
Chapter 18
A Nonparametric Causality Test: Detection
of Direct Causal Effects in Multivariate Systems
Using Corrected Partial Transfer Entropy

Angeliki Papana, Dimitris Kugiumtzis, and Catherine Kyrtsou

Abstract In a recent work we proposed the corrected transfer entropy (CTE),
which reduces the bias in the estimation of transfer entropy (TE), a measure of
Granger causality for bivariate time series making use of the conditional mutual
information. An extension of TE to account for the presence of other time series
is the partial TE (PTE). Here, we propose the correction of PTE, termed Corrected
PTE (CPTE), in a similar way to CTE: time shifted surrogates are used in order to
quantify and correct the bias, and the estimation of the involved entropies of high-
dimensional variables is made with the method of k-nearest neighbors. CPTE is
evaluated on coupled stochastic systems with both linear and nonlinear interactions.
Finally, we apply CPTE to economic data and investigate whether we can detect the
direct causal effects among economic variables.
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18.1 Introduction

The leading concept of Granger causality has been widely used to study the
dynamic relationships between economic time series [4]. In practice, only a subset
of the variables of the original multivariate system may be observed and omission
of important variables could lead to spurious causalities between the variables.
Therefore, the problem of spurious causality is addressed. Moreover, for a better
understanding of the causal structure of a multivariate system it is important to study
and discriminate between the direct and indirect causal effects.

Transfer entropy (TE) is an information theoretic measure that quantifies the
statistical dependence of two variables (or subsystems) evolving in time. Although
TE is able to distinguish effectively causal relationships and asymmetry in the
interaction of two variables, it does not distinguish between direct and indirect
relationships in the presence of other variables. Partial transfer entropy (PTE) is
an extension of TE conditioning on the ensemble of the rest of the variables and
it can detect the direct causal effects [20]. As reported in [13], using the nearest
neighbor estimate, PTE can effectively detect direct coupling even in moderately
high dimensions. The corrected transfer entropy (CTE) was proposed as a correction
to the TE [12], aiming at reducing the estimation bias of TE. For its estimation,
instead of making a formal surrogate data test, the surrogates were used within
the estimation procedure of the measure, and the CTE was estimated based on
correlation sums.

We introduce here the corrected partial transfer entropy (CPTE) that combines
PTE and CTE, which reduces the bias in the estimation of TE, so that TE goes to
the zero level when there is no causal effect. Similarly to CTE, the surrogates are
used within the estimation procedure of CPTE, instead of performing a significant
test for PTE. Further, for the estimation of CPTE, the nearest neighbor estimate is
implemented since it has been shown to be robust to the time series length and to its
free parameter (number of neighbors) and efficient in high dimensional data (e.g.,
see [21]).

The paper is organized as follows. In Sect. 18.2, the information causality mea-
sures, transfer entropy and partial transfer entropy are introduced and the suggested
measure, corrected partial transfer entropy (CPTE) is presented. In Sect. 18.3, CPTE
is evaluated on a simulation study using coupled stochastic systems with linear and
nonlinear causal effects. As an example of a real application, the direct causal effects
among economic variables are investigated in Sect. 18.4. Finally, in Sect. 18.5,
the results from the simulation study and the application are discussed, while the
usefulness and the limitations of the nonparametric causality test are addressed.
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18.2 Methodology

In this section, we introduce the information causality measures transfer entropy
(TE) and partial transfer entropy (PTE), and define the corrected partial transfer
entropy (CPTE), a measure able to detect direct causal effects in multivariate
systems. Transfer entropy (TE) is a nonlinear measure that quantifies the amount of
information explained in Y at h time steps ahead from the state of X accounting
for the concurrent state of Y [19]. Let xt , yt be two time series and xt D
.xt ; xt�� ; : : : ; xt�.m�1/� /0 and yt D .yt ; yt�� ; : : : ; yt�.m�1/� /0, the reconstructed
vectors of the state space of each system, where � is the delay time and m is the
embedding dimension. TE from X to Y is defined as

TEX!Y D �H.ytChjxt ; yt / C H.ytChjyt /

D �H.ytCh; xt ; yt / C H.xt ; yt / C H.ytCh; yt / � H.yt /; (18.1)

where H.x/ is the Shannon entropy of the variable X . For a discrete variable X ,
the Shannon entropy is defined as H.X/ D �P

p.xi / log p.xi /, where p.xi /

is the probability mass function of the outcome xi , typically estimated by the
relative frequency of xi . The partial transfer entropy (PTE) is the extension of TE
accounting for the causal effect on the response Y by the other observed variables of
a multivariate system besides the driving X , let us denote them Z. PTE is defined as

PTEX!Y jZ D � H.ytChjxt ; yt ; zt / C H.ytChjyt ; zt /: (18.2)

where zt is the stacked vector of the reconstructed points for the variables in Z.
The information measure PTE is more general than partial correlation since it

is not restricted to linear inter-dependence and relates presence and past (vectors
xt ; yt ; zt ) with future (ytCh). Following the definition of Shannon entropy for
discrete variables, one would discretize the data of X , Y , and Z first, but such
binning estimate is inappropriate for high dimensional variables (m > 1). Instead
we consider here the estimate of nearest neighbors. The joint and marginal densities
are approximated at each point using the k-nearest neighbors and their distances
from the point (for details see [6]). k-nearest neighbor estimate is found to be very
robust to time series length, insensitive to its free parameter k and particularly useful
for high dimensional data [11, 21].

Asymptotic properties for TE and PTE are mainly known for their binning
estimate, which stem from the asymptotic properties of the estimates of entropy
and mutual information for discrete variables (e.g., see [5,10,17]). Thus parametric
significance testing for TE and PTE is possible assuming the binning estimate,
but it was found to be less accurate than resampling testing making use of
appropriate surrogates [7]. The nearest neighbor estimates of TE and PTE do not
have parametric approximate distributions, and we employ resampling techniques
in this study.
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Theoretically, both PTE and TE should be zero when there is no driving-response
effect (X ! Y ). However, any entropy estimate gives positive TE and PTE at a level
depending on the system, the embedding parameters and the estimation method.
We introduce the Corrected Partial Transfer Entropy (CPTE), designed to give zero
values in case of no causal effects and positive values otherwise. In order to define
CPTEX!Y jZ , we compute M surrogate PTE values by randomizing the driving
time series X using time shifted surrogates [15]. These M values form the null
distribution of PTE for a significance test. We denote by q0 the PTE value on the
original set of time series and q.1 � ˛/ the .1 � ˛)-percentile value from the M

surrogate PTE values, where ˛ corresponds to the significance level for an one-sided
test. The CPTEX!Y jZ is defined as follows:

CPTEX!Y jZ D 0; if q0 < q.1 � ˛/

D q0 � q.1 � ˛/; if q0 � q.1 � ˛/
(18.3)

In essence, we correct for the bias given by q.1 � ˛/ and either obtain a positive
value if the null hypothesis of direct causal effect is rejected or obtain a zero value
if CPTE is found statistically insignificant.

18.3 Evaluation of CPTE on Simulated Systems

CPTE is evaluated on Monte Carlo simulations on different multivariate stochastic
coupled systems with linear and nonlinear causal effects. In this section, we present
the simulation systems we used and display the results from the simulation study.

18.3.1 Simulation Setup

CPTE is computed on 100 realizations of the following coupled systems, for all
pairs of variables conditioned on the rest of the variables and for all directions.

1. A VAR(1) model with three variables, where X1 drives X2 and X2 drives X3

x1;t D �t

x2;t D x1;t�1 C �t

x3;t D 0:5x3;t�1 C x2;t�1 C �t ;

where �t , �t , �t are Gaussian white noise with zero mean, diagonal covariance
matrix, and standard deviations 1, 0.2, and 0.3, respectively.

2. A VAR(5) model with four variables, where X1 drives X3, X2 drives X1, X2

drives X3, and X4 drives X2 [22, Eq. 12]
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x1;t D 0:8x1;t�1 C 0:65x2;t�4 C �1;t

x2;t D 0:6x2;t�1 C 0:6x4;t�5 C �2;t

x3;t D 0:5x3;t�3 � 0:6x1;t�1 C 0:4x2;t�4 C �3;t

x4;t D 1:2x4;t�1 � 0:7x4;t�2 C �4;t

3. A VAR(4) model of variables, where X1 drives X2, X1 drives X4, X2 drives X4,
X4 drives X5, X5 drives X1, X5 drives X2, X5 drives X3 [18]

x1;t D 0:4x1;t�1 � 0:5x1;t�2 C 0:4x5;t�1 C �1;t

x2;t D 0:4x2;t�1 � 0:3x1;t�4 C 0:4x5;t�2 C �2;t

x3;t D 0:5x3;t�1 � 0:7x3;t�2 � 0:3x5;t�3 C �3;t

x4;t D 0:8x4;t�3 C 0:4x1;t�2 C 0:3x2;t�3 C �4;t

x5;t D 0:7x5;t�1 � 0:5x5;t�2 � 0:4x4;t�1 C �5;t

4. A coupled system of three variables with linear and nonlinear causal effects,
where X1 drives X2, X2 drives X3, and X1 drives X3 [3, Model 7]

x1;t D 3:4x1;t�1.1 � x1;t�1/2 exp �x2
1;t�1 C 0:4�1;t

x2;t D 3:4x2;t�1.1 � x2;t�1/2 exp �x2
2;t�1 C 0:5x1;t�1x2;t�1 C 0:4�2;t

x3;t D 3:4x3;t�1.1 � x3;t�1/2 exp �x2
3;t�1 C 0:3x2;t�1 C 0:5x2

1;t�1 C 0:4�3;t

The three first simulation systems are stochastic systems with only linear causal
effects, while the fourth one has both linear and nonlinear causal effects. For all
simulations systems, the time step h for the estimation of CPTE is set to one (as
originally defined for TE in [19]) or m. The embedding dimension m is adapted
to the system complexity, the delay time � is set to one, and we use ˛ D 0:05.
The number of neighbors k is set to 10 and we note that the choice of k has been
found not to be crucial in the implementation of TE or PTE, e.g., see [6, 11, 13].
We consider the time series lengths n D 512 and 2,048, in order to examine the
performance of the measure for both short and large time series length.

18.3.2 Results from Simulation Study

In order to evaluate the performance of CPTE, we display the percentages of
rejection of the null hypothesis of no causal effect from the 100 realizations of the
coupled systems.

For the first simulation system, if we set h D 1 and m D 1, the percentages
of statistically significant CPTE at the directions of direct causal effects X1 ! X2
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Table 18.1 Percentages of statistically significant CPTE for system 1, h D 1, m D 1x

X1 ! X2 X2 ! X1 X2 ! X3 X3 ! X2 X1 ! X3 X3 ! X1

n D 512 100 6 100 2 6 5

n D 2,048 100 4 100 11 5 4

Table 18.2 Percentage of statistically significant CPTE for system 2, h D 1, m D 5

X1 ! X2 X2 ! X1 X1 ! X3 X3 ! X1 X1 ! X4 X4 ! X1

n D 512 0 100 100 0 0 2

n D 2,048 0 100 100 1 0 6

X2 ! X3 X3 ! X2 X2 ! X4 X4 ! X2 X3 ! X4 X4 ! X3

n D 512 22 0 4 100 0 7

n D 2,048 62 1 2 100 0 5

and X2 ! X3 are 100 %, while for the other directions of no causal effects the
percentages vary from 2 % to 11 % (see Table 18.1). The choice h D 1 and m D 1 is
favorably suited for this system and only direct causal effects are found significant.
For different h or m values, indirect effects are detected by CPTE. For example, if
we set h D 1 and m D 2, the indirect causal effect X1 ! X3 is detected by CPTE.
In this case however, this effect is indeed direct if two time lags are considered. The
expression of x3 after substituting x2 becomes: x3;t D 0:5x3;t�1 Cx1;t�2 C�t C�t�1.
The same holds for h D 2 and m D 1, and here the direct causal effect X1 ! X2

cannot be detected as the expression of x2;t for two steps ahead is x2;t D �t�1 C �t .
Concerning the second system, the largest lag in the equations is 5, and therefore

by setting h D 1 and m D 5, CPTE correctly detects the direct causal effects
X1 ! X3, X2 ! X1, and X4 ! X2. For the true direct effect X2 ! X3 being
under-valued in the system, the percentages of significant CPTE values increase
with n, indicating that larger time series lengths are required to detect this interaction
(see Table 18.2). By increasing h, indirect effects become statistically significant,
e.g. for h D 5, CPTE correctly detects again all the direct interactions, even for
small time series lengths, but it also indicates the indirect driving of X4 to X1 (with
50 % percentage for n D 512, and 100 % for n D 2; 048) and of X4 to X3 (35 % for
n D 512, 74 % for n D 2; 048).

The third simulation system is on 5 variables and the largest lag is 4, so we set
m D 4. For h D 1, CPTE correctly detects all the direct causal effects with a
confidence increasing with n, e.g. the percentage of detection changes from 34 %
for n D 512 to 96 % for n D 2; 048 for the weakest direct causal effect X2 ! X4.
However, for larger n, CPTE also indicates the indirect driving of X5 ! X4 with
percentage 52 % (see Table 18.3). For h D 4, the performance of CPTE worsens
and it fails to detect some direct causal effects. For example, the percentages of
significant CPTE values at the direction X1 ! X4 are 11 % and 24 % for n D 512

and 2,048, respectively. For other couplings, the improvement of the detection from
n D 512 to n D 2; 048 is larger: 17 % to 53 % for X2 ! X4, 18 % to 47 % for
X5 ! X2, and 45 % to 98 % for X4 ! X5.
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Table 18.3 Percentage of statistically significant CPTE for system 3, h D 1, m D 4

X1 ! X2 X2 ! X1 X1 ! X3 X3 ! X1 X1 ! X4 X4 ! X1 X1 ! X5

n D 512 91 2 6 4 68 3 7

n D 2,048 100 2 13 8 100 2 12

X5 ! X1 X2 ! X3 X3 ! X2 X2 ! X4 X4 ! X2 X2 ! X5 X5 ! X2

n D 512 100 8 5 34 10 9 100

n D 2,048 100 13 8 96 3 7 100

X3 ! X4 X4 ! X3 X3 ! X5 X5 ! X3 X4 ! X5 X5 ! X4

n D 512 5 5 5 71 100 29

n D 2,048 8 4 6 100 100 52

Table 18.4 Percentages of statistically significant CPTE values of system 4, for h D 1; 2, m D 2,
� D 1, k D 10, and n D 512, 2,048, conditioned on the third variables, respectively

X1 ! X2 X2 ! X1 X2 ! X3 X3 ! X2 X1 ! X3 X3 ! X1

n D 512 98 11 88 3 95 9

n D 2,048 100 7 100 5 100 10

The last simulation system involves linear interactions (X2 ! X3) and nonlinear
interactions (X1 ! X2 and X1 ! X3), all at lag one. For h D 1 and m D 2, CPTE
correctly detects these causal effects for both small and large time series lengths,
while the percentage of detection remains low at the absence of coupling, as shown
in Table 18.4. Again, if h is larger than 1, false detections are observed. However,
increasing n enhances the performance of CPTE, and for h D 2 and n D 4; 096

the percentage of significant CPTE for X1 ! X2, X2 ! X3, and X1 ! X3 are
97 %, 100 %, and 77 %, respectively. Therefore, the effect of the selection of the
free parameters h and m on CPTE gets larger for shorter time series.

18.4 Application on Economic Data

As a real application, we investigate the causal effects among economic time series.
Specifically, the goal of this section is to investigate the impact of monetary policy
into financial uncertainty and the long-term rate by taking the direct effects of this
relationship into account. The data are daily measurements from 05=01=2007 up to
18=5=2012. They consist of the 3-month Treasury Bill returns as a monetary policy
tool, denoted as X1, the 10-year Treasury Note to represent long-term behavior,
denoted as X2, and the option-implied expected volatility on the S&P 500 returns
index (VIX), X3, in order to take financial uncertainty into consideration.

In similar studies instead of using the 3-month TBill, the changes in monetary
policy are mirrored in the evolution of the Fed Funds which is directly controlled by
FED. However, as it is pointed out in [1, 8], the 3-month TBill rate can adequately
reflect the Fed Funds movements.
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An in-depth investigation of the interrelations among the three variables starts by
estimating CPTE for all pairs of variables conditioned on the third variable. In the
aim to smooth away any linear interdependence from the returns series the CPTE is
applied on the VAR filtered variables. As it is shown in [2], information theoretic
quantities, such as transfer entropy, perform better when VAR residuals are used.
CPTE indicates the nonlinear driving of X1 on X2 (CPTEX1!X2 D 0:0024) for
h D 1, m D 1, � D 1, and k D 10. Regarding the “stability” of the results, it is
expected to be lost by increasing the embedding dimension m. Clearly, CPTE for
larger m values does not indicate any causal effect.

In order to further analyze the directions of those causal effects, PTE values
from the VAR filtered returns are also calculated. The statistical significance of
PTE is assessed with a surrogate data test. The respective p-values of the two-
sided surrogate test are obtained with means of shifted surrogates. If the original
PTE value is on the tail of the empirical distribution of the PTE surrogate value,
then the “no-causal effects” hypothesis is rejected. It is worth noticing that the two-
sided surrogate test for PTE indicates the same causal effects as CPTE, revealing
that X1 ! X2 (p-value = 0.03). The corresponding PTE values for this direction of
the causality are much larger compared with the rest of relationships.

18.5 Conclusions

Corrected Partial Transfer Entropy (CPTE) is a nonparametric causality measure
able to detect only the direct causal effects among the components (variables) of
a multivariate system. CPTE is defined exploiting the concept of surrogate data in
order to reduce the bias in Partial Transfer Entropy (PTE), giving zero values in case
of no causal effects and otherwise positive values.

CPTE correctly detected the direct causal effects for all tested stochastic
simulation systems, but only for the suitable selection of the free parameters. CPTE
is sensitive to the selection of the free parameters h and m, especially for short
time series. The selection of the step ahead h D 1 turns out to be more appropriate
than h D m at all cases. The suitable selection of the free parameters seems to
be crucial at most cases in order to avoid spurious detections of causal effects. The
more complicated a system is, the larger the time series are needed.

In the real application, CPTE indicated the direct driving of the 3-month TBill
returns on the 10-year TNote returns, without, however, excluding the presence of
indirect dependencies among these interest rate variables and the VIX. Determining
the 3-month TBill as the “node” variable, of our 3-dimensional system, highlights
the interest in examining its underlying dynamics jointly with the transmission
mechanisms of monetary policy. Although the transfer entropy (TE) method has
been recently applied in financial data, the partial transfer entropy is a relatively
new technique in this field. TE is estimated on the returns of the economic variables
(log-returns) and does not rely upon cointegration aspects (e.g., see [9, 14, 16]).
On the basis of the well-documented long-term comovement between the 3-month
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TBill and the 10-year TNote, the impact of non-stationarity on the performance
of the above tests is an important issue meriting further investigation. This point
reveals new insights about the informational content of Granger-causality type tests.
The results from real data should be handled with care due to their high degree of
sensitivity to the specific properties of the under-study variables.
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