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1           Structure and Function of Mitochondria 

 Mitochondria, containing an inner and an outer plasma membrane, are very impor-
tant cellular organelles that generate adenosine triphosphate (ATP), the energy car-
rier in most mammalian cells, by oxidizing glucose and fatty acids. Acetyl-CoA is 
a key intermediate generated from the oxidation of glucose and fatty acids, and it 
enters the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle, in the 
mitochondrial matrix. The TCA cycle produces reduced fl avin adenine dinucleotide 
(FADH 2 ) and reduced nicotinamide adenine dinucleotide (NADH), which donate 
electrons to the electron transport chain (ETC) located in the inner mitochondrial 
membrane. The ETC is an essential part of mitochondria, and generation of energy 
in the form of ATP is its most important function. More than 90 % of energy needed 
in the cell to maintain its physiological activities is supplied by the ETC through 
oxidative phosphorylation (Bertram et al.  2006 ; Szewczyk and Wojtczak  2002 ). The 
ETC consists of fi ve multi-subunits of enzymes, i.e., complex I (NADH dehydroge-
nase), complex II (succinate dehydrogenase), complex III (cytochrome bc1 com-
plex), complex IV (cytochrome c oxidase), and complex V (ATP synthase) 
(Boekema and Braun  2007 ; Dudkina et al.  2005 ). While complexes I–IV participate 
in the generation of proton gradient (membrane potential) in the intermembrane 
space of mitochondria, complex V transports protons from intermembrane space to 
the mitochondrial matrix (Fig.  1 ). The generated proton gradient is used by ATP 
synthase to catalyze the phosphorylation of adenosine diphosphate (ADP) to 
ATP. Ubiquinone (also known as coenzyme Q10) and cytochrome c are the electron 
carriers of the ETC and help in the transfer of electrons between ETC complexes.  

 The ETC is also a main source of free radicals, i.e., reactive oxygen species 
(ROS), which have important roles in cell signaling and homeostasis (Cadenas and 
Davies  2000 ; Lenaz  2001 ). ROS generation is a by-product of proton cycling 
between ubiquinone, cytochromes b and c1, and iron–sulfur protein (Sugioka et al. 
 1988 ). Complexes I and III are the main sites of mitochondrial superoxide (O 2  − ) 
production (Barja  1999 ; Muller et al.  2004 ). While complex I releases superoxide 
exclusively into the mitochondrial matrix, complex III releases superoxide to both 
sides of the inner mitochondrial membrane, i.e., to the mitochondrial matrix and the 
intermembrane space (Muller et al.  2004 ). The superoxide radicals generated by 
complexes I and III are neutralized and converted to hydrogen peroxide (H 2 O 2 ) by 
manganese superoxide dismutase (Mn SOD) in the mitochondrial matrix or by cop-
per/zinc (Cu/Zn) SOD in the intermembrane space of mitochondria (Fig.  1 ). Under 
normal circumstances, there is a balance between ROS generation and the antioxi-
dant capacity of the cell. However, in some situations (e.g., environmental exposure 
to air pollutants and toxins), ROS levels can increase dramatically and exceed the 
antioxidant ability of Mn SOD and Cu/Zn SOD, thus causing oxidative stress and 
triggering apoptosis. ROS-mediated lipid peroxidation, oxidation of proteins, and 
DNA damage are well-known outcomes of oxidative stress, leading to cellular 
damage and ultimately to cell death (Bandyopadhyay et al.  1999 ; Cadenas and 
Davies  2000 ; Lenaz  2001 ; Polster and Fiskum  2004 ). The ETC abnormalities may 
result in inhibition of ATP synthesis and acceleration of ROS generation, leading to 
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impairment of energy metabolism, elevated oxidative stress, and disruption of 
mitochondrial functions and subsequently affecting neurons’ function and plastic-
ity, which may fi nally lead to abnormal neurodevelopment. 

 Although most DNA is packaged in chromosomes within the nucleus, mitochon-
dria also have a small amount of their own DNA, known as mitochondrial DNA 
(mtDNA). Mitochondrial function is under the dual genetic control of both mtDNA 
and nuclear DNA (nDNA). mtDNA contains 37 genes and encodes for 13 subunits 
of complexes I, III, IV, and V (Anderson et al.  1981 ). The other subunits of the ETC 
complexes are coded by more than 850 nDNA genes (Cotter et al.  2004 ). The expres-
sion, replication, and maintenance of mtDNA also require the factors encoded by 
nuclear genes (Shadel  2008 ). Furthermore, the nuclear-encoded signaling pathway 
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  Fig. 1    ATP production and superoxide free radical generation by the electron transport chain 
(ETC) of mitochondria. Mitochondria have two membranes: an inner and an outer membrane. 
ETC consists of a series of metalloproteins bound to the inner membrane of the mitochondria, 
including fi ve enzyme complexes, designated I–V, i.e., complex I (NADH dehydrogenase), com-
plex II (succinate dehydrogenase), complex III (cytochrome bc1 complex), complex IV (cyto-
chrome c oxidase), and complex V (ATP synthase). Electrons are transferred from NADH to O 2  
through inner membrane ETC complexes I, III, and IV. Coenzyme Q (CoQ) and cytochrome c. 
CoQ shuttles electrons from complexes I and II to complex III, and cytochrome c transfers these 
electrons from complex III to IV. During this process, protons are pumped through the inner mito-
chondrial membrane to the intermembrane space to establish a proton gradient, which is used by 
complex V (ATP synthase) to phosphorylate ADP thereby generating ATP. Complexes I and III are 
also the main sites of mitochondrial free radical superoxide (O 2  − ) production. Complex I-dependent 
O 2  −  is exclusively released into mitochondrial matrix, where it is converted to hydrogen peroxide 
(H 2 O 2 ) by the manganese superoxide dismutase (Mn SOD). On the other hand, superoxide gener-
ated at complex III can be released to both sides of the inner mitochondrial membrane. Superoxide 
released into the mitochondrial intermembrane space is converted to H 2 O 2  by Cu/Zn SOD. NADH 
and FADH 2  are produced within the matrix of the mitochondria by the Krebs cycle, also known as 
the tricarboxylic acid (TCA) cycle. The redox energy from NADH and FADH 2  is then transferred 
to oxygen (O 2 ) via the ETC of mitochondria       
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genes play a role in mediating adaptive functions of mitochondria under altered 
conditions (Shadel  2008 ; Shadel and Pan  2009 ). Hence, mtDNA and/or nDNA 
genome mutations may lead to defi ciencies of ETC complexes and subsequently to 
mitochondrial dysfunction. 

 Mitochondria also play a pivotal role in the maintenance of intracellular calcium 
homeostasis and in amino acid, lipid, and steroid metabolism, thereby regulating 
developmental processes, including neurite outgrowth, axonal plasticity, and synap-
tic plasticity (Chinnery and Schon  2003 ; Fattal et al.  2006 ; Mattson and Liu  2002 ; 
Orth and Schapira  2011 ; Szewczyk and Wojtczak  2002 ). The brain has a high 
demand for energy, and it requires a high content of mitochondria. Neurons are 
highly dependent upon oxidative phosphorylation as the primary pathway for ATP 
generation, of which 40–60 % is utilized in the maintenance of ion gradients by 
ATPases. Neuronal synapses, in particular, are areas of high energy consumption, 
and therefore, they especially rely on mitochondrial function (Ames  2000 ; Mattson 
and Liu  2002 ). Mitochondria are concentrated in the dendritic and axonal termini, 
where they are involved in ATP production, calcium homeostasis, and synaptic plas-
ticity (Li et al.  2004 ). Therefore, neurons’ function and plasticity rely mostly on 
mitochondrial structure and number. Synaptic transmission is affected if there is 
alteration in the number, morphology, or function of synaptic mitochondria (Polster 
and Fiskum  2004 ). Metabolic and mitochondrial defects affect the function and 
plasticity of neurons, cause neuronal loss, and alter modulation of neurotransmis-
sion systems. Therefore, the brain is a prime target of mitochondrial dysfunction 
(Orth and Schapira  2011 ). 

 Mitochondrial dysfunction has been implicated in several human diseases, 
such as neurodegenerative diseases, neurodevelopmental disorders, and cardiac 
dysfunction, and it may play a role in the aging process. In addition, mitochondrial 
abnormalities are also associated with several other medical conditions (Fig.  2 ). 
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  Fig. 2    Various medical conditions suggested to be associated with mitochondrial abnormalities. 
The medical conditions shown in  italics/bold  inside the boxes are also commonly observed in autism       
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Depending on how severe the mitochondrial disorder is, the symptoms can range in 
severity from mild to fatal. Some of the symptoms due to mitochondrial abnormali-
ties shown in boxes in Fig.  2  are frequently observed in individuals with autism.   

2     Autism 

 Autism belongs to a group of neurodevelopmental disorders known as the autism 
spectrum disorders (ASDs) that also include Asperger syndrome and pervasive 
developmental disorder-not otherwise specifi ed. Autism is a heterogeneous disorder 
characterized by impairments in basic social and communicative behaviors such as 
eye contact, intonation, and facial expressions, as well as by repetitive and stereo-
typed patterns of behavior (Lord et al.  2000 ). The symptoms of ASDs are typically 
present before the age of 3 years. According to a report from the Centers for Disease 
Control and Prevention, 1 in 68 children in the USA is affected with autism (Wingate 
et al.  2014 ). Recently, researchers reported that the prevalence of ASDs in a South 
Korean community was as high as 3.74 % for boys and 1.47 % for girls among 
school-age children (Kim et al.  2011 ). It was 1.89 % in the general population of 
school-age children from regular schools and 0.75 % in a high-risk group from spe-
cial education group and disability registry (Kim et al.  2011 ). 

 The exact cause of autism is still not known, although roles of genetic and envi-
ronmental factors, oxidative stress, mitochondrial dysfunction, infl ammation, and 
immune abnormalities have been suggested in ASDs (Chauhan et al.  2009a ). While 
no single gene has been found to be associated with ASDs, multiple genetic compo-
nents, including mtDNA mutations or deletions, nDNA mutations, and chromo-
somal defects, have been postulated in the ASDs (Abrahams and Geschwind  2010 ; 
El-Fishawy and State  2010 ; Holt and Monaco  2011 ; Miles  2011 ). However, the lack 
of complete concordance in monozygotic twins and the variation in severity in con-
cordant pairs suggest that nongenetic factors also contribute to the etiology of 
ASDs. Some gene variants in ASDs may confer altered vulnerability to environ-
mental stressors, and gene–environment interactions may alter the course of devel-
opment of the central nervous system and lead to behaviorally defi ned symptoms of 
ASDs (Herbert  2010 ). Prenatal or postnatal environmental exposure to prooxidant 
factors such as metals, viruses, air pollutants, and toxins is known to increase the 
body burdens and production of ROS, which may trigger oxidative stress and the 
development of clinical symptoms of ASDs.  

3     Mitochondrial Dysfunction in Autism 

3.1     Prevalence of Mitochondrial Disease (MD) in Autism 

 MD is often caused by a gene mutation or deletion and is the most frequent cause of 
metabolic disease. The diagnosis of MD is complicated and is based on several clini-
cal and laboratory tests. The prevalence of MD is approximately 0.01 % in the 
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general population (Skladal et al.  2003 ). However, according to meta-analyses from 
two large prospective studies (Correia et al.  2006 ; Oliveira et al.  2005 ) and one retro-
spective study (Scaglia et al.  2009 ), the prevalence of MD in the general population 
of ASDs is 5.0 % (Rossignol and Frye  2012 ), which is much higher than its preva-
lence in the general population. There are many biochemical markers such as lactate, 
pyruvate, lactate/pyruvate ratio, ubiquinone, alanine, alanine-to-lysine ratio, and 
acyl-carnitine that may directly suggest mitochondrial dysfunction. Other biomark-
ers, e.g., creatine kinase, carnitine, aspartate aminotransferase, alanine aminotrans-
ferase, and ammonia, may also indirectly suggest mitochondrial dysfunction. 
However, there is no reliable biomarker to identify all cases of MD (Haas et al.  2007 ).  

3.2     Abnormal Energy Metabolism in Autism 

 Because of the frequent association of lactic acidosis and carnitine defi ciency in 
autistic subjects, Lombard ( 1998 ) presented a hypothesis that mitochondrial dys-
function and defects in neuronal oxidative phosphorylation may be involved in the 
etiology of autism. Several reviews have recently shed light on mitochondrial dys-
function in autism (Chauhan and Chauhan  2012 ; Chauhan et al.  2012b , Gargus and 
Imtiaz  2008 ; Haas  2010 ; Palmieri and Persico  2010 ; Rossignol and Bradstreet  2008 ; 
Rossignol and Frye  2012 ). However, it is not yet known whether mitochondrial 
dysfunction in ASDs is the primary etiology or pathology secondary to other causes. 

 Many lines of evidence from biochemical, genetic, anatomical, and neuroradio-
graphical studies indicate a relationship between the dysfunction of brain energy 
metabolism and autism (Chauhan et al.  2011b ; Chugani et al.  1999 ; Filiano et al. 
 2002 ; Guevara-Campos et al.  2010 ; Lombard  1998 ; Minshew et al.  1993 ). In 1993, 
a  31 P-magnetic resonance spectroscopy (MRS) study showed decreased synthesis 
and increased membrane degradation as well as decreased synthesis of ATP in the 
dorsal prefrontal cortex of the brain in 11 high-functioning autistic men compared to 
age-matched control subjects (Minshew et al.  1993 ). The alterations in brain energy 
and phospholipid metabolism in autism correlated with the neuropsychologic and 
language defi cits, i.e., the severity of autism symptoms. In 1999, another MRS study 
showed decreased N-acetyl-aspartate and increased lactate levels in the frontal lobe, 
temporal lobe, and cerebellum of nine children with autism (Chugani et al.  1999 ). 
These studies suggested a disturbance of brain energy metabolism in autism. 

 In several investigations with blood and/or muscle biopsy samples from indi-
viduals with ASD, analysis of biochemical markers of mitochondrial dysfunction 
showed high lactate, increased lactate to pyruvate ratio, increased alanine levels, 
and low carnitine levels in autism (Correia et al.  2006 ; Filipek et al.  2003 ; Mostafa 
et al.  2005 ; Oliveira et al.  2005 ; Weissman et al.  2008 ). For example, signifi cantly 
lower serum carnitine and higher plasma lactate were reported in a study of 30 chil-
dren with autism compared with the control subjects (Mostafa et al.  2005 ). The 
levels of carnitine and lactate correlated with the severity of autism, i.e., individuals 
with severe autism had signifi cantly lower carnitine and higher lactate concentra-
tions than those with mild or moderate autism. 
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 A population-based survey of children with ASD conducted by Oliveira et al. 
( 2005 ) showed that 14 of 69 (20.3 %) autistic children had hyperlactacidemia and 5 
of 11 autistic children (who also had muscle biopsies) were classifi ed with defi nite 
mitochondrial respiratory chain disorder, suggesting that this might be one of the 
most common disorders associated with autism. However, these investigators did 
not fi nd any mtDNA mutation and/or deletion associated with known mitochondrial 
disorders in these children. Another study of 210 autistic subjects reported hyper-
lactacidemia in 36 subjects (17 %) and elevated lactate/pyruvate ratio in 27 % (53 
of 196 subjects) (Correia et al.  2006 ). MD was also confi rmed in 7 of the 30 fully 
assessed subjects (Correia et al.  2006 ). The results of a meta-analysis by Rossignol 
and Frye ( 2012 ) showed the prevalence of elevated lactate to be 31.1 % from six 
studies (Correia et al.  2006 ; Germanò et al.  2006 ; Laszlo et al.  1994 ; Moreno et al. 
 1992 ; Mostafa et al.  2005 ; Oliveira et al.  2005 ) and of elevated pyruvate to be 
13.6 % from two studies (Germanò et al.  2006 ; Laszlo et al.  1994 ) in the general 
population of individuals with ASDs. However, classical MD only occurs in a few 
autistic individuals and is generally accompanied by genetic abnormalities and 
defects in the respiratory chain.  

3.3     Activities and Expression Defects of Mitochondrial ETC 
Complexes in Autism 

 Several case studies showed alterations in the activities or expression levels of ETC 
complexes in autism. For example, two children with autism had defi ciencies in 
respiratory chain enzymes such as complexes I–III and coenzyme Q 10  (CoQ) (Tsao 
and Mendell  2007 ). In a recent review and meta-analysis, Rossignol and Frye ( 2012 ) 
reported defi ciencies of complexes I, III, V, IV, and II in 53 %, 30 %, 23 %, 20 %, 
and 9 % of children with ASD and concomitant MD, respectively. Multiple complex 
defi ciencies were found in 36 % of the children with ASD/MD. 

 The onset of autism is gradual in many children. However, in regressive autism, 
children fi rst show signs of normal social and language development, but they lose 
these developmental skills at 15–24 months and develop autistic behavior (Ozonoff 
et al.  2005 ). This pattern may be different in some children with regressive autism. 
The reported incidence of regressive autism varies in different studies from 15 to 
62 % of cases (Goldberg et al.  2003 ; Hansen et al.  2008 ; Stefanatos  2008 ). A huge 
reduction of the enzymatic activities of complexes I and III was reported in a 
19-month-old autistic girl with developmental regression (Poling et al.  2006 ). These 
investigators also performed a retrospective study, which included 159 subjects with 
autism and 94 age-matched control subjects. They reported increased levels of aspar-
tate aminotransferase and creatine kinase in the serum, suggesting abnormal oxida-
tive phosphorylation in autism (Poling et al.  2006 ). In another study, Shoffner et al. 
( 2010 ) reported autistic regression in 61 % (17 of 28) ASD subjects with defi nite MD 
and that fever was associated with the onset of regression in 12 of these children. 

 Weissman et al. ( 2008 ) performed a retrospective analysis of cases with autism. 
In addition to clinical symptoms for autism, these 25 individuals also presented 
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enzyme- or mutation-defi ned mitochondrial ETC dysfunction. Complex I activity 
was decreased in 16 of 25 (64 %) autistic subjects, and this was the most prevalent 
enzyme defect. It was followed by complex III defi ciency, which was affected in 5 
of 25 (20 %) autistic subjects. Defi ciency of complexes II and IV was reported in 
5 % and 4 % of autism cases, respectively. They reported that 40 % of this group 
demonstrated an unusual pattern of regression (multiple episodes, loss of motor 
skills, or regression after the age of 3), and six children had the mtDNA mutation 
(Weissman et al.  2008 ). Another report on the mitochondrial respiratory chain in the 
muscle homogenate of a 3-year-old girl with autism also showed a partial defi ciency 
of complex III and a slightly diminished complex IV (Guevara-Campos et al.  2010 ). 

 Mitochondrial abnormalities have also been reported in the lymphoblastoid cells 
and lymphocytes from peripheral blood in autism. Inhibition of complex I was 
reported in the lymphoblasts from 7 of 9 autistic subjects, and a 40–50 % higher 
mitochondrial maximal respiratory rate was found in all nine autistic cases com-
pared to lymphoblasts from unaffected subjects (Holtzman  2008 ). Increased respira-
tory rate in autism was suggested to be a compensatory response to the partial 
inhibition of ATP synthesis (Holtzman  2008 ). We reported that mitochondrial mem-
brane potential (MMP) is reduced, and free radical generation is elevated in the 
lymphoblasts from autistic subjects (obtained from the Autism Genetic Resource 
Exchange) compared to lymphoblasts from age-matched control subjects (Chauhan 
et al.  2009b ). In another study, exposure to physiological concentrations of nitric 
oxide (NO) reduced MMP to a greater extent in the lymphoblasts from autistic sub-
jects than from control subjects (James et al.  2009 ). Giulivi et al. ( 2010 ) examined 
mitochondrial functions in the lymphocytes from the blood of 10 children with 
autism and 10 typically developing children (ages 2–5 years). The activities of ETC 
complexes I–V and pyruvate dehydrogenase complex (PDHC), the mitochondrial 
rate of H 2 O 2  production, and mtDNA copy number were analyzed. PDHC is the 
critical regulatory enzyme of cell metabolism because it catalyzes oxidative decar-
boxylation of pyruvate to form acetyl-CoA. They reported reduced activities of com-
plexes I, IV, and V in six, three, and four of ten autistic children, respectively. The 
activity of PDHC was also signifi cantly reduced, while plasma pyruvate levels and 
mitochondrial rate of H 2 O 2  production increased in children with autism. However, 
the diagnostic criterion for a defi nite MD was fulfi lled in only one child with autism. 

 In our recent study, we have reported brain region-specifi c defi cits in the expres-
sion levels of mitochondrial ETC complexes in children with autism (Chauhan et al. 
 2011b ). As compared to age-matched control subjects, the levels of complexes III 
and V in the cerebellum, of complex I in the frontal cortex, and of complexes II, III, 
and V in the temporal cortex were signifi cantly lower in children with autism (ages 
4–10 years) (Chauhan et al.  2011b ). Analysis of the scattered plots showed that 
there was no overlap in the levels of these ETC complexes in the cerebellum and 
temporal cortex between autistic and control groups. In the frontal cortex, lower 
levels of ETC complexes were observed in a subset of autism cases, i.e., 60 % (3 of 
5) for complexes I, II, and V and 40 % (2 of 5) for complexes III and IV. Interestingly, 
no change in the levels of any of the fi ve ETC complexes was detected in the parietal 
and occipital cortices in the children with autism compared to control subjects, 
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 suggesting that the ETC defect in autism is specifi c to the cerebellum and the frontal 
and temporal lobes. When adult cases (ages 14–39 years) were examined, no sig-
nifi cant difference in the levels of ETC complexes in any brain region was observed 
between autistic subjects and age-matched control subjects. These results suggest 
that the expression of ETC complexes is decreased in the cerebellum and the frontal 
and temporal regions of the brains of children with autism (Chauhan et al.  2011b ).  

3.4     Mitochondrial Dysfunction in Autistic Subjects 
with Genetic Abnormalities 

 Many studies have revealed mitochondria-related gene abnormalities in autism, 
which may be caused by chromosome depletion, mtDNA mutation or depletion, 
and/or decreased levels of mRNA. Duplications of the proximal long arm of chro-
mosome 15, including inverted duplication and interstitial duplication, are associ-
ated with autism. This abnormality has high frequency in autism, and 1–5 % of 
individuals with autism carry it (Gillberg  1998 ; Schroer et al.  1998 ). Mitochondrial 
hyperproliferation and defi ciency in complex III of ETC were found by muscle 
biopsies in two autistic children with a chromosome 15q11-q13 inverted duplication 
(IDIC 15) (Filipek et al.  2003 ). In another study, two autism cases associated with 
sudden infant death syndrome showed mild mitochondrial hyperproliferation and a 
possible complex II defect (Gargus and Imtiaz  2008 ). The risk of sudden death in 
individuals with IDIC 15 is approximately 1 % per year. 

 The results of buccal swab ETC analysis in a 12-year-old boy with autism, epi-
lepsy, and leg weakness showed a severe decrease in complex IV activity and a mild 
reduction in complex I activity (Ezugha et al.  2010 ). Chromosomal microarray 
analysis revealed 1-Mb deletion in the 5q14.3 region in this child. It was suggested 
that (i) this chromosomal deletion may be related to complex I and IV defi cits, 
thereby manifesting in a mitochondrial disease and autism, and (ii) genes located 
within the deleted region of 5q14.3 may encode or regulate the expression and/or 
assembly of complex I or IV subunits (Ezugha et al.  2010 ). 

 Several studies have reported mtDNA mutations in autism. In a group of 12 chil-
dren who presented clinically with hypotonia, intractable epilepsy, autism, and 
developmental delay (HEADD syndrome), fi ve showed increased levels of large- 
scale mtDNA deletions that were not related with mitochondrial encephalomyopa-
thies, and three of four children who were further examined had structural 
mitochondrial abnormalities (Filiano et al.  2002 ). Activities of mitochondrial respi-
ratory enzymes were reduced in seven of eight children who had muscle biopsy 
(Filiano et al.  2002 ). In another report of fi ve children with autism, the mtDNA 
A3243G mutation was observed in two of these children and in the mothers of two 
other children (Pons et al.  2004 ). This mutation is often associated with MELAS 
syndrome (mitochondrial encephalopathy with lactic acidosis and seizures). 
Another child in this group had 72 % mtDNA depletion in skeletal muscle and 
reduction in activities of complexes I, III, and IV to 34 %, 23 %, and 25 % of control 
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values, respectively (Pons et al.  2004 ). Another study reported the G8363A muta-
tion in the mtDNA tRNA lys  in blood and skeletal muscle from a boy with autism 
who also showed complex IV defect (Graf et al.  2000 ). 

 The protein encoded by the NADH-ubiquinone oxidoreductase 1 alpha subcom-
plex 5 (NDUFA5) gene is involved in the mitochondrial ETC complex I. In a Japanese 
case-control study that included 235 subjects with autism and 214 control subjects, 
Marui et al. ( 2011 ) examined three single-nucleotide polymorphisms (SNPs) of this 
gene and reported a signifi cant association of two SNPs with autism. However, the 
mRNA level of another subunit of complex I (75-kDa subunit) was similar in the 
whole blood from autistic children compared to the controls (Taurines et al.  2010 ). 

 Normally, each mitochondrion has two to 10 copies of mtDNA (Robin and Wong 
 1988 ). This copy number can vary depending on the energy needs of the cells under 
different physiological conditions (Shay et al.  1990 ). Using lymphocytes, mtDNA 
over-replication was reported in fi ve of 10 children with autism (Giulivi et al.  2010 ). 
This difference was not lymphocyte-specifi c. Similar results were also obtained with 
granulocyte cells. It was suggested that increased copy number of mtDNA in autism 
may be a compensatory mechanism to the defects of mtDNA replication or repair so 
that mtDNA can maintain the normal transcript’s levels. The defects of mtDNA in 
autism may be caused by primary gene defi ciency or higher oxidative stress of cells.  

3.5     Oxidative Stress in Autism 

 The free radicals are generated endogenously during oxidative metabolism and 
energy production by mitochondria, and the ETC in mitochondria is a prime source 
of ROS generation (Cadenas and Davies  2000 ; Lenaz  2001 ). ROS can attack vital 
components of the cell, such as polyunsaturated fatty acids, proteins, and nucleic 
acid. These reactions can alter intrinsic membrane properties such as fl uidity, ion 
transport, enzyme activities, protein cross-linking, and protein synthesis, ultimately 
resulting in cell death (Bandyopadhyay et al.  1999 ). Neuronal cells are very vulner-
able to oxidative stress as a result of the high rate of oxygen delivery and consumption 
in the brain. Extensive evidence from our and other groups suggests a role of oxida-
tive stress in the development and clinical manifestation of autism. Prenatal or post-
natal exposure to environmental factors such as air pollution, organophosphates, and 
heavy metals may act as a trigger to increase the production of ROS, induce oxidative 
stress, and cause mitochondrial dysfunction, leading to the development of autism in 
the children (Chauhan and Chauhan  2006 ; Chauhan et al.  2009a ; Herbert  2010 ). 

 The levels of oxidative stress markers for lipid peroxidation, protein oxidation, 
and DNA oxidation are increased in the blood (Chauhan and Chauhan  2006 ; 
Chauhan et al.  2004 ; Mostafa et al.  2010 ; Zoroglu et al.  2004 ), urine (Ming et al. 
 2005 ) and brains (Chauhan et al.  2011a ,  b ; Chauhan and Chauhan  2012b ; Evans 
et al.  2009 ; López-Hurtado and Prieto  2008 ; Muthaiyah et al.  2009 ; Sajdel- 
Sulkowska et al.  2011 ) of individuals with autism as compared to control subjects. 
In addition, antioxidant defense is decreased in autism. Levels of major antioxidant 
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proteins, namely, transferrin (iron-binding protein) and ceruloplasmin (copper- 
binding protein), are decreased in the serum of children with autism, particularly in 
regressive autism (Chauhan et al.  2004 ). Glutathione (GSH) is another major endog-
enous antioxidant produced by the cell, which neutralizes ROS and participates in 
the detoxifi cation and elimination of environmental toxins. Lower levels of GSH 
and decreased ratio of GSH/ oxidized glutathione (GSSG) in the blood of individu-
als with autism have been reported in many clinical studies (Adams et al.  2011 ; 
Al-Gadani et al.  2009 ; Bertoglio et al.  2010 ; James et al.  2004 ; Pastural et al.  2009 ), 
which could be raised by methyl B12 treatment (Bertoglio et al.  2010 ) or vitamin/
mineral supplementation (Adams et al.  2011 ). We reported reduced levels of GSH, 
increased levels of GSSG, and a decrease in the ratio of GSH/GSSG in the cerebel-
lum and temporal cortex of autistic subjects (Chauhan et al.  2012a ). James et al. 
( 2009 ) also reported a decreased ratio of GSH/GSSG in both cytosol and mitochon-
dria in the lymphoblastoid cells from autistic subjects. Glutathione peroxidase 
(GPx) is an enzyme involved in the direct elimination of ROS. It catalyzes H 2 O 2  
reduction to H 2 O and also reduces lipid hydroperoxides to their corresponding alco-
hols. Decreased GPx activity of plasma was reported in a group of 44 Egyptian 
children with autism compared to 44 normal children (Mostafa et al.  2010 ) and in 
another group of 20 Egyptian autistic children compared to 25 age-matched control 
subjects (Meguid et al.  2011 ). We also reported increased oxidative damage and free 
radical generation, coupled with reduced activities of antioxidant enzymes in the 
lymphoblastoid cells from autistic subjects compared to age-matched control sub-
jects (Essa et al.  2009 ).  

3.6     Calcium-Signaling Abnormalities in Autism 

 Not only do mitochondria play a central role of maintaining Ca 2+  homeostasis, but 
intracellular Ca 2+  levels also modulate mitochondrial activity. Many cellular func-
tions are regulated by intracellular free Ca 2+  concentration. Calcium is essential for 
neurotransmitter release, and Ca 2+  infl ux is essential for neuronal excitability. 
Mitochondrial activity and Ca 2+  signaling have an intense cross talk. Therefore, 
abnormal calcium signaling can affect normal mitochondrial function and is consid-
ered a mitochondrial dysfunction. 

 Mitochondrial aspartate/glutamate carrier (AGC), which is physiologically acti-
vated by calcium, plays an important role in energy metabolism and neuron devel-
opment by transporting glutamate into mitochondria (Napolioni et al.  2011 ). AGC 
transport rates and expression levels of AGC1 protein were signifi cantly higher in 
the brain of autistic subjects compared with the control subjects (Palmieri et al. 
 2010 ). Neocortical calcium levels were also increased in these autistic subjects. 
Excessive calcium levels were responsible for high AGC1 activity and the activation 
of mitochondrial metabolism in autism (Napolioni et al.  2011 ; Palmieri et al.  2010 ). 
Furthermore, AGC1-encoding SLC25A12 gene is also reported to be associated 
with autism (Ramoz et al.  2004 ; Segurado et al.  2005 ). 
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 After a stimulus, calcium fl ows rapidly into neurons through various types of 
membrane channels, including voltage-dependent and receptor-coupled channels. 
Intracellular Ca 2+  concentrations are quickly restored to resting levels, primarily 
through Ca 2+ /Mg 2+  ATPase and Na + /Ca 2+  exchange. Several studies have reported 
calcium-signaling abnormalities in autism (Chauhan and Chauhan  2009 ; Gargus 
 2009 ). The L-type voltage-gated Ca 2+  channel is important for excitation of neurons 
and activation of various Ca 2+ -regulated signaling cascades (Catterall et al.  2005 ). 
Gain-of-function mutations in the L-type voltage-gated Ca 2+  channel CaV1.2 
(CACNA1C) was revealed in Timothy syndrome, a multisystem disorder including 
mental retardation and autism (Splawski et al.  2004 ,  2005 ). This mutation causes 
these channels to remain open longer and allow the infl ux of more Ca 2+  than wild- type 
channels, resulting in increased intracellular Ca 2+ . These studies supported the impor-
tance of the L-type voltage-gated Ca 2+  channel in autism. The mutation in the 
CACNA1F gene, which encodes the L-type voltage-gated Ca 2+  channel, CaV1.4, was 
reported to cause autistic symptoms in a New Zealand family with an X-linked retinal 
disorder (Hemara-Wahanui et al.  2005 ; Hope et al.  2005 ). In addition, the mutation of 
T-type voltage-gated Ca 2+  channel was also found in six of 461 individuals with autism 
(Splawski et al.  2006 ). The function of T-type channels in the brain is related to the 
regulation of the oscillatory behavior of neurons in the cortex and thalamus (Perez-
Reyes  2003 ). ASD-associated mutations have also been  identifi ed in some genes, 
which encode ion channels whose activity is directly regulated by Ca 2+ , such as Ca 2+ -
dependent Na +  or K +  channel. Several point mutations in SCN1A and SCN2A genes, 
which encode the voltage-activated K +  channels NaV1.1 and NaV1.2, respectively, 
have been reported in autism (Kamiya et al.  2004 ; Weiss et al.  2003 ). Laumonnier 
et al. ( 2006 ) reported functional defi cit of Ca 2+ -activated K +  channel (BKCa), a synap-
tic regulator of neuronal excitability in autism. Disruption of the BKCa gene 
(KCNMA1) led to the haploinsuffi ciency and reduced BKCa activity in autism. 

 Several neurological diseases are caused primarily by malfunctioning of Ca 2+  chan-
nels or Ca 2+ /Mg 2+  ATPase (Cooper and Jan  1999 ; Jacobsen et al.  1999 ). Ca 2+ /Mg 2+  
ATPase is a membrane-bound enzyme involved in maintaining the electrochemical 
gradient of the cells in an energy-dependent manner and the concentration of intracel-
lular calcium by extrusion of calcium from cytosol. We reported increased activity of 
Ca 2+ /Mg 2+  ATPase in the cerebellum of autistic subjects compared with age-matched 
control subjects (Ji et al.  2009 ). Increased Ca 2+ /Mg 2+  ATPase activity may be a com-
pensatory mechanism in response to increased intracellular calcium levels in autism. 
Taken together, the studies above suggest that calcium-signaling abnormalities may 
also contribute to mitochondrial dysfunction and pathophysiology of ASDs.   

4     Conclusion 

 Mitochondria play a vital role in many pathways such as energy generation, devel-
opmental metabolism, calcium homeostasis, free radical generation, and cell sur-
vival. Mitochondrial dysfunction can be caused by alterations in activities or 
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expression levels of ETC complexes, genetic abnormality, oxidative stress, or cal-
cium-signaling abnormalities. Collectively, several independent studies have pro-
vided evidence of impaired mitochondrial function and, as a result, impaired cellular 
energy state as one of the mechanisms involved in the pathophysiology of autism. 
Any abnormal change in the mitochondrial activities may affect the cellular energy 
production and neurotransmission system and destroy the balance between ROS 
generation and antioxidant capacity of the cell, thus leading to abnormal neurode-
velopment in children with autism.    
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