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15.1            Introduction 

 Pulmonary arterial hypertension (PAH) is a complex and multidisciplinary disorder 
comprising a series of diseases that result from restricted blood fl ow through the pul-
monary arterial circulation [ 213 ,  232 ]. All of these conditions share a common arte-
rial histopathology characterized by medial hypertrophy, eccentric and concentric 
intimal fi brosis, and plexiform lesions [ 114 ,  213 ]. The pathophysiology of PAH is not 
completely understood. Many factors have been shown to be involved in the patho-
genesis of PAH, including growth factors, pro-infl ammatory molecules, vascular tone 
mediators, genetic mutations, microRNAs (miRs), and oxidative stress [ 5 ,  221 ,  284 ]. 
Currently, the treatment for PAH remains limited and the disease is still associated 
with a poor long-term prognosis [ 221 ]. Growing evidence suggests that reactive 
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oxygen species (ROS) and oxidative stress play a pathogenic role in PAH and 
some antioxidants appear to be useful in various forms of pulmonary hypertension 
(PH) [ 373 ].  

15.2     Pulmonary Arterial Hypertension 

15.2.1     Epidemiology 

 PAH was previously considered a rare disease with an unknown frequency, but in 
2006 a French registry reported a prevalence of 15 per million [ 158 ,  232 ]. The most 
common cause found in this study was idiopathic pulmonary arterial hypertension 
(IPAH) accounting for 39.2 % of the cases, followed by anorexigen exposure, con-
nective tissue disease, congenital heart diseases (CHDs), portal hypertension, and 
HIV infection [ 158 ]. The Scottish morbidity record found a prevalence of 52 cases 
per million in an adult population [ 273 ]. In both studies, PAH was more common in 
the female population [ 158 ]. According to the Centers for Disease Control and 
Prevention (CDC), deaths attributed to PH varied between 11,000 and 16,000 per 
year between 1980 and 2002 [ 159 ].  

15.2.2     Diagnosis and Pathological Findings 

15.2.2.1     Signs and Symptoms 

 The main symptoms found in patients with PH are dyspnea on exertion (around 
60 % of patients), fatigue, angina pectoris, syncope, palpitations, and lower extrem-
ity edema [ 232 ]. Clinical signs include accentuated pulmonary component of S2 
audible at the apex (90 % of patients with IPAH), early systolic click, mid-systolic 
ejection murmur, left parasternal lift, right ventricular (RV) S4, and increased jugu-
lar “a” wave [ 232 ]. In more advanced stages of the disease, other signs may be seen, 
including a holosystolic murmur that increases with inspiration, increased jugular 
“v” waves, pulsatile hepatomegaly, hepatojugular refl ex, peripheral edema, ascites, 
low pulse pressure, and cool extremities [ 232 ]. These usually indicate right ven-
tricular (RV) failure [ 230 ]. The main chest X-ray fi nding suggesting PH is enlarge-
ment of main and hilar pulmonary arterial shadows accompanied by attenuation of 
peripheral pulmonary vascular markings [ 213 ,  230 ]. Electrocardiographic fi ndings 
that should raise the suspicion of PH include right axis deviation, signs of RV hyper-
trophy (tall R wave in RV leads and R/S ratio <1 in V5 and V6), and right atrial 
enlargement (tall p wave in leads II, III, and aVF and frontal p axis of more than 75°) 
[ 213 ,  230 ,  232 ].  
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   Table 15.1    Arbitrary criteria for estimating the presence of PH based on tricuspid regurgitation 
peak velocity and Doppler-calculated PA systolic pressure at rest (assuming a normal right atrial 
pressure of 5 mmHg) and on additional echocardiographic variables   

 Class a   Level b  

 Echocardiographic diagnosis: PH unlikely 
  Tricuspid regurgitation velocity ≤2.8 m/s, PA systolic pressure ≤36 mmHg, 

and no additional echocardiographic variables suggestive of PH 
 I  B 

 Echocardiographic diagnosis: PH possible 
  Tricuspid regurgitation velocity ≤2.8 m/s, PA systolic pressure ≤36 mmHg, 

but presence of additional echocardiographic variables suggestive of PH 
 IIa  C 

  Tricuspid regurgitation velocity 2.9–3.4 m/s, PA systolic pressure 
37–50 mmHg with/without additional echocardiographic variables 
suggestive of PH 

 IIa  C 

 Echocardiographic diagnosis: PH likely 
  Tricuspid regurgitation velocity >3.4 m/s, PA systolic pressure >50 mmHg 

with/without additional echocardiographic variables suggestive of PH 
 I  B 

 Exercise Doppler echocardiography is not recommended for screening of PH  III  C 

  Reproduced with permission from [ 125 ] 
  a Class of recommendation 
  b Level of recommendation  

15.2.2.2     Diagnosis and Classifi cation 

 PAH is defi ned as a mean pulmonary arterial pressure (mPAP) greater than 25 mmHg 
at rest with a normal pulmonary capillary wedge pressure (PCWP) of 15 mmHg or 
less and a pulmonary vascular resistance (PVR) greater than 3 Wood units [ 232 ]. 
Screening is crucial in all patients with risk factors for PAH, such as bone morpho-
genetic protein receptor 2 (BMPR2) mutation, fi rst-degree relative with BMPR2 
mutation, history of anorexigen intake (fenfl uramine), HIV infection, portal hyper-
tension, CHD with systemic-to-pulmonary shunt, systemic sclerosis, recent acute 
pulmonary embolism, and sickle cell disease (SCD) [ 232 ]. If clinical, radiologic, 
and electrocardiographic fi ndings raise the suspicion of PH, a Doppler echocardio-
gram is the screening test of choice, providing an estimate of the RV systolic pres-
sure and RV function, as well as allowing identifi cation of potential cardiac causes 
of PH [ 230 ,  232 ]. Common echocardiographic fi ndings seen in patients with PAH 
include enlargement of right-sided chambers, abnormal surface of the interventricu-
lar septum, and underfi lled left atrium and left ventricle [ 232 ]. The European 
Society of Cardiology (ESC) and the European Respiratory Society (ERS) proposed 
a series of arbitrary criteria for establishing the presence of PH based on echocar-
diographic fi ndings that have been shown to correlate with PH on right heart cath-
eterization (RHC) (Table  15.1 ) [ 125 ]. In cases where a tricuspid regurgitation profi le 
cannot be determined by conventional echocardiography, intravenous saline or 
encapsulated microbubble contrast agents can be administered to enhance the signal 
[ 147 ,  232 ]. Patients with abnormal echocardiograms, including RV systolic pres-
sure greater than 40 mmHg, should be further evaluated [ 232 ].
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   When continuing evaluation of these patients, all causes of PH (including PAH and 
non-PAH causes) must be considered in order to guide proper management [ 232 ]. 
The revised WHO classifi cation of PH (   Dana Point 2008) is shown in Table  15.2  
[ 317 ]. Although all of the secondary causes of PH should be evaluated before 
establishing the diagnosis of PAH, excluding chronic thromboembolic pulmonary 
 hypertension (CTEPH) is particularly important because the management of these 
patients is very different, as some patients may be eligible for surgical treatment 

      Table 15.2    WHO clinical classifi cation of pulmonary hypertension (Dana Point, 2008)   

 1. Pulmonary arterial hypertension (PAH) 
  1.1. Idiopathic PAH 
  1.2. Heritable 
   1.2.1. BMPR2 
   1.2.2. ALK1, endoglin (with or without hereditary hemorrhagic telangiectasia) 
   1.2.3. Unknown 
  1.3. Drugs and toxin-induced 
  1.4. Associated with 
   1.4.1. Connective tissue disease 
   1.4.2. HIV infection 
   1.4.3. Portal hypertension 
   1.4.4. Congenital heart disease 
   1.4.5. Schistosomiasis 
   1.4.6. Chronic hemolytic anemia 
  1.5. Persistent pulmonary hypertension of the newborn 
 1′ Pulmonary veno-occlusive disease (PVOD) and/or pulmonary capillary hemangiomatosis 

(PCH) 
 2. Pulmonary hypertension owing to left heart disease 
  2.1. Systolic dysfunction 
  2.2. Diastolic dysfunction 
  2.3. Valvular disease 
 3. Pulmonary hypertension owing to lung disease and/or hypoxia 
  3.1. Chronic obstructive pulmonary disease 
  3.2. Interstitial lung disease 
  3.3. Other pulmonary diseases with mixed restrictive and obstructive pattern 
  3.4. Sleep-disordered breathing 
  3.5. Alveolar hypoventilation disorders 
  3.6. Chronic exposure to high altitudes 
  3.7. Developmental abnormalities 
 4. Chronic thromboembolic pulmonary hypertension (CTEPH) 
 5. Pulmonary hypertension with unclear multifactorial mechanisms 
  5.1. Hematologic disorders, myeloproliferative disorders, splenectomy 
  5.2.  Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis, lymphangi-

oleiomyomatosis, neurofi bromatosis, vasculitis 
  5.3. Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 
  5.4. Others: tumoral obstruction, fi brosing mediastinitis, chronic renal failure on dialysis 

  Reproduced with permission from [ 317 ]  
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[ 248 ], and this condition may coexist in the presence of other risk factors for PAH 
such as scleroderma [ 232 ]. The screening test of choice for ruling out CTEPH is the 
ventilation/perfusion lung scan, since a normal result virtually rules out this condi-
tion [ 148 ,  232 ,  248 ]. Despite the usefulness of the V/Q scan in patients without 
underlying lung disease, pulmonary multidetector CT angiography (MDCTA) is 
now considered the gold standard for the diagnosis of CTEPH because it allows 
identifi cation of thrombosis, concomitant lung changes, and can aid in the diagnosis 
of pulmonary embolism in patients with preexisting lung disease [ 176 ]. Even though 
Doppler echocardiography aids in the detection of possible PH, the only way to 
confi rm the diagnosis is through RHC [ 232 ,  248 ]. Once left ventricular or valvular 
disease (Group 2), lung disease (Group 3), and CTEPH (Group 4) are excluded, a 
RHC showing a mPAP greater than 25 mmHg and a PVR greater than 3 Wood units 
with a normal PCWP <15 mmHg confi rm the presence of PAH, which means that it 
remains a diagnosis of exclusion [ 232 ].

   The most recent classifi cation of PH was established in the fourth World 
Symposium on Pulmonary Hypertension that was held in Dana Point in 2008 [ 317 ]. 
Patients with PAH should be classifi ed into one of the fi ve groups shown in 
Table  15.2  [ 317 ]. 

   Idiopathic Pulmonary Arterial Hypertension and Heritable Pulmonary Arterial 
Hypertension: Groups 1.1 and 1.2 

 IPAH is sporadic and unrelated to any family history or identifi ed risk factor [ 317 ]. 
Heritable PAH is diagnosed when there are mutations of genes that have been iden-
tifi ed as having a strong association with the PAH phenotype, such as the  BMPR2  
gene, which is present in 70 % of heritable cases. Other mutations that have been 
identifi ed in patients with PAH are located in the activin receptor-like kinase type 1 
( ALK1 ) or endoglin ( ENG ) genes [ 248 ,  317 ]. Some studies have also suggested that 
mutations in the Smad proteins and    caveolin-1 ( CAV1 ) genes may also predispose 
to PAH [ 9 ,  18 ,  28 ,  259 ,  316 ]. It is critical that these patients get involved in a com-
prehensive program that includes genetic testing, counseling, and discussion of 
risks and benefi ts [ 21 ,  317 ].  

   Drug and Toxin-Induced PAH: Group 1.3 

 Drug and toxin-induced PAH is further classifi ed depending on the strength of the 
association between the exposure and the presence of disease, but the main sub-
stances that have been found to have a strong association with PAH are anorexigens 
(aminorex, fenfl uramine) and toxic rapeseed oil. Other agents that have been related 
to PAH include cocaine, phenylpropanolamine, St. John’s Wort, chemotherapeutic 
medications, selective serotonin reuptake inhibitors (SSRIs), and amphetamines 
[ 317 ]. However, further studies are needed to establish the true association of these 
latter substances.  
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   Associated with PAH: Group 1.4 

 Associated with PAH (APAH) includes connective tissue disorders, congenital 
systemic- to-pulmonary shunts, portal hypertension, HIV infection, schistosomiasis, 
and chronic hemolytic anemia [ 232 ]. 

   PAH Associated with Connective Tissue Diseases: Group 1.4.1 

 The presence of PAH has been well established in systemic sclerosis, with an esti-
mated prevalence of 7–12 % and is associated with poor prognosis in this group of 
patients [ 138 ,  248 ,  253 ]. The presence of PAH has also been reported in systemic 
lupus erythematosus (SLE) and mixed connective tissue disease, but the exact prev-
alence has not been determined [ 317 ]. Other mechanisms may be involved in the 
induction of PH in these patients, such as left heart dysfunction, lung fi brosis, and 
primary cardiac involvement, which highlights the importance of determining the 
true cause of PH with RHC.  

   PAH Associated with HIV Infection: Group 1.4.2 

 The presence of PAH in patients with HIV infection is rare, with a prevalence of 
0.5 % [ 28 ,  317 ]. Clinical, hemodynamic, and histological fi ndings are very similar 
to those seen in IPAH patients [ 28 ,  317 ]. Concomitant PAH in patients with HIV 
signifi cantly worsens their prognosis [ 243 ].  

   Porto-pulmonary Hypertension: Group 1.4.3 

 PAH associated with an increase in the pressure of the portal circulation is classi-
fi ed as porto-pulmonary hypertension (POPH) [ 248 ]. Some prospective studies 
have shown a prevalence of 5–6 % in patients with advanced liver disease [ 303 ]. 
POPH is also a predictor of poor prognosis, since these patients are usually not 
eligible for liver transplantation due to the high perioperative morbidity and mor-
tality that have been documented in this population [ 303 ]. RHC should be per-
formed to accurately diagnose PAH, since other factors, such as fl uid overload and 
diastolic dysfunction, may elevate the pressure of the pulmonary vasculature in 
patients with portal hypertension [ 317 ].  

   Congenital Heart Diseases: Group 1.4.4 

 PAH is a fairly common complication of CHD in patients that have left-to-right 
shunts [ 81 ,  317 ]. It is estimated that 4–15 % of patients with CHD will develop PAH 
[ 81 ] and the most common anomalies associated with PAH are ventricular septal 
defects (VSD) [ 104 ]. Patients with CHD who develop PAH are classifi ed into four 
groups: Eisenmenger’s syndrome, PAH associated with systemic-to-pulmonary 
shunts, PAH with small defects, and PAH after corrective cardiac surgery [ 81 ,  317 ]. 
Eisenmenger’s syndrome is the most severe form of PAH in this context, where 
there is a reversal of the initial shunt to a right-to-left shunt, where deoxygenated 
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blood is being returned to the systemic circulation and cyanosis ensues along with 
other potential complications such as blood hyperviscosity, hemostasis, stroke, and 
endocarditis [ 81 ].  

   Schistosomiasis: Group 1.4.5 

 Before the Dana Point classifi cation of PH, schistosomiasis was listed under the sub-
group of chronic thrombotic or thromboembolic disease. Nevertheless, recent evidence 
has shown that the obstructive mechanism of schistosoma eggs plays a minor role in the 
induction of PH in this group of patients, and clinical and pathological fi ndings resemble 
those of IPAH [ 248 ,  317 ]. Although the exact mechanisms responsible for the induction 
of PH in patients with schistosomiasis remain largely unknown, the infl ammatory 
response to the schistosoma antigens with the release of cytokines that have also been 
proven to be upregulated in IPAH, as well as the presence of hepatosplenic disease and 
portal hypertension likely plays an important role [ 133 ]. For these reasons, schistoso-
miasis is now listed under Group 1 of the Dana Point Classifi cation [ 248 ,  317 ].  

   Chronic Hemolytic Anemia: Group 1.4.6 

 PAH has been identifi ed as a complication of many hemolytic anemias including 
SCD, thalassemia, hereditary spherocytosis, stomacytosis, and microangiopathic 
hemolytic anemia [ 317 ]. Histological fi ndings seen in IPAH have been commonly 
described in patients with SCD [ 317 ]. However, the true prevalence of PAH in these 
patients remains unknown since most epidemiological studies have defi ned the 
presence of PH in terms of echocardiography rather than RHC [ 317 ]. Such studies 
have documented a prevalence of 20–30 % in patients with SCD and 10–75 % in 
patients with thalassemia [ 219 ]. The pathophysiology of PAH induced by hemolysis 
is not entirely understood, but mechanisms such as inactivation of nitric oxide (NO) 
by free hemoglobin, depletion of  l -arginine in the presence of elevated arginase, 
and increased endothelin-1 (ET-1) responses have been described [ 110 ,  250 ,  301 ]. 

 Pulmonary veno-occlusive disease (PVOD) and pulmonary capillary hemangio-
matosis (PCH) are rare conditions that were included in Group 1 of the most recent 
WHO classifi cation of PH (Dana Point 2008) [ 317 ]. This inclusion was based on the 
similarities of PVOD/PCH and PAH regarding histologic fi ndings, clinical presen-
tation, risk factors, and potential for inheritance [ 317 ]. Nevertheless, they are still 
considered separate conditions classifi ed as 1′ (Table  15.2 ) [ 317 ]. 

 As discussed above, PAH is a diagnosis of exclusion and both PAH and non-PAH 
causes of PH may overlap. Therefore, it is crucial to evaluate and classify patients based 
on their etiology of PH and WHO group (Table  15.2 ), and confi rm that the elevated 
pressure is limited exclusively to the pulmonary arterial system [ 90 ]. This can only be 
accomplished with a RHC, which remains an indispensable tool in the assessment of 
patients with PH [ 90 ]. Additionally, this test gives further information that is useful to 
determine prognosis, such as the severity of the hemodynamic impairment and the 
vasoreactivity of the pulmonary circulation [ 125 ]. The diagnostic PH algorithm estab-
lished by the American College of Cardiology Foundation/American Heart Association 
Task Force (ACCF/AHA) experts can be found in Fig.  15.1  [ 125 ,  232 ].
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15.2.2.3          Gold Standard and Pathological Findings 

 The gold standard for the diagnosis of PAH is the RHC since it is defi ned by hemo-
dynamic criteria [ 125 ,  232 ]. Lung biopsy in patients with PAH is not recommended, 
since it has a high morbidity and mortality in this group of patients and is unlikely 
to change the diagnosis or treatment [ 125 ]. Therefore, the natural history of vascular 
lesions that occur in PAH is not entirely known because biopsies are not regularly 
obtained in these patients [ 232 ]. Arterial abnormalities seen in histological studies 
of patients with PAH include intimal hyperplasia, infl ammation, adventitial prolif-
eration, medial hypertrophy, thrombosis in situ, abnormal muscularization of non-
muscular precapillary arteries, and plexiform arteriopathy [ 232 ,  284 ].  

15.2.2.4     Prognosis 

 Despite a better understanding of the pathophysiological mechanisms involved in 
PAH and the improvement in treatment options, the long-term prognosis remains 
poor [ 232 ]. Data from the French Network on Pulmonary Hypertension Registry 
revealed a survival rate of 83 % (95 % CI 72–95 %) at 1 year, 57 % (95 % CI 
57–79 %) at 2 years, and 58 % at 3 years [ 158 ].   

Symptoms, signs, history suggestive of PH

Noninvasive assessment compatible with PH?

Yes

Consider common causes of PH

History, symptoms, signs, ECG, chest 
radiograph, TTE, PFT, HRCT

Group 2 or 3: diagnosis confirmed

Perform V’/Q’ scan

No

Segmental perfusion defects

Consider other uncommon causes

No

Perform RHC 

Specific diagnostic testsPVOD / 
PCH

CTD

Drugs, 
toxins HIV

IPAH or HPAH BMPR2, ALK-1, endoglin, family history
CHD

Porto-
pulmonary

Chronic 
Hemolysis

Schistosomiasis,
other group 5Clinical 

signs, 
HRCT, ANA

History
HIV test TTE, TEE, 

CMR

Physical, US, 
LFT

Physical, 
laboratory analysis

Group 2: Left heart disease? Group 3: Lung disease and/or hypoxia?

Yes
PH “proportionate to severity”

Yes
“out of proportion” PH

mPAP ≥25 mmHg
PCWP ≤15 mmHg

Treat underlying disease and 
check for progression

Yes

Search for other causes

No

Search for other causes
and/or re-check

No

Consider group 4: 
CTEPH

Consider PVOD/PCH

Yes

  Fig. 15.1    Diagnostic algorithm for pulmonary hypertension. Reproduced with permission from [ 125 ]       
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15.2.3     Pathophysiology 

 PH results from an increase in PVR and restriction in blood fl ow through the 
 pulmonary vascular circulation, fi nally leading to altered right heart function [ 232 ]. 
Elevation of PVR and decreases in pulmonary vascular compliance cause increased 
RV afterload, which ultimately results in adaptive RV hypertrophy [ 221 ]. If the 
pressure overload persists, the RV eventually dilates and becomes dysfunctional, 
leading to increase in RV contraction time, asynchrony, and decreased RV stroke 
volume [ 221 ]. All of the latter changes result in underfi lling of the left ventricle 
(LV) and subsequent reduction in cardiac output [ 126 ,  221 ,  223 ]. 

 The main cause of elevated PVR is the reduction in luminal cross section due to 
vascular remodeling, which results from altered cell growth, apoptosis, migration, 
and production of extracellular matrix [ 5 ,  232 ]. Various stimuli can induce vascular 
remodeling, including mechanical forces (changes in transmural pressure, stretch, 
shear stress), infl ammatory cytokines, serotonin (5-hydroxytryptamine [5-HT]), 
hypoxia, growth factors, angiotensin II (AT-II), endothelin-1 (ET-1), increased ser-
ine elastase activity, and increased production of ROS [ 5 ]. All of these stimuli 
induce changes in different cells that are responsible for the changes seen in vascu-
lar remodeling, mainly endothelial cells (EC) and smooth muscle cells (SMC) [ 5 ]. 

15.2.3.1     Pulmonary Arterial Endothelial Cells 

 Pulmonary arterial endothelial cells (PAEC) that are exposed to injury caused by the 
various stimuli mentioned above may become dysfunctional and respond in ways 
that contribute to vascular remodeling [ 5 ]. This remodeling occurs through the 
release of agents that stimulate proliferation of pulmonary arterial smooth muscle 
cells (PASMC), such as platelet-derived growth factor (PDGF) and fi broblast growth 
factor-2 (FGF-2) and/or failure to produce factors that suppress proliferation of 
PASMC, such as apelin [ 284 ]. Furthermore, PAEC from patients with IPAH have 
increased expression of the Tie2 receptor, which results in increased production of 
5-HT and subsequent PASMC proliferation (Fig.  15.2 ) [ 5 ,  91 ,  284 ]. Moreover, dys-
functional PAEC seen in PH generate less nitric oxide (NO) as a result of uncou-
pling of endothelial NO synthase (eNOS), which ultimately leads to an increase in 
the production of ROS, particularly superoxide (Fig.  15.2 ) [ 5 ]. The effect of ROS 
in pulmonary vascular remodeling is further discussed in the next section. 
Uncoupling of eNOS is related to low levels of enzymatic cofactors  l -arginine and 
tetrahydrobiopterin (BH 4 ) [ 200 ].  l -Arginine depletion results from the upregula-
tion of arginase, which has been documented both in animal and human EC exposed 
to different stimuli, including hypoxia, lipopolysaccharide (LPS), shear stress, and 
infl ammatory cytokines [ 105 ]. Increased asymmetric dimethylarginine (ADMA) 
has also been found to be elevated in patients with PH [ 5 ,  312 ]. ADMA is an 
endogenous analogue of  l -arginine and competes for the substrate binding site of 
eNOS, which can further contribute to the uncoupling of the enzyme [ 5 ,  284 ]. 

15 Pulmonary Arterial Hypertension and Oxidative Stress



  Fig. 15.2    Overview of mechanisms involved in the pathogenesis of PAH. Diverse stimuli result 
in endothelial dysfunction and abnormal PASMC proliferation. Decreased NO production in 
PAEC due to eNOS uncoupling attenuates relaxation of PASMC and promotes vasoconstriction. 
Factors that contribute to eNOS uncoupling include decreased arginine, increased ADMA, 
enhanced arginase activity, low BH 4 , and disruption of the zinc tetrathiolate (ZnS 4 ) cluster. 

 



269

Fig. 15.2 (continued) The eNOS uncoupling not only results in lower NO levels but also increases 
ROS production. Upregulation of NADPH oxidase subunits further contributes to the generation 
of ROS. Altered function of potassium Kv channels in PASMC leads to membrane depolarization 
and opening of voltage-dependent calcium channels. Infl ux of calcium ions stimulates additional 
release of Ca 2+  from the SR. Increased [Ca 2+ ] cyt  and upregulated membrane receptors (5-HT, ET-1, 
leukotrienes) decrease apoptosis and stimulate cell proliferation. Increased Ang-1 downregulates 
BMPR1A in PAEC and enhances 5-HT production, promoting PASMC contraction and prolifera-
tion. As a result of BMPRII mutations, PASMC display dysfunctional BMP signaling pathways, 
which normally inhibit cell proliferation and stimulate cell apoptosis. Mitochondrial dysfunction 
leads to increased ROS production and is evidenced by the low levels of SOD2, high levels of 
UCP2, and impaired function of complexes I and II. Increased activity of XO also results in higher 
production of ROS. Increased expression of the STAT3/Pim1/Src/NFAT axis and suppression of 
miR-204 also promote cellular proliferation and reduce apoptosis. TGF-β and BMP4 increase the 
expression of miR-143/miR-145 through the stimulation of Myocd and MRTF-A, respectively. 
These miRNAs inhibit KLF4 which ultimately results in enhanced contractile gene expression. 
 PAEC  pulmonary arterial endothelial cells,  eNOS  endothelial nitric oxide synthase,  NADPH  nico-
tinamide adenine dinucleotide phosphate,  TGF-β  transforming growth factor β,  TGFRI  type I 
receptor for TGF-β,  TGFRII  type II receptor for TGF-β,  BH   4   tetrahydrobiopterin,  ADMA  asym-
metric dimethylarginine,  DDAH2  dimethylaminohydrolase-2,  TIE2  tyrosine protein kinase recep-
tor,  Ang-1  angiopoietin,  BMP  bone morphogenetic protein,  BMPR1A  BMP receptor 1A,  BMPRI  
BMP type I receptor,  BMPRII  BMP type II receptor,  5-HT  5-hydroxytryptamine,  PASMC  pulmo-
nary arterial smooth muscle cells,  VDCC  voltage-dependent calcium channel,  PIP2  phosphati-
dylinositol 4,5- bisphosphate,  PLC  phospholipase C,  IP3  inositol triphosphate,  DAG  diacylglycerol, 
 PKC  protein kinase C,  ROC  receptor-operated calcium channel,  SR  sarcoplasmic reticulum,  Kv 
channel  voltage-gated potassium channel,  SOD2  superoxide dismutase 2,  UCP2  uncoupling pro-
tein-2,  HIF-1α  hypoxia-inducible factor α,  XO  xanthine oxidase,  RAGE  receptor for advanced 
glycation endproducts,  AGE  advanced glycation endproducts,  RTK  receptor tyrosine kinase, 
 PDGF  platelet- derived growth factor,  VEGF  vascular endothelial growth factor,  STAT3  signal 
transducer and activator,  NFAT  nuclear factor of activated T-cells,  MRTF  myocardin-related tran-
scription factor,  Myocd  myocardin,  KLF4  Krüppel-like factor 4       

ADMA has also been shown to contribute to mitochondrial dysfunction through the 
increase of uncoupling protein-2 (UCP2), which leads to augmented mitochondrial 
ROS (mROS) production and decreased ATP synthesis (Fig.  15.2 ) [ 5 ,  329 ].

   In addition to decreased synthesis of the vasodilator NO, dysfunctional endothelial 
cells also produce lower levels of prostacyclin, and higher levels of vasoactive sub-
stances such as ET-1, AT-II, and thromboxane A 2  (TXA 2 ), and growth factors, namely 
PDGF, transforming growth factor β (TGF-β), FGF-2, and vascular endothelial growth 
factor (VEGF) [ 5 ,  100 ,  227 ,  361 ]. All of these may stimulate PASMC proliferation in 
vascular remodeling [ 5 ]. Finally, PAEC from patients with PAH seem to have 
increased glycolytic activity and a highly proliferative response to growth factors, 
which contributes to the formation of plexiform lesions [ 5 ,  284 ,  382 ]. PAEC seen in 
these lesions exhibit increased levels of hypoxia-inducible factor    (HIF) subunits 
(HIF-1α and HIF-1β), which induce VEGF under hypoxic conditions [ 5 ,  342 ]. 

 Elevated expression of VEGF and VEGF receptor 2 (VEGFR2) has been docu-
mented in plexiform lesions of patients with PAH [ 221 ,  342 ]. VEGF promotes sur-
vival and suppresses apoptosis in PAEC [ 221 ,  305 ]. However, mice and rats exposed 
to hypoxia combined with the VEGFR2 inhibitor, SU5416, develop PAH [ 221 , 
 353 ]. Moreover, VEGF is decreased in the monocrotaline (MCT) rat model of PAH, 
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which correlates with early endothelial injury. Overexpression of VEGF also 
protects against chronic hypoxia and MCT exposure, and VEGFR inhibition results 
in initial EC apoptosis with subsequent selection of EC clones that are resistant to 
apoptosis and form angio-obliterative lesions [ 221 ,  353 ]. Therefore, VEGF appears 
to play a crucial role in angiogenesis and EC growth after vascular injury. Other 
factors associated with plexiform lesions are angiopoietin 1, 5-lipoxygenase, sur-
vivin, and Ki-67 [ 5 ,  129 ,  131 ,  375 ]. However, the exact mechanisms responsible for 
the formation of plexiform lesions are not completely understood [ 5 ].  

15.2.3.2     Pulmonary Arterial Smooth Muscle Cells 

 Many pathologic changes take place in the SMC layer of PAs during vascular remod-
eling. Proximal vessels usually undergo signifi cant hypertrophy, while smaller resis-
tance vessels commonly show hyperplasia [ 5 ,  231 ,  238 ]. Matrix protein deposition is 
also a characteristic feature of the muscular layer of PAs in PAH, where SMC seem to 
acquire a more synthetic, rather than contractile, phenotype, with larger endoplasmic 
reticula and Golgi apparatus, and increased production of collagen and elastin [ 5 , 
 238 ]. Muscularization of otherwise nonmuscular blood vessels results from differen-
tiation of pericytes into SMC and hypertrophy of SMC precursor cells [ 5 ,  284 ]. 

 Factors that have been identifi ed in the induction of SMC hypertrophy include 
bone morphogenetic protein 4 (BMP4), TGF-β1, 5-HT, ET-1, inhibition of glyco-
gen synthase kinase 3β (GSK-3β), and activation of p70S6 kinase [ 5 ,  174 ]. Abnormal 
activation of transcription factors (HIF-1α and nuclear factor of activated T-cells 
[NFAT]), increased expression of survivin and PDGF, calcium overload, mitochon-
drial hyperpolarization, and decreased expression of voltage-gated potassium chan-
nels (Kv) all contribute to the increased survival and decreased apoptosis of PASMC 
seen in PAH (Fig.  15.2 ) [ 221 ,  232 ]. 

 Finally, in vitro studies have shown that PASMC from PAH patients have higher 
mRNA and protein levels of Notch 3 and HES-5 [ 221 ]. Notch participates in vascu-
logenesis, angiogenesis, and differentiation of vascular SMC [ 11 ,  221 ]. HES-5, a 
target gene for Notch 3, is exclusively expressed in adult SMC and may be involved 
in SMC maturation and proliferation [ 53 ,  96 ,  221 ,  279 ].  

15.2.3.3     Neointima Formation 

 The formation of a layer of cells and extracellular matrix between the endothelium 
and the internal elastic lamina occurs in severe PH [ 5 ,  387 ]. The neointima is com-
posed of myofi broblasts that express SM markers such as smooth muscle α-actin 
and vimentin [ 5 ]. These cells lack markers of highly differentiated SMC, such as 
SM-myosin heavy chain, and do not exhibit EC markers either [ 5 ,  387 ]. The exact 
origin of these cells is unclear. They may originate in stem cells, transdifferentiation 
of endothelial cells, migration of SMC from the media, or migration of adventitial 
fi broblasts [ 5 ,  284 ]. This currently remains a subject of intense study [ 284 ].  
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15.2.3.4     Changes in the Adventitia 

 PAH is associated with thickening and disorganization of the pulmonary adventi-
tia, with excessive activation of adventitial metalloproteases [ 232 ]. In patients 
with PAH related to collagen vascular diseases such as scleroderma, the adventitia 
appears markedly remodeled [ 5 ]. Activation of fi broblasts by different stimuli can 
induce a phenotypic change in these cells, altering their structure and functional 
behavior [ 5 ]. An example of this is the induction of a contractile phenotype in 
fi broblasts by TGF-β1 and TGF-β2 [ 5 ,  387 ]. The activation and proliferation of 
fi broblasts and myofi broblasts result in thickening of the adventitia in PH, and 
some studies have shown that these changes precede remodeling of the intima and 
SMC layer, which suggests that the initial detection of vascular injury might take 
place in the adventitia [ 5 ,  146 ].  

15.2.3.5     Genes and Transcription Factors Involved in PAH 

 Genes associated with PAH have helped to identify potential mechanisms involved in 
the pathogenesis of the disease. Studies have shown that approximately 70 % of 
patients with heritable pulmonary arterial hypertension (HPAH) and 10–20 % of 
patients with IPAH are heterozygous for a mutation in  BMPR2 , which is a member of 
the TGF-β superfamily of growth factor receptors [ 284 ]. HPAH is inherited in an 
autosomal dominant fashion with incomplete penetrance and genetic anticipation 
[ 232 ]. The impaired function of the BMPR2 results in a loss of function of the SMAD 
signaling pathway, causing proliferation and decreased apoptosis of PASMC in 
response to TGF-β and BMP2 (Fig.  15.2 ) [ 232 ]. On the other hand, BMPR2 impair-
ment in EC results in increased susceptibility to apoptosis, which alters the normal 
migration and survival of EC needed in angiogenesis and regeneration of damaged 
blood vessels (Fig.  15.2 ) [ 85 ,  284 ]. Abnormal BMPR2 signaling has also been asso-
ciated with increased ET-1 production in human lung microvascular EC [ 221 ,  324 ]. 

 Recently, signal transducer and activator of transcription 3 (STAT3) has been 
shown to participate in aberrant PASMC proliferation [ 221 ,  272 ]. IL-6, TGF-β, 
PDGF, VEGF, ET-1, and AT-II can activate STAT3, which in turn increases the 
expression of Pim1 (Fig.  15.2 ) [ 221 ,  272 ,  390 ]. PIM1 promotes the activation of 
NFAT, increasing cytokine secretion, enhancing PASMC proliferation, and sup-
pressing PASMC apoptosis (Fig.  15.2 ) [ 221 ,  287 ].    STAT3 has also been implicated 
in induction of survivin expression through activation of Krüppel-like factor 5 
(KLF5) and in downregulation of eNOS expression (Fig.  15.2 ) [ 74 ,  221 ]. 

 Moreover, studies have shown that mice with deletion of the peroxisome 
proliferator- activator receptor gamma (PPAR-γ) gene develop spontaneous PAH 
[ 136 ], and mutations in this gene have also been identifi ed in patients with severe 
PH [ 5 ,  12 ,  284 ]. PPAR-γ participates in the antiproliferative effect of BMP2 sig-
naling in PASMC, which is BMPR2/PPAR-γ/ApoE dependent [ 8 ,  140 ,  221 ]. The 
receptor of advanced glycation end products (RAGE) is an upstream target of 
PPAR-γ in PAH, and has been shown to activate STAT3 and downregulate BMPR2 
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and PPAR-γ in PAH-PASMC (Fig.  15.2 ) [ 221 ,  236 ]. Furthermore, BMP2-
mediated survival of PAEC depends on the formation of a nuclear complex 
between β-catenin and PPAR-γ [ 8 ]. One of the transcriptional targets of this com-
plex is apelin, which is reduced in patients with IPAH [ 8 ]. Apelin promotes PAEC 
survival and migration, and suppresses PASMC growth [ 284 ]. Apelin-defi cient 
PAEC have increased apoptosis and promote PASMC proliferation [ 8 ,  221 ]. Other 
genes that have been associated with the PAH phenotype include  ALK1 ,  ENG , and 
 CAV1  [ 18 ,  59 ,  142 ,  218 ,  221 ].  

15.2.3.6     MicroRNAs Involved in PAH 

 miRs are now of great interest in the study of diseases that display abnormal cell 
growth, since they are involved in various posttranscriptional regulatory mecha-
nisms [ 221 ]. In PAH, only few miRs have been identifi ed as being abnormally 
expressed [ 221 ]. Downregulation of miR-204 in PAH-PASMC was found to corre-
late with PAH severity and higher cell proliferation [ 74 ]. It was shown that down-
regulated levels of miR-204 enhance a constitutive activation of Src and STAT3, 
leading to an increase in PASMC proliferation (Fig.  15.2 ) [ 74 ]. Additionally, down-
regulation of miR-204 appears to upregulate IL-6 secretion, which in turn down-
regulates BMPR2 and further contributes to the proliferative phenotype of 
PAH-PASMC [ 221 ,  272 ]. IL-6 is a potent activator of STAT3, which means that 
these interactions result in a feed-forward loop between miR-204 downregulation 
and STAT3 (Fig.  15.2 ) [ 221 ]. 

 Src and p53 pathways regulate the organization of miR-145 and miR-143, which 
are involved in SMC differentiation and proliferation [ 221 ,  283 ]. TGF-β and BMP4 
stimulate the expression of myocardin (Myocd) and Myocd-related transcription 
factor A (MRTF-A), respectively. These factors in turn activate miR-143 and miR- 
145 transcription, resulting in decreased KLF4 expression and promotion of con-
tractile gene expression in SMC (Fig.  15.2 ) [ 83 ,  221 ]. Plexiform and concentric 
lesions seen in patients with PAH display abnormal expression of miR-143/miR- 
145 and mice exposed to hypoxia show elevated levels of miR-145 [ 54 ,  221 ]. 

 In PAEC, expression of miR-126 appears to be dysregulated specifi cally in 
plexiform lesions [ 36 ,  221 ]. This miR plays an important role in neovasculariza-
tion, EC proliferation, and vascular integrity, and regulates factors involved in 
apoptosis and modulation of cell cycle arrest [ 221 ,  355 ,  391 ]. Other miRs that have 
been found to contribute to the pathogenesis of PAH include miR-150, which is 
reduced in patients with PAH and is associated with decreased NK cells and B1 
cell expansion; miR- 210, the miR most highly upregulated by hypoxia [ 195 ,  221 ]; 
miR-21, which is highly upregulated in hypoxia and appears to participate in 
abnormal proliferation and migration of PASMC [ 221 ]; and miR-17, which is also 
upregulated in hypoxia, and targets p21 and Janus kinase (JAK1) impairing angio-
genic functions of endothelial cells [ 221 ]. miRs remain a subject of intense study, 
since they are regarded as useful biomarkers, prognostic tools, and potential targets 
for future therapies [ 221 ].    
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15.3     Oxidative Stress and PAH 

 Several studies have implicated oxidative stress in the pathogenesis of PAH. 
Oxidative and nitrosative stress are characterized by an imbalance between oxidant 
and antioxidant production that can lead to downstream cell and tissue damage. 
Oxidative stress in PAH is associated with increased production of ROS and reac-
tive nitrogen species (RNS), decreased nitric oxide (NO) levels, and mitochondrial 
dysfunction. Dysregulation of ROS/RNS/NO homeostasis can impair vascular tone 
and lead to activation of antiapoptotic and mitogenic pathways resulting in cell 
hyperproliferation and obliteration of the vasculature in PAH. 

 ROS are produced from oxygen during normal metabolic processes. ROS can be 
characterized as either free radicals, reactive molecules with one or more unpaired 
electrons, or nonradicals, molecules which share unpaired electrons between two 
free radicals [ 34 ] (Table  15.3 ). Hydroxyl radical ( • OH) is considered the most reac-
tive free radical in biological systems [ 335 ]. In the lung, ROS can be generated by 
alveolar epithelial cells, endothelial cells, alveolar macrophages, neutrophils, and 
eosinophils. In the pulmonary vasculature, ROS can be produced by complexes in 
the cell membrane, within mitochondria and peroxisomes, and from within the 
cytoplasm. The major enzymatic sources of ROS include uncoupled eNOS, xan-
thine oxidase (XO), nicotine adenine dinucleotide phosphate (NADPH) oxidase 
(NOX), and mitochondrial electron transport enzymes (Fig.  15.3 ). RNS are various 
nitrogen-containing species (Table  15.3 ) that can alter protein function via 
S-nitrosylation, tyrosine nitration, and glutathionylation. NO is the predominant 
source of nitrosative stress and, at high concentrations, can react with ROS to gener-
ate other RNS, including peroxynitrite, ONOO‾.

    Table 15.3    Major oxidants   

  Oxidative stress  

 Free radicals  Nonradicals 
 Hydroxyl radical  OH •   Hydrogen peroxide  H 2 O 2  
 Superoxide anion  O 2  • ‾  Hypochloric acid  HOCl 
 Peroxyl radical  ROO •   Ozone  O 3  
 Hydroperoxyl radical  HOO •   Lipid peroxide  LOOH 
 Lipid peroxyl  LOO •  

  Nitrosative stress  
 Nitric oxide  NO •  
 Peroxynitrite anion  ONOO‾ 
 Nitrogen dioxide  NO 2  
 Nitrite  NO 2 ‾ 
 Nitrate  NO 3 ‾ 
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15.3.1        Mediators and Molecular Mechanisms of Oxidative 
Stress in PAH 

15.3.1.1     Nitric Oxide Dysregulation 

 NO is a gaseous lipophilic free radical and primary pulmonary vasodilator produced 
and released by the endothelium. In addition to regulating vascular tone, NO attenu-
ates platelet aggregation and inhibits vascular SMC proliferation and migration 
within the vascular wall [ 404 ]. NO is biosynthesized during the conversion of the 
amino acid  l -arginine to  l -citrulline by a family of enzymes called nitric oxide 
synthases (NOS). Three different isoforms of NOS have been identifi ed including 

  Fig. 15.3    Overview of the mechanisms involved in ROS production and antioxidant mechanisms 
that counterbalance this oxidative stress. eNOS uncoupling due to decreased arginine, increased 
ADMA, enhanced arginase activity, low BH 4 , and disruption of the zinc tetrathiolate (ZnS 4 ) cluster 
results in increased production of superoxide. Upregulation of NADPH oxidase subunits and xan-
thine oxidase further contributes to the generation of ROS. Superoxide dismutase catalyzes the 
conversion of superoxide to hydrogen peroxide. Hydrogen peroxide is reduced by catalase and 
glutathione peroxidase.  XO  xanthine oxidase,  SOD2  superoxide dismutase 2,  UCP2  uncoupling 
protein-2,  HIF-1α  hypoxia-inducible factor α,  BH   4   tetrahydrobiopterin,  ADMA  asymmetric dimeth-
ylarginine,  DDAH2  dimethylaminohydrolase-2,  NADPH  nicotinamide adenine dinucleotide phos-
phate,  SOD  superoxide dismutase,  GPx  glutathione peroxidase,  GSSG  glutathione disulfi de       
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neuronal NOS (nNOS), inducible NOS (iNOS/NOS2), and endothelial NOS 
(eNOS). The production of NO by NOS requires NADPH and O 2 , as well as the 
cofactors tetrahydrobiopterin (BH 4 ), fl avin adenine dinucleotide (FAD), fl avin 
mononucleotide (FMN), and Ca 2+ /calmodulin (CaM) [ 52 ,  220 ] (Fig.  15.4 ).

   After release from endothelial cells, NO binds to soluble guanylate cyclase (sGC) in 
vascular cells and converts guanosine triphosphate (GTP) to cGMP, which leads to acti-
vation of downstream cGMP-dependent signaling [ 77 ,  270 ]. cGMP is a transient signal-
ing molecule, as it is rapidly cleaved by phosphodiesterases (PDEs), predominantly 
PDE5, into 5′GMP, thereby inhibiting NO signaling (Fig.  15.4 ). Although eNOS-
derived NO is primarily responsible for endothelium-dependent vasodilation, iNOS has 
also been shown to regulate pulmonary vascular tone [ 111 ,  113 ]. 

  Fig. 15.4    Nitric oxide signaling in PAH. Oxidative stress and nitric oxide (NO) dysregulation in 
the pathogenesis of PAH. (1) Biosynthesis of NO from the amino acid  l -arginine by the enzyme 
endothelial nitric oxide synthases (eNOS) with  l -citrulline as a side product and important cofac-
tors such tetrahydrobiopterin (BH 4 ), calcium, and heme. (2) Uncoupling of eNOS̶when cofac-
tors are limited and there is production of ROS, superoxide (   O 2  • ‾) and hydrogen peroxide (H 2 O 2 ). 
(3) Binding of NO to its target protein, soluble guanylate cyclase (sGC) and conversion of guano-
sine triphosphate (GTP) to cGMP resulting in blood vessel dilation (4). (5) Cleavage of cGMP by 
PDE5 into 5′GMP leading to inhibition of NO signaling resulting in vessel contraction       
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 In mice, deletion of eNOS results in systemic hypertension [ 157 ] and mild PH 
[ 326 ], while eNOS overexpression leads to systemic hypotension [ 130 ,  265 ]. 
Exposure of eNOS-defi cient mice to chronic hypoxia exacerbates PH and right ven-
tricular hypertrophy (RVH) [ 327 ] and administration of inhaled NO attenuates 
hypoxia-induced PH, RVH, and vascular remodeling in rats [ 192 ,  297 ,  300 ]. In 
addition, recent fi ndings demonstrate that endothelial-like progenitor cells (ELPC) 
expressing eNOS reverse MCT-induced PH [ 395 ] and attenuate right ventricular 
systolic pressure (RVSP) and pulmonary arterial muscularization in a lung lobec-
tomy model of PH [ 366 ]. Taken together, these fi ndings suggest a critical role for 
dysregulation of eNOS-derived NO in the pathogenesis of PAH. 

 While there is general consensus that NO signaling is impaired in PAH, it remains 
unclear whether this is primarily due to reduced synthesis, decreased bioavailability, 
decreased responsiveness, or increased consumption of NO. Some studies have 
demonstrated attenuated bioavailability of NO via hemoglobin and superoxide 
scavenging [ 154 ] or by increased hemolysis in fatal PAH [ 156 ].  

15.3.1.2     eNOS Regulation 

 NO synthesis and bioavailability in the pulmonary vasculature are dependent upon the 
regulation of eNOS [ 60 ]. eNOS expression is controlled by two regulatory regions, the 
positive regulatory domains I and II, and its transcription is regulated by many cofactors 
acting by complex  cis  and  trans  interactions [ 309 ]. Additionally, methylation of nucleo-
tides in those regions specifi es vascular endothelial cell expression of eNOS [ 55 ]. 
Following eNOS protein translation, its compartmentalization activity is regulated by 
phosphorylation of specifi c serine and threonine residues [ 42 ,  43 ,  69 ,  194 ,  252 ], as well 
as additional posttranslational modifi cations (myristoylation and palmitoylation) which 
allow for eNOS localization to the plasma membrane and subsequent targeting to caveo-
lae [ 263 ], where caveolin-1 (Cav-1) regulates intracellular NO signaling [ 255 ]. 

 In addition to the Cav-1/caveolae traffi cking system [ 145 ,  255 ,  302 ], the chap-
eron Hsp90 has also been identifi ed as a regulator of eNOS activity by its rapid 
binding upon EC activation [ 386 ]. One possible mechanism of this regulation is 
through interaction of eNOS and Hsp90 with CaM. Following VEGF stimulation of 
EC, there is disruption of the Ca 2+ /CaM-dependent eNOS/Cav-1 complex and pro-
motion of Hsp90 and eNOS association. The Hsp90/eNOS complex is then trig-
gered for VEGF-activated Akt-dependent phosphorylation of eNOS [ 49 ,  336 ]. 
Prolonged exposure of cells to Ca 2+  results in degradation of eNOS and Hsp90, 
followed by a decrease in NO production [ 19 ]. It has also been shown that Hsp90 as 
an adaptor protein binds eNOS to sGC, allowing cGMP signaling to take place and 
facilitating responses to NO donors [ 350 ,  386 ].  

15.3.1.3     Uncoupling of eNOS in PAH 

 In addition to impaired NO signaling in the pathobiology of PAH, “eNOS uncou-
pling” in conditions of substrate/cofactor defi ciency or RNS production in the set-
ting of NO excess can lead to decreases in NO bioavailability and increases in 
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oxidative stress with downstream alterations in vascular tone and aberrant vascular 
remodeling. eNOS uncoupling can occur in the setting of BH 4  or  l -arginine defi -
ciency [ 196 ,  200 ] and results in a shift from NO synthesis to other ROS production 
with resultant endothelial dysfunction [ 72 ] (Fig.  15.4 ). All three isoforms of NOS 
contain an oxygenase and a reductase domain, each of which has its own catalytic 
activity. The oxygenase domain has binding sites for heme and BH 4 , while the 
reductase domain has binding sites for FAD, FMN, and NADPH. Both domains are 
linked by the binding site for CaM, an important regulator of NOS function. 

 For the formation of NO from  l -arginine, eNOS requires the critical cofactor 
BH 4 , which stabilizes the dimeric structure of eNOS and facilitates binding of  l -argi-
nine [ 73 ]. When BH 4  levels are insuffi cient, “eNOS uncoupling” may result with 
activation of the reductase domain and transfer of electrons to O 2 , rather than  l -argi-
nine, and production of superoxide (O 2  • ‾) [ 51 ] (Fig.  15.4 ). BH 4  can be oxidized by 
ROS to BH 2 , a competitive BH 4  antagonist [ 130 ], which shifts eNOS enzymatic 
activity towards superoxide production [ 183 ]. Defi ciency of BH 4  in a mouse model 
led to spontaneous development of PH under normoxic conditions as well as exag-
gerated hypoxia-induced PH, vascular remodeling, and RVH, which was secondary 
to reduced NOS activity and increased superoxide production associated with 
reduced BH 4  levels [ 183 ]. Furthermore, overexpression of GTP-cyclohydrolase 1, 
the rate-limiting enzyme in BH 4  biosynthesis, prevented PH in mice, and exogenous 
supplementation of BH 4  attenuated MCT-induced PH and muscularization of distal 
pulmonary arteries in rats [ 120 ,  180 ]. Additionally, the BH 4  analogue, acetyl- 7,7-
dimethyl-7,8-dihydropterin, improved NO-mediated pulmonary artery dilation and 
induced eNOS expression in the endothelium of rats with hypoxia-induced PH [ 196 ]. 

 Further support for eNOS uncoupling in the pathogenesis of PAH comes from 
Cav-1-defi cient mice that develop PH [ 222 ,  396 ] due to increased superoxide [ 179 ] 
and peroxynitrite production and tyrosine nitration-dependent impairment of protein 
kinase G (PKG) activity secondary to increased eNOS activity and NO levels [ 398 ]. 
Importantly, PH in Cav-1-knockout (KO) mice can be reversed with NOS inhibition 
and prevented with BH 4  administration in Cav-1-defi cient neonatal mice [ 376 ,  377 ]. 

 Uncoupling of eNOS can also occur in the setting of limited  l -arginine avail-
ability. Although intracellular concentrations of  l -arginine typically far exceed 
what is necessary for NO production [ 60 ], arginase can metabolize  l -arginine to 
 l -ornithine and urea, and compete with NOS for substrate. Arginase is upregulated 
in the lungs of mice exposed to hypoxia [ 173 ], as well as in hypoxia-exposed SMC 
[ 61 ], and is increased in EC of PAH patients [ 381 ]. Increases in arginase lead to 
endothelial dysfunction [ 306 ,  381 ], increases in EC and SMC proliferation [ 205 ], as 
well as increases in collagen deposition [ 186 ]. Inhibition of arginase decreases 
SMC and EC proliferation [ 67 ], and attenuates pulmonary vascular remodeling in 
an animal PH model [ 67 ]. Increased levels of  l -arginine have also been implicated 
in the development of PAH in patients with SCD [ 154 ]. In addition to limiting NO 
availability, increased arginase and enhanced synthesis of ornithine have also been 
implicated in SMC remodeling and PH [ 144 ,  266 ]. 

  l -Arginine availability can also be infl uenced by endogenous methylarginines, 
specifi cally  l -monomethlyl arginine ( l -NMMA) and ADMA, which are produced 
through posttranslational methylation of amino acids in arginine [ 14 ,  372 ] and com-
pete with  l -arginine for the binding site on eNOS [ 51 ]. Both  l -NMMA and ADMA 
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are eliminated largely through active metabolism by dimethylarginine dimethylami-
nohydrolase (DDAH) [ 204 ]. Levels of ADMA are increased in animal models of 
PH [ 17 ,  241 ] and have been associated with increased oxidative stress and endothe-
lial dysfunction [ 334 ]. Furthermore, DDAH levels are reduced in animal models of 
PH [ 17 ,  241 ] and DDAH1 overexpression in mice has been shown to decrease the 
sustained phase of hypoxic pulmonary vasoconstriction (HPV) via activation of the 
NO-sCG pathway [ 24 ]. Additionally, levels of ADMA are increased in the plasma 
of patients with pediatric and idiopathic PAH [ 132 ,  280 ] and also have been associ-
ated with increased pulmonary vascular pressures in decompensated heart failure 
patients in the intensive care unit [ 312 ].  

15.3.1.4    NO Reactions with Other ROS: Formation of RNS 

 Nitrosative stress has also been implicated in the pathogenesis of PAH. NO is the 
main RNS produced within cells and can react with other ROS such as superoxide 
to generate peroxynitrite anion (ONOO‾). Peroxynitrite is a potent oxidant that 
nitrates tyrosine residues and can lead to formation of other extremely reactive 
RNS such as nitrogen dioxide, nitrosoperoxycarbonate anion, nitrite, and nitrate. 
These RNS can lead to signifi cant alterations in protein structure and function, 
lipid peroxidation, nucleic acid damage, and cell death. Nitrotyrosine, a product 
of tyrosine nitration and marker of peroxynitrite, is upregulated in the endothe-
lium and PASMC of rats subjected to chronic hypoxia [ 87 ,  167 ] and hypoxia-
induced peroxynitrite production has been shown to increase proliferation in 
PASMC [ 3 ]. Peroxynitrite- mediated tyrosine nitration has also been shown to 
inactivate prostacyclin synthase leading to reduced levels of prostaglandin I 2  
[ 401 ], eNOS uncoupling, as well as inhibition of PKG [ 4 ,  397 ]. In addition, per-
oxynitrite can activate many signaling pathways involved in cell proliferation 
including ERK and protein kinase C [ 3 ]. Moreover, treatment of newborn rats 
with a ONOO‾ decomposition catalyst, 5,10,15,20-tetrakis(4-sulfonatophenyl) 
porphyrinato iron(III) (FeTPPS), attenuated chronic hypoxia-induced PH and 
decreased proliferation in neonatal PASMC [ 32 ]. 

 In addition to tyrosine nitration, RNS can also induce S-nitrosylation and gluta-
thionylation of regulatory proteins that may alter protein function and downstream 
signaling. Notably, NO can induce S-nitrosylation through formation of dinitrogen 
trioxide that can covalently link NO to free thiol groups on cysteine residues within 
proteins leading to formation of  S -nitrosothiols. Several S-nitrosylation targets may 
play an important role in modulating oxidative stress and vascular remodeling in 
PAH including eNOS, sGC, hemoglobin, mitochondrial complex I, NOX, and 
cyclooxygenase (COX)-2 [ 224 ]. The functional effects of S-nitrosylation of several 
of these key proteins promote vasodilation and decrease oxidative stress, although 
S-nitrosylation of sGC and eNOS may inhibit NO-mediated effects on vascular 
tone. In red blood cells (RBC), hypoxia impairs S-nitrosylation of hemoglobin and 
defi ciency of  S -nitrosohemoglobin (SNO-Hb) is associated with exaggerated HPV 
and increased pulmonary arterial pressures [ 233 ]. Furthermore, restoration of 
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SNO-Hb levels by ethyl nitrite inhalation enhanced vasorelaxation and improved 
hemodynamics and oxygenation in PAH patients [ 233 ]. Although S-nitrosylation- 
induced vascular alterations appear to be protective in PAH, the role of  S -nitrosothiols 
in the pathogenesis of PAH remains incompletely understood.  

15.3.1.5    Xanthine Oxidase 

 Xanthine oxidoreductase (XOR) is a critical source of intracellular ROS. It cata-
lyzes the terminal two steps of purine degradation, from hypoxanthine to xanthine 
and then to uric acid, with release of O 2  • ‾ and H 2 O 2  (Fig.  15.3 ). It primarily exists in 
cells as a dehydrogenase reducing NAD +  to NADH, but in the setting of infl amma-
tion, oxidation of cysteine residues or limited proteolysis converts xanthine dehy-
drogenase into xanthine oxidase (XO). XO transfers substrate-derived electrons to 
O 2 , generating O 2  • ‾ and H 2 O 2 . H 2 O 2  is a major ROS product of XOR action under 
normal and pathophysiological conditions [ 7 ,  335 ] and has been shown to regulate 
many pathways involved in vascular remodeling including proliferation and Ca 2+  
signaling [ 143 ,  356 ,  389 ]. H 2 O 2  has also been shown to contribute to superoxide 
production and decreased NO via activation of NOX [ 208 ,  400 ], eNOS uncoupling 
in an NOX-dependent manner [ 16 ,  46 ], and limiting access to BH 4 .    Furthermore, 
H 2 O 2  has been shown to inhibit the activity of extracellular superoxide dismutase 
(EC-SOD) in PASMC and treatment with catalase (which catalyzes decomposition 
of H 2 O 2 ) enhances EC-SOD activity and decreases superoxide levels in a model of 
persistent pulmonary hypertension of the newborn (PPHN) [ 363 ]. 

 XOR is upregulated in the lung and serum of rats exposed to chronic hypoxia and 
treatment with allopurinol, an XO inhibitor, attenuates hypoxia-induced PH, pul-
monary vascular remodeling, and RVH [ 151 ,  167 ]. In addition, XO activity is 
increased in the plasma of patients with IPAH [ 124 ,  321 ], suggesting a role for 
XOR-mediated ROS in the pathogenesis of PAH.  

15.3.1.6    NADPH Oxidases 

 ROS produced by oxidases such as NOX are considered a major contributor to oxi-
dative and nitrosative stress in the lungs and pulmonary vasculature [ 7 ,  82 ], and 
have been shown to play an important role in dysregulation of vascular tone in the 
setting of hypoxia [ 118 ,  211 ]. The parenchymal family of NOXs includes NOX1, 
NOX3, NOX4, NOX5, DUOX1, and DUOX2 and the phagocyte NOX includes 
gp91phox (NOX2). Only NOX1, NOX2, and NOX4 are found in the human vascu-
lature and generate ROS by electron transfer from NADPH to oxygen to generate 
O 2  • ‾ that can be further converted to H 2 O 2  by cellular superoxide dismutases 
(SODs). For enzymatic function, each NOX requires several adaptor subunits. In 
endothelial cells, NOX2 is constitutively associated with p22 phox  and, after stimula-
tion, p47 phox  is phosphorylated followed by recruitment of p67 phox , p40 phox , and Rac1 
to the NOX2 complex where it is then able to generate O 2  • ‾ [ 20 ] (Fig.  15.3 ). 
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 In the pulmonary vasculature, NOX1, NOX2, and NOX4, as well as the subunits 
p22 phox  p47 phox , p67 phox , and p40 phox  are expressed in the lung and pulmonary arteries 
of mice [ 246 ]; however, NOX4 is the predominant NOX upregulated by hypoxia in 
PASMC [ 245 ,  246 ], PAEC [ 260 ], and pulmonary artery adventitial fi broblasts [ 207 ]. 
In addition, p22 phox  and NOX4 have recently been shown to be upregulated in 
PASMC in a lamb model of pulmonary hypertension of the newborn (PPHN) [ 362 ]. 
Knockdown of NOX4 decreased ROS production and attenuated proliferation in 
PASMC and pulmonary artery adventitial fi broblasts [ 207 ,  245 ,  246 ], as well as 
increased apoptosis in adventitial fi broblasts [ 207 ]. In addition, knockdown of 
NOX4 increased EC-SOD activity as well as attenuated increases in cyclin D1 and 
NF-κB in PPHN-PASMC [ 362 ]. Furthermore, NOX4-derived ROS have been 
shown to mediate hypoxia-induced decreases in Kv channel current and increase 
Kv1.5 channel oxidation in PASMC [ 245 ]. 

 NOX4 has also been shown to be upregulated by TGF-β in PASMC [ 328 ]. TGF-β 
signifi cantly induced NOX4 expression and ROS in human PASMC in a Smad2/3- 
dependent manner that was attenuated by diphenylene iodonium, an NADPH inhib-
itor, knockdown of NOX4 by siRNA, and transfection of dominant negative 
Smad2/3 plasmids. In addition, TGF-β stimulation induced NOX4-dependent 
increases in proliferation in PASMC and, furthermore, led to increases in contractile 
protein expression that was redox- but not NOX4 dependent. Furthermore, NOX4 
has been shown to be signifi cantly upregulated in the lungs of PAH patients com-
pared with healthy donor control lungs [ 246 ]. 

 NOX1 and NOX2 have also been shown to play a potential role in the pathogen-
esis of PAH. In a chronic hypoxia-induced PH model in mice, defi ciency of NOX2 
reduced hypoxia-induced ROS production, pulmonary artery vasoreactivity, and 
attenuated hypoxia-induced increases in RVSP, pulmonary vascular remodeling, 
and RVH [ 211 ]. Interestingly, in a rat MCT-induced PH model, PASMC isolated 
from MCT-treated rats had increased expression of NOX1 and enhanced superoxide 
production. Knockdown of NOX1 reduced superoxide production as well as attenu-
ated MCT-induced increases in SOD2, cyclin D1, and phosphorylation of ERK. 
Furthermore, knockdown of NOX1 attenuated proliferation and migration of 
PASMC from MCT-treated rats [ 348 ]. 

 NOXs have also been shown to play an important role in the endothelium in 
response to hypoxia [ 122 ,  405 ]. PAEC exposed to hypoxia-reoxygenation had sig-
nifi cant release of H 2 O 2  compared with control cells and inhibition of NOX with 
diphenyliodonium attenuated H 2 O 2  production in response to hypoxia- reoxygenation 
[ 405 ]. In addition, acute hypoxic vasoconstriction (HPV) was attenuated in p47 phox - 
defi cient mice and ex vivo treatment with an NOX inhibitor signifi cantly reduced 
HPV in isolated perfused rabbit lungs [ 371 ]. Although human data on the role of 
NOX regulation in the pathobiology of PAH is limited, there is strong animal data 
supporting an important role for NOX-derived ROS in the pathogenesis of PAH. 
Further study in patients is warranted to elucidate the role of NOX in human PAH 
and to determine whether NOX represents an effective pathway for therapeutic tar-
geting in PAH.  
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15.3.1.7    Mitochondria-Derived ROS 

 Mitochondria are an additional source of ROS production that may play a role in the 
pathogenesis of PAH [ 99 ]. PAH has been reported in patients with genetic altera-
tions in mitochondrial genes [ 322 ,  349 ] and there is growing recognition that meta-
bolic aberrations and mitochondrial dysfunction exist in PASMC and PAEC isolated 
from patients with PAH [ 40 ,  117 ,  235 ,  382 ]. ROS are generated in mitochondria 
during the electron transport chain when electrons fl owing down the redox gradient 
prematurely react at complexes I and III with O 2  to generate O 2  • ‾ [ 98 ,  103 ,  370 ]. 
There is also data to suggest that complex II may be a source of mROS generation 
in the lungs from hypoxic mice and the hearts isolated from MCT-treated rats [ 267 , 
 292 ]. Additional ROS can be generated in mitochondria from superoxide by man-
ganese SOD2 that catalyzes rapid conversion of O 2  • ‾ to diffusible H 2 O 2  (Fig.  15.3 ), 
which can serve as a signaling molecule and regulate transcription factors such as 
HIF-1α [ 57 ,  137 ,  235 ] and sulfhydryl-rich voltage-gated potassium Kv channels 
[ 155 ], which have been shown to play a critical role in PAH. 

 Debate exists as to whether hypoxia increases or decreases mROS and, further-
more, whether mROS promote or protect against pulmonary vascular remodeling 
[ 98 ,  368 ]. Previous work has demonstrated that hypoxia increases mROS, Ca 2+  
infl ux, and PASMC contractility and that inhibition of the electron transport chain 
attenuates increases in Ca 2+  and HPV [ 56 ,  106 ,  290 ,  359 ]. In addition, hypoxia- 
induced increases in mROS have also been shown to enhance PASMC proliferation 
via opening of mitochondrial K +  ATP  channels and overproduction of H 2 O 2  [ 155 ]. 
Furthermore, a recent study demonstrates that redox signaling in PASMC in 
response to hypoxia is dependent upon subcellular mitochondrial compartment 
location [ 358 ]. 

 While supraphysiologic levels of mROS can lead to oxidative damage and cel-
lular dysfunction, mROS are critical regulators of vascular tone and sustained 
decreases in mROS may lead to upregulation of transcription factors and signaling 
pathways that promote aberrant vascular remodeling in PAH. Emerging data sug-
gest that mitochondrial function is impaired in PAH and that cellular metabolism is 
shifted towards glycolysis leading to enhanced cellular proliferation and resistance 
to apoptosis, similar to cancer cells (i.e., the Warburg effect) [ 39 ,  347 ]. This has 
been attributed to decreased mROS production, inhibition of Kv channels with sub-
sequent increases in Ca 2+  signaling, and activation of HIF-1α and NFAT which pro-
mote proliferation and suppress apoptosis [ 40 ,  41 ,  240 ,  369 ]. 

 Reduced levels of mROS have been found in animals models of PH including the 
fawn-hooded rat (FHR) that spontaneously develops PAH [ 40 ] and MCT-treated 
rats [ 235 ]. Additionally, PASMC isolated from PAH patients have decreased Kv1.5 
expression, increased intracellular Ca 2+  concentrations [Ca 2+ ] i , increased mitochon-
drial membrane potential, and activation of NFAT [ 41 ]. Inhibition of NFAT with 
VIVIT or cyclosporine restored Kv1.5 expression, decreased [Ca 2+ ] i , and reversed 
mitochondrial hyperpolarization leading to decreased proliferation and increased 
apoptosis in PAH-PASMC [ 41 ]. 
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 In addition, treatment with dichloroacetate (DCA), a pyruvate dehydrogenase 
kinase (PDK) inhibitor that enhances oxidative phosphorylation, improved mortal-
ity and hemodynamics, as well as reversed vascular remodeling and RVH in MCT- 
treated and chronic hypoxia-exposed rats [ 235 ,  239 ]. DCA was found to reverse 
MCT-induced vascular remodeling by restoring Kv1.5 expression, depolarizing 
mitochondria, increasing H 2 O 2  production, and inducing apoptosis in PASMC [ 235 , 
 239 ]. Furthermore, mitochondrial survivin, a cytoprotective protein that promotes 
tumorigenesis and inhibits apoptosis in cancer cells [ 94 ], has also been shown to be 
upregulated in MCT-treated rats and in pulmonary arteries of PAH patients [ 234 ]. 
Adenoviral transfection of a dominant negative survivin mutant increased Kv chan-
nel current, depolarized mitochondria, attenuated proliferation, and increased apop-
tosis in PASMC. Intratracheal administration of the survivin mutant in vivo 
improved hemodynamics and survival and attenuated vascular remodeling in MCT- 
treated rats [ 234 ]. Although confl icting data exists in animal models, mitochondrial- 
derived ROS clearly play an important role in the pulmonary vasculature and 
mitochondrial dysfunction is increasingly recognized as contributing to the patho-
biology of PAH. Future studies are necessary to evaluate whether mitochondrial- 
based therapies have effi cacy in animal models of PH and patients with PAH.  

15.3.1.8    Lipid Peroxidation and Isoprostanes 

 Lipid peroxidation has recently been recognized as an additional source of ROS 
during pulmonary vascular dysfunction [ 251 ]. Isoprostanes, chemically stable iso-
mers of prostanoids, are formed when ROS products (particularly peroxynitrite) 
react with unsaturated bonds of membrane lipids such as arachidonic acid [ 168 ]. As 
isomers of prostaglandins (PG), they can act on several cell types within the pulmo-
nary vasculature via specifi c prostanoid receptors, including the thromboxane A 2  
receptor (TP), and PGE 2  and PGF 2α  receptors (EP and FP) [ 109 ,  169 ]. In PASMC 
and EC, isoprostanes can be released in response to stimulation with growth factors 
(PDGF, TGF-β), pro-infl ammatory cytokines (TNF-α, interferon-γ, IL-1β), as well 
as by ROS (H 2 O 2  and O 2  • ‾) [ 168 ]. This can lead to activation of signaling pathways 
downstream of prostanoid receptors including RhoA/ROCK, phospholipase C 
(PLC), and cyclic AMP/protein kinase A [ 168 ], resulting in vasoconstriction and 
release of other vasoconstrictors, including endothelin-1 (ET-1) from endothelial 
cells and PASMC [ 167 ,  388 ]. 

 Isoprostane levels have been shown to be elevated in the lung in animal models 
of hypoxia- and hyperoxia-induced PH [ 166 ,  178 ]. In addition, inhibition of the TP 
receptor has been shown to reduce ET-1 production in PASMC, as well as attenuate 
RVH and lung smooth muscle-α actin expression in a hyperoxia neonatal rat model 
[ 166 ]. Urinary levels of isoprostaglandin F 2α  type-III (iPF 2α -III), a stable lipid per-
oxidation product indicative of oxidative stress [ 298 ], are signifi cantly elevated in 
patients with PAH compared with controls [ 75 ,  296 ], as well as in patients with 
 BMPR2  mutations regardless of disease status [ 201 ]. Furthermore, while urinary 
levels of iPF 2α -III inversely correlate with vasoreactivity to inhaled NO [ 75 ], 
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increased urinary iPF 2α -III levels directly correlate with hemodynamic and clinical 
response to epoprostenol [ 296 ], and recently have been found to be independently 
associated with mortality in PAH patients [ 76 ]. Although future studies in animal 
models and patients will be necessary to further elucidate the role of isoprostanes in 
PAH, emerging data suggest that isoprostanes may play a role in the pathogenesis 
of PAH and may serve as a possible lipid peroxidation biomarker in PAH patients.   

15.3.2     Oxidative Stress and Animal Models of PH 

15.3.2.1    Hypoxia-Induced PH Model 

 Oxidative stress has been implicated in the pathogenesis of PAH in several ani-
mal models of PH (Table  15.4 ). In the chronic hypoxia model of PH, hypoxia has 
been shown to induce ROS/RNS production with observed increases in lung 
superoxide [ 260 ], phosphatidylcholine hydroperoxide (PCOOH) [ 151 ], isopros-
tanes [ 178 ], nitrotyrosine [ 87 ,  167 ], and oxidized glutathione (GSSG) [ 261 ]. 
Hypoxia has also been shown to increase expression of ROS generators includ-
ing eNOS [ 112 ], NOX2 [ 211 ], NOX4 [ 245 ,  246 ], XO [ 151 ,  167 ], and, in some 
studies, mROS [ 56 ,  357 ,  359 ]. In addition, hypoxia decreases expression of the 
antioxidant EC-SOD (SOD3) in the lungs of mice [ 261 ] and in pulmonary arter-
ies from calves exposed to chronic hypoxia [ 143 ]. Furthermore, several studies 
have demonstrated effi cacy of antioxidants (e.g.,  N -acetyl cysteine) [ 198 ], inhib-
itors of ROS-producing enzymes (e.g., allopurinol) [ 26 ,  151 ,  167 ], peroxynitrite 
decomposition catalysts [ 32 ], and SOD mimetics [ 351 ] in hypoxia-induced PH 
rodent models [ 151 ,  199 ,  260 ], suggesting oxidative stress contributes signifi -
cantly to the pathogenesis of hypoxia-induced PH.

   In the hypoxia-induced PH model in newborn pigs, increases in oxidative stress 
were observed after 3 days of hypoxia with increases in isoprostanes in pulmonary 
resistance arteries [ 88 ]. Additionally, NOX1 and p67 phox  were increased and SOD1 
was decreased in pulmonary arteries from pigs raised in hypoxia for 3 or 10 days. 
Furthermore, inhibition of NOX with apocynin or treatment with an SOD 
mimetic + polyethylene glycol-catalase attenuated acetylcholine vascular responses 
of pulmonary arteries from hypoxia-exposed pigs [ 88 ].  

15.3.2.2    Monocrotaline-Induced PH Model 

 In the MCT model, increases in isoprostanes [ 177 ] and NOX1 [ 348 ] have been 
observed in rats and increased NOX4 expression was reported in mice exposed to 
MCT [ 311 ]. Additionally, while increases in antioxidants SOD, catalase, and gluta-
thione peroxidase have been reported in the lungs [ 97 ,  172 ], decreases in SOD1 and 
SOD2 have been observed in RV homogenates from MCT-treated rats [ 292 ]. 
Adenoviral overexpression of EC-SOD in MCT-treated rats decreased lung tissue 
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levels of 8-isoprostane and attenuated RVSP and pulmonary vascular remodeling 
[ 177 ]. Furthermore, several antioxidants [ 291 ,  393 ] and resveratrol [ 269 ] have 
shown benefi t in the MCT-induced PH model in rats.  

15.3.2.3    SU5416-Hypoxia PH Model 

 In the Sugen hypoxia model, rats treated with SU5416 followed by exposure to 
chronic hypoxia had signifi cantly increased expression of nitrotyrosine and heme 
oxygenase 1 (HO-1) in the lung compared with controls [ 352 ], in contrast to the RV 
where levels of HO-1 were decreased following Sugen hypoxia [ 38 ]. Treatment 
with protandim, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator which 
induces antioxidant expression (e.g., HO-1, SOD), prevented RV failure and fi bro-
sis; however, it did not attenuate pulmonary vascular remodeling [ 37 ].  

15.3.2.4    Pulmonary Hypertension of the Newborn Model 

 Increases in oxidative stress have also been demonstrated in the newborn lamb 
PPHN model where animals undergo prenatal ligation of the ductus arteriosus [ 48 , 
 325 ,  362 ], as well as a CHD model where a surgical shunt between the aorta and 
pulmonary artery is created in prenatal lambs [ 135 ]. In the PPHN model, newborn 
lambs that had undergone ductus arteriosus ligation in utero demonstrated increased 
levels of superoxide, decreased SOD expression/activity, as well as increased p67 phox  
expression in pulmonary arteries [ 48 ]. Treatment of PPHN lambs with recombinant 
SOD1 enhanced pulmonary vascular responses to inhaled NO with greater decreases 
in PVR, suggesting a critical role for NOX-mediated ROS and potential effi cacy of 
SOD in PPHN [ 325 ]. A more recent study demonstrated increased NOX4 and 
p22 phox  and decreased EC-SOD in the lungs and PASMC from PPHN lambs [ 362 ]. 
Similarly, in the neonatal shunt model, shunted lambs demonstrated elevated super-
oxide levels and increased expression of Rac and p45 phox  in the lung, as well as 
eNOS uncoupling, further supporting the role of NOX and eNOS in ROS generation 
in animal models of PH [ 135 ].  

15.3.2.5    Fawn-Hooded Rat Model 

 The FHR, a strain in which PAH occurs spontaneously, has provided critical infor-
mation on the role of mitochondrial dysfunction in the pathogenesis of PAH. The 
FHR has an autosomal recessive disorder similar to Hermansky–Pudlak syndrome 
characterized by dysfunction of several organs including systemic hypertension, 
pulmonary fi brosis, renal disease, as well as platelet and coagulation dysfunction 
[ 193 ]. As described above, PASMC isolated from FHR have decreased ROS, 
decreased SOD2 expression, as well as marked mitochondrial abnormalities, nor-
moxic activation of HIF-1α, and inhibition of Kv1.5 channels [ 40 ]. In addition, 
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PASMC from FHR demonstrate a shift in metabolism from oxidative phosphorylation 
to glycolysis despite adequate oxygen [ 293 ]. Overexpression of SOD2 in PASMC 
from FHR restored Kv1.5 expression and inactivated HIF-1α, and treatment of FHR 
with an SOD mimetic (metalloporphyrin Mn(III)tetrakis (4-benzoic acid) porphy-
rin) improved hemodynamics and exercise capacity, as well as decreased vascular 
remodeling [ 15 ].  

15.3.2.6    Genetic Models of PH 

 Genetic models have offered the opportunity to further evaluate the role of ROS in 
pulmonary vascular remodeling and the development of PAH. Several genetically 
modifi ed mice that develop PH have recently been associated with increases in oxi-
dative stress. Transgenic (TG) mice with a mutation in the cytoplasmic tail of 
 BMPR2  have increased lung levels of lipid peroxidation products, isoprostanes, and 
isofurans, and transfection of rat vascular SMC with BMPR2 mutants increases 
superoxide and peroxide production compared with wild type (WT) BMPR2- 
transfected cells [ 116 ,  201 ]. Mutations in  ALK1 , which encode an endothelial- 
specifi c receptor of the TGF-β superfamily and are associated with hereditary 
hemorrhagic telangiectasia (HHT) and PAH [ 141 ,  142 ], have also been associated 
with increased oxidative stress [ 170 ]. Mice heterozygous for  ALK1 , that develop PH 
as they age, have increased ROS in the lungs (iPF 2α -III, H 2 O 2 ) at 12 weeks of age 
secondary to increased eNOS uncoupling, and treatment with tempol, an SOD 
mimetic, prevents increases in RVSP and RVH in ALK1 +/−  mice [ 170 ]. In addition, 
TG mice overexpressing ET-1 in the endothelium, that develop hypertrophic vascu-
lar remodeling and have impaired vascular relaxation, have enhanced vascular NOX 
activity and increased expression of gp91 phox  [ 13 ], suggesting these TG mice have 
increased oxidative stress. 

 Genetic models of SOD have provided additional insight into oxidative stress 
and ROS scavenging in animal models of PH. Mice lacking mitochondrial manga-
nese SOD (MnSOD, SOD2) have severe mitochondrial injury with central nervous 
system and cardiac injury leading to signifi cant postnatal mortality [ 202 ]. Mice 
defi cient in intracellular copper-zinc SOD (CuZnSOD, SOD1) or extracellular SOD 
(EC-SOD, SOD3) have increased oxidative stress as measured by urinary isopros-
tanes and plasma thiobarbituric acid-reactive (TBARS) levels, and mice defi cient 
for both SOD1 and SOD3 have additional increases in oxidant stress markers [ 310 ]. 
The absence of SOD1 has recently been reported to be associated with the develop-
ment of spontaneous PH and is dependent on NFAT activation in PASMC [ 286 ]. 
SOD1-defi cient mice have elevated superoxide levels and develop signifi cant 
increases in RVSP under normoxic conditions. Spontaneous PH in SOD1-defi cient 
mice is attenuated by selective inhibition of NFAT as well as tempol, an SOD 
mimetic, which prevents NFAT activation in SOD1-knockout mice [ 286 ]. Although 
SOD3-knockout mice do not develop spontaneous PH, the absence of SOD3 exac-
erbates hypoxia-induced PH with signifi cant increases in RV pressures, RVH, and 
vascular remodeling compared with WT mice [ 380 ]. Similarly, a loss-of-function 
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SOD3 mutation in rats leads to increased TBARS and nitrotyrosine in the lung, as 
well as exaggerated PH and RVH following MCT, which is attenuated by the SOD 
mimetic Mn(III)TmPyP [ 380 ]. 

 Transgenic overexpression of SOD1 [ 330 ] and SOD3 [ 6 ,  177 ,  261 ] protects against 
oxidative stress and overexpression of SOD3 has been shown to both attenuate [ 261 ] 
and reverse established PH in response to chronic hypoxia [ 6 ], as well as attenuate 
MCT-induced PH [ 177 ], and PH secondary to bleomycin-induced fi brosis [ 346 ]. 
Interestingly, in both the chronic hypoxia-induced PH model and in the bleomycin 
model of secondary PH, overexpression of EC-SOD in the lung attenuated upregula-
tion of the transcription factor early growth factor-1 (Egr-1) [ 261 ,  346 ]. EC-SOD also 
decreased TGF-β induction in the bleomycin model [ 346 ] and prevented eNOS 
downregulation in the rat MCT model [ 177 ]. Additionally, PAs from EC-SOD knock-
out mice have enhanced vasoconstriction in response to 5-hydroxytryptamine (5-HT), 
while PAs from transgenic mice overexpressing EC-SOD have decreased superoxide 
production and attenuated 5-HT-induced vasoconstriction [ 210 ]. 

 The caveolin-1-knockout mouse also provides additional evidence that oxidative 
and nitrosative stress play a role in the pathobiology of PAH. Mice defi cient in 
Cav-1 develop PH spontaneously with signifi cant increases in PA pressures and 
RVH compared with WT control mice [ 396 ], and restoration of endothelial cell-
specifi c Cav-1 in knockout animals rescues the PH phenotype [ 254 ]. The absence of 
Cav-1 leads to increased activation of eNOS [ 376 ], NO-dependent peroxynitrite 
production, and tyrosine nitration of PKG, which can be reversed by PKG overex-
pression [ 397 ]. Furthermore, inhibition of eNOS with  l -NAME [ 376 ,  398 ] or BH 4  
treatment [ 377 ] prevents PH in Cav-1-knockout mice. Additionally, mice defi cient 
in both Cav-1 and eNOS are protected from the development of PH [ 398 ].   

15.3.3     Oxidative Stress and Human PAH 

 Several studies have demonstrated increases in oxidative stress in patients with 
PAH. As described above, elevated levels of urinary iPF 2α -III have been demon-
strated in PAH patients [ 75 ,  296 ] and recently have been shown to be independently 
associated with survival in PAH [ 76 ]. Additional studies have demonstrated 
increased levels of plasma malondialdehyde (MDA) [ 124 ,  162 ] and xanthine oxi-
dase [ 124 ,  321 ], as well as decreased EC-SOD [ 124 ] and glutathione peroxidase 
activity [ 162 ] in the plasma of PAH patients. Increases in oxidative stress markers 
have also been demonstrated in plasma from patients with chronic obstructive pul-
monary disease (COPD) and secondary PH [ 175 ], and in children with congenital 
portosystemic venous shunts at risk of developing PH [ 257 ]. Furthermore, oxidative 
posttranslational modifi cation of albumin has been shown in patients with both idio-
pathic PAH and PAH secondary to SCD [ 262 ]. 

 Increases in oxidative stress have also been demonstrated in lung tissue from 
PAH patients [ 225 ]. Immunohistochemical staining demonstrated increased staining 
for nitrotyrosine and 8-hydroxy guanosine, a marker of oxidative DNA damage, in 
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lung tissue from PAH patients compared with controls [ 47 ]. Levels of the eicosanoid 
metabolites, 5-oxo-eicosatetraenoic acid (5-oxo-ETE) and 5- hydroxyeicosatetraenoic 
acid (5-HETE), were also found to be elevated in lung tissue from PAH patients not 
on prostacyclin and secondary PH patients [ 47 ]. In addition, lung tissue homoge-
nates from PAH patients had decreased SOD activity and levels of SOD2 compared 
with control lungs [ 47 ]. Furthermore, SOD and glutathione peroxidase activity were 
also decreased in airway epithelial cells and lysates from bronchial tissue obtained 
from explanted PAH lungs compared with controls [ 225 ]. Taken together, substan-
tial evidence from animal models and human PAH samples suggest that oxidative 
stress plays a critical role in the pathogenesis of PAH.  

15.3.4     ROS and Mechanisms of Pulmonary Vascular Remodeling 

 Several mechanisms have been identifi ed by which oxidative stress can mediate the 
vascular alterations observed in PAH. ROS have been shown to alter the balance of 
vasoactive mediators, enhance calcium signaling, upregulate growth factors, and 
induce pro-proliferative signaling pathways, all of which can contribute to enhanced 
vasoconstriction and pulmonary vascular remodeling in PAH. XO-derived O 2  metab-
olites have been shown to signifi cantly increase thromboxane B 2  levels 30-fold while 
only minimally increase PGI 2  levels, leading to enhanced vasoconstriction in isolated 
perfused rabbit lungs [ 337 ]. In addition, peroxynitrite has been shown to inactivate 
PGI 2  synthase and reduce levels of PGI 2  [ 401 ]. ROS have also been shown to upregu-
late endothelin-converting enzyme-1 [ 215 ] and induce ET-1 expression in endothe-
lial cells [ 66 ] and, furthermore, ET-1 has been shown to stimulate PASMC 
proliferation via increases in superoxide production [ 360 ]. Additionally, H 2 O 2  has 
been shown to promote eNOS uncoupling leading to decreases in NO and further 
increases in ROS [ 46 ,  400 ]. Taken together, several studies suggest that oxidative 
stress leads to an imbalance in vascular mediators with release of potent vasocon-
strictors that can overwhelm the effects of endothelial- derived vasodilators and pro-
mote enhanced vasoconstriction and vascular remodeling in PAH. 

 ROS have also been shown to enhance Ca 2+  mobilization [ 209 ] and Ca 2+  sensiti-
zation in PASMC [ 50 ,  171 ,  185 ], and therefore may play a critical role in enhanced 
contraction and proliferation of PASMC in PAH. H 2 O 2  leads to release of Ca 2+  from 
inositol 1,4,5-trisphosphate (IP 3 )-gated sarcoplasmic reticulum stores in PASMC 
[ 209 ] via activation of phospholipase C-γ1 [ 356 ] and conversion of phosphati-
dylinositol 4,5-bisphosphate into diacylglycerol and IP 3 . Calcium mobilization by 
H 2 O 2  in PASMC [ 209 ] and sustained constriction of rat intrapulmonary arteries 
(IPA) have also been shown to be dependent on ryanodine-sensitive intracellular 
Ca 2+  stores [ 276 ]. In addition, superoxide has been shown to activate Rho A/Rho- 
kinase (ROCK) leading to increased phosphorylation of myosin light chain (MLC), 
Ca 2+  sensitization, and vasoconstriction in rat pulmonary arteries [ 185 ]. Similarly, 
hypoxia- and ET-1-induced ROS production enhance Ca 2+  sensitization via activa-
tion of Rho A/ROCK signaling in PASMC [ 50 ,  171 ]. 
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 mROS production has also been implicated in pulmonary vascular remodeling as 
discussed above. Numerous studies have demonstrated that hypoxia increases 
mROS, Ca 2+  infl ux, and PASMC contractility [ 56 ,  106 ,  290 ,  359 ]. However, more 
recent studies suggest that decreases in mROS lead to inhibition of Kv channels, 
membrane depolarization, activation of voltage-gated Ca 2+  channels, and increases 
in cytosolic Ca 2+  concentration ([Ca 2+ ]) which lead to increased vasoconstriction, 
enhanced proliferation, and suppression of apoptosis [ 40 ,  41 ,  240 ,  369 ]. 

 ROS can also increase expression of several growth factors and enhance pro- 
proliferative signaling pathways that play a critical role in vascular remodeling in 
PAH. ROS have been shown to activate latent TGF-β [ 27 ] and TGF-β can further 
induce ROS via induction of NOX4 leading to enhanced proliferation and contrac-
tion in PASMC [ 328 ]. ROS can also induce PASMC expression of FGF-2 [ 35 ] 
which is upregulated in a lamb model of increased pulmonary blood fl ow and PH 
[ 361 ]. VEGF expression is also upregulated by ROS in PASMC [ 31 ] and is depen-
dent on TGF-β activation of NADPH and ROS generation [ 226 ]. In addition, 
hypoxia has been shown to upregulate VEGF expression in pulmonary artery endo-
thelial cells [ 212 ], and both H 2 O 2  [ 249 ] and hypoxia have been shown to increase 
PDGF expression in endothelial cells [ 191 ]. 

 ROS can also activate signaling pathways and transcription factors that regulate 
cellular proliferation, growth, and apoptosis leading to enhanced proliferation and 
growth of PASMC, PAEC, and fi broblasts, as well as matrix deposition in the pul-
monary arterial wall. ROS have been shown to activate the G protein Ras leading to 
recruitment of phosphatidylinositol 3′kinase (PI3K) and activation of downstream 
signaling pathways involved in cell survival and hypertrophy, including Akt/protein 
kinase B and ERK1/2 [ 89 ,  344 ]. H 2 O 2  has also been shown to upregulate the p38 
mitogen-activated protein kinase (MAPK) pathway [ 343 ] and induce Src-dependent 
JNK activation in vascular SMC [ 389 ], as well as Src-dependent activation of big 
MAPK1 (BMK1/ERK5) in fi broblasts [ 1 ]. Peroxynitrite can also stimulate prolif-
eration of PAEC and PASMC via activation of the Ras-Raf-MEK-ERK pathway as 
well as via protein kinase C [ 3 ]. 

 ROS have also been shown to modulate key transcription factors that play a role 
in PAH and that regulate genes involved in the cell cycle and cell growth. H 2 O 2  and 
hypoxia have been shown to upregulate transcription of peroxisome proliferator- 
activated receptor-γ coactivator-1 protein-α (PGC-1α), a transcriptional coactiva-
tor and critical regulator of mitochondrial biogenesis [ 163 ]. In PASMC, hypoxia 
has been shown to induce PGC-1α expression via PI3K/Akt signaling and activate 
mitochondrial biogenesis via NRF-1 and TFAM [ 288 ]. Additionally, knockdown 
of PGC-1α inhibits hypoxia-induced cyclin expression and proliferation of PASMC 
[ 288 ], suggesting that ROS-induced PGC-1α may play a key role in regulating 
mitochondrial biogenesis and vascular remodeling in PAH. XO-derived ROS have 
also been shown to upregulate Egr-1 via ERK1/2 in PASMC, which has been 
shown to play an important role in animal models of PH [ 92 ,  203 ,  345 ]. Furthermore, 
ROS have been shown to induce NFAT expression [ 181 ], a critical transcription 
factor linked to PASMC proliferation and vascular remodeling which plays a key 
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role in the pathogenesis of PAH [ 33 ,  84 ,  286 ]. Interestingly, NFAT has recently 
been linked to the development of spontaneous PH in SOD1-defi cient mice 
suggesting a critical role for NFAT in mediating ROS-induced PAH [ 286 ].   

15.4     Antioxidants in PAH 

 Drugs that are currently available for the management of PAH include calcium 
channel blockers, prostanoids, endothelin-1 receptor antagonists, and PDE5 inhib-
itors, which lie outside the scope of this review [ 247 ]. Even though there have 
been signifi cant advances in the understanding of PAH pathogenesis and new 
therapeutic options available for treatment, PAH remains incurable and patients 
eventually progress to right heart failure and death [ 247 ]. Present therapeutic 
approaches have been developed based on the imbalance in endothelium-derived 
vasoactive mediators that exists in patients with PAH [ 247 ]. Growing evidence of 
the importance of oxidative stress in the pathogenesis of PAH has led to the iden-
tifi cation of new therapeutic targets. Antioxidant strategies for the treatment of PH 
have been recently classifi ed into four groups: enzymatic ROS scavengers 
and  regulators, small chemical ROS scavengers, inhibitors of ROS generation, and 
Nrf2 activators [ 332 ]. Additional strategies include eNOS uncoupling agents 
and mitochondria-active agents. 

15.4.1     Enzymatic ROS Scavengers and Regulators 

 Enzymatic ROS scavengers and regulators include SOD, catalase, glutathione per-
oxidase, glutathione reductase, glutaredoxin, thioredoxin, thioredoxin reductase, 
peroxiredoxin, and sulfi redoxin. These enzymatic scavengers exist naturally in 
human cells and act synergistically in order to protect tissues against free radical 
damage [ 62 ]. 

15.4.1.1    Superoxide Dismutase 

 SOD is one of the most important enzymatic antioxidants in the body and is ubiq-
uitously expressed [ 5 ,  62 ]. All three isoforms (SOD1, SOD2, SOD3) act by cata-
lyzing the rapid conversion of O 2  • ‾ into H 2 O 2  (Fig.  15.3 ) [ 5 ]. SOD has been shown 
to be downregulated in animal models of PH and PAH patients [ 5 ], and administra-
tion of SOD has been shown to be benefi cial in animal models of PH. Steinhorn 
et al. found that treatment with recombinant human SOD (rhSOD) in sheep with 
PPHN reduced PVR in vivo and enhanced relaxation responses of pulmonary 
arteries to exogenous NO ex vivo [ 325 ]. Farrow et al. also showed that rhSOD 
increases eNOS expression and restores its function, decreases generation of ROS, 
and increases BH 4  in PPHN lambs [ 115 ]. The effect of SOD administration in 
human PAH has not been studied.  
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15.4.1.2    Catalase 

 The enzyme catalase is also key in the antioxidant machinery of cells and is of 
particular importance during high levels of oxidative stress, since it has a very high 
turnover number [ 5 ]. Catalase exerts its antioxidant action by converting hydrogen 
peroxide into water and oxygen (Fig.  15.3 ) [ 5 ]. Data regarding the role and expres-
sion of catalase during PH is variable, with increased activity reported in MCT- 
treated rats [ 172 ], decreased levels in lambs with PH secondary to increased 
postnatal pulmonary blood fl ow [ 313 ], and no difference reported in humans with 
IPAH [ 225 ]. Studies to evaluate the effect of exogenous catalase in animal PH mod-
els have revealed variable results. Goats pre-treated with intravenous catalase and 
subjected to endotoxin infusions displayed minimal attenuation of PH compared 
with controls [ 229 ]. However, endotoxin-exposed sheep pre-treated with intraperi-
toneal catalase had attenuated elevation of pulmonary pressures compared to 
untreated controls [ 242 ]. Wedgwood et al. evaluated the effect of catalase on iso-
lated pulmonary arteries from PPHN lambs and found a normalization of the vaso-
dilator responses to exogenous NO [ 364 ]. They also demonstrated that intratracheal 
administration of catalase to PPHN lambs enhanced SOD3 activity and improved 
oxygenation [ 363 ]. Thibeault et al. evaluated the effect of intratracheal injection of 
liposome-encapsulated catalase in a rat model of hyperoxia, fi nding reduction in 
vascular and parenchymal damage caused by oxygen toxicity [ 340 ]. The role of 
catalase in treatment for human PAH is not clear and further studies are needed to 
determine potential benefi t [ 5 ].   

15.4.2     Small Chemical ROS Scavengers 

15.4.2.1    Dietary Antioxidants 

   Vitamin C 

 Ascorbic acid is an excellent reducing agent, capable of donating an electron to 
oxidizing radicals such as hydroxyl, alkoxyl, peroxyl, thiol, and tocopheroxyl [ 101 ]. 
This makes vitamin C a good antioxidant and a substance of interest for the treat-
ment of many diseases. Interestingly, reversible PH secondary to vitamin C defi -
ciency and clinical scurvy has been described [ 197 ,  237 ]. Furthermore, low levels 
of ascorbate have been observed in patients with high altitude PH [ 22 ], suggesting 
a potential benefi cial role of vitamin C in PAH. Xiang et al. investigated the effect 
of vitamin C supplementation in broilers with pulmonary hypertension syndrome 
(PHS) induced by low temperatures [ 379 ]. Vitamin C supplementation reduced 
PHS incidence and attenuated the percentage of thick-walled peripheral lung ves-
sels and associated muscularization of pulmonary arterioles [ 379 ]. Paradoxically, 
however, Walton et al. found that broilers with PHS secondary to low temperatures 
and fed with fl ax seed oil had higher incidence of PHS when vitamins C and E were 
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added to the diet [ 354 ]. On the other hand, Belaiba et al. showed that vitamin C 
inhibits the production of ROS and HIF-1α protein, as well as the increase of VEGF 
mRNA in PASMC stimulated with thrombin or CoCl 2   in vitro  [ 31 ]. No clinical trials 
have explored the effects of vitamin C on PH in humans. One clinical trial found no 
benefi t of vitamin C supplementation in the prevention of acute mountain sickness 
[ 23 ]. Currently, there are two ongoing clinical trials registered in the NIH that aim 
to determine the use of antioxidants, including vitamin C, as prophylaxis for acute 
mountain sickness (NCT01182792, NCT01571687).  

   Tocopherols 

 Vitamin E is the most important lipophilic antioxidant in the lung and plays a key 
role in scavenging hydroxyperoxyl radicals produced during lipid peroxidation 
[ 189 ,  341 ]. Severe oxidative stress leads to increased concentration of vitamin E in 
the lung [ 189 ]. Patients with IPAH appear to have decreased levels of α-tocopherol 
in the plasma and vitamin E levels have been shown to correlate with pulmonary 
function better than other antioxidants [ 278 ,  308 ]. These fi ndings suggest that there 
is a mobilization of vitamin E from other tissues to reach adequate levels in the lung 
[ 189 ]. There is limited and variable evidence on the effect of vitamin E in models of 
PH. In a model of broilers with PHS induced by cool temperatures, high dietary 
vitamin E attenuated mitochondrial dysfunction [ 161 ], lowered PHS-induced mor-
tality, and improved antioxidant capacity [ 44 ]. However, a subsequent study demon-
strated no mortality benefi t of vitamin E supplementation in broilers with PHS [ 45 ]. 
Additional studies found that α-tocopherol [ 182 ] and vitamin E failed to improve 
RVH in broilers with PHS, nor improved cardiopulmonary performance or NOS 
activity in isolated pulmonary arteries [ 216 ]. Further studies are needed to further 
elucidate the effects of vitamin E in PAH.  

   Carotenoids 

 The antioxidant activity of carotenoids is due to their multiple conjugated double 
bonds, which makes them susceptible to oxidative cleavage [ 314 ]. The antioxi-
dant properties of vitamin A have been of great interest in the study of many dis-
eases, including lung cancer [ 123 ]. The role of retinol in lung development, 
vasculogenesis, and angiogenesis has been well documented [ 304 ,  307 ]. In PH, it 
has been demonstrated that patients with IPAH have reduced levels of retinoic 
acid, and treatment of hPASMC with this vitamin suppressed 5-HT-induced cell 
growth in vitro [ 278 ]. In a rat hypoxia model, treatment with all- trans  retinoic 
acid (ATRA) signifi cantly reduced muscularization of peripheral PAs and medial 
wall thickness of small muscular arteries; however, it did not attenuate PH or RVH 
[ 392 ]. Similarly, in MCT-induced PH in rats, Swamidas et al. found that dietary 
retinol resulted in less vascular infl ammation in the lung and RV, but did not 
improve RVH [ 333 ]. Conversely, Qin et al. found that ATRA treatment in rats 
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with MCT-induced PH lowered mPAP and inhibited collagen accumulation and 
MMP1 mRNA overexpression in the lungs [ 281 ]. No clinical trials have evaluated 
the benefi ts of carotenoids in human PAH.  

   Flavonoids 

 The antioxidant properties of fl avonoids have been well documented in vitro [ 217 ]. 
They act through different mechanisms including chelation of metal ions, stimula-
tion of antioxidant enzymes, and inhibition of enzymes that increase oxidative stress 
[ 80 ]. The benefi ts of fl avonoids have been evaluated in a wide array of pathologies, 
including cardiovascular diseases, type II diabetes, neurodegenerative diseases, and 
cancer [ 217 ]. Many investigators have been interested in the effects that fl avonoids 
may have on oxidative stress in PH. In rat models of MCT-induced PH, administra-
tion of fl avonoids, such as quercetin and genistein, has been shown to decrease mPAP, 
RVSP, RVH, medial wall thickness, and neomuscularization of PAs, as well as inhibit 
hPASMC proliferation and progression to right heart failure [ 127 ,  150 ,  228 ]. In rats 
exposed to hypoxia, puerarin was shown to lower levels of ET-1 and type I collagen, 
enhance the activity of SOD, and improve pulmonary vascular remodeling [ 206 ]. 
Similarly, breviscapine was shown to decrease mPAP, RVH, and vascular remodel-
ing as well as decrease fractalkine and Rho-kinase mRNA expression in a rat 
hypoxia model [ 63 ,  383 ]. In addition, genistein was shown to inhibit the mean 
change in tension caused by ET-1 in IPA of rats previously exposed to chronic 
hypoxia [ 367 ]. Finally, genistein has been shown to signifi cantly attenuate PH, acti-
vate eNOS, restore endothelial function, and decrease vascular remodeling in broil-
ers with PH [ 384 ]. No clinical trials have yet explored the effects of fl avonoid 
administration in patients with PAH.  

   Resveratrol 

 Resveratrol is commonly found in foods such as grapes, plums, and peanuts, and 
has become a substance of interest because of its potential benefi ts in cardiovascular 
disease and cancer [ 86 ]. Resveratrol exerts its antioxidant effects possibly through 
scavenging superoxide radicals formed in the mitochondria, inhibiting lipid peroxi-
dation, and competing with coenzyme Q to decrease the oxidative chain complex 
[ 86 ]. Other antioxidant mechanisms of resveratrol include upregulation of antioxi-
dant enzymes, decrease in NOX levels, and regulation of GTP-cyclohydrolase 1, 
which increases BH 4  levels and reverses eNOS uncoupling [ 378 ].    In the rat MCT-
induced PH model, resveratrol attenuates elevation in RVSP, RVH, and thickening of 
IPAs [ 79 ,  268 ,  269 ]. In addition, resveratrol normalizes alterations in BMP receptors 
and SMAD signaling molecules, upregulates NOX subunits, and attenuates expres-
sion of IL-6, IL-1β, TNF-α, PDGF-α, PDGF-β, MCP-1, iNOS, and ICAM-1 in vivo. 
Furthermore, resveratrol prevented proliferation of PASMC after PDGF 

I. Chrobak et al.



295

stimulation, and inhibited cytokine-induced NF-κβ activation in PASMC in vitro [ 79 ]. 
Finally, Chun et al. also showed that resveratrol reduced mPAP and monocyte 
 chemoattractant protein-1 expression in rats with PH induced by infusion of autolo-
gous blood clot in the PA [ 68 ].   

15.4.2.2    Gases 

   Nitric Oxide 

 Currently, inhaled NO is indicated for the treatment of term or near-term neonates 
with hypoxemic respiratory failure associated with PH, and is clinically used in acute 
vasoreactivity testing in the cardiac catheterization laboratory in patients with PAH 
[ 2 ,  29 ]. Inhaled NO has also been shown to be benefi cial in patients that undergo 
surgery for CHDs or heart transplant [ 160 ]. There have been non- controlled observa-
tional clinical studies that show improved PVR and PAP and minimal adverse events 
in patients with PAH treated with long-term inhaled NO [ 29 ,  58 ,  164 ,  274 ,  275 ,  319 ]. 
However, there are still concerns about the potential risks of long- term inhaled NO 
therapy in PAH patients, including rebound PH upon sudden discontinuation, and 
toxicity due to production of NO 2  and methemoglobin [ 29 ,  160 ]. Further clinical tri-
als are needed to determine the safety profi le of inhaled NO in the treatment of PAH. 

 Most of the rationale behind the studies of inhaled NO in the treatment of PAH 
are based on the fact that NO is a selective pulmonary vasodilator, rather than the 
role it may play as antioxidant. However, recent studies have demonstrated that 
inhaled NO increases antioxidant defenses, decreases DNA damage, and improves 
lung infl ammation in rabbits exposed to conventional mechanical ventilation [ 119 , 
 299 ]. In addition, inhaled NO treatment in infants with hypoxemic respiratory fail-
ure reduced oxidative stress biomarkers, namely MDA and total glutathione [ 139 ]. 
The potential antioxidant mechanisms of NO are very complex, since this molecule 
is also involved in the production of RNS and nitrosative stress, as discussed in 
previous sections. Nevertheless, recent studies have shown that NO participates in 
scavenging of lipid peroxyl radicals, and some RNS such as ONOO‾ might even 
participate in cell signaling pathways that activate cellular antioxidants resulting in 
cytoprotective, rather than cytotoxic, effects [ 271 ].  

   Hydrogen Sulfi de 

 The toxic effects of excessive hydrogen sulfi de (H 2 S) inhalation have been well 
documented and include pulmonary edema, bronchiolitis, reactive airways disease, 
pulmonary interstitial fi brosis, and death [ 64 ]. Its main mechanism of toxicity is due 
to inhibition of cytochrome oxidase and other cellular respiratory enzymes, which 
is dependent on concentration and duration of exposure [ 64 ]. However, H 2 S is pro-
duced endogenously in the lung and studies have now shown potential benefi ts 
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of H 2 S or H 2 S donors in the treatment of chronic pulmonary diseases including 
COPD, asthma, and PH [ 64 ]. Antioxidant mechanisms of H 2 S include increasing 
glutathione levels and activation of Nrf2 with subsequent upregulation of antioxi-
dant response elements [ 277 ]. 

 H 2 S levels have been shown to be low in rats exposed to hypoxia [ 282 ], and in 
patients with acute exacerbations of COPD who have elevated PAP, compared to 
those with normal PASP [ 65 ]. Treatment of hypoxia-exposed rats with an H 2 S 
donor, sodium hydrosulfi de (NaHS), reduces mPAP and RVH [ 365 ], decreases vas-
cular remodeling, and enhances total antioxidant capacity compared with controls 
[ 282 ]. Similarly, administration of NaHS to broilers exposed to hypoxia signifi -
cantly reduced PH compared with untreated controls [ 385 ]. In addition, H 2 S 
has been shown to relax rat aortic arteries and inhibit vascular SMC proliferation 
in vitro [ 102 ,  152 ,  282 ,  394 ]. Additionally, H 2 S or injected NaHS has been shown to 
be protective in mouse lung injury models [ 121 ]. Investigations of H 2 S still remain 
in a preclinical phase.  

   Carbon Monoxide 

 Carbon monoxide (CO) is very well known for its toxic effects both in chronic 
cigarette smoke exposure or acute intoxication [ 128 ]. The interest in the role of 
CO as a therapeutic gas is relatively recent and has been based on observations 
that, at low doses, CO may have cytoprotective properties involving inhibition of 
infl ammatory and proliferative signals [ 128 ]. The anti-infl ammatory effects of CO 
have been shown in many in vivo and in vitro studies [ 128 ,  244 ], but its antioxi-
dant properties are less known. In fact, some studies have found that CO inhibits 
cytochrome c oxidase in the mitochondria, increasing accumulation of electrons 
within the electron transport chain resulting in increased generation of ROS in this 
organelle [ 402 ]. In contrast, other studies have shown that CO inhibits NOX, lim-
iting ROS production [ 323 ]. 

 Low dose CO has been shown to be protective in the FHR model, as well as in 
the hypoxia and MCT-induced PH rat models [ 403 ]. Daily treatment with 1 h of 
inhaled CO at 250 ppm protected FHRs from the development of spontaneous PH 
and prevented both hypoxia and MCT-induced increases in RVSP, RVH, and pul-
monary vascular remodeling [ 403 ]. Although effects on ROS were not assessed, CO 
was found to attenuate PASMC proliferation, decrease apoptosis, and induce eNOS 
expression in PAEC [ 403 ]. In addition, CO has been shown to attenuate PVR eleva-
tion in hypoxemic sheep [ 256 ], and decrease vascular remodeling in iliac arteries in 
a porcine model of balloon angioplasty [ 285 ]. CO has also been shown to have 
protective effects in other lung diseases including bleomycin-induced fi brosis [ 399 ], 
lung transplantation [ 187 ,  188 ], and ventilator-induced lung injury [ 95 ,  149 ,  244 ]. 
Furthermore, treatment of ex-smoking COPD patients with CO inhalation decreased 
sputum eosinophils and improved responses to methacholine testing [ 30 ]. Further 
studies are needed to determine the effi cacy of CO in patients with PAH, as well as 
to elucidate the role of CO in modulating oxidative stress in PAH.   
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15.4.2.3    Antioxidant Enzyme Mimetics 

 Substances that mimic the functions of antioxidant enzymes can also be used to 
counteract oxidative stress in the pulmonary vasculature. The antioxidant enzyme 
mimetics investigated have the same mechanism of action previously described for 
the enzymes that they emulate. 

   MnTE-2-PyP 

 MnSOD mimetics have high selectivity for mitochondria and decrease superoxide 
levels in the mitochondrial matrix, increasing the levels of diffusible H 2 O 2  [ 98 ]. The 
SOD mimetic MnTE-2-PyP has been shown to be protective in a mouse model of 
hypoxia-induced PH [ 351 ]. Treatment of mice with MnTE-2-PyP attenuated 
hypoxia-induced increases in RVSP, RVH, and pulmonary vascular remodeling 
[ 351 ]. Furthermore, MnTE-2-PyP attenuated hypoxia-induced NALP3 infl amma-
some activation, caspase cleavage, and IL-1β and IL-18 production [ 351 ]. Other Mn 
porphyrin-based SOD mimetics have demonstrated similar effi cacy in the MCT 
model and FHR [ 380 ].  

   Tempol 

    Tempol is also an SOD mimetic that has been studied in various animal models of 
PH. In rats exposed to chronic hypoxia, tempol normalized RVSP and reduced RVH 
[ 108 ], while combined treatment with tempol and tadalafi l signifi cantly prevented 
elevation in RVSP and RV dP/dt(max) and reduced oxidative stress in rats exposed 
to acute hypoxia [ 289 ]. In addition, tempol has been found to inhibit LY83583-
mediated constriction of rat IPAs [ 185 ], reduce hypoxia-induced SMC proliferation 
and remodeling in rat PAs, as well as inhibit lung ROS production [ 184 ]. Furthermore, 
treatment with tempol attenuated PH in a sheep model [ 320 ], and prevented 
spontaneous development of PH in ALK1 +/−  mice [ 170 ]. Tempol has not yet been 
evaluated in any clinical trial.  

   Ebselen 

 There is minimal information on the use of the glutathione peroxidase mimetic 
ebselen in PH; however, recent studies suggest that ebselen may have protective 
effects in the pulmonary vasculature. Ebselen has been shown to attenuate hypoxia 
and peroxynitrite-induced proliferation of PASMC in vitro [ 3 ]. In addition, 
ebselen has been shown to decrease the sustained phase of hypoxic vasoconstric-
tion of IPAs in rats [ 71 ]. More studies are needed to better understand the effects 
of ebselen on the pulmonary vasculature and determine whether ebselen has effi -
cacy in animal models of PH.    
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15.4.3     Inhibitors of ROS Generation 

15.4.3.1    Inhibitors of Oxidases 

 Inhibitors of oxidases include inhibitors of NOX, xanthine oxidase, and monoamine 
oxidase. These substances function by blocking the main enzymes that produce 
ROS in cells. 

   NADPH Oxidase Inhibitors 

 NOX inhibitors are perhaps the most studied of all the oxidase inhibitors tested in PH. 
Apocynin, an NADPH inhibitor, attenuates hypoxia-induced PH and vascular remod-
eling in lectin-like oxidized low-density lipoprotein receptor (LOX-1) transgenic 
mice that have enhanced ROS in response to hypoxia [ 264 ]. In addition, apocynin 
was shown to attenuate cold-induced PH and PA remodeling in rats [ 78 ], and restored 
pulmonary artery endothelial function and vascular responses in diabetic rats [ 214 ]. 
In lambs with PPHN induced by ductus arteriosus ligation, it has also been shown 
that apocynin signifi cantly improves oxygenation, enhances PA relaxation and eNOS 
expression, and improves angiogenic activity of PAEC [ 339 ,  363 ]. Furthermore, in 
rat PASMC, apocynin reverses hypoxia-induced decreases in Kv current density 
[ 245 ], and suppresses U46619-induced inhibition of Kv currents [ 70 ].  

   Xanthine Oxidase Inhibitors 

 Allopurinol has been the mainstay of treatment for gout for many years and has 
recently become of great interest in the study of ischemic heart disease, chronic 
heart failure, and infl ammatory diseases. In mice and rats exposed to hypoxia, allo-
purinol has been shown to decrease superoxide production, reduce PH, attenuate 
vascular remodeling, and alleviate the increased RVSP and RVH [ 26 ,  151 ,  167 ]. 
In addition, Shen et al. found that isolated rat lungs exposed to hypoxic challenges 
had attenuated HPV when treated with allopurinol ex vivo [ 315 ].   

15.4.3.2    Iron Chelators 

 Iron normally exists in cells in the form of ferric ions (Fe 3+ ), which can react with 
superoxide releasing highly reactive hydroxyl radicals. These radicals can cause 
lipid peroxidation, DNA oxidation, and protein oxidation [ 374 ]. Based on this ratio-
nale, it has been suggested that iron chelation may have a potential benefi t on oxida-
tive stress in the lung, but most investigations have failed to support this hypothesis. 
Treatment of rats exposed to chronic hypoxia with desferroxamine prevented PH and 
vascular remodeling in vivo, and inhibited human PASMC growth in vitro [ 374 ]. 
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However, human studies have demonstrated that healthy volunteers exposed to 
 desferroxamine develop increased PVR [ 25 ], and hypoxia-induced pulmonary 
vasoconstriction is enhanced by desferroxamine in healthy volunteers [ 318 ]. 
In addition, recent studies have found decreased iron levels in patients with IPAH 
and iron supplementation is now being evaluated as a potential treatment in this 
group of patients [ 153 ,  294 ]. Further studies are needed to better understand the role 
of iron in PAH pathogenesis.   

15.4.4     Nrf2 Activators 

 Nrf2 promotes gene expression of antioxidant response element (ARE)-regulated 
antioxidant enzymes in response to oxidative stress [ 165 ]. Nrf2 is held in the cyto-
plasm by an inhibitor, and activation of the PKC signaling by oxidative stress leads 
to activation and translocation of Nrf2 to the nucleus with subsequent activation of 
ARE-regulated genes [ 165 ]. Nrf activators act by eliciting this response and 
increasing the level of ARE-regulated antioxidant enzymes in cells. Protandim, an 
Nrf2 activator prevented the development of right ventricular failure and fi brosis in 
the Sugen hypoxia rat model of PH, although it did not prevent the angio-oblitera-
tive vascular remodeling [ 352 ]. In addition, Nrf2-knockout mice develop exagger-
ated RVH in response to hypoxia, and the Nrf2 activator olipraz attenuates RVH 
and vascular remodeling in wild type, but not Nrf2-defi cient, mice exposed to 
hypoxia [ 107 ]. Future studies on the potential benefi ts of Nrf2 activators in the 
treatment of PAH are necessary.  

15.4.5     Tetrahydrobiopterin 

 The role of tetrahydrobiopterin (BH 4 ) in oxidative stress and eNOS uncoupling has 
been reviewed in previous sections. Defi ciency of this cofactor has been associated 
with development of PH and IPF in animal models [ 10 ,  183 ,  338 ]. Sapropterin dihy-
drochloride (pharmaceutical preparation of BH 4 ) has been used in the treatment of 
hyperphenylalanemia [ 295 ]. Interest in the possible benefi ts of BH 4  supplementa-
tion for the treatment of PH is now increasing. Administration of BH 4  to MCT-
treated rats attenuated PH and vascular remodeling [ 120 ,  180 ], as well as decreased 
HPV and increased NO synthesis in isolated lung preparations [ 120 ,  190 ]. In addi-
tion, while BH 4  did not improve endothelial dysfunction of IPAs in a porcine model 
of PPHN [ 258 ], treatment of PAEC from PPHN lambs decreased apoptosis, 
improved angiogenesis, increased NO and eNOS dimer formation, and decreased 
superoxide production [ 338 ]. Furthermore, treatment with sapropterin dihydrochlo-
ride, in addition to sildenafi l and/or endothelin receptor antagonists, in 18 patients 
with PAH or inoperable CTEPH was well tolerated and improved 6-min walk 
 distance, although did not signifi cantly alter NO synthesis or oxidative stress [ 295 ]. 
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As BH 4  supplements have been proven to be safe in humans, they represent an inter-
esting therapeutic alternative for the treatment of PAH, but further studies are 
needed to determine their true effi cacy.  

15.4.6     Mitochondria-Activating Drugs and Mitochondria- 
Targeting Antioxidants 

 The hyperproliferative and antiapoptotic phenotype of PASMC observed in PAH is 
associated with mitochondrial suppression, altered glucose metabolism, and 
decreased mROS production [ 98 ]. These mechanisms are described in detail in pre-
vious sections. 

15.4.6.1    Mitochondria-Targeting Antioxidants 

 There has been recent interest in therapeutic strategies that specifi cally target mito-
chondria in order to restore their normal function. The fact that this organelle is 
negatively charged has led to the development of strategies that increase mitochon-
drial selectivity such as the use of a positively charged ion, namely triphenylphos-
phonium (TPP + ), to deliver vitamin antioxidants [ 98 ]. One of the agents that uses 
this cation as vehicle and has been studied in vascular diseases is MitoQ, a ubiqui-
none analogue of the mitochondrial electron transport chain [ 98 ]. Treatment of 
spontaneously hypertensive rats with MitoQ protected against the development of 
hypertension, improved endothelial function, and decreased cardiac hypertrophy 
[ 134 ]. In addition, the mitochondrial-targeted SOD mimetic mitoTEMPO decreased 
mitochondrial superoxide production, reduced cellular NOX activity, restored NO 
expression, improved endothelial-dependent relaxation, and attenuated hyperten-
sion in mice exposed to angiotensin II infusion [ 93 ].  

15.4.6.2    Mitochondrial-Activating Therapies 

 DCA and trimetazidine (TMZ) stimulate mitochondria and regulate metabolic sub-
strate entry into the TCA cycle [ 98 ]. DCA also inhibits PDK, which ultimately 
results in the inhibition of normoxic HIF-1α production and increases in pro-apop-
totic factors, reducing abnormal cell proliferation [ 98 ]. Several studies in animal PH 
models have demonstrated that DCA stimulates glucose oxidation, reduces mPAP, 
and decreases medial wall thickening of PAs [ 40 ,  98 ,  136 ,  235 ,  239 ,  331 ]. An early- 
phase clinical trial of DCA in PAH is currently being completed [ 98 ] (NCT01083524). 
TMZ has also been shown to increase glucose oxidation, suppress fatty acid oxida-
tion, restore perfusion to distal PAs, and reverse established PH in animal models 
[ 98 ,  331 ]. Finally, phenylbutyrate (PBA), a chemical chaperone which prevents 
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disruption of the ER-mitochondrial unit, has recently been shown to attenuate PH, 
vascular remodeling, and RVH in both hypoxia-induced PH in mice and in MCT- 
induced PH in rats [ 98 ].    

15.5     Conclusions 

 This review highlights the important role that oxidative stress and aberrant NO 
signaling play in the pathogenesis of PAH and emphasizes the mechanisms of 
ROS- induced pulmonary vascular remodeling in PAH. Although signifi cant prog-
ress has been made in understanding the pathogenesis of PAH, currently available 
therapies that target the imbalance of vasoactive mediators do not improve mortal-
ity in PAH patients. Emerging studies implicate oxidative stress as a key mecha-
nism in the pathobiology of PAH and therapies targeting ROS generation have 
shown effi cacy in animal models of PH. Growing evidence of the importance of 
oxidative stress in the pathogenesis of PAH has led to the identifi cation of poten-
tial new therapeutic targets in PAH. New approaches to target oxidative stress 
include ROS scavengers, inhibitors of ROS generation, Nrf2 activators, mitochon-
dria-activating drugs, and eNOS recoupling agents. Developing novel therapeutics 
to target oxidative stress in PAH is an active and exciting area of research. Although 
human data is currently limited, antioxidant therapeutics may hold promise in the 
future for treatment of PAH.     
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