Chapter 27
Level Set Estimation

P. Saavedra-Nieves, W. Gonzilez-Manteiga, and A. Rodriguez-Casal

Abstract A density level set can be estimated using three different methodologies:
Plug-in methods, excess mass methods, and hybrid methods. The three groups of
algorithms to estimate level sets are reviewed in this work. In addition, two new
hybrid methods are proposed. Finally, all of them are compared through an extensive
simulation study and the results obtained are shown.
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27.1 Introduction

Level set estimation theory deals with the problem of reconstructing an unknown
set of type L(t) = {f > f;} from a random sample of points 2, = {X1,..., X},
where f stands for the density which generates the sample 2,, ¢ € (0,1) is a
probability, fixed by the practitioner, and f, > 0 denotes the biggest threshold
such that the level set L(t) has a probability at least 1 — t with respect to the
distribution induced by f. Figure 27.1 shows the level sets for three different values
of the parameter 7. The problem of estimating L(t) has been analyzed using three
different methodologies in the literature: Plug-in methods, excess mass methods,
and hybrid methods. We will present these three groups of automatic methods to
reconstruct level sets and we will compare them through a detailed simulation
study for dimension 1. We have restricted ourselves to the one-dimensional case
because some of these methods have not yet been extended for higher dimension
(see [8] or [6] for example). In Sect. 27.2, we will present and compare the plug-in
methods. In Sects. 27.3 and 27.4, we will study the behavior of excess mass methods
and hybrids methods, respectively. Finally, we will compare the most competitive
methods in each group in Sect. 27.5.
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Fig. 27.1 Level sets for a one-dimensional density with t = 0.1 (first column), t = 0.5 (second
column) y t = 0.9 (third column)

27.2 Plug-in Methods and Simulations Results

The simplest option to estimate level sets is the so-called plug-in methodology. It
is based on replacing the unknown density f by a suitable nonparametric estimator
s usually the kernel density estimator. So, this group of methods proposes L(r)

{fn = fr} as an estimator, where ff denotes an estimator of the threshold. This is
the most common approach but its performance is heavily dependent on the choice
of the bandwidth parameter for estimating f. Baillo and Cuevas were interested
in choosing the best smoothing parameter to reconstruct a level set in the context
of quality control. It was obtained by minimizing a cross-validation estimate of the
probability of a false alarm, see [1]. Samworth and Wand proposed an automatic rule
to select the smoothing parameter for dimension 1, see [8]. They derived a uniform-
in-bandwidth asymptotic approximation of a specific set estimation risk function,
E{d,, (L(7), ﬁ(t))}, where d;, , (L(7), ﬁ(r)) = fL(T)AI:(T) f(#)dt and A denotes

the usual difference given by L(I)A]:(t) = (L(v)\ i(r)) U (i(r) \ L(7)). Of
course, it is also possible to consider classical methods such as Seather and Jones or
cross validation to select the bandwidth parameter although they are not specific to
estimate level sets.

27.2.1 Simulations Results for Plug-in Methods

In this section, we will compare Baillo and Cuevas’ (BC), Samworth and Wand’s
(SW), Sheather and Jones’ (SJ), and cross validation (CV) methods. The first two
one are specific bandwidth selectors to estimate level sets. The last two algorithms
are general selectors to estimate density functions.

We have generated 1,000 samples of size n = 1,600 for the 15 Marron and
Wand’s density functions (see [5]) and we have considered three values for the
parameter t: T = 0.2, t = 0.5, and T = 0.8. Although there are several
ways to estimate the threshold, we have estimated it by using Hyndman’s method,
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see [3]. This algorithm estimates the threshold by calculating the 7-quantile of the
empirical distribution of f,(X}), ..., f,(X,). We have considered the Sheather and
Jones selector to calculate f,. For each fixed random sample and each method,
we have estimated the level set L(7) and we computed the error of the estimation
by calculating d,,, (L(7), f,(t)). So, for a given model and a value of t we have
calculated 1, 000 errors for each method.

To facilitate the presentation of the results, we use some figures described below.
Each figure is divided into rectangles that are painted with different colors according
to the method (vertical axis) and the density model (horizontal axis). Colors are
assigned as follows: light colors correspond to low errors and vice versa. So, this
representation allows to detect the most or less competitive algorithm fixed the value
of t. Given a density, we have ordered the means of the 1,000 errors calculated
by testing if they are equal previously. If we reject the null hypothesis of equality
between two means for the same model, then each method will be painted using
a different color (darker or lighter according to the mean of the errors is higher or
lower). In another case, both algorithms are represented using the same color. We
will use this approach in the following sections to compare the methods of the two
remaining groups of algorithms.

Figures 27.2 and 27.3 show the plug-in methods comparison for ¢ = 0.5 and
© = 0.8, respectively. For T = 0.5, the best results are provided by Sheather and
Jones and cross validation selectors. If T = 0.8, then specific selectors for level sets
have better results for the models 1, 2, 3, and 5. All of these densities have an only
mode. They are very simple level sets. However, classical selectors are the most
competitive for more sophisticated models such as 6, 8, 9, 10, 11, 12, 13, 14, or 15.

Less competitive More competitive

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 27.2 Comparison of plug-in methods (vertical axis) with the 15 Marron and Wand’s density
models (horizontal axis), t = 0.5 and n = 1, 600. The error criteria is dw
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Fig. 27.3 Comparison of plug-in methods (vertical axis) with the 15 Marron and Wand’s density
models (horizontal axis), t = 0.8 and n = 1, 600. The error criteria is dw.

As a conclusion, specific methods to estimate level sets do not improve the results
of the classic bandwidth selection rules. In addition, cross validation and Sheather
and Jones methods often provide similar results and they present the best global
behavior.

27.3 Excess Mass Methods and Simulations Results

Another possibility consists of assuming that the set of interest satisfies some
geometric condition such as convexity. Excess mass approach estimates the level
set as the set of greatest mass and minimum volume under the shape restriction
considered. For example, Miiller and Sawitzki’s method for one dimensional level
sets assumes that the number of connected components, M, is known, see [6].

27.3.1 Simulations Results for Excess Mass Methods

Miiller and Sawitzki’s method depends on an unknown parameter M. This is the
main disadvantage of this algorithm. We have considered five values for the number
of clusters, M = 1,2, 3, 4, and 5. We will denote the Miiller and Sawitzki’s method
with M modes by MSj,.
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Fig. 27.4 Comparison of Miiller and Sawitzki’s method for different values of M (vertical axis)
with the 15 Marron and Wand’s density models (horizontal axis), t = 0.5 and n = 1, 600. The
error criteria is d;,

To analyze the influence of the parameter M for Miiller and Sawitzki’s method,
we will use Fig. 27.4. In this case, we have written the real number of modes for
each density and T = 0.5 on the vertical axis too.

From Fig. 27.4, it is clear that Miiller and Sawitzki’s method is very sensitive to
the parameter M. For = 0.5, densities 1, 2, 3, 4, and 5 are unimodal and M = 1
provides the best results. Densities 6, 7, 8, or 9 have two modes and, in this case,
the best value of M is M = 2. Model 10 has five modes for r = 0.5 and again
M = 5 provides the best estimations. However, the best value of M for the Miiller
and Sawitzki’s method is not equal to the real value of M for the models 11, 12, and
13 because some of their modes are not significant. In addition, if misspecification
of M occurs, it can be seen that big values of M are better than a small values
because the means of errors are lower.

27.4 Hybrid Methods and Simulations Results

As the name suggests, hybrid methods assume geometric restrictions and they use
a pilot nonparametric density estimator to decide which sample points can be in
the level set, 2,7 = {f, > ﬁ}. In this work we proposed two new hybrid
methods to estimate convex and r-convex sets with r > 0. The last one is a shape
condition more general than convexity. In fact, a closed set A is said r-convex with
r > 0if A = C,(4) where C,(A) = (\(p,(1):8,(x)na=py (Br(x))" denotes the r-
convex hull of A, B,(x) denotes the open ball with center in x and radius r and
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(B, (x))¢, its complementary. Our two new proposals are based on the convex hull
and r-convex hull methods for estimating the support, see [4] and [7], respectively.
Under convexity restriction, we suggest estimating the level set as the convex hull
of z%”n"’ and, under r-convexity, as the r-convex hull of 5&””+. Another classic hybrid
method is the so-called the granulometric smoothing method, see [9]. It assumes
that the level set L(t) and its complementary are r-convex. This method adapts the
Devroye—Wise’s estimator for the support to the context of level set estimation, see
[2]. In this case, the estimator consists of the union of balls around those points in
Z,7" that have a distance of at least r from each pointin 2, \ Z,%.

27.4.1 Simulation Results for Hybrids Methods

Granulometric smoothing method and r-convex hull method depend on an unknown
parameter r. This is the main disadvantage of these algorithms. In this work, we have
considered five values for the radius of balls, r: r; = 0.01, r, = 0.05, r; = 0.1,
r4 = 0.2, and r5; = 0.3. We will denote the methods as follows: Convex hull method
by CH, r-convex hull method by CH,, and granulometric smoothing method with
radius r by W,.

Although these results are not shown here, we have studied the influence of
the parameter r for r-convex hull method and granulometric smoothing method.
In general, r-convex hull method is less sensitive to the selection to the parameter r.
We have compared the three hybrids methods by fixing an intermediate value for r
because it is unknown. We have considered r = r3 and use Fig. 27.5 to show the

Less competitive More competitive

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 27.5 Comparison of hybrid methods (vertical axis) with the 15 Marron and Wand’s density
models (horizontal axis), t = 0.2 and n = 1, 600. The error criteria is d, r
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results obtained for t = 0.2. Each method is represented on the vertical axis and
each density model on the horizontal axis.

Some of the density models present convex level sets for t = 0.2 or t = 0.8
although they are not unimodal (see, for example, densities 6, 8, or 11 in Fig. 27.5).
In this case, when the convexity assumption is true, convex hull method can be
very competitive. However, models 1, 2, 3, and 4 have convex level sets for
some value of 7 and r3;-convex hull method is the most competitive for them. In
addition, sometimes convexity hypothesis can be very restrictive (see models 7
or 10, for example) and then, r3-convex hull or granulometric smoothing methods
provide better and similar results although the first one is most competitive for high
values of 7.

27.5 Final Conclusions

Finally, we will compare the most competitive methods in each group. So, we will
consider cross validation method, Miiller and Sawitzki’s method, granulometric
smoothing method, r-convex hull method, and convex hull method. It is necessary
to specify a value for the parameters M and r for Miiller and Sawitzki’s method and
granulometric smoothing method or r-convex hull method. We have fixed M = 3
and r = r3 again.

Figures 27.6 and 27.7 show the results for t = 0.2 and v = 0.5. Miiller and
Sawitzki’s method with M = 3 is not very competitive because most of the models
are not trimodal. For low values of 7, cross validation does not present bad results

Less competitive More competitive
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Fig. 27.6 Final comparison of the most competitive methods in each group (vertical axis) with
the 15 Marron and Wand’s density models (horizontal axis), t = 0.2 and n = 1, 600. The error
criteria is dy,
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Fig. 27.7 Final comparison of the most competitive methods in each group (vertical axis) with
the 15 Marron and Wand’s density models (horizontal axis), t = 0.5 and n = 1, 600. The error
criteria is dy,

but granulometric smoothing or r3-convex hull methods have a better behavior (see
models 3, 4, 6, or 11). But these two methods present a big disadvantage because
both depend on an unknown parameter. Convex hull gets worse its results for t =
0.5 (see models 6, 8, or 11). The rest of the hybrid methods have good results for
this value of t.

In general, if no assumption is made on the shape of the level set, cross validation
is a good option. But, if we have some information about the shape of the level
set, then hybrid methods can be an alternative. For instance, if v is small, then
convex hull method could be very competitive. Most of these densities have convex
level sets for this level. Under more flexible shape restrictions, r-convex hull or
granulometric smoothing methods could be used but they depend on an unknown
parameter. It would be useful to have a method for selecting it from the sample.
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