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     Abbreviations 

   4-HNE    4-hydroxynonenal   
  AMPA    α-amino-5-methyl-3-hydroxy-4-isoxazole propionic acid   
  ATP    Adenosine triphosphate   
  cGCL    Catalytic subunit of glutamate cysteine ligase   
  CNS    Central nervous system   
  COX2    Cyclooxygenase-2   
  DNA    Deoxyribonucleic acid   
  Drp1    Dynamin-related protein 1   
  DTNB    5, 5′-dithio-bis[2-nitrobenzoic acid]   
  DTT    Dithiothreitol   
  EAAC    Excitatory amino acid carriers   
  Egr-1    Early growth response protein   
  EPSC    Excitatory post synaptic currents   
  ERK    Extracellular signal-regulated kinase   
  H 2 O 2     Hydrogen peroxide   
  iNOS    Nitric oxide synthase, inducible form   
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  KA    Kainate   
  MPTP    1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine   
  NAC    N-acetylcysteine   
  NFκB    Nuclear factor-kappaB   
  NMDA    N-methyl-D-aspartate   
  nNOS    Neuronal nitric oxide synthase   
  NO    Nitric oxide   
  NOX    Nicotinamide adenine dinucleotide phosphate oxidase   
  NOX2    NADPH oxidase   
  NRF1    Nuclear respiratory factor 1   
  Nrf2    NF-E2-related factor   
  O2 −     Superoxide anion   
  ONOO    Peroxynitrite   
  OPA1    Optical atrophy protein 1   
  PKG    Protein kinase G   
  RNS    Reactive nitrogen species   
  ROS    Reactive oxygen species   
  SIN-1    3-morpholinosydnonimine   
  Sp1    Specifi city protein 1   
  t-BHQ     tert -Butylhydroquinone   
  t-bOOH     tert -Butylhydroperoxide   

1           Introduction 

 Abnormalities of glutamate neurotransmission are the focus of intense research for 
the neurobiological approach of neuropsychiatric conditions. A large body of research 
has demonstrated the implication of glutamate in pathological phenomena such as 
neurodegeneration, excitotoxicity, and apoptosis as well as its role in neuronal troph-
icity, synaptic plasticity, and long-term potentiation, to name a few. As specifi cally 
regards psychiatric conditions, glutamatergic mechanisms have also received ample 
attention. The investigation of psychotic states induced by phencyclidine or its ana-
logues unraveled their common property of antagonism at the N-methyl-D- aspartate 
(NMDA) receptors and provided the initial argument for the glutamatergic hypoth-
esis of schizophrenia, which has since received empirical support from animal, 
genetic, neuroimaging, and interventional studies. Conversely, the NMDA receptor 
antagonist ketamine has attracted interest as a therapeutic (as opposed to psychoto-
mimetic) agent in the fi eld of resistant depression (Zarate et al.  2006 ), and glutama-
tergic aspects of mood disorders pathophysiology are also intensely studied 
(Sanacora et al.  2012 ). 

 Beside classical aspects of excitotoxicity, calcium mobilization, and programmed 
cell death, reactive oxygen species (ROS) or reactive nitrogen species (RNS) pro-
duction upon glutamate receptors stimulation has also attracted early attention 
(Coyle and Puttfarcken  1993 ). A distinct line of investigation, the impact of oxidative 
stress on glutamate neurotransmission, has also produced signifi cant advances. 
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One subsequent topic, which is also beginning to be addressed experimentally, is the 
emergence of vicious circles between ambient oxidative stress, gain of glutamatergic 
function, and subsequent increase in oxidative stress.  

2     A Brief Overview of Glutamatergic Neurotransmission 

 Glutamate is the main excitatory transmitter in the central nervous system (CNS). 
Glutamate is synthesized in neurons from glutamine under the action of the enzyme 
phosphate-activated glutaminase (brain/kidney phosphate-activated glutaminase 
product of the GLS1 gene) and from α-ketoglutarate by mitochondrial aspartate 
aminotransferase. Within astrocytes, glutamine synthetase converts glutamate to 
glutamine. The newly formed glutamine is released from astrocytes and taken up by 
glutamatergic neurons, where new glutamate is synthetized. 

2.1    Ionotropic Receptors 

 Glutamate acts through two families of receptors, namely, ionotropic and metabo-
tropic receptors. Ionotropic receptors have been defi ned by their preferential ligands. 
 AMPA  (α-amino-5-methyl-3-hydroxy-4-isoxazole propionic acid)  receptors  are 
usually heterotetramers (although homotetramers have been documented) of 
AMPA-R subunits GluR1-4 (or GluA1-4) and some bias towards the inclusion of 
GluA2 dimers. Functional properties such as calcium permeability, current kinetics, 
and pharmacology are strongly infl uenced by subunits composition, alternative 
splicing, and accessory subunits (Shepherd and Huganir  2007 ). AMPA receptor 
kinetics provide the basis for the fast, high-frequency component of excitatory post-
synaptic currents (EPSC) in the CNS (Geiger et al.  1997 ); the control of the traffi ck-
ing and membrane density of AMPA receptors is also a central mechanism in 
synaptic plasticity and homeostatic adjustments of EPSC strength (Shepherd and 
Huganir  2007 ). The  kainate receptors  have been nominated after their defi ning 
preferential agonist, the seaweed toxin kainic acid. They are heterotetramers formed 
by subunits GluR5-7 (GluK1-3) and KA1-2 (GluK4-5). GluR5-7 subunits undergo 
substantial editing and alternative splicing. KA1-2 subunits bear high affi nity sites 
for kainite binding, but are unable to form homotetramers in recombinant systems, 
at odds with the Glu5-7 subunits. They are more sparsely distributed in the CNS 
than other glutamate receptor types, and their electrophysiological contribution 
must be “unmasked” from the larger contribution of AMPA currents. Nevertheless, 
they are involved in many important functions such as synaptogenesis, control of 
neuronal excitability (including rhythmic activity), neurosecretion (through their 
presynaptic component), and some forms of synaptic plasticity (Pinheiro and Mulle 
 2006 ; Jane et al.  2009 ). Kainate receptors also impact the properties of critical CNS 
networks and could play a role in the pathophysiology or treatment of epilepsy 
(Vincent and Mulle  2009 ). The  N-Methyl-D-aspartate (NMDA) receptor  has 
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attracted by far the most attention in the fi eld of excitotoxicity, and in diverse aspects 
of normal glutamatergic neurotransmission, the most notable being its implication 
in long-term potentiation and other forms of neuronal plasticity. NMDA receptors 
are heterotetramers comprising two obligate NR1 subunits, two NR2 subunits 
(NR2A-D) and an accessory NR3 subunit. At normal membrane polarization, the 
receptor is blocked by magnesium, and a mild depolarization is necessary to relieve 
this block, with a half effect at −20 mV. NR1 subunits bear binding sites for the 
obligate coagonist glycine. Besides, NMDA receptors are endowed with a rich com-
plement of modulatory sites enabling redox, zinc, neurosteroid, and polyamine 
modulatory effects. The impact of subunit composition (NR2A vs. NR2B) and cel-
lular localization (synaptic vs. extrasynaptic) on the function and neurotoxic effects 
of NMDA receptors is the focus of intense research (Kohr  2006 ).  

2.2     Metabotropic Receptors 

  Metabotropic receptors  are G protein-coupled receptors. The group I receptors, 
including mGluR1 and 5, are widespread in neurons (type 1) and/or astrocytes 
(type 5) and predominantly postsynaptic. They couple to Gαq/11 to induce phos-
phoinositide breakdown and also signal through β-arrestin and extracellular signal-
regulated kinase (ERK) activation (Emery et al.  2010 ). They enhance NMDA-mediated 
responses and increase neuronal excitability. Group II receptors (mGluR2-3) are pre- 
and postsynaptic and typically couple to Gi/o. They decrease neurotransmitter release 
and neuronal excitability. Group III receptors (mGluR4, 6–8) are located presynapti-
cally (active zone) and also decrease transmitter release through Gi/o coupling.  

2.3     Reuptake 

    Upon release, glutamate can be taken up by two neuronal excitatory amino acid car-
riers, EAAC1 (or EAAT3), whose quantitative contribution to the overall glutamate 
uptake appears quantitatively modest (Holmseth et al.  2012 ), but functionally 
important in some pathological contexts (Nafi a et al.  2008 ; Ross et al.  2011 ). The 
main uptake process, however, is contributed by astrocytes ensheathing the synaptic 
process, mostly through excitatory amino acid transporter 2 (EAAT2 or GLT1) and 
EAAT1 (or GLAST) (Kanai and Hediger  2004 ).  

2.4     Neuroenergetics 

 The disposition and metabolism of glutamate in astrocytes is a complex and com-
partmented process positioned at the interface of metabolic (e.g., tricarboxylic acid 
cycle, purine nucleotide cycle, glutathione synthesis), structural (incorporation into 
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proteins), or neurochemical (glutamine synthesis) functions and has been reviewed in 
detail (McKenna  2007 ). Glutamatergic and GABAergic neurons have been estimated 
to make up to 80–90 % of the CNS neuron complement, with glutamatergic neurons 
constituting the large majority. The fast turnover, energy-dependent uptake, and glu-
tamine/glutamate recycling have been estimated to make up to 60–80 % of brain 
energetic consumption (Rothman et al.  2003 ), with signifi cant glial contribution 
(including astrocytic involvement in glutamatergic “tripartite synapses”), and involve 
cooperation between neuronal and glial metabolic processes (notably the tricarbox-
ylic acid cycle) and the glutamate/glutamine cycle (Serres et al.  2008 ).   

3     The Impact of Oxidative Status on Glutamatergic 
Neurotransmission 

3.1     Glutamate Dynamics 

3.1.1     Glutamate Release 

 The release of glutamate due to the depletion of adenosine triphosphate (ATP), 
resulting from the transmembrane sodium gradient and inversion of membrane 
glutamate transport systems, is a defi ning feature of the excitotoxic component of 
ischemic phenomena and will not be discussed here. 

 Classical studies explored the effect of oxidative status modifi cation on synapto-
somal [ 3 H]aspartate release and showed that 0.01 % hydrogen peroxide (H 2 O 2 ) 
increased depolarization-induced calcium-dependant release above 200 % of their 
basal values (Gilman et al.  1994 ). This effect could not be replicated at substantially 
lower (100 μΜ) H 2 O 2  concentration, although in this preparation peroxide synergized 
with a sodium load achieved by veratridine, again in a fashion more relevant to isch-
emia/reperfusion events (Tretter and Adam-Vizi  2002 ). However, in addition to isch-
emia/reperfusion phenomena, the infl uence of infl ammatory and oxidative/nitrative 
status effects has been studied in recent work.    Bal-Price and Brown ( 2001 ) used a 
coculture model of cerebellar granule neurons and activated glia (lipopolysaccharide 
and interferon-γ stimulation) to demonstrate a massive neuronal death caused by neu-
ronal glutamate release (as evidenced by MK-801 prevention) proceeding from nitric 
oxide (NO)-induced impairment of mitochondrial respiration (as evidenced by the 
preventive effect of two distinct inducible nitric oxide synthase (iNOS) inhibitors). 
These effects were mimicked by the NO donor NOC-18, which induced a doubling 
of extracellular glutamate concentrations in primary neuronal cultures, and an 
increase from virtually undetectable levels to ≈9 μM in neuronal/glial cocultures, as 
well as a decrease in ATP levels more pronounced in pure neuronal culture than in 
cocultures (Bal-Price and Brown  2001 ). Mitochondrial involvement in glutamate 
release induced by oxidative phenomena has been confi rmed by the use of sodium 
cyanide (Dong et al.  2012 ), which inhibits mitochondrial cytochrome c oxidase 
(Leavesley et al.  2008 ). In cortical synaptosomes, cyanide elicited a strong glutamate 
release, which was completely reversed by the free radical  scavengers melatonin and 
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manganese (III) 5,10,15,20-tetrakis (4-benzoic acid) porphyrin, as well as the H 2 O 2  
scavenger EUK134. Indeed, this effect was replicated by H 2 O 2 , albeit at the consider-
able  concentration of 600 μM. The NMDA receptors antagonist AP5 ((2 R )-amino-5-
phosphonovaleric acid; (2 R )-amino-5- phosphonopentanoate) prevented the effect of 
H 2 O 2  on glutamate release, but was only partially effi cient vis-à-vis the effect of cya-
nide, suggesting a complementary mechanism in this case. Additional results sug-
gested that ATP synthesis inhibition was a likely mechanism to account for this 
discrepancy: cyanide decreased ATP synthase by more than 50 %, while the ATP 
synthase inhibitor 3,3′-diindolylmethane increased glutamate release. The authors 
suggest a role for lipid peroxidation products (also increased by cyanide) as a poten-
tial mechanism for the loss of ATP synthase activity, which seems plausible given the 
particular sensitivity of this enzyme to, for instance, 4-hydroxynonenal (4-HNE) 
modifi cation (Perluigi et al.  2009 ). 

 Another source of reactive oxygen species (ROS) whose activity has recently 
been linked unequivocally to increased glutamate release is the superoxide- 
generating enzyme NADPH oxidase (NOX2). Acute ketamine administration in 
rodents is known to elicit behavioral abnormalities reminiscent of schizophrenia, to 
increase oxidative stress as well as glutamate release in cortical areas. Some of these 
effects have been convincingly linked to NOX2 activation and are indeed prevented 
by its inhibitor apocynin (Behrens et al.  2007 ). Sorce et al. have compared the 
effects of ketamine in wild-type and NOX2 knockout mice (NOX2-KO): compared 
to controls, NOX-KO mice were protected against the behavioral and neurochemi-
cal effects of ketamine, notably the hallmark increase in glutamate release (Sorce 
et al.  2010 ). Therefore, superoxide production by NOX2 is shown to be a necessary 
step in the behavioral and neurochemical effects of ketamine. 

 Overall, it appears that neuronal glutamate release can be increased in an oxida-
tive environment by distinct pathways, namely, disruption of mitochondrial respira-
tion, superoxide production by NOX2, and ATP synthase inhibition, the latter 
potentially due to lipid peroxidation products.  

3.1.2     Glutamate Reuptake 

 Conversely, there is ample evidence that glutamate uptake processes are the target 
of redox modulation. Early work using different systems showed that glutamate 
uptake could be signifi cantly inhibited by H 2 O 2  (at concentrations as low as 100 μM) 
or by enzymatic ROS-producing systems such as glucose oxidase or xanthine oxi-
dase (Piani et al.  1993 ; Volterra et al.  1994a ). This effect could be fully reversed by 
the reducing agent dithiothreitol (DTT), suggesting that redox-sensitive sulfhydryl 
groups were involved in the phenomenon (Volterra et al.  1994b ). Further mechanis-
tic insights were provided by the incubation of astrocytic cultures with the lipid 
peroxidation product 4-HNE, which resulted in a dose-dependent inhibition of glu-
tamate uptake. Again, this effect could be reversed by DTT (as well as glutathione). 
It was associated with the formation of adducts between 4-HNE and the glial gluta-
mate transporter GLT-1, as well as dimerization (up to four times) of the latter. 
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Evidence of post-translational modifi cations associated with oxidative stress and 
uptake impairment has also been obtained for the neuronal transporter EAAC1 
(or EAAT3) in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
Parkinson’s model. In this case, the authors demonstrated an increase in protein 
tyrosine nitration. Since cysteine is also a permeant of this transporter and a precur-
sor of glutathione synthesis, a parallel decrease in cellular glutathione content was 
observed, further compromising cellular redox status (Aoyama et al.  2008 ). 

 While post-translational oxidative modifi cations are generally associated with 
loss of function, a more complex picture emerges from studies of transcriptional 
control of the same molecules. In the primary astrocytic culture model, it was shown 
that mRNA and protein levels for all three transporters EAAT1, EAAT2, and 
EAAT3 were left unchanged by peroxide or tert-butyl hydroperoxide (t-bOOH), 
although the same conditions led to a decrease in glutamate uptake (Miralles et al. 
 2001 ). EAAT1 levels were decreased in a rat model of thiamine defi ciency and 
partially rescued by the antioxidant N-acetyl-cysteine (NAC) (Hazell et al.  2010 ). 
They were also downregulated by arsenic exposure, although in this case, direct 
evidence of oxidative stress was lacking (Castro-Coronel et al.  2011 ). EAAT2 was 
also downregulated and rescued by NAC in the thiamine defi ciency model (Hazell 
et al.  2010 ); exposure of astrocyte cocultures to excitotoxic (S)-5-fl uorowillardiine 
(and oxidative [3-morpholinosydnonimine (SIN-1)]) resulted in a biphasic response 
in EAAT2 levels, with an increase at 24 h followed by a decrease at 48 h (Wallis 
et al.  2012 ). Mechanistically, EAAT2 transcription seems to be under the depen-
dence of the transcription factor nuclear factor-kappaB (NFκB), whose sensitivity 
to the redox status is well known (Janssen-Heininger et al.  2000 ). Increases of 
EAAT2 transcription levels have been documented after ceftriaxone incubation 
(which induces NFκB activation) as well as in response to tumor necrosis factor 
alpha (TNFα), although in this case a repressing infl uence was also suspected 
(Sitcheran et al.  2005 ; Lee et al.  2008 ). The results are less equivocal for EAAT3. 
Upon exposure to L-sulforaphane and  tert -butylhydroquinone (t-BHQ), there was 
a strong upregulation of EAAT3 in C6 glioma culture. This effect could be repli-
cated in vivo and could be ascribed to the activation of the transcription pathway 
NF-E2-related factor 2 (Nrf2)/antioxidant response element; this response was 
lost in Nrf2-KO mice and could be mimicked by overexpression of Nrf2 (Escartin 
et al.  2011 ).   

3.2     Redox Status and NMDA Modulation 

 Among the many modulating infl uences that have been described on the NMDA 
receptor, the redox site has attracted early recognition and interest. In the initial 
description of the phenomenon, Aizenman et al. ( 1989 ) showed that currents elic-
ited in cultured rat cortical neurons by a combination of NMDA (10–100 μΜ) and 
glycine (1 μΜ) were signifi cantly enhanced by pretreatment with the reducing agent 
DTT, up to 250 % above basal traces. Conversely, the oxidizing agent 5, 

Redox Status and Glutamate Transmission



218

5′-dithio-bis[2-nitrobenzoic acid] (DTNB) induced a decrease in the signal (−22 %), 
which could always be restored by DTT. 

 Further work addressed the electrophysiological substrate of this response. Using 
CHO cells culture, it was shown that DTT induced an increase in opening frequen-
cies for all three recombinant subunit combinations tested (NR1/NR2A, NR1/
NR2B, or NR1/NR2C) with an increase in open dwell time only for the NR1/NR2A 
combination (Brimecombe et al.  1997 ). The redox sensitivity of NMDA receptors 
could be partially ascribed to two NR1 cysteines (Cys744 and 798) (Sullivan et al. 
 1994 ), whose mutation abolished the redox sensitivity of NR1/NR2C combination, 
and decreased that of NR2A/NR2B pairs. The coexpression of NR2A, however, 
rescued the redox sensitivity of mutated (C744A, C798A) NR1. This suggests that 
NR2A subunits also bear redox sites, which could also explain the different kinetic 
response (increased open dwell time) (Brimecombe et al.  1999 ). 

 Apart from the mechanistic interest of these results, recent work has also high-
lighted their potential pathophysiological implications. For instance, in the pilocarpine/
hippocampal culture model of temporal lobe epilepsy, Di Maio et al. ( 2011 ) have 
shown that protracted exposure of hippocampal neurons to pilocarpine induced cellular 
thiol oxidation, intracellular calcium increase (ascribed to NMDA receptor activation), 
and resistance to further glutamate application. One plausible explanation for the 
latter result was that NMDA receptors were rendered resistant to glutamate because 
of cysteine oxidation. In support of this hypothesis, NMDA currents could be 
restored partially by the antioxidant NAC and more completely by the reducing 
agent tris(2-carboxyethyl)phosphine. These results complement earlier work using a 
different model of epileptiform activity elicited in hippocampal slices by low mag-
nesium concentrations. Under these conditions, epileptiform activity appeared to be 
suppressed by the oxidant DNTB and restored by DTT (Sanchez et al.  2000 ). 
Therefore, in the context of epilepsy described above, it appears likely that acute 
reducing modulation enhances ictal activity, which in turn induces protracted oxida-
tive phenomena and subsequent suppression of NMDA currents. 

 A different approach using the lipid peroxidation product 4-HNE (1 μΜ, a con-
centration in the lower range of those achieved by in vitro oxidative conditions) 
showed a biphasic effect with an initial stimulation of NMDA currents, which 
resolved within 3 h and was replaced by a protracted decrease. This effect paralleled 
an increase in the phosphorylation levels of NR1 and NR2A subunits and a decrease 
in ATP levels, which were thought to underlie, respectively, the increase and 
decrease in NMDA currents: okadaic acid, a phosphatase inhibitor, increased NR1 
and NR2A phosphorylation and accordingly enhanced NMDA function, while the 
mitochondrial toxin rotenone, which depletes cellular ATP levels, induced a 
decrease in NMDA currents. Interestingly, the authors could not demonstrate the 
formation of adducts between 4-HNE and NR1 or NR2A subunits, while such 
adducts existed for the AMPA receptor subunits GluR1-4, although the AMPA current 
was left unchanged under the same conditions (Lu et al.  2001 ). 

 Another well-known modulatory site—beside the redox site—of the NMDA 
receptor is the binding site for the obligate coagonists glycine or D-serine. The for-
mation of the latter product depends on the enzyme serine racemase, which has 
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been suggested in association studies and preclinical models to contribute to 
schizophrenia pathophysiology (Labrie et al.  2009 ; Ma et al.  2012 ; Morita et al. 
 2007 ). Recently, it has been shown that infl ammatory, oxidative, and nitrative condi-
tions increased the formation of covalent dimers of the enzyme, which was associ-
ated with decreased activity. Indeed, the nitric oxide donor SIN-1 induced a 
dose- dependent decrease in serine racemase function, at concentrations actually 
lower than those necessary to achieve cross-linking (Wang and Barger  2012 ), which 
suggests intramolecular events distinct from dimerization per se.  

3.3     NMDA Receptor Subunits Levels 

 The cellular localization and transcriptional regulation of glutamate receptors have 
shown varying response patterns to oxidative status across receptors, across subunits, 
and across experimental conditions. 

 Available evidence suggests a robust upregulation of the NR1 subunit in response 
to pro-oxidative conditions. Ischemia/reperfusion paradigms lead to an early 
increase in NR1 and NR2A/B expression (Won et al.  2001 ). 

 In a different context, it has been shown, in cultured cortical neurons, that neuro-
toxicity induced by neurotrophin-4/5 involved upregulation of NR1 and, more 
prominently, NR2A (Choi et al.  2004 ). This response seemed to be under the depen-
dence of the redox-sensitive transcription factor early growth response protein 1 
(Egr-1) (Gao et al.  2009 ). Although, in this case, normalization of redox status by 
inhibitors of NOS or NOX2 did not prevent NR2A upregulation, no data were pre-
sented on an eventual normalization of NR1 by the same agents. Hypoxic conditions 
designed to mimic the effects of high altitude for 3,7, or 14 days induced unequivo-
cal evidence of increased oxidative markers and a transcriptional activation and 
upregulation of the NR1 subunit, while the GluR2 subunit tended to decrease (Hota 
et al.  2008 ). Even a shorter (4 h) hypoxic treatment induced a strong increase in 
NR1 immunoreactivity in  nucleus tractus solitarius  neurons, which was partially 
prevented by α-tocopherol and ascorbic acid. These two antioxidants were also able 
to decrease NR1 levels during normal development, suggesting that some tonic level 
of oxidative conditions contributes to basal expression of NR1 (Wu et al.  2011 ). 
Later work by the same group demonstrated that the upregulation of NR1 was under 
the dependency of the transcription factor specifi city protein 1 (Sp1) and could be 
prevented by the antioxidant acetyl-l-carnitine (Hota et al.  2010 ). 

 Exposure of hippocampal neurons to pilocarpine for 24 h upregulated NR1 and 
NR2B subunits by some 40 %, an effect that could be reversed by the antioxidant 
NAC and the NOX inhibitors apocynin and 6-aminonicotinamide (Di Maio et al. 
 2011 ). However, other work has rather documented a downregulation of NR2 sub-
units by oxidative conditions: an 8 weeks exposure to the diabetes mimic strepto-
zotocin induced a decrease in hippocampal NR2A and NR2B levels, in parallel with 
a well-known disruption of oxidative status (Piotrowski  2003 ). Polyunsaturated 
fatty acids normalized malondialdehyde levels and partially restored NR2A/B  levels 
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(Delibas et al.  2004 ). As well, repeated injections of the psychotomimetic NMDA 
antagonist ketamine induced a decrease in NR2A expression in the prefrontal and 
cingulate cortices of wild-type but not NOX2-KO mice, while the effects of 
ketamine on NR2B appeared independent of NOX2 (Sorce et al.  2010 ). 

 Caracciolo et al. ( 2011 ) have provided an extensive characterization of glutamate 
receptor subunit response to injections of kainate in wild-type or cyclooxygenase-2 
(COX2) knockout mice. Indirect markers of oxidative/infl ammatory status such as 
NFκB and iNOS levels were increased in the KA/COX2-KO group. As regards 
NMDA receptor subunits (NR1, NR2A-D, NR3A/B), there was a general decrease, 
for the same group, in the cortical and hippocampal transcript levels, with the excep-
tion of increased hippocampal NR3A mRNA. As for AMPA and KA receptors 
(GluR1-7 and KA1/2), there was also a general trend for decreased transcripts levels 
in the hippocampus, while cortical expression was generally unaffected. Social iso-
lation increases oxidative stress and has been used to mimic some features of 
Alzheimer’s disease (among other conditions) (Hsiao et al.  2012 ); in this case, 
social isolation was associated with a decrease in the density of GluR1 and GluR2 
subunits associated with the cell membrane, while the overall cellular complement 
of the same subunits was unchanged, and NAC was able to reverse these changes. 
Conversely, in the work cited earlier (Hota et al.  2010 ), the GluR2 subunit level was 
also increased by hypoxia but resisted normalization by acetyl-l-carnitine. 

 Overall, there appears to be consistent evidence that NR1 expression increases in 
response to oxidative conditions, which could be driven by at least three types of 
redox-sensitive transcription factors, Sp1, Egr-1, and nuclear respiratory factor 1 
(NRF1) (Dhar and Wong-Riley  2009 ). Results for other subunits are scarcer and 
less consistent.   

4     Glutamate Modulates Cellular Redox Status 

4.1     Demonstration 

 The implication of ROS in the cellular effects of glutamate was initially studied in 
the context of excitotoxic phenomena. Coyle and Puttfarcken ( 1993 ) put forward 
formal criteria for such involvement. 

 The demonstration of ROS production after NMDA engagement was initially 
obtained in cultured cerebellar granule cells: NMDA increased levels of the super-
oxide radical  . O 2  −  in a rapid (10 min) and transient (resolution within 40 min) man-
ner; this response was duly abolished by the NMDA receptor antagonist MK-801, 
was partially calcium dependent, and was not mimicked, in this system, by KA 
(Lafon-Cazal et al.  1993 ). Similarly, NMDA increased ROS levels (as monitored by 
dichlorofl uorescein fl uorescence) in cultured cortical neurons (Reynolds and 
Hastings  1995 ). Evidence of increased O 2  −  production (as evidenced by dihydro-
ethidium fl uorescence) after NMDA, KA, and AMPA administration was obtained 
in cultured hippocampal neurons and ex vivo slices (Bindokas et al.  1996 ). 
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 The demonstration of signifi cant oxidative damage to cellular components, 
another criterion for ROS involvement in glutamate effects, has been obtained for 
different macromolecules. Evidence of increased lipid peroxidation has been by far 
the most documented, notably through malondialdehyde and 4-HNE levels; all 
three glutamate receptor types appear to give rise to increased lipid peroxidation 
(Agostinho et al.  1996 ; Bae et al.  2002 ; Bruce and Baudry  1995 ), although some 
systems have yielded confl icting results (Yang et al.  2003 ). Similarly, all three types 
of receptors have been shown to induce some degree of protein carbonylation, a 
widely used index of protein oxidative modifi cation (Mueller-Burke et al.  2008 ; 
Gluck et al.  2000 ; Tateno et al.  2004 ). Lastly, glutamate damage to deoxyribonu-
cleic acid (DNA) was also demonstrated in early work (Didier et al.  1996 ) and could 
play role in excitotoxic cell death, but appears to elicit effi cient repair mechanisms 
under milder conditions (Yang et al.  2010 ). 

 The last criterion of ROS involvement in glutamate action is the prevention/reversal 
of (some) toxic effects of glutamate by antioxidants or ROS scavengers. Such exam-
ples abound both in vitro and in vivo and indeed constitute the test generally used 
to ascertain the role of ROS in biological phenomena, but have generally—and 
notably—not translated well in clinical applications (Isaac et al.  2008 ; Muir  2006 ).  

4.2     Effectors of Glutamate Redox Modulation 

 Although the place of glutamate as an inducer of oxidative stress has been over-
whelmingly confi rmed, the precise cellular origin of ROS (or at least the relative 
contribution of different cellular sources) is still a matter of debate, mostly on meth-
odological grounds, which will not be addressed here (Brennan et al.  2009 ; 
Alekseenko et al.  2012 ). 

4.2.1     Mitochondrial Involvement 

 It has been suggested that up to 50 % of CNS ROS originate from mitochondria, and 
more precisely from the reverse electron transport (Kudin et al.  2008 ), and early as 
well as more recent work has tried to unravel the interaction of glutamate (either as 
a neurotransmitter or as a metabolic substrate) with the complex mitochondrial 
dynamics. 

 One well-established mechanism relates to calcium homeostasis, in line with 
the robust calcium dependency of glutamate oxidative phenomena. Excessive cyto-
plasmic calcium concentrations are progressively transferred (through the calcium 
uniporter) to the mitochondrial matrix, exceeding the homeostatic possibilities of 
mitochondrial calcium cycling and reaching a threshold of calcium overload. The 
latter, associated with other triggering signals such as increases in inorganic  phosphate 
concentration, ATP depletion, and oxidative stress, provokes the opening of the per-
meability transition pore with subsequent diffusion of large molecules and disruption 
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of the tricarboxylic acid cycle (Crompton  1999 ). Glutamate-dependent ROS 
 production as such has been suggested to depend on dissipation of mitochondrial 
membrane potential (Scanlon and Reynolds  1998 ), uncoupling of respiration from 
ATP production (Panov et al.  2009 ), increased respiration (even at maximal uncou-
pling; Kumari et al.  2012 ), specifi c enzymatic sources such as the α-ketoglutarate 
dehydrogenase complex (Chinopoulos and Adam-Vizi  2006 ), or lifting of oxaloace-
tate inhibition of complex II succinate dehydrogenase (Panov et al.  2009 ). Glutamate 
has also been shown to profoundly affect the dynamics of mitochondria, notably by 
promoting mitochondrial fragmentation and autophagy, by upregulating mitochon-
drial fi ssion markers and promoters dynamin-related protein 1 (Drp1) and Fis1 
(Kumari et al.  2012 ; Grohm et al.  2010 ).  

4.2.2     NOX2 Activation 

 Nicotinamide adenine dinucleotide phosphate oxidases (abbreviated to NOX) are a 
family of transmembrane which catalyze the reduction of molecular oxygen O 2  to 
the superoxide anion O 2  −  and have been initially described as giving rise to the 
“phagocytic oxidative burst.” The most widely studied form, in general and in the 
context of glutamate toxicity, is NOX2 (previously called gp91 phox ). NOX2 is in 
obligatory and stabilizing interaction with p22 phox ; upon phosphorylation and subse-
quent confi rmation changes, a third subunit, the “organizer” p47 phox , associates with 
the membrane-bound NOX2/p22 phox  complex and recruits to it a number of cyto-
plasmic factors, among which the “activator” p67phox, p40 phox , and the GTPase 
Rac. The active NOX2 complex catalyzes the reduction of NADPH, the result of 
which is a transmembrane electron transfer with subsequent release of superoxide 
O 2  −  in the luminal or extracellular space. NOX2 is an inducible enzyme, and its 
promoter bears binding sites for multiple redox-sensitive transcription factors. The 
cellular functions of NOX2 can be probed by a number of pharmacological inhibi-
tors such as diphenylene iodonium, whose specifi city is weak, or apocynin, a pro-
drug which must be activated by peroxidases and prevents the translocation of 
cytoplasmic components (Bedard and Krause  2007 ). More recently, knockout 
NOX2 models have provided clear results to some its functions, including in the 
context of glutamate-induced oxidative phenomena. Cortical neurons loaded with 
the redox-sensitive probe dihydroethidium showed a strong increase in fl uorescence 
levels upon NMDA application, which was restored to control levels by MK-801, 
apocynin, or an inhibitor of NADPH production. Oxidative phenomena (4-HNE- 
positive neurons) induced by NMDA were also prevented by NOX2 inhibition. To 
more completely assess the respective contribution of mitochondria versus NOX2, 
the authors used the fact that mitochondria can use pyruvate to sustain ATP levels 
and ROS production, while NOX2 superoxide production is dependent on glucose: 
providing neurons with pyruvate (at the exclusion of glucose), in the presence of 
NMDA, strongly decreased the number of ethidium-positive neurons, while the 
level of superoxide production was unaffected by providing only glucose (at the 
exclusion of pyruvate); on the basis of the metabolic requirements of the two 
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pathways, it was thus concluded that in this system, superoxide production induced 
by NMDA relied mostly on NOX2. Moreover, in vivo, NMDA-induced neuronal 
death was prevented in p47 phox−/−  cells. Hippocampus neuronal degeneration induced 
by NMDA was also prevented by some 60 % in p47 phox−/−  mice, as was 4-HNE 
induction. Subtype-specifi c peptide inhibitors of protein kinase C moreover sug-
gested that NMDA activation of NOX2 relied on PKCζ activation (Brennan et al. 
 2009 ). Similarly, Girouard et al. showed that ROS increases elicited by NMDA (as 
assessed by dihydroethidium fl uorescence) were attenuated in NOX2-KO mice. 
Pharmacological assessments in cultured neurons suggested a signaling pathway 
between NMDA and NOX2, consisting of NO increase (mediated by the neuronal 
nitric oxide synthase nNOS), guanylate cyclase activation, and subsequent activa-
tion of protein kinase G (PKG) by cyclic guanosine monophosphate (cGMP) 
(Girouard et al.  2009 ). These effects have been extended, beyond cortical regions, 
to the striatum. After striatal glutamate injection, apocynin or NOX2 knockout 
decreased cell death, ROS production, and protein nitration by ≈50–60 %, a signifi -
cant but partial rescue. A direct assay of NADPH oxidase activity confi rmed the 
stimulating effect of glutamate and its prevention in NOX2-KO and apocynin- 
treated animals. Pharmacological analysis also showed a signifi cant stimulating 
effect of non-NMDA ionotropic receptors and metabotropic M1 (and possibly M5) 
receptors on NADPH oxidase activity (Guemez-Gamboa et al.  2011 ).  

4.2.3     Nitrative Phenomena 

 The implication of increased NO production, beside ROS, has been proposed early 
(Lafon-Cazal et al.  1993 ) to account for some of the detrimental or, for that matter, 
neuroplastic effects of glutamate and has received ample experimental confi rmation 
(Ishikawa et al.  1999 ). NO derivatives can induce S-nitrosylation (originating from 
NO −  singlets) and react (NO −  triplets) with superoxide anion O2 −  to form peroxyni-
trite ONOO. There appears to be a signifi cant interplay with the mitochondrial 
aspects of ROS production and consequences (Crompton  1999 ; Almeida and 
Bolanos  2001 ) with possible feedforward amplifying phenomena. Interestingly, it 
has also been shown that NO-dependent events could link NMDA receptor engage-
ment to NOX2 activation; therefore, beside its own interaction with ROS, NO is also 
linked mechanistically to the two main glutamatergic oxidant sources.  

4.2.4     Cystine Uptake 

 Cystine is transported into neurons and glia by the X AG  system (cysteine permeable 
glutamate transporter), but also, in immature neurons, oligodendrocytes and some 
cell lines by the X C  −  cystine glutamate exchanger. Intracellular cystine can be con-
verted back to cysteine and incorporated in the endogenous antioxidant glutathione. 
Cystine and glutamate are the two preferred substrates of this system, which normally 
extrudes glutamate. Increasing extracellular glutamate concentrations (which 
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competes with cystine for cellular entry) or decreasing extracellular cystine levels 
have been shown to decrease glutathione levels and induce toxicity (Murphy et al. 
 1989 ), through an original mechanism of oxidative stress that does not involve exces-
sive ROS production but decreased antioxidant mechanisms. Interestingly, the same 
system is also involved in the protective effects of preconditioning: mixed neuron/glia 
cell culture exposed to oxygen glucose deprivation, or mice exposed to 15 min carotid 
artery ligature, reacted by upregulating X CT  (a subunit of the X C  −  transport system) 
and the catalytic subunit of glutamate cysteine ligase (cGCL), involved in the synthe-
sis of glutathione. This neuroprotective glial coordinated response is under the depen-
dence of the transcription factor NRF2 (Bell et al.  2011a ,  b ).   

4.3     Antioxidant Effects of Glutamate Stimulation 

 Most of the data regarding glutamate toxicity tried to mimic “catastrophic” events 
such as ischemia/reperfusion, apoptotic cell death, or generally neurodegenerative 
events, at the risk of overlooking milder effects (Yang et al.  2010 ) or bona fi de neu-
roprotective actions of glutamate, which are often related to synaptic (vs. extrasyn-
aptic) NMDA receptor engagement (Hardingham and Bading  2010 ). These have 
been recently reviewed and include activation of the protective AKT/GSK-3β path-
way, suppression of “prodeath” FOXO transcriptional activity, and engagement of 
cAMP-response element binding protein, among others (Hardingham  2009 ). These 
neuroprotective mechanisms enhanced by synaptic activity also included (1) tran-
scriptional suppression of the thioredoxin-interacting protein (which itself inhibits 
thioredoxin and is therefore pro-oxidative in a FOXO dependent fashion) and (2) 
transcriptional activation of sestrin2 and sulfi redoxin, which can reduce oxidized 
forms of sulfi redoxin back to their active form (Papadia et al.  2008 ).   

5     Concluding Remarks 

 The investigation of the redox modulatory effects of glutamate neurotransmission 
enters its fourth decade and remains a very active fi eld. 

5.1     Empirical Confi rmation of the “Vicious Circle” Model 

 The idea that glutamatergic transmission could give rise to positive feedforward 
(e.g., increased NMDA subunit expression) or feedback (e.g., decreased uptake) 
phenomena was proposed relatively early to account for the anti- homeostatic, “cata-
strophic” behavior of this system (Coyle and Puttfarcken  1993 ). In the more 
restricted fi eld of glutamate-induced oxidative stress, mitochondrial disruption and 
NOX2 activation are attractive partners to engage in such feedbacks, but this 
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conceptual framework has received scant empirical confi rmation in spite of its 
attractiveness. Recent work has indeed explored the interaction between mitochon-
drial dynamics and NMDA transmission (Nguyen et al.  2011 ). The optical atrophy 
protein 1 (OPA1) is an obligate step of mitochondrial fusion and is mutated (dele-
tion) in a frequent form of optic neuropathy, associated with the loss of retinal gan-
glion cells through a likely excitotoxic process partially rescued by the NMDA 
antagonist memantine. In mice heterozygous for the mutated OAP1, mitochondria 
were, as expected, both shorter and more numerous, indicating that fi ssion was 
favored over fusion. Antioxidant status was compromised by decreased expression 
of superoxide dismutase; most notably, there was signifi cant upregulation of NMDA 
subunits NR1, NR2A, and NR2B, a likely consequence of the  primum movens , 
disrupted mitochondrial dynamics, but also a potential amplifying factor through 
increased oxidative stress and upregulation of fi ssion promoters dynamin-related 
protein 1 (Drp1) and Fis1 (Kumari et al.  2012 ; Grohm et al.  2010 ), as stated above.  

5.2     Relevance to Psychiatric Disorders Pathophysiology 

 While the results detailed in this chapter have been used to gain a better understand-
ing of neurological conditions such as stroke, epilepsy, or neurodegenerative disor-
ders, their relevance for the pathophysiology of psychiatric disorders is also 
becoming obvious. The most salient example, the phencyclidine model of schizo-
phrenia and its relation to GAD67 downregulation, where NOX2 implication has 
been formally demonstrated by M. Behrens’ work, will be discussed in chapter 
“The Impact of Oxidative Stress on GAD67 Levels and Parvalbumin-Positive 
Neurons” in the present volume. In a different perspective, NOX2 has recently been 
implied as well in the effects of social isolation, a chronic stressor mimicking, in 
rodents, some aspects of diverse conditions such as depression, anxiety, suicidality, 
or schizophrenia, among others. The authors have taken advantage of a spontaneous 
mutation in rats (threonine/methionine substitution at position 153) of the NADPH 
oxidase organizer subunit p47 phox , which reduces oxidative burst capacity by 40 %. 
During social isolation for at least 4 weeks, animals developed increased locomotor 
activity, loss of discriminating capacities in the novel object recognition test, 
increased glutamate levels, and loss of physiological NR2A increase. There was 
also a time-dependent decrease in GABAergic markers GAD67 and parvalbumin 
and an upregulation of NOX2 and p47 phox  that was restricted to pyramidal neurons. 
Accordingly, oxidative markers also increased in a time-dependent fashion. 
Interestingly, the loss of function mutation of p47 phox  was protective against behav-
ioral abnormalities (locomotor activity), NR2A, and parvalbumin decrease. In 
another set of experiments, the authors went on to show a preventive effect of apoc-
ynin administered from weeks 4 to 7, vis-à-vis the development of behavioral 
abnormalities induced by social isolation. 

 Therefore, normalization of redox status was instrumental in attenuating some of 
the neurochemical and behavioral abnormalities induced by social isolation, which 
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shows that interrupting the feedback mechanisms between glutamatergic neuro-
transmission and oxidative stress could be of paramount interest in the understand-
ing and treatment of psychiatric disorders.     
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