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Preface

After a long incubation period in which only sporadic investigations were devoted
to the applications of mathematics and physics to the study of tumors (see, e.g., the
work of Doll and Armitage on tumorigenesis in the 1950s), in the early 1970s, the
papers by Norton and Simon and by Greenspan were a turning point in the scientific
interest on tumor modeling.

In this first phase, the majority of models were essentially population-based
models. Although many important results were established—for example, the
possible onset of a dynamic equilibrium between a tumor and the immune system,
only recently experimentally confirmed—the majority of studies did not directly
rouse the attention of the oncology world, with the remarkable exception of the
papers by Goldie and Coldman on the Darwinian emergence of resistance to
chemotherapy and of the above-mentioned works by Norton and Simon.

The pioneering work by Greenspan, where the modeling also involved physico-
chemical aspects of tumor growth, remained almost isolated for two decades.
Finally, in the 1990s, a large number of mathematical models were devoted to
describing the spatial growth of tumors, with approaches ranging from simple
diffusive models to complex multiphase mechanical models. Later, the interactions
of the tumor with the immune system and with the angiogenesis process also became
the object of extensive theoretical research.

The follow-up in the medical world, however, remained rather scarce. This
is due mainly to the limited number of joint works between biomedical and
biomathematical researchers, although there have been some isolated cases of
theoretical scientists—for example, R. Jain—who have been so deeply involved in
biological research as to become influential biomedical research leaders.

Things are, however, rapidly changing. In recent years, two major phenomena
have given great momentum to research in mathematical oncology.

The first is of a technical nature—that is, the birth of multiscale modeling—
where microstructures such as individual cells can be explicitly represented.

v



vi Preface

The second, and most important from a “sociological” point of view, is that a
large number of biomedical scientists are becoming directly involved in quantitative
research due to the need to decipher an ever larger mass of “omics” data (mainly
from genomics and proteomics).

The increasing number of modeling papers published in journals devoted to
oncology, and in particular the opening of the new section on mathematical
oncology in Cancer Research, one of the most important basic research journals on
cancer, is the most important evidence that tumor modeling is slowly but signifi-
cantly impacting the oncology world.

Moreover, the fact that in these years a number of research groups—often led by
biomedical scientists turned to computational sciences—are being “embedded” in
research medical centers is further evidence of the scientific interest of the topic.

On the other hand, from the point of view of mathematicians, there is an
increasing awareness that the applications of both classical mechanics and nonlinear
analysis to the study of tumor growth translate into new challenging problems at the
frontier of contemporary mathematics.

This is mirrored by the increasing number of papers on mathematical oncology
that are published in mathematical journals.

This book is entirely composed of in-depth contributions reviewing personal
research results of outstanding scientists in the field. It is aimed at providing both
experienced researchers and the increasing number of newcomers with a careful
selection of state-of-the-art results.

Many new researchers who are entering the field of mathematical oncology often
experience significant difficulties. Starting work in mathematical cancer modeling,
indeed, is a slow and difficult process that requires the acquisition of a special forma
mentis that goes well beyond that of the usual applications of mathematics and
physics, where the learning can be limited to the acquisition of basic concepts and
methods of the domain of application. In tumors, on the contrary, many apparently
different phenomena are interrelated, and all of them are strictly linked to clinical
issues. We believe that in the chapters of this book the authors have successfully
transferred not only their results but also, most importantly, their way of seeing and
approaching problems.

In order to cope with the state of the art, the book covers different biological
subjects and mathematical approaches.

As far as the tumor onset and early phases of tumor growth are concerned,
Bortolusso and Kimmel investigate the interplay of spatiality and stochasticity
in the process of tumorigenesis by stressing some exquisitely stochastic spa-
tiotemporal phenomena without deterministic counterpart and the role of cellular
cooperation. Fasano, Bertuzzi, and Sinisgalli focus on the role of the conservation
laws of mathematical physics to decipher the dynamics of the early phases of
neoplasias by means of the analysis of some free-boundary problems for partial
differential equations. Techniques of nonlinear mathematical physics and statis-
tical mechanics, as well as WKB approximations, are used by Ben Amar to
treat two typical features of melanomas: morphological instabilities and phase
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segregation. In her contribution, Ben Amar also provides an overview of the
historical development of “mathematical biophysics” of tumors.

With regard to the intercellular interplay between tumor cells and other cells
in the environment, Dyson and Webb extend their models that include the “cell
cycle age” of tumor cells by also including the cell-to-cell adhesion theory by
Painter and Sherrat and provide a complete mathematical analysis of the resulting
model by using the theory of semigroups. Lachowitz, Dolfin, and Szymanska, in
the framework of the kinetic theories of tumor-immune system interplay, provide
a theoretical framework for the construction of micro- and meso-models that may
be related to macroscopic models and that are able to take into account various
additional aspects of the microscopic scale. Kareva, Wilkie, and Hahnfeldt review
the role of the interplay of tumors with their microenvironment: This includes
interplay with endothelial cells in the process of angiogenesis and with the immune
system, as well as the role of recycling of nutrients.

Finally, as far as the modeling of antitumor therapies is concerned, de Pillis and
Radunskaya review their models of tumor-immune systems and immunotherapies,
as well as the effect of chemotherapies on normal, tumor, and immune cells. A
variety of approaches are used by de Pillis and Radunskaya, ranging from ordinary
differential equations to cellular automata. A hybrid multiscale framework—also
including cell cycle dynamics of individual cells—is adopted by Powathil and
Chaplain to model the spatiotemporal response of tumors to chemotherapy alone or
in combination with radiotherapy. Clairambault reviews the chronobiology of tumor
growth and antitumor therapies, i.e., he focuses on how to “exploit” the influence
of circadian rhythms on the proliferation of tumors in order to maximize the effects
of chemotherapies. Methods and tools of optimal control theories are introduced by
Ledzewicz and Schaettler in the final chapter, which reviews the application of these
theories to optimize antitumor treatments under various biologically meaningful
conditions.

We end the preface with a brief consideration. The field of mathematical
modeling of tumor growth and of related therapies has in recent years been named
“mathematical oncology.” From the point of view of both a layman and of a pure
mathematician, this could seem bizarre or as an overstatement. However, as we
hope this book will demonstrate, this term is not an exaggeration as all major
mathematical tools of analytical and computational mathematics can be fruitfully
“exploited” in order to investigate the many problems of oncological interest—
methods ranging from ordinary differentialequations to the statistical mechanics
of phase transitions, from the theory of semigroups to Gillespie’s algorithm, from
cellular automata to the geometric theory of optimal control, etc.

However, it is not only a question of adopting analytical theories or computa-
tional tools to tackle biological problems from a physical-mathematical point of
view. No! The first challenge in mathematical oncology is for biological problems to
provide an impetus to develop or substantially improve new mathematical theories
and computational algorithms. This is exactly what happened to other related or
unrelated branches of mathematical biology, as may be seen by taking a historical
perspective of the developments of dynamical systems theory and computational
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sciences, as well as classical and computational statistics. The second challenge is,
of course, to develop and increment the collaboration with biomedical scientists.
This point has been considered several times in the past but here we want to also
stress that a major effort is needed from the didactic point of view. Indeed, a
different and more integrated approach to mathematical oncology might lead to a
new generation of theoretical biologists with backgrounds equally divided between
quantitative sciences and biomedicine.

Lyon, France Alberto d’Onofrio
Rome, Italy Alberto Gandolfi
Jan 15, 2014
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Modeling Spatial Effects in Carcinogenesis:
Stochastic and Deterministic Reaction-Diffusion

Roberto Bertolusso and Marek Kimmel

Abstract This paper is a review including some original elements of a family
of reaction-diffusion models of carcinogenesis exhibiting diffusion-driven (Turing)
instability (DDI), but consisting of a single reaction-diffusion equation coupled
with a system of ordinary differential equations (ODE). Such models are very
different from the classical Turing-type models in that they exhibit qualitatively
new patterns of behavior of solutions, including, in some cases, a strong dependence
of the emerging pattern on initial conditions and quasi-stability followed by rapid
growth of solutions, which may take the form of isolated spikes, corresponding
to discrete foci of proliferation. However, the process of diffusion of growth factor
molecules is by its nature a stochastic random walk. An interesting question emerges
to what extent the dynamics of the deterministic diffusion model approximates
the stochastic process generated by the model. We address this question using
simulations with a software tool called sbioPN (spatial biological Petri Nets). The
picture emerging suggests that some of the generic features of the deterministic
system, such as spike formation, and dependence of the number of spikes on
diffusivity, are preserved. However, new elements, such as spike competition and
appearance of spikes at isolated random locations, are also present. We also discuss
the relevance of the model and particularly the cell cooperativity hypothesis,
underlying transition to the DDI.

Keywords Cancer modelling • Deterministic • Stochastic • Reaction-diffusion
equations • Pattern formation • Spike solutions

1 Introduction

A spatial model of early carcinogenesis in lung cancer was developed in a series of
papers by Marciniak-Czochra and Kimmel [21–23]. The model has the form of a
system of two ordinary differential equations (ODE) for cells and bound growth

R. Bertolusso • M. Kimmel (�)
Department of Statistics, Rice University, 2124 Duncan Hall, 6100 Main St.,
Houston, TX 77005, USA
e-mail: kimmel@rice.edu

© Springer Science+Business Media New York 2014
A. d’Onofrio, A. Gandolfi (eds.), Mathematical Oncology 2013,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4939-0458-7__1
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4 R. Bertolusso and M. Kimmel

factor molecules and a single reaction-diffusion equation for free growth factor
molecules. It has been proved to generate quasi-stochastic patterns of spikes of cell
concentration, which might be interpreted as foci of invading early cancer cells.
The model offers mathematical challenges, which were addressed in the papers
by Marciniak and co-workers [25, 26]. However, it was noticed in Bertolusso and
Kimmel [5] that the biologically more realistic system, in which cells and molecules
are discrete entities and diffusion is replaced by random walk, behaves in a way that
may be quite different. Each single realization produced only some of the spikes
observed in the reaction-diffusion approximation. Nevertheless, if averaged over
a large number of realizations, the stochastic system became well approximated by
the reaction-diffusion system. This behavior is both reassuring and disturbing. In the
abstract sense, it seems desirable to know that averaging produces a more regular
behavior. However, in the practical sense, each of the realizations is qualitatively
different from the average. It is difficult to address this issue analytically. In this
paper, we review some of the basic facts concerning the model and contribute some
more systematic simulations for two versions of the model. We also discuss the
hypothesis of cooperativity embedded in the model in view of recent literature on
carcinogenesis. This hypothesis seems to underlie spike formation in the model, one
of its unique features.

2 Background on Patterns and Carcinogenesis

2.1 Turing Pattern Formation

One of the most interesting mathematical phenomena arising in models structured
by spatial coordinates is pattern formation via diffusion-driven instability (DDI).
Discovered by Alan Turing, this effect has been used to explain emergence
of biological, physical, and chemical patterns, such as patterns in colonies of
microorganisms, embryo segmentation, or dynamics of the Belousov-Zhabotinsky
reactions. The usual mathematical framework is that of the system of at least two
reaction-diffusion equations, i.e., partial differential equations (PDE) of the form

@u=@t D D1rxu C f .u; v/; (1)

@v=@t D D2rxv C g.u; v/; (2)

where u.x; t/ and v.x; t/ are defined as functions of spatial coordinates x and time
t , @.�/=@t is partial differentiation with respect to time, rx.�/ is the second-order
partial differentiation operator with respect to the spatial coordinates x (diffusion
operator or Laplacian), nonlinear functions f .u; v/ and g.u; v/ are reaction terms.
Spatial pattern is a stable spatially heterogeneous (nonconstant) equilibrium solution
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(DDI or Turing pattern), which arises in the reaction-diffusion system, but which
does not exist for the corresponding pure reaction system

@u=@t D f .u; v/; (3)

@v=@t D g.u; v/; (4)

for which only spatially homogeneous (constant in x) solution exist. It is known
that stable spatial patterns cannot arise in single reaction-diffusion equation with
zero-flux boundary conditions on a convex domain, since all stable equilibria are
constant. However, in the current paper, we consider systems in which a single
reaction-diffusion equation is coupled with an ODE system. These systems exhibit
patterns which seem to be inherently unstable in the deterministic case, but which
behave somewhat differently in the stochastic case.

2.2 Field Theory of Carcinogenesis

Field carcinogenesis states that as a result of exposure to carcinogens and/or of
inherited genetic variants (mutations), a substantial portion of an organ (called the
field) can be enriched in genetic variants of cells, which then may or may not
acquire further genomic modifications. These modifications will result in increased
proliferation and invasion of the surrounding tissues. The rearrangements involved
may have different nature. They may range from accumulation of point mutations
or microsatellite variability, to gene amplification, and to changes in DNA content,
number, and organization of chromosomes (aneuploidy and translocation). There-
fore, although they may form a linear irreversible progression, it is more likely that
they form a more complex network. Because of the spatial dimensions of the field,
emerging groups of transformed cells (precancerous and early cancerous tumors;
[16, 17]) will represent different levels of transformation, and may exhibit both
progression and reversals. They will be frequently multifocal. This viewpoint is in
opposition to the clonal theory of carcinogenesis, which assumes linear irreversible
progression and generally unifocal lesions. Let us consider a sample scenario of
events, which might be partly corroborated by published evidence. Suppose that
cells of some type in a region of an organ have (as a result of inheritance or
exposure) an ineffective variant of a gene (such as the p53 gene) providing a cell
cycle checkpoint. The normal variant of this gene does not allow cells to enter
division if unrepaired damage in DNA is detected. However the mutant gene will
allow this, and the cells will go through a series of divisions, which may be not
exactly symmetric, so that part of the progeny will be deprived of some other genes
and part will have these genes amplified (increased number of gene copies; [1,37]).
Gradually, this will relax the controls on correct segregation of chromosomes and
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lead to aneuploidy (irregular amount of DNA in the cells; [32]). Because of increase
in the number of divisions, the telomeres in these partly transformed cells will
shorten, which will further impair correct segregation [14]. It has to be noted that it is
unlikely to expect that in each cell lineage, these sequence of events will be identical.
Therefore, the field will frequently give rise to differently transformed (genetically
distinct) groups of cells (non-clonality; [27]). The vast majority of studies in cancer
research has been done on well-defined tumors in vivo or on discrete neoplastic
foci in vitro. Yet, there is evidence that more than 80% of the somatic mutations
found in mutator phenotype human colorectal tumors occur before the onset of
terminal clonal expansion, i.e., adenomas were phylogenetically nearly as old
as cancers [38]. In other words, the loss of mismatch repair of DNA starts a
genetic phase long before the clone size reaches a threshold of clinical detection.
The preneoplastic phase likely reflects accumulation of mutations that ultimately
confer visible selection. The “occult prologue before visible neoplasia is longer and
therefore likely more important than generally realized” [38]. Supportive findings
have been made in sporadic colorectal cancers, where there were approximately
10,000 alterations per cell of inter-simple sequence repeats (ISSRs) in early colonic
polyps and in carcinomas [36], indicating that most genetic changes occurred in the
preneoplastic stages of the disease. Further mutations are required for progression
to and through the neoplastic state. This genetic evidence is in accordance with
the microscopic examination of the margins of colorectal cancers reported more
than 80 years ago, which revealed chronic epithelial hyperplasia that was not
grossly visible [20]. Such hyperplasia characterized an extensive field several inches
above and below the neoplastic growth, and was considered to be the first stage
of neoplastic development, preceding the appearance of adenomas [19]. The term
“field cancerization” was first applied to squamous cell carcinomas of the head
and neck [7, 34]. Microscopic examination of the grossly normal margin of all
excised oral tumors revealed marked hyperplasia. Genetic evidence confirmed that
grossly invisible, flat hyperplastic fields precede the appearance of neoplasia. Field
cancerization has been described for a wide variety of tissues [7] and may be
characteristic of all cancers [8].

In a commentary in Nature Reviews Cancer, Seton-Rogers [33] discusses a
paper by Hu et al. [12]: “Field cancerization is primarily attributed to changes
in the epithelium, but whether changes in mesenchymal cells might also have a
primary role in the establishment of a field effect is not clear”. Hu et al. [12]
employed mouse model to explore cancerization field mechanisms in squamous
epithelial tumors. Quoting from this paper: “One of the questions asked was whether
tissue changes surrounding multifocal epithelial tumors are a cause or consequence
of cancer. They employed mice carrying a mesenchymal-specific deletion of
CSL/RBP-Jk, a Notch effector, which exhibit spontaneous multifocal keratinocyte
tumors that develop after dermal atrophy and inflammation. CSL-deficient dermal
fibroblasts promote increased tumor cell proliferation through upregulation of c-Jun
and c-Fos expression and consequently higher levels of diffusible growth factors,
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inflammatory cytokines, and matrix-remodeling enzymes. These changes in gene
expression are also induced by UVA irradiation, which is a known cancerization
field-promoting agent.”

Rubin [31] proposes an experimental model of field cancerization which may
be developed to understand and apply the principles to carcinogenesis in the
organism. He also proposes that mitigation of selective conditions to prevent or
delay carcinogenesis can be developed in culture [30] and then adapted to the
organism.

Another important aspect of early carcinogenesis is signaling and production
of growth factors. It has been proposed [2] that early carcinogenesis may be a
result of cooperative interactions between partly progressed cell populations, which
produce growth factors in a complementary way, for example, cells of type 1
produce growth factor needed by cells of type 2 and vice versa. Although this theory
has experimental foundations, it is missing the dynamic transformation element
prominent in field carcinogenesis. One of the important elements to be taken into
account is the spatial diffusion of growth factors and other signaling molecules. As
it is known, diffusion in connection with nonlinear kinetics and growth regulation
may lead to instability and pattern formation. This is an important prediction, since
it suggests that in field carcinogenesis, diffusion of free growth factor molecules
leads to diversified multifocal lesions arising on the background of primed tissue,
the exact pattern of which depends on chance and small fluctuations of initial
conditions.

2.3 The AAH-BAC: Adenocarcinoma Sequence
in Lung Cancer

A specific biological example motivating our model is the atypical adenomatous
hyperplasia (AAH), which is considered a candidate precursor lesion for adenocar-
cinoma of the lung [15]. As illustrated in Fig. 1A in [15], also reproduced in [21],
the AAH lesions are placed along the walls of smallest branchings of the bronchial
tree (the alveoli). Citing from [15]:

From a morphological perspective there seems little doubt that AAH might progress
and develop, through a stage of bronchoalveolar adenocarcinoma (BAC), into invasive
adenocarcinoma. AAH lesions are usually invisible to the naked eye, but the larger ones
or those with more fibrosis in their walls may be visible on the cut surface of well inflated
and formalin fixed lung. In the process of progression, the tubular (or approximately linear)
AAH structures thicken in places and invade the surrounding tissue.
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3 Reaction-Diffusion Model of Early Carcinogenesis

3.1 Hypotheses of the Deterministic Model

The model of a precancerous cell population is as in Marciniak-Czochra and
Kimmel [23], which adopts elements of the models previously proposed in [21,22].
The present model is based on the following hypotheses (Fig. 1):

• Precancerous cells c, existing in a spatial domain, proliferate at a rate a.b; c/,
which is reduced by cell crowding but enhanced in a paracrine manner by a
hypothetical biomolecular growth factor b bound to cells.

• Precancerous cells are supplied at a constant rate � by mutation of normal cells.
• Free growth factor g is secreted by the cells at the rate �.c/, and then it diffuses

among cells with diffusion constant 1=� and binds to cell membrane receptors at
a rate ˛.c/, becoming the bound factor b. It then dissociates at a rate d , returning
to the free factor pool.

• Free and bound growth factor particles decay at rates dg and db , respectively.

Discussion of possible geometries for the spatial variable x can be found in
previous papers (Marciniak-Czochra and Kimmel [21, 22]). One natural geometry
is that of a line of cells, occupying the interval x 2 Œ0; 1�. There are three substances
distributed over the line’s length: cells and free and bound growth factor molecules,
with densities c.x; t/, g.x; t/, and b.x; t/, respectively. The resulting equations are
as follows:

@c

@t
D .a.b; c/ � dc/ c C � (5)

Fig. 1 Graphical depiction of the model. The system is composed of cells (light blue), free growth
factor molecules (blue), and bound growth factor molecules (yellow). Three compartments next to
a boundary are depicted. Each compartment is considered a perfectly mixed system. Free growth
factor diffuses among compartments and is subject to Neumann boundary conditions. Cells and
bound growth factor do not diffuse. Free growth factor binds to receptors on cell membrane
(receptors not shown)
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@b

@t
D ˛.c/g � dbb � db (6)

@g

@t
D 1

�

@2g

@x2
� ˛.c/g � dgg C �.c/C db (7)

with homogeneous Neumann boundary conditions for g:

@xg.0; t/ D @xg.1; t/ D 0

Figure 1 presents a schematic of the model. The kinetics were derived from the
stochastic model describing the transitions between different states of the growth
factor molecules [21, 22]. Diffusion equation is a macroscopic approximation of
the microscopic process of growth factor binding to membrane receptors, under
homogeneity hypotheses. A deterministic derivation based on homogenization
methodology has been published in [24]. Coefficient 1=� is a composite parameter
including the diffusion constant and scaling parameters, � D 1=D. Proliferation
rate has the Hill function form

a.b; c/ D a1.b=c/
m

1C .b=c/m

where a1 D .2p � 1/a0 and p is the efficiency of divisions. We will consider the
special case m D 1. Production of free growth factor by cells has the Michaelis-
Menten form

�.c/ D �0 C �1c

1C c
:

Supply of Cells Versus Supply of Growth Factor
We consider two versions of the model, which differ with respect to the

interactions with environment:

Model 1 Influx of growth factor, no influx of mutated cells D 0, �.0/ > 0.
Model 2 Influx of mutated cells, no influx of growth factor > 0, �.0/ D 0.

3.2 Conditions for Turing Instability

Theorem 1 (Proposition 3.1 in [23]). Let us consider the system

@c

@t
D Fc.c; b; g/ (8)

@b

@t
D Fb.c; b; g/ (9)
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@g

@t
D 1

�

@2g

@x2
C Fg.c; b; g/ (10)

with A D faij g, i D 1; 2; 3, j D 1; 2; 3 being the Jacobian matrix of the kinetics
system of the system, computed at a positive spatially homogeneous steady state,
. Na; Nb; Nc/, and such that (i) the diagonal elements of A are negative, i.e., aij < 0

i D 1; 2; 3, and (ii) a12a21 > 0. There is a DDI for the system if and only if the
following conditions are fulfilled

�t r.A/ > 0
�t r.A/

X

i<j

jAij j C jAj > 0

�jAj > 0
jA12j > 0

where Aij is a submatrix ofA consisting of the i-th and j-th column and i-th and j-th
row.

The first three conditions are necessary for the kinetics system (system without
diffusion) to be stable. The last condition is the condition of destabilization of the
system with diffusion under (i) and (ii). Let us notice that it is equivalent to the
condition of instability for the first two equations, which constitute the ODE part of
the system. When applied to our model (Model 1 or Model 2), the DDI condition
assumes the following special form.

Theorem 2 (Theorem 3.2 in [23]). The DDI occurs if and only if there exists a
nonnegative steady state . Na; Nb; Nc/, which is stable to the spatially homogeneous
perturbations (i.e., the three first conditions of the proposition hold), and

a1 Nc2 Nb.˛. Nc/� Nc˛0. Nc//C �. Nb C Nc/2˛. Nc/ < 0:

This latter condition is satisfied only if

˛. Nc/ � Nc˛0. Nc/ < 0:

One example of the function ˛.c/ satisfying the above condition is ˛.c/ D
˛csC1, with s > 0. Let us notice that this assumption may be considered “non-
physical” (however, see Discussion). For Model 1, this form of ˛.c/ automatically
guarantees DDI (of course if the kinetics are stable).
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3.3 Perturbation of the Spatially Homogeneous Steady State

Cosinusoidal perturbation is applied to resulting in initial condition of the form

c0 D Nc C �cos.2n�x/; 0 < x < 1

where � D 0:05 is the amplitude used and n is the number of peaks. If the spatially
homogeneous steady state is unstable, this is sufficient for the numerical solutions
to be repelled.

3.4 Spike Instability in the Deterministic Model

Existence of the Inhomogeneous Steady States
We will outline a technique in the paper by Marciniak-Czochra and Kimmel [23],

i.e., analysis of existence of periodic solutions of a second-order inhomogeneous
steady-state ODE, satisfying the zero-flux boundary conditions. This equation
emerges from a mixed-type system and therefore its explicit solution is difficult
to find. Marciniak-Czochra and Kimmel [23] found sufficient conditions for the
existence of periodic solutions and then verified they were satisfied in our system,
under certain conditions on coefficients. The method hinges on the following
theorem.

Theorem 3 (Theorem 3.6 of [23]). A general solution of differential equation

g00.x/ D f Œg.x/� (11)

with a CN function f , defined on an appropriate domain in R, is given by a C2Œ0; 1�

function g.x/, implicitly defined by the relationship:

Z
1q

C2 C 2
R
f .g/dg

dg D C1 ˙ x:

The existence of two branches of the solution reflects the fact the second
derivative is invariant under sign change of x. Moreover, the sufficient condition for
the solution of the “C” branch to satisfy the boundary conditionsg0.0/ D g0.1/ D 0

is that there exist g�� > g > 0 such that

Z g

g�

f .u/du � 0; g 2 .g�; g��/I
Z g��

g�

f .u/du
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equation (after Fig. 4 of [23])

and

Z g��

g�

F.u/du

where F.u/ D .
R u
g� f .�/d�/

�1=2.

Corollary. Consider the Eq. (11) of the theorem with the right-hand side defined as

fa.g/ D af .g/; a > 0:

If there exists an interval .gC; g:/ such that fa.gC/ > 0 and fa.g:/ < 0, then
there exists an a > 0 such that the assertion of the theorem holds.

Definition 1 (After Hillen [11]). Assume f 2 C5, and x0 x0 is an extremum with
f 00.x0/ ¤ 0 and f IV .x0/ ¤ 0. Then, the extremum is a spike (respectively, a
plateau) I f f IV .x0/ has a different (respectively, the same) sign as f 00.x0/.

The definition above allows relating the intuitive notion of a “spiky” (sharp) or
“plateau-like” extremum to verifiable mathematical conditions. This is one of the
ways in which numerical simulations can be mathematically verified.

Based on the last theorem and its corollary, it is possible to prove the following
version of the existence result for the periodic inhomogeneous equilibria, which is
used to guarantee the existence of periodic spatially inhomogeneous equilibria, such
as the one depicted in Fig. 2.
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Theorem 4 (Theorem 3.10 in [23]). Suppose that g.x/ is the increasing branch
of the solution to Eq. (11), on the interval x 2 Œ0; 1�, satisfying conditions g0.0/ D
g0.1/ D 0 and g.0/ D g� < g.1/ D g��. Let us choose natural number n, such
that n � 1. Then, the function h.x/, defined on x 2 Œ0; 1�, and such that

hj.k�1/=.2n/;k=.2n/ D hk:; k D 1; 2; : : : ; 2n;

where

hk.u/ D g.k � 2nu/; u 2 Œ.k � 1/=.2n/; k=.2n/�; k odd

hk.u/ D g.2nu � k C 1/; u 2 Œ.k � 1/=.2n/; k=.2n/�; k even

is of class C5Œ0; 1� and it satisfies the following equation:

1

4n2
h00.u/; u 2 Œ0; 1�:

Moreover,

h.k=2n/ D g�; h0.k=2n/ D 0; hII .k=2n/ > 0;

hIII .k=2n/ D 0; hIV .k=2n/ D f 0Œh.k=2n/�hII .k=2n/; k odd

h.k=2n/ D g��; h0.k=2n/ D 0; hII .k=2n/ < 0; hIII .k=2n/ D 0;

hIV .k=2n/ D f 0Œh.k=2n/�hII .k=2n/; k even:

This theorem implies that if f 0Œh.k=2n/� is positive (respectively, negative), then
the solution h has an extremum at u D k=.2n/, which is a plateau (respectively, a
spike).

We will now apply the results stated above to demonstrate that there exist
coefficient values such that inhomogeneous steady states exist. In summary, we have
the following corollary.

Corollary (Corollary 3.12 of [23]). For any n � 1 there exists a value of diffusion
constant ��1, such that inhomogeneous periodic steady states with period 1=n exist,
if � and dc are small enough and � is large enough. Estimates for �, dc , and � can
be provided, based on the detailed derivations, which are notationally complicated.

Numerical studies (not shown) indicate that the sufficient conditions provided
in the corollary are by far not necessary. However, the number of special cases to
consider seems to make a more accurate analytical result impractical.

Figure 2 depicts one example of the spatially inhomogeneous periodic steady
states, obtained using the method of the theorem above. The curves are smooth, and
spikes are alternating with plateaus. Please notice the superficial resemblance of the
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Fig. 3 Top left: deterministic evolution (10,000 time units) of the perturbed system. Top right:
sample stochastic evolution (2,000 time units) of a system starting from deterministic spatially
homogeneous steady state. Central panel: average of 1,000 stochastic runs starting from determin-
istic spatially homogeneous steady state. Bottom left: sample stochastic evolution (2,000 time units)
of a system starting from final spike solutions (at time equal to 10,000 units) of the deterministic
system. Bottom right: average of 1,000 stochastic runs starting from final spike solutions. Model
1, � D 1

profiles to the deterministic profile in Fig. 3 obtained by numerical simulation of
dynamics. What is surprising is that the profiles obtained using the method of the
theorem are always unstable. This has been demonstrated in a series of papers by
[25, 26]. The limit profiles seem to be (in the truly continuous system) Dirac-type
distributions. This convergence was be approached numerically using computations
with adjustable grid density (Marciniak-Czochra, personal communication).

4 Stochastic Version of the Model

It has been always puzzling, what is the relationship of any time- and space-
continuous reaction-diffusion system and the underlying discrete stochastic particle
system? In the case of stable patterns, it is expected that the deterministic case is
approximated by the averages of the stochastic realizations. However, the system
considered in this paper does not exhibit stable patterns.

This problem has been tackled by Bertolusso and Kimmel [5]. Diffusion has been
considered as a succession of two first-order stochastic chemical reactions each with
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reaction constant [9, 13], j D 1=.�h2/ where h is the distance between the centers
of two contiguous compartments. Compartments are illustrated in Fig. 1. The model
was simulated with an optimized variant of the stochastic simulation algorithm
known as constant-time composition-rejection algorithm [35], part of the developed
library sbioPN [4], developed in the doctoral thesis of Roberto Bertolusso (available
electronically at scholarship.rice.edu/handle/1911/70209). Cells and bound growth
factor particles are immobile, but free growth factor molecules are mobile. Cell
proliferation, binding and unbinding of growth factor particles, as well as diffusion
are modeled as stochastic chemical reactions in space represented by a periodic
grid. System trajectories are paths of the free growth factor molecules and counts
of the cells and of the bound growth factor molecules. Output plots depict statistics,
specifically spatial histograms derived from the trajectories.

Stochastic simulations are started from two different sets of initial conditions:

1. Using the non-perturbed deterministic and spatially homogeneous steady state
2. Using the spiky pattern evolved by the deterministic model

The model without diffusion has been simulated using the bioPN software
package [4] in the deterministic and stochastic case.

4.1 Comparison of the Spatial Model in the Deterministic
and Stochastic Case

Results of the simulations of the spatial carcinogenesis models in deterministic
and stochastic version are presented in Figs. 3–8. In each figure, five panels depict
(row by row, from left to right): deterministic simulations starting from a spatially
homogeneous steady state perturbed by a cosine function, a single stochastic
simulation starting from a non-perturbed deterministic and a spatially homogeneous
steady state, an average over 1,000 such stochastic simulations, a single stochastic
simulation starting from the spikey pattern evolved by the deterministic model, and
an average over 1,000 such stochastic simulations. Figures depict the following
variants of the two models: Fig. 3, Model 1, � D 1, Fig. 4, Model 1, � D 5, Fig. 5,
Model 1, � D 50, Fig. 6, Model 2, � D 1, Fig. 7, Model 2, � D 5, and Fig. 8, Model
2, � D 50, with the other parameters as listed in Table 1.

Relationship between the deterministic and stochastic simulations is different for
Models 1 and 2. In Model 1, the deterministic system does not become extinct, but
the solution converges to a number of spikes (this number depends on diffusivity
and initial conditions). The stochastic system, when started from the discretized
deterministic spatially homogeneous steady state, tends to produce persistent spikes,
the number and location of which are comparable to those in the deterministic
case. However, the spikes in different simulation runs are out of phase, and when
averaged, cancel each other (see the mean plot in Figs. 3, 4, and 5). If the initial
conditions for stochastic simulations are set equal to discretized final pattern of

scholarship.rice.edu/handle/1911/70209
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Fig. 4 Top left: deterministic evolution (10,000 time units) of the perturbed system. Top right:
sample stochastic evolution (2,000 time units) of a system starting from deterministic spatially
homogeneous steady state. Center: average of 1,000 stochastic runs starting from deterministic
spatially homogeneous steady state. Bottom left: sample stochastic evolution (2,000 time units)
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Fig. 5 Top left: deterministic evolution (10,000 time units) of the perturbed system. Top right:
sample stochastic evolution (2,000 time units) of a system starting from deterministic spatially
homogeneous steady state. Center: average of 1,000 stochastic runs starting from deterministic
spatially homogeneous steady state. Bottom left: sample stochastic evolution (2,000 time units)
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1, � D 50
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Fig. 6 Top left: deterministic evolution (10,000 time units) of the perturbed system. Top right:
sample stochastic evolution (2,000 time units) of a system starting from deterministic spatially
homogeneous steady state. Center: average of 1,000 stochastic runs starting from deterministic
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Fig. 7 Top left: deterministic evolution (10,000 time units) of the perturbed system. Top right:
sample stochastic evolution (2,000 time units) of a system starting from deterministic spatially
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Fig. 8 Top left: deterministic evolution (10,000 time units) of the perturbed system. Top right:
sample stochastic evolution (2,000 time units) of a system starting from deterministic spatially
homogeneous steady state. Center: average of 1,000 stochastic runs starting from deterministic
spatially homogeneous steady state. Bottom left: sample stochastic evolution (2,000 time units)
of a system starting from final spike solutions (at time equal to 10,000 units) of the deterministic
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Table 1 Values of the
parameters used in all studied
systems

Parameter Value

a1 1=12

˛ 10�1

�0 5

�1 1

dc 5� 10�2

� 10�2

d D db D dg 10�1

the deterministic simulations, the spikes are preserved, but their magnitude changes
because of the effect known as stochastic focusing [28]. The positions and heights
of spikes are preserved, which becomes clear by inspection of the mean plot. When
� is varied, the frequency of spikes increases, quite similarly in the deterministic
and stochastic variant of the model.

As for Model 2, in the deterministic case, for high diffusivity values, most
spikes occur only transiently, whereas, as diffusivity decreases, some of them
stabilize. In the stochastic case, with initial conditions proportional to the discretized
deterministic spatially homogeneous steady state (including spikes), the model tends
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to produce a single spike at a random, which is selected out at the initial time period.
It is usually maintained until the end of simulation. When averaged, the pattern
emerging includes a weak effect of the boundary conditions, favoring the formation
of spikes in the central part of the unit interval. If the initial conditions for stochastic
simulations are set equal to discretized final pattern of the deterministic simulations,
then the effect depends on diffusivity. For high diffusivity only one of the spikes is
preserved, with no preference, as it can be observed in the averaged values. For low
diffusivity, more than one spike can be maintained, but the averaged values show
that this effect is transient.

Dynamics of the deterministic and stochastic RD displays general qualitative
consistency, notably tendency towards spike formation, with the number of spikes
depending on diffusivity (1=� ) and initial conditions (compare stochastic simula-
tions starting from equilibrium to those starting from spikes). Stochastic trajectories
exhibit new modes of spike competition. Model 2 (more prone to extinction for
large diffusivity or small � ) seems stabilized by stochasticity at least for a range of
parameters.

4.2 Behavior of the Model Without Diffusion

The results of simulations of the deterministic version of Models 1 and 2 are pre-
sented in Figs. 9 and 10. Panel A of Fig. 9 includes trajectories of the deterministic
and stochastic versions of Model 1, starting from c.0/ D 1, c.0/ D b.0/ D 40.
The stochastic simulations either oscillate around a value close but lower than
the deterministic nontrivial equilibrium (because of stochastic focusing) or become
extinct. In the scenario depicted, 65% of simulations end with extinction of cells.
Panel B includes trajectories of the deterministic and stochastic versions of Model 2,
also starting from c.0/ D 1, c.0/ D b.0/ D 40. The oscillatory pattern is analogous
as for Model 1, although the extinct and non-extinct trajectories are less clearly
resolved. In the scenario depicted, 62:3% of simulations end with extinction of
cells. Panel A of Fig. 10 depicts dependence of the cell extinction probability on
initial conditions, based on 96 cases of initial conditions. Dependence on c.0/ is
substantial, as opposed to almost no dependence on b.0/ and g.0/.

5 Discussion

5.1 Role of Stochastic Effects

Reaction-diffusion is a continuous approximation of an essentially discrete (finite
object) phenomenon, involving stochastic chemical reactions as well as random
walk of free growth factor particles. Continuity “corset” superimposed on nonlinear
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Fig. 10 Top, Model 1 percentage of extinct cells at time 1,000, starting from different initial
conditions. Bottom, Model 2 percentage of cells at value 0 at time 1,000, starting from different
initial conditions. Color coding: red, b.0/ D 1, orange, b.0/ D 5, blue, b.0/ D 10, and green,
b.0/ D 50. Symbols: circle, g.0/ D 1, upper triangle, g.0/ D 5, rhomboid, g.0/ D 10, and
lower triangle, g.0/ D 50. c.0/ values are shown in the plot, separated by gray vertical lines

kinetics may generate patterns which are absent in finite-object systems. However,
as detailed in the results section, the main qualitative feature, which is spike
development, remains unchanged. Stochastic versions of the system display new
features such as spike competition. Interestingly, no spatial perturbation is needed
in the stochastic systems to initiate spike formation, and the intrinsic randomness is
sufficient.

We carried out a large number of simulations, which address the behavior
described under two different specific assumptions: (i) no influx of mutated cells
but external influx of growth factor molecules and (ii) the opposite, external influx
of mutated cells but no influx of growth factor molecules. In both cases, we start
the stochastic model either from (a) discretized deterministic space-homogeneous
equilibrium, or (b) from discretized final “spiky” profiles produced by the determin-
istic system. We compare these two scenarios to their deterministic counterparts
and to each other and find striking differences in dynamics. Under assumption
(i), in scenario (a), each stochastic run produces a spikey profile similar to the
deterministic one, but with a random number and positions of spikes, so that when
these are averaged, they produce a profile which is much less variable. In scenario
(b), the opposite is true, while single realizations produce only some of the spikes,
when averaged they approximated deterministic solutions. Under assumption (ii), in
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scenario (a), each stochastic run usually produces one spike at a random position, so
that when these are averaged, they produce a homogeneous profile, partially affected
by boundary conditions. In scenario (b), for high diffusivity only one of the spikes
is preserved, with no preference. For lower diffusivity, more than one spike can be
preserved, but the averaged values show that this is a transient effect.

It is seen in the simulations without diffusion that there is no ultimate extinction
(c.1/ D 0) for Model 2 (� > 0). However, at any specific time point,P rŒc.t/ > 0�
is higher in Model 1, than in Model 2, except for a subset of initial conditions. In
other words, the effect of external supply of free growth factor is stronger than that
of supply of cells. This is confirmed in the simulations with diffusion.

5.2 Cooperativity Condition and Communication
of Cancer Cells

One of the interesting features of the model is that DDI and spike formation
require the apparently nonphysical assumption of cooperativity, ˛.c/ D ˛1c

1Cs ,
where s > 0, i.e., that the process of binding free growth factor particles to cells
is super-linear. However, this assumption becomes more plausible, if we accept
that cells may communicate with each other. In other words, cells accepting free
growth factor particles transmit this behavior to their neighbors. The biological
mechanism may, speculatively, involve increasing the number of receptors on cell
membrane. Information sharing of this type has been known for a long time in
radiation effect research, where it is called the bystander effect [6]. Under different
exposure scenarios, irradiated cells can communicate with each other or with
nonirradiated cells. As a result, the “bystander” cells display responses similar to
those of irradiated cells.

Interestingly, the role of communication among cancer cells has been recently
emphasized in a model that compares the process of tumor progression to the
dynamics of organized microbial communities [3]. Tumor is viewed as a community
of interacting cells, and the first stage of metastasis involves outward cell migration
in the form of path-finder and path-generator cell types. Even more complex
behavior is proposed. In view of this, the cooperativity hypothesis, which is
sufficient for cell growth to become organized in discrete foci, represented by cell
density spikes in our model, seems justified.

Literature describing tumor invasion along linear structures includes [29] who
used advanced microscopy to determine the organization of specific collagen
structures around ducts and tumors in mammary glands. They observed and defined
three tumor associated collagen signatures (TACS) that provide novel markers
to locate and characterize tumors. In particular, local cell invasion was found
predominantly to be oriented along certain aligned collagen fibers, suggesting that
radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent
with this observation, primary tumor explants cultured in a randomly organized
collagen matrix realigned the collagen fibers, allowing individual tumor cells to
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migrate out along radially aligned fibers. This is one more example of tumor
invasion along linear structures.

5.3 More Models

Spike solutions in the reaction-diffusion systems are not unknown. Iron et al. (2001)
and then among other Kolokolnikov et al. [18] established stability conditions
for the spikes in the solutions of the one-dimensional reaction-diffusion systems
with two diffusions describing the Gierer-Meinhardt activator-inhibitor model of
Hydra. In particular, [18] constructed three types of solution: (i) an interior spike;
(ii) a boundary spike; and (iii) two boundary spikes. They found that an interior
spike is always unstable; a boundary spike is always stable. The two boundary
spike configuration can be either stable or unstable. They carried out numerical
simulations consistent with the theoretical results.

Foo et al. [10] recently developed a spatiotemporal stochastic model of epithelial
carcinogenesis, related to the spatial Moran model, combining cellular reproduction
and death dynamics with genetic progression. They investigate how the size and
geometry of premalignant fields depend on tissue renewal rate, mutation rate,
selection, and so forth. They also investigate the time to emergence of multiple
primary tumors. This approach uses the apparatus of contact processes such as
voter models but also interesting simulations. In contrast to the stochastic model
of Bertolusso and Kimmel, Foo et al. [10] do not seem to model explicitly growth
factor diffusion. In many other respects their model seems more detailed.

The microscopic (non-mean field) model pursued in the present paper is different
from the microscopic deterministic model of [24] who used homogenization
techniques. In general, the relationship between averaging of stochastic trajectories
and homogenization of microscopic deterministic models remains unclear.
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Conservation Laws in Cancer Modeling

Antonio Fasano, Alessandro Bertuzzi, and Carmela Sinisgalli

Abstract We review mathematical models of tumor growth based on conservation
laws in the full system of cells and interstitial liquid. First we deal with tumor
cords evolving in axisymmetric geometry, where cells motion is simply passive
and compatible with the saturation condition. The model is characterized by the
presence of free boundaries with constraints driving the free boundary conditions,
which in our opinion are particularly important, especially in the presence of
treatments. Then a tumor spheroid is considered in the framework of the so-called
two-fluid scheme. In a multicellular spheroid, on the appearance of a fully degraded
necrotic core, the analysis of mechanical stresses becomes necessary to determine
the motion via momentum balance, requiring the specification of the constitutive law
for the “cell fluid.” We have chosen a Bingham-type law that presents considerable
difficulties because of the presence of a yield stress, particularly with reference to
the determination of an asymptotic configuration. Finally, we report some recent
PDE-based models addressing complex processes in multicomponent tumors, more
oriented to clinical practice.
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1 Introduction

The literature on cancer modeling has been rapidly increasing during the present
century, paralleling the remarkable intensification and diversification of the
research in this field. The last International Conference in Industrial and Applied
Mathematics (ICIAM 2011, Vancouver) hosted a surprisingly large number of
talks on that subject, emphasizing many new and important areas of investigation,
including the rather new subject of the role of cancer stem cells (see, e.g., [42]).
Among the recent review papers we quote [4, 7, 25, 26, 34, 51].

A feature that has been treated differently in many growth models is the one
of conservation laws, accompanying the choice of the phenomena to be included
in the model, such as cell displacement mechanisms (whether totally passive or
with a chemotactic or haptotactic component), drug actions, angiogenesis, and so
on. One of the main issues is mass conservation, which in several instances has
been disregarded with the aim of producing a treatable model. Raising a far too
obvious criticism may be simply not constructive, because the target of simplifying
a subject whose nature is so tremendously complicated, trying to preserve the basics
of biological behavior, has often proved to be useful and has to be rather assessed
on the basis of the results. Take for instance the paper [35] on the acid-mediated
invasion of healthy tissue by tumor cells, where only three species are present:
tumor cells, normal cells, and the HC ions produced by tumor cells and attacking
the other species. The model does not specify how the acidity is produced (thus
glucose metabolism is completely absent), it does not consider any interstitial fluid
carrying nutrients, and not even oxygen consumption. Nevertheless it reproduces
at least qualitatively the main biological phenomenon, emphasizing the presence
of a gap between the advancing and the receding species, represented in a one-
dimensional geometry by travelling waves, for appropriate values of the parameters.
The richness of that oversimplified model has been further clarified in the paper
[27]. A nontrivial extension has been presented very recently in [36]. In our opinion
this is a remarkable example of how effective a lean model can be, provided it is
constructed assembling the essential elements. Without entering the elegant and
appealing subject of travelling waves in tumors, we quote the recent paper [56]
in which a three-species model (tumor, normal, and dead cells) described by a
treatable system of PDEs describes the spread of an aggressive glioma in the form
of a diffusion-dominated spherical expanding wave.

“Completeness” remains of course a legitimate aspiration, worth to be pursued
with some caution. The quotation marks allude to the extremely hard task not
only of putting all the relevant ingredients but then of specifying how they
mutually interact. Such an attempt necessarily calls for choices, which in most
cases have some degree of arbitrariness: cell–cell and cell–matrix interactions,
active or passive cell displacement, cytoskeleton and membrane mechanics, cells
electrochemistry, signaling, cell metabolism (aerobic or anaerobic), proliferation,
death and degradation, mutations, interstitial fluids, angiogenesis (including vessels
sprouting, leaking and occlusion), metastatic processes, dormancy, etc. For each
element the model formulation requires the selection of constitutive laws, containing
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parameters of various nature, whose numerical value has to be provided, at least
in a reasonable range. In some cases the latter task may be prohibitive. When we
introduce the cell-killing action of drugs, we are faced with the problem of transport
through vasculature and through the interstitial liquids, with the interaction with the
cell membrane and with the various cell components. Not to speak of the mechanics
of the tumor mass as a whole and its modification following treatments it is, we
believe, sufficiently clear that completeness is an objective which makes sense only
leaving an exceedingly complex reality and restricting the area to specific aspects.
What is reasonable is trying to attain some degree of accuracy focusing on the most
relevant elements in the particular process considered. For sure in this framework
conservation laws are invariably the backbone of any mathematical schematization.

In this paper we want to go through the literature of the last decade or so taking
conservation laws as the leading subject, trying to emphasize the diversity of various
approaches, both in the modeling and in the scopes.

A striking example is the case we are going to deal with in Sect. 2, the so-called
tumor cords, for which we summarize a two-fluid model keeping the mechanics at
a very simple level but emphasizing some nontrivial mathematical aspects arising
in the presence of massive cell death due to treatments. In our opinion this crucial
feature has not received enough attention in the literature.

The other class of problems in cancer modeling with a simple geometry is the
one of multicellular spheroids, which, in the framework of continuum mechanics,
are treated as spheres with all quantities depending just on time and on the radial
coordinate. This kind of symmetry is even more treatable than the not-so-nice
axisymmetric geometry of tumor cords, since for instance all fluxes are just radial,
though it does not always allow to skip the analysis of the stress field. The literature
is huge and deals with many fundamental subjects. In the recent review paper [24]
the important question of incorporating glucose metabolism has been discussed at
length, together with the noticeable consequence of pH decrease. Therefore we
will not insist here on such a question. Instead in Sect. 3 we analyze a refinement
of the two-fluid scheme in which the “cell fluid” exhibits a yield stress, i.e.,
a Bingham fluid. This approach, first presented in [2] and further developed in
[57], has been studied extensively in [15]. Occasionally we will point out some
basic differences accompanying the switch from axisymmetric geometry (cords)
to spherical symmetry, which for instance deeply influences the structure of the
necrotic region. In both cases it turns out that the mechanical behavior of the necrotic
region has a crucial influence on the evolution of the tumor, a fact that deserves to
be greatly emphasized and that has been discussed in the review paper [25].

The first two sections, based on our work, are mainly concentrated on mass and
momentum balance and its implications on the mechanical behavior of systems
possessing an idealized geometry. The models considered there incorporate the
continuous mass exchange between cells and interstitial fluid. In such a framework
it is possible to analyze the role of mechanics in full detail and to carry out a
complete investigation of the mathematical structure of the problem. The reader
may object that, in spite of its mathematical complexity, such an approach has
a rather limited target in the much wider horizon of malignancies and of their
treatments. Indeed, great efforts are being made to produce mathematical models
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for the growth of specific tumors and related therapies in the presence of concurrent
phenomena. For this reason in the last section we report some recent researches,
taken from the literature, addressing complex processes in multicomponent tumors,
confining our attention to the class of models expressed through systems of partial
differential equations. Though obviously not exhaustive, the choice is certainly quite
representative of the positive trend to get modeling closer to clinical practice.

2 Tumor Cords and the Doubly Constrained
Boundary Conditions

In the three papers [8–10] some peculiar features that may occur in cancer growth
have been pointed out for the first time in the framework of the microstructures,
mainly observed in experimental tumors, where tumor cells proliferating around
a blood vessel form an approximately axisymmetric aggregate called tumor cord.
Generally tumor cords have different sizes and orientation and may or may not be
surrounded by necrosis [44, 53, 65]. Despite its complexity, the model described in
[8, 9] was based on a rather naïve description of cell metabolism, since oxygen was
the only “nutrient” considered. A novel feature at that time was instead the analysis
of the flow of the interstitial fluid from the central vessel to the cord periphery
[10]. The introduction of free boundaries, such as the sharp interface between viable
and necrotic tissue, led to the formulation of boundary conditions depending on the
system evolution and regulated by suitable constraints. A fundamental simplification
was provided by the assumption that the cords are arranged in a regular array of
parallel identical elements, so that, because of symmetry, the cords are separated by
no-flux boundaries forming a bee nest structure. As a consequence, an individual
cord can be studied, approximating the hexagonal boundary with a cylinder, so that
the whole system is axisymmetric (Fig. 1).

Though computationally complicated, the partition of the cord (Fig. 2) by means
of cylindrical interfaces separating homogeneous species has the advantage of facil-
itating the calculation of the cell and fluid velocity fields. In the quoted papers the
analysis of well posedness was fully performed, along with the study of important
qualitative properties. Concerning our principal theme, namely conservation laws,
the interstitial liquid plays the basic role of allowing the fulfillment of mass balance.
Indeed, the fluid provides the material for the production of new cells and receives
the material released by the degradation of dead cells in the necrotic region. The
cell-liquid mass exchange looks quite natural, but it requires the analysis of fluid
motion, which is not trivial. As a matter of fact, often in the literature the shortcut
is taken by simply ignoring the liquid. For example, in the early age of cancer
modeling, Greenspan [38] introduced some volume loss rate after necrosis and
his choice was adopted by many authors, even recently, though the actual removal
mechanism has never been specified. Such a particular aspect in cancer modeling
has been extensively discussed in [25] with special attention to the consequences
for the attainment of a steady state. It has to be said that, however strange it
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Fig. 1 Sketch of the cross
section of a regular array of
tumor cords exhibiting the
presence of a necrotic region
(at distance 	N from the cord
axis). Small circles are cross
sections of vessels. Each cord
is surrounded by a no-flux
surface, approximated by a
cylinder

necrotic region

ρN

Fig. 2 Sketch of a single
cord, externally bounded by
the no flux surface r D B and
showing the viable region
(in grey)

B

r0 blood
flow

ρN

may look, models not including a basic element like the interstitial fluid can be
meaningful if, as we said in the introduction, such a simplification is introduced in
a suitable way, so as to capture anyway some essential phenomena. Moreover, in
the scheme below, the cell motion is completely passive, generated by proliferation,
thus disregarding the autonomous motility (haptotaxis, chemotaxis) as well as the
random motility (diffusion). Nevertheless, for the case of cords, and even more for
the case of multicellular spheroids that will be considered later, neglecting such
causes of motion looks reasonable.

Still considering the kinematic aspect, we note that once the tumor has spread
longitudinally along the vessel, the average motion of cells takes place in the radial
direction. The question of tumor progression along the vessel has been considered
in [5] in a different framework (cord expansion against a host tissue).

Coming back to the system sketched in Fig. 2, we treat the cell-liquid system as a
mixture, adopting the scheme of continuum mechanics. Clearly, this is not the only
possible choice. Discrete or hybrid models have been used extensively and with
some success (see, e.g., [1, 43]). Continuum models are justified in the presence of
a sufficiently large number of cells. It could be objected that for the typical cord
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Fig. 3 Sketch of velocity
fields: cellular velocity u;
radial, fluid velocity v. The
liquid enters the cord crossing
the wall of the axial blood
vessel. Viable and necrotic
regions are indicated by L
and N, respectively rO

z
z=H

B r

L N
z=−H

u

v

ρN

size (a radius of the order of ten cell diameters) the latter requirement is not met.
However, we must consider that a representative volume element is a cylindrical
shell of radius smaller than a cell diameter, extending over the whole length of
the vessel (up to 1mm), actually intersecting a large number of cells, so that the
continuum approach ultimately makes sense.

A glance to Fig. 3 clarifies why the liquid velocity field can be taken axisymmet-
ric, but not radial, since the fluid must be allowed to leave the cord from the extreme
sections (z D ˙H ), while instead the cell velocity field (in the continuum sense) can
be taken essentially radial. Figure 3 shows also the spatial coordinates. The system
is symmetric with respect to the cross section z D 0. Living cells occupy the region
L: r0 < r < 	N , which lies between the vessel and the necrotic region N, and when
developed: 	N < r < B , whereB is the outer radius of the cord. Living cells can be
either proliferating (volume fraction �P )1 or quiescent (volume fraction �Q). Dead
cells are actually disseminated in the cord (their volume fraction is denoted by �A),
but the region N is exclusively necrotic. We consider three possible causes of cell
death:

(i) extreme hypoxia, occurring when the oxygen concentration 
 does not exceed
a viability threshold 
N ,

(ii) the action of a cytotoxic drug (or radiation), taking place with a known kinetics,
and

(iii) apoptosis, also regulated by some kinetics.

As a consequence the region N is normally characterized by the inequality 
 � 
N ,
with the exception that will be clarified later.

A basic hypothesis is that the medium is saturated, so that the volume fraction
of the extracellular liquid �E is complementary to the total volume fraction of the

1Some authors adopt the extreme view point that proliferation takes place only at the tumor surface
because of contact inhibition (e.g., [17]) and then migrate, driven by the surface curvature. Here we
stick to the experimental observation that in the tumors we are talking about proliferation occurs
in the tumor mass, whenever enough oxygen is available.
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cells, � D �P C �Q C �A D 1 � �E . All the components are assumed to have the
same density. Another fundamental assumption is that �E is constant.

One of the most difficult aspects in modeling a growing mass is the mechanical
behavior. Mixture theory (see, e.g., [58]) seems a perfect tool, since we are dealing
with a multicomponent system, but, independently of the constitutive law attached
to each component, the presence of mass conversion processes is a substantial
difficulty. Several papers have addressed this issue in various ways. One of the first
papers adopting mixture theory was [19]. In the recent paper [2] a very complex
analysis of the mechanics of the cellular component has been performed justifying
the presence of a yield stress and therefore of a Bingham-like constitutive law.

We will return to such a question in the next section. Here we are pursuing
the aim of keeping the mechanics as simple as possible. For this reason we
perform some operations that ultimately will circumvent the dynamical problem
almost completely, exploiting symmetry to bypass the necessity of writing down
the momentum balance equations. First of all, we adopt the so-called two-fluid
approach [18], assimilating the cell aggregate to a Newtonian fluid and considering
the interstitial fluid as inviscid. There are several conceptual limitations in the
two-fluid scheme that have been illustrated in [25], but the advantage of dealing
with clearly well-defined constituents, with the possibility of making suitable
assumptions on their mutual interaction, makes it extremely valuable. As we pointed
out in many instances, modeling cancer growth is a compromise between accuracy
and simplicity, so that the goal is to keep as much as possible of the biology,
limiting at the same time the number of physical parameters involved. Of course
the hypothesis attributing no viscosity to the interstitial fluid is justified by the fact
that its viscosity (comparable to the one of water) is by many orders of magnitude
smaller than the viscosity of the “cellular fluid.” Nevertheless, the interaction with
the cells is taken into account assuming that the flow relative to the cells obeys
Darcy’s law:

�E.v � u/ D ��r Op ; (1)

where � is the hydraulic conductivity of the cell aggregate experienced by the liquid
and Op is the liquid pressure.

The way of bypassing a finer description of the mechanics of the system
consists in averaging two quantities in the longitudinal direction, namely the radial
component of the liquid velocity vr .r; z; t/ and pressure Op.r; z; t/, thus defining

v.r; t/ D 1

2H

Z H

�H
vr .r; z; t/ d z ; (2)

p.r; t/ D 1

2H

Z H

�H
Op.r; z; t/ d z : (3)
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The first quantity, multiplied by 2�rH , provides the total radial discharge through
a surface coaxial with the central vessel. The mass balance of the components in the
region L is expressed by the system

@�P

@t
C 1

r

@

@r
.ru�P / D ��P C ��Q � ��P � �P �P ;

@�Q

@t
C 1

r

@

@r
.ru�Q/ D ���Q C ��P � �Q�Q ;

@�A

@t
C 1

r

@

@r
.ru�A/ D �P �P C �Q�Q � �A�A ;

�Er � v D �A�A � ��P ; (4)

which, together with the saturation assumption, yields the global mass balance

r � Œ�u C �Ev� D 0 : (5)

In (4) � is the proliferation rate, and the coefficients � , � are the transition
rates from the class Q (quiescent cells) to P (proliferating cells) and vice versa.
They are functions of the oxygen concentration 
 (� is nondecreasing and �

nonincreasing).�P , �Q are death rates in the respective classes possibly depending
on the concentration of a cytotoxic drug;�A is the mass conversion rate of apoptotic
cells (class A) to liquid, due to degradation. If we take the longitudinal average of
the longitudinal component of (5), exploiting the assumption that u is u.r; t/ times
the outward directed radial unit vector, we get an equation containing the difference
vz.r;H; t/ � vz.r;�H; t/, whose product with �E gives the local liquid efflux rate
from the cord, for which we assume that

�EŒvz.r;H; t/ � vz.r;�H; t/� D 2out .p.r; t/ � p1/ : (6)

In other words, the liquid loss rate is regulated by the pressure excess with respect
to a far-field pressure p1, established by the lymphatic system. The coefficient out

may in principle depend on r , but is taken constant for simplicity. The procedure
just described leads to the equation

1

r

@

@r
.rv/ D � 1

�E

�
��P � �A�A C out

H
.p � p1/

�
: (7)

The longitudinal average of the radial component of (5) leads finally to express the
pressure in terms of the relative liquid-cell velocity:

p.r; t/ D p0.t/ � 1 � �
�

Z r

r0

Œv.r 0; t/ � u.r 0; t/�dr 0 : (8)
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An important feature of the model is the appearance of the new unknown p0.t/,
i.e., the pressure at the blood vessel wall. Indeed, equation (7) requires the inlet
boundary condition

.1 � �/v.r0; t/ D in.pb � p0.t//; (9)

meaning that the liquid inflow rate from the blood vessel is proportional to the
pressure jump across the vessel wall.2 The coefficient in is a positive constant,
and pb is the blood pressure in the specific vessel considered. It has to be said
that actually blood pressure decreases along the flow, so that pb is a function of
z (averaging out time dependence, since the time scale of heart pulsation is much
smaller than the scale of tumor evolution). The feasibility of taking constant both
pb and, later on, the oxygen concentration in blood 
b along the cord has been
discussed in the paper [10], concluding that for vessels shorter than a millimeter
(the case of capillaries in a vascular tumor) the approximation is compatible with
the many other sources of error included in the scheme. The equation governing the
cell velocity field can be derived in the form of a mass balance by summing the first
three equations in (4):

1

r

@

@r
.ru/ D 1

�
.��P � �A�A/ ; (10)

to which the boundary condition

u.r0; t/ D 0 (11)

must be associated.
Concerning oxygen, because of its large diffusivity (DO2 ' 10�5 cm2=s) and

easy penetration through cell membrane, at each time its concentration is assumed
to be at the equilibrium profile satisfying the equation

DO2 �
 D fP .
/�P C fQ.
/�Q ; (12)

where the consumption rates fP � fQ are of Michaelis-Menten type.
Oxygen concentration at the blood vessel wall is taken constant (see [10] for a

justification):


.r0; t/ D 
b : (13)

2Here we neglect osmotic pressure.
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The conditions for 
 at the necrotic interface (when present) are far less obvious.
Considering the role of the threshold 
N , the natural conditions for r D 	N would be


.	N ; t/ D 
N (14)

@


@r

ˇ̌
ˇ̌
rD	N

D 0 : (15)

The second condition is a consequence of the absence of consumption in the
necrotic core and it implies that the oxygen profile in the N zone is flat. However,
a model accounting for treatments must be able to describe a sudden rise in oxygen
concentration due to massive cell death. When such a phenomenon takes place (an
increase in 
b would have a similar effect), the necrotic interface cannot always be
identified as the level set by (14), for the simple reason that if 
 rises above threshold
at the necrotic interface, dead cells will not return to life. In that case 
 must be left
free to evolve, while the necrotic interface becomes a material surface, moving with
the velocity of the viable cells that stay on it:

u.	N .t/; t/D P	N .t/ : (16)

The state described by (16) lasts as long as 
.	N ; t/ remains above threshold. When
the threshold is recovered, the cells resume entering the necrotic region. In summary,
we conclude that:

(i) the following unilateral constraints have to be satisfied at each time instant:


.	N ; t/ � 
N (17)

u.	N .t/; t/� P	N .t/ I (18)

(ii) when one constraint is satisfied in the strict sense, the other has to hold as an
equality;

(iii) equation (15) always holds true.

This very peculiar structure of the boundary conditions at the necrotic interface
makes the mathematics considerably difficult.

Unfortunately, when we come to modeling the necrotic region we find more
complications, because we realize that the necrotic region can be “prevalently solid”
or “prevalently liquid.” In the first case the degrading cells are in mutual contact and
can bear an external stress, while in the opposite case the task of sustaining external
stress is given to the liquid. Thus we have two regimes that we call N-solid and N-
liquid, respectively. The basic time-dependent quantities to be considered, besides
the interface r D 	N .t/, are

• The cord outer boundary r D B.t/

• The volume occupied by the degrading cell V c
N .t/
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• The volume occupied by the liquid V l
N .t/

• The liquid pressure pN .t/

The total volume VN .t/ of the necrotic region is

VN .t/ D V c
N .t/C V l

N .t/ D 2�H.B2 � 	2N / : (19)

The two partial volumes evolve according to the equations

PV c
N D 4H�	N .1 � �E/Œu.	N ; t/ � P	N �� �NV

c
N ; (20)

PV l
N D 4H�	N �EŒv.	N ; t/ � P	N �C �NV

c
N � qout .t/ : (21)

In (20) the first term on the RHS is the contribution of cells entering the necrotic
region (always nonnegative, as we know); the second term is the rate of conversion
into liquid. In the second equation the only term to be explained is the last one:

qout D Nout

H
V l
N .pN � p1/ ; (22)

namely the liquid efflux rate from the cord ends z D ˙H , where Nout is a positive
coefficient.

The solid volume fraction is subject to the constraint

V c
N

VN
� �N < 1 ; (23)

(for the sake of generality �N is distinguished from �, but in practice they can be
taken equal). Now, in the N-solid regime, the above constraint is at work, so we can
take

V c
N D �NVN , V l

N D .1 � �N /VN ; (24)

where VN .t/ has the expression (19). Thus (20) yields a differential equation for the
difference B2 � 	2N :

d

dt
.B2 � 	2N / D 2

1 � �E
�N

	N Œu.	N ; t/ � P	N � � �N .B2 � 	2N / ; (25)

and operating with (21) it is possible to express qout in terms of geometrical and
kinematical unknowns, which in turn allows to derive pN .t/.

Let us now discuss the question of how to detect the transition to the N-liquid
regime and vice versa. The key point is to monitor the pressure pN .t/, comparing it
with the pressure exerted on the cord by the surroundings, i.e., by the neighboring
cords. Such an external pressure is due to the reaction of the host tissue to the
expansion of the cord cohort and therefore is ultimately related with the size of
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the individual cords, that is, with their equivalent radius B . We denote it by �.B/,
a continuous increasing function. Clearly, the N-solid regime is characterized by
the fact that this pressure is fully sustained by the solid component, while pN .t/ <
�.B.t//. Therefore the N-liquid regime sets in when

pN .t/ D �.B.t// ; (26)

which replaces (24), no longer valid as an equality but as the inequality V c
N < �NVN .

When (26) is enforced, V c
N .t/ evolves according to (20) from which it can be

deduced as a functional of 	N .t/ and of u.t/.
In conclusion, we are back to a doubly constrained problem:

V c
N � �NVN ; pN � �.B/ ; (27)

with at least one of the two constraint being active.
We remark that the fact that the boundary conditions are actually selected by the

constraints, which come into play depending on the evolution of the system, has
deep consequences on the mathematical structure. In particular, one has to be aware
that not necessarily the various types of boundary conditions alternate over finite
time intervals, since it cannot be excluded a priori that there are accumulation points
of switching times. This circumstance requires the adoption of particular techniques
in the existence proof (see the reference papers [9, 10]). It is really surprising
that even at the level of a model including just some minimal requirements
and with substantial simplifications, the corresponding mathematical structure is
necessarily quite complicated. It seems to us that the presence of the constraints
here emphasized is a major feature of the model. The fact that they actually come
into play is unquestionably put in evidence by numerical simulations, as illustrated
by Fig. 4 taken from [26], which shows an example of the time evolution of the
cord in case of a drug affecting mainly the proliferating cells. Panel A illustrates the
evolution induced by the treatment of the viable cell population, showing the ratio
between the total volume per unit cord length of viable cells (PCQ) and its value at
tD0. The decrement of the amount of viable cells reduces oxygen consumption and
thus causes a transient increase of the mean oxygen concentration (panel B). The re-
oxygenation of the cord produces a recruitment of quiescent cells into proliferation.
Thereafter, the populations P and Q tend to the stationary value (panel A). The radius
	N shows an initial shrinkage [52] followed by a regrowth (panel C). The interface
	N quickly becomes a material boundary, so satisfying (16), and remains material
until, at about t� D 3, it becomes nonmaterial again, an event marked by a slope
discontinuity. In the same panel, the time course of the boundaryB is plotted. Panel
D shows the time evolution of the pressure pN and of the cellular fraction in the
necrotic region. In the initial state the constraint (23) is satisfied with the equality
sign and pN < �.B/. Due to the increased influx of liquid caused by cell death,
pN increases reaching �.B/ at t� ' 0:5. At this point the regime changes, with
pN D �.B/, and the cellular fraction goes below �N . During the cord regrowth, the
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influx of liquid decreases and the system switches again to the regime characterized
by a cellular fraction equal to �N (t�'5:5).

We conclude this short review about the tumor cords recalling that besides the
existence and uniqueness theorem and some qualitative analysis for the doubly
constrained free boundary problem, much more has been done in the wake of the
papers [9, 10]. A specific analysis of interstitial pressure has been performed in
[12]. One of the main aspects to be kept into account in modeling treatments is
the re-oxygenation of the tumor following massive cells destruction [8]. The effects
of delayed exit from quiescence after re-oxygenation were considered in [11]. The
consequence of re-oxygenation on chemo- and radiotherapy has been investigated in
[13,14], including the analysis of the possible advantages of dose splitting, a subject
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treated in the literature in the context of the optimal fractionation of radiation dose
[16, 66]. For the more general context of the application of optimization in cancer
treatment, see, e.g., [49].

3 What Kind of a Fluid Can the “Cell Fluid” Be? A Model
for Bingham-Like Spheroids

We have mentioned the advantages of the two-fluid approach, which, despite all
the internal contradictions, have been responsible for its success. It is quite evident
that the choice of identifying cells with a Newtonian fluid, which is frequent in
this context, is arbitrary. In such a fluid the shear stress is generated by viscosity,
whose physical origin in the case of cells should be a kind of mutual “friction.”
However, cells do not just slide one upon the other. Their mutual adherence is due
to bonds that can resist some traction and that, when destroyed, can be restored in
a different configuration. Such a situation is much more similar to what happens in
“fluids” possessing some fragile internal structure, breakable by a stress beyond a
threshold. This is precisely the main characteristic of Bingham fluids. Cell-exerted
tractions have been measured [55] and can be surprisingly strong. Therefore it
seems that resistance to motion comes primarily from the necessity of overcoming
mutual bonds and then from the membrane-to-membrane friction. Accordingly, we
may associate to these phenomena a nonnegligible yield stress and a viscosity,
namely the two quantities intervening in the constitutive law of a Bingham fluid.
The problem of finding possible steady states for a spheroid with an inner liquid
core originated by dead cells degradation has been addressed in [29,30], both in the
Newtonian and in the Bingham framework, imposing the continuity of the normal
stress throughout the system. Fasano et al. [29] follows a previous attempt [28] to
solve the same problem imposing energy balance, stemming from the approximation
that proliferating cells produce a known amount of mechanical power.

The passage from Newtonian to Bingham is by no means trivial. It is well
known that defining a Bingham fluid is relatively easy in 1-D cartesian flows, but
it offers different options in higher dimensions. In [15] the difficulty of selecting
a constitutive law compatible with the radial motion to be found in spheroids has
been emphasized, showing for instance that the definition proposed in [6] leads to
a contradiction, which would make impossible to describe the early stage of the
spheroid evolution. It was found in [15] that the following way of defining the stress
tensor of the cell component of the mixture suites our purposes. The cellular Cauchy
stress tensor in the viable region is given by

TC D ��
�
pC C 2

3
�Cr � u

�
I C ���� ; (28)
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where � is the cell volume fraction, pC is the cell pressure, �C is the so-called
Bingham viscosity, and ��� is the deviatoric stress tensor defined as

��� D
�
2�C C �0p

IID

�
D (29)

in which, as usual, D is the strain rate tensor and its second invariant IID is given in
the form

IID D 1

2
TrD2 ; (30)

provided II� exceeds the threshold �0. In the opposite case we have D D 0. We refer
to [15] for additional comments on the definition (28).

The definition above applies to an aggregate of cells whose membrane is integer.
We will return to the case of degrading cells later on.

The task of describing the liquid is much simpler. We put (inviscid fluid)

TE D �E
� � pEI

�
(31)

with �E D 1 � �, and we adopt Darcy’s law for its motion relative to the cells:

�E.v � u/ D ��rpE (32)

thus treating the cells aggregate as a porous medium.

Remark 1. It is important that pC and pE be kept distinct. As a matter of fact,
at the surface of the spheroid there may be forces acting differently on the
two components. For instance the so-called tumor surface tension, attributable to
stretched intercellular bonds, and the resistance of an external medium, like the
polymer network in a gel hosting the spheroid, are applied to cells only. The concept
that pC and pE are separate quantities has received some attention in the literature.
For instance, in [48] the inequality pC > pE was taken as a condition for cells
viability.

Living cells can be proliferating or quiescent. Instead of introducing transition
rates from one class to another, in [15] the two species have been separated by a
sharp interface. Of course this is an extreme schematization, but, in our opinion, it
does not make much difference, also owing to the uncertainty about the definition of
the transition rates. The separation of a proliferating region P and a quiescent region
Q, possibly surrounding a necrotic core, is very helpful to simplify the computation
of the velocity field.

Again, the structure of the necrotic core N is going to play a basic role in the
evolution of the system. Introducing a deterministic degradation time after which a
dead cell is turned into a material mechanically behaving like a liquid, the core N
is in turn divided into a liquid (NL) and a solid (NS) region. Despite the fact that



42 A. Fasano et al.

this approach is rather extreme, it finds some support in experimental observations,
based on NMR techniques, pointing out a prevalence of free water in the spheroid
core [54], suggesting that the NS!NL transition is due to membrane degradation.

Still under the assumption that the two components have the same density and
that � is constant, the mass balance in the various regions is expressed by the system

r � u D �; in P;

r � u D 0; in Q [NS;

r � v D �� �

1 � �
; in P;

r � v D 0; in Q [NS [NL (33)

where � is the cell proliferation rate. The supposed constancy of � eventually
provides global mass conservation in the form of a relationship between the two
radial velocity fields:

�u C �Ev D 0 : (34)

The fact that inertia is absolutely negligible and the analysis of the liquid-cell
interaction forces lead to express the momentum balance equation for the cell
component in the form

r � TC D �E

�
u D �r � TE : (35)

Recalling (28), the discontinuity of r � u across the P/Q interface creates a
singularity in (35), which however is easily overcome imposing the continuity of
the normal stress throughout the system. As a matter of fact, this is one of the main
assumptions in the model.

The unknown interfaces

• r D 	P .t/ between the regions P and Q
• r D 	N .t/ between the regions Q and N

are defined implicitly via the system

DO2�
.r; t/ D f .
.r; t//�; in P ,

DO2�
.r; t/ D 1

m
f .
.r; t//�; in Q ,


.R; t/ D 
� ;


.	P ; t/ D 
P ;

Œ
r .	P ; t/� D 0 ;
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.	N ; t/ D 
N ;


r .	N ; t/ D 0 ; (36)

e.g., with the choice

f .
/� D nM



H C 

;

(n cell number density, M maximum consumption rate per cell, H Michaelis
constant, m > 1, 
� > 
P > 
N ). It can be proved that, for a given R sufficiently
large, problem (36) is uniquely solvable. Actually the qualitative nature of the
solution depends on the spheroid size. The fully developed structure with the two
interfaces 	P .t/, 	N .t/ is observable only forR exceeding some increasing function
RN.


�/, with 
 � 
N throughout the region N. For R below this threshold and
greater than another increasing function RP .
�/ there is no necrotic core and the
last two conditions in (36) must be replaced with 
r.0; t/ D 0. The latter condition
is still operating if R < RP .
�/, in which case only the region P is present.

Unlike the previous section, here we just consider Cauchy-type boundary data
on the necrotic interface, since we are only interested in the tumor growth towards
its possible steady state, with no cell death cause other than hypoxia. Thus, the
switch to a freely evolving oxygen concentration on the moving necrotic interface
never occurs. The necrotic core will appear at the time the spheroid radius reaches
the value RN .
�/. The structure of the necrotic region, though not simple because
of the ongoing degradation, is less complicated than in cords, for which there are
constraints to be satisfied. As we said, in the approach of [15] a deterministic
degradation time is introduced. Once the necrotic (hypoxic) region is formed, it
keeps being fed by cells arriving from the region Q. If the necrotic core is old
enough transition to “liquid” will take place, and dead cells are pushed inwards,
while degrading. Of course the assumption of a fixed degradation time is artificial,
not differently from all other thresholds that have been introduced. All phenomena
going on in the spheroid are characterized by some degree of stochasticity; therefore
all interfaces are just mathematical tools, approximating transition regions by means
of sharp surfaces. Therefore a question arises very naturally: why bother with
unreal pictures? The question does not apply just to the specific case at hand, but
it involves the whole domain of cancer modeling, since this particular branch of
biomathematics (like many others) inevitably goes through strongly simplifying
assumptions and compromises. A model with no interfaces would not necessarily be
more accurate, since it would anyway contain some gross approximation. Interfaces
simplify the computation of the velocity fields, and this largely compensates for the
mathematical complications connected to the presence of free boundaries.

If �D is the degradation time and tN is the (unknown) appearance time of the
necrotic core, the liquid necrotic region NL will appear at time tD D tN C�D . From
that time on, the NL/NS interface r D 	D.t/ will be present. Its evolution depends
on the feeding rate of the region NS, which is of course one of the unknowns.
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Before we move to illustrating the spheroid evolution, we have to deal briefly
with the boundary conditions on the outer moving surface r D R.t/.

The liquid pressure equals some given external pressure (typically atmospheric
pressure):

pE.R; t/ D pext (37)

irrespective of whether the spheroid is grown in a water suspension or in a gel.
The computation of the cellular normal stress leads to the following equation,

expressing that a jump of normal stress across the boundary is produced by surface
tension. The resulting boundary condition is the following:

pC .R; t/ D �2
3
�C�C

 
2�C C �0p

IID.R; t/

!
u0.R; t/C pext C  .R/C 2�

R
:

(38)

where 2�

R
is the pressure exerted by surface tension,  .R/ is the one produced by

the reaction of the host medium (gel) to the spheroid expansion, and the symbol u0
is an abbreviation of @u

@r
.

It has to be stressed that, even if the steady state is reached, the velocity gradient
u0 will not vanish at the outer surface, according to the first equation in (33). The
function  .R/ is assumed to be nonnegative and Lipschitz continuous. Since it is
originated by the gel deformation, namely by the displacement of the gel polymer
network, it is expected to increase up to a certain value and then to stabilize.

A spheroid growing from an initial size so small that it consists entirely of the
region P, evolves through the following stages:

• Stage I: fully proliferating. It ends at the time tP at which R attains the value
RP .


�/.
• Stage II: the interface r D 	P .t/ appears, enclosing a quiescent core. It ends at

the time tN .
• Stage III: the region NS appears, with the boundary r D 	N .t/, but conversion

to liquid is not achieved yet. It ends at time tD .
• Stage IV: the interface r D 	D.t/ is present.

We report the main results concerning the four stages, addressing the reader to
[15] for their derivation, which is definitely long and not simple. Useful pieces of
information when performing the calculations are:

(i) r � u constant ) r � D D 0 (however, care is needed when crossing the
discontinuity of r � u);

(ii) where r�D D 0 the only nonzero component of the vector r �
h�
2�C C �0p

IID

	
D
i

is the radial one, which takes the form �0p
IID

�
� 1
2IID

@IID
@r

	
@u
@r
:
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3.1 Stage I

All quantities can be computed explicitly:

u.r; t/ D �

3
r ; (39)

implying that the ODE providing the outer radius is readily solvable, leading to

R.t/ D R0 exp
��
3
t
�
;

from which we get

tP D 3

�
ln
�RP
R0

�
:

Since

D D �

3
I ; IID D �2

6
;

r � ��� D r � D D 0 ;

the integration of (35) with conditions (38) and (37) yields

pC .r; t/ D �0

r
2

3
C pext C  .R/C 2�

R
C ��E

6��
.R2 � r2/ (40)

pE.r; t/ D pext � �

6�
.R2 � r2/ : (41)

3.2 Stage II

Now we have to distinguish region P from region Q, which at this stage is an
immobile core. In region P we have

u.r; t/ D �

3
r
�
1 � �	P .t/

r

�3�
; (42)

where 	P is a functional of R and R.t/ is found by integrating the equation

PR.t/ D �

3
R.t/

�
1 � �	P .t/

R.t/

�3�
:
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Equation (35) now gives

�p0
C C �0u

0� 1p
IID

�0 � �E

��
u D 0

with

IID D �2

3

�1
2

C �	P
r

�6�
;

whose integration yields

pC .r; t/ D pC .R; t/ � �0p
3

np
2
�
1C 2

� 	P
s

�3�

�
1C 2

� 	P
s

�6�1=2

ˇ̌
ˇ̌
R

r

� 2 ln
h�	P
s

�3 C �1
2

C �	P
s

�6�1=2i
ˇ̌
ˇ̌
R

r

o

C��E

3��

hR2 � r2
2

C 	3P
� 1
R

� 1

r

�i
; (43)

where

pC .R; t/ D 4

3
�C�

�	P
R

	3C�0
r
2

3

1C 2
�
	P
R

�3
h
1C 2

�
	P
R

�6i1=2
CpextC .R/C 2�

R
: (44)

In the region Q, owing to the absence of motion, pC turns out to be uniform.
The discontinuity of the proliferation rate, i.e., of r � u, through the P/Q interface
produces a jump of pC which can be computed imposing the continuity of the
normal stress:

pC .	
C
P ; t/ � pC .	

�
P ; t/ D 4

3
�C�C p

2�0 : (45)

No discontinuity is experienced by pE which is found to be

pE.r; t/ D

8
ˆ̂<

ˆ̂:

pext � �

3�
.R � r/

�RC r

2
� 	3P
rR

	
; 	P � r � R;

pE.	P ; t/; 0 < r < 	P :

(46)

3.3 Stage III

The necrotic region is now present without “liquid” core. From the dynamical point
of view the situation is very similar to the previous stage, the only difference being
the presence of the necrotic interface r D 	N .t/, a known functional of R.
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3.4 Stage IV

Stage IV evolves for t > tD . As it frequently happens in tumor modeling, the
structure of the necrotic region has a decisive influence on the system evolution.
Here too, when entering the stage in which the liquid necrotic region appears, the
mathematical nature of the problem is deeply affected. The point is that, while the
liquid core is immobile, cells in its vicinity are moving inwards and we no longer
have information on their velocity at the interface, while in Stage III we knew that
the velocity was zero in N[Q, hence also at r D 	P .t/. This fact introduces a very
substantial complication. We emphasize the fact that the need of studying the whole
stress field is originated by the necessity of determining precisely that unknown
velocity.

It was therefore natural in [15] to introduce a new unknown!N .t/ in the physical
range !N .t/ � 0, namely the velocity of the cells crossing the interface r D 	N .t/,
so that the quantity 4�	2N �. P	N � !N / represents the feeding rate of the necrotic
region. At the beginning of Stage IV !N .tD/ D 0.

Since for 	D < r < 	P the cell velocity field in that region is divergence free,
we have

u.r; t/ D 1

r2
	2N .t/!N .t/ ; 	D � r � 	P ; (47)

and

u.r; t/ D 1

r2
	2N .t/!N .t/C �

3

�
r � 	3P .t/

r2

	
; 	P � r � R : (48)

From the latter we deduce the differential equation for R.t/, namely

R2.t/ PR.t/ D 	2N .t/!N .t/C �

3
.R3.t/ � 	3P .t// : (49)

Of course the equation contains the new unknown!N .t/. Following the motion of a
dead cell through the region NS during the degradation time �D , we find that 	D.t/
is expressed in terms of !N .t/ as follows:

1

3
Œ	3D.t/ � 	3N .t � �D/� D

Z t

t��D
	2N .�/!N .�/ d� : (50)

At this point it is clear that the determination of the kinematic unknown !N .t/
relies on the stress analysis. In order to proceed further, we have to say something
more on the degradation process, which affects the dynamical behavior. In [15] it
was assumed that membrane degradation is accompanied by a reduction of the yield
stress. This requires monitoring the age from death, �.r; t/, of cells located at a given
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point of NS. Proceeding as in the derivation of (50), the latter quantity is found to
have the implicit expression

1

3

�
r3 � 	3N .t � �.r; t//

� D
Z t

t��.r;t /
	2N .�/!N .�/ d� : (51)

Now the yield stress varies in NS according to the formula

Q�0.r; t/ D
(
�0; 	N � r � R;

�0
�
1 � �.r;t /

��

�
C; 	D < r < 	N ;

(52)

i.e., it reduces linearly to zero in the time �� , which is between 0 and �D . This
generates a new free boundary r D 	� .t/, tending to 	N or to 	D in the respective
limits �� ! 0 or �� ! �D . In any case, the yield stress is gone when the interface 	D
is reached. Once more, the choice was to introduce a deterministic law, extrapolating
from the biological randomness of the phenomenon in agreement with the general
deterministic setting of the entire model.

The new condition at our disposal, which closes the model, is the continuity
of the normal stress across the interface 	D . Concerning pE , we know that it
is continuous everywhere, while the just-mentioned condition of normal stress
continuity eventually yields the following limit for pC when approaching 	D from
the “solid” side:

pC .	
C
D; t/ � 2�Cu0.	C

D; t/ D pE.	D; t/ : (53)

In view of Remark 1 about the comparison between the two pressures pC , pE , the
following result from [15] is of some interest: !N < 0 ) pC > pE , stressing the
physical relevance of the orientation of the cell motion at the necrotic interface.

We just report the full expression of (53) in the case �� ! 0, which requires a
special procedure, referring to [15] for the more general case:
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In (54), the fractions having 	D in the denominator are potentially singular at the
beginning of Stage IV. The presence of the term !N=	

3
D , which cannot be balanced

by any other term, says in particular that, when t ! tCD , !N .t/ is infinitesimal (as
predicted) of the same order as 	3D . Moreover, owing to the sign restriction over!N ,
the limit of the ratio above has to be nonpositive. This requires a condition that, for
convenience, in [15], has been imposed in the strict sense. Again we write it only
with reference to the special case �� ! 0, namely
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This inequality is actually a limitation on the choice of the two quantities � and �0,
but a biological explanation is missing.

Another assumption is made on the function f expressing the oxygen absorption
rate in (36) that we write in the form

f .
/ D Qf .
/C .m � 1/ Qf .
P /H.
 � 
P / ; (56)

where H is the Heaviside function and Qf .
/ is a continuously differentiable
function of Michaelis-Menten type. It is required that for all R > RD ,
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which makes sense because the quantity R2
h
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is bounded

forR > RD . In addition, .m�1/ Qf .
P / is supposed to be sufficiently small (for the
details see [15]).

The stated conditions on , f , together with (55), have been employed in [15] to
show existence and uniqueness for Stage IV, first in a neighborhood of tD and then
extended by means of a standard argument.

The proof is very long and it goes through the study of how 
 and the interfaces
	P , 	N depend on R. More precisely a priori estimates of the derivatives @


@R
, @	P
@R

,
@	N
@R

have been obtained in terms of the data, which are instrumental in the fixed
point argument employed in the proof.

Besides the well-posedness analysis, in [15] numerical simulations have been
performed, dealing with the nontrivial question of selecting appropriate values for
the parameters and investigating the possible attainment of a steady state. The
problem is characterized by a rather large uncertainty about some critical parameters
in the model, a constant obstacle in this kind of research. The tumor hydraulic
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conductivity � appearing in Darcy’s law (32) is certainly one of such parameters.
A chosen value was � D 4 � 10�8 cm3�s=g (or alternatively 4 � 10�9 cm3�s=g),
much larger than the values usually reported for solid tumors in consideration
of the relatively low value of the cell volume fraction (� � 0:6) in spheroids.
Concerning the rheological parameters of the Bingham-like cell fluid, the value
�C D 104 g/(cm�s) is acceptable, in view of the results of [45]. The determination
of the yield stress �0 can be deduced on the basis of the measurements of the force
F able to detach two adhering cells [55], according to the formula �0 D Fn2=3.
The so-called tumor surface tension � is apparently related to the upper bound of
adhesion forces, hence to �0, as it was already observed in [29].

The interplay between �0 and � is crucial for the existence of a steady state. This
fact emerges very clearly when looking for the spheroid size at a possible steady
state. The investigation of the possible equilibrium can be performed with the help
of equation (54), in which !N has to be replaced with

!N D � �

3	2N

�
R3 � 	3P

�
(58)

which is the cell velocity at the necrotic interface corresponding to a steady spheroid
of radiusR. Indeed, for a spheroid at the steady state the cell velocity vanishes at the
outer surface, providing the information that allows the computation of the whole
velocity profile. The radius 	D of the inner liquid core and the age from death �.r/
can be found in terms of R:

	3D D 	3N � ��D.R3 � 	3P / ; (59)

�.r/ D 	3N � r3

�.R3 � 	3P /
; 	D � r � 	N : (60)

Thus all elements are available to formulate the steady-state version of normal stress
continuity condition, which, still in the limit �� ! 0, turns out to be
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where 	D is expressed by (59) and 	P , 	N are known functionals of R.
The above formula allows to establish the conditions ensuring the existence of

a steady state. For instance, in the case  D 0, the plot in Fig. 5 compares the
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Fig. 5 Profile of
right-hand-side (solid) and
left-hand-side (dashed)
of (61) as a function of R.
� D 1 dyne/cm,
�0 D 10 dyne/cm2 . Other
parameters given in [15]. The
predicted stationary radius is
R D 966�m
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LHS 2� with the RHS in a case exhibiting an intersection. From (61) it is clear that
for a solution to exist it is necessary that � is large enough. Of course a mechanical
reaction from the environment, meaning  > 0, helps in reaching the equilibrium.
Since the RHS of (61) can be shown to go to infinity as R ! 1, the equation can
have two roots. The physical one is the smaller, since it is reached as an asymptotic
state. The larger one is normally too big and it looks nonphysical.

The whole evolution model has been numerically simulated in [15] with the same
data as in Fig. 5. The results are shown in Fig. 6, in which the moving boundaries
entering the problem are followed from their origin to their asymptotic value (upper
panel) and the velocity !N (appearing simultaneously with the interface 	D) is
shown to reach the final value (58).

As we said, equation (61) may have no solution at all, meaning that the spheroid
grows to infinity. Such a possibility has been numerically investigated too, but the
values to be attributed to � and �0 were out of the expected physical range.

It is legitimate to ask whether a tumor spheroid reaching equilibrium is actually
observable. In principle the answer is positive, and it has to be said that experimental
measurements (see, e.g., [33]) may suggest that this is indeed the case. However, it
is impossible from a few experimental points to infer more than a trend to reach
equilibrium, and experiments performed over a very long time show that spheroids
may go into a state of senescence [31] no longer describable with a model for a
viable system.
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Fig. 6 Upper panel: Time evolution of the external radius and of all the interfaces. The velocity
!N is reported in the lower panel. � D 1 dyne/cm, �0 D 10 dyne/cm2 . Other parameters given
in [15]

4 Recent Models for Multicomponent Systems

In this final section, we review some very recent cancer growth models taken from
the literature that include more elements than just a species of tumor cells. Active
cell displacement (chemotaxis and haptotaxis) along with diffusion transport is
considered, e.g., in the context of angiogenesis. Chemotaxis and reaction-diffusion
are very large subjects entering those kinds of models. For them we refer to the
important review papers [40,41], without mentioning their general features. Here we
are more concerned in highlighting the efforts in cancer modeling to tackle problems
having an immediate clinical impact. We confine our attention to models describing
the spatial structure of the tumor and utilizing partial differential equations. Among
compartmental models we quote for instance the paper [47], dealing with the
treatment of prostate cancer by means of the so-called androgen ablation therapy,
which is a very good example of how to keep the level of complexity within
manageable limits, still retaining the essential pieces of information, and reaching
conclusions of theoretical and practical interest. We summarize here just two models
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concerning systems with many cellular and molecular species. We remark that a
common trend is to ignore the contribution of interstitial fluids to the mass balance
and that in both instances the model setting is such to avoid the analysis of stresses.
In this sense the present section is complementary to the previous ones.

4.1 Gliomas Invasion and Angiogenesis: Diffusion
Driven Processes

Since the discovery of the tumor angiogenic factor (TAF) [32] (see [59] for the
historical aspects), the phenomenon of angiogenesis has been investigated for long
time in two main directions: modeling its development [3, 20, 50] and modeling
the action of antiangiogenic drugs [22, 39, 62]. Recently a new subject emerged,
related to the chaotic structure of tumor vascularization, partly immature and leaking
and with numerous loops, slowing down blood circulation in vascularized tumors
and consequently reducing the efficiency of drugs delivery within the tumor mass.
In [37, 46] the so-called pruning procedure was illustrated, consisting in a partial
destruction of the vasculature preceding drug administration (see also [22]), so to
facilitate the tumor perfusion. Here we have no space to deal with the huge topics of
angiogenesis, and we concentrate on one very specific theme: the recent claim that
high-grade gliomas receive their aggressiveness from angiogenesis. The reference
paper is [64] (see also the literature quoted therein), which is in the wake of an
earlier model proposed in [63] where diffusion was assumed to be an important
(though slow) transport mechanism for cells. In the model of [64] the tumor cells
can be in two states (normoxic and hypoxic), depending on the vasculature density,
considered to be the direct oxygen source. Only normoxic cells proliferate. Death
rates are different for the two species. The vasculature development is driven by
VEGF (vascular endothelial growth factor), produced by living tumor cells. The
unknowns are:

• c, normoxic cells concentration
• h, hypoxic cells concentration
• n, necrotic cells concentration
• v, vascular endothelial cells concentration
• a, VEGF concentration

Moreover, the following fractions have some role:

• V D v=.cChCv/ (endothelial cells vs. the total oxygen consuming population)
• T D .c C h C v C n/=k (total number of cells compared to the carrying

capacity k).
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The model is summarized as follows (we do not comment on the meaning of the
parameters):

@c

@t
D r � ŒD.1 � T /rc�C 	c.1 � T /C �hV � ˇc.1 � V /� ˛nnc; (62)

@h

@t
D r � ŒD.1 � T /rh� � �hV C ˇc.1 � V /� ˛nnh � ˛hh.1 � V /; (63)

@n

@t
D ˛hh.1 � V /C ˛nn.c C hC v/; (64)

@v

@t
D r � ŒDv.1 � T /rv�C �

a

Km C a
v.1 � T /C �hV � ˛nnv; (65)

@a

@t
D r � .Dara/C ıcc C ıhh� q

a

Km C a
v.1 � T / � !av � �a : (66)

Thus cell diffusion is limited by a crowding effect, expressed by the factor .1� T /,
which also limits proliferation of normoxic cells and of endothelial cells; the factors
V and .1� V / control the c $ h transitions, and all the rest needs no explanations.
The model does not consider extracellular matrix and the consequent occurrence of
haptotaxis nor the chemotactic motion of endothelial cells.

The paper [64] contains an interesting discussion about the combined influence
on growth of angiogenesis, diffusivity, proliferation rate, and transitions h ! c and
c ! h. The interesting conclusion is that increased aggressiveness is not necessarily
originated by mutations affectingD and 	. Even if the invasion rate is known to be
strictly related to the parametersD and 	, the final outcome is strongly conditioned
by the tumor ability of developing a vascularization.

As a final remark to this subsection, we stress the fact that cell motility is a
subject that has been approached in many different ways in the literature. For
instance, in connection with the role of diffusivity in cancer invasion, it is worth
mentioning the paper [43], preceding [64], which adopts a similar scheme in a
larger context, since, besides the equations for the three species of tumor cells,
and the equations for endothelial cells and for VEGF, it includes the equation
for oxygen diffusion-consumption and for the development of the extracellular
matrix (inducing haptotaxis of normoxic tumor cells). In that paper cell motility
is treated in a very different way, since hypoxic and apoptotic cells are considered
immobile and normoxic cells have a diffusivity made of two terms: a background
random diffusivity D, like in (62), and an additional term, which, with the same
symbols used above, is expressed byDc maxŒc� c�; 0�, where c� is some threshold
concentration. The meaning of this extra term is a “pressure-driven” motility due to
crowding, thus representing an opposite point of view with respect to (62), where
crowding was opposing diffusion. More specifically, both D and Dc are taken
to be of the same order 10�9 cm2�s�1. Moreover, in [43] the equation governing
vascularization includes the usual chemotactic term, differently from the simpler
process described by (65).
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4.2 The Anti-angiogenic Role of Macrophages
During Cancer Growth

We are now back to angiogenesis, but in a different perspective. In the paper
[21] a mathematical model has been developed accounting for an important action
of tumor-associated macrophages (TAMs). In hypoxic conditions such cells are
chemically induced by tumor cells to produce VEGF, precisely as tumor cells
do. However, when treated with another growth factor, namely GM-CSF (gran-
ulocyte/macrophage colony stimulating factor), TAMs are strongly stimulated to
produce the VEGF inhibitor sVEGFR-1, namely the soluble VEGF receptor-1,
which neutralizes VEGF by binding to it [23]. The paper [21] is based on the
experimental work illustrated in [60, 61] about the influence of the transcription
factors HIF-1˛, HIF-2˛ on the production of VEGF and sVEGFR-1, respectively,
studied by comparing the tumor development in normal mice and in mice with
genetically induced deficiency of either factors. Interestingly enough, in view of
the discussion in the previous subsection, cells diffusivity is totally disregarded, as
it is very small in most tumors (here we are dealing with breast cancer). For the
reader’s convenience we try to preserve, as long as possible, the symbols already
adopted in the previous section. Differently from that approach, the model of [21]
does not deal with normoxic and hypoxic tumor cells as different species.

Thus, from the list of the previous section we remove the unknown h. Now c

represents the concentration of living tumor cells with no further specification, and
to the symbol list we add:

• m, macrophages concentration
• p, q, g, concentrations of specific cytokines (to be explained soon)
• s, sVEGFR-1 concentration
• w, oxygen concentration

The cytokines entering the model are:

• MCP-1/CCL2 (monocyte chemoattractant protein-1: p), produced by TAMs in
response to M-CSF (q), acts as a chemoattractant to recruit more macrophages

• M-CSF (macrophage colony stimulating factor: q), produced by tumor cells,
stimulates the secretion of MCP-1/CCL2 by TAMs

• GM-CSF (g), already mentioned

The transcription factors HIF-1˛, HIF-2˛ intervene by regulating the production
rates of VEGF, sVEGF-1 (without a kinetics of their own).

Let us write down the governing differential system, according to [21], which
includes also the tumor velocity field ��� :

@c

@t
C r � .c ���/ D �1.w/c.1 � c

k
/� �2.w/c � �cc; (67)
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where �1.w/ (proliferation rate) is a piecewise linear, increasing function connecting
zero (for low w) to the value �1, through two thresholds wh < w0, and �2.w/
(hypoxia-induced necrosis) is a piecewise linear, decreasing function connecting
the value �2 (for low w) to zero across two thresholds wn < wh. Then we have

@n

@t
C r � .n���/ D �2.w/c C �cc � �n w

w0
mn; (68)

where the last term describes clearance by macrophages. Equations (67) and (68)
are to be solved in the unknown domain˝.t/ occupied by the tumor and embedded
in a larger domain D, in which the complement to ˝.t/ is occupied by the host
tissue. Thus the problem contains the free boundary @˝.t/. Moreover,

@m

@t
C r � .m���/ D �r � .kpmrp/� r � .kgmrg/; (69)

expressing mass balance of macrophages under the two chemotactic motions
induced by p and g, to be solved in the whole domainD, as well as all the remaining
equations for the molecular components p, q, a, s, g. The mass balance equation
for the last cellular species is the one for endothelial cells:

@v

@t
C r � .v���/ D �r � .kavra/ : (70)

Next we write the mass balance equations for the cytokines, VEGF and its
inhibitor, and the drug.

@p

@t
C r � .p���/ D r � .Dprp/C �4.w/

q

q C q0
m � �pp (71)

with �4.w/ a stepwise increasing function with values .0; 0:4�4; �4/ through the
same thresholds as �2.w/,

@q

@t
C r � .q ���/ D r � .Dqrq/C �3c � �qq (72)

@a

@t
Cr � .a���/ D r � .Dara/C�5.w/cC�1�6.w/

q

q C q0
m� N�ssa��aa (73)

where both �5.w/ and �6.w/ are proportional to another piecewise linear function
�.w/ increasing from 0 to 0:3 through three thresholds wn < w� < w0. We remark
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the appearance of the coefficient �1, linked to the level of the transcription factor
HIF-1˛ (set equal to 1 for normal level). For the sVEGFR-1 and the oxygen we have:

@s

@t
C r � .s ���/ D r � .Dsrs/C �2�7

g C ˇg0

g C g0
m � N�aas � �ss (74)

@w

@t
C r � .w���/ D r � .Dwrw/C �8v � �9mw � �10cw (75)

where the coefficient �2 in (74) has for HIF-2˛ a role parallel to the one of �1 for
HIF-1˛ and the term �8v in (75) represents oxygen delivery by endothelial cells.

The mass balance equation introducing the treatment by GM-CSF is

@g

@t
C r � .g���/ D r � .Dgrg/C f .t/ � �gg (76)

with f .t/ expressing the drug injection rate.
All transport terms contain the velocity field ��� and, as we have seen in several

instances, its determination is a quite delicate issue, since in general it calls for
the investigation of the whole mechanics of the system (constitutive equations,
momentum balance, etc.). As in the case of Sect. 2, imposing saturation and dealing
with a simple geometry reduces that complex dynamical problem to a much simpler
kinematical condition, since transport velocity is ultimately forced by the ideal
arrangement imposed to the set of volume occupying components. Thus, if one
considers just a spherical geometry, with the tumor occupying a sphere r < R.t/,
the velocity being purely radial, and takes the sum c C n C m C v constant, the
equation for the only scalar component of��� is derived summing up the equations for
all cells mass balance. Then imposing that the boundary r D R.t/ moves with the
cell velocity provides the necessary free boundary condition. After a long discussion
on the selection of the parameters, numerical simulations show the consistency of
the model with the experimental results of [60, 61].

5 Conclusions

We have reviewed a few mathematical models of tumor growth based on conserva-
tion laws and pursuing different targets. In Sects. 2 and 3 we consider tumors with
only two components: cells and extracellular fluid, taking advantage of the small
number of constituents to carry out the analysis of mass and momentum balance, as
well as of the mathematics involved to a full extent.

The model in Sect. 2 deals with tumor cords evolving in axisymmetric geometry,
where the cells motion is simply passive and compatible with the saturation
condition. The main difficulty there consists in the presence of free boundaries
with constraints driving the free boundary conditions, with severe mathematical and
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numerical implications which in our opinion are particularly important. Though
those results are not extremely recent, we decided to include them anyway in
our review in order to reaffirm the crucial role of constraints, particularly in the
presence of treatments. All the other material here exposed is taken from quite recent
publications.

In Sect. 3 a tumor spheroid is considered in the framework of the so-called
two-fluid scheme. In a multicellular spheroid, unlike the previous case, on the
appearance of a fully degraded necrotic core the analysis of mechanical stresses
becomes necessary to determine the motion via momentum balance, requiring the
specification of the constitutive law for the cell “liquid.” The case in which such a
liquid is of Bingham type presents considerable difficulties linked to the presence
of the yield stress that have been described, particularly with reference to the
determination of an asymptotic configuration.

Despite the formidable mathematical complexity of the models treated in Sects. 2
and 3, the fact remains that two-component tumors are in a sense too schematic
structures. Therefore, in the last section we illustrated two very recent studies
dealing with multicomponent tumors, in order to give at least a feeling of the trends
in the mathematical modeling of complex tumor structures, based on conservation
laws, though in a perspective rather different from the one pursued in the models
of Sects. 2 and 3. The specific studies considered are (i) Gliomas invasion and
angiogenesis (reference paper [64]) and (ii) the anti-angiogenic role of macrophages
during cancer growth (reference paper [21]). These are extremely interesting cases
both for the modeling technique and under the perspective of their practical
implications.

We regret that, because of space limitations, we could only illustrate a limited
number of models. A typical feature of this research field is that it is expanding at
an impressive rate, and as mathematicians come closer to the clinical practice their
models become oriented to more specific targets. Despite its conciseness, we hope
that our exposition can be stimulating.
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Avascular Tumor Growth Modelling: Physical
Insights to Skin Cancer

Martina Ben Amar

Abstract In this chapter I present the state-of-the-art theoretical models for
avascular tumor growth which are well established nowadays. I focus on models
able to treat morphologic instabilities and phase segregation, two typical features
of skin cancer for example melanoma. Contrary to experiments made in vitro on
growing colonies, I show that the geometry of melanoma confined in the epidermis
in the early stages of tumor growth suppresses the necrotic core and is responsible
of inhomogeneities due to aggregation of cancerous cells. A relatively simple
model consisting in the adaptation of the two-phase mixture model is enough to
explain the morphologies of the tumor not only qualitatively but also quantitatively.
Despite the complexity of the nonlinear partial differential equations that results
from this model, I also present analytical treatments based on the techniques of
nonlinear physics and W.K.B approximation to explain the observed structures in
dermatology.

Keywords Tumor multiphase modeling • Contour instability-Phase segregation
• Skin cancer morphology • Clinical dermatology

1 Introduction

Avascular cancer modelling is a well-developed topic nowadays [97], but few
of the theoretical studies have been orientated towards skin tumors, even less
towards melanomas. By opposition, there is an increase interest for melanoma
in molecular genetics and pathology [110]. From a mathematical viewpoint, it is
astonishing that experts in modelling neglect this really important disease for the
world population and for which many morphological data are available nowadays.
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Skin cancers are observable to the naked eyes, or by dermoscopic inspections in
the office of the dermatologist, or by more sophisticated techniques in hospital.
In addition biopsy is possible, giving the structure of the tumor inside the first
layers of the skin. Sophisticated modelling approaches now available combined
with powerful computational methods should test their predictive potentials on
melanomas in situ (by opposition to melanocytic cell colonies growing in vitro [16]).
The goal of this chapter is to present specific features of melanomas that the mixture
model is able to recover. But let us first give a brief reminder of skin biology.

Human skin can be divided into three layers, epidermis, dermis and hypodermis.
The epidermis is the superficial layer of the skin and is mainly composed of
keratinocytes and to a lesser extent melanocytes. These cells proliferate in a basal
monolayer attached to the basement membrane forming the dermal-epidermal
junction and migrate towards the skin surface during their differentiation. The
stratum corneum is the outermost part of the epidermis and is made of fully
differentiated keratinocytes and of non-living corneocytes, in a lipid-rich matrix
regulating skin permeability. In healthy skin, each melanocyte remains connected
to neighbor keratinocytes and to the basement membrane. Its main role consists in
producing the melanin, which is the skin pigment. Melanin is enclosed into vesicles
and is then transported by neighbor keratinocytes via endocytosis and exocytosis.
Melanocytic lesions such as nevi and melanoma originate from a dysregulation of
melanocytes leading to the invasion to the surrounding tissue.

Melanomas are the most deadly skin cancer, being responsible for 75% of
the mortality in this kind of tumors, according to the Skin Cancer Foundation.
Unlike cancers affecting other organs, these tumors are directly observable since
the primary tumor appears as a pigmented lesion at the surface of the skin.
Early detection is therefore made possible by simple skin examination, possibly
performed by the patient himself. When a melanoma is detected at an early stage, it
can be treated by simple excision and the 10-year survival rate is higher than 99%.
However, the survival rate drops to less than 50% when it penetrates deeply into the
dermis. In the last decades many efforts have been made to improve the methods of
differential diagnosis in order to classify malignant and benign melanocytic lesions
based on the morphological criteria. Empirical studies from collections of clinical
cases have led to the identification of shapes and microstructures, characteristics of
melanoma, but the underlying mechanisms generating these structures as well as
the morphological differences between malignant and benign tumors remain largely
unknown. We recently proposed physical mechanisms controlling the contour
regularity of melanocytic tumors [25, 42, 44] and explaining the appearance of
microstructures such as pigmented dots and globules [13, 41].

In order to develop methods for more accurate diagnosis, it is essential to better
understand the mechanisms which control the evolution of skin tumors. It will
allow maximizing the information detected from the structures observed by various
imaging techniques. The molecular and cellular biology has made strong progress
in oncology very recently thanks to the accumulation of data on the molecular and
cellular components involved in the genesis and progression of cancer [43, 76, 77].
More than 200 genes involved in these processes have been identified [64] and the
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treatment of metastatic melanoma shows significant improvements thanks to the
development of targeted therapies and immunotherapies. In particular, the Vemu-
rafenib targets a mutation in the RAS protein present in 50% of melanoma [89]
and the Ipilimumab stimulates the action of T cells interacting with CTLA-4,
a molecule that plays a central role in regulating the immune system [99]. A
search with PubMed shows that the number of papers in oncology referring to a
mathematical modelling increased from 2:4% to 8:6% between 1991 and 2011,1

reflecting an awareness of the importance of these tools for the prevention, diagnosis
and treatment of cancer [36, 48]. Depending on the organ affected, on the phase
of growth and the issues discussed, a variety of models were used [10, 35, 97].
In this chapter, I briefly describe different models: continuous, stochastic, discrete
and hybrid, developed in the framework of avascular solid tumors and I will focus
more on multiphase models adapted to skin tumors. I explain the adaptation of this
model to the geometry of melanomas. Finally I focus on the two main aspects of
their morphology: contour instability and existence of microstructures at the origin
of the heterogeneity of the tumor.

2 Historical Overview

2.1 Continuous Models

Global Mass Balance and Concept of Dormant State

The first models developed for solid tumors were mainly interested by growth
dynamics [29, 54, 70, 128, 132, 137]. Mayneord recognized as early as 1932 [100]
that for a long time the diameter of a tumor seems to increase linearly with time, in
apparent contradiction with the idea of an exponential proliferation of cancer cells.
To explain this phenomenon, he proposed the first model of cell growth confined to
the tumor periphery. This model is completed in 1955 by Thomlinson and Gray
[137] who explain the presence of a necrotic core in bronchial carcinoma with
a gradient of oxygen concentration between the periphery and the center of the
cylindrical tumors. In the absence of necrotic core (rate sufficient to ensure cell
survival oxygen) and assuming a rate of oxygen consumption ın constant, their
model gives the oxygen concentration n.r/ at a distance r from the center:

n.r/ D n0 � ın

4Dn

.R2 � r2/ (1)

1http://www.ncbi.nlm.nih.gov/ Pubmed. The number of items in oncology has been determined
using the keywords “cancer” and “tumor.” The number of articles referring to a mathematical
modelling was determined by adding the keywords “modelling” and “mathematical model.” Search
on 29th June 2012.

http://www.ncbi.nlm.nih. gov /
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Fig. 1 (a) Section of a spheroid of tumor cells cultured in vitro having reached a diameter of 1mm
in 20 days. One can observe the presence of a necrotic core. Image from [60]. (b) Hydrodynamic
model of growth

with n0 the concentration at the surface, Dn the diffusion coefficient of oxygen and
R the radius of the tumor. For a radius R > Rcrit D p

4Dnn0=ın � 200�m, the
concentration falls to zero in the middle of the tumor and a necrotic core appears
(see Fig. 1). This pattern of growth limited by diffusion was further developed by
Burton [29] and then by Greenspan in 1972 [70]. By introducing the existence of
a layer of quiescent cells (vanishing rate of proliferation), caused by the presence
of growth inhibitors and cell wastes, Greenspan succeeds to explain the saturation
of the growth for most of the tumors when the tumor size reached the millimeter
(dormant). WithR being the radius of the tumor, n the nutrient concentration andm
the inhibitor concentration, the model of Greenspan reads [70]

3R2
dR

dt
D � .R3 �R3g/� ıR3i ;

1

r2
@

@r

�
r2
@n

@r

� D ın

Dn

H.r � Ri/H.R � r/;

1

r2
@

@r

�
r2
@m

@r

� D �i

Di

H.Ri � r/;

with � the rate of cell proliferation,Ri the radius of the necrotic core, Rg the outer
radius of the quiescent area, ı the loss rate of dead cells in the necrotic core, �i
the production rate of inhibitors by the cells, Di the diffusion coefficient for the
inhibitors and H the Heaviside function. The boundary conditions are given by
m.R/ D 0, m.Rg/ D ˇi (the inhibition threshold for proliferation), n.R/ D n0
and n.Ri / D ni (threshold for cell death). The first equation expresses the change
in volume of the tumor, with a layer of proliferative growth and with contraction of
the necrotic core, and the last two equations mean the equilibrium concentrations
of oxygen and inhibitor in the tumor. The cancellation of the right-hand side of
the first equation gives the stationary radius of the tumor. Note that this steady
state is dynamic, the growth of cells in the outer layer and loss in the necrotic
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core causing a cell flow to the center of the spheroid. The dormant state concept
was experimentally confirmed by Folkman and Hochberg in 1973 [60]. Cultivating
spheroids of melanoma cells in an agar gel saturated with nutrients, they discovered
that the colonies reach a diameter of 3–4 mm and that in this steady state the
cells at the surface migrate towards the necrotic center, thus validating the model
of Greenspan (Fig. 1). In 1971 Sutherland et al. also found that cell proliferation
decreases gradually inwards the spheroids [135].

Homogeneous Hydrodynamic Models

Based on these observations and the pioneering work of Greenspan, many hydro-
dynamic models of avascular tumor growth have been developed [18, 30, 46, 71] to
understand the internal dynamics of the tumor. According to Lowengrub et al. [97],
we give here a typical theoretical framework of these models. Let ˝ be the volume
of the tumor (possibly divided into several regions ˝i [70, 71]) and @˝ the border
with the surrounding tissue (Fig. 1). Assuming a uniform cell density and diffusion
equilibrium in ˝ the evolution of the tumor is given by

v D �Krp; p D �� on @˝ , (2)

r � v D �; V D n � v on @˝; (3)

Dn�nC S D 0; n D next on @˝; (4)

with v being the velocity of tumor cells, K the cell mobility, p the hydrostatic
pressure, � the surface tension of the interface due to the difference in adhesion
between tumor cells with their counterpart and with the exterior environment, �
the mean curvature of the interface @˝ , � the local variation of cell volume due
to proliferation and cell death, V the normal velocity of the interface, n the outer
normal of the interface, n the nutrient concentration, S the consumption of nutrients
by tumor cells (S being negative) 2;3 and next the nutrient concentration at the tumor
border. The cell velocity, here given by Darcy’s law [Eq. (2)], is represented in some
models also by a Stokes’ law [62] (��ıvCrp�.�=3/r� D 0 with � the viscosity
of the medium) or a Darcy-Stokes law [152] (v � ��v D �Krp with � a constant
associated with the medium viscosity [19]). These models account for different
regimes of spheroid growth and the emergence of a steady state with spherical

2In the case of a diffusion-limited growth one often chooses � D an� ı [97]. This non-uniform
growth including a uniform apoptosis term ı in the tumor was introduced by McElwain and Morris
in 1978 [101] according to experiments of Sutherland and Durand [134] showing that a dormant
state was reached without the appearance of necrotic cell loss in the tumor center.
3For avascular tumors, one often chooses S D �ınn, that is, an oxygen consumption proportional
to the oxygen concentration as introduced by Deakin [49], according to the experiments of
Sutherland and Durand [134] that show an inconsistency with the model of Greenspan. Such a
relationship is well justified when the oxygen concentration is low.
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Fig. 2 Destabilization of a spheroid in the model of Li et al. [95]

symmetry when
R
˝
� d˝ D 0 (indicating a compensation between proliferation

and cell death) combined with the flux of cells from the periphery to the center
[71, 104, 133].

Hydrodynamic Instabilities

The stability of the spherical shapes was considered as early as 1976 by Greenspan
[71]. He shows that when the spheroid exceeds a critical radius the stabilizing
effects of surface tension (cell adhesion) no longer compensate the destabilizing
effects of cell death in the tumor center leading to destabilization. It may explain the
fragmentation of spheroids observed in some experiments by Sutherland et al. [135]
and a possible mechanism of invasion. In the framework of these hydrodynamic
models [17, 63], this instability has been found in several geometries by linear
stability analysis [1, 31] and developed recently numerically by Lowengrub et al.
[46, 95] (Fig. 2).

Influence of Mechanical Stresses and Elastic Models

In 1997, Jain and collaborators [78] studied the growth of tumor cell spheroids in
agar gels of different stiffness. The spheroids placed in the most rigid environments
reach dormant states of smaller diameter, demonstrating the inhibitory effect of
strong constraints on the growth. Also from several studies shown later, there is
a significant pressure at the center of solid tumors [72, 130], which particularly
affect the penetration of therapeutic agents. This phenomenon was predicted by
Shannon and Rubinsky [125]. Using a linear elasticity model, they show that any
process of inhomogeneous growth of a tumor mass with spherical symmetry led the
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development of residual mechanical stresses. Existence of residual stresses due to
non homogeneous growth is well explained now [23, 24, 68]. Moreover, fibre net-
works forming the cell skeletons and extracellular matrices confer elastic behavior
in living tissues and may be at the origin of instabilities. The mechanical stresses
generated by such growth processes play a significant role in their homeostasis
and final shapes. These forces are felt by the cells through adhesion molecules,
especially influencing the rate of cell proliferation [117] or polarization during cell
divisions [59]. These observations are accompanied by the development of models
taking into account the effects of mechanical stresses on the tumor progression
[97, 142]. Some of these are based on rheology such as the poroelastic [122] and
the viscoelastic model [98] or on nonlinear elasticity [4, 5, 40, 52, 53]. The theory
of elastic growth developed by Rodriguez et al. [121] provides a fruitful framework
for these models [24, 51, 82], the strain tensor F 4 being decomposed into a growth
tensorG (variation of volume due to growth and cell death) and an elastic tensorFn
(mechanical constraints during growth)

F D FnG ; (5)

as shown in Fig. 3. Growth may possibly be taken isotropic (G D gI ) and the solid
is often assumed incompressible in the case of living tissues (composed mainly of

Fig. 3 (a) In the model of elastic growth of Rodriguez et al. [121] the strain tensor F is
decomposed into a tensor representing the growth G , bringing the system to a non-stressed
state with a configuration possibly incompatible with the solid integrity (due to breakdown or
superposition) or with the boundary conditions, and an elastic deformation tensor Fn, bringing the
system to the final current configuration. Figure from [69]. (b) Ambrosi and Preziosi [7] add an
additional step in their model to take into account the cellular reorganization

4By definition Fij D @xi =@Xj with X identifying points of the solid in the initial state ˝0 and x
in the current state ˝t [51, 53].
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Fig. 4 Instability established by Dervaux and Ben Amar [52, 53] when the growth of an elastic
mass is located in the outer part. Swelling gel experiment (top) and theoretical predictions in an
elastic model (bottom). Figures from [51]

water) (det.Fn/ D 1). Assuming negligible inertia of the system, the mechanical
balance of the tissue imposes

r � T D 0; T n D t (6)

with T the Cauchy stress tensor and t the constraints, if any, applied to the border
of the tumor. Ambrosi and Mollica [5] introduce an elastic model with diffusion of
the nutrient limiting the growth and found qualitatively the dynamical growth of the
spheroids. An elastic model of melanoma growth in the epidermis is also developed
by Dervaux and Ben Amar [52] (see Fig. 4). Considering the circular symmetry
for the tumor and localized growth in an outer layer they show the existence of an
elastic instability beyond a critical amount of growth. This instability leads to the
breaking of the circular symmetry and to the appearance of ripples on the contour
of the tumor itself. It provides a possible mechanism for the appearance of contour
irregularities and asymmetrical appearance observed in melanomas.

The existence of residual mechanical stresses is well established in the case of
arteries and plays an important role for their correct functioning [38,141]. In the case
of tumors that notion is less clear; tumor cells proliferate in an uncontrolled manner
with the extracellular matrix constantly being deteriorated and re-synthesized. Thus
the definition of a reference state in purely elastic models is problematic. To take
into account the reorganization of bonds within the tissue, Ambrosi and Preziosi [7]
add to a previous theoretical framework a plastic deformation given by Fp (Fig. 3).

F D FnFpG : (7)
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Assuming a fast reorganization with respect to the growth process, they found a
fluid behavior of the tumor. A similar result is obtained by Ranft et al. [118] in a
continuous model including a stochastic process of division and apoptosis. In this
model a multicellular mass has an effective behavior such as a viscoelastic fluid
with a relaxation time determined by the cell proliferation rate. Modelling the cell
component as a Bingham fluid has been proposed in [26].

In the case of melanocytic lesions confined to the epidermis, the growth time is
long (months or years) compared to cell division (hours or days), tumor proliferation
is disorganized and the tissue (the epidermis) does not have extracellular matrix.
Although we keep in mind the possible existence of elastic effects, the model that I
will discuss hereafter is therefore based on a fluid description of tumors.

Stochastic Models

In biological systems random fluctuations are fundamental to many processes
(genetic heterogeneity of a cellular population, signal transduction, dynamics of
small systems). Wette et al. [145, 146] in 1974 suggest a model of solid tumor
growth based on a Fokker-Planck equation with a stochastic process of mitosis
and apoptosis (see also [36, 37]). This approach is developed by Ranft et al. [118]
to evaluate the velocity and density fluctuations of the cells and the diffusion
coefficient of a single cell within the tumor. In analogy with the nucleation theory,
Basan et al. [18] taking into account surface tension between healthy cells and
cancer cells show that the diameter for the dormant state is thermodynamically
unstable and fluctuations in the number of cells may allow the tumor to continue
its expansion. Note however that the latter model includes only an inhibition of
proliferation by contact (proportional to the local cell concentration) and does not
take into account the influence of the concentration of diffusing molecules in the
tissue.

2.2 Discrete Models

It is now well established that tumors are far from being monoclonal sets originating
from a single renegade cell [143]. Indeed they consist of a heterogeneous population
with genetic and epigenetic changes [124]. Testing transplantation of cells from
breast cancer [2], brain [127] and colon [120] on immunodeficient mice shows that
only a small portion of this population has the potential to regenerate a tumor.
Similar to stem cells from healthy tissue, these cancer stem cells can generate a
variety of differentiated cells [27]. To improve methods of treatment and diagnosis
a better understanding of the influence of this heterogeneous population is also
necessary [124].

Discrete models describe the dynamics of the tumor at the level of individual
cells, including possibly continuous fields such as nutrient concentration. They
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allow studying the effect of this heterogeneity by taking into account precisely the
interactions and cell cycles. These models are reviewed in detail by Lowengrub
et al. [97], Drasdo [56] and Roose et al. [123] and can be grouped between models
on grid (cellular automata [8, 9], generalized Potts models [66, 113], Boltzmann
methods on grid [3]) and models without grid, where (similar to those of molecular
dynamics models) particles represent cells [79, 119]. In the model proposed by
Anderson et al. [8,9] cells perform a random walk on a square network, biased by the
concentration of extracellular matrix (haptotaxis). They follow an internal program
(mitosis, aging, apoptosis, migration) influenced by the oxygen concentration and
the number of neighboring cells and can acquire mutations randomly. The authors
show that an unfavorable microenvironment (hypoxia, heterogeneous extracellular
matrix) exerts a strong selection pressure favoring the growth of more aggressive
phenotypes (high proliferation and poor adhesion between cells) and leads to more
invasive morphologies. In the model of Graner and Glazier [66, 113] each cell is an
extended object represented by an area having the same spin 
 corresponding to the
index of the cell (
 D 1 : : : N ). The evolution of the system is given by a Monte
Carlo method using the Hamiltonian

H D
X

.i;j /

Hij C
X




h
 (8)

with

Hij D J.�
i ; �
j /.1 � ı
i
j /

.i; j / being indices of neighboring points on the network and

h
 D �V .�
 /.V .
/ � Vt .
//2 C �S.�
 /.S.
/� St.
//
2;

� identifying the cell type 
 , J.�1; �2/ the adhesion energy between cell types
�1 and �2, �V the energy associated to changes in cell volume, �S the energy
associated to changes in the surface of the cell, Vt the average volume of the
cell at time t which may vary according to the local nutrient concentration and
the cell dividing when it reaches twice its original volume and St the average
surface cell for imposing a shape close to a sphere. Graner and Glazier [66]
have used this model to study the phase separation between cells of different
types by the differential adhesion mechanism identified by Townes and Holtfreter
[138] (Fig. 5). Based on the similarities of their model with models of directional
solidification, they also develop a phase diagram of the growth morphologies, the
control parameters being the adhesion between cells (surface tension) and the ratio
between the cell proliferation and diffusion of nutrients [113]. The results obtained
by the discrete description [57] and the continuous models of growing spheroids
have been compared by Byrne and Drasdo [32]. The model of Drasdo and Hoehme
[57] has been implemented in the CellSys software [79]. It leads to the same
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Fig. 5 (a, b) Experiments of Townes and Holtfreter [138]. (a) Amphibian embryo cells are
dissociated. (b) Cell adhesion causes them to re-aggregate and differences in compliance between
cell types reorganize the tissue (here epidermal cells in black and cells of the neural plate in white).
(c, d) Simulations of Graner and Glazier [66] who study this phase separation with a generalized
Potts model

dynamical growth that continuous models such as the work of Greenspan [Eqs. (2)
and (3)].

Discrete models, however, are limited by the large number of unknown coupled
variables and require almost systematic use of numerical simulations, making it
difficult to understand the dynamics of the modelled systems. The large number
of variables is limiting also for simulations of large systems (such as melanomas
of 6mm in diameter). Note, however, the recent development of hybrid models
[20] adopting a description with both discrete cells (intracellular mechanisms,
heterogeneity of the population) and continuous quantities (cell density, continuum
mechanics) to reach the scale of molecules and tissues simultaneously.
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3 Multiphase Models

In homogeneous continuous models, terms representing source or sink of matter
linked to the cellular proliferation [term � in the equation Eq. (3)] imply the
existence of another phase providing or absorbing this matter that is not modelled
explicitly. Living tissue includes local effect of the constituents of different types
(different types of cells, extracellular fluid, extracellular matrix, vasculature, etc.).
These elements can locally occupy different portions of the space and have different
displacements. Also between the different phases, matter exchanges (growth or cell
death, synthesis or degradation of extracellular matrix) and mechanical interactions
(as viscous drag, cell–cell adhesion, cell adhesion to the extracellular matrix)
exist. At a scale larger than the spatial heterogeneity, the mixture theory allows
a continuous description of the complete system (including all possible phases
constituting the tissue) without the need to define interfaces between different
phases.

The mixture theory has been developed from the pioneering work of Truesdell
on the mechanics of fluid mixtures in the 1960 [139, 140]. The theory is completed
a few years later in particular by Mueller [103] to give the modern thermodynamic
framework of multiphase models. It knows important success for the description
of granular media [15], mixed dielectric [136] or even meteorological systems
[50]. In 1998 Please et al. [111, 112] introduce exchange terms of specific mass in
biological growth process and apply the mixture theory to tumor growth particularly
for understanding the dynamics of cellular mass lost in the necrotic center of
spheroids. This model was subsequently developed to take into account the full
balance of interphase forces [34, 92], the inhibition of growth by mechanical
constraints [33] and the presence of solid phases and residual stresses [11,115,116].

Concepts and the formalism of multiphase models used in the remainder of this
work will now be introduced (Fig. 6).

3.1 Conservation of Mass

All fields of the model are described in a reference Eulerian configuration and
explicitly depend on a space variable x in ˝t and a time variable t . The domain
definition ˝t of the tumor may be time-dependent (invasion of adjacent tissues).

Fig. 6 In the theory of
mixtures, the various
components of the tissue are
described by their local
volume fraction
�i .x/ D dVi .x/=dV .x/ and
their local velocity vi
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We consider around each point x a volume dV.x/ to be large enough compared to
the size of the components, but small compared to the size of the whole system. We
denote �i .x/ D dVi .x/=dV.x/ the volume fraction occupied by the constituents
i and vi their average velocity over dV.x/. All phases i D 1 : : : N fill the entire
space, requiring a saturation relationship for the mixture

NX

iD1
�i D 1: (9)

Living tissues being mainly composed of water, we assume the density of all the
components to be equal to the water density 	 and the incompressibility of the
mixture becomes

r �
 

NX

iD1
�ivi

!
D 0: (10)

Assuming V 	 ˝t a fixed volume, the change in mass Mi D R
V
	�id˝ of the

constituents of the phase i contained in V is given by

dMi

dt
D �

I

@V

	�ivi � ndS C
Z

V

	�idV (11)

with n the normal to the surface @V of volume V and 	i�i a mass exchange term due
to biological processes of growth, death, synthesis or degradation. In some models
a diffusion term is added to account for cell motility [97]. Applying the Green-
Ostrogradski theorem, Eq. (11) can be rewritten:

Z

V

@	�i

@t
dV D

Z

V

Œ�r � .	�ivi /C 	�i � dV: (12)

The volume V being arbitrary this relationship implies

@�i

@t
C r � .�ivi / D �i ; i D 1::N: (13)

Summing these equations for i D 1 : : : N , the assumption of saturation and
incompressibility [Eqs. (9) and (10)] then give the conservation of mass in the
system [6]

NX

iD1
�i D 0: (14)
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The tissue also contains chemical factors of concentration cj (nutrients, growth
inhibitors) dissolved in the interstitial fluid and satisfying an equation of advection-
diffusion-reaction

@cj

@t
C r � .cj vl / D r � .Djrcj /C Sj ; j D 1::N 0; (15)

with vl the interstitial fluid velocity, Dj the diffusion coefficient of the factor j
and Sj an algebraic term of consumption or degradation (in this case Sj < 0), or
production (Sj > 0 ). When the evolution of the system is slow we can assume the
diffusion at equilibrium and neglect the left side of Eq. (15).

3.2 Mechanical Balance

We consider the situation where the growth is slow compared to the time needed for
the tissue reorganization, each phase being treated as a fluid (see discussion in the
penultimate paragraph of Sect. 2.1). The interactions between the components of the
tissue may be assumed weakly nonlocal and the free energy of each phase can be
developed at first order [149] as shown below:

Fi D
Z

˝

0

@ .�1; ::�N /C
NX

jD1

�2ij

2
jr�j j2

1

A d˝; (16)

with  the free energy density for a uniform tissue and the term �ij can be
interpreted as a surface tension between phases penalizing strong composition
gradients. To take into account the effects of chemotaxis [22], some models also
add a term dependent of concentrations cj [22, 47] not considered here.

Variational Principle

To determine the dynamical state of the system here we follow the approach
developed by Doi and Onuki [55] based on a variational formulation. To introduce
this concept first we consider a system described by thermodynamic variables
fxi gNiD1 and a free energy F . In equilibrium thermodynamics, we have

dF
dt

D 0 D
NX

iD1

@F
@xi

� dxi
dt
: (17)

Close to equilibrium, when the thermodynamic forces @F=@xi are slowly varying,
a quasi-stationary approximation is used to show that there is a linear relationship
[91]
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dxi

dt
D �

NX

jD1
Lij @F

@xi
(18)

between velocities and forces [91]. Defining (Mij ) the inverse matrix of (Lij ), this
relation can be inverted and gives

� dFi
@xi

D
NX

jD1
Mij

dxj

dt
: (19)

This last relation can be recovered by using a variational principle concerning the
“Rayleighian” (equivalent to the Lagrangian for Hamiltonian mechanics) defined by

W D
NX

iD1

NX

jD1

dxi

dt
Mij

dxj

dt
: (20)

Defining

R D 1

2
W C dF

dt
; (21)

we get

R D 1

2

NX

iD1

NX

jD1

dxi

dt
Mij

dxj

dt
C

NX

iD1

@F
@xi

dxi

dt
(22)

and Eq. (19) is obtained by minimization of R with respect to the velocities dxi=dt .
W means the dissipated energy by the system [55]. This variational principle defines
an equilibrium between forces of viscous dissipation obtained from W and the
elastic forces obtained from dF=dt . Doi and Onuki [55] apply this principle to
the multiphase model, the velocities dxi=dt being the velocity fields vi , and the
dissipation can be written as

W D
NX

iD1

Z

˝

"
NX

jD1

Mi;j

2
.vi � vj /2 C �i .r � vi /2

#
d˝: (23)

The first term corresponds to the energy dissipation driven by viscous friction
between the different constituents where Mij are the friction constants. The second
term means the energy dissipation due to the velocity gradients with �i the
viscosity of phase i . For the system we consider, we will see that it is negligible
compared to the first one. Using the variational principle of Rayleigh, one can show
that the overdamped dynamics of the system can be determined by minimizing
R with respect to the variables vi , the boundary conditions being vanishing at
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infinity. The incompressibility constraint [Eq. (10)] is imposed by adding a Lagrange
multiplier p which will be identified to the interstitial pressure. Using Eq. (13), the
“Rayleighian” can then be written as

R D
NX

iD1

Z

˝

"
NX

jD1

�
Mi;j

4
.vi � vj /2

�
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„ ƒ‚ …
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C
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�

„ ƒ‚ …
variation of the free energy

� pr � .�ivi /„ ƒ‚ …
incompressibility

#
d˝: (24)

The equations corresponding to the balance of forces in each phase are derived by
minimization of this functional with respect to vi

0 D
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�
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@�j
� �2ij ��j

�

„ ƒ‚ …
mechanical stresses

C
NX

jD1
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viscous forces
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hydrostatic pressure

:(25)

The interstitial liquid can be considered as incompressible [47, 114] and the force
equilibrium for this liquid phase l simplifies

NX

jD1
Ml;j .vl � vj /C �lrp D 0: (26)

The incompressibility [Eq. (10)] is not sufficient to identify all the variables of the
system and one additional assumption on the velocities is necessary. One possibility
is to cancel the total velocity of the mixture [42,97], meaning that the center of mass
does not move so we get

v D
NX

iD1
�ivi D 0: (27)

This solution satisfies the incompressibility constraint and is physically justified for
a very viscous mixture when the external forces on the volume and on the surface
of the system are neglected. The interstitial fluid velocity is given by

vl D �1
�l

X

i¤l
�ivi : (28)
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3.3 Two-Phase Mixture

For simplicity and in order to adapt this model to tumor growth in the epidermis
we consider the case of a mixture with two phases: the cellular phase, labelled
by the index c corresponding to melanocytes, and a liquid phase, labelled by the
index l , corresponding to the interstitial fluid. The liquid phase contains possibly
other cellular phases that are not explicitly distinguished here (e.g.,degrading dead
cells, keratinocytes). Also we consider two types of chemical factors: nutrient
concentrationn and growth inhibitors of concentration m. The liquid phase contains
possibly other cellular phases that are not explicitly distinguished here. A more
detailed model including also keratinocytes and the basement membrane phase
was developed in [44]. We will see, however, that most of the mechanisms of
morphogenesis may be found with the simpler model considered here. Thanks to
the incompressibility constraint �c C �l D 1, the free energy of the cellular phase
can be written as a function only of �c without loss of generality. Choosing a friction
rate proportional to the cell numberMc;l D Ml;c D ��c , mechanical equilibrium of
the two phases reads

��c.vc � vl /C �cr
�
@ 

@�c
� �2��c

�

���c�vc C �crp D 0; (29)

��c.vl � vc/C .1 � �c/rp D 0: (30)

Using Eq. (28) and eliminating the pressure p between Eqs. (29) and (30), the set of
equations giving the evolution of the model is then

@�c

@t
C r � .�cvc/ D �c; (31)

vc D K.�c/.r.�˙.�c/C �2��c/C ��vc/ (32)

@n

@t
C r � .nvl / D r � .Dnrn/C Sn; (33)

@m

@t
C r � .mvl / D r � .Dmrn/C Sm; (34)

with ˙.�c/ D @ =@�c the cell–cell adhesion energy and K.�c/ D .1 � �c/
2=� .

The volume fraction of the interstitial fluid �l is given by the saturation constrain
of the mixture, �l D 1 � �c , and the velocity vl by the Eq. (28), vl D �.�c=�l/vc .
Expressions for the pressure term ˙ and the exchange terms �c , Sn and Sm are
discussed in Sect. 3.4. In the case of skin tumors, growth rates are low, typically
0:3mm per month, and the left-hand side of Eqs. (33) and (34) will be taken equal
to zero in the following (diffusion equilibrium).
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Fig. 7 Qualitative representation of the pressure ˙ imposed by the cells according to their volume
fraction �c . The physical consistency of the model requires ˙.0/ D 0, ˙ < 0 at low density
(adhesion between cells) and ˙ > 0 for high density (steric repulsion). We denote �e the
equilibrium volume fraction (˙.�e/ D 0) and �� the minimum of the pressure ˙

3.4 Mechanical Interactions

These interactions must satisfy elementary physical requirements. Low-density
adhesion between cells tends to form aggregates leading to an effective negative cell
pressure (˙ < 0), the pressure vanishing obviously in the absence of cells (˙.0/ D
0 ). At high density, entropic repulsion dominates (˙ > 0) to prevent the full space
occupation by the cells (˙ ! C1 for �c ! 1). These assumptions require the
existence of a volume fraction �e for which the pressure exerted by the cells is zero
(˙.�e/ D 0) which can be identified as the homeostatic equilibrium pressure. The
cell–cell attraction at low cell density must be also imposed, giving a domain where
the pressure derivative (denoted by ˙ 0 D d˙=d�c) becomes negative. This zone
will be considered unique and the minimum of ˙ will be noted by ��. The cell-
pressure ˙ satisfying these assumptions is shown qualitatively in Fig. 7. Equation
(32) giving the displacement of any point of the cell phase reads

vc D �K.�c/.˙ 0.�c/r�c � r .�2��c/ � ��vc/: (35)

The first term on the right may be assimilated to a diffusion term. By taking � D 0,
� D 0 and �c D 0 Eqs. (31) and (32) can be rewritten in the form of a nonlinear
diffusion equation:

@�c

@t
D r � .K.�c/˙ 0.�c/r�c/:

In the region where ˙ 0.�c/ < 0, the diffusion coefficient is negative, potentially
leading to a phase separation between domains rich in cancer cells and domains
containing only interstitial fluid (this segregation is called spinodal decomposition).
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However, the term � prevents the appearance of a discontinuity in the solution fixing
a nonzero thickness of the transition zone for these domains [107]. These effects are
discussed in detail in the following.

3.5 Exchange Between Components

The fields �c , n andm are coupled by the terms of mass exchange �c.�c; n;m/ and
consumption rates Sn.�c; n;m/, Sm.�c; n;m/. Based on experimental observations
on melanoma we now give expressions for the possible coupling terms, discussing
separately the growth by nutrients, the inhibiting factors and the contact inhibition.

Influence of Nutrients on Proliferation

The maintenance of the cell metabolism requires a number of vital nutrients,
including oxygen, without which the cells cannot stay alive. The growth inhibition
by lack of nutrients was the first proposed mechanism to describe the growth
dynamics of avascular tumors [137]. Greenspan’s model [70] assumes the existence
of a concentration threshold nthreshold, such that the cells proliferate with a constant
rate �0 > 0 for a nutrient concentration n � nthreshold and die with a constant rate ı
for n < nthreshold. However, the experiments of Sutherland and Durand [134] show a
non-zero rate of apoptosis in nutrient-rich areas and that the arrest of the expansion
of a tumor is not always accompanied by the existence of a necrotic core. Culture
assays in vitro of melanoma cells showed that the growth rate increases more or less
linearly with the concentration of serum [58]. A simple choice consistent with these
observations is given by

�c D .�c
n

ne
� ıc/�c; (36)

with �c D 0.2–0.67 day�1 [39, 45, 58] and ıc D 0.05–1.65 day�1 [39, 45], �c being
the proliferation rate, ıc the apoptosis rate in the cellular phase and ne a typical
nutrient concentration in the organ considered. In the epidermis for example, the
partial pressure of oxygen is like ne D 25–78 mmHg [131]. The mass creation is
naturally proportional to the number of cells in the absence of contact inhibition �c
and is thus proportional to �c .

Consumption of Nutrients

Greenspan initially introduced a nutrient consumption simply proportional to the
amount of cells Sn D �ın�c . However, this form is inconsistent with the
experimental results of Sutherland and Durand [134]. Studying the xenografts in
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various tissues, including melanomas, Kallinowski et al. [84] have shown that
the consumption of nutrients actually varies linearly with the concentration, for
low concentrations, and then saturates to a plateau. Since the environment of the
epidermis is very hypoxic [21, 131], we assume the linear regime for melanomas
and choose

Sn D �ın�cn; (37)

with ın D 1,190–3,030 day�1 [80, 131].

Influence of Mechanical Stress on the Proliferation

The initial exponential growth of melanoma cells placed in culture (in a medium full
of in nutrients) saturates when the cells reach confluence. Ellem and Kay [58] thus
show that the growth rate peaked around a certain density and then decreases rapidly.
Experiments by Helmlinger et al. [78] and Puliafito et al. [117] show that this
phenomenon is found in avascular tumors and that inhibition of cell proliferation is
largely mediated by the mechanical stresses experienced by cells. Then a limitation
of the growth occurs by contact inhibition so we have

�c D �c
�
˙.�c/�˙.�inhib/

�
�c: (38)

This proliferation vanishes for a certain volume fraction �c D �inhib , choosing a
function �c such that �c.0/ D 0 (apoptosis compensating exactly the number of cell
divisions). Thus �inhib represents the homeostatic volume fraction.

Growth Inhibitors

Finally the cell proliferation may also depend on the concentration of certain kinds
of growth inhibitors, cytokines or cellular toxic waste. As in Greenspan’s model
[70] we assume that these inhibitors are produced by the cells themselves with a
constant rate ım. Thereby

Sm D ım�c: (39)

In the case of a growth process limited by the presence of inhibitors, we will take a
linear dependence of cellular proliferation as for the nutrients:

�c D �c.1 � m

me

/�c; (40)

with me the inhibitor concentration such that the net cell proliferation vanishes.
Typical values of the physical constants for skin tumors can be found in Table 1.
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Table 1 Biophysical parameters of the skin and of solid tumors derived from the
literature

Parameters Values References

Epidermis thickness h 100�m [65, 85]
in non-glabrous area

Epidermis thickness h 1mm [65, 85]
in glabrous area

Migration time of keratinocytes 30 days [85]
from the basal

Volumetric cellular fraction �e 0.57–0.87 [86, 147]
in the healthy epidermis

Volumetric cellular fraction �e 0:23 [102]
in the basocellular carcinoma

Proliferation rate � 0.2–0.67 day�1 [39, 45, 58]
of melanoma cells

Oxygen consumption rate ın 1,190–3,030 day�1 [80, 131]
of the healthy skin

Oxygen diffusion coefficient D==
n 39:7mm2 � day�1 [83]

parallel to the epidermis layers

Oxygen diffusion coefficient Dz
n 18.5–26.6 mm2 � day�1 [131]

perpendicular to the layers

Partial pressure of oxygen 104 Pa [131]
in the corneal layer nat
Partial pressure of oxygen 3:33 � 103 Pa [131]
in the basal layer nderm
Typical overpressure � generated by 130–3,700 Pa [81, 88, 147]
cell–cell interactions

Viscosity of the cellular phase � 300� 103 Pa � s [90]

Cell/liquid friction coefficient � 103 � 1:2 � 104 mm�2 Pa � day [86]

Apoptosis rate of melanoma cell 0.05–1.65 day�1 [39, 45]
in absence of nutriments ı

Notice that the measure conditions of some of these parameters are very far from in vivo
skin conditions. These values must be considered as order of magnitude and cannot be
considered as precise values

After these generalities on tumor modelling and the justification of the two-phase
mixture model, we can consider the specific case of melanoma. As mentioned in
the introduction, among its specificity, melanomas do no exhibit a necrotic core,
characteristic of spheroids, in most cases. This is mostly due to the geometry inside
the epidermis closer to the disc than to the sphere. Hereafter, we present some
numerical and analytical results.
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4 Contour Irregularity

Regularity and symmetry of the contour of a lesion is an important morphological
criterion for the differential diagnosis of melanomas and nevi, used for example in
the ABCDE rule [144]. Melanoma may appear de novo or from a pre-existing nevus;
in both cases there exists a mechanism induced by a genetic mutation to break down
the circular geometry during its evolution. Now, we aim to connect the evolution and
morphology of an avascular tumor confined in the epidermis to the cell properties
and to the microenvironment that make up the tissue, and we focus more precisely
on the development of instabilities on the initially circular contour of a tumor. These
contour instabilities are characteristic of an inhomogeneous growth process in soft
tissues [23, 68] but are also considered as tumor agressiveness. In these last two
sections of this review our scope is not to elaborate the most sophisticated approach
of avascular tumor growth but simply to explain by the simplest possible model
the presence or the absence of a necrotic core, the contour instability and finally
the cell segregation. The two-fluid mixture model described above is sufficient for
our purpose. More sophisticated and complex models have been treated previously
(not for melanomas) and can be found in [44, 97]. However the main features of
melanoma growth in the avascular phase is due to the skin geometry and to the
cell–cell adhesion property. Up to now, melanoma—which is the subject of a large
literature in dermatology and cancer biology—has poorly been considered in cancer
modelling. Taking into account the geometry of the thin skin, we first derive a
bidimensional model at the lubrication limit. We present numerical and analytical
results indicating that the lesion radius grows with constant velocity, which explains
eventually the presence of a necrotic core followed by a contour instability, and we
finish by the process of segregation for the cell repartition as commonly observed in
melanocytic lesions. The results are compared with clinical observations at the end
of this section.

4.1 Mixture Model in Thin Geometry

The two main components for tumors confined in the epidermis are the proliferative
cancer cells (index c) and a phase made by the other constituents of the tumor
such as healthy and dead cells and the interstitial liquid. The keratinocytes are
supposed dispersed in the interstitial fluid phase and their influence is neglected. The
epidermis is represented by a thin layer between the basement membrane (z D 0)
and the stratum corneum (z D h). This layer is wavy but for simplification we take
it horizontal. The typical scale of the undulations is about � 100�m which is small
compared to the size of the overall pattern of the lesion (� 5mm) and the geometry
of the relatively flat epidermis in the hairless areas justifies this assumption. The
cell proliferation rate �c is regulated by the cell volume fraction �c , by the nutrient
concentration n and possibly by the concentration of inhibitors m, by-products of
the growth, that we neglect here. Cells consume nutrients at a constant rate ın.
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Fig. 8 The epidermis is represented by a layer of thickness h � 0.1–1 mm [28, 126] confined
between a basement membrane (z D 0) and a stratum corneum (z D h). The concentrations of
nutrients in the dermis (z < 0) and at the skin surface (z > h) are assumed to be fixed. The flux of
nutrients J nat and J nderm depends on the concentration at z D h and z D 0 [Eqs. (41) and (42)]

Nutrients and possibly inhibitors of negligible mass diffuse into the interstitial fluid,
through the basement membrane and through the stratum corneum. The equilibrium
distribution is considered in the following, due to the low growth rate of the system
(� 0:3mm per month typically). Concentrations in the dermis (nderm) and at the
surface of the skin (nat ) are assumed to be constant, and fluxes through the basement
membrane (J nderm) and through the stratum corneum (J nat ) are given by a balanced
distribution (Fig. 8):

Dz
n

@n

@z
D J nat D ˛nat .nat � n/; at z D h (41)

Dz
n

@n

@z
D J nderm D ˛nderm.n � nderm/; at z D 0 (42)

with ˛nat and ˛nderm being the permeability coefficients of the horny layer and the
basement membrane, respectively. The evolution of this two-phase model is given
by Eqs. (31)–(33) and (34). Notice that the in-plane diffusion is rather different
from the transverse one in the epidermis, and it is represented by a diffusion
coefficient D==

n different from the corresponding transverse one, Dz
n, due to the

layered structure of the tissue (see Table 1). Boundary conditions at the tumor
border, defined by x D xb, are simply given by

�c D �e; (43)

n D ne C a.z � h=2/; (44)
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Vf D vc � n: (45)

Equation (43) is the mechanical equilibrium condition at the tumor edge, and
Eqs. (44) and (45) mean the continuity of nutrient concentration and velocity at the
border. The effects of compression on the tumor by the surrounding environment
may be taken into account by imposing �c D �e;compress > �e at the border.

4.2 Lubrication Method

The epidermis thickness h � 0.1–1 mm [28, 126] being small compared to the
typical tumor diameter L � 5mm suggests that the evolution can be described
by a 2D model through a lubrication approximation, a technical method without
difficulty, usual in thin film hydrodynamics. Considering averaged quantities given
by h.�/i D 1

h

R h
0
.�/d z, one derives effective 2D equations for these quantities to

leading orders, the only difference coming from the diffusion equation having now a
source term due to the third dimension. We finally focus on the dimensionless 2D set
of equations that we plan to analyze in the following and we define: Nx D p

��=�x,
Nt D �ct , Nn D n�1

e n, Ṅ D ��1˙ , NK.�c/ D �K.�c/, N� D .�ch/
�1h�ci. To simplify

the notation, hereafter we suppress the bars. The quantities are averaged in the
meaning defined above, � is the concentration of cancerous cells, and diffusion
concerns only in plane diffusion, perpendicular diffusion being responsible of a
source. Then we finally get

@�

@t
C r � .�v/ D � .�; n/; �.xb/ D �e; (46)

v D �K.�/r˙; n � dxb=dt D n � v.xb/ D Vf ; (47)

0 D �n � ˇ1�nC ˇ2.1 � n/; n.xb/ D 1; (48)

with n the external normal to the lateral edge of the tumor at the point xb .
All quantities are dimensionless and depend only on the variables x, y and t .
Parameters which control the system evolution are functions of � , ˙ and the
constants ˇ1 D �ın=.��Dn/ and ˇ2 D �Dz

n=.��ın/ with Db;n the average
coefficient representing the flux of nutrient coming either from the upper or the
lower horizontal surface. In case of oxygen that we consider as the main nutrient
in the avascular phase, it can come either from the atmosphere or from the blood
below the basal membrane. This question remains debated, the stratum corneum of
the upper skin being a potential barrier. In any case, the origin of the transverse flux
does not change the equations.



Avascular Tumor Growth Modelling: Physical Insights to Skin Cancer 87

Fig. 9 Profile of cell volume fraction � for a growing contour instability in a plane front
propagating along x and initially invariant in y. The ripples on the contour associated to this
instability has a typical wavelength � and the finite amplitude saturates at long times. The
simulation parameters are ˇ1 D 4, ˇ2 D 0, �e D 0:6, ı D 0:4 and t D 0, 10, 20, 80 from
left to right

5 Numerical Results

Let us consider the growth of a tumor with initially a radius R0. To understand the
emergence of asymmetry and contour irregularities observed in melanomas during
the horizontal growth phase, we seek here the conditions for a contour instability
breaking the circular symmetry.

For numerical simulations we choose � as � D �.n � ı/ and˙ is given by

˙.�/ D .� � �e/�
p

1 � �
: (49)

This form, similar to the choice made in [33], satisfies the phenomenological
observations mentioned above: (i) the pressure ˙ vanishes in the absence of cells,
(ii) cells attract and adhere when they are close causing a negative pressure at low
densities (� < �e) and (iii) when cells are too close they experience a repulsive
force causing a positive pressure for higher densities (� > �e) which diverges when
the cells occupy all the available space (� ! 1). Note that if the literal expressions
of˙ and � are required for simulations, most results are valid for general functions
satisfying the constraints described above. Here we have taken p D 3.

First, let us consider a semi-infinite planar front, with a scale invariance along y,
the axis perpendicular to the tumor progression. The 1D numerical simulations (see
Fig. 9) show a steady growth along the x-axis, the tumor edge being at x D L.t/

moving at constant velocity U such as L.t/ D Ut C L0: In the referential moving
with the edge velocity, the cancer and nutrient concentrations �.z D x � Ut; t/,
n.z; t/ become time-independent indicating a travelling wave behavior. Appearing
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after a short transient, the asymptotic regime is independent of the initial conditions
and all the properties of the solution, including the speed U , are determined by the
model parameters entering the dimensionless Eqs. (46)–(48). This regime has also
been observed numerically in [44] in a more complex model of melanoma growth
with 4 phases, indicating that elastic interactions are important at the initiation but
can be neglected after. Equations (46) and (48) give in the limit z ! �1 the volume
fraction ˚0 D �.�1/ and the nutrient concentration N0 D n.�1/ far away from
the border:

� .˚0;N0/ D 0; ˇ1˚0N0 C ˇ2.N0 � 1/ D 0: (50)

Recall that the net proliferation � .˚0;N0/ vanishes for a critical nutrient concen-
tration N0 D ı. Then Eq. (50) gives ˚0 D .ˇ2=ˇ1/.ı

�1 � 1/. We can conclude that
˚0.z/ D �.x � Ut; t/ is a monotonic function if ˚0 > �e and has a maximum for
z D zm < 0, near the edge of the tumor if ˚0 < �e. The penetration length for
nutrients can be found by WKB techniques:

lp �
p
ˇ1�e C ˇ2

ˇ1�e
: (51)

An important fact in the dynamics is the creation of a necrotic zone after some
time and then an instability of the nutrient zone which finally gives rise to a front,
roughly steady, evolving with a nonlinear instability at its border. Very few analyses
are concerned with stability of steady travelling waves and the interested reader can
find a complete analysis in [42]. In the circular regime, numerical simulations also

Fig. 10 Border instability developing on a tumor initially circular in radial growth. (a) Outline of
the tumor border at time t D 0, t D 10, t D 20, t D 30 and t D 40, from the smallest to the
largest diameter. Ripples appear with a typical wavelength. (b) Cell volume fraction � at t D 40.
ˇ1 D 4, ˇ2 D 0, �e D 0:6 and ı D 0:4
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indicate a steady growth evolution of the tumor radius at constant velocity after a
short transitory regime and the net creation of a necrotic core (see Fig. 10). The fact
that the radius grows quite linearly indicates that the growth occurs in a zone of
constant thickness close to the border that we identify to the nutrient zone. Above
a critical radius one can observe a nascent instability on the simulations which also
grows and saturates. Here again mathematical proofs have been given by Ben Amar
et al. [25, 42] but let us simply make estimates.

The growth rate of the tumor G is given by the growth rate � .�e/ times
the surface of the proliferating ring which has a constant thickness lp so G D
2�R� .�e/lp which is also equal to �e2�R PR D 2�e�RU if the circular geometry
is preserved as the steadiness of the growth. Then we get �eU � � lp where
� D �e.1 � ı/. Notice that lp, estimated before by Eq. (51), must be small in
comparison to the radius for this estimation to be valid. Moreover knowing that the
tumor velocity is the cancer cell velocity at the border fixed by the Darcy law, we
also have: U � K.�e/˙

0r�e (˙ 0 being the derivative of ˙ with respect to � at
the border). We finally derive a critical dimensionless parameter for the growth of
instabilities at the tumor border

T D 2�K.�e/˙
0.�e/

V 2
f

: (52)

The factor 2 is added for convenience. For T > 1 the destabilization contour occurs
when the radius of the tumor exceeds a critical radius Re given in physical units by

Re D 2K.�/˙ 0.�e/
Vf .T � 1/

� 2lp

T � 1 being T > 1: (53)

The diagram represented in Fig. 11 shows the evolution of the stability of the circular
tumor as a function of the control parameter T , also found in a one phase model
[109] . The physical origin of this “buckling” criteria is simply the fact that localized

Fig. 11 Stability diagram of
the circular tumor growing as
a function of its radius R, the
growth rate Vf and the cell
proliferation rate at the edge
of the tumor � =�e . The
border of tumor in regression
(Vf < 0) is always unstable
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Table 2 Stability of the
circular tumor growth in our
model with two phases

Instable contour
Morphology Stable (undulation wavelength)

T < 1 > 1

R < Re > Re (� decreases with R)

˙ Weak Strong (� � lp)

� Weak Strong (� � lp)

Vf Fast Slow (� � lp)
regression (� � lp)

The phenotype of cells, mechanical interactions (˙)
and proliferation rate (� ) are connected to the
macroscopic properties of the tumor growth rate Vf ,
to the radius R, to the size of the proliferative area lp
and to the wavelength of the corrugations (�) on the
contour of the tumor

Table 3 Abbreviations:
superficial spreading
melanoma (SSM),
acral-lentiginous melanoma
(LMM) (ALM), nodular
melanoma (NM) and
desmoplastic melanoma
(DM), med. is for median

Growth velocity Re�
mm day�1

�
T Œmm�

0:004 (med. SSM) 11–18 0.021–0.022

0:011 (SSM) 4–6.5 0.065–0.073

0:0043 (med. LMM) 10–17 0.023–0.024

0:013 (med. ALM) 3.4–5.5 0.079–0.092

0:016 (med. NM) 2.75–4.5 0.1–0.13

0:049 (NM) 0.9–1.5 > 0:77

0:062 (DM) 0.71–1.2 > 2:2

The parameter T is estimated with Eq. (52) and
Re from Eq. (53). The growth rates reported here
are from [12, 96] and parameter values used
are � D 0:2days�1 and lp D 0.11–0.18 mm
(Table 1)

proliferative zone cannot remain circular if they are too much proliferative. The
tumor changes its shape to be able to accommodate the new cancer cells which are
produced. However, even if the tumor velocity is linked to the cell proliferation,
because of the mechanics inside the tumor, fast-growing tumors such as nodular
melanomas are stable [as shown by Eq. (52)]. Near the threshold of instability, the
perturbations developing on the contour have a wavelength given by � � 2�lp ,
compatible with the size of the proliferative zone. A summary of our analytical
predictions is presented in Table 2.

Interestingly, the control parameter T predicts a significant correlation between
the rate of melanoma growth and the stability of its contour, the fast-growing
melanomas being more stable. In addition this model shows that tumors in
regression also show ripples with small wavelengths allowing a better understanding
of the shape of the scar areas. These results are consistent with clinical observations
of Liu et al. [96] and Argenziano et al. [12]. Clinical data reported in Table 1 are used
to estimate the control parameter T for different growth rates. One can notice that
T < 1 for fast-growing melanoma (Vf > 1:5mm per month for nodular melanoma)
and T > 1 for slow-growing melanomas (Vf < 0:4mm per month for superficial
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Fig. 12 Estimation of the control parameter T for slow-growing melanomas (superficial spreading
melanoma and acral-lentiginous melanoma) and melanomas with rapid growth such as the nodular
and desmoplastic melanoma. The median growth rates are taken from [96] and the model
parameters from the literature and reported in Table 3. Clinically fast-growing melanomas with
T < 1 are characterized by symmetrical growth and slow-growing melanomas with T > 1 are
often asymmetrical. The images are from the Skin Cancer Foundation and from the work of Dr. P.
Guitera

spreading melanoma), in agreement with the observed morphology for different
types of melanomas (Table 3 and Fig. 12). Notice that nodular and desmoplastic
melanomas grow mainly in the dermis, but our model manages to capture their
behavior. The experimental data give an estimate of� D 0:43–2:2mm, compatible
with the assumptions of a continuous model, the typical size of a melanoma cells
being 6–20�m. The border instability of melanomas is really a consequence of the
small diffusion length of the nutrients as for the spheroids, but another important
feature of melanomas is the existence of structures inside the tumors called “nest”
and “theque” and for some of them the absence of necrotic core. To explain these
structures we go back to phase segregation.

6 Phase Separation in Biology

Phase separation is the spontaneous organization of a cell mixture (with different
cellular species) in different part containing the same type of cells. This phe-
nomenon is strikingly illustrated by the experiments of Townes and Holtfreter [138]
on embryonic amphibian cells: a mixing of cells from the neural plate and from the
epidermis, blended and aggregated in vitro, forms in 20 h a homogeneous mass of
central medullary cells surrounded by an epidermal tissue (Fig. 5). The hypothesis
called differential adhesion explains this phase separation by analogy with the
conventional phase separation in immiscible fluids: the cells reorganize themselves
in order to maximize their homotypic (i.e., between cells of the same type) but also
heterotypic adhesion energy (between different cell types), given by the number
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and nature of adhesion molecules expressed at the cell surface. In the non-miscible
case, the energy of heterotypic adhesions is lower than that of homotypic bonds
and the cells of the same kind have tendency to aggregate. Experiments in vitro
show that the dynamics of these aggregates is then similar to observations in the
conventional phase separation: smoothing of irregular mass and coalescence of
clusters of the same kind [129]. It is to be noted that it is possible to define a surface
tension due to differences in cell adhesion. The differential adhesion hypothesis
is now widely accepted and supported by direct physical measurements of surface
tension. This will include work by Foty and Steinberg [61] demonstrating in vitro
the proportionality between the number of cadherins expressed on the cell surface
and the surface tension of the cell clusters. Also these authors show that a phase
separation may be caused by a slight decrease in the expression of cadherins in a
subpopulation of otherwise identical cells.

The importance of phase separation by differential adhesion has been highlighted
in various biological contexts. In embryology it has been shown in vivo that the
expression of cadherins varies depending on the cell type considered, allowing
segregation of tissues and the formation of a well-defined frontier between them
[75,106]. Also in developed organisms the differences in adhesion play an important
role in the maintenance of tissue organization and development of pathologies [73].
In the context of prostate cancer, the transition to an invasive state has recently
been associated to a decrease of the cohesion between tumor cells allowing the
tumor the possibility to become miscible in surrounding tissues [108] (Fig. 13). This
hypothesis is supported by the experiments of Winters et al. [148] showing in vitro a
strong inverse correlation between the surface tension of a spheroid and its potential
for invasion. Also let us mention the use of differential adhesion as manufacturer
principle in tissue engineering. Neagu et al. [105] elegantly illustrate this technique
using a bioprinter to manufacture tubular structures composed of two living cell
phases. Thus, they manage to obtain different geometries by only controlling the
interactions between cells and consequently their self-organization into two separate
phases.

Fig. 13 Joined culture of fibroblasts (green) and prostate cancer cell (red), in the noninvasive case
(a) and in the very invasive case (b). After 24 h the noninvasive cells get separated from fibroblasts
(a) while the invasive cells remain mixed (b). Figure from [129]
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Fig. 14 (a) Melanoma
presenting globules of
different size and shape,
irregularly distributed.
(b) Naevus presenting
globules regularly distributed.
(c) Histopathology cut of a
naevus showing melanocytic
aggregates. Photos (a) and (b)
from [150]; photo (c) is
nicely provided by Prof.
Giovanni Pellacani

Of course, melanoma is different from the prostate cancer mentioned above.
In healthy skin melanocytes are naturally isolated, interacting preferably with
neighbor keratinocytes rather than with their counterparts. As described in the
introduction, melanoma progression is associated with a decrease of the affinity of
keratinocytes for melanocytes joint to an increased affinity with their counterparts.
It corresponds to changes in the expression of adhesion molecules for the two types
of interactions [74]. Thus it is expected that melanocytes and keratinocytes move
from a miscible to an immiscible state. Focussing on the appearance of melanocytic
lesions reported in the medical literature, it is often observed both in nevi and
melanomas, microstructures described as globules or pigmented dots (Fig. 14).
Pigmentation, size, shape and distribution of these cancerous cells are important
parameters to identify melanoma, usually associated to strongly pigmented, convex
globules varying significantly in size and shape and unevenly distributed in the
lesion [150]. Associated to these globules, in histological sections of melanomas
we can frequently observe aggregates of melanocytes in the lower epidermis and
the dermis (Fig. 14c), while in the upper epidermis wider aggregates are observed.

In order to understand the mechanism of formation of these aggregates of
melanocytes, we study the possibility of phase separation in two phases with the
same model introduced previously.

7 Spinodal Decomposition in Multiphase Models

As previously, we consider the mixture of two phases consisting of tumor cells
and the interstitial fluid (containing other cells such as keratinocytes not explicitly
represented here). We limit ourselves to the study of proliferation regulated by the
concentration of nutrients diffusing in the interstitial fluid. We consider the set of
equations Eqs. (46)–(48) with the same proliferation rate �c while the diffusion
equation for nutrients is given by Eq. (48). We only add a surface tension term
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preventing large � gradient into Eq. (46) and now get

@�

@t
D Dr � ��K.�/r �˙.�/� �2��

��C �.n� ı/; (54)

7.1 Analysis of the Equations

Such system of equations Eqs. (48) and (54) accepts a static solution given by

�0 D ˇ.1 � ı/

ı
and n0 D ı (55)

with ˇ D ˇ2=ˇ1. It is the homeostatic state where divisions (respectively the
consumption of nutrients) balance exactly the cell death (respectively the nutrient
supply). An infinitesimal perturbation of wave vector k around this homogeneous
solution can be written as

� D �0 C ı� exp.�t/cos.kx/; (56)

n D n0 C ın exp.�t/cos.kx/; (57)

with ˇ D ˇ2=ˇ1 and we find the perturbation growth rate � as

� D ��0ŒK.�0/.f 0.�0/k2 C �2k4/C ı2

k2ı C ˇ
�: (58)

The coupling with nutrients is responsible for the last term of this equation, which
prevents the growth of disturbances of large wavelength �.k/ as shown in Fig. 15.

Fig. 15 Growth rate � of a disturbance with a wave vector k around the stationary homogeneous
solution given in Eq. (55). Coupling with nutrients stabilizes the wavelengths, in the range typically
larger than the penetration depth of nutrients k < 1. Here the mixture is stable for˙ 0.˚0/ D �0:1
(solid line) and becomes stable for ˙ 0.˚0/ D �0:03 < 0 (dashed line). The model parameters are
� D 0:084, ˇ1 D 2, ˇ2 D 0:4, �0 D 0:3 and �e D 0:6
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Note that this term introduces a second characteristic length in the system, in
addition to the interface thickness between domains. This second length is con-
nected to the penetration length of nutrients

p
Dn=ın. The introduction of a second

characteristic length in phase separation is generally associated with a selection
mechanism. Let us mention the example of the well-known block copolymers
consisting of two immiscible parts covalently bonded. The finite length of these
polymers creates the phenomenon of micro-separation where the reorganization of
the domains stops before reaching macroscopic sizes and generally leads to the
appearance of periodic structures [94, 151]. A similar morphogenetic mechanism
is also found in the Glozter model [67] where a chemical equilibrium introduces
exchange terms between the phases and leads to a saturation of the domain size
with the appearance of stripes. In a more immediate context, the dispersion relation
shown in Fig. 15 is similar to the one found by Klein et al. [87] with a Cahn-
Hilliard model to describe the aggregation of stem cells of the epidermis. In their
case a second length is given by the contact inhibition of cell proliferation and
differentiation of stem cells [93]. Given the similarities of the dispersion relations,
one expects here similar behavior. Assuming � 
 1 in Eqs. (54), (58) the most
unstable length of our model is given by

ls D 2�

vuut1 � �0K.�0/f 0.�0/.�0Cˇ/2
�0n0

�0 C ˇ
D 2�

ks
: (59)

The maximum growth rate �max D �.kmax/ is obtained from Eq. (58) and its sign
gives the stability of the mixture. Omitting the pre-factors, the positive sign is given
by the function:

g.ˇ; ı; f 0; �/ D �2.
p
.ˇ�2 � ıf 0/2 C ˇ�2ıf 0 � .�2ˇ C ıf 0// ..ˇ�2 � ıf 0/2

Cˇ�2ıf 0/ � 3ˇ�2ıf 0.ˇ�2 C ıf 0/C .3�2ı2/3

�2.ı.1C ˇ/� ˇ/2
; (60)

g > 0 indicating the instability of the mixture and the onset of phase separation.
The sign of g is shown in Fig. 16 and the stability of the mixture seems to depend
mainly on the initial volume fraction �0 since the limits of unstable areas roughly
correspond to the iso-surfaces �0.ˇ; ı; f 0; �/ being constant.

8 Simulations

We first consider simulations on a square lattice. We can show typical examples
of patterning with dots or labyrinths in Figs. 17 and 18. A coarsening effect has
been studied in details in [41], and examples are given in Fig. 18. These simulations
allow studying the two-phase mixture model from the viewpoint of statistical
physics which is interesting in itself. One important feature is the fact that the
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Fig. 16 Phase diagram for a mixing initially homogeneous with a volumetric fraction �0 and a
nutrient concentration n0, given by the dimensionless parameter ı (proportional to the cell death
rate) and ˇ (ratio between ˇ2 and ˇ1 proportional to the rate in nutriments). The parameters of the
model are � D 0:084 (a, c), � D 0:2 (b, d) and ˇ1 D 2 (a, b), ˇ1 D 20 (c, d). The grey areas
correspond to �0 > ��, the mixing being always stable. The coupling with the nutrients tends to
stabilize the mixing and the unstable zone is reduced to the area in red. One can notice that the
limit between domains seems to correspond to the iso-surface �0 constant

Fig. 17 Aggregation
formation of tumor cells
surrounded by a domain
without cancerous cells
(blue). Initially �0 D 0:5 and
there is no mass exchange.
Parameter of the model is for
�e D 1

exponents for self-similarity of the factor of structure and for domain sizes are
different from that of the Cahn-Hilliard model proving that asymptotic behavior is
dependent of the nonlinearities. However, it turns out that these structures appearing
in simulations are related to clinical observations. The presence of aggregates
of melanocytes appearing as points in dermoscopy (Fig. 14) is often observed in
melanocytic lesions, nevi and melanomas. Simulations of this model exhibit several
behaviors that are also seen in vivo. Microstructural patterns appear as growth
proceeds giving dots observed in dermoscopy (see Fig. 14a, b) and to the nests seen



Avascular Tumor Growth Modelling: Physical Insights to Skin Cancer 97

a b c

Fig. 18 Time evolution of a pattern with labyrinths obtained for �0 D 0:25 and without mass
exchange. The simulations is represented at several times t D 1; 000; 18; 000; 28; 000. Parameter
of the model is for �e D 0:6

Fig. 19 Two characteristic patterns obtained by simulations on a 512 � 512 grid. The step-sizes,
dx, are taken equal to 0.12 and the step-times to 10�4. The same form of ˙ is chosen for all
pictures, p D 2 and �e D 0:6 [see Eq. (49)]. Different values of �0 are taken: 0:33 for (a), 0:25
for (b)

in histopathology (see Fig. 14c). Since the concentration inside microstructures is
close to the mechanical equilibrium concentration�0, the simulations show that with
this separation process, cells insure their mechanical equilibrium at small scales. In
the same time, they insure their equilibrium at large scales, because the long-scale
concentration is given by the interaction with nutrients and the difference between
proliferation and death as predicted previously.

Moreover, this phase separation leads to a growth asymmetry as shown in Fig. 19.
Note that Fig. 19a contains mainly dots while Fig. 19b exhibits a labyrinth pattern in
growth. This model explains differences between nevi and melanomas, nevi being
homogeneous lesions. However, the asymmetry and irregularity displayed can be
attributed to either a melanoma or a dysplastic nevus that actually show the same
aspect at the tissue level. While the micro-environment can be responsible for the
different characteristics between a nevus, a dysplastic nevus and a melanoma, the
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difference between dysplastic nevus and melanoma is the existence of growth arrest
for the nevus which stops its final size and prevents metastasis.

The formation mechanism of structures in melanoma is well explained by a two-
fluid model taking into account a realistic mechanism of adhesion between cells.
The appearance of these aggregates is explained by a phase separation between
melanocytes and keratinocytes. The theoretical model predicts a saturation of the
size of these structures with a length determined by the length of penetration of
nutrients, here ls � 2ln D 2

p
Dn=ın � 0:2mm (Table 1), consistent with the

size of aggregation seen clinically. Phase separation in this system is similar to the
one involved in a mixture of two immiscible fluids below a critical temperature.
This result corresponds to the change in the expression level of cadherins observed
clinically in melanoma progression, when melanocyte interactions increase with
their peers and decrease with keratinocytes [74].

9 Conclusion

In this chapter, I give an overview of cancer modelling in the avascular phase
joined to pioneering experiments on cell colonies. Then I focus on a simple
model which contains the main ingredients to describe melanomas. I present the
physical hypothesis, some numerical results but also a mathematical treatment that
allows predicting quantitatively instabilities knowing the value of the biomechanics
parameters of the skin. Not presented here is a special study on acral melanoma,
a disease concerning mostly the non-eurasian population. These melanomas are
located in glabrous area on the body, where fingerprints are strongly marked and
their topology depends on the geometry of the basal layer [14]. The aim of this
chapter is to show that we are able to understand from physical insights the avascular
tumor phase and that the comparison with clinical data, possible for melanomas,
gives very rich and fruitful opportunities.
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A Cell Population Model Structured
by Cell Age Incorporating Cell–Cell Adhesion

Janet Dyson and Glenn F. Webb

Abstract An analysis is given of a continuum model of a proliferating cell
population, which incorporates cell movement in space and cell progression through
the cell cycle. The model consists of a nonlinear partial differential equation for
the cell density in the spatial position and the cell age coordinates. The equation
contains a diffusion term corresponding to random cell movement, a nonlocal
dispersion term corresponding to cell–cell adhesion, a cell age-dependent boundary
condition corresponding to cell division, and a nonlinear logistic term corresponding
to constrained population growth. Basic properties of the solutions are proved,
including existence, uniqueness, positivity, and long-term behavior dependent on
parametric input. The model is illustrated by simulations applicable to in vitro
wound closure experiments, which are widely used for experimental testing of
cancer therapies.

Keywords Cell age • Cell adhesion • Non-local • Reaction-diffusion • Analytic
semigroup • Fractional power • Existence • Regularity • Positivity

1 Introduction

Mathematical models of cancer progression incorporating both microscale features,
such as cell movement and division, and macroscale features, such as tumor growth
and metastasis, are necessarily complex in their formulation and analysis. A variety
of approaches have been developed, including continuum differential equations
models, probabilistic individual based models, and combinations of these two types
(see, for example, review articles in [4,7,13,22,23,36]). The advantage of continuum
models is their tractability for analysis based on initialization and parameterization.
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A disadvantage is their continuum idealization of physical processes that are
fundamentally discrete. Individual based models are inherently well founded for
description of individual cell behavior, but lack the rigorous analysis available
for classical continuum models. A major difficulty in resolving the continuum-
discrete dichotomy of mathematical models of cancer is the modeling of cell–cell
communication processes. These processes are necessarily specific to individual
cells, but a new continuum approach has recently been developed to model cell–
cell communications as nonlocal phenomena in differential equations models of cell
population dynamics.

The model we consider here was originally proposed by Armstrong, Painter, and
Sherratt in [2] and developed further in [3,17,18,29,43,52]. The equations of these
models have nonlocal flux terms corresponding to the component of cell motion
attributable to cells bonding to other cells within a specified sensing radius of each
individual cell. Rigorous analyses of such models have been carried out in [17, 18].

Our objective here is to extend this work to continuum spatial nonlocal models
which also include the cell cycle as determined by continuum cell age. The
advantage of cell age structure is that individual cell cycle behavior can be
incorporated into a continuum model and, specifically, the variable distribution of
age of mitosis as given in (2) below. Continuum models of cell population dynamics
combining space and age variables have been developed by many authors and we
first review some of those which are relevant to our present problem.

Individual structure in biological populations has many possible interpretations
as continuum variables. The most used continuum structure variable is age, which
can be interpreted variously as chronological, stage, or phase age. Age as a structure
variable has obvious significance, but can be difficult to measure in many biological
applications. Another frequently used continuum structure variable is size, which
can be interpreted as mass, length, volume, or other readily measurable physical
characteristic. Other examples of individual structure variables include biochemical
content, maturity stage, or formed pattern levels. In principle, spatial structure
can be combined with multiple designations of individual structure variables to
provide detailed quantification of complex biological behavior in spatial context
[31, 39, 54, 71].

Spatial variables in combination with individual structure variables in biological
populations can also be interpreted in many ways, with correspondence to specific
locations in biological applications. Examples range from micro-locations of pro-
teins, viruses, bacteria, and cells to macro-locations of tissues, in-hosts settings,
and geographical regions. Examples in the literature for combined structure and
spatial continuum variables include bacterial pattern formation of Proteus mirabilis
swarming on agar surfaces [35], tumor growth in in vivo or in vitro settings
[3, 14–16, 18, 29, 43, 52, 56, 58], regulatory features of intestinal crypt behavior such
as control via morphogens [41, 42], epidermal growth dynamics [27, 28], predator-
prey, competitive, and cooperative systems [62–64], and epidemic diseases in
geographical settings [8, 9, 11, 12, 20, 21, 33, 34, 48, 68, 69]. Recent treatments of
the mathematical theory of continuum spatial and age population models are found
in [53, 59–61, 65, 66, 71].
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In [71] an analysis is given of problems with age, size, and spatial structure,
using the theory of linear and nonlinear semigroups. We will review only the case
with age and spatial structure. Let Z be a Banach space of functions on ˝ 	 R

N

and Y D L1..0; a1/IZ/ where a1 � 1 is the maximum age of individuals. Let
T .t/ W Z ! Z be a strongly continuous semigroup of bounded linear operators in
Z with infinitesimal generatorA. Let p.x; a; t/ be the population density at position
x 2 ˝ , age a 2 .0; a1/, and time t > 0, so that the total population at time t isR
˝

R a1
0
p.x; a; t/da dx. The density p.x; a; t/ D p.a; t/.x/ is viewed as a function

from .0; a1/ to Z. Equations of the form

@p.x; a; t/

@t
C @p.x; a; t/

@a
D Ap.x; a; t/CG.p.x; a; t//;

a 2 .0; a1/; x 2 ˝; t > 0 (1)

p.x; 0; t/ D 2

Z a1

0

�.a/p.a; t/da; x 2 ˝; t > 0 (2)

p.x; a; 0/ D �0.x; a/; a 2 .0; a1/; x 2 ˝; � 2 Y:

are considered. It is shown that in the case where G D 0 the solutions of this
problem are given by p.a; t/ D .S.t/�/.a/ where S.t/ W Y ! Y is a strongly
continuous semigroup of bounded linear operators on Y given by

.S.t/�/.a/ D


T .t/�.a � t/; t < a < a1;

T .a/b�.t � a/ 0 � a < t
(3)

where b� is the unique solution of the linear Volterra equation for b� in Z

b�.t/ D 2

Z t

0

�.a/T .a/b�.t � a/da C 2

Z a1

t

�.a/T .t/�.a � t/da:

It is then shown that if G W Y ! Y is globally Lipschitz, then Eq. (1) has a unique
global mild solution U.t/�, and U.t/, t � 0 is a strongly continuous semigroup of
Lipschitz continuous nonlinear operators in Y . Further, if Z is a Banach lattice and
T .t/, t � 0 is a positive semigroup in Z, then U.t/, t � 0 is a positive semigroup
in Y .

The results of [71] are exploited in [14, 16], in which a model of tumor
growth into surrounding tissue is considered. The model consists of a system of
nonlinear partial differential equations for the population densities of tumor cells,
p.x; a; t/, extracellular matrix macromolecules, f .x; t/, oxygen concentration,
w.x; t/, and extracellular matrix degradative enzyme concentration, m.x; t/. The
spatial growth of the tumor involves the directed movement of tumor cells toward
the extracellular matrix through haptotaxis. The equations of the model are as
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follows, with P.x; t/ D R a1
0 p.x; a; t/da and ˝ 	 R

3 a nonempty open bounded
set with smooth boundary:

@

@t
f .x; t/ D ıf �f .x; t/„ ƒ‚ …

motility

�!f f .x; t/„ ƒ‚ …
loss

��f .x;m.�; t /;w.�; t /; P.�; t //f .x; t/„ ƒ‚ …
enzyme induced degradation

(4)

@

@t
m.x; t/ D ım�m.x; t/„ ƒ‚ …

diffusion

�!mm.x; t/„ ƒ‚ …
decay

C 	m.x; P.�; t //P.x; t/„ ƒ‚ …
production

(5)

@

@t
w.x; t/ D ıw�w.x; t/„ ƒ‚ …

diffusion

�!ww.x; t/„ ƒ‚ …
decay

Cˇw.x; f .�; t //f .x; t/„ ƒ‚ …
production

��w.x;w.�; t /; P.�; t //w.x; t/„ ƒ‚ …
uptake by tumor cells

(6)

@

@t
p.x; a; t/ D � @

@a
p.x; a; t/

„ ƒ‚ …
cell aging

C ıp�p.x; a; t/„ ƒ‚ …
random motility

�!pp.x; a; t/„ ƒ‚ …
loss

��pr � .p.x; a; t/rf .x; t//
„ ƒ‚ …

haptotaxis

��p.x;w.�; t /; P.�; t //p.x; a; t/„ ƒ‚ …
loss due to death or division

(7)

p.x; 0; t/ D 2

Z a1

0

�.a/p.x; a; t/ da
„ ƒ‚ …

rate of cell division

: (8)

Neumann boundary conditions are imposed and initial conditions are given.
Equation (7) for the density of tumor cells involves the diffusion term,
A D ıp� � !p , which therefore generates an analytic semigroup of bounded linear
operators T .t/, t � 0. The main difficulty for the analysis is that the nonlinear
haptotaxis term in (7) is not Lipschitz continuous and the key assumption is a
nonlocal spatial dependence in the nonlinear enzyme degradation term in (4). The
problem can then be handled using the theory of fractional powers of the generators
of analytic semigroups applied to A. The form of S.t/, t � 0 above means that,
although S.t/ is not itself analytic, it inherits many similar properties to do with
the fractional powers of A from T .t/. Existence, regularity, positivity, and global
bounds for solutions of the model are obtained. In [15] this theory is extended to
handle a model of tumor growth in which there is age, size, and spatial structure and
which includes proliferating and quiescent compartments of tumor cells indexed by
successively mutated cell phenotypes of increasingly proliferative aggressiveness.
In [57] Walker treats a similar system to that in [14, 16], except that in the equation
for the extracellular matrix macromolecule concentration there is local spatial
dependence and no diffusion. A rather different approach is used, starting with the
introduction of an age-diffusion semigroup. These results are extended in [56, 58]
to allow nonlinear age-boundary conditions.
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We present here a rigorous analysis of an age and spatially structured continuum
model of cell population dynamics that also includes cell–cell communication via
the devise of a sensing radius of individual cells. Cell–cell adhesion is a cell
communication process by which cells adhere to each other through the binding
of cell adhesion molecules at the cell surface. It is a fundamental mechanism in
many areas of biology and, for example, is largely responsible for morphogenesis,
stabilization, and degeneration of tissue. Selective adhesion of embryonic cells
allows cells to organize themselves into patterns that develop into tissues and organs,
and changes in adhesiveness properties are central to the invasive stage of cancer
(see, for example, [3, 6, 10, 29, 43, 47, 49, 52, 55, 67]).

It is difficult to model cell adhesion using continuous mathematical models,
because in such an approach one uses continuous variables to describe aggregate
cell densities. Individual cells are not recognized as such and therefore, there is no
representation of cell boundaries. In [18] the following model for cell–cell adhesion
in N spatial dimensions was treated: for a cell density p.x; t/, with x 2 R

N , t > 0,
and with B	 the open ball in R

N , radius 	, center 0,

@p.x; t/

@t
D ı�p.x; t/„ ƒ‚ …

random cell motility

� r �
�
p.x; t/

Z

B	

g.p.x C �; t//�h.j�j/ d�
	

„ ƒ‚ …
cell adhesion

C F.p.x; t//„ ƒ‚ …
cell loss and gain

(9)

with initial condition

p.x; 0/ D �0.x/: (10)

The integral term is a nonlocal flux term which represents the cell–cell contact and
the function F.p/ models cell loss and cell gain.

Here we consider how age structure may be incorporated into such a model. In
our model individual cells are distinguished by spatial position x 2 R

N and by
cell cycle age a 2 .0;1/. Let p.x; a; t/ be cell density, at position x, age a, and
time t > 0, and P.x; t/ D R1

0
p.x; a; t/da, the total population density of cells

at x, with B	 as above. We consider the partial differential equation with boundary
condition at age 0:

@p.x; a; t/

@t
C @p.x; a; t/

@a„ ƒ‚ …
cell aging

D ı�p.x; a; t/„ ƒ‚ …
random motility

� r �
�
p.x; a; t/

Z

B	

g.P.x C �; t//�h.j�j/d�
	

„ ƒ‚ …
cell adhesion

�p.x; a; t/f .P.x; t//„ ƒ‚ …
loss

(11)
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p.x; 0; t/ D 2

Z 1

0

�.a/p.x; a; t/da
„ ƒ‚ …

rate of cell division

(12)

with initial condition

p.x; a; 0/ D �0.x; a/: (13)

Here the function �pf .P / models cell loss and now

total cell loss plus cell gain D �Pf .P /C 2

Z 1

0

�.a/p.a/da:

We will require that for all p.a/ such that
R1
0 p.a/da D P and P large enough:

�Pf .P /C 2

Z 1

0

�.a/p.a/da < 0:

Thus, at large enough densities, cell loss occurs more rapidly than the generation of
new cells via division. Note that if ˇ0 > 0 is the intrinsic growth constant (that is the
unique ˇ0 such that 2

R1
0
�.a/e�ˇ0a da D 1) and if P1 > 0 is such that f .P1/ D

ˇ0, then q.a/ D ˇ0P1e
�ˇ0a is a stationary solution and we have �P1f .P1/ C

2
R1
0
�.a/q.a/da D 0. So at this point, for the stationary solution, cell loss and cell

gain are in balance.
The other two terms in the right-hand side of (11) are flux terms. The equation

admits the possibility of two components to the cell motion: One is Fickian diffusion
giving rise to the Laplacian term. The second is a cell adhesion term which models
the component of the cell motion caused by forces due to adhesive bonds between
cells and their neighbors, which can be viewed as an advective flux term. Cells can
sense their surroundings over some radius 	 via protrusions and this sensing radius
will be considerably larger than the mean cell radius because of the extension of the
cell protrusions such as filopodia.

These protrusions cause adhesive bonds to form with other cells, and the resulting
forces cause cell movement. In fact, the cell adhesion term in (11) is an advective
flux term of the form �r � .p.x; a; t/U.x; t// where U.x; t/ is the velocity of the
cells at x 2 R

N at time t . If we imagine the cells as tiny spheres moving through
a viscous fluid, then, by Stokes’ law, they are subject to a resistive force which is
directly proportional to the velocity. So we are led to suppose that the velocity of
a cell is proportional to the net adhesive force on it due to the bonds formed with
nearby cells. Absorbing constants such as viscosity into g or h, this force is taken to
be of the form

Z

B	

g.P.x C �; t//�h.j�j/ d�: (14)
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We are asserting that the total force on a cell at position x is the sum, over all cells
within the sensing radius 	, of the local forces attributable to bonds formed with the
cells at the nearby points x C �, � 2 B	. The function h W R ! R describes how
the magnitude of the force depends on j�j and is a positive function since adhesive
forces are always directed toward cell centers. The vector � in front of h.j�j/ gives
direction to the force on cells at x due to bonds with cells at x C �.

The magnitude of the local forces from the nearby location xC � depends on the
number of adhesive attachments made by cells at x C � to a cell at x and hence on
the cell density at x C �. The function g describes how the forces depend on the
local cell density. To be realistic biologically g.P / should increase linearly with P
if cell density is not too great, then decrease for P above some threshold, and be
zero for all P above some critical cell density P2 > 0 which corresponds to close
cell packing. For example g.P / D maxf�P.P2 � P/; 0g. For our results it will
usually be enough to require only that g.P / � 0 for P 2 Œ0; P2�. This condition
will lead to P.x; t/ 2 Œ0; P2�, so that values of g outside this interval are irrelevant
to the mathematics. The shift in balance between cell division and cell loss should
occur at an achievable density, so before P2, and therefore in biologically realistic
cases we will have P2 > P1.

In Sect. 2 we obtain existence and stability results for the abstract version of (11)–
(13). In Sect. 3 we consider initial data in the space L1..0;1/IBUC .k/.RN // in
the two cases where either the initial data tends to zero as jxj ! 1 or it tends
to the stationary solution as jxj ! 1: We obtain the global existence of the
unique mild solution. First we prove local existence. We then prove that solutions
are positive if the initial data is positive by looking at the equation integrated
along the characteristics. Finally, for suitable initial data, we prove boundedness
of solutions by looking at the equation integrated with respect to a. This leads to
global existence. In Sect. 4 we apply the results of Sect. 2 to obtain conditions for
the stability of the stationary solution of the problem in L1..0;1/IL2.RN //. In
Sect. 5 we provide numerical simulations of the model applicable to wound healing
experiments.

2 Abstract Results

First we consider the abstract version of (11)–(13) and derive existence and stability
results, analogous to those in [32].

Let QX be a Banach space and � QA W D. QA/ 	 QX ! QX be the generator of
an analytic semigroup T .t/ W QX ! QX such that there exist Q! > 0 and M � 1

with jjT .t/jj � Me Q!t . Set QY D L1..0;1/I QX/. Let ! 2 R be such that A D
QA C !I has its spectrum in the open right half plane. For 0 < ˛ < 1 denote
QY ˛ D L1..0;1/ID.A˛///, with jj�jj QY ˛ D jjA˛�jj QY . Recall that (see [32, 37, 38,
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44]) if ˛ > 0, then for every t > 0 the operator A˛T .t/ is a bounded linear operator
in QX and we can take Q! > 0 andM � 1 such that also

jjA˛T .t/jj � Mt�˛e Q!t ;

and also for every U 2 D.A˛/, T .t/A˛U D A˛T .t/U . Furthermore, if 0 � ˛ � 1,
then A�˛ W QX ! QX is a bounded linear operator so there exists a constant C1 � 1

such that for all u 2 QX ,

jjA�˛ujj QX � C1jjujj QX: (15)

Hence for u 2 QY

jjA�˛ujj QY � C1jjujj QY : (16)

We now let H W QY ˛ ! QY , and suppose that

(H.1) � 2 C.Œ0; 1/IRC/ and there exist 0 < � < Na < 1, N� > 0 such that
�.a/ � 0 for a 2 Œ0; �� [ Œ Na;1/ and �.a/ � N� for a 2 .0;1/.

Note that ˇ0 � 2 N�; where ˇ0 is the intrinsic growth constant. We will assume
throughout that ˇ0 > 0.

We consider the abstract problem (NA):

du

dt
D �@u

@a
� QAu CH.u/; t > 0;

u.0; t/ D 2

Z 1

0

�.a/u.a; t/da

u.a; 0/ D �.a/ 2 QY :

As in [71] we consider the following linear partial differential equation associated
with (NA):

@

@t
u.a; t/C @

@a
u.a; t/ D � QAu.a; t/ (17)

u.0; t/ D 2

Z 1

0

�.a/u.a; t/da (18)

u.a; 0/ D �.a/ 2 QY : (19)

To obtain the semigroup of the solutions of (17)–(19), we define the family of
operators in QY , fS.t/gt�0, as follows:

.S.t/�/.a/ D


T .t/�.a � t/; t < a < 1;

T .a/b�.t � a/ 0 � a < t
(20)
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where b� 2 C.Œ0;1/; QX/ is the unique solution of the linear Volterra equation in QX

b�.t/ D 2

Z t

0

�.a/T .a/b�.t � a/daC 2

Z 1

t

�.a/T .t/�.a � t/da:

In [71] Webb proves that fS.t/gt�0 is a strongly continuous positive semigroup of
bounded linear operators in QY such that jjS.t/�jj QY � Me Q!at jj�jj QY , � 2 QY , t � 0,
where Q!a WD 2M N� C Q!.

Note that b�.0/ D 2
R1
0
�.a/�.a/da. Also .S.t/�/.a/ is continuous in a for

t > a (as b�.t/ is continuous), .S.t/�/.0/ D b�.t/ so that for t > a

.S.t/�/.a/ D T .a/..S.t � a/�/.0//; (21)

and .S.t/�/.0/ is continuous in t and satisfies for t > 0,

.S.t/�/.0/ D 2

Z 1

0

�. Oa/.S.t/�/. Oa/d Oa: (22)

Furthermore, for each 0 < ˛ < 1, we can also chooseM � 1 and Q!a > 0 such that

jjA˛S.t/jj � Mt�˛e Q!at for t > 0; (23)

(see [14] Lemma 2). Also, if � 2 QY ˛ , A˛b�.t/ D bA˛�.t/, so that A˛S.t/� D
S.t/A˛� and

jjS.t/�jj QY ˛ D jjS.t/A˛�jj QY � Me Q!at jj�jj QY ˛ : (24)

Note that S.t/ W QY ! QY ˛ so that, as S.t/ is strongly continuous, QY ˛ is dense in QY .
We say that u.t/ is a local mild solution of (NA) if there exists T0 > 0 such that

u.t/ 2 C.Œ0; T0�I QY ˛/ and for 0 � t � T0

u.t/ D S.t/� C
Z t

0

S.t � s/H.u.s//ds: (25)

We suppose that

(H.2) H W QY ˛ ! QY , H.0/ D 0, and for some 1
2
< ˛ < 1, if �i 2 QY ˛ , i D 1; 2,

with jjA˛�i jj QY � R, then there existsK.R/ such that

jjH.�1/ �H.�2/jj QY � K.R/jjA˛.�1 � �2/jj QY :

The following existence result is proved similarly to [32] Theorem 3.3.3,
Corollary 3.3.5, and Theorem 3.4.1, working in C.Œ0; T0�I QY ˛/, with (25) operated
on by A˛ and using (23).
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Theorem 1. Suppose that H W QY ˛ ! QY satisfies (H.2) and � 2 QY ˛ . Then there
exists T0 > 0 such that the problem (NA) has a unique mild solution u.t/ with
u.t/ 2 C.Œ0; T0�I QY ˛/.

There is continuous dependence on the initial data in the following sense. Let
Œ0; OT0/ be the maximal interval of existence of the solution u.t/. Now let un.t/ be the
solution of (25) with initial data un.x; a; 0/ D �n.x; a/ where �n 2 QY ˛ . Suppose
that jjA˛.�n � �/jj QY ! 0 as n ! 1. Then given any t1 2 Œ0; OT0/, un.t/ is defined
on Œ0; t1� for large enough n and jjA˛.un.t/ � u.t//jj QY ! 0 as n ! 1, uniformly
on Œ0; t1�.

The solution is global if jjA˛u.t/jj QY is bounded on bounded intervals of time. In
particular this is true if there exists a constantK > 0 such that for all � 2 QY ˛

jjH.�/jj QY � K
�jjA˛�jj QY C 1

�
:

Now we look for conditions such that the zero solution of (NA) is asymptotically
stable. Suppose that H.�/ D B� C J.�/ and satisfies

(H.3) For some 1
2
< ˛ < 1, B W QY ˛ ! QY is a bounded linear operator;

J W QY ˛ ! QY and jjJ.�/jj QY D o.jjA˛�jj QY / as jjA˛�jj QY ! 0:

We consider first the linearized problem. It follows from Theorem 1 that

Lemma 1. Suppose that for some 0 < ˛ < 1, B W QY ˛ ! QY is a bounded linear
operator, and consider the linearized problem (LA):

dr

dt
D �@r

@a
� QAr C Br; t > 0;

r.0; t/ D 2

Z 1

0

�.a/r.a; t/da

r.a; 0/ D �.a/ 2 QY :

For � 2 QY ˛ this problem has a unique mild solution r.t/ D R.t/� in the sense that
for all � 2 QY ˛ , R.t/� 2 C.Œ0;1/I QY ˛/ is the unique solution, for t > 0, of

R.t/� D S.t/� C
Z t

0

S.t � s/BR.s/�ds: (26)

fR.t/gt�0 is a strongly continuous semigroup on QY ˛.
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Lemma 2. Suppose now that there exist � > 0, M1 such that for � 2 QY ˛

jjR.t/�jj QY � M1e
��t jj�jj QY : (27)

Thus R.t/ can be extended to a strongly continuous semigroup on QY . Then for any
�2 such that 0 < �2 < � , there existsM2 � 1 such that for t > 0 and for all � 2 QY ˛

jjR.t/�jj QY ˛ � M2t
�˛e��2t jj�jj QY ; and (28)

jjR.t/�jj QY ˛ � M2e
��2t jj�jj QY ˛ : (29)

Furthermore R.t/� 2 QY ˛ for all � 2 QY , (28) holds for all � 2 QY , and R.t/�
satisfies (26) for all � 2 QY .

Proof. First we prove (28). Take � 2 QY ˛ and suppose we can prove that for 0 <
t � 1 there exists a constantK1 such that

jjR.t/�jj QY ˛ � K1t
�˛ jj�jj QY ; (30)

then for t > 1

jjR.t/�jj QY ˛ � K1jjR.t � 1/�jj QY � K2e
��.t�1/jj�jj QY � K3t

�˛e��2t jj�jj QY :

Thus it is sufficient to prove (30). But for � 2 QY ˛

A˛R.t/� D A˛S.t/� C
Z t

0

A˛S.t � s/BR.s/�ds; (31)

so, using (23), for 0 < t � 1

jjA˛R.t/�jj QY � Me Q!at t�˛ jj�jj QY C
Z t

0
M.t � s/�˛e Q!a.t�s/jjBjjL . QY ˛; QY /jjA˛R.s/�jj QY ds;

so as t � 1, (30) follows using the Gronwall-type inequality given in [32]
Sect. 1.2.1.

We now note that it follows from (28) and (16) that (29) is true for t � 1. For
t � 1 we again use (31), but now we apply (24).

Now, given � 2 QY , take �n 2 QY ˛ such that �n ! �. Then, by (28), for t > 0,
A˛R.t/�n converges to h.t/ 2 QY ˛, say, and again using (16), it is easy to see that
R.t/� 2 QY ˛ and A˛R.t/�n converges to A˛R.t/�. So (28) holds for all � 2 QY . To
prove the final result put � D �n in (26). Then using (28)
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����
Z t

0

S.t � s/BR.s/.�n � �/ds

���� QY

�
Z t

0

Me Q!a.t�s/jjBjjL . QY ˛; QY /M2s
�˛e��2sjj�n � �jj QY ds ! 0 as n ! 1

and it follows that (26) holds for all � 2 QY . ut
Lemma 3. For � 2 QY ˛; u.t/ 2 C.Œ0; T0�I QY ˛/ satisfies Eq. (25) if and only if

u.t/ D R.t/� C
Z t

0

R.t � s/J.u.s//ds: (32)

Proof. For u.t/ 2 C.Œ0; T0�I QY ˛/ set

w1.t/ D u.t/ �R.t/� �
Z t

0

R.t � s/J.u.s//ds

and

w2.t/ D u.t/ � S.t/� �
Z t

0

S.t � s/H.u.s//ds:

Then as R.t/� D S.t/� C R t
0 S.t � s/BR.s/�ds and J D H � B

w1.t/ D u.t/ �


S.t/� C

Z t

0

S.t � s/BR.s/�ds

C
Z t

0



S.t � s/J.u.s//C

Z t�s

0

S.t � s � 
/BR.
/J.u.s/d


�
ds

�

D w2.t/C
Z t

0

S.t � s/B.u.s/ � R.s/�/ds

�
Z t

0

Z t�


0

S.t � s � 
/BR.s/J.u.
//dsd


D w2.t/C
Z t

0

S.t � s/B.u.s/ � R.s/�/ds

�
Z t

0

Z �

0

S.t � �/BR.� � 
/J.u.
//d
d�:

where in the last line we have made a change of variable s D � � 
 and then
interchanged the integrals. Hence
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w1.t/ D w2.t/C
Z t

0

S.t � s/Bw1.s/ds;

so that w1.t/ D 0 for all t 2 Œ0; T0� if and only if w2.t/ D 0 for all t 2 Œ0; T0� and
the result follows. ut

We are now in a position to prove the following stability result for the nonlinear
problem.

Theorem 2. Let H.�/ D B� C J.�/ satisfy (H.2) and (H.3). Suppose that there
exist � > 0, M1 such that (27) holds.

Then the zero solution of (NA) is uniformly asymptotically stable in QY ˛ in the
sense that for any �1 < � there exists 	 > 0 and M3 � 1 such that jj�jj QY ˛ � 	

implies there exists a unique global mild solution u of (NA) such that for t > 0

jju.t/jj QY ˛ � M3e
��1t jj�jj QY ˛ :

Proof. From Lemma 3 u is the mild solution of (NA) if and only if u satisfies (32).
The argument will proceed as in [32] Theorem 5.1.1, using (28) and (29). Take
0 < �1 < �2 < � .

Now analogously to [32] Theorem 5.1.1, choose 
 > 0 such that
M2


R1
0
s�˛e�.�2��1/sds < 1=2 and 	1 > 0 such that jjJ.u/jj QY � 
 jjujj QY ˛

when jjujj QY ˛ � 	1.
Suppose now that jj�jj QY ˛ � 	1

2M2
. Then the mild solution, u, exists on some time

interval and has jju.t/jj QY ˛ � 	1. So provided it remains true that jju.t/jj QY ˛ � 	1,
then from (32),

jju.t/jj QY ˛ � M2e
��1t jj�jj QY ˛ C

Z t

0


M2.t � s/�˛e��2.t�s/jju.s/jj QY ˛ds

� 	1=2C 	1
M2

Z 1

0

s�˛e��2sds < 	1;

so there is global existence. Finally

jju.t/jj QY ˛e
�1t � M2jj�jj QY ˛ C 
M2

Z t

0

.t � s/�˛e�.�2��1/.t�s/jju.sjj QY ˛e
�1sds

� M2jj�jj QY ˛ C 1

2
sup
s2Œ0;t �

.jju.sjj QY ˛e
�1s/;

so that sups2Œ0;t �.jju.sjj QY ˛e�1s/ � 2M2jj�jj QY ˛ as required. ut
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3 The Problem in L1..0;1/IBUC .k/.RN//

We now consider the global existence of a classical solution of problem (11)–(13)
in L1..0;1/IBUC .k/.RN //.

3.1 Preliminaries

Let Xk D BUC .k/.RN / D fu W RN ! R W u has uniformly continuous derivatives
up to the kth order g and Xk

0 D fu 2 Xk W u ! 0 as jxj ! 1g. In either case take
norm jjujjk D P

j�j	k jjD�ujj1, where for i D 1; : : : ; N , Di W D.Di / 	 X ! X ,

Diu D @u

@xi
; with D.Di / D X1;

so Di is a closed linear operator. Set D D .D1; : : : ;DN /, with domain D.D/ D
D.D1/ � � � � � D.DN /. If � D .�1; : : : ; �N /, D� D D

�1
1 � � �D�N

N . We define j�j D
�1C� � �C�N and say � � � forN -tuples � and� if the inequality holds component-
wise. Note that from [40] p. 33, if u 2 Xk

0 , then for j�j � k; D�u ! 0 as jxj ! 1.
We write OXk when results apply to either Xk or Xk

0 and set X D X0.
We define QA W D. QA/ 	 X ! X , by

QAu D �ı�u; D. QA/ D fu 2 BUC.RN /
\

1	q<1
W

2;q

loc .R
N / W Au 2 BUC.RN /g:

For ! > 0 set A D QAC !I , D.A/ D D. QA/, so that the spectrum of A is contained
in the open right half plane. We will work in the spaces Y k D L1..0;1/I Xk/, with
norm jj � jjY k and similarly for Y k0 and OY k . Set Y D Y 0 .

We rewrite the problem (11)–(13) abstractly as

d

dt
p.t/ D � @

@a
p.t/ � QAp.t/ �D �

�
p.t/K.P.t//

�
� p.t/f .P.t//; p.0/ D �0:

Here p.t/ W Œ0;1/ ! Y; P.t/.x/ D R1
0
p.t/.x; a/da; t � 0, f W R ! R,

g W R ! R, and

K.˚/.x/ D
Z

B	

g.˚.x C �//�h.j�j/d�; ˚ 2 X; x 2 R
N ;

with i th componentKi.˚/.x/:
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Let fT .t/gt�0 be the analytic semigroup in X generated by � QA, so

T .t/�.x/ D 1

.4�tı/N=2

Z

RN

e
�jyj

2

4tı �.x � y/ dy;

jjT .t/�jjX � jj�jjX;

T .t/ W X0 ! X0 and T .t/ W Xk ! Xk .
Let Tk.t/ be the analytic semigroup which is T .t/ restricted to the space OXk

(k an integer); the corresponding generators � QAk are given by the operator � QA but
restricted to different domains (see [40]).

It is easy to see that for � 2 Xk, k > 0,

jjTk.t/�jjk � jj�jjk;

and

D. QAk/ D f� 2 Xk I � 2 D. QA/; QA� 2 Xkg:

Set Ak D QAk C !I . We will exploit the result that, for suitable ˛, the operator
DiA

�˛
k W Xk ! Xk is bounded; see [40]. ThusDiA

�˛
k W Y k ! Y k is also bounded.

We will write D˛;k
0 D D.A˛k/ in the space Xk

0 and OD˛;k D D.A˛k/ in the space
OXk . We give these spaces the graph norm. Denote Y ˛;k D L1..0;1/ID.A˛k// and
Y ˛;k0 D L1..0;1/ID˛;k

0 //. Let Sk.t/ W Y k ! Y k be the semigroup related to Tk.t/
as in (20).

Thus the mild form of (11)–(13) in Y k is

p.t/ D Sk.t/�0�
Z t

0

Sk.t�s/
 
D �

�
p.s/K.P.s//

�
Cp.s/f .P.s//

!
ds (33)

D Sk.t/�0 �
Z t

0

Sk.t � s/G.A˛kp.s// ds; (34)

where, if ˚ D R1
0
�.a/da,

G.�/ D D � .A�˛� K .A�˛˚//C A�˛�f .A�˛˚/ :

Observe that for ˚ 2 D.D/, g 2 C1.R/, h 2 L1.0; 	/, we have K.˚/ 2 D.D/
and

D �K.˚/.x/ D
X

i

Z

B	

g0.˚.x C �//Di˚.x C �/�i h.j�j/ d�; for x 2 R
N ;
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and

G.�/ D
X�

DiA
�˛�

��
Ki .A

�˛˚/
�

C
�
A�˛�

��X
DiKi .A

�˛˚/
�

C A�˛�f .A�˛˚/ :

For � 2 Y and � 2 X we set

F.�; �/ D D �
�
A�˛�K.A�˛�/

�
C A�˛�f .A�˛�/;

so thatG.�/ D F.�;˚/, with ˚ D R1
0
�.a/da: For ˚;� 2 X we define F.˚;�/

analogously and G.˚/ D F.˚;˚/.

3.2 Stationary Solution of (11)–(12)

As has already been noted, if P1 > 0 is such that f .P1/ D ˇ0, then a nonzero
stationary solution of (11)–(12) is

q.a/ D ˇ0P1e
�ˇ0a:

Write w.x; a; t/ D p.x; a; t/ � q.a/, W.x; t/ D R1
0

w.x; a; t/ da in (11) to get

@w.x; a; t/

@t
D �@w.x; a; t/

@a
C ı�w.x; a; t/

�r �
�
.w.x; a; t/C q.a//

Z

B	

Ng.W.x C �; t//�h.j�j/d�
	

� Nf .w.x; a; t//.a/ (35)

w.x; 0; t/ D 2

Z 1

0

�.a/w.x; a; t/da; (36)

x 2 R
N , a 2 .0;1/, t > 0 with

w.x; a; 0/ D �0.x; a/ � q.a/; (37)

where Ng.W / D g.W CP1/, Nf .w/.a/ D wf .W CP1/Cq.a/.f .W CP1/�ˇ0/. If

NK.˚/.x/ D
Z

B	

Ng.˚.x C �/�h.j�j/ d�;
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with components NKi.˚/; the abstract form of (35) is

d

dt
w.t/ D �@w.t/

@a
� QAw.t/ �D �

�
.w.t/C q.a// NK.W.t//

�
� Nf .w.t//:

We also set

NG.�/.a/ D
X�

DiA
�˛
k �

��
NKi

�
A�˛
k ˚

� �C
�
A�˛
k �

��X
Di

NKi

�
A�˛
k ˚

� �

Cq.a/
�X

Di
NKi

�
A�˛
k ˚

� �C Nf �A�˛
k �

�
.a/;

where ˚ D R1
0
�.a/da.

3.3 Local Existence

We can now prove local existence of solutions, using Theorem 1.
Note that in our proofs of existence we will take f; g W R ! R but we will then

prove that if �0 � 0 then p.t/ � 0. Thus provided there is enough smoothness at 0
it is only the properties of f and g on Œ0;1/ that are relevant as we can then define
f .P / and g.P / appropriately for P < 0.

We have

(a) If ˛ > 0, then for every t > 0 the operatorA˛kTk.t/ is a bounded linear operator
in OXk and the operator A˛kSk.t/ is a bounded linear operator in OY kand for any
ˇ > 0 there exists C2 > 0 such that

jjA˛kTk.t/jj � C2t
�˛eˇt I and (38)

jjA˛kSk.t/jj � C2t
�˛e Ňt ; where Ň D 2 N� C ˇ: (39)

(b) If 1
2
< ˛ < 1, then DiA

�˛
k W OXk ! OXk is a bounded linear operator so there

exists a constant C3 � 1 such that for all u 2 Xk,

jjDiA
�˛
k ujjk � C3jjujjk: (40)

Hence for u 2 Y k

jjDiA
�˛
k ujjY k � C3jjujjY k (41)

(see [40] Theorem 2.4).
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The following lemma is central to the proof of existence of solutions of various
problems.

Lemma 4. Suppose that for some k � 0, f 2 CkC1.R/, g 2 CkC2.R/ and h 2
L1.0; 	/, 1

2
< ˛ < 1 and ˇ0 > 0. If � 2 OY k and � 2 OXk , then F.�; �/ 2 OY k , and

if f .P1/ D ˇ0, NG.�/ 2 OY k . If ˚ 2 OXk and � 2 OXk, then F.˚;�/ 2 OXk .

(a) If jjA�˛
k � jjk � R1, there exists a constantK1.R1/ such that

jjF.�; �/jjY k � K1.R1/.k�kY k C k�kkkA�˛
k �kY k / and (42)

jjF.˚;�/jjk � K1.R1/.k˚kk C k�kkkA�˛
k ˚kk/: (43)

(b) If jj�i jjY k � R2, i D 1; 2, then there exists a constantK2.R2/ such that

jjG.�1/�G.�2/jjY k � K2.R2/jj�1 � �2jjY k I (44)

and if jj˚i jjk � R2 and jj�i jjk � R2, i D 1; 2, then we can also take K2.R2/

such that

jjF.˚1; �1/ � F.˚2; �2/jjk � K2.R2/.jj˚1 � ˚2jjk C jj�1 � �2jjk/: (45)

Condition (44) is also satisfied by NG.�/.
(c) If k � 2, and jj�jjY k�2 � R3,

jjG.�/jjY k � K3.R3/k�kY k : (46)

From (45) if �.a/ 2 Xk is continuous at a0, then also F.�.a/; �/ 2 Xk and is
continuous at a0.

Proof. We work first with k D 0. Note that as f , g, and g0 are all locally Lipschitz
continuous and� 2 X , f .�.x//, g.�.x//, and g0.�.x// are all inX and hence, for
each i , Ki.A

�˛�/ andDiKi.A
�˛�/ are in X . Thus F W Y �X ! Y . Let � 2 X ,

jjA�˛� jjX � R1, and then it is easy to see that there exist constants K4 � � �K7 such
that for each i D 1 � � �N ,

jKi.A
�˛�1/.x/j � K4.R1/; (47)

jKi.A
�˛�1/.x/ �Ki.A

�˛�2/.x/j � K5.R2/jj�1 � �2jjX ; (48)

jDiKi.A
�˛�/.x/j � K6.R1/jj� jjX; and (49)

jDiKi.A
�˛�1/.x/ �DiKi.A

�˛�2/.x/j � K7.R2/jj�1 � �2jjX : (50)

Thus (42)–(45) hold for k D 0. Similarly for NG.�/.
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Now consider k > 0. Let � 2 Xk , jjA�˛
k � jjXk � R1 . We want to estimate

jjD�F.�; �/jjY , j�j � k. Now

D�F.�;�/ D

 X

�	�

 
�

�

!�X

i

�
D�DiA

�˛
k �/.D���Ki .A�˛

k �//

C.D�A�˛
k �/.

X

i

D���DiKi .A�˛
k �/

��
CD�.A�˛

k �f .A�˛
k �//:

But

jjD�DiA
�˛
k �jjY � jjDiA

�˛
k �jjY j�j � C3jj�jjY j�j ;

and

jjD�DiKi.A
�˛
k �/jjX D

�����

Z

B	

D�Dig.A
�˛
k �.� C �//�ih.j�j/ d�

�����
X

:

Now

D�Dig.A
�˛
k �.x C �//

D g0.A�˛
k �.x C �//D�DiA

�˛
k �.x C �/C linear combination of products in

g.r/.A�˛
k �..x C �/// andD
A�˛

k �.x C �/; for 2 � r � j�j C 1

and 1 � j
 j � j�j C 1; (51)

and in each product the powers of D sum to j�j C 1, so that

jjD�Dig.A
�˛
k �/jjX � K8.R1/jj� jjX j�j:

Further each term in (51) is uniformly continuous, so we can see that
D�DiK.A

�˛
k �/ 2 X . We can deal similarly with other terms in the sum and

with D�.A�˛
k �f .A�˛

k �//, so that F.�; �/ 2 Y k . Thus (42) and (43) can also be
shown to hold for all integers k > 0. Equations (44)–(45) are similar.

For (46) look at the norm of each product in D�G.�/. Recall that if ˚ DR1
0 �.a/da, then jj˚ jjXk � jj�jjY k . We then note that the norm of the term with

highest derivative in each product is bounded by constant times jj�jjY k , whereas the
norm of each term with lower derivative is bounded by constant times jj�jjY k�2 and
the result follows.

Further, using (47) and (49), we see that if �.x/ 2 Y0, � 2 X , then
F.�; �/.x/ 2 Y0. Thus � 2 Y k0 , � 2 Xk , implies that F.�; �/.x/ 2 Y k0 .
As � 2 OY k implies ˚ 2 OXk one can immediately deduce equivalent results for G.

ut
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Remark. We can deduce from (42) and (43) that there exists a constant NK1.R1/ such
that:

If jjA�˛
k ˚ jjk � R1; then jjG.˚/jjk � NK1.R1/jj˚ jjk; (52)

and if jj˚ jjk � R1 .where ˚ D
Z 1

0

�.a/da/; then jjG.�/jjY k � NK1.R1/jj�jjY k ;

(53)

and if jj� jjk � R1; then jjF.˚;�/jjk � NK1.R1/k˚kk : (54)

Now from Theorem 1, using (44), and working with (35)–(37) in place
of (11)–(13) in the case Q D P1, we get

Theorem 3. Suppose that for some k � 0, f 2 CkC1.R/, g 2 CkC2.R/, h 2
L1.0; 	/, � satisfies (H.1), ˇ0 > 0, and there exists P1 > 0 such that f .P1/ D ˇ0.
Let �0.a/� ˇ0Qe

�ˇ0a 2 Y ˛;k0 where 1
2
< ˛ < 1 andQ D 0 or Q D P1.

Then there exists T0 > 0 such that the problem (11)–(13) has a unique mild
solution p.t/ such that p.t/ � ˇQe�ˇ0a 2 C.Œ0; T0�IY ˛;k0 /. Furthermore there is
continuous dependence on the initial data, in the sense of Theorem 1.

Note that from (22) and (33)

p.t/.0/ D 2

Z 1

0

�. Oa/p.t/. Oa/d Oa: (55)

3.4 Equation for P

Our goal now is to prove the global existence of the mild solution of (11)–(13).
To achieve this we will need to prove the positivity and boundedness of solutions.
Because of the lack of regularity of p.x; a; t/, we will work with the integrated
equation in P.x; t/ and with the equation along the characteristics. This will enable
us to exploit the analyticity of the semigroup Tk.t/.

First we construct the mild equation in P and then, treating p as a known
function, we show that this equation has a unique classical solution.

Write

I.�/ D 2

Z 1

0

�. Oa/�. Oa/d Oa:

Note that � 2 Y k implies I.�/ 2 Xk and

jjI.�/jjXk � 2 N� jj�jjY k : (56)

Set ˚0.x/ D R1
0
�0.x; a/da.



A Cell Population Model Structured by Cell Age Incorporating Cell–Cell Adhesion 129

Theorem 4. Suppose that for some k � 0, f 2 CkC1.R/, g 2 CkC2.R/, h 2
L1.0; 	/, � satisfies (H.1), ˇ0 > 0, and there exists P1 > 0 such that f .P1/ D ˇ0.
Let �0.a/ � ˇ0Qe

�ˇ0a 2 Y
˛;k
0 where 1

2
< ˛ < 1 and Q D 0 or Q D P1. Suppose

also that the problem (11)–(13) has a unique mild solution p.t/ for t 2 Œ0; T0�.
Then, for 0 � t � T0, P.t/ D R1

0 p.t/.a/da satisfies

P.t/ D Tk.t/˚0 �
Z t

0

Tk.t � O�/.G.A˛kP. O�// � I.p. O�/// d O�; (57)

and this equation with initial condition P.x; 0/ D ˚0.x/ has a unique classical
solution P in the sense that P � Q 2 C.Œ0; T0�IXk

0 / \ C1..0; T0�IXk
0 /, and for

0 < t � T0, P.t/ 2 D.Ak/, and P satisfies

@P.x; t/

@t
D 2

Z 1

0

�.a/p.x; a; t/da C ı�P.x; t/

�r �
�
P.x; t/

Z

B	

g.P.x C �; t//�h.j�j/d�
	

� P.x; t/f .P.x; t//: (58)

Further, for k � 2, we also have P.t/ � Q 2 C1.Œ0; T0�IXk�2
0 / and (58) also

holds at t D 0.

Proof. Integrate (34) with respect to a, so for 0 � t � T0

P.t/ D
Z 1

0

.Sk.t/�0/.a/da �
Z t

0

Z 1

0

.Sk.t � s/G.A˛kp.s///.a/dads

D
Z 1

t

Tk.t/�0.a � t/da C
Z t

0

Tk.a/..Sk.t � a/�0/.0//da

�
Z t

0

Z t�s

0

Tk.a/..Sk.t � s � a/G.A˛kp.s///.0//dads

�
Z t

0

Z 1

t�s
Tk.t � s/G.A˛kp.s//.a � t C s/dads:

Now, changing the variable in the first and fourth integrals and reversing the order
of integration in the third integral we get

P.t/ D Tk.t/˚0

C
Z t

0
Tk.a/



.Sk.t � a/�0/ .0/ �

Z t�a

0

�
Sk.t � s � a/G.A˛kp.s//

�
.0/ ds

�
da

�
Z t

0
Tk.t � s/G.A˛kP.s//ds
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D Tk.t/˚0 C
Z t

0
Tk.a/p.t � a/.0/da �

Z t

0
Tk.t � s/G.A˛kP.s//ds

D Tk.t/˚0 �
Z t

0
Tk.t � s/



G.A˛kP.s//� I.p.s//

�
ds;

where in the last line we have changed variable and used (55).
To show that P.t/ is a classical solution we note that, from (45) and (56),

G.A˛kP.t// � I.p.t// 2 C.Œ0; T0�IXk/ and so, as in [44] Theorem 6.3.1, A˛kP.t/,
and hence also P.t/ is locally Hölder continuous on .0; T0�. Thus G.A˛kP.t//
is locally Hölder continuous. Furthermore I.p.t// 2 D.A˛k/ and jjA˛kI.p.t//jjk
is bounded. The result follows from a combination of [44] Theorem 4.3.2 and
Theorem 4.3.6.

If k � 2, @P
@t

exists for t 2 .0; T0� , P.x; t/ 2 C.RN � Œ0; T0�/. Also the right-
hand side is in C.Œ0; T0�IXk�2/, so that limt!0C @P

@t
exists. Thus @P

@t
.x; 0/ exists and

equals the right-hand side at 0. ThusP 2 C1.Œ0; T0�IXk�2/. ThatP.x; t/�Q 2 Xk
0

when p.x; a; t/�ˇ0Qe�ˇ0a 2 Y k0 follows from Lebesgue’s dominated convergence
theorem. ut

3.5 Method of Characteristics, Leading to Regularity
and Positivity

We now set up the characteristic equations.
We know from Theorems 3 and 4 that there exists T0 such that for t 2 Œ0; T0� there

is a unique mild solution p.t/ of (11)–(13) and that P.t/ D R1
0
p.t/.a/da satisfies

Theorem 4 and in particular (57); so we can regard the coefficients K.P /; f .P /;
as known functions of x and t . In setting up the characteristic equations there
is a technical problem that the null sets in (20) depend on t . This is overcome
by assuming that �0.a/ 2 Cb.Œ0;1/ID.A˛;k//, for some 1

2
< ˛ < 1, where

Cb.Œ0;1/ID.A˛;k// D fu W Œ0;1/ ! OD˛;k W u is continuous and boundedg:
We will see that this implies that p.t/.a/ is continuous as a function of a. Using
the regularity properties of P we will find that the characteristic equations have a
classical solution.

We observe first that b�.t/ is continuous and so for all � 2 Y k , .Sk.t/�/.a/
is continuous in a for 0 � a < t; and the left-hand limit exists and equals
2Tk.t/

R1
0
�.a/�.a/ da: Furthermore if � 2 C.Œ0;1/IXk/ then .Sk.t/�/.a/ is

also continuous in a for a > t and is continuous at a D t if

�.0/ D 2

Z 1

0

�.a/�.a/da:
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Exactly as in [16], using (21) and (22), we have for almost all a < t

p.t/.a/ D .Sk.t/�0/.a/ �
Z t�a

0

 
Sk.t � s/

�
F.A˛kp.s/; A

˛
kP.s//

	!
.a/ds

�
Z t

t�a

 
Sk.t � s/

�
F.A˛kp.s/; A

˛
kP.s//

	!
.a/ds

D Tk.a/2

Z 1

0

�. Oa/p. Oa; t � a/d Oa

�
Z t

t�a

 
Sk.t � s/

�
F.A˛kp.s/; A

˛
kP.s//

	!
.a/ds;

and is continuous in a. So if A˛kp.t/.a/ (and hence F.A˛kp.t/.a/; A
˛
kP.t/// were a

continuous function of a, using (20), we would have if t > a,

p.t/.a/ D Tk.a/2

Z 1

0

�. Oa/p. Oa; t � a/d Oa (59)

�
Z t

t�a
Tk.t � s/

�
F.A˛kp.a � t C s; s/; A˛kP.s//

	
ds;

while for t < a,

p.t/.a/ D Tk.t/�0.a � t/ (60)

�
Z t

0

Tk.t � s/
�
F.A˛kp.a � t C s; s/; A˛kP.s//

	
ds:

Motivated by this we take the characteristic equations along the characteristic
lines a � t D c

pc.t/ D Tk.t � tc/pc.tc/ �
Z t

tc

Tk.t � s/
�
F.A˛kpc.s/; A

˛
kP.s//

	
ds; (61)

where if c � 0 then tc D 0 and pc.tc/ D �0.c/, and if c < 0 then tc D �c
and pc.tc/ D 2

R1
0
�. Oa/p. Oa;�c/d Oa. We will show that for c > �T0, pc.x; t/ D

p.x; t C c; t/.
As in [70] Chap. 1 we define

dp.a; t/ D lim
h!0

p.aC h; t C h/ � p.a; t/
h

:
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Theorem 5. Suppose that for some k � 0, f 2 CkC1.R/, g 2 CkC2.R/, h 2
L1.0; 	/, � satisfies (H.1), ˇ0 > 0, and there exists P1 > 0 such that f .P1/ D ˇ0.
Let �0.a/ � ˇ0Qe

�ˇ0a 2 Cb.Œ0;1//ID˛;k
0 / \ Y

˛;k
0 where 1

2
< ˛ < 1 and Q D 0

orQ D P1.
Suppose that the problem (11)–(13) has a unique mild solution p.t/ for t 2

Œ0; T0�. Then for c > �T0 the problem (61) has a unique mild solution pc.t/ 2
C.Œtc ; T0/ID.A˛k//. This mild solution is a classical solution in the sense that

pc.t/ 2 C.Œtc ; T0/IXk/\ C1..tc; T0/IXk/; (62)

and for tc < t < T0, pc.t/ 2 D.Ak/, and

d

dt
pc.t/ D ı�pc.t/ � r �

 
pc.t/

Z

B	

g.P.x C �; t//�h.j�j/d�
!

� pc.t/f .P.t//:

(63)

pc.tc/ D �0.c/; if c � 0 (64)

D 2

Z 1

0

�. Oa/p. Oa;�c/d Oa; if � T0 < c < 0: (65)

Further, if k � 2, pc.t/ 2 C1.Œtc ; T0/IXk�2/ and (63) holds also at t D tc .
Also, for t 2 Œ0; T0/, p.t/.a/ is continuous from Œ0;1/ to Xk except possibly at

a D t and

p.a; t/ D pa�t .t/; (66)

so pc.x; t/ �Qˇ0e
�ˇ0.tCc/ 2 Xk

0 and

dp D ı�p.t/� r �
 
p.t/

Z

B	

g.P.x C �; t//�h.j�j/d�
!

� p.t/f .P.t//: (67)

Proof. Take c > �T0. Note first that pc.tc/ 2 D.A˛k/. Then, as A˛kP.t/ is
continuous and locally Hölder continuous, it follows from (45) and (54) that
f .t; ˚/ WD F.A˛k˚;A

˛
kP.t// satisfies the conditions of Theorems 6.3.1 and 6.3.3

in [44], suitably adapted. Thus the problem (63)–(65) has a unique mild solution
which is also a classical solution.

Then similar to [16] Section 4 we can show that for each t 2 Œ0; T0/, A˛kp.a; t/,
and hence also p.a; t/ is continuous in a for a ¤ t and (66) holds.

Finally, �0.a/ � ˇ0Qe
�ˇ0a 2 Xk

0 implies that p.x; a; t/ � ˇ0Qe
�ˇ0a 2 Xk

0 , so
also pc.x; t/�Qˇ0e�ˇ0.tCc/ D p.x; t C c; t/�Qˇ0e�ˇ0.tCc/ 2 Xk

0 . Equation (67)
follows immediately. ut
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3.6 Positivity and Boundedness

In order to get sufficient regularity in x we work in the space X2. First we use the
characteristic equation to get positivity and then the equation inP to give conditions
for boundedness.

Proposition 1. Suppose that f 2 C3.R/, g 2 C4.R/, h 2 C1Œ0; 	�, � satisfies
(H.1), ˇ0 > 0, and there exists P1 > 0 such that f .P1/ D ˇ0. Let �0.a/ �
ˇ0Qe

�ˇ0a 2 Y ˛;20 where 1
2
< ˛ < 1, and Q D 0 or Q D P1. Assume also

that �0.x; a/ � 0 for all x 2 R
N and almost all a � 0. Suppose that the problem

(11)–(13) has a unique mild solution p.t/ for t 2 Œ0; T0�. Then p.x; a; t/ � 0 for
all 0 � t � T0, x 2 R

N and almost all a � 0.

Proof. Suppose first that �0.a/ � ˇ0Qe
�ˇ0a 2 Cb.Œ0;1//ID˛;2

0 / \ Y
˛;2
0 , so we

can use the characteristic equations (63)–(65). Fix NT0 < T0 and first take c � 0,
t 2 Œ0; NT0�. In this case tc D 0 and pc.tc/ D �0.c/ � 0. We can now use a maximum
principle argument as in [18] Proposition 1 to see that pc.t/ � 0 for c � 0. So
p.x; a; t/ � 0 for 0 � t � a, x 2 RN , t 2 Œ0; NT0�.

We now use the case � NT0 � c < 0 to get p.x; a; t/ � 0 for 0 < a < t � NT0,
x 2 RN . Again we see that pc.x; t/ � 0 provided pc.tc/ � 0. But

pc.tc/ D 2

Z 1

0

�. Oa/p. Oa;�c/d Oa D 2

Z 1

�

�. Oa/p. Oa;�c/d Oa � 0

when �� � c � 0. Hence p.a; t/ D pa�t .t/ � 0 for a < t � a C �, 0 � t � NT0.
Now continue by induction to show that p.x; a; t/ � 0 for 0 � t � NT0, a � 0,
x 2 R

N . But this is true for all NT0 < T0 and the result follows from the continuity
of p.t/.

Now consider the general case  0 WD �0.a/ � ˇ0Qe
�ˇ0a 2 Y

˛;2
0 . Then, as

CC;c..Œ0;1/ID˛;2
0 / is dense in L1C..0;1/ID˛;2

0 / (where CC;c denotes the continu-
ous, positive functions with compact support), there exist  n 2 CC;c.Œ0;1/ID˛;2

0 /

such that jjA˛2. n� 0/jjY 2 ! 0 as n ! 1. So if pn.t/ is the solution of (11)–(12)
with initial data  n C ˇ0Qe

�ˇ0a, by continuous dependence on the initial data,
for t 2 Œ0; T0/, jjA˛2.pn.t/ � p.t//jjY 2 ! 0 as n ! 1. Hence there exists a
subsequence pnr .x; a; t/ ! p.x; a; t/ a.e. and p.x; a; t/ � 0 a.e. for t 2 Œ0; T0�.

ut
Let !N be the surface area of @B1.

Proposition 2. Suppose that f 2 C3.R/, g 2 C4.R/, h 2 C1Œ0; 	�, h � 0, �
satisfies (H.1), ˇ0 > 0, and there exists P1 > 0 such that f .P1/ D ˇ0. Let �0.a/ �
ˇ0Qe

�ˇ0a 2 Y
˛;2
0 where Q D 0 or Q D P1, and 1

2
< ˛ < 1 and �0.a; x/ � 0 for

all x 2 R
N and almost all a � 0. Suppose also that either:
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(a) There exists P2 > P1 such that g.P / � 0 for P 2 Œ0; P2�, that ˚0 � P2 for
all x 2 R

N , and that for all p.a/ 2 L1.0;1/ such that p.a/ � 0 a.e. andR1
0
p.a/ D 1,

f .P2/ > 2

Z 1

0

�.a/p.a/da; (68)

and

max
P2Œ0;P2�

g.P /
XZ

B	

ˇ̌
ˇ̌ @
@�
.�ih.j�j//

ˇ̌
ˇ̌ d� < f .P2/� 2

Z 1

0

�.a/p.a/da:

(69)
Or

(b) There exists P3 such that for all P > P3 and p.a/ 2 L1.0;1/ such that
p.a/ � 0 a.e. and

R1
0
p.a/ D 1,

f .P / > 2

Z 1

0

�.a/p.a/da (70)

and

sup
P2Œ0;1/

g.P /

(
h.	/!N	

NCXZ

B	

ˇ̌
ˇ̌ @
@�
.�ih.j�j//

ˇ̌
ˇ̌ d�

)
< f .P /�2

Z
1

0

�.a/p.a/da:

(71)
Choose P3 such that also ˚0.x/ � P3 for all x 2 R

N .

Suppose that the problem (11)–(13) has a unique mild solution p.t/ for t 2
Œ0; T0�. Then P.t/ D R1

0
p.t/.a/da satisfies 0 � P.x; t/ � Pi for all 0 � t � T0,

x 2 R
N , where i D 2 in case (i) and i D 3 in case (ii).

Proof. The proof uses a very similar argument to that used in [17] Propositions 2
and 3. For part (a), suppose solutions do not remain bounded by P2 and let

t� D infft 2 Œ0; T0� W 9 x such that P.x; t/ > P2g: (72)

Then t� � 0 and by continuity P.x; t�/ � P2, for all x 2 R
N . There exists .xi ; ti /

such that ti > t� for each i , ti ! t� and P.xi ; ti / > P2, but P.x; t/ ! Q < P2 as
jxj ! 1, so we can take a subsequence (call it xi again), such that xi ! x�, say.
Then P.xi ; ti / ! P.x�; t�/. So we have

P.x�; t�/ D P2;
@P.x�; t�/

@xi
D 0;

@2P.x�; t�/
@x2i

� 0; @P.x�; t�/=@t � 0

(73)
and 0 � P.x; t�/ � P2 for all x 2 R

N . We will now show that @P.x�; t�/=@t < 0
contradicting (73).
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Note that, by Theorem 4 , @P.x; t/=@t exists and is continuous even at t D 0, so
that (58) holds for t 2 Œ0; T0�. Evaluating (58) at .x�; t�/, making use of (73), and
integrating by parts we obtain

@P.x�; t�/

@t
D P2


2

Z
1

0

�.a/
p.x�; a; t�/

P2
da � h.	/

XZ

@B	

g.P.x� C �; t�//
�2i
	

dS

C
XZ

B	

g.P.x� C �; t�//
@

@�
.�ih.j�j// d� � f .P2/

�
:

Now P.x� C �; t�/ is in Œ0; P2� so g.P.x� C �; t�// � 0 and h.	/ � 0. Therefore

@P.x�; t�/
@t

� P2Œ2

Z 1

0

�.a/
p.x�; a; t�/

P2
da

C max
P2Œ0;P2�

g.P /
XZ

B	

ˇ̌
ˇ̌ @
@�
.�i h.j�j//

ˇ̌
ˇ̌ d� � f .P2/� < 0

by (69), a contradiction, and the proof of (a) is complete. The proof of (b) is similar.
ut

Remark. Condition (68) is satisfied if f .P2/ > 2 N� and similarly for (69)–(71).
Biologically it says that at close packing cell division is overcome by cell loss.

3.7 Global Existence

We now show that the solutions are global. We work in Xk
0 , for some k � 2, to

get sufficient regularity for Propositions 1 and 2 to hold. However, Proposition 2
only gives boundedness of P in X . To prove global existence of the mild solution
of (11)–(13) in Y k we have to show that jjv.t/jjY k is bounded on bounded subsets
of Œ0;1/. This is accomplished in several steps, using Lemma 4.

Theorem 6. Suppose that for some k � 2, f 2 CkC1.R/, g 2 CkC2.R/, h 2
C1Œ0; 	�, h � 0, � satisfies (H.1), ˇ0 > 0, and there exists P1 > 0 such that
f .P1/ D ˇ0. Let �0.a/ � ˇ0Qe

�ˇ0a 2 Y ˛;k0 where Q D 0 or Q D P1, and
1
2
< ˛ < 1 and �0.a; x/ � 0 for all x 2 R

N and almost all a � 0. Suppose further
that either part (a) or part (b) from Proposition 2 holds.

Then in Theorems 3–5 the solutions are global.

Proof. Take Tmax to be the sup of the T0 such that there is a unique mild solution
p.a; x; t/ of (11)–(13) in Y k , so Theorems 3 and 4 hold on Œ0; Tmax/. Thus, by
Propositions 1 and 2, for t 2 Œ0; Tmax/, p.t/ � 0 a.e., and there exists NP such that
0 � P.t/ � NP , so in particular, jjI.p.t//jjX � 2 N� jjP.t/jjX . Set V.t/ D A˛kP.t/

and v.t/ D A˛kp.t/. We assume Tmax < C1.
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First we will show that there exists NR such that supt2Œ0;Tmax/ jjV.t/jjX � NR. Take
t 2 Œ0; Tmax/. From above jjA�˛

k V .t/jjX � NP , so from (57), using (38), (52),
and (15),

jjV.t/jjX � jjTk.t/A˛k˚0jjX C
Z t

0

jjA˛kTk.t � s/fG.V.s//� I.A�˛
k v.s//gjjXds

� jjA˛k˚0jjX C
Z t

0

C2e
ˇ.t�s/.t � s/�˛. NK1. NP /C 2 N�C1/jjV.s/jjXds:

Thus from [32] Sect. 1.2.1 there exists NK2 such that

sup
t2Œ0;Tmax /

jjV.t/jjX � NK2jjA˛2˚0jjX D NR;

say.
We now prove that there exists NRk such that for t 2 Œ0; Tmax/

jjv.t/jjY k � NRk: (74)

First, from (34), using (39) and (53),

jjv.t/jjY � jjSk.t/A˛k�0jjY C
Z t

0

jjA˛kSk.t � s/G.v.s//jjY ds

� e2
N�t jjA˛k�0jjY C

Z t

0

C2e
Ň.t�s/.t � s/�˛ NK1. NR/jjv.s/jjY ds;

so that, as above, there exists NR0 such that jjv.t/jjY � NR0 for t 2 Œ0; Tmax/.
Then, using (46),

jjv.t/jjY 2 � e2
N�t jjA˛k�0jjY 2 C

Z t

0

C2e
Ň.t�s/.t � s/�˛ NK3. NR0/jjv.s/jjY 2ds;

so again there exists NR2 such that jjv.t/jjY 2 � NR2 for t 2 Œ0; Tmax/. Thus (74)
follows by induction, and hence by Theorem 1 the solutions are global. ut

4 Local Stability for the Problem (11)–(13)
in L1..0;1/IL2.RN //

We will now consider conditions for the local stability of the nonzero stationary
solution of (11)–(13). To do this we set the problem in L1..0;1/IL2.RN //.
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4.1 Existence of Solutions

For any 1 < p < 1 define the operator, QALp W D. QALp/ 	 Lp.RN / ! Lp.RN / by

QALp� D �ı��; � 2 D.ALp / with

D. QALp/ D W 2;p.RN /:

Similarly we can also define QAL1 W D. QAL1/ 	 L1.RN / ! L1.RN /, for a suitable
domain D. QAL1/ � W 2;1.RN / (see [30]). Now take 1 � p < 1. For ! > 0,
define ALp D QALp C !I with D.ALp / D D. QALp/. It is well known (see [37]) that
� QALp generates a positive analytic semigroup fTLp.t/gt�0, with kTLp .t/k � 1. Set
Yp D L1..0;1/ILp.RN //, and let SLp.t/ W Yp ! Yp be the semigroup related to
TLp.t/ as in (20). Thus Eqs. (38) and (39) hold also in Lp.RN /. Further, as in [18],
if 1
2
< ˛ < 1,

D.A˛Lp / ,! W 1;p.RN /:

Thus if we defineDi W D.Di / 	 Lp.RN / ! Lp.RN /,

Di� D @�

@xi
; with D.Di / D W 1;p.RN /;

(40) and (41) also hold in Lp.R/.

Theorem 7. Take N � 3. Suppose that f 2 C1.R/, g 2 C2.R/, h 2 L1.0; 	/,
� satisfies (H.1), ˇ0 > 0, and there exists P1 > 0 such that f .P1/ D ˇ0. Let
�0 � Qˇ0e

�ˇ0a 2 L1..0;1/ID.A˛
L2
//, where 3

4
< ˛ < 1, and either Q D 0 or

Q D P1.
Then there exists T0 > 0 such that the problem (11)–(13) has a unique mild

solution p.t/ such that p.t/ � Qˇ0e
�ˇ0a 2 C.Œ0; T0�IL1..0;1/ID.A˛

L2
///. Also

there is continuous dependence on the initial data in the sense of Theorem 1.
Furthermore, if in addition �0 �Qˇ0e�ˇ0a 2 L1..0;1/ID.A˛

L1
//, then we may

choose T0 > 0 such that also p.t/ �Qˇ0e�ˇ0a 2 C.Œ0; T0�IL1..0;1/ID.A˛
L1
///.

Proof. The first result follows from Theorem 1, since, as in [18] Theorem 3, G W
Y2 ! Y2 and NG W Y2 ! Y2 satisfy (H.2).

For the final part note that G; NG W Y1 \ Y2 ! Y1 \ Y2 also satisfy (H.2) in the
Y1-norm. If Q D 0 consider the iterates,

vn.t/ D SLp.t/A
˛
Lp�0 �

Z t

0

A˛LpSLp .t � s/G.vn.s// ds:
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Note that for p D 1 and p D 2 these sequences are equal, but converge in
L1..0;1/ILp.RN // to v1, say, and v2 D A˛

L2
p, respectively. Now, by considering

the restrictions to bounded subsets of R
N , it can be seen that v1 D v2 almost

everywhere, so that p.t/ 2 L1..0;1/ID.A˛
L1
// as required. Similarly for Q D P1

using NG. ut

4.2 Local Asymptotic Stability in Y2

We now consider the local asymptotic stability of the stationary solution q.a/ D
ˇ0P1e

�ˇ0a. For simplicity we will consider the case where f and g are logistic. We
take f .P / D .P C ˇ0 � P1/ and g.P / D P.P2 � P/, with P2 > P1.

If we make the substitution p D w C ˇ0P1e
�ˇ0a, W.x; t/ D R1

0
w.x; a; t/da,

our equation in this case becomes

@w.x; a; t/

@t
D �@w.x; a; t/

@a
C ı�w.x; a; t/CH.w.x; a; t//; (75)

whereH W L1..0;1/ID.A˛
L2
// ! Y2 is defined by

H.�/.a/ D �r �
�
.�.x; a/

CP1ˇ0e�ˇ0a/
Z

B	

˚.x C �/..P2 � 2P1 �˚.x C �//�h.j�j/d�
	

��.x; a/.ˇ0 C ˚.x// � P1ˇ0
2e�ˇ0a˚.x/;

with ˚.x/ D R1
0
�.x; a/da. So the linearized problem is

@w.x; a; t/

@t
D �@w.x; a; t/

@a
C ı�w.x; a; t/C Bw.x; a; t/;

where the bounded linear operator B W L1..0;1/ID.A˛
L2
// ! Y2 is defined by

B�.a/ D �ˇ0e�ˇ0aP1.P2�2P1/
Z

B	

r˚.xC�/ � �h.j�j/d��ˇ0e�ˇ0aP1˚ � ˇ0�

D ˇ0e
�ˇ0aF.˚/ � ˇ0�; where;

F .˚/ D �P1.P2 � 2P1/
Z

B	

r˚.x C �/ � �h.j�j/d� � P1˚:

So we consider the stability of the zero solution of (75). If we write J D H � B ,
then, as in Theorem 7, H satisfies (H.2) and similarly J satisfies (H.3). So in order
to apply Theorem 2 it only remains to find conditions such that there exists � > 0

as in (27).
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Let fR.t/gt�0 be the strongly continuous semigroup in L1..0;1/ID.A˛
L2
//

associated with the solutions of the linearized problem (L), written in abstract
form as

dw

dt
D �@w

@a
� QAL2w C Bw; t > 0;

w.0; t/ D 2

Z 1

0

�.a/w.a; t/da

w.a; 0/ D  0.a/;

where  0 D �0 � ˇ0P1e
�ˇ0a.

From now on we shall require that � also satisfies

(H.4) � W Œ0; 1/ ! RC is Lipschitz continuous.

Write L1 D L1.0;1/. The following result will be used to determine conditions
for the stability of (L). It exploits methods and definitions from [70].

Proposition 3. Consider the problem (La):

du

dt
D �@u

@a
� �u C �e�ˇ0aˇ0

Z 1

0

u.a; t/da (76)

u.0; t/ D 2

Z 1

0

�. Oa/u. Oa; t/d Oa (77)

u.a; 0/ D �.a/ 2 L1.0;1/; (78)

where � and � are real constants. This problem has a unique global solution in the
sense that u 2 C.Œ0;1/IL1/ is the unique solution of the equation (Ia)

u.a; t/ D

8
ˆ̂<

ˆ̂:

2
R1
0
�. Oa/u. Oa; t � a/d OaC R t

t�a.��u.s C a � t; s/
C�e�ˇ0.sCa�t /ˇ0

R1
0 u. Oa; s/d Oa/ds a:a: 0 < a < t

�.a � t/C R t
0
.��u.s C a � t; s/

C�e�ˇ0.sCa�t /ˇ0
R1
0

u. Oa; s/d Oa/ds a:a: a > t:

Let U.t/ W L1 ! L1 be the strongly continuous semigroup of solutions of (Ia), then,
if !0 is the growth bound of U.t/,

!0 � maxfˇ0 � �; ˇ0 � � C �g: (79)

Proof. Problem (La) satisfies the conditions of [70] Propositions 3.2 and 3.7. So
the problem has a unique global solution for � 2 L1 and fU.t/gt�0 is a strongly
continuous semigroup of bounded linear operators in L1 with generator
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A � D ��0 � �� C �e�ˇ0aˇ0
Z 1

0

�.a/da;

D.A / D f� 2 L1 W � is absolutely continuous on Œ0;1/, �0 2 L1, and

�.0/ D 2

Z 1

0

�. Oa/�. Oa/d Oag:

The operator C W L1 ! L1, C � D �e�ˇ0aˇ0
R1
0
�.a/da is bounded and compact

so that, by [70] Proposition 4.14, !1.A / D !1.B/; where B� D ��0 � ��, and
!1.A / is the essential growth bound of U.t/ (see [70] for the properties of the
essential growth bound). By [70] Theorem 4.6, !1.B/ � ��.

Let 
.A / be the spectrum of A and let E
.A / be the essential spectrum of A .
From [70], Proposition 4.13,

!0.A / D maxf!1.A /; sup
�2
.A /�E
.A /

Re�g:

Further, from [70] Proposition 4.11, if � 2 
.A / � E
.A / then � 2 P
.A /, the
point spectrum of A . So we will determine the point spectrum of A .

If k is an eigenvalue of A , with associated eigenvector u, then

u0.a/ D �.� C k/u C �ˇ0e
�ˇ0a

Z 1

0

u.a/da; (80)

u.0/ D 2

Z 1

0

�.a/u.a/da: (81)

Suppose first that � ¤ 0. Then, if k D ˇ0 � �, from (80),

u.a/ D u.0/e�ˇ0a C C�aˇ0e
�ˇ0a;

where C D R1
0 u.a/da, and (81) is only possible if u D 0. If, on the other hand,

k ¤ ˇ0 � �, then from (80)

u.a/ D �ˇ0

� C k � ˇ0
e�ˇ0aC CHe�.�Ck/a;

where H is a constant. Then (81) is true if and only if either H D 0 or 1 D
2
R1
0 �.a/e�.�Ck/ada. If H D 0 then u is a nonzero solution if and only if � ¤ 0

and k D �C ˇ0 � �. But if 1 D 2
R1
0 �.a/e�.�Ck/ada then Im k ¤ 0 and

1 D 2

Z 1

0

�.a/e��ae�.Rek/a cos..Im k/a/da < 2
Z 1

0

�.a/e��ae�.Rek/ada;
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so Re k � ˇ0 � �. If on the other hand � D 0 then from (80) u.a/ D u.0/e�.�Ck/a
and again Re k � ˇ0 � �. Thus (79) follows. ut

Finally we have

Theorem 8. Take N � 3. Suppose that h 2 L2.0; 	/, � satisfies (H.1) and (H.4),
and ˇ0 > 0. Then, the stationary solution of (11)–(12) is locally asymptotically
stable in Y2 if, for all � 2 R

N ,

k.�/ D �ıj�j2 C P1.P2 � 2P1/
Z

B	

sin.� � �/.� � �/h.j�j/d� � P1 < 0:

Proof. This is equivalent to proving that the zero solution of (75) is locally
asymptotically stable, so we have only to find conditions such that there exists
� > 0 such that the semigroup of solutions of (L) satisfy (27). This will be done by
taking the Fourier transform of the characteristic equation of (L) and then applying
Proposition 3 to the transformed equation.

First suppose that  0 2 Cb..0;1/IL2.RN // \ L1..0;1/ID.A˛
L2
// \

L1..0;1/ID.A˛
L1
//, with 3

4
< ˛ < 1. By Lemma 1, with the same

argument as in Theorem 7, the problem (L) has a unique mild solution w 2
C.Œ0;1/IL1..0;1/ID.A˛

L2
/// \ C.Œ0;1/IL1..0;1/ID.A˛

L1
///. From now on

take p D 1 or p D 2. Then, as in Theorem 4, W.t/ D R1
0

w.a; t/da satisfies

W.t/ D TLp�0 C
Z t

0

TLp.t � s/fF.W.s// � ˇ0W.s/C I.w.s//gds;

(�0 D R1
0  0da) and A˛LpW.t/ and hence also F.W.t// is continuous on Œ0;1/

and locally Hölder continuous on .0;1/.
Note that �.a/ D ˇ0e

�ˇ0aF.W / satisfies (77), so that SLp .t/.ˇ0e�ˇ0aF.W // is
continuous in a. If w.a; t/ is the mild solution of (L) then using a similar argument
to that used in Lemma 3,

w.a; t/ D e�ˇ0tSLp.t/ 0 C
Z t

0

e�ˇ0.t�s/SLp.t � s/ˇ0e
�ˇ0aF.W.s//ds;

and hence w.a; t/ is continuous in a except possibly at a D t .
Thus if we define wc.t/ D w.t C c; t/ for c � �t , then wc.t/ satisfies

wc.t/ D e�ˇ0tTLp.t � tc/wc.tc/C
Z t

tc

e�ˇ0.t�s/TLp .t � s/ˇ0e
�ˇ0.sCc/F .W.s//ds;

where if c � 0 then tc D 0 and wc.tc/ D  0.c/, and if c < 0 then tc D �c
and wc.tc/ D 2

R1
0 �. Oa/w. Oa;�c/dOa. From [44] Theorem 4.3.3 this solution is
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also a classical solution, so wc.t/ 2 C.Œtc;1/IL2.RN // \ C1..tc;1/IL2.RN //\
C.Œtc ;1/IL1.RN // \ C1..tc;1/IL1.RN // and

dwc.t/

dt
D ı�wc.t/ � ˇ0wc.t/C ˇ0e

ˇ0.tCc/F .W.t//: (82)

If we denote the Fourier transform of  2 L1.RN / \ L2.RN / (see [19],
Sect. 4.3)) by

O .�/ D 1

.2�/
N
2

Z

RN
exp.�i� � x/ .x/dx;

we may take the Fourier transform of (82) to get Owc.t/ 2 C.Œtc;1//\ C1..tc ;1//

with

d Owc.t/
dt

D �� Owc.t/C ˇ0e
ˇ0.tCc/� OW .t/; (83)

where � D ıj�j2 C ˇ0 > 0 and � D P1.P2 � 2P1/
R
B	

sin.� � �/.� � �/h.j�j/d� �
P1: Also, for c > 0, Owc.x; 0/ D O 0.x; c/, and for c < 0, Owc.x; 0/ D
2
R1
0 �. Oa/ Ow. Oa;�c/d Oa: But Owc.t/ 2 C.Œtc ;1// and the right-hand side of (83) is

in C.Œtc ;1//, so in fact Owc.t/ 2 C1.Œtc ;1//, and we may integrate (83) to get

Owc.t/ D Owc.tc/C
Z t

tc

�� Owc.s/C ˇ0e
�ˇ0.sCc/� OW .s/ds:

Further Ow.a; t/ D Owa�t .t/, so, putting c D a � t , we see that Ow.a; t/ is the unique
solution of (Ia). But �� C ˇ0 < 0 and � � � C ˇ0 D k.�/; so, using Proposition 3,
if k.�/ < 0 for all � 2 R

N , there exist � > 0 and M � 1 such that jj Ow.a; t/jjL2 �
Me��t jj O 0jjL2: Hence by Plancherel, jjw.a; t/jjL2 � Me��t jj 0jjL2:

Finally Cb..0;1/IL2.RN // \ L1..0;1/ID.A˛
L2
// \ L1..0;1/ID.A˛

L1
// �

Cc..0;1/IC1
c .R

N // (where Cc denotes continuous functions of compact support)
so it is dense in L1..0;1/IL2.RN //, so that jjR.t/jj � Me��t , as required, and
the result follows. ut

5 Simulations

We illustrate the model (11)–(13) with simulations applicable to in vitro wound
healing experiments, which are widely used in cancer research [1, 5, 6, 24–27,
45, 46, 50, 51, 72]. Our simulations are based on experiments in [67], in which
MCF10A mammary epithelial cancer cells were grown in monolayer cultures with
varying expression of HER2 (human epidermal growth factor receptor 2). In cultures
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overexpressing HER2, TGF-ˇ (transforming growth factor beta) promotes cell
motility by lamellipodia, which are cytoskeleton projections on cell surfaces. The
cultures were scored in thin lines and then allowed to proliferate in replenished
medium. In the cultures with uninhibited TGF-ˇ the wounds closed completely,
but in the cultures with inhibited TGF-ˇ they did not. In earlier work [17, 18]
we simulated these experiments, and here we extend this work to incorporate
cell age and, thus, the cell cycle. For the numerical simulations we used a
backward difference scheme for the spatial variables and a method of characteristics
discretization scheme for the age variables. MATHEMATICA codes are available on
request.

In [17] we examined the role of the diffusion coefficient ı and the sensing
radius 	 in (11) and demonstrated that larger values of ı and smaller values of
	 lead to complete wound closure, but smaller values of ı and larger values of
	 gave rise to rippled patterns of incomplete closure. Here, as in [18], we set
g.P / D P.� � P/ and examine the role of �, which is a non-dimensionalized
cell density parameter corresponding to cell packing. As in [18], but now with cell
age incorporated, we will see that there is a critical value of � such that closure
occurs below this value, but not above. We take f .P / D .P C ˇ0 � P1/, � > P1,
h.x/ D arctan.100:0 x/ =.9:0 x arctan 100:0/, and

�.a/ D
8
<

:

�0.a � 2:0/.4:0 � a/ exp.�2:0.a � 2:0//C :1; 2:0 < a < 4:0

0:0 a � 2:0

0:0 a � 4:0:

We choose ı D 1 and 	 D 1. Recall that ˇ0 > 0 is the intrinsic growth constant,
that is, the unique value ˇ0 such that 2

R1
0
�.a/e�ˇ0a da D 1 and that if P1 > 0 is

such that f .P1/ D ˇ0, then q.a/ D ˇ0P1e
�ˇ0a is a stationary solution (independent

of x and �). We choose ˇ0 D 0:55, and to compare with [18] we take P1 D 1,
and this forces �0 D 7:2839. Thus, the stationary solution in this case is q.a/ D
0:55 exp.�0:55a/ (Fig. 1, left panel). By Theorem 8 the stationary solution is locally
asymptotically stable in L1.0;1/ID.A˛

L2
// if for all � 2 R

k.�/ D �ıj�j2 C P1.� � 2P1/
Z 	

�	
sin.��/��h.j�j/d� � P1 < 0:

For our parameters this condition is satisfied if � < 17:62. We take the initial data as
�0.x; a/ D 0:55 exp.�0:55a/�0:5 exp.�.0:1x/10/ exp.�0:6a/ (Fig. 1, right panel),
which represents the lateral scoring in the one-dimensional spatial variable x. In
Figs. 2 and 3 we simulate the behavior of P.x; t/ D R1

0
p0.x; a; t/da (the total

population density in x at time t) for values of � D 16:0; 17:0; 18:0, and 19:0. In
Fig. 2 we see that if � D 16:0 or 17:0, then P.x; t/ appears to converge to the
stationary solution 1:0. In Fig. 3 we see that if � D 18:0 or � D 19:0, then P.x; t/
oscillates in x about the stationary solution 1:0 with a series of peaks, symmetric to
the right and left of x D 0:0, and rising above and falling below 1:0. The oscillation
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Fig. 1 Left panel: steady-state distribution q.a/ D 0:55 e�0:55a (independent of spatial position
x). Right panel: age-space initial distribution p.a; x; 0/ D �0.x; a/ at time t D 0. The center
cavity corresponds to the wound in the spatial and age variables at time t D 0. Both graphs are
independent of the cell density parameter �

Fig. 2 Spatial distribution of the total population P.x; t/ for � D 16:0, t D 10:0 (left panel) and
� D 17:0, t D 20:0 (right panel). The wound appears to close completely, but requires longer
times for higher values of �

Fig. 3 Spatial distribution of the total population P.x; t/ for � D 18:0, t D 40:0 (left panel) and
� D 19:0, t D 30:0 (right panel). The wound does not close, but instead develops a complex
pattern of peaks and valleys which do not converge to 1:0
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Fig. 4 Age-spatial distribution p.x; a; t/ for � D 18:0, t D 40:0 (left panel) and � D 19:0,
t D 30:0 (right panel). The cell age dependence of the density 	.x; a; t / exhibits an oscillating
pattern in the spatial variable x

Fig. 5 Spatial distribution of the of the cell division rate p.x; 0; t / at various times for � D 18:0

(left panel) and � D 19:0 (right panel). The pattern of oscillations widens in the x-direction and
amplifies in magnitude with increasing values of � and advancing time

pattern in the spatial variable x appears to widen as time increases and increase in
amplitude as � increases. A similar oscillation pattern in the spatial variable x is also
observed in the age-space density p.x; a; t/ (Fig. 4) and the division rate p.x; 0; t/
(Fig. 5) for � D 18:0 and 19:0. This behavior compares with Figs. 2 and 3 in [18],
where the solutions should be compared with P.x; t/. The simulations reveal the
complete or incomplete closure of the wound in terms of the parameter �.

Summary

We have proven basic theoretical results for the model (11)–(13), which incorporates
space and age into the dynamics of a proliferating cell population. This continuum
model describes cell–cell adhesion processes, which are significant in cancer
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progression. Specifically, we proved the existence, uniqueness, positivity, and
boundedness of solutions with sufficiently smooth positive initial data. Our results
incorporate the cell cycle with a cell age variable reflecting heterogeneous cell
division times. We examined in certain cases the asymptotic behavior of solutions
and demonstrated the local stability of solutions with respect to parametric input. We
illustrated these issues in simulations corresponding to wound healing experiments,
in which cell–cell adhesion plays a significant role. In future work we will extend
these ideas to settings in which stem cells are distinguished in cell proliferation
dynamics. It is well recognized that cancer stem cells play a significant role in
the pathogenesis of cancer, and continuum models of tumors incorporating spatial
behavior, the cell cycle, cell differentiation, cell mutation, and stem cell lineages are
important for cancer research.
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A General Framework for Multiscale Modeling
of Tumor–Immune System Interactions

Marina Dolfin, Mirosław Lachowicz, and Zuzanna Szymańska

Abstract In this paper we review methods that allow the construction of a
consistent set of models that may describe the interactions between a tumor and
the immune system on microscopic, mesoscopic, and macroscopic scales. The
presented structures may be a basis for a description on the sub–cellular, cellular,
and macroscopic levels. Important open problems are indicated.

Keywords Tumor • Immune system • Asymptotic analysis • Multiscale
description • Kinetic equations • Systems of nonlinear ODEs

1 Introduction

Interactions between a tumor and the immune system are very complex and involve
many factors—the players of the game. To some extent we believe that some
aspects of the process may be adequately described on the macroscopic scale, but
certainly there are aspects that cannot. For this reason it is important to develop
a theoretical framework that allows for multiscale descriptions taking into account
sub-cellular and cellular phenomena together. From a theoretical point of view this
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would involve the construction of a hierarchy of various models on the microscopic,
mesoscopic, and macroscopic scales of description and a mathematical theory on
possible relationships between them. Such a set of models may be related to various
aspects of the competition between a tumor and the immune system as well as its
various time scales.

In the present paper we discuss a theoretical framework for the construction of
micro- and meso-models that may be related to macroscopic models and that are
able to take into account various additional aspects of the microscopic scale.

The paper is organized as follows. In Sect. 2 we present the biological back-
ground. Section 3 reviews the general approach based on Active Particle Systems.
Section 4 reviews a general macroscopic model proposed by A. d’Onofrio. Sec-
tion 5 presents the general strategy that is going to be applied. The mathematical
framework at the microscopic scale is given in Sect. 6. The class of models at the
mesoscopic scale is contained in Sect. 7. Finally the mathematical links between
various models are reviewed in Sect. 8.

2 Biological Background

Cancer as a disease exists at different biological levels. At the smallest level (or
scale), cancer begins with changes in the DNA of a cell, which consequently lead
to a disturbed functioning of the intracellular signaling pathways. In turn, abnormal
activity of signaling pathways causes abnormal behavior at the cellular level. This
means that cells

• do not respond to intercellular signals regulating proliferation and so proliferate
in an uncontrolled way;

• do not differentiate normally and fully;
• do not undergo apoptosis.

Impaired processes at the cellular level lead to the formation of macroscopic
abnormalities at the tissue level such as the formation of solid tumors and related
pathological processes such as tumor-induced angiogenesis (new blood vessel
formation). At this level we can talk about impaired functioning of whole organs,
which in turn leads to the starvation and death of the organism.

Like the disease itself, the organism defense against tumor lesions includes a
number of mechanisms at different levels, starting from molecular mechanisms of
DNA repair, through intracellular apoptotic pathways, and finally to the activation
of the body’s immune system. Defense mechanisms associated with the immune
system commence as soon as tumor cells appear and continue to act at a late stage in
the overall process of cancer development when other host mechanisms have failed
[38, 69]. However, many observations indicate a significant role for the immune
system concerning the body’s defense against tumors. For example, in patients
who have chronic immunosuppression, one can observe a significant increase in the
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incidence of certain tumors in transplant recipients (about a hundredfold increase in
the case of lymphomas and about a four hundredfold increase in the case of Kaposi’s
sarcoma [16, 38]).

The immune system protects organisms from infection with different specificity.
Initially there is a physical barrier to prevent the entry of pathogens such as bacteria
or viruses into the body. If a pathogen does break through these barriers, the
innate immune system initially provides an immediate, but nonspecific response.
If pathogens successfully avoid this nonspecific response there is a third layer
of protection—the adaptive immune system. The adaptive immune response to
infection relies on improved recognition of a pathogen previously eliminated and
this is possible through the so-called immunological memory [55, 58]. Both types
of immune response, innate and adaptive, rely on the ability of the immune system
to distinguish between the host’s own and foreign molecules.

Once activated, the immune system is very effective at detecting and eliminating
pathogens such as bacteria or viruses. It identifies its targets by recognizing specific
molecular entities—antigens—that are made by these agents. Often the immune
response to a pathogen depends on previous encounters with this pathogen’s
antigens. The immune system has the ability to learn to recognize certain antigens
and in the case of reexposure to this pathogen, the host response is faster and more
efficient. This is known as the adaptive immune response. At the same time some
cells of the immune system are naturally endowed with the ability to recognize
certain antigens and do not require prior exposure to these antigens. In such a
case we talk about the innate immune response. Having recognized the presence
of foreign antigens the immune system undertakes to neutralize and destroy the
infectious particle [69]. There are two basic types of immune response: the humoral
immune response and the cellular immune response. In each type of immune
response both of these components are present, with one of them usually being
more severe.

Humoral Immunity

Responsible for the humoral immunity branch of the adaptive immune system
are antibodies, which are produced by B lymphocytes. The soluble antibodies are
present in the blood, lymph, and other body fluids, and they act in the intercellular
spaces. They are capable to specifically recognize and bind foreign antigens, thus
marking them as targets for attack by other effector mechanisms. The humoral
immune response can be triggered by administration of a fluid containing molecular
antigens, whereas other reactions require the administration of previously sensitized
immune cells [38].

There are different ways in which the antibodies are involved in the body’s
immune defense. Antibodies that bind to the pathogen can prevent it from entering
the target cell and neutralize it (neutralization by antibodies is also important in
preventing bacterial toxins from entering cells) [42]. Virus particles, bacteria, or
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Fig. 1 Natural killer (NK) lymphocyte and its function. A target cell becomes coated by antibodies
that recognize and bind antigens exposed on cell surface (plot a). Natural killer lymphocyte uses
its cell surface receptors to bind the coating antibody molecules (plot b). This binding results in
activation of NK cells, which proceed to destroy the target cell, using cytotoxic granules that are
introduced into the targeted cell (plot c) and cause its death (plot d). Based on [69]

mammalian cell displaying antigens on its surface become covered by antibodies
that are recognized by phagocytic cells such as macrophages or cytotoxic cells
such as natural killer cells. In the first case the whole complex is engulfed by
macrophages while in the second case the target cell is first killed by cytotoxic cells
(see Fig. 1 explaining NK cells activity) [69]. Importantly cells like macrophages
and natural killer do not have the ability of recognizing the specific antigens on their
own, and so to recognize the antigen and for the secretion of an adequate antibody
there is involved a complicated system of various cells (antigen-presenting cells, T
helper cells, B lymphocytes) that are connected together in a complex network (see
Fig. 2 representing B lymphocytes activation) [42, 69].

Cellular Response

In the case of cellular immune response, specialized cytotoxic cells—T
lymphocytes—can on their own recognize and react directly with cells displaying
certain antigens. T lymphocytes have developed their own mechanism recognizing
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Fig. 2 Activation of B cells in the lymph nodes. A dendritic cell meets a number of T helper cells
that display their own T cell receptor on their surface. In the first two encounters none of the T
helper cells recognize and bind the antigen being presented (plots a and b). Finally, the dendritic
cell succeeds in finding a T helper cell whose T cell receptor matches the antigen being presented
by the dendritic cell (plot c). This results in the activation of the T helper cell to (plot d). The
T helper cell leaves the dendritic cell and starts to search for B cells that also display on their
surface the same antigen (plot e). When and if the T helper cell finds such a B cell, the B cell
becomes activated, begins to proliferate and differentiates into a plasma cell that starts to release
the antibody molecules that are capable of recognizing the antigen (plot f). Based on [69]
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Fig. 3 Activation of cytotoxic T cells by helper T cells. In addition to inducing B cells to produce
and secrete antibodies (see Fig 2), T helper cells have a second independent function, i.e., activation
of precursors of cytotoxic T cells (plot a). Active T cytotoxic lymphocytes, with the use of their T
cell receptors, are capable to recognize and bind antigens exposed on the surface of many target
cells (plots b and c). As a result, T cytotoxic cells produce cytotoxic granules that cause the death
of the target cell (plot d). Based on [69]

the antigen, the T cell receptors, which they use to identify particular antigens. In
interaction with a specific antigen, cytotoxic cells secrete cytotoxic granules that
cause the elimination of antigenic cells (see Fig. 3 for more details) [69].

Cellular immune response is particularly important in case of tumors and cells
into which the infective agents like viruses or bacteria have entered. In such a case
humoral immune response is unable to detect aberrant proteins that are embedded
inside a target cell. This does not apply to T cytotoxic cells that usually can detect
oligopeptides presented on the cell surface by MHC class I molecules, and can
proceed to kill the cell. The whole process is mediated by T helper cells [69].

Tumor—Immune System Interaction

There is growing evidence of antitumor activity of the immune system. It is
believed that the most important immunological antitumor defense mechanisms are:
cytotoxic activity of NK cells, cytotoxic activity of cytotoxic T cells, activity of
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cytokines secreted by T lymphocytes, cytotoxicity of activated macrophages and
neutrophils, activity of cytokines secreted by macrophages, and antibody-dependent
cytotoxicity [38, 39, 69].

An observation that strongly supports the theory of anti-tumor activity of the
immune system is that among tumor patients one may observe a weakening of the
immune reactivity, especially of cellular type [38]. In particular, the risk of cancer
strongly increases after solid organ transplantation. In the case of organ transplants,
patients receive immunosuppressive drugs to prevent them rejecting the transplant,
and the chronic immunosuppression caused by such drugs is a major risk factor of
cancer. Cancer registry-based studies show that a large number of cancers (mostly
those associated with oncogenic viruses) occur at increased rates relatively to the
general population [67].

Moreover, new set of data, obtained from mice models and clinical epidemiology,
suggests that immune system plays an important role in preventing cancers also
in the case of some non-virus-induced cancers. Transplantation experiments have
shown that cancer cells obtained from immunodeficient mice are often inefficient
at initiating secondary tumors in syngeneic immunocompetent hosts. Vice versa,
cancer cells obtained from tumors arising in immunocompetent mice are equally
efficient at initiating transplanted tumors in both types of hosts [39, 66].

Known for years immune surveillance theory suggests that cells and tissues are
constantly monitored by the immune system that recognizes and eliminates most of
the tumor cells in the early stages of development [33]. According to this theory,
clinically diagnosed solid tumors have been in some way able to avoid detection
by the various arms of the immune system, or have been able to limit the scope
of the immune response, thus avoiding severe damages [39]. As an extension
of the immune surveillance theory recent studies indicate the existence of a so-
called equilibrium phase in which tumor cells not completely eliminated by the
immune system may proceed into a state where the immune system controls tumor
cell growth but is not able to completely eliminate the transformed cells. In the
past, the existence of an equilibrium phase was difficult to evidence because of
poor experimental techniques and inability to identify and monitor early neoplastic
lesions that may be subject to immunological control. As an outcome of the
equilibrium phase two scenarios are possible: in the first, the immune system may
eventually eliminate all tumor cells, while in the second, the constant interaction
of the immune system with tumors may ultimately lead to immune selection and
tumor progression [66]. Immune selection is the result of the inefficient pressure
that effector immune mechanisms put on tumor cells. This results in the selective
survival of tumor cells, whose sensitivity to the cytotoxic effector mechanisms is
impaired, for example, due to a reduced antigenicity [38].

Counterintuitively, certain immunological processes observed in patients not
only do not exert an antineoplastic activity, but may even contribute to the
development of the tumor [38]. Histopathological examination of many tumors
revealed their infiltration by cells of the immune system. With the development
of experimental techniques it becomes apparent that any tumor lesion causes
from mild to acute inflammation. For years, this phenomenon was regarded as
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an evidence of an attempt by the immune system to eradicate the tumor. More
than ten years ago, it became apparent that the tumor associated inflammation
has paradoxically enhancing effect on the tumor progression. Inflammation can
contribute to tumor progression by supplying bioactive molecules such as growth,
survival, and proangiogenic factors to the tumor environment [39].

2.1 Mathematical Modeling of the Tumor-Immune System
Interactions

A number of mathematical models have recently been developed, to study the details
of specific immune cell activities within a tumor, and the general implications of an
immune response for tumor growth and progression.

Kuznetsov at al. [45] proposed a mathematical model of the cytotoxic T
lymphocyte response to the growth of an immunogenic tumor. Owen and Sherratt
[60] proposed a mathematical model for the spatial interactions of macrophages,
tumor cells, and normal tissue cells, focusing on the ability of macrophages to kill
mutant cells. Matzavinos at al. [57] presented a mathematical model describing
the growth of a solid tumor in the presence of an immune system response, with
particular attention upon the attack of tumor cells by so-called tumor-infiltrating
cytotoxic lymphocytes (TICLs). Later, Matzavinos and Chaplain [56] provided a
traveling wave analysis of this model. Lejeune at al. [54] studied the competition
between tumor progression due to cancer cell replication and tumor regression
due to immune cell cytotoxicity. Kirschner and Panetta [44], Szymańska [64], and
Joshi at al. [43] developed mathematical models of immunotherapy and cancer
vaccination. De Pillis at al. [61] presented a mathematical model that describes
tumor–immune interactions, focusing on the role of natural killer (NK) and CD8+ T
cells in tumor surveillance, with the goal of understanding the dynamics of immune-
mediated tumor rejection. For an excellent review of the mathematical topics related
to the modeling of the immune competition at the cellular level, see the papers of
Bellomo and Preziosi [14] and Bellomo at al. [15].

Since interactions between the immune system and tumor cells are mainly based
on the interaction of individual cells, in many cases the description on a microscale
(or mesoscale) of interacting elements seems to be more appropriate. In fact, in
tumor cells (cf. [9, 10, 13, 14, 41, 47]) competing with the immune system, the
following steps of the evolution have been taken into account:

• loss of differentiation and replication,
• reproduction of cells in the form of identical descendants,
• interaction (activation or inhibition) and competition at the cellular level with

immune and environmental cells, e.g., through the emission of cytokine signals.

These steps are related to cellular and subcellular interactions between tumor cells
and cells and factors of immune system. The subcellular scale refers to processes
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that take place within the cells or at the cell membrane, e.g., synthesis of DNA
and the activities of chemical signals between the cells. The cellular scale refers
to various types of interactions between cells, e.g., interactions between tumor
cells and immune system cells. Therefore, those scales may be connected with the
microscopic level of description, i.e., the level of interacting individual elements of
the system or, with some suitable reduction in the detail of the description, to the
mesoscopic scale of a test-element—see Sect. 5.

3 Active Particle Systems

3.1 Modeling Complex Systems: Challenges and Perspectives

In some review papers by Bellomo and coworkers [6, 8, 11], specific features
characterizing living complex systems are enlightened; some keywords may help
to point out these features:

• Strategy: a specific feature of living entities is the ability to express strategies
and structured organizations. It is worth stressing that a strategy depends strongly
on the state of the surrounding environment which, in general, changes in time
also due to feedback effects. A collective strategy may also be developed in
particular structures.

• Heterogeneity: although belonging to the same structure, interacting entities
can be different. In biology one could say that there are different phenotype
expressions generated by the same genotype.

• Learning: ability to change own strategy to increment fitness, boosted by inputs
coming from the environment and by mutual interactions.

• Nonlinearity: interactions are usually nonlinear and may involve the immediate
neighbor, a geometrical, in general changing in time, distribution of a fixed
number of neighbors or also distant entities. In the case of tumor–immune system
interaction, a main rôle in long-distance interactions is played by the cytokines
acting through chemical signaling.

• Selection: a Darwinian-type selection acts by means of generation of entities
better fitted to the environment; its expression is related to a different time scale
with respect to that of learning phenomena and may be taken into consideration
or not in modeling depending on the adopted time scale. As an example, tumor
cells have evolutionary abilities enhancing their survival in an environment
involving hostile immune system cells. Evolutionary features related to the
process of immunoevasion as a consequence of encounters among tumor cells
and T lymphocytes are discussed in [1], in the context of neo-quasi-Lamarckian
theories which have been the object of debate in the recent scientific literature
(see [32] and references therein).
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The above-listed sources of complexity force to tackle some technical aspects
of modeling: a leading one is the multiscale intrinsic nature of the problem,
involving microscopic, mesoscopic, and macroscopic scales, somehow (not directly
and not necessarily in this order) related to sub–cellular, cellular and macroscopic
phenomena. The core of the connection between modeling scales and physical
phenomena is linked to the concept of size. A general starting point could
be—see [8]—

“: : : focusing on biological systems, such microscopic state may refer, as a whole, to genes,
cells, organs, individuals, populations. However, once specific entities have been selected,
one has to consider the variables describing their possible states and their link with lower
and higher scales. Only at this stage, the concept of size takes place.”

3.2 Mesoscopic Models in the KTAP Framework

A general strategy in order to develop mathematical models for complex living
systems at the mesoscopic level of description was proposed and discussed by N.
Bellomo and coworkers by adopting the framework of the kinetic theory for active
particles (KTAP for short); for a recent literature one can refer to [4, 6–8, 13] (see
also references therein). A way to reduce the overall complexity of the system
may be that of decomposing it into interacting subsystems, each of them having
its defined mathematical rules and a lower order of complexity with respect to the
whole system. This idea dates back to the Theory of Modules proposed by Hartwell
[40], where the cells of a functional subsystem (a module in Hartwell’s theory)
collectively express a certain common strategy labeled by a scalar variable called
activity. Cells may modify their activity due to interactions with other cells and this
possibility may also lead to change the functional subsystem to which they belong.
Moreover interactions may induce proliferative and/or destructive events which
modify the overall number of involved cells. In particular, in case of proliferative
events, a daughter cell may be generated presenting genetic modifications with
respect to the mother cell so that the daughter cell may belong to a different
functional subsystem with respect to the mother’s one. In the case of tumor–immune
system interactions, proliferative events are characteristic of tumor cells, but also
immune system cells may proliferate triggered by the presence of tumor cells (for
an example of macroscopic models of immune cell proliferation, triggered in that
case by antigens, see [25, 26]). Destructive events may occur due to the ability of
the immune system to suppress tumor cells. The activity, i.e., the strategy that the
cells belonging to each subsystem collectively express, may be identified by the
variable u 2 U, where U is usually an interval in R

1C, as it will be in the following.
In general U may be a (Lebesgue measurable) subset of Rd (d � 1) and further
generalizations are straightforward. This variable takes different values from one
cell to another, thus defining the microscopic state of the single cell. This idea comes
from the kinetic theory of gas where every entity involved in the process (a particle),
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in the spatially homogeneous case, is characterized by its velocity. Similarly, other
entities of the system (not necessarily cells) may also be characterized by various
different characteristic parameters.

In the present paper the evolution of the system, constituted by a large number of
interacting entities (factors, particles, or cells), is defined by a probability density

f D f .t/ D fj .t; u/ D f .t; j; u/ W R
1C � J � U ! R

1C ; (1)

where j 2 J, with J 	 f0; 1; 2; : : :g, characterizes the population to which the entity
belongs (functional subsystem), u 2 U, and U is an (bounded or unbounded) interval
in R

1C as we stated before (generalizations being straightforward). The function
f D f .t/ is a probability density in the sense that

X

j2J1

Z

U1

f .t; j; u/ du

is the probability of an entity at time t � 0, in a population in J1 � J, with the
activity u 2 U1, where U1 is a measurable subset of U.

As we stated before some standard approaches deal with non-normalized distri-
bution functions that may directly describe the proliferative–destructive character
of interactions. Here however we deal with the probabilistic framework referring to
the moments of probability densities.

The time evolution of the probability density f is defined by a suitable kinetic
equation that takes into consideration all possible interactions of the involved
elements. Such a level of description is referred to one test entity of the system
and therefore may be called the mesoscopic level of description. It requires a
large (infinite) number of interacting entities. Referring to the specific features
characterizing living complex systems briefly discussed at the beginning of the
present section, the authors claim that, in particular, it may be worth to note the
analysis of the intrinsic evolutive features of the KTAP.

One may also consider the microscopic level of description in which the
physical finite number of interacting elements is taken into account. In paper
[49] (see also [46] and references therein) a class of Markov jump processes was
proposed and related with the mesoscopic and macroscopic levels of the description,
through nonlinear equations, in the framework of the asymptotic theory. In [49]
the nonlinearity of the equations at the macroscopic level was related with the
interactions between multiple entities of the system at the microscopic level.

Here we review an approach that relates the nonlinear equations at the macro-
scopic level with the mesoscopic equations with nonlinear interaction coefficients
in the spirit of papers [4,50]. This approach goes back to the Enskog idea in kinetic
theory of gas [12] where the rates of interactions between particles depend on the
distribution function. We propose a class of nonlinear kinetic equations that, after
averaging over the activity parameter, reduces to the class of macroscopic equations
describing the competition between tumor and immune system developed in [30].
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Different to [50] the present approach is not applied to the delay system at the
macroscopic level (cf. [31]), although we notice that the effects of time delay may
play an important rôle in the description of tumor growth.

4 Macroscopic Models of Tumor–Immune System
Interaction

Our starting point here is a general class of macroscopic models introduced by
A. d’Onofrio [27–31] that try to catch, in a simplified scenario, the effect of
antitumoral immune surveillance taking also into account the effect of a therapeutic
action represented as an external source of immune system cells. The basic idea
is to deal with TCs (tumor cells) and ECs (effector cells of the immune system)
as two competing populations, adopting Lotka–Volterra–type equations (the prey–
predator interactions). The TCs represent the prey of ECs whose proliferation is
stimulated by the presence of TCs. Moreover TCs induce a loss of ECs. This general
class of models specializes to specific well-known macroscopic models in particular
cases (for details see [28, 30, 31]). In the literature on the topic of antitumoral
immune surveillance one can find experimental evidences of interactions among
TCs and immune system cells; as an example phosphopeptides may be targets
of tumor immune surveillance in humans [24]. These experimental evidences
point to the importance of developing therapeutic actions called immunotherapies,
although this argument presents controversial viewpoints and opinions.

One can notice that the presented macroscopic models adaptively change the
interactions strength, allowing for nonlinearity features of living complex systems.

The mathematical model introduces the “sizes” (total number, densities, or
a-dimensional quantities) of TCs and ECs, respectively, %1.t/ and %2.t/, whose
dynamical evolution is represented by the following ODE system of equations:

P%1 D %1˛11.%1/� %1ˇ11.%1/ˇ12.%2/

P%2 D %2˛21.%1/� %2ˇ21.%1/C �.%1/C S ;
(2)

where ˛jk , ˇjk (j; k D 1; 2) are given positive functions, �.%1/ is a given function,
and S D S.t/ is a given source term (for details see [30]).

The system of equations (2) is supplemented by the initial data

%1.0/ Dı
%1 ; %2.0/ Dı

%2 ; (3)

where
ı
%1� 0,

ı
%2� 0 are given.

Throughout the paper we assume that, given
ı
%1 and

ı
%2, there exists a unique

bounded global solution to the IVP (2), (3).
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In the present paper we are going to develop a general class of models describing
at the microscopic and mesoscopic levels the behavior of the entities (cells) of these
two populations. Such models, by taking into consideration statistical individual
properties of the entities of the system, are able to design accurate descriptions at
the sub-cellular and cellular levels.

Every modeled entity is characterized by both its own population, through
the parameter j D 1; 2, and its inner microscopic state (activity), through the
microscopic parameter u 2 U.

5 General Modeling Strategy

In the present section we review the general modeling strategy in view of relating
microscopic models with those at the macroscopic scale. The essential rôle is here
played by the intermediate—mesoscopic—level of description (see Sect. 3).

Macroscopic models are usually written in terms of systems of ordinary
(like Eq. (2)) or partial differential equations; as for instance reaction–diffusion–
chemotaxis equations, see [22, 37], or systems of integro-differential equations
which describe nonlocal interactions, see [23, 37, 65] and references therein.
Models at the microscopic level are defined by a large number of interacting
elements of the system (cells, factors etc) and are described in terms of a Markov
jump process and the related linear evolution equations. The intermediate models
refer to the mesoscopic level of description of test-element and are given in terms
of nonlinear Boltzmann–type equations in a framework similar to KTAP.

The mathematical relationships between these three descriptions and explicit
error estimates may be developed by the methods of asymptotic analysis and a small
parameter approach.

The description of complex processes of interaction between tumor and immune
system is usually carried out on a macroscopic level of interacting populations
within the system, e.g., as in Eq. (2). Such an approach describes the (deterministic)
evolution of densities of populations of the system rather than the individual entities.
The identification of parameters is usually easier on the macroscopic scale.

If the movement in space is taken into account an important feature of the
microscopic scale could be nonlocal interactions: one element may interact with
another one even if the distance between them is relatively large—see [23, 37, 65].

The prototype of mathematical setting and relationships between three possible
scales of description, micro, meso, and macro, can be the kinetic theory of rarefied
gases, cf. [2, 19] (see also references therein). One may, however, observe an
important difference: in the case of tumor—immune system interactions a basic
microscopic theory, such as the classical mechanics in kinetic theory, is not
available. Thus it seems reasonable to apply the following strategy. One may
begin with the macroscopic models for which the identification of parameters by
experiments is easier. Then one provides a theoretical framework for modeling
at the microscopic scale in such a way that the corresponding models at the
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macro-, meso-, and microscales are asymptotically equivalent in a suitable
mathematical sense. Then, if the parameters of the microscopic model are properly
chosen, one may hope that it characterizes not only the macroscopic features of
the system in question, but also some of its microscopic aspects. The microscopic
models by their nature may be richer and can describe a wider range of phenomena.

The next sections, mostly referring to [46–49], review a general conceptual
framework for the program of finding possible transitions between the different
levels of description, i.e.,

• (Mi) interacting elements— “microscale,”
• (Me) statistical description of a test element—“meso-scale,”
• (Ma) densities of populations—“macroscale.”

In mathematical terms the program may be stated in studying (asymptotic) links
between the following structures:

• (Mi) continuous (linear) stochastic semigroups;
• (Me) continuous nonlinear semigroups related to the solutions of nonlinear

kinetic equations;
• (Ma) dynamical systems related to nonlinear ODEs or PDEs.

Literature related to the rigorous (mathematical) relationships between various
macroscopic, mesoscopic, and microscopic models is enormous. The interested
reader is referred to the bibliography, e.g.:

• (Mi) and (Me): [2, 19, 34, 36, 46, 48, 49, 68]
• (Mi) and (Ma): [17, 18, 20, 21, 59]
• (Me) and (Ma): [2, 5–7, 46, 48–51, 62, 63]

and references therein.

6 Microscopic Scale: Individually-Based Models

We follow here [49] (see also the previous approach in [46]). We consider a system
composed of N interacting elements. First we assume that N is fixed and then we
are going to study the limit N ! 1.

This point needs an explanation. We are taking into account the complex system
of all interacting elements involved in the competition between tumor and immune
system. The number of elements is relatively large, and it changes in time due to
proliferation and destruction processes. However we are assuming here an idealized
case in which the number of elements remains fixed during the process. This
is of course a mathematical simplification and it is quite unrealistic. But due to
the fact that N is relatively large—it may be accepted as a model simplification.
Considering the limit N ! 1 (a transition from micro, to mesoscale) we
understand the following sense: if N is sufficiently large, two models (micro- and
meso-) should give similar results, whereas when N is not so large, they may give
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two different alternative ways of description of the process. We may point out that
the mathematical theory that allows for changes of N is much complex (see [36])
and does not seem that may be directly applied here. This is one of the main open
problems in the theory.

Each element n (n 2 f1; 2; : : : ; N g) is qualified by the pair .jn; un/, where jn 2 J

defines the population of the n-element and un 2 U, its biological state (activity).
We assume that J � f0; 1; 2; : : :g and U 	 R

1C is a bounded or unbounded interval.
We follow the general framework ([49], cf. [46]) that relates Markov jump

processes, and more precisely the corresponding modified Liouville equations
describing the evolution of probability densities, with microscopic representation of
the system of N interacting elements. The modified Liouville equation defines the
microscopic models that may correspond to the large class of macroscopic models
related to the competition tumor–immune system. The linear generator, defining
the modified Liouville equation, completely describes the time evolution of the
probability density at the microscale. The corresponding stochastic semigroup may
approximate the dynamical system related to the macroscopic model.

In what follows, a number N of elements of various populations is considered.
The n1-element changes its population and/or its activity at random times. It is
possible [49] that

• a change occurs without any interaction;
• a change is due to the interaction with the n2, n3; : : : ; nM elements

n2; : : : ; nM 2 f1; : : : ; N g ; ni 6D nj ; for all i 6D j i; j D 1; : : : ;M ;

where M can be any integer satisfying 1 � M � N .

We consider the interactions of a given element with m � 1 elements, where m D
1; : : : ;M . The rate of interaction between the element of the jn1 th population with
activity un1 and the elements of jn2 ; : : : ; jnm populations with activities un2; : : : ; unm ,
is given by a measurable function aŒm� D aŒm�.j1; u1; : : : ; jm; um/ such that

0 � aŒm�
�
.jn1 ; un1/; .jn2 ; un2/; : : : ; .jnm; unm/

	
� a

Œm�
C ; (4)

for all jn1 ; : : : ; jnm 2 J and all un1; : : : ; unm in U,
where 0 < aŒm�C < 1 are constants,m D 1; 2; : : : ;M .

The transition into the kth population with the activity v of an element of the jn1–
th population with activity un1 , due to the interaction with elements of jn2 ; : : : ; jnm
populations with activities un2 ; : : : ; unm , respectively, is defined by the measurable
function AŒm� such that

AŒm� D AŒm�
�
.k; v/I .jn1 ; un1/; : : : ; .jnm; unm/

	
� 0 ; (5)
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for all k; jn1 ; : : : ; jnm 2 J and all v; un1; : : : ; unm in U,

X

k2J

Z

U

AŒm�
�
.k; v/ I .jn1 ; un1/; .jn2 ; un2/; : : : ; .jnm; unm/

	
dv D 1 ; (6)

for all jn1 ; : : : ; jnm 2 J and all un1 ; : : : ; unm 2 U such that

aŒm�
�
.jn1 ; un1/ ; : : : ; .jnm ; unm/

	
> 0 :

The (microscopic) stochastic model is completely determined by the functions
aŒm� andAŒm�,m D 1; : : : ;M . Different choices of aŒm� andAŒm� give rise to different
microscopic models (Markov jump processes).

Given N , M , aŒm� and AŒm�, m D 1; : : : ;M , we assume that the stochastic
system is defined by the Markov jump process ofN elements through the following
generator�N acting on a suitable test function � (a real-valued, Borel measurable,
bounded function)

�N�
�
.j1; u1/; : : : ; .jN ; uN /

	

D
MP
mD1

1

.m�1/Š . N
m�1/

P
1�n1;:::;nm�N

ni 6Dnj 8 i 6Dj

aŒm�
�
.jn1 ; un1/; .jn2 ; un2/; : : : ; .jnm; unm/

	

�
 
P
k2J

R

U

AŒm�
�
.k; v/I .jn1 ; un1/; .jn2 ; un2/; : : : ; .jnm; unm/

	

��
�
.j1; u1/; : : : ; .jn1�1; un1�1/; .k; v/; .jn1C1; un1C1/; : : : ; .jN ; uN /

	
dv

��
�
.j1; u1/; : : : ; .uN ; uN /

	!
:

�N is the generator for a Markov jump process in
�
J�U

�N
that can be constructed

as in Ref. [35], Sect. 4.2 — cf. [49].
However, in the present paper, as in [46–49], we refer only to the evolution of

probability densities.

Let the system be initially distributed according to the probability density
ı
f
N

2
L
.N/
1 . L.N/1 is the space equipped with the standard norm

kf k
L
.N/
1

D
X

j12J

Z

U

: : :
X

jN2J

Z

U

ˇ̌
ˇf
�
.j1; u1/; : : : ; .jN ; uN /

	ˇ̌
ˇ du1 : : : duN :

Time evolution is described by the following linear equation, the modified
Liouville equation,

@

@t
f N D ��

Nf
N I f N

ˇ̌
ˇ
tD0 D

ı
f N ; (7)
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where��
N is the generator

��
Nf

N
�
t; .j1; u1/; .j2; u2/; : : : ; .jN ; uN /

	

D
MP
mD1

1

.m�1/Š . N
m�1/

P
1�n1;:::;nm�N

ni 6Dnj 8 i 6Dj 
P
k2J

R

U

AŒm�
�
.jn1 ; un1/I .k; v/; .jn2 ; un2/; : : : ; .jnm; unm/

	

�aŒm�
�
.k; v/; .jn2 ; un2/; : : : ; .jnm; unm/

	

�f N
�
t; .j1; u1/; : : : ; .jn1�1; un1�1/; .k; v/; .jn1C1; un1C1/; : : : ; .jN ; uN /

	
dv

�aŒm�
�
.jn1 ; un1/; .jn2 ; un2/; : : : ; .jnm; unm/

	
f N

�
t; .j1; u1/; : : : ; .jN ; uN /

	!
:

The generator is the difference between two terms:

• the gain term that is the sum of terms describing changes from state .k; v/ of
the n1-element into .jn1 ; un1/ due to the interaction with the n2; : : : ; nm elements
with states .jn2 ; un2/; : : : ; .jnm; unm/, respectively, for 2 � m � M , and the
term (m D 1) describing the direct changes of state .k; v/ of the n1-element into
.jn1 ; un1/ without interactions;

• the loss term that is the sum of terms describing changes from state .jn1 ; un1/
of the n1-element into another state due to the interaction with the n2; : : : ; nm
elements with states .j2; u2/; : : : ; .jm; um/, respectively, for 2 � m � M , or
without interactions for m D 1.

The operator ��
N , under Assumptions (4), (5), and (6), is a bounded linear

operator in the space L.N/1 . For this reason the Cauchy Problem (7) has the unique
solution given by a continuous semigroup according to the formula

f N .t/ D et�
�

N

ı
f N

in L.N/1 for all t � 0. Furthermore, standard arguments show that the solution is

nonnegative for nonnegative initial data and the L.N/1 –norm is preserved

kf N .t/k
L
.N/
1

D k
ı
f N k

L
.N/
1

D 1 ; for t > 0 : (8)

From this,
�
et�

�

N

	

t�0 is a continuous semigroup of Markov operators, that is, a

continuous stochastic semigroup.
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We consider symmetric functions, that is,

f N
�
.j1; u1/; : : : ; .jN ; uN /

	
D f N

�
.jr1 ; ur1/; : : : ; .jrN ; urN /

	
; (9)

for all j1; : : : ; jN in J, all u1; : : : ; uN in U, and for any permutation fr1; : : : ; rN g of
the set f1; : : : ; N g.

We introduce the s-individual marginal density (1 � s < N )

f N;s
�
.j1; u1/; : : : ; .js; us/

	

D P
jsC12J

R

U

: : :
P
jN2J

R

U

f N
�
.j1; u1/; : : : ; .jN ; uN /

	
dusC1 : : : duN ;

(10)

f N;N D f N , and f N;s0 � 0 if s0 > N .
The function f N satisfies Eq. (7) if and only if f N;s satisfy the following finite

hierarchy of equations:

@

@t
f N;s D AsN;M

�
f N;s ; f N;sC1; : : : ; f N;sCM�1	 ; (11)

for s D 1; 2; : : : ; N , where the linear operator AsN;M is given by

AsN;M

�
f N;s ; : : : ; f N;sCM�1

	

D
MP
mD1

.N�mC1/Š
N Š

As;mN;M

�
f N;s ; : : : ; f N;sCm�1

	
;

As;mN;M

�
f N;s ; : : : ; f N;sCm�1

	�
.j1; u1/; : : : ; .js; us/

	

D
mP
kD1

.N�s/Š
.N�s�mCk/Š

P
1�n1;:::;nk�s

ni 6Dnj 8 i 6Dj

P
fg

X

jsC12J

Z

U

: : :
X

jsCm�k2J

Z

U„ ƒ‚ …
.m�k/ times 

P
k2J

R

U

AŒm�
�
.jn1 ; un1/I .k; v/; fun2 ; : : : ;unk ;usC1; : : : usCm�kg

	

�aŒm�
�
.k; v/; fun2 ; : : : ;unk ;usC1; : : : usCm�kg

	

�f N;sCm�k
�
.j1; u1/; : : : ; .jn1�1; un1�1/;

.k; v/; .jn1C1; un1C1/; : : : ; .js; us/; : : : ; .jsCm�k; usCm�k/
	

dv

�aŒm�
�
.jn1 ; un1/; fun2; : : : ;unk ;usC1; : : : usCm�kg

	

�f N;sCm�k
�
.j1; u1/; : : : ; .jsCm�k; usCm�k/

	!
dusC1 : : : dusCm�k ;
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where un D .jn; un/, and
P
fg

means the sum over all permutation of variables

within fg. We adhere to the convention that if m � k < 1, then

X

fg

X

jsC12J

Z

U

: : :
X

jsCm�k2J

Z

U„ ƒ‚ …
.m�k/ times

;

fusC1; : : : usCm�kg and dusC1 : : : dusCm�k do not appear in the corresponding
term.

Taking sufficiently largeN;we may expect that the solution of the finite hierarchy
(11) approximates the solution of the following infinite hierarchy of equations

@

@t
f s D Bs

M

�
f s; f sC1; : : : ; f sCM�1	 ; s D 1; 2; : : : ; (12)

where the linear operator Bs
M is given by

Bs
M

�
f s; f sC1; : : : ; f sCM�1

	
D

MX

mD1
Bs;m
M f sCm�1 ;

and

Bs;m
M f sCm�1

�
.j1; u1/; : : : ; .js; us/

	
D

sP
nD1

P
fg

X

jsC12J

Z

U

: : :
X

jsCm�12J

Z

U„ ƒ‚ …
.m�1/ times 

P
k2J

R

U

AŒm�
�
.jn; un/I .k; v/; fusC1; : : : usCm�1g

	

�aŒm�
�
.k; v/; fusC1; : : : usCm�1g

	

�f sCm�1
�
.j1; u1/; : : : ; .jn�1; un�1/; .k; v/;

.jnC1; unC1/; : : : ; .js; us/; : : : ; .jsCm�1; usCm�1/
	

dv

�aŒm�
�
.jn; f un/; fusC1; : : : usCm�1g/

�f sCm�1
�
.j1; u1/; : : : ; .jsCm�1; usCm�1/

	!
dusC1 : : : dusCm�1 :

The integral versions of hierarchies (11) and (12) read

f N;s.t/ D
ı
f N;s C

tZ

0

AsN;M

�
f N;s ; f N;sC1; : : : ; f N;sCM�1

	
.t1/ dt1 ; (13)
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where s D 1; : : : ; N ; and

f s.t/ D
ı
f s C

tZ

0

Bs
M

�
f s; f sC1; : : : ; f sCM�1

	
.t1/ dt1 ; (14)

with s D 1; 2; : : : ; respectively.
A hierarchy

˚
f s
�
sD1;2;3;::: is called the admissible hierarchy, if it is a sequence

of functions f s satisfying, for s D 1; 2; : : ::

(i) f s is a probability density on .J � U/s;
(ii) f s

�
.j1; u1/; : : : ; .js; us/

� D f s
�
.jr1 ; ur1/; : : : ; .jrs ; urs /

�
for all j1, : : :, js in

J and a.a. u1, : : :, us in U and for any permutation fr1; : : : ; rsg of the set
f1; : : : ; sg;

(iii) f s
�
.j1; u1/; : : : ; .js; us/

� D P
jsC12J

R

U

f sC1�.j1; u1/; : : : ; .jsC1; usC1/
�

dusC1

for all j1, : : :, js in J and a.a. u1, : : :, us in U.

We have [49]the following:

Theorem 6.1. Let Assumptions (4), (5), (6) be satisfied and f
ı
f sgsD1;2;::: be an

admissible hierarchy. Then, for all t > 0, there exists a unique hierarchy
ff s.t/gsD1;2;:::, f s.t/ 2 L

.s/
1 (s D 1; 2; : : : ) that is a solution of Eq. (14) with

initial data f s.0/ D
ı
f s (s D 1; 2; : : : ). Moreover ff s.t/gsD1;2;::: , for all t > 0, is

an admissible hierarchy.

Proof. See [49].

7 Mesoscopic model

In this section we are going to consider a general model (cf. [50]) containing the
following terms:

• the term A describing stochastic change of the parameter u due to the interactions
between two elements—the Enskog-type kinetic operator;

• the term B describing stochastic change of the parameter u without taking into
consideration the interactions between elements.

The general class of bilinear systems of Boltzmann-like integro-differential equa-
tions describes the dynamics of elements undergoing kinetic binary interactions—
see [3,46]. This type of equations can model interactions between pairs of elements
of various populations at the mesoscopic scale. In the Enskog-type description [12]
we consider the binary interactions between the elements of the system but the rates
of interaction (contrary to the Boltzmann-type description) are modified by “pair
correlation functions”.
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The general mesoscopic model reads

@tfj .t; u/ D Aj Œf �.t; u/C Bj Œf �.t; u/ ; j 2 J : (15)

We consider the Banach space X equipped with the norm

kf k D
X

j2J

Z

U

.1C u/jfj .u/j du

that is, we consider f such that fj are integrable onU � R
1C and their first moments

(with respect to u variable) are bounded, j 2 J. If U is a bounded subset of R1C,
then .1C u/ may be substituted by 1.

Moreover we consider the positive cone XC

XC D
n
f 2 X W fj � 0 ; j 2 J

o
:

First we define the Enskog-type terms Aj .
The rate of interaction between an element in j th population with the activity u

and the element in kth population with the activity v, j; k 2 J, u; v 2 U is given by
the function

ajk D ajk

� Nfj ; u; Nfk; v
	

(16)

that depends on Nfj , Nfk , where

Nfj .t/ D
Z

U

ufj .t; u/ du ; j 2 J ; (17)

is the first moment of fj .
In (16) here we assume the dependence on the first moment only, but the

generalization into more complex dependence on various higher moments is
straightforward.

The transition into the j th population with activity u due to the interaction of
element in kth population and with activity v and the element in l th population with
activity w, j; k; l 2 J, u; v;w 2 U is given by the function

A
j

kl D A
j

kl

� Nfj ; uI Nfk; v; Nfl ;w
	

that depends on Nfj , Nfk , and Nfl .
Now we consider the following term of the Enskog type:

Aj Œf �.t; u/ D AC
j Œf �.t; u/� A�

j Œf �.t; u/ ; j 2 J ; (18)
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where

AC
j Œf �.t; u/ D

2P
k;lD1

R

U2

A
j

kl .
Nfj ; uI Nfk; v; Nfl ;w/�

akl . Nfk; v; Nfl ;w/fk.t; v/fl .t;w/dvdw;

A�
j Œf �.t; u/ D fj .t; u/

P
k2J

R

U

ajk. Nfj ; u; Nfk; v/fk.t; v/ dv :

We assume that Ajkl is a transition probability:

A
j

kl � 0 ;

Z

U

A
j

kl .
Nfj ; uI Nfk; v; Nfl ;w/ du D 1 ; (19)

for all j; k; l 2 J and each fj D fj .t/ 2 XC, t > 0.
Moreover, let

0 � akl . Nfk; v; Nfl ;w/ � const ; (20)

for all k; l 2 J and each fj D fj .t/ 2 XC, t > 0.
Next in a similar way we define the term B

Bj Œf �.t; u/ D BC
j Œf �.t; u/� B�

j Œf �.t; u/ ; j 2 J ; (21)

where

BC
j Œf �.t; u/ D P

k2J
R

U

B
j

k .
Nfj ; u; Nfk.t/; v/bk. Nfk; v/fk.t; v/ dv ;

B�
j Œf �.t; u/ D bj . Nfj ; u/fj .t; u/ :

We assume that Bj

k is a transition probability, so that

B
j

k � 0 ;

Z

U

B
j

k .
Nfj ; uI Nfk; v/ du D 1 ; (22)

for all j; k 2 J and each fj D fj .t/ 2 XC, t > 0.
Moreover, let

0 � bk. Nfk; v/ � const ; (23)

for all k 2 J and each fj D fj .t/ 2 XC, t > 0.
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The time evolution of the probability density f D fj .t; u/ is obtained by solving
the IVP for Eq. (15) with the initial data

fj

ˇ̌
ˇ
tD0 D

ı
f j ; j 2 J : (24)

Under suitable assumption similar to those in [4] the operator appearing at
the right-hand side of (15) is Lipschitz continuous in X and thus it gives a local
existence result.

Theorem 7.1. Consider the IVP (15), (24) for
ı
fD .

ı
f 1;

ı
f 2/ 2 XC. Assume that

conditions (19), (20), (22), and (23) are satisfied and that

• A
j

kl and Bj

k satisfy the following conditions:

Z

U

.1C u/Ajkl.
Nfj ; uI Nfk; v; Nfl ;w/ du � const (25)

Z

U

.1C u/Bj

k .
Nfj ; uI Nfk; v/ du � const (26)

for all j; k; l 2 J and each fj D fj .t/ 2 XC, t > 0, with positive constants
(independent of all variables) denoted by “const”;

• A
j

kl and Bj

k are Lipschitz continuous in X with respect to fj , fk , fl and fj , fk ,
respectively, i.e., if kf k; kgk � M , then

R

U

.1C u/
ˇ̌
ˇAjkl . Nfj ; uI Nfk; v; Nfl ;w/

�Ajkl . Ngj ; uI Ngk; v; Ngl ;w/
ˇ̌
ˇ du � L kf � gk ;

(27)

and

R

U

.1C u/
ˇ̌
ˇBj

k .
Nfj ; uI Nfk; v/

�Bj

k . Ngj ; uI Ngk; v/
ˇ̌
ˇ du � L kf � gk ;

(28)

with L—a positive constant depending on M .

Then, there exists T > 0 and a unique strong solution f D f .t/ in X of the
IVP (15), (24) on the time interval Œ0; T �. Moreover f .t/ 2 XC for any t 2 Œ0; T �.

The conditions assure that the operator appearing at the right-hand side of (15) is
Lipschitz continuous in X which proves the existence of a unique solution local in
time. Positivity follows in a standard way.
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This result together with the conservative properties leads to the following global
existence result (cf. [4]):

Theorem 7.2. Consider the IVP (15), (24) for initial data
ı
f 2 XC under the

assumptions of Theorem (7.1). Then there exists a unique strong solution f D f .t/

in X of the IVP (15), (24), for any t > 0. Moreover, f .t/ 2 XC for any t > 0.

The proof is obtained by observing that the probability density properties (19)
and (23) assure that

X

j2J

Z

U

fj .t; u/ du D
X

j2J

Z

U

ı
f j .u/ du 8 t 2 Œ0; T � : (29)

Using the conservative property (29) together with (25) and (26) one can see that
the X -norm is bounded on every compact time set. Consequently, the solution can
be extended for arbitrary time interval.

Finally, let us mention that it is important looking for equilibrium solutions of
the equations. This means finding f such that

Aj Œf �C Bj Œf � D 0; 8 j 2 J : (30)

The conditions guaranteeing the existence of solutions of such problem may be
stated similarly as in [4]. This result does not provide any information on the number
of possible solutions of Eq. (30). It is an important open question to identify its
solution. We may point out that for the periodic structures such an identification
was given in Ref. [53] (see also [52]).

8 Micro–Macro Links

In order to derive the nonlinear equations resulting in the limit N ! 1 (i.e., at the
mesoscopic level) from Eq. (7) the approach of [49] (c.f. [46]) may be used.

We assume that the process starts with a factorized probability density

ı
f N D

ı
f N ˝ WD

ı
f ˝ : : :˝

ı
f„ ƒ‚ …

N�
; (31)

where

ı
f ˝ : : :˝

ı
f„ ƒ‚ …

N�

�
.j1; u1/; : : : ; .jN ; uN /

	
D

NY

nD1

ı
f .jn; un/;

i.e., N -fold outer product of the probability density
ı
f .
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In the limit N ! 1; the (linear) modified Liouville equation (7) yields, [49],
a nonlinear Boltzmann-like integro-differential equation that can be related to the
mesoscopic description. In fact we may see that the propagation of chaos is held
and the solution f s.t/ to Eq. (14) is the s-product of solution f .t/ of the following
nonlinear kinetic equation; see [49]:

@

@t
f .t; j; u/ D GŒf �.t; j; u/ � f .t; j; u/LŒf �.t; j; u/ ; j 2 J ; u 2 U ;

(32)
where GŒf � is the gain term, given by

GŒf �.t; j; u/ D
MP
mD1

P
fg

X

j22J

Z

U

: : :
X

jm2J

Z

U„ ƒ‚ …
.m�1/�

P
k2J

R

U

AŒm�
�
.j; u/I .k; v/; fu2; : : : umg�

�aŒm�
�
.k; v/; fu2; : : : umg

	
f .t; k; v/f .t; j2; u2/ : : : f .t; jm; um/ dv du2 : : : dum ;

and f LŒf � is the loss term, defined as

LŒf �.t; j; u/ D
MP
mD1

P
fg

X

j22J

Z

U

: : :
X

jm2J

Z

U„ ƒ‚ …
.m�1/�

aŒm�
�
j; u; fu2; : : : umg/

�f .t;u2/ : : : f .t;um/ du2 : : : dum ;

and as before, un D .jn; un/, we adhere to the convention that if m D 1 then
P
fg

X

j22J

Z

U

: : :
X

jm2J

Z

U„ ƒ‚ …
.m�1/�

; as well as fu2; : : : umg and f .t;u2/ : : : f .t;um/ do not

appear in the corresponding term. By Theorem 6.1 we have

Corollary 8.1. Let Assumptions (4), (5), and (6) be satisfied and
ı
f be a probability

density on J�U. Then, for each T > 0, there exists an admissible hierarchy
ff sgsD1;2;::: such that

(i) it is a unique solution of Eq. (14) with factorized initial data (31),
(ii) f s.t/ is factorized,

f s.t/ D
�
f .t/

	s˝
; (33)

for all 0 < t � T and s D 1; 2; : : :, where f .t/ is the unique solution in L.1/1 of

Eq. (32) with the initial datum
ı
f .
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As a by-product, we obtain the existence (and uniqueness) of solutions to
Eq. (32).

We may now state the theorem (cf. [49]) that defines the links between the
solutions to Eq. (7) and to Eq. (32) or, in other words, that defines the transition
from the microscopic level to the mesoscopic level.

Theorem 8.2. Let Assumptions (4), (5), and (6) be satisfied and
ı
f be a probability

density on J � U. Then, for each T > 0, there exists N0 such that for N � N0

sup
t2Œ0;T �

kf N;1 � f k
L
.1/
1

� c

N 
; (34)

where f N 2 L
.N/
1 is the unique nonnegative solution of Eq. (7) corresponding to

the initial datum (31); f 2 L
.1/
1 is the unique nonnegative solution of Eq. (32)

corresponding to the initial datum
ı
f ; and , c are positive constants that depend

on T .

Proof. See [49].

Now, under the assumptions that the termsAjkl andBj

k analytically depend on the
moments one may find a relationship between the linear microscopic equation (7)
and the nonlinear kinetic equations (15) in an analogous way to [49].

Then we obtain

Theorem 8.3. Let Assumptions (4), (5), and (6) be satisfied and
ı
f be a probability

density on J � U that satisfies the condition of Theorem (7.1). Then the terms AŒm�

and aŒm� of the Eq. (7) may be chosen in such a way that, for each T > 0, there
exists N0 such that for N � N0

sup
t2Œ0;T �

kf N;1 � f k
L
.1/
1

� c

N 
C �M ; (35)

where f N 2 L
.N/
1 is the unique nonnegative solution of Eq. (7) corresponding to

the initial datum (31); f 2 L
.1/
1 is the unique nonnegative solution of Eq. (15)

corresponding to the initial datum
ı
f ; and , c are positive constants that depend

on T and �M is such that lim
M!1 �M ! 0.

Theorem (8.3) states that the solution to the (nonlinear) mesoscopic equation (15)
may be approximated by the solutions of the (linear) microscopic equation (7),
with properly chosen AŒm� and aŒm�, if both N and M are sufficiently large.
Approximation may be realized by many possible microscopic equations (various
AŒm� and aŒm� may be taken into account).

If, on the other hand, N is not large, then the linear equation (7) related to the
microscopic description, and the nonlinear equation (15) at the mesoscopic scale,
may independently play important roles in the mathematical description of the
complex processes, presumably giving different results. In such a case one may
expect that the microscopic model gives results that are closer to reality.
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The last step is to state the relationship between the mesoscopic (Eq. (15)) and
macroscopic (Eq. (2)) descriptions. There are various possible ways to relate the
mesoscopic equation (15) with the macroscopic equation (2). We have

Theorem 8.4. Let J D f1; 2g. There exist U 	 RC, Ajkl , and Bj

k such that given be

a probability density
ı
f on J � U that satisfies the condition of Theorem (7.1), there

exists, for any t > 0, the unique solution f D f .t/ to Eq. (15) (with initial data
ı
f )

such that Nfj D Nfj .t/, j D 1; 2, satisfies Eq. (2).

There exists a large class of mesoscopic equations that corresponds to the given
macroscopic system. The choice of the proper mesoscopic (and then microscopic)
model should base on the experimental data.

Finally we may mention that the problem of stability of some mesoscopic
equations corresponding to the macroscopic equation, whose solutions are stable,
was studied in the papers [51] and [62].

9 Concluding Remarks

In this chapter we have presented a general framework that may unify the various
phenomena of the competition between tumor and immune system, starting from
the subcellular and cellular scales to the macroscopic scale, in one general model
that may result at the macroscopic scale in given models for which the identification
of parameters is realizable. We have in fact not one model but a class of models
on the microscopic scale, and when the experimental data provide information on
the behavior of microscopic elements of the system, we may choose the adequate
model. Therefore the presented approach defines new perspectives of modeling for
such a complex system. It leads to many open problems on the theoretical and
practical level. In this chapter we attempted to indicate some of them, and we
stressed possible directions of further research.
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The Power of the Tumor Microenvironment:
A Systemic Approach for a Systemic Disease

Irina Kareva, Kathleen P. Wilkie, and Philip Hahnfeldt

Abstract Cancer is increasingly recognized as not solely a disease of the genes
and chromosomes but as a systemic disease that affects numerous components of the
host including blood vessel formation, immune cell function, and nutrient recycling.
This review summarizes a variety of time-dependent mathematical models that
focus on the consequences of tumor growth within an evolving microenvironment,
represented by a dynamic carrying capacity. Transcending the specifics of each
model, their overview reveals that the key to tumor control really lies in controlling
the support furnished the tumor by its microenvironment.

Keywords Tumor microenvironment • Mathematical modeling • Cancer systems
biology • Tumor-promoting inflammation • Metronomic chemotherapy

1 Introduction

Despite the increase in targeted efforts that followed the National Cancer Act of
1971, where President Nixon declared a “war on cancer,” the cure for cancer remains
elusive. In the following 40 years, significant advances have been made for certain
genetically simple cancers, such as acute lymphoblastic leukemia (ALL), a rare case
where the cancerous clone can be therapeutically eradicated [1]. More genetically
complex cancers, such as those of the breast, prostate, pancreas, and lung, however,
are still not responsive to the majority of available treatments [1]. The limited
therapeutic success of these cancers may be due to the fact that genetically complex
cancers continually engage their microenvironment, creating a niche within the
host, where abnormal cells have a competitive advantage over normal cells of the
surrounding tissue [2].

Tumor microenvironments are dynamic heterogeneous systems influenced by
many factors, including space and nutrient availability. Additionally, continuous
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interactions between somatic cells and immune cells influence the environment
through both pro- and antitumor actions, depending on their context [3]. In this
review we focus on three main biological processes that affect tumor growth: angio-
genesis, tumor-promoting inflammation, and nutrient availability. Tumor growth
is always accompanied by new blood vessel growth, or angiogenesis [4]. Since
this discovery, angiogenesis has become a target for anticancer therapies [5, 6].
Inflammatory responses also accompany tumor growth and can promote tumor
development from initiation to progression and metastasis [3, 7]. In light of these
developments, anti-inflammatory drugs have been proposed as anticancer agents [8].
And finally, competition for nutrients such as phosphorus—used in ribosome
synthesis—can modulate tumor growth and development [9, 10], and thus dialysis
has been proposed after cytotoxic therapy to aid tumor control [11].

In order to successfully treat a cancerous lesion, the tumor’s influence over its
microenvironment needs to be understood, requiring thorough investigation of the
constituent parts, both individually and as a whole. Mathematical modeling provides
a useful conceptual tool to evaluate the relative importance of various components
of the microenvironment in tumor growth dynamics, which can then be translated
into more targeted and fiscally responsible experimental, and eventually clinical,
investigations.

A frequent criticism of the mathematical modeling toolkit is that it results in little
more than an intellectual exercise, lacking practical use since it cannot compare to
the weight and importance of wet-lab experiments. One must remember, however,
that the purpose of mathematical modeling is not to replace such experiments,
but rather to extend them. A carefully constructed conceptual model can aid
in evaluating the relative importance of major players within the experimentally
observed system. Not only can modeling provide a more financially responsible
framework to validate theories and design experiments, but it can also provide
valuable negative results. Since the basic assumptions underlying a model are pre-
determined, if predicted results qualitatively contradict experimental observations,
then the assumptions must be reevaluated. Such is usually easier to address in
silico rather than in vivo or even in vitro, which makes mathematical modeling an
important and powerful complement to experimental work, and it should be treated
as such.

Mathematical models of tumor growth and cancer-immune interactions provide
a framework within which the complex biological system can be analyzed. Several
approaches have been applied to quantify this system, with perhaps the most com-
mon approach being ordinary differential equations [12–20]. Such time-dependent
models provide valuable insight into the complex dynamics of the system and can
be modified to consider stochastic effects [21,22] and the evolutionary nature of the
system [23, 24]. Other approaches allow incorporation of spatial effects with either
partial differential equations [25, 26] or agent-based simulations [27, 28].

Here, we review several mathematical models of tumor growth, selected because
of their ability to describe the continuous evolution of the tumor microenvironment.
In these models, the microenvironment is represented as a dynamic carrying
capacity that supports, and ultimately limits, tumor growth. Noticeably, rather than
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discuss specific details of each model, we present the general functional forms
originally proposed by the corresponding authors and instead focus our discussions
on the major features and conclusions derived from each framework. We then
use these frameworks to explore the significance of various components of the
tumor microenvironment, in particular, of angiogenic factors, tumor-promoting
inflammation, and nutrient availability. To conclude, we discuss how these results
could be used to influence and augment current approaches to cancer therapy.

2 A Model of Angiogenesis-Dependent Tumor Growth

We start by discussing a model of tumor growth by Hahnfeldt et al. [6], where
the effective vascular support of the tumor microenvironment, or carrying capacity,
grows in a time-dependent manner with the tumor mass. The tumor-associated
vasculature is controlled by the production of angiogenic stimulators and inhibitors,
in a similar fashion to healing wounds or organogenesis. That is, the growing
mass of cancer and stromal cells produce both pro- and antiangiogenic factors that
initially stimulate angiogenesis and ultimately limit the angiogenic capacity of the
tumor environment.

To study this process quantitatively, they proposed a mathematical framework
composed of two compartments: the tumor volume V.t/ and the carrying capacity
of the tumor environmentK.t/. The two compartments are coupled in that the tumor
cannot exceed the size allowed by the capacity and the capacity is controlled by the
tumor volume.

Mathematically, the tumor volume is assumed to grow according to a generalized
logistic law. That is,

dV

dt
D P.t/V .t/ where P.t/ D �

˛


1 �

�
V.t/

K.t/

�˛�
:

This general law captures both of the most commonly assumed tumor growth

models: logistic growth with P.t/ D �
�
1� V.t/

K.t/

	
if ˛ D 1 and Gompertzian growth

with P.t/ D ��1 ln
�
V.t/

K.t/

	
in the limit as ˛ ! 0.

The rate of change of the variable carrying capacity, dK
dt , should depend on

the current level of environmental support, K.t/, the current tumor volume, V.t/,
and time, t . Four proposed factors that may influence the capacity are an intrinsic
loss rate, stimulatory and inhibitory angiogenic signals produced by cancer-stroma
interactions, and inhibition due to antiangiogenic treatments. Mathematically, these
can be interpreted as the four terms written below on the right-hand side:

dK

dt
D f .K; V; t/ D ��2K C bS.V;K/� dI.V;K/� eKg.t/:
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Fig. 1 A demonstration of the Hahnfeldt et al. [6] model for tumor growth in a dynamically
growing carrying capacity. In (a), the carrying capacity grows with the tumor mass in the control
(untreated) condition. In (b), parameters for the antiangiogenic drug endostatin were estimated
from the experimental data at the dosage of 20 mg/kg/day. In (c) these same parameter values
were used to predict the outcome of an additional experiment where the dosage was changed to
4 mg/kg/day. Excellent agreement of the model prediction to the experimental data is observed

Under the assumption that angiogenic stimulators have fast clearance rates while
angiogenic inhibitors have slow clearance rates, the final functional form of

dK

dt
D ��2K C bV � dKV 2

3 � eKg.t/ (1)

was proposed. While the exact form of the stimulator .bV / and inhibitor .dKV
2
3 /

terms can vary, the main conclusion of the work was that the ratio of the two terms
should be proportional to the volume raised to the power 2

3
. Note that both tumor

volume and the carrying capacity have units of volume. Details of the derivation can
be found in [6].

The effects of antiangiogenic drugs on tumor growth are well characterized by
this model because it specifically describes the angiogenic support of the tumor
environment. As such, model validation by a series of experiments involving Lewis
lung carcinoma cells in C57BL/6 mice with antiangiogenic treatments of TNP-470,
angiostatin, or endostatin was performed. Assuming a Gompertzian growth law,
tumor growth parameters (�1, �2, b, d , and K.0/) as well as treatment-specific
parameters (e and g.t/) for the three drugs were estimated from experimental data.

The predictive power of this model was demonstrated by the excellent agreement
between simulated growth dynamics and experimental data for drug dosages and
combination therapies not used in the parameter estimation process (see Fig. 1).
This quantitative theory may be useful for clinical determination of optimal
drug and dosing protocols. Additionally, it has led to many theoretical investiga-
tions including generalizations of the theory for antiangiogenic therapy [29, 30],
prediction of optimal antiangiogenic [31, 32] and combination of antiangiogenic-
cytotoxic [33, 34] treatment protocols, spatial analyses for tumors with varying
chemotherapeutic sensitivities [35], predictions of metastatic spread including
angiogenesis [36], and investigations of the environmental regulatory effects on
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tumor growth and cancer-immune dynamics [37]. Overall, the concept of a dynamic
tumor microenvironment, as captured by this model, has led to advances in our
understanding of tumor growth dynamics and the consequences of cancer treatment.

3 Immune Predation in the Dynamic Tumor
Microenvironment

The microenvironment of a tumor provides sustainability signals, such as nutrient
and space availability, to the growing neoplasm. Cancer cells, however, can have
varying sensitivities to these signals [38], especially across cancer type. Recent
work by Wilkie and Hahnfeldt [37] demonstrates how varying sensitivities to these
environmental regulatory signals can affect tumor dynamics and cancer-immune
interactions, as well as result in significant variation in therapeutic outcome.

To do so, generalized logisitic growth is used in the mathematical formulation
instead of Gompertzian or logistic growth. This introduces another parameter that
represents the strength of the connection between the growing tumor and the
carrying capacity. Additionally, they consider immune predation of cancer cells,
resulting in the three-compartment model described below:

dC

dt
D �

˛

�
1C �.I; C /

�
C

�
1 �

� C
KC

	˛�

dI

dt
D �.1C rC /

�
1 � I

KI

�

dKC

dt
D pC � qKCC

2
3

Here, C.t/ represents the cancer population, I.t/ the immune population, KI

the constant carrying capacity of the immune population, and KC.t/ the carrying
capacity of the cancer population, which is considered to be either constant or
dynamic (according to the Hahnfeldt et al. [6] model) in their analyses [37].
Immune predation of cancer cells occurs through the growth-modulating function
�.I; C / < 0.

With a constant cancer carrying capacity, parameter fitting to experimental data
determines a fixed parameter set specifying the level of sensitivity to the regulatory
signals provided by the environment. With a dynamic cancer carrying capacity,
however, which has the ability to stimulate support at various rates, several sets
of parameters were found specifying varying degrees of sensitivity, yet all fit the
growth data equally well.

Environmental growth regulatory signals typically grow and evolve with, and
in response to, the growing neoplasm. This process requires a conversion of the
microenvironment from a normal state to a tumor-supporting niche. To expedite
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this conversion process, Hu et al. [39] co-injected cancer cells with either normal
fibroblasts, tumor-associated fibroblasts, or pro-inflammatory arthritis-associated
fibroblasts. They found that tumor weight may be enhanced by the tumor- or
arthritis-associated fibroblasts compared to the normal fibroblasts or control, sug-
gesting that inflammatory pro-tumor stromal cells may accelerate the conversion
process within the microenvironment. In other words, the addition of pro-tumor
inflammatory fibroblasts altered the growth regulatory signals produced by the
environment and sensed by the cancer cells, resulting in accelerated growth.

Another example of dysregulation in environmental regulatory signaling can
occur after chemotherapy or radiation therapy. Following such treatments, cancer
regrowth can occur at rates up to 15–20 times faster than the rate observed pre-
treatment [40, 41]. This accelerated regrowth may be partially due to tumor mass
de-bulking without simultaneously targeting the environment, essentially leaving
the pro-tumor behaviors of the stroma unaltered. Hence, residual cancer cells do
not have to face the challenge and initial resistance associated with converting
the environment to a tumor-supporting niche and thus can flourish in the already
existing tumor-supporting environment.

With the above mentioned mathematical model, the phenomenon of accelerated
regrowth was demonstrated by disrupting the environmental regulatory signals
from those that grow with the cancer (a dynamic carrying capacity) to those that
are already highly tumor supporting (a constant capacity equal to the maximum
value for each parameter set). Interestingly, the sensitivity of each cancer (or
parameter set) determined how the tumor would regrow following this disruption.
Some sets predicted accelerated regrowth while others closely matched the original
growth rate.

In terms of cancer-immune interactions, the immune-induced dormant state was
shown to be essentially eliminated for cancers (or parameter sets) associated with
high sensitivity to environmental regulation, and simulated immunotherapy treat-
ments were shown to result in different outcomes depending on this sensitivity. The
same therapy was predicted to result in the elimination for low-sensitivity cancers
but growth and escape for high-sensitivity cancers. Disruption of the regulatory
signals further altered the predicted outcomes of simulated immunotherapy, causing
all cancers to grow large but at rates dependent on their level of sensitivity.

Important implications of this work are the potential explanation for why the
same treatment may work for some patients but not others (cancer cell sensitivity
to environmental regulation), and that primary versus follow-up treatments should
not be expected to achieve the same outcomes (due to disruption of environmental
signals). This work further supports the idea that to control a cancer, both the tumor
and the surrounding environment should be targeted, simultaneously, to remove both
the cancerous cells and the tumor-supporting environment.
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4 Immune-Mediated Tumor Stimulation via the Dynamic
Tumor Microenvironment

It is now well accepted that various immune cell types can stimulate cancer at
every step from initiation to progression to metastasis [7, 42–45]. Immune cells are
recruited to the tumor site by cytokines and danger signals that initiate an inflam-
matory response and thus can promote angiogenesis and tumor growth [3, 7, 46].
These dichotomous behaviors that immune cells exhibit confound the already
complex system of cellular interplay that evolves in the tumor microenvironment.

A first attempt to mathematically investigate the dichotomous roles of immune
cells within the tumor environment was recently undertaken by Wilkie and Hahn-
feldt [47]. Based on the model for dynamic carrying capacity described above, the
new framework incorporates both the cytotoxic effects and the proangiogenic effects
of immune cells in a tumor microenvironment. The polarization of the grouped
action for all immune cell types within the microenvironment is classified as either
pro-tumor or antitumor, referring to the relative production of factors controlling
angiogenesis, immunosuppression, and cancer cell predation.

The model modifies the Wilkie and Hahnfeldt framework described above
to allow both immune and cancer population growth with dynamic carrying
capacities [37]. The model equations below describe the dynamics of the four
compartments: cancer cells C.t/, immune cells I.t/, the cancer carrying capacity
KC.t/, and the immune carrying capacityKI .t/:

dC

dt
D �
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�
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�
1 �
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	˛�
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	��

dKC

dt
D p.1C I /aC 1�a � qKC .1C I /bC

2
3�b

dKI

dt
D xI

1
2 C

1
2 � yKII

1
3 C

1
3 � z.KI � Ie/:

Notice that the cancer carrying capacity now considers the angiogenic actions of
immune cells, that is, KC.t/ D f .KC ; C; I; t/, and the cytotoxic actions are
incorporated into the growth-modulating function �.I; C /.

Parameters a and b control the immune polarization as discussed above. Pro-
tumor immunity polarization is described by a > b so that more weight is placed
on the pro-angiogenic actions of immune cells than the antiangiogenic actions.
Similarly, antitumor immunity polarization is described by a < b. In the immune
carrying capacity, equal weight is placed on the immune and cancer cell actions to
control the environmental recruitment signals for the immune response.

The antitumor and pro-tumor immunity polarizations predict different outcomes
based solely on the level of angiogenesis-promoting inflammation. This is easily
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Fig. 2 A demonstration of the effect that antitumor (a) and pro-tumor (b) immunity can have
on tumor growth. When present at constant levels, antitumor immunity causes a decrease in final
tumor burden whereas pro-tumor immunity causes an increase in final tumor burden. Before these
final states are achieved, however, both polarizations cause a period where immune presence
increases tumor burden compared to the control (zero-immune) case. These results highlight
the importance of time dynamics in the evolution of cancer-immune interactions as antitumor
immunity may appear to enhance tumor growth in the short term while actually suppressing it
in the long term

seen in the simulations without immune predation .� D 0/ in Fig. 2. With more
weight placed on antiangiogenic functions in antitumor immunity, the final tumor
burden is reduced compared to the control case where no immune cells are present.
Conversely, with more weight placed on proangiogenic functions in pro-tumor
immunity, the final tumor burden is enhanced compared to the control case. In
both situations, however, there is an early period of growth where the presence of
inflammation stimulates the tumor to grow faster than the control, regardless of
whether the final tumor burden is reduced or enhanced.

This work has great clinical importance as it demonstrates how stimulating
the immune response can result in an early period of enhanced tumor growth
even if a later-stage reduction in growth is obtained. Such contradictory results
have been observed in clinical trials for immunotherapies [48] where responses
were classified into four distinct patterns: shrinkage of the tumor, stable disease,
response after initial increase in burden, and response in the presence of new lesions.
With chemotherapeutic treatments, shrinkage of the tumor is expected, differing
substantially from the response patterns described above for immunotherapies.
As such, different evaluation criteria are required for immunotherapies versus
chemotherapies, which have only recently been established. The predictions of
this model suggest that a response after initial increase should not be a surprising
consequence of immunotherapy, but rather an expected outcome of stimulating an
antitumor immune response. Furthermore, the results suggest that targeting the
polarization of the microenvironment to transform a pro-tumor environment into
an antitumor environment will lead to improved tumor suppression. Insights into
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cancer-immune dynamics gained through mathematical modeling of both tumor-
promoting and tumor-inhibiting immune effects will lead to a greater understanding
of the disease, of treating the disease, and of how therapeutic success should be
evaluated.

5 Nutrient Availability in the Tumor Microenvironment

The dynamic carrying capacity can also be analyzed from the point of view of
nutrient availability. Within such a paradigm, tumors are similar to ecological
systems where heterogeneous populations of cells, such as can be found in most
solid tumors, compete with somatic cells and with each other not only for space but
also for nutrients. Moreover, in the context of limited nutrient availability, it is the
appropriate allocation of the limited nutrients that may prove to be a crucial factor
in whether the tumor will progress to malignancy or not.

Based on experimental observations, Elser [9,10] has proposed what has become
known as the growth rate hypothesis (GRH), which suggests that variations not in
absolute amounts of carbon, phosphorus, and nitrogen in the cell’s, or organism’s
microenvironment, but their ratios may affect the growth rate of the organism.
Specifically, the GRH predicts that increased phosphorus availability can select
in favor of more rapidly growing phenotypes, since additional nutrients can be
available for phosphorus-rich ribosomal RNA, which is a requirement for rapid
growth. This prediction was verified experimentally [49], as mice that were fed
a phosphorus-rich diet had more advanced lung tumor progression and growth
compared to mice kept on a phosphorus-poor diet.

The GRH also predicts that highly proliferative cells, such as actively growing
tumor cells, should be characterized by a low intracellular carbon:phosphorus ratio,
since most of the phosphorus would be allocated in favor of replicative machinery
and specifically ribosomes. Interestingly, these predictions were confirmed experi-
mentally [50] for cancers of the colon and the lung but not in the kidney or liver.
These results raised the possibility that variations in microenvironmental conditions
can provide a selective force towards either highly replicative cell clones in some
cases, or slower-growing but perhaps more apoptosis-resistant cell clones in other
cases.

In this case, phosphorus becomes a dynamic resource that may determine
whether or not a more proliferative cancer clone comes to dominate the population.
Phosphorus, much like many other nutrients that are consumed by growing cells,
can be recycled through cell death, suggesting that tumors with high cell mortality
rates may create conditions that naturally favor high proliferation. Moreover, it is
also possible that changing phosphorus availability in the tumor microenvironment
may be an additional factor that can drive cells out of the dormant state. Therefore,
the implications of this hypothesis need to be thoroughly investigated, as they can
have pivotal implications for determining the aggressiveness of a growing tumor.
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Several models have been introduced to look at the effects of phosphorus as
a dynamic resource on tumor dynamics. Kuang and colleagues [51] introduced
a model where they study the dynamic interactions of a population of healthy
cells x.t/ within the organ, tumor cells yi .t/, where i represents the parenchyma
cell type, tumor microvessels z.t/, particularly mature vascular endothelial cells,
extracellular phosphorus Pe.t/ D g.P.t/; x.t/; yi .t/; z.t// and total phosphorus
P.t/. The details of the derivation and full explanation and analysis of this particular
complex and thorough model can be found in [51], however, the functional forms
can be summarized as follows:

dx

dt
D f1.x.t/; Pe.t// � death terms

dyi
dt

D f2.yi .t/; Pe.t/; z.t// � death terms

dz

dt
D f3.yi .t/; Pe.t// � death terms

dP

dt
D inflow � f4.x.t/; yi .t/; z.t//:

Similar to the previously discussed models, the model proposed by Kuang et al.
considers a situation where the support of the tumor is dynamic. Unlike other
models, however, the dynamic carrying capacity depends not only on the dynamics
of the tumor cells, the stroma, and the angiogenic support but also on fluctuating
nutrient availability, specifically phosphorus.

Through a number of simulations, the authors observed that, interestingly, the
ultimate size of the tumor is insensitive to its predetermined carrying capacity
but instead depends primarily on phosphorus supply. The authors emphasize the
importance of stoichiometric constrains imposed by limiting nutrients by demon-
strating a common feature of a variety of model variations that they explored:
phosphorus supply plays a key role in affecting tumor growth dynamics and final
size, even compared to cell birth or death rates, which, incidentally, are the primary
focus of most therapeutic intervention strategies. Moreover, the authors demonstrate
that over time, it is the slower-growing tumors with lower phosphorus demands
that come to dominate rather than faster-growing tumors, lending further support
to the idea of focusing less on cytotoxic treatments and more on targeting the
microenvironment in which the tumor cells exist. The authors also raised the
possibility that excessive phosphorous that may accumulate in the organ after any
cytotoxic treatment could explain a phenomenon known as “tumor lysis syndrome,”
where the concentration of plasma phosphorus concentration can become toxic to
the patient, in addition to providing remaining tumor cells with ribosome-building
materials.
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6 Nutrient Availability and Tumor Heterogeneity

The effects of phosphorus availability on the growth dynamics of heterogeneous
tumors were further explored by Kareva [52]. More specifically, the analysis focused
on the effects of changes in nutrient availability in the microenvironment and initial
composition of the tumor on overall tumor dynamics. In this particular model, the
author looked at the dynamics of tumor cells x˛.t/, where each cell is characterized
by a value of ˛ from some initial distribution and where ˛ represents a choice of
strategy in terms of resource allocation. Other variables included were intracellular
phosphorus Pin.t/ and extracellular phosphorus Pex.t/, both of which directly
influence cell growth and death rates. The functional form of the full system is
given by

dx˛
dt

D f5.x˛.t/; Pin.t//

dPex
dt

D Pinflow � Poutflow � f6.x˛.t/; Pin.t//
dPin

dt
D f6.x˛.t/; Pin.t//:

This modeling framework focused on distinguishing the microenvironmental
conditions that can lead to selection of corresponding alternative resource allocation
strategies, expanding on the hypothesis proposed by Elser et al. [50]. Specifically,
the analysis focuses on whether significant changes in phosphorus availability can
influence selection towards or away from a more proliferative cell phenotype.
Numerical simulations predict that tumor composition can evolve to be different
depending on the initial state of the microenvironment and which might not be
reflected in final tumor size. This suggests that tumor size is not necessarily a good
predictor of final tumor composition and hence potential aggressiveness. It was also
shown that modification of parameters pertaining to nutrient uptake rates did not
affect tumor composition as much as expected, suggesting that blocking nutrient
transporters might not be an effective therapeutic intervention strategy. Finally,
sensitivity analysis revealed two important conclusions: phosphorus availability is a
major factor in determining tumor growth dynamics, and different parameters gain
relative importance at different stages of tumor growth. Specifically, while growth
and nutrient consumption rates were of highest importance in the initial stages of
tumor growth, cell death rates gain the highest importance at later stages of growth,
potentially due to increased cell turnover and increased phosphorous availability
through nutrient recycling.

While approaching the question of phosphorus availability in the tumor microen-
vironment from different viewpoints, together, these two models highlight the
importance of nutrient availability as a major factor influencing tumor growth. It
is particularly important that this type of dynamic resource is contained within
the cells themselves and gets replenished through cell death, making tumors a
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self-sustainable ecosystem. To address this issue, the administration of dialysis
after cytotoxic therapy was proposed [11] as a means to reduce an otherwise self-
renewing carrying capacity.

All of these models, regardless of the manner in which they describe the dynamic
tumor microenvironment (whether it be a space-, nutrient-, and/or angiogenesis-
dependent viewpoint), suggest that extensive cell death may not be the optimal
way to achieve long-term remission. Rather, they suggest that such strategies may
select for more dangerous or aggressive cancers. In light of this collection of
work, a rational conclusion is that the best chance of cancer elimination is through
treatments simultaneously targeting both the cancer cells and the surrounding
microenvironment.

7 Therapeutic Implications

Despite the large amounts of financial and intellectual resources that have been
employed in the area of cancer research, and despite the large number of therapeutic
agents that are currently available on the market as a result of these efforts, with
a few notable exceptions, cancer mortality rates have not significantly decreased
over the past 40 years [53]. One possible explanation for these results is a lack
of recognition of the fact that cancer is a systemic disease, which cannot be
successfully managed without considering its nature not solely as a disease of
the genes but also of the microenvironment and host. Such an approach has been
confirmed theoretically with several mathematical models, some of which were
discussed above. Interestingly, these conclusions are supported by a variety of
mathematical models, both descriptive and conceptual, regardless of the level of
their complexity. These models suggest that improved clinical outcome requires
particular attention be paid to not only the cancer cells but to the different
components of the tumor microenvironment.

One approach, initially proposed by Folkman [4], is to target the tumor microen-
vironment via antiangiogenic therapy, which attempts to block the formation of new
blood vessels in the hopes of starving the tumor. Unfortunately, patient response to
such treatments has been more modest than anticipated [54]. Importantly, while
antiangiogenic therapy has proven to be a relatively safe treatment, it has not
demonstrated an increase in patient survival [54] despite promising results in
preclinical testing. One possible explanation for these unexpected results is that
deactivating the angiogenic factors by blocking the molecular receptors does not
remove the ultimate source of the factors, namely, the tumor cells and associated
stroma. Indeed, a combination of antiangiogenic therapy with chemotherapy has
been shown to improve treatment response [55], possibly due to the simultaneous
targeting of both the angiogenic signals and the source of the signals (the cancer
cells themselves).

The most promising therapeutic approach proposed to date, however, is to alter
the dosage and timing of standard chemotherapeutics to target the tumor-associated
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endothelial cells, which effectively determine the tumor carrying capacity. Such
an approach has been termed “metronomic chemotherapy” and is characterized
by more frequent administration of lower doses of cytotoxic agents. Hahnfeldt
et al. [56] evaluated the predicted effectiveness of metronomic chemotherapy
compared to the standard maximum tolerated dose protocol and demonstrated that,
indeed, frequent administration of lower doses of cytotoxic drugs is the most
efficient approach to achieve a smaller tumor burden. Specifically, metronomic
chemotherapy reduces the emergence of therapeutic resistance since all the sub-
populations within the tumor, whether initially sensitive to chemotherapy or not, are
equally affected by the diminishing carrying capacity. Furthermore, they suggest
that continuous administration of chemotherapy is superior to other forms of dose
administration, an idea that has recently been challenged.

According to Doloff and Waxman [57], continuous administration of chemother-
apy, while effective against the tumor, may damage the host’s natural cytotoxic
immune response and thus potentially diminish overall treatment effectiveness.
Their experiments demonstrate that a 6-day cycle may yield the highest overall
therapeutic effectiveness, first by achieving a slower but longer-lasting reduction
in tumor volume due to the frequent administration of cytotoxic agents and second
by preserving antitumor immunity due to an appropriate period of recovery between
doses.

Finally, the work presented by Elser and colleagues [11, 50, 51] focuses on
nutrient availability in the tumor microenvironment, specifically the amount of
phosphorus required by growing cells to construct molecular machinery such
as ribosomes. They suggest that cytotoxic therapies should be accompanied by
treatments such as dialysis. This approach may serve the dual purpose of avoiding
tumor lysis syndrome, where concentrations of liberated intracellular phosphorus
may reach toxic levels, and removing recycled nutrients that may otherwise become
available to remaining cancer cells.

One commonality amongst the studies discussed here is that cancer should be
thought of as a systemic disease that becomes increasingly difficult to manage due
to its ability to engage both the tumor microenvironment, via endothelial and other
stromal cells, and the host (via the immune response). The microenvironment, which
ultimately transforms to support tumor growth, can be polarized into a pro-tumor
niche in a variety of ways, including pro-tumor inflammation, nutrient recycling,
and recruitment of angiogenic stimulators. Therefore, the successful management
of cancer, a complex and systemic disease, requires a systemic multifaceted
treatment approach. It may be that only by addressing the changes that occur in the
microenvironment and host as a result of cancer presence can one hope for improved
tumor suppression and positive clinical outcomes.
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Part III
Anti-Tumor Therapies



Modeling Immune-Mediated Tumor Growth
and Treatment

Lisette de Pillis and Ami Radunskaya

Abstract The immune response is an important factor in the progression of cancer,
and this response has been harnessed in a variety of treatments for a range of
cancers. In this chapter we develop mathematical models that describe the immune
response to the presence of a tumor. We then use these models to explore a variety
of immunotherapy treatments, both alone and in combination with other therapies.

Keywords Tumor-immune interactions • Effector cell kill rate • Therapy opti-
mization • Agent-based models • Immune response kinetics

1 Introduction

The simplest model of tumor growth assumes that cells undergo mitosis at a constant
rate, resulting in a tumor population that grows exponentially. However, it is quickly
apparent that this model is not consistent with clinical observation. As a thought
experiment, consider a breast cancer cell, which is approximately 20 microns in
diameter. If we assume a doubling time of two days, then after 26 doublings or 52
days, this single cell will have produced a mass of approximately 67 million cells,
with a diameter of 8 mm—in other words a detectable tumor mass. After another 18
doublings or 88 days after the single cancer cell started dividing, the mass would be
the size of a beach ball (of radius 25 cm).

Clinicians knew from experience that, in general, this was not a correct descrip-
tion of tumor growth, even in the absence of treatment. Tumor growth could be
limited by many factors, an obvious one being a limited supply of nutrients, and
several early mathematical models were proposed that account for the slowing
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of tumor growth as a result of limits on the ability of the vasculature to deliver
nutrients [10, 42, 55]. There was also ample evidence that the immune system plays
a significant role in the containment of tumors.

The exact role of the immune system in fighting cancer is not known, although
as early as 1908, scientists proposed that the immune system could prevent the
progression of many cancers. In particular, in that year, Nobel laureate Paul Ehrlich
deduced that, without the immune system’s intervention, there would be many
more cases of cancer than we observe [25]. Throughout the past century, the
“immunosurveillance” hypothesis was tested and retested, with experimental results
sometimes supporting the hypothesis, sometimes rejecting it [24]. In the past two
decades, the overwhelming majority of evidence is in favor of Ehrlich’s hypothesis,
and researchers are now seeking ways to enhance the ability of the immune system
to stop the progression of the disease [26].

One of the earliest attempts to harness the immune system’s response was made
by an oncologist, William B. Coley, in the late 1800s, who noticed that some
of his patients with what he thought was incurable cancer would improve when
they simultaneously had an infection. He manufactured a mixture of dead bacteria,
and experimentally administered the brew, known as “Coley’s toxins,” to patients
with inoperable tumors. This treatment was successful enough to encourage other
doctors to follow suit throughout the following decades [56]. Other immunotherapy
treatments for cancer include stem cell transplants, introduced in the 1950’s,
and the administration of immune-stimulating cytokines. A stem cell transplant
involves harvesting immune cells from the bone marrow of healthy individuals
and transferring them to patients with leukemia. The administration of immune-
stimulating cytokines is a technique that was pioneered and developed by Dr. Steven
Rosenberg to treat patients with melanoma [50]. For an excellent review of cancer
immunotherapies, see [3].

The role of the immune response in the control of cancerous cells also caught
the interest of the mathematical community. Over the past twenty years, physicists
and applied mathematicians have developed mathematical models that describe the
interactions between tumor cells and immune cells in an attempt to understand
the mechanisms behind observed behavior and to help clinicians design effective
treatments. The earlier models consider tumor cells and immune cells at the
population level [33, 36, 44, 52]. For an excellent survey of these early models
see the book [1]. Later models include spatial effects [4, 5, 41] or focus on
optimization of specific immunotherapy treatments [6, 35]. General frameworks
have been developed from a systems perspective that are applicable to a variety
of specific situations [19, 20]. This chapter is not intended to be an overview of this
impressive body of work; the interested reader is referred to the texts cited here and
the references therein. Rather, we follow our own trajectory of investigation and
discovery, presenting several models of tumor–immune interactions that illustrate
a variety of approaches to understanding the progression of the disease and to
harnessing the immune response in the context of treatment.

This chapter is organized as follows. In Sect. 2 we develop the simplest model of
the immune response, which uses two ordinary differential equations to describe two
competing populations: the immune cells and the tumor cells. We add chemotherapy
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to this simple model to illustrate the complexity in the resulting dynamics and
to demonstrate in silico the importance of including the immune response in the
design of treatment strategies. We add more realism to the model in Sect. 3 by
distinguishing between the innate and the adaptive immune responses and describe
several types of modeling techniques that can be used to explore this distinction.
In the final section of the chapter, Sect. 4, we discuss immunotherapies, and
give several examples of mathematical models that can be used to investigate
immunotherapeutic protocols.

2 The Immune Response as One Population of Effector Cells

The immune system is a complex network of interacting cells, proteins and chem-
icals. This network consists of excitatory and inhibitory connections, positive and
negative feedback loops, and delays. In the simplest mathematical model of tumor-
immune interactions, we only consider those immune cells that have the ability to
destroy antigen, or foreign cells. These include natural killer (NK) cells, cytotoxic
T-cells (CTL) such as CD8C cells, macrophages, and other scavenger cells. As a
first model, we lump all of these killer cells into one population called effector
cells. We imagine that we are considering a small volume of tissue containing a
tumor, we consider the tumor to be one homogeneous population of cells, and we
assume that the interaction between tumor and effector cells can be described as an
average affect. If the number of cells in each of the populations is large, we can
describe the population as a continuum, and we can describe the evolution of the
average using differential equations. We also include a population of normal host
cells in this model, as a proxy for overall “well-being.” Since a tumor cannot grow
without bound, we assume that, in the absence of an immune response, the tumor
will grow to some maximum size determined by the available nutrients. We assume
the same for the normal cells. Several functional forms are used to model self-
limiting growth in the literature, for example, logistic, Gompertz, or von Bertalanffy.
In this formulation we use a logistic growth law for both normal and tumor cells. We
note, however, that other growth laws produce qualitatively similar results. Further
details of this model and an analysis of its long-term behavior can be found in [14]
and [15].

We let I.t/ denote the number of effector immune cells at time t , T .t/ the number
of tumor cells at time t , and N.t/ the number of normal, or host, cells at time t .
A graphical representation of the model interactions is shown in Fig. 1.

The source of the immune cells is considered to be outside of the system, and we
let s denote the constant influx of innate effector cells that would be present in the
absence of a tumor. Furthermore, in the absence of any tumor, the cells will die off
at a per capita rate d1, resulting in a long-term population size of s=d1 cells. Thus,
immune cell proliferation will never suffer from crowding.

The presence of tumor cells stimulates the immune response, represented by the
dashed arrow in the diagram. For biological realism, we assume here a saturation
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source I(t): immune T(t): tumor N(t): normal
s

Fig. 1 A graphical representation of a population model of tumor-immune interactions, with three
populations: immune effector cells (I ), tumor cells (T ), and normal cells (N ). Solid lines indicate
direct interactions, and dashed lines indicate indirect interactions. Single arrow heads denote a
positive interaction, while double arrow heads denote an inhibitory interaction

limited effect. Furthermore, the reaction of immune cells and tumor cells can result
in either the death of tumor cells or the inactivation of the immune cells, represented
by two double-headed arrows.

The closed loop arrows on the tumor and normal cell population nodes represent
normal growth and decay, which follows a logistic law. In addition there are two
terms representing the competition between tumor and host cells, shown also as
double-headed arrows in the diagram. Putting all the terms together gives the
following system of ordinary differential equations:

PN D r2N.1� b2N /� c4TN;
PT D r1T .1� b1T / � c2IT � c3TN;

PI D s C 	IT

˛ C T
� c1IT � d1I:

(1)

As shown in [15], this system has one “tumor-free” equilibrium at .1=b2; 0; s=d1/
and two “dead” equilibria, where the normal cell population is zero. Furthermore,
the system can have one, two, or three “co-existing” equilibria, where all of the cell
populations are nonzero, depending on the values of the parameters. Thus, in some
parameter regimes, the system is multistable, where several stable equilibria exist
at the same time, so that the long-term behavior of the system is determined by the
initial conditions. We note that the concept of multistability is one of the few new
ideas that biomathematics was able to offer the biomedical research community.

If the tumor-free equilibrium is stable, then small tumors will be eradicated by
the immune system. A linearized stability analysis shows that this occurs when the
resistance coefficient is larger than the intrinsic growth rate of the tumor, i.e., when

c2s

d1
C c3 > r1:

If a patient has a detectable tumor that is progressing, then we can assume that the
tumor-free equilibrium is unstable. Two bifurcation diagrams are shown in Fig. 2.
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Fig. 2 Bifurcation diagram showing how changes in the immune source (s) and recruitment (	)
parameters affect the number and stability of equilibria with nonzero tumor values. Note that the
tumor-free equilibrium is not shown here: it is assumed to be unstable if there is a tumor. The red
arrow indicates movement through the diagram as a result of a hypothetical treatment that enhances
the immune response, such is the administration of interleukin 2 (IL2). Upper graph: Number and
type of co-existing equilibria as a function of source rate, s, and immune response, 	. Lower graph:
Tumor cell populations at the equilibria as a function of the immune response rate, 	. Stability of
equilibria is indicated. Movement is from Region 2 through Regions 7 and 6 and finally into Region
3: as 	 increases from 0.1 to 2.0. Source rate s D :12, tumor populations as fraction of carrying
capacity. See [15] for details
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We can interpret these diagrams in the context of immunotherapy treatments as
follows: treatment should move the system into a regime where it is attracted to
a small, presumably harmless, tumor. If a patient has a detectable tumor that is
progressing, we can assume that it is not in the basin of attraction of a stable,
small-tumor equilibrium. Suppose the system is in Region 7, where it will be
attracted to a relatively large tumor equilibrium (the dot in both graphs in Fig. 2). By
administering cytokines that increase the immune response or by giving a vaccine
that increased the immunogenicity of the tumor, the parameter 	 could be increased,
moving the system to the right in the bifurcation diagrams (denoted by the arrows
in both graphs). The system would then be in the basin of attraction of a relatively
small tumor equilibrium, and the tumor would regress without further treatment.

We can also learn something about the effects of uncertainty in the environment
by looking at the bifurcation diagram. For example, suppose the system is near
the right boundary of Region 7 in Fig. 2, for example, near the point s D :17,
	 D :6. In this case, small fluctuations in the parameter s, the influx rate of
effector cells in the absence of a tumor, could cause the system to move into
Region 3. A reverse saddle-node bifurcation occurs where one stable equilibrium
and one unstable equilibrium disappear, and the system would move towards the
one remaining stable equilibrium. In this case, this would be beneficial, since the
remaining equilibrium is at a point in state space with a small tumor population.
The effect of stochastic fluctuations in the parameters has been discussed in the
context of tumor–immune models in, for example, [7], and the effects of random
fluctuations on resistance to chemotherapy is treated nicely in [21].

2.1 The Immune Response and Chemotherapy

In a scenario known as “Jeff’s phenomenon,” it has been clinically observed that
tumors treated with cytotoxic chemotherapy can respond in a non-intuitive way.
For some patients, after one treatment the tumor will shrink, and after another it
might continue to grow, resulting in a temporal oscillation that is asynchronous
with the chemotherapy. This phenomenon is reported in [59], where it is argued
that this asynchronicity cannot be explained solely by acquired drug resistance.
We hypothesize that it is the interaction of the chemotherapy with the immune
response that could explain Jeff’s phenomenon and test the hypothesis by adding
a chemotherapeutic term to the model.

We assume that the rate of change of the concentration of drug at the tumor
site, u.t/, can be described by a time-varying input function, v.t/, representing the
administration of the drug, and by an elimination rate, d1. We also assume that the
drug kills all three types of cells in the model at a saturating rate, but that it acts
preferentially on the more quickly dividing tumor cells and immune cells than on
the normal host cells. A graphical representation of the system is shown in Fig. 3,
with edges terminating in open circles denoting an inhibitory (killing) effect.
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u(t): drugv(t): treatment

I(t): immunesource T(t): tumor N(t): normal
s

a3

a2

a1

Fig. 3 A graphical representation of the model with chemotherapy. Solid lines represent direct
interactions, with single arrowheads representing cooperative interactions, double arrowheads
representing competitive interactions, and open circles representing a killing effect. Dashed lines
represent interactions that affect the rate of another interaction

These assumptions result in the following system of equations (see [15] for
parameter values and more details):

PN D r2N.1� b2N /� c4TN � a1.1 � e�u/N;

PT D r1T .1� b1T / � c2IT � c3TN � a2.1 � e�u/T;

PI D s C 	IT

˛ C T
� c1IT � d1I � a3.1 � e�u/I;

Pu D v.t/ � d1u:

(2)

where a1 < a3 < a2. A simulation of this model demonstrating Jeff’s phenomenon
is shown in Fig. 4. Thus, the immune response could play a role in the delayed
response of some patients to cytotoxic chemotherapy. This simple model also
suggests that a close monitoring of the state of the cellular immune response could
help in designing more effective treatment protocols.

With the relatively simple model given by Equation 2, we can attempt to answer
the question: what is the best treatment regimen for a patient with a specific
parameter set? As a first step, we must define what we mean by “best.” One criterion
might be “the one that minimizes tumor size at the end of treatment” and another
might be “the one that is least toxic.” Once the criteria are settled, optimization
techniques can be applied to the system to propose effective treatment protocols.
For example, suppose we wish to minimize the tumor burden after 45 days of
treatment, while keeping the tumor population as low as possible and keeping the
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Fig. 4 Simulation of the model in system 2 demonstrates a possible role of the immune response
in an asynchronous response to chemotherapy. Vertical lines show the simulated bolus injections
of the drug, administered every 21 days

level of normal cells above 75 % of their normal value (a measure of toxicity). In
terms of an optimization problem, we want to find the function v.t/, representing
the administration of the drug, that minimizes the following cost function, where tf
is the total time of treatment.

J.v.t// D w1T .tf /C w2

Z tf

0

T .t/dt C w3 max
t2.t0;tf /

T .t/; (3)

where wi are weighting constants. Note that three terms were required in the cost
function: the first reflects our desire to minimize the tumor at the end of treatment,
tf . The second reflects our desire to minimize the total tumor present over the
course of treatment, and the third term puts a penalty on any treatment that results
in a large tumor at any point. The omission of either of the final two terms yields
solutions with tumor populations that grow very large for a short period of time. The
weighting of the three terms also yields qualitatively different results. For the set of
experiments we present here, we set w1 D 1500;w2 D 150;w3 D 1000, but other
weightings might be preferred, depending on the type of tumor.

To reflect our desire to avoid excessive toxicity, we introduce a constraint
function:

N.t/ � 0:75; 0 � t � tf ; (4)
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where the host cell population, N.t/, is scaled to a fraction of its normal value.
Additional constraints are that all state variables must satisfy Equation 2 and that
both the rate of drug input and the total amount of drug administered are bounded:
0 � v.t/ � maxv, 0 � R tf

0 v.t/ dt � vTOT .
This optimization problem can be solved using a variety of available techniques.

In Fig. 5 we compare simulations using a traditional, “pulsed” protocol, where
the drug is administered over short (12 h) periods, repeated every 2 days for 40
treatments (so the last treatment ends midday on Day 80). In this experiment, we
simulate a patient with a relatively weak initial immune system (I.0/ D :1) and
the simulation shows that the traditional pulsed treatment is ineffective in the long
term: once treatment stops, the tumor continues to grow, and the disease progresses.
In the right panel of Fig. 5 we show a solution obtained using a direct collocation
method, DIRCOL [57]. We required that the total amount of drug administered be
no more than the total in the traditional case, so vTOT D P40

nD1
R :5
0 1 dt D 20. The

optimized protocol suggests that the drug be administered over longer periods of
time, on the order of days, with irregularly spaced treatments. In fact, it suggests
one very short pulse of chemo at Day 125. With this treatment the tumor burden is
driven to near zero by Day 70, and it remains there for the duration of the simulation.
It is worth emphasizing that the only difference between the two treatments is the
timing of the doses: the total amount of drug, and the maximum drug given are the
same.

There are many possible optimization questions that could be asked in this
setting. For example, it is possible that, by adding the total amount of drug used to
the cost functional, one could find treatment protocols that are equally effective but
that use less drug. Or it might be desirable to introduce a penalty term that curbs the
destruction of the immune population. In Sect. 4 we will explore other optimization
techniques and results in the context of designing cancer vaccines.

3 The Innate and Adaptive Immune Response

The human body has a huge army of defender cells, generally known as white blood
cells (WBC) or leukocytes. It creates approximately a billion of these cells each
day. A subset of these leukocytes are lymphocytes, which comprise 20–30 % of
the WBC. In this section we will focus on two types of lymphocytes: the natural
killer (NK) lymphocytes and the cytotoxic T lymphocytes (CTLs). Both of these
cells are cytotoxic, meaning that they kill antigen or “nonself” cells. However, they
belong to two different arms of the immune response: NK cells belong to the innate
immune system. They form part of the immune system’s regular patrol, and they are
activated to lyse, or kill, cells that they encounter when that cell does not have a high
expression level of certain molecules known as MHC I (major histocompatibility
complex class I). The CTLs are part of the adaptive immune system. These
cells originate from stem cells that then migrate to the thymus (hence the “T”).
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From there they are recruited to various lymph organs. When a nonself cell, or
antigen, is encountered by a certain type of roving immune cells called antigen-
presenting cells (APCs), they are engulfed, and pieces of the foreign cell are
“presented” to the T-cells, activating them and causing them to proliferate into one
population that can recognize and kill that particular type of foreign cell. Figure 6
gives a sketch of this process, where the antigen-presenting cell is a macrophage.
Once the CTL is activated, it will seek out the specific antigen for which it is trained.
Some activated CTLs will become memory cells, providing immunity for a second
attack by the same foreign cells.

Note that other T-cells known as “helper T-cells” are also activated in this
process, and these T-cells participate in the activation of the CTLs or “killer T-
cells.” Helper T-cells will appear in our models later, in Sect. 4.1. Helper T-cells
also activate B-cells, which are key players in the humoral response, that part of
the immune response that is mediated by antibodies. Another important class of
APCs is the dendritic cells (DCs), which are now being used in the development of
cancer vaccines. These will be discussed in Sect. 4.2. In terms of the body’s fight
against cancer, both NK cells and CTLs act like predators, but their methods of
recognizing—and killing—their prey are different. As part of the innate immune
system, natural killer cells are cytotoxic cells that are highly effective in lysing
multiple (but specific) tumor cell lines [43]. Unlike cells of the specific immune
system, which are drawn to a location due to the presence of antigen, the natural
killer cells are constantly present guarding the body from infection and disease.

On the other hand, cytotoxic T lymphocytes are able either to lyse or to induce
apoptosis in cells presenting specific antigens, such as tumor cells [43]. Unlike NK
cells, CTLs are only able to recognize a specific antigen or tumor cell line. It is
known, however, that these cells are able to destroy more than one tumor cell during
their life cycle while a single natural killer cell generally kills very few [36]. After
destroying the target cell, the CTLs move on in search of other antigen-presenting
cells.

3.1 The dePillis–Radunskaya Law

In the fight against cancer, both the innate and the adaptive arms of the immune
response are important. In fact, laboratory experiments show that without both NK
cells and CTLs, tumors injected into mice will escape the immune surveillance

J

Fig. 5 Left: A patient with a relatively weak initial immune population (I.0/ D :1 in normalized
units) shows progressive disease after a series of pulsed chemotherapy treatments. The bolus
treatments are simulated as injections at the maximum rate (normalized to maxv D 1) for 12 h,
repeated every 2 days for the course of the treatment. Right: A solution to the optimization problem
given in Equation 3. The total amount of drug is the same in both the left (traditional treatment)
and right (optimized treatment) simulations. The optimized treatment protocol is successful in
eliminating the tumor
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ANTIGEN eats MACROPHAGE
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Fig. 6 A graphical representation of the activation of the adaptive immune response. A
macrophage, a type of antigen-presenting cell (APC), recognizes a particular cell as “nonself”
or antigen and engulfs it. The APC then presents bits of the engulfed, or “phagocytosed” cell to
immature T-cells, which then begin to proliferate, activating other immune cells and, ultimately,
the killer T-cells, or CTLs, and recognize and kill malignant cells of the same type as the initial
antigen

source N(t): NKs T(t): tumor L(t): CTLs
s

Fig. 7 Schematic of the model with two types of effector cells: natural killer cells (N ), repre-
senting the innate immune response, and cytotoxic T lymphocytes (L), representing the adaptive
immune response. As before, the solid lines represent direct interactions, with a single arrow-head
denoting a cooperative interaction, and a double arrowhead denoting a competitive interaction.
The dashed lines represent indirect interactions, where one population affects the rate of another
interaction

(e.g., [18]). We therefore separate the effector cell population from the previous
model into two subpopulations: the NK cells and the CTLs. Without the host cells,
the model diagram becomes that shown in Fig. 7.

In developing the model, we assume again that the tumor grows logistically, that
the NK cells, as part of the innate immunity, have a constant source, that immune
cell proliferation is enhanced by the presence of the tumor, and that immune cells
and tumor cells interact competitively. Furthermore, we know that the destruction
of tumor cells by NK cells results in an increased uptake of antigen by antigen-
presenting cells and, hence, an increase in the number of tumor-specific CTLs that
are produced.

In the previous model given by System 1, competition between effector immune
cells and tumor cells was represented by a mass action term of the form �cIT .
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Fig. 8 Left: best fit kill rates using a power law for the per-cell kill rate by CTLs. Right: best fit
kill rates using a ratio-dependent per-cell kill rate by CTLs. Solid lines: model simulations, N and
�: data for two patients from [23], Figure from [16].

This term reflects an assumption that the number of encounters between the two
cell populations is proportional to the product of the two populations, i.e., that
all immune–tumor cell pairs are equally likely to occur, and that each of these
encounters has an equal chance of resulting in the death of the tumor cell. A more
general assumption might be that it takes n immune cells to kill one tumor cell, in
which case the competition term would take the form �cI nT . However, in trying to
fit experimental data to a power law for the kill rate, it became apparent that the kill
rate by CTLs does not follow this function form. Figure 8 shows the best fit curves
to data from [23] using both a power law and a saturating ratio-dependent kill rate

of the form: D D �d .L=T /�

k1=2 C .L=T /�
T . The kill rate for NKs does, on the other

hand, fit a power law quite well. This gives a mathematical distinction between the
functional forms for the kill rates of the two types of effector cells and has become
known as the dePillis–Radunskaya Law. See [16] for details.

In this model we continue to denote the tumor cell population by T . We
now let N denote NK cells (rather than normal cells) and L denote the number
of cytotoxic T lymphocytes. We include in our equations one more distinction
between the innate and the adaptive response. Since the NK cells recognize antigen
directly, the response term in the NK equation (Equation 6) depends explicitly

on the tumor population:
gT 2

hC T 2
N . However, as depicted in the graphic in

Fig. 6, CTLs are activated by a cascade of immune events, including antigen
presentation by APCs and activation of helper T-cells. Since tumor cells must
be lysed before the APCs can initiate the activation cascade, the response term
in the CTL equation (Equation 7) depends on the kill rate of tumor cells which
in turn is given by the sum of the ratio-dependent term from the dePillis–
Radunskaya Law, D , and the power law kill rate by NK cells, denoted by rNT .
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To complete the model, we include a saturating response term. The model system is

dT

dt
D aT .1� bT /� cNT � D (5)

dN

dt
D s � fN C gT 2

hC T 2
N � pNT (6)

dL

dt
D �mLC jD2

k C D2
L� qLT C rNT (7)

where

D D d

�
L
T

��

k1=2 C �
L
T

�� T; (8)

With this model, we can now study the response of the system to variations in the
two types of immune response. A sensitivity analysis shows that the final size of the
tumor is most sensitive to the model parameter, d , which represents the maximum
kill rate by CTLs. On the other hand, the size of the tumor after 40 days is affected
by small changes in the parameter c, representing the strength of the kill rate by
NK cells. This suggests that treatments should focus on increasing the number of
CTLs, and enhancing their effectiveness and that the innate immune system cannot,
by itself, control tumor growth.

The mechanisms that lead to the different kill rate laws are still unknown. It is
likely that spatial effects are important, since CTLs are trained to “seek and destroy”
specific antigens, while NK cells move randomly through the body. In the next
section we introduce a spatial component into the model.

3.2 Adding a Spatial Component: Agent Based Models

One way to address questions about the effects of the spatial distribution of tumor
and immune cells is to employ a hybrid cellular automata–partial differential
equation modeling approach. The model we describe in this section is detailed
in [39], and accounts for the spatiotemporal and stochastic interactions between
individual tumor cells and populations of CD8+T (also known as CTLs) and NK
cells while the tumor is in the pre-vascular stage.
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We initialize the model with a cluster of tumor cells in a two-dimensional
space of extra-cellular matrix (ECM). Nutrient diffuses from nearby blood vessels
through the space to the tumor cells. In subsequent hybrid CA models [12, 22], we
incorporated nutrient delivery through blood vessel sources interspersed throughout
the computational domain. In the model presented here, we focus on the early pre-
vascular stage, representing a small tumor burden, such as a postoperative remnant
or a small satellite colony originating from a resected tumor.

As a result of the external nutrient supply, avascular tumors often develop into
compact, nearly spherical structures. In these cases, the growing tumor generally
develops three distinct layers—the proliferative rim, which is an outer shell of
dividing cells that have direct access to nutrients that have diffused through the
tissue; the quiescent layer, which is an inner layer of cells that have insufficient
nutrient to allow them to divide, but enough to keep the cells alive; and a central
core of necrotic cells that have died because nutrient concentrations are too low to
maintain cell life. Our model simulations are able to produce a variety of tumor
growth outcomes, including spherical and papillary (branchy) growth, stable and
unstable oscillatory growth, proliferating and quiescent layers with a necrotic core,
and lymphocyte-infiltrated growth. Lymphocyte infiltration is of particular interest
given the experimental research that suggests improved survival rates for patients
with intratumoral immune cells [60]. Infiltration of T-cells into the tumor mass
can also lead to fibrosis and necrosis and subsequently reductions in tumor size
[51, 54]. Numerical simulations of this model are in qualitative agreement with the
experimental results demonstrated by, for example, Zhang et al. [60], Schmollinger
et al. [51], and Soiffer et al. [54].

3.2.1 Hybrid PDE–CA Model Overview

Our model tumor grows on a two-dimensional square domain representing a patch
of tissue that is supplied with nutrients by blood vessels that occupy the top and
bottom boundaries, as shown in Fig. 9. The remainder of the space is partitioned into
a regular grid in which the various cell types reside, and through which the nutrients
diffuse. The grid is partitioned in such a way that each cellular automata grid

Fig. 9 Schematic of the
cellular automata physical
domain. The conditions
imposed on the four
boundaries are indicated. The
solid bars (top and bottom)
represent the capillaries while
different cell types are shown
filling the spaces in the grid
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element corresponds in size with the actual biological cells of interest (10–20�m
[2, 38]). We simulate the time progression of the system using two main steps.
First, we solve the reaction–diffusion equations for the nutrient species, then with
dependence upon the new nutrient fields, the actions of the cells (such as migration
and proliferation) are carried out. Each iteration therefore corresponds to the period
of tumor cell division. That is, a period of approximately 0.5–10 days, depending
on the cell type in question [33, 49].

We include two representative nutrient species (such as glucose and oxygen
[28, 58])—the first nutrient, N , being a necessary component of the cell division
processes, while the second, M , is essential for the cell to survive. The nutrients
diffuse throughout the tissue space, and as they do so, they are consumed by the
different cells that are resident in tissue.

The nondimensionalized reaction-diffusion equations for the two nutrients are

@N

@t
D r2N � ˛.H C I /N � �N˛TN; (9)

@M

@t
D r2M � ˛.H C I /M � �M˛TM; (10)

The cell species are identified byH for host cells (normal tissue), T for tumor cells,
and I for immune cells. Also, ˛1 is the normal rate of consumption of nutrient by
host and immune cells, and �N � 1 and �M � 1 determine the excess consumption
by the tumor cells of the two types of nutrient. We impose Dirichlet boundary
conditions at the top and bottom of the domain, to represent the constant nutrient
source coming from the blood vessel. The right and left edges of the domain are
subject to periodic boundary conditions.

The evolution of the four cell populations proceeds according to a combination
of probabilistic and direct rules. A summary of the action and interaction of the cell
types follows.

Host cells: The host cells are considered passive: other than their consumption of
nutrients, they allow tumor cells to freely divide and migrate.

Tumor cells: The tumor cells in this model can divide, die, or migrate in space.
These processes depend upon nutrient levels, the relative abundance of cells
of the immune system, and crowding due to the presence of other tumor cells.
Tumor cells can die either because of insufficient nutrient levels or from active
killing by immune cells.

Immune cells: CTL cells are recruited to the tumor location when natural killer
cells lyse tumor cells or when CTLs and tumor cells interact. A single CTL is
able to lyse more than one tumor cell [36], a feature reflected in our model.

1In references [39] and [27], the authors choose to use ˛2 instead of ˛; since ˛2 reflects the squared
form of the dimensional terms it replaces. For clarity, we simply use ˛ here.
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The immune cell actions in the model are summarized as follows: NK cells are
generated at a rate to keep levels in constant proportion to the total number of cells
in the domain, CD8+T cells are recruited to the tumor site, both NK and CD8+T
cells can move through the computational domain, both NK and CD8+T cells can
kill tumor cells, and both NK and CD8+T cells can die, either through deactivation
by encounters with tumor cells or through apoptosis.

The cellular automata grid is initiated with a single cancer cell in the domain,
along with the normal level, I0, of natural killer immune cells. The remainder of
space available to cells is occupied by non-tumorous host cells.

Spatial Simulations: Tumor Growth, No Immune System

Simulations show that tumor morphology is dictated by relative consumption rates:
lower consumption rates of nutrient by tumor cells lead to more compact tumors,
while higher consumption rates lead to the papillary morphology.

Figure 10a shows the growth in the total number of tumor cells over time
when the tumor is allowed to grow in the absence of any immune response, and
tumor cell consumption rates are low relative to normal cells. Note the initially
exponential growth phase (iteration 0 through 200), before a phase of linear growth
(iteration 200 through 800). These growth characteristics mimic the growth rates of
multicell spheroids described experimentally by Folkman [28] and mathematically
by Greenspan [30].

Figure 10b displays the state of the system after 800 iterations. A roughly circular
tumor with a radius of about 200 cells has developed in the center of the domain and
is growing steadily toward the sources of the nutrient. Higher tumor cell densities are
seen at the periphery of the tumor where it is surrounded by normal cells comprising
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Fig. 10 Compact tumor growth in the absence of immune system interaction. Parameters: Domain
size of 1000 elements 
 10–20 mm, tend D 800 cell division cycles, �n D 50, �m D 25, ˛ D 1,
I0 D 0. Note the beginning of a necrotic core in Fig. 10b. (a)Total tumor cell count over time (b)
Final tumor cell distribution over the cellular automata grid
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Fig. 11 An example of papillary tumor growth in the absence of immune system interaction.
Parameters: Domain size of 250 elements 
 2:5–4mm, tend D 597 cell cycles, �n D 100,
�m D 10,˛ D 2, I0 D 0. (a) Total tumor cell count over time (b) Final tumor cell distribution
over the cellular automata grid

the host tissue. In the center of the tumor a necrotic core is beginning to form with
some necrotic material already appearing. The tumor shown is growing in a domain
that is approximately 10–20 mm square.

Figure 11 shows a tumor with relatively high nutrient consumption rates, a
“gluttonous” tumor. Figure 11a shows the tumor cell count over time. We observe
that the tumor is growing exponentially throughout the time considered without
moving to a linear growth rate (as is seen in Fig. 10a). This may be due to the shape
of the tumor and the lower requirements of the tumor cells for survival nutrient.
Unlike the spherical tumors for which the cell-dense periphery limits the diffusion
of nutrients to the tumor center, the papillary tumor grows out quickly from its origin
and does not form a cell-dense border. Nutrients diffuse more readily throughout the
domain, so a greater percentage of tumor cells is provided with the nutrients to both
survive and divide.

Tumor Growth with the Immune System

We now add an immune cell to the simulation. In these experiments we use I0 D
0:01 or 1% of the baseline value, consistent with biological levels measured in [38]
and [8].

Figure 12 shows the effect on tumor (left figures) and immune (right figures) cell
populations due to changes in CTL recruitment strength. All figures were produced
with the same parameters as for Fig. 11, the papillary, “gluttonous,” tumor (except
for the immune parameters). We see oscillatory population cell counts for both
tumor and immune cells. Qualitatively similar results were observed for simulations
using the compact tumor parameters (figures not shown).

Figures 12a–b show solutions for the highest level of CTL recruitment and very
few oscillations are observed. While it appears in Fig. 12b that little has changed
in the immune cell population, the important factor is the location of the immune
cells. After detection of the tumor, the immune cells are attracted to the location of
the tumor mass, thus aiding in its removal.
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Fig. 12 The effect on tumor and immune cell distributions in compact tumors over time due to
changes in CTL recruitment rates, which are inversely related to the parameter �L: a larger value
of �L results in a lower recruitment rate. Parameters: Domain size of 250 elements 
 2:5–4mm,
�n D 100, �m D 10, ˛ D 2, I0 D 0:01. (a) �L D 3 (b)�L D 3 (c) �L D 5 (d)�L D 5 (e) �L D 7

(f) �L D 7

For slightly weaker CTL recruitment, solutions are shown in Figs. 12c–d. The
tumor cell population is oscillatory but trending upward. A number of simulations
carried out with the same parameter set also exhibited this oscillatory behavior.
Experimental evidence for such oscillatory behavior can be found in, for example,
Kennedy [32] who studied chronic myelogenous leukemia, and Krikorian et al. [34]
who looked at non-Hodgkin’s lymphoma.
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Fig. 13 Immune cell infiltration into a growing tumor. (a) and (b) show the tumor cell count over
time and the final tumor cell distribution over the cellular automata grid, while the same outputs
for total immune cells are shown in (c) and (d). Parameter values are domain size of 250 elements

 2:5–4mm, tend D 354 cell division cycles, �n D 50, �m D 25,˛ D 1, I0 D 1: Computations
were halted when the tumor cells reached the edge of the computational domain

In Figs. 12e–f the tumor and immune cell populations are shown for the case
where CTL induction is very low. In this example, the tumor cell population is only
slightly oscillatory. In other simulations using this parameter set, the low recruitment
of T-cells leads to the tumor undergoing unstable, oscillatory growth.

Lymphocyte Infiltration

Studies have found the relationship between increased survival rates of cancer
patients, tumor necrosis and fibrosis, and the presence of intratumoral T-cells, or
infiltrated T lymphocytes [51, 54, 60]. The results shown in Fig. 13 simulate the
infiltration of immune cells into a growing tumor. These are seen in the darker
regions of Fig. 13b where tumor cell necrosis has occurred and in the lighter regions
of Fig. 13d where the immune cell numbers are highest. These solution plots are
similar to experimental results shown by Schmollinger et al. [51], Soiffer et al. [54],
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and Zhang et al. [60] where strings of immune cells are moving into the tumor,
surrounding individual cells and causing tumor cell necrosis. In Sect. 4.2 we test the
effect of injecting immune cells directly into the tumor.

4 Modeling Immunotherapies

We have seen that an individual’s immune response to a cancer tumor is a crucial
factor in determining the progression of the disease. Cancer immunotherapy is a
treatment for cancer that attempts to enhance this immune response. There are a
range of different types of immunotherapies, and they can be generally classified
into cytokine therapy, cellular transfer, antibody therapy, and vaccines. Newer
cytokine treatments called “checkpoint blockades” target specific receptors on T-
cells that block or slow their response. These immunotherapy modalities can be
broad, targeting the immune system as a whole, or they can be specific, targeting
the immune response to a specific cell type. Cancer vaccines are specific: they are
intended to enhance the adaptive immune response either by making the tumor-
specific immune cells more abundant or more effective or by making the tumor cells
more immunogenic, i.e., more recognizable by the cells in the adaptive arm of the
immune system. One type of vaccine that has shown some promise in melanoma
is a peptide vaccine. Peptides are proteins found on cells, and a peptide vaccine
targets proteins, or antigens, that are found only on the tumor cells. The idea is
to isolate these peptides and to administer them in large doses to the patient in
order to stimulate an immune response. The antigen-presenting cells will recognize
the peptide, and will initiate the cascade of events roughly depicted in Fig. 6 that
will result in the production of tumor-specific CTLs and, ultimately, the destruction
of tumor cells. The difficulty is in identifying these peptides, since they must be
specific to the patient’s own tumor cells but not found, or rarely found, on normal
cells. Promising peptides have been found for melanoma and breast cancer [3]. A
big advantage that peptide vaccines have over other treatments are their low toxicity,
since they promote an immune response targeted only at the tumor cells.

The big questions in the administration of cancer vaccines are: How much? How
often? Where? Mathematical models can help suggest answers to these questions.
In this section we model three types of cancer immunotherapy and indicate how the
model results can inform clinical practice.

4.1 The Kinetics of the Immune Response to Peptide Vaccines:
Dose Scheduling

The effectiveness of a peptide vaccine could be measured by the size of the immune
response. In the laboratory, the kinetics of this immune response can be measured
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in mice by injecting them with vaccine and then counting the number of antigen-
specific T-cells that result. We would like to know what dosing schedule maximizes
this response. The proliferation of T-cells occurs in the lymph organs, so we will
model the T-cell populations in the main lymph organ of the mouse: the spleen. We
will introduce the helper T-cells into the model, since they are important players in
the speed and magnitude of the response.

Once the injected peptides are taken up by antigen-presenting cells, these APCs
travel to the spleen where they activate naive T-cells. This activation process takes
time to initiate, and we denote this activation time, or synaptic connection time, by
�N . Once activated, the T-cells then begin to proliferate rapidly. After this expansion
phase, the activation process is shut down, and the activated T-cells move out of
the spleen to find the tumor, become memory T-cells, ready to be activated when
the system is next challenged with the same antigen, or become apoptotic, dying
off quickly. To describe this process and to capture the dynamics of the T-cell
populations when the vaccine is given in repeated doses, the T-cell populations will
be divided into five subpopulations: naive, proliferating, active (able to seek and
destroy tumor cells), memory cells, and apoptotic cells. The graphic in Fig. 14 shows
the five stages, with a dendritic cell as the APC. Note that two synaptic connection
times are shown by the dashed lines: �N is the time required for activation of the
naive T-cells, and �M is the activation time required for memory T-cells. Since
the memory cells are already trained to recognize the specific antigen, they can
be activated more quickly, so that �M < �N .

To model the immune activation process mathematically, we use a system of
delay-differential equations. There is an equation for each state of each cell type

Fig. 14 Schematic diagram representing the model of the T-cell response to antigen. The response
takes place in a lymph organ (e.g., the spleen)‘ and is initiated by an antigen-presenting cell (APC),
here represented by a dendritic cell (DC). The T-cells can be in one of five stages, represented
here by balls. Dashed arrows represent the delays in the model, which show up in the rate of
proliferation in response to the presence of the APCs. The two types of T-cells (killer cells and
helper cells) respond with different delays. The basic, active immune cells (labeled B) leave the
lymph compartment to seek out the antigen
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and one for the APCs. This gives a system of 11 equations, with four delays: two
synaptic connection times for each of the cell types. For each of the two cell types
(killer cells: CD8C and helper cells: CD4C) we have the five equations 12–16:

APCs arrive from blood and activate naive and memory cells

for each type, CD8C and CD4C:

dA

dt
D �BSDB�ıAA.t/� dAT A.t/ .N.t/CM.t/C P.t// (11)

After synaptic connection times, �N and �M , activated naive and memory

cells begin to proliferate:

dN

dt
D sN � dNN.t/ (12)

Expansion phase: after contact with antigen, cells reproduce rapidly:

dP

dt
D g1A.t � �N /N.t � �N /C �A.t � �M /M.t � �M /C 	

A.t � �/P.t � �/

� C A.t � �/

�ıP P.t/� 1

T
P.t/ (13)

Contraction phase: cells become memory (M ), die quickly, or go to the blood (B):

dAp

dt
D 1

T
P.t/� �

r C ˛ C ıAp
�
Ap.t/�

�
��

SB C ��

1C A.t/=�shut

�
Ap.t/ (14)

dB

dt
D
�
��

SB C ��

1CA.t/=�shut

�
Ap.t/ (15)

Memory cells remain after antigen is cleared, with a homeostatic term:

dM

dt
D rAp.t/C pM.t/

�
1� M.t/

k

�
(16)

Parameters were estimated from the literature and fit to experimental data as
described in [47]. All parameter values can be found there. Model simulations
show that, after a bolus infusion of peptide vaccine, the CTL population peaks
at approximately 6.9 days and the helper T-cell population peaks lower and
later, at approximately 8.12 days. See Fig. 15 for a sample simulation. Based
on this simulation (which is fit to experimental data with essential, the same
kinetic profiles), one might think that administering a second dose of vaccine at
approximately Day 6 would result in a high level of T-cells.

To give a more informed answer to the question of when to administer successive
doses of the vaccine, we can again formulate and solve an optimization problem,
as we did in Sect. 2.1. As in that optimization problem, our goal is to choose the
input function that maximizes a desired output. Again, the input function is the
dose of the vaccine that produces the source term DB.t/ for the antigen-presenting
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Fig. 15 Model System 11 through 16 simulated for both the CTL and the helper T-cell populations
in the spleen. One bolus injection of a peptide antigen was given at time t D 0. Total population
levels are shown (the sum of naive, proliferating, apoptotic, basic, and memory). The CTL levels
peak higher and earlier than the helper T-cell levels. For parameter values and other details see [47]

cells, shown in Equation 11. However, because this system has more equations
and four delays, it is too complicated to solve by analytical or direct collocation
methods. Instead, we can employ a heuristic optimization scheme to find candidates
for optimal solutions. As an example, many runs of a genetic algorithm applied
to the system with three different fitness functions yielded the results shown in
Fig. 16. In practice, thousands of runs are performed, and those with the highest
valued fitness functions are candidates for optimal dosing schedules. In this case,
the genetic algorithm suggests that the second dose be given at Day 3—earlier than
our first guess of Day 6 based on the kinetics of the response to the first dose. This
hypothesis has since been tested in the laboratory on mice confirming the results
of the optimization problem [47]. Current vaccine protocols are rigidly set, often at
longer intervals than suggested here [9]. We hope that this model and its refinements
can serve as a guide for the design of treatment strategies in the future. One possible
extension is discussed in Sect. 4.2.

4.2 Dendritic Cell Vaccines

Peptide vaccines, discussed in Sect. 4.1, require the identification of peptides that
are expressed on the tumor cells of all patients with that type of cancer (e.g.,
melanoma), but that are not found on normal cells. One of the limitations of this
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Fig. 16 The solutions with the highest fitness level for 9 different runs of the genetic algorithm. In
the first column, the fitness function was the number of CD8C or CTLs. In the second column, the
fitness function was the number of memory T-cells. In the third column, the fitness function was
a linear combination of both the CTL population and the memory cell population. Considering all
three columns, the runs that yielded the highest fitness values show that the second peptide dose
is given at approximately Day 3, (circled runs). Red bars indicate the administration times for the
two bolus injections of vaccine

type of therapy is that tumor-specific antigens are rare. Another approach is to
use vaccines that are developed from the patient’s own immune cells, known as
“autologous” vaccines. Dendritic cell vaccines are a type of immune cell-based
vaccine, where immune cells (in this case, dendritic cells, but other APCs are also
involved) are removed from the patient, activated by tumor-associated antigen and
immune-activating cytokines (such as granulocytes-macrophage colony-stimulating
factor, GM-CSF), and cultivated. This expanded colony of activated DCs is then
injected into the patient, with the goal of stimulating the tumor-specific immune
response modeled in Sect. 4.1. One advantage that autologous DC vaccines have
over other, more systemic, treatments is that they have very few toxic side effects:
the patient is receiving immune cells of their own making, activated to attack only
their own tumor cells. The first such vaccine to be approved by the FDA began to
be tested in 2010, with encouraging but not definitive results [9]. During the clinical
trial, a fixed dosing regimen was rigidly imposed for all patients: three rounds of
vaccines were given every two weeks. Given the sensitivity of the immune kinetics
to the timing of the boosting doses, it is likely that outcomes could be improved
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SPLEEN
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Fig. 17 Schematic representation of the DC trafficking model. There are three compartments:
spleen, blood and tumor. Different cell populations exist in each department, some of which move
from one compartment to another. Arrows indicate the flow from one compartment to another, with
labels showing which cell populations actually move

by varying the dose and timings. Another variable is the location of the injection:
should the vaccine be injected into the tumor site, where the initiation of the immune
response normally occurs, or should it be injected into the bloodstream, which is
easier and allows the new immune cells to go wherever they are most needed?

In order to answer the three questions: How much? How often? and Where?—a
tumor cell population must be added to the model, and the trafficking of the immune
cells between the lymph organs and the tumor must be described. We do this in the
simplest way possible, by adding a tumor compartment and a blood compartment
to the spleen compartment described in Equations 11–16. To reduce the complexity
of the model, we focus on the killer T-cells and omit for the time being the helper
T-cells. Tumor–immune interactions in the tumor compartment are described by
the dePillis–Radunskaya Law, since we are looking at the adaptive response. A
schematic is given in Fig. 17.
The dynamics of the trafficking of the immune cells from one compartment to
another are complex, with experimentally observed “trapping” effects in both
the spleen and the tumor compartments. This results in some rather complicated
expressions for the influx and outflow rates in the spleen and tumor compartments:
details can be found in [48]. The full set of equations is

Blood compartment:

d

dt
Dblood D ��BDblood C �TBDtumor C vblood .t/ (17)

d

dt
Ea
blood D �SB.Dspleen/E

a
spleen � �BBE

a
blood (18)

d

dt
Em
blood D �SB.Dspleen/E

m
spleen � �BBE

m
blood (19)
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Spleen compartment:

d

dt
Dspleen D Dmax

�
1� e.

��BSDblood
MaxD /

	
� aDDspleen � bDEE

a
spleenDspleen (20)

d

dt
Ea
spleen D �BSEE

a
blood � �SB.Dspleen/E

a
spleen C baDspleenE

m
spleen

CaEaS
�
DConEnaive � Ea

spleen

	
� ramE

a
spleen

Cbp
Dspleen.t � �D/E

a
spleen.t � �D/

�D CDspleen.t � �D/
(21)

d

dt
Em
spleen D ramE

a
spleen � �

aEm C baDspleen C �SB.Dspleen/
�
Em
spleen

C�BSEEm
blood : (22)

Tumor compartment:

d

dt
Ea
tumor D �BTE.T /E

a
blood � aEaT E

a
tumor � cEa

tumorT (23)

d

dt
T D rT

�
1� T

k

�
� D (24)

d

dt
Dtumor D mT

q C T
� .�TB C aD/Dtumor C vtumor .t / (25)

The “trapping” term which describes the observed phenomenon of activated CTLs
being held back in the spleen in the presence of DCs is

�SB.Dspleen/ D ��
SB C ��

1C DSpleen
�shut

;

�� D �NormalSB � ��
SB:

The functions vblood .t/ and vtumor.t/ allow us to model injections of DCs into the
blood and tumor, respectively. In the tumor compartment, the response rate of the
CTLs due to the presence of the tumor has a saturation term

�BTE.T / D �BB.T=.˛ C T //:
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Fig. 18 Comparison of two dosing schedules and injection location. Vaccination treatment starts
on Day 6, is injected into the blood, and is given in three doses every two days (left), compared
to a vaccination regime starting on Day 3, injected directly into the tumor, and given in 12 doses,
twice a day (right). Times of vaccine doses are shown by arrows (the first two doses are not shown
on the right)

The ratio-dependent kill rate, D , in Equation 24 is the one described in Sect. 3.1,
Equation 8. Note that the effector T-cells denoted by Ea

tumor in this model play the
role of the CTLs, denoted by L in Equation 8.

This model allows us to experiment with different dosing, timing, and location
strategies in order to determine optimal outcomes. Two scenarios are compared
in Fig. 18 to give an idea of the flexibility of the model. From these experiments
(and others not shown) we can hypothesize that, in the context of DC vaccines, 1)
vaccines administered into the blood stream are more effective than those injected
directly into the tumor and 2) fractionated dosing schedules are more effective.
These hypotheses could be tested in a laboratory or clinical setting, the model
refined, and new hypotheses formed. See [48] for more details about the model,
parameter settings, and the results of other simulation experiments. Clinical trials
of cancer vaccines have had mixed results, where some patients respond well, and
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others do not [3, 45]. In addition to providing insights into improving treatment
protocols, mathematical models can also suggest ways to identify patients who
will respond to a particular treatment. Once the model is formulated a sensitivity
analysis can indicate which model parameters have the most effect on specific
outcomes. A sensitivity analysis using Latin hypercube sampling was performed
on this model, indicating that the immune response parameter, d , appearing in the
D term (Equations 24 and 8) has a large impact on the progression of the tumor,
and that this effect is enhanced when a patient receives a DC vaccine. A comparison
of tumor growth, with and without DC vaccine therapy, with various values of d , is
shown in Fig. 19.

4.3 Monoclonal Antibody Therapy

In addition to peptide and immune cell vaccines, antibody-mediated therapy has
been used either alone or in conjunction with other treatments. In this next model,
we capture the dynamics of colorectal cancer growth and its response to monoclonal
antibody (mAb) therapy in combination with chemotherapy. We show how the
model can be used to simulate clinical trials, a safe and efficient way to lower
expenses and speed up the process of treatment design. The work described in this
section is extracted from [13], in which further details can be found. Monoclonal
antibodies are manufactured to bind to specific proteins. Various protein targets
can be used, but epithelial growth factor receptor (EGFR) is a common and useful
choice. Circulating epithelial growth factor (EGF) binds to the EGFR and signals a
cell proliferation cascade. Many cancerous cells, including colorectal cancer cells,
have an EGFR-upregulating mutation, thought to be partly responsible for the high
proliferation rate of tumor cells [17, 29, 40, 53]. Monoclonal antibodies can block
the EGFR, potentially preventing further tumor cell proliferation.

There are three main pathways for mAb-induced tumor death (see Fig. 20):
interactions between mAbs, NK cells, and tumor cells; interactions between mAbs,
chemotherapy, and tumor cells; and interactions only between mAbs and tumor
cells, resulting in growth rate reduction, complement activation, and possibly other
mechanisms for tumor death. In this model, we have chosen to include the following
components:

• Cell populations

– T .t/: the total tumor cell population;
– N.t/: the concentration of NK cells per liter of blood (cells/L);
– L.t/: the concentration of CTLs per liter of blood (cells/L);
– C.t/: the concentration of other lymphocytes (cells/L).

• Medications (chemotherapy, cytokines, and monoclonal antibodies); and
treatments:

– M.t/: the concentration of chemotherapy per liter of blood (mg/L);
– I.t/: the concentration of interleukin per liter of blood (IU/L);
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Tumor challenge on Day 21, with 2� 105 tumor cells. Dosing follows the experiment described in
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Fig. 20 Three methods of mAb-induced tumor cell death are represented in this model. If an NK
cell is present then the cell can undergo ADCC, if a chemotherapy molecule is present then the
cell will increase death from the chemotherapy drug, and otherwise, the MAB molecule will cause
tumor cell death on its own, through a variety of mechanisms

– A.t/: the concentration of monoclonal antibodies per liter of blood (mg/L);
– vM.t/: the amount of irinotecan injected per day per liter of blood (mg/L-day);
– vA.t/: the amount of monoclonal antibodies injected per day per liter of blood

(mg/L-day).

Equations (26)–(32) are the system of equations for this model.

dT

dt
D aT .1 � bT /� .c C �

A

h1 CA
/NT � D

� .KT CKATA/.1 � e�ıT M /T �  AT (26)

(continued)



230 L.G. de Pillis and A.E. Radunskaya

dN

dt
D eC � fN � .p C pA

A

h1 C A
/NT C pNNI

gN C I

�KN.1 � e�ıNM /N (27)

dL

dt
D �mL

� C I
C j

T

k C T
L � qLT C .r1N C r2C /T � uL2CI

� C I

�KL.1 � e�ıLM /LC pILI

gI C I
(28)

dC

dt
D ˛ � ˇC �KC.1 � e�ıCM /C (29)

dM

dt
D � �M C vM.t/ (30)

dI

dt
D � �II C �C C !LI

 C I
(31)

dA

dt
D � �A��T A

h2 C A
C vA.t/ (32)

where the immune response term D has the familiar form given in Equation 8. The
specific treatments that we will explore are the chemotherapeutic drug irinotecan
(CPT11), and mAb treatments cetuximab or panitumumab.

4.3.1 Clinical Trial Simulations for mAb Therapy and Chemotherapy

We used the model to explore expected responses to treatment at a population level.
In particular, we simulated response to treatment for a group of individuals with
a range of immune “strengths.” In order to simulate a group of patients having
differing immune strengths, we varied the parameters d , �, and k1=2 in Equation 8
for each individual simulated. To reflect the heterogeneity in response to treatment,
we also varied the parametersKT and  .

In our clinical trial simulations, we assume that individuals have slightly
compromised immune systems after already having been through other immuno-
depleting therapies, reflected in a relatively low value of the initial immune cell
population. Simulated treatments were administered to each patient, represented
by vM.t/ and vA.t/ in model equations (30) and (32). We ran simulations over
the set of 64 virtual patients, each identified by a parameter set with different
values of the parameters d , k1=2, �, KT , and  , and recorded final tumor size and
lymphocyte counts. Lymphocyte count was used as a marker for patient health—if
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the lymphocyte count dropped low enough for the patient to be considered grade 4
leukopenic, the treatment was considered to be too harsh and not useful.

In order to validate and calibrate our model, we compare the results of the
simulated trials to those reported in [11, 17, 29, 31, 37]. Note that the published
clinical trial results for cetuximab and panitumumab that we used for comparison
reported results as “Response” or “No Response” almost exclusively, so our simula-
tion outcomes reflect this categorization. We carried out monotherapy clinical trial
simulations for each of the three drugs used in our model. Monotherapy results can
be seen in Fig. 21. Our simulated response to irinotecan was purposefully lower than
the clinical trial response, since we assume that our population of patients who may
be treated with mAb therapy should be less responsive to chemotherapy than the
general population. Our simulated responses to cetuximab and panitumumab were
a very close match to the clinical trial outcomes. We also simulated combination
therapies, using either irinotecan with cetuximab or irinotecan with panitumumab.
These simulations used the common treatments for each drug and gave the two
treatments simultaneously. Again, our simulations match the reported clinical trial
results fairly closely (see Fig. 22).

Fig. 21 Our clinical trial simulations compared to reported clinical trial results for irinotecan
monotherapy (A), cetuximab monotherapy (B), and panitumumab monotherapy(C). Our sim-
ulation results (left bars) closely match published results (right bars) for both cetuximab and
panitumumab monotherapies. For irinotecan monotherapies, the reduced response seen in our
simulations is intended, since the patients receiving mAb therapy are often not as responsive as
most patients to other treatments
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Fig. 22 Our clinical trial
simulations compared to
reported clinical trial results
for irinotecan and cetuximab
combination therapy (A) and
irinotecan and panitumumab
combination therapy (B).
When simulation results are
measured four weeks
post-treatment, our results are
very similar to published
results

5 Concluding Remarks

In this chapter we have presented brief glimpses of several mathematical models of
the interaction between the immune system and cancer tumors. These models can
be used to understand the dynamics of the tumor–immune interaction, predict the
progression of the disease, and design effective treatment strategies that minimize
toxicity. To date, the mathematical models have suggested the advantage of altering
traditional protocols, for example, fractionated (or “metronomic”) dosing seems
to be more effective–and less toxic–than bolus doses. They have helped provide
functional forms for cell interactions that can differentiate between the two arms
of the immune response. They can help us understand the effects of combined
therapies, allowing researchers to move more swiftly and safely from “bench
to clinic.” Finally, the analysis of these mathematical models, combined with
advances in technology that provide us with an increased ability to accurately and
noninvasively measure physiological parameters, can lead to the design of patient-
specific treatment regimens. Once calibrated to a particular patient, mathematical
models can be used to suggest treatment combinations and dosing protocols that are
personally optimized.

Much work remains to be done—we hope that the few ideas presented here
will motivate mathematicians, clinicians, systems biologists, programmers, and
laboratory researchers to continue to collaborate with the goal of understanding and
fighting the many diseases known as “cancer”.

Acronyms. NK, natural killer Cell; CTL, cytotoxic T lymphocyte, or Killer T-cell,
also known as a CD8C or cytotoxic T-cell because it has a glycoprotein called
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CD8 on its surface; CD4C, helper T-cell, expresses the CD4 protein on its surface;
ECM, extracellular matrix; IL2, interleukin 2, an immune-stimulating cytokine;
APC, antigen-presenting cell; DC, dendritic cell, a type of antigen-presenting cell;
EGF, endothelial growth factor; EGFR: endothelial growth factor receptor; mAb,
monoclonal antibody
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A Hybrid Multiscale Approach in Cancer
Modelling and Treatment Prediction

Gibin Powathil and Mark A.J. Chaplain

Abstract Cancer is a complex multiscale disease involving inter-related processes
across a wide range of temporal and spatial scales. Multiscale mathematical models
can help in studying cancer progression and serve as an in silico test base for
comparing and optimizing various multi-modality anticancer treatment protocols.
Here, we discuss one such hybrid multiscale approach, interlinking individual cell
behavior with the macroscopic tissue scale. Using this technique, we study the
spatio-temporal dynamics of individual cells and their interactions with the tumor
microenvironment. At the intracellular level, the internal cell-cycle mechanism
is modelled using a system of coupled ordinary differential equations, which
determine cellular growth dynamics for each individual cell. The evolution of these
individual cancer cells are modelled using a cellular automaton approach. Moreover,
we have also incorporated the effects of oxygen distribution into this multiscale
model as it has been shown to affect the internal cell-cycle dynamics of the cancer
cells. The hybrid multiscale model is then used to study the effects of cell-cycle-
specific chemotherapeutic drugs, alone and in combination with radiotherapy, with a
long-term goal of predicting an optimal multimodality treatment plan for individual
patients.

Keywords Cancer • Hybrid multiscale model • Cell cycle • Hypoxia •
Chemotherapy • Radiotherapy

1 Introduction

Cancer has been and still is one of the most devastating diseases known to the
developed world. Even with numerous technological, medical and pharmaceutical
developments in detecting and treating different types of cancer, the median survival
rates of most types of cancer remain unchanged for the last 20–30 years. One way to
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improve this situation is to increase the survival chances of cancer patients through
the intelligent planning and optimum delivery of multimodality therapies.

The most common treatments for cancer management are surgery, chemotherapy,
radiation therapy and their various combinations. Chemotherapeutic drugs function
by killing the cancer cells through interfering with the cell-cycle mechanism, which
regulates complex intracellular processes such as proliferation, cell division and
DNA replication [66]. The cell-cycle mechanism is very much dynamic in nature
and is influenced by numerous intracellular pathways, extracellular interactions
and the tumor microenvironment, in particular oxygen [10, 66]. Two important
pathways out of many that affect the regulation of the cell cycle are the HIF-1
pathway, which is upregulated by the presence of hypoxia, and the wee1 pathway,
which is influenced by circadian rhythms [37, 38]. These intracellular and extracel-
lular heterogeneities as well as dynamical changes in the tissue microenvironment
directly or indirectly contribute towards cell-cycle-mediated drug resistance and
poor treatment outcome [10]. An effective way to address this is by using an
appropriate combination of cell-cycle-specific chemotherapeutic drugs that targets
a cancer cell at its various phases of cell division.

In most cases, chemotherapy is administered in combination with the radiation
therapy, although in some cases either one of them is given alone. Just as with
chemotherapy, cell-cycle dynamics also play a vital role in mediating a cell’s
sensitivity towards radiation therapy since the cell-cycle phase determines the
cell’s relative radiosensitivity [42, 53]. Previous studies have shown that cells that
are in G2-M phase are more sensitive to the radiation than those in G1 phase
[53]. Moreover, irradiation can also alter a cell’s cell-cycle dynamics through
the activation of various intracellular pathways and thus can delay the rate of
progression of a cell’s cell cycle, causing a group of cancer cells to accumulate in
a particular phase of the cell cycle [42, 53]. The treatment-dependent perturbations
of cell-cycle dynamics together with cell-cycle-dependent therapeutic sensitivity are
one of many rationales behind the combination treatment protocols of chemotherapy
and radiation therapy [25, 33, 53].

Clinically driven mathematical models can be used as powerful tools to under-
stand, study, and provide useful predictions related to the outcome of various
treatment protocols used to treat human malignancies. The multiscale complexity
of cancer progression warrants a multiscale modelling approach to produce truly
predictive mathematical models. In order to capture all the dynamics of tumor
progression, we need to couple processes that are occurring at various spatial and
temporal scales. In this chapter, we discuss one such hybrid multiscale model that
incorporates some of the relevant intracellular, cellular and macroscopic dynamics.

2 Multiscale Mathematical Model: Growth and Progression

We consider a hybrid cellular automaton model for cancer growth and progression,
which models the spatio-temporal dynamics at the cell level, interlinking cell-level
dynamics to the molecular variations of intercellular signalling and macroscopic
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behavior of tissue oxygen dynamics [57]. The evolution of cancer cells is modelled
using a cellular automaton (CA) model where each cell has its own cell-cycle
dynamics incorporated using a set of ordinary differential equations. The cells are
located spatially in a dynamic microenvironment due to the variations in oxygen
concentration, and the changes in oxygen distribution and drug concentration are
modelled using partial differential equations. A cell-based model is considered to
study the multiple effects of radiation therapy [56]. Finally, this hybrid multiscale
CA modelling approach is used to analyze and study the therapeutic outcome
when chemotherapy and radiation therapy are given alone and in combination with
each other.

The computational simulations are performed on a two-dimensional spatial grid,
where each grid represents either a cancer cell, the cross section of a blood vessel or
the extracellular matrix. The spatial size of this computational grid has been chosen
to approximately match the size of a single cell. To simulate the spatio-temporal
progression of the cancer cells and their response to chemotherapeutic drugs and
radiation, each automaton cell is associated with four major components – cells, the
local oxygen (and hence HIF-1 ˛) concentration, initial blood vessel distribution and
drug concentrations. A schematic overview of the model with the scales involved is
given in Fig. 1 [56].

Vessel distribution Oxygen SupplyDrug supply

Diffusion of drugs
(represented by PDE)

Radiation Diffusion of oxygen
(represented by PDE)

Spatial distribution of
drugs

Cells with cell-cycle 
and hypoxia status

(Cellular automaton rules)

Spatial distribution of
oxygen

Hypoxia and 
activation of HIF

Apoptosis
Cell-cycle dynamics

(represented by a system of ODEs)

Microenvironment

Cell level

Intracellular
level

Fig. 1 Schematic diagram of the model showing the appropriate scales involved. Adapted
from [56]
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2.1 Intracellular Dynamics: Cell-Cycle Model

There are many different models of the cell-cycle dynamics incorporating varying
underlying complexities, and details of these can be found in the key papers
[7, 26, 30, 48, 74]. For our multiscale model, to model the cell-cycle dynamics
within each cell, we use a simple model which was originally developed by
Tyson and Novak [47, 74] that includes various relevant interactions for cell-cycle
regulation and control. Using these kinetic relations, Tyson and Novak [47, 74]
explain the transitions between two main steady states, G1 and S-G2-M, of the cell
cycle through the changes in cell mass. Although, we use this simple model in our
simulations, one could easily replace this with more complex models that describe
the further complicated processes involved in the mammalian cell cycle [48].

To make the current six-variable model more relevant to the mammalian cell, we
have used the equivalent mammalian proteins stated in Tyson and Novak’s paper,
namely the Cdk-cyclin B complex [CycB], the APC-Cdh1 complex [Cdh1], the
active form of the p55cdc-APC complex [p55cdcA], the total p55cdc-APC complex
[p55cdcT], the active form of Plk1 protein [Plk1] and the mass of the cell [mass]
[57]. Following Tyson and Novak’s model, the evolution of the concentrations of
these components is modelled using the following system of six ODEs:

d [CycB]

dt
D k1 � .k0

2 C k
00

2 [Cdh1]/[CycB]; (1)

d [Cdh1]

dt
D .k

0

3 C k
00

3 [p55cdcA�/.1 � [Cdh1]/

J3 C 1 � [Cdh1]
� k4[mass][CycB][Cdh1]

J4 C [Cdh1]
; (2)

d [p55cdcT�

dt
D k

0

5 C k
00

5

.[CycB][mass]/n

J n5 C .[CycB][mass]/n
� k6 [p55cdcT�; (3)

d [p55cdcA�

dt
D k7[Plk1]. [p55cdcT� � [p55cdcA�/

J7 C [p55cdcT� � [p55cdcA�
� k8ŒMad� [p55cdcA�

J8 C [p55cdcA�

(4)

� k6 [p55cdcA�;

d [Plk1]

dt
D k9[mass][CycB](1-[Plk1]) � k10[Plk1]; (5)

d [mass]

dt
D �[mass]

�
1 � [mass]

m�

�
; (6)

where ki are the rate constants and the values are chosen in proportional to those in
Tyson and Novak so that the time scale is relevant to mammalian cell cycle [47,74].

Here, the equation governing the change of mass accounts for the growth of each
cell. A cell is assumed to divide when the concentration of Cdk-cyclin B complex
[CycB] crosses a specific threshold value [CycB]th which is assumed to be 0.1, from
above and then the mass, [mass] is halved. To introduce a random growth rate for
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individual cells which in turn introduces cell-cycle heterogeneity in the population,
we consider a varying growth rate �:

� D �C C " O�; (7)

where �C D 0:03, " D 0:006 and O� is a probability density function with uniform
distribution between �1 and 1. The rest of the parameter values of the cell-cycle
model can be found in Powathil et al. [57].

Figure 2 shows the changes in various protein concentrations that have been
included in the current cell-cycle model for one single automaton cell. Every cell in
this multiscale model has similar cell-cycle dynamics built-in which further control
the division and cell-cycle phases of the respective cells. In this representative figure
(Fig. 2), a cell undergoes division constantly as long as there is enough space to
divide and the surrounding microenvironment is favorable for its division. However,
as soon as its neighboring spaces are occupied, the cell moves to a resting phase
where the concentrations are maintained in a constant level and in Fig. 2, this
happens at around 190 h.

Fig. 2 Plot of the concentration profiles of the various intracellular proteins and the cell mass over
a period of 200 h for one automaton cell in the model. This is obtained by solving the system of
equations, Equations 1 to 6, with the relevant parameter values from Table 1. Adapted from [57]

Table 1 cell-cycle model parameters from [55]

Component Rate constants (hr�1) Dimensionless constants

[CycB] k1 D 0:12, k0

2 D 0:12, k
00

2 D 4:5, [p27/p21]=1.05 ŒCycB�th D 0:1

[Cdh1] k0

3 D 3,k
00

3 D 30, k4 D 105 J3 D 0:04,J4 D 0:04

[p55cdcT] k0

5 D 0:015, k
00

5 D 0:6, k6 D 0:3 J5 D 0:3, n D 4

[p55cdcA] k7 D 3,k8 D 1:5 J7 D 0:001,J8 D 0:001,[Mad]=1

[Plk1] k9 D 0:3, k10 D 0:06

[mass] �C D 0:03 m� D 10
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2.2 Macroscopic Effects: Oxygen Dynamics and Hypoxia

At the macroscopic level, the effects of the changing tissue microenvironment are
incorporated into the model by introducing oxygen dynamics which are modelled
using a suitable partial differential equation incorporating vessels as sources of
oxygen. Computationally, there are several ways of introducing vascular dynamics
into the model depending on various temporal and spatial scales of interest [9, 15,
67]. Here, we have considered blood vessel cross sections distributed randomly
throughout the two-dimensional domain with density �d D Nv=N

2, whereNv is the
number of vessel cross sections [18,36]. IfK.x; t/ denotes the oxygen concentration
at position x at time t , then its spatio-temporal evolution can be expressed as,

@K.x; t/

@t
D r:.DK.x/rK.x; t//C r.x/m.x/ � �K.x; t/cell.x; t/; (8)

where DK.x/ is the diffusion coefficient and � is the rate of oxygen consumption
by a cell at position x at time t (cell.x; t/ D 1 if position x is occupied by a cancer
cell at time t and zero otherwise). Here, m.x/ denotes the vessel cross section at
position x (m.x/ D 1 for the presence of blood vessel at position x, and zero
otherwise); thus the term r.x/m.x/ describes the production of oxygen at rate r.x/
[57]. The diffusion coefficient and the supply rate of the oxygen vary depending on
the location of the cancer cells and blood vessels [57]. Since it has been observed
that when a vessel is surrounded by a mass of densely packed cancer cells its
perfusion and diffusion capabilities are seriously impaired, this is incorporated in
our model by considering a lower diffusion rate and a lower supply rate in the
tumor as compared to the normal vessels [57]. This equation is solved using no-
flux boundary conditions and an appropriate initial condition [55]. Figure 3 shows
a representative profile of the spatial distribution of oxygen concentration after
solving Equation (8) with relevant parameters as given below.

The oxygen diffusion length scale L can be considered to be approximately
equal to 100 �m and the value of the diffusion constant is taken as 2  10�5 cm2/s
[50]. Using these and the relation L D p

D=�, the mean oxygen uptake can be
approximately estimated as 0.2 s�1. The oxygen supply through the blood vessel is
approximately taken as 8:2  10�3mols s�1 [44]. The appropriate nondimensional-
ization will yield a time scale of T D 0:001hr and hence each time step is set to be
0:001hr for both CA time step and oxygen dynamics. The length scale of 100�m
will give a square grid of length�x L=20 �m, approximate diameter of a cell and
thus a tumor of radius 1 mm [57].

The changes in the oxygen concentration, especially hypoxia, may affect various
intra and intercellular processes of the cells that constitute the tumor mass. In the
present model, the effects of hypoxia are included through the activation and
inactivation of HIF-1 ˛ which further results in changes in intracellular cell-cycle
dynamics. When oxygen concentration at a specific position x falls below 10%
(hypoxic cell), HIF-1˛ is assumed to become active from an inactive phase, which
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Fig. 3 Plot showing the concentration profile of oxygen supplied from the vasculature. The red-
colored spheres represent the blood vessel cross sections and the color map shows the percentage
of oxygen concentration. Adapted from [56]

further delays the cell-cycle dynamics through the upregulation of p27/p21 pathway
[29, 57]. This is incorporated into Equation (1) using an additional decay term
proportional to the concentration of p27/p21 (which is considered here as constant)
[4, 57]. Thus the modified equation for cyclic-CDK dynamics can be written as

d [CycB]

dt
D k1 � .k

0

2 C k
00

2 [Cdh1] C Œp27/p21�ŒHIF �/[CycB]; (9)

where

ŒHIF � D


1 W K.x; t/ � 10%
0 W K.x; t/ > 10%:

(10)

2.3 Cancer Growth and Progression: Cellular Automaton
Model

Here, we use a cellular automaton (CA) approach to study the spatial and temporal
dynamics at the cell level incorporating the intracellular and macroscopic details
described above. Previously, cellular automaton modelling approaches have been
used to model various aspects of tumor development and progression, including
the formation of multicellular spheroids [35, 52], tumor-induced angiogenesis [9],
cancer cell adhesion and invasion [73]. Moreover, several hybrid CA models have
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already seen use to study tumor growth and development in multiple scales and time
[3, 5, 21, 28, 49, 52, 54, 60].

Here, the computational model is simulated on a spatial grid of size 100�100 grid
points and each automaton element whether it is empty or occupied has a physical
size of l�l , where l D 20 �m, simulating a cancer tissue of 2�2 mm2 area. The CA
begins as a new grid of empty points with a single initial cell in G1 phase (blue cell)
of the cell cycle at the center. This initial cell divides following the intracellular
cell-cycle dynamics modelled using Equation 1–6 and produces a cluster of cells
on a regular square lattice with no-flux boundary conditions. The PDE equation
governing the oxygen dynamics is simulated using a finite difference scheme and the
system of ordinary differential equations controlling cell-cycle dynamics is solved
using the Runge-Kutta method to obtain the intracellular protein concentrations for
each cell. At each simulation step, these intracellular protein levels are checked
for each individual cell and its cell-cycle phase is updated accordingly. A cell is
considered to be in S-G2-M phase (green cell) if its [CycB] level is greater than a
specific threshold and if it is lower than this value, the cell is in G1 phase. If the
cyclin B-cdk complex concentration [CycB] crosses this threshold from above,
the cell is considered ready for division. Once the cell is marked for division,
its neighborhood of order 3 is checked for an empty space with highest oxygen
gradient and the cell undergoes cell division and its mass [mass] is halved. If the
cell’s neighborhood has “no space” then its growth rate � is set to zero and it
enters a resting state (magenta cell). After the division, the new cell is placed with
a G1 state of cell cycle and is assigned a value for � randomly from the range of
values of �. If there are more than one empty space with same oxygen gradient, a
position is chosen randomly. The position of the new daughter cells is determined
by Moore and von Neumann neighborhood alternatively to avoid the associated cell
distribution patterns specific to each method [56, 57].

As this multiscale model evolves over time, the number of cells increases and
the oxygen consumption also increases accordingly, eventually leading to tissue
hypoxia. Here, the hypoxic cells that are in G1 phase are represented by rose color-
coded cells while hypoxic S-G2-M cells and hypoxic resting cells are denoted by the
colors yellow and silver, respectively. Figure 4 shows a snapshot of the multiscale
hybrid CA model after 700 h where Fig. 4a illustrates the distribution of oxygen
in a percentage scale, Figure 4(b) gives the HIF-1˛ map and Fig. 4c shows the
distribution of cells in various cell cycle phases. Proliferating cells which are active
in cell-cycle are mainly seen near the high oxygen concentration regions of the
tumor boundary, creating fingerlike growth pattern in the tumor cell distribution.
This is mainly due the to effect of surrounding microenvironment as the tumor tends
to advance towards the most favorable microenvironment that supports its growth
and invasion. In Fig. 5 we plot the corresponding total number of cells along with
the number of cells in each of the various cell-cycle phases against time for this
asynchronous population.
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Fig. 4 Plots showing a snapshot of the simulation results of the model at time= 700 h. (a) plot
of the oxygen concentration distribution within the spatial domain, (b) plot of the HIF-1 ˛

concentration within the spatial domain and (c) plot of the spatial distribution of the cells
in different stages of the cell cycle which are G1 (blue), S-G2-M (green), resting (magenta),
hypoxic cells in G1 (rose), hypoxic cells in S-G2-M (yellow) and hypoxic cells in resting (silver).
The contours represent the oxygen concentration profiles. Adapted from [57]

Fig. 5 Plot showing the total number of cells in the different phases of the cell cycle over the
course of one simulation run representing 700 h. The subplot shows the density of hypoxic area as
a function of time. Adapted from [57]

3 Mathematical Model: Effects of Anticancer Treatments

Chemotherapy and radiotherapy play important roles in the primary treatment
of many cancers and in improving the survival after cancer surgery. Currently,
numerous chemotherapeutic drugs and irradiation techniques are employed, which
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have evolved over several decades through empirical clinical usage. The effective-
ness of these treatment protocols is also considerably affected by internal tumor
heterogeneities caused by perturbations in the intracellular pathways as well as
by the dynamical changes in the tissue microenvironment, in particular oxygen
concentration [10]. Hence, it is also important to consider such heterogeneity when
studying various optimization protocols, as this can help in improving the delivery
of multi-modality treatments. Mathematical modelling of such complex dynamic
situations might provide one solution to this problem, and speed up the delivery of
efficacious treatments to patients while preventing the use of potentially sub-optimal
treatment combinations. Mathematical and computational models can also be very
helpful in gaining valuable insights into the mechanisms and consequences of
various complex intra-cellular and intercellular changes during and after the therapy.
Here, we use the hybrid multiscale cellular automaton model described previously,
incorporating the effects of oxygen heterogeneity and cell-cycle dynamics to study
the multiple effects of cell-cycle-dependent chemotherapy and radiotherapy.

3.1 Modelling the Effects of Cell-Cycle-Specific
Chemotherapy

Several previous mathematical models have shed light on understanding the effects
of chemotherapy and its optimal delivery [1, 17, 60, 68]. Chemotherapy is a
commonly used treatment for cancer. Chemotherapeutic drugs act on rapidly
proliferating cells, such as cancer cells, by interfering with the cell-cycle and other
cell-cycle specific targets. Cell-cycle-specific anticancer drugs are more effective on
dividing cells by interfering with the cell-cycle and other cell-cycle-specific targets.
Hence, it might be more efficient to use a combination of multiple cell-cycle phase-
specific drugs that target the cells in different phases of the cell cycle. Here, the
concentration of chemotherapeutic drug type i , Ci.x; t/ is governed by a similar
equation as that of oxygen distribution (8), given by;

@Ci .x; t/

@t
Dr:.Dci .x/rCi.x; t//Crci .x/m.x/��ciCi.x; t/cell.x; t/��ciCi .x; t/;

(11)

where Dci .x/ is the diffusion coefficient of the drug, �ci is the rate by which the
drug is taken in by a cell (assumed to be zero as it is very negligible when compared
to oxygen uptake), rci is the drug supply rate by the pre-existing vascular network
and �ci is the drug decay rate [55].

Drug molecules are much bigger in size than oxygen molecules and their supply
through the normal blood vessels is minimal. Additionally, the drug diffusion rate
varies depending on the vessel location within the domain and with other factors
such as pressure. Hence, similar to our assumptions for oxygen, these effects of
pressure are taken into account through the following assumptions related to the
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transport properties and delivery rate of the drug [57]. The parameters that are used
in the equations governing the dynamics of chemotherapy are chosen in comparison
with oxygen molecules and other known compounds of similar molecular mass [57].
In the model, chemotherapeutic drugs are assumed to be effective in killing a cell
with a probability pi , if its concentration at that location of the cell is above a fixed
threshold value �ci and below which the drug has no effect on any cells. Using this
model, we have further analyzed the effects of these drugs which are delivered at a
same rate in two different combinations targeting either the same phase or a different
phase of the cell-cycle.

The temporal evolution of the tumor dynamics when the time delay between two
drug doses is 84 h (chosen as a representative illustration) is given in Figs. 6, 7
and 8. Figs. 6a–d and 7a–d show the changes in the total number of cells as
well as the number of cells that are in various phases of the cell-cycle when the
phase-specific drugs are delivered in multiple combinations. Figure 8 illustrates
the spatial evolution of the cancer cell distribution during the administration of
the chemotherapeutic drugs. These dynamical changes in the spatial evolution of
cancer cell distribution will have a significant impact on the final cell distribution
when more than two doses of cell-cycle-specific chemotherapy are administered
subsequently. Hence, it is very important to consider the cell-cycle heterogeneity
together with the oxygen heterogeneity while studying the effects of these drugs to
obtain an accurate prediction.

The graph in Fig. 6a shows that when the delay is 84 h, the combination of two
S-G2-M state-specific drugs gives a slightly better cell kill at the final simulation
time as compared to the other three possible combinations of these two drug doses.
The worst combination is the delivery of two G1-specific drug doses while other
two combinations give a similar outcome as that of the application of two S-G2-M
drugs. This can be explained by the presence of internal heterogeneity due to the
cell-cycle dynamics which oscillates between the G1 and S-G2-M states. When the
first dose is given, the majority of the cells that are in the vicinity of the diffused
drug concentration might happen to be in the G1 state, leaving the cells in the other
cycling phase, hence synchronizing the cell population. When a fraction of the cells
is killed by the delivered drug, the remaining cells undergo a spatial redistribution
that further changes the dynamics of oxygen and drug concentrations, which will
eventually affect the future drug delivery. Interestingly, although the first or second
doses of G1-specific drug kill more cells than that of S-G2-M-phase drug, some
combination involving a G1-phase drug results in a higher number of surviving
cells at the final time, 700 h. This is because the higher rate of cell kill eliminates
most of the cells in the resting phase, increasing the number of available free space
and decreasing the hypoxic area (Figs. 7, 8). As free space is created by the cell kill,
the resting cells will return to their active cell cycle and these viable cells utilize
this favorable microenvironment to proliferate rapidly and reach a maximum size in
the absence of further doses of chemotherapy. An extensive analysis and results are
given in [57].



Fig. 6 Plots showing the total number of cells as well as the number of cells in different states as
a function of time when two drug doses are given with a time delay of 84 h. (a) plot showing the
total number of cells and subplot showing the density of hypoxic area over time, (b) Plot showing
the number of cells in G1 state, (c) plot showing the number of cells in S-G2-M state and (d) Plot
showing the number of cells in G0 state. Adapted from [57]
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Fig. 7 Plots showing the number of cells in different states as a function of time when two drug
doses are given with a time delay of 84 h. (a) Plot showing the number of cells in G1 state that are
in hypoxic region, (b) plot showing the number of cells in S-G2-M state that are in hypoxic region
and (d) plot showing the number of cells in G0 state that are in hypoxic region. Adapted from [57]
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Fig. 8 Plots showing the spatial distributions of cells within a growing solid tumor at time = 400 h
(delivery of 1st drug, column (a)), time=405 h (column (b)), time=484 h (2nd drug delivery, column
(c)), time=490 h (column (d)), time=600 h (column (e)) and time=700 h (final time, column (f)),
for various combinations of cell-cycle-specific drugs (i to v). These figures show that consideration
of spatial distribution of cells may highly benefit in planning and optimizing the delivery of cell-
cycle-dependent drugs. Adapted from [57]

3.2 Modelling the Effects of Radiation Therapy

In a similar manner to chemotherapy, the key intracellular processes such as cell-
cycle dynamics and external factors including oxygen distribution also play a
vital role in determining the radiosensitivity of cells that are irradiated [53, 71].
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In addition, the delivered radiation fractions (treatments) further dynamically
change this radiosensitivity over time by redistributing the cancer cells within the
cell cycle by inducing repopulation of the tumor mass, by allowing reoxygenation
of the tumor and by activating DNA repair mechanisms [42, 53, 71]. Traditionally,
the survival fraction of cells after they are irradiated is calculated using the
linear quadratic (LQ) model [65]. The LQ model considers the effects of both
irreparable damage and repairable damage susceptible to misrepair. One of the basic
assumptions of the LQ model is that a cell is damaged through double-strand breaks
(DSBs) of its DNA, leading to reproductive cell death. This damage to DNA can
happen in two different ways, which are captured in the LQ model through its linear
and quadratic terms. The linear term accounts for the DSBs due to one single hit of
radiation whereas the quadratic term represents the effects of two separate ionizing
events that eventually cause DNA DSBs [65]. Assuming that the probability of one
interaction causing a DSB is linearly proportional to the dose d , the survival fraction
in the LQ model can be written as

S.d/ D exp.�˛d � ˇd2/; (12)

where d is the radiation dose and ˛ and ˇ are sensitivity parameters, taken to be
˛ D 0:3 Gy�1 and ˇ D 0:03 Gy�2 [55].

As discussed above, experimental observations indicate that the relative radiation
sensitivity of a cancer cell depends on multiple factors, including its oxygenation
status and its cell-cycle phase [6, 53, 75]. While the cells are found to be more
sensitive when in the S-G2-M phase as compared with the G1 phase, their relative
radiation sensitivity is minimal at low oxygen levels. The effect of changing
tissue oxygen levels within the spatial domain on the radiation sensitivity can
be incorporated into the LQ model (Eq. 12) by using the concepts of an oxygen
enhancement ratio (OER) or oxygen modification factor (OMF) [55], defined as

OMF D OER.pO2/

OERm
D 1

OERm

OERm:pO2.x/CKm

pO2.x/CKm

; (13)

where pO2.x/ is the oxygen concentration at position x, OER is the ratio of the
radiation doses needed for the same cell kill under anoxic and oxic conditions,
OERm D 3 is the maximum ratio and Km D 3 mm Hg is the pO2 at half the
increase from 1 to OERm [55]. Furthermore, a varying radiation sensitivity based
on the cell’s cell-cycle status is incorporated into the LQ model using a parameter
� , which varies from 0 to 1, depending on the individual cell’s position at the time
of the irradiation. Here, we assumed that the cells in S-G2-M phase have maximum
sensitivity with � D 1, while the cells in G1 phase and the resting phase have
relative sensitivities of � D 0:5 and � D 0:25, respectively.
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The equation for survival probability (LQ model, Eq. 12) is then modified by
incorporating this varying sensitivity due to the changes in cell-cycle phase and
oxygen levels by additional terms � and OMF [56], as follows:

S.d/ D exp
�
�
��˛:OMF:d � ˇ.OMF:d /2

��
: (14)

The effects of cellular repair are included in the model by assuming that 98% of
damage caused by the radiation is likely to be repaired within few hours of radiation,
if they are treated with low-dose radiation (< 5 Gy) [31, 72] and allowing the cells
to stay in the same phase (divisional delay) for an extra time duration of up to 9
h for repairing the damage [42]. This survival probability is then used to calculate
the survival chances of each cell when they are irradiated with the radiation rays.
To study this survival chance of an individual cell, a random number is drawn for
each cell at every time when it is irradiated and compared against the calculated
survival probability. The irradiated cell survives if the random number is smaller
than the survival probability and dies otherwise.

This single-cell-based radiation model is used to study multiple factors involving
radiation therapy. To study cell-cycle dynamics when cells are treated with multiple
fractions of radiation, we have simulated the radiation therapy of the cancer cells
with 2.5 Gy/day for 5 days, up to 12.5 Gy starting at time = 400 h. This is compared
against the results of irradiation with a single dose of 12.5 Gy given at time = 400 h
and the control cell distribution. The total number of cells and the number of cells
that are in G1, G2 and resting phases (b) when cells are treated with a single dose
of radiation and (c) when the cells are treated with fractional doses of radiations
are plotted against time in Figs. 9b and c, respectively [56]. The subplot in these
Figures show the percentage of hypoxic area with respect to the time. Figure 9b
shows that when the cells are irradiated with a single dose of radiation, the majority
of the cells stay in G2 phase of the cell-cycle after the radiation for a short period
and then the majority move into G1 and stay in that distribution for about 60–70
h (partial synchronization) before eventually recovering and following the cycling
pattern seen in the case of the control cell population. However, when the total dose
of 12.5 Gy is given in 5 small doses, the synchronization is observed only during
the treatment time and is lost as soon as the radiation is stopped (Fig. 9c). In both
cases, the number of cells in resting phase decreases as the resting cells re-enter the
active phase of the cell cycle (into G1 phase) with the creation of empty spaces and
a favorable microenvironment.

Figure 10 shows the analysis of various factors affecting a cell’s radiation
sensitivity. Figure 10a shows the temporal changes in the total number of cells
and the cells that are in various phases of the cell cycle, when cells are irradiated
with 2.5 Gy/day for 5 days in a 100 % oxygenated microenvironment. In Fig. 10b,
we plot the number of cells if no cell-cycle delay after the radiation is assumed.
The effects of radiation therapy on the number of cells when no cell-cycle specificity
for the radiation sensitivity is assumed are given in Fig. 10c. The number of cells
for the case where no DNA repair is assumed is plotted in Fig. 10d and shows an
increase in the number of cells killed as compared to the normal case as expected.
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number of cells (a) under single dose of radiation with 12.5 Gy and (b) under fractional radiation
starting at time =400 h (5 fractions of 2.5 Gy). Adapted from [56]

In all four cases (Fig. 10), after the irradiation, the presence of a favorable tissue
microenvironment increases the number of cells in active cell cycle. It can be seen
from Fig. 10 that out of four factors that we have considered, the cell-cycle phase-
specific radiation sensitivity of the individual cells and the activation of the repair
mechanisms within the cell significantly affect the relative radio-sensitivity of a cell.

We have also analyzed the usefulness of the developed model by comparing
the simulation results of the model with the experimental results when the cells
are irradiated with a radiation dose of 3 Gy. The comparison results are given
in Fig. 11 [16, 56]. The results show that the controls have cells predominantly
distributed in G1 as compared to G2. After irradiation, the majority of the cells
started to accumulate in G2 phase, about 12 h after irradiation, and stayed in G2
phase before going back to a G1-phase-dominant cell distribution by 22–24 h after
irradiation. The results show a qualitative agreement with the experimental results.
More analyses about the model and additional results can be found in [56].



254 G. Powathil and M.A.J. Chaplain

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

a

c d

b

Time

N
um

be
r o

f c
el

ls

Number of cells in well oxygenated environment

0 200 400 600
−1

−0.5

0
0.5

1

Time

D
en

si
ty

 o
f h

yp
ox

ic
 a

re
a

0 100 200 300 400 500 6000

500

1000

1500

2000

2500

Time

N
um

be
r o

f c
el

ls

Number of cells with no cell−cycle delay after radiation

0 200 400 600
0

0.2
0.4
0.6
0.8

1

Time

D
en

si
ty

 o
f h

yp
ox

ic
 a

re
a

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

Time

N
um

be
r o

f c
el

ls

Number of cells with no phase specific sensitivity

0 200 400 600
0

0.2
0.4
0.6
0.8

Time

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

Time

N
um

be
r o

f c
el

ls

Number of cells with no dna repair

0 200 400 600
0

0.2

0.4

0.6

0.8

D
en

si
ty

 o
f h

yp
ox

ic
 a

re
a

Time

Total cells G1 G2 Resting

Hypoxia

Hypoxia

D
en

si
ty

 o
f h

yp
ox

ic
 a

re
a Hypoxia

Hypoxia

Fig. 10 Number of cells under various conditions that influence the radiation damage after
the irradiation. (a) Plots for a well-oxygenated microenvironment, (b) plot assuming no cell-
cycle delay for repair after the radiation, (c) plots assuming there is no cell-cycle phase-specific
sensitivity for repair after the radiation and (d) plots when there is no DNA repair after the
radiation. Adapted from [56]

3.3 Modelling the Effects of Combination Therapy

Clinically, a kinetically based administration of chemotherapy and radiation therapy
is often observed to give a better outcome than that of chemotherapy or radiation
therapy alone [25, 33, 53]. Studies have shown that both radiation therapy and
chemotherapeutic drugs can induce a cell-cycle synchrony and arrest cells at a
particular cell-cycle phase which improves the effectiveness of the next dose of
radiation/chemotherapy [25,53]. However, most of these interactions are dependent
on the type of drugs given and their combinations among their doses and radiation
fractions. Hence an appropriate combination of these therapeutic modalities is an
essential requirement to achieve a maximum survival [32, 34]. Here, we use our
multiscale model to study two different combination regimes of radiation therapy
and chemotherapy and some of the representative results are given in Figs. 12
and 13. Note that in these combinations, we keep the total treatment time constant to
compare their effects on tumor control. We have also used the same set of parameter
values and doses for each phase-specific chemotherapy [57].

Figure 12 shows the effects of combination treatments when two doses of the
chemotherapy drugs are given after radiation therapy at times = 466 h and 496 h.
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The results show a qualitative agreement with the experimental results. Adapted from [56]

The radiation starts at time= 340 h with a fractional daily dosage of 2 Gy for 5 days.
Here, the radiation given before two doses of chemotherapy introduces a partial
cell-cycle synchrony of cell distribution that remains until the end of the therapy.
The cell-phase distribution for the case when the doses of chemotherapeutic drug
are given before and after the radiation is plotted in Fig. 13. The administration
of a G1-phase-specific chemotherapeutic drug redistributes the cells so that the
majority of the cells are in G1 phase throughout the radiation period. This is the
consequence of an increased cell kill, that promotes an increased proliferation as
cells will re-enter the active phase of the cell cycle (G1) when conditions become
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favorable. Alternatively, the administration of a G2-specific drug, which kills fewer
cells compared to the G1-phase-specific drug, helps to keep the cells in synchrony
throughout the treatment time. However, in both cases shown, in the absence of
additional fractions of radiation and further doses of chemotherapy, all the schedules
perform in a similar fashion, although some give a better cell kill.

4 Conclusions

Along with the rapid growth in acquisition of genetic, proteomic and other biochem-
ical and biological data, there has been a parallel development from the theoretical
side in terms of modelling. In particular, systems biology has emerged as a field of
research over the past decade applied to a wide range of problems in the biomedical
sciences. Systems biology seeks to bring to bear a range of interdisciplinary skills
and tools on complex biomedical problems. By adopting a holistic or integrative
approach (as opposed to the more traditional reductionist logic), systems biology
aims to predict emergent behavior that will arise from complex biomedical systems
i.e., behavior that appears over time due to the interactions between genes, proteins,
cells and tissues across a range of spatial and temporal scales. Given the complexity
of most biomedical systems and the inherent nonlinearities in such systems, without
adopting some kind of systems approach it is not possible to make accurate
predictions. Indeed, in the last few years, systems biology itself has evolved and
further developed seeking not just to understand events at the separate biological
scales in a qualitative manner, but there are now mathematical models which
are truly multiscale, leading to the emergence of quantitative systems biology or
quantitative integrative biology. This novel systems approach is now being brought
to bear on cancer modelling and a related discipline of what may be termed systems
oncology now exists in its own right to develop predictive multi-scale models of
cancer growth and spread.

Established mathematical models now exist for all the key phases of solid tumor
growth, i.e., avascular growth [13, 14], tumor-induced angiogenesis [9, 45], the
immune response to cancer [2, 43], invasion and metastasis [8, 19, 27, 58, 59] and
vascular growth [41, 76]. New areas are also now being investigated concerning the
spatio-temporal modelling of intracellular pathways associated with cancer such
as p53-Mdmd2 [69, 70]. A comprehensive overview of the field may be found in
the review article [40]. In the past few years especially, multiscale models of solid
tumor growth have been developed in order to account for the different spatial and
temporal scales (from genes to tissues) that occur not only in cancer but in all
biological systems [3, 5, 63, 77]. A review of recent models in this area may be
found in the paper of Deisboeck et al. [20]. There has also been a concerted effort
to integrate mathematical models of cancer with real data in a genuine attempt
to develop quantitative, predictive models [12]. Alongside these developments in
the field in general, it is natural that models of cancer treatment have begun to
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be formulated both for chemotherapy [1, 23, 24, 39, 46, 51, 62] and radiotherapy
[22, 61, 64]. More recently models adopting a multiscale approach to treatment
modelling have been developed [11].

In this chapter we have adopted a multiscale approach to modelling cancer
treatment. Specifically, we have presented a hybrid multiscale cellular automaton
model to study the effects of cell-cycle-phase specific chemotherapy and radiation
therapy, alone and in combinations [56, 57]. The clinical and experimental obser-
vations indicated the internal and external heterogeneities within a cancer cell play
important roles in prescribing the effects of chemotherapeutic drug as well as radia-
tion therapy [53]. For this reason we incorporated the effects of cell-cycle-mediated
chemotherapeutic and radiation sensitivity as well as the effects of changing oxygen
and tissue dynamics within this hybrid cell-based modelling framework. The results
obtained from the model are in qualitative agreement with experimental results
[56] and thus show its potential usefulness in studying and understanding a kinetic
administration of cell-cycle phase-specific chemotherapeutic drugs in combination
with radiation therapy. Future work will consider other factors that may interfere
with the cell-cycle dynamics such as circadian rhythms and wee1 dynamics and
explore the therapeutic benefits of “chronotherapy,” alone and in combination with
the radiation therapy. Furthermore, we will also incorporate the interplay between
normal cells and cancer cells, as their interactions are equally important in studying
the therapeutic benefit with a minimum damage to the normal cells.

The long-term goal of such interdisciplinary, multiscale “systems oncology”
modelling is to build a virtual cancer made up of different but connected mathe-
matical models at the different biological scales (from genes to tissue to organ). The
development of quantitative, predictive models (based on sound biological evidence
and underpinned and parameterized by biological data) will no doubt have a positive
impact on patients suffering from diseases such as cancer through improved clinical
treatment and is a real motivation for becoming involved in such modelling.
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Deterministic Mathematical Modelling
for Cancer Chronotherapeutics: Cell Population
Dynamics and Treatment Optimization

Jean Clairambault

Abstract In this short review paper, I will present the mathematical models that
have been designed in the frame of continuous deterministic cell population dynam-
ics that aim at optimization of cancer treatments using chronotherapeutics. Many
authors have dealt with chronobiology of cancer, less with continuous mathematical
models and even less with the declared aim to optimize chronotherapeutics. The
biological and theoretical bases for these models are sketched, started from a
historical viewpoint, and the main theoretical results are presented, with biological
suggestions to account for them. Chronotherapeutics that leads to therapeutic
optimization with the constraint of limiting unwanted toxicity of anticancer drugs
towards healthy cell populations is put in a medical perspective together with the
other main pitfall of cancer therapeutics, for which optimization procedures should
have little to do with circadian biology, i.e., emergence of drug resistance in cancer
cell populations, which is amenable to the use of other sorts of models, that are
briefly mentioned.

Keywords Deterministic differential equations • Cell population dynamics •
Control • Optimization • Cell and tissue biology • Cancer • Therapeutics

1 Introduction

Chronotherapeutics has been designed and used for more than twenty years as an
effective treatment against cancer by a few teams around the world, among whom
one of the first is Francis Lévi’s at Paul-Brousse hospital (Villejuif, France), in
application of circadian clock physiology to determine best infusion times within
the 24-h span for anticancer drug delivery. Mathematical models have been called
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in the last ten years to give a rational basis to such optimized treatments, for use
in the laboratory and ultimately in the clinic. While actual clinical applications
of the theoretical optimization principles found have remained elusive so far to
improve chronotherapeutic treatments in use, mathematical models provide proofs
of concepts and tracks to be explored experimentally, to progress from theory to
bedside.

Starting from a simple ordinary differential equation model that allowed setting
and numerically solving a drug delivery optimization problem with toxicity con-
straints, this modelling enterprise has been extended to represent the division cycle
in proliferating cell populations with different molecular targets, to allow for the
representation of anticancer drug combinations that are used in clinical oncology.

The main point to be made precise in such a therapeutic optimization problem
is to establish, here in the frame of circadian chronobiology, physiologically based
differences between healthy and cancer cell populations in their responses to drugs.
To this aim, clear biological evidence at the molecular level is still lacking, so that,
starting from indirect observations at the experimental and clinical levels and from
theoretical considerations on the model, speculations have been made, that will be
exposed in this review of cancer chronotherapeutics models with the corresponding
optimization problems and their numerical solutions, to represent these differences
between the two cell populations, with regard to circadian clock control.

2 Circadian Clocks: Biology and Models

2.1 Short Historical Background

The existence of rhythms in natural phenomena, following a period that is grossly
superimposable to the day-night alternation, for instance, the folding and unfolding
of leaves of plants, has been known since antiquity, and such rhythms had even been
noticed by d’Ortous de Mairan in the eighteenth century to occur also in constant
darkness, thus being independent of the light of the Sun and hence intrinsically
linked to some proper rhythm of the plants [98]. This was the beginning of
chronobiology, the field of science that deals with biological rhythms. In particular
in this case, a circadian rhythm, i.e., a rhythm with approximately 24-h period, had
been evidenced in that plant (a Mimosa), but of course other rhythms of longer
period, yearly (seasonal), monthly (menstrual), had been observed throughout the
history of mankind. Circadian is a term that was coined in the late 1950s by the
chronologist Halberg (1919–2013) on the basis of the Latin circa diem, i.e., about a
day, to qualify the period of a rhythm [61]; conventionally among chronobiologists,
it means a rhythm with period between 20 and 28 h.

Many circadian rhythms have been found in various organisms, fungi, plants,
algae, insects, and more recently mammals, and the first gene known to be expressed
according to a circadian rhythm was the Per gene, found in the fly Drosophila
melanogaster in 1971 by Konopka and Benzer [70]. Then more and more genes
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expressed according to a circadian rhythm were found in cells of organisms that
were known to present such rhythmic phenomena (in particular the Clock gene
in mice, by Takahashi in 1994 [103]), so that eventually the concept emerged of
a molecular circadian clock constituted of genes and their resulting proteins in a
network of activation and inhibition loops. Such a molecular circadian clock was
found in mammals in every nucleated cell where it was searched for, and it was
also shown all these cell clocks, though having their own periods, were under the
control of a central circadian pacemaker located in the hypothalamus, the so-called
suprachiasmatic nuclei (SCN), constituted of about 20000 neurons coupled together,
giving rise to a common rhythm, itself reset by light through a retino-hypothalamic
tract that normally ensures some synchrony between mammals of a same population
[38, 52, 63].

Recognition of a circadian rhythm (period searched for between 20 and 28 h)
in a biological recording may be done by spectral analysis followed by cosinor
analysis [84]. These are signal processing and statistical methods that do not explain
any mechanism, but contribute to select biological variables as candidates to be
regulated by circadian clocks. After identification of a possible period T D 2�

!

in the recorded time series by spectral analysis, the mean, the amplitude and the
phase at maximum (acrophase) are determined according to the simple model
x.ti / D M C A cos!ti cos' � A sin!ti sin ' by least squares linear regression
to determine ˛ D M;ˇ D A cos' and � D A sin ' in x.ti / D ˛Cˇy.ti /C �z.ti /,
hence M;A and '. Then a F-test is used to determine whether or not zero is in the
confidence interval for the amplitude. If yes, the null hypothesis is not rejected, and
variations in amplitude of the signal are considered as nonsignificant of an actual
periodicity, but part of the background noise; conversely, if the null hypothesis is
rejected, the time series is likely to present periodicity with period T D 2�

!
. Note

that in order to accurately detect by spectral analysis a period T in a time series, a
sample of length at least 2T must be available.

2.2 Modelling Biological Clocks

A simple way to design a biological clock, i.e., a periodic mechanism with molecular
ingredients in nucleated cells, is to use the following negative feedback loop:
transcription (expression of a gene in the nucleus in the form of a messenger RNA)
to translation (synthesis in the cytoplasm of a protein in a ribosome from its RNA)
and then to inhibition of transcription (by a nuclear form of the translated protein
that goes from the cytoplasm into the nucleus, inhibiting its own transcription). Such
a simple 3-variable ODE model of transcriptional regulation had been proposed as
a general biological clock principle by Goodwin in 1965 [89], and later in 1999 by
Didier Gonze, Jean-Christophe Leloup and Albert Goldbeter for the 24-h rhythmic
protein FRQ in the mould Neurospora crassa [73], after another more complex
model for the protein PER in Drosophila had been proposed by Albert Goldbeter in
1995 [50]. Many other models of molecular circadian clocks have been published,
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including a very detailed one by Jean-Christophe Leloup and Albert Goldbeter in
2003 [72], all of them relying on activation and inhibition loops that had been
evidenced by biological experiments.

These models are of single-cell oscillators, but it is possible to couple these oscil-
lators, introducing some stochastic variability between cellular clocks, and study
their synchronization in the central circadian pacemaker in the SCN [14, 53, 54]
and also to propose simple models of this central circadian control on independent
peripheral cell clocks [23].

2.3 Influence of Circadian Rhythms on Proliferation

At the individual cell level, clocks have been shown to influence both metabolism
and proliferation for those cell population that are committed in the cell division
cycle. As regards metabolism, the fact that some intracellular enzymes that process
drug activation or detoxication show circadian behavior in their gene expression or
intracellular protein should be taken into account when representing time-dependent
pharmacokinetics-pharmacodynamics (PK-PD) of anticancer drugs. One may recall
here that pharmacokinetics describes by their concentrations the fate of drugs in the
organism, from their infusion until their molecular target, while pharmacodynamics
evaluates the actual effects of drugs on the organism, modifying its behavior; in
other words, according to a widely broadcast motto, “pharmacokinetics is what
the body does to the drug, pharmacodynamics is what the drug does to the body.”
Independently of pharmacological actions, an indirect influence of circadian clocks
on the cell division cycle has been evidenced, in particular by Georg Bjarnason in
1999 on the 24 h rhythm of the concentration of cell cycle determinants (Cyclins E
and B1) in the oral mucosa of men [19], and also a direct one by Matsuo in 2003,
showing that the circadian clock protein Bmal1 controls the G2=M transition in the
cell cycle through the kinase Wee1 [79]. Coupling between the circadian clock and
the cell cycle has been modelled by Claude Gérard and Albert Goldbeter [47], based
on this finding. Such representation of proliferation control by circadian clocks can
also be used in cell population models of the cell cycle (i.e., not only at the individual
cell level), as proposed in [23] using a FRQ-like model of the circadian clock, or
also by using a simple cosine-like wave for the clock. A recent review on molecular
mechanisms linking circadian clocks and the cell division cycle has been published
in [78].

2.4 Differences Between Healthy and Diseased Clocks?

Peripheral circadian clocks are synchronized by the SCN [38, 52, 63] and such
synchronization may be experimentally disrupted, either by surgical ablation (ther-
mocoagulation) or by out-of-phase non 24-hour periodic jet-lag-like repeated
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entrainment by artificial light, in laboratory mice [63]. Both experimental con-
ditions, resulting in total loss of circadian rhythmicity in body temperature and
rest-activity alternation, led to accelerated tumor progression in B6D2F1 mice, by
comparison with a control group of the same strain in which normal entrainment by
light on a physiological 24-hour basis (12 h of light, 12 h of darkness) was preserved
[42, 43]. These experiments were performed in Francis Lévi’s laboratory at Paul-
Brousse Hospital in Villejuif, France, a hospital in which at the same time treatments
of metastatic colorectal cancer by a combination of cytotoxic drugs (5-Fluorouracil,
Oxaliplatin, Irinotecan) delivered according to a circadian schedule [83] designed on
a computer and implemented in a programmable pump are conducted. With 3-week
autonomy, easily portable by the patients, valuing their quality of life, such pumps
allow them to live and work normally. Francis Lévi and his clinical team [83]—
but also others [94] —have observed that the more ablated physiological circadian
rhythms are in patients—as evidenced by low amplitude of cortisol variations in
blood, or of central temperature, the poorer is their prognosis; otherwise said,
a preserved physiological circadian rhythm is in favor of a good prognosis in
patients with metastatic colorectal cancer under treatment. Additionally to external
detrimental environmental factors such as shift work, that enhances the risk of
developing several cancers [33, 62, 64, 92], a disrupted central SCN clock may be
the result of the cancer disease itself, through circulating cytokines emitted in the
tumor tissue by an immune reaction against it [87], and also by some anticancer
drugs that have been shown to perturb the clock through a mechanism that is not
known [74]. A general and recent review on circadian clocks and cancer, including
cancer chronotherapeutics and proposed mechanisms to account for its efficiency,
may be found in [44].

3 Using circadian Chronobiology for Cancer Therapeutics

3.1 The Case of Cancer in Therapeutics

Cancer is a disease of the physiological control on cell and tissue proliferation.
In healthy organisms, normal regeneration of a tissue, based on the cell division
cycle (at the term of which one cell becomes two) in renewing cell populations
such as intestinal mucosa, haematopoietic bone marrow, skin and others, is phys-
iologically controlled to ensure functional persistence of this tissue. For instance,
the production of young red blood cells by the bone marrow compensates without
excess the elimination of aging red blood cells in the spleen. In cancer, a defect
of control results in overproduction of young cells and unlimited tumor tissue
growth. In this respect, the present pharmacology of cancer occupies a special
place in the treatment of diseases, since the cytotoxic drugs that constitute its core
are not directed towards re-establishing normal physiological control (as is the
case for instance with drugs used in cardiology, tending to ensure normal tissue
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perfusion by our cardiac pump), but are directed towards the elimination of tumor
cells, as though these were bacteria or parasites, whereas they are somatic cells
endowed with the same basic genome as healthy cells, but in which proliferation
control is impaired, usually due to a succession of mutations. Complementary
treatments aiming at slowing down the growth of the tumor, either by choking
its vascular environment (antiangiogenic agents [65]) or by antagonizing growth
factor receptors or blocking elements of intracellular signal transduction cascades
downstream of them (monoclonal antibodies [93], tyrosine kinase inhibitors (TKIs)
[76], the main weapons for the so-called targeted therapies), may be qualified
cytostatic, as they are not used to kill cells (which is what cytotoxics are designed
for) but only to slow down entrance or progression in the division cycle. Note
however that at high doses cytostatic drugs may become cytotoxic. They are seldom
used alone, and cannot control cancer proliferation by themselves.

Understanding where normal proliferation control is impaired is not easy and it
is difficult to correct, hence the tough choice to try and eliminate all diseased cells
by cytotoxic agents. Making use of non cell killing treatments by re-establishing
physiological control of proliferation and letting diseased cells die as non adapted
to a healthy organism environment would certainly be better, but these are seldom
available. Only in a few cases, in particular chronic myelogenous leukemia (CML;
see Sect. 3.2) and in acute promyelocytic leukaemia (APL, a form of acute
myeloblastic leukaemia, AML), have mutations been identified (in both these cases
in fact chromosome translocations, giving rise to fusion genes BCR-Abl for CML
and PML-RARa for APL), that yield chimeric proteins specifically responsible for
the disease, which chimeric proteins, additionally, can be eliminated by specific
drugs, in particular Imatinib for BCR-Abl [41]. In APL, treatment by ATRA, a
non-cell-killing agent targeting the abnormal fusion protein responsible for the
blockade of differentiation in myelopoiesis at the promyelocyte stage—nevertheless
consolidated by cytotoxic drugs, usually anthracyclines—results in the gradual
elimination of diseased cells in the spleen and cure in more than 90 % of cases,
an exceptional feature in AML [60].

Only when such so-called druggable targets (such as BCR-Abl or PML-RARa
proteins) have been clearly identified as the only cause of the disease is it justified
to represent the action of drugs at the single cell level; in all other cases, where more
complex mechanisms underlying uncontrolled tissue proliferation are at work, the
cell population level is the best one to describe and model the effects of drugs.
Wherever modelling considerations may be lead to, such “targeted therapies” are
actively searched for in pharmaceutical research, with limited therapeutic success
so far, either because most often, not just one, but numerous intracellular pathways
are disrupted, or because of treatment complications (see Sect. 3.2).

Conversely, in a whole-body therapeutic perspective, others favor the idea of
identifying and enhancing physiological controls on tissue proliferation, with the
aim to use them in a preventive way, of course (diet, personal life hygiene, etc.), but
also to some extent in therapeutics, taking advantage of their possible added action
in present cancer treatments. The circadian system, constituted of the central SCN
pacemaker and of all peripheral cell clocks, that receive synchronizing messages
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from it, is one possible such control system on cell and tissue proliferation, acting
by the known controls ofG2=M transition by Bmal1 through kinase Wee1 [79], and
also through the cyclin-dependent kinase inhibitor (CDKI) p27 [56] acting onG1=S
transition in the cell division cycle.

An essential component of the molecular circadian clock, the gene Per2, has
been shown to be a tumor suppressor gene [44, 45], and the p53 protein, the so-
called “guardian of the genome,” that controls both checkpoints,G1=S and G2=M ,
has also been shown to be controlled through its inhibitor Mdm2 by ATF4, a
component of the circadian clock [66]. Circadian clocks thus exert their action on
the cell division cycle by controlling gating (by cyclin-dependent kinases, CDKs)
at cell cycles checkpoints, and this may be taken into account by scheduling drug
infusion profiles that aim at preserving healthy cell populations, but they may also
modulate the action of intracellular drug processing enzymes, and this may also be
taken into account by time-scheduling of treatments. What is the most important
effect of clocks in adapting to them a rational scheduling of drug delivery flows: by
fitting them either to gating at checkpoints in the cell division cycle or to enzymatic
intracellular processing (in particular detoxication), is hard to decide, and there are
experimental arguments towards taking both effects into account in models. The first
choice necessarily involves modelling the cell division cycle divided into phases,
while the second one implies modelling of molecular cell and tissue PK-PD for the
drugs at stake.

3.2 Pitfalls Encountered in Cancer Therapeutics

Since tissue proliferation is necessary to the maintenance of a multicellular organ-
ism, drugs that will limit cancer growth by inhibiting mechanisms of cell prolifera-
tion that are common to all fast renewing tissues (which is the case so far of most
anticancer drugs) will also affect healthy tissue, limiting their use, so that finding
and exploiting differences in behavior towards these drugs between healthy and
cancer cell populations is a major challenge of cancer therapeutics. In some rare
cases where one isolated abnormal, disease-specific, molecule has been identified
and may be inhibited by a drug, (two conditions that are fulfilled in particular
in the case of the chimeric protein BCR-Abl, responsible for CML, and that can
be neutralized by specific drugs the first of which was Imatinib [41]), this can
be achieved without being deleterious to healthy cells. This is the grail pursued
by so-called targeted therapies, but very often, even if the target is reached, other
unpredictable and unwanted targets are also reached in healthy cells, and hoped-for
specificity is lost, which may result in withdrawal from the market (as was the case,
for instance, for gemtuzumab-ozogamicin that had been proposed in the treatment of
acute myelogenous leukaemia and was withdrawn by its manufacturer in the USA,
due to unfavorable outcome in clinical trials, although the case is still an object of
debates [88]). So that, even when a drug seems well targeted, unpredicted toxic side
effects may not be excluded, that limit its use.
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Even when a drug seems well targeted without major side effects, another
phenomenon may occur in a cancer cell population, limiting or even leading to
forsake its use, which is the development of resistance to the drug at stake. Cancer
cells, endowed with genomic instability, are often able to overexpress genes that
make them able to develop mechanisms, such as drug efflux by ABC transporters
[55], a phenomenon that may come with or without genetic mutations. In the former
case, it involves selection of an established resistant cell clone at the expense of
shrinking the other–drug-sensitive–cells in the tumor population by a Darwinian
mechanism, and in the latter, it is due to epigenetic modifications (modifications in
genes that control expression of genes coding for proteins) that are reversible, i.e.,
not irreversibly inscribed in the genome. In either case, the right level to describe
this drug-limiting phenomenon is the population of cancer cells, in which biological
(phenotypic, even though the population may be genetically homogeneous [48])
variability can be taken into account.

These two obstacles, unwanted toxicity to healthy cells and the development of
resistance to the treatment in cancer cells, are the two major pitfalls encountered in
cancer therapeutics and they define the major constraints to be fulfilled by anticancer
treatments: to avoid toxicity to healthy cell populations and to avoid emergence of
drug resistance in cancer cell populations.

3.3 An Optimization Problem Under Constraints

From these considerations results a conception of cancer therapeutics, using cyto-
toxic and cytostatic drugs, as an optimization problem, where the objective is to
contain tumor cell populations within limits compatible with the patients’ life and
a good quality of life (rather than eradication of tumor cells, an objective less easy
to reach), under the constraints to preserve healthy cell populations—according to
preservation criteria that have to be appreciated by the physician according to his
patient’s state of health—and to avoid the development of an uncontrollable drug
resistant tumor cell clone. The most difficult elements to define in such a perspective
of modelling proliferation in cell populations towards therapeutic optimization are
clear differences between healthy and cancer cell populations, and between sensitive
and resistant cancer cell populations. As regards contrasts between healthy and
tumor cell populations, it has been proposed to characterize them according to
the behavior of the two cell populations with respect to circadian control, but so
far, only assumptions without biological certainty on mechanisms can be made.
Nevertheless, such assumptions allow to draw proofs of concepts by modelling,
allowing to numerically solve optimization problems much ahead of validation of
these assumed biological characterizations.

In the sequel, I will propose modelling frames that have been used for these
cell populations and for physiological and pharmacological control on their prolif-
eration. Most of the work that has been done in this direction was performed in
conjunction with Francis Lévi’s team and is related to chronotherapeutics, directed
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towards solving the toxicity constraint problem, but I will also ultimately show
more recent results, out of the chronotherapeutic framework (that is not necessarily
relevant in this case), in which the drug resistance constraint is taken into account.

4 Drug Delivery Optimization and Chronotherapeutics

4.1 Molecular Pharmacokinetics-Pharmacodynamics

To represent the action of a drug, delivered in the general circulation (this includes
oral route, through an absorption mechanism that is usually intestinal and hepatic,
but most often it is processed by direct intravenous infusion), on its target, wanted
(therapeutic efficacy) or unwanted (toxic side effects), one must represent its
fate in the organism from its infusion to its effects by PK-PD models. PK-PD
depends on the drug at stake and is usually represented by a system of ODEs for
concentrations of the different compounds. The parameters of these ODEs depend
on the organism under study, and for some of them, e.g., kinetic constants of drug
detoxication enzymes, on circadian rhythms within this organism; in the perspective
of personalized medicine, they should ideally be identified in each patient to propose
actually individualized treatments.

In the frame of chronobiology, the patient population level, that is, the classic
one in clinical PK-PD, is not at the forefront (although, in a pioneering study,
chronotoxicity of anticancer drugs has been tested in different mice strains [7]);
rather, in molecular PK-PD for chronotherapeutics, a single organism with its
different organs and cell populations concerned by the fate of the drug at stake
is the object of study. Whole-body physiologically based PK-PD (WBPBPKPD), a
term coined by Malcolm Rowland [101]) based on ODEs and exemplified (without
circadian clocks) for 5-fluorouracil by Tsukamoto et al. [102] is an aim to be
pursued, with the addition of circadian influences on drug processing mechanisms
when relevant.

4.2 A Simple ODE Model Based on a Simplifying
Assumption

With the aim to simultaneously represent the dynamics of a cancer cell population,
therapeutic target, and of a healthy cell population, unwanted toxicity target of
the same anticancer drug delivery to be subsequently optimized, a simple ODE
model has been designed and partly identified on tumor growth curves in mice from
Francis Lévi’s lab, with and without treatment by oxaliplatin [8, 22]. Focus was
put on chronopharmacodynamics to define differences between healthy and cancer
cell population behavior in response to the treatment: it had been experimentally
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observed at the lab that injection schedules (oxaliplatin was delivered in boli at
fixed times of the 24-hour span) that led to more therapeutic efficacy (as measured
by decrease in tumor growth curves) were at the same time those leading to least
toxicity (as measured by total body weight loss). Hence this simple modelling
assumption: the hour of best therapeutic efficacy should coincide with the hour of
least toxicity, i.e., pharmacodynamic effects should be phase-opposed between the
two cell populations.

This is of course a very simplified assumption, in favor of which no known
biological mechanism exists. It relies only on macroscopic observations and these
observations are made according to a rather poor sampling frequency of injections,
6 in the 24-hour span, i.e., a 4-hour time resolution. Nevertheless, establishing
a clear difference in behavior between the two cell populations with respect to
their responses to the drug infusion, it allowed to put in practice an optimization
algorithm for a continuous drug delivery schedule under toxicity constraint, yielding
at least a proof of concept for this optimization strategy, provided that actual
differences with respect to circadian influence between healthy and cancer cell
populations exist. The system of ODEs runs as follows:

A damped harmonic oscillator stands for healthy cell population dynamics:

dP

dt
D ��P C i.t/

Vdist
˚.t/ (1)

dC

dt
D ��C C �CP (2)

dZ

dt
D f�˛ � f .C; t/gZ � ˇAC � (3)

dA

dt
D Z �Zeq; (4)

where

f .C; t/ D F

�
1C cos.2�

t � 'A
24

/

�
C�A

C
�A
50 C C�A

;

and �;�; �C ; ˛; ˇ; �;Zeq ; F; 'A; �A; C50 are positive constants, identified on tumor
growth curves or from literature data [22], or else estimated. These equations
represent drug diffusion and elimination by first-order pharmacokinetics for con-
centrations in the plasmatic and target cell compartments (P and C ), from infusion
in the general circulation according to the instantaneous drug delivery flow i.t/

(˚ representing a “tap on-tap off” function), and healthy tissue (normal jejunal
mucosa, here) homeostasis by a linear system showing a stable focus at .Zeq; Aeq D
ˇ�1.� �˛Zeq//, perturbed by the drug toxicity function which comes to strengthen
the natural autoregulation coefficient ˛.
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A Gompertz model stands for tumor cell population dynamics:

dP

dt
D ��P C i.t/

Vdist
˚.t/ (5)

dD

dt
D ��D C �DP (6)

dB

dt
D �aB ln.

B

Bmax
/ � g.D; t/B (7)

Note that equations (1) and (5) are exactly the same, since they both represent
the distribution of the drug in the plasma after infusion, and this the only feature
these two systems, representing two cell populations have in common, since
they are physically apart from each other: experimentally the tumor, a Glasgow
osteosarcoma was implemented under the skin, whereas the main toxicity target in
this mouse population was identified to be the jejunal mucosa. In this system of
equations, function g, which represents antitumor drug efficacy, is assumed, as is
function f for toxicity, to present circadian variations; it is given by

g.D; t/ D H

�
1C cos.2�

t � 'B

24
/

�
D�B

D
�B
50 CD�B

;

and �; �; �D; a; Bmax;H; 'B; �B;D50 are positive constants, identified on tumor
growth curves or from literature data [22], or else estimated. The difference of
behaviors between the two populations of cells with respect to drug response is
coded as 'A � 'B D 12 hours.

4.3 Numerical Optimization of Drug Delivery

Using this simple system of ODEs, it was possible to tackle the problem of
drug delivery optimization, i.e., minimization of the tumor cell population under
the constraint of minimizing unwanted toxicity on the healthy cell population by
keeping it under a prescribed level (to be in future clinical applications defined by
the clinician in charge), by a nonlinear conjugate gradient method [8]. Note that
this method consists of numerical optimization, and it does not yield an optimal
solution, but rather a suboptimal solution (the algorithm searches saddle points of
a Lagrangian, and since the problem is not convex, it yields only necessary, not
sufficient conditions of optimality), so that one could not completely exclude the
existence of local minima in the descent algorithm yielding the best infusion profile
[8]. Nevertheless, the existence of a global minimum can be proved, assuming for
the evolution of the two cell populations A.t/ and B.t/ reasonable differentiability
conditions with respect to time [8], which amounts to numerically solve a problem
for which we know a unique solution to exist. Furthermore, the optimization
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Fig. 1 Quasi-optimal solution of the stabilization (tumor containment by repeated drug delivery
courses) problem under absolute constraint of preserving at least 50 % of the equilibrium
population of healthy cells, for a duration of 2 days in a 7-day observation window. The optimal
drug infusion flow i (left, upper panel) shows peaks at the times of minimal unwanted toxicity that
are assumed to be simultaneously those of maximum therapeutic efficacy. The resulting tumor
cell population (right, upper panel) is contained—treatment courses being repeated—, but not
eradicated, while the healthy cell population (lower panel) is preserved over a prescribed level,
here 50 % of the equilibrium population. See Ref. [8] for details

problem may be set in at least two different forms: the eradication problem
consists in minimizing the minimum of tumor cells, whereas the stabilization (tumor
containment) problem consists in minimizing the maximum of tumor cells in a given
observation window. Figure 1 shows the results of such a stabilization procedure.

However, this optimization procedure has two main flaws: it opposes the behav-
iors of the tumor cell population and of the healthy cell population by an assumption
which is far from granted in general (a 12-hour dephasing between their maximal
sensitivity to the drug), and it represents the action of a single drug on a single target
(a death rate), which excludes the representation of combinations of drugs acting
on different biological targets. But in clinical settings, most anticancer treatments
combine different drugs, all of them resulting in blocking or slowing down the cell
division cycle on which relies all tissue proliferation, healthy or tumor, but acting
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on different molecular targets to potentiate their combined effects on cancer cell
populations: cytotoxic drugs hit the DNA or cell proteins that are essential to cell
division, leading cells committed in the division cycle to their inevitable death, while
cytostatic drugs only slow down the division cycle, at least at non-massive doses. It
is therefore necessary to re-examine the ways by which differences between healthy
and tumor cell populations should be represented with respect to their responses
to drug treatments, and to design a model of the cell division cycle amenable to
represent at the cell population level the different molecular targets of the various
anticancer drugs that are in use in the clinic.

5 Cell Cycle Modelling Using PDEs in Cell Populations

5.1 An Age-Structured McKendrick Model with Periodic
Control

The so-called McKendrick, or Von Foerster-McKendrick, model of growing popu-
lation dynamics was introduced in an integral form in 1911 by Sharpe and Lotka
[95] in demography, and then independently and under its PDE form in 1926 by
McKendrick [81], to be rediscovered in 1959 by Von Foerster [104]. It has been
studied in detail, e.g., in [6, 67, 82]. Applied to the cell division cycle represented
as an age-structured population dynamics model organized in a merry-go-round
of subpopulations biologically identified as phases (G1; S;G2 and M ), it was first
proposed in 2003 in [28] under the form

8
ˆ̂̂
<̂

ˆ̂̂
:̂

@ni .t; x/

@t
C @ni .t; x/

@x
C di.t; x/ni .t; x/CKi!iC1.t; x/ni .t; x/ D 0;

niC1.t; 0/ D R1
0
Ki!iC1.t; x/ni .t; x/dx;

n1.t; 0/ D 2
R1
0
KI!1.t; x/nI .t; x/dx;

together with initial conditions .ni .t D 0; ://1	i	I . Death rates in phases are noted
di and transition rates between phases, assumed to be time-periodic,Ki!iC1. Phase
i (1 � i � I ) may be one of the classical four G1; S;G2 and M , but also an
aggregated phase such as S � G2, or even a single proliferating phase G1 � S �
G2�M , or on the contrary a subdivision inside a phase, e.g., pre- or post-restriction
point in G1; the equation describes the evolution of the densities ni .t; x/ of cells
having age x at time t in phase i .

Let me stress here that age x is a ‘physiological but abstract’ variable, that lumps
together complex unidirectional (in time) biological phenomena occurring in the
cell machinery, are based on protein synthesis to achieve cell division. Variable
x has nothing to do with spatial distribution of cells in their population (space is
considered here as irrelevant), since ni .t; x/ is a density of cells that are at universal
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time t at a stage x of their way in phase i (according to an abstract clock measuring
the degree of protein synthesis), starting from 0 to transit to next phase without
fixed time limit, but governed by the transition rate function Ki!iC1. The protein
synthesis-related clock that governs evolution within G1 and G2 phases (preparing,
respectively,S andM phases) might theoretically be followed by the concentrations
of cyclins D and A, respectively, but this is not the way it has been done so far
(see below Sect. 5.2 about the FUCCI analysis method). However, phase S may
be readily followed in flow cytometry by the synthesis of DNA, from 2n to 4n
chromosomes, a method that has been used by Britta Basse and colleagues [9, 10],
giving an immediate interpretation of age x in this case.

Such space-independent representation of the distribution of cells in their pop-
ulation is particularly adapted to taking into account proliferation control by drugs
assumed to be homogeneously distributed in concentration in the cell population.
Taking spatial distribution of drugs into account should lead to more complex
models, structured in both space and a physiological variable like age, but this would
show useful only when a spatial distribution of cells in the tumor is known, and apart
from the case of (very small) avascular tumors organized in spheroids, the topology
of tumors is seldom known. Mutatis mutandis, the idea of representing tumor growth
by an age-structured, rather than spatial, model when the cell division cycle, target
of anticancer drugs by different molecular mechanisms, is the most relevant feature
to be taken into account, is of the same order as in integration theory choosing the
Lebesgue than the Riemann integral: it is just more practical.

The main output of such a linear model is its first eigenvalue �, the so-
called Perron eigenvalue, which, assuming minimal hypotheses on the parameters
of the model, is always positive and simple (i.e., the associated eigenspace is
generated by a single function that may be normalized to be of unit integral,
hence bounded). Moreover, it may be shown, using the Krein-Rutman theorem
(an infinite-dimensional version of the Perron-Frobenius theorem) that in each phase
the solution converges for large times, in an L1 sense, to e�t times a fixed multiple
of the associated normalized eigenvector [86], i.e., the behavior of the solutions
in all phases is governed by an exponential term given by the Perron eigenvalue,
which of course is nothing but ln 2 divided by the doubling time of the population.
This means that knowledge of the death rates and of transition rates, targets of
internal physiological or external pharmacological control, entirely determines the
proliferative behavior of the population through its first eigenvalue �, which is thus
the main predictive output of the model.

In the case where transition rates Ki!iC1 are time-independent, it is easy to see
that the function of age x in phase i

fi W x 7! Ki!iC1.x/e� R x
0 Ki!iC1.�/d�

is the probability density function (p.d.f.) of the duration of this phase, and it
has been proved that for a given family of p.d.f.s with varying variance, the
first eigenvalue � increases with increasing variance of their p.d.f.s (one phase is
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enough) [18]. This result has the simple following interpretation: the more variable
the duration of phases (i.e., the overlapping between phases), the faster the cell
population proliferation. This may be put in relation with the observations of
Sect. 2.4, at least if one admits that a disruption of circadian control on phase
transitions should result in enhanced variability of the duration of phases (and hence
of overlapping between them). However, this mathematical result has been proved
only in the case Ki!iC1 D Ki!iC1.x/, and not in the case when Ki!iC1 is also
time-dependent.

In [25–27, 29], the question of the influence of a periodic control–circadian, i.e.,
physiological, or pharmacological, i.e., external–has been examined. This question
arose from the biological observations mentioned in Sect. 2.4, reported in [42, 43],
since circadian control is by definition time-periodic. This induced to compare
in the McKendrick model the evolution–as measured by its first eigenvalue–of a
periodically controlled (on transition or death rates) proliferating cell population
model with the version of the same model where periodic functions are replaced by
their arithmetic time averages (i.e., no more periodic control). By analogy with the
above mentioned biological observations, the authors of Ref. [27] expected the first
eigenvalue of the former to be lesser than those of the latter. To their surprise, they
proved (Theorem 1 in [27]) that the opposite is true, i.e., periodic control enhances
proliferation, at least if the control is exerted only on death rates, and that if one
uses an arithmetico-geometric form of the time average (difficult, however, to justify
biologically), this result holds true also for transition rates [25, 26], but that without
this use of an arithmetico-geometric mean, it is impossible in general to predict how
a time-periodic control on the transition rates will affect cell population growth.

These results may be interpreted, in the light of the observations mentioned in
Sect. 2.4 in at least two different ways:

Firstly, if one admits that the use of the arithmetico-geometric mean is correct, it
might be that only healthy tissues (tumor-surrounding and immune cells) committed
in fighting the tumor development are sensitive to the messages of the central
circadian clock pacemaker that is disrupted (surgically ablated [43] or perturbed
by chronic jet-lag-like light entrainment [42]) and are thus weakened in their
proliferation by the disruptions of the clock, whereas tumor tissues, relatively
insensitive to circadian commands, proliferate unabashed and with less opposition
from tumor-combating healthy tissues.

Secondly, if one leaves aside the use of the arithmetico-geometrical mean and
if one admits that tumor cell populations are somehow sensitive to circadian
commands, it may mean that circadian messages are not, or little, exerted on death
rates, but only on transition rates. It is biologically known, in fact, that clock-
controlled genes exert their influences, via Cyclin-CDK complexes that control
G1=S and G2=M transitions, as mentioned in Sect. 3.1, on transitions between
phases (let us recall here that CDK is abridged from cyclin-dependent kinase; the
most important CDKs in the cell cycle are CDK1, needs Cyclin B to be activated
and let cells process from phase G2 to phase M , and CDK2, that needs Cyclin E to
be activated and let cells process from phase G1 to phase S ).
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If the second interpretation is true, it only means that it is useless to look for
circadian control on the apoptotic cascade. If the first one is true, it means that taking
into account the influence of circadian inputs on healthy cell populations combating
tumor development should be represented in a competition model, which remains
to be done. Both interpretations may be right, recalling however, as mentioned in
Sect. 3.1, that indirect circadian influences on death rates should exist, via circadian
control on the activity of some intracellular drug processing enzymes (activation
or degradation) and also via circadian control on Mdm2 [66], the main inhibitor of
protein p53.

5.2 Another Optimization Problem Under Toxicity
Constraints

Now, what is the biological reality of the McKendrick model and how can it be
experimentally identified? To answer this question, observation of proliferating
cell populations was needed. This was made possible, thanks to a newly released
analysis technique coming in 2008 from Miyawaki’s lab in Japan, the so-called
FUCCI (fluorescence ubiquitination-based cell cycle indicator) analysis method,
which made possible recording individual living and proliferating cells in a culture
medium [90,91] in two phases of the cell cycle:G1 and S�G2�M , and also thanks
to the European consortium C5Sys (2010–2013), in which such measurements were
performed in cultures of proliferating NIH3T3 cells. The FUCCI technology allows
to follow individual proliferating cells and to measure the durations of theG1 phase,
and of the complete cycle, using prior hybridization with fluorescent proteins of
physiological proteins characteristic of G1 or of S �G2 �M phase (see Fig. 2).

What simplifies the identification of the McKendrick model in this case is that
cells that were followed during their division cycle (most often only one cycle
was observed) were by definition living cells from the beginning to the end of the
recording, i.e., death terms were nil, and that these NIH3T3 cells were moving freely
in a liquid medium, with no communication between them, nor with any external
influence applied. This means that transition rates Ki!iC1 in the cell population
were completely time-independent, representing only the biological variability of
the cell population with respect to age x in each of the two phases. Under these
conditions, recalling that

fi .x/ D Ki!iC1.x/e� R x
0 Ki!iC1.�/d�

is the p.d.f. of the duration of phase i , which may be experimentally evaluated using
FUCCI recordings of individual cells in the population [16, 18], straightforward
computation yields the inversion formula

Ki!iC1.x/ D fi .x/

1 � R x
0
fi .�/d�

;

so that in the case of this NIH3T3 cell population in culture, the 2-phase McK-
endrick model is completely identified.
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Fig. 2 After [17], method to determine the duration of phases G1 and S � G2 � M , on FUCCI
recordings [90,91], on one cell committed in the division cycle. See References [17,18] for details

Assuming then that the periodic controls on the cell division cycle, both circadian
(built-in) and pharmacological (tunable), are exerted on transition rates only, we
had to hypothesize (or, better, to experimentally identify, which unfortunately did
not prove possible with the FUCCI data provided in the C5Sys consortium) clear
differences between healthy and cancer populations, in order to tackle in these new
modelling settings the same optimization problem as in Sect. 4.3: maximizing tumor
cell kill under the constraint of preserving a healthy cell population. Taking the
model identified on NIH3T3 cells as a likely basis for a generic proliferating cell
population, we hypothesized that such differences were due only to a difference
in the effects of circadian messages on gating by cyclin-CDK complexes at phase
transitions: sharp gating in the healthy case, resulting in small overlapping between
phases, and loose gating in the tumor case, resulting in much broader overlapping,
as sketched on Fig. 3.

These theoretical gating functions (hereafter noted  i ) occur in the model as
time-dependent multiplicative modulating factors for the Ki!iC1.x/, These gating
functions thus synchronize cells with respect to cell cycle timing in cell populations
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Fig. 3 Gating functions  i.t/ at 2 phase transitions representing as functions of time the
theoretical activity of the two Cyclin-CDK complexes (for G1=S and G2=M ) under circadian
control, with a dephasing set at 12 h between phase transitions (12 h numerically yielding highest
proliferation rates). When gating functions are nil, there is no transition between phases. Here is
represented the assumed difference between healthy and cancer cell populations: sharp gating (left
panel) for healthy tissues and loose gating (right panel) for tumors. The dashed curve common to
both panels represents the corrected (by treatment) gating function Œ1�g.t/�: 2.t/, where g is the
output of the algorithm, solution to the optimization problem, prescribing to deliver a cancer drug
(by the general circulation to both tissues simultaneously) so as to result locally (at the tumor and
at the healthy tissue site) in the pharmacodynamic function g. See text and Ref. [17,18] for details

that are well synchronized when the gating is sharp (gate, open during a brief
interval of time), and poorly synchronized when it is loose. This modelling choice
relies on the intuitive, not proven, but likely assumption (private conversation
with F. Lévi) that healthy cell populations are more synchronized than cancer cell
populations with respect to cell cycle timing, and that such synchronization is due
to the central circadian clock, i.e., the circadian pacemaker makes healthy cells pass
in a “disciplined” and orderly way from one phase to the next, while cancer cells,
less “obedient” to messages of the clock, pass in a disorderly way.

In this model setting, the transition functions without control, representing only
the biological variability with respect to phase durations in age x within the cell
population, are chosen as the functions �i!iC1.x/ identified on the NIH3T3 cell
population; the circadian influence on gating is represented by the fixed functions
 i.t/ sketched on Fig. 3; and if g.t/ (0 � g.t/ � 1) is the drug infusion flow to be
optimized, blocking cell cycle transitions, the complete transition rates are defined
in the model as Ki!iC1.x; t/ D Œ1 � g.t/�: i .t/:�i!iC1.x/ (1 � i � 2), see on
Fig. 3 the illustration of the corrected gating function Œ1�g.t/�: i .t/ (dashed curve).
As in Sect. 4.3, the optimization algorithm searches for the function g (in fact, a
bang-bang one), except that in this case the observed outputs are not cell population
numbers, but first eigenvalues representing proliferation rates (see Fig. 4): the first
eigenvalue of the cancer cell population is minimized while maintaining the first
eigenvalue of the healthy tissue over a prescribed fixed threshold (to be defined in
future clinical applications by the clinician in charge), a situation comparable with
the optimization problem of Sect. 4.3, where the healthy cell population number
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Fig. 4 Results of the optimization method, from [17]. Contrary to the model presented in Sect. 4.3,
the outputs are not cell population numbers, but proliferation rates. One can see that after a short
transient time interval, the proliferation rate of the healthy cell population, initially disadvantaged,
overcomes the tumor proliferation rate. See text and Ref. [17, 18] for details

had to be maintained over a prescribed fixed percentage of its equilibrium level. In a
different model setting, this is another proof of concept for the optimization method.

An illustration of this method is presented on Fig. 3. It represents (dashed
curve) the optimized delivery of a drug that is active on transition G2=M only,
e.g., 5-Fluorouracil. Note that the PK of such a drug, from infusion in the general
circulation until its presence on the target tissue site (tumor or healthy tissue), is not
represented here. It should be added to the model equations to allow for accurate
optimization of an actual intravenous infusion flow. Note also that whereas the
FUCCI recordings should give us access to the M=G1 transition, we rather assume
that the duration of phase M is fixed, all cells in M passing into G1 in fixed
time (about 1 h), and that the variability in age duration of the aggregated phase
S � G2 � M is in fact that of S � G2, so that the p.d.f. f2.x/ gives us access by
the inversion formula, under this assumption, to a K2!1.x/ transition function that
is thus in fact related to the G2=M transition.

5.3 Possible Extensions of or Alternatives
to the McKendrick Model

One possible nonlinear extension consists in introducing exchanges (in both
directions) between the proliferating population, divided or not in phases, and a
quiescent population seen as a storage tank of cells that may be recruited in the
proliferation cycle when needed, and to which an overflow of proliferating cells may
be discharged when they lack energy resources, as introduced by Mats Gyllenberg
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and Glenn Webb [39, 58, 59] to give a mechanistic explanation to the Gompertz
growth curves often encountered in population dynamics, and in a series of articles
following [12] ([11, 20, 21, 40]). Note that in a model with several proliferative
phases, the exchanges should be located in G1 before the restriction point and that
the input of cytostatic drugs could be represented as slowing down recruitment
into proliferation or enhancing way out to quiescence. Such models give rise to
biologically realistic situations representing space and nutrient limitations, and a
clear difference, relying on the recruitment function from the quiescence phase,
may be set between healthy and cancer cell populations [11,12]. But this difference
has no relation with circadian clocks, which could be introduced, as in Sect. 5.1 by
their action on phase transitions; this remains a open modelling problem. Note that
if the model is no longer linear, one cannot speak of eigenvalues anymore; however,
linearizations around particular points of the population numbers may be studied
[11, 12].

Another simple way to represent exchanges with a quiescent population in a still
linear model is to exclude feedback from quiescence to proliferation, considering
quiescence only as a sideway expansion cell tank, as proposed in [46]:
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In this age-structured McKendrick model designed to theoretically study the
action of a cytostatic drug enhancing the way out of proliferating cells with density
p.t; x/ to quiescent cells with densityQ.t/, the drug target here is f , rate of escape
at mitosis towards the siding phase Q, f to be enhanced by a cytostatic drug. The
model [46] (see also [15]) was identified on the human non small cell lung cancer
(NSCLC) cell line PC-9 submitted to the cytostatic drug erlotinib. Here again, a
division of the proliferating cell population into phases could be added, together
with circadian control at phase transitions (another open modelling problem).

Another model [24], also relying on the McKendrick model, but more complex
than the previously described ones, has been proposed to take into account both
PK-PD models for the two main drugs in use in the clinic of colorectal cancer:
5-Fluorouracil (with added folinic acid, i.e., Leucovorin to potentialize it) and
Oxaliplatin and the possibility of repair in cell populations that have been hit
by cytotoxic drugs. Involving 3 phases (G1, S � G2 and M ) and additional
subpopulations R1 and R2, also structured in age and evolving in parallel with
the first two, consisting of these cells that are under repair from cytotoxic insult
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Fig. 5 From [24], illustration of a new model of the cell cycle with repair: cell cycle phases
G1.i D 1/, S � G2.i D 2/ and M.i D 3/ with age-dependent variables, plus two additional
subpopulations, R1 and R2 described by age-independent variables, to describe the fate of those
cells that have been hit by drug-induced DNA damage and are waiting to be repaired—or sent to
apoptosis. See Ref. [24] for details

by the two drugs illustrated on Fig. 5, it has also been used to solve once more
the same therapeutic optimization problem (minimizing cancer cell population
proliferation while maintaining the proliferation rate of the healthy cell population
over a prescribed threshold).

In this model, circadian clocks also control phase transitions as in Sect. 5.2, but
cytotoxic drugs are assumed to continuously exert their effects by sending cells
to these parallel repair phases (a sort of “delayed death”: at any rate, these cells
go out of the proliferating phases, but may come back to them at any moment),
and not by blocking phase transitions. Then, since it is a linear model, the same
optimization principles used in Sect. 5.1 are used, minimizing the proliferation rate
of the cancer cell population while maintaining that of the healthy cell population
over a prescribed threshold, except that the optimized input functions are the
flows of the two drugs in the general circulation, since the model includes a PK-
PD representation of their fate in the organism from infusion until arrival on the
proliferating cell population sites. The results, although good (see Ref. [24]), are
less spectacular than in the previous model case, which again induces to speculate
that the strongest drug effects on proliferation should occur on phase transitions,
rather than on death rates, as has been assumed in this last model. A is shown
a theoretically optimal combination of the drugs 5Fluorouracil, Leucovorin and
Oxaliplatin, another proof of concept of the method is shown in Fig. 6. Improving
the PK-PD model and the representations of the modes of action of the drugs
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Fig. 6 From [24], illustration of an optimal infusion strategy proposing drug infusion flows on a
24-hour basis by a combination of Leucovorin (dash-dotted line), 5-fluorouracil (dotted line) and
Oxaliplatin (solid line), by infusions repeated every day in order to minimize proliferation of the
cancer cell population while maintaining the growth rate of the healthy cell population above a
prescribed toxicity threshold. See Ref. [24] for details

(possibly adding the representation of a cytostatic drug like Cetuximab) remains
to be done to put it in realistic clinical settings.

Other models of the cell cycle in proliferating cell populations with control by
circadian clocks have been published, firstly to establish likely mechanisms for such
control, and then to propose optimal chronotherapeutic strategies with cytotoxic
drugs, all in collaboration with Francis Lévi. In particular, Samuel Bernard and
Hanspeter Herzel [13] used deterministic models with delays, while Attila Altinok
and Albert Goldbeter [1–4] used a clock-controlled cellular automaton model of
the cell cycle to justify the chronotherapeutic strategies used by Francis Lévi in the
clinic. Although these models do not propose optimization algorithms for the drug
delivery time schedules, they present interesting ideas from different points of view
to guide the determination of such optimized regimens.

6 Future prospects

6.1 Need for More knowledge on Cell Cycle Control
Mechanisms

Now, to what extent are these theoretical models applicable in the clinic of cancers?
Firstly, they are all based on the prediction of best drug delivery time schedules,
and demand adapted technological appliances to put them in practice. While such
devices are used in clinical chronotherapy, they should be adapted to preclinical
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trials on animals, which is not a simple problem–drug infusion in rodents, for
instance, is usually performed only in boli, by lack of adapted devices–, not to
mention the cost of programmable pumps, mundane limitations that so far have
not given the possibility to experimentally test theoretically optimal drug delivery
schedules.

Furthermore, much remains to be elicited in different fields of research related
to chronotherapy: identification of PK-PD models and involvement of circadian
control in them (a different model for each drug and each disease, to be further
personalized according to patients’ specificities, in particular gender [49]); identifi-
cation of actual mechanisms of synchronization between cells with respect to cell
cycle timing, both in healthy and in cancer cell populations (is it true that cancer
cell populations are poorly synchronized? what is the role of circadian clocks in
cell synchronization? does there exist synchronization mechanisms that rely on
intercellular communication, e.g., using gap junctions?), identification of gating
mechanisms at cell cycle phase transitions by cyclin-CDK complexes (shape of
the gating function, with and without control by circadian clocks? this might be
performed by FUCCI analysis, if one can find a fluorescent protein to be hybridized
with activated CDKs), by p53 and other cell cycle fate determinant proteins, etc.

However, it is clear that before therapeutics with drugs should be called, with
the complexity of their mechanisms of action needed to be represented, when
the disease has reached a life-threatening level, preventive medicine must be
more broadcast and popularized among healthy people (or supposed to be so),
since cancers usually take a long time to develop in living organisms and can
be more easily combated when taken at an early stage of their development. In
this respect, disruptions of the circadian clock have been shown to enhance the
development of tumors, experimentally in laboratory rodents [42, 43], but also by
large epidemiological studies in humans [33,62,64,92]. Conversely, re-establishing
regular periodicity in daily rhythms by adapted (restricted) food intake regimens
seems to go in the opposite and favorable direction in rodents [42, 105].

Both from the aforementioned common sense and well established rules for
a better quality of life (not always satisfactorily explained with respect to their
mechanisms, but that nevertheless should be more widely broadcast), and from the
aforementioned pending questions on molecular mechanisms involving circadian
clocks, cell cycle determinants and anticancer drugs, one may see that the field of
research in modelling for cancer chronotherapeutics is vast and has only begun to
be explored.

6.2 Cancer Chronotherapeutics and the Immune System

In particular, modelling the immune response in cancer is still in its infancy.
Pioneering models of the immune response, using immunotherapy associated with
chemotherapy, have been published in recent years, in particular by Lisette de Pillis
and Amy Radunskaya [34–36], and also by Peter Kim and colleagues [68, 80] and
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by Marcello Delitala and Tommaso Lorenzi [37], among others. However, none of
them relates to an influence of circadian clocks, although it might exist, since it has
been shown by Rune Smaaland and colleagues, using observations on samples from
their own bone marrows, that DNA synthesis in bone marrow follows a circadian
rhythm [96]. Furthermore, circadian rhythms of circulating lymphocytes have been
evidenced in Man [75, 97].

Conversely, an influence of the immune response on the central circadian
pacemaker is likely, since it has been observed that patients with high levels of
circulating cytokines–which are emitted by immune cells surrounding the tumor,
mainly T-lymphocytes–also show high degrees of fatigue and other even clearer
signs of a disrupted central clock (ablated rhythms of blood cortisol and of rest-
activity alternation) [87]. If such detrimental influence of the immune response on
the clock is established, taking into account the tumor growth-enhancing effect of
clock disruption mentioned in Sect. 2.4, this may mean that tumors use part of the
immune response to their own advantage, a phenomenon to be potentially taken into
account in immunotherapy models involving circadian biology.

If both the immune system and circadian clocks are to be taken into account
in modelling for cancer chemotherapeutics, it should also be mentioned that some
anticancer drugs exert a detrimental influence on circadian clocks [74, 100], and
as regards the immune system, some of them may be detrimental to the immune
system, and some may be beneficial to it, even so that their anti-tumor efficacy may
be due to stimulation of the immune response [106–108].

6.3 Taking Drug Resistance Into Account

Is the other main pitfall of anticancer therapeutics, emergence of drug resistance,
related to circadian clocks? ABC transporter activity [55] is one of the main
mechanisms on which drug resistance relies, and it has been shown that some ABC
transporters (P-gp and Abcc2) show circadian rhythms in their gene expression and
protein concentration [5, 85]. Other mechanisms (e.g., enhanced activity of drug
degradation enzymes), show circadian rhythmicity, may also be responsible for the
emergence of drug resistance in individual cells.

However, it does not seem that overcoming drug-induced drug resistance, which
is a phenomenon occurring on a time scale that is not related with the 24-
hour span—much longer in fact, due to mutations or epigenetic modifications,
as mentioned in Sect. 3.2—may benefit from chronotherapeutics. Mathematical
models aiming at representing drug resistance and optimization methods of drug
delivery have been proposed for some time already, distinguishing between a
sensitive cell subpopulation and a resistant one [30–32, 51, 69, 99].

Quite recently, continuous models structured according to a phenotypic trait
and based on integrodifferential equations, are common in ecology and are based
on Darwinian selection principles, applied to the problem of emergence—and its
overcoming by combinations of cytotoxic and cytostatic drugs—of drug resistant
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subpopulations in cancer cell populations, have been proposed [57, 71, 77]. They
offer the advantage of allowing the possibility to represent slow evolution, according
to the expression of a phenotype rather than by jumps due to pointwise mutations,
of a cancer cell population, a feature which makes them amenable to represent
epigenetic modifications on which drug-induced drug resistance is likely to rely
when it is reversible. These models do not take into account so far the cell division
cycle, since the drug targets are simply a proliferation rate and a death rate, without
molecular support, but more complex models taking the cell cycle into account
might be relevant to describe different molecular drug effects on proliferation and
death.

How should one balance and put in perspective the two pitfalls of unwanted
toxicity and of emergence of drug resistance for therapeutic applications? Most
likely, the clinic will put a hierarchy between them, and this will depend on each
cancer and each drug delivery problem. However, it is possible to take both problems
simultaneously into account, as shown in [77]. In any case, it is not obvious how
chronotherapeutics may be relevant in this perspective.

Conclusion

I have presented some mathematical models of cell population dynamics designed
in the last ten years, aiming at optimizing cancer chronotherapeutics. As long as
the constraint chosen for the optimization problem is the limitation of unwanted
toxic side effects, proofs of concepts have been achieved, showing the interest of
chronotherapeutics, even though many unknowns still remain to identify before such
theoretical models may be applicable in the clinic, reinforcing those that are already
in use. As regards the other main pitfall of cancer therapeutics, drug resistance,
different cell population dynamics models, transposed from mathematical ecology
and set at a different time scale and based on Darwinian selection principles, have
begun to emerge, and so far chronotherapeutics has not proved relevant for them.
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Tumor Microenvironment and Anticancer
Therapies: An Optimal Control Approach

Urszula Ledzewicz and Heinz Schättler

Abstract In this paper, results about the structure of cancer treatment protocols
that can be inferred from an analysis of mathematical models with the methods
and tools of optimal control are reviewed. For homogeneous tumor populations of
chemotherapeutically sensitive cells, optimal controls are bang-bang corresponding
to the medical paradigm of maximum tolerated doses (MTD). But as more aspects
of the tumor microenvironment are taken into account, such as heterogeneity of the
tumor cell population, tumor angiogenesis and tumor-immune system interactions,
singular controls which administer agents at specific time-varying reduced dose
rates become optimal and give an indication of what might be the biologically
optimal dose (BOD).

Keywords Optimal control • Cancer chemotherapy • Tumor microenvironment •
Antiangiogenic treatments • Tumor-immune system interactions

1 Introduction

In any cancer treatment, the question arises how therapeutic agents (various drugs,
radiation dosages, antiangiogenic biological agents, cancer vaccines, : : :) should be
given in order to be at the same time reasonably safe and effective. Mathematically,
the scheduling of therapeutic agents over time in order to minimize some objective
related to tumor burden (e.g., tumor volume) and quality of life of the patient
(e.g., some measure of the toxic side effects of treatment) while the underlying
system follows some dynamics (in this case determined by the processes of tumor
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development and treatment interactions) is an optimal control problem. In this
paper, we review some results about the structure of treatment protocols that can be
inferred from mathematical models with the methods and tools of optimal control.

Our emphasis will be on models for cancer chemotherapy. For most tumors,
it is a standard medical practice to give chemotherapy at maximum tolerated doses
(MTD) with rest periods in between. The underlying rationale simply is that when
the disease has progressed into an advanced stage, it is imperative to kill as many
of the cancer cells as possible and this has to be done right now. Since drugs
are rarely selective in their activation mechanisms, chemotherapy also severely
damages other proliferating cells that are essential for survival like bone marrow.
This necessitates the introduction of rest periods for the patient to recover from the
strong toxic attack. We are interested in questions of the following type: Under what
kind of conditions is an MTD approach the optimal treatment strategy? When should
different protocols be favored? If resistance to chemotherapeutic agents is present,
is a metronomic scheduling of chemotherapeutic agents (essentially, a continuous-
type treatment at low doses) which avoids the high toxicities associated with MTD
doses equally effective? Naturally, answers to such questions depend on the type
of tumor. Simple dividing characteristics that are important in the scheduling of
treatment are given by the tumor doubling time, the growth fractions of tumor cells,
and much more.

A tumor consists not just of cancerous cells but of a full array of other
structures that in various ways aid and abet the tumor, but also fight it. The most
important structure that sustains the tumor is its vasculature which provides the
tumor with the oxygen and nutrients needed for further growth; an example of an
endogenous structure that fights the tumor is the body’s immune system. The tumor
microenvironment consists of these components and much more (e.g., macrophages
and fibroblast cells that form the intracellular matrix), all still residing in healthy
tissue. In modern oncology thus the point of view of the tumor as a system of
interacting components has become the more common one and modern treatments
are multi-targeted therapies that not only aim to kill cancer cells but often include
antiangiogenic therapy, immunotherapy, and other options. Yet, the complex interac-
tions between these and other treatment modalities still are not fully understood and
are the topic of active current medical research (e.g., see [1]).

In clinical trials, the scheduling of therapeutic agents is pursued in medically
guided, exhaustive trial-and-error approaches of simple strategies. Hardly ever
are nonstandard protocols pursued in this research since complex protocols are
relatively difficult, if not impossible to test in a laboratory setting, or at a minimum
at great cost. The analysis of mathematical models can be of benefit here by
giving some theoretical suggestions for treatment protocols through an alternative
noninvasive tool or by establishing benchmarks for medically realizable protocols.
As of today, the question how chemotherapeutic agents should best be administered
if a more wholistic approach to treatment is taken that takes the structures of the
tumor microenvironment into account still has not been answered (e.g., see [21]).
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This paper is organized as follows: In Sect. 2 we give a brief introduction to the
main tools and results from optimal control theory that are needed in the analysis of
mathematical models for cancer treatment. Especially, the distinction between bang-
bang controls (which correspond to maximum dose treatment periods interlaced
with rest periods) and singular controls (which correspond to time-varying admin-
istration schedules at lower dose rates) will be emphasized. Bang-bang controls
directly relate to the MTD strategies of medical practice while singular controls are
of special interest in the search for the biologically optimal dose (BOD). This is an
effective dose which has minimal or at least low side effects [26]. In Sect. 3, we
start with a discussion of optimal treatment protocols for compartmental models
of cancer chemotherapy. It is easily seen that optimal controls indeed support the
traditional MTD paradigm if it is assumed that the tumor consists of a homogeneous
population of chemotherapeutically sensitive cells. However, as compartments of
varying sensitivities or even full resistance are introduced into the model, this no
longer is valid and singular controls along with the associated lower dose rates
become candidates for optimality. Optimal administration of antiangiogenic agents
also is done by means of singular controls and will be discussed in Sect. 4, both
as stand-alone approach and in combination therapy with chemotherapy. Once
tumor-immune system interactions are taken into account, optimal administration
of cytotoxic agents no longer follows an MTD approach, but a so-called “chemo-
switch” regimen: after an initial interval of maximum dose treatment, in optimal
solutions dose rates are reduced and given by singular controls. These results are
given in Sect. 5.

Overall, an optimal control analysis of mathematical models for cancer
chemotherapy as it is presented here leads to results that provide information
about the qualitative structure of treatment protocols that can be of use in the design
of practical treatment protocols.

2 Optimal Control–A Brief Introduction

We briefly review the main results of optimal control theory. However, rather than
considering the general case, we restrict the mathematical structure to a model of
the form that most examples in biomedical applications have: a multi-input control-
affine system. This simply reflects the fact that “controls” represent structures
imposed on an existing dynamical system from the outside to influence its behavior
and that these are naturally set up in a way so that these effects are most easily
analyzed. This generally leads to linear terms in the controls. For such systems,
the so-called bang-bang and singular controls become the prime candidates for
optimality. We describe the principal tools for analyzing singular controls which
include Lie brackets for computing derivatives of the switching function and the
Legendre-Clebsch condition as the main necessary condition for optimality.
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2.1 Control Affine Systems as Mathematical Models
for Biomedical Models

We say a control system is control-affine with drift vector field f and control vector
fields gi , i D 1; : : : ; m, if the dynamics takes the following form:

Px D f .x/C
mX

iD1
gi .x/ui ; x 2 M; u 2 U: (1)

The vector x is the state of the system and takes values in an open and connected
subsetM of Rn; the vector u represents the controls and takes values in a control set
U 	 R

m. In the biomedical models we shall be considering, the controls represent
dose rates or concentrations of some therapeutic agents and all take nonnegative
values that lie in prescribed ranges. We therefore take the control set U as an
m-dimensional interval of the form

U D Œ0; umax
1 � � � � � � Œ0; umax

m �: (2)

The class U of admissible controls is given by Lebesgue-measurable functions u
defined on some interval I with values in the control set (almost everywhere),
u W I ! U , t 7! u.t/. The differential equation (1) represents the dynamics which
connects the controls with the state of the system. Given an admissible control
u 2 U , it follows from classical results about solutions to ordinary differential
equations that for any initial condition x0, there exists a unique solution x to (1) with
initial condition x.0/ D x0. We call this solution x the trajectory corresponding to
the control u and call the pair .x; u/ an admissible controlled trajectory.

An optimal control problem then consists in finding, among all admissible con-
trolled trajectories, one that minimizes an objective, possibly subject to additional
constraints. Here we only consider constraints of a fixed terminal time T or on
the final state x.T / of the system. The former correspond to therapy over an a
priori specified horizon (Sect. 3) and the latter arise if therapy with an a priori
given amount of therapeutic agents is considered (Sect. 4). We assume that such
constraints have a regular geometric structure and are given in the form N D fx 2
M W  .x/ D 0g with  W M ! R

n�k a continuously differentiable mapping
and the matrix D of the partial derivatives of  with respect to x of full rank
everywhere on N . We choose the functional form of the objective to be consistent
with the control-affine structure of the dynamics, i.e., we take the functional to be
minimized in the form

J .u/ D
Z T

0

 
L.x.s//C

mX

iD1
�iui .s/

!
ds C '.x.T // (3)
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with L W M ! R, x 7! L.x/ the Lagrangian and ' W N ! R, x 7! '.x/ a penalty
term on the final state. Both L and ' are continuously differentiable functions.
The terminal time T can be fixed or free. We choose the functional dependence
of the objective on the controls to be linear since the integrals

R T
0

ui .t/dt have an
immediate interpretation in terms of the total dose of agents given and thus are
biomedically meaningful. It would be mathematically simpler to choose quadratic
terms for the controls in the objective, but such terms are imposed arbitrarily.
We thus consider the following optimal control problem:

[OC] minimize the objective J .u/ over all admissible controlled trajectories
.x; u/ subject to the terminal constraint x.T / 2 N .

2.2 Necessary Conditions for Optimality: The Pontryagin
Maximum Principle

The fundamental necessary conditions for a controlled trajectory .x; u/ to be optimal
are given by the Pontryagin maximum principle [59]. (We refer the reader to [3,
4, 61] for some modern treatments of the subject.) We consistently write tangent
vectors as column vectors and multipliers as row vectors denoting the space of row
vectors by .Rn/�. The Hamiltonian functionH of the optimal control problem [OC]
is defined as

H D �0

 
L.x/C

mX

iD1
�iui

!
C
*
�; f .x/C

mX

iD1
gi .x/ui

+
(4)

Theorem 2.1 (Pontryagin Maximum Principle [59]). Let .x�; u�/ be an optimal
controlled trajectory for the problem [OC] defined over the interval Œ0; T �. Then
there exist a constant �0 � 0, a multiplier � 2 .Rn�k/�; and a co-vector � W
Œ0; T � ! .Rn/�, the so-called adjoint variable, such that the following conditions
are satisfied:

1. Nontriviality of the multipliers: .�0; �.t// ¤ 0 for all t 2 Œ0; T �.
2. Adjoint equation: the adjoint variable � is a solution to the time-varying linear

differential equation

P�.t/ D ��0rL.x�.t// � �.t/

 
Df.x�.t/C

mX

iD1
u�
i .t/gi .x�.t//

!
(5)

with terminal condition

�.T / D �0
@'

@x
.x�.T //C �

@ 

@x
.x�.T // : (6)
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3. Minimum condition: almost everywhere in Œ0; T � we have that

H.�0; �.t/; x�.t/; u�.t// D min
v2U H.�0; �.t/; x�.t/; v/ (7)

and the Hamiltonian is constant along � and .x�; u�/. If the terminal time T is
free, the value of this constant is 0.

Controlled trajectories .x; u/ for which there exist multipliers �0 and � such that
the conditions of the maximum principle are satisfied are called extremals and the
triples .x; u; .�0; �// including the multipliers are called extremal lifts. The constant
multiplier �0 can be zero and in this case the extremal is called abnormal while
it is called normal if �0 > 0. In this case, since the conditions are linear in the
multipliers, it is always possible to normalize �0 D 1.

In the original formulation of the theorem by Pontryagin et al. [59], the minimum
condition (7) was formulated as a maximum condition and gave the result its name.
In fact, depending on the choice of the signs associated with the multipliers �0
and �, the maximum principle can be stated in four equivalent versions. Since the
problems we will be considering are all cast as minimization problems, we prefer
this formulation, but retain the classical name. The minimum condition contains the
essence of the result and states that in order to solve the minimization problem on
the function space of admissible controls, the control u� needs to be chosen so that
for some extremal lift it minimizes the Hamiltonian H pointwise over the control
set U , i.e., for every t 2 Œ0; T � the control u�.t/ is a minimizer of the function
v 7! H.�0; �.t/; x�.t/; v/ over the control set U .

2.3 Bang-Bang and Singular Controls

In our case, since U is anm-dimensional interval, the minimum condition splits into
m scalar minimization problems that are easily solved. Defining the functions

˚i.t/ D �0�i C h�.t/; gi .x�.t//i ; (8)

it follows that the optimal controls satisfy

u�
i .t/ D



0 if ˚i.t/ > 0;

umax
i if ˚i.t/ < 0:

(9)

A priori, the control is not determined by the minimum condition at times when
˚.�/ D 0. In such a case, all controls trivially satisfy the minimum condition and,
in principle, are candidates for optimality. Naturally, if the derivative P̊ .�/ exists
and does not vanish, then the control switches between ui D 0 and ui D umax

i with
the order depending on the sign of P̊ .�/. Such a time � is called a bang-bang switch.
On the other hand, if ˚.t/ were to vanish identically on an open interval I , then,
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although the minimization property by itself gives no information about the control,
in this case also all the derivatives of ˚.t/ must vanish and this, except for some
degenerate situations, generally does determine the control. Controls of this kind
are called singular while the constant controls ui D 0 and ui D umax

i are called
bang controls and controls that only switch between 0 and the maximum control
values are bang-bang controls. Strictly speaking, to be singular is not a property of
the control, but of the extremal lift since it also depends on the multiplier � defining
the function ˚i . This function is called the switching function for the control ui .

The terminology “singular” has its historical origin in the fact that the switching
functions can be expressed as

˚i.t/ D @H

@ui
.�0; �.t/; x�.t/; u�.t// (10)

and thus the condition ˚.t/ D 0 formally is the first-order necessary condition
for the Hamiltonian to have a minimum in the interior of the control set. For
singular controls, the Hessian matrix @2H

@u2
corresponding to second order necessary

conditions for optimality is singular. In fact, for a control-affine system this matrix
is identically zero.

If the control corresponds to the application of some therapeutic agent, then
bang-bang controls represent treatment strategies that switch between maximum
dose therapy sessions and rest periods, the typical MTD-type applications on
chemotherapy. Singular controls on the other hand represent time-varying admin-
istrations of the agent at intermediate and often significantly lower doses. Although
administration of such time-varying schedules may be difficult in practice, there is
growing interest in such structures in the medical community because of mounting
evidence that “more is not necessarily better” [18,55] and that a biologically optimal
dose (BOD) with the best overall response should be sought. In this direction,
the concept of metronomic chemotherapy as well as other approaches like chemo-
switch protocols [57] or adaptive therapy [12] have been introduced. We shall say
more about these medical connections later on. But the question whether optimal
controls are bang-bang or singular has an immediate interpretation and relevance
for the structure of optimal treatment protocols. While the terminology is somewhat
misleading, these singular structures indeed are the more natural candidates for
optimality.

2.4 The Legendre-Clebsch Condition for Optimality
of Singular Controls

In the solution of any optimal control problem, it becomes necessary to deter-
mine singular controls and then synthesize optimal controls from the primary
candidates—bang and singular controls. In order to do so, we need to analyze
the derivatives of the switching functions. In these formulas, the notion of the Lie
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bracket of vector fields arises naturally: given two differentiable vector fields f and
g defined on some open set M 	 R

n, f; g W M ! R
n, their Lie bracket Œf; g� is

another vector field defined on G by

Œf; g�.x/ D Dg.x/f .x/ �Df.x/g.x/: (11)

Its importance in optimal control is because of the following simple formula that is
verified by a direct computation:

Proposition 2.1. Let x.�/ be a solution of the dynamics (1) for the controls ui and
let � be a solution of the corresponding adjoint equation (5). For a continuously
differentiable vector field h, the derivative of the function

�.t/ D h�.t/; h.x.t//i D �.t/h.x.t//

is given by

P�.t/ D
*
�.t/;

"
f C

mX

iD1
u�
i .t/gi ; h

#
.x.t//

+
� �0rL.x.t//h.x.t//:

Singular controls are computed by differentiating the switching functions until
the controls explicitly appear and then solving the resulting equations for the
controls. We demonstrate the procedure for the simpler case of a single-input control
system of the form Px D f .x/ C g.x/u. Since Œg; g� � 0, the derivative of the
switching function ˚ is given by

P̊ .t/ D h�.t/; Œf; g�.x.t//i � �0rL.x.t//g.x.t//; (12)

does not depend on the control, and thus is once more differentiable. In the second
derivative R̊ .t/, the control appears linearly and, expressing the switching function
as ˚ D @H

@u , the term multiplying the control is given by @
@u

d2

dt2
@H
@u .�0; �.t/; x�.t/;

u�.t//. A singular control (more precisely, the singular lift) is said to be of order 1
over an open interval I if this expression does not vanish on I and in this case,
we can solve the equation R̊ .t/ D 0 for the control as a function of the state
and multiplier. Essentially, the sign of this expression distinguishes between locally
minimizing and maximizing controls. This is the interpretation of the Legendre-
Clebsch condition, the fundamental necessary condition for optimality of singular
controls which states that for minimizing controls we must have that

@

@u

d2

dt2
@H

@u
.�0; �.t/; x�.t/; u�.t// � 0 for all t 2 I: (13)

If this expression vanishes over an interval, then it becomes necessary to differen-
tiate the switching function further. This leads to the concept of singular controls
of higher order and the generalized Legendre-Clebsch condition. In some special,
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but common circumstances, it follows from Lie algebraic identities that the control
can only appear for the first time in an even order derivative. Then the singular
control is said to be of intrinsic order k if this is the 2kth derivative and one then
has the following necessary condition for optimality for singular controls of finite
order:

Theorem 2.2 (Generalized Legendre-Clebsch Condition). Suppose the con-
trolled trajectory .x�; u�/ defined over the interval Œ0; T � is optimal for the optimal
control problem [OC] and the control u� is singular of intrinsic order k over an
open interval I 	 Œ0; T �. Then there exists an extremal lift � D ..x�; u�/; �/ with
the property that

.�1/k @
@u

d2k

dt2k
@H

@u
.�0; �.t/; x�.t/; u�.t// � 0 for all t 2 I: (14)

2.5 Sufficient Conditions for Optimality

The optimality conditions discussed so far are all necessary and do not guarantee
that a controlled trajectory that satisfies them is optimal. The theory of sufficient
conditions for optimality is more intricate. Essentially, to guarantee local optimality
properties, it becomes necessary to embed a reference extremal (i.e., controlled
trajectory and associated multiplier) into a family of extremals in such a way that the
controlled trajectories cover a neighborhood of the reference controlled trajectory.
If this can be done globally in the form of what is called a regular synthesis, then the
associated controls all are globally optimal. These concepts are related to classical
ideas from the calculus of variations about fields of extremals or, in a more modern
language, to dynamic programming and solutions of the Hamilton-Jacobi-Bellman
equations. However, the details are too involved to even be outlined here and we
refer the interested reader to the literature on the subject, such as, for example, our
text [61].

3 Compartmental Models for Cancer Chemotherapy

In this section we formulate a general bilinear version of the optimal control problem
[OC] that serves as the mathematical framework for compartmental models for
cancer chemotherapy. Applications of optimal control to mathematical models for
cancer chemotherapy have a long history (e.g., [6, 43, 64, 66]), but generally early
models were noncompartmental. The models we consider here were formulated and
first analyzed in the work of Swierniak and coworkers (e.g., [24, 67, 71]) and then
reconsidered in our work [33, 34, 69]. Compartments may be comprised of various
phases of the cell cycle (Sect. 3.2) or may correspond to different subpopulations
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of cancer cells of varying chemotherapeutic sensitivities (Sect. 3.3). While optimal
controls are bang-bang with upfront dosing for homogeneous cell populations of
chemotherapeutically sensitive cells and thus agree with the medical MTD paradigm
of scheduling chemotherapy, as resistance effects come into play, this is no longer
the case and singular controls with associated lower dose rates become candidates
for optimality.

3.1 A General Bilinear Model

We consider a mathematical model with a finite number n of compartments and
use the first orthant M D P in R

n as state space; N D .N1; : : : ; Nn/
T denotes

the state with Ni the average number of cancer cells in the ith compartment,
i D 1; : : : ; n. The control is a vector u D .u1; : : : ; um/T with ui denoting
various drug concentrations in the blood stream. For simplicity, in our language
we identify the drug dose rates with their concentrations. Indeed, standard linear
pharmacokinetic equations are easily incorporated within the general structure
below at the expense of increasing the dimension of the state space, but they do
not alter the results we obtain [36] and thus we use this simplified approach here.
As before, the control set U is the m-dimensional interval U D Œ0; umax

1 � � � � � �
Œ0; umax

m � and admissible controls are Lebesgue-measurable functions u that take
values in the control set. The dynamics consists of balance equations that describe
the inflows and outflows between the various compartments and is assumed to be of
the form

PN.t/ D
0

@AC
mX

jD1
ujBj

1

AN.t/; N.0/ D N0; (15)

where the A and Bj , j D 1; : : : ; m, are constant n � n matrices, A;Bj 2 R
n�n.

The matrix A describes the transitions between the various compartments in the
absence of treatment and the matrices Bj represent the effects of the jth drug on the
system. An equation of the form (15) is called a bilinear control system since it is
linear both in the state N and the control u. Note, however, that there exist quadratic
terms since the controls ui are multiplied with the states Nj and thus overall this
equation is not linear in all the variables .N; u/.

The dynamics represents in- and outflows of the various compartments, and for
this reason, no matter what the control is, all diagonal entries of the matrix A CPm

jD1 ujBj are negative (there always is a positive outflow from each compartment)
and all the off-diagonal entries (which model the inflows) are nonnegative. Zero val-
ues may occur when there are no connections between some of the compartments,
but every row will have at least one positive entry. In mathematics, matrices with
these properties are calledM -matrices (named so in honor of Minkowski) and their
structure implies the positive invariance properties for the state space P required for
the model to be consistent [69].
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(M) For all u 2 U the matrices A C Pm
jD1 ujBj have negative diagonal entries

and nonnegative off-diagonal entries, ACPm
jD1 ujBj 2 M.

Let r D .r1; : : : ; rn/ and q D .q1; : : : ; qn/ be n-dimensional row vectors of
positive numbers and let s D .s1; : : : ; sm/ be a nonzerom-dimensional row vector of
nonnegative numbers. These coefficients represent subjective weights which define
the objective as

J D rN.T /C
Z T

0

.qN.t/C su.t// dt ! min (16)

The term su D Pm
iD1 siui in the integral is a weighted average of the amounts

of the various drugs given and the coefficients si represent the degrees of toxicity
of the drugs. Side effects generally depend on the specific cytotoxic agent used
and may be more severe than those of a cytostatic or recruiting agent. This would
be reflected in the choice of these weights. Similarly, the second integral term
qN D Pm

iD1 qiNi represents a weighted average of the number of cancer cells
in the respective compartments during treatment and the penalty term rN.T / DPm

iD1 riNi.T / represents a weighted average of the number of cancer cells in the
respective compartments at the end of treatment. The inclusion of the term qN in
the Lagrangian is important since otherwise optimization will lead to protocols that
put all the emphasis on the end of the therapy interval ignoring the behavior in
between. While relevant biological information should be taken into account when
selecting the parameters, it generally is also useful to modulate these parameters
within specified ranges to obtain otherwise desired features of the optimal solutions.
We then consider the following optimal control problem:

[CC] for a fixed therapy horizon Œ0; T �, minimize the objective (16) over all
Lebesgue-measurable functions u W Œ0; T � ! U subject to the dynamics (15).

There are no constraints on the terminal state N.T / in this formulation and by
the nontriviality of the multipliers this implies that all extremals are normal. We thus
normalize �0 D 1 and drop it in the notation. The adjoint equation and terminal
condition then take the form

P� D �q � �

0

@AC
mX

jD1
ujBj

1

A ; �.T / D r: (17)

Under assumption (M), the positive orthant P� in the dual space .Rn/� also is
negatively invariant for the adjoint equation (17), i.e., if �.t0/ 2 P

�, then all
components of � are positive for all times t < t0. We thus have the following fact:

Proposition 3.1 ([69]). Under assumption (M), all statesNi and multipliers �i are
positive over Œ0; T �.
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This is useful information in evaluating the signs of various expressions that arise
in an analysis of optimal controls. We recall that the switching functions are given
by ˚j .t/ D sj C �.t/BjN.t/, j D 1; : : : ; m, with singular controls possible if one
of them vanishes over an open interval. Proposition 2.1 simplifies to the following
statement:

Proposition 3.2. Suppose M is a constant matrix and let �.t/ D �.t/MN.t/,
where N is a solution to the system equation (15) corresponding to the control u
and � is a solution to the corresponding adjoint equation (17). Then

P�.t/ D �.t/

2

4AC
mX

jD1
ujBj ;M

3

5N.t/� qMN.t/; (18)

with ŒX; Y � D YX �XY the commutator of the matrices X and Y .

Whether or not optimal controls can be singular depends on the properties of
the matrices A and Bi and needs to be evaluated on a case-by-case basis. Here we
briefly describe two models: one for homogeneous and the other for heterogeneous
tumor populations and point out the differences in the structures of optimal controls
that result from these assumptions.

3.2 Cell-Cycle-Specific Models for Homogeneous Tumor
Populations

We consider the problem of administering a single cytotoxic agent that is active
in the G2=M phase of the cell cycle such as, for example, paclitaxel. This model
was originally considered by Swierniak in [67] and has been analyzed further by
us in [33]. Taking into account the phase sensitivity of the drug, the cell cycle is
broken up into two compartments with one combining the second growth phase
G2 and mitosis M and the other compartment simply made up of the remaining
phases of the cell cycle. The state N of the system can then be described by a
2-dimensional vector with N1.t/ denoting the average number of cancer cells in the
first compartment at time t (comprised of the phases G0, G1 and S ) and N2.t/ the
average number of cancer cells in the second compartment at time t (comprised of
G2 and M ).

Cell division is a stochastic process with the individual cells determining the
sample paths and the transit times following some empirical distribution. Various
probabilistic models such as �2- or Weibull distributions can be used to describe
these transit times. In the approach by Swierniak, an exponential distribution
(a special case of the Weibull distribution) is used. This leads to balance equation for
the compartments that are linear in the states: the outflow of the first compartment
equals the inflow into the second compartment and thus we have that

PN2.t/ D �a2N2.t/C a1N1.t/
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with ai the inverse mean transit time through the ith compartment. In the second
compartment cell division occurs and thus, while the outflow from the second
compartment is still given by a2N2.t/, the inflow into the first compartment doubles
to 2a2N2.t/ giving

PN1.t/ D �a1N1.t/C 2a2N2.t/:

Since the differential equations are linear, quotients of the variables obey Riccati
differential equations and it follows that in steady state, i.e., in the “long” run, fixed
proportions of the cells will lie in the respective compartments: if

x D N1

N1 CN2
and y D N2

N1 CN2

denote the average proportions of cells in the two compartments, x; y > 0,
x C y D 1, then y satisfies the Riccati equation

Py D a1 � .a1 C a2/y � a2y2 (19)

and has a well-defined steady state (i.e., a unique, globally asymptotically stable
equilibrium point) y� in the open interval .0; 1/ given by

y� D 1

2

0

@
s�

1C a1

a2

�2
C 4

a1

a2
�
�
1C a1

a2

�1

A : (20)

All solutions approach this value as t ! 1. We only remark that these proportions
x� and y� can be measured using cell cycle flow cytometry. If we write C.t/ D
N1.t/ C N2.t/ for the average total number of cancer cells, then the differential
equations imply that

PC.t/ D a2N2.t/ D a2y.t/C.t/ � a2y�C.t/

and thus, in steady state, the total tumor population grows exponentially at about
rate a2y�. This allows us to relate the coefficients ai to the tumor doubling time and
these steady states as follows:

Proposition 3.3. With T denoting the tumor doubling time and x� and y�; the
steady-state proportions of cells in the G0=G1 C S and G2=M phases of the cell
cycle, respectively, we have that

a1 D .1C y�/
ln 2

T x�
and a2 D ln 2

Ty�
:

Drug treatment influences the cell cycle in many ways and in the model
considered here only the most fundamental aspect is considered, cell killing of a
cytotoxic agent in the G2=M phase. It is implicitly assumed that all cancer cells are
drug sensitive. Recall that the control variable u represents the drug concentration
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in the blood stream and in accordance with the log-kill hypothesis, we assume that
the drug concentration u.t/ kills a fraction of the outflow a2N2.t/ of cells from
the G2=M compartment. Thus the number of cells killed is given by 'u.t/a2N2.t/
with ' a constant chemotherapeutic killing parameter. The control set is a compact
interval Œ0; umax� with umax denoting the maximum dose rate/concentration. In the
model, the control u always appears in conjunction with the constant ' and thus,
in order to keep the number of free parameters to a minimum, we combine it with
the maximum dose rate into one quantity that we still denote with umax under the
assumption that umax � 1. If the concentration is high enough, then indeed umax D 1

is realistic: almost all the cancer cells in that compartment can be killed. Cells
which are killed in G2=M leave this compartment, i.e., are counted as outflows
from the second compartment, but they no longer enter the first compartment. Only
the remaining fraction .1 � u/a2N2 undergoes cell division. Thus the controlled
mathematical model becomes

PN1 D �a1N1 C 2.1� u/a2N2;

PN2 D a1N1 � a2N2;
or, in matrix form, PN.t/ D .AC uB/N.t/, with A and B given by

A D
��a1 2a2
a1 �a2

�
and B D

�
0 �2a2
0 0

�
: (21)

For this model, singular controls are not optimal. Denoting the coefficient at
the control u in the objective by s, the switching function is given by ˚.t/ D
s C �.t/BN�.t/. If the control is singular on an open interval I , then, using
Proposition 3.2 it follows that

P̊ .t/ D f�.t/ŒA;B� � qBgN�.t/ � 0 (22)

and

R̊ .t/ D f�.t/ŒA; ŒA;B�� � qŒA;B� � qBAgN�.t/ (23)

C u.t/
˚
�.t/ŒB; ŒA;B��N�.t/ � qB2

�
N�.t/:

Hence the Legendre-Clebsch condition is determined by the expression

@

@u

d2

dt2
@H

@u
.�.t/; N�.t/; u�.t// D ˚

�.t/ŒB; ŒA;B��N�.t/ � qB2
�
N�.t/: (24)

It is clear that B2 � 0 and a direct computation verifies that

ŒB; ŒA;B�� D 8a1a
2
2

�
0 1

0 0

�
D �4a1a2B: (25)
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Furthermore,˚.t/ � 0 implies that �.t/BN�.t/ � �s and thus

@

@u

d2

dt2
@H

@u
.�.t/; N�.t/; u�.t// D 4a1a2s > 0 (26)

violating the Legendre-Clebsch condition for optimality of a singular control.

Theorem 3.1. If .N�; u�/ is an optimal controlled trajectory for the optimal control
problem [CC] with matrices (21), then there does not exist an interval on which the
control u� is singular.

We give a couple of examples of locally optimal bang-bang controls. For the cell
cycle parameters we have chosen the values a1 D 0:197 and a2 D 0:356 used in [67]
and in all computations the initial condition is taken as the steady-state proportions
defined by Eq. (20), normalizing the total number of initial cancer cells to 1 (times
1010), i.e., N1.0/ D 0:7012 and N2.0/ D 0:2988. This would be representative of
conditions where the cancer has been growing exponentially for some time without
treatment; even if chemotherapy has been given earlier, in the rest periods the cells
redistributed over the compartments and their proportions are given by these values.
The control limit is taken as umax D 0:90, but is just meant for illustrative purposes.
Figure 1 shows two examples of controls and corresponding trajectories when the
coefficients in the objective have been chosen as r D .3; 3/, q D .0:1; 0:1/ and
s D 1

2
. The examples shown are for time horizons of T D 21 and T D 60 [days].

In all cases, extremals are bang-bang trajectories with exactly one switching from
u D umax to u D 0. The total reductions in cancer cells at the end of the therapy
horizon are given by N1.T /CN2.T / D 0:5297 and 0:4799, respectively.

All extremals shown here are strong local minima; that is, there exists a
neighborhoodW of the graph of the corresponding trajectory in Œ0; T ��P such that
the controls are optimal with respect to any other control u for which the graph of
its corresponding trajectoryN lies inW [33]. In fact, for this 2-compartment model
we have consistently seen that extremal bang-bang trajectories that have more than
one switching are not optimal and the examples shown are expected to be globally
optimal. This simply means that we can take the neighborhoodW as the full space
Œ0; T � � P, but we have not verified this.

Analogous results have been obtained for multidrug 3-compartment models
when the actions of a G2=M -specific cytotoxic agent were combined either with a
cytostatic agent that was slowing down the progression of cells during the synthesis
phase [34, 62] or with a recruiting agent that was applied to entice dormant cells to
reenter the active cell cycle from the compartment G0 [35]. In each case, singular
controls can be excluded from optimality using the Legendre-Clebsch condition
and optimal controls are bang-bang with one switching for the cytotoxic agent
giving the dose upfront. In the model formulation, however, it is implicitly assumed
that the tumor population is homogeneous and consists of chemotherapeutically
sensitive cells. Also, the problem considered here corresponds to one particular
chemotherapy session only. The steady-state proportions of the uncontrolled system
reestablish very quickly during the rest periods and thus multiple chemotherapy
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Fig. 1 Examples of locally optimal controls (left) and their corresponding trajectories (right) for
T D 21 (top) and T D 60 (bottom) from the steady-state solution

sessions reduce to repetitions of the structure obtained above. Overall, for tumor
populations that are homogeneous and consist of chemotherapeutically sensitive
cells, these mathematical models therefore confirm the prevailing paradigm that
chemotherapy should be given in an MTD scheme upfront. However, this no longer
is so clear cut once tumor heterogeneity is taken into account.

3.3 Compartmental Models for Heterogeneous Tumor
Populations

Malignant cancer cell populations are genetically unstable and coupled with fast
proliferation rates, this leads to a great variety in the structure of the cells within
one tumor—the number of genetic errors present within one cancer cell can lie in
the thousands [42]. Consequently, tumors often consist of a heterogeneous mixtures
of various subpopulations that show widely varying sensitivities towards the actions
of a particular chemotherapeutic agent [13, 14]. In medicine, the Norton-Simon
hypothesis [44] postulates that tumors consist of faster growing cells that are



Optimal Control of Anticancer Therapies 311

sensitive to chemotherapy and slower growing populations of cells that exhibit lower
sensitivities or, with time, become resistant to the chemotherapeutic agent (acquired
drug resistance). There may even exist small subpopulations of cells for which the
specific activation mechanism of a chemotherapeutic agent does not work at all and
which thus are not sensitive to the treatment from the beginning (ab initio, intrinsic
resistance). Given such a scenario, over time, as the drugs kill sensitive tumor cells,
resistant subpopulation of cancer cells may emerge that will make an MTD-style
therapy less and less effective [37, 41, 71]. Even if the fraction of intrinsically
resistant tumor cells is tiny (undetectable) after the sensitive cells have been killed
by the treatment, it may then grow in time to become a fully developed tumor of
chemotherapeutically resistant cells leading to the failure of therapy, possibly only
after many years of seeing remission of the cancer.

Compartmental models of the type (15) can also be used to investigate the
structure of optimal controls if the tumor population is heterogeneous. In [17],
Hahnfeldt, Folkman and Hlatky compare the effects of MTD and metronomic
chemotherapy (when given by bolus-type injections) on sensitive and resistant
tumor populations. Optimizing the maximum asymptotic factor reduction in tumor
size between periods in an infinite cycle of periodic therapy periods, the authors
come to the conclusion that a metronomic, regular scheduling of the drugs has
better long-term effects. We here consider the same underlying dynamics in a
continuous-time formulation and explore the structure of optimal protocols that
minimize the tumor burden as measured by the average over one, but possibly
very large therapy interval. Since we want to explore the effects that heterogeneity
has, we distinguish three subpopulations which, for simplicity of terminology, are
labeled “sensitive,” S , “partially sensitive,” P , and “resistant,” R. The terminology
is only meant to indicate that these populations have different sensitivities towards
a chemotherapeutic agent with S the highest and R the lowest. We assume that
these subpopulations grow at growth rates ˛1, ˛2, and ˛3, respectively. Generally
we do not make assumptions on the order of the growth rates, but an ordering
˛1 > ˛2 > ˛3 would be consistent with the “Norton-Simon hypothesis.” We allow
for transitions between the compartments, i.e., we include the typical effects that
sensitive cells can become more resistant, but we also allow for resensitizations
which make cells less resistant to the chemotherapeutic agent [15]. We denote
the transition rates from the sensitive to the partially sensitive and resistant
compartments by 
P and 
R, respectively, and use analogous notations for the other
transition rates. Thus, for example, 	P denotes the transition rates from resistant to
partially sensitive cells. These rates are assumed to be constant and we assume they
all are positive. This corresponds to an ergodic structure in which all compartments
are repeatedly visited by cells. Cell kill by a chemotherapeutic agent is expressed
by the standard linear log-kill hypothesis: if we denote the concentration of the
drug in the bloodstream by u, then the rate of cells eliminated is given by 'iu,
i D 1; 2; 3, with the coefficients '1, '2, and '3 representing the effectiveness of the
drug on the sensitive, partially sensitive and resistant subpopulations, respectively.
Thus '1 > '2 > '3 � 0. The case '3 D 0 corresponds to the situation of a fully
resistant subpopulation R. We again do not include the standard pharmacokinetic
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model on the agent here and treat u as the control of the system with maximum
concentration given by umax. The controlled dynamics is then simply determined
by the inflows and outflows from the various compartments and is given by the
following 3-dimensional linear system of equations:

PS D .˛1 � 
P � 
R � '1u/ S C �SP C 	SR; (27)

PP D 
P S C .˛2 � �S � �R � '2u/ P C 	PR; (28)

PR D 
RS C �RP C .˛3 � 	S � 	P � '3u/ R: (29)

Even if initially no partially sensitive or resistant cells are present, they will
immediately appear because of the ergodic nature of the underlying Markov chain
and resulting transitions between the compartments. Without loss of generality, we
thus assume that all initial conditions S0, P0, and R0 are positive. Admissible
controls are Lebesgue-measurable functions with values in a compact interval
Œ0; umax�, u W Œ0; T � ! Œ0; umax�, t 7! u.t/.

We denote the proportions of the respective populations by

x D S

S C P CR
; y D P

S C P CR
and z D R

S C P CR
I

it then follows that x, y, and z obey Riccati equations and direct computations verify
that

Px D �Sx C �Sy C 	S z � x.˛1x C ˛2y C ˛3z/; (30)

Py D 
P x C �P y C 	P z � y.˛1x C ˛2y C ˛3z/; (31)

Pz D 
Rx C �Ry C �Rz � z.˛1x C ˛2y C ˛3z/: (32)

with the system evolving on the unit simplex

˙ D f.x; y; z/ W x � 0; y � 0; z � 0; x C y C z D 1g :

Proposition 3.4 ([28]). The dynamics (30)–(32) has exactly one equilibrium point
.x�; y�; z�/ 2 ˙ which is globally asymptotically stable in ˙ and defines the
steady-state proportions.

Thus, given an estimate C0 on the tumor size, there once more exists a well-
defined initial condition S0 D x�C0, P0 D y�C0 and R0 D z�C0 for the
optimal control problem [OC]. Setting N D .S; P;R/T , we have a 3-dimensional
single-input control system of the form PN D .AC uB/N with the matrices
determined by equations (30)–(32); the objective is the same as defined in (16)
before. The necessary conditions for optimality thus take the same form as for the
2-compartment model considered above. It is easily seen that also for this system,
although the dynamics is not described by an M-matrix, all states and multipliers
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�i , i D 1; 2; 3 are positive over the interval Œ0; T � and we have the same formulas
(22) and (23) for the derivatives of the switching function ˚.t/ D s C �.t/BN�.t/
with the Legendre-Clebsch condition again given by (24). Here

ŒB; ŒA;B�� D �
0

@
0 .'2 � '1/

2�S .'3 � '1/
2	S

.'1 � '2/
2
P 0 .'3 � '2/

2	P
.'1 � '3/

2
R .'2 � '3/
2�R 0

1

A (33)

so that �.t/ŒB; ŒA;B��N�.t/ � 0 while

qB2N�.t/ D q1'
2
1S�.t/C q2'

2
2P�.t/C q3'

2
3R�.t/ > 0:

Hence
˚
�.t/ŒB; ŒA;B��N�.t/ � qB2

�
N�.t/ < 0 and the strengthened Legendre-

Clebsch condition is always satisfied. Essentially, this is just a consequence of
having different sensitivities.

Proposition 3.5. For the compartmental model defined by equations (27)–(29),
singular controls are of order 1 and the strengthened Legendre-Clebsch condition
for minimality is satisfied.

Thus, in this case it is expected that singular controls are locally optimal. Solving
equation (23) for u gives the following formula for the singular control:

using.t/ D f�.t/ ŒA; ŒA;B�� � q ŒA;B� � qBAgN�.t/
f��.t/ ŒB; ŒA;B�� C qB2gN�.t/

: (34)

This singular control actually does not depend on the valuesS ,P , andR of the state,
but only on the values of the proportions x, y, and z. In order to be admissible, the
control values need to lie in the control set Œ0; umax�. It follows from the strengthened
Legendre-Clebsch condition that the denominator is positive. In the numerator, all
terms in the vector �qBA are positive, but there exist coefficients in the matrices
ŒA; ŒA;B�� and in the vector �q ŒA;B� that are negative, but just a few. Thus
generally, and this is what we have seen consistently in numerical computations,
the values of the expression (34) are positive and thus admissible for suitable upper
bounds umax.

Analyzing optimal concatenations between bang and singular controls is difficult
and this analysis has not been carried out yet. However, it is not difficult to give
some numerical samples of singular controls and corresponding trajectories. Along
a singular arc, the multiplier � satisfies ˚.t/ D s C �.t/BN�.t/ � 0 and P̊ .t/ D
f�.t/ŒA;B� � qBgN�.t/ � 0 and is determined by these conditions up to a positive
scalar multiple. In principle, here singular controls are possible everywhere in the
state space and in Fig. 2 we give an example of an extremal controlled trajectory for
which the control is given by the maximum dose rate for an initial interval Œ0; �b� and
then is singular over the remaining period Œ�b; T �. In this simulation the parameter
values defining the dynamics are ˛1 D 1, ˛2 D 0:5, and ˛3 D 0:1 with transition
rates 
P D 0:05, 
R D 0:01, �S D 0:03, �R D 0:01, 	S D 0:01, and 	P D 0:03.



314 U. Ledzewicz and H. Schättler

0 5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1

1.1

time t

C
on

tro
l

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time t

S
ta

te
s

R − resistant 

S − sensitive 
P − partially sensitive 

Fig. 2 Example of an extremal control and associated states for a bang-singular controlled
trajectory

Normalizing the initial cancer burden to C.0/ D 1, the corresponding steady-state
proportions are given by S0 D x� D 0:8954, P0 D y� D 0:0933, and R0 D z� D
0:0112 and we used these as initial condition. The maximum dose rate is normalized
to umax D 1 and the pharmacodynamic coefficients are '1 D 1:5, '2 D 1, and
'3 D 0:1. All these values are for illustrative purpose only. In the objective we
chose all weights qi equal to 0:01 and we used �b D 5 and T D 25, so that a full
dose is given for 20% of the time. Over this time horizon the lower dose rates of
the singular controls are able to maintain a lower cancer burden, but eventually the
resistant population will become dominant. However, this will happen regardless of
the specific administration protocol of the drug.

In the medical literature protocols like these are referred to as “chemo-switch”
protocols and our computations show that, as differing chemotherapeutic sensitiv-
ities and even drug resistance come into play, lower dose rates become a valid
alternative to MTD protocols.

4 Mathematical Models for Antiangiogenic Treatments

The most important structure of a tumor’s microenvironment is its vasculature.
In order to grow beyond a small size, a tumor needs to develop its own network
of blood vessels and capillaries that will provide it with nutrients and oxygen.
This process is called angiogenesis and was already pointed out as a therapeutic
target by J. Folkman in the early 1970s [8, 9]. Antiangiogenic treatments aim at
depriving the tumor of this needed vasculature by either disrupting the signaling
process that the tumor uses to recruit surrounding, mature, host blood vessels or
by directly inhibiting the growth of endothelial cells that form the lining of the
newly developing blood vessels and capillaries. Ideally, without an adequate support
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network, the tumor’s further development is halted and it even shrinks. Rather than
fighting the fast duplicating, genetically unstable, and continuously mutating tumor
cells, this indirect treatment approach targets the genetically stable endothelial cells.
As a consequence, no clonal resistance to angiogenic inhibitors has been observed
in experimental cancer [2] and for this reason, after the discovery of antiangiogenic
mechanisms that the tumor uses to control its vasculature in the 1990s [5, 10, 25],
antiangiogenic treatments were a new hope in the war on cancer. Unfortunately,
these high hopes have not been realized, mostly due to the maintenance only
character of the treatment [22]. However, antiangiogenic approaches have become a
valuable component in the treatment of many cancer types in connection with other
traditional approaches like chemo- or radiotherapy that directly attack tumor cells.

A widely influential population-based mathematical model for tumor develop-
ment under angiogenic signaling was developed and biologically validated in 1999
by Hahnfeldt, Panigrahy, Folkman, and Hlatky [16]. This model has become an
object of strong interest also in the mathematical literature and to this date is
still undergoing vigorous development. It has been analyzed from a dynamical
systems perspective (e.g., by d’Onofrio and Gandolfi [47, 48], Forys et al. [11])
as well as from an optimal control point of view (by the authors and coworkers
[38,39,52] and by Swierniak [68,70]) with numerous generalizations and variations
of the underlying model that have been proposed (e.g., [7, 46, 49, 51, 58, 60]). In
Sect. 4.1, for the original mathematical model, we describe a complete solution
of how to administer an a priori given amount of antiangiogenic agents in order
to achieve the best possible tumor reduction. In this solution, an optimal singular
arc and its associated singular control determine the structure of optimal controls
which are largely defined by a singular segment. These feedback controls, however,
are difficult to implement. Yet, the solution is fully robust and excellent simple
suboptimal controls that come within 1% of the optimal value exist and will
be discussed in Sect. 4.2. Since antiangiogenic therapy only targets cancer cells
indirectly, in order to be effective, it needs to be combined with therapies that also
kill the cancer cells. In Sect. 4.3 we show how the solution for the antiangiogenic
monotreatment therapy presented in Sect. 4.1 provides the basis for the solutions for
such combination therapy problem.

4.1 Synthesis of Optimal Controlled Trajectories
for the Monotherapy Problem

In the model by Hahnfeldt et al. [16], the spatial aspects of angiogenesis are
incorporated into a nonspatial 2-compartment model with the primary tumor
volume, p, and the carrying capacity of the vasculature, q, as its principal variables.
Intuitively, the latter can be thought of as the ideal tumor volume sustainable by
the vascular network and is closely related to the volume of endothelial cells that
form the lining of the existing and newly forming capillaries. The dynamics consists
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of two ODEs that describe the evolution of the tumor volume and its carrying
capacity, which, with u denoting the action of an antiangiogenic agent, is given
by the following equations:

Pp D ��p ln

�
p

q

�
; p.0/ D p0; (35)

Pq D bp �
�
dp

2
3 C �

	
q � �uq; q.0/ D q0; (36)

In equation (35) a Gompertzian model with � a constant parameter is chosen to
model tumor growth (other choices are equally possible). Note that the carrying
capacity and tumor volume are balanced forp D q and thus Pp D 0 in this case while
the tumor volume shrinks for inadequate endothelial support (p > q) and increases
if this support is plentiful (p < q). Different from conventional approaches, in
this model the carrying capacity is not a constant, but itself becomes a state variable
whose evolution is governed by a balance of stimulatory and inhibitory effects given
in equation (36). Based on an asymptotic analysis of the underlying consumption-
diffusion process and the facts that angiogenic inhibitors have a more systemic effect
while stimulators, on the other hand, act locally, the functional forms S.p; q/ D bp

and I.p; q/ D dp
2
3 q for stimulators and inhibitors are proposed in [16]. The term

�q,� � 0, that has been separated describes the loss to the endothelial cells through
natural causes (death etc.) and �qu models the loss to the vasculature due to outside
administration of antiangiogenic agents using a standard log-kill term. The control
u represents the concentration in the plasma of such an agent with umax denoting an
a priori set maximum dose rate/concentration.

Different from the previous model formulations, we here assume that a fixed
amount A of angiogenic inhibitors is given. Mathematically this represents an
isoperimetric constraint and is modeled as

Py D u; y.0/ D 0; y.T / � A: (37)

The question then becomes how to use the given amount of agents in the best
possible way. Here we choose to minimize the tumor volume. In this formulation,
there is no fixed therapy horizon Œ0; T �, but rather the terminal time T is free and it
merely represents the time when the minimum tumor volume is being realized. Such
models are of practical interest and give an important alternative to the formulations
considered earlier. We thus consider the following optimal control problem:

[A] for a free terminal time T , minimize the terminal value p.T / of the
tumor volume subject to the dynamics (35)–(37) over all Lebesgue-measurable
functions u W Œ0; T � ! Œ0; umax� for which the corresponding trajectory .p; q; y/
satisfies the terminal constraint y.T / D R T

0
u.t/dt � A.

We denote the 3-dimensional state by z D .p; q; y/T and write the dynamics in
the form

Pz D f .z/C ug.z/ (38)
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with

f .z/ D

0

BB@

��p ln
�
p

q

	

bp �
�
dp

2
3 C �

	
q

0

1

CCA and g.z/ D
0

@
0

��q
1

1

A :

All coefficients are positive parameters and we also assume that �umax > b�� > 0.
The first inequality implies that a constant does rate umax eradicates the tumor [47],
but is only made in order not to have to distinguish cases the second inequality is
always satisfied for the underlying medical problem. Under these assumptions in
[38] we gave a complete global solution to this optimal control problem in the form
of a regular synthesis for all initial data .p0; q0; A/ that are well posed. This simply
means that there are enough antiangiogenic agents available to realize a terminal
value p.T / < p0 since otherwise the optimal terminal time T is given by T D 0.

Necessary conditions for optimality of a control u are again given by the
Pontryagin maximum principle. It is not difficult to see that all available inhibitors
will be exhausted along an optimal trajectory .p�; q�; y�/, y�.T / D A and that
p�.T / D q�.T / holds at the final time. For this problem, the switching function ˚
is given by

˚.t/ D h�.t/; g.z.t//i D �3 � �2.t/�q�.t/ (39)

and, compared with the models considered in Sect. 3, here the computation of
singular controls simplifies since the Lagrangian L is identically zero. It follows
from Proposition 2.1 that the derivative of a function of the form �.t/ D
h�.t/; h.z.t//i is given by P�.t/ D h�.t/; Œf C ug; h�.z.t//i and for the switching
function ˚.t/ we thus obtain that P̊ .t/ D h�.t/; Œf; g�.z.t//i and

R̊ .t/ D �.t/Œf C ug; Œf; g��.z.t//; (40)

with the control u once more only appearing in the second derivative. If u is
singular on some open interval I , then these derivatives all vanish on I and if
h�.t/; Œg; Œf; g��.z.t//i ¤ 0, then (40) can formally be solved for u as

using.t/ D �h�.t/; Œf; Œf; g��.z.t//i
h�.t/; Œg; Œf; g��.z.t//i : (41)

The strengthened Legendre-Clebsch condition for optimality of the singular control
here takes the form

h�.t/; Œg; Œf; g��.z.t//i < 0 for all t 2 I: (42)
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The determination of singular controls and the analysis of their local optimality
properties thus reduces to the computation of the Lie brackets Œf; Œf; g�� and
Œg; Œf; g�� and their inner products with the multiplier �. For the model [A], the
control vector field g and the Lie brackets Œf; g� and Œg; Œf; g�� are linearly indepen-
dent and thus the Lie bracket Œf; Œf; g�� can be written as a linear combination of this
basis with coefficients that are smooth functions of the state z, say

Œf; Œf; g��.z/ D 	.z/g.z/C '.z/Œf; g�.z/C  .z/Œg; Œf; g��.z/:

Along a singular extremal .z; u; �/, the inner products h�.t/; g.z.t//i and
h�.t/; Œf; g�.z.t//i vanish identically and thus

h�.t/; Œf; Œf; g��.z.t//i D  .z.t// h�.t/; Œg; Œf; g��.z.t//i :

If the singular control is of order 1, we therefore simply have that

using.t/ D � .z.t// (43)

and the singular control is given in feedback form, i.e., as a function only of the state
z alone which does not depend on the multiplier. Naturally, whether this feedback is
admissible still needs to be determined separately.

However, this feedback does not define a singular control everywhere, but only
on a thin subset. The reason for this lies in the fact that along extremals also the
Hamiltonian H needs to vanish identically and thus, along a singular arc, we also
have that h�.t/; f .z.t//i � 0 for all t 2 I . Consequently the multiplier �.t/
vanishes against the vector fields f , g and Œf; g� along a singular trajectory. Since
�.t/ ¤ 0, it follows that these vector fields must be linearly dependent along the
singular arc. Thus (43) only defines a singular control on the surface

S D fz 2 R
3 W det .f .z/; g.z/; Œf; g�.z// D 0g

where det .f .z/; g.z/; Œf; g�.z// denotes the determinant of the matrix whose
columns are formed by the ordered vectors f .z/, g.z/, and Œf; g�.z/. Evaluating
this formula gives that

det .f .z/; g.z/; Œf; g�.z// D ��p


bp

�
1 � ln

�
p

q

��
�
�
dp

2
3 C �

	
q

�
:

In particular, S is a vertical surface independent of y over a base curve S0 in .p; q/-
space given by �C dp

2
3 D bx.1 � lnx/ with x D p

q
. For the singular control, we

have the following explicit formulas:

Proposition 4.1. If the control u is singular on an open interval .˛; ˇ/ with
corresponding trajectory .p; q/, then the singular control is determined in feedback
form by
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Fig. 3 The singular control using plotted as a feedback function of the quotient x D p

q
(left) and

the singular base curve S0 plotted in .p; q/-space (right) with the admissible part marked by the
solid portion of the curve. Away from this solid segment the singular control is either negative or
exceeds the limit umax

�using.t/ D �.p.t/; q.t// D � ln

�
p.t/

q.t/

�
C b

p.t/

q.t/
C 2

3
�
d

b

q.t/

p
1
3 .t/

�
�
�C dp

2
3 .t/

	

(44)

There exists exactly one connected arc on the singular base curve S0 along which
the control is admissible, i.e., satisfies the bounds 0 � using � umax.

Figure 3 illustrates the petallike singular curve S0 for umax D 75 with the
admissible portion marked as a solid curve for the parameter values � D 0:2, b D 5,
d D 0:01, and � D 0. The qualitative structure shown in this figure is generally
valid, but the admissible portion shrinks with smaller values umax.

The structure of optimal controls and trajectories is summarized in the following
theorem:

Theorem 4.1 ([38]). Given well-posed initial data .p0; q0; A/, optimal controls are
at most concatenations of 4 pieces in the form bsumax0 with 0 denoting an arc along
the constant control u D 0, umax denoting an arc along the constant control u D
umax, b standing for either umax or 0, and s denoting an arc in the singular surface S.

This result provides an upper bound on the number of segments for optimal
controls and it significantly limits the structure of possible concatenations. For the
medically most relevant case of initial conditions .p0; q0/ that represent a growing
tumor with high carrying capacity, p0 < q0, and ample supply A of inhibitors,
typically optimal controls have the following structure: initially they are given by
a segment of full dose therapy, u � umax, until the corresponding trajectory meets
the singular surface S. At this point, the optimal control changes to the singular
control and antiangiogenic agents are administered at these singular dose rates until
all angiogenic inhibitors have been exhausted. During that phase, the corresponding
trajectory evolves on the singular surface S. Since the singular surface lies in
the region p > q, after termination of therapy, the tumor volume will still be
decreasing (due to after effects) even if no more agents are administered as long
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as the trajectory remains in the region p > q. The minimum tumor volume will
then be realized as the trajectory reaches the diagonal, p D q. Thus, for these
cases optimal controls follow the shorter concatenation sequence umaxs0. This is
the typical structure of optimal controlled trajectories for medically relevant initial
conditions, but it depends on two facts: (i) the overall amount of inhibitors is large
enough to reach the singular arc in its admissible range, but (ii) it is not so large that
the singular control would saturate along the singular arc, i.e., would reach the limit
umax. If (i) is violated and trajectories either do not reach S at all or reach S in its
inadmissible part, then the singular control never becomes an option and in this case
optimal controlled trajectories will simply be given by up-front administration of all
antiangiogenic agents at full dose rates. In such a case, optimal controls are bang-
bang with exactly one switching from u D umax to u D 0, i.e., of the type umax0. If
condition (ii) is violated, then optimal concatenation sequences of the forms 0sumax0
and umaxsumax0 arise.

The synthesis of optimal trajectories then consists of a unique covering of the full
state space by controlled trajectories with the optimal control uopt D uopt.p; q; y/

identifying the optimal dose rates as a function of an arbitrary point .p; qIy/ of the
state. Intuitively, a synthesis acts like a “GPS system” showing for every possible
state of the system how optimal protocols are administered, both qualitatively and
quantitatively. The variable y merely accounts for the amount of inhibitors that
already has been used and it is more convenient, and more illustrative, to show
the projections of trajectories into the .p; q/-plane. With only a slight abuse of
terminology, we do not distinguish in our language between the trajectories in
.p; qIy/-space and their projections onto the .p; q/-coordinates. Figure 4 shows this
projection and also identifies a typical optimal control of the form umaxs0 described
above.
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Fig. 5 Example of an optimal umaxs0 controlled trajectory (left) and associated control as function
of time (right) for initial data .p0; q0; A/ D .12000; 15000; 300/

In Fig. 5, as an example, we show the optimal controlled trajectory (on the left)
and its corresponding control (on the right) for the initial condition .p0; q0/ D
.12000 Œmm3�; 15000 Œmm3�/ and the values � D 0:084, b D 5:85, d D 0:00873

taken from [16] and � D 0:2. The optimal control is of the type umaxs0: it takes the
maximal value u D umax for a short interval from 0 to t1 D 0:0905 [days] when the
trajectory reaches the singular arc. At this point, the control switches to the time-
varying singular control defined by the singular feedback (44) until all inhibitors are
exhausted at time t2 D 6:5579 [days]. Then, due to after effects, the minimum value
of the tumor volume is realized a short period later at the final time T D 6:7221

[days] when the trajectory for u D 0 reaches the diagonal. Note the extremely fast
q-dynamics away from the singular arc. Partly this is caused by the numerical values
that were used which are based on Lewis lung carcinoma in mice, a fast growing
cancer. Although the almost horizontal trajectory segments along the controls u D 0

and u D umax are sizable, the time spent along these pieces is small. Most of the time
the control is singular and the trajectory follows the associated singular arc (whose
projection in the .p; q/-space is a subset of the base curve S0), but this dynamics
is much slower. The optimal final value is given by p�.T / D 8533:4 [mm3]. The
optimal trajectory is shown as a solid curve in Fig. 5 and the singular curve S and
the diagonal D0 are shown as dotted curves.

4.2 Robustness Properties and Realizable Suboptimal
Protocols

Singular controls play an essential role in determining the overall structure of
optimal controlled trajectories for this problem. While Lie algebraic computations
provide an elegant framework in which the singular controls and corresponding arcs
can be determined analytically, these formulas are given as feedback controls that
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administer time-varying partial doses that are determined by the current state of
the system, that is, the tumor volume p and its carrying capacity q. Even at the
initial time, while a reasonably reliable estimate for the tumor volume p0 may be
available, the carrying capacity of the vasculature, q0, is a highly idealized quantity
and there exist no methods to measure it. The value of the theoretical optimal
solution that was derived, apart from giving interesting qualitative insights into
the underlying system, does not primarily lie in providing a feasible strategy, but
in clarifying what in principle is possible—in fact, for many practical problem,
this precisely is the contribution that optimal control methodologies provide. Then,
based on the benchmarks that the theoretically optimal solutions provide, it becomes
of importance to formulate simple, easily implementable, but also robust strategies
that could be employed even in the face of great uncertainty in the parameters
and the state of the system [31, 39]. The solution described above indeed exhibits
strong robustness properties with respect to parameter values and this in particular
is valid with respect to the initial values q0 of the carrying capacity. Excellent
approximations to the theoretically optimal solution are obtained by simply taking
a constant control whose dose rate is given by the averaged optimal dose rate
protocol, i.e.,

Nu � 1

Topt

Z Topt

0

uopt.t/dt D A

Topt
;

where uopt denotes the optimal control as a function of time, Topt is the time when
all antiangiogenic agents have been used up and, as before, A denotes the a priori
specified overall amount of agents to be given. Since all antiangiogenic agents are
used along the optimal control, the integral is simply given by this total amount A.
The final interval when the tumor volume still decreases because of after effects is
not included in this computation. Figure 6, on the left, shows a comparison of the
graphs of the minimum tumor volumes realized as a function of the initial carrying
capacity q0 by the optimal control (solid red curve), a full dose rate protocol where
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antiangiogenic agents are given at maximum dose rate umax (dashed blue curve),
the half-dose rate protocol (dash-dotted blue curve), the averaged optimal control
protocol (dashed black curve), and the best constant dose rate protocol (dash-dotted
black curve) for the fixed initial tumor volume p0 D 12; 000 Œmm3�. The curves for
the averaged optimal control protocols and the best constant dose protocol are very
close and basically lie on top of each other in the figure with only minute differences
for very low and very high tumor volumes. On the right of the same figure we show a
graph of the averaged optimal control as a function of q0. These constant dose rates
only vary between 45:1 and 45:7 showing the strong robustness of the solutions with
respect to q0.

For the initial condition .p0; q0/=(12; 000 Œmm3�;15; 000 Œmm3�/, all antiangio-
genic agents are used up at time 6:558 [days] along the optimal solution. It is not
difficult to compute the best protocol that would give the same total amount in 6
constant daily doses and these dose rates are given by

u1 D 46:61; u2 D 45:31; u3 D 48:15; u4 D 50:71; u5 D 53:20; and u6 D 56:02:

The values closely mimic the structure of the theoretically optimal control shown
in Fig. 5. There is a small dip in the dosage from the first to the second day which
is caused by the fact that the piece along which the optimal dose rate is umax is
small and thus the first daily value is significantly lower than umax D 75, but still
higher than the second daily dose. Then the dosages gradually increase over the
remaining days. This reflects the dose intensification along the optimal singular arc.
Yet, specifying the time structure by restricting to daily doses reduces the quality of
the approximation somewhat.

4.3 Combination of Antiangiogenic and Chemotherapy

Antiangiogenic therapy only attacks tumor growth indirectly through the vascula-
ture and it is natural to combine it with a second therapy that directly attacks the
tumor cells such as radio- or chemotherapy. We still consider a model that adds the
action of a cytotoxic agent v, but again, rather than including the drug dosage as a
penalty term in the objective, limits the overall amount of drugs given.

[AC] For a free terminal time T , minimize the tumor volume p.T / subject to the
dynamics

Pp D �p ln

�
q

p

�
� 'pv; p.0/ D p0; (45)

Pq D bp �
�
dp

2
3 C �

	
q � �qu � �qv; q.0/ D q0; (46)
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over all Lebesgue-measurable functions u W Œ0; T � ! Œ0; umax� and v W Œ0; T � !
Œ0; vmax� for which the corresponding trajectory satisfies the terminal constraints

Z T

0

u.t/dt � A and
Z T

0

v.t/dt � B: (47)

An important feature of the optimal solution—and one that is not at all obvious—
is that it builds in a modular way on the solution of the antiangiogenic monotherapy
problem [A] already given [52]. Indeed, for a typical initial condition with p0 < q0,
optimal controls for the combination therapy problem [AC] have the following
structure: optimal controls for the antiangiogenic agent follow the optimal solution
for the monotherapy problem and then, at a specific time, chemotherapy becomes
active and is given in one full dose session. Both controls cannot be singular
simultaneously and the formulas given above for the singular control and singular
arc need to be adjusted to the presence of chemotherapy, but this is readily done and
we have the following result:

Proposition 4.2 ([52]). If the optimal antiangiogenic dose rate u follows the
singular control using on an open interval I , then the chemotherapeutic agent v
is bang-bang on I with at most one switching from v D 0 to v D vmax, and the
following relation holds between the controls u and v:

�using.t/C .� � '/ v.t/ D �.p.t/; q.t// (48)

with � defined by equation (44). Given v, this determines the anti-angiogenic dose
rate with a jump discontinuity when chemotherapy becomes active.

This structure allows to set up a simple minimization problem over a
1-dimensional parameter � that denotes the time when chemotherapy becomes
active. We illustrate this for an initial condition .p0; q0/ with p0 < q0 where
the antiangiogenic agent is immediately applied with full dose. In principle, this
time � when chemotherapy is activated can lie anywhere in Œ0; T �. For example,
if the amount zmax of chemotherapeutic agents is high, then it is possible that
chemotherapy already becomes active along the interval when the antiangiogenic
dose rate is at maximum. On the other hand, if this amount is very low, this
activation may only occur after all antiangiogenic agents have been exhausted. The
typical case, however, is that this time � lies somewhere in the interval where the
control u follows the singular monotherapy structure. Figure 7 shows an example of
numerically computed optimal controls for the combination therapy problem [30].

This structure of optimal controls for the combination therapy has interesting
medical interpretation: optimization leads to the conclusion that it is best to follow
specific “paths” along which maximum tumor reductions are achieved. This holds
for both the monotherapy problem [A] and the combination therapy problem [AC]
and these paths, as expressed in the formula (48), are closely linked with the optimal
singular arc from the monotherapy problem. Note that the singular curve S0 lies in
the region where the tumor volume p is higher than its carrying capacity q, but
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there exists a specific relation between these variables. Clearly q is not pushed
to zero too fast, but a definite balance between these two variables is maintained
along the optimal solution. Since the vascular network of the tumor is needed to
deliver the chemotherapeutic agents, this perfectly makes sense. In the medical
literature, similar features have been observed and are know as “pruning” [19, 20].
It has been argued by Jain in [19] that the preliminary delivery of antiangiogenic
agents may regularize a tumor’s vascular network with beneficial consequences
for the successive delivery of cytotoxic chemotherapeutic agents. Although no
“ pruning” aspects have been taken into account in the model (e.g., see [50] for
such a model), it is interesting to note that an optimization approach for a rather
small and minimally parameterized high-level mathematical model leads to very
much the same conclusion: give antiangiogenic agents until an optimal relation
between tumor volume and carrying capacity has been established and then apply
full dose chemotherapy while still maintaining the optimal relation between p and
q through the administration of antiangiogenic agents. Even when antiangiogenic
treatment is combined with radiotherapy, this feature seems to persist with the
optimal monotherapy solution once more playing a major role in the structure of
optimal controls for the combination [40].

5 Tumor-Immune System Interactions

A second major component of a tumor’s microenvironment is the immune system.
The immune system’s first response to its environment is on the basis of a dis-
crimination between “own” and “foreign” objects and some tumor cells will simply
be classified as “own” and thus tolerated [54]. However, tumor cells also exhibit a
large number of abnormalities (such as mutated proteins, under- or over-expressed
normal proteins and many more) that lead to the appearance of specific antigens,
some of which will be classified as “foreign” and thus do trigger reactions by both
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the innate and adaptive immune system [23,65]. In fact, the empirical hypothesis of
immune surveillance, i.e., that the immune system may act to eliminate or control
tumors, is well established in the medical community. The competitive interaction
between tumor cells and the immune system is extremely complex and strongly
nonlinear. The possible outcome of this interplay is not only constituted by tumor
suppression or tumor outbreak but by a multitude of dynamic properties that include
the persistence of both benign and malignant scenarios (e.g., see [45, 53]). Here we
still consider a classical mathematical model by Stepanova [63] that captures these
features of tumor-immune interactions in a low-dimensional, minimally parame-
terized model. In Sect. 5.1 we describe the model and consider the uncontrolled
multi-stable dynamics which has both a benign and malignant region [32, 53].
We then in Sect. 5.2 set up an optimal control problem that induces the system
to move from the malignant into the benign region under chemotherapy. After a
brief administration of maximum dose chemotherapy, optimal protocols switch to
singular controls and significantly lower dose rates [32]. In the medical literature
such protocols are sometimes referred to as “chemo-switch” protocols [57].

5.1 Multi-stability and Regions of Attractions

We briefly recall Stepanova’s model. Let x denote the tumor volume with a fixed
carrying capacity x1 < 1 and let y be a non-dimensional order of magnitude
variable related to the activities of various types of T -cells activated during the
immune reaction. We shall refer to y as the immunocompetent cell density. While
Stepanova uses an exponential model for the growth of the tumor, here, as in [72],
we consider a Gompertzian tumor growth models. The dynamical equations of the
model are given by

Px D ��Cx ln

�
x

x1

�
� �xy; (49)

Py D �I
�
x � ˇx2�y � ıy C ˛; (50)

with all Greek letters denoting constant coefficients. The second equation summa-
rizes the main features of the immune system’s reaction to cancer. Several organs
contribute to the development of immune cells in the body and the parameter ˛
models a combined rate of influx of T -cells generated through these primary organs;
ı is simply the rate of natural death of the T -cells. The first term in this equation
models the proliferation of lymphocytes. For small tumors, it is stimulated by the
tumor antigen which can be assumed to be proportional to the tumor volume x. It is
argued in [63] that large tumors suppress the activity of the immune system. The
reasons lie in an inadequate stimulation of the immune forces as well as a general
suppression of immune lymphocytes by the tumor (see [63] and the references
therein). This feature is expressed in the model through the inclusion of the term
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�ˇx2. Thus 1=ˇ corresponds to a threshold beyond which the immunological
system becomes depressed by the growing tumor. The coefficients �I and ˇ are
used to calibrate these interactions and in the product with y collectively describe
a state-dependent influence of the cancer cells on the stimulation of the immune
system. The first equation models tumor growth. The coefficient � denotes the rate
at which cancer cells are eliminated through the activity of T -cells and the term
�xy thus models the beneficial effect of the immune reaction on the cancer volume.
Lastly, �C simply is a tumor growth coefficient.

For our numerical computations we use the following parameter values that are
based on the paper [27] by Kuznetsov, Makalkin, Taylor, and Perelson who estimate
these parameters based on in vivo experimental data for B-lymphoma BCL1 in the
spleen of mice: ˛ D 0:1181, ˇ D 0:00264, � D 1, ı D 0:37451, �C D 0:5618 and
�I D 0:00484. In that paper, a classical logistic growth term is used for cancer
growth and we therefore adjusted the growth rates to account for Gompertzian
growth using linear data fitting. Also, the functional form

�
x � ˇx2

�
y used in

Stepanova’s model in equation (50) is a quadratic expansion of the term used in
[27]. Following [27], x is given in multiples of 106 cells and y is a dimensionless
quantity that describes the immunocompetent cell density on an order of magnitude
basis relative to base value 1. The time scale is taken relative to the tumor cell cycle
and is in terms of 0:11 days [27]. As always, we simply use this particular values to
illustrate our analytical results.

There always exists a disease-free equilibrium point at .xf ; yf / D .0; ˛
ı
/ which

is unstable. For the parameter values given above, there exist three equilibria with
positive tumor volumes and Fig. 8 shows the phase portrait of the system. There is
an asymptotically stable focus at .xb; yb/ D .72:961; 1:327/ (marked by a green
star), a saddle point at .xs; ys/ D .356:174; 0:439/ (marked by a black star), and an
asymptotically stable node at .xm; ym/ D .737:278; 0:032/ (marked by a red star).
In the diagram we have also marked the stable manifold of the saddle as a dashed
red curve. The regions of attraction of the stable equilibria are the open regions that
are separated by this stable manifold of the saddle.

We call a locally asymptotically stable equilibrium point .x�; y�/ of the
equations (49) and (50) malignant if the corresponding tumor volume x� is close
to the carrying capacity of the system, benign if it is by an order of magnitude
smaller. The corresponding regions of attraction are the malignant and benign
regions, respectively. In case of a microscopic benign equilibrium, this region can
be interpreted as the set of all states of the system where the immune system is
able to control the cancer and this is one possible way of describing what medically
has been called immune surveillance. The region of attraction of the macroscopic
equilibrium point, on the other hand, corresponds to conditions when the system has
escaped from this immune surveillance and the disease will be lethal. Obviously,
an interesting structure is the boundary between these two behaviors that is formed
by the stable manifold of the saddle point. The natural therapeutic question then
becomes how to move the state back into the benign region if it has been displaced
into the malignant region.
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5.2 Optimal Control for Tumor-Immune Interactions
with Strongly Targeted Drugs

We now consider equations (49) and (50) with a cytotoxic agent u and a rudimentary
immune boost v. As a simpler scenario, we assume that the chemotherapeutic agent
is strongly targeted towards the tumor cells and therefore neglect its effects on
the immunocompetent cell densities. Once more employing the standard log-kill
assumption, this leads to the following equations:

Px D ��Cx ln

�
x

x1

�
� �xy � �xu; x.0/ D x0; (51)

Py D �I
�
x � ˇx2

�
y � ıy C ˛ C 	yv; y.0/ D y0: (52)

Given the multi-stable scenario, the practical aim of therapy is to move an initial
state .x0; y0/ that lies in the malignant region into the region of attraction of the
benign equilibrium point while keeping side effects tolerable. For this, we consider
the following optimal control problem:

[CI] for a free terminal time T , minimize the objective

J D Ax.T /� By.T /C
Z T

0

.Cu.t/CDv.t/C S/ dt; (53)

over all Lebesgue-measurable functions u W Œ0; T � ! Œ0; 1� and v W Œ0; T � !
Œ0; 1� subject to the dynamics (51) and (52).

The choice of the weights aims at striking a balance between the benefit at the
terminal time T , Ax.T /�By.T /, and the overall side effects measured by the total
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amounts of drugs given, while it at the same time guarantees the existence of an
optimal solution by also penalizing the free terminal time T . The most important
piece is the penalty term Ax.T /�By.T / at the final time that is designed to induce
the state of the system to move from the malignant into the benign region. In order
to accomplish this, it may no longer be adequate to simply minimize the tumor
volume since, as can be seen in Fig. 8, small tumor volumes are possible that lie
in the malignant region if the immune system is depressed. Rather, the geometric
shape of the separatrix matters. While it is generally not possible to give an analytic
description for this surface, the tangent space to the saddle is easily computed and
its normal vector can serve as a reasonable direction in which we want the system
to move. This is what we have done here giving the numerical values A D 0:00192

and B D 1 for the data used earlier.
Once more, optimal controls for the cytotoxic agent consist of concatenations

of bang and singular pieces. It can be shown that optimal administration of the
immune boost v is bang-bang [29] and analytical formulas for a singular control u
and arc can be derived, albeit with slightly different reasoning than above [29, 32].
The typical optimal control u� is a concatenation of four pieces of the type 1s01:
therapy starts with a short maximum dose therapy session followed by a segment
where the control is singular. Along this segment, the system moves along the
singular arc from the malignant into the benign region. It is this transfer that matters
and the tumor volume may actually increase along this segment. Once safely into
the benign region, at one point therapy stops, i.e., the optimal control switches to
u D 0. This portion of the trajectory closely follows the unstable manifold of the
saddle for the uncontrolled system and leads to a “free pass,” a trajectory along
which no cost is incurred if S D 0. (The existence of such structures leads to issues
about the existence of optimal controls and for this reason, we generally impose a
small penalty S on the terminal time.) Along this portion of the controlled trajectory,
the actions of the immune system take over. Quite frequently, after a prolonged rest
period, optimal controls still give a short maximum dose chemotherapy and immune
boost towards the end.

Figure 9 shows the optimal controlled trajectory for C D 0:01, D D 0:025, and
S D 0:001 [29]. In the figure of the controlled trajectory switching points for the
cytotoxic agent are indicated by a red asterisk and those for the immune boost with
a green asterisk. Initially chemotherapy is given at full dose without immune boost.
Already after a brief time interval, as the state of the system nears the separatrix,
chemotherapy is reduced drastically and is only administered at lower dose rates
according to the singular control using and we clearly see the “chemo-switch”-
type behavior of administration of a chemotherapeutic agent as optimal. In these
solutions, the tumor microenvironment plays a major role: the initial chemotherapy
is only designed to bring the state of the system into a region where the immune
system is potent enough to control (not necessarily eliminate or eradicate) the
cancer. If possible, this aim is achieved with low doses of chemotherapy. In fact—
but such a structure is not included in the model—higher doses may be harmful in
that they might adversely effect the immune system which otherwise would have
come to the assistance in combating the tumor.
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Fig. 9 Optimal control (left) and corresponding controlled trajectory (right) for C D 0:01, D D
0:025, and S D 0:001. (Reproduced with permission from [29], c�2013, AIMS)

6 Conclusion

We have outlined the qualitative type of results that can be obtained about cancer
treatment protocols from an optimal control analysis of high-level mathematical
models. Initially, the focus was on the cancerous cells progressing from mathemat-
ical models for homogeneous tumor populations of chemotherapeutically sensitive
cells to heterogeneous structures of cell populations with varying sensitivities
and resistance. From an optimal control point of view, optimal treatment sched-
ules change from bang-bang solutions with upfront dosing (the classical MTD
approaches in medicine) to administrations that favor singular controls (time-
varying dosing schedules at less than maximum rates) as heterogeneity of the
tumor population becomes more prevalent. Once the main components of the
tumor microenvironment, its vasculature, and the immune system, are taken into
account, in optimal solutions, more is not necessarily better. In this context, and in
view of the fact that a properly calibrated dose (which does not waste agents nor
have excessive side effects) can deliver the best outcomes, in medical research the
search for a “biologically optimal dose” (BOD) is being pursued. In the model for
antiangiogenic treatments it becomes clear that full dose therapies do waste agents
that can be used more effectively when spread out at lower doses over prolonged
time periods. The mathematical solution supports the idea of a normalization of the
vasculature prior to the administration of chemotherapy, but then cytotoxic agents
are given at the appropriate time in an MTD fashion. In a certain sense, an ideal
tumor size-vasculature pattern is sought first which leads to an optimal tumor kill
potential that then is exploited by maximum dose chemotherapy. However, as also
the immune system is taken into account, chemo-switch protocols become optimal.
The reason simply is that when the system is in a state where the actions of the
immune system are able to control cancer growth, it is overall preferable (in view of
the toxic side effects of chemotherapy) to administer lower doses.

Clearly, the models considered here are simplified, and this is natural at the
high level of agglomeration that underlies their construction. While biological and
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medical research prefers to be as detailed as possible in their models, this also
makes them amenable to the pitfall of Borges’s “exactitude in science.” The question
simply is to what extent a model needs to be accurate to make significant and
realistic predictions. In our view, the smaller the model is to give the relevant
conclusion, the better it is. The conclusions that we obtain from these minimally
parameterized models would suggest that these models lead to realistic statements
about the structure of optimal treatment protocols that should be of interest in
medical practice. In fact, the question how to schedule chemotherapeutic drugs in
order to optimize their antitumor, antivasculature, and proimmune effects is far from
being answered and there are concerted efforts in medical research to explore the
benefits of metronomic scheduling in this respect [1, 56]. Qualitative mathematical
results about optimal protocols that take into account a tumor’s microenvironment
can be of assistance in these efforts.

Acknowledgements This material is based upon work supported by the National Science
Foundation under collaborative research Grants Nos. DMS 1311729/1311733. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

References

1. N. André, L. Padovani, E. Pasquier, Metronomic scheduling of anticancer treatment: the next
generation of multitarget therapy?. Fut. Oncol. 7(3), 385–394 (2011)

2. T. Boehm, J. Folkman, T. Browder, M.S. O’Reilly, Antiangiogenic therapy of experimental
cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997)

3. B. Bonnard, , M. Chyba, Singular trajectories and their role in control theory. Mathématiques
& Applications, vol. 40 (Springer, Paris 2003)

4. A. Bressan, A. Piccoli, Introduction to the Mathematical Theory of Control, American Institute
of Mathematical Sciences (2007)

5. S. Davis, G.D. Yancopoulos, The angiopoietins: Yin and Yang in angiogenesis. Cur. Top.
Microbio. Immun. 237, 173–185 (1999)

6. M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy, Lecture Notes in
Biomathematics, vol. 30 (Springer, NewYork 1979)

7. A. Ergun, K. Camphausen, L.M. Wein, Optimal scheduling of radiotherapy and angiogenic
inhibitors, Bull. Math. Biol. 65, 407–424 (2003)

8. J. Folkman, Tumor angiogenesis: therapeutic implications. New Engl. J. Med. 295, 1182–1196
(1971)

9. J. Folkman, Antiangiogenesis: new concept for therapy of solid tumors, Ann. Surg. 175,
409–416 (1972)

10. J. Folkman, M. Klagsburn, Angiogenic factors. Science 235, 442–447 (1987)
11. U. Forys, Y. Keifetz, Y. Kogan, Critical-point analysis for three-variable cancer angiogenesis

models. Math. Biosci. Eng. 2, 511–525 (2005)
12. R.A. Gatenby, A.S. Silva, R.J. Gillies, B.R. Frieden, Adaptive therapy. Canc. Res. 69,

4894–4903 (2009)
13. J.H. Goldie, Drug resistance in cancer: a perspective. Canc. Meta. Rev. 20, 63–68 (2001)
14. J.H. Goldie, A. Coldman, Drug Resistance in Cancer (Cambridge University Press, Cambridge

1998)



332 U. Ledzewicz and H. Schättler

15. P. Hahnfeldt, L.Hlatky, Cell resensitization during protracted dosing of heterogeneous cell
populations. Radiat. Res. 150, 681–687 (1998)

16. P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky, Tumor development under angiogenic
signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy.
Can. Res. 59, 4770–4775 (1999)

17. P. Hahnfeldt, J. Folkman, L. Hlatky, Minimizing long-term burden: the logic for metronomic
chemotherapy dosing and its angiogenic basis. J. Theo. Biol. 220, 545–554 (2003)

18. D. Hanahan, G. Bergers, E. Bergsland, Less is more, regularly: metronomic dosing of cytotoxic
drugs can target tumor angiogenesis in mice. J. Clin. Invest. 105, 1045–1047 (2000)

19. R.K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for
combination therapy. Nat. Med., 7, 987–989 (2001)

20. R.K. Jain, L.L. Munn, Vascular normalization as a rationale for combining chemotherapy with
antiangiogenic agents, Princ. Pract. Oncol. 21, 1–7 (2007)

21. B. Kamen, E. Rubin, J. Aisner, E. Glatstein, High-time chemotherapy or high time for low
dose? J. Clin. Oncol. 18, Editorial, 2935–2937 (2000)

22. R.S. Kerbel, Tumor angiogenesis: past, present and near future, Carcinogensis, 21, 505–515
(2000)

23. T.J. Kindt, B.A. Osborne, R.A. Goldsby, Kuby Immunology (W.H. Freeman, New York 2006)
24. M. Kimmel, A. Swierniak, Control theory approach to cancer chemotherapy: benefiting from

phase dependence and overcoming drug resistance, in Tutorials in Mathematical Biosciences
III: Cell Cycle, Proliferation, and Cancer. Lecture Notes in Mathematics, vol. 1872 (Springer,
Newyork, 2006), pp. 185–221

25. M. Klagsburn, S. Soker, VEGF/VPF: the angiogenesis factor found?. Curr. Biol. 3, 699–702,
(1993)

26. G. Klement, S. Baruchel, , Rak, J., Man, S., Clark, K., Hicklin, D.J., Bohlen, P., Kerbel,
R.S.: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces
sustained tumor regression without overt toxicity, J. Clin. Invest. 105, R15–R24 (2000)

27. V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S Perelson, Nonlinear dynamics of immuno-
genic tumors: parameter estimation and global bifurcation analysis. Bul. Math. Biol. 56,
295–321 (1994)

28. U. Ledzewicz, K. Bratton, H. Schättler, A 3-compartment model for chemotherapy of
heterogeneous tumor populations. Acta Appl. Matem. (2014) doi: 10.1007/s10440-014-9952-6

29. U. Ledzewicz, M.S. Faraji Mosalman, H. Schättler, Optimal controls for a mathematical model
of tumor-immune interactions under targeted chemotherapy with immune boost, Discr. Cont.
Dyn. Syst. Ser. B 18, 1031–1051 (2013)

30. U. Ledzewicz, A. d’Onofrio, H. Schättler, Tumor development under combination treat-
ments with anti-angiogenic therapies. in Mathematical Methods and Models in Biomedicine
(Springer, NewYork, 2012), pp. 311–337

31. U.Ledzewicz, J. Marriott, H. Maurer, H. Schättler, Realizable protocols for optimal admin-
istration of drugs in mathematical models for novel cancer treatments, Math. Med. Biol. 27,
157–179, (2010).

32. U. Ledzewicz, M. Naghnaeian, H. Schättler, Optimal response to chemotherapy for a mathe-
matical model of tumor-immune dynamics. J. Math. Biol. 64, 557–577 (2012)

33. U. Ledzewicz, H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer
chemotherapy. J. Optim. Th. Appl. 114, 609–637 (2002)

34. U. Ledzewicz, H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy.
J. Biol. Syst. 10, 183–206 (2002)

35. U. Ledzewicz, H. Schättler, Optimal control for a bilinear model with recruiting agent in cancer
chemotherapy, Proc. of the 42nd IEEE Conference on Decision and Control (CDC), Maui,
Hawaii, 2762–2767 (2003)

36. U. Ledzewicz, H. Schättler, The influence of PK/PD on the structure of optimal control in
cancer chemotherapy models, Math. Biosci. Engr. 2, 561–578 (2005)

http://dx.doi.org/10.1007/s10440-014-9952-6


Optimal Control of Anticancer Therapies 333

37. U. Ledzewicz, H. Schättler, Drug resistance in cancer chemotherapy as an optimal control
problem, Discr. Cont. Dyn. Syst. Ser. B, 6, 129–150 (2006)

38. U. Ledzewicz, H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal control
problem. SIAM J. Contr. Optim. 46, 1052–1079 (2007)

39. U. Ledzewicz, H. Schättler, Optimal and suboptimal protocols for a class of mathematical
models of tumor anti-angiogenesis. J. of Theo. Biol. 252, 295–312, (2008)

40. U. Ledzewicz, H. Schättler, Multi-input optimal control problems for combined tumor anti-
angiogenic and radiotherapy treatments. J. of Optim. Th. Appl. 153, 195–224 (2012)

41. U. Ledzewicz, H. Schättler, M. Reisi Gahrooi, S. Mahmoudian Dehkordi, On the MTD
paradigm and optimal control for combination cancer chemotherapy. Math. Biosci. Engr. 10,
803–819 (2013)

42. L.A. Loeb, A mutator phenotype in cancer. Canc. Res. 61, 3230–3239 (2001)
43. R. Martin, K.L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy (World

Scientific Publishers, Singapore 1994)
44. L. Norton, R. Simon, The Norton-Simon hypothesis revisited. Canc. Treat. Rep. 70, 163–169

(1986)
45. A. d’Onofrio, A general framework for modelling tumor-immune system competition and

immunotherapy: Mathematical analysis and biomedial inferences. Phys. D 208, 202–235,
(2005)

46. A. d’Onofrio, Rapidly acting antitumoral antiangiogenic therapies. Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 76, 031920 (2007)

47. A. d’Onofrio, A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and
extensions of the model by Hahnfeldt et al., Math. Biosci. 191, 159–184 (2004)

48. A. d’Onofrio, A. Gandolfi, The response to antiangiogenic anticancer drugs that inhibit
endothelial cell proliferation. Appl. Math. and Comp. 181, 1155–1162 (2006)

49. A. d’Onofrio, A. Gandolfi, A family of models of angiogenesis and anti-angiogenesis anti-
cancer therapy. Math. Med. Biol., 26, 63–95 (2009)

50. A. d’Onofrio, A. Gandolfi, Chemotherapy of vascularised tumours: role of vessel density and
the effect of vascular “pruning”. J. Theo. Biol. 264, 253–265, (2010)

51. A. d’Onofrio, A. Gandolfi, A. Rocca, The dynamics of tumour-vasculature interaction suggests
low-dose, time-dense antiangiogenic schedulings. Cell Prolif., 42, 317–329, (2009)

52. A. d’Onofrio, U. Ledzewicz, H. Maurer, H. Schättler, On optimal delivery of combination
therapy for tumors. Math. Biosci., 222, 13–26 (2009)

53. A. d’Onofrio, U. Ledzewicz, H. Schättler, On the dynamics of tumor immune system
interactions and combined chemo- and immunotherapy, in: New Challenges for Cancer
Systems Biomedicine eds. by A. d’Onofrio, P. Cerrai, A Gandolfi, vol. 1 (SIMAI Springer
series, 2012). pp. 249–266

54. D. Pardoll, Does the immune system see tumors as foreign or self? Ann. Rev. Immun. 21,
807–839 (2003)

55. E. Pasquier, U. Ledzewicz, Perspective on “More is not necessarily better”: Metronomic
Chemotherapy. Newslet. Soc. Math. Biol. 26(2), 9–10, (2013)

56. E. Pasquier, M. Kavallaris, N. André, Metronomic chemotherapy: new rationale for new
directions. Nat. Rev.jClin. Onc. 7, 455–465 (2010)

57. K. Pietras, D. Hanahan, A multi-targeted, metronomic and maximum tolerated dose “chemo-
switch” regimen is antiangiogenic, producing objective responses and survival benefit in a
mouse model of cancer. J. Clin. Onc. 23, 939–952 (2005)

58. J. Poleszczuk, U. Forys, Derivation of the Hahnfeldt et al. model (1999) revisited, Proceedings
of the 16th Nat. Conf. on Applications of Mathematics in Biology and Medicine, Krynica,
Poland 87–92 (2010)

59. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical
Theory of Optimal Processes (MacMillan, New York 1964)

60. H. Schättler, U. Ledzewicz, B. Cardwell, Robustness of optimal controls for a class of
mathematical models for tumor anti-angiogenesis. Math. Biosci. Engr. 8, 355–369 (2011)

61. H. Schättler, U. Ledzewicz: Geometric Optimal Control (Springer, NewYork 2012)



334 U. Ledzewicz and H. Schättler

62. H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi, M. Reisi Gahrooi, A geometric analysis
of bang-bang extremals in optimal control problems for combination cancer chemotherapy,
Proc. of the 51st IEEE Conf. on Decision and Control, Maui, Hawaii, 7691–7696, (2012)

63. N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour.
Biophys. 24, 917–923 (1980)

64. G.W. Swan, Role of optimal control in cancer chemotherapy. Math. Biosci., 101, 237–284
(1990)

65. J.B. Swann, M.J. Smyth, Immune surveillance of tumors. J. Clin. Invest. 117 1137–1146,
(2007)

66. A. Swierniak, Optimal treatment protocols in leukemia-modelling the proliferation cycle, Proc.
of the 12th IMACS World Congress, Paris, vol. 4, 170–172 (1988)

67. A. Swierniak, Cell cycle as an object of control, J. Biol. Syst. 3, 41–54 (1995)
68. A. Swierniak, Direct and indirect control of cancer populations. Bul. Pol. Acad. Sci. Techn.

Sci. 56, 367–378 (2008)
69. A. Swierniak, U. Ledzewicz, H. Schättler, Optimal control for a class of compartmental models

in cancer chemotherapy. Int. J. Appl. Math. Comp. Sci. 13, 357–368 (2003)
70. A. Swierniak, A. d’Onofrio, A. Gandolfi, Optimal control problems related to tumor angiogen-

esis. Proc. IEEE-IECON’2006, 667–681 (2006)
71. A. Swierniak, J. Smieja, Cancer chemotherapy optimization under evolving drug resistance.

Nonlin. Ana. 47, 375–386 (2000)
72. H.P. de Vladar, J.A. González, Dynamic response of cancer under the influence of immunolog-

ical activity and therapy. J. Theo. Biol. 227, 335–348 (2004)


	Preface
	Contents
	Part I Cancer Onset and Early Growth
	Modeling Spatial Effects in Carcinogenesis: Stochastic and Deterministic Reaction-Diffusion
	1 Introduction
	2 Background on Patterns and Carcinogenesis
	2.1 Turing Pattern Formation
	2.2 Field Theory of Carcinogenesis 
	2.3 The AAH-BAC: Adenocarcinoma Sequence in Lung Cancer

	3 Reaction-Diffusion Model of Early Carcinogenesis
	3.1 Hypotheses of the Deterministic Model
	3.2 Conditions for Turing Instability
	3.3 Perturbation of the Spatially Homogeneous Steady State
	3.4 Spike Instability in the Deterministic Model

	4 Stochastic Version of the Model
	4.1 Comparison of the Spatial Model in the Deterministic and Stochastic Case
	4.2 Behavior of the Model Without Diffusion

	5 Discussion
	5.1 Role of Stochastic Effects
	5.2 Cooperativity Condition and Communication of Cancer Cells
	5.3 More Models

	References

	Conservation Laws in Cancer Modeling
	1 Introduction
	2 Tumor Cords and the Doubly Constrained Boundary Conditions
	3 What Kind of a Fluid Can the ``Cell Fluid'' Be? A Model for Bingham-Like Spheroids
	3.1 Stage I
	3.2 Stage II
	3.3 Stage III
	3.4 Stage IV

	4 Recent Models for Multicomponent Systems
	4.1 Gliomas Invasion and Angiogenesis: Diffusion Driven Processes
	4.2 The Anti-angiogenic Role of Macrophages During Cancer Growth

	5 Conclusions
	References

	Avascular Tumor Growth Modelling: Physical Insights to Skin Cancer
	1 Introduction
	2 Historical Overview
	2.1 Continuous Models
	Global Mass Balance and Concept of Dormant State
	Homogeneous Hydrodynamic Models
	Hydrodynamic Instabilities
	Influence of Mechanical Stresses and Elastic Models
	Stochastic Models

	2.2 Discrete Models

	3 Multiphase Models
	3.1 Conservation of Mass
	3.2 Mechanical Balance
	Variational Principle

	3.3 Two-Phase Mixture
	3.4 Mechanical Interactions
	3.5 Exchange Between Components
	Influence of Nutrients on Proliferation
	Consumption of Nutrients
	Influence of Mechanical Stress on the Proliferation
	Growth Inhibitors


	4 Contour Irregularity
	4.1 Mixture Model in Thin Geometry
	4.2 Lubrication Method

	5 Numerical Results
	6 Phase Separation in Biology
	7 Spinodal Decomposition in Multiphase Models
	7.1 Analysis of the Equations

	8 Simulations
	9 Conclusion
	References


	Part II Tumor and Inter-Cellular Interactions
	A Cell Population Model Structured by Cell Age Incorporating Cell–Cell Adhesion
	1 Introduction
	2 Abstract Results
	3 The Problem in L1((0, ∞);BUC(k)(RN))
	3.1 Preliminaries
	3.2 Stationary Solution of (11)–(12)
	3.3 Local Existence
	3.4 Equation for P
	3.5 Method of Characteristics, Leading to Regularity and Positivity
	3.6 Positivity and Boundedness
	3.7 Global Existence

	4 Local Stability for the Problem (11)–(13) in L1((0, ∞);L2(RN))
	4.1 Existence of Solutions
	4.2 Local Asymptotic Stability in Y2

	5 Simulations
	Summary
	References

	A General Framework for Multiscale Modelingof Tumor–Immune System Interactions
	1 Introduction
	2 Biological Background
	Humoral Immunity
	Cellular Response
	Tumor—Immune System Interaction
	2.1 Mathematical Modeling of the Tumor-Immune System Interactions

	3 Active Particle Systems
	3.1 Modeling Complex Systems: Challenges and Perspectives
	3.2 Mesoscopic Models in the KTAP Framework

	4 Macroscopic Models of Tumor–Immune System Interaction
	5 General Modeling Strategy
	6 Microscopic Scale: Individually-Based Models
	7 Mesoscopic model
	8 Micro–Macro Links
	9 Concluding Remarks
	References

	The Power of the Tumor Microenvironment: A Systemic Approach for a Systemic Disease
	1 Introduction
	2 A Model of Angiogenesis-Dependent Tumor Growth
	3 Immune Predation in the Dynamic Tumor Microenvironment
	4 Immune-Mediated Tumor Stimulation via the Dynamic Tumor Microenvironment
	5 Nutrient Availability in the Tumor Microenvironment
	6 Nutrient Availability and Tumor Heterogeneity
	7 Therapeutic Implications
	Grant Support
	References


	Part III Anti-Tumor Therapies
	Modeling Immune-Mediated Tumor Growth and Treatment
	1 Introduction
	2 The Immune Response as One Population of Effector Cells
	2.1 The Immune Response and Chemotherapy

	3 The Innate and Adaptive Immune Response
	3.1 The dePillis–Radunskaya Law
	3.2 Adding a Spatial Component: Agent Based Models
	3.2.1 Hybrid PDE–CA Model Overview
	Spatial Simulations: Tumor Growth, No Immune System
	Tumor Growth with the Immune System
	Lymphocyte Infiltration


	4 Modeling Immunotherapies
	4.1 The Kinetics of the Immune Response to Peptide Vaccines: Dose Scheduling
	4.2 Dendritic Cell Vaccines
	4.3 Monoclonal Antibody Therapy
	4.3.1 Clinical Trial Simulations for mAb Therapy and Chemotherapy


	5 Concluding Remarks
	References

	A Hybrid Multiscale Approach in Cancer Modellingand Treatment Prediction
	1 Introduction
	2 Multiscale Mathematical Model: Growth and Progression
	2.1 Intracellular Dynamics: Cell-Cycle Model
	2.2 Macroscopic Effects: Oxygen Dynamics and Hypoxia
	2.3 Cancer Growth and Progression: Cellular Automaton Model

	3 Mathematical Model: Effects of Anticancer Treatments
	3.1 Modelling the Effects of Cell-Cycle-SpecificChemotherapy
	3.2 Modelling the Effects of Radiation Therapy
	3.3 Modelling the Effects of Combination Therapy

	4 Conclusions
	References

	Deterministic Mathematical Modelling for Cancer Chronotherapeutics: Cell Population Dynamics and Treatment Optimization
	1 Introduction
	2 Circadian Clocks: Biology and Models
	2.1 Short Historical Background
	2.2 Modelling Biological Clocks
	2.3 Influence of Circadian Rhythms on Proliferation
	2.4 Differences Between Healthy and Diseased Clocks?

	3 Using circadian Chronobiology for Cancer Therapeutics
	3.1 The Case of Cancer in Therapeutics
	3.2 Pitfalls Encountered in Cancer Therapeutics
	3.3 An Optimization Problem Under Constraints

	4 Drug Delivery Optimization and Chronotherapeutics
	4.1 Molecular Pharmacokinetics-Pharmacodynamics
	4.2 A Simple ODE Model Based on a SimplifyingAssumption
	4.3 Numerical Optimization of Drug Delivery

	5 Cell Cycle Modelling Using PDEs in Cell Populations
	5.1 An Age-Structured McKendrick Model with Periodic Control
	5.2 Another Optimization Problem Under ToxicityConstraints
	5.3 Possible Extensions of or Alternatives to the McKendrick Model

	6 Future prospects
	6.1 Need for More knowledge on Cell Cycle Control Mechanisms
	6.2 Cancer Chronotherapeutics and the Immune System
	6.3 Taking Drug Resistance Into Account

	Conclusion
	References

	Tumor Microenvironment and Anticancer Therapies:An Optimal Control Approach
	1 Introduction
	2 Optimal Control–A Brief Introduction
	2.1 Control Affine Systems as Mathematical Models for Biomedical Models
	2.2 Necessary Conditions for Optimality: The Pontryagin Maximum Principle
	2.3 Bang-Bang and Singular Controls
	2.4 The Legendre-Clebsch Condition for Optimality of Singular Controls
	2.5 Sufficient Conditions for Optimality

	3 Compartmental Models for Cancer Chemotherapy
	3.1 A General Bilinear Model
	3.2 Cell-Cycle-Specific Models for Homogeneous Tumor Populations
	3.3 Compartmental Models for Heterogeneous Tumor Populations

	4 Mathematical Models for Antiangiogenic Treatments
	4.1 Synthesis of Optimal Controlled Trajectories for the Monotherapy Problem
	4.2 Robustness Properties and Realizable Suboptimal Protocols
	4.3 Combination of Antiangiogenic and Chemotherapy

	5 Tumor-Immune System Interactions
	5.1 Multi-stability and Regions of Attractions
	5.2 Optimal Control for Tumor-Immune Interactions with Strongly Targeted Drugs

	6 Conclusion
	References



