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1           Introduction 

 There is substantial evidence for dysregulation of GABA neurotransmission 
in the cortex of patients with schizophrenia. The most replicated fi nding con-
cerns the decrease in expression levels of the rate-limiting enzyme glutamic acid 
decarboxylase (GAD). From a functional perspective, these abnormalities have 
been linked to electrophysiological and cognitive dysfunctions. From a mechanistic 
point of view, recent evidence has been provided linking GAD abnormalities to 
glutamatergic dysregulation and suggesting that oxidative status is a key player 
between glutamatergic phenomena (namely, NMDA hypofunction) and GAD 
downregulation. Therefore, in parallel with other neurochemical systems, GABA, 
and more specifi cally GAD, abnormalities, provide an interesting framework to 
understand the potential role of oxidative phenomena in the pathogenesis of psychi-
atric disorders.  

2     Overview of GABA Neurotransmission 

 In GABAergic neurons, the synthesis of GABA (see section “Glutamic acid decar-
boxylases”), an inhibitory neurotransmitter, occurs in the cytosol, and GABA is 
transported in the synaptic vesicles by the vesicular GABA transporter (vGAT). At 
the nerve terminal, an action potential triggers, in a Ca 2+ -dependent manner, vesicu-
lar GABA release (see section “GABA interneurons”) (Gonzalez-Burgos et al. 
 2011 ). In cortical GABA neurons, released GABA induces effects that are mediated 
by ionotropic (GABA A/C ) or metabotropic receptors. The GABA A  receptors are het-
eropentameric structures composed from a repertoire of 19 subunits that have dis-
tinct affi nities for GABA and that determine functional properties of the GABA 
receptor (Uusi-Oukari and Korpi  2010 ). GABA B  receptors, which are metabotropic 
receptors coupled to G i/o  GTP-binding protein, play a role in the postsynaptic effects 
of GABA in GABAergic neurons (Olah et al.  2009 ). Finally, plasma membrane 
GABA transporters (GATs) reuptake GABA to terminate the effect of GABA. In the 
central nervous system (CNS), GABA uptake is mainly mediated by GAT1. GAT1 
translocates GABA from neuronal cells to glial cells. Other transporters, GAT2 and 
GAT3, are also found in the brain (Fig.  1 ) (Gonzalez-Burgos et al.  2011 ).  

2.1     Glutamic Acid Decarboxylases 

 GABA synthesis, from glutamate, is regulated by the enzyme glutamic acid decar-
boxylase (GAD). GABA plays a crucial role in the maintenance of excitatory- 
inhibitory balance of the CNS (Li et al.  2008 ). GABA is the only neurotransmitter 
being synthesized by two different enzymes, namely, the two molecular forms of 
glutamic acid decarboxylase, the 67 kDa (GAD67) and 65 kDa forms of GAD 
(GAD65). 
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 GAD67 is the main enzyme responsible for most (>90 %) GABA synthesis from 
glutamate in the central nervous system (Lewis et al.  2005 ) and is used as a marker 
for GABA neurons. GAD67 is the product of the GAD1 gene, located on 2q31.1. 
Knock out of GAD67 provokes, besides a drastic reduction in GABA levels, a cleft 
palate (which suggests a role in developmental processes besides conventional neu-
rotransmission (Maddox and Condie  2001 )) and neonatal lethality. 

 GAD67 can exist in its native soluble form or bound to membranes, possibly 
through possible heterodimerization with GAD65 or through other anchoring 
mechanisms (Kanaani et al.  2010 ). Cytoplasmic GABA is involved in functions not 
directly related to neurotransmission, and the different pools of GABA are differen-
tially regulated during resting state, exocytosis, or reversal of membrane uptake 
processes (Waagepetersen et al.  2001 ). 

 Conversely, GAD65 is activity dependent, tightly associated to synaptic vesicles, 
and synthesizes GABA for exocytotic release (Fukuda et al.  1998 ; Soghomonian 
and Martin  1998 ). 

  Fig. 1    Scheme of a parvalbumin (PV)-positive GABA neuron after Ca 2+ -dependent GABA release. 
GAD65 and GAD67 promote GABA synthesis in the cytosol and synaptic vesicules uptake newly 
synthesized GABA via vesicular GABA transporter (vGAT). Vesicule fusion with the presynaptic 
membrane releases GABA and increases GABA concentration in the synaptic cleft. Thus, GABA 
links and activates postsynaptic GABA A  receptors. Presynaptic GAT1, localized in neuronal and 
glial membranes, reuptakes GABA, regulating GABA concentration in the synaptic cleft. The 
transporters KCC2 and NKCC1 uptake and extrude chloride, regulating the chloride current pro-
duced by GABA A  receptor activation (Figure from Gonzalez-Burgos et al.  2011 )       
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 It has been demonstrated that GAD67 mRNA expression increases with the 
development of CNS (Greif et al.  1991 ; Thuesen and Lohmann  1992 ; Lundgren 
et al.  1997 ; Hyde et al.  2011 ) and decreases with aging (Duncan and Wheeler  1999 ; 
Gutierrez et al.  1994 ; Shetty and Turner  1998 ).  

2.2     GABA Interneurons 

 GABAergic synapses are the key inhibitory synapses within the brain. GABA inter-
neurons are associated with information processing in the cerebral cortex and regu-
late pyramidal neuron fi ring rates (McBain and Fisahn  2001 ). GABA interneurons 
coexpress different proteins and can be distinguished by expression of these pro-
teins: reelin, parvalbumin (PV), and calretinin (Lieberman et al.  2008 ), as well as by 
other morphologic and functional criteria, which have been recently reviewed in the 
context of neurodevelopmental disorders (Rossignol  2011 ). 

 PV-positive basket cells synapse on the perisomatic and proximal dendrite region 
of their target pyramidal cells. Their electrophysiological properties and divergent 
projections enable them to provide high-frequency inhibition to their target pyrami-
dal cells. They contribute signifi cantly to the generation of the functionally impor-
tant fast cortical gamma frequencies. 

 Chandelier cells are also PV-positive GABA interneurons, able to sustain high- 
frequency inhibition. They target the axon initial segment, with axoaxonic synapses 
displaying a characteristic morphology of vertically arranged cartridges. Intriguingly, 
because of locally high concentration of chloride at the axon initial segment on 
which they synapse, they have been suggested to trigger depolarization in some, but 
not all contexts (Woodruff et al.  2010 ). 

 Somatostatin-positive interneurons include Martinotti and non-Martinotti cells. 
They are diversely co-labelled for calretinin and calbindin and have variable mor-
phology and targets. Martinotti cells contact multiple pyramidal cells at the distal 
dendritic level (a feature they share with the reelin-/calbindin-positive, somatosta-
tin/vasoactive intestinal peptide-negative neurogliaform cells) in adjacent cortical 
columns, thereby exerting control over dendritic summation (Rossignol  2011 ). 

 Reelin, which is a secretory glycoprotein, regulates neural migration and is 
implicated in synaptic plasticity via its release from GABAergic terminals and bind-
ing to integrin receptors. During postnatal development and adulthood, reelin is 
located in GABAergic interneurons, where it modulates N-methyl-D-aspartate 
receptor (NMDAR) activity and synaptic plasticity (Beffert et al.  2005 ). PV and 
calretinin are calcium-binding proteins that contribute to intracellular calcium- 
signaling signaling pathways. PV interneurons are implicated in the generation of 
gamma oscillations, which regulate recall of information for working memory 
(Bartos et al.  2007 ). The glutamatergic input from all GABA-releasing neurons in 
cortex projects to PV interneurons (Lewis et al.  2005 ; Gulyas et al.  1999 ). During 
GABA release (see section “Overview of GABA neurotransmission”), PV (and, for 
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that matter, other calcium-binding proteins) acts as a Ca 2+  buffer: it binds residual 
Ca 2+  after its entry and activation of the Ca 2+  sensor (Gonzalez-Burgos et al.  2011 ), 
thereby limiting the duration of the exocytotic phase and enabling the fast inhibition 
typical of PV-containing interneurons, basket, and chandelier cells.   

3     GABA Neurotransmission in Neuropathological Conditions 

3.1     Postmortem Studies 

 In 1995, Akbarian et al. published the fi rst report of decreased GAD67 mRNA in the 
cortex of patients with schizophrenia, with a consistent decrease of ≈30 % across 
cortical layers III–VI peaking at – 40–50 % in layers I–II (Scottish Schizophrenia 
Research Group  2000 ). As of 2006, there were 13 published reports on GAD65/67 
levels in schizophrenia or bipolar disorder, 11 of which showed decreased mRNA 
or protein levels (Akbarian and Huang  2006 ). Subsequent work has further vali-
dated and expanded these observations (Veldic et al.  2005 ; Bernstein et al.  2007 ; 
Woo et al.  2007 ,  2008 ; Bullock et al.  2008 ; Eggan et al.  2008 ; Hashimoto et al. 
 2008a ,  b ; Thompson et al.  2009 ; Curley et al.  2011 ; Konradi et al.  2011 ; Thompson 
Ray et al.  2011 ; Benes et al.  2007 ; Huang and Akbarian  2007 ; Moyer et al.  2012 ). 

 There was one report of increased GAD immunoreactive levels in parahippo-
campal regions (subiculum and parahippocampal gyrus), which correlated with dis-
ease duration (Schreiber et al.  2011 ). 

 Anatomically, decreased transcript levels have been reported in different cortical 
regions (prefrontal dorsolateral cortex (Brodmann area (BA) 9) (Guidotti et al. 
 2000 ), anterior cingulate cortex, primary motor and visual cortices (Hashimoto 
et al.  2008b ), orbitofrontal cortex (Thompson et al.  2009 ), primary auditory cortex 
(Woo et al.  2007 ), caudate and accumbens nuclei (Thompson et al.  2009 ), and cer-
ebellum (Guidotti et al.  2000 ). 

 Different techniques have provided convergent results: Hashimoto et al. used a 
combined microarray/reverse transcriptase-quantitative polymerase chain reaction 
(RT-qPCR) approach which yielded convergent (and correlated) decreases of −10 % 
transcript levels (RT-qPCR), confi rming a similar result of the same group, and 
1.33-fold decrease (microarray) (Hashimoto et al.  2008a ). 

 In another paper, the same group studied the decrease pattern across four differ-
ent cortical regions (dorsolateral prefrontal cortex, anterior cingulate cortex, pri-
mary motor cortex, and primary visual cortex) and reported a homogeneous decrease 
in the 20–30 % range (Hashimoto et al.  2008b ). 

 The use of microarrays has provided a much more detailed insight on the signal-
ing network associated with GAD67 transcriptional decrease, e.g., GABA-A recep-
tor subunits, GAT, NMDA receptor subunits, to name a few. In an infl uential article, 
Benes et al. combined laser microdissection of hippocampal circonvolutions to pro-
vide a comparative analysis of transcription factors and cell cycle molecules in the 
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stratum oriens of CA2/3 in patients with schizophrenia and bipolar disorder. Indeed, 
while GAD67 mRNA was decreased in the two conditions, the cell signaling/tran-
scriptional pathways appeared strikingly dissimilar, with an increase in cyclin D2 
levels in schizophrenia and a decrease in bipolar disorder, for instance. Although 
published data often report on mRNA levels (microarray, in situ hybridization, 
RT-qPCR), decreased protein levels have also been published. Guidotti et al. showed 
a 40–50 % decrease in GAD67 protein levels (prefrontal cortex Brodmann area 9 
and cerebellar hemisphere), with a much more pronounced mRNA decrease in the 
same cohort. While there was a robust positive correlation between reelin and 
GAD67 mRNA levels in controls, this correlation was lost in patients with schizo-
phrenia (Guidotti et al.  2000 ). The results are not always concordant between the 
two techniques, as exemplifi ed in an earlier report of increased GAD65/67 mRNA 
levels in the dorsolateral prefrontal and occipital cortices, contrasting with normal 
protein levels in the same regions (Dracheva et al.  2004 ). 

 Although less generally studied, GAD65 signal has also been reported, with a 
general trend for GAD67 correlation and decreased levels (Bullock et al.  2008 ; 
Benes et al.  2007 ; Fatemi et al.  2005 ). 

 Generally, larger decreases are reported when GAD levels are assayed in a more 
restricted fashion, whether at the anatomical or cellular level. For instance, hippo-
campal GAD67 levels were found to be severely decreased (ranges −2.8/−9.5-fold) 
compared to controls when measured on laser microdissected strata, whereas more 
modest decreases were reported on homogenates of the same region (Benes et al. 
 2007 ). Similarly, more pronounced effects were reported in neurons co-expressing 
PV (Curley et al.  2011 ) or the NMDA subunit NR2A (Woo et al.  2004 ,  2008 ). 

 Interestingly, complementing previous results showing decreased GAD67 neu-
ronal density in orbitofrontal cortex, it has been recently reported that the density of 
interstitial white matter neurons expressing GAD65/67 mRNA was indeed increased 
in adjacent white matter, adding migration abnormalities to the potential mecha-
nisms of altered GAD expression (Joshi et al.  2012 ).  

3.2     Preclinical Models 

 A signifi cant number of studies have assessed the same neurochemical pathways in 
preclinical models of schizophrenia or have directly examined more specifi c mecha-
nistic aspects such as the impact of DNA methylation (or more broadly epigenetic 
aspects). 

 One of the fi rst neurodevelopmental models of schizophrenia was obtained after 
neonatal ventral hippocampus lesion, and, as expected, it gave rise to decreased 
(50 %) GAD67 mRNA levels (Lipska et al.  2003 ). 

 Using the methylazoxymethanol acetate (MAM) gestational injection model, 
also intended to mimic neurodevelopmental aspects of schizophrenia, a signifi cant 
decrease in the density of PV-positive neurons has been reported, while GAD67 
decreases did not reach statistical signifi cance; interestingly, there was a loss of 
medial prefrontal cortex theta and gamma frequencies elicited by fear conditioning 
in the MAM group (Lodge et al.  2009 ). 
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 A large “family” of animal schizophrenia models relies on the induction of ges-
tational or early postnatal infl ammation designed to mimic some well-known epide-
miological aspects of the disease such as an excess of winter/spring births, increased 
prevalence after infl uenza epidemics, and increased gestational antibody titers 
 retrospectively documented in mothers of future schizophrenic patients. Currently 
two such models are in wide use and rely, respectively, on the injection of a gram- 
negative bacterial wall component, lipopolysaccharide (LPS), and 
polyinosinic:polycytidylic acid (poly IC), a synthetic ribonucleic. Both molecules 
engage innate immunity: poly IC is a Toll-like receptor 3 (TLR3) and LPS a Toll- 
like receptor 4 (TLR4) ligand. 

 Prenatal injection of pregnant female Sprague Dawley rats with LPS induced a 
decrease of GAD67 immunoreactive cells in the dentate gyrus of the hippocampus 
at postnatal days 14 and 28 (Nouel et al.  2012 ). In one of the rare direct comparisons 
of the two protocols, Harvey and Boksa showed an increase in GAD67 cell number 
in the ventral stratum oriens of the hippocampal circonvolution CA1 in PD28 male 
mice prenatally (gestational day 9) treated with LPS and in PD28 female mice pre-
natally treated with poly IC (Harvey and Boksa  2012 ). 

 GAD67 immunoreactivity was, however, decreased by some 40 % by early prena-
tal (9.5 gestational days) (Soumiya et al.  2011 ). Other reports have pointed to a 
decrease in PV levels in the prefrontal cortex in a double hit model of schizophrenia 
(dominant-negative DISC1 transgenic mice x poly IC) (Ibi et al.  2010 ) or in hippo-
campal CA1 region (Ducharme et al.  2012 ); interestingly, the latter paper also dem-
onstrated a strong reduction in hippocampal theta rhythms. Overall, in spite of 
somewhat confl icting results, it seems that a number of GABAergic abnormalities can 
be elicited by the prenatal infl ammatory models currently validated and in wide use. 

 In another perspective, a number of authors have used the GAD67 response, and 
its robust reproducibility in humans, to directly test the glutamatergic, and more 
specifi cally the NMDA hypofunction, hypothesis of schizophrenia. 

 Postnatal injection of MK-801 to rat pups induced divergent responses with 
decreased PV levels in the anterior cingulate and decreased GAD67 levels in the 
somatosensory cortex, where PV levels were unchanged (Turner et al.  2010 ). In 
adult rats, daily injections of ketamine for 2 days was suffi cient to subacutely 
decrease GAD67- and PV-immunoreactive cells by  circa  40 % (Zhang et al.  2008 ), 
at odds with the acute effects of MK801, which, however, induced a diffuse decrease 
of PV levels (Romon et al.  2011 ). The comparative effects of single versus repeated 
phencyclidine (PCP) administration was studied in detail by Amitai et al. (Amitai 
et al.  2012 ). In all experimental conditions, there was a signifi cant decrease in 
GAD67 and PV levels, and chronic administration of clozapine provided a partial 
(GAD) or complete (PV) restoration. Apart from the pharmacological manipulations 
mentioned above, the most direct test of a relationship between NMDA hypofunc-
tion and GAD abnormalities has come from genetic ablation of some components of 
the NMDA receptor. Belforte et al. achieved selective elimination of the NR1 sub-
unit in cortical and hippocampal interneurons (Belforte et al.  2010 ). This very spe-
cifi c model mimicked the most salient aspects of schizophrenia  pathology including 
GAD67 and PV reduction in targeted, NR1-defi cient, cells. This effect was only 
observed when the NR1 subunit was ablated at an early age, thereby emphasizing 
the neurodevelopmental aspects of “hypoglutamatergic” insults.  
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3.3     Interventional Studies 

 Most of the subjects with psychiatric diseases whose brains were used in postmor-
tem studies were or had been receiving medication, most often antipsychotic treat-
ment, which raised questions about the origin (endogenous vs iatrogenic) of GAD 
decreases. To address this problem, some authors reported on animal interventional 
studies in parallel with their human postmortem results. Bullock et al. (Bullock 
et al.  2008 ) showed an augmentation of GAD65/67 levels by clozapine, whereas 
haloperidol decreased GAD65, but increased GAD67 levels. 

 In parallel with their postmortem study, Hashimoto et al. (Hashimoto et al. 
 2008a ) treated male macaque monkeys with haloperidol or olanzapine for >12 
months, achieving therapeutic blood drug levels. The two drugs were devoid of any 
effect on GAD67 mRNA levels. 

 In male Sprague Dawley rats, daily injections of haloperidol or clozapine 
increased GAD67 mRNA with concomitant protein increase only in the haloperidol 
group (Chertkow et al.  2006 ). 

 Overall, these results have confi rmed that GAD abnormalities are indeed related 
to the underlying pathological process and not to some medication effects.  

3.4     Clinical Aspects 

 The consequences of GABAergic disturbances in schizophrenia, and more relevant 
to the present chapter, the functional consequences of diffuse GAD downregulation, 
are generally thought to relate to the well-known cognitive disturbances, which are 
the defi ning feature of the disease. A large preclinical literature has consistently 
shown that GAD67-/PV-expressing interneurons of the cortex were critically 
involved in the generation of two specifi c electroencephalographic (EEG) rhythms, 
the theta and gamma bands (4–7 and 30–80 Hz, respectively). Gamma oscillations 
are associated with diverse cognitive functions such as perceptual binding, atten-
tion, arousal, object recognition, language perception, and executive function, some 
of which are highly relevant to schizophrenia disturbances (Herrmann et al.  2004 ). 
Optogenetic data have confi rmed that PV neurons where necessary and suffi cient to 
give rise to gamma rhythms, while the situation appears more complex for the gen-
eration of theta rhythms (Royer et al.  2012 ). While the notion that there is a mere 
gamma decrease in schizophrenia appears to be an oversimplifi cation, there is little 
doubt that the power and organization of this spectral band as well as others are 
disturbed in schizophrenia, another feature being an increase in theta frequencies 
and a defective theta suppression during sensory gating (Moran and Hong  2011 ). 
Overall, it can be hypothesized that GAD/PV disturbances in schizophrenia (and to 
some extent bipolar affective disorder) disrupt the function of basket and chandelier 
PV-positive interneurons giving rise to abnormalities in EEG spectra critically asso-
ciated with proper cognitive functioning. In the absence of suffi ciently specifi c 
pharmacological interventions, some empirical validation of this model could come 
from genetic association studies linking GAD polymorphisms to cognitive function 

J. Deslauriers and S. Grignon



459

or, more convincingly, to EEG analyses. Indeed, a recent report showed a signifi cant 
association of GAD1 polymorphisms with schizophrenia, epistasis with the 
catechol- O-methyl transferase val/met polymorphism (another signifi cant contribu-
tor to prefrontal function in schizophrenia), and contribution of a polymorphism in 
the putative promoter region of the GAD1 gene to GAD67 prefrontal transcript 
levels (Straub et al.  2007 ).   

4     Role of Oxidative Stress in GABA Neurotransmission 

 Subanesthetic doses of NMDAR antagonists, like phencyclidine and ketamine 
administered in adulthood, reproduce positive and negative symptoms of schizo-
phrenia in vivo. Thus, NMDAR antagonists are used for modeling schizophrenia 
(Javitt  2010 ). It has been shown that NMDAR antagonists induce a decrease in PV 
expression in GABAergic interneurons in rodents and nonhuman primates (Cochran 
et al.  2002 ,  2003 ; Keilhoff et al.  2004 ; Rujescu et al.  2006 ; Morrow et al.  2007 ). 
Indeed, PV interneurons are highly sensitive to NMDAR antagonists (Jones and 
Buhl  1993 ), which suggests that NMDARs are implicated in the control of basal 
synaptic activation in PV interneurons (Goldberg et al.  2003 ). Specifi cally, NMDAR 
subunits NR2A are expressed at higher levels in PV interneurons than in pyramidal 
neurons (Kinney et al.  2006 ) and NR2A antagonist NVP-AAM077 reduced GAD67 
expression (Kinney et al.  2006 ), which supports the role of NMDAR subunit NR2A 
in reduction of GAD67 levels. Furthermore, NMDAR antagonists increase reactive 
oxygen species (ROS) in vitro (Xia et al.  2002 ) and in vivo (Zuo et al.  2007 ) and, 
thus, induce an imbalance of redox status. Oxidative stress is implicated in the 
pathogenesis of schizophrenia through, among others things, a decrease in glutathi-
one (GSH) levels (Do et al.  2009 ). GSH, an important radical scavenger, is crucial 
for NMDAR activation, a redox-sensitive process (Lipton et al.  2002 ). We present 
hereafter a review of in vitro and in vivo studies that demonstrated the crucial role 
of oxidative stress on GAD67 expression and on PV interneurons via NMDAR 
hypofunction and its relevance to schizophrenia. 

4.1     In Vitro Studies 

 CNS oxygen toxicity has been associated with generation of ROS (Li et al.  2008 ), 
which attacks enzymes like GAD67. It has been demonstrated that primary rat hip-
pocampus neurons, exposed to prolonged hyperbaric oxygen treatment (HBO), show 
a decrease in GAD67 content, GAD activity, and intracellular GABA content (Li et al. 
 2008 ). As HBO exposure increases oxygen-free radicals and, then, induces oxidative 
stress, it has been suggested that the decrease in GAD67 expression is provoked by the 
increase of oxidative stress (Li et al.  2008 ). In fact, it has been reported that oxygen-
free radicals decrease GAD67 activity by disrupting their hydrosulfi de groups (−SH), 
which are essential for GAD67 activity (Satyanaran et al.  1985 ). 
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 In primary cortical neuronal cultures, NMDAR antagonists induced a reversible 
decrease in GAD67 and PV levels in PV interneurons (Kinney et al.  2006 ), while 
ketamine, a NMDAR antagonist, increased superoxide production and NADPH oxi-
dase subunit NOX2 expression in PV interneurons (Behrens et al.  2007 ). Furthermore, 
the superoxide production and the loss of PV and GAD67 immunoreactivity were 
prevented by treatment with apocynin, an inhibitor of NADPH oxidase activity 
(Behrens et al.  2007 ), thereby confi rming the pivotal role of oxidative stress between 
“PCP-like” antagonism of NMDA receptors and down-modulation of GAD67 levels. 

 While most of these results involve posttranscriptional functional modifi cations, 
transcriptional regulation of GAD67 also raises interesting questions. The notion of 
transcriptional repression in the CNS in situations of oxidative stress, if confi rmed, 
would stand in sharp contrast to what happens in the systemic compartment where 
oxidative stress upregulates GAD67 in an NFkB-dependent fashion (Choi et al. 
 2002 ). Among the signaling network associated with GAD67 downregulation, 
Daxx is well placed to achieve transcriptional repression. One other potential mech-
anism, given the robust evidence of epigenetic modulation of GAD67 transcription 
(Kundakovic et al.  2009 ), would be the redox modulation of DNA methylation of 
histone deacetylation.  

4.2     In Vivo Studies 

 Many studies have demonstrated that hyperoxia, in vivo, decreases GAD activity 
(Tunnicliff et al.  1973 ; Davis et al.  2001 ; Segerbo  1979 ; Hori  1982 ). A rise-and-fall 
dynamic pattern of GAD activity has been reported exposing rats to hyperbaric 
oxygen treatment (HBO) (Li et al.  2008 ). Indeed, in the hippocampus, GAD content 
increased gradually in the fi rst 15 min after exposure to HBO, but decreased from 
20 min onward after exposure, which correlated with the development of convul-
sions in rats. Furthermore, this effect on GAD content came from changes in GAD67 
expression, because GAD65 remained unchanged (Li et al.  2008 ). 

 Furthermore, it has been reported, in vivo, a decrease in PV and GAD67 immu-
noreactivity, following treatment with ketamine, in PV interneurons from mouse 
prefrontal cortex and an increase in superoxide production. Pretreatment of animals 
with apocynin, an inhibitor of NADPH oxidase (NOX) activity, prevented the 
ketamine- induced effects (Behrens et al.  2007 ). The effects were specifi c for the 
PV-interneuronal population, because other interneurons expressing the calcium- 
binding proteins calbindin (CB) and calretinin (CR) were unchanged by ketamine 
(Behrens et al.  2008 ). In Nox2-defi cient ( gp91   phox−/−  ) mice, ketamine did not induce 
an increase of superoxide production nor a loss of phenotype of PV interneurons, 
which suggests that the decrease in PV and GAD67 levels in PV interneurons is 
dependent on NOX and, thus, on oxidative stress (Behrens et al.  2008 ). 

 A decrease in GSH (glutathione) levels, which is associated with an increase of 
oxidative stress (Do et al.  2000 ), during development leads to a hypofunction of 
NMDARs in adulthood (Gysin et al.  2007 ; Tosic et al.  2006 ), and GABAergic neu-
rons are highly sensitive to oxidative stress (Lipton et al.  2002 ; Kohr et al.  1994 ; 
Volterra et al.  1994 ; Mustafa et al.  2007 ). Catalytic (GCLC) and modifi er (GCLM) 
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subunits of the glutamate cysteine ligase (GCL), the rate-limiting enzyme of GSH 
synthesis, have been associated with schizophrenia (Gysin et al.  2007 ; Tosic et al. 
 2006 ). It has been reported that the ventral hippocampus is vulnerable to redox 
dysregulation in GCLM knockout mice, which exhibit brain GSH defi cits (Steullet 
et al.  2010 ), whereas no effect was observed in dorsal hippocampus. Thus, PV inter-
neurons, but not CB or CR interneurons, were reduced in the ventral hippocampus 
of GCLM knockout mice, which suggests that oxidative stress-induced effects are 
specifi c to PV interneurons. The ventral hippocampus could be more vulnerable to 
oxidative stress because of its higher catecholamine concentration (Oleskevich et al. 
 1989 ; Gasbarri et al.  1997 ; Bjarkam et al.  2003 ), in line with the fact that reactive 
oxygen species (ROS) can be formed from auto-oxidation and catabolism of 
 catecholamines (Cadet and Brannock  1998 ). 

 Thus, a redox dysregulation, through a decrease in GSH levels and/or an increase 
in ROS production, leads to NADPH oxidase (NOX) activation, which triggers 
NMDAR antagonism; for instance, the N2RA subunit of NMDAR, which is sensitive 
to oxidative status, maintains the function of PV interneurons (Kinney et al.  2006 ). 
As a further consequence, NMDAR hypofunction would then induce a decrease in 
GABAergic markers, namely, GAD67 and PV (Fig.  2 ) (Do et al.  2009 ) and down-
stream disruption of PV interneuron functions as well as their EEG/cognitive corre-
lates, as discussed above.    

  Fig. 2    Link between oxidative stress and decreased GAD67 expression. Redox regulation, 
induced by a decrease in glutathione (GSH) levels or an increase in reactive oxygen species (ROS) 
production, leads to NMDA receptor antagonism through NR2A subunit. NMDA receptor antago-
nism is followed by an increase in NADPH oxidase (NOX) levels, increasing superoxide produc-
tion. Finally, there is a decrease in parvalbumin (PV) and the 67 kDa form of glutamic acid 
decarboxylase (GAD67), leading to a hypoactivity of GABA interneurons. The increase in super-
oxide production can also enhance ROS production through a positive feedback       
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5     Conclusion 

 GAD perturbations in severe mental disorders have been extensively replicated, 
making them the current neurochemical signature of these diseases. Extensive 
research has provided a better understanding of the upstream determinants and 
downstream consequences of these perturbations and suggested a prominent role of 
oxidative stress at the transcriptional as well as posttranscriptional level. As such, 
they constitute a privileged fi eld to ascertain how oxidative status impacts the patho-
physiology of psychiatric disorders.    
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