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Preface

Phospholipids were originally considered as plasma membrane components that
primarily provided cellular structural and functional integrity. However, these are
now also recognized as the source of molecules that act as biological mediators of
cell function. Some of these mediators serve as extracellular lipid-signaling mole-
cules while others act as intracellular second messengers that regulate effector
enzymes. The activation of phospholipases is a primary step in the generation of
lipid mediators and the initiation of intracellular signal transduction pathways in a
variety of cell types. Neurotransmitters, hormones, and growth factors evoke intra-
cellular responses by activating phospholipases. Most of these mediators are pro-
duced upon activation of many different forms of phospholipase A, phospholipase C,
and phospholipase D.

The contribution of different phospholipases and their related signaling mecha-
nisms to altered function during different pathophysiological conditions is not com-
pletely understood. Resolution of this issue is essential for both the understanding
of different disease conditions and for determining if components of the phospholipid-
signaling pathways could serve as appropriate therapeutic targets. Furthermore, the
interaction between the different lipid molecules and the different phospholipases
adds to the complexity of phospholipid-signaling mechanisms. While phospholi-
pases also reside in the cytosolic compartment of the cell, these must migrate to a
membrane compartment where there physiological substrates reside. Indeed, phos-
pholipases were considered to localize primarily to the plasma membrane; however,
they are also located in intracellular compartments including the cytoskeleton,
endo(sarco)-plasmic reticulum, the Golgi apparatus, and the nucleus.

This book has been compiled to present a comprehensive and up-to-date view of
the phospholipase research field. A wide range of topics covered here are of interest
to basic research scientists, clinicians, and graduate students, who are devoted to the
study of human health and disease. Furthermore, these chapters are directed towards
increasing our understanding of novel strategies for the prevention/treatment of dif-
ferent diseases. Twenty three chapters in this book are organized into four parts.

vii



viii Preface

The first part consisting of four chapters discusses general aspect of phospholi-
pases. The subsequent three parts are designed to specifically highlight the most
characterized forms of the phospholipases. The second part consists of seven chap-
ters and covers the role and function of phospholipase A in different pathophysio-
logical conditions. Phospholipase A continues to be the subject of considerable
interest in the field, since it hydrolyzes membrane phospholipids to produce sub-
strates for the biosynthesis of prostaglandins, thromboxanes, leukotrienes, and other
oxygenated metabolites of arachidonic acid as well as platelet-activating factor.
Some of the products of phospholipase A activity also serve as molecules for the
activation of intracellular signal transduction pathways.

The third part comprises nine chapters and is focussed on phospholipase C
which is believed to play a central role in transmembrane signaling. The first
signal-activated phospholipase that was established as a key player in signal trans-
duction was a phosphoinositide-specific phospholipase C. The phosphoinositide-
specific phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate to
generate two second messenger molecules, namely, diacylglycerol and inositol
1,4,5-trisphosphate known to regulate a diverse range of cell function through the
activation of various forms of protein kinase C enzymes as well as mobilization of
Ca?* from intracellular stores.

The fourth part has three chapters concerning phospholipase D, which is present
in a variety of different cells. In fact, phospholipase D was originally discovered in
plants and the first indication of its presence in mammalian cells was by Kanfer and
his colleagues almost three decades ago. This phospholipase hydrolyzes membrane
phospholipids to produce phosphatidic acid and releases the free polar head group.
Although phosphatidic acid is central to glycerolipid metabolism, it is also consid-
ered as an important lipid signaling molecule involved in a wide range of cellular
processes, including vesicular trafficking, cytoskeletal organization as well as cell
growth, proliferation, and survival. This part is relatively short; however, the subject
matter highlighting the unique features of this particular phospholipase is also
referred to in the first part.

In summary, this book covers a broad range of topics related to general aspects
of the different phospholipases and their role in cell function pertaining to human
health and disease. We hope that the reader will understand that membrane phos-
pholipids are a rich source of lipid-signaling molecules that are produced through
receptor-mediated activation of phospholipases and serve as second messengers.
Furthermore, the underlying message presented in this book is that the activation of
phospholipases is of fundamental importance in signal transduction affecting cell
function under normal and diseased conditions.

We would like to take this opportunity to offer our sincerest gratitude to all emi-
nent authors for their outstanding contributions. We thank them also for their will-
ingness to be part of this book, as without their expertise, this project would not
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have been possible. The time and efforts of both Dr. Vijayan Elimban and Ms. Eva
Little of the Institute of Cardiovascular Sciences at St. Boniface Hospital Research,
University of Manitoba are gratefully acknowledged. Our appreciation is also
extended to Ms. Rita Beck and Ms. Diana Ventimiglia as well as the staff at the
Springer Media, New York for their understanding and assistance in the preparation
of this book.

Winnipeg, MB, Canada Paramjit S. Tappia
Naranjan S. Dhalla
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Phospholipases: General Aspects



Chapter 1
Phospholipases in Health and Disease

Yong Ryoul Yang, Hyun-Jun Jang, Sung Ho Ryu, and Pann-Ghill Suh

Abstract Phospholipids are a class of complex lipids that are composed of two
fatty acids, a glycerol unit, a phosphate group, and a polar molecule. Phospholipids
include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phos-
phatidylglycerol, and phosphatidylinositol, which are major components of cell
membranes. They are hydrolyzed by various lipolytic enzymes, including phospho-
lipase C, phospholipase D, and phospholipase A. Enzymatic processing of phos-
pholipids by phospholipases converts these molecules into lipid mediators or second
messengers that regulate a variety of physiological and pathophysiological func-
tions. Thus, dysregulation of phospholipases contributes to a number of human dis-
eases and these phospholipases have been identified as therapeutic targets for
prevention and treatment of diseases.

Keywords Phospholipase ¢ Phospholipid ¢ Phospholipase C ¢ Phospholipase D ¢
Phospholipase A ¢ Brain disorder * Cancer e Immune system dysfunction ® Metabolic
disease ¢ Atherosclerosis ¢ Arthritis ¢ Kidney dysfunction ¢ Platelet dysfunction
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4 Y.R. Yang et al.
1.1 Characteristics and Cellular Signaling of Phospholipases

PI-PLC: Phosphoinositide-specific ~ phospholipase C (PLC) hydrolyzes
phosphatidylinositol-4,5-bisphosphate (PIP2) to generate second messengers,
inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG), in ligand-mediated
signal transduction (Fig. 1.1). DAG activates protein kinase C (PKC) and IP; bind-
ing to its receptor triggers the release of calcium ions from intracellular stores like
ER (endoplasmic reticulum). PLC-mediated signaling pathways regulate diverse
biological functions. Firstly, Hokin et al. suggested evidence of PLC activity in
1953. They observed specific hydrolysis of phospholipids in pigeon pancreas slices
after cholinergic stimulation [1]. In 1983, Sterb et al. reported that IP; generated
from PIP, hydrolysis induces mobilization of intracellular calcium in pancreatic
acinar cells [2]. To date, 13 mammal PLC isozymes have been identified and are
divided into six subtypes: PLC-p(1-4), y(1,2), 8(1,3,4), €, {, and 1 (1,2) (Fig. 1.2).
PLC isozymes commonly have highly conserved X and Y domains which is
responsible for PIP, hydrolysis. Each PLCs contain diverse regulatory domains
including the C2 domain, the EF-hand motif, and the pleckstrin homology (PH)
domain. Notably, each PLC subtype has a unique domain and PLC isozymes are
differentially expressed in different tissues. These unique domains and different
expression patterns contribute to the specific regulatory mechanisms and func-
tional diversity of PLC isozymes [3].

PLC-p subtypes are activated by G protein-coupled receptor (GPCR) through
several mechanisms. In contrast, PLC-y subtypes are activated by receptor tyrosine
kinase (RTK). Upon growth factor stimulation, PLC-y is recruited to activated
growth factor receptors via SH2 domain—phosphotyrosine interaction and then sub-
jected to phosphorylation by RTK [3]. PLC-¢ can be activated by both GPCR and
RTK activation with distinct activation mechanisms [4]. It has been suggested that

@© O D
R1\/\/\/\/ko/\/\o—

O
W NN
© @
Fig. 1.1 Phospholipid structure and the site of action of phospholipases. Phospholipids are com-
posed of a glycerol-3-phosphate esterified at the sn-1 and sn-2 positions to nonpolar fatty acids (R1
and R2, respectively) and at the phosphoryl group to a polar head group, X. Phospholipase Al and
phospholipase A2 cleave the acyl ester bonds at sn-1 and sn-2, respectively. Phospholipase C

cleaves the glycerophosphate bond, whereas phospholipase D removes the head group, X. PLA,
phospholipase A; PLC, phospholipase C; PLD, phospholipase D
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Fig. 1.2 Schematic structure of phospholipase C isozymes. Thirteen mammalian PLC isozymes
are subdivided into six groups. All PLC isotypes have X and Y domains, which contain catalytic
activity. Several isoforms have pleckstrin homology (PH) and a calcium-binding (C2) domain,
which can regulate PLC activity. The EF-hand domain is responsible for forming a flexible tether
to the PH domain. PLC-¢ has an Ras guanine nucleotide exchange factor (GEF) domain for
RAPIA122 and the RA2 domain mediates interaction with GTP-bound Ras and RAP1A. PLC-y
has SRC homology 2 (SH2) and SH3 domains, which interact with many proteins

overall PLC activity may be amplified and sustained by both intracellular calcium
mobilization and extracellular calcium entry. Several studies have suggested posi-
tive feedback amplification of PLC signaling [5-8]. PLC-861 and PLC-n1 are acti-
vated via GPCR-mediated calcium mobilization and are involved in positive
feedback signal amplification of PLC [9, 10]. By these mechanisms, it has been sug-
gested that PLC-f, PLC-y, and PLC-e might be primarily activated by extracellular
stimuli, and activation of PLC-81 and PLC-n1 might be secondarily enhanced by
intracellular calcium mobilization to amplify PLCs activity. The activation mecha-
nism for PLC-{ remains to be revealed.

PC-PLD: Phosphatidylcholine-specific phospholipase D (PLD) hydrolyzes the
phosphodiester bond of the glycerolipid phosphatidylcholine (PC) to produce
phosphatidic acid (PA) and free choline (Fig. 1.1). PLD activity was first described
in 1975 by Hannahan and Chaikoff in carrot extracts and demonstrated in rat brain
by Saito and Kanfer in 1975 [11]. In mammals, PLD1 and PLD2 have been identi-
fied (Fig. 1.3). PLD has several conserved regions, including phox homology
(PX) and PH domains, and two conserved catalytic domains (HKD), which are
critical for enzymatic catalysis. PLD3, PLD4, and mitochondrial PLD also have
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Fig. 1.3 Schematic structure of phospholipase D isozymes. Phospholipase D has PX, PH, and
HKD motifs and a loop domain. HKD motifs mediate intra- and intermolecular interactions and
the loop domain might be involved in the regulation of enzyme activity

an HKD domain, but little more is known [12-14]. PA, produced by PLD
enzymatic activity, is involved in diverse cellular functions. PLD is activated in
response to mitogenic signals, such as epidermal growth factor (EGF), platelet-
derived growth factor (PDGF) and fibroblast growth factor (FGF) [15-17]. PA
activates MAPK signaling by recruiting RAF to the plasma membrane, regulating
cell proliferation [18]. In addition, it activates mTOR, a key player in cell growth,
differentiation and metabolism, by interaction with mTOR complexes [18].
Furthermore, PA also acts as an intermediate for the production of bioactive DAG
or LPA (Fig. 1.4) [18, 19]. Aberrant expression or activation is closely linked to
human diseases including cancer, diabetes, neurodegenerative disorders and myo-
cardial disease.

PLA: PLA, and PLA, cleave acyl chains from the sn-1 and sn-2 position of
glycerol moieties of phospholipids to produce free fatty acids and 2-acyl 2-acyl
lysophospholipid or 1-acyl lysophospholipid, respectively (Fig. 1.1). PLA, can be
divided into two groups according to cellular localization: intracellular and extra-
cellular PLA,. Three members of the mammalian intracellular phospholipase Al
subfamily have been identified: phosphatidic acid-preferring phospholipase Al,
pl125 and KIAAQ0725p. These enzymes commonly contain a lipase consensus
sequence. There are ten mammalian extracellular phospholipase Al enzymes:
phosphatidylserine-selective phospholipase Al (PS-PLA,) (Fig. 1.5), membrane-
associated phosphatidic acid-selective phospholipase Ala (mPA-PLA,«), mPA-
PLA1, pancreatic lipase, lipoprotein lipase, hepatic lipase, endothelial lipase, and
pancreatic lipase-related proteins-1, -2, and -3. These PLA;s share multiple con-
served motifs, including a lipase consensus sequence, a catalytic Ser-Asp-His triad,
cysteine residues, and a lipid-binding surface loop [20]. These PLA s have multiple
biological functions, including cell proliferation, apoptosis, blood coagulation, and
smooth muscle contraction.

More than 30 enzymes that possess PLA, or related activity have been character-
ized in mammals (Fig. 1.5). The first PLA, was identified in snake venom and other
enzymes were discovered in other organisms. PLA,s are classified into several



1 Phospholipases in Health and Disease 7

I RTK
- iy PC|PSIPA e PIP, 5 Pc PA \‘34
p A
; "D @D {/@ <

. |T3 DAG #
@/ \w - -

Diverse cellular functions

(Proliferation/Migration/Inflammation/Differentiation/Cell death)

Fig. 1.4 Schematic illustration of the phospholipase signal network. Diverse extracellular
ligands activate specific receptors, such as G protein-coupled receptors (GPCRs) and receptor
tyrosine kinases (RTKs). Phospholipase C-p (PLC-p) is activated by the Ga or Gfy subunit and
PLC-¢ is stimulated by a small GTPase (RAP2B or RHOA). PLC-8 and PLC-n) are activated by
calcium. In RTK signaling, RTKSs directly recruit and activate PLC-y. Activated PLCs hydrolyze
phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P,) to generate two second messengers, diac-
ylglycerol (DAG), and inositol-1,4,5-trisphosphate (IP;). DAG activates protein kinase C (PKC),
which stimulates PLD activity, and IP; induces calcium release from the endoplasmic reticulum.
PLD hydrolyzes phosphatidylcholine (PC) into phosphatidic acid (PA), which can recruit and
activate various downstream molecules. cPLA, and iPLA, can hydrolyze a variety of phospholip-
ids, including PC, phosphatidylserine (PS), and PA, into arachidonic acid (AA), which is further
converted into prostaglandins (PGs) and leukotrienes (LTs). PGs and LTs are generated by the
cyclooxygenase (COX) pathway and the lipoxygenase (LOX) pathway, respectively, and act as
autocrine or paracrine mediators. Membrane-associated PA-selectivep o; (mPA-p ;) and secre-
tory PLA, (sPLA,) convert PA into lysophosphatidic acid (LPA), which acts as a ligand for LPA
receptors

major types: secretory PLA, (sPLA,), cytosolic PLA, (cPLA,), calcium-independent
PLA, (iPLA,), PLAtelet-activating factor acetylhydrolases (PAF-AHs), lysosomal
PLA,s and adipose-specific PLA. They differ from each other in terms of substrate
specificity, calcium requirement and lipid modification [21, 22]. cPLA, is mainly
involved in initiation of arachidonic acid generation. The iPLA, family is important
for membrane homeostasis and energy metabolism and the sPLA, family modulates
extracellular phospholipid environments (Fig. 1.4).
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Fig. 1.5 Schematic structure of phospholipase A isozymes. Extracellular p 5, contains the lipase
consensus sequence, 39 loop and lid domain. The p9 loop and lid domain play important roles in
substrate selectivity. The three major types of PLA, include secretory PLA, (sPLA,), cytosolic
PLA, (cPLA,), and calcium-independent PLA, (iPLA,). Eleven sPLA;s, six cPLA,s, and nine
iPLA,s have been found in mammals. Secreted PLA, has a signal sequence, calcium-binding loop,
and catalytic site. cPLA,-IVA, cPLA,-IVD, cPLA,-IVE, and cPLA,-IVF have a C2 domain and a
lipase domain. cPLA,-IVB additionally contains a Jumonji C (Jmjc) domain. All iPLA, contain a
Patatin domain, which contains a catalytic region. iPLA,-VIA has an ankyrin repeat domain and
calmodulin-binding site. iPLA,-VIB has armadillo, mitochondrial and peroxisome localization
signals

1.2 PI-PLC in Health and Disease

Each PLC subtype has a unique domain and PLC isozymes are differentially distrib-
uted in different tissues. The specific characteristics of PLC isozymes are reflected
by their physiological and pathophysiological roles in diverse tissues. Each PLC
isozyme is strongly linked to diverse human diseases (Table 1.1).
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Table 1.1 Summary of PI-PLC roles in health and disease

PLC
isozyme Disease Analysis system Functional role Reference
PLC-B1  Epilepsy Knock-out mice Regulate muscarinic [26]
Early-onset epileptic ~ Genetic studies acetylcholine receptor [29]
encephalopathy signaling
Schizophrenia Regulate neurotransmitter/ [30]
Bipolar disorder GPCR signaling [31]
Myelodysplastic Regulate proliferation of [71]
syndromes myeloid cells
PLC-p2 Breast cancer Expression level of Up-regulated PLC-$2 [46]
patient sample may contribute to
tumoregenesis
Human breast Promotes mitosis and [47]
cancer-derived migration
cells
Acute promyelocytic ~ Expression level of Up-regulated in patients who [73]
leukemia patient sample were treated with drugs
PLC-B3  Myeloproliferative Knock-out mice Acts as a tumor suppressor  [68]
disease by modulating Stat5-
(lymphoma) suppressive mechanism
Atherosclerosis Knock-out mice Promotes macrophage [90]
survival
PLC-p4 Ataxia Knock-out mice Regulates neurotransmitter/  [26]
GPCR signaling in
cerebellum
Visual-processing Knock-out mice Plays an important role in [105]
defect rod-mediated signaling
in the retina
PLC-yl Epilepsy Knock-in mice Regulates TrkB receptor [38]
signaling
Huntington’s disease ~ R6/1 HD model Regulates BDNF/TrkB [39-42]
mice signaling
Depression Antidepressant [43-45]
drug effect on
cultured
cortical cells
Breast cancer Expression level of Up-regulated PLC-y1 [48]
Colon cancer patient sample may contribute to [49]
tumorigenesis
Breast cancer Mice model of Controls cell migration [51]
metastasis metastasis via Rac1 activation
Autoimmune disease  T-cell-specific Mediates T cell [81]
knock-out mice development
LATY"™F knock-in ~ Regulates LAT-mediated [80]
mice T cell signaling
Metabolic syndrome  Genetic studies Contributes to development  [95]
of metabolic disease
Multicystic kidney Chimeric knock- Regulates function and [101]

out mice

development of kidneys

(continued)
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Table 1.1 (continued)

PLC
isozyme Disease Analysis system Functional role Reference
PLC-y2 Cold urticarial and Genetic studies Constitutive PLC-y2 [88]
immune activation causes
dysregulation dysfunction of immune
system
Arthritis Knock-out mice Regulates neutrophil [91,92]
activation and dendritic
cell-mediated T cell
priming
PLC-el  Skin tumor Knock-out mice Activates Ras oncogene- [63, 64]
induced carcinogenesis
Intestinal tumor Knock-out mice Enhances inflammation [65]
with APCmin+ and angiogenesis
background
Esophageal squamous Genetic studies Promotes tumorigenesis [66]
cell carcinoma
Gastric cancer [67]
Early-onset nephrotic  Genetic studies Essential for glomerular [104]
syndrome development
PLC-81 Esophageal squamous Genetic studies Acts as a tumor suppressor  [69]
cell carcinoma
Skin tumor Knock-out mice Acts as a tumor suppressor  [70]
Obesity Negatively regulates [93]

thermogenesis and
positively controls
adipogenesis

1.3 Brain Disorders

In the synapse, diverse hormones and neurotransmitters activate PLC isozymes
through GPCR and RTK, indicating that PLC isozymes are involved in diverse brain
functions. Each PLC isozyme selectively couples to specific neurotransmitter recep-
tors in different regions of the brain, contributing to specific functions. Many studies
have implicated primary PLCs in brain disorders. PLC-f1 is abundant in the brain
region, including the cerebral cortex, hippocampus, and amygdala [22, 23], and
regulates cortical development and synaptic plasticity by modulating hippocampal
muscarinic acetylcholine receptor signaling [24, 25]. Consistent with this, PLC-f1
knock-out mice exhibited epilepsy [26] and abnormal behaviors which are caused
by excessive neurogenesis and aberrant migration of adult-born neurons [27, 28].
Interestingly, a PLC-f1 gene mutation in human patients has been observed, and
genetic studies showed that the PLC-f1 mutation is associated with early-onset epi-
leptic encephalopathy [29]. Furthermore, orbitofrontal cortex sample of patients
with schizophrenia and bipolar disorder exhibited deletion of PLC-$1 gene [30, 31].
Unlike PLC-B1, PLC-p4 is expressed weakly in the cerebral cortex and
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hippocampus and abundantly in the cerebellum [32] and regulates a long-term
depression in rostral cerebellar purkinje cells [33]. In addition, mGluR1-mediated
signals require PLC-p4 activation in the cerebellum. Both mGluR1 knock-out mice
and PLC-p4 knock-out mice show ataxia [26, 34].

PLC-y1 is highly expressed in a broad range of brain regions and regulates
various neuronal functions, such as neurite outgrowth, neuronal cell migration, and
synaptic plasticity. Neurotrophic factors activate PLC-y1 through Trk receptors,
which participate in diverse neuronal events [35, 36]. PLC-y1 has been implicated
in epilepsy, Huntington’s disease (HD), depression, Alzheimer’s disease (AD), and
bipolar disorder [37]. Tyrosine phosphorylation of PLC-y1 is elevated in pilocar-
pine-induced status epilepticus mouse model [38]. Consistent with this, epilepsy is
markedly inhibited in trkBP““FLC knock-in mice lacking PLCy-1docking sites in
TrkB [38]. On the other hand, phosphorylation of PLC-y1 is reduced in HD model
mice [39]. Correlatively, the expression levels of BDNF and TrkB are decreased in
humans and mice with HD [40-42]. Moreover, PLC-yl-mediated signaling acti-
vates CREB, which elevates BDNF, for a long-term antidepressive effect in the
hippocampus [43-45].

1.3.1 Cancer

Various extracellular ligands such as growth factors, hormones, cytokines, and lip-
ids activate PLCs, which regulate cell growth, migration, inflammation, angiogen-
esis, and actin cytoskeleton reorganization. Thus, in cancer cells, activation of PLCs
is involved in tumorigenesis and/or metastasis. Therefore, aberrant expression and
activity of PLC isozymes is observed in a variety of human cancers and is related to
tumor progression.

PLC-p2 is abnormally increased in breast tumors and correlates with poor clin-
ical outcome, suggesting its role as a marker for breast cancer severity [46]. PLC-
B2 is important for migration of breast cancer-derived cell lines and mitosis of
breast-derived tumor cells [47]. In addition to PLC-p2, also PLC-y1 level is aber-
rantly elevated in cancers [48, 49]. Many evidences have suggested that PLC-y1
is required for cell migration and tumor cell invasiveness and metastasis, both in
vitro and in vivo. Indeed, PLC-y1 is required for cell spreading and migration
mediated by integrins [50]. Correlatively, downregulation of PLC-y1 expression
blocked Racl activation and resulted in suppression of human breast cancer cell-
derived lung metastasis in an in vivo mouse model [51]. In addition, PLC-y1 has
been shown to mediate the cell motility effects of growth factors including PDGF
[52], EGF [53, 54], insulin-like growth factor (IGF) [55], and hepatocyte growth
factor (HGF) [56, 57]. Phosphoinositide 3-kinase (PI3K)-mediated PLC-y1 acti-
vation is required for EGF-induced migration of breast cancer cells [58, 59]. In
fact, interactions between the SH3 domain of PLC-y1 and Racl are important for
EGF-induced F-actin formation and cell migration [60]. The critical role of
PLC-yl in metastasis was demonstrated in mouse models. A fragment of
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dominant-negative PLC-yl limited the metastatic potential of carcinomas in
oncogene-induced mammary and prostate cancer tissues in mouse models [61].
This result suggests that PLC-y1 is a potential therapeutic target for the clinical
treatment of tumor metastasis. Similarly, involvement of PLC-¢ in cancer devel-
opment has been suggested. PLC-¢ contains two Ras-associating (RA) domains
(RA1 and RA2), which are essential for PLC-¢ function. The RA domain binds to
Ras and small GTPase, which are important in generation and progression of
tumors [62]. 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflam-
mation and tumorigenesis were suppressed in PLC-g1 knock-out mice, suggesting
the importance of PLC-¢1 in Ras oncogene-induced de novo carcinogenesis [63,
64]. In addition, APCM™* mice lacking PLC-gl exhibited reduced intestinal
tumorigenesis [65]. In addition, genome-wide association studies identified PLC-
el as a susceptibility locus in esophageal squamous cell carcinoma (ESCC) and
gastric cancer [66, 67].

PLC-B3 and PLC-81 are suggested tumor suppressors. PLC-3 knock-out mice
showed development of myeloproliferative disease, lymphoma and other tumors,
resulting from an impaired Stat5-suppressive mechanism. Further, PLC-f3 is down-
regulated in leukocytes of patients with chronic lymphocytic leukemia [68]. PLC-
61 was located within the 3p22 chromosomal region, which is frequently altered in
many solid tumors, including ESCC. Interestingly, loss of the PLC-81 gene was
frequently observed in ESCC. Consistent with this, PLC-81 acts as a tumor suppres-
sor in ESCC cell lines [69]. Moreover, spontaneous skin tumors were detected in
PLC-01-deficient mice [70].

1.3.2 Leukemia

PLC-B1 appears to regulate nuclear inositol lipid signaling in the nucleic compart-
ment. It was suggested that dysfunction of nuclear PLC-B1 contributes to the devel-
opment of myelodysplastic syndromes (MDS), which are a heterogeneous group of
bone marrow disorders leading to progressive cytopenia. Interstitial PLC-1 mono-
allelic gene deletion was observed in MDS patients whose disease rapidly evolved
to acute myeloid leukemia (AML) [71]. Interestingly, Azacitidine, an anticancer
drug (DNA methyltransferase inhibitor), targets PLC-p1. This drug increases the
expression of PLC-f1 and decreases AKT activity, which plays important roles in
MDS cell proliferation [72]. In addition to PLC-f1 abnormality, low levels of PLC-
B2 were also observed in primary acute promyelocytic leukemia (APL) blasts iso-
lated from patient bone marrow. APL is a subtype of AML and all-trans retinoic acid
(ATRA), used for the treatment of APL by differentiating abnormal promyelocytes,
strongly up-regulates PLC-f2 expression [73]. As,03, a safe and effective agent for
patients with APL, also produced a slight increase in PLC-p2. These observations
suggest that PLC-B2 expression is closely correlated with the responsiveness of
drugs in APL patients and is a specific marker to test the ability of differentiation
agents for the treatment of APL [74].



1 Phospholipases in Health and Disease 13
1.3.3 Immune System Dysfunction

Interestingly, two PLC-y isozymes show a distinct expression pattern in immune
cells. PLC-y1 is abundant in T-cells and PLC-y2 is highly detected in B-cells. In view
of their distinct expression pattern, PLC-yl and PLC-y2 are essential for T- and
B-cell development and immune responses, respectively. PLC-y1 is critical for T-cell
receptor-mediated signaling, which mediates activation of NF-xB, Ras-ERK, and
NFAT signaling [75-77]. Linker for activation of T-cells (LAT), a scaffold adaptor
protein, regulates T-cell signaling and development [78]. Mutation of Y136 site (a
binding site for PLC-y1) impaired T-cell development, with a polyclonal lymphopro-
liferative disorder and signs of autoimmune disease [79]. In addition, a severe defect
in positive and negative thymocyte selection was observed in LATY!*F knock-in
mice, suggesting that aberrant negative selection might contribute to the proliferation
of autoreactive T-cells due to a skewed TCR repertoire [80]. Moreover, deletion of
T-cell-specific PLC-y1 impaired T-cell development and function and developed
inflammatory/autoimmune disease in mice model [81]. Also, PLC-y2 is highly
expressed in hematopoietic lineage cells and plays a crucial role in immune responses
[82—84]. As expected, PLC-y2 knock-out mice exhibited defects in B-cell functions
and Fc receptor-mediated signaling [85, 86]. Significantly, whole-exome sequencing
of a family affected by dominantly inherited inflammatory disease identified
p-Ser707Tyr substitution in the PLC-y2 SH2 domain, which is essential for PLC-y2
activation. Consistent with these data, overexpression of the p.Ser707Tyr mutant,
PLC-y2, in leukocytes resulted in elevated PLC-y2 activity [87]. Additionally,
genetic studies reported that the in-frame deletion of PLC-y2 resulted in constitutive
forms of PLC-y2 in individuals with cold urticarial and immune dysregulation [88].

1.3.4 Atherosclerosis

The accumulation of leukocytes (particularly monocytes/macrophages) in an arterial
lesion leads to atherosclerosis. Thus, numerous abnormalities in leukocytes are closely
linked to atherosclerosis [89]. PLC-B3 deficiency elevated sensitivity of macrophages
to apoptosis induction in vitro and led to reduction in the number of macrophages in
the apoE-deficient mouse model of atherosclerosis [90]. These results indicate that
PLC-f3 activation promotes macrophage survival in atherosclerotic plagues, suggest-
ing PLC-P3 as a potential target for the treatment of atherosclerosis.

1.3.5 Arthritis

During rheumatoid arthritis, which is characterized by proliferation of synovial tis-
sues and associated joint destruction, many immune cells are involved in autoim-
munity. PLC-y2 is highly expressed in hematopoietic lineage cells and plays a
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crucial role in immune responses as described above. PLC-y2 knock-out mice were
protected in both the serum transfer arthritis model and methylated BSA-induced
arthritis model. These reports suggest that PLC-y2 is required for neutrophil activa-
tion, dendritic cells (DCs)-mediated T cell priming, and focal osteolysis in progres-
sion of arthritis [91, 92].

1.3.6 Metabolic Diseases

PLC isozymes are expressed in metabolic tissues and respond to extracellular sig-
nals linked to metabolic regulation. PLC-81 knock-out mice demonstrated that
PLC-81 negatively regulates thermogenesis and positively controls adipogenesis.
Because of increased oxygen consumption and heat production, PLC-81 knock-out
mice showed decreases in weight gain and lipid droplets on a high-fat diet [93].

The metabolic syndrome represents a combination of metabolic phenotypes,
including high blood pressure, obesity, cholesterol levels, and insulin resistance
[94]. A phenomics-based strategy found that PLC-yl missense mutation was asso-
ciated with metabolic syndrome in the European American and African American
populations [95]. This result suggested that PLC-y1 may contribute to the develop-
ment of the metabolic syndrome. Although the early death of PLC-y1 knock-out
mice limits in vivo studies, studies using conditional knock-out mice will increase
our understanding of PLC-y1 function in metabolic disease.

1.3.7 Kidney Dysfunction

The kidneys play a fundamental role in the regulation of arterial blood pressure and
fluid/electrolyte homeostasis. Many RTKs and their respective ligands have been
implicated in the control of metanephric kidney and urinary tract development.
Many genetic mouse models have demonstrated the role of RTKs in renal develop-
ment [96-99]. The important functions of PLC-y1 in RTK signaling have also been
extensively studied [100]. Chimeric PLC-y1 knock-out mice display multicystic
kidneys due to severe renal dysplasia and renal tube dilation [101]. Recent studies
have suggested that PLC-y1 contributes to the response to hypertonic stress by regu-
lating tonicity-responsive enhancer-binding protein (TonEBP), a transcription fac-
tor that is essential in the function and development of the renal medulla [102, 103].

PLC-¢l is abundant in podocytes of mature renal glomeruli, implicating it in
kidney function. Using positional cloning, a PLC-el mutation was identified in
patients with early-onset nephrotic syndrome, a malfunction of the kidney glomeru-
lar filter. Patients with PLC-e1 mutation showed defects in glomerular development.
Consistent with this, PLC-e1 knockdown in zebrafish leads to nephrotic syndrome
[104, 105].
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1.4 PC-PLD in Health and Disease
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PLD and its product PA are involved in a variety of cellular processes. The PLD
functions in cellular signaling, vesicle transport, endocytosis, exocytosis, and cyto-
skeletal rearrangement have been largely defined and are implicated in a diverse
range of pathophysiological processes and diseases, such as neuronal, cardiac, and
vascular diseases, as well as oncogenesis and metastasis [106] (Table 1.2).

Table 1.2 Summary of PC-PLD roles in health and disease

PLD
isozymes Disease Analysis system Functional role Reference
PLD1 Brain ischemia Ischemia-reperfusion  Protects neuronal calls from [113]
model apoptotic condition
Alzheimer’s Expression level of Up-regulated expression [118]
disease patient sample and activity of PLD
Blastocyst-derived Disrupts the association of ~ [125]
wt and PS177/ y-secretase components
PS27- cells
Bleeding Knock-out mice Regulates integrin allbf3 [129]
disorder activation and aggregate
formation
Histamine-induced Regulates secretion of [130]
secretion of von Weibel-Palade bodies
Willebrand factor
model
Breast cancer Expression level of Up-regulated PLD1 may [132,133]
patient sample contribute to
tumorigenesis
Over-expressed PLD1 [134]
associates with poor
prognosis
Melanoma, lung  Knock-out mice Promotes tumor growth [139]
carcinoma, and metastasis in the
breast cancer tumor environment
PLD2 Colorectal Genetic studies Polymorphism of PLD2 [135]
cancer is associated with
colorectal cancer
Expression level of Up-regulated PLD2 may [136]
patient sample contribute to tumor size
and survival
Brain ischemia Ischemia-reperfusion  Protects neurons from [117]
model ischemia
Alzheimer’s Transgenic mouse Deletion of P1d2 rescues [122]
disease model of AD deficits of SWAPP
(SwAPP) mouse
Renal cancer Genetic studies Up-regulated PLD2 may [138]

contribute to
tumorigenesis
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1.4.1 Brain Disorder

Brain-associated PLD activity was first reported in 1973. Indeed, both PLD1 and
PLD2 are expressed throughout the brain during development and postnatal life. In
the rat, PLD1 mRNA levels and activity are increased from embryonic day 19 to
postnatal day 14 and remain constant thereafter [107], and PLD2 expression
increases postnatally [108]. In addition to neurons, PLDs are also highly expressed
in oligodendrocytes (PLD1), astrocytes (PLD2), and ependymal cells [109]. PLDs
regulate various neuronal activities. For instance, PLD2 mediates the constitutive
internalization of metabotropic glutamate receptors, mGluR1a and mGluR5a, and
the trafficking of opioid receptors [110, 111]. In addition, PLDs regulate neurite
outgrowth through Src and Ras, Erk1/2, and the CREB signal pathway in response
to NGF and neuronal cell adhesion molecule L1, lysophosphatidylcholine (LPC),
and bFGF [112]. PLDs are also involved in survival of neuronal cells in ischemia.
Forebrain ischemia increases the expression of PLD1 and increased PLD activity
was detected in reactive astrocytes in the rat [113]. Recent studies have shown that
overexpression of PLD2 protects neurons exposed to apoptotic conditions
[114-117].

In 1986, the relationship between PLDs and Alzheimer’s disease (AD) was first
described. The activity of PLDs in AD-affected brain was reduced by 63 % in com-
parison with controls. In recent studies, however, increased protein levels and activ-
ity of PLDs in AD patients and increased activation of PLDs by amyloid -peptide
(Ap) have been reported [118—121]. Furthermore, AB1-42 increases PLD activation
in neurons, astrocytes, and microglia. Consistent with this, the deletion of PLD2
prevents toxicity and synaptic dysfunction induced by Ap1-42 despite a significant
amyloid P load [122]. Conversely, PLD1 is also involved in the generation and
secretion of AfB. PLD1 accelerates the formation of amyloid precursor protein
(APP)-containing vesicles from the trans-Golgi network and the cell surface accu-
mulation of APP and presenilin 1 (catalytic component of y-secretase complex)
[123, 124]. In contrast to its positive role in trafficking, PLD1 also functions as a
negative regulator of AP generation. PLD1 physically interacts with the cytoplasmic
loop of presenilin 1. This interaction recruits PLD1 to the Golgi and inhibits cleav-
age of BCTF to AP by disrupting association of y-secretase [125].

1.4.2 Bleeding Disorder

PLDs are present in platelets and PLDs rapidly localize to the plasma membrane in
response to platelet activation [126-128]. Platelets from Pldl knock-out mice
exhibit impaired integrin ollbp3 activation and abnormal aggregate formation in
vitro under high shear flow conditions [129]. Additionally, PLD1 is implicated in
the histamine-induced secretion of von Willebrand factor (vVWF) from endothelial
cells [130]. The vWF is a major clotting factor and its deficiency results in the most
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common inherited bleeding disorder, von Willebrand disease. Knockdown of PLD1
dramatically decreased histamine-induced secretion of vWF, whereas knockdown
of PLD2 had no effect [131]. These results suggest that PLD1 may be a critical
regulator of thrombosis in endothelial cells and platelets.

1.4.3 Cancer

Elevated PLD activity and a driver mutation in PLDs have been reported in various
cancers (breast, gastric, renal, and colorectal cancer). In malignant breast cancer,
PLD activity is increased, as is the expression of PLD1/2 [132, 133]. PLDI1 tends to
be overexpressed in tumors that show high expression of cytokeratins 5/17, which
are frequently associated with poor prognosis [134]. Polymorphism in Pld2 was
reported and was significantly associated with the prevalence of colorectal cancer
[135]. Moreover the expression level of PLD?2 is also elevated in colorectal carci-
noma and the ratio is proportional to tumor size and survival [136]. Additionally,
increased activity of PLD is found in gastric carcinomas [137] and PLD2 protein
levels and activity are increased in renal cancers [138]. Moreover, PLDI1 has a criti-
cal function not only in the cancer cell itself but also in the tumor microenviron-
ment. PLDI1-deficient mice showed that PLD1 promotes tumor growth and
metastasis through enhanced angiogenesis and decreased tumor cell-platelet inter-
actions [139].

Although the molecular mechanism through which PLDs contribute to the occur-
rence and progression of cancer remains unclear, PLDs contribute to key events in
the oncogenic process, including growth signaling, overriding gatekeeper, and sup-
pression of apoptosis and metastasis. PLDs have been involved in oncogenic signal-
ing. The oncogenic signaling network is mediated by the interaction between PLDs
and Ras and facilitates the activation of MAPK [140, 141]. PLD and its product PA
suppress cancer cell apoptosis through activation of mTOR [18, 142, 143]. PLD and
PA also act to suppress the expression of p53 by stabilizing the MDM2-p53 com-
plex [144, 145]. PLD1 was reported to be required for secretion of matrix metallo-
proteinase (MMP)-9 by colorectal cancer cells [146] and MMP-2 by glioma cells
[147]. PLD2 activation increases phosphorylation of focal adhesion kinase and Akt
and these enhance the invasion activity of EL4 lymphoma cells, whereas inactive
PLD inhibits metastasis by disrupting actin cytoskeletal reorganization, cell spread-
ing, and chemotaxis [148, 149].

1.5 PLA in Health and Disease

PLAs are divided into two subtypes, type 1 and type 2. In contrast to other phospho-
lipases, the physiological functions of PLA; remain largely unknown [20]. Each
subtype of PLA, has different structures and regulatory mechanisms, distribution,
and cellular localization [21]. In particular, SPLA,s are secreted and not limited to
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intracellular functions, acting also in extracellular regions. Through this diversity,
PLA,s are involved in various biological processes. Each isotype of PLA, has spe-
cific roles and is implicated in various human diseases (Table 1.3).

1.5.1 Brain Disorders

SPLA,-ITA and sPLA,-IIC are ubiquitously expressed in the rat brain. SPLA,-V is
highly expressed in the hippocampus. Among the various sPLA,s, sPLA,-IIE,
sPLA,-V, and sPLA,-X are expressed in the human brain and the expression of
SPLA,-IIA is induced under inflammatory conditions [150]. SPLA,s released from
neuronal cells regulate neurite outgrowth [151] and neurotransmitter release [152].

cPLA,s are expressed in the gray matter of many regions, including the olfactory
cortex, hippocampus, amygdala, thalamus, hypothalamus, and cerebellum, and the
expression is confined to astrocytes [153, 154]. Compared with iPLA,s, SPLA,-IIA
and sPLA,-V, the expression levels of cPLA, are lower in the brain [155]. However,
cPLA,s have crucial function in brain. cPLA,s cleave membrane phospholipids at
the sn-2 position and preferentially release arachidonic and docosahexaenoic acids.
The arachidonic and docosahexaenoic acids regulate the release, uptake, and trans-
port of neurotransmitters [156—-158]. Additionally, administration of arachidonic
acid and docosahexaenoic acid into hippocampus induces a long-term potentiation
of synaptic transmission [159, 160]. cPLA, levels in occipital cortex and cerebellum
of Alzheimer’s patients were elevated above those in normal persons [161]. In the
cerebral cortex, the increased expression of cPLA, was detected on astrocytes in A}
amyloid accumulated regions. This elevated cPLA, is associated with active inflam-
matory response in AD. Contrary to the occipital cortex, in the parietal region of AD
brains, cPLA, was significantly decreased. Moreover, lower PLA, activity was sig-
nificantly correlated with earlier onset of the disease and with higher mortality,
higher neurofibrillary tangle counts, and senile plaques [162].

The pathological relevance of cPLA,-IVA has been suggested in Parkinson’s dis-
ease. Administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) led to less dopamine depletion and neurotoxicity in Pla2g4a knock-out
mice as compared with their normal littermates [163]. The reduced MPTP-induced
neurotoxicity is explained as a consequence of reduced excitotoxicity and mito-
chondrial injury by decreases in free fatty acids, lysophospholipids, and reactive
oxygen metabolites. This evidence suggests that cPLA,-IVA plays a role in the
development of Parkinson’s disease.

The main cytosolic PLA, activity comprises iPLA,-VI in adult rat brains and the
activity is highest in the hippocampus and striatum [155, 164, 165]. Mutations in
the PLA2G6 gene have been identified on chromosome 22q12-q13 and this locus is
associated with infantile neuroaxonal dystrophy, neurodegeneration with brain iron
accumulation and the related Karak syndrome [166]. Consistent with this, Pla2g6
knock-out mice show severe motor dysfunction accompanied by numerous spher-
oids and vacuoles and widespread degeneration of axons and synapses after



Phospholipases in Health and Disease

1

(panunuoo)
uone[NUINIOL
[0611 pidi] onoadsorayie sasearoul pue sogeydoroewr s)e[n3oy 901U JNO-O0U] SISOIQ[OSOIIY
[s81] uoneWWePuI ABMITE PAONPUI-USIA[[E SAJe[NIoY 90TW JNO-JO0US| BUIYISY X-7V1ds
[z81] UoneZNIsudsounwwI uLnp uoneISIW 9JA003N3[ JO UONL[NIAY 90TW JNO-YO0US| BUIYISY
[e871] uonewwegur orydonnau pue Anfur Junj AJnde sAIL[N3AY QOIW JNO-YOOUS]  QWOIPUAS SSANSIP AIojeaidsar anoy
181l BUWIYISE JO 90udeAdId Y)IM PAIRIOOSSY SaIpn)s [e2IUID)
[LL1]  oouereddo xordwos sunwwl sojowoid pue 9[o1 AJojeWeyul-NuyY 901U JNO-YO0U] SOLIYIY
[6811 uonisodop uae[[0d saseaIou] Q01W OTUASSURL],
so3eydoroewr
[8811 43noay) SISoIa[ds01aYyIe JO Juawdo[oAap 01 SANQLIU0D) SoIpMIS [BIIUI[D) SISOIO[ISOIIY A-TV1dS
[eza] J190UBd 0) ANQLIUOD AR £O7V 1d Jo swisiydiowA[og Apnis onouan) JI90UBD [B1910[0))
UONBULIO] [[90 WEOJ
[1611] a3eydoroewr pue uoneoyrpow urejordodr] ewserd sayen3oy QOTW OIUATSURI], SISOIQ[OSOIY)Y I-2v1ds
[£81] QOIW OIUAFSULI],
[9811 711 9Y! JO uoisny pue uonesaId3e sajowold SQIpMIS [BIIUI[D) SISOIO[ISOIIY
[oL11 STILIYLIE PIOJBWNAYL JO 90Ud[eAdId (IIm SIIBIDOSSY SoIpMIS [BIIUI[D)
[8L1] Q0TW OTUATSUBI],
[LL1] dsuodsar uonewwe Ul JUIOf Ul PIAJOAU] 901U INO-O0U] SOLIYIY
[g12] sise)selow Juonbaly ssof pue [eAIAINS Juaned YIIm SAIRID0SSY SoIpMIS [BIIUI[D) 190UBD JLIISeD)
[ozzl SISOUQSOUIOIED [BIIWAYD 9FBIS-OM] B 0} SIZNISUIS 901W OIUISSURL], JI9OUBD UDS
[1zz ‘6121 100uEd AeIsold Jo sisauasoyied ayy 01 sAINQLIUOD SoIpMIS [BIUI[D) J190UBD A)BISOI]
[812‘s12] SUAZoUIdIRD SISISTY Apnjs o1j0u20)
[L12] QOTW OTUATSUBI],
[o12] sIsoueSLIOWwn) UO[0d SIqIYU] 901U JNO-O0US] JI90UBD [£19910[0D) VII-ZV1dS
[oz1] Aniqndoosns A3159qo 10J SNOOT B Y)IM SIJRIDOSSY Apms onouan)
[661 ‘8611 uoneldepe [e1ogauaq A[[BII[0qEIOU JUIAI] 901U INO-YO0U ] K1s9q0 d1-cv1ds
QOUIYY 901 [eUONOUN] w)sAs sisAeuy aseasig SOWAZOSI
VId

QSBASIP PUB [)[BAY Ul SI[0I I JO Arewwuns  ¢°] d[qe],



Y.R. Yang et al.

20

[¥12] sisKjodi] @1Ko0dipe seje[noy 90TW JNO-JO0US| £)1s2q0  TAX-V1dPV
Sproe A)1eJ poyLIISe-uou VIIA

[S61 ‘vol] PazZIpIX0 pue DJr] ‘slojerpawt A1ojewwegur-oid seonpoid SaIpN)S O1oUAD) SISOIQ[ISOIP Y HV-AVd

[oL1] SSIpms dnouan)

[691] SUOINAU JOJOW pue KIOSUSS SUANyu] Q0T JNO-YO0U] 9SBASIP UOINAU JOJOJA OV IdNd

[¢12] SISK[OIPAY OPLIQdA[S LN soJe[NToY SQIpPN)S J1}OUID) dTIVN

[z12] UOI12I09S UI[NSUT U POA[OAU] SOIPN)S 12U K1saqO SV IdNd
[807 ‘L02] SOIpN)S O1OUAD) 9seasIp o3eI0)s pidi| [eNNaN

[902] 93e103s pidi| [ennau sareNSAY SoIpN)S O1oUAD) QWIOIPUAS UBWIIO—ULIBURYD) TV I1dNd

uonsodwoo prdrjoydsoyd

[1L1] [eLIpuoyo0) it ygnoay) uonosuny sndweooddry soyen3oy Q0TW JNO-JO0US| uonounjsAp aAnugoD)
[s0T v0T] uonoUNJSAp PINPUI-1AIP JEJ-YSIY 0 JULISISAY 901 INO-3o0U3| A1saq0  dIA-TVId!
(891 *L91] 90T INO-3O0U3] SwoIpuAs

[991] AydonsAp [euoxeoInau Jsurese s302Joid Apms onouan Yerey] paje[al ‘VIIN Pue QVNI

[Lz2] UOISEAUT PUE SISQUSIIOWN) € $a1e[nSoy Q0T JNO-YO0US] IOOUBD UBLIBAQ)

[ez2] JIOOUED [B}02I0[0D JO UOTIBISUAS (M POIeIdossSy Apms o130u90) I0JUEBD [£J09I0[0))

suonjeo1dwod

[cead UOIOBIUOD JB[NOSBA SAB[NTY 901 JNO-YO0uS] IR[NOSBA PIRIDOSSE-$JOqRI(
[coz ‘102] UOI12I03S UI[NSUT SAB[NTY 901 JNO-Yo0uy] uonounysAp 19[S]  VIA-ZVId!

[L6T1] uone3a133e 191o1e[d pue ‘proe J0TW JNO-YO0Uu|

[961] OTOUQEI}OILS0IIOAX0IPAY-7 ] Pue 7Y XL Jo uononpoid sorenSoy SOIPN)S O1}OUAN) uonounysAp sjo[ere[d

[9z2] reugdis sisoydode-o1d soyen3oy Q0TW JNO-JO0UuS| 190UBD [8)D3I0[0))

901 JNO-Yoouy]

[szz ‘vzal sd£jod jo uorsuedxa saje[n3oy /Apnys onouan stsodATod [eunsayuy

l6L1] SILIYLIE PIONPUI-UaSE[[0d SANQLIU0)) Q01w JNO-Yo0ou| SOLIYITY

[#81] ewyse Jo juowdo[oaap 03 AnqLIuo) Q01w JNO-YO0U | BUIYISY

[e91] uonordop ourwredop poonpul-g LJIA Ul POA[OAU] 901w JNQO-Yo0US| oseasIp s,uosuniied  VAI-CV1dO
QOURIJY 901 TRUOnOUN,] wo)sKs sIsAeuy aseasig SOWAZOST

Vid

(Ponunuod) €'Y AqEL



1 Phospholipases in Health and Disease 21

1-2 years of age [167, 168]. Brain-specific Pnpla6 knock-out mice also exhibit a
progressive neuronal degeneration in the hippocampus, thalamus, and cerebellum
[169]. The deletion of PNPLAG leads to disruption of the ER and induces degenera-
tion and massive swelling of the axons of sensory and motor neurons. Moreover,
mutations of PNPLAG6 are reported as the cause of severe motor neuron diseases in
humans [170]. Pnpla8 knock-out mice exhibit cognitive dysfunction accompanied
by enlarged and degenerate hippocampal mitochondria [171]. The absence of
iPLA,-VIB induced the elevation of mitochondrial cardiolipin composed of long
chain length species and alterations in mitochondrial phospholipid composition.
These changes result in increased reactive oxygen species and neuronal cell death
with deficits in spatial learning and memory.

1.5.2 Arthritis

The local and systemic expression level of SPLA,-II is elevated in inflammation and
sPLA,-II has been considered as a key enzyme in the pathogenesis of inflammatory
diseases [172, 173]. Some inbred mouse strains (199/SV; BALB/c) have a natural
mutation in the sPLA, gene and exhibit higher susceptibility to arthritis than SPLA,-
ITA expressing mouse strains [174, 175]. In addition, the synovial cells and chon-
drocytes in the joints of rheumatoid arthritis patients strongly express sPLA,-IIA
[176]. Consistent with these clinical genetic reports, the inflammation response is
noticeably attenuated in the joints of sPLA,-ITA-deficient BALB/c mice under
antibody-induced arthritis compared with wild-type BALB/c mice [177].
Furthermore, transgenic mice overexpressing human sPLA,-ITA show exacerbated
arthritis [178]. Pla2g4a knock-out mice also show markedly reduced severity and
incidence of rheumatoid arthritis compared with control mice [179]. These findings
strongly support that sSPLA,-IIA and cPLA,-IVA have pro-inflammatory roles in
inflammatory arthritis. However sPLA,-V exerts opposite effects to sSPLA,-IIA and
cPLA,-IVA in inflammatory arthritis. Pla2g5 knock-out mice show exacerbation of
arthritis. This deterioration arises from the attenuated immune complex clearing by
macrophages of Pla2g5 knock-out mice [177].

1.5.3 Asthma

sPLA,-V and sPLA,-X are widely expressed in airway epithelia [180]. The expres-
sion of sPLA,-V and sPLA,-X is markedly elevated in asthmatic mouse model.
Moreover, increased expression of sPLA, is also detected in patients with asthma
[181, 182]. Consistent with this, methacholine-induced airway hyperresponsiveness
is markedly attenuated in Pla2g5 knock-out mice [182]. And lipopolysaccharides-
induced acute lung injury is also attenuated in Pla2g5 knock-out mice [183]. sPLA,-
V is involved in airway disorders by regulating antigen processing, maturation of
dendrite cells and following Th2 immune response, and sPLA,-V facilitates the
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subsequent propagation of pulmonary inflammation in resident airway cells [184]. In
the ovalbumin-induced asthma model, the lungs of Pla2gl0 knock-out mice also
show marked attenuations. sPLA,-X-deficient mice exhibit lower infiltration by
CD* and CD* T cells and eosinophils than wild-type littermates. Metaplasia of
goblet cell and smooth muscle cell layer thickening, subepithelial fibrosis, and levels
of Th2 cytokines and eicosanoids are also reduced in SPLA,-X-deficient mice [185].
Like sPLA,, the airway anaphylactic response in cPLA,-IVA-deficient mice is also
markedly reduced compared with wild-type littermates [184]. These findings suggest
that PLA,s are involved in antigen-induced bronchial hyperreactivity and asthma.

1.5.4 Atherosclerosis

Hydrolysis of PC by sPLA, produces non-esterified fatty acids and LPC. These
products trigger chemotactic and vasoactive proinflammatory events, which facili-
tate atherosclerosis. Hydrolysis of low-density lipoprotein (LDL) by sPLA,s leads
to an alteration of phospholipid-degraded particles and promotes aggregation. In
human atherosclerotic plaques, the expression of SPLA,-IIA is markedly increased
in macrophage-rich regions [186]. Consistent with the expression pattern,
PLA2G2A-transgenic mice exhibit increased incidence of atherosclerotic lesions
with a high-cholesterol diet [187]. In addition, SPLA,-V is also enriched in athero-
sclerotic lesions in humans. Recent genetic studies reported that sPLA,-V induces
the formation of foam cells and regulates the development of atherosclerosis [188,
189]. A study using Pla2g10 knock-out mice provided evidence that SPLA,-X nega-
tively regulates efflux of cholesterol in macrophages and contributes to lipid accu-
mulation [190]. Additionally, SPLA,-III is also linked to atherosclerosis. sPLA,-III
is accumulated in the atherosclerotic lesion of human. And the aortic atherosclerotic
lesions in PLA2G3-Tg mice are more severe than in control mice on the apoE-null
background after intake of an atherogenic diet [191].

Unlike other PLA,s, plasma-type PAF-AH has been identified as a protective fac-
tor against the development of atherosclerosis by removing oxidized LDL [192].
However, recently studied data suggest that PAF-AH has an active role in the devel-
opment and progression of atherosclerotic [193]. Additionally, it has been revealed
that A379V polymorphism of PAF-AH correlates with coronary artery disease as well
as heart attacks by epidemiological studies [194, 195]. The active role of PAF-AH is
explained by its ability to generate two key pro-inflammatory mediators, oxidized
non-esterified fatty acids and LPC, by cleaving oxidized phospholipids from LDL.

1.5.5 Platelet Dysfunction

The mutation in PLA2G4A gene is associated with platelet dysfunction in human
[196]. The production of thromboxane (TX)B2 and 12-hydroxyeicosatetraenoic
acid from platelets of patients who has heterozygous mutations of PLA2G4A was
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markedly reduced and platelet aggregation and degranulation, induced by adenosine
diphosphate (ADP) or collagen, were diminished. Consistent with human, the pro-
duction of pro-thrombotic TXA2 by collagen-stimulated platelets was decreased in
cPLA,-IVA-deficient mice; however, cPLA,-IVA does not influence the ADP-
stimulated production of TXA2 [197]. The platelet aggregation of Pla2g4a knock-
out mice is slightly decreased. In mice, the TXA2, regulated by cPLA,-IVA, may
mainly act as a vasoconstriction regulator. Collectively, these findings indicate that
cPLA,-IVA is involved in platelet function and hemostasis.

1.5.6 Metabolic Disease

Pla2g1b knock-out mice exhibit resistance to high fat diets, which induce obesity
[198], with lower plasma insulin and leptin levels and improvement in insulin resis-
tance. The reduced production and absorption of LPC in the lumen of the small intes-
tine by the absence of sPLA,-IB mainly contributes to these phenotypes. Pla2glb
knock-out mice also display increased postprandial hepatic fat utilization and energy
expenditure because of increased expression of the peroxisome proliferator-activated
receptors, CD36/Fat and UCP2, coincided with reduced postprandial plasma lyso-
phospholipid levels [199]. Moreover, a recent genome-wide linkage scan study identi-
fied that the human PLA2GIB gene resides within a locus for obesity susceptibility
[200]. These data suggest that SPLA,-IB and its product, lysophospholipid, suppress
hepatic fat utilization and energy metabolism in diet-induced obesity.

Pancreatic islets of Pla2g6 knock-out mice exhibit abnormal insulin secretion
patterns based on glucose level [201]. Pla2g6 knock-out mice have normal blood
glucose concentrations on normal diets, but with high fat diets they show more
severe glucose intolerance than wild-type mice, with a highly sensitive response to
exogenous insulin. Conversely, iPLA,-VIA transgenic mice have low blood glucose
levels and high insulin levels [202]. This implies that iPLA,-VIA regulates glucose-
stimulated insulin secretion. iPLA,-VIA is also involved in diabetes-associated vas-
cular complications [203]. iPLA,-VIA is increased in diabetic animals and the lack
of iPLA,-VIA diminishes diabetes-associated vascular hypercontractility. In con-
trast, mice lacking iPLA,-VIB exhibit resistance to obesity and subsequent compli-
cations with increase in fatty acids oxidation and mitochondrial uncoupling after
high fat feeding. Adipocytes of Pnpla8 knock-out mice appear to have increased
oxidation rates and their skeletal muscles exhibit impaired mitochondrial f-oxidation
of fatty acids, accompanied by accumulation of long-chain acylcarnitine in the mus-
cle and urine. [204, 205]. This implies that iPLA,-VIB is a critical enzyme for effi-
cient electron transport chain coupling and energy production.

Mutations in the PNPLA2 gene are implicated in the pathogenesis of Chanarin—
Dorfman syndrome [206] and neutral lipid storage disease [207, 208]. PNPLA,
regulates lipid droplet association through its C-terminal domain [209, 210].
Consistent with this, Pnpla2 knock-out mice have increased lipid deposition in adi-
pose tissues and many non-adipose tissues with severe triglyceride (TG) hydrolysis
defects [211].
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There is a strong association between polymorphisms of the PNPLA3 gene and
ancestry-related predisposition to both nonalcoholic and alcoholic fatty liver and
PNPLA3 is also associated with insulin secretion and obesity [212]. The 1148M
point mutation in PNPLA3 is associated with nonalcoholic fatty liver disease. This
mutation disrupts TG-hydrolytic activity [213]. Adenoviral transfer of the 1148M
mutant PNPLA3 into mouse liver causes TG accumulation like human fatty liver
disease. In addition, another catalytically dead S47A mutant also induces TG accu-
mulation. Collectively, the relation of PNPLA3 and lipid droplets suggests that
PNPLAS3 serves to hydrolyze TG.

Pla2g16 knock-out mice have markedly reduced white adipose tissue mass and
TG content but normal adipogenesis [214]. They exhibit the high energy expendi-
ture of adipocytes with increased fatty acid oxidation. Pla2g16 knock-out mice also
show a markedly higher rate of lipolysis because of increased levels of cAMP aris-
ing from a marked reduction in the amount of adipose prostaglandin E2 (PGE2).
Moreover, AAPLA-deficient ob/ob mice are hyperphagic but lean and have increased
energy expenditures with ectopic TG storage and insulin resistance. This implies
that AdPLA is a major regulator of adipocyte lipolysis and is crucial for the devel-
opment of obesity.

1.5.7 Cancer

sPLA,-ITA has an antitumor function in colorectal cancer. Expression levels of
mouse sPLA,-IIA correlates with the resistance of different mouse strains to the car-
cinogen azoxymethane [215] and overexpression of sPLA,-IIA strongly inhibits
azoxymethane-induced colon tumorigenesis in C57BL/6 mice [216]. Consistent
with the Pla,g2a transgenic mouse, Pla2g2a knock-out mice are susceptible to
colorectal tumorigenesis [217]. sPLA,-IIA expression in human gastric cancer is
associated with patient survival and less frequent metastasis [218]. In contrast to
colorectal and gastric cancer, SPLA,-IIA has a pro-tumorigenic effect in prostate
cancer and skin cancer, increasing sensitivity to chemical carcinogenesis [219, 220].
The expression of SPLA,-ITA has a strong correlation with prostate cancer progres-
sion and mortality [221]. In several types of human cancers, sSPLA,-III is detected in
microvascular endothelial cells, as well as in tumor cells [222]. These reports show
that sPLA,-III has a crucial role in cancer development by stimulating tumor cell
growth and angiogenesis. Especially, in human colorectal cancer the polymorphisms
of PLA2G3 are significantly associated with a higher risk of cancer [223]. Consistent
with these reports, the growth of sPLA,-III-transfected colorectal cancer cells is pro-
moted in xenograft nude mice model through the PGE2-dependent pathway.
cPLA,-IVA expression is markedly elevated in polyps in the small intestine of
APCAT716 knock-out mice [224, 225]. Mutation in the Pla2g4a gene reduces polyp
size, but there is no difference in number. This implies that cPLA,-IVA plays a key
role in the expansion of polyps rather than initiation in the intestine. However, in
an azoxymethane-induced colon tumorigenesis model, deletion of cPLA,-IVA
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exacerbates colorectal cancer [226]. This exacerbation may be the result of the
attenuated apoptosis of the colonic epithelium by cPLA,-IVA deficiency.

iPLA,-VIA is also involved in tumorigenesis. The Pla2g6 haplotypes are strongly
associated with colorectal cancer [223]. In the case of ovarian cancer, the genetic
deletion and siRNA-mediated suppression of the Pla2g6 gene reduced tumorigen-
esis and invasion of ovarian cancer cells [227].
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Chapter 2

Role of Phospholipases in Regulation

of Cardiolipin Biosynthesis and Remodeling
in the Heart and Mammalian Cells

Edgard M. Mejia, Vernon W. Dolinsky, and Grant M. Hatch

Abstract Cardiolipin is a key mitochondrial membrane phospholipid involved in
the regulation of generation of ATP. Cardiolipin synthesis and remodeling are
tightly regulated processes in eukaryotic cells. The role of phospholipases in the
regulation of cardiolipin metabolism is becoming much clearer. Cardiolipin is
hydrolysed by several classes of phospholipases including calcium-independent
phospholipase A,, secretory phospholipase A,, and cytosolic phospholipase A,.
Mitochondrial calcium-independent phospholipase A, gamma has emerged as a key
player not only in the regulated hydrolysis of cardiolipin to monolysocardiolipin,
but also in the overall regulation of mitochondrial function and energy production.
The purpose of this chapter is to summarize some of the more current findings on
the role of phospholipases in the regulation of cardiolipin metabolism in the heart
and mammalian tissues. In addition, a brief discussion on the role of exogenous
phospholipase-treatment of cells on cardiolipin metabolism is presented.

E.M. Mejia
Departments of Pharmacology and Therapeutics, University of Manitoba,
Winnipeg, MB, Canada R3E 0T6

V.W. Dolinsky
Departments of Pharmacology and Therapeutics, University of Manitoba,
Winnipeg, MB, Canada R3E 0T6

Center for Research and Treatment of Atherosclerosis, DREAM Theme Manitoba
Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada R3E 0T6

G.M. Hatch (<)
Center for Research and Treatment of Atherosclerosis, DREAM Theme Manitoba
Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada R3E 0T6

Biochemistry and Medical Genetics, University of Manitoba,
Winnipeg, MB, Canada R3E 0T6

Department of Pharmacology and Therapeutics, Manitoba Institute of Child Health, 501C
John Buhler Research Center, 715 McDermot Avenue, Winnipeg, MB, Canada R3E 3P4
e-mail: hatchgm @ms.umanitoba.ca

P.S. Tappia and N.S. Dhalla (eds.), Phospholipases in Health and Disease, Advances 39
in Biochemistry in Health and Disease 10, DOI 10.1007/978-1-4939-0464-8_2,
© Springer Science+Business Media New York 2014



40 E.M. Mejia et al.

Keywords Cardiolipin ¢ Calcium-independent phospholipase A, y ¢ Heart
* Acyltransferase * Trifunctional protein ® Mono lysocardiolipin * Barth syndrome
* Human * Mammalian

2.1 Introduction

Phospholipids are important structural and functional components of the cell
membrane and alterations in the composition of phospholipids within the heart are
linked to alterations in myocardial electrical thythm [1, 2]. Bis-(1,2-diacyl-sn-
glycero-3-phospho)-1',3’-sn-glycerol or cardiolipin (CL) is the principal polyglyc-
erophospholipid found in the heart and mammalian tissues [3]. CL was initially
discovered in beef heart by Mary Pangborn in 1942 and was subsequently shown
to comprise approx. 15-20 % of the entire phospholipid phosphorus mass of the
heart [3—6]. The heart contains the highest concentration of CL found in any mam-
malian tissue due to its vast abundance of mitochondria. CL is found within both
inner and outer mitochondrial membranes and within their contact sites [7-9].
Both the appropriate content and the fatty acyl molecular composition of CL are
critical for the ability to modulate the activity of mitochondrial enzymes involved
in the generation of ATP (reviewed in [6, 10]). In fact, CL is the “glue” that holds
the mitochondrial respiratory complex together [11]. Hence, maintenance of the
appropriate content and fatty acid composition of CL in mitochondria is essential
for mammalian cell function.

2.2 Cardiolipin: Its Role in Apoptosis, General
Mitochondrial Function, and Genetic Disease

CL has been implicated in the intrinsic pathway of apoptosis [12] and is required for
caspase-8 cleavage of Bid at the mitochondrial outer membrane [13]. Stomatin
like-2 (SLP-2), a widely expressed mitochondrial inner membrane protein of previ-
ously unknown function, expression in T lymphocytes resulted in increased CL
content and resistance to apoptosis mediated through the intrinsic pathway [14].
Alteration in the content of CL has been shown to alter oxygen consumption in
mitochondria [15, 16]. In rat heart subjected to ischemia and reperfusion the reduc-
tion in electron transport chain activity was coupled with reduction in CL [17].
When CL is removed or digested away from mitochondrial respiratory chain pro-
teins by phospholipases, denaturation and complete loss in activity occur (reviewed
in [18]). The prohibitins (PHB-1 and PHB-2) are an evolutionarily conserved and
ubiquitously expressed family of membrane proteins that are essential for cell
proliferation and development in higher eukaryotes [19, 20]. PHB complexes func-
tion as protein and lipid scaffolds that ensure the integrity and functionality of the
mitochondrial inner membrane and they associate with CL. CL is important for
formation of the prohibitin-m-AAA protease complex, the alpha-ketoglutarate
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dehydrogenase complex, and mitochondrial respiratory chain supercomplexes [21].
SLP-2 interacts with PHB-1 and -2 and binds to CL to facilitate formation of meta-
bolically active mitochondrial membranes [14]. In T cell-specific SLP-2-deficient
mice impaired CL compartmentalization in mitochondrial membranes results in
decreased protein and activity of complex I of the mitochondrial respiratory chain [22].
Hence, the function of SLP-2 is to recruit PHBs to CL to form CL-enriched
microdomains in which electron transport complexes are optimally assembled. In
addition, reduced expression of mitochondrial respiratory complex proteins in right
ventricle (RV) of persistent pulmonary hypertension of the newborn (PPHN) piglets
provided evidence that PHB complexes may be disrupted in RV cardiac mitochon-
dria of these animals [23].

Barth syndrome (BTHS) is a rare X-linked genetic disorder in young boys char-
acterized by the triad of cardiomyopathy, cyclic neutropenia, and a 3-methyglucaconic
aciduria [24-26]. In 50 % of the cases a mild hypocholesterolemia is also observed.
The documented hypocholesterolemia observed in at least one BTHS patient may
be due to a reduced ability to upregulate mRNA expression and enzyme activity of
hydroxymethylglutaryl-Coenzyme A reductase, the rate-limiting enzyme of de
novo cholesterol biosynthesis [27]. BTHS is caused by mutations in the tafazzin
gene, TAZ, localized to chromosome Xq28.12. There are over 100 mutations in 7TAZ
identified. However, to date there has been no correlation between genotype and
severity of the disease. A reduced ability to resynthesize CL from monolysocardio-
lipin (MLCL) is the underlying molecular mechanism responsible for BTHS
(reviewed in [24, 25]). Hence, BTHS is the only genetic disease identified to date in
which the specific biochemical defect is a reduction in mitochondrial CL and accu-
mulation of MLCL. Four TAZ mRNA transcripts were shown to be generated in
human cells [28]. Taz knockdown mice exhibited a dramatic decrease of tetralino-
leoyl-CL (L;-CL) in cardiac and skeletal muscles, accumulation of MLCL, and
pathological changes in mitochondria [29, 30]. Moreover, disruption of TAZ alters
both assembly and stability of the respiratory chain supercomplexes in the mito-
chondrial inner membrane [31]. Interestingly, decreased levels of PHB complexes
in TAZ-deficient mitochondria were shown to be due to a decreased content of
CL [21]. Introduction of TAZ into yeast with defective TAZ or into TAZ knockout
zebrafish or onto TAZ knock out drosophila restored CL levels and mitochondrial
function to that of near normal levels [32-34].

2.3 Cardiolipin Biosynthesis and Remodeling

The de novo biosynthesis of CL in the heart occurs via the cytidine-5’-diphosphate-
1,2-diacylglycerol (CDP-DG) pathway [35] (Fig. 2.1). Initially, phosphatidic acid
(PA) is converted to CDP-DG by CDP-DG synthetase (CDS). The human CDS has
been cloned and CDS-2 is the major isoform expressed in mammalian heart [36].
CDS-2 mRNA expression is reduced in AMP-activated protein kinase a2 null mice
and this accounted for the reduction in cardiac CL seen in these animals [37].
Clofibrate-mediated activation of peroxisome proliferator-activated receptor
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Fig. 2.1 Cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol pathway (CDP-DAG). The de novo bio-
synthesis pathway of Cardiolipin begins with the formation of PA from G-3-P. PA then reacts with
CTP to eventually produce CDP-diacylglycerol. Another G-3-P then interacts with CDP-
diacylglycerol to produce phosphatidyl glycerol phosphate which is then hydrolysed to yield a
Phosphatidyl Glycerol. From this step, the formation of de novo Cardiolipin is catalyzed by an
enzyme called cardiolipin synthase. The newly formed cardiolipin is quickly remodeled with spe-
cific acyl groups with the help of remodeling enzymes (includes Tafazzin, MLCL AT-1, and/or
ALCAT-1). G-3-P, glycerol-3-phosphate; G-3-P AT, glycerol-3-phosphate acyl transferase;
AGP-AT, 1-Acylglycerol-3-phosphate acyl transferase; CTP cytidine triphosphate, PA Phosphatidic
acid, PPi pyrophosphate, CDP cytidine diphosphate, PGP phosphatidyl glycerol phosphate, CMP
cytidine monophosphate, MLCL AT-1 monolysocardiolipin acyl transferase 1, ALCAT-1 Acyl-
CoA:Lysocardiolipin acyltransferase- 1

o (PPAR®) in murine heart stimulated CL biosynthesis via an increase in mRNA
expression of the CDS-2 isoform of CDS and such an activation was not observed
in clofibrate-treated PPAR« knockout mice [38]. In the second step of the pathway,
CDP-DG condenses with sn-glycerol-3-phosphate to form phosphatidylglycerol
(PG) catalyzed by phosphatidylglycerolphosphate (PGP) synthase (PGPS) and PGP
phosphatase. The G protein RhoGap plays a key role in controlling PGPS activation
and CL synthesis at the transcriptional level [39]. In addition, it is well documented
that expression of mitochondrial fusion proteins is altered in heart failure (HF) and
expression of the mitochondrial fusion protein, mitofusion-2, may be involved in
the regulation of CL de novo biosynthesis through PGPS [40, 41]. In the third step
of the pathway PGP is rapidly dephosphorylated by PGP phosphatase [3]. PGP
phosphatase was recently identified in yeast and in mammalian cells PGP phospha-
tase is known as protein tyrosine phosphate localized to mitochondrion-1 (PTPMT-1)
and is a member of the protein tyrosine phosphatase superfamily [20, 42]. Fibroblasts
from Ptpmtl-deficient mice accumulate PGP and exhibit a decrease in phosphati-
dylglycerol (PG) and CL [43]. In the last step of the pathway, PG is converted to CL
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in the heart by condensation with CDP-DG catalyzed by CL synthase (CLS) [35, 44].
CLS is localized exclusively to the inner mitochondrial membrane [44, 45] and was
purified to homogeneity from rat liver [46]. The genes encoding human (hCLS1)
and murine CLS (mCLS1) have been identified and the enzyme is highly expressed
in heart [47-49]. Loss of CLS mRNA in tissues of lipopolysaccharide-treated mice
did not result in loss in CLS activity indicating that the rate of CLS enzyme turnover
may be slow in mammalian cells [50].

Subsequent to its biosynthesis, CL is rapidly remodeled to yield molecular
species of CL found in the mitochondrial membrane [24]. In mammalian heart,
linoleic acid (18:2) comprises 80-90 % of the acyl chains in CL [51]. The major
tetra-acyl molecular species in human heart (approximately 80 % of total) are (18:2-
18:2)-(18:2-18:2)-CL. or L,-CL. Remodeling may occur through the concerted
deacylation followed by reacylation (resynthesis) [52]. CL may be hydrolyzed by
many different phospholipases A, [53] including calcium-independent PLA,
(iPLA,-VIA) [54, 55], secretory PLA, [56], and cytosolic PLA, [57]. Resynthesis of
cardiac CL from MLCL and linoleate is required to achieve the enrichment in 18:2.
CL resynthesis from MLCL occurs via at least three enzymes. A mitochondrial-
associated membrane acyllysocardiolipin acyltransferase-1 (ALCAT-1) with speci-
ficity for multiple anionic lysophospholipid substrates has been identified [58, 59].
Upregulation of ALCAT-1 by oxidative stress or diet-induced obesity in mice
resulted in mitochondrial dysfunction, reactive oxygen species production, and
insulin resistance [60]. ALCAT-1 null mice have resistance to diet-induced obesity
indicating that this enzyme may be a stress-response enzyme. A decrease in
ALCAT-1 mRNA expression was associated with a decrease in CL in AMP-
activated protein kinase null mice [37]. However, no alterations in ALCAT-1 mRNA
expression were observed in heart explants from humans or spontaneous hyperten-
sive heart failure prone (SHHF) rats in heart failure (HF) in which CL was decreased
[51, 61]. A mitochondrial deacylation—reacylation cycle was identified in which
newly synthesized CL was rapidly deacylated to MLCL and then reacylated back to
CL with linoleoyl-CoA [62]. The mitochondrial activity was characterized and the
enzyme purified from pig liver [63, 64] and was shown to be a previously unidenti-
fied human protein [65]. An in vitro CL transacylase activity that remodels CL was
reported in crude mitochondrial fractions from rat liver [66]. This CL transacylase
is the BTHS gene product TAZ described above in Sect. 2 [66, 67]. A novel mito-
chondrial protein, Them5, which exhibits thioesterase activity with long-chain
acyl-CoAs and a strong substrate preference for C18 polyunsaturated fatty acids
was recently identified [68]. Them5~~mice exhibit an increase in MLCL implicating
thioesterase activity in the regulation of CL remodeling.

Although evidence indicates that the BTHS gene product 7AZ clearly and spe-
cifically remodels mitochondrial CL with linoleic acid, the idea that TAZ alone
determines the fatty acid profile of CL contradicts experimental evidence. For
example, in hearts of AMP-activated protein kinase null mice, cytidine-diphosphate
diacyl-sn-glycerol synthetase-2, a rate-limiting enzyme of de novo CL biosynthesis,
and ALCAT-1 mRNA expression were reduced compared to controls and this
accompanied reduced levels of CL and linoleic acid in phospholipids within cardiac
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mitochondria [37]. Taz mRNA expression was unaltered in the hearts of these mice.
Moreover, the presence of at least two patients with BTHS and an exon 5 mutation
in TAZ but with normal CL levels highlight the fact that TAZ alone may not be
responsible for all mitochondrial CL remodeling (Michael Schlame, personal com-
munication). These data suggest that in addition to TAZ, other enzymes may play a
key role in mammalian and human mitochondrial CL remodeling [69]. In Epstein—
Barr virus-transformed human BTHS lymphoblasts, a 60-80 % reduction in CL
levels were observed and transfection of these cells with the CL remodeling enzyme
monolysocardiolipin acyltransferase-1 (MLCL AT-1) or the alpha subunit of tri-
functional protein restored CL levels to that of control lymphoblasts [65, 70, 71].

2.4 Role of Phospholipases in the Regulation
of Cardiolipin Metabolism

The observation that elevated CL remodeling occurs as a compensatory mechanism
for increased hydrolysis of CL mediated by phospholipase activation is supported
by several studies. Elevated PLA, activity has been seen in various models of
stimuli-induced apoptosis. Addition of the proapoptotic factor TNF-a to H9¢2 car-
diac myoblast cells stimulated mitochondrial PLA, activity towards mitochondrial
phospholipids [72]. In addition, MLCL accumulates during Fas-mediated apoptosis
as a by-product of CL degradation by mitochondrial PLA, [73]. Furthermore,
MLCL generated by PLA, hydrolysis of CL during induction of apoptosis was
shown to enhance t-Bid binding to membranes [73-75]. 2-Deoxyglucose (2-DG)
has been shown to induce apoptosis by stimulating intracellular reactive oxygen
species production, CL oxidation, and the release of cytochrome ¢ from mitochon-
dria in several cell lines. The effect of apoptosis mediated by metabolic hypoxia on
phospholipase A, activity and CL metabolism was examined in the surviving popu-
lation of H9c¢2 cells exposed to 2-DG [76]. Treatment of these cells with 100 mmol/L
2-DG for 16 h stimulated caspase-3 and PARP cleavage, indicating that apoptosis
occurred in this cell population. Mitochondrial PLA, activity towards mitochon-
drial phospholipids was elevated indicating the potential for enhanced CL hydroly-
sis in these cells. However, the pool size of CL and incorporation of [1-“C]linoleic
acid as a precursor into CL was unaltered due to an increase in expression and activ-
ity of mitochondrial MLCL AT activity. These results indicated that there was an
elevation in the resynthesis of CL from MLCL in the surviving population of H9c2
cells treated with 2-DG likely as a compensatory mechanism for elevated mitochon-
drial PLA, activity. Interestingly, the activity of ALCAT-1, the mitochondrial-asso-
ciated membrane protein capable of resynthesizing CL from MLCL and unsaturated
fatty acid, was reduced in 2-DG-treated cells supporting the observation that
ALCAT-1 and MLCL AT-1 are reciprocally regulated [60]. If the accumulation of
MLCL indeed plays a role in mitochondria-mediated apoptosis, it is possible that
rapid CL resynthesis from MLCL is required in response to proapoptotic stimuli-
mediated CL degradation to restore cellular homoeostasis and thus prevent the
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apoptotic cascade. The expression of group VIA calcium-independent PLA, has
been shown to play a role in the protection of mitochondrial function from damage
caused by mitochondria-generated reactive oxygen species during apoptotic induc-
tion by staurosporine [55]. 2-DG addition to cells was shown to result in the genera-
tion of reactive oxygen species [77, 78]. Since cell viability of the 45 % surviving
population of H9c2 cells exposed to 2-DG was greater than 95 %, as assessed by
Trypan blue exclusion, it is possible that increased mitochondrial MLCL AT activity
and its expression, and hence, elevated CL resynthesis, may work in concert with
elevation in mitochondrial PLA, activity to be a protective mechanism against
MLCL-mediated apoptosis [76].

Mitochondrial PLA, activity towards CL may also be regulated by an intracel-
lular ceramide-regulated process not directly related to cell killing [39].
Mitochondrial PLA, activity was examined in a novel Chinese hamster ovary (CHO)
cell line resistant to ceramide-induced apoptosis. A promoter trap mutagenesis
approach was used to isolate this etoposide-resistant CHO cell line. The resistant
cell line, named E91, showed cross-resistance to N-acetylsphingosine. The pro-
moter trap retrovirus was found integrated into intron 1-2 of the Dlc-2 (Stard13)
RhoGap gene. The E91 cells showed elevated guanosine triphosphate (GTP)-bound
RhoA levels compared to parental cells, suggesting that the retrovirus integration
had inactivated one of the Dlc-2 RhoGap alleles. The parental cells showed elevated
PLA, activity after treatment with N-acetylsphingosine. Intracellular ceramide-
signaling was defective in the E91 cells due to increased levels of active GTP-bound
RhoA. This study was the first report for the regulation of a mammalian PLA,
through RhoGap expression [39].

Chlamydia trachomatis is a prevalent sexually transmitted bacterial disease and
is the leading cause of infectious blindness in developing nations [79]. C. trachoma-
tis is an intracellular parasite and obtains its phospholipids from the host cell.
However, no PLA, homologues have been identified in chlamydial genomes. It was
previously demonstrated that endogenous host cell-derived phospholipids are traf-
ficked to C. trachomatis and that the phospholipid composition of C. trachomatis
mimics that of the eukaryotic host cell in which it was grown [18, 80-82]. In these
studies, C. trachomatis infection of each mammalian cell type investigated resulted
in an increase in host cell PLA, activity resulting in hydrolysis of host cell phospho-
lipids, including CL, to their respective lysophospholipid. This was followed by
trafficking of the lysophospholipid to the intracellular chlamydial inclusion where it
was rapidly remodeled with a bacterial-specific branched chain fatty acid to form
the chlamydial-specific parent phospholipid. Activation of the host Raf-MEK-ERK-
cPLAZ2 signaling cascade was required for this chlamydial uptake of host glycero-
phospholipids [57]. Both the MAP kinase pathway (Ras/Raf/MEK/ERK) and
calcium-dependent cytosolic PLA, (cPLA,) are activated in chlamydia-infected
cells. Inhibition of cPLA, activity blocked chlamydial uptake of host glycerophos-
pholipids and resulted in impairment in chlamydial growth. In addition, attenuation
of either c-Raf-1 or MEK1/2 activity prevented the chlamydial activation of ERK1/2,
leading to the suppression of both chlamydial activation of the host cPLA, and the
uptake of glycerophospholipids from the host cells.
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The role of PPARa-stimulated PLA, in cardiac mitochondrial CL biosynthesis
was examined in both in vivo and in vitro models [38]. Treatment of rat heart H9c2
cells with clofibrate increased the expression and activity of 14 kDa mitochondrial
PLA,, but did not affect the pool size of CL. Clofibrate treatment stimulated de novo
CL biosynthesis via an increase in PGPS activity, accounting for the unaltered CL
content. Cardiac PLA,, PGPS, and CDS-2 activities and CDS-2 mRNA levels were
elevated in mice-fed clofibrate for 14 days compared with controls. In PPARa-null
mice, clofibrate feeding did not alter cardiac PLA,, PGPS activities, or CDS-2 activ-
ity and mRNA level, confirming that these enzymes are regulated by PPAR« activa-
tion. This study was the first to demonstrate that CL de novo biosynthesis is regulated
by PPARa« activation through PLA, activation.

Eukaryotic cell reproduction involves duplication of cellular components,
including biological membranes and DNA content, resulting in a doubling in size
and then division into two components. In the absence of growth factors (e.g. serum
starvation) cells will not divide, but enter into a quiescent state known as G,,. Cells
depleted of serum in G, may be triggered to enter into the S-phase by the addition
of serum. Since CL plays an important role in generation of ATP required for the
human cell cycle, the role of PLA, in CL metabolism was investigated in quiescent
HelLa cells induced to enter into the S-phase of the cell cycle [70]. Hela cells were
serum starved for 24 h, then incubated for up to 24 h in the absence or presence of
serum. CL mass was doubled by 16 h of incubation and this was accompanied by
dramatic increases in the expression and activities of the CL de novo biosynthetic
enzymes. In addition, an increase in mitochondrial PLA,, MLCL AT-1, and
ALCAT-1 activities were observed. It was suggested that the elevated activities of
the CL remodeling enzymes PLA,, MLCL AT-1, and ALCAT-1 were required to
support remodeling of the increased newly synthesized CL required during S-phase
of the human cell cycle.

In models of cerebral stroke, the activity, mRNA expression, and immunoreac-
tivity of cPLA, and the activity and mRNA expression of secretory PLA, (sPLA,)
were shown to be elevated and may be involved in CL degradation leading to mito-
chondrial dysfunction and subsequent reactive oxygen species generation [56].
MLCL was shown to be generated through cleavage of mycobacterial CL by a
lysosomal type calcium-independent PLA, present in macrophage lysosomes [83].
Finally, group VIA calcium-independent PLA, beta (iPLA,f) localizes in and pro-
tects beta-cell mitochondria from oxidative damage during staurosporine-induced
apoptosis [84]. In that study, islets isolated from iPLA,f null mice are more sensi-
tive to staurosporine-induced apoptosis than those from wild-type littermates and
that 2 weeks of daily intraperitoneal administration of staurosporine to iPLA,f} null
mice impairs both the animals’ glucose tolerance and glucose-stimulated insulin
secretion by their pancreatic islets. iPLA,f} was expressed only at low levels in islet
beta-cells from obesity- and diabetes-prone db/db mice. Hence, the low iPLA,f3
expression level observed in db/db mouse beta-cells may render them vulnerable to
injury by reactive oxygen species.
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2.5 Role of Calcium-Independent PLA, in CL
Metabolism in Mammalian Models

Alterations in calcium-independent PLA, (iPLA,) have been shown to contribute to
diminished cardiac function in failing hearts due to myocardial infarction [85].
In cardiac myocytes prepared from normal rats and rat with SHHF, it was demon-
strated that CL remodeling was performed singly with respect to each fatty acyl
moiety, was attenuated in heart failure (HF) relative to non-HF, and was partially
sensitive to iPLA, inhibition suggesting that CL remodeling occurs in a step-wise
manner, that compromised 18:2 incorporation contributes to a reduction in L,-CL in
the failing rat heart, and that mitochondrial iPLA, plays a role in the remodeling of
CL acyl composition in the heart [86]. Genetic ablation of iPLA, gamma (iPLA,Y)
in mice resulted in decreased L,-CL and abnormal mitochondrial function and a
deficient mitochondrial bioenergetic phenotype including a mitochondrial neurode-
generative disorder characterized by degenerating mitochondria, autophagy, and
cognitive dysfunction in mice [54, 87]. In iPLA, null mice impairment of iPLA,y
caused mitochondrial dysfunction and increased oxidative stress, leading to the loss
of skeletal muscle structure and function [88]. These authors found that the compo-
sition of CL and other phospholipid classes were altered and that the levels of myo-
protective prostanoids were reduced in skeletal muscle of iPLA,y null mice. Thus,
in addition to maintenance of homeostasis of the CL within the mitochondrial mem-
brane, iPLA,y may contribute to modulation of lipid mediator production in vivo.
Mice null for iPLA,y are also completely resistant to high fat diet-induced weight
gain, adipocyte hypertrophy, hyperinsulinemia, and insulin resistance, which occur
in wild-type mice after high fat feeding [89]. Notably, iPLA,y null mice were lean,
demonstrated abdominal lipodystrophy, and remained insulin-sensitive despite hav-
ing a marked impairment in glucose-stimulated insulin secretion after high fat feed-
ing. Respirometry of skeletal muscle mitochondria from iPLA,y null mice
demonstrated marked decreases in state 3 respiration using multiple substrates
whose metabolism was uncoupled from ATP production. Shotgun lipidomics of
skeletal muscle revealed a decreased content of CL with an altered molecular spe-
cies composition, thereby identifying the mechanism underlying mitochondrial
uncoupling in the iPLA,y null mice. Collectively, these results identify iPLA,y as an
obligatory upstream enzyme that is necessary for efficient electron transport chain
coupling and energy production through its participation in the alterations of cellu-
lar bioenergetics that promote the development of the metabolic syndrome.
Reductions in L,-CL and alterations in CL biosynthetic and remodeling pro-
cesses have been observed in left ventricular (LV) hypertrophy and subsequent HF
in SHHF rats and in LV human heart explants isolated from HF patients [61]. PPHN
results in right ventricular (RV) hypertrophy followed by right heart failure and an
associated mitochondrial dysfunction [90, 91]. iPLA,y mRNA expression was
decreased in the LV and RV of PPHN piglets compared with control animals [23].
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In addition, a decrease in [1-'*C]linoleoyl-CoA incorporated into MLCL in the LV
and RV of PPHN piglets was observed indicating that iPLA,y may be reduced in
PPHN. This was confirmed by the decreased mRNA expression of iPLA,y observed
in the LV and RV of these PPHN animals. The above data clearly support iPLA,y as
the enzyme in the remodeling and the metabolism of CL.

2.6 Role of Exogenous Phospholipase-Treatment
of Cells on CL Metabolism

Controlled and limited treatment of H9¢2 cardiac myoblast cells with Naja mocam-
bique mocambique PLA, reduced the pool sizes of PC and PE and resulted in eleva-
tion of LPC and LPE, whereas the pool size of CL and other phospholipids were
unaltered [92]. Pulse radiolabeling and pulse-chase radiolabeling experiments with
[1,3-*H]glycerol in cells incubated or preincubated in the absence or presence of
PLA, resulted in reduced radioactivity incorporated into CL indicating attenuated de
novo biosynthesis of CL. The mechanism for the reduction in CL appeared to be a
decrease in the activity of phosphatidic acid:cytidine-5’-triphosphate cytidylyltrans-
ferase, a rate-limiting enzyme of de novo CL biosynthesis in H9c2 cells, mediated
by elevated cellular LPC levels. The results indicated that de novo CL biosynthesis
in H9¢2 cells may be regulated by the cellular level of the PLA, product LPC.

Treatment of H9¢2 cardiac myoblast cells with PC-specific Clostridium welchii
phospholipase C (PLC) was shown to reduce the cellular pool size of PC without
altering cellular CL levels [93]. Pulse radiolabeling and pulse-chase radiolabeling
experiments with [1,3-*H]glycerol demonstrated that radioactivity incorporated into
CL was reduced in PLC-treated cells with time compared with controls indicating
attenuated de novo biosynthesis of CL. Addition of 1,2-dioctanoyl-sn-glycerol, a cell
permeable 1,2-diacyl-sn-glycerol analog, to cells mimicked the inhibitory effect of
PLC on CL biosynthesis indicating the involvement of 1,2-diacyl-sn-glycerol.
The mechanism for the reduction in CL biosynthesis in PLC-treated cells appeared
to be a decrease in the activities of phosphatidic acid:cytidine-5'-triphosphate cytidy-
lyltransferase and PGPS, mediated by elevated 1,2-diacyl-sn-glycerol levels. These
data indicated that de novo CL synthesis may be regulated by 1,2-diacyl-sn-glycerol
and may be coordinated with PC biosynthesis in H9¢2 cardiac myoblast cells.

2.7 Conclusions

It is clear that CL may be hydrolyzed by several different classes of PLA, including
iPLA,, sPLA,, and cPLA,. Important questions remain to be addressed including
whether there is indeed a coordination between CL de novo synthesis and the
remodeling of CL mediated by the hydrolysis of these PLA,’s and subsequent
resynthesis in vivo and whether the by-products of CL degradation themselves play
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a role in cellular metabolism. The generation of the TAZ knock down mouse is
likely to provide more concrete evidence surrounding the role that the iPLA,y plays
in the regulation of CL metabolism in mammalian tissues.
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Chapter 3
Role of Phospholipases and Oxidized
Phospholipids in Inflammation

Devin Hasanally, Rakesh Chaudhary, and Amir Ravandi

Abstract Long thought of as a bystander in pathophysiological processes, lipid
molecules have emerged as bioactive mediators of cellular activity. Oxidized phos-
pholipids (OxPLs), generated during enzymatic and non-enzymatic processes,
modulate cellular processes through receptor-mediated pathways that can effect a
whole host of activities including apoptosis, monocyte adhesion, platelet aggrega-
tion, and regulation of immune responses. Initially discovered as platelet activating
factor analogs, there have been close to 50 distinct OxPL molecules that have been
identified within biological tissues. With the advent of robust analytical systems, we
are better able to identify and quantitate these molecules in an ever growing list of
different biological tissues which has allowed for the generation of a comprehensive
oxolipid profiles in both normal and disease states. Given the increased affinity of
phospholipases towards OxPLs we are in the early stages of understanding of the
complex interplay between the modification of OxPL through phospholipase activity
and the cellular responses to the released hydrolyzed products. In this review we
will summarize the role of OxPL in different pathological states and the specific
phospholipases that have been shown to interact with OxPLs.
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3.1 Introduction

For many years phospholipids (PLs) were considered to be only cellular building
blocks with very little biological activity. Due to their susceptibility to oxidation,
they are modified in the presence of reactive oxygen species (ROS). Apart from
impairment of their structural function, oxidation makes oxidized phospholipids
(OxPLs) acquire novel biological activities not characteristic of their unoxidized
precursors (Fig. 3.1). The effects of OxPLs described in vitro and in vivo suggest
their potential relevance in different pathologies including atherosclerosis, acute
inflammation, lung injury, and many other disease conditions [1, 2]. The actions of
OxPL can vary depending upon the specific species of phospholipid being oxidized.
Recently, oxidized phosphatidylcholines (OxPC) have been recognized as not only
products of oxidative damage but also mediators of its progression. These compounds
exert their biological activity through multiple pathways. They have been shown to
be potent stimulators of platelet-activating factor (PAF) receptor, prostaglandin
receptors, and PPARY receptors resulting in platelet aggregation, induction of the
coagulation cascade, and apoptosis and cell death [3, 4]. Recent advancements in
softer methods of ionization, such as electrospray mass spectrometry, have allowed us
to identify and quantitate OxPLs in biological tissues. With the better understanding of
the OxPL structure, we are also identifying the specific role phospholipases play in
modulating the effects of OxPL on cellular signaling. As we move forward in trying to
better understand the role of OxPL in pathology, it necessitates a detailed understand-
ing of the oxidized lipidome and the specific phospholipase that act as a defensive
mechanism to protect the cell from their deleterious effects.

3.2 Generation of Oxidized Phospholipids

Phospholipids represent the major component of lipid bilayers due to their amphipa-
thic structure. Polar head groups interact with the aqueous environment and cyto-
plasm, and the fatty acid chains sequester to form the lipid core of the membrane
acting as a semi-permeable barrier. During disease processes, not only does the struc-
tural integrity of the phospholipid bilayer become compromised but also chemical
modification of the phospholipids through enzymatic and non-enzymatic pathways
alters their function. One such disease process is the inflammatory cascade that is a
unifying mechanism in many pathological processes. A hallmark of inflammation is
the increased generation of ROS which can occur in multiple pathways [5-7] and
results in the generation of superoxide radicals, OONO" and O". This process is well
described, for example, during ischemia-reperfusion injury within cardiomyocytes.
The rapid correction of acidosis through the Na*/H* exchanger, the Na*/HCO*
cotransporter [8], and the washout of lactate causes secondary activation of the Na*/
Ca?* exchanger in the reverse direction aggravating the cytosolic Ca** balance [9].
Abrupt re-exposure to oxygen of the ischemia-inhibited respiratory chain generates a
mitochondrial membrane potential to drive ATP synthesis, which leads to a rapid
cytosolic Ca*" overload and consequently a Ca** accumulation in the matrix [10].
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Moreover, reactivation of the energy metabolism induces a large production of ROS.
This localized oxidative burst and regional inflammatory response results in non-
enzymatic oxidation of cellular proteins, DNA, and lipids resulting in generation of
molecules that have a powerful biological activity [11, 12]. Dysfunctional and dying
cells themselves can generate large amounts of mitochondrially derived ROS [13].
The targets of ROS include critical proteins and enzymes, lipids, nucleic acids, and
nitric oxide (NO), among others. Certain cells, like active neutrophils, can release large
amounts of enzymatically produced superoxide anions and hypochlorous acid from
their nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and myeloper-
oxidase systems [14, 15]. Many PLs contain poly-unsaturated fatty acid chains which
make them susceptible to oxidative modification. The location and number of double
bonds in addition to the formation of stabilized intermediates by hydrogen transfer to
neighboring carbon molecules determine the final structure. The initial oxidation of a
conjugated diene allows for the cleavage of carbon—carbon bonds after hydrogen
removal that produces shorter chain, lower mass, fragmented species [16]. If the con-
jugated diene becomes stabilized and remains intact, further oxidation yields longer
chain, higher mass, non-fragmented oxidized species. The ROS-based oxidation of
PL forms a heterogeneous pool of OxPL in which the oxidized fatty acid remains
esterified to the glycerol backbone (Fig. 3.1) [17]. The OxPLs can be broadly catego-
rized into two groups: the fragmented OxPLs and the non-fragmented OxPLs.
Fragmented OxPLs generally comprise of terminal aldehyde or carboxylic acid spe-
cies. Non-fragmented species have hydroxide and/or peroxide additions and rear-
rangement by cyclization generate other end-products like the eicosanoids.

OxPLs represent a heterogeneous group of oxidized lipids with multiple functional
groups present at the sn-2 position. The generation of specific OxPLs and their physi-
ological effects are tissue specific. For instance, in the setting of rat lung oxidative
injury, the most abundant OxPC is an isoprostane containing PC [18] whereas in
human atherosclerotic tissue, the fragmented OxPC molecule, POVPC (1-palmitoyl-
2-5’-oxo-valeroyl-sn-glycero-3-phosphocholine) is the most abundant [19]. Not only
is the structure of OxPC tissue specific but its biological roles are also cell and tissue
specific. For example, POVPC acts as an anti-inflammatory molecule by inhibiting
LPS-induced intracellular signaling and the expression of adhesion molecules in
human umbilical vein endothelial cells (HUVECs) [20], while in mouse lung macro-
phages POVPC induce IL-6 production resulting in a pro-inflammatory effect [21].
OxPL have been shown to play a role in multiple disease processes where oxidative
stress and inflammation are known mechanisms. These include atherosclerosis [17],
diabetes [22], malignancy [23], chronic heart failure [24], cystic fibrosis, [25] and
neurodegenerative diseases [26] like Parkinson’s disease.

3.3 Detection of Oxidized Phospholipids

Over the last 20 years there has been a revolution in the understanding of lipids and
their biological activity [27]. This has been driven by the advent of new mass spec-
trometric tools that allow us to identify and quantitate complex lipid mixtures [28].
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Fig. 3.2 Phospholipid extraction workflow. Procedure from sample to data output established for
phospholipid extraction, separation, and detection with a HPLC column linked to an electrospray
ionization triple quadrupole tandem mass spectrometer [30]. HPLC (high performance liquid
chromatography)

With the softer methods of ionization, we can identify phospholipid molecules as
whole structures and this allows us to follow their chemical modifications through
pathological processes.

Electrospray ionization (ESI) and matrix-assisted laser desorption ionization
(MALDI) mass spectrometry allow us to ionize PL. molecules without causing
fragmentation permitting for identification of whole molecules within heteroge-
neous samples [27]. Mass spectrometry is being used to determine comprehensive
lipid profiles in cells, tissues, and pathological samples. These lipidomic analyses
usually follow the same workflow and employ extraction, separation, and detection
methodology to establish the lipid profile (Fig. 3.2). There has been great progress
in applying this methodology to understand the oxidative changes that occur within
the phospholipidome [29, 30]; not only of OxPC which are the most abundant but
also other OxPL species generated from phosphatidylserine (PS), phosphatidyl eth-
anolamine (PE), cardiolipin (CL), and phosphatidylinositol (PI). With these novel
techniques, both with a targeted approach or a wide spectrum approach, such as a
gunshot lipidomic analysis, we can follow the changes that occur within a specific
phospholipid class during disease processes [27]. Given that PC represents the
largest phospholipid group in mammalian cells, the majority of our understanding
of oxidative modification comes from studies on OxPC molecules.

Through a joint research study conducted by the National Institute of Diabetes
and Digestive and Kidney Diseases, the National Institute of Standards, and the
LIPID MAPS Consortium, a comprehensive profile of the human plasma lipidome
encompassing all of the major lipid classes has been reported [31]. The study was
able to identify over 500 individual lipid species from a pooled reference plasma
sample. Recent follow-up studies correlated sex, smoking status, body mass index
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(BMI), and age with changes in the lipid classes in plasma, with BMI and age showing
significant changes in PL amounts [32]. Even though phospholipid represented 43 %
of the plasma lipidome by mass, the report did not address the identity of OxPL
within plasma. Lipidomics has also made strides in identifying phospholipids from
cell-specific samples such as macrophages, which have been shown to play a major
role in the inflammatory cascade. Macrophage activation by Toll-like receptor 4
(TLR-4) agonists led to changes within the lipid profiles identified by mass spec-
trometry at the cellular and subcellular levels [33, 34]. Therefore, PLs are important
for a rapid inflammatory response before and after activation of macrophages.

There are fewer studies that have looked at the OxPL profile within tissues since
they represent only 1 % of the total phospholipid pool. The majority of the studies
investigating the role of OxPL have been related to vascular pathology and athero-
sclerosis in particular since there is a larger body of research correlating oxidized
LDL (OxLDL) with initiation and progression of atherosclerotic plaques. Lipidomic
profile of atherosclerotic plaques at different stages of development has shown the
presence of both fragmented and non-fragmented OxPCs within carotid endarterec-
tomy plaque material [19]. The PCs represented the largest class of phospholipids
within plaques with PC aldehydes, being the largest OxPC fraction. Both frag-
mented and non-fragmented OxPCs were present through all stages of plaque
progression which indicated continual generation and catabolism of these bioactive
molecules within atherosclerotic plaques.

In other inflammatory states, OxPCs have been shown to play a role in mediating
pathological response. Recently in the setting of myocardial ischemia and reperfu-
sion an oxolipidomics analysis of myocardial tissue demonstrated a significant
increase in OxPC species within the myocardial tissue during ex vivo model of
ischemia and reperfusion [35]. In this experimental model, there was a correlation
between ventricular function and OxPL levels in response to ischemia and
reperfusion.

3.4 Biological Activity of Oxidized Phospholipids

Due to their fatty acid’s susceptibility to oxidation, phospholipids can be modified
in the presence of ROS. Once PL molecules are oxidized, they generate a multitude
of different oxidation products that remain esterified to the parent PL molecule.
OxPLs gain bioactive properties that were not attributed to their precursors as a
result of oxidation. OxPLs are able to induce cell-signaling pathways and cause an
active cell response. Studies of human aortic endothelial cells (HAECs) indicate
that just a brief exposure to a small number of OxPCs that are generated in vivo will
affect the transcription of >1,000 genes involved in inflammation, pro-coagulant
activity, redox reaction, sterol metabolism, cell cycle, unfolded protein response,
and angiogenesis [36]. Likewise phenotypic changes of cells are also observed and
were demonstrated within macrophage populations within atherosclerotic plaques [37].
One of the first defined OxPCs were the fragmented PAF-like lipids that through a
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G-protein mediated pathway resulted in cellular activation [38]. Since the initial
discovery of OxPC molecules, there have been other classes of phospholipids that
have been shown to undergo oxidative modification in parallel with choline phos-
pholipids, forming homologous products. Phosphatidylserine (PS) oxidation, in
particular, has a distinct and key role in mitochondrial dysfunction, apoptosis, and
recognition of apoptotic cells [39]. Ethanolamine phospholipids are oxidized during
platelet activation and are the sites of prostanoid formation [40].

3.5 Oxidized Phospholipid Receptors

Due to increased polarity, OxPLs interact with membrane proteins resulting in bind-
ing to a wide variety of inflammatory receptors [41-43]. OxPLs were shown or
hypothesized to stimulate several types of signal-transducing receptors located on
the cell surface or in the nucleus, including G protein-coupled receptors, receptor
tyrosine kinases, Toll-like receptors, receptors coupled to endocytosis, and nuclear
ligand-activated transcription factors such as PPARs. The specificity of OxPL
receptor binding is likely a result of the chemical similarity of the OxPL to the
receptor ligand. OxPCs containing esterified isoprostaglandins (PEIPC) activate
receptors recognizing prostaglandins E2 and D2 by EP2 and DP receptors, respec-
tively [20]. The EP2 receptor is expressed in all cell types relevant to atherosclerosis
including endothelial cells (ECs), monocytes, macrophages, and vascular smooth
muscle cells (VSMCs). Activation of EP2 receptor on ECs results in activation of
B1 integrin and increased binding of monocytes to ECs similar to that induced by
OxPC, while EP2-receptor antagonists inhibit the action of OxPC.

Innate immune responses to OxPL are mediated by natural antibodies (N-Ab),
C-reactive protein (CRP), and CD36 on macrophages [44]. PAF receptor and TLRs
are well studied initiators of OxPL signaling and impact cascades like PI3K, Akt,
JAK, ERK1/2, and MAPK signaling [44, 45]. Multiple other receptors exist to
mediate cellular activity of OxPL including EP2, VEGFR2, and SR-B1 [46—48].
The N-Ab against OxPL are encoded in germ line tissue and are produced by
B-cells as [gM immunoglobulins [49, 50]. They are able to bind antigens that rep-
resent pathogens and stress-induced self-antigens as part of the humoral arc of
innate immunity [51, 52]. N-Ab have shown affinity for OxPL in studies that used
T15/E06 N-Ab to block the effects of OxPL on macrophage uptake of OxLDL [53,
54]. Complement response to OxPL is mediated by interaction with the defense
molecule CRP. High levels of CRP are used to identify an active inflammatory
response [45]. CRP has been shown to bind specifically OxPL within OxLDL [55].
The complex of CRP bound to OXLDL, by the cleaved product of OxPC, lysoPC,
was shown to mediate the suppression of inflammation in macrophages via reduced
activation of the inflammatory transcription factor NF-xB [56]. Macrophage acti-
vation is central to inflammation. OxPLs bind the macrophage by scavenger recep-
tors specifically by CD36 which is the primary scavenger receptor capable of
binding OxLDL and has been shown to bind OxPL [57]. The binding of OxLDL
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with CD36 is integral to the development of “foam cells” which are macrophages
with large depositions of OXxLDL including its lipid-rich core. These foam cells are
believed to be the initial step in the generation of fatty streak resulting in athero-
sclerotic plaque formation [58].

OxPLs have also been shown to play a role in the thrombosis and the clotting
cascade through two particular receptors, tissue factor pathway inhibitor (TFPI) and
PAF receptor. The accumulation of the PAF-like (alkyl-acyl) OxPLs and lysophos-
pholipids (alkyl-hydroxyl) in plaques leads to platelet aggregation [4, 59]. OxPL
induces increased expression of P-selectin causing a change in the platelet shape
which favors aggregation of platelets. In concert with ADP and other agonists of
platelet accumulation, the diacyl-OxPLs appear to be active in inducing significant
platelet aggregation, but by themselves are only weak inducers of clotting factors
[60]. Other OxPLs are able to increase transcription of the “master-switch” of coag-
ulation, the tissue factor protein, and block the inhibitor TFPI, causing clotting sig-
naling to be activated [44].

3.6 Cell Signaling Cascades Influenced by Oxidized
Phospholipids

Transmission of signaling cascades initiated by OxPL has widespread effects.
Inflammation, cell cycle, and cell death pathways can be up-regulated or down-
regulated when OxPLs bind to the cell [61]. There are multiple secondary messen-
gers, like cAMP and Ca?", that are increased by OxPL. Transcription factors, like
NF-«xB and STAT3, and modifying enzymes, like kinases and phosphatases, are also
activated by OxPL. Together these influence diverse tissue and cell-specific
responses [44]. OxPLs have been shown to influence PI3K/Akt signaling to mediate
inflammation by nitric oxide production by NADPH oxidases and endothelial nitric
oxide synthase [62]. The study also demonstrated up-regulation of IL-8, a pro-
inflammatory cytokine, was generated in endothelial cells by this process. The Jun
N-terminal kinase pathway can be up-regulated by OxPC while there is a simultane-
ous down-regulation of phosphorylated-Akt signaling during oxidative stress within
rat oligodendrocytes [63]. These pathways are influenced specifically by POVPC
causing induction of neutral sphingomyelinases. The down-stream apoptotic signal-
ing up-regulates caspase 3 and caspase 8 which are important for the completion of
apoptosis. Inflammatory genes and the unfolded protein response are pathways in
which transcriptional activation occurs in response to OxPL. Activating transcrip-
tion factor-6 (ATF-6) and X-box binding protein-1 (XBP-1) are transcription factors
activated by OxPL that target inflammation genes. ATF-6 induces XBP-1 mRNA
and splicing is mediated by the ER membrane protein inositol requiring 1 (IRE1)
allowing modulation in the nucleus [64]. Another mechanism described is the phos-
phorylation of elF2« catalyzed by double-stranded RNA-dependent protein kinase
(PKR)-like ER kinase (PERK) leading to the presence of ATF-4 acting as a transcrip-
tion factor [36]. XBP-1 and ATF-4 bind to promoter regions upstream of the target
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IL-6 and IL-8 inflammatory signals causing them to be up-regulated. TLR signaling
modulates the inflammatory pathways relating to the innate immune system. OxPLs
were able to initiate TLR-4 signaling through MAPK cascade to NF-xB and influ-
ence lipid metabolism and inflammation [65]. When TLR-4 is activated, Bcl-2 fam-
ily proteins in the mitochondria, Bid, Bad, Bax, and the nuclear transcription factor
NF-kB shut down oxidative phosphorylation within the mitochondria and act
together to increase the expression of pro-inflammatory cytokines [66, 67]. This
process induces the pathways of inflammation through a caspase 1-mediated mech-
anism to increase active IL-1p and IL-18 in the extracellular spaces [66]. This pro-
inflammatory and pro-apoptotic environment catalyzed by OxPL catapults the cells
into cell stress culminating in inflammation or apoptosis if not reversed. Cells
exposed to modified and OxLDL demonstrate up-regulation of two adhesion mol-
ecules, pl-integrin [68] and P-selectin [69], that specifically promotes monocyte
adhesion to these cells. Infiltration of macrophages past adjacent endothelial cells is
also promoted during lung injury by disruption of adherens junctions. A short chain
fragmented PC produced during oxidative stress, PGPC (1-palmitoyl-2-glutaroyl-
sn-glycero-3-phosphocholine) was demonstrated to modulate the phosphorylation
of VE-cadherin via activation of Src kinase that phosphorylated tyrosine residues
important for adherens junctions stability [70].

Chemokines are important to modulate the inflammatory response and OxPLs
are able to target several chemokines that modulate the immune system. The che-
mokines MCP-1, MCP-3, MCP-5, MIP-1a, MIP-1f, MIP-2p, IL-6, IL-8, and GROa
[36, 44, 71, 72] are influenced upon exposure to OxPL. MCP and MIP proteins are
able to attract and activate macrophages causing sustained IL-8 production causing
positive feedback to the inflammatory response induced by OxPL. IL-6 is particu-
larly important in the acute phase inflammation as IL-67~ knock-out mice demon-
strate an impaired immune response [73]. These pro-inflammatory signals cooperate
to modulate other cell types in response to these stresses.

3.7 Apoptosis

Irreversible cell loss occurs through apoptosis signaling, a programmed sequence of
cellular events that result in controlled cellular death [74]. What is central to the
intrinsic cellular death pathway is the increase in the permeability of mitochondria,
a result of apoptotic signals and caspase 3 activation [75]. Caspase 3 is a central
apoptotic activator that allows for triggering the enzymatic cascade that leads to cell
death [76]. Recently, it has been shown that PAzPC (1-palmitoyl-2-azelaoyl-sn-
glycero-3-phosphocholine) has a receptor-independent cytotoxic effect on pro-
myelocytic HL60 cells and HUVECs [77]. PAzPC-induced changes in cell
morphology typical for apoptosis triggered phosphatidylserine exposure on the
outer leaflet of the plasma membrane which then stimulated the release of mito-
chondrial cytochrome C, apoptosis-inducing factor and activated caspase 3 [67].
In a caspase 3-mediated pathway, truncated OxPC molecules such as POVPC can
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produce VSMC apoptosis. In rat oligodendrocytes, POVPC was pro-apoptotic
through activation of the caspase 3 pathway [63]. Macrophages, VMSCs, and dendritic
cells are confirmed to demonstrate increased apoptotic signaling in the presence of
OxPL [36, 63, 78, 79]. There are certain Bcl-2 family proteins like, Bax a mitochondrial
pro-apoptotic protein, which are able to interact with OxPL potentially activating it
at mitochondria exposed to oxidative stress [80]. This is clear activation of the
intrinsic apoptotic pathway leading to mitochondrial dysfunction and caspase acti-
vation [67, 81].

3.8 Oxidized Phospholipids and Phospholipases

Phospholipases functionally impact the structures of OxPLs by hydrolyzing either
the oxidized fatty acid or the functional head group of the phospholipids resulting
in the generation of lysophospholipids, phosphatidic acids, and oxidized fatty acids
(Fig. 3.3). There is growing evidence that phospholipases play a role in the media-
tion of OxPL activity.

Oxidatively truncated phospholipids, but not their biosynthetic phospholipid
precursors, are substrates for a class of phospholipases A2, the group VII class of
PAF acetylhydrolases. These enzymes not only selectively recognize the sn-2 ace-
tyl residue of PAF, but also specifically hydrolyze the fatty acyl fragment that
remains esterified in the sn-2 position of the phospholipid glycerol backbone after
fragmentation of the oxidized fatty acyl residue [82]. These phospholipases are
highly specific for OXxPL recognition and cleavage. These enzymes are believed to
be conserved over 100 Ma of evolution while maintaining their specialized func-
tion, which demonstrates the continuing importance of specifically removing phos-
pholipid oxidation products within aerobic organisms.
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As an example, lipoprotein-associated phospholipase A2 (Lp-PLA2), associated
with low-density lipoprotein (LDL) was found to bind OxPCs that are recognized
by E06 antibodies [83]. The phospholipid pools within LDL are also influenced by
the presence of Lp-PLA?2 as noted when the oxidation of LDL in the presence of an
irreversible Lp-PLA2 inhibitor, SB222657, resulted in the accumulation of short
chain OxPCs but reduction of 1ysoPC species. This identified short chain OxPC
as the substrate for Lp-PLA2 and various saturated and mono-unsaturated lysoPC
as the products [84]. Given that the oxidative modification of phospholipids occurs
at the sn-2 position we will limit out discussion to PLA2 enzymes and their activity
towards OxPL molecules.

3.9 Phospholipase A2 Affinity for OxPL

There are more than 20 different PLA2 enzymes. The three main groups are the
calcium-dependent cytosolic, secretory PLA2, and calcium-independent PLA2.
PLA2 enzymes bind phospholipids and their oxidized products to cleave at the sn-2
position releasing free oxidized fatty acids and lysoPL. LysoPLs are further broken
down into lysophosphatidic acids which are themselves bioactive and exert their
activity via the G-protein coupled receptors targeting adenylyl cyclase, ERK kinase,
phospholipase C, phosphoinositol 3-kinase, and the Rho GTPase [85]. PLA2 has
been proposed to serve as a secondary defense mechanism against the oxidative
damage of phospholipids within membranes. However, extensive activation of this
enzyme can also lead to membrane hydrolysis and loss of membrane integrity in the
setting of membrane peroxidation. Increase in PLA2 activity following PL oxidation
and disturbance in the lipid bilayer appears to support this hypothesis. This increase
in activity has been seen for many PLA2 enzymes which appear to have substrate
specificity towards OxPL molecules with an oxidized fatty acid at the sn-2 position
[86]. Contributing to the increased levels of PLA2 activity at site of PL oxidation
are the increases in intracellular Ca?* levels that occur concurrently. Also the change
in the physiochemical structure of the phospholipid bilayer results in exposure of
the oxidized fatty acid to PLA2. This specificity was originally shown in vesicles
containing oxidized soy bean PC which results in increased PLA2 activity when
compared to the vesicles containing non-oxidized PC molecules. This increased
hydrolysis occurred at calcium concentrations of 10 pM and below, indicating that
at physiological Ca*" concentrations there is an increased specificity towards OxPC
molecules by PLA2.

This increased PLA?2 activity has also been shown within atherosclerotic tissue.
Lipidomic analysis of atherosclerotic tissue has shown an increase in lysoPL as the
plaque progresses from fatty streaks to necrotic cores in proportion to the OxPL
levels [19]. PLA2 have also been shown to modulate the generation of OxPLs
during LDL oxidation. In presence of PLA?2 inhibitor, LDL oxidation progresses
more rapidly with generation of larger amounts of OxPCs resulting in a more ath-
erogenic particle [84]. The Lp-PLA2 is the main phospholipase present within LDL
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that has specific affinity for fragmented OxPLs generated during LDL oxidation [84].
This specificity has recently been shown to include the oxidized phosphatidylser-
ines (OxPS) [87]. The interaction of Lp-PLA2 with different oxidized and non-
oxidized PS species is mechanistically selective for hydrolysis based on the structure
of the fragmented OxPS. His and Asp residues represent a catalytic dyad, and an
essential Ser273 residue is present in Lp-PLA2 allowing for catalytic hydrolysis,
the His/Asp dyad is also found in two important cytosolic PLA2s, GIVA, and GVIA
[88]. In Lp-PLA2, Ser273 acts as a nucleophile that attacks the sn-2 ester bond of
phospholipids within the active site which is composed of the catalytic triad involving
Ser, His, and Asp [89]. This is the likely mechanism by which various PLA2
enzymes have different affinities for different OxPLs depending on the presence of
the dyad or the triad catalytic site. In particular the sn-2 ester bond’s proximity to
the Ser273 residue in the active site determines the specificity and efficiency of
Lp-PLAZ2 hydrolysis. It appears that in OxPS species which are hydrolyzed prefer-
entially by Lp-PLA2, particularly 9-hydroxy or 9-hydroperoxy fatty acid chains,
the sn-2 ester bond is closer than 3 A to Ser273 compared to other species [87].
This suggests that Lp-PLA?2 is more likely to hydrolyze a species that has an oxygen
group closer to the sn-2 ester bond than one further away. PLA2 is activated by
1-palmitoyl-2-(9’-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PONPC), a spe-
cies with a terminal aldehyde at the C9 position [90]. Due to the activity of PONPC
and the oxidized fatty acid, they may interact with lysine residues that are important
for the interaction of PLA2 with membranes; this allosteric modification as a Schiff
base could cause cross-linking and permanent activation of PLA2 enzymes [91].
The anti-inflammatory effects of secretory PLA2 group ITA (sPLA2(IIA)) are seen
as increased levels of OxLDL within atherosclerotic tissue results in a marked
increase in enzymatic activity. As oxidized lipoproteins contain significant amounts
of PC, OxPC, sphingomyelins (SM), and cholesterol, studies correlating these lipids
to SPLA2(ITA) activity demonstrated no enzymatic effect from native PC and cho-
lesterol, but opposing effects by OxPC and SM, stimulatory and inhibitory effects
respectively [90, 92, 93]. OxPC and SM have similar PC head groups and it reason-
ably follows that there is a competitive binding that could occur for the sSPLA2(ITA)
binding site. Experiments that incorporated various ratios of OxPC and SM into
LDL proved that OxPC could out-compete SM, blocking the inhibitory effect on the
activity of SPLA2(IIA), and SM could eliminate the stimulatory effect of OxPC in
dose-dependent fashion [94]. However, OxPC exhibited a much more potent effect
to stimulate SPLA2(ITA) activity as 1 nmol could overcome the inhibitory effect of
2 nmol of SM, while SM required 8 nmol to suppress 1 nmol of OxPC activation.
This potent activation of SPLA2(ITA) shows how strong OxPCs are able to influence
inflammation. It is not simply due to the modification that PLA?2 are activated by the
OxPL. Halogenated PL produced by myeloperoxidase, and hypohalous acids during
inflammation are actually inhibitory to the enzyme. High concentrations of chlori-
nated and brominated PC molecules decreased sPLA2(ITA) activity twofold [95].
There appears to be a differential ability of stimulating versus inhibiting mole-
cules on the regulation of SPLA2(ITA). The researchers concluded that the swift
activation of the PLA2 enzyme is essential to eliminate OxPL during the initial stages



3 Oxidized Phospholipids in Inflammation 67

of the inflammatory response which means that low concentrations of the activators
should be strong signals for activation. When the OxPLs have been sufficiently
removed from the tissue, the inhibitors are increasing in concentration during the
final stages of the inflammatory process. These inhibitors, like the halogenated PL,
are in high concentrations in the atherosclerotic tissue and they could be the reason
for the activity of SPLA2(ITA) decreasing considerably in the final stages, when
OxPL activators decrease enough to be out-competed by either SM or halogenated
PL [95]. This interplay could be important for other diseases as other sPLA2
enzymes are also important to disease progression including neoplasms and neuro-
degenerative disorders. In breast cancer patients a sSPLA2, human group X secreted
PLA2 (hGX-sPLA2), induced lipid droplet (LD) formation within breast cancer
cells, causing them to have an extended survival time during serum deprivation [96].
Significant metabolic transformations were identified to be induced by hGX-sPLA2
in highly invasive breast cancer cells. The enzyme was stimulatory of B-oxidation
by supplying free fatty acids which could produce energy for the production of tria-
cylglycerides that would cause the aggregation of cytosolic LDs that could serve as
an energy source in cell survival. Interestingly, recent studies revealing that mito-
chondria form contact sites with nascent LDs and participate in phospholipid and
TAG synthesis during their biogenesis [30] are in line with a possible association
between p-oxidation and LD formation. LysoPC, in particular, are influenced in
cancer as circulating plasma concentrations appear to be higher in women with
malignant breast tumors than healthy women [97]. In Alzheimer’s disease a pro-
inflammatory sSPLA?2 is up-regulated in response to IL-1p and is present in the hippo-
campus and inferior temporal gyrus in humans [98]. With this in mind, there continues
to be a paradox when considering PLA2. The enzymes could be a physiological mech-
anism to prevent high OxPL levels from causing damage; however the lysoPLs are also
part of progressing diseases. In addition to this, the allosteric regulation of PLA2 by
OxPL continues to be investigated as well as the cell-signaling capabilities of PLA2
during inflammation when the enzyme is bound to OxPL. The mechanism by which
the PLA2 class of enzymes could impact OxPL in disease progression or prevention
is still under investigation.

3.10 Conclusions

There is a growing body of evidence supporting the role of OxPL in inflammation.
It is apparent that OxPLs are not bystanders, but are biologically active molecules.
These molecules mediate a host of diverse signaling pathways, the net effect of
which is contributing to the inflammatory process. Only recently, and with the
advent of improved experimental techniques, have we gained a better understanding
of the individual characteristics and roles of these molecules. The key enzyme in
attenuating the pathological effects of OxPL is phospholipases. By better under-
standing the specific affinities and interactions of phospholipases towards OxPL
molecules, we can tailor therapies that will allow for neutralization of OxPLs.
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Chapter 4
Phospholipases in Cardiovascular Disease

Ignatios Ikonomidis and Christos A. Michalakeas

Abstract Cardiovascular diseases comprise a frequent cause of morbidity and
mortality in the modern world. Atherosclerosis, the most common pathophysiological
process leading to cardiovascular disease, is a complex process involving many dif-
ferent pathways some of which are still under investigation. It has been shown that
traditional risk factors are not sufficient in predicting cardiovascular events in the
general population. Present research for the detection of substances that play a role
in the atherogenic process has linked phospholipases with cardiovascular disease.
Phospholipases, such as secretory phospholipase A, and lipoprotein-associated
phospholipase A, (Lp-PLA,), have been considered as markers of vascular inflam-
mation and could therefore play an important role in cardiovascular disease.
Furthermore, it has been shown that pharmacological inhibition of Lp-PLA, activity
could exert beneficiary effects on the atherosclerotic process, offering a putative
novel target for the management of these patients. This chapter summarizes current
knowledge regarding various phospholipases and their role in atherogenesis. Studies
involving these molecules will be investigated in order to enlighten the putative
pathophysiologic mechanisms by which these proteins exert their effect on cardio-
vascular function. Additionally, the pharmacological interventions that influence
phospholipase activity will be analyzed, proposing a putative new pharmacological
approach for the treatment of atherosclerosis.
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4.1 Introduction

Cardiovascular diseases [CVDs: coronary artery disease (CAD), stroke, peripheral
artery disease] comprise a frequent cause of morbidity and mortality in the modern
world. Atherosclerosis is the common pathophysiological process of CVD, leading
to various clinical manifestations according to the vessel affected. Atherosclerosis
is a complex process involving many different pathways some of which are still
under investigation. It has already been shown from the Framingham Heart Study
that traditional risk factors were not sufficient in predicting cardiovascular events in
the general population [1]. The ongoing research for the detection of substances that
play a role in the atherogenic process has linked phospholipases with CVD.
Phospholipases, such as secretory phospholipase A, (sPLA,) and lipoprotein-
associated phospholipase A, (Lp-PLA,), have been considered as markers of vascu-
lar inflammation and could therefore play an important role in CVD. Furthermore,
recent research has shown that direct pharmacological inhibition of Lp-PLA, activity
exerts beneficiary effects on the atherosclerotic process. These findings are important
since they could offer a novel target for therapeutic intervention and facilitate CVD
prevention.

4.2 Secretory Phospholipase A,

Phospholipase A, (PLA,) is an enzyme that catalyzes the hydrolysis of the fatty acyl
ester bond at the sn-2 position of phospholipids to produce free fatty acids and lyso-
phospholipids. Secretory PLA, (sPLA,) represents a class of enzymes that hydro-
lyze phospholipids from cellular membranes and lipoproteins, resulting in
proatherogenic actions in the vessel wall [2]. It belongs to the same family of phos-
pholipases as Lp-PLA,. This enzyme is a 14 kDa calcium-dependent lipase that is
produced from macrophages and arterial wall smooth muscle cells. SPLA, has been
considered a marker of vascular inflammation. However, in contrast to Lp-PLA,, the
levels of this enzyme are determined by the levels of other markers of inflammation,
such as IL-1, IL-6, and TNF-a.

Secretory nonpancreatic type II phospholipase A, (SPLA,-IIa) has been shown to
contribute to the pathogenesis of various inflammatory diseases [3], as well as various
forms of cancer [4, 5]. Previous studies have shown an important role of sPLA, in
CAD. Levels of sPLA, were found to be increased in 142 patients with CAD in com-
parison to healthy individuals, and they were positively correlated with increased
levels of CRP. Furthermore, individuals with high levels of SPLA, had an increased
probability of developing an acute coronary event, implying that this biomarker could
be used as a risk factor conferring prognostic information [6]. The same group of
researchers have also shown that SPLA, plays an important role in coronary artery
spasm, a fact that, according to the authors, could reflect vascular inflammation in the
coronary arteries, as expressed by high circulating levels of this enzyme [7].
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4.3 Lipoprotein-Associated Phospholipase A,

Lp-PLA,, also known as platelet-activating factor acetylhydrolase (PAF-AH), is an
enzyme that belongs to the A, phospholipase superfamily and is produced by
inflammatory cells, primarily by macrophages [8], but also by monocytes,
T-lymphocytes, and mast cells [9] that are all involved in the process of atherogenesis
[10]. Lipoprotein-associated PLA, is a calcium-insensitive lipase. This 50 kDa pro-
tein resides mainly on LDL in human plasma, in a percentage of approximately
80 %. Lp-PLA, has been shown to play an active role in the oxidation of LDL [11].
The oxidative process transforms phosphatidylcholine (PC) to oxidative-modified
PC that acts as a substrate for Lp-PLA,. The interaction between oxidative-modified
PC and Lp-PLA, generates the oxidized fatty acids (OxFA) and lysophosphatidyl-
choline (Lyso-PC) [12]. Lyso-PC and OxFA exert many proinflammatory actions
(upregulation of adhesion molecules, cytokine and CD40 ligand expression, promo-
tion of endothelial cell dysfunction, stimulation of macrophage proliferation,
chemoattraction of inflammatory cells) leading to atherosclerotic plaque formation.
Lp-PLA, molecules are expressed in and around the necrotic core of advanced
human atheroma [13], and as the atheromatic plaque grows, its concentration in
Lp-PLA, is increased [14].

Experimental studies as well as studies in Lp-PLA,-deficient individuals had pro-
posed antiatherogenic properties of Lp-PLA, [15]. However, current data suggests a
proatherogenic role for this protein. Lp-PLA, activity has been shown to be upregu-
lated in atherosclerotic lesions, particularly in complex plaques [16]. Furthermore
Lp-PLA, mass or activity has been linked to increased cardiovascular risk [17].
Lp-PLA, serves as a marker of vascular inflammation and it appears to be involved in
the initiation of the early stages of the vascular inflammatory process. The detection
of Lp-PLA, as an emerging inflammatory biomarker implicated in atherosclerosis
[18] comes to serve the up to now unmet need for cardiovascular risk prediction and
possibly to offer a future target for therapy [19].

4.4 Clinical Implications of Phospholipases in CVD

The enzymes of the phospholipase superfamily have been studied extensively
because of their implication in the atherosclerotic process. The EPIC-Norfolk
Prospective Population Study investigated the prospective relationship between
serum levels of type II sPLA, and the risk of future CAD in apparently healthy men
and women. The study was a prospective nested case-control study among 3,314
apparently healthy men and women aged 45-79 years old. sPLA, levels were
significantly higher in cases of people in whom fatal or nonfatal CAD developed
during follow-up than controls (9.5 ng/mL; interquartile range [IQR], 6.4-14.8 vs.
8.3 ng/mL; IQR, 5.8-12.6; p<0.0001). After adjusting for body mass index,
smoking, diabetes, systolic blood pressure, low-density lipoprotein cholesterol,
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HDL cholesterol, and CRP levels, the researchers found that the risk of future CAD
was 1.34 (1.02-1.71; p=0.02) for people in the highest sPLA, quartile, compared
with those in the lowest [20].

An increase of sPLA,-Ila in peripheral plasma levels has shown a significant
prognostic value in patients with CAD. In a recent study, Xin et al. examined the
prognostic value of sSPLA, levels after an acute myocardial infarction (AMI). Serum
levels of sPLA,-Ila were measured by ELISA in 964 post-AMI patients with serum
samples collected in the convalescent stage. Patients with elevated sPLA,-Ila
(>360 ng/dL, n=164) had a significantly higher prevalence of death (18.3 % [30/164]
vs. 2.75 % [22/800], p<0.001) and readmission for heart failure (14 % [23/164] vs.
2.1 % [17/800], p<0.0001). The authors conclude that a cut-off level of 360 ng/dL
for sPLA,-Ila during the convalescent stage after discharge of patients with AMI
independently predicts long-term mortality and readmission for heart failure [21].

The West of Scotland Coronary Prevention Study (WOSCOPS) enrolled 6,595
men with hyperlipidemia, aged 45-65 years old, for a follow-up period of 5 years.
Markers of inflammation, including fibrinogen, CRP, and Lp-PLA,, were measured.
Participants with elevated Lp-PLA, mass had approximately a twofold risk for future
cardiovascular events (relative risk of 1 SD increase=1.20, 95 % confidence interval
[CI]: 1.08-1.34, p=0.0008) [22]. Lp-PLA, was the strongest predictor of an adverse
outcome and was independent of traditional and emerging risk factors, including CRP
(relative risk of 1 SD increase=1.18, 95 % CI: 1.05-1.33, p=0.005) [23].

In the Atherosclerosis Risk in Communities (ARIC) Study approximately 16,000
middle-aged individuals of both sexes were enrolled. By multivariate analysis,
Lp-PLA, was a significant predictor of risk after adjustment for interaction with LDL.
The researchers found that patients with an Lp-PLA, level in the second and third
tertiles had statistically significant increases in their risk ratios for an incident coro-
nary heart disease (CHD) compared to patients with Lp-PLA, level in the first tertile.
Among ARIC individuals with a low LDL level (<130 mg/dL), those with an Lp-PLA,
level in the second and third tertiles had a statistically significant increased risk ratio
of about twofold, after adjusting for other relevant variables. CRP in the third risk
category also resulted in a statistically significant increase in the risk ratio of an inci-
dent CHD event. Furthermore, individuals with a combination of high levels of
Lp-PLA, and CRP were at a greater risk than those with only one elevated inflamma-
tory marker. High CRP and Lp-PLA, were additive predictors of increased risk for
first CHD event in the ARIC cohort participants with LDL-C <130 mg/dL [24].

In the Rotterdam study, Lp-PLA, activity was shown to be an independent pre-
dictor for the risk of CAD and ischemic stroke in a population of 7,983 middle-aged
persons. Compared with the first quartile of Lp-PLA,; activity, multivariate-adjusted
hazard ratios (HRs) of the second, third, and fourth quartiles were 1.39 (95 % (I,
0.92-2.10), 1.99 (95 % CI, 1.32-3.00), and 1.97 (95 % CI, 1.28-3.02), respectively
(p for trend=0.01), for the risk of coronary heart disease and 1.08 (95 % CI, 0.55—
2.11), 1.58 (95 % CI, 0.82-3.04), and 1.97 (95 % CI, 1.03-3.79) (p for trend=0.03)
for the risk of ischemic stroke [25]. The monitoring of trends and determinants in
cardiovascular disease (MONICA) study enrolled 934 apparently healthy middle-
aged men. Increased levels of Lp-PLA, were associated with increased risk of future
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coronary events (hazard ratio 1.23, 95 % CI: 1.02—1.47), after controlling for potential
confounders, however, inclusion of C-reactive protein in the multivariable model
eliminated Lp-PLA,’s additive predictive value [26]. In the Bruneck study, Lp-LPA,
activity was shown to be related with lipid and inflammatory markers, as well as
with incident fatal and nonfatal CVD [age- and sex-adjusted hazard ratio (95 % CI)
2.9 (1.6-5.5); third vs. first tertile group; p<0.001]. However, non-cardiovascular
mortality was not associated with increased Lp-PLA, activity in this study [27].

The Rancho Bernardo study demonstrated that Lp-PLA, levels are positively
correlated with age, body mass index, LDL, triglycerides, and CRP and negatively
correlated with HDL in 1,077 apparently healthy men and women. Lp-PLA, levels in
the second, third, and fourth quartiles predicted an increased risk of CHD compared
with the lowest quartile (hazard ratios 1.66, 1.80, and 1.89, respectively; p=0.05 for
each) after adjusting for C-reactive protein and other CHD risk factors [28].

Since several studies demonstrated an additive prognostic value of Lp-PLA,
levels to traditional atherosclerotic risk factors, there have been efforts to incorpo-
rate Lp-PLA, measurements in multimarker panels in order to improve the prognos-
tic value for cardiovascular events. In one study, NT-Pro-BNP, whole blood choline
(WBCHO) and LpPL-A, were found to be the optimal combination for risk stratifi-
cation in 432 patients presenting with an acute ischemic episode in the emergency
department [29]. The incremental value of Lp-PLA, for prediction of cardiovascu-
lar events was also examined after addition of Lp-PLA, measurements to a model
including traditional risk factors, renal function as assessed by cystatin C, and
hemodynamic stress as assessed by NT-Pro-BNP. The study monitored the number
of cardiovascular events (death, nonfatal MI, stroke) in 1,051 patients with CAD
during 4 years of follow-up. The addition of cystatin C and NT-Pro-BNP measure-
ment to the basic model improved its predictive accuracy (Area Under the Curve
(AUC): 0.71 from 0.69) and when Lp-PLA, levels were added on the top of cystatin
C and NT-Pro-BNP, the AUC showed a small increase (0.73 from 0.71). In the multi-
variable analyses there was a near twofold increased risk for future cardiovascular
events in patients in the top two tertiles of Lp-PLA, mass compared to the lower
tertile, after adjustment for markers of inflammation, renal dysfunction, and hemo-
dynamic stress [30]. Furthermore, in the PEACE trial, elevated Lp-PLA, and hs-
CRP levels were shown to predict acute coronary syndromes in patients with stable
CAD (p<0.005 and 0.001, respectively), whereas only Lp-PLA, was a significant
predictor for coronary revascularization during 4.8 years of follow-up [31].

The research in this field is ongoing and current knowledge is growing rapidly in
a way that aids in the understanding of the complex pathophysiological process of
atherosclerosis. It was recently shown that the binding of Lp-PLA, to certain lipo-
proteins can alter its characteristics. Rallidis et al. studied the cardiovascular events
in 477 patients with stable CAD during a follow-up period of 34 months. Total
plasma Lp-PLA, and high-density lipoprotein-linked Lp-PLA, mass and activity
measurements were obtained at baseline. After the follow-up period 123 cardiovas-
cular events were recorded. As expected, total plasma Lp-PLA, mass and activity
were predictors of cardiac death (hazard ratio [HR]: 1.013; 95 % confidence interval
[CI]: 1.005-1.021; p=0.002; and HR: 1.040; 95 % CI: 1.005-1.076; p=0.025,
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respectively). However, HDL-Lp-PLA, mass and activity were shown to confer a
lower risk for cardiac death (HR: 0.972; 95 % CI: 0.952-0.993; p=0.010; and HR:
0.689; 95 % CI: 0.496-0.957; p=0.026, respectively) after adjustment for tradi-
tional risk factors for CVD [32], suggesting a protective role of HDL-linked vs.
LDL-linked Lp-PLA,.

A large number of epidemiological studies suggest an association between mea-
surements of phospholipase levels and CVD. These findings have been incorporated
in the Adult Treatment Panel III (ATP III) scientific board proposals. Therefore, the
addition of measurement of Lp-PLA, levels could be considered in patients with
family history of coronary heart disease and relatively normal lipid values or patients
that show a combination of risk factors that places them just below current guideline
cut-off levels for treatment, Thus, elevated Lp-PLA, in these categories of patients
would indicate the need of a more aggressive treatment. However, Lp-PLA, is not
currently advocated as a routine screening test.

4.5 Possible Therapeutic Implications

Various effective cardiovascular medications have been shown to exert anti-
inflammatory actions, i.e., statins. However, no medication is specifically designed
to target vascular inflammation. In the Jupiter study [33] the administration of rosu-
vastatin was shown to offer additional benefit for persons with high hsCRP levels
and low LDL levels regarding the combined primary end point of myocardial
infarction, stroke, arterial revascularization, hospitalization for unstable angina, or
death from cardiovascular causes. Also, anti-inflammatory medications, used for
other purposes (i.e., autoimmune diseases), have been found to exert beneficiary
actions in CVDs. Anakinra, a human recombinant IL-1 receptor antagonist, has
documented beneficial effects on the coronary flow, endothelial, and myocardial
function [34]. Medications especially designed to target vascular inflammation,
such as PLA, inhibitors, have shown positive results in indices of atherosclerosis.
A theoretical goal of treatment with these medications would be to modulate the
inflammatory processes within the vessel wall without affecting host defenses, thus
exerting the maximum potential vascular benefit.

sPLA, serves as a marker of vascular inflammation. Varespladib, an inhibitor of
sPLA,, has been developed and originally tested for its anti-inflammatory properties
on pancreatitis [35], rheumatoid arthritis [36], and sepsis [37]. Since sPLA, is
implicated in vascular inflammation and the progression of atherosclerosis, this
inhibitor was also tested for its potential antiatherogenic properties. In animal stud-
ies varespladib was shown to reduce markers of inflammation (IL-10, IL-12
GM-CSF), as well as cholesterol accumulation and atherosclerotic lesions of the
aorta [38]. Phase II clinical trials of varespladib did not demonstrate a good efficacy
profile in patients with rheumatoid arthritis, asthma and ulcerative colitis, whereas
in patients with CAD, varespladib methyl consistently reduced LDL-cholesterol
levels [39]. FRANCIS-ACS [40], a phase III trial for the use of varespladib in



4 PLA, in Heart Disease 79

patients with acute coronary syndrome, is in progress and its results will enlighten
our knowledge regarding this potentially useful medication.

Recently, clinical studies have demonstrated that Lp-PLA, levels can be reduced
with pharmacological intervention. Statins, when used to treat hyperlipidemia, have
been shown to lower Lp-PLA, levels. A 17 % reduction in Lp-PLA, levels was
demonstrated in subjects treated with pravastatin in the WOSCOPS study [41].
In accordance to these results, Tsimihodimos et al. have shown that atorvastatin
reduced Lp-PLA, activity by 28-42 % [42]. Additionally, fibrates were also shown
to have an impact on Lp-PLA,; levels (fenofibrate treatment reduced Lp-PLA, levels
by 22-28 % in patients with small dense LDL particles) [43]. However, it has not yet
been demonstrated whether lowering Lp-PLA, levels has a significant effect on
patients’ outcomes, though Lp-PLA, has been shown to be predictive of CHD risk.

Darapladib is a novel medication that acts as an Lp-PLA, inhibitor. It inhibits
Lp-PLA, activity over a 24-h dosing interval and its concentrations in patient’s
plasma are stable over 24 h, with C,,,, at ~6 h post-dose. It is metabolized in the liver
(CYP3A4), produces minimal inhibition of other PLA, isozymes, and no clinically
significant drug—drug or drug—food interactions have been noted [44]. Furthermore,
there is no need for dose adjustment according to age, gender, ethnicity, and mild-
to-moderate renal impairment. Animal studies have shown a marked inhibition
of plasma and lesion Lp-PLA, activity and reduced lesion Lyso-PC content with
darapladib, as well as a reduced development of advanced coronary atherosclerosis
in diabetic and hypercholesterolemic swine [45].

In humans, the addition of darapladib to intensive statin therapy in CHD patients
was shown to decrease Lp-PLA, activity and also to reduce systemic inflammation
(as expressed by reduced CRP, IL-6 levels). Darapladib 40, 80, and 160 mg inhibited
Lp-PLA, activity by approximately 43 %, 55 %, and 66 %, respectively, compared
with placebo. No unexpected clinical or laboratory adverse effects were reported.
This study, however, did not investigate the clinical impact of Lp-PLA, activity
reduction in the atheromatic plaque [46]. The Integrated Biomarkers and Imaging
Study-2 (IBIS-2) was designed to examine the impact of darapladib therapy on the
vessel wall. Patients with angiographically proven CAD were randomized to receive
darapladib 160 mg or placebo once daily. The investigators incorporated the use of
novel intravascular ultrasound techniques (palpography and virtual histology) to
measure the mechanical properties and the components of the atherosclerotic
plaque. It was shown that Lp-PLA, inhibition prevented necrotic core expansion, a
key determinant of plaque vulnerability, after 12 months of treatment (necrotic core
volume increased significantly in the placebo arm (4.5+17.9 mm?* p=0.009),
whereas darapladib halted this increase (-0.5+13.9 mm?®; p=0.71 in the darapladib
arm). Even though changes in plaque composition, like the ones reported, do not
always translate to actual benefit in cardiovascular end points, the findings of this
study suggest that inhibition of Lp-PLA, could represent a novel therapeutic inter-
vention [47].

Pharmaceutical interventions to reduce Lp-PLA, activity may result in additional
anti-inflammatory effect in patients with atherosclerosis, as was shown for darap-
ladib administration and its effect on reducing high-sensitivity CRP and IL-6 levels.
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Two studies have been designed to test the efficacy of darapladib in coronary heart
disease. The STabilization of Atherosclerotic plaque By Initiation of darapLadlb
TherapY (STABILITY) [48] aims to enrol 15,500 patients with chronic CHD. Its
objective is to show whether darapladib treatment, when added to standard of care,
will result in a reduction in the incidence of first occurrence of the composite of
major adverse cardiovascular events (i.e., cardiovascular death, nonfatal myocardial
infarction, or nonfatal stroke). The Stabilization Of pLaques usIng Darapladib-
Thrombolysis In Myocardial Infarction 52 Trial (SOLID-TIMI 52) [49] aims to
investigate the role of darapladib in the setting of an acute coronary event (myocar-
dial infarction, unstable angina). Results from these studies will answer the question
whether the extensive research in the preclinical field will translate in better outcomes
in patients with CHD.

4.6 Conclusions

Even though current medicine provides tools for cardiovascular risk stratification,
there continues to be a large unmet need for the detection, assessment, and treat-
ment of CVDs. The role of inflammation in atherosclerosis is well established and
inflammatory markers are already in use in everyday clinical practice. The enzymes
of the phospholipase superfamily have been studied extensively because of their
implication in the atherosclerotic process and could serve as emerging biomarkers
of vascular inflammation. sPLA2 and Lp-PLA, could serve the up to now unmet
need for cardiovascular risk prediction.

Furthermore, even though various effective cardiovascular medications have been
shown to exert anti-inflammatory actions, no medication is specifically designed to
target vascular inflammation. Varespladib, an inhibitor of sPLA2, and darapladib, a
novel medication that acts as an Lp-PLA, inhibitor, have shown promising results in
indices of atherosclerosis. Phospholipase inhibition could putatively serve as a prom-
ising target for CVD management. These specific inhibitors of vascular inflammation
are already being tested and the results of these studies are expected to shed light to
our understanding of the pathogenesis and management of CVD. Results from current
trials are expected in order to investigate whether the inhibition of phospholipases
action is associated with a morbidity and mortality benefit.
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