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           Introduction 

 The neurobiological basis of schizophrenia has been suspected for over a century, 
beginning with Kraepelin’s description of  dementia praecox  [ 1 ]. Unlike other neu-
rological disorders such as Alzheimer’s disease, however, few clear-cut neuropatho-
logical observations emerged. This led to an eminent neurologist’s comment that 
“schizophrenia is the graveyard of neuropathologists” [ 2 ]. Scientifi c research in this 
area stagnated for much of the early twentieth century as psychodynamic theories 
dominated our understanding of mental illness. Beginning in the 1960s, however, 
neurobiological approaches to schizophrenia reemerged, starting with the landmark 
fi nding of ventricular enlargement [ 3 ]. 

 As Weinberger stated, the challenge of fi nding verifi able brain changes in schizo-
phrenia no longer exists given the advent of sophisticated neuroimaging, electro-
physiological, and neuropathological techniques over the past three decades which 
led to an improved, albeit incomplete, understanding of the pathophysiology of this 
illness [ 4 ]. Thus, we review the current understanding of the neurobiology of 
schizophrenia with a focus on the substantive body of literature largely accumulated 
over the past 30 years. We conclude with a summary of the prevailing theoretical 
models of its pathophysiology, gaps in our knowledge, and promising directions for 
future research (Box  4.1 ). 
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      Brain Structure 

    Gray Matter 

 There are a number of well-established structural brain alterations in schizophrenia. 
The most consistent fi ndings include enlargement of the third and lateral ventricles 
and slight reductions in total brain volume and total gray matter volume [ 5 – 7 ]. 

 Box 4.1 Key Facts in the Pathophysiology of Schizophrenia 

•     Structural brain fi ndings:

 –    Ventricular enlargement [ 3 ]  
 –   Subtle reductions in total gray matter volume [ 6 ]  
 –   Reductions in gray matter volume of the hippocampus and other medial 

temporal and limbic regions [ 7 ]     

•   Functional brain fi ndings:

 –    Decreased activation of prefrontal cortex (hypofrontality) [ 27 ]  
 –   Increased activation of temporal regions during hallucinations [ 31 ]     

•   Electrophysiological fi ndings:

 –    Diminished prepulse inhibition of startle response (PPI) [ 39 ] and dimin-
ished P50 suppression [ 46 ]  

 –   Decreased amplitudes of the P300 response [ 34 ] and mismatch nega-
tivity [ 54 ]  

 –   Abnormalities in gamma oscillations [ 58 ]     

•   Neuroendocrine, Oxidative, and Immunological

 –    Elevated markers of oxidative stress, varying by clinical status [ 62 ]  
 –   Dysfunction of the hypothalamic–pituitary–adrenal axis (abnormal 

dexamethasone suppression) [ 74 ,  131 ]  
 –   Abnormal levels of infl ammatory cytokines [ 68 ]     

•   Neuropathology

 –    Reductions in dendritic spines and size of pyramidal neurons [ 98 ]  
 –   Relative preservation of total number of neurons [ 97 ]  
 –   The absence of gliosis and other neurodegenerative features [ 89 ,  97 ]  
 –   Reduced expression of GAD-67 in the dorsolateral prefrontal cortex [ 88 ]     

•   Neurochemical

 –    Reduced  N -acetyl aspartate in frontal and temporal regions [ 77 ]  
 –   Reduced PME (marker of membrane phospholipid synthesis) in prefrontal 

regions [ 80 ]  
 –   Elevated presynaptic dopamine function [ 83 ]       
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Additionally, regional reductions are reported consistently in the hippocampus, 
amygdala, parahippocampus, superior temporal gyrus, anterior cingulate, insula, 
and inferior and medial frontal gyri [ 7 ,  8 ]. 

 Patients with fi rst-episode psychosis also exhibit volumetric reductions in whole 
brain and hippocampus; enlargement in the third and lateral ventricles; and longitu-
dinal loss of total cortical gray matter and gray matter in frontal, temporal, and 
parietal regions [ 9 ,  10 ]. Although further study is required, fi rst-generation antipsy-
chotic (FGA) exposure appears to correlate with enlargement of the caudate over 
time, while cumulative antipsychotic exposure may be associated with gray matter 
loss over time [ 11 ,  12 ]. 

 Alterations are observed in other aspects of structural morphology. These include 
reductions in cortical thickness of the temporal and frontal lobes and reduced corti-
cal surface area in multiple regions [ 13 ,  14 ]. Cerebral asymmetry is also reduced in 
both affected individuals and healthy relatives, particularly in the planum temporale 
which shows diminished left–right asymmetry in patients with schizophrenia com-
pared with healthy controls [ 15 ]. 

 Structural measures show some correlations with severity of symptoms and cog-
nitive defi cits. The most consistent fi nding is the association between gray matter 
reductions of the superior temporal gyrus and positive symptom severity, specifi -
cally hallucinations [ 16 ]. Hippocampal volume reduction is correlated with greater 
severity of positive and negative symptoms and poorer social function [ 17 ]. 
Prefrontal alterations are associated with impaired executive function, while tempo-
ral and hippocampal structural abnormalities correlate with defi cits in performance 
speed, working memory, and abstraction [ 18 ]. 

 High-risk individuals (variously defi ned as individuals with prodromal symptoms 
or a family history of schizophrenia) also exhibit reduced volume in structures such 
as the insula, superior temporal gyrus, and cingulate [ 19 ,  20 ]. Conversion to psy-
chosis among high-risk individuals is associated with relative gray matter defi cits in 
frontal, temporal, and parahippocampal regions, although this fi nding is not consis-
tent [ 20 ,  21 ]. Nonpsychotic relatives of individuals with schizophrenia also demon-
strate volumetric reductions in the anterior parahippocampus and hippocampus and 
enlargement of the third ventricle when compared with healthy controls [ 22 ,  23 ].  

    White Matter 

 White matter changes are documented in schizophrenia through use of diffusion 
tensor imaging (DTI), a form of magnetic resonance imaging (MRI) that evaluates 
its structure by measuring characteristics of water diffusion in the brain. DTI studies 
in schizophrenia have identifi ed numerous regions with decreased fractional anisot-
ropy (FA), a measure that refl ects axonal diameter and myelination in white matter 
[ 24 ]. Meta-analyses of DTI studies in schizophrenia report FA reductions of the left 
deep frontal lobe, right deep frontal lobe (including the right cingulum), and left 
deep temporal lobe [ 24 ,  25 ]. FA is also generally reduced in the corpus callosum, 
suggesting defi cits in interhemispheric communication [ 24 ]. These white matter 
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changes were used to propose a model of schizophrenia as a syndrome of “functional 
disconnection,” resulting from abnormalities in the connectivity between brain 
regions which may ultimately be relevant in understanding the cognitive defi cits in 
this disorder.  

    Summary 

 Although structural imaging has produced a rich data set uncovering a number of 
consistent brain alterations, several questions merit further study. The neurodevel-
opmental timeline of observed alterations is not fully understood. Though there has 
been an increasing focus on high-risk and fi rst-episode patients, further longitudinal 
data is needed to determine which brain alterations mark the conversion to psycho-
sis. Additionally, it is unclear whether structural changes result from intrinsic 
disease pathology or refl ect adaptations to the disease state. Continued research 
with healthy relatives and fi rst-episode populations may disentangle the effects of 
environmental factors (e.g., antipsychotic exposure) from intrinsic disease effects 
on brain structure. Lastly, the current knowledge base is limited regarding the rela-
tionship between structural brain changes and long-range network connectivity. 
Ongoing integration of structural data with functional imaging may provide insight 
into these issues.   

    Brain Function 

    Functional and Molecular Imaging 

 Over the past several decades, functional MRI (fMRI) has been used extensively to 
examine brain activation in schizophrenia during specifi c cognitive and emotional 
processes (e.g., tasks of working memory, attention, and decision-making) [ 26 ]. 
One of the most consistent fi ndings is diminished activation of frontal regions dur-
ing cognitive tasks (i.e., “hypofrontality”), with meta-analyses of both fi rst- episode 
and multiepisode patients fi nding reduced activation in the dorsolateral prefrontal 
cortex during these tasks [ 27 – 29 ]. 

 Further, functional studies of social cognition and emotional processing suggest 
dysfunction of the amygdala and hippocampus. Individuals with schizophrenia 
demonstrate decreased limbic activation during tasks, but abnormally increased 
limbic activation when presented with fear-inducing stimuli such as pictures of 
angry faces [ 30 ]. Functional studies also focus on neural correlates of hallucinations 
and other symptoms, demonstrating that real-time auditory hallucinations correlate 
with increased activation of fronto-temporal regions such as Broca’s area and the 
middle and superior temporal gyri [ 31 ]. Another area of research focuses on the 
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“default mode network” which is active during rest. While activity in these regions is 
normally suppressed during cognitive tasks, it is under-suppressed in schizophrenia, 
perhaps refl ecting attentional and other cognitive impairments [ 32 ].  

    Summary 

 Schizophrenia is associated with abnormal limbic activation in response to emo-
tional stimuli and frontal dysfunction during cognitive tasks. Despite its extensive 
research use, functional imaging is far from achieving clinical utility in diagnosis 
or treatment for several reasons. fMRI signals are subtle and require specialized 
analysis, making it diffi cult to detect robust signals at the level of the individual 
patient [ 33 ]. Lack of standardized image acquisition and analysis techniques also 
impedes efforts to establish the clinical utility of fMRI [ 33 ]. As with structural 
alterations, the pathogenesis of functional alterations is poorly understood. Two 
lines of research which may address these issues are multimodal studies integrat-
ing functional imaging with structural imaging, DTI, or electrophysiology and 
functional connectivity analyses evaluating temporal correlations in networks of 
brain regions [ 26 ]. These developments may ultimately yield clinically relevant 
biomarkers which are robust enough to identify high-risk individuals and guide 
treatment choices.   

    Neurophysiology 

 Neurophysiological research in schizophrenia largely focuses on event-related 
 potentials (ERPs), which are electrophysiological responses observed in an EEG after 
presentation of a stimulus. ERP data is collected by applying electrodes to the scalp 
and recording brain electrical activity during tasks or stimuli. Electrophysiological 
markers are based on variations in latency, amplitude, and scalp localization of wave-
forms generated by various auditory stimuli. These markers differ in their anatomical 
substrate, their association with cognitive and clinical measures, and their putative 
genetic infl uences. Electrophysiology has several important advantages as a clinical 
and research tool: it is noninvasive, presents fewer technical challenges than func-
tional and molecular imaging methods, and has a long history of use with established 
paradigms and analysis methods. 

    P300 

 P300 is one of the most studied electrophysiological markers. It is a large, positive 
voltage response evoked about 300 ms after presentation of a salient stimulus. 
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Its amplitude is consistently lower in individuals with schizophrenia compared with 
healthy controls [ 34 ]. A subset of the P300, the P3b, localizes to the inferior parietal 
cortex, while the other component of the P300, the P3a, localizes to frontal regions 
[ 35 ]. P300 abnormalities may correlate with negative symptoms, cognitive dysfunc-
tion, and gray matter reductions in temporal regions [ 36 ]. A meta-analysis of 46 
studies of P300 alterations in schizophrenia found a pooled effect size of 0.85 for 
the amplitude of the P300 measure but did not fi nd any impact of antipsychotic 
medication on this measure [ 37 ]. P300 reduction is also observable in relatives of 
patients with schizophrenia and in other psychiatric disorders [ 38 ].  

    Prepulse Inhibition of Startle 

 Abnormal prepulse inhibition of a startle response (PPI) is a well-established 
electrophysiological fi nding in schizophrenia. The startle response is typically mea-
sured as the amplitude of electromyographic response of the orbicularis oculi muscle 
when it contracts after an unexpected stimulus.    PPI is the reduction in the amplitude 
of this wave which occurs when the startling stimulus is preceded by a weak stimu-
lus [ 39 ]. Individuals with schizophrenia do not exhibit the same degree of reduction 
in the startle response as healthy controls, suggesting defects in the brain’s ability to 
selectively fi lter stimuli [ 39 ]. This abnormality correlates with thought disorder and 
disruption in global functioning but may normalize with second- generation antipsy-
chotic (SGA) treatment [ 40 ,  41 ]. Abnormal PPI is highly heritable and present in 
unaffected fi rst-degree relatives [ 42 ,  43 ]. PPI also has a direct association with gray 
matter volume in the right superior parietal cortex of fi rst-episode patients and 
healthy controls [ 44 ].  

    P50 Auditory-Evoked Potential Suppression 

 The P50 wave is an evoked potential which occurs 50 ms after a stimulus. When 
two auditory clicks are presented 500 ms apart, generating two P50 waves, the 
amplitude of the second wave is reduced in comparison to the fi rst. This phenom-
enon is known as P50 suppression and is abnormal in patients with schizophrenia 
who demonstrate a smaller reduction in amplitude of the second P50 wave com-
pared with normal controls [ 45 ,  46 ]. Cholinergic neurotransmitter pathways may 
mediate P50 suppression, as indicated by the apparent ability of nicotine to 
briefl y normalize suppression in people with schizophrenia [ 47 ]. P50 suppres-
sion localizes to the hippocampus, is estimated to have a heritability around 
68 %, and is observed in fi rst-degree relatives of patients with schizophrenia 
[ 48 – 50 ]. Treatment with clozapine, but not other antipsychotics, may normalize 
P50 suppression [ 51 ].  

J. Padmanabhan and M.S. Keshavan



41

    Mismatch Negativity 

 Mismatch negativity (MMN) refers to an ERP component which is measured when a 
series of repetitive auditory stimuli are punctuated by deviant or “oddball” stimuli. 
MMN is believed to refl ect pre-attentive sensory processing and the response of the 
brain to changes in consecutive stimuli [ 52 ]. It localizes to the primary and secondary 
auditory cortices, as well as the dorsolateral prefrontal cortices [ 53 ]. MMN abnormali-
ties appear specifi c to schizophrenia among psychiatric disorders and are consistently 
associated with cognitive activity and the ability to function independently [ 54 ,  55 ].  

    Cortical Oscillations and Neural Synchrony 

 Neural oscillations allow networks of brain regions to coordinate activity essential 
for cognitive processes. Gamma band oscillation, which is normally in the range of 
30–80 Hz, refl ects coordination of neuronal activity and appears highly heritable 
[ 56 ,  57 ]. Compared to healthy controls, individuals with schizophrenia demonstrate 
reduced power of gamma band oscillations and are less able to modulate these oscil-
lations in frontal regions during tests of cognitive function [ 58 ,  59 ]. Because corti-
cal synchrony matures during adolescence, gamma band abnormalities may refl ect 
a failure of normal neurodevelopment. A number of studies support a correlation 
between positive symptoms, particularly auditory and visual hallucinations, and 
changes in gamma band activity [ 60 ].  

    Summary 

 The existence of electrophysiological abnormalities in schizophrenia is well estab-
lished but their clinical and research implications require further study. 
Electrophysiological markers hold the potential to serve as “endophenotypes” (i.e., 
heritable, objective disease characteristics that bridge the gap between genetic factors 
and clinical phenotype). These markers fulfi ll some of the criteria for endophenotypes 
as they appear to be highly heritable and present in unaffected relatives. They do not, 
however, consistently fulfi ll other endophenotype criteria such as stability over time. 
In addition, the clinical utility of electrophysiological markers is currently limited 
because of the expense of EEG equipment, the need for subjects to cooperate with 
complex task instructions (for some markers), and the lack of diagnostic specifi city or 
treatment implications for most existing markers [ 61 ]. Nevertheless, electrophysiol-
ogy is highly relevant for future study, as markers may correlate with elements of 
early information processing disrupted in schizophrenia. Electrophysiology can also 
be applied to the study of simple neural processes in other mammals, thus expanding 
the role of animal models in schizophrenia research.   
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    Oxidative, Immunological, and Neuroendocrine Abnormalities 

 Schizophrenia may involve abnormalities in the oxidative stress response. Oxidative 
stress results from the body’s inability to fully neutralize free radicals generated 
by normal metabolic processes [ 62 ]. This can ultimately lead to cell membrane 
damage and impaired neurotransmission. Markers of elevated oxidative stress are 
observed in schizophrenia (e.g., diminished levels of the antioxidant glutathione in 
the brain and cerebrospinal fl uid) [ 63 ]. A meta-analysis found decreased levels of 
the antioxidant red blood cell superoxide dismutase across the illness course, imply-
ing it may be a trait marker for schizophrenia [ 62 ]. Other antioxidants in this study 
varied by patients’ clinical status or stage of disease. Antioxidant defi cits may affect 
interneuron function and cortical synchrony. For example, in a mouse model, 
impaired synthesis of glutathione led to reductions in high-frequency gamma oscil-
lations [ 64 ]. Thus, oxidative stress may play a critical role in the neurodevelopmen-
tal pathways leading to schizophrenia, while enhancement of antioxidant function 
may represent a novel therapeutic pathway. Further investigation is needed to 
explore whether antioxidant abnormalities explain the link between schizophrenia and 
certain environmental risk factors (e.g., psychosocial stress or viral infections) [ 65 ]. 
Additional trials also are necessary to validate the clinical potential of antioxidant 
treatment, although studies using  N -acetyl cysteine show promise in the treatment 
of negative symptoms (see Chap.   7    ) [ 66 ]. 

 Immunological theories propose that autoimmune dysfunction or infections may 
contribute to the etiology of schizophrenia. Epidemiological studies observe a cor-
relation between prenatal exposure to infections and later development of schizo-
phrenia [ 67 ]. Studies report a number of immunological fi ndings, including changes 
in the levels of cytokines (signaling molecules that coordinate the infl ammatory 
response), elevated levels of autoantibodies, and associations between autoimmune 
disorders and risk for schizophrenia [ 68 – 70 ]. A meta-analysis found that some 
cytokines (such as IL-6 and TGF-β) were associated with psychotic exacerbations, 
while others (IL-12, TNF-α) may be trait markers for schizophrenia [ 68 ]. In addition, 
anti-infl ammatory medications may augment antipsychotic response and improve 
psychotic symptoms in randomized controlled trials (see Chap.   7    ) [ 71 ]. These fi nd-
ings lend support for immunological theories of schizophrenia and fi t well with 
known prenatal risk factors. The current literature on immunological markers is 
often limited by inadequate control for confounding factors such as clinical status, 
body mass index, and smoking. Thus, many studies were unable to determine if 
abnormalities represented state or trait markers [ 68 ]. Additional research is neces-
sary to clarify the role of cytokines in the pathogenesis of schizophrenia and whether 
they hold potential as therapeutic targets in addition to biomarkers. 

 Dysfunction in the hypothalamus–pituitary–adrenal (HPA) axis may mediate 
interactions between stress and psychosis. The stress response appears blunted in 
individuals with schizophrenia, as refl ected in studies showing decreased cortisol 
response to psychological and physical stress [ 72 ,  73 ]. Multiple studies also demon-
strate a relatively high rate of dexamethasone non-suppression (i.e., the absence of 
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cortisol suppression after a dexamethasone suppression test) in chronic schizophrenia, 
indicating failure of the HPA negative feedback mechanism [ 74 ]. Subgroups of 
patients (e.g., those with primary polydipsia) have higher rates of dexamethasone 
resistance and HPA overactivity which may result from abnormal hippocampal 
regulation of the stress response (see Chap.   11    ) [ 75 ]. Function of the HPA system 
is likely preserved overall, despite some abnormal input from the limbic system. 
One major challenge for neuroendocrine research in schizophrenia is distinguishing 
adaptive responses from intrinsic disease pathophysiology. To place neuroendocrine 
fi ndings in an appropriate context, future studies will need to identify where abnor-
malities occur in the regulatory pathway and connect observed abnormalities with 
clinical symptoms.  

    Neurotransmitter Systems 

    Neurochemical Imaging 

 Proton magnetic resonance spectroscopy ( 1 H MRS) is a noninvasive imaging 
method which assesses the chemical composition of brain tissue in vivo by measur-
ing magnetic resonance signals produced by atomic nuclei within molecules [ 76 ]. 
This form of imaging can estimate concentrations of several biologically relevant 
compounds including  N -acetyl aspartate (NAA) which is a marker of neuronal 
integrity; glutamate and glutamine (Glu + Gln), which correlate with glutamatergic 
neurotransmission; and choline metabolites (Cho) which are an indicator of cellular 
turnover [ 76 ]. One of the most consistent fi ndings in this area is a reduction in NAA 
in frontal, temporal, and thalamic regions. This is seen in both fi rst-episode and 
multiepisode patients, indicating neuronal abnormalities in these regions [ 77 ]. 
Another consistent fi nding, which was reported in a meta-analysis of studies on 
Glu + Gln, is a reduction in frontal glutamate and increase in glutamine [ 78 ]. 
Possible reasons for reduced glutamatergic function include hypo-activation of 
 N -methyl- d -aspartate (NMDA) receptors and abnormal expression of glutamate 
transporters [ 78 ]. These hypotheses require clarifi cation, however, perhaps through 
animal models. 

 The current MRS literature is also limited by the paucity of longitudinal studies, 
making it diffi cult to assess the relationship between neurochemical alterations and 
disease course [ 78 ]. Because of long scanning times, studies typically limit them-
selves to small samples of cooperative subjects [ 79 ]. Scanner resolution is con-
strained by the size and strength of spectroscopy magnets [ 79 ]. Studies also differ 
in their choice of MRS techniques, and many did not control for variables such as 
antipsychotic medication status or duration of illness [ 76 ,  78 ]. Future studies 
will need to develop and use more standardized methods. Newer forms of MRS 
(e.g., proton echo-planar spectroscopic imaging (PEPSI)) are able to scan multiple 
brain regions in a short amount of time. These advances allow for the imaging of 
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agitated or uncooperative subjects, enhancing the potential clinical utility of MRS. 
Recent studies are also using more powerful magnets which permit greater spatial 
and temporal resolution [ 79 ]. 

 MRS with  31 P (phosphorus-31) is also used to examine cell membrane phospho-
lipids (i.e., PME (phosphomonoester), a phospholipid precursor; and PDE (phos-
phodiester), a metabolite of phospholipid breakdown). PME and PDE can provide 
information about membrane phospholipid synthesis and turnover which in turn 
may refl ect the condition of neuronal membranes [ 80 ]. Studies utilizing  31 P have 
reported reductions in PME in prefrontal and medial temporal regions in schizo-
phrenia, implying reduced production of membrane phospholipids [ 80 ].    As with  1 H 
MRS, studies with  31 P are limited by small sample sizes, inconsistencies in imaging 
and analysis techniques, and differences in subject populations [ 79 ].  31 P MRS, how-
ever, continues to be relevant given its unique ability to examine processes of lipid 
metabolism and cell membrane turnover. 

 Two forms of molecular imaging are used to explore neurotransmitter systems in 
schizophrenia: positron-emission tomography (PET) and single-photon emission- 
computed tomography (SPECT). In both methods, radioactive-labeled tracers are 
injected into the bloodstream and emitted rays are measured. PET demonstrates 
better spatial resolution and more sensitivity to subtle brain changes than SPECT, 
and presently appears to be a more powerful brain imaging technique [ 81 ]. Two 
meta-analyses of SPECT and PET studies found elevations in striatal dopamine 
synthesis capacity but found no signifi cant difference in dopamine transporter avail-
ability [ 82 ,  83 ]. Additionally, prefrontal hypo-activation is correlated with increased 
striatal dopamine function [ 84 ]. These fi ndings support a modifi ed version of the 
“dopamine hypothesis” (to be discussed below) in schizophrenia. Altered striatal 
dopamine synthesis may hold potential as a biomarker for risk of psychosis, but 
additional research is needed to determine how it changes over the illness course 
and whether it is specifi c to schizophrenia rather than affective psychosis [ 82 ]. In 
addition to clarifying these issues, future studies could integrate PET and SPECT 
methods with electrophysiology and structural imaging to identify dysfunctional 
networks [ 85 ]. As with MRS, PET and SPECT research is limited by small sample 
sizes, differences in technical methods, and variations in subject characteristics.  

    Dopamine 

 The dopamine hypothesis has persisted as a pathophysiological theory of schizo-
phrenia for several decades. Various lines of evidence support this theory. These 
include the effi cacy of D2 receptor antagonists in treating the acute symptoms of 
psychosis, as well as the ability of amphetamines to stimulate psychosis by increasing 
extracellular dopamine. Initial models theorized simply that increased dopamine 
transmission led to psychosis, and later, that defects in mesocortical dopamine 
activity resulted in overactivity of the mesolimbic system [ 86 ]. Further, depletion in 
prefrontal dopamine was believed to disinhibit subcortical regions, resulting in 
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dopaminergic excess in striatal regions [ 87 ]. More recent models proposed that 
presynaptic dopamine dysfunction is the primary path to psychosis, in accordance 
with recent PET studies [ 82 ,  83 ]. These more recent fi ndings point to presynaptic 
dopamine synthesis as a potential therapeutic focus (see Chap.   7    ) [ 83 ]. 

 The ultimate place of dopaminergic dysfunction in the pathogenesis of schizo-
phrenia is unclear with the literature increasingly implying that dopamine dysfunc-
tion is a downstream consequence of other defi cits. One weakness of initial dopamine 
models was their relative diffi culty in accounting for cognitive defi cits and negative 
symptoms in schizophrenia. Altered D1-mediated transmission in the prefrontal 
areas or changes in glutamatergic neurotransmission may infl uence striatal dopamine 
systems and could underlie cognitive and negative symptoms [ 83 ,  84 ]. However, 
these theories await further confi rmation.  

    Gamma Aminobutyric Acid 

 Gamma aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the 
brain and an increasing focus of attention in the pathophysiology of schizophrenia. 
Inhibitory control by GABA interneurons is believed to coordinate subsets of pyrami-
dal neurons which comprise the majority of cortical neurons [ 56 ]. Thus, GABA inter-
neurons are crucial for synchronized neural activity [ 56 ]. While the overall number of 
GABA interneurons is not reduced in schizophrenia, those which contain parvalbumin 
demonstrate reduced production and uptake of GABA [ 88 ]. In particular, levels of glu-
tamic acid decarboxylase 67 (GAD-67), an essential enzyme for GABA synthesis, are 
diminished in several cortical regions in parvalbumin- containing GABA interneurons 
[ 88 ]. Defi ciencies in GAD-67 and decreased expression of parvalbumin appear to 
correlate with alterations in gamma band oscillations, thus linking electrophysiological 
phenomena and neurotransmitter systems. Synaptic alterations in the dorsolateral 
prefrontal cortex may disrupt the balance of inhibitory control by GABA interneurons, 
leading to defi cits in working memory [ 89 ]. It is not known whether the observed 
abnormalities in the GABA-ergic system represent primary defi cits in schizophrenia or 
compensatory mechanisms for other defi cits [ 56 ]. For example, increases in postsynap-
tic GABA-A receptors and reductions in presynaptic parvalbumin may compensate 
for reduced GABA release from chandelier neurons which serve to inhibit pyramidal 
neurons [ 90 ]. This viewpoint is supported by evidence from animal models showing 
that such alterations tend to improve GABA transmission [ 91 ].  

    Glutamate 

 Unlike dopamine, glutamate is present throughout the entire nervous system and is 
the main excitatory neurotransmitter in mammals [ 92 ]. The potential relevance of 
glutamate to the pathophysiology of schizophrenia was discovered through research 
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on NMDA receptor antagonists such as phencyclidine (PCP) and ketamine. NMDA 
receptors are normally activated through the binding of glutamate or aspartate, but 
synthetic NMDA antagonists bind specifi cally to the NMDA receptor. When admin-
istered to healthy subjects, NMDA antagonists can induce psychotic symptoms, 
cognitive defi cits, and defects in MMN which mimic those observed in schizophre-
nia [ 93 ,  94 ]. From this and other data, it was initially proposed that schizophrenia 
involved diminished function or density of NMDA receptors caused by abnormali-
ties in glutamate neurotransmission [ 92 ]. Studies on postmortem brains report 
reductions in the NMDA receptor density in the prefrontal cortex and hippocampus 
[ 95 ]. Reduction in the density of dendritic spines, which receive excitatory glutama-
tergic synapses, may also refl ect inadequate glutamate neurotransmission and 
resulting defects in connectivity [ 96 ]. Subsequent research, however, suggests 
that glutamatergic excess may actually be a driving force in the disease process. 
One promising pharmacotherapeutic application is the use of metabotropic glutamate 
2/3 receptor agonists, which could balance excitatory and inhibitory systems by 
normalizing presynaptic glutamate levels (see Chap.   7    ) [ 92 ].  

    Summary 

 Dopaminergic dysfunction remains a consistent fi nding in schizophrenia and may 
be due primarily to alterations in presynaptic synthesis and transmission. While the 
relative place of dopaminergic dysfunction in the pathogenesis of schizophrenia 
remains unclear, it may play an early role in neurodevelopmental processes or it 
may refl ect downstream consequences of other abnormalities. Recent investigations 
focusing on glutamatergic and GABA-ergic neurotransmitter systems may generate 
novel therapeutic targets.   

    Neuropathology 

 Schizophrenia is historically a challenging area in neuropathology, initially yielding 
few defi nite fi ndings. As stated earlier, it is associated with subtle reductions in total 
brain volume and total gray matter volume [ 6 ]. Notably, these reductions are not 
attributable to loss of neurons, but to reductions in the size of neuronal cell bodies 
and in cortical neuropil [ 97 ]. Specifi cally, pyramidal cell bodies are about 10 % 
smaller in layer three of the dorsolateral prefrontal cortex and dendritic shafts and 
spines are reduced, resulting in diminished dendritic arborization [ 98 ]. Dendritic 
spines receive excitatory synapses throughout the central nervous system and reduc-
tions in their density may underlie connectivity defects between regions [ 96 ]. 
In addition, reductions and altered gene expression in the microglia, support cells of 
the nervous system which include astrocytes and oligodendrocytes, may contribute 
to white matter abnormalities [ 99 ]. 
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 Another consistent fi nding is the lack of gliosis. This is the proliferation of glial 
cells in response to nervous system damage which is observed in many neurodegen-
erative disorders [ 89 ]. Its absence in schizophrenia suggests a neurodevelopmental 
rather than a neurodegenerative process at work [ 97 ]. Postmortem studies observe 
higher densities of cortical neurons in deep rather than superfi cial layers of the limbic 
and prefrontal regions. This indicates that there may be early failures in the migra-
tion of neuronal precursor cells from subcortical to cortical regions during gestation 
[ 100 ]. Neuropathological studies have a number of limitations including the effects 
of variable postmortem intervals, heterogeneity within the schizophrenia diagnostic 
spectrum, and the confounding effects of antipsychotic medication [ 97 ].  

    Neuroplasticity 

 The presence of widespread gray matter defi cits and synaptic alterations without 
apparent neuronal loss raises the question of whether these abnormalities are reme-
diable. Neuroplasticity refers to the ability of the brain to adapt to the environment 
and reorganize aspects of neuronal circuits, such as synaptic density [ 101 ]. 
Neuroplasticity may be abnormally reduced in schizophrenia, as suggested by stud-
ies showing diminished long-term potentiation in response to transcranial magnetic 
stimulation and lowered stimulus-specifi c plasticity in response to electrophysio-
logical tetanic stimulation [ 101 ,  102 ]. Recent fi ndings indicate that levels of brain- 
derived neurotrophic factor (BDNF), a protein responsible for neuronal development 
and synaptic plasticity, may be altered in schizophrenia [ 103 ]. BDNF may closely 
interact with glutamatergic, dopaminergic, and GABA-ergic neurotransmitter 
systems and may mediate the gray matter improvements observed following cogni-
tive remediation [ 104 ,  105 ].  

    Models of Pathogenesis 

 Although various neurobiological abnormalities are now well established in the 
schizophrenia literature, it is important to synthesize these fi ndings to develop mod-
els of pathogenesis. The majority of evidence supports the conceptualization of 
schizophrenia as a neurodevelopmental disorder. This evidence includes the onset 
of schizophrenia in adolescence and the presence of premorbid cognitive defi cits, minor 
physical anomalies, and neuromotor abnormalities during childhood [ 106 – 108 ]. 
The timeline of neurodevelopmental alterations, however, remains unclear. 

 One model posits that the pathogenesis of schizophrenia begins pre- or perina-
tally, perhaps through early environmental insults or genetically mediated defects in 
neuronal migration [ 86 ]. As mentioned earlier, postmortem studies imply altera-
tions in neuronal migration from subcortical to cortical regions, a process which 
occurs during the second trimester [ 100 ]. Studies of high-risk individuals fi nd a 
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high prevalence of motor coordination issues in childhood, further supporting an 
early timeline of pathogenesis [ 108 ]. An exclusive focus on perinatal or prenatal 
abnormalities, however, does not explain why the characteristic symptoms of 
schizophrenia emerge in late adolescence. 

 Another model addresses this issue by focusing on neurodevelopmental abnor-
malities in late adolescence. Excessive synaptic or axonal pruning may underlie 
longitudinal changes reported in young high-risk and fi rst-episode patients. These 
include gray matter reductions and reductions in NAA observed in MRI studies 
[ 10 ,  77 ]. Findings from neuropathology, such as reductions in dendritic arborization 
and synaptic density, are also consistent with this model [ 98 ]. 

 Schizophrenia does not appear to be a neurodegenerative disorder, as demon-
strated by lack of gliosis or other neurodegenerative signs in postmortem studies 
[ 97 ]. There still remains a question of whether a subgroup of individuals experience 
progressive deterioration. The fi rst few years of illness in particular are marked by 
a decline in function and some individuals recover incompletely or take longer to 
recover after each successive psychotic episode [ 109 ]. 

 Diminished neuroplasticity may fi t well with existing neurodevelopmental mod-
els of pathogenesis. Dysfunction in GABA-ergic systems could reduce plasticity in 
cortical areas, while changes in NMDA receptor-mediated neurotransmission may 
disrupt long-term potentiation, a crucial process for learning and memory [ 101 ,  110 ]. 
Altered neuroplasticity may serve as a biological mechanism for environmentally 
mediated longitudinal changes in schizophrenia. 

    Summary 

 Although divergent in their timelines, these models could be integrated with the cur-
rent understanding of neurotransmitter systems to create a “three-hit” model that lon-
gitudinally describes the pathogenesis of schizophrenia [ 111 ]. Early genetic or 
environmental “hits” may disturb glutamate-mediated processes of neuronal migra-
tion and survival during gestation. This could lead to cell death and loss of glutama-
tergic neurons, manifesting as premorbid cognitive and neuromotor defi cits. In 
adolescence, hypofunction of NMDA receptors, whose sustained activity is necessary 
for synaptic survival, could result in excessive synaptic pruning and reduced neuro-
plasticity. Diminished neuronal connectivity could worsen cognitive and social func-
tion during this time period. Additionally, glutamatergic dysfunction could disrupt 
phasic and tonic dopamine release and upregulate subcortical dopaminergic neurons, 
ultimately precipitating the onset of psychotic symptoms [ 111 ,  112 ]. During the years 
following the fi rst episode of psychosis, glutamatergic dysfunction could lead to 
increased phasic dopamine release during psychotic episodes, which could then 
 increase  glutamate release, resulting in oxidative stress and neuronal damage. 
Neurotoxicity caused by glutamatergic excess could then account for disease progres-
sion during the fi rst years of illness. In addition, defi cits in neuroplasticity may help 
explain chronic cognitive impairments. This model draws support from genetic 
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studies showing association of schizophrenia with glutamate- and neuroplasticity-
related genes (see Chap.   5    ). Further research using animal models and longitudinal 
brain imaging is likely to refi ne neurodevelopmental theories of pathogenesis.   

    Conclusion 

    Knowledge Gaps and Future Steps 

 As this review indicates, many facts about the pathophysiology of schizophrenia are 
being discovered at a rapid pace. This progress, however, is not matched by their 
translation to advances in treatment of schizophrenia. In general, treatments for 
schizophrenia were largely discovered by astute, yet serendipitous, observations. 
Thus far, few treatments are based on knowledge of pathophysiology (Fig.  4.1 ). 
Yet, some trends may be delineated.

    Toward neuroscience-based classifi cation of psychoses . While successive revi-
sions of the Diagnostic and Statistical Manual of Mental Illness (DSM) serve to 
improve the reliability and clinical utility of a symptom-based classifi cation of 
psychiatric disorders, there remains a critical lack of  validity  in the current catego-
rization of psychoses. The century-old distinction between schizophrenia and 
affective psychoses remains in the DSM-5 despite the considerable overlap in 
symptoms, cognition, neurobiology, genetics, treatment response, and outcome 
characteristics across these disorders [ 113 – 117 ]. Emerging new data on patho-
physiology of the psychotic disorders spectrum can eventually help move the fi eld 

Empirical observation
and serendipity

Etiology
(Genetics,

Environment)

Patho-
Physiology

Prevention/Treatments

Preclinical → Clinical
Disease expression

Hypothesis generation
and testing

  Fig. 4.1    Pathways to treatment discovery. Treatments for schizophrenia have traditionally been 
developed by clinical observation and serendipity ( dashed lines ) but need to be increasingly 
informed by etiopathological observations and hypothesis testing ( solid lines ) (Adapted from 
Tandon et al. [ 132 ])       
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toward a neuroscience- informed nosology. Such progress is only possible if 
disease dimensions of what we now call schizophrenia, spanning molecular to 
behavioral domains across the psychosis spectrum, are deconstructed [ 118 ,  119 ]. 
The cross-cutting pathophysiological dimensions can then be used to identify new, 
perhaps more valid categories of the psychosis spectrum. Relevant to the pursuit of 
this goal are the NIMH Research Domain Criteria (R-DoC) which seek to map 
translationally relevant behavioral phenotypes to biomarkers in physiological and 
molecular domains [ 120 ]. The introduction of dimensional measures which cut 
across diagnoses in DSM-5 is a good step in this direction. It is critical for the fi eld, 
however, to utilize such measures in large populations, agnostic to DSM diagnoses, 
and examine their relationships to biology [ 121 ]. 

  Toward diagnostic and predictive biomarkers . Despite accumulating data on several 
altered biological processes, few diagnostic or predictive biomarkers exist for psy-
chiatric disorders, other than those to rule out “other” medical disorders (e.g., test-
ing to rule out hypothyroidism). Even “proxy” biomarkers such as cognitive defi cits, 
which are widely prevalent, pervasive across multiple domains, persistent, map onto 
biology, and may predict outcome in schizophrenia, are not yet incorporated into 
standard psychiatric assessments [ 122 ]. At least in part, this impasse stems from a 
continued reliance on symptom-based categories as the gold standard for develop-
ing diagnostic tests [ 121 ,  123 ]. In striking contrast, there is unprecedented progress 
in imaging, genomics, and computational abilities which could deliver clinically 
useful tests in the near future. Given the lack of validity of symptom-based classifi -
cations in psychiatric disorders as discussed earlier, simple comparisons of imaging 
or other biomarker data between diseases and between disease and healthy subjects 
are unlikely to yield much. In contrast, examining etiological differences across 
biologically defi ned subgroups of disease may be much more valuable. For exam-
ple, using data-driven approaches on phenotypically diverse subjects, it may be pos-
sible to derive subgroups characterized by distinctive biological features, quantifi able 
through neuroimaging and electrophysiology. These subgroups could then be com-
pared in etiology and pathophysiology,  ultimately generating targeted therapeutic 
approaches. 

 Multimodal approaches and automated machine learning algorithms (e.g., sup-
port vector machines (SVMs) which utilize multivariate pattern recognition meth-
ods) can robustly distinguish early course of schizophrenia and its progression 
[ 124 ]. Such classifi cation approaches in the future may also incorporate information 
from other biomarker domains, including electrophysiology, metabolomic, pro-
teomic, genomic, and gene expression profi les. Cellular markers derived from 
induced pluripotent stem cells are another exciting direction in the not-too-distant 
future [ 125 ]. 

  Toward theory-driven therapeutic interventions . Stratifying psychosis spectrum 
disorders into neurobiologically separable entities will help develop more targeted 
interventions [ 119 ]. Molecular stratifi cation of disease is already standard practice 
in the rest of medicine. Thus, the presence of “actionable” mutations such as BRCA1 
gene in breast cancer can lead to prevention efforts [ 126 ]. In another example, 
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specifi c treatments can lead to substantial clinical benefi t for cystic fi brosis for 
 individuals with CFTR mutations [ 127 ]. Several examples of such theory-driven 
interventions in schizophrenia may now be mentioned. It is important to look 
beyond simply modulating the dopamine receptor. Recent thinking on the role of 
glutamatergic and GABA pathways discussed earlier suggests trials of several novel 
pharmacological agents which may impact these systems (see Chap.   7    ) [ 128 ]. One 
needs to look beyond neurotransmitter systems as well to treatments which address 
increased oxidative stress, such as  N -acetyl cysteine [ 66 ]. Anti-infl ammatory agents 
such as aspirin may be of value in treating psychosis [ 129 ]. Improvement in cogni-
tive defi cits in schizophrenia patients positive for herpes simplex antibody titers is 
reported with the antiviral agent valacyclovir [ 130 ]. Treatments that directly upreg-
ulate BDNF or improve neural plasticity, such as computer-based cognitive enhance-
ment therapies, also hold promise as novel therapeutic approaches [ 105 ]. 

 In conclusion, our understanding of the pathophysiology of schizophrenia has 
made remarkable progress, but much work remains to translate these observations 
into real differences for managing and potentially preventing this devastating ill-
ness. Future researchers will benefi t from both a creative application of cutting-edge 
neuroscience knowledge and having an open mind to look beyond current concep-
tual models of this disease.      
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