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    Abstract     Salicylic acid (SA) is a simple phenolic compound distributed in a wide 
range of plant taxa. Depending on the plant species, developmental stage, and 
growth conditions, it can be synthesized from cinnamic acid produced by phenyl-
alanine ammonia-lyase in the cytosol or from isochorismic acid generated by 
isochorismate synthase in chloroplasts. However, a fully defi ned SA biosynthetic 
pathway is still unavailable in plants. Besides its role in regulating various aspects 
of plant growth and development, SA is a plant immune signal essential for both 
local defense response and systemic acquired resistance. Signifi cant progress has 
been made recently in understanding SA-mediated defense signaling networks 
including identifi cation of SA receptors and elucidation of the crucial role of 
NPR1 (nonexpressor of pathogenesis-related genes 1) in SA signal execution. 
Understanding of SA-mediated plant defense has facilitated the development of 
disease-resistant crops through genetic manipulation of the SA signaling pathway. 
Although the use of  NPR1  and its orthologs in developing broad-spectrum trans-
genic disease resistance has been successfully extended to a variety of crop species, 
commercial application of these transgenic crops has been hampered by ethical 
concerns. In this regard, cisgenesis may hold the potential for application of bioen-
gineered disease-resistant crops in agriculture.  
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        Introduction 

 Salicylic acid (SA, 2-hydroxy benzoic acid) is a small phenolic compound synthesized 
by a wide range of prokaryotic and eukaryotic organisms. It has a broad distribution 
in the plant kingdom as free phenolic acid and/or conjugated forms generated by 
glucosylation, methylation, amino acid conjugation, sulfonation, or hydroxylation 
(Pridham  1965 ; Pierpoint  1994 ; Vlot et al.  2009 ; Dempsey et al.  2011 ). Among 
these natural SA derivatives, salicin (β-glucoside salicylic alcohol) is the best known 
one. It accumulates to high levels in several willow species including  Salix alba , 
 S. purpurea ,  S. daphnoides , and  S. fragilis  whereby the name of salicylic acid was 
derived from (Raskin  1992 ; Foster and Tyler  1999 ). However, the highest levels of 
total SA were found in infl orescence of thermogenic plants and in spice herbs (Raskin 
et al.  1990 ). Under optimal conditions, rice, crabgrass, green foxtail, barley, and soy-
bean have SA levels in excess of 1 μg g −1  fresh weight (FW) (Raskin et al.  1990 ). 
In the model plant  Arabidopsis thaliana , basal levels of total SA range from 0.25 μg 
to 1 μg g −1  FW (Nawrath and Métraux  1999 ; Wildermuth et al.  2001 ; Brodersen et al. 
 2005 ). However, basal SA levels differ widely among species (up to 100-fold differ-
ences), even among members of the same family (Yalpani et al.  1991 ; Malamy et al. 
 1992 ; Navarre and Mayo  2004 ). As ubiquitous distributed secondary metabolites, 
salicylates (the general name of SA and its derivatives) have been known to possess 
medicinal properties since the fi fth century  bc  when Hippocrates prescribed salicy-
late-rich willow leaf and bark for pain relief during childbirth (Weissman  1991 ). 
It eventually led to the development of aspirin, one of the world’s most widely used 
drugs, in the 1890s (Raskin  1992 ). Recently, SA has been established as a distinct 
class of plant hormone because of its important regulatory roles in seed germination 
(Rajou et al.  2006 ), seedling establishment (Alonso-Ramírez et al.  2009 ), cell growth 
(Rate et al.  1999 ; Vanacker et al.  2001 ), trichome development (Traw and Bergelson 
 2003 ), fl owering (Cleland  1974 ; Cleland and Ajami  1974 ; Martínez et al.  2004 ), ther-
mogenesis (Raskin et al.  1987 ), nodulation (Stacey et al.  2006 ), respiration (Norman 
et al.  2004 ), stomatal responses (Manthe et al.  1992 ; Lee  1998 ), senescence (Morris 
et al.  2000 ; Rao and Davis  2001 ; Rao et al.  2002 ), and responses to biotic and abiotic 
stresses (Janda et al.  2007 ; Vlot et al.  2009 ). 

 The best-established role for SA is as a signal molecule functioning in plant 
immune responses (Enyedi et al.  1992 ; Alvarez  2000 ; Nishimura and Dangl  2010 ). 
Due to sessile nature and lacking specialized immune cells, plants have developed 
the capability to sense pathogen and mount immune response through individual 
cells. Recognition of pathogen-associated molecular patterns (PAMPs) leads to 
PAMP-triggered immunity (PTI) that prevents pathogen colonization. While PTI is 
suffi cient to prevent further colonization by many microbes, some pathogens have 
evolved effectors to dampen PAMP-triggered signals. In turn, host plants have 
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evolved resistance (R) proteins to detect the presence of pathogen effectors and 
induce effector-triggered immunity (ETI) including hypersensitive response (HR) 
(Jones and Dangl  2006 ). Activation of defense signaling pathways (PTI or ETI) 
results in the generation of a mobile signal(s) that moves from local infected tissue 
to distal tissues to induce systemic acquired resistance (SAR), which is a long- 
lasting immunity against a broad spectrum of pathogens (Fu and Dong  2013 ). 
SA-mediated immune responses are important parts of PTI and ETI and also essen-
tial for the activation of SAR (Durrant and Dong  2004 ). Efforts to elucidate the 
crucial role of SA in immune responses have uncovered that pathogen infection 
leads to SA accumulation not only in the local infected tissue but also in systemic 
tissues that develop SAR (Malamy et al.  1990 ; Métraux et al.  1990 ) and that SA 
accumulation usually parallels or precedes the increase in expression of  pathogenesis - 
related     ( PR ) genes and development of SAR. Consistently, exogenous application 
of SA and its functional analogs induces  PR  gene expression and resistance against 
viral, bacterial, oomycete, and fungal pathogens in both dicotyledonous and mono-
cotyledonous plants (Malamy and Klessig  1992 ; Wasternack et al.  1994 ; Gorlach 
et al.  1996 ; Ryals et al.  1996 ; Morris et al.  1998 ; Shah and Klessig  1999 ; Pasquer 
et al.  2005 ; Makandar et al.  2006 ). Conversely, blocking SA accumulation through 
expression of a bacterial  naphthalene  ( nah )-catabolic gene  nahG , which encodes a 
salicylate hydroxylase that converts SA to catechol, in transgenic tobacco and 
 Arabidopsis  plants compromises both HR and SAR (Gaffney et al.  1993 ; Delaney 
et al.  1994 ). Similarly, mutations of genes involved in SA biosynthesis and inhibi-
tion of SA biosynthesis have been shown to enhance susceptibility to pathogens, yet 
the resistance can be restored through exogenous SA application (Mauch-Mani and 
Slusarenko  1996 ; Nawrath and Métraux  1999 ; Wildermuth et al.  2001 ; Nawrath 
et al.  2002 ). Therefore, SA is an important endogenous marker and determinant of 
plant disease resistance. 

 In the past two decades, intensive studies have revealed a complex network of SA 
biosynthesis and signaling in plant immunity. Increasing knowledge of SA-mediated 
immunity in model systems has led to translational research on developing disease-
resistant crop cultivars through transgenic approaches. Genetic screens, transcrip-
tomics, proteomics, and protein interaction studies predominantly in  Arabidopsis  
have provided a large number of candidate genes for biotechnological manipulation 
in crops. At the same time, outcomes of genetic engineering have enhanced our 
understanding of the SA-mediated immune responses in different plant species. 
Here, we describe the recent progresses in our understanding of SA biosynthesis, 
signal perception and execution, and their biotechnological applications in improve-
ment of crop disease resistance.  

    Salicylic Acid Biosynthesis 

 Studies of SA biosynthesis in plants have discovered two distinct and differentially 
compartmentalized pathways: the phenylalanine ammonia-lyase (PAL) pathway 
starting in the cytosol and the isochorismate synthase (ICS) pathway operative in 
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chloroplasts (Fig.  1 ). Both pathways require the primary metabolite chorismate. 
However, to date neither biosynthetic route has been fully resolved.

      The PAL Pathway 

 PAL (EC 4.3.1.5) is the fi rst enzyme in the phenylpropanoid pathway, which catalyzes 
phenylalanine (Phe) to  trans -cinnamic acid ( t -CA) and NH 3  via a non- oxidative 
deamination reaction (Raes et al.  2003 ; Rohde et al.  2004 ). Early radiolabeling 
studies with Phe,  t -CA, or benzoic acid (BA) suggested that SA is synthesized from 
Phe via  t -CA, which is then converted to SA through two possible routes depending 
on the plant species and growing conditions (Klämbt  1962 ; El-Basyouni et al.  1964 ; 
Chadha and Brown  1974 ).

    1.    Hydroxylation of  t -CA to  ortho -coumaric acid followed by its decarboxylation 
to SA (Fig.  1 ). Feeding of  14 C-labled Phe and  t -CA to young  Primula acaulis  and 
 Gaultheria procumbens  leaf segments leads to accumulation of  ortho -coumaric 
acid and SA, indicating the function of  ortho -coumaric acid pathway in SA 
biosynthesis (Griesebach and Vollmer  1963 ; El-Basyouni et al.  1964 ). Similarly, 
upon  Agrobacterium tumefaciens  infection, young tomato seedlings synthesize 
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SA through hydroxylation of  t -CA to  ortho -coumaric acid (Chadha and Brown 
 1974 ). Although the conversion of  t -CA to  ortho -coumaric acid is believed to be 
catalyzed by  trans -cinnamate-4-hydroxylase in multiple species (Russel and 
Conn  1967 ; Alibert and Ranjeva  1971 ,  1972 ; Gabriace et al.  1991 ), the activity 
of 2-hydroxylation of  t -CA to form  ortho -coumaric acid was only detected in the 
suspension of chloroplasts instead of the cytosol of the sweet clover ( Melilotus 
alba  Desr.) (Gestetner and Conn  1974 ). Nevertheless, the enzyme(s) that cata-
lyzes the conversion of  ortho -coumaric acid to SA has not yet been identifi ed.   

   2.    Decarboxylation of the side chains of  t -CA to generate BA followed by hydrox-
ylation at C 2  position (Fig.  1 ). A growing body of evidence indicates that plants 
can potentially develop three biosynthetic subroutes to BA, including an 
β-oxidative route from cinnamoyl Co-A, a non-oxidative route from cinnamoyl 
Co-A, and a non-oxidative route from  t -CA to BA (Wildermuth  2006 ). 
Radiolabeling studies using Phe or putative pathway intermediates performed in 
tobacco mosaic virus (TMV)-infected tobacco, smoke-treated coyote tobacco, or 
cucumber detected incorporation of radiolabeled carbon into BA and SA but not 
benzaldehyde, suggesting that SA is synthesized through the cinnamoyl-Co-A 
β-oxidative subroute (Ribnicky et al.  1998 ; Jarvis et al.  2000 ). Similar studies 
have not been performed in  Arabidopsis  to probe downstream components of 
SA biosynthesis via PAL pathway. However, a study of BA production in devel-
oping seeds identifi ed an  Arabidopsis  aldehyde oxidase4 (AAO4) that catalyzes 
the conversion of benzaldehyde to BA, which is then incorporated into benzoyl 
glucosinolates (Ibdah et al.  2009 ). Additionally, the formation of [ 14 C]BA from 
[ 14 C]Phe through [ 14 C] t -CA was observed in  Tsuga canadensis , young 
 Gaultheria procumbens  tissue, and uninfected tomato seedlings (Zenk and 
Muller  1964 ; Ellis and Amrhein  1971 ; Chadha and Brown  1974 ). Furthermore, 
 14 C-tracer studies with tobacco cell suspensions or TMV-inoculated leaves indi-
cated that the label moves from  t -CA to SA via BA (Yalpani et al.  1993 ). 
Similarly, rice shoots can convert both [ 14 C] t -CA and [ 14 C]BA to SA (Silverman 
et al.  1995 ).    

  The direct conversion of [ 14 C]BA to [ 14 C]SA discovered in etiolated  Helianthus 
annuus  hypocotyls,  Solanum tuberosum  tubers,  Pisum sativum  internodes, and 
infected cucumber plants was proposed to be catalyzed by an inducible BA 
2-hydroxylase (BA2H) (Klämbt  1962 ; Meuwly et al.  1995 ). BA2H activity was 
further detected in ozone-exposed tobacco leaves, heat-treated pea plants, and salt- 
stressed rice seedlings (León et al.  1995 ; Ogawa et al.  2005 ; Sawada et al.  2006 ; Pan 
et al.  2006 ). Biochemical characterization indicated that tobacco BA2H is a soluble 
P450 oxygenase that specifi cally hydroxylates the  ortho  position of BA (León et al. 
 1995 ). Although there has been no subsequent report describing a BA2H-encoding 
gene in plants, similar activity has been observed in  Arabidopsis , which converts 
neonicotinoid metabolite 6-chloropyridinyl-3-carboxylic acid to the SA mimic 
6-chloro-2-hydroxypyridinyl-3-carboxylic acid  in planta  (Ford et al.  2010 ). Studies 
conducted in poplar and tobacco indicated that it might also be possible that the 
glucose-conjugated ester of BA acts as an intermediate for the synthesis of the SA 
glucose ester and SA (Chong et al.  2001 ; Ruuhola and Julkunen-Tiitto  2003 ). 
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 The preference of SA biosynthetic route in the PAL pathway depends on plant 
species and growth conditions. Isotope-feeding experiments revealed that SA is 
mainly synthesized from BA in some plant species such as tobacco, rice, potato, 
cucumber, sunfl ower, and pea (Klämbt  1962 ; Yalpani et al.  1993 ; León et al.  1995 ; 
Silverman et al.  1995 ; Sticher et al.  1997 ), while other plant species can form SA 
through the route of  ortho -coumaric acid (Yalpani et al.  1993 ; León et al.  1995 ; 
Silverman et al.  1995 ). However, feeding of  14 C-labeled Phe,  ortho -coumaric acid, 
and BA to young  Primula acaulis  and  G. procumbens  leaf segments all leads to SA, 
suggesting that both routes are probably utilized in SA biosynthesis (El-Basyouni 
et al.  1964 ). Similarly, SA is formed mostly via BA in young tomato seedlings, but 
after infection with  A. tumefaciens , SA biosynthesis is shifted to the route of hydrox-
ylation of cinnamate to  ortho -coumaric acid (Chadha and Brown  1974 ). 

 Elucidation of the above PAL pathway largely relied on isotope feeding of the 
perspective SA biosynthetic precursors to suspension cells or plant segments. Since 
isotope feeding is not an accurate refl ection of  in planta  metabolism, the results 
might be misleading. Further supports to the PAL pathway in SA biosynthesis came 
from the evidence that pathogen-resistant tobacco and  Arabidopsis  show increased 
 PAL  expression and SA levels (Pellegrini et al.  1994 ; Mauch-Mani and Slusarenko 
 1996 ; Dempsey et al.  1999 ). Additionally, loss of PAL activity, due to sense sup-
pression or treatment with the PAL inhibitor 2-aminoindan-2-phosphonic acid 
(AIP), reduces pathogen-induced SA accumulation in tobacco, cucumber, and 
 Arabidopsis , and the defense phenotypes of PAL-inhibited plants can be comple-
mented by exogenous SA application (Meuwly et al.  1995 ; Mauch-Mani and 
Slusarenko  1996 ; Pallas et al.  1996 ). Moreover, increases in BA2H activity parallel 
or precede SA accumulation induced by TMV infection, UV exposure, or treatment 
with BA or hydrogen peroxide in tobacco (Léon et al.  1993 ; Yalpani et al.  1993 ; 
León et al.  1995 ). Similarly, salinity induces BA2H activity and SA biosynthesis in 
rice seedlings, and the induced SA accumulation can be inhibited by uniconazole, a 
BA2H inhibitor, suggesting that inhibition of BA2H can prevent salinity-induced SA 
accumulation (Sawada et al.  2006 ). Importantly, genetic analysis of the  pal  quadruple 
mutant ( pal1 pal2 pal3 pal4 ) revealed a ~75 % reduction in the basal level of total 
SA as compared with wild-type plants and a ~50 % reduction in total SA levels 
following avirulent bacterial pathogen infection (Huang et al.  2010 ). Therefore, 
it is generally believed that SA can be synthesized through the PAL pathway 
(Raskin  1992 ; Lee et al.  1995 ; Coquoz et al.  1998 ; Dempsey et al.  2011 ).  

    The ICS Pathway 

 Although early studies suggested that plants might synthesize SA through the PAL 
pathway, there have been accumulating data questioning its role in the overall SA 
biosynthesis. In some of the radiolabeling studies described above, the incorpora-
tion rate of labeled precursor into SA is lower than expected, particular under 
infection/induction conditions (Chadha and Brown  1974 ; Yalpani et al.  1993 ; 
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Coquoz et al.  1998 ). Inhibiting PAL activity by AIP can only reduce chemical- or 
pathogen- induced SA accumulation by several folds in potato or  Arabidopsis , 
respectively (Mauch-Mani and Slusarenko  1996 ; Coquoz et al.  1998 ). These pieces 
of evidence indicated that there might be another pathway in plants leading to SA 
biosynthesis (Fig.  1 ). 

 Bacteria in several genera have been shown to synthesize SA in the production 
of iron-chelating siderophores (Garcion and Métraux  2006 ). In the bacterial path-
way, chorismate is converted to SA through an isochorismate (IC) intermediate 
(Verberne et al.  1999 ). In some bacterial species, like  Pseudomonas aeruginosa  
and  P. fl uorescens , chorismate is fi rst converted to IC by isochorismate synthase 
(ICS, EC 5.4.4.2) and followed by conversion to SA and pyruvate by another 
unifunctional enzyme, isochorismate pyruvate lyase (IPL, EC 4.2.99.21) (Serino 
et al.  1995 ; Mercado-Blanco et al.  2001 ). In contrast, SA synthesis in  Yersinia 
enterocolitica  and  Mycobacterium tuberculosis  is achieved through a sole, bifunc-
tional enzyme named SA synthase (SAS) that directly converts chorismate to SA 
via an isochorismate intermediate (Pelludat et al.  2003 ; Kerbarh et al.  2005 ; Harrison 
et al.  2006 ). Structurally, ICS and SAS are similar and contain conserved active 
sites (Harrison et al.  2006 ; Kerbarh et al.  2005 ; Kolappan et al.  2007 ; Parsons et al. 
 2008 ). Functionally, both enzymes begin with nucleophilic attack at C 2  of choris-
mate, with water as the nucleophile, concomitant with displacement of the C 4  
hydroxyl group in an S N 2 reaction (He et al.  2004 ); however, reactions on SAS is 
followed by elimination of pyruvate and release of SA. 

 In plants, chorismate is synthesized in the plastid (Poulsen and Verpoorte  1991 ; 
Schmid and Amrhein  1995 ). Considering the fact that many plastid-localized 
pathways are derived from prokaryotic endosymbionts, it is possible that plants may 
also utilize a similar ICS pathway for SA biosynthesis (Verberne et al.  1999 ; 
Wildermuth et al.  2001 ). To assess whether plants contain an endogenous pathway 
to synthesize SA through IC, Wildermuth et al. ( 2001 ) identifi ed two putative 
 ICS  genes in the  Arabidopsis  genome. ICS1 (At1g74710) and ICS2 (At1g18870) 
share 78 % identity at the amino acid level and ICS1 is 57 % identical to a 
 Catharanthus roseus  ICS, whose activity has been confi rmed biochemically (van 
Tegelen et al.  1999 ; Garcion et al.  2008 ). However, only  ICS1  transcript is accumu-
lated in leaves infected with fungal ( Golovinomyces orontii ) and bacterial ( P. syringae  
pv.  maculicola ) pathogens (Wildermuth et al.  2001 ).  ICS1  expression correlates with 
SA accumulation and expression of the SA-inducible  PR1  gene. Subsequent analy-
ses indicated that  ICS1  transcripts also accumulate in response to a variety of biotic 
or abiotic stresses, including UV light, ozone, PAMPs, (hemi)biotrophic pathogens, 
and exogenous SA treatment (Ogawa et al.  2005 ; Killian et al.  2007 ; Nobuta et al. 
 2007 ; Postel et al.  2010 ; Dempsey et al.  2011 ; Harrower and Wildermuth  2011 ). 
Two  Arabidopsis  mutants,  sid2 - 1  ( salicylic acid induction - defi cient2 - 1 ) and  eds16 -
 1     ( enhanced disease susceptibility16 - 1 ) (Nawrath and Métraux  1999 ; Dewdney 
et al.  2000 ), which can accumulate only 5–10 % of the wild-type level of SA 
following infection of virulent or avirulent pathogens, were found to contain lesions in 
the  ICS1  gene (Wildermuth et al.  2001 ). Exogenous SA application can complement 
their enhanced disease susceptibility phenotype (Wildermuth et al.  2001 ). 
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 Biochemical and molecular analyses provided further evidence supporting the 
role of ICS1 in SA biosynthesis. As expected, ICS1 contains a putative plastid tran-
sit sequence and a cleavage site (Wildermuth et al.  2001 ). The high affi nity of ICS1 
for chorismate allows ICS1 to compete successfully with other pathogen-induced 
enzymes that use chorismate as their substrate, such as anthranilate synthase (Strawn 
et al.  2007 ; Ziebart and Toney  2010 ). Unlike the bifunctional SAS, the recombinant 
ICS1 only converts chorismate to IC, since no SA was detected in the products of 
this reaction (Strawn et al.  2007 ). Additional analyses revealed that proper function 
of ICS1 requires Mg 2+ . However, ICS1 displays maximal activity over a broad range 
of pH and temperature, which is suitable for the light-mediated changes in the stro-
mal environment. 

 Similarly to  ICS1 ,  ICS2  encodes a functional ICS enzyme that can be imported 
into the chloroplast stroma (Strawn et al.  2007 ; Garcion et al.  2008 ). The fact that 
null  ics1  mutant still accumulates some SA suggests a likely role for ICS2 in SA 
biosynthesis. Comparison of SA accumulation in  ics1  and the double mutant  ics1 
ics2  demonstrated that ICS2 indeed participates in the biosynthesis of SA. Upon 
UV exposure,  ics1  and  ics1 ics2  accumulate roughly 10 and 4 % of total SA com-
pared to wild type, respectively. Therefore, the majority of SA (about 95 %) is 
synthesized from the ICS pathway in UV-treated  Arabidopsis  plants with the 
remaining through an alternative pathway (Garcion et al.  2008 ). 

  ICS  homologs have also been identifi ed in a wide variety of plant species (van 
Tegelen et al.  1999 ; Ogawa et al.  2005 ; Uppalapati et al.  2007 ; Yuan et al.  2007 ; 
Catinot et al.  2008 ). Given their role in phylloquinone synthesis, it is very likely 
that  ICS  homologs are present in all plant species. However, identifi cation of an 
 ICS  gene in a given plant species is not suffi cient to confi rm its role in SA biosyn-
thesis. Nevertheless, isotope-feeding experiment, with the intension to refl ect  in 
planta  metabolism, revealed that most SA is synthesized via the ICS pathway in 
 Pythium aphanidermatum -elicitated  C. roseus  cells. In addition, virus-induced 
gene silencing of  ICS  expression in  N. benthamiana  or tomato suppresses UV- 
and/or pathogen- induced SA accumulation (Uppalapati et al.  2007 ; Catinot 
et al.  2008 ). 

 Although it is becoming clear that SA is synthesized via the ICS pathway in vari-
ous plant species, how isochorismate, the product of ICS, is converted to SA is still 
unclear. This conversion should be accomplished by an enzymatic reaction since 
nonenzymatic synthesis of SA from IC is negligible when the reactants are incu-
bated under conditions consistent with chloroplast stroma (Strawn et al.  2007 ). 
In addition, it is expected that the enzyme(s) involved in SA synthesis from IC is 
plastid localized, as transgenic  Arabidopsis  expressing  nahG  fused to a chloroplast 
localization sequence fails to accumulate SA upon pathogen infection or UV treatment 
(Fragnière et al.  2011 ). However, no plant genes encoding IPL activity have been 
reported (Chen et al.  2009 ). Thus, whether plants contain IPLs that are structurally 
unrelated to or highly divergent from the bacterial counterparts or use a metabolic 
pathway distinct from that in bacteria and, consequently, catalyzed by enzymes 
unrelated to IPL merits further investigation.   
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    Signal Perception and Execution of Salicylic 
Acid-Induced Responses 

 Over the past more than two decades, many genetic screens have been conducted 
to identify genes that are involved in SA biosynthesis/metabolism, perception, and 
signal transduction in  Arabidopsis . These screens have yielded numerous mutants 
with genetic lesions either upstream or downstream of SA biosynthesis. Furthermore, 
recent studies have revealed the involvement of epigenetic factors in SA-mediated 
plant defense signaling. All these have sketched an integrated model for regulation 
of SA accumulation and a fi nely tuned SA-mediated defense signaling network. 
Here, we focus on SA perception and downstream signal execution. For regulation 
of SA accumulation, readers are referred to the recent review in The  Arabidopsis  
Book (Dempsey et al.  2011 ). 

    SA Receptors 

 Although SA plays a pivotal role in galvanizing immune responses, until very 
recently it was unclear how plant cells perceived SA. There have been serious efforts 
to identify SA receptors using biochemical purifi cation of SA-binding proteins 
(SABPs). To date, four types of SABPs have been identifi ed including a catalase, a 
methyl salicylate esterase, a cytoplasmic ascorbate peroxidase, and a chloroplastic 
carbonic anhydrase (Du and Klessig  1997 ; Slaymaker et al.  2002 ; Kumar and 
Klessig  2003 ; Park et al.  2007 ; Vlot et al.  2008 ,  2009 ). Although these SABPs are 
involved in mediating some aspects of SA metabolism or action, genetic analyses 
suggested that none of them fulfi ll the criteria for a bonafi de SA receptor, because 
these molecules do not have functional roles in plant immune signaling. Using 
different ligand-receptor binding methods, two research groups recently reported 
that NPR1 (nonexpressor of pathogenesis-related genes1) and NPR1-related 
proteins, NPR3 and NPR4, are the long-sought-after SA receptors in  Arabidopsis  
(Fu et al.  2012 ; Wu et al.  2012 ). NPR1, NPR3, and NPR4 are all characterized by a 
conserved N-terminal BTB/POZ (broad complex, tramtrack, and bric-à-brac/poxvirus, 
zinc fi nger) domain and an ankyrin repeat in the middle of the proteins (Cao et al. 
 1997 ; Kinkema et al.  2000 ; Liu et al.  2005 ). 

 Using a special equilibrium dialysis ligand binding method, Wu et al. ( 2012 ) 
demonstrated that NPR1 binds to SA when NPR1 and SA are in equilibrium. SA 
binds strongly to a C-terminal transactivation (TA) domain of NPR1 through Cys 521  
and Cys 529  via the transition metal copper (Rochon et al.  2006 ; Wu et al.  2012 ). 
Mutations of cysteines to serines or metal chelation abolish the binding of SA by 
NPR1. In the absence of SA, the NPR1 TA domain is inhibited by the BTB domain 
and thus fails to activate the expression of SA response genes. However, increased 
SA concentration upon pathogen infection facilitates binding of SA to Cys 521  
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and Cys 529  through coordinated copper. Thus, the direct binding of NPR1 to SA and 
the functional importance of this interaction in plant immunity indicate NPR1 may 
be an SA receptor in  Arabidopsis . 

 The presence of a BTB domain in NPR1 suggests that, like other BTB domain- 
containing proteins, NPR1 may interact with Cullin 3 (CUL3) E3 ligase and 
mediate substrate degradation. Even though the substrate for NPR1 has yet to be 
identifi ed, NPR1 protein itself can be degraded by the proteasome both before and 
after SAR induction (Spoel et al.  2009 ). NPR1 paralogs NPR3 and NPR4 are adaptor 
proteins for the CUL3 E3 ligase that specifi cally targets NPR1 for degradation in an 
SA concentration-dependent manner (Fu et al.  2012 ). NPR1 and NPR4 interact 
with one another in the absence of SA; SA disrupts this interaction and promotes 
interaction between NPR1 and NPR3 instead. Using conventional ligand-receptor 
binding assays, Fu and colleagues ( 2012 ) found that the NPR1 protein does not have 
considerable SA-binding activity under different conditions but two NPR1-related 
proteins, NPR3 and NPR4, bind to SA with different affi nity. Since NPR4 has high 
affi nity for SA (nanomolar range) while NPR3 has low affi nity for SA (micromolar 
range), low SA levels should reduce NPR1 degradation, whereas high SA levels 
should enhance it. According to the proposed model, in the absence of pathogen 
infection, NPR4 constantly removes most of the NPR1 protein through CUL3-
NPR4- mediated degradation, and basal SA disrupts some of the NPR1–NPR4 inter-
actions, allowing some NPR1 to escape degradation, which is required for keeping 
basal immunity (PTI). Following pathogen infection, recognition of pathogen effec-
tors by plant resistance proteins induces a high level of SA in local infected tissue, 
which promotes interaction between NPR1 and NPR3, triggering CUL3-NPR3- 
mediated NPR1 degradation. As NPR1 is likely a negative regulator of programmed 
cell death (PCD) during ETI, degradation of NPR1 allows PCD to occur at the site 
of infection. In systemic tissues, on the other hand, an intermediate level of SA is 
insuffi cient to bring about NPR1–NPR3 interaction but high enough to disrupt 
NPR1–NPR4 interaction and, consequently, enables NPR1 to accumulation, lead-
ing to SAR activation. Thus, as SA receptors, NPR3 and NPR4 appear to regulate 
the homeostasis of NPR1, thus modulating the function of NPR1 in basal immunity, 
ETI, and SAR. 

 The seemingly confl icting results on the identifi cation of SA receptors can be 
attributed to the different experimental approaches used to test the direct binding of 
SA to NPR1. Crystal structure analysis of NPR1, NPR3, and NPR4 will be the next 
crucial step to further unravel the binding sites and the exact SA-sensing mecha-
nisms of these receptors. NPR3 and NPR4 may not be the merely SA-binding pro-
teins that facilitate SA-mediated degradation of NPR1 and additional proteins are 
yet to be discovered (Kaltdorf and Naseem  2013 ). Alternatively, SA could be per-
ceived by both NPR1 and NPR3/NPR4, resembling the multireceptor sensing of 
other phytohormones like abscisic acid (Spartz and Gray  2008 ). Given the fact of 
the existence of SA-dependent but NPR1-independent defense signaling pathway, 
in which NPR3/NPR4 may not participate, additional SA perception mechanisms 
may be present. Furthermore, it has now been well established that SA is also a 
prominent regulator of plant growth, development, and response to abiotic stresses 
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(Vicente and Plasencia  2011 ), suggesting the possible existence of additional SA 
receptors in plants. Regardless, identifi cation of NPR1, NPR3, and NPR4 as SA 
receptors represents a great step forward in elucidation of SA immune signaling and 
is expected to have a long-lasting impact on future research in plant immunity.  

    NPR1-Dependent SA Signaling 

 As a central transcription coactivator, NPR1 is responsible for controlling approxi-
mately 95 % of SA-dependent genes, thus represents a key node in signaling down-
stream from SA (Dong  2004 ; Durrant and Dong  2004 ; Pieterse and van Loon  2004 ). 
The  NPR1  gene promoter contains W-box sequences, which are binding sites of 
WRKY transcription factors. Mutations in the W-box region of the  NPR1  gene 
affect its expression, suggesting that WRKY transcription factor(s) is crucial in 
mediating SA-induced  NPR1  expression (Yu et al.  2001 ). SA treatment or pathogen 
inoculation enhances  NPR1  expression. SA also promotes the translocation of 
NPR1 from cytoplasm to the nucleus. SA-induced changes in cellular redox state 
lead to reduction of disulfi de bonds formed among conserved cysteine residues such 
as Cys 82  and Cys 216  likely though the function of TRX-H5 (thioredoxin-H5) and/or 
TRX-H3 (Mou et al.  2003 ; Tada et al.  2008 ). SA binding to the NPR1 protein 
appears to also play a role in this oligomer-to-monomer transition (Wu et al.  2012 ). 
Nevertheless, mutation of either Cys82 or Cys216 elevates the level of monomeric, 
nuclear localized NPR1, and consequently upregulates  PR1  gene expression (Mou 
et al.  2003 ). Since the NPR1 protein does not have DNA-binding capability, relaying 
NPR1-mediated signaling requires other transcription factors. Indeed, genome- 
wide expression profi ling analysis indicated that several members of the WRKY 
transcription factor family act downstream of NPR1 (Wang et al.  2006 ), and protein–
protein interaction assays revealed that NPR1 interacts with at least seven TGA 
(TGACG motif-binding factor) transcription factors (Zhang et al.  1999 ; Després 
et al.  2000 ; Zhou et al.  2000 ; Subramaniam et al.  2001 ; Song et al.  2011 ) and three 
structurally related NIMIN (noninducible immunity1 (NIM1)-interacting) proteins 
(Weigel et al.  2001 ,  2005 ). 

 The TGA transcription factors can directly interact with  PR1  gene promoter 
through binding to the activator sequence-1 (as-1) element in the promoter 
(Lebel et al.  1998 ).  In planta  analyses showed that the interaction between NPR1 
and TGA1 and/or TGA4 needs the presence of SA (Després et al.  2000 ) and that the 
ability of TGA2 and TGA3 to activate transcription of downstream genes requires 
both SA and NPR1 (Johnson et al.  2003 ). In another study, however, interaction 
between NPR1 and TGA2 was detected in the absence of SA, but the interaction is 
weaker than in the presence of SA (Fan and Dong  2002 ). More recent studies sug-
gested that the repressor activity of TGA2 is transformed into an activator activity 
by its incorporation into a transactivation complex with NPR1 (Rochon et al.  2006 ; 
Boyle et al.  2009 ). All these results indicate that SA and NPR1 likely enhance the 
DNA-binding activity of certain TGA factors and thus affect the transcription of  PR  
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genes (Durrant and Dong  2004 ). Indeed, mutant characterization confi rmed that 
TGA2, TGA5, and TGA6 function redundantly in SA signaling and SAR and that 
TGA3 and TGA7 are required for SA-mediated basal immunity (Zhang et al.  2003 ; 
Kesarwani et al.  2007 ; Song et al.  2011 ). 

 The NIMIN proteins appear to regulate SA/NPR1 signaling in a negative 
manner. While  NIMIN3  is expressed constitutively at a low level, both  NIMIN1  and 
 NIMIN2  are responsive to SA treatment (Weigel et al.  2001 ; Hermann et al.  2013 ). 
Overexpression of  NIMIN1  compromises ETI and SAR, whereas reducing its 
expression enhances SA-induced  PR1  gene expression (Weigel et al.  2005 ). 
NIMIN3 appears to also suppress SA-induced  PR1  gene expression, though to a 
lesser extent than NIMIN1 (Hermann et al.  2013 ). It was proposed that the NIMIN 
proteins act in a strictly consecutive and SA-regulated manner on NPR1 to repress 
the  PR1  gene at the onset of SAR (Hermann et al.  2013 ). 

 In a genetic screen for suppressors of  npr1 , a mutant named  sni1  ( suppressor 
of npr1 - 1 ,  inducible1 ) was identifi ed (Li et al.  1999 ). The  sni1  mutation restores 
SA inducibility of  PR  genes and resistance to  npr1 - 1  and renders plants with a 
wild- type copy of the  NPR1  gene more sensitive to SAR signals. SNI1 is a nuclear 
protein with limited similarity to the mouse retinoblastoma protein, a negative tran-
scription regulator, suggesting that SNI1 is likely a negative regulator of SAR 
(Mosher et al.  2006 ). Further genetic screens for suppressors of the  sni1  mutation 
identifi ed a group of proteins including RAD51D (RAS associated with diabe-
tes51d), BRCA2A (breast cancer2a), and SSN2 (suppressor of SNI1,2) that are 
required for SA-mediated defense gene transcription (Durrant et al.  2007 ; Wang 
et al.  2010 ; Song et al.  2011 ). Since RAD51D, BRCA2A, and SSN2 are all involved 
in homologous recombination or DNA repair, these results demonstrated that pro-
teins from homologous recombination or DNA repair pathways play important 
roles in SA- and NPR1-mediated defense signaling (Moore et al.  2011 ). 

 Recent progresses have defi ned the function of a number of plant Mediator 
(MED) subunits in SA-mediated plant immune responses. As a conserved multipro-
tein cofactor of RNA polymerase II (RNAPII), the Mediator complex is recognized 
as an important player to fi ne-tune gene-specifi c and pathway-specifi c transcrip-
tional reprogramming by acting as an adaptor/coregulator between sequence- 
specifi c transcription factor and RNAPII. Mutations in genes encoding the Mediator 
subunits MED14, MED15, and MED16 all affect SA-induced  PR  gene expression, 
compromise basal resistance against biotrophic bacterial pathogens, and block bio-
logical induction of SAR (Canet et al.  2012 ; Wathugala et al.  2012 ;    Zhang et al. 
 2012b ,     2013a ). However, only  med15  causes SA hyperaccumulation and reduced 
SA tolerance like  npr1  (Canet et al.  2012 ). MED16 and NPR1 function largely 
independently of each other in basal immunity, whereas MED14 and NPR1 have 
signifi cant overlapping functions in regulating basal immunity. Unlike the  med16  
mutation, which differentially affects expression of several SAR positive and nega-
tive regulators,  med14  inhibits induction of a large group of defense genes including 
both SAR positive and negative regulators (Zhang et al.  2012b ,  2013a ). Both 
MED14 and MED15 appear to function downstream of NPR1 and do not affect 
NPR1 nuclear localization and/or stability (Canet et al.  2012 ; Zhang et al.  2013a ), 
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whereas MED16 positively contributes to NPR1 protein accumulation (Zhang et al. 
 2012b ). Interestingly, although the  med8  mutant displays enhanced susceptibility to 
bacterial pathogens, it has no signifi cant defects in biological induction of SAR 
(Kidd et al.  2009 ; Zhang et al.  2012b ). Furthermore, mutations in  MED25  attenuate 
the induction of SA-responsive genes but have no signifi cant effects on resistance to 
biotrophic bacterial pathogens and biological induction of SAR (Kidd et al.  2009 ; 
Zhang et al.  2012b ). Thus, these Mediator subunits employ distinct mechanisms to 
regulate SA-mediated defense gene expression and pathogen resistance.  

    NPR1-Independent SA Signaling 

 In  Arabidopsis , ETI is suppressed by expression of the  nahG  gene, but not by the 
 npr1  mutation, suggesting the presence of NPR1-independent SA signaling in plant 
immunity (   Raridan and Delaney  2002 ; Kachroo et al.  2001 ; Takahashi et al.  2002 ). 
The existence of NPR1-independent SA signaling is further supported by the results 
from characterization of a group of  Arabidopsis  mutants that either display SA 
inducibility of  PR  genes or constitutively accumulate SA and  PR  gene transcripts in 
the absence of a functional  NPR1  gene. The  sni1  mutation confers SA inducibility 
of  PR  genes to the  npr1 - 1  mutant, suggesting an NPR1-independent mechanism 
(Li et al.  1999 ). More components in the NPR1-independent SA signaling pathway 
were identifi ed through screening for suppressors of the  npr1 - 5  mutant. The  ssi  
( suppressor of SA insensitivity )  npr1  double mutants  ssi1 npr1 ,  ssi2 npr1 , and  ssi4 
npr1  constitutively accumulate SA and exhibit heightened resistance to a variety of 
pathogens (Shah et al.  1999 ,  2001 ; Shirano et al.  2002 ). The  ssi1  and  ssi2  single 
mutants accumulate higher levels of  PR1  gene transcripts than the  ssi1 npr1  and 
 ssi2 npr1  double mutants, respectively, indicating an NPR1-independent pathway 
functioning additively with the NPR1-dependent pathway (Shah et al.  1999 ,  2001 ). 
Another  npr1  suppressor,  snc1  ( suppressor of npr1 - 1 constitutive1 ), displays con-
stitutive SA-dependent, NPR1-independent resistance owning to a mutation in a 
Toll-interleukin- 1 receptor-nucleotide binding site-leucine-rich repeat type  R  gene. 
The gain-of-function  snc1  mutation leads to constitutive activation of the R protein 
and downstream immune responses without the presence of pathogens. The  snc1  
mutant also accumulates high levels of SA, constitutively expresses  PR  genes, and 
displays enhanced resistance to pathogens (Li et al.  2001 ). Further genetic screens 
for suppressors of  snc1  identifi ed a series of  mos  ( modifi er of snc1 ) mutations affect-
ing signal transduction downstream of  snc1  (Zhang and Li  2005 ). New members of 
the  snc  mutants such as  snc2 - 1D  ( suppressor of npr1 - 1 ,  constitutive 2 - 1D ) and 
 snc4 - 1D  have been identifi ed and characterized (Bi et al.  2010 ;    Zhang et al.  2010b ). 
Moreover, a set of genes that may be involved in SA-regulated, NPR1-independent 
signaling pathway encode WHIRLY (WHY) and MYB transcription factors. 
The single- stranded DNA-binding activity of WHY1 is stimulated by SA treatment 
in both wild-type and  npr1  mutant plants (Desveaux et al.  2002 ,  2004 ), indicating 
its important role in NPR1-independent  PR1  expression and resistance against 
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pathogens. The  Arabidopsis MYB30  ( myeloblastosis30 ) gene positively regulates 
the HR in an SA-dependent, NPR1-independent manner (Raffaele et al.  2006 ). 
Additionally, the  cpr5  ( constitutive expressor of PR genes5 ),  cpr6 , and  hrl1  ( hyper-
sensitive response - like   lesions1 ) mutants exhibit NPR1-independent and 
SA-dependent immune phenotypes (Clarke et al.  2000 ; Devadas et al.  2002 ). 
Interestingly, the  cpr5 ,  cpr6 , and  hrl1  mutations also activate jasmonic acid (JA)- 
and ethylene (ET)-mediated immune responses, indicating that the SA-dependent, 
NPR1-independent signaling may function synergistically with the JA/ET-mediated 
defense pathways (Clarke et al.  2000 ; Devadas et al.  2002 ). 

 In a genetic screen for suppressors of the  npr1  mutant based on its intolerance to 
SA, an  elp2  ( Elongator subunit2 ) mutant allele was isolated (DeFraia et al.  2010 ). 
ELP2 is one of the six subunits of the Elongator complex, which interacts with 
elongating RNAPII to facilitate transcription (Winkler et al.  2002 ; Close et al. 
 2006 ). Despite the structural diversity of the Elongator subunits, loss of any 
Elongator subunit generally compromises its integrity and renders the complex 
inactive (Versées et al.  2010 ; Glatt et al.  2012 ). The Elongator catalytic subunit 
ELP3/ELO3 (ELONGATA3) harbors a C-terminal histone acetyltransferase (HAT) 
domain and an N-terminal cysteine-rich motif that resembles an iron-sulfur radical 
 S -adenosylmethionine (SAM) domain (Chinenov  2002 ; Winkler et al.  2002 ; 
Nelissen et al.  2005 ). Both the HAT and SAM domains are required for Elongator’s 
function in plant immunity (DeFraia et al.  2013 ). Mutations in  ELP2  and  ELP3  
restore SA tolerance to  npr1 , suppress  npr1 -mediated hyperaccumulation of SA, 
and delay the induction of SA accumulation and defense gene expression (DeFraia 
et al.  2010 ,  2013 ). Although Elongator regulates the NPR1 transcriptional cascade, 
Elongator and NPR1 appear to function largely independently of each other in ETI, 
and mutations in  ELP2  and  ELP3  do not affect SAR (DeFraia et al.  2010 ,  2013 ). 
Further mutant characterization revealed that ELP2 is an epigenetic regulator 
required for  P. syringae -induced rapid transcriptome reprogramming likely through 
maintaining histone acetylation levels in defense genes, modulating genomic DNA 
methylation landscape, and infl uencing pathogen-induced dynamic DNA methyla-
tion changes (Wang et al.  2013 ). Such chromatin modifi cation has recently been 
described as an additional layer of regulation on plant immunity. Several reports 
have shown that the state of histone acetylation or DNA methylation is associated 
with SA-mediated defense responses (Mosher et al.  2006 ; Butterbrodt et al.  2006 ; 
Koornneef et al.  2008 ; van den Burg and Takken  2009 ; Choi et al.  2012 ; Luna et al. 
 2012 ). Compared with other epigenetic regulators, Elongator is unique in that it 
regulates both histone acetylation and DNA methylation status of defense-related 
genes (Winkler et al.  2002 ; Nugent et al.  2010 ; Xu et al.  2012 ). The NPR1 transcrip-
tional cascade exemplifi es a signal cascade where Elongator modulates the chroma-
tin structure of both the key transcription regulator and its target genes, forming a 
transcriptional feed-forward loop and determining the kinetics of the transcription. 
However, the mechanism of the cooperative interaction between the specifi c 
transcription regulator NPR1 and the chromatin modulator Elongator in regulating 
gene transcription during immune responses is still unclear.   
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    Biotechnological Manipulation of Salicylic Acid 
Signaling and Biosynthesis in Agriculture 

 Disease is a major threat to the yield and quality of crop plants worldwide. One major 
goal in plant science is the production of crops with increased and durable resis-
tance to a spectrum of pathogens. Compared with other approaches employed to 
develop disease-resistant crops, genetic engineering is faster and allows transfer-
ence of individual traits into crops in a calculated manner. Strategies for developing 
transgenic disease resistance have been evolved from overexpression of a single or 
combination of a small number of genes, which suffer from either incomplete effi -
cacy or durability, to modifi cation of existing innate signaling pathways, which can 
activate a battery of defense responses (Collinge et al.  2010 ). The accumulating 
knowledge of SA-mediated defense signaling pathways provides new opportunities 
for manipulating plant disease resistance. Several genes have received attention 
with respect to possible exploitation for developing transgenic disease-resistant 
crops. Among them  NPR1  is the most promising gene for generating broad- spectrum 
disease-resistant crop plants. 

 The  NPR1  gene was originally discovered in several independent genetic screens 
performed in  Arabidopsis . The  npr1  (also known as  nim1  and  sai1  ( salicylic acid - 
insensitive1    )) mutants are unable to either mount a SAR response or accumulate  PR  
transcripts and are hypersusceptible to biotrophic pathogens (Cao et al.  1994 ; 
Delaney et al.  1994 ; Shah et al.  1997 ). The original study in  Arabidopsis  using 
 NPR1  showed that overexpression of this gene increases resistance to two diverse 
biotrophic pathogens, the bacterium  P. syringae  pv.  maculicola  and the oomycete 
 Hyaloperonospora arabidopsidis  (Cao et al.  1998 ; Table  1 ). Since then transgenic 
studies using  NPR1  or its orthologs from other species have been extended to a large 
group of crop plants for resistance against pathogens with either biotrophic or 
necrotrophic lifestyle (Tables  1  and  2 ). In addition, overexpression of  NPR1  seems 
to enhance resistance to insect and root-knot nematode in tobacco plants (Meur 
et al.  2008 ; Priya et al.  2011 ). Interestingly, the majority of the transgenic plants 
display little or no constitutive expression of  PR  genes; rather, the transgenic plants 
exhibit a “primed” phenotype where induction of  PR  genes is faster, at higher inten-
sity, and for a longer duration, resulting in a heightened capacity to undergo SAR 
when challenged with pathogens or treated with SA analogs. However, transgenic 
rice expressing either  NPR1  or the rice ortholog  OsNH1  ( Oryza sativa NPR1 
HOMOLOGUES1 ) is different, which exhibits constitutive expression of  PR  genes 
(Fitzgerald et al.  2004 ; Quilis et al.  2008 ).

    Another avenue for boosting SA-mediated plant immunity is to manipulate SA 
biosynthesis. Tobacco plants overexpressing heterologous  PAL  transgenes display 
enhanced resistance to the fungal pathogen  Cercospora nicotianae  and the oomy-
cete  Phytophthora parasittica  pv.  nicotianae  (Felton et al.  1999 ; Way et al.  2002 ). 
However, based on comparison of  PAL -overexpressing plants and  PAL - 
overexpressing  plants harboring a  nahG  gene, which compromises SA accumula-
tion, it has been suggested that the accumulation of phenylpropanoid intermediates 
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such as chlorogenic acid is primarily responsible for the enhanced resistance to 
 C. nicotianae  in  PAL -overexpressing plants, whereas SA accumulation has limited 
contributions (Shadle et al.  2003 ). Nevertheless, targeting the bacterial SA biosyn-
thesis enzymes ICS and IPL to chloroplasts in transgenic tobacco plants increases 
SA and SA glucoside accumulation, leading to constitutive expression of defense 
genes and resistance to viral and fungal infection (Verberne et al.  2000 ). Importantly, 
overaccumulation of SA in transgenic tobacco plants does not affect plant growth, 
which is crucial for engineering disease-resistant crops. However, targeting a func-
tional fusion enzyme of the bacterial ICS and IPL to chloroplasts in  Arabidopsis  
strongly inhibits plant growth and signifi cantly reduces seed production (Mauch 
et al.  2001 ). 

 As an increasing number of important SA signaling components are discovered, 
the list of candidate genes for genetic manipulation grows. Interestingly, many of 
the SA signaling components also plays important roles in nonhost resistance, 
which is the most common form of resistance exhibited by plants against a wide 
variety of microbial pathogens (An and Mou  2011 ). Therefore, manipulating these 
genes in crop species hold the potential to boost both host and nonhost resistance. 
However, limited investigations have been conducted on utilizing nonhost resis-
tance to develop disease-resistant crops. Furthermore, manipulating SA-mediated 
immune responses through suppression of negative regulators or activation of posi-
tive regulators represents an attractive strategy for engineering disease resistance 
(Gurr and Rushton  2005b ; Salomon and Sessa  2012 ). Thus far, the function of many 
defense regulators in manipulating disease resistance has been tested in  Arabidopsis , 
but the efforts of translating these technologies to crops still lag behind. 

 It should be noted that because of the involvement of SA in diverse physiological 
processes other than plant immunity, increasing SA biosynthesis or signaling might 
lead to fi tness penalties. Although little evidence for fi tness penalties has been found 
for overexpression of  NPR1  in the laboratory, one study using controlled environ-
ments suggested that there seem to be fi tness penalties for overexpression of  NPR1  
under high nutrient conditions (Heidel and Dong  2006 ). To minimize the cost of 
defense activation on plant growth, pathogen- or chemical-inducible and tissue- 
specifi c promoters may be useful as they limit the cost of resistance by controlling 
temporal and spatial expression of the defense genes (Gurr and Rushton  2005a ). 

 Although our understanding of the role of SA in plant defense against pathogens 
has increased considerably over the last two decades, much still remains to be 
elucidated. Among them, SA biosynthesis in plants is still not fully understood and 
the central signaling components, such as NPR1, still require more in-depth studies. 
Additionally, SA-mediated defense signaling pathways and other defense pathways 
are not isolated but rather interconnected to form a well-regulated network. 
Elucidating genetic components, especially those connecting multiple defense path-
ways, will continue to be a major task of the research community. On the other 
hand, understanding of SA-mediated plant defense has facilitated development of 
more effective ways for controlling important crop diseases. While gene effi cacy in 
transgenic plants has often been good, fi eld trials of transgenic disease-resistant 
crops have been hampered by ethical concerns. In this regard, the recently 
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developed cisgenic approach (Schouten et al.  2006 ), which utilizes target crop-derived 
genes and regulatory elements (promoters) together with improved transformation 
methods that do not rely on or subsequently eliminate selective marker genes, has 
the potential to develop resistant cultivars more acceptable to consumers.     
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