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  H 2 O 2     Hydrogen peroxide   
  HO-1    Heme oxygenase-1   
  IDO    Indoleamine 2,3-dioxygenase   
  KATs    Kynurenine aminotransferases   
  KMO    Kynurenine 3-monooxygenase   
  KP    Kynurenine pathway   
  KYN    Kynurenine   
  KYNA    Kynurenic acid   
  LDL    Low-density lipoprotein   
  MAPKs    Mitogen-activated protein kinases   
  NF-κB    Factor nuclear factor-kappa B   
  NOS    Nitric oxide synthase   
  PFC    Prefrontal cortex   
  QUIN    Quinolinic acid   
  RNS    Reactive nitrogen species   
  ROS    Reactive oxygen species   
  SOD    Superoxide dismutase   
  SP    Schizophrenia   
  TDO    Tryptophan 2,3-dioxygenase   
  Trp    Tryptophan   
  XA    Xanthurenic acid   
  α7nAChR    α7 nicotine acetylcholine receptor   

1          Oxidative Stress and Infl ammation in the Brain 

 Free radical formation is part of the physiological processes of aerobic metabolism. 
In this manner, cellular metabolism produces free radicals under physiological condi-
tions that are involved in critical functions during neuronal development, differentia-
tion, and signal transduction (Garthwaite et al.  1988 ; Matsumoto et al.  1993 ). 
Oxidative stress is a cytotoxic condition taking place in different tissues when anti-
oxidant mechanisms are overwhelmed by reactive oxygen species (ROS) (Halliwell 
 2006 ). Thus, oxidative stress is a threshold phenomenon characterized by a major 
increase in the amount of oxidized cellular components. Overproduction of ROS 
results in oxidative damage, including lipid peroxidation, protein oxidation, and 
DNA damage, which can lead to cell death (Floyd  1999 ; Love     1999 ; Phillis  1994 ). 
Furthermore, ROS can activate diverse downstream signaling pathways, such as 
mitogen-activated protein kinases (MAPKs) or the transcription factor nuclear factor- 
kappa B (NF-κB). Actually, the role of ROS in infl ammatory modulation involves 
NF-κB, since this factor becomes more transcriptionally active in response to the 
degradation of IκB by ROS, IκB being the inhibitory partner of nuclear factor κB that 
sequesters it in the cytosolic domain (Hayden and Ghosh  2004 ), thereby regulating 
the expression of genes encoding for a variety of proinfl ammatory proteins. The con-
sequences of excessive infl ammatory responses comprise secretion of high levels of 
proinfl ammatory cytokines and chemokines and production of more free radicals 
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causing oxidative stress, which cannot only damage neurons through the downregu-
lation of neurotrophins and their receptors but also by blocking neurogenesis. 

 Moreover, the brain is particularly susceptible to the damage caused by oxidative 
stress, due to the high rate of oxidative metabolic activity to support its normal 
 functions, high polyunsaturated fatty acid contents, relatively low antioxidant 
capacity, and inadequate neuronal cell repair activity (Traystman et al.  1991 ). 
Indeed, intracellular oxidative stress is highly associated with the development of 
neurodegenerative diseases and brain aging (   Emerit et al.  2012 ; Cui et al.  2012 ), 
suggesting that the CNS is an important target for oxidative stress. Infl ammatory 
processes could favor proinfl ammatory molecules from the periphery to invade the 
CNS, increasing cytokines, and activating glial cells to produce an amplifi ed 
response. Thus, factors like cytokines, cyclooxygenases, and prostaglandins may 
act as extracellular signals to generate additional ROS that are associated with 
decreased neuronal function or glial/neuronal interactions (Rosenman et al.  1995 ; 
Schipper  1996 ; Steffen et al.  1996 ; Stella et al.  1997 ; Woodroofe  1995 ). In this con-
text, metabolites from the kynurenine pathway are implicated in different neurode-
generative disorders because they can be modulated by both proinfl ammatory 
cytokines and free radicals.  

2     Kynurenine Pathway (KP) 

 The kynurenine pathway (KP) represents a major route for the catabolism of trypto-
phan (Trp) in mammals. The human body is unable to synthesize Trp; for this rea-
son, this amino acid is obtained from external sources (Chen and Guillemin  2009 ). 
Trp can only be transported across the blood–brain barrier (BBB) in its free form by 
the competitive and nonspecifi c L-type amino acid transporter (Hargreaves and 
Pardridge  1988 ). The result of KP is to use Trp to produce the essential pyridine 
nucleotide end product, NAD +  (Magni et al.  1999 ), which plays a key role in several 
biochemical and biological processes (Fig   .  1 ).  

 In the fi rst step of this metabolic process, Trp is oxidized by cleavage of the 
indole ring by two dioxygenases: indoleamine 2,3-dioxygenase (IDO) and trypto-
phan 2,3-dioxygenase (TDO), to further produce N-formylkynurenine. TDO was 
long thought to be exclusively localized in the liver, but now is known to be also 
expressed in the brain (Haber et al.  1993 ) and can be induced by corticosteroids 
(Salter and Pogson  1985 ). In turn IDO is present in two isoforms (Ball et al.  2009 ), 
it predominates extrahepatically and can be expressed in various cell types through-
out the body, including fi broblasts, dendritic cells, monocytes, macrophages, and 
microglia. IDO can be induced by a number of cytokines such as IFN-α and TNF-α 
(Guillemin et al.  2001 ,  2005 ; Robinson et al.  2005 ). This enzyme is a major immu-
nomodulator, showing increased activity and expression in the brain in association 
with macrophage infi ltration and microglial activation (Saito et al.  1993 ). Of note, 
interferon gamma (IFN-γ) is able to induce both gene expression and enzymatic 
activity of IDO-1 (Dai and Gupta  1990 ; Hassanain et al.  1993 ; Babcock and Carlin 
 2000 ). IDO is also unique in regard to its known property of using superoxide anion 
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radical as substrate and cofactor (Thomas and Stocker  1999 ), thus requiring the 
presence of radical generating systems such as ascorbate and xanthine-xanthine 
 oxidase. In addition, the enzyme is known to be inhibited both by superoxide dis-
mutase (SOD) (Hirata and Hayaishi  1971 ) and nitric oxide (Thomas et al.  1994 ). 

 The Trp catabolite N-formylkynurenine is then hydrolyzed to form the fi rst sta-
ble metabolite kynurenine (KYN) by the action of kynurenine formamidase. In the 
brain, KYN gives rise to two physically segregated branches of the pathway, pro-
ducing 3-hydroxykynurenine (3-HK) and its corresponding downstream metabo-
lites 3-hydroxyanthranilic acid (3-HANA) and quinolinic acid (QUIN) in microglial 

  Fig. 1    Schematic representation of the tryptophan metabolism pathway known as kynurenine pathway       
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cells, as well as kynurenic acid (KYNA) in astrocytes. Thus, KYN is metabolized 
by three enzymes: (1) kynurenine 3-monooxygenase (KMO), a fl avin-containing 
monooxygenase requiring the presence of NADPH as an electron donor (Charconnet- 
Harding et al.  1953 ; Stevens and Henderson  1959 ) to catalyze the hydroxylation of 
KYN to 3-HK; (2) kynurenine aminotrasferases (KATs), which catalyze the trans-
amination of KYN to KYNA—although several of these enzymes may participate 
in cerebral KYNA biosynthesis under physiological and physiopathological condi-
tions, it appears that the pool of KYNA that can be most readily mobilized in the 
brain is largely provided by KAT II (Amori et al.  2009 ); and (3) kynureninase, 
which catalyzes the degradation of KYN to anthranilic acid (AA). 

 Mammalian kynureninase is a pyridoxal phosphate-dependent enzyme that pref-
erentially recognizes 3-HK over kynurenine, catalyzing the formation of 3-HANA 
(Kawai et al.  1988 ). Of note, AA is a better precursor for 3-HANA within the brain 
than 3-HK (Baran and Schwarcz  1990 ). KAT II—and possibly other KATs—con-
verts 3-HK into xanthurenic acid (XA). 3-HANA is the substrate for 
3- hydroxyanthranilic acid 3,4-dioxygenase (3-HAO), which is present with relative 
abundance in the brain and is known to be inhibited by several metals ions (Foster 
et al.  1986 ), thereby forming 2-amino-3-carboxymuconic-6-semialdehyde. Under 
physiological conditions, 2-amino-3-carboxymuconic-6-semialdehyde spontane-
ously rearranges to form QUIN. Notably, the brain seems to contain very little 
2-amino-3-carboxymuconic-6-semialdehyde decarboxylase, an enzyme that 
defl ects the metabolic cascade towards the production of picolinic acid (PIC) (Pucci 
et al.  2007 ). The cerebral activity of the QUIN’s degradative enzyme, quinolinate 
phosphoribosyltransferase, is very low (   Foster and Schwarcz  1985 ), making this 
enzyme one of the gatekeepers for the synthesis of NAD + . 

 Excessive formation of 3-HK, QUIN, and/or KYNA could play a signifi cant role 
in brain pathology since these metabolites have been shown to exhibit either neuro-
toxic or neuroprotective properties, as well as antioxidant or pro-oxidant effects. 
Therefore, metabolites have been implicated in different neurologic and psychiatric 
disorders (Moroni  1999 ; Müller and Schwarz  2007 ;    Németh et al.  2006 ; Oxenkrug 
 2011 ; Ruddick et al.  2006 ; Schwarcz and Pellicciari  2002 ).  

3     KP Metabolites with Pro- and Antioxidant Properties 
Can Modulate Oxidative Stress 

 The CNS plays a key role in the maintenance of homeostasis and physiological 
functions in mammals. However, its biochemical and cytological characteristics 
make it vulnerable to the action of different cytotoxic agents. Among the mecha-
nisms leading to neurodegeneration and cell death, ROS-induced oxidative stress 
plays a pivotal role. Oxidative stress occurs when cellular antioxidant defense 
mechanisms fail to counterbalance and control endogenous ROS and reactive nitro-
gen species (RNS) generated either from normal oxidative metabolism or from pro- 
oxidant conditions (Kohen and Nyska  2002 ; Berg et al.  2004 ). ROS/RNS are also 
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known to modulate infl ammation. There is a close relation between oxidative stress 
and the pathogenesis of neurodegenerative diseases. In this context, KP generates 
metabolites exhibiting antioxidant and pro-oxidant properties (Table  1 ), which pro-
duction can be modulated by the prevailing redox status in cells; the imbalance in 
these metabolites is implicated in different pathologies of the CNS.

   Under physiological conditions, KP modulates glucose metabolism: while ATP 
and 3-HANA formed from this pathway activate glycolysis—through which glyco-
gen is stored in the cells to be used in case of energy stress or glucose depletion—
QUIN inhibits gluconeogenesis (Lardy  1971 ). Several KP metabolites participate in 
complex pro- and antioxidative processes in the brain (Giles et al.  2003 ). In particu-
lar, 3-HK and 3-HANA readily autooxidize under physiological conditions, produc-
ing in the process hydrogen peroxide (H 2 O 2 ) and highly reactive hydroxyl radicals 
(Goldstein et al.  2000 ). However, these effects are currently balanced by the anti-
oxidant capacity of KYNA and XA due they can scavenging radicals (Lugo-
Huitrón et al.  2011a ; Christen et al.  1990 ). 

 3-HK is present in the brain of mammals at nanomolar concentrations (   Pearson 
and Reynolds  1992 ). This metabolite undergoes autooxidation and can be converted 
into quinonimines with the accompanying generation of ROS (Hiraku et al.  1995 ). 
The ability of 3-HK to generate ROS seems to be the mechanism by which it causes 
neurotoxicity, given that cell damage induced by this metabolite is prevented by 
coadministration of metal chelating agents and free radical scavengers (Chiarugi 
et al.  2001 ; Eastman and Guilarte  1990 ; Goldstein et al.  2000 ; Nakagami et al.  1996 ; 
   Okuda et al.  1996 ). 3-HK uptake into cells is required for neurotoxicity, as its inhi-
bition by competing large neutral amino acids prevents this damage. In addition, 
3-HK toxicity depends on the cellular type because cortical and striatal cells were 
more vulnerable to cerebellar neurons (Okuda et al.  1998 ). The levels of 3-HK are 
increased in the brains of mice following immune activation or administration of 
interferon-γ (Saito et al.  1992 ). It is likely that some of the deleterious actions attrib-
uted to 3-HK are actually due to its metabolite 3-HANA, since the later readily 
undergoes autooxidation with the formation of superoxide anions (Dykens et al. 
 1987 ,  1989 ). Toxic pro-oxidant effects of 3-HK and 3-HANA were mainly observed 
in neuronal cell cultures exposed for long periods and high concentrations (100–
200 mM) of these compounds (Lee et al.  2001 ,  2004 ). Furthermore, 3-HK potenti-
ates QUIN toxicity; intrastriatal co-injection of these agents in low doses, which 

  Table 1    Metabolites from 
KP with pro-oxidative and 
scavenger properties  

 Metabolite  Species produced  Species scavenged 

 Trp  H 2 O 2  
 KYN  OH • , ONOO − , H 2 O 2  
 3-HK  H 2 O 2   OH • , NO 
 3-HANA  O 2  •− , H 2 O 2   ROO • , NO 
 QUIN  OH • , ONOO −  
 XA  ROO • , O 2  •− , OH •  
 AA  H 2 O 2  
 KYNA  O 2  •− , OH • , ONOO −  
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alone cause only minimal or no neurodegeneration, results in substantial neuronal 
loss (Guidetti and Schwarcz  2003 ). Nevertheless, antioxidants such as N-acetyl- 
cysteine can attenuate the damage produced by 3-HK in vivo, whereas catalase and 
glutathione can prevent the toxicity evoked by this metabolite in neural hybrid cell 
line N18-RE-105. Our group has recently collected experimental evidence showing 
that 3-HK can also act as a peroxynitrite scavenger, partially preventing ROS forma-
tion in rat brain homogenates exposed to FeSO 4  (unpublished data). This evidence 
is in agreement with previous reports describing 3-HANA and 3-HK as potent radi-
cal scavengers since they can protect B-phycoerythrin from peroxyl radical- 
mediated oxidation for longer periods of time at equimolar concentrations of 
ascorbic acid and a water-soluble analogue of vitamin E (Christen et al.  1990 ). 
These two metabolites also inhibited spontaneous lipid peroxidation in the brain, 
protecting cerebral cortex against oxidative damage even in the presence of Fe III or 
Fe II, which stimulate auto-oxidation of these metabolites and hydroxyl radical for-
mation, respectively. 3-HK is also able to scavenge hydroxyl radicals because it 
reduces 2-deoxy-D-ribose oxidation (Leipnitz et al.  2007 ). Hence, it is conceivable 
that under conditions in which 3-HK acts as antioxidant, the autooxidation or 
hydroxyl formation did not occur or was insuffi cient to overcome the antioxidant 
properties of this metabolite. 

 3-HANA has also been shown to generate hydrogen peroxide and superoxide in 
the presence of transition metal ions such as copper (Goldstein et al.  2000 ). However, 
3-HANA can also act as an antioxidant, scavenging peroxyl radicals more effec-
tively than equimolar concentrations of either ascorbic acid or Trolox (Christen 
et al.  1990 ). 3-HANA was highly effective in inducing in astrocytes the expression 
of heme oxygenase-1 (HO-1), an antioxidant enzyme with anti-infl ammatory and 
cytoprotective properties in human glial cells (Krause et al.  2011 ). Additionally, 
3-HK and 3-HANA are also effi cient NO scavengers (Backhaus et al.  2008 ), and 
3-HANA also prevented the spontaneous oxidation of GSH (Leipnitz et al.  2007 ). It 
has been observed that 3-HANA acts as a co-antioxidant for the low-density lipo-
protein (LDL), preventing lipid peroxidation. It was then postulated that 3-HANA 
regenerates α-tocopherol, which is the endogenous antioxidant for LDL, by reduc-
ing the α-tocopheroxyl radical (Christen et al.  1994 ; Thomas et al.  1996 ). 

 On the other hand, the toxic actions of QUIN are primarily linked to N-methyl- 
D-aspartate receptor (NMDAr) overactivation through excitotoxic events (Stone 
 1993 ; Susel et al.  1989 ). More recently, evidence involving oxidative stress as an 
integral part of the toxic model induced by QUIN has appeared (Rodríguez-Martínez 
et al.  2000 ; Behan et al.  1999 ). Some studies suggest that QUIN stimulates lipid 
peroxidation in brain tissue (Ríos and Santamaría  1991 ), and this effect is likely to 
be mostly dependent on NMDAr overactivation since this marker of oxidative stress 
is attenuated by NMDAr antagonists like KYNA and MK-801 (Santamaría and 
Ríos  1993 ). QUIN has also shown to induce peroxynitrite formation through a con-
certed inhibition of SOD activity and increased activity of nitric oxide synthase 
(NOS) (Pérez-de la Cruz et al.  2005 ). Noteworthy, it seems that only a small fraction 
of this damage corresponds to an NMDAr-independent component (   Santamaría 
et al.  2011a ; Behan et al.  1999 ; Stone et al.  2000 ), and this is probably due to 
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the ability of this metabolite to form complexes with iron (II) (Stipek et al.  1997 ). 
Once these complexes are autooxidized, they yield hydroxyl radical formation 
through the Fenton reaction (Pláteník et al.  2001 ; Santamaría et al.  2011b ). Therefore, 
QUIN is a prototypical molecule combining excitotoxic and pro-oxidant properties. 

 XA has been shown to act as a peroxyl radical scavenger in vitro, but its function 
as an antioxidant in vivo has been considered unlikely because the concentrations 
that were found in the tissue that has been studied (mouse lung) were in the low 
micromolar range (Christen et al.  1990 ). In the 2,2′-azino-bis(3-ethylbenzothiazoline- 
6-sulphonic acid) (ABTS) system, XA scavenged superoxide anions (Zsizsik and 
Hardeland  1999a ). A recent study evaluated the antioxidant action of XA using 
heme and iron as promoters of radical formation: in this model, XA proved to be a 
powerful antioxidant, inhibiting lipid peroxidation induced both by heme and iron 
in a pH-dependent manner (Lima et al.  2012 ). 

 In regard to KYNA, some studies have shown that this metabolite scavenges 
hydroxyl radicals, effi ciently protecting 2-deoxyribose when hydroxyl radicals were 
generated photolytically from N-hydroxy-2-pyridinethione (Zsizsik and Hardeland 
 1999b ,  2001 ). KYNA also prevented the ROS production and lipid peroxidation 
induced by FeSO 4  and 3-nitropropionic acid in rat brain homogenates and decreased 
the hydroxyl radical production in vivo, independently of its activity on NMDAr and 
nicotinic receptors (Lugo-Huitrón et al.  2011a ). We have collected recent evidence 
demonstrating that KYN, the direct precursor of KYNA, exerts stronger scavenger 
properties since it was able to scavenge hydroxyl radicals and peroxynitrite in syn-
thetic medium and reduced ROS formation in rat brain homogenates exposed to 
FeSO 4  and peroxynitrite (Ugalde-Muñiz et al.  2012 ). Additionally, upon controlled 
conditions, peroxynitrite is capable of promoting KYNA production using L- and 
D-KYN as substrates (Lugo-Huitrón et al.  2011b ). These data correlated with the 
study conducted by Zsizsik and Hardeland ( 2001 ) in which the incubation of KYN 
with H 2 O 2  yields KYNA formation, a reaction that was enhanced in the presence of 
peroxidase. However, KYNA strongly potentiated the pro- oxidant behavior of 
δ-aminolevulinic acid, generating the degradation of 2-deoxyribose (Coto-Montes 
et al.  2001 ). Altogether, this evidence suggests that metabolites of KP exert both 
antioxidant and pro-oxidant properties, depending on the prevailing redox status.  

4     Infl ammation 

 Psychiatric disorders are associated with mild proinfl ammatory events. There is evi-
dence demonstrating that KP is upregulated in infl ammatory states, with activated 
macrophages and microglial cells producing QUIN together with other cytotoxins 
(Espey et al.  1997 ; Myint  2012 ). During infl ammatory processes, the increased deg-
radation of Trp and the peripheral amounts of KYN are propitious for KP metabo-
lism in the brain, given that KYN can be transported through the BBB. Also, during 
infl ammatory processes, KYN metabolism is increased. Most of KP metabolites 
contribute to homeostasis in the brain through their modulatory actions on neu-
rotransmitters and redox status. Up to date, the unbalance in KP metabolites has 
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been implicated in a variety of disorders of the CNS, including the AIDS-dementia 
complex, Alzheimer’s disease, schizophrenia, Huntington’s disease, amyotrophic 
lateral sclerosis, etc. (Guillemin et al.  2005 ; Beal et al.  1990 ). Furthermore, during 
the occurrence of neuroinfl ammatory processes, when KP is activated in microglial 
cells and/or when invading macrophages infi ltrate the brain, the concentrations of 
kynurenines may increase dramatically, reaching the micromolar range within the 
brain. In this regard, it is known that IFN-α can induce IDO, KMO, and 3-HAO. When 
IDO is induced by IFN-α, it yields a substantial increase in KYNA concentrations 
and other tryptophan metabolites. 

 The infl ammatory cytokines IL-1 and TNF-α, and lipopolysaccharide (LPS), act 
synergistically with IFN-α to induce IDO (Robinson et al.  2005 ; O’Connor et al. 
 2009 ). Human microglia, blood macrophages, and mixed cultures of human fetal 
brain cells can ordinarily convert tryptophan, kynurenine, or 3-HK into QUIN even 
if there is no immune stimulation (Heyes et al.  1992 ). Human macrophages stimu-
lated with TNF-α or IFN-γ yielded large amounts of QUIN (Pemberton et al.  1997 ). 
Kappa opioid receptors modulate the release of QUIN from microglial cells in cul-
ture (Chao et al.  2000 ). Interestingly, the amount of QUIN in the brain after immune 
stimulation can be prevented either by inhibitors of Trp metabolism or by com-
pounds able to suppress the activation of immune-competent cells (Saito et al. 
 1994 ). 3-HANA and QUIN induce selective apoptosis of HT1 cell through the acti-
vation of caspase-8 and the release of cytochrome c from mitochondria (Fallarino 
et al.  2002 ) as well as by mean of processes mediated by oxygen-derived free radi-
cals (Grohmann et al.  2003 ). Additionally, QUIN has been shown to induce the 
expression of chemokines and chemokine receptors in astrocytes, thereby leading to 
a possible amplifi cation of brain infl ammation (Guillemin et al.  2003 ). The synaptic 
and neuronal damage initiated by the QUIN-induced activation of microglia eventu-
ally leads to apoptotic cell death of oligodendrocytes and microglia, together with a 
loss of GFAP positive astrocytes (Dihné et al.  2001 ). 

 Loss of 3-HANA may have important consequences for the immune system. 
3-HANA inhibits the proliferation of CD8 + T cells (Weber et al.  2006 ). It can also sup-
press the responses of T cells to allogeneic stimuli (Terness et al.  2002 ), acting pri-
marily on Th1 rather than Th2 cells (Fallarino et al.  2002 ). At molecular level, it has 
been demonstrated that 3-HANA can suppress the activation of the proinfl ammatory 
transcription factor NFκB (Hayashi et al.  2007 ; Sekkaï et al.  1997 ) as well as inhibit-
ing nitric oxide synthase (Sekkaï et al.  1997 ; Oh et al.  2004 ). This evidence suggests 
that 3-HANA seems to be protective, limiting the infl ammatory response—including 
the activation of microglia, which is thought to contribute to brain damage following 
stroke. In addition, AA interacts with copper to form an anti- infl ammatory complex 
able to remove highly injurious ROS (Miche et al.  1997 ; Halova-Lajoie et al.  2006 ). 

 It has been shown that infl ammation plays a key role in the pathological onset of 
depression, and since cell-mediated immune activation induces IDO, this effect would 
lead to an increase in the Trp metabolism, reducing its levels in plasma, increasing the 
formation of KP metabolites, and decreasing serotonin synthesis. Altogether, these 
effects could explain the lower levels of this neurotransmitter and hypoactivation 
of its receptors observed in pathological conditions (Maes and Meltzer  1995 ). 
Additionally, generation of oxidative and nitrosative stress is an important mechanism 
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contributing to toxicity in infl ammation and depression (Maes and Meltzer  1995 ; 
Maes et al.  2011 ), and because IDO employs superoxide anion as oxidant factor (Sun 
 1989 ), its activity could be even more augmented. 

 Recently, KYNA was identifi ed as a ligand of GPR35 (Wang et al.  2006 ). Among 
immune cells, GPR35 is highly expressed in human CD14 +  monocytes, T cells, 
neutrophils, and dendritic cells, with lower expression levels in B cells, eosinophils, 
basophils, and iNKT cells; in the nervous system, it is mainly expressed in the dor-
sal root ganglia (Wang et al.  2006 ; Fallarini et al.  2010 ). The discovery that KYNA 
is an endogenous ligand for GPR35 further highlighted the importance of KP in 
regulating immune functions since the activation of GPR35 inhibits TNF-α release 
by macrophages under infl ammatory conditions induced by LPS; in this context, 
KYNA might exert an anti-infl ammatory effect (Wang et al.  2006 ). Additionally, 
GPR35 decreases intracellular Ca 2+  probably by inhibiting its entrance (Oshiro et al. 
 2008 ); therefore, KYNA probably exerts an effect on the release of infl ammatory 
mediators and excitatory amino acids from glial cells. Nevertheless, this action still 
remains unclear since KYNA activates the receptor at relatively high concentrations 
(10–100 μM), and so, it does not exert infl uence on extracellular neurotransmitters 
levels (Moroni et al.  2012 ). 

 The ligand-activated transcription factor aryl hydrocarbon (AHR) is also acti-
vated by KYNA. Considered as a xenobiotic receptor, AHR regulates the expression 
of different infl ammatory intermediates and can facilitate carcinogenesis (DiNatale 
et al.  2010 ; Moroni et al.  2012 ). However, KYNA is not the only metabolite from 
KP that activates this receptor as kynurenine has been shown to act as agonist on 
AHR; actually, kynurenine seems to be more active than KYNA in this effect 
(Nguyen et al.  2010 ; Optiz et al.  2011 ), and it has been hypothesized that AHR can 
be activated by other KP metabolites, which in turn means a contribution of KP to 
the immunosuppressant action of T cells in carcinogenic processes (Mezrich et al. 
 2010 ; Moroni et al.  2012 ). 

 Another KP metabolite, PIC, is an unselective metal ion chelator (Aggett et al. 
 1989 ) that activates macrophages via induction of macrophage inhibitory proteins 
MIP-1α and MIP-1β (Bosco et al.  2000 ). Its effect is potentiated by simultaneous 
IFN-α treatment (Pais and Appelberg  2000 ). It possesses both extracellular and 
intramacrophage antimicrobial activity (Abe et al.  2004 ).  

5     Neurochemical Modulation by KYNA 

 Infl ammatory reactions and enhanced oxidative stress are recognized as two impor-
tant factors associated with KP under both physiologic and pathologic conditions. 
Importantly, the imbalance in KP metabolites formation has a direct effect on neu-
rotransmission, as they can modulate the release of glutamate (Glu), dopamine 
(DA), gamma-aminobutyric acid (GABA), and acetylcholine. 

 The major KP metabolite considered as a neuronal inhibitor is KYNA, which is 
synthesized and released by astrocytes and antagonizes NMDAr (Kessler et al.  1989 ) 
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and α7 nicotine acetylcholine receptor (α7nAChR) (Hilmas et al.  2001 ). As previously 
described, KYNA synthesis is mediated by KATs. Four KAT isoforms have been 
described so far (KAT I–IV), from which KAT I and KAT II are the most studied. 

 Activation of α7nAChR facilitates the release of multiple neurotransmitters, 
thereby providing multiple opportunities for modulation of synaptic communica-
tion. Stimulation of presynaptic α7 receptors directly facilitates Glu and GABA 
release (Wonnacott et al.  2006 ; Dani and Bertrand  2007 ). Indeed, DA, norepineph-
rine, and serotonin are indirectly modulated by α7 receptor-induced facilitation of 
Glu and GABA release in various brain regions (Kaiser and Wonnacott  2000 ; 
Wonnacott et al.  2006 ; Dani and Bertrand  2007 ; Sher et al.  2004 ; Gotti et al.  2006 ). 
At a functional level, enhanced KYNA in the brain has been demonstrated to cause 
cognitive defi cits in animals (Shepard et al.  2003 ; Erhardt et al.  2004 ; Chess et al. 
 2009 ). Interestingly, reductions in brain KYNA levels cause signifi cant cognitive 
improvements, which can be demonstrated both in behavioral paradigms and using 
electrophysiological outcome measures (Potter et al.  2010 ). Decreased KYNA lev-
els lead to enhanced extracellular concentrations of Glu and acetylcholine, indicat-
ing that endogenous KYNA might function as a bidirectional modulator of 
glutamatergic and cholinergic neurotransmissions (Konradsson-Geuken et al.  2010 ; 
Wu et al.  2010 ; Zmarowski et al.  2009 ). 

 The fact that KYNA can directly infl uence neurotransmission is quite relevant as 
this metabolite can infl uence neuronal excitability but is limited to cross the BBB and 
can enter the brain only under certain circumstances. The ability of KYNA to enter 
the CNS can be augmented when the BBB is compromised. Modest elevations or 
reductions in KYNA levels reduce or facilitate extracellular DA and Glu release, 
respectively (Rassoulpour et al.  2005 ; Kaiser and Wonnacott  2000 ; Wu et al.  2007 ; 
Carpenedo et al.  2001 ; Alkondon et al.  2004 ). Accordingly, dysregulation of endoge-
nous KYNA may contribute to the physiopathology of several neuropsychiatric disor-
ders, including schizophrenia (SP). Elevated KYNA levels have been found in both 
cerebral spinal fl uid (Erhardt et al.  2001 ) and  postmortem  brain tissue of schizophrenic 
patients (Schwarcz et al.  2001 ). Thus, a disruption between KYNA, Glu, and DA 
levels may exacerbate dysfunctional cortical and subcortical communication, contrib-
uting to inappropriate information processing in neuropsychiatric disorders like SP.  

6     Schizophrenia and KYNA 

 Psychiatric disorders are associated with a mild proinfl ammatory state. Proin-
fl ammatory mediators could activate the Trp breakdown, causing dysregulation of 
KP, which results in hyper- or hypofunction of active metabolites. In turn, these 
changes are associated with neurodegenerative and other neurological disorders, as 
well as with psychiatric diseases such as schizophrenia (SP) (Schwarcz et al.  2012 ). 

 SP is one of the main psychiatric disorders reported and has been described as a 
psychotic disease characterized by impaired cognition and accompanied by emo-
tional and behavioral alterations. Major symptoms are auditive hallucinations, para-
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noid or bizarre delusions, or disorganized speech and thinking with signifi cant 
social or occupational dysfunction (Myint  2012 ). Dysfunctional interactions 
between neurotransmitter systems and brain regions are implicated in SP. Cognitive 
impairments in SP are now hypothesized to be due to primary neuronal dysfunc-
tions rather than chronicity or neurodegeneration (Hoff et al.  1999 ; Rajkowska et al. 
 1998 ). The neurochemistry of cognitive impairment in SP invokes distinct interde-
pendent changes in major neurotransmitter systems within the prefrontal cortex 
(PFC). Namely, changes in cholinergic, glutamatergic, dopaminergic, and 
GABAergic functions are critically involved in the physiopathology of SP (Sarter 
et al.  2005 ; Lewis and Moghaddam  2006 ). Recent studies suggests that KYNA, the 
only endogenous NMDAr antagonist identifi ed up to now—and also an antagonist 
for the nicotinergic acetylcholine receptor—might be involved in prefrontal dys-
functions in SP. Since its levels are elevated in the PFC of individuals with this 
disorder, with Brodmann areas 9 and 10 increasing by 46.8 % and 83.4 %, respec-
tively, versus control (Sathyasaikumar et al.  2011 ), thereby leading to the concept 
that changes in KYNA concentrations might contribute to cognitive dysfunction 
associated with this disorder. Despite the fact that it has been argued that the physi-
ological levels of KYNA could be below those levels needed to exert antagonism on 
glutamatergic receptors (K D   ̴ 8 μM; Ganong and Cotman  1986 ; Kessler et al.  1989 ), 
in some specifi c places of synapses, KYNA levels could be suffi cient to exert 
responses in nerve tissue (Scharfman et al.  2000 ). Experiments in rodents have 
demonstrated that even relatively minor elevations in KYNA levels in the PFC 
cause a decrease in the extracellular levels of Glu, acetylcholine, and DA known to 
be associated with cognitive dysfunctions. Interestingly, these effects are bidirec-
tional since a selective reduction in KYNA formation substantially enhances the 
extracellular presence of these classic neurotransmitters (Wu et al.  2007 ,  2010 ; 
Zmarowski et al.  2009 ). 

 Several other studies have shown that increasing endogenous KYNA concentra-
tions induced by L-KYN administration results in spatial and contextual learning 
defi cits in rats (Chess et al.  2007 ;  2009 ) as well as impaired sensory gating, prepulse 
inhibition, and attention in adult rats (Shepard et al.  2003 ; Erhardt et al.  2004 ; Chess 
and Bucci  2006 ). Noteworthy, when L-KYN is administered to young adult rats 
(equivalent to adolescence, a critical period for brain development), the increase in 
KYNA concentrations impact cognitive functions in adulthood and exhibited defi -
cits in contextual fear memory, while impaired on a novel object recognition mem-
ory task. Recently, it was also showed that prolonged KYN treatment during prenatal 
and early postnatal development in rats increased the KYNA levels, which was 
accompanied by a reduction in basal levels of extracellular glutamate in adult rats. 
Additionally, it was observed impaired performance in passive avoidance and the 
Morris water maze (Pocivavsek et al.  2012 ). The implications of these fi ndings lie 
in the fact that exposure to high levels of KYNA results in inhibition of NMDAr 
and/or α7nAChR during critical stages of the development, thereby exerting lasting 
impacts on brain morphology and/or cognitive functions during adulthood, contrib-
uting to cognitive defi cits  typically observed in SP (Akagbosu et al.  2012 ). 

 In this context, epidemiological evidence indicates that microbial pathogens 
and parasitic infections may contribute to cognitive impairments in patients with 
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SP. However, the precise mechanisms whereby the parasite impacts cognition 
remain poorly understood. Infection during pregnancy in mothers of offspring 
later developing SP has been repeatedly described (Mednick et al.  1988 ; Brown 
et al.  2004 ; Buka et al.  2001 ). In a follow-up study of children who had suffered 
from bacterial meningitis from age 0 to 5 years during an epidemic in Brazil, a 
fi vefold increased risk for developing psychoses later on was observed (Gattaz 
et al.  2004 ). Since the development of the brain is not fi nalized at birth, but is still 
ongoing for the fi rst years of life, an infection during early childhood is still in 
accordance with the assumption that an infection-triggered disturbance in brain 
development plays a pivotal role in SP (Muller and Schwarz  2006 ). Considerable 
body of evidence links  Toxoplasma gondii  infection to an increased incidence of 
schizophrenia (Dickerson et al.  2007 ; Mortensen et al.  2007 ; Hinze-Selch et al. 
 2007 ; Schwarcz and Hunter  2007 ). An interesting study measured antibody titers 
against infectious agents not only in the serum but also in the cerebrospinal fl uid 
of individuals with recent onset of SP. Titers against cytomegalovirus and  T. gon-
dii  were signifi cantly increased (Leweke et al.  2004 ). The link between  T. gondii  
and changes in glutamatergic neurotransmission remains poorly studied, but 
KYNA has already been hypothesized to be a pathogenic link between  T. gondii  
infection and cognitive impairment in SP (Schwarcz and Hunter  2007 ). 
Experimental studies have shown that diminishing elevated KYNA levels is pre-
dicted to ameliorate cognitive defi cits. Knockout mice with deletion of the enzyme 
that converts kynurenine into KYNA, KAT II, express lower levels of KYNA and 
perform better in cognitive test when compared to control mice (Potter et al.  2010 ). 
Because rodents infected with  T. gondii  and patients with SP exhibit increased 
KYNA levels in the brain (Schwarcz and Hunter  2007 ; Kannan and Pletnikov 
 2012 ), one could predict that reduction of levels of this NMDAr antagonist may 
have therapeutic effects. 

 A disruption of the immune response is associated with an altered balance in KP 
metabolism as well as oxidative stress. Clinical and preclinical investigations of the 
actions of antioxidative defense systems in the brain suggest several ways in which 
ongoing oxidative stress might impact the occurrence and course of SP. A recent 
meta-analysis indicated that there is an increase in the levels of lipid peroxidation 
products and NO in SP, while SOD activity was found to be signifi cantly decreased 
in this disorder (Zhang et al.  2010 ). These fi ndings show an increase of superoxide 
and other ROS and correlated with an increased expression of TDO compared to 
IDO in SP patients (Miller et al.  2004 ). Interestingly, TDO2 mRNA is elevated in 
the brain of individuals with SP, and a concomitant increased density of TDO2- 
immunopositive astroglial cells is seen in white matter of these patients (Miller 
et al.  2004 ). Because TDO is one of the upstream enzymes responsible for the bio-
synthesis of KYNA, this enhanced expression could conceivably lead to an eleva-
tion of KYNA levels in the diseased brain, therefore playing a part in the 
pathophysiology of this disorder. 

 Further evidence favors the concept that high levels of KYNA are implicated in 
SP: a recent study revealed distinct abnormalities in KP enzymes in BA9 and BA10 
cortical regions (Sathyasaikumar et al.  2011 ). While the activity of KATII was in the 
normal range, a signifi cant decrease in KMO activity in the PFC of individuals with 
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SP was observed. Of note, this reduction was not accompanied by decreased kyn-
ureninase activity. The activity of 3-HAO, which catalyzes the formation of QUIN 
from 3-HANA, was found to be reduced in the PCF. Decreased 3-HAO activity 
might account for the elevation in tissue levels of 3-HANA in SP, which was recently 
demonstrated in the anterior cingulate cortex (Miller et al.  2008 ) and might affect 
the redox status of neurons and glial cells in the area. This KMO downregulation 
provides an explanation for the increased levels of KYNA consistently found in 
 postmortem  brain tissue (Schwarcz et al.  2001 ) as well as in the cerebrospinal fl uid 
of individuals with SP (Nilsson et al.  2005 ). 

 Altogether, this body of evidence suggests an impact of KYNA levels on 
 cognitive defi cit in SP; however, the routes by which KYNA production is increased 
in SP remain unclear since the “canonic” pathway involving KATII activity is not 
altered. In this regard, some studies have shown that KYNA can be formed by the 
nonenzymatic oxidation of kynurenine and Trp via indole-3-pyruvic acid (   Politi 
et al.  1991 ), a reaction which is increased by oxidative stress. Increased levels of 
nitric oxide have been noticed after brain injury, and this can inhibit SOD. The 
resulting increase in superoxide anions could, in turn, oxidize indolepyruvate to 
KYNA, consistently with reports that nitric oxide donors increase KYNA produc-
tion (Luchowski and Urbanska  2007 ). The close correlation between infl ammation, 
oxidative stress, and KP and the impact that these components exert in neurotrans-
mission are likely to be involved in the pathogenesis of SP.  

7     Concluding Remarks 

 In recent years, different groups have investigated the impact of KP metabolites on 
SP—especially KYNA—and its role on the hypoglutamatergic function observed in 
patients with this disorder. Notably, the upregulation of KYNA levels in SP is often 
accompanied by increased tissue levels of kynurenine, the immediate KYNA bio-
precursor (Schwarcz et al.  2001 ). Different mechanisms could be accounting for 
KYNA formation in SP: (1) increased TDO activity, (2) decreased KMO activity, (3) 
early infectious/infl ammatory events affecting the brain, and (4) altered redox status. 
Taken together, these changes would serve to hypothesize the following order of 
events (summarized in Fig.  2 ), potentially leading to the pathological status involved 
in SP: First, an early infl ammatory process probably due to an infectious origin 
would trigger metabolic alterations in peripheral and central KP, thus increasing the 
Trp and kynurenine availability in the brain, together with increased TDO and IDO 
activities and a concurrent KMO activity. The scenario produced by these changes 
would also imply increased levels of KYNA apparently produced by mechanisms 
other than KATs activation, i.e., via ROS formation and oxidative modifi cations, 
whose origins are either Trp conversion into 3-indole-pyruvic acid—further leading 
to KYNA when reacting with ROS—or kynurenine conversion—which, in the pres-
ence of H 2 O 2  and a peroxidase, yields KYNA formation. In addition, if kynurenine 
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actions recruit scavenger properties, as already reported (Ugalde-Muñiz et al.  2012 ), 
then kynurenine oxidation itself could account for KYNA formation (Lugo-Huitrón 
et al.  2011b ). The latter would, in turn, explain why, during the early stages of SP, 
the levels of kynurenine and KYNA are both substantially increased, which also 

  Fig. 2    Schematic representation of the mechanism underlying the events involved in the increases 
of KYNA levels in SP. In step 1, an infl ammatory process due to possible infection or stress favors 
KP and its vulnerable brain barrier allowing passage of metabolites formed in the periphery to the 
CNS, in such events possibly early impact modifi ed in later stages (2), in which the increase in 
KYNA levels seems to be the key of cognitive impairment present in patients with SP       
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matches with a hypoglutamatergic function typically observed in cognitive decline 
seen in SP patients. The precise degree of involvement of these events on the onset 
of SP constitutes a fertile line of research to explore in the next years. In the mean-
time, it is clear that KYNA hypothesis in SP is a promising tool to develop therapeu-
tic designs for this and other psychiatric disorders.     
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