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    Abstract     Jasmonates are lipid-derived compounds which are signals in plant stress 
responses and development. They are synthesized in chloroplasts and peroxisomes. 
An endogenous rise occurs upon environmental stimuli or in distinct stages of 
development such as that of anthers and trichomes or in root growth. Hydroxylation, 
carboxylation, glucosylation, sulfation, methylation, or conjugation of jasmonic 
acid (JA) leads to numerous metabolites. Many of them are at least partially biologi-
cally inactive. The most bioactive JA is the (+)- 7-iso -JA–isoleucine conjugate. 
Its perception takes place by the SCF COI1 -JAZ-co-receptor complex. At elevated 
levels of JAs, negative regulators such as JAZ, or JAV are subjected to proteasomal 
degradation, thereby allowing positively acting transcription factors of the MYC or 
MYB family to switch on JA-induced gene expression. In case of JAM negative 
regulation takes place by anatagonism to MYC2. JA and COI1 are dominant signals 
in gene expression after wounding or in response to necrotrophic pathogens. Cross-
talk to salicylic acid, ethylene, auxin, and other hormones occurs. Growth is inhib-
ited by JA, thereby counteracting the growth stimulation by gibberellic acid. 
Senescence, trichome formation, arbuscular mycorrhiza, and formation of many 
secondary metabolites are induced by jasmonates. Effects in cold acclimation; in 
intercropping; during response to herbivores, nematodes, or necrotrophic pathogens; 
in pre- and post-harvest; in crop quality control; and in biosynthesis of secondary 
compounds led to biotechnological and agricultural applications.  
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  Abbreviations 

   ABA    Abscisic acid   
  AM    Arbuscular mycorrhiza   
  AOC    Allene oxide cyclase   
  AOS    Allene oxide synthase   
  BR    Brassinosteroids   
  COI1    CORONATINE INSENSITIVE1   
  ET    Ethylene   
  GA    Gibberellic acid   
  DAD1    DEFECTIVE IN ANTHER DEHISCECE1   
  13-HPOT    13-hydroperoxy octadecatrienoic acid      
  ISR    Induced systemic resistance   
  JA    Jasmonic acid   
  JA–Ile    JA–isoleucine conjugate   
  JAMe    JA methyl ester   
  JMT    JA methyltransferase   
  JAR1    JA resistant1   
  JAZ    JASMONATE ZIM DOMAIN   
  α-LeA    α-Linolenic acid (18:3)   
  LOX    Lipoxygenase   
  MYC    bHLHzip transcription factor   
  OPDA    12-Oxophytodienoic acid   
  OPR    OPDA reductase   
  PLA1    Phospholipase A1   
  RNS    Root nodule symbiosis   
  SA    Salicylic acid   
  ST    Sulfotransferase   
  TF    Transcription factor   
  SCF    Skp1/Cullin/F-box   

          Introduction 

 Jasmonic acid (JA) and its derivatives, commonly named jasmonates (JAs), are 
involved in developmental processes such as growth, lateral and adventitious root 
formation, seed germination, leaf senescence, glandular trichome formation as well 
as development of embryos and pollen (Fig.  1 ). Plants with their sessile lifestyle 
need constant adaptation to altering environmental cues, such as light, water defi cit, 
salt, cold, and nutrient defi ciency, in which JA-mediated responses play a crucial 
role. Furthermore, JAs are involved in biotic interactions such as responses to 
herbivores, pathogens, nematodes, or mutualistic symbiotic microorganisms, such 
as mycorrhizal fungi (Fig.  1 ). In these numerous interactions during plant stress 
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  Fig. 1    Jasmonates in plant development ( right ) and plant responses to biotic and abiotic stress 
( left ). Pictures for stress responses are given by a hypersensitive response upon pathogen attack, by 
herbivory on  Arabidopsis , and by arbuscular mycorrhiza. The role of jasmonates in development 
is illustrated by a cross section of anthers of  Arabidopsis  showing pollen release, by immunocyto-
chemical detection of allene oxide cyclase in cross section of tomato ovules, by trichomes, by 
senescing barley leaf segments upon treatment with jasmonate, by seedling growth and root elon-
gation of a tomato seedling showing allene oxide cyclase promoter activity via GUS staining, and 
by root growth showing immunocytochemical detection of the allene oxide cyclase protein in the 
root tip. Jasmonates are also involved in growth inhibition, lateral root formation, adventitious root 
formation, attack by nematodes, light signaling, and freezing tolerance (with permission)       
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responses and development via JAs, various signal transduction pathways are 
involved. These pathways exhibit cross-talk to other plant hormones such as ethylene 
(ET), auxin, gibberellic acid (GA), salicylic acid (SA), brassinosteroids (BR), or 
abscisic acid (ABA).

   The key components of JA biosynthesis, JA perception, and JA signaling have 
been identifi ed. Several of these proteins were crystallized which allowed fi rst 
mechanistic explanations. Since JA is perceived as its isoleucine conjugate (JA–Ile, 
cf. section “  Perception of JA-Ile and Cross-Talk to Other Hormones    ”), I will use 
here the term JA/JA–Ile. The present chapter will give an overview on JA/JA–Ile 
biosynthesis, JA/JA–Ile metabolism, JA/JA–Ile perception, JA/JA–Ile signal trans-
duction and cross-talk to other plant hormones, and JA/JA–Ile functions in biotic 
and abiotic interactions as well as in plant growth and development and will discuss 
some biotechnological and horticultural applications of JA/JA–Ile. All these aspects 
have been continuously discussed in excellent reviews (Ballaré  2011 ; Browse 
 2009a ,  b ; Kazan and Manners  2008 ,  2011 ,  2012 ; Kombrink  2012 ; Pauwels and 
Goossens  2011 ; Pieterse et al.  2012 ; Wasternack and Hause  2013 ; Wasternack 
and Kombrink  2010 ). Therefore, emphasis will be given on recently published data. 
The great amount of published data on JAs can be cited here only partially due to 
space limitation.  

    JA Biosynthesis 

 The JA and its derivatives are members of the class of oxylipins. Whereas JAs are 
generated by  13-lipoxygenases  (13-LOXs), other oxylipins are products of 
9- lipoxygenases (9-LOXs, e.g., LOX1 and LOX5 of  Arabidopsis thaliana ) and 
α-dioxygenases (α-DOX) which form chemically unstable 2( R )-hydroperoxides. 
α-DOX is involved in defense against aphids (Avila et al.  2013 ), whereas AtLOX1 
together with Atα-DOX1 is involved in the local and systemic response to 
 Pseudomonas syringae  pv.  tomato  (Vicente et al.  2012 ). AtLOX1 is also involved in 
an ABA-independent stomata closure and an immune defense response including 
SA and the MAP kinases MPK3 and MPK6 (Montillet et al.  2013 ). 

 The substrate of JA biosynthesis (Fig.  2 ) is derived from galactolipids of chloro-
plast membranes. α-Linolenic acid (18:3) (α-LeA) is released from the  sn-1  position 
of galactolipids by a phospholipase1 (PLA1). Initially, the PLA1 DEFECTIVE IN 
ANTHER DEHISCENCE1 (DAD1) was shown to be involved in JA formation 
(Ishiguro et al.  2001 ). A DAD1-activating factor (DAF) was identifi ed upstream of 
DAD1 as putative RING-fi nger E3 ligase which positively regulates  DAD1  expres-
sion (Peng et al.  2013 ). DAD1 occurs preferentially in fl owers and is controlled by 
the homeobox protein AGAMOUS. Involvement of DAD1 and DONGLE, another 
PLA1, in JA biosynthesis of leaves was excluded by wild-type- like phenotypes of 
 DAD1 - and  DONGLE -RNAi lines in respect to leaf wounding and localization of 
the DONGLE protein in lipid bodies (Ellinger et al.  2010 ). Among the 16 lipase 
mutants of Arabidopsis, only that of PLA1γ1 (At1g066800) showed reduced JA 
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levels upon wounding. The question, however, on activity of other PLA1s in other 
stress-induced JA formation is still open (Ellinger et al.  2010 ).

   Free α-LeA is oxygenated in the C-13 position by 13-LOXs which occur among 
the six LOXs of  A. thaliana  as a family with four members ( LOX2, LOX3, LOX4, 
LOX6 ) (Bannenberg et al.  2009 ). LOX2 is preferentially involved in early wound- 
induced JA formation (Glauser et al.  2009 ; Schommer et al.  2008 ) and JA formation 
during natural and dark-induced senescence (Seltmann et al.  2010 ). LOX2 is con-
trolled by Ca 2+  and a voltage-dependent vacuolar cation channel (Beyhl et al.  2009 ). 
This channel is under the control of members of the transcription factor (TF) family 
TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR 
(TCP). Some of them such as TCP4 are targets of miR319 leading to control of JA 

  Fig. 2    Biosynthesis of jasmonic acid (JA) and its conjugate JA–isoleucine (JA–Ile) is initiated by the 
release of α-linolenic acid (α-LeA) from galactolipids of chloroplast membranes. A 13- lipoxygenase 
(13-LOX), an allene oxide synthase (AOS), and an allene oxide cyclase (AOC) catalyze formation of 
the cyclopentenone  cis -(+)-12-oxophytodienoic acid ( cis -(+)-OPDA). OPDA is released from the 
chloroplast and transported into peroxisomes, where reduction to the cyclopentanone ring by an 
OPDA reductase3 (OPR3) and shortening of the carboxylic acid side chain by the fatty acid ß-oxida-
tion machinery take place. (+)- 7-iso -JA is released into the cytosol, where conversion to JA–Ile and 
other metabolites takes place. Mutants of  Arabidopsis  are indicated in red, that of tomato in green. 
 acx1  acyl-CoA oxidase1,  coi1  coronatine insensitive1,  dad1  delayed anther dehiscence1,  13-HPOT  
(13 S )-hydroperoxy octadecatrienoic acid,  jai1  jasmonic acid insensitive1,  JAR1  JA amino acid syn-
thetase1,  myc2  bHLHzip transcription factor MYC2,  OPC-8  3-oxo-2-(2-pentenyl)-cyclopentane-
1-octanoic acid,  PLA   1   phospholipase A 1  (with permission)       
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biosynthesis via LOX2 (Schommer et al.  2008 ). This and other examples indicate a 
developmental control of LOX2 (Danisman et al.  2012 ). Besides, LOX2 and also 
LOX3, LOX4, and LOX6 contribute to JA formation (Caldelari et al.  2011 ; Chauvin 
et al.  2013 ). The  LOX6  promoter is preferentially active in developing xylem cells 
of young tissues, whereas LOX3 and LOX4 are active in mature vascular tissues 
(Chauvin et al.  2013 ; Vellosillo et al.  2007 ), where other genes of JA biosynthesis 
such as allene oxide synthase ( AOS ) and allene oxide cyclase4 ( AOC4 ) are expressed 
(Kubigsteltig et al.  1999 ; Stenzel et al.  2012 ). During fertility and anther develop-
ment, JA formation including LOX3 and LOX4 activity is required, but LOX2 is 
not involved (Caldelari et al.  2011 ). LOX6 location attributes to the rapid increase 
in JA and JA–Ile after wounding in local and distal leaves (Chauvin et al.  2013 ). 
Only LOX6 is required for JA/JA–Ile formation in roots and is involved in responses 
to abiotic and biotic factors (Grebner et al.  2013 ). There are increasing examples 
that distinct isoforms catalyzing identical reactions in JA biosynthesis are involved 
in different JA/JA–Ile- mediated responses. Examples are the families of LOXs, 
AOCs, OPDA reductases (OPRs), and acyl-CoA oxidases (ACXs). In contrast to 
the four 13-LOXs of  A. thaliana , LOX1 and LOX5 are 9-LOXs and are involved in 
defense reactions. Interestingly, in  Fusarium oxysporum  known to form many dif-
ferent jasmonates (Miersch et al.  1999 ), a nonheme iron 13 S -LOX with multifunc-
tional activity towards dihydroxy, keto, and epoxy alcohol derivatives has been 
identifi ed (Brodhun et al.  2013 ).  F. oxysporum  infection activates expression of 
defense genes such as  THIONINS  (Vignutelli et al.  1998 ). The 13 S -LOX detected in 
 F. oxysporum  suggests that fungal oxylipins including JA might modulate plant 
defense reactions upon  F. oxysporum  infection. 

    In JA biosynthesis the 13-LOX product 13-hydroperoxy octadecatrienoic acid 
(13-HPOT) is converted by the chloroplast-located  AOS,  the fi rst specifi c step in the 
JA-specifi c branch of the LOX pathway. Other branches lead to leaf aldehydes and 
leaf alcohols as well as divinyl ether-, epoxyhydroxy-, keto-, and hydroxy- 
polyunsaturated fatty acids (Feussner and Wasternack  2002 ). AOS is a CYP450 
enzyme (CYP74A) which does not require molecular oxygen nor NAD(P)
H-dependent cytochrome P450 reductase as cofactor. Gene families of AOS, its 
substrate specifi city and tissue-specifi c expression as well as the enzyme mecha-
nism have been reviewed (Kombrink  2012 ; Schaller and Stintzi  2009 ; Wasternack 
and Kombrink  2010 ). Recently, a divinyl ether synthase could be converted into an 
AOS by a single point mutation indicating the close relationship of CYP74 enzymes 
(Toporkova et al.  2013 ). The AOSs of fungi seem to be evolved independently of 
CYP74, as suggested by the identifi cation of a dioxygenase-cytochrome P450 
fusion protein, a novel AOS with catalytic similarities to CYP74 and CYP8A1. 
This novel AOS has an analogous reaction mechanism to CYP74A enzymes 
(Hoffmann et al.  2013 ). A new type of CYP74 enzymes, CYP74C3 could be recently 
characterized with 9 S -hydroperoxylinoleic acid as substrate (Brash et al.  2013 ). 
This enzyme forms besides the regularly generated  E- isomer also a  Z -isomer. Like 
the LOXs carrying positional specifi city for carbon-9 or carbon-13, AOSs show at 
least preference for C-9 or C-13. An exception is the AOS1 of rice which shows 
dual specifi city (Yoeun et al.  2013 ). The AOS of  A. thaliana  has been crystallized 
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(Lee et al.  2008 ). The highly unstable epoxide formed by AOS is converted by a 
chloroplast-located  AOC . In the AOC-catalyzed step,  cis -(+)-12-oxophytodienoic 
acid (OPDA) (9 S ,13 S )-OPDA) is formed which contains the enantiomeric structure 
of the naturally occurring (+)- 7-iso -JA. Even not proved experimentally so far, the 
exclusive occurrence of (9 S ,13 S )-OPDA suggests that AOS and AOC act in a close 
vicinity avoiding the formation of a racemic mixture of  cis -(+)-OPDA and  cis- (−)-
OPDA or spontaneous chemical decomposition leading to α-ketol and γ-ketol. 
The AOC2 of  A. thaliana  and both AOCs from  Physcomitrella patens  have been 
crystallized which allowed mechanistic explanation on the binding pocket (Hofmann 
et al.  2006 ; Neumann et al.  2012 ). The AOC of  A. thaliana  is encoded by a family 
of four members with different but overlapping expression pattern in organs and 
tissues (Stenzel et al.  2012 ). As suggested by the redundant expression in leaves and 
fl ower organs, interactions of all four AOCs occur by homo- and heteromerization 
which represents an additional regulatory level (Stenzel et al.  2012 ). The close asso-
ciation of LOX, AOS, and AOC within chloroplast membranes (Farmaki et al.  2007 ) 
may attribute to the formation of OPDA esterifi ed within chloroplast membranes. 
This diverse group of abundantly accumulating compounds, called arabidopsides 
due to their exclusive occurrence in Arabidopsis, may be a storage form of OPDA 
(for review cf. Göbel and Feussner  2009 ; Ibrahim et al.  2011 ). In rice two photo-
morphogenic mutants ( hebiba, coleoptile photomorphogenesis 2  ( cpm2 ) have been 
recently found to be defective in AOC genes. These genes encode functional AOCs 
which are active in defense against  Magnaporthe oryzae  (Riemann et al.  2013 ). 

 The second part of JA biosynthesis takes place in peroxisomes.  cis -(+)-OPDA is 
assumed to be transported by the peroxisomal ATP-binding cassette (ABC) trans-
porter protein COMATOSE (CTS1) and/or an ion trapping mechanism (cf. reviews 
of Hu et al.  2012 ; Wasternack and Kombrink  2010 ). In peroxisomes OPDA and/or 
its subsequently generated metabolites are activated by 4CL-like acyl-CoA synthe-
tases (Hu et al.  2012 ; Kienow et al.  2008 ; Koo et al.  2006 ).The cyclopentenone ring 
of activated OPDA is reduced by an  OPR.  Among the six OPRs of  A. thaliana , only 
OPR3 is involved in JA biosynthesis as shown by substrate specifi city tests and 
crystallization of OPR1 and OPR3 (Breithaupt et al.  2001 ,  2006 ; Schaller and 
Stintzi  2009 ). In contrast, OPR1 seems to be involved in the synthesis of phytopros-
tanes, a group OPDA-like structures which are preferentially formed by nonenzy-
matic reactions (Mueller et al.  2008 ). Moreover, most of the OPRs except OPR3 are 
involved in detoxifi cation by reduction of α,β-unsaturated aldehydes, ketones, 
maleimides, or acrolein. The OPRs of  A. thaliana , rice, maize, and soybean occur in 
gene families of up to ten members. Their involvement in stress responses and 
development and even sex determination has been shown (Li et al.  2011 ).    

 The following reactions in JA biosynthesis include 4CL-like acyl-CoA synthe-
tases, shortening of the carboxylic acid side chain by the fatty acid ß-oxidation 
machinery with acyl-CoA oxidase (ACX), the multifunctional protein (MFP), and 
3-ketoacyl-CoA thiolase (KAT) (Kombrink  2012 ; Wasternack and Kombrink  2010 ). 
JA generated in peroxisomes is released into the cytosol, where it is metabolized. 

 The membrane-derived compounds JA and JA–Ile are involved in many 
responses to biotic and abiotic stress via distinct or overlapping signaling cascades 
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(cf. sections “  Perception of JA-Ile and Cross-Talk to Other Hormones    ,” “JA/JA-Ile 
in Biotic Interactions of Plants,” “JA/JA-Ile in Abiotic Stress Response of Plants,” 
and “JA/JA-Ile in Plant Growth and Development”). Another group of membrane- 
derived compounds are reactive electrophile species (RES), generated by lipid 
peroxidation. Whereas JA/JA–Ile- and CORONATINE INSENSITIVE1 (COI1)-
mediated processes are involved in wounding, responses to necrotrophic pathogens, 
and developmentally regulated processes, RES are linked to the SA pathway that 
involves class II DNA-binding proteins (TGAs) (cf. section “  Perception of JA-Ile 
and Cross-Talk to Other Hormones    ”). There are numerous RES-mediated detoxifi -
cation processes suggesting a “REScue” by cellular damage including photo-inhibition 
(reviewed in Farmer and Mueller  2013 ).  

    JA Metabolism 

 The most important reaction in metabolism of JA is its conjugation to amino acids 
catalyzed by JASMONATE RESISTANT1 (JAR1) (Fig.  3 ).  JAR1  is member of the 
 GRETCHEN HAGEN3  ( GH3 ) gene family mainly involved in auxin conjugation 
(Staswick and Tiryaki  2004 ). The important role of JAR1 became obvious upon 
identifi cation of (+)- 7-iso -JA–Ile as the most bioactive compound among more than 
40 JA compounds (Fonseca et al.  2009 ). JAR1 is a jasmonoyl amino acid conjugate 
synthase forming an acyl-adenylate/thioester intermediate by use of (+) -7-iso -JA as 
the substrate. JAR1/AtGH3.11 has been crystallized (Westfall et al.  2012 ). Most 
structure–activity relationships, recorded for numerous JA-dependent responses 
during the last two decades (for review cf. Wasternack  2007 ), can be explained now. 
In many plants JA and JA–Ile accumulate in a ratio of about 10:1. For a long time, 
the initial product of JA biosynthesis, (+)- 7-iso -JA, was assumed to epimerize to the 
more stable (−)-JA. (−)-JA was taken as an indicator of endogenous rise of JAs upon 
any environmental stimuli. Now, an assay for quantifi cation of (+)- 7-iso -JA–Ile is 
available (Suza et al.  2010 ). Usually, however, levels of JA and JA–Ile are recorded 
without detection of the individual enantiomers. In  JAR1 -RNAi lines of tomato, 
up to 25–50 % residual JA–Ile was found upon wounding, suggesting the existence 
of other JA conjugating enzymes than JAR1 (Suza et al.  2010 ). Auxin homeostasis 
is sustained by amido-hydrolases such as IAA-LEUCINE RESISTANT (ILR)-
LIKE GENE 6 (ILL6) and IAA-ALANINE RESISTANT 3 (IAR3) which cleave 
auxin amino acid conjugates. Recently, IAR3 and ILL6 were identifi ed as JA–Ile 
and 12-OH-JA–Ile amido-hydrolases (Widemann et al.  2013 ). These enzymes attri-
bute to homeostasis of the active signaling compound JA–Ile as well as formation of 
12-OH-JA. Their activities represent a new and unexpected route of 12-OH-JA for-
mation. A similar activity with JA–Ile occurs in  N. attenuata.  Here, a homologue of 
IAR3 has been cloned and shown to act as a JA–Ile amido-hydrolase (Woldemariam 
et al.  2012 ).

   Besides amino acid conjugates of JA and their metabolites, twelve other JA 
derivatives have been identifi ed in plant tissues, preferentially upon wounding 
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(Wasternack and Hause  2013 ). Among them are JA methyl ester (JAMe), JA 
glucosyl ester,  cis -jasmone, 12- O -glucosyl-JA, 12-HSO 4 -JA, 12-hydroxy-JA, 
12-hydroxy- JA–Ile, 12-COOH-JA–Ile, 12- O -glucosyl-JA–Ile, JA–Ile-glucosyl 
ester, and JA–Ile methyl ester. Similar derivatives can be assumed for OPDA, but 
such compounds were not identifi ed so far. 

 Except JAR1, several enzymes active in JA metabolism have been cloned for 
 A. thaliana , tomato, and tobacco. Among them are JA methyltransferases (JMT) 
(Seo et al.  2001 ): 12-OH-JA sulfotransferases (AtST2a) (Gidda et al.  2003 ), a JA–
Ile hydroxylase (CYP94B3) (Heitz et al.  2012 ; Kitaoka et al.  2011 ; Koo et al.  2011 ), 
and a 12-OH-JA–Ile oxidase (CYP94C1) (Heitz et al.  2012 ). Some JAs accumulate 
abundantly and constitutively in distinct developmental stages and organs. Among 
them are 12-OH-JA, 12-HSO 4 -JA, and 12- O -glucosyl-JA which can reach levels 
three orders of magnitude higher than that of OPDA, JA, or JA–Ile (Miersch et al. 
 2008 ). Many metabolites of JA and JA–Ile such as 12-HSO 4 -JA, 12- O -glucosyl-JA, 
12-hydroxy-JA, 12-hydroxy-JA–Ile, 12COOH-JA–Ile, JAMe,  cis -jasmone, and 
12- O -glucosyl-JA–Ile accumulate transiently upon wounding or other environmen-
tal stimuli (Glauser et al.  2008 ,  2009 ; Heitz et al.  2012 ; Koo et al.  2011 ; Miersch 
et al.  2008 ). Hydroxylation or other metabolic conversions can be an at least partial 

  Fig. 3    Metabolism of jasmonic acid (JA) and JA–isoleucine conjugate (JA–Ile). Enzymes which 
have been cloned are indicated.  JAR1  JA amino acid synthetase,  JMT  JA methyltransferase,  ST2A  
12-OH-JA sulfotransferase 2A,  CYB94B3  JA–Ile hydroxylase,  CYP94C1  12-OH-JA–Ile oxidase. 
Degradation of 12-hydroxy-JA–Ile and JA–Ile to 12-hydroxy-JA and JA, respectively, takes place 
by IAR3 and ILL6, two auxin amido-hydrolases (with permission and modifi ed after Wasternack 
and Hause  2013 )       
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deactivation of bioactivity of JA and JA–Ile (Heitz et al.  2012 ; Koo et al.  2011 ; 
Miersch et al.  2008 ). In case of the volatile  cis -jasmone, the decarboxylated JA, 
bioactivity has been shown by expression data. A subset of genes is expressed by 
 cis -jasmone which is different from that induced by JA or JA–Ile (Matthes et al. 
 2010 ). Pyrethrins such as cinerolone, jasmonolone, and pyrethrolone are thought to 
be synthesized from 7-OH-JA (Ramirez et al.  2013 ). Also 12- O -glucosyl-JA has 
been shown to be active. A distinct enantiomer of the jasmonoyl moiety of this 
compound was identifi ed as leaf-closing factor of  Albizia  and  Samanea  (Nakamura 
et al.  2011 ).  

    Perception of JA–Ile and Cross-Talk to Other Hormones 

 One of the most exciting results of the last couple of years in plant biology was the 
genetic and biochemical proof on hormone perception via the ubiquitin—proteasome 
system. Similar modules were identifi ed for perception of JA–Ile, auxin, GA, and 
ET (Chini et al.  2009 ; Kelley and Estelle  2012 ). In case of auxin and JA/JA–Ile, 
similarities are exceptional (Perez and Goossens  2013 ). A Skp1/Cullin/F-box (SCF) 
complex functioning as an E3 ubiquitin ligase binds the hormone to the complex. 
Subsequently, negative regulators of transcription can be recognized by the F-box 
protein of the complex and are ubiquitinated and thereby subjected to proteasomal 
degradation (Fig.  4 ). This allows positively acting TFs to become active. In case of 
JA–Ile the SCF complex contains the F-box protein  COI1  which was identifi ed via 
the JA/JA–Ile insensitive mutant of  A. thaliana coi1  (Xie et al.  1998 ). Coronatine is 
a bacterial toxin of  Pseudomonas syringae  acting as a molecular mimic of JA–Ile 
(Zheng et al.  2012 ), but does not occur in plants. The structural similarity between 
coronatine and (+)- 7-iso -JA–Ile led to identifi cation of the latter compound as the 
most bioactive JA (Fonseca et al.  2009 ) and fi nally as the ligand of the JA–Ile receptor 
(Sheard et al.  2010 ; Yan et al.  2009 ). The  SCF   COI1   -JAZ-co-receptor complex  has 
been crystallized and mechanism of binding of (+)- 7-iso -JA–Ile together with inisi-
tol-5-bisphosphate, a co-activator, was shown (Mosblech et al.  2011 ; Sheard et al. 
 2010 ). Targets of the SCF COI1  complex are JASMONATE ZIM (ZINC-FINGER 
PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM) (JAZ) proteins, a 
new protein family with twelve members in Arabidopsis (Chini et al.  2007 ; Thines 
et al.  2007 ; Yan et al.  2007 ). At low JA–Ile levels, TFs such as MYC2 which binds 
to the G-box of a promoter of a JA-inducible gene are repressed by JAZ proteins 
(Fig.  4 ). At higher JA–Ile levels, however, the SCF COI1  complex binds a JAZ protein 
via JA–Ile binding resulting in ubiquitinylation and degradation of the JAZ protein 
and derepression of the transcriptional activators. This basic scenario of JA–Ile 
perception via the SCF COI1 -JAZ-co-receptor complex and the subsequent activation 
of JA/JA–Ile-induced gene expression became more complex upon identifi cation of 
the corepressor TOPLESS (TPL) and the adaptor protein “Novel Interactor of JAZ” 
(NINJA) (Pauwels et al.  2010 ). NINJA interacts with JAZ and TPL. Repression of 
gene expression takes place by binding of JAZ to TFs such as the  basic 
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helix-loop- helix (bHLH) TF MYC2  and corepressor activity of TPL mediated by 
histone deacetylases 6 and 19. In the derepressed state JA/JA–Ile-responsive gene 
expression is mediated by subunit 25 of the Mediator complex (MED 25) (Çevik 
et al.  2012 ; Chen et al.  2012 ). TFs such as MYC2 and the JAZ proteins are JA/JA–
Ile inducible. Therefore, a futile cycle may occur which will attribute to a fi ne tun-
ing of JA/JA–Ile-induced gene expression at different levels.

   The interaction between MYC2 and JAZ takes place via the JAZ INTERACTING 
DOMAIN (JID) of MYC2 and the Jas domain of JAZ. Jas is absolutely required for 
repressor function of JAZ (Browse  2009a ; Thines et al.  2007 ). The ZIM domain of 
JAZ mediates interaction to NINJA but is also responsible via its TIFY domain for 
homo- and heterodimerization of JAZs (Chung and Howe  2009 ).    The NINJA–TPL 
interaction takes place via the ET-RESPONSIVE ELEMENT BINDING FACTOR-
ASSOCIATED AMPHIPHILIC REPRESSION (EAR) motif of NINJA. Some JAZ 

  Fig. 4    JA/JA–Ile perception by the SCF COI1 -JAZ-co-receptor complex leads to JA/JA–Ile-induced 
gene expression. There is a low JA/JA–Ile level without environmental stimuli. MYC2 which 
bounds to a G-box of a JA/JA–Ile-responsive gene is repressed by negative regulators such as 
JAZs, mediated by corepressors NINJA and TOPLESS (TPL) which act via the 
HISTONDEACETYLASE6 (HDA6) and HDA19. In addition to JAZ proteins, JAMs 
(JASMONATE-ASSOCIATED MYC2-LIKE1, JAM2, JAM3) (Nakata et al.  2013 ) and JAV1 
(JASMONATE- ASSOCIATED VQ MOTIF GENE 1) act as repressors. In case JAV1 the interact-
ing ubiquitin E 3 ligase is unknown (   Hu et al.  2013a ), whereas JAMs compete with MYC2 in 
binding to the G-box. Dimerization is experimentally shown only for JAZ proteins so far. Upon 
increase of JA/JA–Ile levels by any stress, JAZs, and JAV1 proteins are subjected to ubiquitinyl-
ation and subsequent degradation by the 26S proteasome. Therefore, MYC2 can switch on tran-
scription of JA/JA–Ile-responsive genes including early genes such as  JAZs  and  MYC2.  MED25, 
the subunit 25 of the Mediator complex, mediates transcription (cf. section “Perception of JA-Ile 
and Cross-Talk to Other Hormones”). Ub, ubiquitin; E2, Rbx, Cullin, ASK1, and the F-box protein 
COI1 are components of the SCF complex (with permission)       
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proteins contain such an EAR motif which allows direct binding of TPL without 
NINJA. These versatile interaction domains occur also in homologous components 
of ABA and auxin signaling (Pauwels et al.  2010 ). Consequently, NINJA and TPL 
are integrators of different signaling pathways. The SCF COI1 -JAZ- co-receptor 
complex and its interactors exhibit several exciting regulatory components:

    1.    The Jas domain of JAZ interacts with COI1 in the presence of JA–Ile and is 
strongly increased by IP 5  (Mosblech et al.  2011 ; Sheard et al.  2010 ). Stability 
of COI1 depends on its integration in the SCF complex (Yan et al.  2013 ).   

   2.    Alternative splice variants of JAZ attribute to multiple JAZ functions and 
negative feedback control of JA/JA–Ile signaling (Moreno et al.  2013 ).   

   3.    Enhanced stability of JAZ proteins such as that of JAZ8 being unable to strongly 
interact with COI1 may attribute to JAZ activity (Shyu et al.  2012 ).   

   4.    Homo- and heterodimerization of JAZ proteins is another regulatory level 
(Chung and Howe  2009 ).   

   5.     JASMONATE-ASSOCIATED VQ MOTIF GENE 1  ( JAV1 ) has been identifi ed 
recently as another negative regulator of JA/JA–Ile-mediated plant defense with 
similarities to JAZ (Hu et al.  2013a ; Zhu and Zhu  2013 ). The interacting ubiq-
uitin E 3 ligase, however, is unknown for JAV1. In contrast to JAZ proteins, 
JAV1 is a repressor against necrotrophic pathogens and herbivorous insects, but 
not active in plant growth and development.   

   6.    A JASMONATE-ASSOCIATED MYC2-LIKE1 TF, called JAM1, was identi-
fi ed as an ABA-inducible bHLH-type transcriptional repressor of JA responses 
against herbivores and in JA-dependent growth and development (Nakata et al. 
 2013 ). JAM1 competes with MYC2 to target sequences of MYC2 thereby 
attributing to a fi ne tuning in JA/JA–Ile-induced gene expression. Together with 
JAM2 and JAM3, many JA/JA–Ile responses are negatively regulated by JAM1 
(Sasaki-Sekimoto et al.  2013 ). This includes also expression of genes involved 
in JA biosynthesis and metabolism. The degree of repression by JAZs or/and 
JAMs is unknown so far.   

   7.    MYC2 activity is sustained by a phosphorylation-coupled proteolysis leading 
to a distinct amount of “fresh” MYC2 which is able to activate transcription in 
a positive manner (Zhai et al.  2013 ). This nuclear located regulatory loop has 
similarity to SA signaling via the NPR1 protein, the NONEXPRESSOR OF  PR  
GENE1 active in SA-induced transcription as co-activator of defense gene 
expression (cf. Pieterse et al.  2012 ).   

   8.    Among the bHLH TFs, the subgroup IIId has been identifi ed as novel target of 
JAZ proteins and as transcriptional repressors in root growth inhibition and 
anthocyanin formation (Song et al.  2013a ). These repressors act redundantly to 
JAZs indicating a fi ne tuning in JA/JA–Ile signaling by increased number of 
signaling components.   

   9.    ILL6, a member of  GH3  gene family coding for amido-hydrolases, has been 
identifi ed as a new negatively acting regulatory component in JA/JA–Ile 
responses by comparing expression profi les of individual wild-type plants 
(Bhosale et al.  2013 ). ILL6 is involved in cleavage of JA–Ile and 12-OH-JA–Ile, 
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thereby attributing to JA–Ile homeostasis as well as generation of 12-OH- JA 
without direct hydroxylation of JA (Widemann et al.  2013 ).   

   10.    A screen with a JAZ10 reporter system revealed mutants of NINJA which 
showed constitutive activation of JA responses in roots and hypocotyls indicating 
organ-specifi c activation of JA signaling (Acosta et al.  2013 ).    

  This plethora of components and regulatory principles in JA signaling is used by 
downstream components as well as in the cross-talk to other hormones. Targets of 
JAZs in JA signaling are TFs of the bHLH-type MYC and the  R2R3-type MYB  fam-
ily. MYC2 was the fi rst TF for which an interaction with a JAZ protein was shown 
(Chini et al.  2007 ). MYC2 is a key player in JA/JA–Ile-induced gene expression and 
is involved in synthesis of auxin, tryptophan, glucosinolates (GS), ET, and JA as 
well as in responses to herbivores, oxidative stress, pathogens, and ABA-dependent 
drought stress (Dombrecht et al.  2007 ; Kazan and Manners  2008 ). The central role 
of MYC2 is documented by (1) the regulation of its cross-talk with SA, ABA, GA, 
and auxin signaling pathways; (2) the link between JA/JA–Ile and other signaling 
pathways such as light, phytochrome and circadian clock; (3) the regulation of 
lateral and adventitious root formation, fl owering, and shade avoidance syndrome; 
(iv) the innate immunity in roots; (5) induced systemic resistance (ISR) by benefi cial 
soil microbes; as well as (6) the antagonistic coordination of responses to herbivores 
and pathogens. Some of the MYC2-dependent JA-regulated processes have been 
verifi ed by proteome analysis of wild-type and  myc2  mutant plants (Guo et al. 
 2012 ). All these aspects refl ect the central role of MYC2 and have been reviewed 
recently (Kazan and Manners  2013 ). Besides the master regulator MYC2, other 
targets of JAZs are MYC3, MYC4, MYB21, and MYB24. All MYC TFs have a JID 
domain and a conserved ACT-like domain at the C-terminus being involved in 
homo- and heterodimerization of MYCs (Cheng et al.  2011 ; Fernández-Calvo et al. 
 2011 , Pauwels and Goossens  2011 ). MYC2, MYC3, and MYC4 are partially redun-
dant (Fernández-Calvo et al.  2011 ). The  myc2,3,4  triple mutant plants are free of GS 
and show altered insect performance and feeding behavior (Schweizer et al.  2013 ). 
MYC2 binds directly to promoters of GS biosynthesis genes. All three MYCs interact 
with GS-related MYB TFs indicating the complex scenario in JA/JA–Ile-induced 
gene expression (Schweizer et al.  2013 ). The bHLH TFs involved in anthocyanin 
formation and trichome initiation contain also a JID domain and are targets of JAZ1 
and JAZ8 (Qi et al.  2011 ). JAZ targets active in development were identifi ed in a 
transcriptome analysis of developing stamen of JA-treated  opr3  plants (Mandaokar 
et al.  2006 ). Among them are  MYB21  and  MYB24  which interact with JAZ1 and 
JAZ8 via the N-terminal R2R3 domain (Song et al.  2011 ). Both TFs are specifi cally 
involved in fertility but less in other JA/JA–Ile-dependent processes such as root 
growth or anthocyanin formation. 

 The  cross-talk  between  JA/JA–Ile and auxin  was shown in several processes. 
Prominent examples are (1) the MYC2-mediated suppression of PLETHORA, a 
central regulator in auxin-mediated root meristem and root stem cell niche develop-
ment (Chen et al.  2011 ); (2) the regulatory activity of JA/JA–Ile in expression of 
 ANTHRANILATE SYNTHASE1  ( ASA1 ), which encodes the initial enzyme in auxin 
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biosynthesis (Sun et al.  2009 ); and (3) COI1- and JA/JA–Ile-dependent regulation 
of  YUCCA8  and  YUCCA9 , two important genes in auxin biosynthesis (Hentrich 
et al.  2013 ). 

 The  cross-talk  between  JA/JA–Ile and ET  is synergistic and takes place by MYC2 
activated upon herbivore attack and by ETHYLENE RESPONSE FACTOR1 
(ERF1). ERF1 is activated upon infection by necrotrophic pathogens and JA/JA–Ile-
dependent degradation of JAZs, the repressors of MYC2 and TFs in ET signaling 
such as ETHYLENE INSENSITIVE3/EIN-LIKE1 (EIN3/EIL1) and 
OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF domain protein 
(ORA59) (Pieterse et al.  2012 ). The fi nal output of JA/JA–Ile-ET cross-talk is an 
antagonistic activity between the MYC2 branch and the ERF1 branch and is of 
benefi t for plants due to the naturally occurring simultaneous attack by herbivores 
and necrotrophic pathogens (Pieterse et al.  2012 ; Verhage et al.  2011 ). 

  Cross-talk  between  JA/JA–Ile and GA  signaling takes place synergistically dur-
ing stamen development and antagonistically in the balance between growth and 
defense (Kazan and Manners  2012 ; Wasternack and Hause  2013 ). During stamen 
development, the repressors in GA signaling, the DELLA proteins, repress  DAD1  
and  LOX  expression in the absence of GA leading to JA/JA–Ile defi ciency, to down-
regulation of  MYB21  and  MYB24  by JAZ, and fi nally to male sterility (Cheng et al. 
 2009 ; Song et al.  2011 ). The opposite scenario takes place by GA-induced SCF GID - 
mediated DELLA degradation. JA/JA–Ile and GA act antagonistic in growth and 
defense which is of benefi t for the plant, since plant defense is costly and occurs at 
the expense of plant growth (Hou et al.  2013 ; Kazan and Manners  2012 ). Plant 
growth can occur at suffi cient GA level which represses DELLAs and attenuates 
DELLA binding to JAZ followed by JAZ binding to MYC2. Consequently, 
JA-dependent defense response is suppressed during growth (Kazan and Manners 
 2012 ; Wager and Browse  2012 ; Wasternack and Hause  2013 ). There is a balance of 
the modules of the SCF complexes for JA and GA. It has to be kept in mind, how-
ever, that these complexes are part of the COP9 signalosome (CSN) multiprotein 
complex which regulates both SCF activities (Stratmann and Gusmaroli  2012 ). 
In addition to the GA—JA/JA–Ile cross-talk, the balance between disease resistance 
and growth is regulated by ABA, SA, and auxin (Denancé et al.  2013 ). Here, patho-
gens evade hormone-mediated defense responses with a negative effect on fi tness 
leading to less growth and development. 

  Cross-talk  between  BR and JA/-JA–Ile  is antagonistic in respect to growth as 
shown by mutants (Huang et al.  2010 ) and is synergistic in case of anthocyanin 
biosynthesis, where BR acts upstream of JA/JA–Ile (Peng et al.  2011 ; Song et al. 
 2011 ). Another cross-talk of BR and JA/JA–Ile occurs in defense to herbivores 
(Yang et al.  2013 ). Surprisingly, BR receptor impairment downregulates herbivore- 
induced accumulation of JA–Ile and diterpene glycosides without effects on JA lev-
els and trypsin proteinase inhibitor levels (Yang et al.  2013 ). An important gene in 
BR biosynthesis is  DWF4  ( DWARF4)  which encodes a steroid C22 α-hydroxylase 
(CYP90B1). Its expression is auxin inducible and is repressed by JA/JA–Ile. 
Consequently, the balance between growth and defense is sustained by JA/JA–Ile 
via BR (Kim et al.  2013 ). 

C. Wasternack



235

 The  cross-talk  between  ABA and JA/JA–Ile  was clearly detected for the wound 
response.    Here, the rise of ABA and JA/JA–Ile and JA/JA–Ile-induced formation of 
PYL4 and PYL5, which are ABA receptors, have been shown (Kazan and Manners 
 2008 ; Lackman et al.  2011 ). Many components of the  cross-talk  between  JA/JA–Ile 
and SA  have been identifi ed, and synergistic and antagonistic interactions were 
shown (Boatwright and Pajerowska-Mukhtar  2013 ; Gimenez-Ibanez and Solano 
 2013 ; Pieterse et al.  2012 ). JA/JA–Ile is the key player in responses to necrotrophic 
pathogens and herbivores, whereas SA is the central signaling compound in 
responses to biotrophic pathogens (Pieterse et al.  2012 ). Key components of both 
pathways such as glutaredoxins, thioredoxins, TFs such as WRKY70 for the SA 
pathway, and MYC2 as well as COI1 for the JA pathway are involved in the cross- 
talk. Final steps in this cross-talk are nuclear modulation of both signaling pathways 
(Gimenez-Ibanez and Solano  2013 ; Pieterse et al.  2012 ). The well-known suppres-
sion of JA-responsive gene expression takes place downstream of JA formation 
(Leon-Reyes et al.  2010 ) and of the SCF COI1 -JAZ-co-receptor function. The sup-
pression includes the TF ORA59 (Van der Does et al.  2013 ). Another interesting 
cross-talk was shown by coronatine-mediated increase in  P. syringae  virulence 
(Zheng et al.  2012 ). Here,  A RABIDOPSIS  N AM,  A TAF1,2,  C UC2 (NAC) TFs 
(ANACs) are involved. Coronatine activates the three homologous TFs, ANAC019, 
ANAC055, and ANAC072, in an MYC2-dependent manner, leading to inhibition of 
initial steps in SA synthesis. A similar scenario for these ANAC TFs was found dur-
ing senescence (cf. section “JA/JA-Ile in Plant Growth and Development”). In par-
allel, coronatine allowed bacterial propagation locally and systemically upon 
induction of stomata reopening (Xin and He  2013 ) or inhibition of stomatal closure 
(Lee et al.  2013 ). These data refl ect the multiple virulence activities of coronatine 
(Zheng et al.  2012 ). The properties of coronatine as a multifunctional suppressor of 
defense include also COI1- and SA-independent signaling (Geng et al.  2012 ). The 
JA/JA–Ile - SA cross-talk is a conserved mechanism and is transmitted to the next 
generation (Luna et al.  2012 ). Obviously, these pathways allow in nature the fl exi-
bility of plants to adapt to simultaneously and/or subsequently occurring changes in 
the environment (Thaler et al.  2012 ). It is interesting to note that nuclear targeted 
effectors of pathogenic fungi, nematodes, and benefi cial microbes are similar in 
their action and reprogramming of hormonal pathways such that of SA and JA/JA–
Ile (Gimenez-Ibanez and Solano  2013 ). 

  JA/JA–Ile signaling versus OPDA signaling  is an intriguing question rose by the 
fact that the SCF COI1 -JAZ-co-receptor complex accept exclusively (+)- 7-iso -JA–Ile 
(Fonseca et al.  2009 ) but not OPDA (Thines et al.  2007 ). The mechanistic proof was 
given upon crystallization of the complex (Sheard et al.  2010 ). There are, however, 
OPDA-specifi c reactions such as tendril coiling (Blechert et al.  1999 ), gene expres-
sion (Mueller et al.  2008 ; Taki et al.  2005 ), embryo development in tomato (Goetz 
et al.  2012 ), inhibition of seed germination (Dave et al.  2011 ), activation of  PHO1  
genes which are involved in phosphate accumulation (Ribot et al.  2008 ), 
PHYTOCHROME A signaling (Robson et al.  2010 ), hypocotyl growth inhibition 
(Brüx et al.  2008 ), or insect-induced closure of the Venus fl ytrap (Escalante-Pérez 
et al.  2011 ) (reviewed in Wasternack and Hause  2013 , Wasternack et al.  2012 ). 
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In  P. patens  which does not contain JA (Stumpe et al.  2010 ), OPDA is involved in 
responses to  B. cinerea  infection by reinforcement of the cell wall and programmed 
cell death (Ponce de Leon et al.  2012 ). Even JA is absent in  P. patens , the moss 
can respond to applied JA suggesting perception via the SCF COI1 -JAZ-co-receptor 
complex or a perception mechanism not yet identifi ed. 

 Some of the OPDA-specifi c effects might be mediated by RES since OPDA con-
tains an α,β-unsaturated carbonyl group (Farmer and Mueller  2013 ). An interesting 
new example of OPDA-specifi c signaling was given recently by data on OPDA- 
binding to cyclophilin 20-3 which is involved in stress responses (Park et al.  2013 ). 
As a consequence of OPDA-binding to this cyclophilin, a hetero-oligomeric cysteine 
synthase complex is formed in the chloroplast leading to activation of sulfur assimi-
lation and cellular redox homeostasis (Park et al.  2013 ).  

    JA/JA–Ile-Regulated Metabolism of Secondary Compounds 

 Besides JA-induced proteins of barley (Weidhase et al.  1987 ) and wound-induced 
PROTEINASE INHIBITOR (PIN) formation in tomato (Farmer and Ryan  1990 ), 
the elicitor-induced alkaloid synthesis of plant cell cultures was among the fi rst 
JA-induced gene expression programs which were analyzed (Gundlach et al.  1992 ). 
Meanwhile, JA/JA–Ile-induced synthesis of secondary compounds has been shown 
for many plant species and diverse secondary compounds. This led to biotechno-
logical and agricultural applications (reviewed in Wasternack  2013 ). 
OCTADECANOID DERIVATIVE RESPONSIVE CATHARANTHUS AP2 
DOMAIN2 and 3 (ORCA2 and ORCA3) were the fi rst TFs involved in synthesis of 
secondary metabolites, here terpenoid indole alkaloids (TIA) in  Catharanthus 
roseus  (van der Fits and Memelink  2000 ). Transcriptional control of secondary 
metabolite biosynthesis has been shown in detail and includes the SCF COI1 -complex, 
JAZ proteins, MYC2, ORCAs and/or ERFs, MYBs, and WRKYs which are active 
in distinct pathways. For  nicotine  biosynthesis requirement of functional SCF COI1 -
JAZ- co-receptor complex, MYC2, and AP2/ERFs has been shown (De Boer et al. 
 2011 ; Shoji and Hashimoto  2011 ). AP2/ERFs are encoded by the  NIC  locus in 
tobacco, comprise 239 members (Rushton et al.  2008 ), and are close homologues of 
ORCA3 of  C. roseus . Obviously, these TFs evolved as a regulatory module in two 
species and two pathways in parallel due to evolutionary advantage. 

 The abovementioned “machinery” of SCF COI1 , JAZ, MYC2, ORCA2, and 
ORCA3 is also active in  vinblastine  biosynthesis of  C. roseus  (Zhang et al.  2011 ), 
whereas  artemisinin  biosynthesis is controlled by ERF1, ERF2, MYC2, and 
WRKY1 (Ma et al.  2009 ). The trichome-specifi c TF of  Artemisia annua  ORA, a 
member of the AP2/ERF TF family, is a key player in artemisinin biosynthesis 
(Lu et al.  2013 ). Interestingly, artemisinin biosynthesis genes are coordinately 
activated with genes involved in the formation of trichomes, the storage organ of 
artemisinin (Maes et al.  2011 ). 

 Many genes encoding enzymes of  glucosinolate/camalexin  biosynthesis are 
JA/JA–Ile regulated via SCF COI1 , JAZ, MYC2, MYC3, MYC4, and an MAP 

C. Wasternack



237

kinase—WRKY cascade (De Geyter et al.  2012 ; Schweizer et al.  2013 ). Members 
of the NAC TF family such as ANAC42 are also involved. In summary, the TFs 
active in alkaloid biosynthesis belong to the families of bHLH, MYC, ERF, and 
WRKY TFs, and most of them are JA/JA–Ile inducible. These aspects have been 
reviewed recently (Yamada and Sato  2013 ). 

  Anthocyanin  is the most prominent secondary compound formed upon JA/JA–Ile 
treatment or any environmental stimuli leading to endogenous rise of JA/JA–Ile. 
Any stress of plant tissues is frequently visible by red cell layers indicating antho-
cyanin formation. Involvement of JA/JA–Ile biosynthesis and signaling has been 
repeatedly shown by lack of anthocyanin formation in mutants of  A. thaliana  or 
tomato affected in JA biosynthesis or signaling. Prominent examples are  coi1  
and  opr3  for  A. thaliana  and  jai1 ,  spr2,  and  acx1  for tomato (Browse  2009b ) 
(Table  1 ). Important TFs active in anthocyanin synthesis are PRODUCTION OF 
ANTHOCYANIN PIGMENT1 (PAP1), ENHANCER OF GLABRA3 (EGL3), 
GLABRA3 (GL3), MYB75, and TRANSPARENT TESTA8 (TT8). All of them are 
targets of JAZ proteins (Qi et al.  2011 ). Like artemisinin, anthocyanin formation 
and trichome formation are coordinately regulated as shown by identifi cation of the 
tomato homologue of COI1, JAI1 (Li et al.  2004 ). In  jai1  mutant plants no anthocy-
anin formation and trichome formation takes place.  

    JA/JA–Ile in Biotic Interactions of Plants 

 Due to their sessile lifestyle, plants have to respond to any attack by herbivores, leaf 
or root pathogens, nematodes, and sucking insects. Biotic interactions can be, how-
ever, also benefi cial for plants as in case of mutualistic interactions, such as arbus-
cular mycorrhiza (AM), growth-promoting rhizobacteria leading to ISR, or root 
nodule symbiosis (RNS). Even plant–plant interactions occurring by near growth of 
different plant species can be benefi cial for both partners. Leaf volatiles or root 
exudates can attribute to such interaction. The benefi t for the plants is obvious by the 
so-called intercropping, the mixed growth of two or more plant species (cf. section 
“Applied Aspects on Jasmonates”). In all these interactions JA is a signal. 

 Response to  herbivory  and  mechanical wounding  is one of the most prominent 
and early observed JA responses. There was the observation by C. A. Ryan (Pullman, 
USA) that a sagebrush plant led to less attack by herbivores of a neighboring tomato 
plant (Farmer and Ryan  1990 ). Volatile JAMe was identifi ed as the compound emit-
ted by sagebrush leaves which induced in the neighboring tomato leaves formation 
of PIN2, a deterrent protein for the gut of herbivores. Worldwide is a dramatic loss 
in agriculture by herbivores, mechanical wounding, or sucking/piercing insects. 
This led to intensive research. Plant responses to herbivores are induced by oral 
secretion of the herbivore which contain inducers of wound-induced gene expres-
sion such as volicitin (cf. rev. of Wasternack and Hause  2002 ). There are two defense 
mechanisms: (1)  direct defense  by formation of toxic compounds such as nicotine 
in tobacco or other deterrent secondary metabolites, by synthesis of many defense 
proteins such as PINs or polyphenol oxidase (PPO) which have deterrent role in the 
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digestion of the herbivorous gut, and (2)  indirect defense  by emission of volatiles 
such as leaf alcohols or aldehydes or terpenoids (Fig.  5 ). These volatiles attract 
carnivores, parasitoids, or predators and alter the oviposition of herbivores. There is 
a specifi c volatile blend which differs among various insect communities. Under 
fi eld conditions, the volatile emission can reduces the number of herbivores up to 
90 % (Kessler et al.  2004 ). The scenario, however, is more complex than previously 
recognized, e.g., oral secretions of herbivores contain bacteria which downregulate 
plant defense reactions (Chung et al.  2013 ). Another issue is the reallocation of 
resources within a plant by herbivore attack. JA/JA–Ile-mediated defense is costly, 
e.g., herbivore attack on leaves reduces sugar and starch levels in roots and reduces 
regrowth from the rootstock (Machado et al.  2013 ). Besides wounding by mechanical 
damage or herbivores, touch of aboveground plant parts increases endogenous 
JA/JA–Ile levels and leads to growth inhibition (Tretner et al.  2008 ). This is even 
different to soft mechanical stress which generates ROS ( reactive oxygen species ) in 
a JA-independent manner leading to resistance to  B. cinerea  (Benikhlef et al.  2013 ).

   Due to the overwhelming literature on wound responses and herbivory available 
already in reviews, we refer here to some of them to avoid overlap (Ballaré  2011 ; 
Bonaventure et al.  2011 ; Dicke and Baldwin  2010 ; Erb et al.  2012 ; Fürstenberg- 
Hägg et al.  2013 ; Meldau et al.  2012 ; Reymond  2013 ; Santino et al.  2013 ). 

  Fig. 5    Mechanical wounding and herbivory leads to direct and indirect defense. Upon elicitation 
by oral secretions of herbivores or mechanical damage of leaves, defense proteins such as protein-
ase inhibitors (PINs) or polyphenol oxidase (PPO) as well as toxic compounds such as nicotine in 
case of tobacco are formed. All of them affect digestion of the leaf tissues in the herbivorous gut 
due to deterrent properties of these proteins or compounds. Indirect defense upon herbivory is initi-
ated by emission of leaf volatiles which attract parasitoids and carnivores or alter oviposition of 
herbivores. Additionally, volatiles can induce defense reactions in neighboring plants. Extra fl oral 
nectar (EFN) formation can also attribute to defense (with permission)       
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  Arbuscular mycorrhiza  ( AM ) is a mutualistic interaction of about 80 % of land 
plants with fungi of the phylum  Glomeromycota  (Schüssler et al.  2001 ). AM leads 
to supply of mineral nutrients and water as well as improved tolerance to some abi-
otic and biotic stressors (Cameron et al.  2013 ; Hause and Schaarschmidt  2009 ). 
Some of participating proteins have been identifi ed mainly by RNAi approaches. 
Among them are components of membrane biosynthesis, transport, sucrose cleav-
age, and carotenoid biosynthesis (Recorbet et al.  2013 ). Several data accord with a 
role of JA/JA–Ile in the establishment and maintenance of AM: (1) AM roots of 
 M. truncatula  have increased JA levels and increased expression of JA biosynthesis 
genes (Hause et al.  2002 ; Isayenkov et al.  2005 ), (2) transgenic tomato lines with 
enhanced JA levels exhibit increased mycorrhization (Tejeda-Sartorius et al.  2008 ), 
(3) AOC-RNAi lines of  M. truncatula  carrying reduced JA biosynthesis have 
signifi cantly less mycorrhization (Isayenkov et al.  2005 ), and (4) repeated wound-
ing of  M. truncatula  leaves elevates JA levels and increases AM (Landgraf et al. 
 2012 ) (cf. also review of Wasternack and Hause  2013 ). The establishment of AM 
leads to systemic protection against many attackers similar to systemic acquired 
resistance (SAR) following pathogen attack and ISR after colonization by non-
pathogenic rhizobacteria (Cameron et al.  2013 ). Therefore, the term “mycorrhiza-
induced resistance” (MIR) was proposed. Four phases have been proposed, where 
in the last phase a systemic priming of JA- and ET-dependent defense reactions 
occur (Cameron et al.  2013 ). 

  ISR  is induced by nonpathogenic microbes and, as mentioned above, by mycor-
rhizal fungi. JA/JA–Ile is the central regulator in generation of ISR (Van der Ent 
et al.  2009 ). There is a close interconnection between ISR and MIR due to putative 
priming of JA-dependent defenses caused by ISR-related rhizobacteria in the 
mycorrhizosphere (Cameron et al.  2013 ). 

  RNS  has been controversially discussed in respect to putative role of JA/JA–Ile 
(cf. rev. of Wasternack and Hause  2013 ). Whereas in limited light supply JA/JA–Ile 
seems to be a positive regulator (Shigeyama et al.  2012 ; Suzuki et al.  2011 ), no 
increased JA level during nodulation under normal growth conditions was found 
(Landgraf et al.  2012 ). Autoregulation, a systemic effect in RNS, is a complex 
scenario, for which involvement of shoot-derived JA/JA–Ile has been proposed 
(Hause and Schaarschmidt  2009 ; Kinkema and Gresshoff  2008 ). RNS and AM have 
some common signaling components. Ca 2+  and calmodulin-dependent protein 
kinases are the central signaling hubs, whereas specifi city for AM and RNS is given 
by transcriptional regulators (Singh and Parniske  2012 ). These common sequences 
in AM and RNS seems to be inhibited by shoot-derived JA/JA–Ile during autoregu-
lation (Hause and Schaarschmidt  2009 ).  

    JA/JA–Ile in Abiotic Stress Response of Plants 

 Involvement of JA/JA–Ile has been shown for plant responses to salt, drought, and 
osmotic and chilling stresses and has been reviewed recently (Santino et al.  2013 ). For 
several of these signaling pathways, JA/JA–Ile-specifi c signaling modules such as 
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SCF COI1 , JAZ, and MYC2 or expression of JA/JA–Ile biosynthesis genes has been 
identifi ed. An example is the response to cold stress being positively regulated by JA/
JA–Ile (Hu et al.  2013b ). Key players in cold stress response are JA/JA–Ile inducible, 
and the INDUCER OF CBF EXPRESSION1 (ICE) is a target of JAZ1 and JAZ4.  

    JA/JA–Ile in Plant Growth and Development 

 The involvement of jasmonates in plant growth and development has been unequivo-
cally shown by  mutants  affected in JA/JA–Ile biosynthesis and JA/JA–Ile signaling. 
These mutants preferentially identifi ed for  A. thaliana  and tomato showed an altered 
phenotype in root growth inhibition and fl ower development. These aspects have been 
reviewed (Browse  2009a ,  b ). For comparison, a brief summary of several mutants is 
shown in Table  1 . These mutants can be subdivided into mutants of JA biosynthesis, 
mutants with reduced sensitivity to JA/JA–Ile, mutants with constitutive JA response, 
and mutants with increased JA response. Among JA biosynthesis mutants,  fad3-
2fad7-2fad8 ,  spr2 ,  aos , and  dde2 - 2  are prominent examples for JA/JA–Ile and OPDA 
defi ciency. In contrast,  opr3  and  acx1  plants are JA defi cient but still able to accumu-
late OPDA upon wounding. Constitutive JA/JA–Ile responses occur in  cev1  plants, 
where the subunit 3 of the cellulose synthase complex of  A. thaliana  is altered (Ellis 
et al.  2002 ). Recently, a set of mutants with increased JA responses was identifi ed. 
Here,  JAM1, JAM2, and JAM3  were identifi ed as bHLH TF/JA-associated MYC2-
like negative regulators of MYC2 signaling (Nakata et al.  2013 ) (cf. section “  Perception 
of JA-Ile and Cross-Talk to Other Hormones    ”) . Another negative regulator is 
encoded by the  JAV1  gene. In  jav1  mutant plants defense responses to necrotrophic 
pathogens and herbivores are increased without infl uencing growth and development 
(Hu et al.  2013a ). This indicates repressor function of JAV1 at least partially like the 
JAZ proteins (cf. section “  Perception of JA-Ile and Cross-Talk to Other Hormones    ”). 
Male sterility is among the most prominent phenotypes described for JA-insensitive 
( coi1, jai1 ) or JA-defi cient plants ( opr3, dde2-2, fad3-2 fad7-2 fad8 ).

    Flower Development : The altered phenotype of mutants affected in JA/JA–Ile biosyn-
thesis and signaling led to detailed analyses of fl ower development (Browse  2009a ; 
Song et al.  2013b ; Wilson et al.  2011 ). Among the male sterile  A. thaliana  plants, 
insuffi cient fi lament elongation ( opr3 ), nonviable pollen, and delayed anther dehis-
cence ( dad1 ) have been described. Stamen transcriptome analysis in JA-treated  opr3  
plants led to the identifi cation of several MYB-type TFs (Mandaokar et al.  2006 ) (cf. 
section “  Perception of JA-Ile and Cross-Talk to Other Hormones    ”). Among them, 
MYB21, MYB24, and MYB57 were identifi ed as JAZ targets being essential for sta-
men development (Song et al.  2011 ). Cross-talk to auxin in anther development was 
clearly shown by control of JA biosynthesis genes such as  DAD1 ,  LOX2, AOS,  or 
 OPR3  by AUXIN RESPONSE FACTOR6 (ARF6) and ARF8 (Nagpal et al.  2005 ; 
Reeves et al.  2012 ) and accumulation of JA in auxin receptor quadruple mutant ( tir1, 
afb1-3 ) (Cecchetti et al.  2013 ) (cf. review of Song et al.  2013b ). There is also a cross-
talk between JA/JA–Ile and GA as briefl y described in section “  Perception of JA-Ile 
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and Cross-Talk to Other Hormones    ”. Here, DELLAs suppress expression of JA 
biosynthesis genes, thereby reducing JA/JA–Ile levels which are required for  MYB21/
MYB24/MYB57  expression, the essential TFs in stamen development (Song et al. 
 2011 ,  2013b ). Another indication for the role of JA/JA–Ile in fl ower development is 
given by binding of the TF AGAMOUS to the promoter of  DAD1 , encoding the 
PLA1 involved in JA formation in fl owers (Ishiguro et al.  2001 ) (cf. section “JA 
Biosynthesis”), and by controlling of the bHLH TF BIGPETALp by JA/JA–Ile. This 
TF is involved in petal growth (Brioudes et al.  2009 ). 

  Seed Germination : Although GA, ABA, and ET are key players in seed germina-
tion, also JA/JA–Ile is active in an inhibitory manner (cf. review of Linkies and 
Leubner-Metzger  2012 ). Seed germination data for many mutants affected in JA 
biosynthesis and JA signaling revealed involvement of COI1. The mechanism of the 
suggested involvement of the SCF COI1 -JAZ-co-receptor complex is, however, not 
clear. The compound which inhibits seed germination is OPDA and not JA/JA–Ile, 
as checked with mutants of enzymatic steps downstream of OPDA formation (Dave 
et al.  2011 ; Dave and Graham  2012 ; Goetz et al.  2012 ). OPDA cannot be perceived 
via the SCF COI1 -JAZ co-receptor complex (Thines et al.  2007 ) (cf. section “  Perception 
of JA-Ile and Cross-Talk to Other Hormones    ”). 

  Growth and Light : Plant growth is infl uenced by light in developmental programs 
such as photomorphogenesis, skotomorphogenesis, and shade avoidance syndrome 
(SAS) which have been studied intensively (Chory  2010 ; Lau and Deng  2010 ). 
Involvement of JA/JA–Ile, however, was analyzed only recently.    Requirement for 
MYC2 activity, decreased defense against herbivores or necrotrophic pathogens 
upon silencing of JA/JA–Ile signaling components, and involvement of the JA/JA–
Ile-linked MED25 (cf. section “  Perception of JA-Ile and Cross-Talk to Other 
Hormones    ”) in phytochrome B-mediated SAS are few examples. The different 
aspects of JA/JA–Ile in light signaling have been reviewed (Lau and Deng  2010 ; 
Ballaré  2011 ; Ballaré et al.  2012 ; Kazan and Manners  2011 ; Wasternack and Hause 
 2013 ) and are not repeated here to avoid overlap. 

  Growth inhibition  is an early observed physiological effect of JAs (Dathe et al. 
 1981 ). An explanation could be given by wound-induced inhibition of mitosis 
(Zhang and Turner  2008 ). The endogenous rise in JA after wounding of leaves 
occurs in all dicotyledonous plants tested so far. Even repeated touching of leaves 
leads to increase in JA which is suffi cient to inhibit growth (Chehab et al.  2012 ; 
Tretner et al.  2008 ). Recently performed analysis of effects of JA showed COI1- 
dependent arrest in endo-reduplication cycle, in mitotic cycle during the G1 phase, 
and in downregulation of key determinants of DNA replication (Noir et al.  2013 ). 
The fi nal output of these JA/JA–Ile effects is reduced expansion, growth, size, and 
number of cells which leads to reduced leaf size. 

  Root growth inhibition  is a regularly performed assay for action of jasmonates 
and was used for screening of mutants in JA biosynthesis and JA/JA–Ile signaling, 
e.g.,  jar1 , a JA-insensitive mutant (cf. Table  1 ), has been identifi ed via root growth 
inhibition (Staswick et al.  1992 ). Root growth inhibition is COI1 dependent. 
Involvement of JA/JA–Ile is also indicated by the stunted root growth phenotype of 
 cev1  plants which have constitutively elevated JA/OPDA levels (Ellis et al.  2002 ). 
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NINJA, the corepressor of JA/JA–Ile signaling acting together with JAZ proteins 
(cf. section “  Perception of JA-Ile and Cross-Talk to Other Hormones    ”), is indispen-
sible in repressing JA/JA–Ile signaling in roots and keeps normal root growth 
(Acosta et al.  2013 ). The complex nature of root growth is now studied by system 
biology approaches (Band et al.  2012a ) which showed hierarchic interaction of GA, 
auxin, CK, and JA. Due to the abovementioned cross-talk among these hormones 
during JA/JA–Ile perception and signaling (cf. section “  Perception of JA-Ile and 
Cross-Talk to Other Hormones    ”), the outcome of root growth inhibition is given by 
altered cell division, membrane traffi c, cell wall loosening and synthesis, as well as 
altered turgor and growth rate. All of them affect hormonal and mechanic signaling 
(Band et al.  2012b ). Auxin, the key player in root growth, is infl uenced by (1) JA/
JA–Ile-induced  ASA1  expression, required for auxin biosynthesis (Sun et al.  2009 ); 
(2) JA-induced redistribution of PIN- FORMED2, an auxin transporter (Sun et al. 
 2011 ); and (3) JA/JA–Ile-induced MYC2-dependent repression of PLETHORA, 
required for stem cell niche activity (Chen et al.  2011 ). Furthermore, in rice the 
outcome of root growth inhibition is determined by root cell elongation which is 
regulated by a ternary complex of JAZ proteins, bHLH TFs, and a nuclear factor 
active in rice salt stress (Toda et al.  2013 ). 

  Lateral root formation  is infl uenced by JA/JA–Ile via the abovementioned cross- 
talk with auxin. Genes involved in JA/JA–Ile formation such as  AtAOC3  and 
 AtAOC4  have high promoter activity in emerging lateral roots (Stenzel et al.  2012 ), 
and the JA/JA–Ile-insensitive  coi1-16  plants have less lateral roots (Zhang and 
Turner  2008 ). But also a JA/JA–Ile-independent signaling seems to be involved, 
since 9-LOX products derived from LOX1 and LOX5 negatively regulate lateral 
root formation (Vellosillo et al.  2007 ). 

  Adventitious root formation  is a multifactorial process with involvement of 
auxin, cytokinin, and JA/JA–Ile (Da Costa et al.  2013 ). Key player is auxin that acts 
as an inducer by regulating JA/JA–Ile homeostasis (Gutierrez et al.  2012 ). Auxin 
regulates ARF6 and ARF8 in a positive manner. Downstream of auxin, adventitious 
root formation is negatively regulated by JA/JA–Ile in a COI1- and MYC2- 
dependent manner. Consequently,  coi1-16, myc2, myc3, myc4 , and  jar1  mutant 
plants have more adventitious roots than the wild type (Gutierrez et al.  2012 ). 

  Gravitropism  is a morphogenic response caused by auxin redistribution and 
intra- and intercellular communication. Besides the mechanistic framework of 
cross-talk in auxin and JA/JA–Ile signaling, gradients of auxin, JA/JA–Ile, and 
auxin responsiveness have been detected during gravitropic response. This supports 
the traditionally used Cholodny–Went hypothesis for explanation of asymmetric 
growth (Gutjahr et al.  2005 ). 

  Trichomes , preferentially glandular trichomes, are “factories” for production of 
secondary metabolites such as terpenoids, fl avonoids, alkaloids, and defense pro-
teins (Tian et al.  2012 ; Tissier  2012 ). Therefore, glandular trichomes are involved in 
resistance to insects as shown by the  odorless-2  tomato mutant (Kang et al.  2010 ). 
Identifi cation of  jai1 , the tomato homologue of  AtCOI1,  clearly showed require-
ment for intact JA/JA–Ile-signaling in trichome formation (Li et al.  2004 ). Trichome 
density and JA/JA–Ile-inducible defense compounds such as monoterpenes, 
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sesquiterpenes, and PINs are involved in resistance to herbivores (Tian et al.  2012 ). 
Trichome initiation is dependent on TFs such as MYB75, GL3, and EGL3 which 
are targets of JAZ proteins (Qi et al.  2011 ) (cf. section “  Perception of JA-Ile and 
Cross-Talk to Other Hormones    ”).<> Among trichome-specifi c enzymes involved in 
synthesis of secondary metabolites such as pyrethrins of  Pyrethrum  are two LOXs 
which convert α-LeA to 13-HPOT (Ramirez et al.  2013 ). The pyrethrins cinerolone, 
jasmolone, and pyrethrolone are assumed to be synthesized from the JA derivative 
7-OH-JA (cf. section “Metabolism”). 

  Tuber formation  was assumed to be dependent on 12-OH-JA. In the late 1980s, 
12-OH-JA was named tuberonic acid (TA) due to its tuber-inducing activity 
(reviewed by Wasternack and Hause  2002 ). Later on, involvement of StLOX1 in 
tuber formation (Kolomiets et al.  2001 ) and accumulation of JA and TA in stolons 
under low tuber-inducing temperature were shown (Nam et al.  2008 ). These data on 
TA, however, are only correlative. The effect could be indirect. Meanwhile, a con-
clusive scenario of tuber formation has been established. In this scenario, the potato 
orthologues of CONSTANS and FLOWERING LOCUS T are involved (Rodríguez- 
Falcón et al.  2006 ).The gene encoding the homeobox TF BEL5 is expressed in a 
phytochrome B-dependent manner, and its mRNA is transported under short-day 
conditions and at low temperature from leaves to the stolon tip via the phloem 
(Hannapel  2010 ; Lin et al.  2013 ). Finally, the  GA-20 oxidase1  promoter binds 
StBEL5 and another TF, POTH1, leading to increased GA levels (Banerjee et al. 
 2006 ; Lin et al.  2013 ). Interestingly, the phloem transport of  StBEL1  mRNA is 
accompanied with a phloem transport of mRNAs of Aux/IAA-encoding genes 
which leads to suppression of root growth (Hannapel  2013 ). Possibly, the role of TA 
is indirect by altering cell expansion. 

  Senescence : Senescence is a complex developmentally and environmentally regu-
lated process. Nutrient availability, biotic and abiotic stress, and light/dark condi-
tions infl uence senescence. Among senescence-related hormones, JA is known for a 
long time as a senescence-promoting factor (Ueda and Kato  1980 ). Aspects on senes-
cence were reviewed recently (Guo and Gan  2012 ; Zhang and Zhou  2013 ). Transcript 
profi ling in different stages of senescence led to a leaf senescence  database 
(Buchanan-Wollaston et al.  2005 ; Liu et al.  2011 ) and identifi cation of JA-linked TFs 
such as WRKY53 (Miao and Zentgraf  2007 ), WRKY54, and WRKY70 (Besseau 
et al.  2012 ) and TFs of the NAC family (Balazadeh et al.  2010 ). For the latter, e.g., 
ANAC019, ANAC055, and ANAC072, a regulatory network was shown recently 
indicating similarities and divergence among activities of TFs in stress responses (cf. 
section “  Perception of JA-Ile and Cross-Talk to Other Hormones    ”) and senescence 
downstream of MYC and MYB TFs (Hickman et al.  2013 ). The NAC TF ORE1 
(ANAC092) is a positive and central regulator of senescence (Matallana-Ramirez 
et al.  2013 ). Other components of JA/JA–Ile-mediated senescence are (1) the COI1-
dependent downregulation of RUBISCO activase (Shan et al.  2011 ), (2) the JA/JA–
Ile-induced chlorophyll degradation (Tsuchiya et al.  1999 ), (3) the cross-talk to ET 
(Wang et al.  2013 ) or CK (van Doorn et al.  2013 ), and (4) the recruitment of JA/
JA–Ile signaling in the absence of functional plastoglobule kinases accompanied 
with conditional de-greening (Lundquist et al.  2013 ).  
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    Applied Aspects on Jasmonates 

 Upon two decades of JA research on JA-biosynthesis and JA-mediated signal trans-
duction pathways in plant stress responses and development, an increasing interest 
is obvious to use this knowledge for horticultural applications. There are several 
examples summarized in Fig.  6 , showing how JA/JA–Ile-mediated processes can be 
used in  agriculture for improved plant growth, harvest, biotechnological production 
of secondary metabolites, or improvement of plant immunity. Applied aspects on 
jasmonates have been reviewed recently (Wasternack  2014 ). Therefore, only few 
examples will be briefl y discussed here.

    Freezing Tolerance : JA/JA–Ile is clearly a positive regulator of freezing tolerance 
(Hu et al.  2013b ). Inhibition of JA/JA–Ile biosynthesis and signaling leads to hypersen-
sitivity to freezing. The key players in cold stress, CBF1/DREB1, are JA/JA–Ile 
inducible, and ICE (INDUCER OF CBF EXPRESSION1) is a target of JAZ1 
and JAZ4. 

  Defense Against Root Nematodes : Roots are attacked by root-knot and cyst nema-
todes which are endoparasites. These parasites use plant nutrients for their own 
lifestyle (Gheysen and Mitchum  2011 ). Worldwide there is about 5 % crop loss by 
root-knot nematodes of the genus Melogyne which attack about 200 mono- and 

  Fig. 6    Scheme on applied aspects of jasmonates in horticulture, pharmacy, and biotechnology. 
The accumulated knowledge on role of jasmonates in formation of secondary compounds; in 
defense reactions against pathogens, nematodes, or herbivores; in senescence, pre- and post- 
harvest, crop quality; or in arbuscular mycorrhiza led to their increased application (with 
permission)       
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dicotyledonous species. Nematodes inject after invasion effector proteins into 
the host leading to a dramatic reprogramming of gene expression. Besides auxin, 
ET, and BR, JA is involved in systemically induced defense reactions against root 
nematodes (Nahar et al.  2013 ). Knowledge on participating signaling components 
will improve putative application. Here, simultaneously active shoot-feeding insects 
have to be taken into account. There is a compensatory plant growth response by 
herbivores which affects nematode invasion (Wondafrash et al.  2013 ). 

  Intercropping : Mixed growth of two or more crops, called intercropping, is of 
increasing interest due to obvious disadvantages of plant growth in monocultures. 
More than 28 million hectare in China is used already by intercropping. An interest-
ing example is the maize/peanut intercropping which improves iron content of 
plants on calcareous    soil (Xiong et al.  2013 ). In both plants, stress-related proteins 
are downregulated in a JA-dependent manner, initiated by interactions via the rhi-
zosphere. A JA/JA–Ile-mediated advantage in intercropping systems is also given 
by volatile organic compounds (VOCs) which strongly interfere with insect interac-
tions (Poveda and Kessler  2012 ). 

 A pesticide-free management of agroecosystems is envisaged by growing the 
right plants together. Maize plants growing together with legumes are much less 
attacked by the adult stem borer moth due to VOC emission, whereas grasses grow-
ing at the boarder of a maize fi eld can attract gravid females away from maize plants 
(Hassanali et al.  2008 ). There are increasing examples, how plant–plant communi-
cations can be used for agricultural improvement. In the rhizosphere, root exudates 
attribute to communication, whereas in the atmosphere volatile compounds such as 
VOCs including JAMe are active. 

  Pre- and Post-harvest Effects and Crop Quality : Infection by  Botrytis  and green 
mold is the reason for the most frequently appearing loss in post-harvest (Rohwer 
and Erwin  2008 ). The role of JA/JA–Ile in infection by necrotrophic pathogens like 
 B. cinerea  is well understood. Consequently, application of JA and JA/JA–Ile-mediated 
volatile production are frequently used to establish resistance by pre- and post- 
harvest treatments. Crop quality can be improved by JAMe treatment. Here, (1) 
accumulation of “healthy” compounds such as resveratrol in case of  Vitis vinifera  
leaves (Ahuja et al.  2012 ), (2) JA-induced accumulation of anthocyanins and anti-
oxidant compounds in fruits and vegetables (Wang and Zheng  2005 ), or (3) JA/
JA–Ile-induced GS formation in cruciferous vegetables (Grubb and Abel  2006 ) can 
be of interest. The latter aspect can be reached by JA treatment under fi eld condi-
tions without loss in post-harvest quality (Ku et al.  2013 ). Compounds of pharma-
ceutical interest such as alkaloids, taxol, or saponins are “produced” in plant cell 
cultures or via transgenic approaches due to their induction by JA/JA–Ile. During 
post-harvest of crops, herbivore resistance can be enhanced by using plant-circadian 
clock function for fi tness (Goodspeed et al.  2013 ). 

  Jasmonates in Cancer Therapy : Jasmonates are unique for plants and do not occur 
in human tissues. There is, however, an anticancer activity of several JA compounds 
at least in several human cell lines (cf. review of Cohen and Flescher  2009 ). 
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JAs exert cytotoxic effects on cancer cells by direct cell death induction via 
 interference with energy production, mitochondrial perturbation, and ROS production 
and/or via cell cycle arrest, redifferentiation, and anti-infl ammatory properties 
(Raviv et al.  2013 ). Most strategies for use of JAs in anticancer therapy are based on 
improved chemical synthesis, increase in pharmacokinetic stability, and develop-
ment of new JA compounds. There are, however, already natural sources of plants 
which are used for a long time for preparation of pharmaceutical drugs with antican-
cer activity. Among them are extracts of mistletoe ( Viscum album ). A putative 
explanation was found recently. Mistletoe plants have a JA content of about four 
orders of magnitude higher levels than most other plants, such as  A. thaliana , 
tomato, or tobacco, even if these plants were wounded (Miersch and Wasternack, 
unpublished). Natural sources such as algae extracts or treatment with JAMe have been 
repeatedly described to exert anticancer activity in prostate cancer (Farooqi et al.  2012 ). 

  Soil Microbe Communities : There is a remarkable growth promotion of Arabidopsis 
by soil microbes which includes a facilitation of iron uptake, downregulation of 
genes involved in nitrogen uptake, redox signaling, and SA-mediated signaling, 
whereas genes involved in JA signaling, photosynthesis, and cell wall synthesis were 
upregulated (Carvalhais et al.  2013 ). There are about 10 11  microbes with up to 30,000 
prokaryotic species per gram roots in the rhizosphere near the roots (Berendsen et al. 
 2012 ). Among them are pathogenic, benefi cial, and commensal microbes. Pathogen 
infection leads to damage by root growth inhibition caused by toxic compounds 
of bacterial origin. Colonization by benefi cial microbes, however, can result in 
growth promotion or ISR. Soil-borne benefi cial microbes such as  Pseudomonas  spp . 
 rhizobacteria  can establish protection against abiotic stress, may prime the plant 
immune system, and can change the root architecture (Zamioudis et al.  2013 ). 

  Simultaneously Applied Stresses : Most analyses of stress responses include single 
stress scenarios. In nature, however, several biotic and abiotic stresses occur simulta-
neously and/or subsequently. Consequently, for any application in agriculture, data 
collection has to be envisaged by simultaneously performed, multiple stresses. In an 
initial transcriptome-based comparison of single and double stresses, about 60 % of 
transcripts upon double stress could not be predicted by single stress data (Rasmussen 
et al.  2013 ). Another transcriptome data set on simultaneously performed biotic and 
abiotic stress showed regulation of specifi c genes, which are involved in several 
stress responses, but also an overriding property of abiotic stress on the response to 
biotic stress (Atkinson et al.  2013 ). Transcriptome and metabolome analyses of a 
multifactorial stress experiment including heat, drought, and virus infection revealed 
specifi c genes for single, double, and triple stress conditions including altered biotic 
stress responses by abiotic stress application (Prasch and Sonnewald  2013 ). This bal-
ance between abiotic and biotic stress responses was inversed in case of photo-
protection versus defense.  Arabidopsis  mutants affected in key components of the 
chloroplast photoprotection system showed elevated oxylipin levels (JA/JA–Ile, 
OPDA) and increased defense against herbivores and pathogens (Demmig-Adams 
et al.  2013 ). Obviously, any balance between abiotic and biotic stresses is not optimal 
in plants and is of great impact on any agricultural application.  
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    Conclusions 

 After two decades of JA research based on analytical, genetic, molecular, and cell 
biological approaches, principles in biosynthesis, perception, signaling, and action 
of JA/JA–Ile have been elucidated. Signaling modules and similarities to other hor-
mones as well as the network of cross-talk among all of them are milestones in this 
new knowledge. Transcriptomic, proteomic, lipidomic, and metabolomic analyses 
led to a vast amount of data which will be extended on new conditions and will lead 
to system biology approaches. Complex analyses will be performed on:

    1.    JA/JA–Ile action in stress responses and development under natural conditions   
   2.    Simultaneous and/or subsequent action of two or more stresses in relation to JA/

JA–Ile signaling   
   3.    JA/JA–Ile-dependent balance of growth and development   
   4.    JA/JA–Ile-based communication of plants via the rhizosphere and the atmosphere   
   5.    JA/JA–Ile-mediated plant productivity in terms of secondary and macromolecular 

compounds     

 These global questions will be underpinned by mechanistic studies in JA/JA– Ile- 
signaling leading to identifi cation of:

    1.    New regulatory components around the well-established SCF COI1 -JAZ-co- 
receptor complex   

   2.    Translational and posttranslational control mechanisms including protein phos-
phorylation and protein stability   

   3.    Epigenetic regulation of biosynthesis and signaling of JA/JA–Ile   
   4.    Stress-specifi c and developmentally specifi c regulators active in JA/JA–Ile 

signaling     

 It will be fascinating to see the concerted progress in plant hormone research 
including JA/JA–Ile.     
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