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Abstract In this paper, results about the structure of cancer treatment protocols
that can be inferred from an analysis of mathematical models with the methods
and tools of optimal control are reviewed. For homogeneous tumor populations of
chemotherapeutically sensitive cells, optimal controls are bang-bang corresponding
to the medical paradigm of maximum tolerated doses (MTD). But as more aspects
of the tumor microenvironment are taken into account, such as heterogeneity of the
tumor cell population, tumor angiogenesis and tumor-immune system interactions,
singular controls which administer agents at specific time-varying reduced dose
rates become optimal and give an indication of what might be the biologically
optimal dose (BOD).
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1 Introduction

In any cancer treatment, the question arises how therapeutic agents (various drugs,
radiation dosages, antiangiogenic biological agents, cancer vaccines, . . .) should be
given in order to be at the same time reasonably safe and effective. Mathematically,
the scheduling of therapeutic agents over time in order to minimize some objective
related to tumor burden (e.g., tumor volume) and quality of life of the patient
(e.g., some measure of the toxic side effects of treatment) while the underlying
system follows some dynamics (in this case determined by the processes of tumor
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development and treatment interactions) is an optimal control problem. In this
paper, we review some results about the structure of treatment protocols that can be
inferred from mathematical models with the methods and tools of optimal control.

Our emphasis will be on models for cancer chemotherapy. For most tumors,
it is a standard medical practice to give chemotherapy at maximum tolerated doses
(MTD) with rest periods in between. The underlying rationale simply is that when
the disease has progressed into an advanced stage, it is imperative to kill as many
of the cancer cells as possible and this has to be done right now. Since drugs
are rarely selective in their activation mechanisms, chemotherapy also severely
damages other proliferating cells that are essential for survival like bone marrow.
This necessitates the introduction of rest periods for the patient to recover from the
strong toxic attack. We are interested in questions of the following type: Under what
kind of conditions is an MTD approach the optimal treatment strategy? When should
different protocols be favored? If resistance to chemotherapeutic agents is present,
is a metronomic scheduling of chemotherapeutic agents (essentially, a continuous-
type treatment at low doses) which avoids the high toxicities associated with MTD
doses equally effective? Naturally, answers to such questions depend on the type
of tumor. Simple dividing characteristics that are important in the scheduling of
treatment are given by the tumor doubling time, the growth fractions of tumor cells,
and much more.

A tumor consists not just of cancerous cells but of a full array of other
structures that in various ways aid and abet the tumor, but also fight it. The most
important structure that sustains the tumor is its vasculature which provides the
tumor with the oxygen and nutrients needed for further growth; an example of an
endogenous structure that fights the tumor is the body’s immune system. The fumor
microenvironment consists of these components and much more (e.g., macrophages
and fibroblast cells that form the intracellular matrix), all still residing in healthy
tissue. In modern oncology thus the point of view of the fumor as a system of
interacting components has become the more common one and modern treatments
are multi-targeted therapies that not only aim to kill cancer cells but often include
antiangiogenic therapy, immunotherapy, and other options. Yet, the complex interac-
tions between these and other treatment modalities still are not fully understood and
are the topic of active current medical research (e.g., see [1]).

In clinical trials, the scheduling of therapeutic agents is pursued in medically
guided, exhaustive trial-and-error approaches of simple strategies. Hardly ever
are nonstandard protocols pursued in this research since complex protocols are
relatively difficult, if not impossible to test in a laboratory setting, or at a minimum
at great cost. The analysis of mathematical models can be of benefit here by
giving some theoretical suggestions for treatment protocols through an alternative
noninvasive tool or by establishing benchmarks for medically realizable protocols.
As of today, the question how chemotherapeutic agents should best be administered
if a more wholistic approach to treatment is taken that takes the structures of the
tumor microenvironment into account still has not been answered (e.g., see [21]).
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This paper is organized as follows: In Sect.2 we give a brief introduction to the
main tools and results from optimal control theory that are needed in the analysis of
mathematical models for cancer treatment. Especially, the distinction between bang-
bang controls (which correspond to maximum dose treatment periods interlaced
with rest periods) and singular controls (which correspond to time-varying admin-
istration schedules at lower dose rates) will be emphasized. Bang-bang controls
directly relate to the MTD strategies of medical practice while singular controls are
of special interest in the search for the biologically optimal dose (BOD). This is an
effective dose which has minimal or at least low side effects [26]. In Sect. 3, we
start with a discussion of optimal treatment protocols for compartmental models
of cancer chemotherapy. It is easily seen that optimal controls indeed support the
traditional MTD paradigm if it is assumed that the tumor consists of a homogeneous
population of chemotherapeutically sensitive cells. However, as compartments of
varying sensitivities or even full resistance are introduced into the model, this no
longer is valid and singular controls along with the associated lower dose rates
become candidates for optimality. Optimal administration of antiangiogenic agents
also is done by means of singular controls and will be discussed in Sect. 4, both
as stand-alone approach and in combination therapy with chemotherapy. Once
tumor-immune system interactions are taken into account, optimal administration
of cytotoxic agents no longer follows an MTD approach, but a so-called “chemo-
switch” regimen: after an initial interval of maximum dose treatment, in optimal
solutions dose rates are reduced and given by singular controls. These results are
given in Sect. 5.

Overall, an optimal control analysis of mathematical models for cancer
chemotherapy as it is presented here leads to results that provide information
about the qualitative structure of treatment protocols that can be of use in the design
of practical treatment protocols.

2 Optimal Control-A Brief Introduction

We briefly review the main results of optimal control theory. However, rather than
considering the general case, we restrict the mathematical structure to a model of
the form that most examples in biomedical applications have: a multi-input control-
affine system. This simply reflects the fact that “controls” represent structures
imposed on an existing dynamical system from the outside to influence its behavior
and that these are naturally set up in a way so that these effects are most easily
analyzed. This generally leads to linear terms in the controls. For such systems,
the so-called bang-bang and singular controls become the prime candidates for
optimality. We describe the principal tools for analyzing singular controls which
include Lie brackets for computing derivatives of the switching function and the
Legendre-Clebsch condition as the main necessary condition for optimality.
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2.1 Control Affine Systems as Mathematical Models
Jor Biomedical Models

We say a control system is control-affine with drift vector field f and control vector
fields g;, i = 1,...,m, if the dynamics takes the following form:

t=fO)+) g, xeM. uel. (1)

i=1

The vector x is the state of the system and takes values in an open and connected
subset M of R”"; the vector u represents the controls and takes values in a control set
U C R™. In the biomedical models we shall be considering, the controls represent
dose rates or concentrations of some therapeutic agents and all take nonnegative
values that lie in prescribed ranges. We therefore take the control set U as an
m-dimensional interval of the form

U = [0, u™] x -+ x [0, up™]. 2)

The class U of admissible controls is given by Lebesgue-measurable functions u
defined on some interval I with values in the control set (almost everywhere),
u:l — U,t +— u(t). The differential equation (1) represents the dynamics which
connects the controls with the state of the system. Given an admissible control
u € U, it follows from classical results about solutions to ordinary differential
equations that for any initial condition xy, there exists a unique solution x to (1) with
initial condition x(0) = x,. We call this solution x the trajectory corresponding to
the control # and call the pair (x, ) an admissible controlled trajectory.

An optimal control problem then consists in finding, among all admissible con-
trolled trajectories, one that minimizes an objective, possibly subject to additional
constraints. Here we only consider constraints of a fixed terminal time 7" or on
the final state x(7") of the system. The former correspond to therapy over an a
priori specified horizon (Sect.3) and the latter arise if therapy with an a priori
given amount of therapeutic agents is considered (Sect.4). We assume that such
constraints have a regular geometric structure and are given in the form N = {x €
M : Y(x) = 0} with ¢y : M — R"* a continuously differentiable mapping
and the matrix Dy of the partial derivatives of { with respect to x of full rank
everywhere on N. We choose the functional form of the objective to be consistent
with the control-affine structure of the dynamics, i.e., we take the functional to be
minimized in the form

T m
gw= [ (L(x )+ b (s>) ds + p(x(T)) 3

i=1
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with L : M — R, x — L(x) the Lagrangian and ¢ : N — R, x > ¢(x) a penalty
term on the final state. Both L and ¢ are continuously differentiable functions.
The terminal time 7 can be fixed or free. We choose the functional dependence
of the objective on the controls to be linear since the integrals fOT u; (t)dt have an
immediate interpretation in terms of the total dose of agents given and thus are
biomedically meaningful. It would be mathematically simpler to choose quadratic
terms for the controls in the objective, but such terms are imposed arbitrarily.
We thus consider the following optimal control problem:

[OC] minimize the objective J(u) over all admissible controlled trajectories
(x, u) subject to the terminal constraint x(7") € N.

2.2 Necessary Conditions for Optimality: The Pontryagin
Maximum Principle

The fundamental necessary conditions for a controlled trajectory (x, u) to be optimal
are given by the Pontryagin maximum principle [59]. (We refer the reader to [3,
4, 61] for some modern treatments of the subject.) We consistently write tangent
vectors as column vectors and multipliers as row vectors denoting the space of row
vectors by (R")*. The Hamiltonian function H of the optimal control problem [OC]
is defined as

H = (L(x)+29iui> +<X, f(X)+Zgi(x)“i> 4)

i=1 i=1

Theorem 2.1 (Pontryagin Maximum Principle [59]). Let (x«, u«) be an optimal
controlled trajectory for the problem [OC] defined over the interval [0, T]. Then
there exist a constant Ao > 0, a multiplier v € (R")* and a co-vector A :
[0,T] — (R")*, the so-called adjoint variable, such that the following conditions
are satisfied:

1. Nontriviality of the multipliers: (Ao, A(t)) # O forallt € [0, T].
2. Adjoint equation: the adjoint variable A is a solution to the time-varying linear
differential equation

A0) = ~20VL(x(1) = A1) (Df(x* O+ > uf (g (xs <z>)) )

i=1

with terminal condition

d d
AMT) = /\0£ (xx(T)) + va—f (x«(T)) . (6)



300 U. Ledzewicz and H. Schittler

3. Minimum condition: almost everywhere in [0, T| we have that
HAo, A(2), x(2), ux(2)) = Ivréllrjl H(Ao, A(2), x4(2),v) ™

and the Hamiltonian is constant along A and (x«, ux). If the terminal time T is
free, the value of this constant is 0.

Controlled trajectories (x, u) for which there exist multipliers A and A such that
the conditions of the maximum principle are satisfied are called extremals and the
triples (x, u, (Ao, A)) including the multipliers are called extremal lifts. The constant
multiplier Ay can be zero and in this case the extremal is called abnormal while
it is called normal if Ag > 0. In this case, since the conditions are linear in the
multipliers, it is always possible to normalize Ao = 1.

In the original formulation of the theorem by Pontryagin et al. [59], the minimum
condition (7) was formulated as a maximum condition and gave the result its name.
In fact, depending on the choice of the signs associated with the multipliers A
and A, the maximum principle can be stated in four equivalent versions. Since the
problems we will be considering are all cast as minimization problems, we prefer
this formulation, but retain the classical name. The minimum condition contains the
essence of the result and states that in order to solve the minimization problem on
the function space of admissible controls, the control u, needs to be chosen so that
for some extremal lift it minimizes the Hamiltonian H pointwise over the control
set U, i.e., for every t € [0, T] the control u.(¢) is a minimizer of the function
v H(Ag, A(t), x«(t),v) over the control set U.

2.3 Bang-Bang and Singular Controls

In our case, since U is an m-dimensional interval, the minimum condition splits into
m scalar minimization problems that are easily solved. Defining the functions

@i (1) = Aot + (A1), &i (x«(2))) , ®)
it follows that the optimal controls satisfy

0 if®(t) >0,

*
40 = i (1) < 0,

€)

A priori, the control is not determined by the minimum condition at times when
@(t) = 0. In such a case, all controls trivially satisfy the minimum condition and,
in principle, are candidates for optimality. Naturally, if the derivative 43(1) exists
and does not vanish, then the control switches between u; = 0 and u; = u™ with
the order depending on the sign of @ (7). Such a time 7 is called a bang-bang switch.
On the other hand, if @(¢) were to vanish identically on an open interval 7, then,
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although the minimization property by itself gives no information about the control,
in this case also all the derivatives of @(f) must vanish and this, except for some
degenerate situations, generally does determine the control. Controls of this kind
are called singular while the constant controls #; = 0 and u; = u™* are called
bang controls and controls that only switch between 0 and the maximum control
values are bang-bang controls. Strictly speaking, to be singular is not a property of
the control, but of the extremal lift since it also depends on the multiplier A defining
the function @;. This function is called the switching function for the control ;.
The terminology “singular” has its historical origin in the fact that the switching

functions can be expressed as

D0) = 0 (1, A1), 1), 00 0) (10)

and thus the condition @(¢f) = 0 formally is the first-order necessary condition
for the Hamiltonian to have a minimum in the interior of the control set. For
singular controls, the Hessian matrix %271;1 corresponding to second order necessary
conditions for optimality is singular. In fact, for a control-affine system this matrix
is identically zero.

If the control corresponds to the application of some therapeutic agent, then
bang-bang controls represent treatment strategies that switch between maximum
dose therapy sessions and rest periods, the typical MTD-type applications on
chemotherapy. Singular controls on the other hand represent time-varying admin-
istrations of the agent at intermediate and often significantly lower doses. Although
administration of such time-varying schedules may be difficult in practice, there is
growing interest in such structures in the medical community because of mounting
evidence that “more is not necessarily better” [18,55] and that a biologically optimal
dose (BOD) with the best overall response should be sought. In this direction,
the concept of metronomic chemotherapy as well as other approaches like chemo-
switch protocols [57] or adaptive therapy [12] have been introduced. We shall say
more about these medical connections later on. But the question whether optimal
controls are bang-bang or singular has an immediate interpretation and relevance
for the structure of optimal treatment protocols. While the terminology is somewhat
misleading, these singular structures indeed are the more natural candidates for
optimality.

2.4 The Legendre-Clebsch Condition for Optimality
of Singular Controls

In the solution of any optimal control problem, it becomes necessary to deter-
mine singular controls and then synthesize optimal controls from the primary
candidates—bang and singular controls. In order to do so, we need to analyze
the derivatives of the switching functions. In these formulas, the notion of the Lie
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bracket of vector fields arises naturally: given two differentiable vector fields f and
g defined on some open set M C R”, f,g : M — R”, their Lie bracket [ f, g] is
another vector field defined on G by

[/, 8](x) = Dg(x) f(x) — Df(x)g(x). (11

Its importance in optimal control is because of the following simple formula that is
verified by a direct computation:

Proposition 2.1. Let x(-) be a solution of the dynamics (1) for the controls u; and
let A be a solution of the corresponding adjoint equation (5). For a continuously
differentiable vector field h, the derivative of the function

w(t) = (M0), h(x(@))) = A(O)h(x(1))

is given by

W) = <A<t), [f +> u;-"(t)g,-,h] (x(r))> — Ao VL ()h(x ().

i=1

Singular controls are computed by differentiating the switching functions until
the controls explicitly appear and then solving the resulting equations for the
controls. We demonstrate the procedure for the simpler case of a single-input control
system of the form X = f(x) + g(x)u. Since [g, g] = O, the derivative of the
switching function @ is given by

®(1) = (A1), [f g](x (1)) = 2o VL(x(1))g(x(1)), (12)

does not depend on the control, and thus is once more differentiable. In the second
derivative @ (t), the control appears linearly and, expressing the switching function
as @ = %—IZ, the term multiplying the control is given by %j—;%(ko, A(t), x«(2),
ux(t)). A singular control (more precisely, the singular lift) is said to be of order 1
over an open interval I if this expression does not vanish on / and in this case,
we can solve the equation 4'5(t) = 0 for the control as a function of the state
and multiplier. Essentially, the sign of this expression distinguishes between locally
minimizing and maximizing controls. This is the interpretation of the Legendre-
Clebsch condition, the fundamental necessary condition for optimality of singular
controls which states that for minimizing controls we must have that

0 d* 0H

aﬁm(ko,ka),x*(l),u*u)) <0 forall ¢el. (13)
If this expression vanishes over an interval, then it becomes necessary to differen-
tiate the switching function further. This leads to the concept of singular controls
of higher order and the generalized Legendre-Clebsch condition. In some special,
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but common circumstances, it follows from Lie algebraic identities that the control
can only appear for the first time in an even order derivative. Then the singular
control is said to be of intrinsic order k if this is the 2kth derivative and one then
has the following necessary condition for optimality for singular controls of finite
order:

Theorem 2.2 (Generalized Legendre-Clebsch Condition). Suppose the con-
trolled trajectory (x«, ux) defined over the interval [0, T'| is optimal for the optimal
control problem [OC] and the control uy is singular of intrinsic order k over an
open interval I C [0, T]. Then there exists an extremal lift ' = ((X«, ux), A) with
the property that

2k
(—1)k§%%—H(AO,A(t),x*(t),u*(t))20 forall 7 e l. (14)
u u

2.5 Sufficient Conditions for Optimality

The optimality conditions discussed so far are all necessary and do not guarantee
that a controlled trajectory that satisfies them is optimal. The theory of sufficient
conditions for optimality is more intricate. Essentially, to guarantee local optimality
properties, it becomes necessary to embed a reference extremal (i.e., controlled
trajectory and associated multiplier) into a family of extremals in such a way that the
controlled trajectories cover a neighborhood of the reference controlled trajectory.
If this can be done globally in the form of what is called a regular synthesis, then the
associated controls all are globally optimal. These concepts are related to classical
ideas from the calculus of variations about fields of extremals or, in a more modern
language, to dynamic programming and solutions of the Hamilton-Jacobi-Bellman
equations. However, the details are too involved to even be outlined here and we
refer the interested reader to the literature on the subject, such as, for example, our
text [61].

3 Compartmental Models for Cancer Chemotherapy

In this section we formulate a general bilinear version of the optimal control problem
[OC] that serves as the mathematical framework for compartmental models for
cancer chemotherapy. Applications of optimal control to mathematical models for
cancer chemotherapy have a long history (e.g., [6,43, 64, 66]), but generally early
models were noncompartmental. The models we consider here were formulated and
first analyzed in the work of Swierniak and coworkers (e.g., [24,67,71]) and then
reconsidered in our work [33, 34, 69]. Compartments may be comprised of various
phases of the cell cycle (Sect.3.2) or may correspond to different subpopulations
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of cancer cells of varying chemotherapeutic sensitivities (Sect. 3.3). While optimal
controls are bang-bang with upfront dosing for homogeneous cell populations of
chemotherapeutically sensitive cells and thus agree with the medical MTD paradigm
of scheduling chemotherapy, as resistance effects come into play, this is no longer
the case and singular controls with associated lower dose rates become candidates
for optimality.

3.1 A General Bilinear Model

We consider a mathematical model with a finite number n of compartments and

use the first orthant M = P in R” as state space; N = (Ny,..., Nn)T denotes
the state with N; the average number of cancer cells in the ith compartment,
i = 1,...,n. The control is a vector u = (uy,...,un) with u; denoting

various drug concentrations in the blood stream. For simplicity, in our language
we identify the drug dose rates with their concentrations. Indeed, standard linear
pharmacokinetic equations are easily incorporated within the general structure
below at the expense of increasing the dimension of the state space, but they do
not alter the results we obtain [36] and thus we use this simplified approach here.
As before, the control set U is the m-dimensional interval U = [0, u7*] x - -+ x
[0, u;;**] and admissible controls are Lebesgue-measurable functions u that take
values in the control set. The dynamics consists of balance equations that describe
the inflows and outflows between the various compartments and is assumed to be of
the form

m
N@) =4+ u;B; | N@).,  N(0) =N, (15)
j=1
where the A and B;, j = 1,...,m, are constant n X n matrices, 4, B; € R*n

The matrix A describes the transitions between the various compartments in the
absence of treatment and the matrices B; represent the effects of the jth drug on the
system. An equation of the form (15) is called a bilinear control system since it is
linear both in the state N and the control u. Note, however, that there exist quadratic
terms since the controls »; are multiplied with the states N; and thus overall this
equation is not linear in all the variables (N, u).

The dynamics represents in- and outflows of the various compartments, and for
this reason, no matter what the control is, all diagonal entries of the matrix 4 +
ZT=1 u; B; are negative (there always is a positive outflow from each compartment)
and all the off-diagonal entries (which model the inflows) are nonnegative. Zero val-
ues may occur when there are no connections between some of the compartments,
but every row will have at least one positive entry. In mathematics, matrices with
these properties are called M -matrices (named so in honor of Minkowski) and their
structure implies the positive invariance properties for the state space P required for
the model to be consistent [69].
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(M) Forall u € U the matrices A + Z;"Z | u; B have negative diagonal entries
and nonnegative off-diagonal entries, A + Z'};l u;Bj e M.

Letr = (r,...,ry) and ¢ = (q1,...,9,) be n-dimensional row vectors of
positive numbers and let s = (sy, . .., S, ) be a nonzero m-dimensional row vector of
nonnegative numbers. These coefficients represent subjective weights which define
the objective as

T
J=rNT) + / (gN(t) + su(t)) dt — min (16)
0

The term su = Y -, s;u; in the integral is a weighted average of the amounts
of the various drugs given and the coefficients s; represent the degrees of toxicity
of the drugs. Side effects generally depend on the specific cytotoxic agent used
and may be more severe than those of a cytostatic or recruiting agent. This would
be reflected in the choice of these weights. Similarly, the second integral term
gN = Y, q:N; represents a weighted average of the number of cancer cells
in the respective compartments during treatment and the penalty term rN(7T) =
>, riN;i(T) represents a weighted average of the number of cancer cells in the
respective compartments at the end of treatment. The inclusion of the term gN in
the Lagrangian is important since otherwise optimization will lead to protocols that
put all the emphasis on the end of the therapy interval ignoring the behavior in
between. While relevant biological information should be taken into account when
selecting the parameters, it generally is also useful to modulate these parameters
within specified ranges to obtain otherwise desired features of the optimal solutions.
We then consider the following optimal control problem:

[CC] for a fixed therapy horizon [0, 7], minimize the objective (16) over all
Lebesgue-measurable functions u : [0, T] — U subject to the dynamics (15).

There are no constraints on the terminal state N(7') in this formulation and by
the nontriviality of the multipliers this implies that all extremals are normal. We thus
normalize Ay = 1 and drop it in the notation. The adjoint equation and terminal
condition then take the form

h=—q-2[A+Y B |. A =r a7

J=1

Under assumption (M), the positive orthant P* in the dual space (R")* also is
negatively invariant for the adjoint equation (17), i.e., if A(z) € P*, then all
components of A are positive for all times ¢ < #y. We thus have the following fact:

Proposition 3.1 ([69]). Under assumption (M), all states N; and multipliers A; are
positive over [0, T'].
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This is useful information in evaluating the signs of various expressions that arise
in an analysis of optimal controls. We recall that the switching functions are given
by @;(t) =s; +A(t)B;N(t), j = 1,...,m, with singular controls possible if one
of them vanishes over an open interval. Proposition 2.1 simplifies to the following
statement:

Proposition 3.2. Suppose M is a constant matrix and let ¥(t) = A{)MN(t),
where N is a solution to the system equation (15) corresponding to the control u
and A is a solution to the corresponding adjoint equation (17). Then

W) =A(t) | A+ u;B;. M | N(t) — gMN(). (18)
j=1

with [X,Y] = YX — XY the commutator of the matrices X and Y .

Whether or not optimal controls can be singular depends on the properties of
the matrices A and B; and needs to be evaluated on a case-by-case basis. Here we
briefly describe two models: one for homogeneous and the other for heterogeneous
tumor populations and point out the differences in the structures of optimal controls
that result from these assumptions.

3.2 Cell-Cycle-Specific Models for Homogeneous Tumor
Populations

We consider the problem of administering a single cytotoxic agent that is active
in the G,/ M phase of the cell cycle such as, for example, paclitaxel. This model
was originally considered by Swierniak in [67] and has been analyzed further by
us in [33]. Taking into account the phase sensitivity of the drug, the cell cycle is
broken up into two compartments with one combining the second growth phase
G, and mitosis M and the other compartment simply made up of the remaining
phases of the cell cycle. The state N of the system can then be described by a
2-dimensional vector with N;(¢) denoting the average number of cancer cells in the
first compartment at time ¢ (comprised of the phases Gy, G| and S) and N,(¢) the
average number of cancer cells in the second compartment at time ¢ (comprised of
G, and M).

Cell division is a stochastic process with the individual cells determining the
sample paths and the transit times following some empirical distribution. Various
probabilistic models such as y?- or Weibull distributions can be used to describe
these transit times. In the approach by Swierniak, an exponential distribution
(a special case of the Weibull distribution) is used. This leads to balance equation for
the compartments that are linear in the states: the outflow of the first compartment
equals the inflow into the second compartment and thus we have that

Nz(t) = —ayNy(t) + a1 Ni(t)
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with a; the inverse mean transit time through the ith compartment. In the second
compartment cell division occurs and thus, while the outflow from the second
compartment is still given by a, N,(¢), the inflow into the first compartment doubles
to 2a, N»(t) giving

Ni(t) = —a1 Ni(t) + 2a> Na(t).

Since the differential equations are linear, quotients of the variables obey Riccati
differential equations and it follows that in steady state, i.e., in the “long” run, fixed
proportions of the cells will lie in the respective compartments: if

N1 N2

X=—— and = —
N+ N TN TN

denote the average proportions of cells in the two compartments, x,y > 0,
x + y = 1, then y satisfies the Riccati equation

¥y =a— (a1 + a2y — ary* (19)

and has a well-defined steady state (i.e., a unique, globally asymptotically stable
equilibrium point) y. in the open interval (0, 1) given by

1 a\’ a a
Ve == \/(1+—1) +4—1—(1+—1) . (20)
2 a ar a

All solutions approach this value as t — oo. We only remark that these proportions
xx and ys can be measured using cell cycle flow cytometry. If we write C(t) =
Ni(t) + N,(¢t) for the average total number of cancer cells, then the differential
equations imply that

C(t) = aaN>(t) = a2y (t)C(t) ~ ary+C(t)

and thus, in steady state, the total tumor population grows exponentially at about
rate a, y«. This allows us to relate the coefficients a; to the tumor doubling time and
these steady states as follows:

Proposition 3.3. With T denoting the tumor doubling time and xs and y« the
steady-state proportions of cells in the Go/ G, + S and G,/ M phases of the cell
cycle, respectively, we have that

In2 In2
and a, = .
T X+ Ty

ar = (1+ yx)

Drug treatment influences the cell cycle in many ways and in the model
considered here only the most fundamental aspect is considered, cell killing of a
cytotoxic agent in the G,/ M phase. It is implicitly assumed that all cancer cells are
drug sensitive. Recall that the control variable u represents the drug concentration
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in the blood stream and in accordance with the log-kill hypothesis, we assume that
the drug concentration u(¢) kills a fraction of the outflow a; N,(¢) of cells from
the G,/ M compartment. Thus the number of cells killed is given by gu(t)a, N, (1)
with ¢ a constant chemotherapeutic killing parameter. The control set is a compact
interval [0, um,x] With uyax denoting the maximum dose rate/concentration. In the
model, the control u always appears in conjunction with the constant ¢ and thus,
in order to keep the number of free parameters to a minimum, we combine it with
the maximum dose rate into one quantity that we still denote with uy,,x under the
assumption that un,x < 1. If the concentration is high enough, then indeed uyx = 1
is realistic: almost all the cancer cells in that compartment can be killed. Cells
which are killed in G,/ M leave this compartment, i.e., are counted as outflows
from the second compartment, but they no longer enter the first compartment. Only
the remaining fraction (1 — u)a, N, undergoes cell division. Thus the controlled
mathematical model becomes

Nl = —a;N; 4+ 2(1 — u)a, N>,
Ny = a; Ny — a;) Ny,

or, in matrix form, N (t) = (A + uB)N(t), with A and B given by

A= (_‘“ 2“2) and B = (O _2“2). 1)

ay —dajp 0 0
For this model, singular controls are not optimal. Denoting the coefficient at
the control u in the objective by s, the switching function is given by @(¢) =

s 4+ A(t)BN«(¢). If the control is singular on an open interval 7, then, using
Proposition 3.2 it follows that

@ (1) = {A(1)[A, B] —qB} Ni(t) = 0 (22)
and
b (1) = {A()[A.[A. B]] - q[A. B] — ¢BA} Nu(1) (23)
+ u(t) {A(0)[B. [A, B]IN«(t) — ¢B*} Ny(1).
Hence the Legendre-Clebsch condition is determined by the expression

d d* oH

_ _ 2
5 202 g PO Ne @), (0) = {A(O[B, [A, BN« (1) —¢B*} No(1).  (24)

It is clear that B> = 0 and a direct computation verifies that

01

[B,[A, B]] = 8a1a3 (0 0

) = —4aa,B. (25)
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Furthermore, @(¢) = 0 implies that A(#) BN«(t) = —s and thus

9 d* 0H
aﬁm(k(ﬂv Ni(2), ux(t)) = 4arazs > 0 (26)

violating the Legendre-Clebsch condition for optimality of a singular control.

Theorem 3.1. If (N«, us) is an optimal controlled trajectory for the optimal control
problem [CC] with matrices (21), then there does not exist an interval on which the
control uy is singular.

We give a couple of examples of locally optimal bang-bang controls. For the cell
cycle parameters we have chosen the valuesa; = 0.197 and a, = 0.356 used in [67]
and in all computations the initial condition is taken as the steady-state proportions
defined by Eq. (20), normalizing the total number of initial cancer cells to 1 (times
10'9), i.e., N1 (0) = 0.7012 and N,(0) = 0.2988. This would be representative of
conditions where the cancer has been growing exponentially for some time without
treatment; even if chemotherapy has been given earlier, in the rest periods the cells
redistributed over the compartments and their proportions are given by these values.
The control limit is taken as um,x = 0.90, but is just meant for illustrative purposes.
Figure 1 shows two examples of controls and corresponding trajectories when the
coefficients in the objective have been chosen as r = (3,3), ¢ = (0.1,0.1) and
s = % The examples shown are for time horizons of T = 21 and 7" = 60 [days].
In all cases, extremals are bang-bang trajectories with exactly one switching from
U = umax to u = 0. The total reductions in cancer cells at the end of the therapy
horizon are given by N1(T) + N»(T) = 0.5297 and 0.4799, respectively.

All extremals shown here are strong local minima; that is, there exists a
neighborhood W of the graph of the corresponding trajectory in [0, '] x P such that
the controls are optimal with respect to any other control # for which the graph of
its corresponding trajectory N lies in W [33]. In fact, for this 2-compartment model
we have consistently seen that extremal bang-bang trajectories that have more than
one switching are not optimal and the examples shown are expected to be globally
optimal. This simply means that we can take the neighborhood W as the full space
[0, T'] x P, but we have not verified this.

Analogous results have been obtained for multidrug 3-compartment models
when the actions of a G,/ M -specific cytotoxic agent were combined either with a
cytostatic agent that was slowing down the progression of cells during the synthesis
phase [34, 62] or with a recruiting agent that was applied to entice dormant cells to
reenter the active cell cycle from the compartment Gy [35]. In each case, singular
controls can be excluded from optimality using the Legendre-Clebsch condition
and optimal controls are bang-bang with one switching for the cytotoxic agent
giving the dose upfront. In the model formulation, however, it is implicitly assumed
that the tumor population is homogeneous and consists of chemotherapeutically
sensitive cells. Also, the problem considered here corresponds to one particular
chemotherapy session only. The steady-state proportions of the uncontrolled system
reestablish very quickly during the rest periods and thus multiple chemotherapy
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Fig. 1 Examples of locally optimal controls (left) and their corresponding trajectories (right) for
T = 21 (top) and T = 60 (bottom) from the steady-state solution

sessions reduce to repetitions of the structure obtained above. Overall, for tumor
populations that are homogeneous and consist of chemotherapeutically sensitive
cells, these mathematical models therefore confirm the prevailing paradigm that
chemotherapy should be given in an MTD scheme upfront. However, this no longer
is so clear cut once tumor heterogeneity is taken into account.

3.3 Compartmental Models for Heterogeneous Tumor
Populations

Malignant cancer cell populations are genetically unstable and coupled with fast
proliferation rates, this leads to a great variety in the structure of the cells within
one tumor—the number of genetic errors present within one cancer cell can lie in
the thousands [42]. Consequently, tumors often consist of a heterogeneous mixtures
of various subpopulations that show widely varying sensitivities towards the actions
of a particular chemotherapeutic agent [13, 14]. In medicine, the Norton-Simon
hypothesis [44] postulates that tumors consist of faster growing cells that are
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sensitive to chemotherapy and slower growing populations of cells that exhibit lower
sensitivities or, with time, become resistant to the chemotherapeutic agent (acquired
drug resistance). There may even exist small subpopulations of cells for which the
specific activation mechanism of a chemotherapeutic agent does not work at all and
which thus are not sensitive to the treatment from the beginning (ab initio, intrinsic
resistance). Given such a scenario, over time, as the drugs kill sensitive tumor cells,
resistant subpopulation of cancer cells may emerge that will make an MTD-style
therapy less and less effective [37, 41, 71]. Even if the fraction of intrinsically
resistant tumor cells is tiny (undetectable) after the sensitive cells have been killed
by the treatment, it may then grow in time to become a fully developed tumor of
chemotherapeutically resistant cells leading to the failure of therapy, possibly only
after many years of seeing remission of the cancer.

Compartmental models of the type (15) can also be used to investigate the
structure of optimal controls if the tumor population is heterogeneous. In [17],
Hahnfeldt, Folkman and Hlatky compare the effects of MTD and metronomic
chemotherapy (when given by bolus-type injections) on sensitive and resistant
tumor populations. Optimizing the maximum asymptotic factor reduction in tumor
size between periods in an infinite cycle of periodic therapy periods, the authors
come to the conclusion that a metronomic, regular scheduling of the drugs has
better long-term effects. We here consider the same underlying dynamics in a
continuous-time formulation and explore the structure of optimal protocols that
minimize the tumor burden as measured by the average over one, but possibly
very large therapy interval. Since we want to explore the effects that heterogeneity
has, we distinguish three subpopulations which, for simplicity of terminology, are
labeled “sensitive,” S, “partially sensitive,” P, and “resistant,” R. The terminology
is only meant to indicate that these populations have different sensitivities towards
a chemotherapeutic agent with S the highest and R the lowest. We assume that
these subpopulations grow at growth rates o, o, and o3, respectively. Generally
we do not make assumptions on the order of the growth rates, but an ordering
o) > ay > a3 would be consistent with the “Norton-Simon hypothesis.” We allow
for transitions between the compartments, i.e., we include the typical effects that
sensitive cells can become more resistant, but we also allow for resensitizations
which make cells less resistant to the chemotherapeutic agent [15]. We denote
the transition rates from the sensitive to the partially sensitive and resistant
compartments by op and og, respectively, and use analogous notations for the other
transition rates. Thus, for example, pp denotes the transition rates from resistant to
partially sensitive cells. These rates are assumed to be constant and we assume they
all are positive. This corresponds to an ergodic structure in which all compartments
are repeatedly visited by cells. Cell kill by a chemotherapeutic agent is expressed
by the standard linear log-kill hypothesis: if we denote the concentration of the
drug in the bloodstream by u, then the rate of cells eliminated is given by ¢;u,
i = 1,2,3, with the coefficients ¢;, @2, and ¢; representing the effectiveness of the
drug on the sensitive, partially sensitive and resistant subpopulations, respectively.
Thus ¢; > ¢ > @3 > 0. The case ¢3 = 0 corresponds to the situation of a fully
resistant subpopulation R. We again do not include the standard pharmacokinetic
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model on the agent here and treat u as the control of the system with maximum
concentration given by upm,«. The controlled dynamics is then simply determined
by the inflows and outflows from the various compartments and is given by the
following 3-dimensional linear system of equations:

S:(Oll—O'p—O'R—qu)S—f‘NSP"FpSR, (27)
P=CTPS+((X2—JT5—JTR—¢)2L£)P+,OPR, (28)
R = 0gS + g P + (03 — ps — pp — @3u) R. (29)

Even if initially no partially sensitive or resistant cells are present, they will
immediately appear because of the ergodic nature of the underlying Markov chain
and resulting transitions between the compartments. Without loss of generality, we
thus assume that all initial conditions Sy, Py, and Ry are positive. Admissible
controls are Lebesgue-measurable functions with values in a compact interval
[0, tmax], u 2 [0, T] — [0, tmax], 1 > u(?).

We denote the proportions of the respective populations by

S P - R
_x:—7 = — :—’
S+P+R YT SYP+R ‘TSYP+R

it then follows that x, y, and z obey Riccati equations and direct computations verify
that

X =vgx + sy + psz — x(1x + ooy + 032), (30)
y=o0px+vpy+ ppz—y(1x + a2y + 032), (3D
Z=0rX + gy + vrz — z(0t; x + 02y + 0432). (32)

with the system evolving on the unit simplex
Y ={(x,,2):x>20,y>0,2>0, x+y+z=1}.

Proposition 3.4 ([28]). The dynamics (30)—(32) has exactly one equilibrium point
(X%, yx,2+«) € X which is globally asymptotically stable in X and defines the
steady-state proportions.

Thus, given an estimate Cy on the tumor size, there once more exists a well-

defined initial condition Sy = x«Co, Py = y«Cy and Ry = z+Cy for the
optimal control problem [OC]. Setting N = (S, P, R)T, we have a 3-dimensional
single-input control system of the foorm N = (A 4+ uB) N with the matrices

determined by equations (30)—(32); the objective is the same as defined in (16)
before. The necessary conditions for optimality thus take the same form as for the
2-compartment model considered above. It is easily seen that also for this system,
although the dynamics is not described by an M-matrix, all states and multipliers
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Ai, i = 1,2,3 are positive over the interval [0, 7] and we have the same formulas
(22) and (23) for the derivatives of the switching function @(¢) = s + A(¢2) BN«(t)
with the Legendre-Clebsch condition again given by (24). Here

0 (2 — @1)’7s (@3 — ¢1)*ps
[B.[A,B]l = — | (¢1 — ¢2)?0p 0 (p3 — ¢2)*pp (33)
(1 — ¢3)°0r (92 — 3)*7g 0

so that A(¢)[B, [A4, B]]N«(t) < 0 while
qB>Nu(t) = q197Sx(t) + 4205 Pu(t) + q3¢3 Ru (1) > 0.

Hence {A(l)[B, [A, B]|N«(t) — qBZ} N«(t) < 0 and the strengthened Legendre-
Clebsch condition is always satisfied. Essentially, this is just a consequence of
having different sensitivities.

Proposition 3.5. For the compartmental model defined by equations (27)—(29),
singular controls are of order 1 and the strengthened Legendre-Clebsch condition
for minimality is satisfied.

Thus, in this case it is expected that singular controls are locally optimal. Solving
equation (23) for u gives the following formula for the singular control:
{A(D)[A.[A. B]] —q[A, B] —gBA} Nx(1)

{=A(@t) [B,[A, B]] + gB?} N«(t)

Using (t) = (34)

This singular control actually does not depend on the values S, P, and R of the state,
but only on the values of the proportions x, y, and z. In order to be admissible, the
control values need to lie in the control set [0, uy,x]. It follows from the strengthened
Legendre-Clebsch condition that the denominator is positive. In the numerator, all
terms in the vector —gBA are positive, but there exist coefficients in the matrices
[A,[A, B]] and in the vector —q [A, B] that are negative, but just a few. Thus
generally, and this is what we have seen consistently in numerical computations,
the values of the expression (34) are positive and thus admissible for suitable upper
bounds .

Analyzing optimal concatenations between bang and singular controls is difficult
and this analysis has not been carried out yet. However, it is not difficult to give
some numerical samples of singular controls and corresponding trajectories. Along
a singular arc, the multiplier A satisfies @(r) = s + A(t) BN«(t) = 0 and ®(r) =
{A(®)[A, B] — ¢B} N«(t) = 0 and is determined by these conditions up to a positive
scalar multiple. In principle, here singular controls are possible everywhere in the
state space and in Fig. 2 we give an example of an extremal controlled trajectory for
which the control is given by the maximum dose rate for an initial interval [0, 7] and
then is singular over the remaining period [z,, T]. In this simulation the parameter
values defining the dynamics are &y = 1, @y = 0.5, and a3 = 0.1 with transition
rates op = 0.05, g = 0.01, 7y = 0.03, 7z = 0.01, ps = 0.01, and pp = 0.03.
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Fig. 2 Example of an extremal control and associated states for a bang-singular controlled
trajectory

Normalizing the initial cancer burden to C(0) = 1, the corresponding steady-state
proportions are given by So = xix = 0.8954, Py = ys = 0.0933, and Ry = z« =
0.0112 and we used these as initial condition. The maximum dose rate is normalized
to umax = 1 and the pharmacodynamic coefficients are ¢; = 1.5, ¢ = 1, and
@3 = 0.1. All these values are for illustrative purpose only. In the objective we
chose all weights ¢; equal to 0.01 and we used 7, = 5 and T = 25, so that a full
dose is given for 20% of the time. Over this time horizon the lower dose rates of
the singular controls are able to maintain a lower cancer burden, but eventually the
resistant population will become dominant. However, this will happen regardless of
the specific administration protocol of the drug.

In the medical literature protocols like these are referred to as “chemo-switch”
protocols and our computations show that, as differing chemotherapeutic sensitiv-
ities and even drug resistance come into play, lower dose rates become a valid
alternative to MTD protocols.

4 Mathematical Models for Antiangiogenic Treatments

The most important structure of a tumor’s microenvironment is its vasculature.
In order to grow beyond a small size, a tumor needs to develop its own network
of blood vessels and capillaries that will provide it with nutrients and oxygen.
This process is called angiogenesis and was already pointed out as a therapeutic
target by J. Folkman in the early 1970s [8, 9]. Antiangiogenic treatments aim at
depriving the tumor of this needed vasculature by either disrupting the signaling
process that the tumor uses to recruit surrounding, mature, host blood vessels or
by directly inhibiting the growth of endothelial cells that form the lining of the
newly developing blood vessels and capillaries. Ideally, without an adequate support
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network, the tumor’s further development is halted and it even shrinks. Rather than
fighting the fast duplicating, genetically unstable, and continuously mutating tumor
cells, this indirect treatment approach targets the genetically stable endothelial cells.
As a consequence, no clonal resistance to angiogenic inhibitors has been observed
in experimental cancer [2] and for this reason, after the discovery of antiangiogenic
mechanisms that the tumor uses to control its vasculature in the 1990s [5, 10, 25],
antiangiogenic treatments were a new hope in the war on cancer. Unfortunately,
these high hopes have not been realized, mostly due to the maintenance only
character of the treatment [22]. However, antiangiogenic approaches have become a
valuable component in the treatment of many cancer types in connection with other
traditional approaches like chemo- or radiotherapy that directly attack tumor cells.

A widely influential population-based mathematical model for tumor develop-
ment under angiogenic signaling was developed and biologically validated in 1999
by Hahnfeldt, Panigrahy, Folkman, and Hlatky [16]. This model has become an
object of strong interest also in the mathematical literature and to this date is
still undergoing vigorous development. It has been analyzed from a dynamical
systems perspective (e.g., by d’Onofrio and Gandolfi [47, 48], Forys et al. [11])
as well as from an optimal control point of view (by the authors and coworkers
[38,39,52] and by Swierniak [68,70]) with numerous generalizations and variations
of the underlying model that have been proposed (e.g., [7, 46,49, 51, 58, 60]). In
Sect. 4.1, for the original mathematical model, we describe a complete solution
of how to administer an a priori given amount of antiangiogenic agents in order
to achieve the best possible tumor reduction. In this solution, an optimal singular
arc and its associated singular control determine the structure of optimal controls
which are largely defined by a singular segment. These feedback controls, however,
are difficult to implement. Yet, the solution is fully robust and excellent simple
suboptimal controls that come within 1% of the optimal value exist and will
be discussed in Sect.4.2. Since antiangiogenic therapy only targets cancer cells
indirectly, in order to be effective, it needs to be combined with therapies that also
kill the cancer cells. In Sect. 4.3 we show how the solution for the antiangiogenic
monotreatment therapy presented in Sect. 4.1 provides the basis for the solutions for
such combination therapy problem.

4.1 Synthesis of Optimal Controlled Trajectories
Jor the Monotherapy Problem

In the model by Hahnfeldt et al. [16], the spatial aspects of angiogenesis are
incorporated into a nonspatial 2-compartment model with the primary tumor
volume, p, and the carrying capacity of the vasculature, g, as its principal variables.
Intuitively, the latter can be thought of as the ideal tumor volume sustainable by
the vascular network and is closely related to the volume of endothelial cells that
form the lining of the existing and newly forming capillaries. The dynamics consists
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of two ODEs that describe the evolution of the tumor volume and its carrying
capacity, which, with u# denoting the action of an antiangiogenic agent, is given
by the following equations:

p=—&pln (g) , p(0) = po, (35)

qg=bp— (dp% + M) q — yuq, q(0) = qo. (36)

In equation (35) a Gompertzian model with £ a constant parameter is chosen to
model tumor growth (other choices are equally possible). Note that the carrying
capacity and tumor volume are balanced for p = ¢ and thus p = 0 in this case while
the tumor volume shrinks for inadequate endothelial support (p > ¢) and increases
if this support is plentiful (p < ¢g). Different from conventional approaches, in
this model the carrying capacity is not a constant, but itself becomes a state variable
whose evolution is governed by a balance of stimulatory and inhibitory effects given
in equation (36). Based on an asymptotic analysis of the underlying consumption-
diffusion process and the facts that angiogenic inhibitors have a more systemic effect
while stimulators, on the other hand, act locally, the functional forms S(p, g) = bp
and I(p,q) = dp%q for stimulators and inhibitors are proposed in [16]. The term
g, 1 > 0, that has been separated describes the loss to the endothelial cells through
natural causes (death etc.) and yqu models the loss to the vasculature due to outside
administration of antiangiogenic agents using a standard log-kill term. The control
u represents the concentration in the plasma of such an agent with uy,,x denoting an
a priori set maximum dose rate/concentration.

Different from the previous model formulations, we here assume that a fixed
amount A of angiogenic inhibitors is given. Mathematically this represents an
isoperimetric constraint and is modeled as

y=u, y(0) =0, y(T) < A. 37

The question then becomes how to use the given amount of agents in the best
possible way. Here we choose to minimize the tumor volume. In this formulation,
there is no fixed therapy horizon [0, T'], but rather the terminal time 7 is free and it
merely represents the time when the minimum tumor volume is being realized. Such
models are of practical interest and give an important alternative to the formulations
considered earlier. We thus consider the following optimal control problem:

[A] for a free terminal time 7', minimize the terminal value p(T) of the
tumor volume subject to the dynamics (35)—(37) over all Lebesgue-measurable
functions u : [0, T] — [0, umax] for which the corresponding trajectory (p, ¢q, y)
satisfies the terminal constraint y(7") = fOT u(t)dt < A.

We denote the 3-dimensional state by z = (p, ¢, y)” and write the dynamics in
the form

2= f(2) + ug(z) (38)
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with
—épIn (5) 0
f@=|pp- (dp% n u) g| ad g@=|-yq
0 1

All coefficients are positive parameters and we also assume that yumax > b—p > 0.
The first inequality implies that a constant does rate u,,,, eradicates the tumor [47],
but is only made in order not to have to distinguish cases the second inequality is
always satisfied for the underlying medical problem. Under these assumptions in
[38] we gave a complete global solution to this optimal control problem in the form
of a regular synthesis for all initial data (po, go, A) that are well posed. This simply
means that there are enough antiangiogenic agents available to realize a terminal
value p(T) < po since otherwise the optimal terminal time 7 is givenby 7" = 0.

Necessary conditions for optimality of a control u are again given by the
Pontryagin maximum principle. It is not difficult to see that all available inhibitors
will be exhausted along an optimal trajectory (px, g«, y«), y«(T) = A and that
p«(T) = q«(T) holds at the final time. For this problem, the switching function ®
is given by

(1) = (A1), g(2(1))) = A3 — A2(1)y g« (1) (39)

and, compared with the models considered in Sect.3, here the computation of
singular controls simplifies since the Lagrangian L is identically zero. It follows
from Proposition 2.1 that the derivative of a function of the form W (t) =
(A1), h(z(2))) is given by W(t) = (A(t),[f + ug. h](z(t))) and for the switching
function @(r) we thus obtain that & (1) = (A(¢), [f. g](z(¢))) and

B(1) = AW)[/ + ug. [£. gllz(1)), (40)

with the control # once more only appearing in the second derivative. If u is
singular on some open interval /, then these derivatives all vanish on I and if
(A(@), [, [/, gll(z(t))) # 0, then (40) can formally be solved for u as

(AQ@). [ [/ gll(z(2)))
(A@).[g. [f. gllz(1)))

The strengthened Legendre-Clebsch condition for optimality of the singular control
here takes the form

“sing(t) = - (41)

(A().[g.[/.8llz(2))) <O  forallz € I. (42)
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The determination of singular controls and the analysis of their local optimality
properties thus reduces to the computation of the Lie brackets [f,[f, g]] and
[g.[f, g]] and their inner products with the multiplier A. For the model [A], the
control vector field g and the Lie brackets [ f, g] and [g, [ /. g]] are linearly indepen-
dent and thus the Lie bracket [ £, [ f, g]] can be written as a linear combination of this
basis with coefficients that are smooth functions of the state z, say

[/ [/ &ll) = p(2)g(2) + (2. 8](2) + ¥ (2)[g. /. gll(2).

Along a singular extremal (z,u,A), the inner products (A(¢),g(z(¢))) and
(A1), [f, g](z(?))) vanish identically and thus

(A@). [ 1 gllz(@)) = ¥ (1) (A(0). [g. [/ gll(z(1))) -

If the singular control is of order 1, we therefore simply have that

using([) = —Y(z(1)) (43)

and the singular control is given in feedback form, i.e., as a function only of the state
z alone which does not depend on the multiplier. Naturally, whether this feedback is
admissible still needs to be determined separately.

However, this feedback does not define a singular control everywhere, but only
on a thin subset. The reason for this lies in the fact that along extremals also the
Hamiltonian H needs to vanish identically and thus, along a singular arc, we also
have that (A(?), f(z(t))) = O for all t € I. Consequently the multiplier A(?)
vanishes against the vector fields f, g and [ f, g] along a singular trajectory. Since
A(t) # 0, it follows that these vector fields must be linearly dependent along the
singular arc. Thus (43) only defines a singular control on the surface

S ={zeR’:det(f(2).£(2). [/ . £](2) = 0}

where det (f(z), g(2).[f. gl(z)) denotes the determinant of the matrix whose
columns are formed by the ordered vectors f(z), g(z), and [f, g](z). Evaluating
this formula gives that

det (f(2). 82,1/ 8)) = £ [bp (1 n (g)) ~ (ap? +n) q} |

In particular, S is a vertical surface independent of y over a base curve Sy in (p, ¢)-
space given by p + dp% = bx(1 —Inx) with x = g. For the singular control, we
have the following explicit formulas:

Proposition 4.1. If the control u is singular on an open interval («, ) with
corresponding trajectory (p, q), then the singular control is determined in feedback
form by
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Fig. 3 The singular control ug,, plotted as a feedback function of the quotient x = 5 (left) and
the singular base curve Sy plotted in (p, g)-space (right) with the admissible part marked by the
solid portion of the curve. Away from this solid segment the singular control is either negative or
exceeds the limit uyax
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There exists exactly one connected arc on the singular base curve Sy along which
the control is admissible, i.e., satisfies the bounds 0 < ugng < Umax.

Figure 3 illustrates the petallike singular curve Sy for upm,x = 75 with the
admissible portion marked as a solid curve for the parameter values § = 0.2, b = 5,
d = 0.01, and p = 0. The qualitative structure shown in this figure is generally
valid, but the admissible portion shrinks with smaller values -

The structure of optimal controls and trajectories is summarized in the following
theorem:

Theorem 4.1 ([38]). Given well-posed initial data (po, qo, A), optimal controls are
at most concatenations of 4 pieces in the form bsuny.x0 with 0 denoting an arc along
the constant control u = 0, Umax denoting an arc along the constant control u =
Umax, D standing for either Wp,x or 0, and s denoting an arc in the singular surface S.

This result provides an upper bound on the number of segments for optimal
controls and it significantly limits the structure of possible concatenations. For the
medically most relevant case of initial conditions (po, go) that represent a growing
tumor with high carrying capacity, pp < ¢o, and ample supply A of inhibitors,
typically optimal controls have the following structure: initially they are given by
a segment of full dose therapy, u = unax, until the corresponding trajectory meets
the singular surface S. At this point, the optimal control changes to the singular
control and antiangiogenic agents are administered at these singular dose rates until
all angiogenic inhibitors have been exhausted. During that phase, the corresponding
trajectory evolves on the singular surface S. Since the singular surface lies in
the region p > ¢, after termination of therapy, the tumor volume will still be
decreasing (due to after effects) even if no more agents are administered as long
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as the trajectory remains in the region p > ¢. The minimum tumor volume will
then be realized as the trajectory reaches the diagonal, p = ¢. Thus, for these
cases optimal controls follow the shorter concatenation sequence Up,.xs0. This is
the typical structure of optimal controlled trajectories for medically relevant initial
conditions, but it depends on two facts: (i) the overall amount of inhibitors is large
enough to reach the singular arc in its admissible range, but (ii) it is not so large that
the singular control would saturate along the singular arc, i.e., would reach the limit
Umax- If (1) is violated and trajectories either do not reach S at all or reach S in its
inadmissible part, then the singular control never becomes an option and in this case
optimal controlled trajectories will simply be given by up-front administration of all
antiangiogenic agents at full dose rates. In such a case, optimal controls are bang-
bang with exactly one switching from u = up,x to u = 0, i.e., of the type upm,x0. If
condition (ii) is violated, then optimal concatenation sequences of the forms Osu,,0
and Uy, SUmax 0 arise.

The synthesis of optimal trajectories then consists of a unique covering of the full
state space by controlled trajectories with the optimal control uep = uopi(p, g, y)
identifying the optimal dose rates as a function of an arbitrary point (p, g; y) of the
state. Intuitively, a synthesis acts like a “GPS system” showing for every possible
state of the system how optimal protocols are administered, both qualitatively and
quantitatively. The variable y merely accounts for the amount of inhibitors that
already has been used and it is more convenient, and more illustrative, to show
the projections of trajectories into the (p,q)-plane. With only a slight abuse of
terminology, we do not distinguish in our language between the trajectories in
(p. q; y)-space and their projections onto the (p, ¢ )-coordinates. Figure 4 shows this
projection and also identifies a typical optimal control of the form u;,xs0 described
above.
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Fig. 4 Synthesis of optimal controlled trajectories for the problem [A]
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In Fig. 5, as an example, we show the optimal controlled trajectory (on the left)
and its corresponding control (on the right) for the initial condition (pog,qo) =
(12000 [mm?], 15000 [mm?]) and the values & = 0.084, b = 5.85,d = 0.00873
taken from [16] and ;& = 0.2. The optimal control is of the type up,xS0: it takes the
maximal value u = up,x for a short interval from 0 to #; = 0.0905 [days] when the
trajectory reaches the singular arc. At this point, the control switches to the time-
varying singular control defined by the singular feedback (44) until all inhibitors are
exhausted at time , = 6.5579 [days]. Then, due to after effects, the minimum value
of the tumor volume is realized a short period later at the final time 7" = 6.7221
[days] when the trajectory for u = 0 reaches the diagonal. Note the extremely fast
g-dynamics away from the singular arc. Partly this is caused by the numerical values
that were used which are based on Lewis lung carcinoma in mice, a fast growing
cancer. Although the almost horizontal trajectory segments along the controls u = 0
and u = up,y are sizable, the time spent along these pieces is small. Most of the time
the control is singular and the trajectory follows the associated singular arc (whose
projection in the (p, g)-space is a subset of the base curve Sy), but this dynamics
is much slower. The optimal final value is given by p«(T) = 8533.4 [mm?]. The
optimal trajectory is shown as a solid curve in Fig. 5 and the singular curve S and
the diagonal Dy are shown as dotted curves.

4.2 Robustness Properties and Realizable Suboptimal
Protocols

Singular controls play an essential role in determining the overall structure of
optimal controlled trajectories for this problem. While Lie algebraic computations
provide an elegant framework in which the singular controls and corresponding arcs
can be determined analytically, these formulas are given as feedback controls that
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administer time-varying partial doses that are determined by the current state of
the system, that is, the tumor volume p and its carrying capacity g. Even at the
initial time, while a reasonably reliable estimate for the tumor volume py may be
available, the carrying capacity of the vasculature, gy, is a highly idealized quantity
and there exist no methods to measure it. The value of the theoretical optimal
solution that was derived, apart from giving interesting qualitative insights into
the underlying system, does not primarily lie in providing a feasible strategy, but
in clarifying what in principle is possible—in fact, for many practical problem,
this precisely is the contribution that optimal control methodologies provide. Then,
based on the benchmarks that the theoretically optimal solutions provide, it becomes
of importance to formulate simple, easily implementable, but also robust strategies
that could be employed even in the face of great uncertainty in the parameters
and the state of the system [31, 39]. The solution described above indeed exhibits
strong robustness properties with respect to parameter values and this in particular
is valid with respect to the initial values go of the carrying capacity. Excellent
approximations to the theoretically optimal solution are obtained by simply taking
a constant control whose dose rate is given by the averaged optimal dose rate
protocol, i.e.,

_ 1 /Tom A
u= U, (l )d = s
Topt 0 " Topl

where u,,; denotes the optimal control as a function of time, Ty is the time when
all antiangiogenic agents have been used up and, as before, A denotes the a priori
specified overall amount of agents to be given. Since all antiangiogenic agents are
used along the optimal control, the integral is simply given by this total amount A.
The final interval when the tumor volume still decreases because of after effects is
not included in this computation. Figure 6, on the left, shows a comparison of the
graphs of the minimum tumor volumes realized as a function of the initial carrying
capacity gy by the optimal control (solid red curve), a full dose rate protocol where
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antiangiogenic agents are given at maximum dose rate upm,x (dashed blue curve),
the half-dose rate protocol (dash-dotted blue curve), the averaged optimal control
protocol (dashed black curve), and the best constant dose rate protocol (dash-dotted
black curve) for the fixed initial tumor volume py = 12,000 [mm7]. The curves for
the averaged optimal control protocols and the best constant dose protocol are very
close and basically lie on top of each other in the figure with only minute differences
for very low and very high tumor volumes. On the right of the same figure we show a
graph of the averaged optimal control as a function of g¢. These constant dose rates
only vary between 45.1 and 45.7 showing the strong robustness of the solutions with
respect to go.

For the initial condition (po, ¢o)=(12, 000 [mm?];15, 000 [mm?]), all antiangio-
genic agents are used up at time 6.558 [days] along the optimal solution. It is not
difficult to compute the best protocol that would give the same total amount in 6
constant daily doses and these dose rates are given by

uy = 46.61, up = 45.31, uz = 48.15, uy = 50.71, us = 53.20, and ug = 56.02.

The values closely mimic the structure of the theoretically optimal control shown
in Fig. 5. There is a small dip in the dosage from the first to the second day which
is caused by the fact that the piece along which the optimal dose rate is umax is
small and thus the first daily value is significantly lower than un.x = 75, but still
higher than the second daily dose. Then the dosages gradually increase over the
remaining days. This reflects the dose intensification along the optimal singular arc.
Yet, specifying the time structure by restricting to daily doses reduces the quality of
the approximation somewhat.

4.3 Combination of Antiangiogenic and Chemotherapy

Antiangiogenic therapy only attacks tumor growth indirectly through the vascula-
ture and it is natural to combine it with a second therapy that directly attacks the
tumor cells such as radio- or chemotherapy. We still consider a model that adds the
action of a cytotoxic agent v, but again, rather than including the drug dosage as a
penalty term in the objective, limits the overall amount of drugs given.

[AC] For a free terminal time 7', minimize the tumor volume p(7T) subject to the
dynamics

p=Epin (%) oo, (0) = po. 45)

. 2
q=bp— (dp3 + u) q—yqu—ngqv, q(0) = qo, (46)



324 U. Ledzewicz and H. Schittler

over all Lebesgue-measurable functions u : [0, T] — [0, um.x] and v : [0, T] —
[0, vmax] for which the corresponding trajectory satisfies the terminal constraints

T T
/ u(t)dt <A  and / v(t)dt < B. (47)
0 0

An important feature of the optimal solution—and one that is not at all obvious—
is that it builds in a modular way on the solution of the antiangiogenic monotherapy
problem [A] already given [52]. Indeed, for a typical initial condition with py < g,
optimal controls for the combination therapy problem [AC] have the following
structure: optimal controls for the antiangiogenic agent follow the optimal solution
for the monotherapy problem and then, at a specific time, chemotherapy becomes
active and is given in one full dose session. Both controls cannot be singular
simultaneously and the formulas given above for the singular control and singular
arc need to be adjusted to the presence of chemotherapy, but this is readily done and
we have the following result:

Proposition 4.2 ([52]). If the optimal antiangiogenic dose rate u follows the
singular control ugne on an open interval I, then the chemotherapeutic agent v
is bang-bang on I with at most one switching from v = 0 to v = vy,y, and the
following relation holds between the controls u and v:

Yising(t) + (n — @) v(t) = ¥(p(1),q(1t)) (48)

with ¥ defined by equation (44). Given v, this determines the anti-angiogenic dose
rate with a jump discontinuity when chemotherapy becomes active.

This structure allows to set up a simple minimization problem over a
I-dimensional parameter t that denotes the time when chemotherapy becomes
active. We illustrate this for an initial condition (pg,qo) with pg < ¢o where
the antiangiogenic agent is immediately applied with full dose. In principle, this
time t when chemotherapy is activated can lie anywhere in [0, T']. For example,
if the amount zm,x of chemotherapeutic agents is high, then it is possible that
chemotherapy already becomes active along the interval when the antiangiogenic
dose rate is at maximum. On the other hand, if this amount is very low, this
activation may only occur after all antiangiogenic agents have been exhausted. The
typical case, however, is that this time 7 lies somewhere in the interval where the
control u follows the singular monotherapy structure. Figure 7 shows an example of
numerically computed optimal controls for the combination therapy problem [30].

This structure of optimal controls for the combination therapy has interesting
medical interpretation: optimization leads to the conclusion that it is best to follow
specific “paths” along which maximum tumor reductions are achieved. This holds
for both the monotherapy problem [A] and the combination therapy problem [AC]
and these paths, as expressed in the formula (48), are closely linked with the optimal
singular arc from the monotherapy problem. Note that the singular curve Sy lies in
the region where the tumor volume p is higher than its carrying capacity ¢, but
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Fig. 7 An optimal solution for the combination therapy problem [AC]

there exists a specific relation between these variables. Clearly g is not pushed
to zero too fast, but a definite balance between these two variables is maintained
along the optimal solution. Since the vascular network of the tumor is needed to
deliver the chemotherapeutic agents, this perfectly makes sense. In the medical
literature, similar features have been observed and are know as “pruning” [19, 20].
It has been argued by Jain in [19] that the preliminary delivery of antiangiogenic
agents may regularize a tumor’s vascular network with beneficial consequences
for the successive delivery of cytotoxic chemotherapeutic agents. Although no
“ pruning” aspects have been taken into account in the model (e.g., see [50] for
such a model), it is interesting to note that an optimization approach for a rather
small and minimally parameterized high-level mathematical model leads to very
much the same conclusion: give antiangiogenic agents until an optimal relation
between tumor volume and carrying capacity has been established and then apply
full dose chemotherapy while still maintaining the optimal relation between p and
q through the administration of antiangiogenic agents. Even when antiangiogenic
treatment is combined with radiotherapy, this feature seems to persist with the
optimal monotherapy solution once more playing a major role in the structure of
optimal controls for the combination [40].

S5 Tumor-Immune System Interactions

A second major component of a tumor’s microenvironment is the immune system.
The immune system’s first response to its environment is on the basis of a dis-
crimination between “own’ and “foreign” objects and some tumor cells will simply
be classified as “own” and thus tolerated [54]. However, tumor cells also exhibit a
large number of abnormalities (such as mutated proteins, under- or over-expressed
normal proteins and many more) that lead to the appearance of specific antigens,
some of which will be classified as “foreign” and thus do trigger reactions by both
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the innate and adaptive immune system [23,65]. In fact, the empirical hypothesis of
immune surveillance, i.e., that the immune system may act to eliminate or control
tumors, is well established in the medical community. The competitive interaction
between tumor cells and the immune system is extremely complex and strongly
nonlinear. The possible outcome of this interplay is not only constituted by tumor
suppression or tumor outbreak but by a multitude of dynamic properties that include
the persistence of both benign and malignant scenarios (e.g., see [45,53]). Here we
still consider a classical mathematical model by Stepanova [63] that captures these
features of tumor-immune interactions in a low-dimensional, minimally parame-
terized model. In Sect.5.1 we describe the model and consider the uncontrolled
multi-stable dynamics which has both a benign and malignant region [32, 53].
We then in Sect.5.2 set up an optimal control problem that induces the system
to move from the malignant into the benign region under chemotherapy. After a
brief administration of maximum dose chemotherapy, optimal protocols switch to
singular controls and significantly lower dose rates [32]. In the medical literature
such protocols are sometimes referred to as “chemo-switch” protocols [57].

5.1 Multi-stability and Regions of Attractions

We briefly recall Stepanova’s model. Let x denote the tumor volume with a fixed
carrying capacity xoo < oo and let y be a non-dimensional order of magnitude
variable related to the activities of various types of T-cells activated during the
immune reaction. We shall refer to y as the immunocompetent cell density. While
Stepanova uses an exponential model for the growth of the tumor, here, as in [72],
we consider a Gompertzian tumor growth models. The dynamical equations of the
model are given by

X =—ucxln (i) —yxy, (49)
Xoo
y = (x—px*)y -8y +a, (50)

with all Greek letters denoting constant coefficients. The second equation summa-
rizes the main features of the immune system’s reaction to cancer. Several organs
contribute to the development of immune cells in the body and the parameter o
models a combined rate of influx of T -cells generated through these primary organs;
§ is simply the rate of natural death of the 7 -cells. The first term in this equation
models the proliferation of lymphocytes. For small tumors, it is stimulated by the
tumor antigen which can be assumed to be proportional to the tumor volume x. It is
argued in [63] that large tumors suppress the activity of the immune system. The
reasons lie in an inadequate stimulation of the immune forces as well as a general
suppression of immune lymphocytes by the tumor (see [63] and the references
therein). This feature is expressed in the model through the inclusion of the term
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—Bx?. Thus 1/B corresponds to a threshold beyond which the immunological
system becomes depressed by the growing tumor. The coefficients y; and B are
used to calibrate these interactions and in the product with y collectively describe
a state-dependent influence of the cancer cells on the stimulation of the immune
system. The first equation models tumor growth. The coefficient y denotes the rate
at which cancer cells are eliminated through the activity of T-cells and the term
yxYy thus models the beneficial effect of the immune reaction on the cancer volume.
Lastly, i simply is a tumor growth coefficient.

For our numerical computations we use the following parameter values that are
based on the paper [27] by Kuznetsov, Makalkin, Taylor, and Perelson who estimate
these parameters based on in vivo experimental data for B-lymphoma BCL; in the
spleen of mice: @ = 0.1181, 8 = 0.00264, y = 1, § = 0.37451, uc = 0.5618 and
pr = 0.00484. In that paper, a classical logistic growth term is used for cancer
growth and we therefore adjusted the growth rates to account for Gompertzian
growth using linear data fitting. Also, the functional form (x - ,sz) ¥ used in
Stepanova’s model in equation (50) is a quadratic expansion of the term used in
[27]. Following [27], x is given in multiples of 10° cells and y is a dimensionless
quantity that describes the immunocompetent cell density on an order of magnitude
basis relative to base value 1. The time scale is taken relative to the tumor cell cycle
and is in terms of 0.11 days [27]. As always, we simply use this particular values to
illustrate our analytical results.

There always exists a disease-free equilibrium point at (x s, yr) = (0, §) which
is unstable. For the parameter values given above, there exist three equilibria with
positive tumor volumes and Fig. 8 shows the phase portrait of the system. There is
an asymptotically stable focus at (xp, yp) = (72.961,1.327) (marked by a green
star), a saddle point at (x,, y;) = (356.174,0.439) (marked by a black star), and an
asymptotically stable node at (x,,, y,») = (737.278,0.032) (marked by a red star).
In the diagram we have also marked the stable manifold of the saddle as a dashed
red curve. The regions of attraction of the stable equilibria are the open regions that
are separated by this stable manifold of the saddle.

We call a locally asymptotically stable equilibrium point (X, y«) of the
equations (49) and (50) malignant if the corresponding tumor volume x4 is close
to the carrying capacity of the system, benign if it is by an order of magnitude
smaller. The corresponding regions of attraction are the malignant and benign
regions, respectively. In case of a microscopic benign equilibrium, this region can
be interpreted as the set of all states of the system where the immune system is
able to control the cancer and this is one possible way of describing what medically
has been called immune surveillance. The region of attraction of the macroscopic
equilibrium point, on the other hand, corresponds to conditions when the system has
escaped from this immune surveillance and the disease will be lethal. Obviously,
an interesting structure is the boundary between these two behaviors that is formed
by the stable manifold of the saddle point. The natural therapeutic question then
becomes how to move the state back into the benign region if it has been displaced
into the malignant region.
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5.2 Optimal Control for Tumor-Immune Interactions
with Strongly Targeted Drugs

We now consider equations (49) and (50) with a cytotoxic agent # and a rudimentary
immune boost v. As a simpler scenario, we assume that the chemotherapeutic agent
is strongly targeted towards the tumor cells and therefore neglect its effects on
the immunocompetent cell densities. Once more employing the standard log-kill
assumption, this leads to the following equations:

X =—pucxln (i) — YXy —KkXxu, x(0) = xo, (51)
Xoo
y=pr (x = Bx*) y =8y +a+ pyv, y(0) = yo. (52)

Given the multi-stable scenario, the practical aim of therapy is to move an initial
state (xo, o) that lies in the malignant region into the region of attraction of the
benign equilibrium point while keeping side effects tolerable. For this, we consider
the following optimal control problem:

[CI] for afree terminal time 7', minimize the objective
T
J = Ax(T) — By(T) + / (Cu(t) + Dv(t) + S) dt, (53)
0

over all Lebesgue-measurable functions u : [0,7] — [0,1] and v : [0,T] —
[0, 1] subject to the dynamics (51) and (52).

The choice of the weights aims at striking a balance between the benefit at the
terminal time 7', Ax(T) — By(T), and the overall side effects measured by the total
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Fig. 8 Phase portrait of the uncontrolled system (49) and (50)
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amounts of drugs given, while it at the same time guarantees the existence of an
optimal solution by also penalizing the free terminal time 7. The most important
piece is the penalty term Ax(7) — By(T) at the final time that is designed to induce
the state of the system to move from the malignant into the benign region. In order
to accomplish this, it may no longer be adequate to simply minimize the tumor
volume since, as can be seen in Fig. 8, small tumor volumes are possible that lie
in the malignant region if the immune system is depressed. Rather, the geometric
shape of the separatrix matters. While it is generally not possible to give an analytic
description for this surface, the tangent space to the saddle is easily computed and
its normal vector can serve as a reasonable direction in which we want the system
to move. This is what we have done here giving the numerical values A = 0.00192
and B = 1 for the data used earlier.

Once more, optimal controls for the cytotoxic agent consist of concatenations
of bang and singular pieces. It can be shown that optimal administration of the
immune boost v is bang-bang [29] and analytical formulas for a singular control u
and arc can be derived, albeit with slightly different reasoning than above [29, 32].
The typical optimal control u is a concatenation of four pieces of the type 1s01:
therapy starts with a short maximum dose therapy session followed by a segment
where the control is singular. Along this segment, the system moves along the
singular arc from the malignant into the benign region. It is this transfer that matters
and the tumor volume may actually increase along this segment. Once safely into
the benign region, at one point therapy stops, i.e., the optimal control switches to
u = 0. This portion of the trajectory closely follows the unstable manifold of the
saddle for the uncontrolled system and leads to a “free pass,” a trajectory along
which no cost is incurred if S = 0. (The existence of such structures leads to issues
about the existence of optimal controls and for this reason, we generally impose a
small penalty S on the terminal time.) Along this portion of the controlled trajectory,
the actions of the immune system take over. Quite frequently, after a prolonged rest
period, optimal controls still give a short maximum dose chemotherapy and immune
boost towards the end.

Figure 9 shows the optimal controlled trajectory for C = 0.01, D = 0.025, and
S = 0.001 [29]. In the figure of the controlled trajectory switching points for the
cytotoxic agent are indicated by a red asterisk and those for the immune boost with
a green asterisk. Initially chemotherapy is given at full dose without immune boost.
Already after a brief time interval, as the state of the system nears the separatrix,
chemotherapy is reduced drastically and is only administered at lower dose rates
according to the singular control u,,, and we clearly see the “chemo-switch”-
type behavior of administration of a chemotherapeutic agent as optimal. In these
solutions, the tumor microenvironment plays a major role: the initial chemotherapy
is only designed to bring the state of the system into a region where the immune
system is potent enough to control (not necessarily eliminate or eradicate) the
cancer. If possible, this aim is achieved with low doses of chemotherapy. In fact—
but such a structure is not included in the model—higher doses may be harmful in
that they might adversely effect the immune system which otherwise would have
come to the assistance in combating the tumor.
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Fig. 9 Optimal control (/eft) and corresponding controlled trajectory (right) for C = 0.01, D =
0.025, and S = 0.001. (Reproduced with permission from [29], (©2013, AIMS)

6 Conclusion

We have outlined the qualitative type of results that can be obtained about cancer
treatment protocols from an optimal control analysis of high-level mathematical
models. Initially, the focus was on the cancerous cells progressing from mathemat-
ical models for homogeneous tumor populations of chemotherapeutically sensitive
cells to heterogeneous structures of cell populations with varying sensitivities
and resistance. From an optimal control point of view, optimal treatment sched-
ules change from bang-bang solutions with upfront dosing (the classical MTD
approaches in medicine) to administrations that favor singular controls (time-
varying dosing schedules at less than maximum rates) as heterogeneity of the
tumor population becomes more prevalent. Once the main components of the
tumor microenvironment, its vasculature, and the immune system, are taken into
account, in optimal solutions, more is not necessarily better. In this context, and in
view of the fact that a properly calibrated dose (which does not waste agents nor
have excessive side effects) can deliver the best outcomes, in medical research the
search for a “biologically optimal dose” (BOD) is being pursued. In the model for
antiangiogenic treatments it becomes clear that full dose therapies do waste agents
that can be used more effectively when spread out at lower doses over prolonged
time periods. The mathematical solution supports the idea of a normalization of the
vasculature prior to the administration of chemotherapy, but then cytotoxic agents
are given at the appropriate time in an MTD fashion. In a certain sense, an ideal
tumor size-vasculature pattern is sought first which leads to an optimal tumor kill
potential that then is exploited by maximum dose chemotherapy. However, as also
the immune system is taken into account, chemo-switch protocols become optimal.
The reason simply is that when the system is in a state where the actions of the
immune system are able to control cancer growth, it is overall preferable (in view of
the toxic side effects of chemotherapy) to administer lower doses.

Clearly, the models considered here are simplified, and this is natural at the
high level of agglomeration that underlies their construction. While biological and
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medical research prefers to be as detailed as possible in their models, this also

9. ¢

makes them amenable to the pitfall of Borges’s “exactitude in science.” The question
simply is to what extent a model needs to be accurate to make significant and
realistic predictions. In our view, the smaller the model is to give the relevant
conclusion, the better it is. The conclusions that we obtain from these minimally
parameterized models would suggest that these models lead to realistic statements
about the structure of optimal treatment protocols that should be of interest in
medical practice. In fact, the question how to schedule chemotherapeutic drugs in
order to optimize their antitumor, antivasculature, and proimmune effects is far from
being answered and there are concerted efforts in medical research to explore the
benefits of metronomic scheduling in this respect [1, 56]. Qualitative mathematical
results about optimal protocols that take into account a tumor’s microenvironment
can be of assistance in these efforts.
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