K+ back inside.
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When a stimulus occurs, the neuron is depolarized; the gated ion channels on the

resting neuron’s membrane open suddenly and allow the Na+ that was outside the

membrane enter the cell, which becomes positively charged. Polarization is

removed and the threshold level is reached. When the stimulus goes above the

threshold level, more gated ion channels open allowing more Na+ inside the cell.

Like this, complete depolarization of the neuron is achieved, an action potential is

created, and the stimulus will be transmitted.

Once the inner space of the cell is occupied by Na+, the Na+ gates close and the

K+ gated ion channels of the cell membrane open allowing K+ to move to the

outside space. Thus, the electrical balance (the repolarization of the membrane) is

restored, but at this time the repolarized membrane has Na+ on the outside and K+

on the inside.

The membrane potential when K+ gates finally close is lower than the resting

potential, and the membrane is hyperpolarized because the neuron has slightly more

K+ on the outside than it has Na+ on the inside. After the impulse has passed through

the neuron, the action potential is over, and the cell membrane returns to the resting

potential.

The Na+/K+ pumps will return the ions to their rightful side of the neuron’s cell

membrane; the neuron returns to its normal polarized state and stays in the resting

potential until another impulse occurs. During this period called refractory period,

the neuron does not respond to any incoming stimulus.

Signals are sent along the neuronal axon as electrochemical waves (called action

potentials) producing cell-to-cell signals where axon terminals make synaptic

contact with other cells. Synapses may be electrical or chemical, the last ones

being much more common and diverse in functions.7,8 The neuron that sends the

signals is called presynaptic neuron, and the one that receives the signals is called

postsynaptic neuron. In the presynaptic area are located numerous microvesicles

containing chemical molecules, called neurotransmitters. When the presynaptic

terminal is electrically stimulated, the contents of the vesicles are released into

the synaptic cleft. The neurotransmitter binds to the receptors located in the

postsynaptic membrane, which will be activated. As a consequence, the resulting

effect on the postsynaptic cell can be excitatory, inhibitory, or modulatory,

depending on the type of receptor (Fig. 5.2). For example, the release of the

neurotransmitter acetylcholine at a synaptic contact between a motor neuron and

a muscle cell induces rapidly the muscle contraction, the entire synaptic transmis-

sion process taking only a fraction of a millisecond.7

Over a hundred neurotransmitters are known nowadays, many of them having

multiple types of receptors. Among the well-known neurotransmitters are mono-

amines (dopamine, norepinephrine, epinephrine, histamine, serotonin), amino acids

(glutamate, aspartate, D-serine, gamma-aminobutyric acid (GABA), glycine), pep-

tides (somatostatin, P substance, opioid peptides like endorphins), and some others,

such as acetylcholine, adenosine, anandamide, nitric oxide, hydrogen sulfide, and

carbon monoxide.9

Acetylcholine (Ach) can be found in the central nervous system, neuromuscular

junctions, spinal cord, and preganglionic and motor neurons. Neurological and
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neuropsychiatric diseases, such as Alzheimer’s disease, Parkinson’s disease, pro-

gressive dementia, and schizophrenia, may occur due to acetylcholine accumula-

tion in nervous tissue without being metabolized. This fact explains the

considerable interest for its determination in vitro and in vivo, but unfortunately,

Ach is neither easily oxidizable/reducible, nor possesses structural characteristics

(electroreactive, chromophore, or fluorophore groups) in order to allow a sensitive

detection by electrochemical, spectrophotometric, or fluorometric methods.

Sattarahmady et al. investigated the electrocatalytic oxidation of Ach by

cyclic voltammetry, steady-state polarization measurements, and chronoam-

perometry on a nickel nanoshells-carbon microparticles-Nafion nanocomposite.10

The nanocomposite-based Ach biosensor showed a sensitivity of

48.58� 0.52 mAM�1 cm�2 and a limit of detection of 49.33 nM. The same

group reported the electrocatalytic oxidation of Ach on two different copper-

based transducers, a copper microparticle-modified carbon paste electrode (CPE)

and a copper nanoparticle-modified CPE.11

Generally, synapses use more than one neurotransmitter, in most cases a fast-

acting small-molecule neurotransmitter, such as GABA or glutamate, together with

one or more neurotransmitters with slower acting modulatory like peptides.7,8

Receptors can be divided into two main types: chemically gated ion channels

and second messenger systems. When a chemically gated ion channel is activated,

it allows specific types of ions to flow across the membrane, the effect on the target

cell being excitatory or inhibitory, depending on the ion type. When a second

messenger system is activated, a chain of molecular interactions starts inside the

target cell, resulting in a wide variety of complex effects (i.e., the increase or

decrease of the cell sensitivity to stimuli).

Both glutamate and GABA have several widely occurring receptor types, but all

of them are excitatory or modulatory for glutamate and inhibitory for GABA.12

Axonal transport occurs along the cellular cytoskeleton, which is the neuron

structural support, allowing the cell to grow or change in size and shape over time.

There are three major components of the neuronal cytoskeleton: microtubules,

actin, and intermediate filaments. Neurons are uniquely dependent on the

microtubule-based transport and the deficits in axonal transport contribute to

pathogenesis (neurodegenerative diseases, like amyotrophic lateral sclerosis). The

motor, cytoskeletal, and adaptor proteins involved in the axonal transport, in the

disruption of axonal transport, and the pathways that may cause neuronal dysfunc-

tion and death are described in a review by Chevalier-Larsen and Holzbaur.13

An electrochemical strategy to investigate the 1,4-naphthoquinone effect on

voltage-gated potassium channels was recently reported by Rodrı́guez-Fernández

et al.14 Naphthoquinone (NQ) was tested on voltage-gated ion channels expressed

in Xenopus laevis oocytes by cyclic voltammetry. A typical two-stage mono-

electronic reduction mechanism was observed in dimethylsulfoxide (DMSO),

while a one-stage bielectronic reduction process was found in physiological

supporting electrolyte ND-96 (NaCl, 96 mM; KCl, 2 mM; CaCl2, 1.8 mM;

MgCl2, 1 mM; and HEPES buffer, 5 mM; pH adjusted to 7.0 with NaOH).

The structural features, such as aromaticity and substituents, prone to hydrogen
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bond formation of NQs, are important, together with the NQ interactions with some

channel residues which favors their reduction process in the protein surroundings.

5.2 Electrochemical Sensors for Flora and Fauna on Earth

Biosphere comprises all living organisms on earth; this is why it represents the most

dynamic and fragile “sphere” of our planet, being strongly influenced by all other

“spheres,” soil, water, and air. Terrestrial flora and fauna are the main components

of the biosphere, but it can be considered that microorganisms (bacteria, viruses,

etc.) and human community have their particular features and should be treated

separately. Human community brings its main contribution to the pollution of all

spheres through industrial and domestic activity, but in the same time one of its

main concerns is fighting against environmental pollution by coordinated actions.

Biosphere represents also the most complex and heterogeneous sphere by com-

parison with air, water, and soil, which are relatively “homogeneous,” and, there-

fore, it makes it difficult to characterize. The great variety of living organisms

(microorganisms, plants, animals) makes the assessment of both normal and abnor-

mal “composition” of this sphere almost impossible. So each case should be treated

separately and set in the general context of the biosphere and the whole environment.

The normal behavior and environmental conditions for a particular living species,

plant or animal, in relation with other environmental factors (soil, air, or water)

represent an interesting topic. Another topic consists in either the environmental

factors or pollutants that affect or damage the living species, or in how the environ-

ment is affecting particular species. Some important features here are the continuous

deforestation (especially in equatorial areas, such as Amazonia) and desertification

caused by intensive agriculture which seriously affect terrestrial atmosphere.

Another worrying matter is represented by carbon dioxide emissions caused by the

intensive cattle livestock and the so-called greenhouse effect (taking into consider-

ation the important amount of CO2 that a single cow “produces” per year).

Two different approaches describe the electrochemical sensors for vegetal and

animal organisms: sensors able to detect the presence, the movement, and the

number of organisms in a given environment, or sensors able to detect a large

variety of normal or pathologic parameters in living organisms.

The representative techniques currently applied for an efficient, specific, rapid

detection of viruses are described by Caygill et al.15 Among them, electrochemical

biosensors based on amperometric, potentiometric, and impedance measurements,

optical biosensors that use surface plasmon resonance, optical fibers and piezoelec-

tric biosensors based on microcantilevers, and recently the use of nanoparticles and

novel nanomaterials as alternate recognition surfaces have been widely applied.

Cheran et al.16 reported the current techniques employed for the transduction and

processing of cellular signals, both for single-cell behavior and populations of cells.

Electrochemical methodology (transistor and impedance methods), optical (light

addressable potentiometry), and vibrational methods (transverse acoustic wave
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methodology and Kelvin nanoprobe) were employed for examining populations of

neurons, smooth muscles, and human red blood cells on a substrate in a label-free

manner.

The use of microtechnology to develop new micro-fabricated electrode struc-

tures able to manipulate sub-micrometer particles by means of a nonuniform AC

electric field was described by Abonnenc et al.17 The microchip could integrate

manipulation of living cells under software control without affecting the viability of

living organisms, and allowed their recovery after having performed complex

operations, offering like this a powerful tool for the development of new diagnostic

and therapeutic protocols.

The sensors able to detect a great variety of normal or pathologic parameters in

living organisms are designed for three main types of pollutants: chemical, micro-

biological, and genetic.

Some examples in this way are the electrochemical microsensors for Cd(II) and

Pb(II) detection in plants18; the real-time electrochemical detection of extracellular

nitric oxide in tobacco cells as a potent regulator of major processes including

germination, root growth, stomatal closure, flowering, and adaptive responses to

biotic and abiotic stresses19; a DNA electrochemical biosensor based on

2,6-pyridinedicarboxylic acid film and gold nanoparticles on the glassy carbon

electrode (GCE) for electrochemical impedance spectroscopic detection of the

sequence-specific DNA related to the PAT transgene in transgenic plants20; or an

electrochemical sensor array for monitoring the proliferation effects of Cissus
populnea plant extracts on TM4 Sertoli.21 Some organisms, such as blue-green

algae (cyanobacteria), can produce and deliver in water toxic metabolic products

for the aquatic organisms and humans, which can be detected and quantified by a

phycocyanin sensor.22

Environmental monitoring based on whole-organism bioassays and biological

early warning systems (BEWS) is lately considered to replace standard expensive

chemical analysis. The tests must accomplish some basic conditions like to be

simple, based on standardized protocols, predictive, low cost, and applicable to

species, populations, and communities. They also need to be sensitive to a wide

range of chemicals with minimal matrix effects.23

Whole-organism bioassays are based on the measurement of the biological

response (acute or chronic toxicity) of a test organism to contaminants present in

a water sample (e.g., drinking, ground, surface, or wastewater effluent) in a stan-

dardized test usually conducted in the laboratory.24 Several test species covering

most of the different trophic levels in freshwater and/or estuarine/marine environ-

ments may be employed, the use of multiple test species and trophic levels being

usually recommended because each species shows specific sensitivity to different

chemicals or classes of compounds.24,25

The usually measured parameters are bioluminescence, metabolic status, or

growth, when microorganisms at the base of the trophic chain, such as Vibrio
fischeri or Pseudomonas putida, are used.26

Other parameters, like the reduction in photosynthetic activity (by measuring

fluorescence) or the growth rate inhibition, can be considered if phototrophic
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organisms, such as green algae (Selenastrum capricornutum or Pseudokirchneriella
subcapitata), are employed. The use of dormant organism technology (e.g., algae or

daphnid Daphnia magna) allows a simplified, rapid, and cost-effective test without

the inconvenience of cell cultures, which are much more expensive.27,28 Thus, the

detection of specific effects of herbicides which can affect either photosynthesis

systems I or II29 can be achieved.

Chronic toxicity testing using invertebrates is usually based on growth rate or

survival of amphipods (e.g., Hyalella azteca or Gammarus), chironomid larvae

(Chironomus riparius), daphnids, oysters (Crassostrea gigas), and many other

organisms under controlled conditions.26,30 Bigger organisms such as fish are

used for risk assessment, larval/embryonic development rate, fish lethality, or

growth rate being the toxicity endpoints used in these assays.24

Biomonitoring using BEWS is based on the toxicological response of an organ-

ism to a contaminant or mixture of contaminants.31 Many organisms, including fish

species,32,33 daphnia, midge larvae, microorganisms (e.g., algae and bacteria),34

bivalve mollusks (e.g., various species of mussels), or even combinations of these

test organisms35 have been used as BEWS.

BEWS applications include monitoring of drinking water intakes, water distri-

bution systems, wastewater effluents, effluents from contamination sites,36,37 or

river basin monitoring,38 and provide a rapid evaluation of water quality and

toxicity that cannot be achieved through other analytical methods.

Generally, BEWS consist of a living organism, a sensing element to detect

changes in the test organism, and a processing element to translate the signal

from the sensing element into a warning response system. The species commonly

used are the rainbow trout (Oncorhynchus mykiss) or the bluegill (Lepomis
macrochirus).39 The secondary sensing system is composed of electrodes immersed

close to the fish to monitor changes in electrical voltage associated with gill muscle

activity.32 Swimming and positioning behavior, or the ability to swim against

current and ventilation frequency, are regularly employed.33,39 Algal monitors are

based on fluorescence, oxygen production measurements, and growth rate moni-

toring and can detect the effects from herbicides or other toxicants that interact with

chlorophyll photosynthetic systems.34 Measurements based on respiration,

pumping, and heart rates of bivalve mollusks, such as the freshwater zebra mussel

(Dreissena) or the marine blue mussel (Mytilus edulis),40 have been tested, even

though valve closure or movement responses are defense mechanisms used by

bivalves to avoid stress such as contaminated water.41 Behavioral changes of

Tubificids worms have also been undertaken.42

The exploitation of BEWS depends on the data treatment and coordination of

response measures to pollution events in order to mitigate their environmental

impact,43 but also on the improvement in data transfer and on personal computers,

the use of online chemical monitoring systems (e.g., SAMOS) being a crucial factor.

A particular category of electrochemical sensors is the sensors able to detect the

great variety of normal or pathologic parameters of living organisms. They can be

designed either for analytical laboratory conditions, like any other type of sensor, or

to be used in vivo, like implantable sensors. In the latter case, issues like their size,
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shape, biocompatibility, and lifetime are crucial and will be discussed together with

some examples of implantable sensors recently reported in scientific literature.

A broad variety of pharmaceuticals relying on nanoparticles has been reported

for both drug delivery and diagnosis tasks.44 Pharmaceutical products gave rise to

new opportunities in directions such as topical and transdermal delivery owing to

their ability to penetrate through human tissues, implantable release systems for

tissue engineering applications, and ophthalmic delivery in which drug release can

be externally controlled by stimuli-responsive nanocomponents.45–49

Microdialysis is known as a powerful sampling technique that makes it possible

to continuously monitor the concentrations of biological molecules and other sub-

stances both in vivo and in vitro.50 Microdialysis sampling was first applied in the

area of neuroscience research,51 and then it has been extensively employed for other

pharmaceutical applications, such as the investigation of the transdermal delivery

of drugs,52 tissue pharmacokinetics,53 and regional metabolism of drugs in tis-

sues.54,55 Microdialysis probes have been placed in virtually every tissue and organ

in the body, including the liver,56,57 heart,58,59 skin,54,60 blood,61,62 placenta,63

stomach,64,65 and ear.66

The mechanism of microdialysis sampling was also explored. Therefore, the

probe containing a dialysis membrane with a specific molecular mass cutoff,

implanted in the physiological region of interest, is perfused with a fluid that is

similar in ionic strength and composition to the extracellular fluid being sampled.

Small molecules in the extracellular fluid can diffuse across the membrane based on

their concentration gradient and are then transported to the analysis system. In this

way, the compounds in the perfusate that are not present in the extracellular fluid

can be delivered directly to the physiological site of interest.50 Therefore, com-

pounds from a single tissue site can be both delivered and recovered. This was

proved to be very useful for looking at site-specific release of neurotransmitters,50

observing regional metabolism of neuropeptides,67,68 or comparing the metabolism

of antineoplastic agents in tumor vs. healthy tissue.69

For neurochemical studies, probes are generally composed of stainless steel and

are implanted into the specific brain region of interest using a guide cannula.

Typical probes used for rat brain studies are normally 15 mm long with a diameter

between 200 and 500 μm. The dialysis membrane, from 1 to 4 mm in length, is

located at the end of the concentric cannula.50

A probe designed for blood sampling was first described by Telting-Diaz et al.70

and consisted of two pieces of fused silica tubing attached to the dialysis membrane.

This probe was so flexible that it could bend when the animal moved, minimizing

any blood vessel damage. Online microdialysis–biosensor systems need low sample

volumes (μL) if high temporal resolution is required.50 Also, high sensitivity and

specificity for the analyte(s) of interest in the presence of other endogenous

electroactive analytes are mandatory.71 A flow-through biosensor was reported

for direct coupling to continuous low-flow microdialysis. Analyte selectivity for

glucose and lactate could be achieved by using immobilized oxidoreductase

enzymes followed by amperometric detection of hydrogen peroxide.72
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Online microdialysis sampling coupled to biosensors was reported for analytes

such as ascorbate,73 glucose, lactate,74,75 and glutamate.74,76,77 The simultaneous

monitoring of glucose and lactate in rats under hypoxic conditions was also

achieved.78 An online system for multianalyte in vivo monitoring was described

by Yao et al. and consisted of a triple-enzyme electrode that selectively detected

glucose, L-lactate, and pyruvate without significant cross-reactivity.79 Similar flow

injection-based online systems were reported for L-glutamate, acetylcholine, dopa-

mine,80 and D-/L-lactic acid.81

An online system for glucose and lactate to monitor ischemic events in freely

moving rats was also developed. The analytes were monitored by flow injection

analysis with enzyme-based amperometric detection.82 Glucose monitoring was

achieved in an awake rabbit using a flow-through sensor with chemiluminescence

detection.83 Online monitoring of glucose and lactate from rat brain was also

performed following ischemia and reperfusion. In this case, the sensor employed

methylene green adsorbed on single-walled carbon nanotubes for detection.84

Few studies have used carbon nanotube sensors in biological samples. By

reducing the size of the electrodes, as many are based on larger GCEs or CPEs,

so they are compatible with tissue implantation or the size of cells; more applica-

tions can be found in this direction. Due to the fact that dopamine and other

catecholamines are not expected to be present at high levels in plasma or urine,

studies should focus on examining tissue from the nervous system or investigating

release from cells. Moreover, the low basal levels of dopamine (10 nM) and other

neurotransmitters make sensitivity a particular challenge.85

Another concern for in vivo use of carbon nanotube-based sensors is their

toxicity. Even carbon nanotube toxicity has not yet been fully characterized;

many present studies find that CNTs aggregate together, generally in the liver,

spleen, and lung tissue. CNT aggregates might have similar carcinogenic properties

to asbestos fibers.86–88

The extracellular recording of bioelectric signals was proved to be widely

achieved by microelectrode electrophysiology. By replacing the traditional electrode

conductors with highly flexible electroconductive polymers, non-cytotoxic and

biostable all-polymer microelectrode arrays able to reliably capture action potentials

and local field potentials from acute preparations of heart muscle cells and retinal

whole mounts, in vivo epicortical and epidural recordings, as well as during long-

term in vitro recordings from cortico-hippocampal cocultures could be achieved.89

By using organic conjugated polymers that use both electrons and ions as charge

carriers of the nervous system, a series of novel communication interfaces between

electronic components and biological systems was developed. An organic elec-

tronic ion pump made of the polymer–polyelectrolyte system poly

(3,4-ethylenedioxy thiophene):poly(styrenesulfonate) able to translate electronic

signals into electrophoretic migration of ions and neurotransmitters was

described.90 Therefore, it was demonstrated how spatiotemporally controlled deliv-

ery of ions and neurotransmitters can be used to modulate intracellular Ca2+

signaling in neuronal cells in the absence of convective disturbances. In this way,

the amplitude and frequency of Ca2+ responses can be strictly controlled due to the
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electronic control of delivery, which can be used to generate temporal patterns

mimicking naturally occurring Ca2+ oscillations. By developing an electrophoretic

chemical transistor, an analog of the traditional transistor used to amplify and/or

switch electronic signals, the further control of the ionic signals was enabled.

Finally, the organic electronic ion pump could be used in a new “machine-to-

brain” interface by modulating brainstem responses in vivo.90

In spite of its disadvantages, platinum has been used for nonenzymatic detection

of blood glucose. One of the drawbacks of the platinum electrode is its catalytic

activity for the electrochemical oxidation of glucose drops which can be seriously

affected by the chloride ion present in physiological fluids.91,92 On the other hand,

amino acids,93,94 biochemicals like ascorbic acid, creatinine, epinephrine, and

urea94 in blood can destroy the platinum electrode. In this way, if blood proteins

occupy the catalytic sites on the platinum surface, the detection of glucose on

platinum will be deteriorated.96 Due to the fact that glucose oxidation can be

inhibited by many biochemicals and amino acids in blood,95 this can lead to a

loss of sensitivity when glucose is detected with platinum.96

A system for continuous estimation of blood glucose in fish was developed by

Yonemori et al.97 The eyeball scleral interstitial fluid (EISF) was used as the site of

sensor implantation and the relationship between EISF and blood glucose concentra-

tions was evaluated, revealing that blood glucose concentrations were closely corre-

lated with the EISF glucose concentration. A needle-type enzyme sensor for

implantation in the fish sclera using a flexible wire electrode was then prepared.

The sensor provided a rapid response, good linearity, and reproducibility. Continuous

glucosemonitoring could be carried out by implanting this needle-type glucose sensor

onto the eye. An accurate glucose monitoring could be achieved for over 160 min.

A hybrid biological fuel cell (HBFC) comprising a microbial anode for lactate

oxidation and an enzymatic cathode for oxygen reduction was developed and then

tested in a marine environment. A laboratory-cultivated Shewanella oneidensis
DSP-10 was fixed on a carbon felt electrode via a silica sol–gel process in order to

catalyze anodic fuel cell processes. The cathode electrocatalyst consisted of biliru-

bin oxidase, fixed to a carbon nanotube electrode using a heterobifunctional cross-

linker, and then stabilized with a silica sol–gel coating. The HBFC maintained a

reproducible open-circuit voltage >0.7 V for 9 days in laboratory settings and

sustained electrocatalytic activity for >24 h in open environment tests.98

A chitosan-modified carbon fiber microelectrode for in vivo detection of sero-

tonin was described. It was demonstrated that chitosan has the ability to reject

physiological levels of ascorbic acid interferences and facilitate selective and

sensitive detection of in vivo levels of serotonin. In vivo results demonstrated

that the chitosan-modified electrode could measure serotonin produced in the

zebrafish intestine with high spatial and temporal resolution. A serotonin concen-

tration of 30.8 (�3.4) nM could be recorded in vivo with the implanted chitosan-

modified microelectrode in normal physiological conditions. Due to its inherent

biocompatibility and remarkable adherence, chitosan was proved to be an excellent

coating for use in implantable sensors, able to selectively detect and monitor levels

of in vivo neurotransmitters.99
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5.3 Sensors for Monitoring Agriculture, Food,
and Drug Quality

In order to provide accurate information on crop, soil, climate, and environmental

conditions, modern agricultural management relies strongly on many different

techniques.100 For more information on soil and agricultural analysis, see Chap. 2.

5.3.1 Remote Spectral Sensing

An important tool in this direction is the remote spectral sensing of crops, which

refers to imagery taken from above a field where the incident electromagnetic

radiation is generally sunlight.101 The difference in color, texture, or shape of the

contacted bodies is due to the amount of the reflected, absorbed, and transmitted

energy of a specific wavelength.100 The ratio of reflected energy to incident energy,

known as spectral reflectance, is measured as a function of wavelength102 and its

recorded images represent a spectral signature, which is unique to plant species and

conditions.100 Food quality and food contaminants could be detected in food

industry by using remote spectral sensing.103–106 A sensor system that measures

induced fluorescence or scattered reflectance is used in food-processing plants

when an artificial light source is needed to illuminate the food as it passes on a

conveyor belt.100 The wavelengths measured in food quality cover generally the

ultraviolet (10–400 nm), visible (400–750 nm), and near-infrared range (750–

2,500 nm).103 Some studies used also three-dimensional hyperspectral images for

accurate detection.107–111

5.3.2 The Electronic Nose

Each plant releases a specific volatile organic compound (VOC) as a result of its

everyday biological processes and the quantity of this compound represents an

indicative of crop and field conditions. VOCs can be affected by the different

environmental conditions, but also by insects or plant diseases. Electronic noses

are used in agriculture to detect crop diseases, identify insect infestations, and

monitor food quality. The electronic nose generally contains two components: an

array of gas sensors with a broad and partly overlapping selectivity and an elec-

tronic pattern recognition system with multivariate statistical data processing

tools.100 The electronic nose is typically able to compare the profile of VOCs

released by healthy plants/fruits with diseased plants/fruits.100 In the food industry

the electronic nose was used to assess the freshness/spoilage of fruits and vegeta-

bles during the processing and packaging process.112,113 The detection of VOCs

that indicate fruit ripeness and/or compounds that trigger fruit ripening, such as
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ammonia,114,115 ethanol,115 ethylene,115,116 and trans-2-hexenal117 was also

achieved. Even they are in preliminary stages of feasibility, studies reported the

monitoring of the changes in the aroma profile during storage of apples,118 to assess

the postharvest quality of peaches, pears, bananas,118–120 and nectarines118,120 and

to detect spoilage in potatoes.121 Electronic noses were also used to determine the

coverage area of pheromone traps set to capture insect herbivores122–124 or to

identify early stages of insect infestations by detecting VOCs secreted by plants

that have been attacked.125–127

5.3.3 Electrochemical Sensors

The direct measurement of soil chemistry through tests such as pH or nutrient

content represents an important application of electrochemical sensors. Due to the

importance of soil testing results in obtaining optimal crop production yields and

quality food, two types of electrochemical sensors were employed to measure the

activity of selected ions (H+, K+, NO3
�, Na+, etc.) in the soil: ion-selective

electrodes and ion-selective field effect transistors. These two types of sensors

were also used to monitor the uptake of ions by plants, thus enabling farmers to

design fertilization strategies that optimize production.100 Ion-selective sensors

were applied in nitrogen monitoring in soil and crops, such as potatoes,128,129 and

vegetables for fertilization management.130,131 The investigation of plant metabo-

lism and nutrition, and also the toxicological effects that heavy metals have on

plants,132–135 could also be achieved with these sensors by measuring concentra-

tions of ions, such as iodide, fluoride, chloride, sodium, potassium, and cadmium, in

plants or soils. Electrochemical sensors also found their applications in the green-

house industry.100 Systems that inject liquid fertilizers based upon ion-specific

concentration measurements136,137 which automatically ensure that the nutrient

demand of the plants is satisfied were also developed.100

5.3.4 Biosensors

Rapid detection of target chemicals or pathogens in the agricultural field by

minimally skilled personnel138–140 is the main target in nowadays biosensor devel-

opment.100 The main bioprobes include nucleic acids (DNA/RNA), proteins,

enzymes, antibodies, and phages.141,142,145 Due to their robust structures and their

resistance to heat (up to 80 �C) and chemicals, such as acid, alkali, and organic

solvents,143 filamentous and lytic phages have attracted the interest of researchers

as biomolecular recognition elements.144–146 Also, due to their three-dimensional

recognition surface, phages can provide multiple binding sites and hence a strong

binding to target pathogens.100 Therefore, they found their application in the

detection of food-borne pathogens.147–165
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Acoustic wave devices represent an important family of highly sensitive

transducers.100 Phage-based magnetoelastic (ME) biosensors composed of an ME

resonator that is coated with genetically engineered phages able to bind specifically

with target pathogens166,167 were described. The mechanism of the ME biosensors

has been also explained: the biosensor oscillates with a characteristic resonance

frequency under an applied alternating magnetic field and when it comes in contact

with the target pathogen, binding occurs.115 As a result, the mass of the resonator

increases and this leads to a decrease in the biosensor’s resonance frequency.1

Various pathogens, such as S. typhimurium, B. anthracis spores, and E. coli,168–174

could be detected using ME biosensors. Recent studies demonstrated that ME

biosensors were able to directly detect bacteria on a fresh food surface without

the use of a sampling process (water rinse/stomaching).175

Enzyme-based biosensors are said to be very promising tools for highly sensitive

and discriminative detection of many chemical threat agents and food contami-

nants. Organophosphate neurotoxins which have been extensively used as insecti-

cides in agriculture have been detected using biosensors with two types of

mechanism approaches100: (1) inhibition of particular enzymes such as acetyl or

butyryl cholinesterases,176–179 and (2) organophosphate neurotoxins direct

hydrolysis using different hydrolases.180–184 For more information about biosensors

see Chaps. 11, 12 and 13.

5.3.5 Wireless Sensor Networks

Wireless sensor networks have been developed to enable new precision in agricul-

tural practice.100

Even in their earliest stages of development, wireless sensor networks include

already radio-frequency transceivers; soil, water, ion, and VOC sensors; global

positioning sensors; microcontrollers; and power sources.185 See Chap. 14 of

second volume for VOC sensors.

The development of this technology aims to provide revolutionary means for

observing, assessing, and controlling agricultural practices.100

Food represents a very important environmental factor with great impact on “life

quality” and, therefore, the need of analytical methods for the assessment of normal

constituents, degradation products by alteration, genetic modifications, or chemical

(pesticides, hormones, antibiotics, etc.) and biological contaminants.

The great variety of food contaminants and residues at very low concentrations,

their various physicochemical features, and the complexity of the food matrix make

food analysis a challenging task. Gas chromatography and high-performance liquid

chromatography which are commonly employed in food analysis are relatively

slow, expensive, and time consuming, and require extensive sample preparation and

qualified operators.186

Biosensors have demonstrated a great potential for the detection of a large

variety of chemical compounds.187 The high selectivity of the biorecognition
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molecule for the target component, the low production cost, the ability to detect

analytes in a complex sample matrix with minimal pretreatment, and the potential

for miniaturization are the main advantages that recommend biosensors for the

specific and rapid detection of biological and chemical components in food, envi-

ronmental, clinical, and pharmaceutical sector.187–190

The microfabrication technologies developed in the last decade have

transformed the analytical chemistry research field due to the large surface-to-

volume ratios of miniaturized systems, which enhance molecular diffusion and

heat transfer, using very small liquid volumes and performing very rapid

analyses.191–193 Microfluidic analytical devices, known as lab-on-a-chip (see

Chap. 21) or micro total analysis systems (μTAS), include microfluidic chips as

well as non-fluidic miniaturized systems, such as sensors and arrays (biochips),

developed for multi-analyte screening in food.194 Microfluidics technology

involves fluid control and small-scale analysis, making possible the integration of

multiple steps, multiplexing and parallelization of analyses on a single device, and

the achievement of microfluidic analytical systems capable to provide high-

throughput and large-scale analysis.191,195

Generally, microfluidic analytical devices are made of silica-based materials

with channel sizes ranging from 10 to 200 μm, but low-cost disposable microfluidic

devices from materials such as polymers or even paper have lately been devel-

oped.196 The most important advantages of microfluidic analytical devices are the

low volume of samples and reagents reducing the cost of analysis and the amount of

generated waste, the large surface-to-volume ratio, the mass and heat transfer

enhancement, short analysis time, portability, allowing on-site analysis, disposabil-

ity and low cost of fabrication, and integration of multiple processes which allows

assay automation and improves analytical performances even when used by

unskilled operators.191,193,197 These devices achieve all the requirements that the

food industry and quality control authorities are looking for to maintain the quality

and safety of food throughout the entire food chain. Food sample analysis

concerning the integration of nanotechnology applications in capillary electropho-

resis microchips was reported by Escarpa et al.198 The rapidly growing number of

publications on microfluidics demonstrates the huge interest for microfluidic appli-

cations in the field of food and environmental analysis, biotechnology (e.g., fer-

mentation processes in the pharmaceutical and food industry) for online process

monitoring and analysis,199 and homeland security. Microfluidic devices are exten-

sively developed in health care industry for point-of-care diagnostic, high-

throughput clinical analysis, and drug screening in pharmaceuticals.200 The use of

biorecognition elements (such as enzymes, antibodies, and DNA) for specific

analysis from the sample matrices, and the application of nanotechnology in the

detection mechanism of the analytical devices, could be achieved in real sample

analysis.

In the same perspective, drugs and pharmaceutical formulations constitute a

special issue, especially if we define the internal environment, opposite to the

external environment. Detailed aspects will be discussed later (Chap. 9, second

volume).
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5.4 Future Aspects and Developments

Supposing that plants, just like other forms of life, communicate with other plants

and beneficial insects by producing certain chemicals, researchers are trying to

develop sensors able to detect the release of particular chemicals in very low

concentrations, ignoring other chemicals released by the plant. These new sensors

would not only allow farmers to save money, but the decrease in the pesticide

concentration would make farmlands more environmentally adequate.
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198. Escarpa A, González MC, Gil MAL, Crevillén AG, Hervás M, Garcı́a M (2008) Microchips

for CE: breakthroughs in real-world food analysis. Electrophoresis 29:4852–4861
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