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Dysregulation of Glutathione Synthesis 
in Psychiatric Disorders

Elżbieta Lorenc-Koci

1  Introduction

There is a growing body of evidence implicating oxidative stress mechanisms and 
the impaired redox regulation in the pathophysiology of diverse psychiatric disor-
ders (Do et al. 2009; Steckert et al. 2010; Bitanihirwe and Woo 2011; Yao and 
Keshavan 2011). Oxidative stress defined in accordance with the free radical 
hypothesis refers to the cytopathological consequences of an imbalance between 
free radical production on the one side and deficiency of the antioxidant defense 
system on the other side. Brain cells are particularly vulnerable to oxidative damage 
due to relatively low to moderate activity of antioxidant enzymes (superoxide dis-
mutase, SOD; catalase, CAT; glutathione peroxidase, GPx) when compared to the 
liver or kidney, high levels of lipids and polyunsaturated fatty acids, high metal 
content, and high oxygen utilization (Dringen 2000; Valko et al. 2007). Hence, the 
free radical-mediated damage of important cellular molecules, like lipids, proteins, 
and DNA, leading to the impairment of cell function and vitality is currently consid-
ered as one of the main mechanisms in the pathophysiology of both neurodegenera-
tive and psychiatric disorders (Bains and Shaw 1997; Valko et al. 2007; Ng et al. 
2008; Steckert et al. 2010; Bitanihirwe and Woo 2011).

On the other hand, as the clinical trials with supplementation of free radical scav-
enging antioxidants show little benefit in humans, a complementary hypothesis for 
oxidative stress has been postulated (Jones 2006, 2008). This hypothesis, which is 
termed the “redox hypothesis” to facilitate its distinction from the “free radical 
hypothesis,” assumes that disruption of the redox states of thiol systems which 
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 normally function in cell signaling and physiological regulations is the most central 
feature of oxidative stress. Three main thiol systems represented by thiol/disulfide 
redox couples exist in biological systems: (i) reduced glutathione (GSH) and its 
disulfide (GSSG), GSH/GSSG couple; (ii) cysteine (Cys) and its disulfide, cystine 
(CySS), Cys/CySS couple; and (iii) reduced and oxidized thioredoxins (Trx), Trxred/
Trxox couple (Kemp et al. 2008). All these systems are responsible for the mainte-
nance of the appropriate redox potential in different cellular compartments (Jones 
2006, 2008). The “redox hypothesis” draws attention to non-radical mechanisms of 
oxidative stress. It has been demonstrated that biological systems generate signifi-
cantly more non-radical oxidants than free radicals (Jones 2008). Hydrogen perox-
ide (H2O2), the most abundant non-radical oxidant, is formed in many enzymatic 
reactions. For instance, H2O2 is the predominant product in the reaction catalyzed 
by xanthine oxidase although the superoxide radical anion (O2

−•) is also produced. 
Moreover, O2

−• is converted into oxidant H2O2 in the reaction catalyzed by the anti-
oxidant enzyme SOD. The free radicals NO• and O2

−• react to generate peroxynitrite 
(ONOO−) that is a powerful oxidizing and nitrating non-radical intermediate 
(Thomas et al. 2006). Apart from the abovementioned oxidants, biological systems 
produce other oxidants, such as hydroperoxyfatty acids, aldehydes, quinones, epox-
ides, and disulfides. All these oxidants, albeit not free radicals, contribute impor-
tantly to the regulation of cellular redox state by modulation of the thiol-containing 
proteins that play important roles in cell-to-cell signaling, macromolecular traffick-
ing, and physiological regulation (Jones 2008). Redox elements represented by sulf-
hydryl (−SH) residues of cysteine and thioether groups of methionine, found in the 
active site of many proteins, are susceptible to two-electron oxidants. Hence, the 
two-electron oxidation can be considered to be a component of oxidative stress that 
is distinct from free radical-mediated macromolecular damage. The function of 
these thiol-containing proteins is controlled by thiol antioxidants, GSH, Cys, and 
Trxred, which are able to prevent the two-electron oxidation. Therefore, the appropri-
ate levels of these antioxidants are of great importance for the maintenance and 
regulation of the thiol redox status of the cells.

The scope of this chapter is to review the available literature referring to GSH 
synthesis and its multiple functions in the central nervous system. Particular atten-
tion will be focused on GSH deficit and dysregulation of redox state in psychiatric 
disorders such as schizophrenia and bipolar disorder. Oxidative stress-mediated 
alterations in psychiatric patients will be compared to those observed in animal 
models of GSH deficiency. Finally, a treatment restoring the redox balance will be 
discussed in the context of therapy of psychiatric disorders.

2  Functions of Glutathione

Glutathione (γ-glutamyl-L-cysteinylglycine, GSH), a cysteine-containing tripeptide 
and the most abundant nonprotein thiol, is present in the mammalian brain with an 
average concentration of 2–3 mM, but there are marked differences in its content 
between particular cell types (Dringen 2000). Neurons have much less GSH than 
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glial cells. Among glial cells, microglia contains the highest amount of GSH, while 
oligodendrocytes, which are affected in schizophrenia, the lowest level. Astrocytes, 
like microglial cells, are characterized by a relatively high level of GSH (Dringen 
2000). Glutathione exists predominantly in the thiol, i.e., reduced (GSH) form 
(99 %), while the disulfide, i.e., oxidized form (GSSG), represents less than 1 % of 
the total glutathione pool under physiological conditions.

2.1  The Main Functions of Glutathione

In the mammalian cells, GSH plays a lot of diverse functions including (1) scaveng-
ing of free radicals; (2) detoxification of xenobiotics; (3) maintenance of the redox 
state of proteins; (4) providing a nontoxic storage form of cysteine; (5) modulation 
of critical cellular processes, such as DNA synthesis and repair, cell proliferation, 
and redox signaling; (6) regulation of nitric oxide homeostasis; and (7) modulation 
of the activity of glutamate receptors in the central nervous system (Jánaky et al. 
1998, 1999; Oja et al. 2000). GSH serves as an endogenous NO reservoir to form 
S-nitrosoglutathione (GSNO) (Hogg 2002). In the brain, GSNO can also elicit neu-
roprotective effect under oxidative stress conditions (Rauhala et al. 1998).

Thus, given many critical processes that are affected by GSH, it is not surprising 
that disturbances in its homeostasis have been implicated in the etiology and/or 
progression of a number of human diseases, including neurodegenerative and neu-
ropsychiatric diseases (Ballatori et al. 2009; Do et al. 2009).

2.2  Antioxidant Activity of Glutathione

As an antioxidant, GSH scavenges reactive oxygen species (ROS) generated during 
electron transport and cellular metabolism of endo- and exogenous compounds. 
GSH is also involved in the disposal of hydrogen peroxide (H2O2) and hydroperox-
ides, which are non-radical oxidants produced during different cellular processes, 
strongly affecting redox state of cells. The detoxification of ROS and peroxides is 
associated with two types of reaction. Firstly, GSH reacts directly and nonenzymati-
cally with such radicals as superoxide radical anion (O2

−•), nitric oxide (NO•), or 
hydroxyl radical (HO•) (Hogg 2002; Winterbourn and Metodiewa 1994). The 
removal of HO• via this route is one of the most important functions of GSH in the 
nervous system:

 2 2 2 2GSH HO GSSG H O+  → +•

 

Secondly, GSH is an electron donor in the reduction of peroxides, mainly H2O2 
in the reaction catalyzed by glutathione peroxidase (GPx):

 H O GSH GSSG H OGPx
2 2 22 2+  → +  
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Final products of the GPx-mediated reduction of H2O2 comprise water and 
glutathione disulfide (GSSG). Also, catalase can reduce H2O2, but the brain has 
relatively low level of this enzyme as compared with that of GPx (Dringen and 
Hamprecht 1997). GSSG is then reduced back to GSH by glutathione reduc-
tase (GR):

 GSSG NADPH H GSH NADPGR+ + + →+ +2  

This enzyme transfers electrons from nicotinamide adenine dinucleotide phos-
phate (NADPH) to GSSG, thereby regenerating GSH. Hence, the detoxification of 
peroxides depends on the availability and regeneration of NADPH. Organic perox-
ides can be reduced by GPx and glutathione S-transferase (GST). During the reac-
tions catalyzed by GPx and GR, glutathione is not consumed but recycled. The 
relative ratio of the reduced to oxidized glutathione (GSH/GSSG) serves as an indi-
cator of the cellular redox environment. The maintenance of high GSH/GSSG ratio 
requires energy expenditure. The adult brain relies almost exclusively on the glucose 
oxidation to meet its energy requirements. The pentose phosphate pathway is pres-
ent in the brain, especially in astrocytes, but only 3–5 % of glucose is converted via 
this pathway, while the rest is oxidized via the tricarboxylic acid cycle. Nevertheless, 
the pentose phosphate pathway is important in the brain as a means of providing 
NADPH for the GSSG reduction to GSH (Dringen 2000). Consistently, it has been 
demonstrated that the pentose phosphate pathway was strongly activated in cultured 
astrocytes during the detoxification of H2O2 (Ben-Yoseph et al. 1996). On the other 
hand, glucose deprivation of astrocyte cultures significantly reduced astrocyte abil-
ity to remove H2O2 (Dringen and Hamprecht 1997) and prolonged regeneration time 
of GSH from GSSG after treatment with hydroxyperoxides (Dringen et al 1998).

The third important role of GSH is associated with the maintenance of intracel-
lular redox homeostasis. Protein S-glutathionylation, the reversible formation of 
mixed disulfides between glutathione and low-pKa cysteinyl residues of proteins, is 
thought to be a regulatory and antioxidant mechanism (Dalle-Donne et al. 2007; 
Mieyal et al. 2008). The binding of glutathione molecules to proteins to form mixed 
disulfides protects protein –SH groups against irreversible oxidation to –SO2H and 
–SO3H. Hence, protein S-glutathionylation is an important mechanism for a 
dynamic, posttranslational modification of a variety of regulatory, structural, and 
metabolic proteins as well as for the regulation of signaling routes and metabolic 
pathways (Dalle-Donne et al. 2007; Mieyal et al. 2008). This modulation of proteins 
is not only a cellular response to mild oxidative/nitrosative stress but also occurs 
under physiological conditions.

2.3  Detoxifying Function of Glutathione

GSH reacts with various endogenous compounds and xenobiotics in the reaction 
catalyzed by glutathione S-transferase (GST) to form glutathione S-conjugates 
which are exported to the outside of the cell (Commandeur et al. 1995; Salinas 
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and Wong 1999). There is only one enzyme, γ-glutamyl transpeptidase (γ-GT), 
localized on the outer side of the plasma membrane of certain cell types that is able 
to hydrolyze GSH conjugates to cysteinyl-glycine conjugates. The cysteinyl-gly-
cine bond is then cleaved by dipeptidase, resulting in a cysteinyl conjugate that 
following N-acetylation is further metabolized to mercapturic acid.

Lipid peroxidation induced by ROS leads to the conversion of polyunsaturated 
fatty acids to highly reactive aldehydes, such as 4-hydroxynoneal (4-HNE), that 
inactivate proteins required for cell viability (Esterbauer et al. 1991). Therefore, 
rapid and efficient removal of these compounds is necessary to maintain cell func-
tion. GSH can react with 4-HNE via the action of GST to form GSH-HNE conju-
gates (Xie et al. 1998) which are then exported from the cells via transport-mediated 
efflux (Berhane et al. 1994). This process plays an important role in cellular detoxi-
fication. Furthermore, in the brain, GST detoxifies quinones that are formed during 
the oxidation of dopamine and other catecholamines (Baez et al. 1997; Dagnino- 
Subiabre et al. 2000). The latter reactions irreversibly consumes intracellular GSH, 
and without supplementation of GSH stores, the formation of glutathione 
S-conjugates can rapidly compromise cellular antioxidant capacity, finally leading 
to the enhanced production of ROS and disruption of the cellular redox balance.

2.4  Specific Function of Extracellular Glutathione 
in the Brain

The presence of GSH in the extracellular space has been confirmed using microdi-
alysis method (Yang et al. 1994; Lada and Kennedy 1997). Experiments performed 
on brain slices demonstrated that GSH was released by depolarization induced by 
high K+ concentration in a Ca2+ dependent manner, which indicates its origin from 
a neuronal compartment (Zängerle et al. 1992). The mechanism of this release is 
unknown; however, the fact that it is Ca2+ dependent suggests that GSH is released 
by a vesicular mechanism similar to that of classical neurotransmitters or its efflux 
is under the control of a released neurotransmitter. In the rat brain slices, the most 
prominent release of GSH was observed in the mesodiencephalon, cortex, hippo-
campus, and striatum and lowest in the pons-medulla and cerebellum (Zängerle 
et al. 1992). On the other hand, studies performed in cell culture have shown that 
astrocytes are mainly involved in GSH release and together with γ-GT affect its 
extracellular level (Sagara et al. 1996; Dringen et al. 1997). Consistently, it has been 
calculated that cultured astrocytes release about 10 % of the intracellular pool of 
GSH within one hour (Dringen et al. 1997). So, the astrocyte-mediated release of 
GSH is the process consuming the largest amount of this peptide.

Although GSH plays a crucial role in many cellular processes, its extracellular 
functions are less known. However, in the nervous system, besides these generally 
known functions, GSH may serve additionally as a modulator of ionotropic gluta-
mate receptors or as a new neurotransmitter (Jánaky et al. 1998, 1999, 2000; Ogita 
et al. 1998; Pasqualotto et al. 1998). So, it has been demonstrated that GSH binds 
via γ-glutamyl moiety to ionotropic glutamate receptors, preferentially AMPA 
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and NMDA (Janáky et al. 1999). At micromolar concentrations, GSH displaces 
excitatory agonists from their binding sites, acting to halt their physiological actions 
on target neurons (Janáky et al. 1999; Oja et al. 2000). Since AMPA and NMDA 
receptors are colocalized and cooperate at postsynaptic membranes, the co-release 
of glutamate and GSH from nerve endings (Hjelle et al. 1998) may have profound 
consequences in synaptic transmission. According to the model of GSH synaptic 
actions proposed by Janáky et al. (1999), this peptide may inhibit the fast depolar-
ization evoked by glutamate via AMPA receptors and thus inhibit the voltage- 
dependent opening of NMDA receptor ionophores. Hence, the co-release of 
glutamate and GSH would lead to a cascade of events enabling the receptors to be 
reactivated within the short time (Janáky et al. 1999; Oja et al. 2000). Moreover, 
GSH (at millimolar concentrations) acting via its cysteinyl thiol group can modulate 
the redox site of NMDA receptors (Janáky et al. 1999; Oja et al. 2000). As such 
modulation has been shown to increase NMDA receptor ion channel currents, this 
action may play a significant role in normal and abnormal synaptic activity. Finally, 
it has been demonstrated that GSH at nanomolar to micromolar range binds to at 
least two populations of binding sites that are distinct from any known glutamate 
receptor subtypes. It is believed that these binding sites represent a unique popula-
tion of GSH receptors. GSH binds to these receptors via cysteinyl moiety and is not 
displaceable by glutamatergic agonists or antagonists (Shaw et al. 1996; Janáky 
et al. 1999, 2000). The application of GSH to cortical slices elicits a fast depolar-
izing potential that is markedly larger than that produced by NMDA and AMPA 
(Shaw et al. 1996). The GSH current appears to be linked to sodium ionophores as 
it was blocked by the absence of sodium ions but not by lowering of calcium or 
NMDA or AMPA antagonists (Shaw et al. 1996; Janáky et al. 1999, 2000). These 
reports suggest that GSH receptors may be a key component of cortical excitatory 
neurotransmission (Shaw et al. 1996).

3  Synthesis of GSH

3.1  Biosynthesis of GSH in the Brain

GSH is synthesized from its constituent amino acids, i.e., glutamate, cysteine, and 
glycine, in the cytosol of all mammalian cells by the consecutive action of two 
enzymes requiring adenosine triphosphate (ATP) as a co-substrate (Dringen 2000; 
Lu 2009):

 L-glutamate L-cysteine ATP -glutamyl-L-cysteine ADP Pi+ + → + +γ  (1)

 γ -glutamyl L-cysteine L-glycine ATP GSH ADP Pi+ + + → + +  (2)

In the first step of GSH biosynthesis, glutamate cysteine ligase (GCL, EC 6.3.2.2; 
formerly γ-glutamylcysteine synthetase) catalyzes the formation of the dipeptide 
γ-glutamyl-L-cysteine (γ-GluCys) from glutamate and cysteine (Reaction 1). 
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This reaction exhibits absolute requirement not only for ATP but also for Mg2+ or 
Mn2+ (Franklin et al. 2009). The second step of GSH biosynthesis is catalyzed by 
GSH synthase (GS, EC 6.3.2.3; formerly known as GSH synthetase) which ligates 
glycine to γ-GluCys, thus forming GSH (Reaction 2).

Cysteine is the rate-limiting substrate for GSH synthesis (Dringen et al. 1999). In 
the brain, mature neurons use exclusively cysteine for GSH synthesis, while astro-
cytes utilize both cystine and cysteine (Dringen et al. 1999; Dringen 2000). Cystine 
is taken up by astrocytes and microglial cells via cystine/glutamate exchanger also 
known as system xc_ (Shih et al. 2006). Only immature neurons express the xc(−) 
transport system (Murphy et al. 1990), while mature ones do not possess this trans-
porter and therefore are unable to take up cystine for GSH synthesis. In the mature 
brain, neurons rely mainly on cysteine derived from GSH released by astrocytes 
into the extracellular space, where GSH is cleaved by sequentially acting the 
membrane- bound enzymes γ-GT and dipeptidase to constituent amino acids 
(Dringen et al. 1999; Dringen 2000). In addition to cysteine, neurons can utilize the 
cysteine-containing dipeptides γ-GluCys or cysteinylglycine (CysGly) for GSH 
synthesis (Dringen et al. 1999), although it is unclear how these dipeptides are taken 
up into neurons. Neural uptake of cysteine is mediated primarily by sodium- 
dependent excitatory amino acid transporter (EAAT) systems, known as excitatory 
amino acid carrier 1 (EAAC1 also termed EAAT3) (Shanker et al. 2001; Chen and 
Swanson 2003; Himi et al. 2003). EAAC1-deficient mice showed 30–40 % decreases 
in brain GSH levels, increased vulnerability to oxidative stress, as well as developed 
brain atrophy and behavioral abnormalities (Aoyama et al. 2006). The abovemen-
tioned data clearly indicate that transport of cysteine by EAAC1 system is also a 
rate-limiting factor for GSH synthesis in neurons.

3.2  Regulation of GSH Synthesis

Under physiological conditions, the rate of GSH synthesis depends on the expres-
sion and catalytic activity of GCL (Dalton et al. 2004; Dickinson et al. 2004). GCL 
is a heterodimeric protein composed of a heavy or catalytic (GCLC, Mr ~ 73,000) 
and a light or modifier (GCLM, Mr ~ 30,000) subunit, which are encoded in humans 
and rodents by different genes (Gipp et al. 1992; Dalton et al. 2004; Franklin et al. 
2009). Only GCLC possesses all the enzymatic activity and is a subject of feedback 
inhibition by the end product GSH (Richman and Meister 1975; Seelig et al. 1984). 
GCLM is enzymatically inactive but plays an important regulatory function by 
increasing the V(max) and K(cat) of GCLC, by lowering the K(m) of GCL for glu-
tamate and ATP, and by raising the K(i) for GSH-mediated feedback inhibition of 
GCL (Chen et al. 2005; Lu 2009; Yang et al. 2007). Thus, the holoenzyme is cata-
lytically more efficient and less susceptible to inhibition by GSH than GCLC alone. 
GCLC-knockout mice showed embryonic lethality, demonstrating that the gene 
encoding this subunit was critical for development (Dalton et al. 2000, 2004). In 
turn, GCLM-knockout (Gclm−/−) mice are viable, but in the absence of this subunit, 
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GCLC activity is insufficient, leading to a decrease of GSH level (Yang et al. 2002; 
Dalton et al. 2004). Alterations in GCL activity can result from regulation at mul-
tiple levels affecting only catalytic (GCLC) or both catalytic and modifier (GCLM) 
subunits of this enzyme. Many studies have focused on transcriptional regulation of 
GCL at the promoter level (Lu 2009).

GSH synthase (GS), the second enzyme participating in GSH biosynthesis, is 
composed of two identical subunits and has a Mr of approximately 118,000 Da. 
Mapping studies of the GS substrate binding sites indicate that the regions of the 
active site that bind glycine and the cysteinyl moiety of γ-GluCys are highly spe-
cific, while the γ-glutamyl moiety can be replaced by a variety of analogs. However, 
in contrast to GCL, GS is not subject to feedback inhibition by GSH. Moreover, GS 
overexpression had no effect on GSH level, whereas GCL overexpression markedly 
increased GSH level (Grant et al. 1997). Hence GCL, but not GS, is considered to 
be the rate-limiting enzyme in the GSH synthesis.

4  Oxidative Stress and GSH Synthesis in Schizophrenia 
and Bipolar Disorder

4.1  Glutathione Deficiency as a Marker of Oxidative Stress 
in Schizophrenia

Several studies have shown that the level of GSH, the major antioxidant and redox 
regulator, is decreased in a cerebrospinal fluid and medial frontal cortex (by 27 % 
and 52 % of control level, respectively) of drug-naïve schizophrenic patients (Do 
et al. 2000) as well as in the postmortem striatum (by 40 % of control) (Yao et al. 
2006) and prefrontal cortex of those treated earlier with antipsychotic drugs 
(Gawryluk et al. 2011a). Moreover, there was a significant negative correlation 
between GSH levels and the severity of negative symptoms in schizophrenic patients 
(Matsuzawa et al 2008). In periphery, significantly lower levels of GSH were found 
in erythrocytes (Altuntas et al. 2000; Raffa et al. 2009, 2011; Micó et al. 2011) and 
plasma (Zhang et al. 2007; Dietrich-Muszalska et al. 2009; Raffa et al. 2009) of 
antipsychotic-free and chronically medicated schizophrenic patients in comparison 
to healthy control. As indicated by some genetic studies, the GSH deficit in schizo-
phrenia seems to be linked to polymorphisms of genes encoding both catalytic 
(GCLC) and modifier (GCLM) subunits of glutamate cysteine ligase (GCL), an 
enzyme responsible for the biosynthesis of this tripeptide (Tosic et al. 2006; Gysin 
et al. 2007, 2009, 2011).

In addition, the activity of glutathione peroxidase (GPx), a key antioxidant 
enzyme involved in the elimination of hydrogen peroxide and lipid peroxides, was 
found to be unchanged (Mukerjee et al. 1996; Yao et al. 1998; Evans et al. 2003; 
Raffa et al. 2009), increased (Kuloglu et al. 2002; Raffa et al. 2011; Micó et al. 
2011), or decreased (Abdalla et al. 1986; Altuntas et al. 2000) in erythrocytes of 
drug-naïve and antipsychotic-free schizophrenic patients when compared to 
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 controls. In a majority of chronically medicated schizophrenic patients treated with 
typical or atypical antipsychotic drugs, GPx activity in erythrocytes was found to be 
decreased (Altuntas et al. 2000; Ranjekar et al. 2003; Zhang et al. 2006; Ben Othmen 
et al. 2008; Raffa et al. 2009), while only in a few studies it was unchanged (Reddy 
et al. 1991; Evans et al. 2003) or increased (Herken et al. 2001; Akyol et al. 2002). 
Apart from the cytosolic form of GPx, there exists a related enzyme, called human 
plasma glutathione peroxidase (hpGPx), that is localized exclusively extracellu-
larly. The level of this enzyme was significantly and positively correlated with the 
psychosis rating scores in schizophrenic patients both on and off haloperidol treat-
ment (Yao et al. 1999). Decreased levels of GPx and glutathione reductase (GR), 
suggesting attenuated antioxidant functions of these two enzymes, were also found 
in the caudate region of brains from schizophrenic patients (Yao et al. 2006). 
Furthermore, a significantly lower level of Mu class of GST isoenzyme in the pre-
frontal cortex of schizophrenic patients than in nonpsychiatric controls has also 
been reported (Gawryluk et al. 2011b). The decreased level of GST Mu indicates 
that these patients had lesser ability to remove xenobiotics and also to detoxify 
endogenous substances such as quinines and lipid peroxidation products.

All the above-described results clearly indicate that due to a deficit of GSH and 
the decreased scavenging ability of GSH-related antioxidant enzymes, the redox 
balance of GSH/GSSG couple in peripheral tissues and in the brain cells of schizo-
phrenic patients has to be shifted in favor of oxidative processes.

4.2  Changes in GSH Redox Status in Bipolar Disorder

Although the exact mechanisms underlying bipolar disorder (BD) are not com-
pletely understood, some studies suggest an involvement of oxidative stress and 
alterations in GSH redox status in the pathophysiology of the disease (Andreazza 
et al. 2007; Kuloglu et al 2002; Ranjekar et al. 2003; Machado-Vieira et al. 2007). 
In patients with BD, like in schizophrenic patients, oxidative stress was assessed 
indirectly by measuring the activities of antioxidant enzymes (glutathione peroxi-
dase, GPx; superoxide dismutase, SOD; and catalase, CAT) in erythrocytes and 
serum as well as by determination of the content of thiobarbituric acid reactive 
substances (TBARS) as an index of lipid peroxidation. These studies, although less 
numerous than in schizophrenia, demonstrated that enzymatic activities of GPx, 
SOD, and CAT were impaired in BD (Kuloglu et al. 2002; Ranjekar et al. 2003; 
Ozcan et al. 2004; Andreazza et al. 2007; Kunz et al. 2008; Machado-Vieira et al. 
2007) and lipid peroxidation was significantly enhanced when compared to nonpsy-
chiatric control subjects (Kuloglu et al. 2002; Ranjekar et al. 2003; Ozcan et al. 
2004; Machado-Vieira et al. 2007; Andreazza et al. 2007, 2008; Kunz et al. 2008). 
In line with studies on antioxidant enzymes in blood, a postmortem study of the 
hippocampus from BD patients demonstrated a lowered gene expression for several 
antioxidant enzymes in that structure, including GPx, CAT, SOD, and glutathione 
S-transferase (GST) (Benes et al. 2006). Moreover, recently diminished level of 
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both reduced (GSH) and oxidized (GSSG) forms of glutathione in the prefrontal 
cortex (Gawryluk et al. 2011a) as well as oxidative damage to mitochondrial pro-
teins (Andreazza et al. 2010) in that structure, increased lipid peroxidation in the 
cingulate cortex, and RNA oxidation in the hippocampus (Wang et al. 2009; Che 
et al. 2010) have been reported in postmortem brain from BD patients.

In addition, in patients not medicated with mood stabilizers, the level of class Mu 
of GST was decreased, while in BD patients treated with these drugs, the level of 
this isoenzyme was not different from that observed in controls (Gawryluk et al. 
2011b). The latter effect is consistent with previous studies which demonstrated that 
mood stabilizers such as lithium, lamotrigine, and olanzapine increased GST 
expression and activity in primary cultured rat cerebral cortical cells (Shao et al. 
2008; Bakare et al. 2009). Furthermore, chronic treatment with lithium and valpro-
ate increased the glutamate cysteine ligase (GCL) expression and GSH levels in 
these cultures (Cui et al. 2007). Since GST conjugates GSH with a variety of oxi-
dized compounds to form nontoxic products, it has been suggested that lithium and 
valproate selectively target GST isoenzymes in order to produce neuroprotective 
effects against oxidative stress (Cui et al. 2007; Shao et al. 2008).

Summing up, all these studies suggest that oxidative stress and disturbances in 
GSH homeostasis play a significant role in the etiology of other psychiatric illnesses 
besides schizophrenia, e.g., BD, and the drugs increasing GSH content exert benefi-
cial therapeutic effects in the treatment of this disease.

5  GSH-Deficient Animal Models of Schizophrenia

In general, the lowering of GSH level may result either from genetically determined 
alterations in the activities of GSH synthesizing enzymes (Tosic et al. 2006; Gysin 
et al. 2007, 2009) or from the limited availability of cysteine, a substrate for GSH 
synthesis (Dringen 2000). In experimental animals, the tissue GSH content can be 
decreased by inhibition of GCL enzymatic activity using specific compounds 
(Broquist 1992), by modulation of genes encoding catalytic or modifier subunits of 
this enzyme (Yang et al. 2002; Dalton et al. 2000, 2004), or by GSH depletion 
evoked by different endogenous or exogenous compounds that oxidize or conjugate 
the thiol group of this tripeptide (Masukawa et al. 1989). All these models have 
been used to check whether GSH deficit can lead to behavioral, morphological, and 
biochemical anomalies similar to those observed in schizophrenic patients.

5.1  Behavioral Effects of Glutathione Deficiency in Animals

The consequences of brain GSH deficit on cognitive functions were examined in the 
abovementioned animal models. It has been demonstrated that the GSH deficit 
induced in adult rats by intracerebra, chronic administration of L-buthionine-(S,R)-
sulfoximine (BSO) combined with intracerebral injection of dopamine (DA), 
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induced psychomotor (Shukitt-Hale et al. 1997) and spatial  memory deficits in the 
water maze test (Shukitt-Hale et al. 1998).

According to the neurodevelopmental theory of schizophrenia, unknown gesta-
tional or perinatal events can impair brain development, leading to the establish-
ment of an abnormal cerebral connectivity and detrimental effects of which may 
appear in adolescence, hence the consequences of GSH deficit during development 
were also studied in animal models (Rougemont et al. 2002; Castagné et al. 2004a, b; 
Cabungcal et al. 2007). It was found that rats treated with BSO between postnatal 
days 5 and 16 developed a strong ~50 % GSH deficit in various brain structures 
including the cortex (Rougemont et al. 2002). It is worth to mention that in the rat, 
the peak GSH concentration on postnatal day 7 is critical for brain development, as 
it occurs during a period of intensive synaptogenesis and may play the neuroprotec-
tive role during that time (Nanda et al. 1996). Rodents may compensate for GSH 
deficit by increasing ascorbic acid synthesis, as demonstrated in some studies on the 
Osteogenic Disorder Shionogi (ODS) mutant rats, which, like humans, cannot syn-
thesize ascorbic acid (Castagné et al. 2004a, b; Cabungcal et al. 2007). Moreover, as 
the dysfunction of dopaminergic system is associated with schizophrenia, ODS rats 
were treated in the early postnatal period (between days 5 and 16) with BSO or the 
dopamine uptake inhibitor GBR 12909, alone and in combination, and later on in 
juvenile and adult rats, the object recognition test was performed (Castagné et al. 
2004b). The object recognition test is based on the spontaneous tendency of rats to 
investigate objects and to favor novel objects versus familiar ones. In the latter 
study, it has been demonstrated that ODS rats receiving BSO and GBR 12909 failed 
to discriminate between familiar and novel objects, while ODS rats treated with 
either BSO or GBR 12909 alone had normal behavior in this test (Castagné et al. 
2004b). Since after the combined treatment these rats preserved basic motor and 
sensory skills, the alterations observed in the test of object recognition can be attrib-
uted to cognitive impairment. The fact that ODS rats treated with BSO and GBR 
12909 did not investigate more intensively the novel object than the familiar one 
suggests that increased dopaminergic tone coinciding with GSH deficiency during 
development can result in the long-term cognitive deficit observed in adult rats 
(Castagné et al. 2004b). Hence, the observed disturbances in the object recognition 
test in ODS rats treated with BSO and GBR 12909 are in line with the decreased 
object recognition capacity of schizophrenic patients as compared to healthy control 
subjects (Danion et al. 1999; Doniger et al. 2001; Heckers et al. 2000).

On the other hand, in the genetic model of GSH deficit, that is, in GCLM- knockout 
(Gclm−/−) mice, some subtle alterations in behavior of animals were observed 
(Steullet et al. 2010). In particular, Gclm−/− mice (4–6 months old) displayed an 
increased novelty-induced exploration, altered behavior during the object recogni-
tion task, altered emotion and stress-related behaviors, and lower response to delayed 
fear conditioning but had intact spatial learning and spatial memory (Steullet et al. 
2010). The authors of the latter study revealed that genetically compromised GSH 
synthesis in Gclm−/− mice affected the morphological and functional integrity of hip-
pocampal parvalbumin-immunoreactive (PV-ir) fast-spiking interneurons (FSIs), 
which are known to be altered in schizophrenia. In that study, it was demonstrated 
that the decreased GSH level in Gclm−/− mice caused a selective reduction of PV-ir 
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interneurons in CA3 and dentate gyrus of the ventral hippocampus (VH) but not the 
dorsal hippocampus (DH) and a concomitant reduction of β/γ oscillations (Steullet 
et al. 2010). According to those authors, the altered behavior of Gclm−/− mice was 
associated with the functional disruption of the VH. Therefore, the hippocampus-
dependent behaviors, known to implicate differentially the VH and DH, observed in 
Gclm−/− mice were discussed on the background of other literature data, in compara-
tive manner. Mice with functional disruption of PV-ir FSI in the whole hippocampus 
had deficit in recognition of novel spatial arrangement of familiar objects and in 
novel object recognition (Fuchs et al. 2007). Gclm−/− mice that had dysfunctional 
only the VH recognized changes in spatial arrangement of objects, a task that requires 
functional DH (Gaskin et al. 2009), but explored novel and familiar objects with the 
same intensity. Thus, Gclm−/− mice recognized spatially displaced objects but showed 
altered behavior during an object recognition task. Moreover, mice with functional 
disruption of PV-ir FSI in the whole hippocampus had also impaired spatial working 
memory (Fuchs et al. 2007), while Gclm−/− mice that had normally functioning DH 
did not show such deficit. Consequently, mice with functional disruption of PV-ir 
FSI in the whole hippocampus were hypoactive, while Gclm−/− mice showed potent 
novelty-induced exploration. Steullet et al. (2010) suggest that hyperactivity in 
Gclm−/− mice could be induced by a decreased GABA inhibition in the VH. Finally, 
altered emotion and stress-related behaviors in Gclm−/− mice were in line with spe-
cific disruption of the VH but not the DH. It should be mentioned here that there is a 
growing evidence of structural and functional anomalies of the anterior hippocam-
pus, a region of human brain that corresponds to the VH in rodents, in schizophrenic 
patients (Goldman and Mitchell 2004).

Moreover, in the most recent study, Kulak et al. (2012) using a different package 
of behavioral tests demonstrated that Gclm−/− mice displayed hyperlocomotion in 
the open field and forced swimming test but normal activity in home cage, suggest-
ing that hyperlocomotion was selective to environmental novelty and mildly stress-
ful situations. In the study by Kulak et al. (2012), similarly as in that performed by 
Steullet et al. (2010), spatial working memory in Gclm−/− mice remained unaffected. 
Gclm−/− mice showed a potentiated hyperlocomotor response to an acute amphet-
amine injection, impaired sensorimotor gating (prepulse inhibition), and altered 
social behavior when compared to wild-type mice (Kulak et al. 2012).

Altogether, the experimental data from different animal models of GSH defi-
ciency reported above show that low level of this antioxidant and redox regulator can 
induce behavioral alterations that are relevant to those observed in schizophrenia.

5.2  Biochemical Consequences of Glutathione Deficiency 
in In Vitro and In Vivo Models

Glutathione deficiency seems to be related to the dysfunction of central dopaminer-
gic, glutamatergic, and GABAergic neurotransmissions that are known to be impli-
cated in the pathogenesis of schizophrenia (Laruelle et al. 2003; Moghaddam 2003; 
Cabungcal et al. 2006).
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5.2.1  The Effect of Glutathione Deficit on Dopaminergic System Function

According to the dopaminergic hypothesis of the disease, a decrease in dopamine 
(DA) release in the prefrontal cortex (PFC) has been associated with negative symp-
toms, particularly cognitive deficits, while disinhibition of DA release in the dorsal 
striatum (nucleus accumbens) with the manifestation of positive symptoms, such as 
delusions and hallucinations. Evidence for dopaminergic dysfunction in schizo-
phrenia is in majority indirect and is mainly based on the fact that most antipsy-
chotic drugs being antagonists of DA D2 receptors alleviate some symptoms of this 
disease (Seeman et al. 1975; Kane and Marder 1993), while DA-releasing stimu-
lants, such as amphetamine, induce psychosis (Janowsky and Risch 1979). Although 
the mechanisms underlying dopaminergic dysfunction in schizophrenia have not 
been elucidated yet, the hypothesis of GSH deficiency creates possibility to explain, 
at least, some of its aspects.

The Potential Role of Glutathione Deficiency in the Loss of Dendritic Spines

Metabolism of DA is closely linked with both intracellular and extracellular levels 
of GSH. DA is a major source of ROS in the mammalian brain, as an excess of this 
neurotransmitter can easily auto-oxidize to produce DA quinones that have potent 
oxidizing properties (Baez et al. 1997; Dagnino-Subiabre et al. 2000). Moreover, 
DA, via monoamine oxidase activity or DA quinones, through redox cycling, can 
induce the formation of H2O2 and O2

•−, which are known to cause lipid peroxida-
tion, DNA modification, and protein oxidation (Baez et al. 1997; Bains and Shaw 
1997; Rabinovic and Hastings 1998). Under physiological conditions, GSH detoxi-
fied DA quinones and H2O2 via reactions catalyzed by GST and GPx, respectively 
(see Sects. 2.2 and 2.3). However, under conditions of GSH deficiency, an excess of 
reactive intermediates of DA can disrupt cellular functions (Grima et al. 2003; 
Hastings et al 1996; Hirrlinger et al. 2002a), and this could contribute to the patho-
genesis of schizophrenia. Although schizophrenia is not considered to be a neuro-
degenerative disease (Harrison 1997; Stevens and Casanova 1988; Garey 2010), 
low level of GSH in the PFC (Do et al. 2000; Gawryluk et al. 2011a) can sensitize 
neurons to DA-mediated dendritic degeneration (Hastings et al. 1996; Rabinovic 
and Hastings 1998; Grima et al. 2003). Hence, peroxidation reactions can lead 
locally to microlesions, affecting the synaptic contacts on dendritic spines of corti-
cal pyramidal neurons, where excitatory glutamatergic terminals converge with 
dopaminergic ones (Goldman-Rakic et al. 1989). This may lead to the reduction of 
neuropil, mainly dendritic spines density, reported in postmortem histological stud-
ies of the PFC of schizophrenic patients (Selemon and Goldman-Rakic 1999; Glanz 
and Lewis 2000; Garey 2010; Glausier and Lewis 2012). As a degeneration of 
spines with their synaptic contacts may lead to abnormal cortico-cortical connectiv-
ity, these postmortem findings imply that neuronal integrity is compromised in 
schizophrenia. Thus, abnormal connectivity in the PFC may be responsible for part 
of symptoms, particularly those involving cognitive and perceptive functions 
(Garey 2010).
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In line with the “reduced neuropil hypothesis” by Selemon and Goldman-Rakic 
(1999), it has been demonstrated that the application of DA under conditions of GSH 
deficiency into cultures of primary mouse cortical neurons induced a significant 
decrease in the number of neuronal processes which are considered to be spines 
analogous (Grima et al. 2003). Also, a deficit in brain GSH combined with a DA 
uptake inhibition during rat postnatal development caused a decrease in the number 
of dendritic spines of pyramidal neurons in the PFC (Do et al. 2004). So, morphologi-
cal changes found in in vitro and in vivo studies could be related to morphological 
alteration reported earlier in the PFC of schizophrenic patients. Moreover, abnormal 
connectivity in the PFC was suggested by in vivo nuclear magnetic resonance imag-
ing (NMR) studies in which it was found that N-acetyl aspartate (NAA), a marker of 
neuronal integrity, was decreased in schizophrenic patients (Callicott et al. 2000; 
Deicken et al. 2000; Yamasue et al. 2002). Interestingly, GSH deficiency decreases 
NAA level in the rat brain (Heales et al. 1995; Jain et al. 1991). Thus, it is likely that 
GSH deficiency and neuronal impairment are functionally linked in schizophrenia.

The Potential Role of Glutathione Deficiency in the Amphetamine-Induced DA 
Release in Subcortical Regions of the Brain

Besides the possible role of GSH deficiency in the loss of dendritic spines in the 
PFC (Grima et al. 2003; Do et al. 2004), it is believed that pathological low level of 
this antioxidant could cause disturbances in the dopaminergic neurotransmission 
(Jacobsen et al. 2005). The effect of a short-lasting GSH deficiency induced by the 
GSH synthesis blocker, BSO, on extracellular DA level in the nucleus accumbens of 
mice receiving amphetamine was investigated using a microdialysis method 
(Jacobsen et al. 2005). The latter study revealed that extracellular DA release after 
amphetamine (5 mg/kg) was increased twofold in the nucleus accumbens of GSH- 
deficient mice as compared to control mice with normal GSH level (Jacobsen et al. 
2005). GSH deficiency per se did not change basal extracellular level of DA in the 
examined brain structure. These results indicate that GSH-deficient mice may expe-
rience accumbal hyperdopaminergia when DA transmission is considerably 
enhanced. The exacerbated amphetamine-induced DA release in the mouse model 
of GSH deficiency is consistent with the elevated amphetamine-induced DA release 
in the striatum of schizophrenic patients demonstrated by means of a single photon 
emission computed tomography (SPECT) and positron-emission tomography 
(PET) methods (Laruelle et al. 1996; Breier et al. 1997). Moreover, Laruelle et al. 
(1996) have shown that the elevated amphetamine effect in schizophrenic patients 
was associated with emergence or worsening of positive psychotic symptoms. 
These results suggest that psychotic symptoms in schizophrenia are related with 
exaggerated stimulation of dopaminergic transmission.

The mechanism underlying the interplay between GSH and DA after amphet-
amine administration in conditions of GSH deficiency is difficult to explain. 
However, based on previous reports on the general properties of GSH and DA, plau-
sible explanations for these findings can be suggested. It is well known that GSH 
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directly conjugates DA in vitro (Baez et al. 1997; Dagnino-Subiabre et al. 2000) and 
in vivo (Rabinovic and Hastings 1998). Since extracellular concentration of GSH is 
relatively high (1–2 μM; Lada and Kennedy 1997) and astrocytes permanently 
release this antioxidant into extracellular space (Dringen et al. 1997; Hirrlinger et al. 
2002b), it is likely that GSH could scavenge the released DA. The amount of GSH 
released by astrocytes is correlated with the intracellular GSH content (Sagara et al. 
1996). Therefore, deficit in intracellular GSH may lead to a concomitant decrease in 
extracellular pool of this antioxidant. Since GSH directly affects DA transmission 
by extracellular conjugation, deficit in its extracellular level could impair this mech-
anism that keeps the released DA under control. However, whether DA-GSH conju-
gation has functional significance remains to be established.

The Potential Role of Glutathione Deficiency in the DA-Mediated Modulation 
of Glutamatergic Transmission in the Prefrontal Cortex

GSH plays an important role in the redox control of various signal transduction 
pathways and gene expression (Sen 2000; Esposito et al. 2004). Thus, GSH deficit 
can alter the function of redox-sensitive proteins implicated in neurotransmission 
and synaptic plasticity such as NMDA receptors (Köhr et al. 1994; Choi et al. 2001), 
GABAA receptors (Amato et al. 1999), and ryanodine receptors (Bull et al. 2003) as 
well as calcium-activated K+ channels (DiChiara and Reinhart 1997) and L-type 
calcium channels (Campbell et al. 1996). These redox-sensitive proteins could 
affect neurotransmitter systems, i.e., dopaminergic, glutamatergic, and GABAergic, 
that are known to be dysfunctional in schizophrenia. In this section, a potential role 
of GSH deficiency in the DA-mediated modulation of glutamatergic transmission in 
the prefrontal cortex (PFC) will be discussed.

In the PFC, DA plays an important role in cognitive functions including working 
memory, reword, and attention. DA-containing neurons are localized in the ventral 
tegmental area and project to the PFC. A critical function of DA in this brain region 
is a modulation of glutamatergic transmission. NMDA responses are known to be 
modulated by DA via the activation of D1 and D2 receptors through multiple path-
ways acting on different targets, including NMDA receptors and voltage-gated cal-
cium channels (Tseng and O’Donnell 2004). In brain slices obtained from 
developmentally matured rats, it was demonstrated that the application of NMDA 
and D1 agonist SKF38393 induced concentration-dependent excitability increases 
measured by whole-cell patch clamp technique, whereas the application of the D2 
receptor agonist quinpirole induced concentration-dependent excitability decrease. 
The NMDA-mediated responses were potentiated by a D1 agonist while they were 
attenuated by a D2 agonist (Tseng and O’Donnell 2004).

The hypofunction of NMDA receptors reported in schizophrenia (Laruelle et al. 
2003; Moghaddam 2003; Labrie and Roder 2010) could be evoked by pathologi-
cally low level of GSH in the brain. Therefore, it was interesting to check whether 
GSH deficiency could change DA receptor-mediated signaling in the PFC. 
Consistently, Steullet et al. (2008) examined, in cultures of embryonic cortical 
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mouse neurons treated with BSO, how GSH deficiency influenced intracellular 
pathways implicated in DA signaling, namely, DA modulation of calcium responses 
to NMDA. In this study, it was shown that in the absence of DA, calcium responses 
evoked by NMDA were significantly larger in GSH-deficient neurons than in con-
trol ones (Steullet et al. 2008). In further experiments, it was established that the 
increased calcium responses to NMDA were due to the increased function of both 
L-type calcium channels and ryanodine receptors (RyRs), but not NMDA receptors. 
So, caffeine, an agonist of RyRs, induced significantly larger calcium release from 
internal stores in BSO-treated neurons than in control ones, confirming in this way 
the enhanced function of RyRs in the GSH-deficient neurons (Steullet et al. 2008). 
Moreover, the increase in the function of RyRs in neurons with low GSH content 
was in line with the finding that RyRs were redox sensitive, with oxidative condi-
tions enhancing their function (Bull et al. 2003).

DA administration decreased calcium responses evoked by NMDA in GSH- 
deficient neurons but enhanced them in control ones. To exclude unspecific effects 
of BSO, it was evidenced that replenishing GSH levels by administration a 
membrane- permeable GSH analog abolished DA-mediated decrease in calcium 
responses to NMDA in the cultured GSH-deficient neurons. Since the blockade of 
DA D2 receptor by sulpiride caused a significant increase in calcium responses in 
GSH-deficient neurons but not in control ones, it was concluded that DA acting via 
DA D2 receptors decreased calcium responses evoked by NMDA under conditions 
of GSH deficiency (Steullet et al. 2008). In contrast, the blockade of DA D1 recep-
tors with SCH23290 did not have any significant effect on DA-mediated modulation 
of calcium responses in GSH-deficient neurons while tending to decrease them in 
control neurons. The latter effect suggested that the activation of DA D1 receptors 
was involved in DA-induced increase of calcium responses evoked by NMDA only 
in control neurons.

So, the above-described results showed that a GSH deficit changed DA modula-
tion of calcium responses evoked by NMDA. In cultured cortical neurons, NMDA- 
evoked calcium responses resulted from an initial calcium influx via the activation 
of NMDA receptors followed by secondary calcium influxes, through voltage-gated 
calcium channels (L-type channels) and calcium release from intracellular stores 
via the activation of RyRs (Hayashi et al. 1997). Steullet et al. (2008) examined 
which of these calcium sources contributing to the total response evoked by NMDA 
were altered by DA modulation under conditions of GSH deficiency. Consequently, 
it was demonstrated that DA decreased the calcium influx through L-type channels 
in GSH-deficient neurons but enhanced it in control ones. Such an effect of a GSH 
deficit on L-type channels was also observed when these channels were activated by 
either KCl or by specific agonist, BAY-K8644. DA is known to either increase the 
function of L-type channels via the activation of DA D1 receptors or decrease it via 
the activation of DA D2 receptors (Tseng and O’Donnell 2004). Hence, the results 
presented by Steullet et al. (2008) suggested that a GSH deficit strengthened DA D2 
receptor-mediated decrease in the function of L-type calcium channels, occluding 
DA D1 receptor-mediated increase in the function of these channels.
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Regarding internal source of calcium, Steullet et al. (2008) have found that the 
alteration of DA signaling in GSH-deficient neurons required the redox-sensitive 
RyRs. Because of the enhanced function of RyRs under condition of oxidative 
stress, DA evoked a larger release of calcium from intracellular stores in neurons 
containing a low level of GSH than in normal control. This, in turn, promoted in 
GSH-deficient neurons a decrease in the function of L-type channels via DA D2 
receptor-mediated calcium-dependent pathway, whereas in control neurons, the 
function of these channels was enhanced. So, the deficit of GSH affected DA modu-
lation of L-type channels but not the other calcium sources implicated in the 
responses to NMDA. As a consequence of the specific alteration of DA modulation 
of L-type channels, DA decreased NMDA responses in GSH-deficient neurons but 
increased them in normal neurons. So, GSH deficit, as that observed in some groups 
of schizophrenic patients (Do et al 2000; Yao et al. 2006; Gawryluk et al. 2011a), 
could play a significant role in the pathophysiology of this disease via dysregulation 
of dopaminergic and glutamatergic transmissions.

5.2.2  The Effect of Glutathione Deficiency on Glutamatergic  
System Function

In addition to dopaminergic abnormalities, also glutamatergic dysfunction has been 
associated with the pathogenesis of schizophrenia (Laruelle et al. 2003; Moghaddam 
2003; Labrie and Roder 2010). Consistent with this view, reduced NMDA receptor 
function has been proposed as a cause of schizophrenia, because noncompetitive 
NMDA receptor antagonists like phencyclidine and ketamine induce psychotic and 
cognitive symptoms in healthy humans (Moghaddam 2003; Kantrowitz and Javitt 
2010) and exacerbate symptoms in schizophrenic patients (Javitt and Zukin 1991; 
Krystal et al. 1994, 2005). Moreover, a loss of dendritic spines from cortical and 
hippocampal pyramidal neurons may be combined with the glutamatergic hypoth-
esis of schizophrenia as NMDA receptors are present on their dendrites and proba-
bly dendritic spines. It is well documented that the vast majority of excitatory 
synapses (80–95 %) in the central nervous system are formed onto dendritic spines 
(Wilson 2007) and, as such, the spines perform a significant role in regulating neu-
ronal excitability. In mature neuronal systems, pharmacological blockade of AMPA 
receptors or surgical deafferentation of glutamatergic inputs resulted in decreased 
spine density (Smart and Halpain 2000; Jacobs et al. 2003). Additionally, two recent 
studies showed that a constitutive reduction in NMDA receptor activity results in 
decreased spine density and cortical volume in the PFC and sensory cortex (Balu 
et al. 2012; DeVito et al. 2011). Although the loss of dendritic spines in schizophre-
nia was reported earlier (Glausier and Lewis 2012), the cause of NMDA receptor 
hypofunction in this disease has not been established as yet. However, an increasing 
number of experimental data suggest that GSH deficit may be an important factor 
contributing to this phenomenon (Steullet et al. 2006, 2010; Do et al. 2009). The 
potential role of DA in the loss of dendritic spines in condition of GSH deficiency 
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has been presented in section “The Potential Role of Glutathione Deficiency in the 
Amphetamine-Induced DA Release in Subcortical Regions of the Brain”, whereas 
the role of this antioxidant in the regulation of NMDA and AMPA receptor func-
tions is presented in Sect. 2.4.

GSH can affect NMDA receptor function via binding to its regulatory, redox- 
sensitive site and to glutamate recognition site. Redox sites of NMDA receptor are 
unusually sensitive to the oxidizing potential of the extracellular environment 
(Aizenman et al. 1989). Hence, oxidizing agents diminish NMDA receptor function, 
while reducing compounds, including GSH, enhance it (Köhr et al. 1994; Choi et al. 
2001). Since GSH is the main regulator of the brain redox systems, it was assumed 
that GSH deficiency of the same magnitude as in schizophrenic patients (about 50 % 
of the control level) could lead to the dysfunction of NMDA receptors. A low GSH 
level could also alter NMDA receptor function via non-redox mechanisms because 
GSH can bind via its γ-glutamyl moiety to the glutamate recognition sites of NMDA 
and AMPA receptors and in this way modulate their function (Varga et al. 1997; see 
Sect. 2.4). To check experimentally whether GSH deficit could be a causal factor for 
NMDA hypofunction reported in schizophrenia, Steullet et al. (2006) examined in 
the CA1 region of the rat hippocampus how GSH deficit, induced by BSO adminis-
tration, altered basal neurotransmission, cell excitability, and short-term and long-
term plasticity. Using electrophysiological techniques, it was demonstrated that in 
hippocampal slices with low GSH level, the basal excitatory synaptic transmission 
that mostly depends on the AMPA receptor activation was not changed but NMDA 
receptor function was markedly depressed (Steullet et al. 2006). An extracellular 
level of GSH depends on its intracellular content and on the rate of GSH release 
from the glial compartment (Sagara et al. 1996; Hirrlinger et al. 2002b). Therefore, 
a deficit in intracellular GSH may result in a concomitant decrease in the extracel-
lular content of this antioxidant. Consequently, the GSH deficit could lead to an 
excessive oxidation of the extracellular redox-sensitive site of NMDA receptors and 
to subsequent attenuation of their function. Results by Steullet et al. (2006) partially 
confirmed this view, as DTNB (5,5’-dithiobis(2- nitrobensoic acid)), a membrane-
impermeable thiol-oxidizing compound, diminished pharmacologically isolated 
NMDA receptor-mediated field excitatory postsynaptic potentials (fEPSPs) in con-
trol, but not in BSO-treated slices. In turn, TCEP (tris(carboxyethyl)phosphine 
hydrochloride), a membrane-impermeable disulfide-reducing agent, increased 
NMDA responses more distinctly in BSO- treated slices than in control. These data 
indicate that under experimental conditions, the extracellular redox sites of NMDA 
receptors were fully oxidized in BSO-treated slices but were partially reduced in the 
control ones. Hence, the hypofunction of NMDA receptors under conditions of 
GSH deficit can be explained at least in part by an excessive oxidation of the extra-
cellular redox-sensitive sites of NMDA receptors. In the above-reported study, it 
was also found that NMDA receptor- dependent long-term potentiation induced by 
high-frequency stimulation was impaired in GSH-depleted slices. The impairment 
of such synaptic plasticity could have adverse effects on normal brain functioning, 
including cognitive processing.
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5.2.3  The Effect of Glutathione Deficiency on GABAergic System Function

An alteration of the GABAergic system in the prefrontal cortex (Lewis et al. 2005) 
and hippocampus (Zhang and Reynolds 2002) is a characteristic feature of the 
pathology of schizophrenia. Postmortem studies of these brain tissues have pro-
vided strong evidence that the GABAergic system is impaired in schizophrenia. 
These studies showed decreases in the concentration of cortical GABA (Perry et al 
1979); in the activity of glutamic acid decarboxylase 67 (GAD-67), the GABA- 
synthesizing enzyme (Akbarian et al 1995; Hashimoto et al. 2003); and in the con-
tent of the calcium-binding protein parvalbumin (PV) in the fast-spiking interneurons 
(FSIs) of the prefrontal cortex and hippocampus (Hashimoto et al. 2003; Reynolds 
et al. 2004; Torrey et al. 2005). The existence of GABAergic deficit in schizophre-
nia was supported by in vivo studies using noninvasive methods. GABA measured 
in the human brain by magnetic resonance spectroscopy was shown to be decreased 
in schizophrenic patients (Rosso et al. 2006). Moreover, GABAergic inhibitory 
activity, as measured by transcranial magnetic stimulation (Daskalakis et al. 2002), 
was reduced.

NMDA receptor hypofunction could contribute to these abnormalities in the 
GABAergic system because the administration of NMDA receptor antagonists can 
cause the loss of parvalbumin and GAD-67 (Keilhoff et al. 2004; Kinney et al. 2006), 
alter GABA-mediated inhibitory control of cortical neurons (Homayoun and 
Moghaddam 2007), and disrupt the development of GABAergic neurons (Abekawa 
et al. 2007). Hence, the hypofunction of NMDA receptors induced by GSH  deficiency 
(Sect. 5.2.2) could also affect the functioning of the GABAergic system in an indi-
rect way. In line with this assumption, in the pharmacological (ODS rats treated with 
BSO + GBR during early postnatal development; see Sect. 5.1) and genetic (Gclm−/− 
mice) models of GSH deficiency, it was demonstrated that low level of this antioxi-
dant caused a selective decrease of PV-ir interneurons in the rat prefrontal cortex 
(Cabungcal et al. 2006) and in the mouse dorsal hippocampus (Steullet et al. 2010). 
In the latter structure, a concomitant reduction of γ oscillations was also documented. 
Interestingly, γ oscillations were reduced in schizophrenic patients during impaired 
performance in cognitive tasks (Cho et al. 2006; Uhlhaas et al. 2008).

The decline of PV-ir FSIs has functional consequences because the activity of 
cortical pyramidal neurons is regulated by FSIs. These interneurons are necessary 
for the generation of γ neuronal synchrony that facilitates information processing 
and transfer within and between brain regions during cognitive tasks (Bartos et al. 
2007; Sohal et al. 2009). Chronic GSH deficit in Gclm−/− mice affected the structural 
and functional integrity of PV-ir FSIs (Steullet et al. 2010), impairing information 
processing in the VH and leading to specific behavioral alterations, such as enhanced 
novelty-induced exploration and inadequate responses to stress described in more 
detail in Sect. 5.1. In conclusion, the alterations observed in the GABAergic system 
in animal models of GSH deficiency are consistent with that found in schizophrenic 
patients. Therefore, the participation of GSH deficiency in the pathogenesis of 
schizophrenia seems to be more and more convincing.
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6  N-Acetylcysteine in the Treatment of Psychiatric Disorders

Considering GSH deficiency in the context of characteristic symptoms of schizo-
phrenia, Matsuzawa et al. (2008) described the existence of a negative correlation 
between the brain GSH levels and the severity of negative symptoms of this disease. 
This observation suggested that agents increasing GSH levels could be potential 
therapeutic drugs for the treatment of negative symptoms of schizophrenia 
(Matsuzawa et al. 2008). The best thiol compound that fulfills such criterion seems 
to be N-acetylcysteine (NAC), as it acts as a precursor for GSH synthesis by supply-
ing cysteine. NAC has been shown to penetrate successfully the blood-brain barrier 
and raise brain GSH levels in animal models (Farr et al. 2003). It enters the cell 
readily (Mazor et al 1996) and is then deacetylated to form L-cysteine. In addition 
to providing cysteine for GSH production, NAC acts as a direct antioxidant, although 
with less potency than that of GSH (Aruoma et al. 1989; Hussain et al. 1996).

For more than 30 years, NAC has been used for the treatment of paracetamol 
overdose, but now it is widely used as a mucolytic agent and in the treatment of HIV 
infection. As more information comes to light about NAC mode of action, its clinical 
applications are extending. Currently, potential application of NAC in the treatment 
of psychiatric disorders particularly in schizophrenia and bipolar disorder is being 
considered. Recently, in the double-blind, placebo-controlled study, it has been 
demonstrated that NAC addition (1 g twice daily over 24-week period) to antipsy-
chotic therapy alleviated the negative symptoms, measured on the Positive and 
Negative Syndrom Scale. Furthermore, improvements in global functioning and 
reduction of abnormal movements, particularly akathisia, were also found in patients 
with chronic schizophrenia (Berk et al. 2008a). In addition, NAC relieved the depres-
sive symptoms of bipolar disorder (BD) patients (Berk et al. 2008b). In another 
clinical study, Lavoie et al. (2008) reported that NAC application (1 g two times 
daily for 60 days) in schizophrenic patients mitigated an impaired mismatch nega-
tivity, which is an auditory evoked potential component related to NMDA receptor 
function. The abovementioned studies suggest that NAC has the potential to become 
a therapeutic drug for negative symptoms in schizophrenia and depressive symp-
toms in BD. These findings are particularly interesting because currently used anti-
psychotic drugs are rather ineffective against negative symptoms of schizophrenia.
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