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Abstract The immune response is an important factor in the progression of cancer,
and this response has been harnessed in a variety of treatments for a range of
cancers. In this chapter we develop mathematical models that describe the immune
response to the presence of a tumor. We then use these models to explore a variety
of immunotherapy treatments, both alone and in combination with other therapies.
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1 Introduction

The simplest model of tumor growth assumes that cells undergo mitosis at a constant
rate, resulting in a tumor population that grows exponentially. However, it is quickly
apparent that this model is not consistent with clinical observation. As a thought
experiment, consider a breast cancer cell, which is approximately 20 microns in
diameter. If we assume a doubling time of two days, then after 26 doublings or 52
days, this single cell will have produced a mass of approximately 67 million cells,
with a diameter of 8 mm—in other words a detectable tumor mass. After another 18
doublings or 88 days after the single cancer cell started dividing, the mass would be
the size of a beach ball (of radius 25 cm).

Clinicians knew from experience that, in general, this was not a correct descrip-
tion of tumor growth, even in the absence of treatment. Tumor growth could be
limited by many factors, an obvious one being a limited supply of nutrients, and
several early mathematical models were proposed that account for the slowing
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of tumor growth as a result of limits on the ability of the vasculature to deliver
nutrients [10, 42, 55]. There was also ample evidence that the immune system plays
a significant role in the containment of tumors.

The exact role of the immune system in fighting cancer is not known, although
as early as 1908, scientists proposed that the immune system could prevent the
progression of many cancers. In particular, in that year, Nobel laureate Paul Ehrlich
deduced that, without the immune system’s intervention, there would be many
more cases of cancer than we observe [25]. Throughout the past century, the
“immunosurveillance” hypothesis was tested and retested, with experimental results
sometimes supporting the hypothesis, sometimes rejecting it [24]. In the past two
decades, the overwhelming majority of evidence is in favor of Ehrlich’s hypothesis,
and researchers are now seeking ways to enhance the ability of the immune system
to stop the progression of the disease [26].

One of the earliest attempts to harness the immune system’s response was made
by an oncologist, William B. Coley, in the late 1800s, who noticed that some
of his patients with what he thought was incurable cancer would improve when
they simultaneously had an infection. He manufactured a mixture of dead bacteria,
and experimentally administered the brew, known as “Coley’s toxins,” to patients
with inoperable tumors. This treatment was successful enough to encourage other
doctors to follow suit throughout the following decades [56]. Other immunotherapy
treatments for cancer include stem cell transplants, introduced in the 1950’s,
and the administration of immune-stimulating cytokines. A stem cell transplant
involves harvesting immune cells from the bone marrow of healthy individuals
and transferring them to patients with leukemia. The administration of immune-
stimulating cytokines is a technique that was pioneered and developed by Dr. Steven
Rosenberg to treat patients with melanoma [50]. For an excellent review of cancer
immunotherapies, see [3].

The role of the immune response in the control of cancerous cells also caught
the interest of the mathematical community. Over the past twenty years, physicists
and applied mathematicians have developed mathematical models that describe the
interactions between tumor cells and immune cells in an attempt to understand
the mechanisms behind observed behavior and to help clinicians design effective
treatments. The earlier models consider tumor cells and immune cells at the
population level [33, 36, 44, 52]. For an excellent survey of these early models
see the book [1]. Later models include spatial effects [4, 5, 41] or focus on
optimization of specific immunotherapy treatments [6, 35]. General frameworks
have been developed from a systems perspective that are applicable to a variety
of specific situations [19, 20]. This chapter is not intended to be an overview of this
impressive body of work; the interested reader is referred to the texts cited here and
the references therein. Rather, we follow our own trajectory of investigation and
discovery, presenting several models of tumor–immune interactions that illustrate
a variety of approaches to understanding the progression of the disease and to
harnessing the immune response in the context of treatment.

This chapter is organized as follows. In Sect. 2 we develop the simplest model of
the immune response, which uses two ordinary differential equations to describe two
competing populations: the immune cells and the tumor cells. We add chemotherapy
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to this simple model to illustrate the complexity in the resulting dynamics and
to demonstrate in silico the importance of including the immune response in the
design of treatment strategies. We add more realism to the model in Sect. 3 by
distinguishing between the innate and the adaptive immune responses and describe
several types of modeling techniques that can be used to explore this distinction.
In the final section of the chapter, Sect. 4, we discuss immunotherapies, and
give several examples of mathematical models that can be used to investigate
immunotherapeutic protocols.

2 The Immune Response as One Population of Effector Cells

The immune system is a complex network of interacting cells, proteins and chem-
icals. This network consists of excitatory and inhibitory connections, positive and
negative feedback loops, and delays. In the simplest mathematical model of tumor-
immune interactions, we only consider those immune cells that have the ability to
destroy antigen, or foreign cells. These include natural killer (NK) cells, cytotoxic
T-cells (CTL) such as CD8C cells, macrophages, and other scavenger cells. As a
first model, we lump all of these killer cells into one population called effector
cells. We imagine that we are considering a small volume of tissue containing a
tumor, we consider the tumor to be one homogeneous population of cells, and we
assume that the interaction between tumor and effector cells can be described as an
average affect. If the number of cells in each of the populations is large, we can
describe the population as a continuum, and we can describe the evolution of the
average using differential equations. We also include a population of normal host
cells in this model, as a proxy for overall “well-being.” Since a tumor cannot grow
without bound, we assume that, in the absence of an immune response, the tumor
will grow to some maximum size determined by the available nutrients. We assume
the same for the normal cells. Several functional forms are used to model self-
limiting growth in the literature, for example, logistic, Gompertz, or von Bertalanffy.
In this formulation we use a logistic growth law for both normal and tumor cells. We
note, however, that other growth laws produce qualitatively similar results. Further
details of this model and an analysis of its long-term behavior can be found in [14]
and [15].

We let I.t/ denote the number of effector immune cells at time t , T .t/ the number
of tumor cells at time t , and N.t/ the number of normal, or host, cells at time t .
A graphical representation of the model interactions is shown in Fig. 1.

The source of the immune cells is considered to be outside of the system, and we
let s denote the constant influx of innate effector cells that would be present in the
absence of a tumor. Furthermore, in the absence of any tumor, the cells will die off
at a per capita rate d1, resulting in a long-term population size of s=d1 cells. Thus,
immune cell proliferation will never suffer from crowding.

The presence of tumor cells stimulates the immune response, represented by the
dashed arrow in the diagram. For biological realism, we assume here a saturation
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source I(t): immune T(t): tumor N(t): normal
s

Fig. 1 A graphical representation of a population model of tumor-immune interactions, with three
populations: immune effector cells (I ), tumor cells (T ), and normal cells (N ). Solid lines indicate
direct interactions, and dashed lines indicate indirect interactions. Single arrow heads denote a
positive interaction, while double arrow heads denote an inhibitory interaction

limited effect. Furthermore, the reaction of immune cells and tumor cells can result
in either the death of tumor cells or the inactivation of the immune cells, represented
by two double-headed arrows.

The closed loop arrows on the tumor and normal cell population nodes represent
normal growth and decay, which follows a logistic law. In addition there are two
terms representing the competition between tumor and host cells, shown also as
double-headed arrows in the diagram. Putting all the terms together gives the
following system of ordinary differential equations:

PN D r2N.1 � b2N / � c4TN;
PT D r1T .1 � b1T / � c2IT � c3TN;
PI D s C �IT

˛ C T
� c1IT � d1I:

(1)

As shown in [15], this system has one “tumor-free” equilibrium at .1=b2; 0; s=d1/
and two “dead” equilibria, where the normal cell population is zero. Furthermore,
the system can have one, two, or three “co-existing” equilibria, where all of the cell
populations are nonzero, depending on the values of the parameters. Thus, in some
parameter regimes, the system is multistable, where several stable equilibria exist
at the same time, so that the long-term behavior of the system is determined by the
initial conditions. We note that the concept of multistability is one of the few new
ideas that biomathematics was able to offer the biomedical research community.

If the tumor-free equilibrium is stable, then small tumors will be eradicated by
the immune system. A linearized stability analysis shows that this occurs when the
resistance coefficient is larger than the intrinsic growth rate of the tumor, i.e., when

c2s

d1
C c3 > r1:

If a patient has a detectable tumor that is progressing, then we can assume that the
tumor-free equilibrium is unstable. Two bifurcation diagrams are shown in Fig. 2.
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Fig. 2 Bifurcation diagram showing how changes in the immune source (s) and recruitment (�)
parameters affect the number and stability of equilibria with nonzero tumor values. Note that the
tumor-free equilibrium is not shown here: it is assumed to be unstable if there is a tumor. The red
arrow indicates movement through the diagram as a result of a hypothetical treatment that enhances
the immune response, such is the administration of interleukin 2 (IL2). Upper graph: Number and
type of co-existing equilibria as a function of source rate, s, and immune response, �. Lower graph:
Tumor cell populations at the equilibria as a function of the immune response rate, �. Stability of
equilibria is indicated. Movement is from Region 2 through Regions 7 and 6 and finally into Region
3: as � increases from 0.1 to 2.0. Source rate s D :12, tumor populations as fraction of carrying
capacity. See [15] for details
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We can interpret these diagrams in the context of immunotherapy treatments as
follows: treatment should move the system into a regime where it is attracted to
a small, presumably harmless, tumor. If a patient has a detectable tumor that is
progressing, we can assume that it is not in the basin of attraction of a stable,
small-tumor equilibrium. Suppose the system is in Region 7, where it will be
attracted to a relatively large tumor equilibrium (the dot in both graphs in Fig. 2). By
administering cytokines that increase the immune response or by giving a vaccine
that increased the immunogenicity of the tumor, the parameter � could be increased,
moving the system to the right in the bifurcation diagrams (denoted by the arrows
in both graphs). The system would then be in the basin of attraction of a relatively
small tumor equilibrium, and the tumor would regress without further treatment.

We can also learn something about the effects of uncertainty in the environment
by looking at the bifurcation diagram. For example, suppose the system is near
the right boundary of Region 7 in Fig. 2, for example, near the point s D :17,
� D :6. In this case, small fluctuations in the parameter s, the influx rate of
effector cells in the absence of a tumor, could cause the system to move into
Region 3. A reverse saddle-node bifurcation occurs where one stable equilibrium
and one unstable equilibrium disappear, and the system would move towards the
one remaining stable equilibrium. In this case, this would be beneficial, since the
remaining equilibrium is at a point in state space with a small tumor population.
The effect of stochastic fluctuations in the parameters has been discussed in the
context of tumor–immune models in, for example, [7], and the effects of random
fluctuations on resistance to chemotherapy is treated nicely in [21].

2.1 The Immune Response and Chemotherapy

In a scenario known as “Jeff’s phenomenon,” it has been clinically observed that
tumors treated with cytotoxic chemotherapy can respond in a non-intuitive way.
For some patients, after one treatment the tumor will shrink, and after another it
might continue to grow, resulting in a temporal oscillation that is asynchronous
with the chemotherapy. This phenomenon is reported in [59], where it is argued
that this asynchronicity cannot be explained solely by acquired drug resistance.
We hypothesize that it is the interaction of the chemotherapy with the immune
response that could explain Jeff’s phenomenon and test the hypothesis by adding
a chemotherapeutic term to the model.

We assume that the rate of change of the concentration of drug at the tumor
site, u.t/, can be described by a time-varying input function, v.t/, representing the
administration of the drug, and by an elimination rate, d1. We also assume that the
drug kills all three types of cells in the model at a saturating rate, but that it acts
preferentially on the more quickly dividing tumor cells and immune cells than on
the normal host cells. A graphical representation of the system is shown in Fig. 3,
with edges terminating in open circles denoting an inhibitory (killing) effect.
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u(t): drugv(t): treatment

I(t): immunesource T(t): tumor N(t): normal
s

a3

a2

a1

Fig. 3 A graphical representation of the model with chemotherapy. Solid lines represent direct
interactions, with single arrowheads representing cooperative interactions, double arrowheads
representing competitive interactions, and open circles representing a killing effect. Dashed lines
represent interactions that affect the rate of another interaction

These assumptions result in the following system of equations (see [15] for
parameter values and more details):

PN D r2N.1 � b2N / � c4TN � a1.1 � e�u/N;

PT D r1T .1 � b1T / � c2IT � c3TN � a2.1 � e�u/T;

PI D s C �IT

˛ C T
� c1IT � d1I � a3.1 � e�u/I;

Pu D v.t/ � d1u:

(2)

where a1 < a3 < a2. A simulation of this model demonstrating Jeff’s phenomenon
is shown in Fig. 4. Thus, the immune response could play a role in the delayed
response of some patients to cytotoxic chemotherapy. This simple model also
suggests that a close monitoring of the state of the cellular immune response could
help in designing more effective treatment protocols.

With the relatively simple model given by Equation 2, we can attempt to answer
the question: what is the best treatment regimen for a patient with a specific
parameter set? As a first step, we must define what we mean by “best.” One criterion
might be “the one that minimizes tumor size at the end of treatment” and another
might be “the one that is least toxic.” Once the criteria are settled, optimization
techniques can be applied to the system to propose effective treatment protocols.
For example, suppose we wish to minimize the tumor burden after 45 days of
treatment, while keeping the tumor population as low as possible and keeping the
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Fig. 4 Simulation of the model in system 2 demonstrates a possible role of the immune response
in an asynchronous response to chemotherapy. Vertical lines show the simulated bolus injections
of the drug, administered every 21 days

level of normal cells above 75 % of their normal value (a measure of toxicity). In
terms of an optimization problem, we want to find the function v.t/, representing
the administration of the drug, that minimizes the following cost function, where tf
is the total time of treatment.

J.v.t// D w1T .tf /C w2

Z tf

0

T .t/dt C w3 max
t2.t0;tf /

T .t/; (3)

where wi are weighting constants. Note that three terms were required in the cost
function: the first reflects our desire to minimize the tumor at the end of treatment,
tf . The second reflects our desire to minimize the total tumor present over the
course of treatment, and the third term puts a penalty on any treatment that results
in a large tumor at any point. The omission of either of the final two terms yields
solutions with tumor populations that grow very large for a short period of time. The
weighting of the three terms also yields qualitatively different results. For the set of
experiments we present here, we set w1 D 1500;w2 D 150;w3 D 1000, but other
weightings might be preferred, depending on the type of tumor.

To reflect our desire to avoid excessive toxicity, we introduce a constraint
function:

N.t/ � 0:75; 0 � t � tf ; (4)
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where the host cell population, N.t/, is scaled to a fraction of its normal value.
Additional constraints are that all state variables must satisfy Equation 2 and that
both the rate of drug input and the total amount of drug administered are bounded:
0 � v.t/ � maxv, 0 � R tf

0 v.t/ dt � vTOT .
This optimization problem can be solved using a variety of available techniques.

In Fig. 5 we compare simulations using a traditional, “pulsed” protocol, where
the drug is administered over short (12 h) periods, repeated every 2 days for 40
treatments (so the last treatment ends midday on Day 80). In this experiment, we
simulate a patient with a relatively weak initial immune system (I.0/ D :1) and
the simulation shows that the traditional pulsed treatment is ineffective in the long
term: once treatment stops, the tumor continues to grow, and the disease progresses.
In the right panel of Fig. 5 we show a solution obtained using a direct collocation
method, DIRCOL [57]. We required that the total amount of drug administered be
no more than the total in the traditional case, so vTOT D P40

nD1
R :5
0
1 dt D 20. The

optimized protocol suggests that the drug be administered over longer periods of
time, on the order of days, with irregularly spaced treatments. In fact, it suggests
one very short pulse of chemo at Day 125. With this treatment the tumor burden is
driven to near zero by Day 70, and it remains there for the duration of the simulation.
It is worth emphasizing that the only difference between the two treatments is the
timing of the doses: the total amount of drug, and the maximum drug given are the
same.

There are many possible optimization questions that could be asked in this
setting. For example, it is possible that, by adding the total amount of drug used to
the cost functional, one could find treatment protocols that are equally effective but
that use less drug. Or it might be desirable to introduce a penalty term that curbs the
destruction of the immune population. In Sect. 4 we will explore other optimization
techniques and results in the context of designing cancer vaccines.

3 The Innate and Adaptive Immune Response

The human body has a huge army of defender cells, generally known as white blood
cells (WBC) or leukocytes. It creates approximately a billion of these cells each
day. A subset of these leukocytes are lymphocytes, which comprise 20–30 % of
the WBC. In this section we will focus on two types of lymphocytes: the natural
killer (NK) lymphocytes and the cytotoxic T lymphocytes (CTLs). Both of these
cells are cytotoxic, meaning that they kill antigen or “nonself” cells. However, they
belong to two different arms of the immune response: NK cells belong to the innate
immune system. They form part of the immune system’s regular patrol, and they are
activated to lyse, or kill, cells that they encounter when that cell does not have a high
expression level of certain molecules known as MHC I (major histocompatibility
complex class I). The CTLs are part of the adaptive immune system. These
cells originate from stem cells that then migrate to the thymus (hence the “T”).
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From there they are recruited to various lymph organs. When a nonself cell, or
antigen, is encountered by a certain type of roving immune cells called antigen-
presenting cells (APCs), they are engulfed, and pieces of the foreign cell are
“presented” to the T-cells, activating them and causing them to proliferate into one
population that can recognize and kill that particular type of foreign cell. Figure 6
gives a sketch of this process, where the antigen-presenting cell is a macrophage.
Once the CTL is activated, it will seek out the specific antigen for which it is trained.
Some activated CTLs will become memory cells, providing immunity for a second
attack by the same foreign cells.

Note that other T-cells known as “helper T-cells” are also activated in this
process, and these T-cells participate in the activation of the CTLs or “killer T-
cells.” Helper T-cells will appear in our models later, in Sect. 4.1. Helper T-cells
also activate B-cells, which are key players in the humoral response, that part of
the immune response that is mediated by antibodies. Another important class of
APCs is the dendritic cells (DCs), which are now being used in the development of
cancer vaccines. These will be discussed in Sect. 4.2. In terms of the body’s fight
against cancer, both NK cells and CTLs act like predators, but their methods of
recognizing—and killing—their prey are different. As part of the innate immune
system, natural killer cells are cytotoxic cells that are highly effective in lysing
multiple (but specific) tumor cell lines [43]. Unlike cells of the specific immune
system, which are drawn to a location due to the presence of antigen, the natural
killer cells are constantly present guarding the body from infection and disease.

On the other hand, cytotoxic T lymphocytes are able either to lyse or to induce
apoptosis in cells presenting specific antigens, such as tumor cells [43]. Unlike NK
cells, CTLs are only able to recognize a specific antigen or tumor cell line. It is
known, however, that these cells are able to destroy more than one tumor cell during
their life cycle while a single natural killer cell generally kills very few [36]. After
destroying the target cell, the CTLs move on in search of other antigen-presenting
cells.

3.1 The dePillis–Radunskaya Law

In the fight against cancer, both the innate and the adaptive arms of the immune
response are important. In fact, laboratory experiments show that without both NK
cells and CTLs, tumors injected into mice will escape the immune surveillance

J

Fig. 5 Left: A patient with a relatively weak initial immune population (I.0/ D :1 in normalized
units) shows progressive disease after a series of pulsed chemotherapy treatments. The bolus
treatments are simulated as injections at the maximum rate (normalized to maxv D 1) for 12 h,
repeated every 2 days for the course of the treatment. Right: A solution to the optimization problem
given in Equation 3. The total amount of drug is the same in both the left (traditional treatment)
and right (optimized treatment) simulations. The optimized treatment protocol is successful in
eliminating the tumor
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Fig. 6 A graphical representation of the activation of the adaptive immune response. A
macrophage, a type of antigen-presenting cell (APC), recognizes a particular cell as “nonself”
or antigen and engulfs it. The APC then presents bits of the engulfed, or “phagocytosed” cell to
immature T-cells, which then begin to proliferate, activating other immune cells and, ultimately,
the killer T-cells, or CTLs, and recognize and kill malignant cells of the same type as the initial
antigen

source N(t): NKs T(t): tumor L(t): CTLs
s

Fig. 7 Schematic of the model with two types of effector cells: natural killer cells (N ), repre-
senting the innate immune response, and cytotoxic T lymphocytes (L), representing the adaptive
immune response. As before, the solid lines represent direct interactions, with a single arrow-head
denoting a cooperative interaction, and a double arrowhead denoting a competitive interaction.
The dashed lines represent indirect interactions, where one population affects the rate of another
interaction

(e.g., [18]). We therefore separate the effector cell population from the previous
model into two subpopulations: the NK cells and the CTLs. Without the host cells,
the model diagram becomes that shown in Fig. 7.

In developing the model, we assume again that the tumor grows logistically, that
the NK cells, as part of the innate immunity, have a constant source, that immune
cell proliferation is enhanced by the presence of the tumor, and that immune cells
and tumor cells interact competitively. Furthermore, we know that the destruction
of tumor cells by NK cells results in an increased uptake of antigen by antigen-
presenting cells and, hence, an increase in the number of tumor-specific CTLs that
are produced.

In the previous model given by System 1, competition between effector immune
cells and tumor cells was represented by a mass action term of the form �cIT .
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Fig. 8 Left: best fit kill rates using a power law for the per-cell kill rate by CTLs. Right: best fit
kill rates using a ratio-dependent per-cell kill rate by CTLs. Solid lines: model simulations, N and
�: data for two patients from [23], Figure from [16].

This term reflects an assumption that the number of encounters between the two
cell populations is proportional to the product of the two populations, i.e., that
all immune–tumor cell pairs are equally likely to occur, and that each of these
encounters has an equal chance of resulting in the death of the tumor cell. A more
general assumption might be that it takes n immune cells to kill one tumor cell, in
which case the competition term would take the form �cI nT . However, in trying to
fit experimental data to a power law for the kill rate, it became apparent that the kill
rate by CTLs does not follow this function form. Figure 8 shows the best fit curves
to data from [23] using both a power law and a saturating ratio-dependent kill rate

of the form: D D �d .L=T /�

k1=2 C .L=T /�
T . The kill rate for NKs does, on the other

hand, fit a power law quite well. This gives a mathematical distinction between the
functional forms for the kill rates of the two types of effector cells and has become
known as the dePillis–Radunskaya Law. See [16] for details.

In this model we continue to denote the tumor cell population by T . We
now let N denote NK cells (rather than normal cells) and L denote the number
of cytotoxic T lymphocytes. We include in our equations one more distinction
between the innate and the adaptive response. Since the NK cells recognize antigen
directly, the response term in the NK equation (Equation 6) depends explicitly

on the tumor population:
gT 2

hC T 2
N . However, as depicted in the graphic in

Fig. 6, CTLs are activated by a cascade of immune events, including antigen
presentation by APCs and activation of helper T-cells. Since tumor cells must
be lysed before the APCs can initiate the activation cascade, the response term
in the CTL equation (Equation 7) depends on the kill rate of tumor cells which
in turn is given by the sum of the ratio-dependent term from the dePillis–
Radunskaya Law, D , and the power law kill rate by NK cells, denoted by rNT .



212 L.G. de Pillis and A.E. Radunskaya

To complete the model, we include a saturating response term. The model system is

dT

dt
D aT .1� bT /� cNT � D (5)

dN

dt
D s � fN C gT 2

hC T 2
N � pNT (6)

dL

dt
D �mLC jD2

k C D2
L� qLT C rNT (7)

where

D D d

�
L
T

��
k1=2 C �

L
T

�� T; (8)

With this model, we can now study the response of the system to variations in the
two types of immune response. A sensitivity analysis shows that the final size of the
tumor is most sensitive to the model parameter, d , which represents the maximum
kill rate by CTLs. On the other hand, the size of the tumor after 40 days is affected
by small changes in the parameter c, representing the strength of the kill rate by
NK cells. This suggests that treatments should focus on increasing the number of
CTLs, and enhancing their effectiveness and that the innate immune system cannot,
by itself, control tumor growth.

The mechanisms that lead to the different kill rate laws are still unknown. It is
likely that spatial effects are important, since CTLs are trained to “seek and destroy”
specific antigens, while NK cells move randomly through the body. In the next
section we introduce a spatial component into the model.

3.2 Adding a Spatial Component: Agent Based Models

One way to address questions about the effects of the spatial distribution of tumor
and immune cells is to employ a hybrid cellular automata–partial differential
equation modeling approach. The model we describe in this section is detailed
in [39], and accounts for the spatiotemporal and stochastic interactions between
individual tumor cells and populations of CD8+T (also known as CTLs) and NK
cells while the tumor is in the pre-vascular stage.
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We initialize the model with a cluster of tumor cells in a two-dimensional
space of extra-cellular matrix (ECM). Nutrient diffuses from nearby blood vessels
through the space to the tumor cells. In subsequent hybrid CA models [12, 22], we
incorporated nutrient delivery through blood vessel sources interspersed throughout
the computational domain. In the model presented here, we focus on the early pre-
vascular stage, representing a small tumor burden, such as a postoperative remnant
or a small satellite colony originating from a resected tumor.

As a result of the external nutrient supply, avascular tumors often develop into
compact, nearly spherical structures. In these cases, the growing tumor generally
develops three distinct layers—the proliferative rim, which is an outer shell of
dividing cells that have direct access to nutrients that have diffused through the
tissue; the quiescent layer, which is an inner layer of cells that have insufficient
nutrient to allow them to divide, but enough to keep the cells alive; and a central
core of necrotic cells that have died because nutrient concentrations are too low to
maintain cell life. Our model simulations are able to produce a variety of tumor
growth outcomes, including spherical and papillary (branchy) growth, stable and
unstable oscillatory growth, proliferating and quiescent layers with a necrotic core,
and lymphocyte-infiltrated growth. Lymphocyte infiltration is of particular interest
given the experimental research that suggests improved survival rates for patients
with intratumoral immune cells [60]. Infiltration of T-cells into the tumor mass
can also lead to fibrosis and necrosis and subsequently reductions in tumor size
[51, 54]. Numerical simulations of this model are in qualitative agreement with the
experimental results demonstrated by, for example, Zhang et al. [60], Schmollinger
et al. [51], and Soiffer et al. [54].

3.2.1 Hybrid PDE–CA Model Overview

Our model tumor grows on a two-dimensional square domain representing a patch
of tissue that is supplied with nutrients by blood vessels that occupy the top and
bottom boundaries, as shown in Fig. 9. The remainder of the space is partitioned into
a regular grid in which the various cell types reside, and through which the nutrients
diffuse. The grid is partitioned in such a way that each cellular automata grid

Fig. 9 Schematic of the
cellular automata physical
domain. The conditions
imposed on the four
boundaries are indicated. The
solid bars (top and bottom)
represent the capillaries while
different cell types are shown
filling the spaces in the grid
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element corresponds in size with the actual biological cells of interest (10–20�m
[2, 38]). We simulate the time progression of the system using two main steps.
First, we solve the reaction–diffusion equations for the nutrient species, then with
dependence upon the new nutrient fields, the actions of the cells (such as migration
and proliferation) are carried out. Each iteration therefore corresponds to the period
of tumor cell division. That is, a period of approximately 0.5–10 days, depending
on the cell type in question [33, 49].

We include two representative nutrient species (such as glucose and oxygen
[28, 58])—the first nutrient, N , being a necessary component of the cell division
processes, while the second, M , is essential for the cell to survive. The nutrients
diffuse throughout the tissue space, and as they do so, they are consumed by the
different cells that are resident in tissue.

The nondimensionalized reaction-diffusion equations for the two nutrients are

@N

@t
D r2N � ˛.H C I /N � �N˛TN; (9)

@M

@t
D r2M � ˛.H C I /M � �M˛TM; (10)

The cell species are identified byH for host cells (normal tissue), T for tumor cells,
and I for immune cells. Also, ˛1 is the normal rate of consumption of nutrient by
host and immune cells, and �N � 1 and �M � 1 determine the excess consumption
by the tumor cells of the two types of nutrient. We impose Dirichlet boundary
conditions at the top and bottom of the domain, to represent the constant nutrient
source coming from the blood vessel. The right and left edges of the domain are
subject to periodic boundary conditions.

The evolution of the four cell populations proceeds according to a combination
of probabilistic and direct rules. A summary of the action and interaction of the cell
types follows.

Host cells: The host cells are considered passive: other than their consumption of
nutrients, they allow tumor cells to freely divide and migrate.

Tumor cells: The tumor cells in this model can divide, die, or migrate in space.
These processes depend upon nutrient levels, the relative abundance of cells
of the immune system, and crowding due to the presence of other tumor cells.
Tumor cells can die either because of insufficient nutrient levels or from active
killing by immune cells.

Immune cells: CTL cells are recruited to the tumor location when natural killer
cells lyse tumor cells or when CTLs and tumor cells interact. A single CTL is
able to lyse more than one tumor cell [36], a feature reflected in our model.

1In references [39] and [27], the authors choose to use ˛2 instead of ˛; since ˛2 reflects the squared
form of the dimensional terms it replaces. For clarity, we simply use ˛ here.
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The immune cell actions in the model are summarized as follows: NK cells are
generated at a rate to keep levels in constant proportion to the total number of cells
in the domain, CD8+T cells are recruited to the tumor site, both NK and CD8+T
cells can move through the computational domain, both NK and CD8+T cells can
kill tumor cells, and both NK and CD8+T cells can die, either through deactivation
by encounters with tumor cells or through apoptosis.

The cellular automata grid is initiated with a single cancer cell in the domain,
along with the normal level, I0, of natural killer immune cells. The remainder of
space available to cells is occupied by non-tumorous host cells.

Spatial Simulations: Tumor Growth, No Immune System

Simulations show that tumor morphology is dictated by relative consumption rates:
lower consumption rates of nutrient by tumor cells lead to more compact tumors,
while higher consumption rates lead to the papillary morphology.

Figure 10a shows the growth in the total number of tumor cells over time
when the tumor is allowed to grow in the absence of any immune response, and
tumor cell consumption rates are low relative to normal cells. Note the initially
exponential growth phase (iteration 0 through 200), before a phase of linear growth
(iteration 200 through 800). These growth characteristics mimic the growth rates of
multicell spheroids described experimentally by Folkman [28] and mathematically
by Greenspan [30].

Figure 10b displays the state of the system after 800 iterations. A roughly circular
tumor with a radius of about 200 cells has developed in the center of the domain and
is growing steadily toward the sources of the nutrient. Higher tumor cell densities are
seen at the periphery of the tumor where it is surrounded by normal cells comprising
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Fig. 10 Compact tumor growth in the absence of immune system interaction. Parameters: Domain
size of 1000 elements � 10–20 mm, tend D 800 cell division cycles, �n D 50, �m D 25, ˛ D 1,
I0 D 0. Note the beginning of a necrotic core in Fig. 10b. (a)Total tumor cell count over time (b)
Final tumor cell distribution over the cellular automata grid
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Fig. 11 An example of papillary tumor growth in the absence of immune system interaction.
Parameters: Domain size of 250 elements � 2:5–4mm, tend D 597 cell cycles, �n D 100,
�m D 10,˛ D 2, I0 D 0. (a) Total tumor cell count over time (b) Final tumor cell distribution
over the cellular automata grid

the host tissue. In the center of the tumor a necrotic core is beginning to form with
some necrotic material already appearing. The tumor shown is growing in a domain
that is approximately 10–20 mm square.

Figure 11 shows a tumor with relatively high nutrient consumption rates, a
“gluttonous” tumor. Figure 11a shows the tumor cell count over time. We observe
that the tumor is growing exponentially throughout the time considered without
moving to a linear growth rate (as is seen in Fig. 10a). This may be due to the shape
of the tumor and the lower requirements of the tumor cells for survival nutrient.
Unlike the spherical tumors for which the cell-dense periphery limits the diffusion
of nutrients to the tumor center, the papillary tumor grows out quickly from its origin
and does not form a cell-dense border. Nutrients diffuse more readily throughout the
domain, so a greater percentage of tumor cells is provided with the nutrients to both
survive and divide.

Tumor Growth with the Immune System

We now add an immune cell to the simulation. In these experiments we use I0 D
0:01 or 1% of the baseline value, consistent with biological levels measured in [38]
and [8].

Figure 12 shows the effect on tumor (left figures) and immune (right figures) cell
populations due to changes in CTL recruitment strength. All figures were produced
with the same parameters as for Fig. 11, the papillary, “gluttonous,” tumor (except
for the immune parameters). We see oscillatory population cell counts for both
tumor and immune cells. Qualitatively similar results were observed for simulations
using the compact tumor parameters (figures not shown).

Figures 12a–b show solutions for the highest level of CTL recruitment and very
few oscillations are observed. While it appears in Fig. 12b that little has changed
in the immune cell population, the important factor is the location of the immune
cells. After detection of the tumor, the immune cells are attracted to the location of
the tumor mass, thus aiding in its removal.
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Fig. 12 The effect on tumor and immune cell distributions in compact tumors over time due to
changes in CTL recruitment rates, which are inversely related to the parameter �L: a larger value
of �L results in a lower recruitment rate. Parameters: Domain size of 250 elements � 2:5–4mm,
�n D 100, �m D 10, ˛ D 2, I0 D 0:01. (a) �L D 3 (b)�L D 3 (c) �L D 5 (d)�L D 5 (e) �L D 7

(f) �L D 7

For slightly weaker CTL recruitment, solutions are shown in Figs. 12c–d. The
tumor cell population is oscillatory but trending upward. A number of simulations
carried out with the same parameter set also exhibited this oscillatory behavior.
Experimental evidence for such oscillatory behavior can be found in, for example,
Kennedy [32] who studied chronic myelogenous leukemia, and Krikorian et al. [34]
who looked at non-Hodgkin’s lymphoma.
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Fig. 13 Immune cell infiltration into a growing tumor. (a) and (b) show the tumor cell count over
time and the final tumor cell distribution over the cellular automata grid, while the same outputs
for total immune cells are shown in (c) and (d). Parameter values are domain size of 250 elements
� 2:5–4mm, tend D 354 cell division cycles, �n D 50, �m D 25,˛ D 1, I0 D 1: Computations
were halted when the tumor cells reached the edge of the computational domain

In Figs. 12e–f the tumor and immune cell populations are shown for the case
where CTL induction is very low. In this example, the tumor cell population is only
slightly oscillatory. In other simulations using this parameter set, the low recruitment
of T-cells leads to the tumor undergoing unstable, oscillatory growth.

Lymphocyte Infiltration

Studies have found the relationship between increased survival rates of cancer
patients, tumor necrosis and fibrosis, and the presence of intratumoral T-cells, or
infiltrated T lymphocytes [51, 54, 60]. The results shown in Fig. 13 simulate the
infiltration of immune cells into a growing tumor. These are seen in the darker
regions of Fig. 13b where tumor cell necrosis has occurred and in the lighter regions
of Fig. 13d where the immune cell numbers are highest. These solution plots are
similar to experimental results shown by Schmollinger et al. [51], Soiffer et al. [54],
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and Zhang et al. [60] where strings of immune cells are moving into the tumor,
surrounding individual cells and causing tumor cell necrosis. In Sect. 4.2 we test the
effect of injecting immune cells directly into the tumor.

4 Modeling Immunotherapies

We have seen that an individual’s immune response to a cancer tumor is a crucial
factor in determining the progression of the disease. Cancer immunotherapy is a
treatment for cancer that attempts to enhance this immune response. There are a
range of different types of immunotherapies, and they can be generally classified
into cytokine therapy, cellular transfer, antibody therapy, and vaccines. Newer
cytokine treatments called “checkpoint blockades” target specific receptors on T-
cells that block or slow their response. These immunotherapy modalities can be
broad, targeting the immune system as a whole, or they can be specific, targeting
the immune response to a specific cell type. Cancer vaccines are specific: they are
intended to enhance the adaptive immune response either by making the tumor-
specific immune cells more abundant or more effective or by making the tumor cells
more immunogenic, i.e., more recognizable by the cells in the adaptive arm of the
immune system. One type of vaccine that has shown some promise in melanoma
is a peptide vaccine. Peptides are proteins found on cells, and a peptide vaccine
targets proteins, or antigens, that are found only on the tumor cells. The idea is
to isolate these peptides and to administer them in large doses to the patient in
order to stimulate an immune response. The antigen-presenting cells will recognize
the peptide, and will initiate the cascade of events roughly depicted in Fig. 6 that
will result in the production of tumor-specific CTLs and, ultimately, the destruction
of tumor cells. The difficulty is in identifying these peptides, since they must be
specific to the patient’s own tumor cells but not found, or rarely found, on normal
cells. Promising peptides have been found for melanoma and breast cancer [3]. A
big advantage that peptide vaccines have over other treatments are their low toxicity,
since they promote an immune response targeted only at the tumor cells.

The big questions in the administration of cancer vaccines are: How much? How
often? Where? Mathematical models can help suggest answers to these questions.
In this section we model three types of cancer immunotherapy and indicate how the
model results can inform clinical practice.

4.1 The Kinetics of the Immune Response to Peptide Vaccines:
Dose Scheduling

The effectiveness of a peptide vaccine could be measured by the size of the immune
response. In the laboratory, the kinetics of this immune response can be measured
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in mice by injecting them with vaccine and then counting the number of antigen-
specific T-cells that result. We would like to know what dosing schedule maximizes
this response. The proliferation of T-cells occurs in the lymph organs, so we will
model the T-cell populations in the main lymph organ of the mouse: the spleen. We
will introduce the helper T-cells into the model, since they are important players in
the speed and magnitude of the response.

Once the injected peptides are taken up by antigen-presenting cells, these APCs
travel to the spleen where they activate naive T-cells. This activation process takes
time to initiate, and we denote this activation time, or synaptic connection time, by
�N . Once activated, the T-cells then begin to proliferate rapidly. After this expansion
phase, the activation process is shut down, and the activated T-cells move out of
the spleen to find the tumor, become memory T-cells, ready to be activated when
the system is next challenged with the same antigen, or become apoptotic, dying
off quickly. To describe this process and to capture the dynamics of the T-cell
populations when the vaccine is given in repeated doses, the T-cell populations will
be divided into five subpopulations: naive, proliferating, active (able to seek and
destroy tumor cells), memory cells, and apoptotic cells. The graphic in Fig. 14 shows
the five stages, with a dendritic cell as the APC. Note that two synaptic connection
times are shown by the dashed lines: �N is the time required for activation of the
naive T-cells, and �M is the activation time required for memory T-cells. Since
the memory cells are already trained to recognize the specific antigen, they can
be activated more quickly, so that �M < �N .

To model the immune activation process mathematically, we use a system of
delay-differential equations. There is an equation for each state of each cell type

Fig. 14 Schematic diagram representing the model of the T-cell response to antigen. The response
takes place in a lymph organ (e.g., the spleen)‘ and is initiated by an antigen-presenting cell (APC),
here represented by a dendritic cell (DC). The T-cells can be in one of five stages, represented
here by balls. Dashed arrows represent the delays in the model, which show up in the rate of
proliferation in response to the presence of the APCs. The two types of T-cells (killer cells and
helper cells) respond with different delays. The basic, active immune cells (labeled B) leave the
lymph compartment to seek out the antigen
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and one for the APCs. This gives a system of 11 equations, with four delays: two
synaptic connection times for each of the cell types. For each of the two cell types
(killer cells: CD8C and helper cells: CD4C) we have the five equations 12–16:

APCs arrive from blood and activate naive and memory cells

for each type, CD8C and CD4C:

dA

dt
D �BSDB�ıAA.t/� dAT A.t/ .N.t/CM.t/C P.t// (11)

After synaptic connection times, �N and �M , activated naive and memory

cells begin to proliferate:

dN

dt
D sN � dNN.t/ (12)

Expansion phase: after contact with antigen, cells reproduce rapidly:

dP

dt
D g1A.t � �N /N.t � �N /C �A.t � �M /M.t � �M /C �

A.t � �/P.t � �/

� C A.t � �/

�ıP P.t/� 1

T
P.t/ (13)

Contraction phase: cells become memory (M ), die quickly, or go to the blood (B):

dAp

dt
D 1

T
P.t/� �

r C ˛ C ıAp
�
Ap.t/�

�
��
SB C ��

1C A.t/=�shut

�
Ap.t/ (14)

dB

dt
D

�
��
SB C ��

1C A.t/=�shut

�
Ap.t/ (15)

Memory cells remain after antigen is cleared, with a homeostatic term:

dM

dt
D rAp.t/C pM.t/

�
1� M.t/

k

�
(16)

Parameters were estimated from the literature and fit to experimental data as
described in [47]. All parameter values can be found there. Model simulations
show that, after a bolus infusion of peptide vaccine, the CTL population peaks
at approximately 6.9 days and the helper T-cell population peaks lower and
later, at approximately 8.12 days. See Fig. 15 for a sample simulation. Based
on this simulation (which is fit to experimental data with essential, the same
kinetic profiles), one might think that administering a second dose of vaccine at
approximately Day 6 would result in a high level of T-cells.

To give a more informed answer to the question of when to administer successive
doses of the vaccine, we can again formulate and solve an optimization problem,
as we did in Sect. 2.1. As in that optimization problem, our goal is to choose the
input function that maximizes a desired output. Again, the input function is the
dose of the vaccine that produces the source term DB.t/ for the antigen-presenting
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Fig. 15 Model System 11 through 16 simulated for both the CTL and the helper T-cell populations
in the spleen. One bolus injection of a peptide antigen was given at time t D 0. Total population
levels are shown (the sum of naive, proliferating, apoptotic, basic, and memory). The CTL levels
peak higher and earlier than the helper T-cell levels. For parameter values and other details see [47]

cells, shown in Equation 11. However, because this system has more equations
and four delays, it is too complicated to solve by analytical or direct collocation
methods. Instead, we can employ a heuristic optimization scheme to find candidates
for optimal solutions. As an example, many runs of a genetic algorithm applied
to the system with three different fitness functions yielded the results shown in
Fig. 16. In practice, thousands of runs are performed, and those with the highest
valued fitness functions are candidates for optimal dosing schedules. In this case,
the genetic algorithm suggests that the second dose be given at Day 3—earlier than
our first guess of Day 6 based on the kinetics of the response to the first dose. This
hypothesis has since been tested in the laboratory on mice confirming the results
of the optimization problem [47]. Current vaccine protocols are rigidly set, often at
longer intervals than suggested here [9]. We hope that this model and its refinements
can serve as a guide for the design of treatment strategies in the future. One possible
extension is discussed in Sect. 4.2.

4.2 Dendritic Cell Vaccines

Peptide vaccines, discussed in Sect. 4.1, require the identification of peptides that
are expressed on the tumor cells of all patients with that type of cancer (e.g.,
melanoma), but that are not found on normal cells. One of the limitations of this
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Fig. 16 The solutions with the highest fitness level for 9 different runs of the genetic algorithm. In
the first column, the fitness function was the number of CD8C or CTLs. In the second column, the
fitness function was the number of memory T-cells. In the third column, the fitness function was
a linear combination of both the CTL population and the memory cell population. Considering all
three columns, the runs that yielded the highest fitness values show that the second peptide dose
is given at approximately Day 3, (circled runs). Red bars indicate the administration times for the
two bolus injections of vaccine

type of therapy is that tumor-specific antigens are rare. Another approach is to
use vaccines that are developed from the patient’s own immune cells, known as
“autologous” vaccines. Dendritic cell vaccines are a type of immune cell-based
vaccine, where immune cells (in this case, dendritic cells, but other APCs are also
involved) are removed from the patient, activated by tumor-associated antigen and
immune-activating cytokines (such as granulocytes-macrophage colony-stimulating
factor, GM-CSF), and cultivated. This expanded colony of activated DCs is then
injected into the patient, with the goal of stimulating the tumor-specific immune
response modeled in Sect. 4.1. One advantage that autologous DC vaccines have
over other, more systemic, treatments is that they have very few toxic side effects:
the patient is receiving immune cells of their own making, activated to attack only
their own tumor cells. The first such vaccine to be approved by the FDA began to
be tested in 2010, with encouraging but not definitive results [9]. During the clinical
trial, a fixed dosing regimen was rigidly imposed for all patients: three rounds of
vaccines were given every two weeks. Given the sensitivity of the immune kinetics
to the timing of the boosting doses, it is likely that outcomes could be improved
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Fig. 17 Schematic representation of the DC trafficking model. There are three compartments:
spleen, blood and tumor. Different cell populations exist in each department, some of which move
from one compartment to another. Arrows indicate the flow from one compartment to another, with
labels showing which cell populations actually move

by varying the dose and timings. Another variable is the location of the injection:
should the vaccine be injected into the tumor site, where the initiation of the immune
response normally occurs, or should it be injected into the bloodstream, which is
easier and allows the new immune cells to go wherever they are most needed?

In order to answer the three questions: How much? How often? and Where?—a
tumor cell population must be added to the model, and the trafficking of the immune
cells between the lymph organs and the tumor must be described. We do this in the
simplest way possible, by adding a tumor compartment and a blood compartment
to the spleen compartment described in Equations 11–16. To reduce the complexity
of the model, we focus on the killer T-cells and omit for the time being the helper
T-cells. Tumor–immune interactions in the tumor compartment are described by
the dePillis–Radunskaya Law, since we are looking at the adaptive response. A
schematic is given in Fig. 17.
The dynamics of the trafficking of the immune cells from one compartment to
another are complex, with experimentally observed “trapping” effects in both
the spleen and the tumor compartments. This results in some rather complicated
expressions for the influx and outflow rates in the spleen and tumor compartments:
details can be found in [48]. The full set of equations is

Blood compartment:

d

dt
Dblood D ��BDblood C �TBDtumor C vblood .t/ (17)

d

dt
Ea
blood D �SB.Dspleen/E

a
spleen � �BBEa

blood (18)

d

dt
Em
blood D �SB.Dspleen/E

m
spleen � �BBEm

blood (19)
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Spleen compartment:

d

dt
Dspleen D Dmax

�
1� e.

��BSDblood
MaxD /

�
� aDDspleen � bDEE

a
spleenDspleen (20)

d

dt
Ea
spleen D �BSEE

a
blood � �SB.Dspleen/E

a
spleen C baDspleenE

m
spleen

CaEaS
�
DConEnaive �Ea

spleen

�
� ramE

a
spleen

Cbp
Dspleen.t � �D/E

a
spleen.t � �D/

�D CDspleen.t � �D/
(21)

d

dt
Em
spleen D ramE

a
spleen � �

aEm C baDspleen C �SB.Dspleen/
�
Em
spleen

C�BSEEm
blood : (22)

Tumor compartment:

d

dt
Ea
tumor D �BTE.T /E

a
blood � aEaT E

a
tumor � cEa

tumorT (23)

d

dt
T D rT

�
1� T

k

�
� D (24)

d

dt
Dtumor D mT

q C T
� .�TB C aD/Dtumor C vtumor .t/ (25)

The “trapping” term which describes the observed phenomenon of activated CTLs
being held back in the spleen in the presence of DCs is

�SB.Dspleen/ D ��
SB C ��

1C DSpleen
�shut

;

�� D �NormalSB � ��
SB:

The functions vblood .t/ and vtumor .t/ allow us to model injections of DCs into the
blood and tumor, respectively. In the tumor compartment, the response rate of the
CTLs due to the presence of the tumor has a saturation term

�BTE.T / D �BB.T=.˛ C T //:
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Fig. 18 Comparison of two dosing schedules and injection location. Vaccination treatment starts
on Day 6, is injected into the blood, and is given in three doses every two days (left), compared
to a vaccination regime starting on Day 3, injected directly into the tumor, and given in 12 doses,
twice a day (right). Times of vaccine doses are shown by arrows (the first two doses are not shown
on the right)

The ratio-dependent kill rate, D , in Equation 24 is the one described in Sect. 3.1,
Equation 8. Note that the effector T-cells denoted by Ea

tumor in this model play the
role of the CTLs, denoted by L in Equation 8.

This model allows us to experiment with different dosing, timing, and location
strategies in order to determine optimal outcomes. Two scenarios are compared
in Fig. 18 to give an idea of the flexibility of the model. From these experiments
(and others not shown) we can hypothesize that, in the context of DC vaccines, 1)
vaccines administered into the blood stream are more effective than those injected
directly into the tumor and 2) fractionated dosing schedules are more effective.
These hypotheses could be tested in a laboratory or clinical setting, the model
refined, and new hypotheses formed. See [48] for more details about the model,
parameter settings, and the results of other simulation experiments. Clinical trials
of cancer vaccines have had mixed results, where some patients respond well, and
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others do not [3, 45]. In addition to providing insights into improving treatment
protocols, mathematical models can also suggest ways to identify patients who
will respond to a particular treatment. Once the model is formulated a sensitivity
analysis can indicate which model parameters have the most effect on specific
outcomes. A sensitivity analysis using Latin hypercube sampling was performed
on this model, indicating that the immune response parameter, d , appearing in the
D term (Equations 24 and 8) has a large impact on the progression of the tumor,
and that this effect is enhanced when a patient receives a DC vaccine. A comparison
of tumor growth, with and without DC vaccine therapy, with various values of d , is
shown in Fig. 19.

4.3 Monoclonal Antibody Therapy

In addition to peptide and immune cell vaccines, antibody-mediated therapy has
been used either alone or in conjunction with other treatments. In this next model,
we capture the dynamics of colorectal cancer growth and its response to monoclonal
antibody (mAb) therapy in combination with chemotherapy. We show how the
model can be used to simulate clinical trials, a safe and efficient way to lower
expenses and speed up the process of treatment design. The work described in this
section is extracted from [13], in which further details can be found. Monoclonal
antibodies are manufactured to bind to specific proteins. Various protein targets
can be used, but epithelial growth factor receptor (EGFR) is a common and useful
choice. Circulating epithelial growth factor (EGF) binds to the EGFR and signals a
cell proliferation cascade. Many cancerous cells, including colorectal cancer cells,
have an EGFR-upregulating mutation, thought to be partly responsible for the high
proliferation rate of tumor cells [17, 29, 40, 53]. Monoclonal antibodies can block
the EGFR, potentially preventing further tumor cell proliferation.

There are three main pathways for mAb-induced tumor death (see Fig. 20):
interactions between mAbs, NK cells, and tumor cells; interactions between mAbs,
chemotherapy, and tumor cells; and interactions only between mAbs and tumor
cells, resulting in growth rate reduction, complement activation, and possibly other
mechanisms for tumor death. In this model, we have chosen to include the following
components:

• Cell populations

– T .t/: the total tumor cell population;
– N.t/: the concentration of NK cells per liter of blood (cells/L);
– L.t/: the concentration of CTLs per liter of blood (cells/L);
– C.t/: the concentration of other lymphocytes (cells/L).

• Medications (chemotherapy, cytokines, and monoclonal antibodies); and
treatments:

– M.t/: the concentration of chemotherapy per liter of blood (mg/L);
– I.t/: the concentration of interleukin per liter of blood (IU/L);
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Fig. 19 Prophylactic vaccination and the effect of varying immune response parameter d . Left,
no vaccine. Right, vaccinate with DC treatments on Days 0 and 7 with 1 � 105 DCs per dose.
Tumor challenge on Day 21, with 2� 105 tumor cells. Dosing follows the experiment described in
[46]. With d D 1, the tumor is controlled as a result of vaccination; with d D 1:25 the tumor is
controlled independent of vaccination
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Fig. 20 Three methods of mAb-induced tumor cell death are represented in this model. If an NK
cell is present then the cell can undergo ADCC, if a chemotherapy molecule is present then the
cell will increase death from the chemotherapy drug, and otherwise, the MAB molecule will cause
tumor cell death on its own, through a variety of mechanisms

– A.t/: the concentration of monoclonal antibodies per liter of blood (mg/L);
– vM.t/: the amount of irinotecan injected per day per liter of blood (mg/L-day);
– vA.t/: the amount of monoclonal antibodies injected per day per liter of blood

(mg/L-day).

Equations (26)–(32) are the system of equations for this model.

dT

dt
D aT .1 � bT / � .c C �

A

h1 C A
/NT � D

� .KT CKATA/.1 � e�ıT M /T � AT (26)

(continued)
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dN

dt
D eC � fN � .p C pA

A

h1 C A
/NT C pNNI

gN C I

�KN.1 � e�ıNM /N (27)

dL

dt
D �mL

� C I
C j

T

k C T
L � qLT C .r1N C r2C /T � uL2CI

� C I

�KL.1 � e�ıLM /LC pILI

gI C I
(28)

dC

dt
D ˛ � ˇC �KC.1 � e�ıCM /C (29)

dM

dt
D � 	M C vM.t/ (30)

dI

dt
D � �II C 
C C !LI

� C I
(31)

dA

dt
D � �A��T A

h2 C A
C vA.t/ (32)

where the immune response term D has the familiar form given in Equation 8. The
specific treatments that we will explore are the chemotherapeutic drug irinotecan
(CPT11), and mAb treatments cetuximab or panitumumab.

4.3.1 Clinical Trial Simulations for mAb Therapy and Chemotherapy

We used the model to explore expected responses to treatment at a population level.
In particular, we simulated response to treatment for a group of individuals with
a range of immune “strengths.” In order to simulate a group of patients having
differing immune strengths, we varied the parameters d , �, and k1=2 in Equation 8
for each individual simulated. To reflect the heterogeneity in response to treatment,
we also varied the parameters KT and  .

In our clinical trial simulations, we assume that individuals have slightly
compromised immune systems after already having been through other immuno-
depleting therapies, reflected in a relatively low value of the initial immune cell
population. Simulated treatments were administered to each patient, represented
by vM.t/ and vA.t/ in model equations (30) and (32). We ran simulations over
the set of 64 virtual patients, each identified by a parameter set with different
values of the parameters d , k1=2, �, KT , and  , and recorded final tumor size and
lymphocyte counts. Lymphocyte count was used as a marker for patient health—if
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the lymphocyte count dropped low enough for the patient to be considered grade 4
leukopenic, the treatment was considered to be too harsh and not useful.

In order to validate and calibrate our model, we compare the results of the
simulated trials to those reported in [11, 17, 29, 31, 37]. Note that the published
clinical trial results for cetuximab and panitumumab that we used for comparison
reported results as “Response” or “No Response” almost exclusively, so our simula-
tion outcomes reflect this categorization. We carried out monotherapy clinical trial
simulations for each of the three drugs used in our model. Monotherapy results can
be seen in Fig. 21. Our simulated response to irinotecan was purposefully lower than
the clinical trial response, since we assume that our population of patients who may
be treated with mAb therapy should be less responsive to chemotherapy than the
general population. Our simulated responses to cetuximab and panitumumab were
a very close match to the clinical trial outcomes. We also simulated combination
therapies, using either irinotecan with cetuximab or irinotecan with panitumumab.
These simulations used the common treatments for each drug and gave the two
treatments simultaneously. Again, our simulations match the reported clinical trial
results fairly closely (see Fig. 22).

Fig. 21 Our clinical trial simulations compared to reported clinical trial results for irinotecan
monotherapy (A), cetuximab monotherapy (B), and panitumumab monotherapy(C). Our sim-
ulation results (left bars) closely match published results (right bars) for both cetuximab and
panitumumab monotherapies. For irinotecan monotherapies, the reduced response seen in our
simulations is intended, since the patients receiving mAb therapy are often not as responsive as
most patients to other treatments
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Fig. 22 Our clinical trial
simulations compared to
reported clinical trial results
for irinotecan and cetuximab
combination therapy (A) and
irinotecan and panitumumab
combination therapy (B).
When simulation results are
measured four weeks
post-treatment, our results are
very similar to published
results

5 Concluding Remarks

In this chapter we have presented brief glimpses of several mathematical models of
the interaction between the immune system and cancer tumors. These models can
be used to understand the dynamics of the tumor–immune interaction, predict the
progression of the disease, and design effective treatment strategies that minimize
toxicity. To date, the mathematical models have suggested the advantage of altering
traditional protocols, for example, fractionated (or “metronomic”) dosing seems
to be more effective–and less toxic–than bolus doses. They have helped provide
functional forms for cell interactions that can differentiate between the two arms
of the immune response. They can help us understand the effects of combined
therapies, allowing researchers to move more swiftly and safely from “bench
to clinic.” Finally, the analysis of these mathematical models, combined with
advances in technology that provide us with an increased ability to accurately and
noninvasively measure physiological parameters, can lead to the design of patient-
specific treatment regimens. Once calibrated to a particular patient, mathematical
models can be used to suggest treatment combinations and dosing protocols that are
personally optimized.

Much work remains to be done—we hope that the few ideas presented here
will motivate mathematicians, clinicians, systems biologists, programmers, and
laboratory researchers to continue to collaborate with the goal of understanding and
fighting the many diseases known as “cancer”.

Acronyms. NK, natural killer Cell; CTL, cytotoxic T lymphocyte, or Killer T-cell,
also known as a CD8C or cytotoxic T-cell because it has a glycoprotein called
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CD8 on its surface; CD4C, helper T-cell, expresses the CD4 protein on its surface;
ECM, extracellular matrix; IL2, interleukin 2, an immune-stimulating cytokine;
APC, antigen-presenting cell; DC, dendritic cell, a type of antigen-presenting cell;
EGF, endothelial growth factor; EGFR: endothelial growth factor receptor; mAb,
monoclonal antibody
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