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    Abstract     Phospholipase D (PLD) produces phosphatidic acid, which is converted 
to diacylglycerol (DAG) by phosphatidate phosphohydrolase (PAP). Since both 
these lipid signaling molecules regulate Ca 2+ -movements, they also infl uence car-
diac contractile function. In this article, we discuss the importance of PLD in rela-
tion to the production of lipid signaling molecules and regulation of cardiac function 
under various pathophysiological conditions such as ischemic heart disease, dia-
betic cardiomyopathy, and congestive heart failure. In fact, marked alterations in 
PLD activities have been reported to occur in ischemic heart, diabetic heart, and 
failing heart. While the mechanisms of changes in PLD activities in heart disease 
may be of complex nature, oxidative stress seems to play a critical role in the activa-
tion of PLD. From the evidence provided it is suggested that impairment in this 
phospholipid signal transduction pathway results in cardiac dysfunction during the 
development of different myocardial diseases.  
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23.1         Introduction 

 The hydrolysis of phosphatidylcholine (PC) by phospholipase D (PLD) produces 
phosphatidic acid (PA), which in turn is converted to 1, 2 DAG by the action of 
phosphatidate phosphohydrolase (PAP) [ 1 ,  2 ]. Both PLD and PAP are thus consid-
ered to modulate myocardial levels of PA and DAG. Different hormones such as 
norepinephrine, endothelin-1, and angiotensin II (Ang II) have been shown to 
increase formation of PA in cardiomyocytes [ 3 ,  4 ] and stimulate sarcolemmal (SL) 
and sarcoplasmic reticular (SR) Ca 2+ -transport systems [ 5 ,  6 ]. Furthermore, PA has 
been reported to increase the intracellular concentration of free Ca 2+  in adult cardio-
myocytes and to augment cardiac contractile activity of the normal heart [ 5 ,  7 ]. 
DAG can also infl uence cardiac function through phosphorylation of myocardial 
proteins, including ion channels, via activation of protein kinase C (PKC) isozymes 
[ 8 ]. These PLD-mediatd signal transduction events are summarized in Fig.  23.1 . 

 Two mammalian PLD isozymes, PLD1 and PLD2, have been cloned [ 9 ]. While 
PLD1 is localized to the Golgi apparatus and nuclei [ 10 ], PLD2 is the major myo-
cardial PLD isozyme specifi cally localized to the SL membrane [ 11 ]; other subcel-
lular localizations of PLD2 have also been reported [ 12 ,  13 ]. Interestingly, a 
transient expression of PLD1 during heart development in rats has been demon-
strated [ 14 ]. In this regard, the level of PLD1 protein increased transiently from 0 to 
3 days postpartum and declined gradually beginning 7 days after birth. This sug-
gested that PLD1 protein in the heart is strongly associated with the early postnatal 
development of the heart in rats [ 14 ]. 
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 PLD1 requires phosphatidylinositol 4, 5-bisphosphate (PIP 2 ) for its activity, 
which is stimulated by PKC and Rho small G-protein family members [ 9 ,  15 – 24 ]. 
PLD2 also requires PIP 2  for its activity [ 11 ], but, unlike PLD1, PLD2 is activated by 
unsaturated fatty acids [ 2 ,  16 ,  17 ,  25 ,  26 ] and is insensitive to the PLD1 activating 
factors [ 27 ]. It should be noted that PLD isozymes contain N-terminal PH (pleck-
strin) and PX (phox) homology domains. Both these domains also interact specifi -
cally with distinct phosphoinositide ligands [ 28 ]. Both the PH and PX domains are 
important for PLD function by controlling the dynamic association of the enzyme 
with the plasma membrane. Thus, there are two modes of PLD regulation by phos-
phoinositides; stimulation of activity mediated by the polybasic domain and dynamic 
regulation of membrane targeting mediated by the PH and PX domains [ 28 ]. 

 Some studies have shown that both receptor- and non-receptor coupled tyrosine 
kinases are involved in the regulation of PLD activity, in addition to serine/ threonine 
kinases, Ca 2+ -calmodulin-dependent protein kinase, and cAMP kinases [ 29 – 31 ]. 
G-proteins, Gα12 and Gα13, have also been reported to activate PLD [ 32 ]. Another 
important regulator of PLD is ARF; ARF directly activates PLD1 and has also been 
shown to activate PLD2 [ 25 ,  33 – 36 ]. In fact, PLD2 has been reported to be selec-
tively activated by ARF6 [ 12 ]. It is interesting to note that U73122, a known phos-
pholipase C inhibitor, is a potent inhibitor of myocardial PLD by a PIP 2 - dependent 
mechanism and thus PLD may be involved in some of the effects ascribed to PLC [ 37 ]. 
While there is some information on the posttranslational mechanisms of  regulation 
of the myocardial PLD isozymes, this is not completely understood. 

 The increased formation of reactive oxygen species (ROS) is generally  associated 
with oxidative stress and subsequent cardiovascular injury and cardiac dysfunction 
[ 38 – 40 ]. Since ROS and oxidant molecules such as H 2 O 2  are implicated in the 
pathogenesis of cardiac dysfunction, this article is intended to describe the role of 
oxidative stress in relation to myocardial PLD and cardiac dysfunction under differ-
ent myocardial diseases such as diabetic cardiomyopathy, congestive heart failure, 
and ischemic heart disease.  

23.2     Impairment of PLD Activities During Diabetes 

 Oxidative stress has been implicated in the pathogenesis of diabetic cardiomyopa-
thy [ 41 – 47 ]. As a consequence of the effects of oxidative stress on the cardiomyo-
cytes, it would be expected that oxidants and ROS could have an impact on the PLD 
activity during diabetes. In fact, SL PLD activities have been shown to be signifi -
cantly depressed in diabetic animals [ 48 ,  49 ], resulting in a marked reduction of 
PLD-derived PA. It has been suggested that this could lead to an impairment of 
cardiac function in chronic diabetes [ 48 ,  49 ]. 

 It is pointed out that enhanced tissue Ang II levels have been reported in diabetes 
and might lead to cardiac dysfunction through oxidative stress [ 50 ]. Recently Ang 
II-induced NADPH oxidase has been shown to be involved in hyperglycemia- 
induced cardiomyocyte dysfunction, which might play a role in diabetic cardiomy-
opathy [ 51 ] and may be related to impaired PLD activities due to superoxide 
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generation. Impaired PLD activation has been shown to be involved in the damaging 
effects of oxidative stress in other cells as well. Decreased superoxide generation by 
neutrophils in insulin-dependent diabetics is, in part, due to impaired activation of 
PLD [ 52 ], and is solely due to high glucose concentrations. The suppressive effect 
of glucose on diabetic neutrophils is associated with a reduction in PLD activation, 
which improves when diabetic neutrophils are placed in a normal glucose environ-
ment. Glucose causes a reduction in PLD activation, leading to a decrease in second 
messenger generation and incomplete activation of the respiratory burst [ 52 ]. It is 
interesting to note that we have reported a decrease in the SL amount of PIP 2 , due to 
depressed activities of the phosphatidylinositol (PI) kinases in the diabetic heart 
[ 53 ], likely as a result of oxidant-mediated depression in the PI kinase activities 
[ 54 ]. In this regard, the depressed SL PLD activity during diabetes [ 45 ,  46 ] may also 
be explained on the basis of a reduced SL PIP 2  level. While direct information on 
the redox regulation of PLD isozyme activities and the functional consequences of 
changes in PLD activities in diabetic cardiomyopathy remains to be established, it 
is reasonable to assume that the depressed PLD activities in the heart during diabe-
tes may be due to oxidative stress.  

23.3     Abnormal PLD Activities During Cardiac 
Hypertrophy and Heart Failure 

 It is well known that heart failure is a major cause for signifi cant morbidity and 
mortality; however, the pathophysiological events have not been fully elucidated. 
There is growing evidence that oxidative stress is implicated in the cardiac dysfunc-
tion leading to CHF [ 55 – 58 ]. Oxygen-free radicals can affect heart SL [ 59 – 62 ], SR 
[ 63 ], and mitochondrial functions [ 64 ], thus affecting signal transduction mecha-
nisms that are possibly involved in cardiac remodeling and subsequent CHF. Since 
oxidative stress has signifi cant effects on the SL membrane during CHF, it can 
be assumed that the oxidative stress will also exert detrimental effects on PLD 
activities. 

 The mRNA expression levels of both PLD1 and PLD2 have been reported to 
be markedly enhanced in ventricular pressure-overload hypertrophy subsequent 
to aortic banding in rats [ 65 ]. A similar induction of PLD mRNA and protein 
expression has also been reported in hypertrophied human hearts of individuals 
who had died from noncardiac causes [ 65 ]. These authors suggested that PLD 
activation by α-adrenoceptor and PKC plays a signifi cant role in cell signaling 
in hypertrophy due to pressure overload [ 65 ]. Ventricular fi brosis is promoted by 
many factors that activate PLD and induce cardiac dysfunction and heart failure. 
In a hypertensive heart failure model using Dahl-Iwai salt-sensitive rats, PLD 
activity was seen to be increased with progressive ventricular fi brosis, leading to 
myocardial stiffening and heart failure [ 66 ]. Inhibition of PLD activity with 
administration of  N -methylethanolamine decreased collagen content, prevention 
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of myocardial stiffening, attenuation of ventricular hypertrophy as well as 
hemodynamic deterioration [ 66 ]. 

 We have previously shown that PLD activities are differently altered in CHF 
subsequent to myocardial infarction induced by the occlusion of the coronary artery 
[ 67 ]. While SL PLD1 activity was decreased, an increase in PLD2 activity was 
observed in the viable left ventricular tissue. Although the specifi c role of cardiac 
PLD isozymes is not fully established, an oleate-dependent PLD activity has been 
shown to be drastically increased during apoptosis of Jurkat T cells [ 68 ], whereas 
increased PLD2 activity has been shown to reduce hypoxia-induced death of PC12 
cells [ 69 ]; these studies suggest that PLD2 may play a role in cellular apoptosis. It 
is interesting to note that Ang II activates NADPH oxidase [ 70 ,  71 ], which can be 
prevented by imidapril, a known angiotensin converting enzyme inhibitor. Activation 
of the renin-angiotensin system is the hallmark of CHF [ 72 ]. In addition, increased 
myocardial NADPH oxidase activity in CHF has been reported [ 73 ,  74 ]. We have 
earlier shown that imidapril normalizes the augmented PLD2 activity in CHF [ 75 ]. 
It is possible that this may be due to a blockade of NADPH oxidase and ROS- 
mediated activation of PLD2. However, while extensive studies need to be con-
ducted to fully determine the functional signifi cance as well as the mechanisms of 
impaired PLD1 and PLD2 activities in CHF, it is likely that PLD isozymes are 
altered due to oxidative stress and may infl uence cardiomyocyte function of the 
 failing heart through impaired Ca 2+ -handling.  

23.4     Alterations in PLD Activities During Cardiac 
Ischemia-Reperfusion 

 A decrease in the blood supply to the heart due to atherosclerosis, thrombosis, or 
coronary artery spasm is known to induce myocardial ischemia. Although reperfu-
sion of the ischemic myocardium during early stages is essential to prevent cardiac 
damage, reperfusion of the ischemic heart, after a certain critical period, exerts del-
eterious effects. These are represented by contractile dysfunction, an increase in 
infarct size, ultrastructural damage, and changes in myocardial metabolism, which at 
a later stage leads to cell necrosis [ 76 ]. During ischemia, mitochondrial carriers are 
in a reduced state, due to the degradation of the adenine nucleotide pool. Thus, the 
interaction of molecular oxygen trapped within the inner membrane of the mitochon-
dria with the leakage of electrons from the respiratory chain leads to the formation of 
ROS [ 77 ]. The deleterious effects of oxidative stress in myocardial I-R are well doc-
umented and strongly correlated with cardiac dysfunction [ 78 ], a decrease in the 
antioxidant defense mechanism [ 79 ,  80 ] as well as an increase in lipid peroxidation 
[ 80 ,  81 ], leading to increased membrane permeability. PLD has been shown in many 
cases to contribute to the deleterious effects due to oxidative stress in I-R injury. For 
example, lipid oxidation products such as oxidized LDL have been considered prime 
candidates for inducing cellular necrosis. Oxidized LDL stimulates PLD [ 82 ], impli-
cating a role for PLD in cellular necrosis. Cardiac SL sodium- hydrogen (Na + –H + ) 
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exchanger is critical for the regulation of intracellular pH and its activity contributes 
to I-R injury. Incubation of porcine cardiac SL vesicles with exogenous PLD results 
in an inhibition of Na + –H +  exchanger [ 83 ]. It was concluded that PLD-induced 
changes in the cardiac SL membrane phospholipid environment alter Na + –H +  
exchanger activity. 

 While some investigators have reported that the activation of PLD is associated 
with an improvement of post-ischemic functional recovery and attenuation of cel-
lular injury [ 84 ], other investigators, as well as work from our laboratory, have 
found that PLD is not activated in the ischemic heart [ 85 – 88 ]. Furthermore, our 
studies also revealed that the increase in the SL PLD2 activity in early reperfusion 
of the 30 min ischemic heart was associated with an increase in  V  max , indicating that 
the PLD2 activation may be due to posttranslational modifi cations as a result of 
oxidative stress. On the other hand, we have reported that a Ca 2+ -independent phos-
pholipase A 2  (cytosolic PLA 2 ) and subsequent mobilization of the unsaturated fatty 
acid has been shown to modulate the activity of PLD in heart SL [ 89 ]. Interestingly, 
the cytosolic PLA 2  is also activated by H 2 O 2  [ 90 ], which could provide a mechanism 
of an indirect regulation of the SL PLD2 activity by H 2 O 2 . It should be noted that we 
also observed a decrease in the SR PLD2 activity after 5 min of reperfusion. 
Although the  K  m  value of the SR PLD2 was reduced (increased substrate affi nity), 
the depressed  V  max  value would seem to imply a defect in the catalytic domain of this 
enzyme; it was suggested that a reversible oxidation may occur since the PLD2 
activity was recovered after 30 min reperfusion. In fact, SR PLD activity, in vitro, 
has been reported to be inhibited by nonradical oxidants, H 2 O 2  and HOCI, through 
reversible modifi cation of associated thiol groups [ 18 ]. Thus, the enzyme may be 
controlled by the GSH redox status of the cardiac cell. In this regard, in the isolated 
perfused rabbit heart, an ischemic period results in a progressive reduction of tissue 
glutathione content and of the GSH/GSSG ratio [ 91 ], while post-ischemic reperfu-
sion has been shown to lead to a further decrease in the GSH/GSSG ratio [ 91 ]. 
However, a similar response has also been demonstrated for the SL enzyme [ 92 ], 
which is not consistent with the increase in its activity. This inconsistency could be 
explained on the basis that the functional thiol groups of the SL PLD2 in the isolated 
perfused heart are not as readily accessible by oxidants as these are in the isolated 
SL preparation. Such differences may exist between the sensitivity of the SR and SL 
PLD to different concentrations of oxidant molecules as well as ROS. 

 Ischemic preconditioning (IP) involving a brief period of ischemia, prior to a 
prolonged period of ischemia, has been shown to improve myocardial function and 
diminishes the infarct size. Activation of PLD due to I-R injury as well as in the 
preconditioned hearts has been documented [ 93 – 95 ]. Agonists of PLD simulate the 
effects of IP, whereas the inhibition of PLD blocks the benefi cial effects of IP as 
evidenced by the increased incidence of ventricular arrhythmias [ 85 ]. The inhibition 
of PLD can be seen to reduce the amount of DAG and PA as well as signifi cantly 
inhibit the stimulation of PKC. Thus, PLD may play a role in the myocardial protec-
tion afforded by IP. Indeed, this protective effect may be due to ROS generation 
during the IP [ 96 ,  97 ], which may also be related to the activation of PLD, thus 
providing a mechanism of action of IP and protection against I-R injury. In addition, 
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myocardial adaptation to ischemia (IP) is considered to occur through the activation 
of several tyrosine kinases [ 98 ]. The phosphorylation of tyrosine kinases has been 
shown to be linked with the activation of PLD leading to the activation of multiple 
kinases [ 93 ,  94 ] including PKC isozymes [ 99 ], therefore suggesting that PLD may 
be a component in the redox signaling designed to protect the heart during IP. While 
the exact consequences of the changes in PLD1 and PLD2 activities in the heart 
remain to be determined, PLD isozymes could emerge as an important target for 
protection against injury during cardiac I-R.  

23.5     Conclusions 

 From the aforementioned discussion, it is evident that impairment of myocardial 
PLD activities is associated with cardiac dysfunction under different myocardial 
diseases, while PLD isozyme specifi c activation may provide cardioprotection 
(Fig.  23.2 ). Although signifi cant advancements have been made, more is required to 
defi ne the role of PLD in different cardiac pathologies   . While oxidative stress 
appears to be a major factor in causing PLD abnormalities, the targeting of PLD, 
more specifi cally, modulation of membrane PA levels, may offer a potential for drug 
development. Defects in other phospholipid-mediated signaling pathways (PLC 
and PLA2) are also implicated in different myocardial diseases, and in view of the 
cross-talk and complexities between these pathways (Fig.  23.3 ), lipid products 
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generated through their activities may not only alter signal transduction processes, 
but also modulate the lipid microenvironment of membrane-associated proteins. 
Thus, alterations in the PLD activities can be seen to infl uence cardiac function and 
may constitute additional therapeutic targets for drug discovery [ 100 – 102 ] for the 
 treatment of heart disease due to different etiologies.
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