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    Abstract     Phospholipase C (PLC) expression and activity have repeatedly been 
reported to be elevated in cardiomyocytes under pathological conditions, including 
ischemia/reperfusion, hypertrophy, and chamber dilatation. In recent studies the 
subtypes of PLC involved have been identifi ed, paving the way for studies of the 
mechanisms by which PLC may be activated under pathological conditions and how 
this may contribute to disease progression. PLC subtypes are localized by subtype- 
and tissue-specifi c binding to scaffolding proteins providing the possibility of devel-
oping cardiac-specifi c therapies based on inhibition of the localization of particular 
PLC subtypes in cardiomyocytes.  
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17.1         Introduction 

 Phosphatidylinositol-specifi c phospholipases C (PLCs) are enzymes that cleave the 
plasma membrane phospholipid, phosphatidylinositol(4,5) bis phosphate (PIP 2 ), to 
generate inositol(1,4,5) tris phosphate (Ins(1,4,5)P 3) , a Ca 2+  releasing intracellular 
messenger, and  sn -1,2-diacylglyerol (DAG), an activator of conventional subtypes 
of protein kinase C. The substrate lipid and the two products all have critical roles 
in regulating cellular responses and therefore PLCs are of central importance in the 
functioning of all cell types. Furthermore, perturbations in PLC activity may contrib-
ute substantially to disease phenotypes in a range of different tissues. As expected 
from a family of enzymes with such a central role in signaling, PLCs can be 
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regulated in many different ways. PLCs are classifi ed into six major classes (β, γ, δ, 
ε, ν, ζ), each of which includes multiple subtypes and splice variants (Fig.  17.1 ) [ 1 ]. 
PLCβ family members (PLCβ1-4) respond to G protein subunits activated down-
stream of seven transmembrane spanning receptors (also called G protein- coupled 
receptors, GPCR) [ 2 ]. PLCβ1 and PLCβ3 are expressed in cardiomyocytes, but 
PLCβ2 is not. PLCβ1 exists as two splice variants that differ only in their extreme 
C-terminal sequences, PLCβ1a (MW 150kD) and PLCβ1b (MW 140kDa, Fig.  17.2 ). 
Whilst both splice variants are expressed in neonatal rat cardiomyocytes [ 3 ], only 
PLCβ1b is expressed in adult human, rat, and mouse heart [ 4 ]. PLCγ members 
(PLCγ1 and PLCγ2) translocate to the plasma membrane subsequent to the activa-
tion of receptor tyrosine kinases, following stimulation with the appropriate growth 
factor [ 5 ]. Hearts express primarily PLCγ1 [ 6 ]. PLCδ subtypes are more sensitive 
to activation by Ca 2+  than other subtypes, and hearts express PLCδ1, but the physi-
ological importance of this has not been fi rmly established [ 7 ,  8 ]. PLCε regulation 
is complex involving a variety of activators including monomeric G proteins of the 
Ras family, as well as heterotrimeric G proteins of the G 12/13  family and Gβγ [ 9 ]. 
Thus receptor activation can lead to PLCε activation by a variety of signaling mech-
anisms, often well downstream of receptor activation. There is only a single PLCε 
gene product, but this is expressed as two N-terminal splice variants [ 10 ]. Other 
PLC subtypes are not expressed in heart and will not be considered further.

17.2         The Regulation of PLC Activity in Heart 

 Early studies showed that activation of α 1 -adrenergic receptors [ 11 ], M2 muscarin-
inc cholinergic receptors [ 12 ] or endothelin receptors [ 13 ] resulted in generation of 
Ins(1,4,5)P 3  and its metabolites. Subsequently, activation via purinergic receptors 

  Fig. 17.1    Diagram showing the relationship between the different classes of the PLC family of 
proteins, emphasizing the structural motifs present       
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was reported [ 3 ]. All of these factors bind receptors coupled to Gq and would 
therefore be expected to activate PLCβ family members [ 14 ]. There have also been 
reports of activation via growth factor receptors that would be expected to activate 
PLCγ subtypes [ 15 ]. More recently the novel PLCε subtype has been identifi ed in 
cardiomyocytes [ 16 ] and shown to be activated via thrombin (protease activated 
receptor 1, PAR1) and sphingosine1-phosphate (S1P) receptors [ 17 ]. In addition to 
activation by hormones and neurotransmitters, PLC in intact hearts and in cardio-
myocytes in culture responds to acute stretch [ 18 – 21 ].  

17.3     Localization of PLC Subtypes in Heart 

 To be active PLCs must be located close to their substrate PIP 2 , localized primarily 
or exclusively at the sarcolemma. It is now well recognized that PLC subtypes are 
specifi cally localized to particular membrane regions by binding scaffolding proteins. 
These scaffolds are selective for particular PLC subtypes and, in some cases, are 
also tissue specifi c. 

 In the case of the PLCβ family, such scaffolding interactions generally involve a 
C-terminal PDZ-interacting domain, present in all PLCβ1 subtypes except PLCβ1b. 
These PDZ-interacting domains associate with particular PDZ (postsynaptic density 
protein, Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 
protein domain) proteins. PLCβ3, for instance, binds to cell polarity proteins, 

  Fig. 17.2    The splice variants of PLCβ1. Diagram showing the structures of PLCβ1a and PLCβ1b 
outlining the sequence differences in the C-terminal regions of the proteins. Proline-rich domains 
and PDZ-interacting domains are indicated. NLS is nuclear localization sequence       
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Par3 and Par6, in renal tubular epithelial cells, SH3 domain and ankyrin repeat protein 
2 (Shank2) at glutamatergic synapses in neuronal tissues [ 22 ], and the sodium hydro-
gen exchange regulatory protein 2 (NHERF2) in Cos7 cells [ 23 ]. All of these inter-
actions require PDZ domain interactions via the C-terminal sequence, NTQL. 
PLCβ3 is not localized to the sarcolemma, at least in neonatal rat cardiomyocytes 
[ 24 ], suggesting that suitable scaffolding proteins are not expressed, or are not asso-
ciated with the sarcolemma. The C-terminal PDZ-interacting domain of PLCβ1a 
(DTPL) binds selectively to the fi rst PDZ domain (nearest the N-terminal) of the 
scaffolding protein, sodium hydrogen exchange regulatory factor 1 (NHERF1), but 
not NHERF2, in HEK293 cells [ 25 ]. The fi rst PDZ domain of NHERF1 also binds 
PLCβ2 via the sequence ESRL [ 26 ,  27 ]. NHERF1 is not expressed in heart providing 
an explanation for the cytoplasmic localization of PLCβ1a when expressed in 
cardiomyocytes [ 24 ]. As noted above, PLCβ1b does not have a C-terminal PDZ- 
interacting domain and so must target to membranes by a different mechanism from 
that used by other PLCβ subtypes. The presence of two proline-rich domains at the 
C-terminal end points to targeting by an SH3 domain- [ 28 ] or a WW domain- 
containing protein [ 29 ]. In cardiomyocytes the scaffolding protein for PLCβ1b was 
identifi ed as Shank3. Shank3 is a high MW protein with multiple protein interaction 
motifs. Importantly, Shank3 has a type 1 SH3 domain suitable for binding the PPNP 
(1165–1168 in the human PLCβ1b sequence) proline-rich sequence in the extreme 
C-terminal region of PLCβ1b [ 30 ]. In addition to its SH3 domain, Shank3 has an 
N-terminal ankyrin-rich repeat sequence that binds α-fodrin, a PDZ domain, a long 
proline-rich sequence that binds the Homer family of proteins and cortactin, and 
fi nally a C-terminal sterile alpha motif (SAM) that facilitates dimerization. Association 
with fodrin likely localizes Shank3 close to the sarcolemma. Thus, association with 
Shank3 makes PLCβ1b part of a multi-protein system that may be critical for down-
stream signaling and cellular responses (Fig.  17.3 ). Importantly, Shank3 is expressed 
in only a limited number of tissues, primarily heart and glutamatergic neurons [ 30 ], 
and thus the binding of PLCβ1b (also with limited tissue distribution) to Shank3 
provides a possible heart-specifi c drug target.

   PLCδ1 is expressed in heart [ 4 ], although no function has unequivocally been 
ascribed. PLCδ subtypes have a high affi nity PH domain that shows high selectivity 
for PIP 2  and this is suffi cient to localize these to the sarcolemma [ 31 ]. 

 PLCγ family members are activated following phosphorylation by receptor tyro-
sine kinases and this facilitates binding to SH2 domains present in growth factor 
receptors localizing these PLCs close to the plasma membrane and their substrate 
PIP 2  [ 5 ]. As with PLCβ subtypes, localization and activation of PLCγ members may 
also involve binding to other signaling proteins. PLCγ subtypes have been reported 
to bind to sodium-hydrogen exchanger 3 (NHE3), a plasma membrane-localized ion 
exchanger, and regulate its activity [ 32 ]. Interestingly, PLCγ1 has been shown to 
interact directly with canonical transient receptor 3 (TrpC3) to control its cell surface 
expression [ 33 ]. TrpC3 is implicated as contributing to pathological cardiomyocyte 
hypertrophy [ 34 ]; however, PLCγ1 has not been implicated in this response. 

 As outlined earlier, PLCε is structurally more complex that other PLCs and, as a 
consequence of this, its regulation also is multifactorial. Like other PLC subtypes, 
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PLCε binds to a scaffolding protein via sequences in its C-terminal region, in this 
case its (Ras association 1) RA1 domain. The RA1 domain of PLCε binds to the 
fi rst spectrin repeat domain of muscle A-kinase-anchoring protein β (mAKAPβ) 
localizing this PLC subtype principally to the nuclear envelope in cardiomyocytes 
[ 35 ]. mAKAPβ, like Shank and NHERF proteins, is a multidomain scaffold and 
thus PLCε probably functions as part of a large protein complex.  

17.4     Pathological Responses in the Heart 

 The primary function of the heart is to supply blood to all tissues of the body at suf-
fi cient level to optimize their function. The pump function of the heart can be com-
promised by a loss of contractile function of the muscle that reduces cardiac output 
resulting in failure to adequately supply blood to the body, a condition known as 
heart failure. Ineffective pumping can also be caused by a loss in organization of the 
contraction of the individual muscle cells, a condition known as arrhythmia. Heart 
failure and arrhythmia often occur together, each worsens the other and both can 
result from chronic hypertrophic growth of the myocardium. Because of this, there 
is an interest in developing therapies targeted at reducing pathological hypertrophic 
cardiomyocyte growth, improving contractile function (inotropic agents), or reducing 
arrhythmia (anti-arrhythmic agents). Currently used pharmaceuticals commonly 

  Fig. 17.3    ( a ) PLCβ1b binding to a Shank3 complex localized below the sarcolemmal membrane. 
Shank3 forms homodimers via its C-terminal SAM domains and is bound to α-fodrin via ank 
repeats in the N-terminal sequence. Dimeric Homer proteins cross-link Shank3 to TrpC channels 
and to intracellular Ca 2+  channels. ( b ) Diagram showing domain structure of Shank3       
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target cell surface receptors or ion channels, their ligands, or the downstream signaling 
pathways, including drugs that reduce the generation or the receptor binding of 
angiotensin II, blockers of β-adrenergic receptors, Ca 2+  channel blockers, and agents 
that reduce the metabolism of cAMP [ 36 ]. There is clearly a need for the develop-
ment of better tolerated therapies, particularly if they can be made relatively 
cardiac-specifi c.  

17.5     How Might PLC Activation Contribute to Pathology? 

 PLC enzymes hydrolyze the sarcolemmal phospholipid, PIP 2 , to generate Ins(1,4,5)
P 3  that can release Ca 2+  from intracellular stores [ 37 ] and  sn -1,2-diacylglycerol 
(DAG), an activator of conventional PKC subtypes [ 38 ], PKD [ 39 ] and some TrpC 
channels [ 40 ]. Each of these factors, individually and in concert, can have critical 
effects on cellular responses. 

17.5.1     Ins(1,4,5)P 3  

 Ins(1,4,5)P 3  binds and activates IP 3 -R localized on intracellular Ca 2+  stores [ 41 ]. 
The expression level of IP 3 -R in cardiomyocytes is low compared with that in most 
other tissues and compared with the highly expressed ryanodine receptors [ 42 ] that 
are primarily responsible for the intracellular Ca 2+  cycling that regulates the heart 
beat. Furthermore, IP 3 -R in ventricular myocytes are localized around the nuclear 
membrane [ 43 ], seemingly distal from the site of generation of Ins(1,4,5)P 3  follow-
ing activation of cell surface receptors. These nuclear membrane-localized IP 3 -R(2) 
may supply the localized Ca 2+  signals required to activate calmodulin-activated 
protein kinases (CaMKII) involved in transcriptional regulation [ 44 ]. Ins(1,4,5)P 3  
has been suggested to be involved in arrhythmogenesis [ 45 – 47 ] and in hypertrophy 
[ 48 ], although direct evidence for either of these is lacking.  

17.5.2     DAG 

 The other product generated by PLC, DAG, has a complex spectrum of activities, all 
of which could contribute to pathology. DAG was initially discovered as an activator 
of PKC [ 38 ], particularly the “conventional” PKC subtypes (PKC α, β, γ, δ ε, η, θ) 
[ 49 ]. DAG also activates some TrpC channels [ 50 ] and protein kinase D directly 
[ 39 ], in addition to actions dependent on PKC. In contrast to the controversy 
surrounding the contribution of Ins(1,4,5)P 3  and IP 3 -R to cardiac physiology/
pathophysiology, DAG and the PKC family are well accepted as a contributor to 
cardiac regulation. The contribution of PKC to regulation in the heart is complex, 
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varying with the PKC subtype, the stage of development, and the mechanism of 
activation. PKCα activation serves to suppress contractility [ 51 ], but can have 
profound pathological consequences when the regulatory domain that limits catalytic 
activity is removed by calpain cleavage under conditions of ischemia and reperfu-
sion [ 52 ]. PKCβ subtypes have been shown to be involved in diabetic cardiomyopa-
thy [ 53 ]. PKCδ has been considered an important contributor to cardiac pathology 
and cardiac remodeling, apparently related to activation of mitochondrial apoptotic 
responses [ 54 ]. PKCε primarily has a protective role in heart and is a component of 
preconditioning mechanism that reduces subsequent ischemic damage, discussed in 
more detail subsequently [ 55 ]. A recent review provides detailed information 
about PKC contribution to cardiac signaling under physiological and pathological 
conditions [ 56 ].  

17.5.3     PIP 2  

 The process of PLC activation depletes PIP 2  as it generates Ins(1,4,5)P 3  and DAG. 
Reductions in PIP 2  are often localized and transient with the PIP 2  being replaced 
immediately, presumably by phosphorylation of PIP [ 57 ,  58 ]. However, PLC- induced 
localized changes in PIP 2  regulate ion channels and exchangers that are critical in 
maintaining heart rhythm [ 59 ], for a review see [ 40 ]. PIP 2  is also critical for main-
taining the cytoskeleton via its association with actin-binding proteins [ 60 ] and PIP 2  
is essential for localizing proteins to the plasma membrane [ 61 ].   

17.6     PLC Involvement in Ischemia and Post-ischemia 
Reperfusion 

 Cardiac ischemia occurs when there is an interruption in the blood supply to the 
heart, depriving it of oxygen and nutrients, a condition associated with arrhythmia 
and cardiomyocyte death. The reintroduction of fl ow, reperfusion, also is associated 
with arrhythmia, cell death and contractile dysfunction. A number of studies have 
reported increased activity of PLC in animal models of acute cardiac ischemia 
[ 62 – 64 ]. Substantially increased PLC activation has been reported in early post-
ischemic reperfusion following a brief period of ischemia [ 65 – 67 ], and inhibition of 
PLC under these conditions successfully prevents reperfusion arrhythmias [ 45 ,  46 ,  68 ] 
in addition to improving functional recovery [ 69 ]. However, the subtypes of PLC 
activated by ischemia/reperfusion are unknown as are the mechanisms leading to 
the heightened PLC response. 

 Increased expression of PLCβ, as well as of activating G proteins, has been 
reported in border zone and remote myocardium following myocardial infarction 
in humans, suggesting the likelihood of enhanced PLC activation [ 70 ] and 
 pointing to a possible involvement in the heart’s responses to chronic ischemia. 
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Other studies reported that protection from chronic ischemic damage by ethanol 
is mediated by elevation of PLC activity, but the subtype of PLC was not 
identifi ed [ 71 ]. 

 Defi ning contributions of PLC, its substrate and products, to ischemic or reperfu-
sion responses is confounded by the likelihood that one or other of these might 
contribute to preconditioning, a phenomenon that can provide protection from 
arrhythmia and infarction following an ischemic insult [ 72 ]. Preconditioning 
involves subjecting hearts to brief periods of ischemia and reperfusion prior to the 
main ischemia/reperfusion procedure. This pretreatment procedure is suffi cient to 
limit PLC activation in early post-ischemic reperfusion [ 73 ]. Preconditioning pro-
tection can be mimicked by activation of some of the PKC subtypes that are acti-
vated downstream of PLC, and to further complicate the situation, different PKC 
subtypes can have opposing effects on preconditioning [ 74 ]. Overexpression of 
either subtype of α 1 -adrenergic receptors (α 1A - or α 1B -) results in heightened PLC 
responses to endogenous or exogenous norepinephrine. However, whilst PLC activity 
in these overexpressing transgenic strains was heightened in normoxia, the exagger-
ated response during early reperfusion was eliminated, along with the reperfusion 
arrhythmias [ 75 ,  76 ]. Presumably, this apparent contradiction is related to activation 
of preconditioning pathways possibly initiated by PKC activation. Taken together, 
these studies imply that factors downstream of PLC, most likely PKC-initiated 
responses, effectively precondition the myocardium, and that preconditioning 
reduces PLC activation.  

17.7     PLC in Acute and Chronic Dilatation 
of the Myocardium 

 The myocardium responds to acute stretch by increasing cardiac output in order to 
manage the increase in blood volume. Thus, acute stretch results in increased rate 
and force of contraction. Acute stretch of the right atrium causes substantial release 
of atrial natriuretic peptide, possibly to facilitate a lowering of blood volume [ 77 ]. 
As noted earlier, in addition to activation by ligand receptor binding, PLC in heart 
can be activated acutely by stretch [ 18 – 21 ]. In perfused rat heart preparations, right 
atrial stretch caused PLC activation that correlated with release of atrial natriuretic 
peptide [ 78 ]. Stretch activation of PLC requires Gq and may involve angiotensin II 
receptors (AT1) acting in a ligand-independent manner [ 21 ]. The involvement of Gq 
and AT1 receptors implicates PLCβ subtypes as major contributors to the response 
to acute stretch. 

 Chronically increased wall tension results in chamber dilatation and wall thin-
ning that eventually limit contractile performance and these are the hallmarks of 
dilated cardiomyopathies. Dilatation of the atria is observed in patients with valve 
diseases and is also seen in association with ventricular failure. Interestingly, 
substantially heightened PLC activity was observed in the dilated atria of patients 
suffering from valvular heart disease, as well as in atria from a mouse model of 
dilated cardiomyopathy that has severe atrial enlargement together with conduction 
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block and a sensitivity to atrial fi brillation [ 4 ,  79 ]. Furthermore, in both humans and 
mice, PLC activity correlated with atrial volume, suggesting that PLC activation 
was either a cause or a consequence of dilatation. Dilated atrial tissue from both 
humans and mice showed increased expression of only one PLC subtype, PLCβ1b, 
providing suggestive evidence that PLCβ1b is selectively involved in the response 
to chronic dilatation. There were no changes in expression of PLCβ3, PLCδ1, or 
PLCγ1 associated with atrial dilatation [ 4 ]. PLCε was not measured in these studies 
and a role for this subtype, therefore, cannot be discounted. PLCβ1a, although 
expressed in neonatal rat cardiomyocytes, was not expressed at measurable levels in 
adult human myocardium. The two splice variants of PLCβ1, PLCβ1a and PLCβ1b, 
differ only in their extreme C-terminal sequences as shown in Fig.  17.2 . Whilst the 
catalytic domains and the Gαq-binding regions are identical, the differences in the 
C-terminal sequences would be expected to result in different localization, and con-
sequently different activities. 

 Overexpression of a constitutively active Gαq is suffi cient to cause severe cham-
ber enlargement together with heightened PLC activity [ 80 ], but there are confl ict-
ing opinions about the role of PLC in promoting atrial dilatation in these 
Gαq-overexpressing models. Overexpression of a Gαq mutant with reduced ability 
to activate PLCβ, unlike the wild-type, did not result in chamber dilatation [ 81 ], 
providing powerful evidence for a requirement for PLC activity for the pathological 
responses initiated by Gq. Other studies showed that atrial remodeling in Gαq- 
overexpressing mice was reversed by co-expression of diacylglycerol (DAG) kinase 
ζ, an enzyme that depletes DAG, one of the immediate products of PLC activation 
[ 82 ], supporting a critical role for PLC and its immediate product, DAG, in atrial 
dilatation. However, in contrast to these fi ndings, studies comparing two different 
Gαq-expressing transgenic lines reported that the degree of dilatation did not cor-
relate with the extent of PLC activation [ 83 ]. These apparent discrepancies might be 
accounted for if there was a maximal level of PLC activation, above which further 
increases produced no greater effect on chamber dilatation. 

 At the cellular level, chamber dilatation and wall thinning are thought to involve 
loss of functional myocytes by apoptotic and non-apoptotic mechanisms. The ability 
of activated mutants of Gαq to induce apoptosis in cardiomyocytes is well docu-
mented [ 84 ], and more recently overexpression of wild-type PLCβ1b has also been 
shown to cause cardiomyocyte apoptosis [ 85 ]. Thus, heightened PLCβ1b activity 
could contribute to a dilated phenotype by promoting apoptotic death of cardiomyo-
cytes. In summary, there is evidence for an involvement of PLC, and in particular 
PLCβ1b, in responses to acute and chronic dilatation of the myocardium, but the 
mechanisms involved remain to be established.  

17.8     PLC Involvement in Cardiac Hypertrophy 

 Early studies using isolated cardiomyocytes or genetically modifi ed mice pointed to 
a role for Gq family members in pathological growth and remodeling of the heart. 
Overexpression of Gαq, either the wild-type [ 86 ] or a constitutively active mutant [ 80 ], 
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was suffi cient to cause cardiomyocyte hypertrophy, and when expressed in vivo, 
Gαq promoted hypertrophy and heart failure [ 84 ]. More importantly, Gq inhibitors 
expressed in the heart were found to substantially reduce hypertrophic growth in 
response to the clinically relevant challenges of pressure or volume overload [ 87 – 89 ]. 
The apparent central role of Gq in these pathological responses suggests mediation 
by PLCβ subtypes, as these are the best understood effectors of Gq [ 90 ]. However, 
members of the Rho family of monomeric G proteins are activated downstream of 
Gq [ 91 ] and these may also contribute to hypertrophic responses [ 92 ]. 

 Of the PLCβ family, only PLCβ1b causes hypertrophy when overexpressed in 
cardiomyocytes, and this selectivity depends on its sarcolemmal localization facili-
tated by selective association of the splice variant-specifi c C-terminal sequence with 
the scaffolding protein Shank3 [ 24 ,  85 ]. Furthermore, inhibition of PLCβ1b binding 
to Shank3 prevented hypertrophy in response to Gq activation [ 85 ], suggesting that 
the sarcolemmal targeting of PLCβ1b might provide a novel target to limit hypertro-
phy and chamber dilatation. Both PLCβ1b and Shank3 have a limited tissue distri-
bution opening up the possibility of cardiac-specifi c therapy. In addition to 
cardiomyocytes, Shank3 is expressed primarily in postsynaptic density fractions 
from central glutamatergic neurons [ 30 ], where PLCβ1b is not expressed. In neu-
rons, Shank3 acts as a scaffold facilitating interactions between receptors and early 
signaling proteins [ 93 ]. In heart, Shank3 appears to function similarly, binding 
fodrin [ 94 ] and Homer1c [ 95 ] in addition to its association with the C-terminal 
sequence of PLCβ1b. Homer1c forms homodimers that can cross-link Shank3 to 
form large molecular scaffolds [ 96 ]. Homers promote crosstalk between intracel-
lular Ca 2+  channels, IP 3 -R and ryanodine receptors, and cell surface canonical tran-
sient receptor potential channels (TrpC) and thus are regulators of local Ca 2+  
responses [ 97 ]. Expression of PLCβ1b in cardiomyocytes results in increased 
expression of Homer1c as well as its translocation to the Shank3/PLCβ1b complex 
[ 95 ]. The mechanisms involved in these responses are unknown, but they appear to 
be critical for the hypertrophic response. 

 The possibility that PLCε was involved in cardiac pathology was fi rst suggested 
when elevated expression was reported in failed human left ventricle [ 16 ]. This idea 
was supported by studies showing that PLCε−/− mice exhibited exacerbated hyper-
trophic responses leading to the idea that PLCε, in contrast to PLCβ1b, was protec-
tive to the myocardium by inhibiting hypertrophic signaling. However, subsequent 
studies in isolated cardiomyocytes have questioned this conclusion. These studies 
found that treatment with si-RNA to knockdown PLCε inhibited hypertrophy in 
response to endothelin or α 1 -adrenergic agonists [ 35 ], implying an involvement in 
Gq-initiated hypertrophy that other studies have shown involves PLCβ1b [ 85 ]. 
Importantly, PLC activity was absolutely required for this contribution of PLCε to 
hypertrophy, an important fi nding given the multiple functions of this complex PLC 
subtype. In cardiomyocytes, PLCε is localized onto the nuclear membrane by asso-
ciation with muscle A-kinase-activating protein (mAKAPβ, AKAP5) [ 35 ]. Such 
localization is suggestive of a role downstream of early signaling responses, such as 
initiated by PLCβ1b. In agreement with this, knockdown of PLCε inhibited hyper-
trophy in response to multiple stimuli, including both Gq hypertrophy that models 
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pathological hypertrophy and hypertrophy caused by IGF treatment, considered a 
model of physiological hypertrophy that is independent of Gq [ 35 ]. This contrasts 
to PLCβ1b, where inhibition selectively prevented Gq-mediated hypertrophy [ 85 ]. 
There is clearly substantial evidence for an involvement of PLC in hypertrophy of 
the myocardium, with current data supporting roles for PLCβ1b and PLCε, most 
likely at different stages in the signaling response.  

17.9     Conclusions 

 Under physiological conditions the functioning of the heart is regulated primarily 
by pathways that are independent of PLC activation. However, PLC expression and 
activity have been shown to increase under a range of pathological conditions, 
including ischemia/reperfusion, hypertrophy, and dilatation and it is likely that PLC 
contribute to the progression of these diseases.     
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