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4.1  Introduction

Infrared spectra of food products  can help to reveal information pertaining to mo-
lecular bonds present and hence provide details of their molecular structures. This 
ultimately can be related to various quality indices. Infrared spectroscopy is an ideal 
process analytical technology (PAT) tool that can rapidly, accurately and usually 
non-destructively assess the quality and functional properties of raw, in-process and 
final product materials. In addition to the need for efficiency, there is an emerging 
need in food processing for all major compositional and quality parameters to be 
determined, on-line and in real time. In addition to this, there is a need for food man-
ufacturers to be able to demonstrate the authenticity of their products (Woodcock 
2008).

Spectroscopic techniques, other than infrared spectroscopy, have been inves-
tigated as potential PAT technologies in the food industry. These include Raman 
spectroscopy (Chap. 5), fluorescence spectroscopy (Chap. 12) and UV–Vis spec-
troscopy. UV–Vis has been employed to detect adulterated and authentic spirits 
(Contreras et al. 2010),discriminate between brands (Barbosa-García et al. 2007), 
classify coffee (Souto et  al. 2010) and quantify β-carotene (Biswas et al 2011). 
However, the focus of this chapter is infrared spectroscopy, and it will provide an 
overview of its theory, its instrumentation and its applicability as a PAT tool. Fi-
nally, it will review applications of infrared spectroscopy to food products.
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4.2  Theory of Near- and Mid-infrared Spectroscopy

Infrared spectroscopy results from the interaction of infrared radiation and matter. 
The energy provided by the infrared radiations results in transitions between quan-
tized vibrational energy states of molecules, i.e. resulting in molecular vibration. 
Atoms in a molecule can have a number of vibrational modes. Each mode ( i) in-
volves approximately harmonic displacements of the atoms from their equilibrium 
positions (Griffiths 2010). When atoms vibrate as a simple harmonic oscillator, i.e. 
according to Hooke’s law (Eq. 4.1) where x is the displacement away from equi-
librium, k is the proportionality (or force) constant and F is the force in newtons, 
the vibrational energy states ( Viv) can be described according to Eq. 4.2, where h is 
Planck’s constant, νi is the fundamental frequency of the particular mode and vi is 
the vibrational quantum number of the ith mode (0, 1, 2, etc.):

� (4.1)

� (4.2)

While the energy difference between vi = 0 and vi = 1 of most vibrational modes cor-
responds to the energy of radiation in the mid-infrared (MIR) range, overtone bands 
which relate to the transition between vi = 0 and states higher than vi = 1 are located 
in the near-infrared (NIR) region. Combination bands in the NIR region occur when 
there is a simultaneous promotion of two modes (Griffiths 2010).

A number of studies have assigned various food constituents (lipids, amides, 
moisture, sugars) to specific bands in MIR and NIR spectra. A selection of these 
regions and their associated mode of vibration of some food constituents are given 
in Tables 4.1 and 4.2. The characteristic broad peaks, resulting from overtone and 
combination bands, observed in the NIR spectra of a food product are shown in 
Fig. 4.1a; a corresponding MIR spectrum is shown in Fig. 4.1b. Such infrared spec-
tra (Fig. 4.1) can contain a wealth of information on the molecular make-up of a 
food product. However, the spectral response of a molecular group can be influenced 
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Fig. 4.1   Characteristic a NIR spectra and b MIR spectra of cheese
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by neighbouring molecular groups (Reh 2001). The complexity of food substances 
enhances these difficulties as the presence of various substances can result in peak 
shifts (Fagan and O’Donnell 2007). Therefore, powerful statistical techniques, for 
example, principal component analysis (PCA) and partial least squares (PLS) re-
gression, can be used for data compression and model development (Chap. 2).

Table 4.1   Selected molecular group absorption frequencies in the MIR region
Peak wave number (cm−1) Functional group Mode of vibration Constituent
Fingerprint region
1036, 1088 C–O Stretch
1060 C–O Stretch Carbohydrates
900–1200 C–O, C–C, O–H Stretch Carbohydrates
1115–1170 C–O Stretch
1232 C–H Bend
1240 C–O Stretch
1371 C–H Bend
1274, 1372, 1445, 1486 O–C–H, C–C–H, 

C–O–H
Bend

1400–1477 C–H Bend
Functional group region
1535–1570 Amide II Stretch Protein
1620–1690 Amide I Stretch Protein
1640 O–H Bend Moisture
1600–1900 Organic acids
1700–1765 C=O Stretch Lipids
2869 CH2 Symmetric stretch Lipid
2926 CH3 Anti-symmetric stretch Lipid
3047–3703 O–H Stretch Moisture

Table 4.2   Selected chemical assignments of absorption frequencies in the NIR region
Wavelength (nm) Functional group Functional group assignment Constituent
982 OH Second overtone; stretch Water
1458 OH First overtone; stretch Water
1940 OH Combination; asymmetric and 

scissoring stretch
Water

1210 C–H Second overtone; stretch Lipids
1728 C–H First overtone; stretch Lipids
1762 C–H First overtone; stretch Lipids
2308 C–H, CH2 Combination; stretch and 

deformation
Lipids

2348 C–H, =CH2 Combination; stretch and 
deformation

Lipids

1000–1020 N–H, Amide I Stretch Proteins
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4.3  Instrumentation

There have been significant developments in the field of infrared instrumentation 
over the past decades. Initially, equipment focused on the use of monochromator 
or filter (fixed or tunable)-based systems. However, developments in instrumenta-
tion, such as Fourier transform infrared (FTIR) spectrometers and polychromators 
with InGaAs detectors, substantially improved the instrumentation performance, 
the range of applications and therefore the popularity of such equipment. The prin-
ciples of such MIR and NIR instrumentation have been reviewed previously and 
will not be discussed further (Fagan and O’Donnell 2007; Griffiths 2010). How-
ever, technical developments in infrared spectroscopy instrumentation will facili-
tate the transfer of this technology from laboratory to on-line application, thereby 
enhancing its potential as a PAT tool. Equipment manufacturers have moved from 
benchtop laboratory instruments (Fig. 4.2a) to the manufacturing of portable min-
iature-type spectrometers (Fig. 4.2b) to microspectrometers (Fig. 4.2c). These have 
been driven in part by the requirement of end users who want to have the facility to 
bring the “spectrometer to the samples” rather than the “samples to the laboratory”. 
This has, for example, opened up opportunities for pre-harvest fruit and vegetable 
inspection. Such equipment may also include the added functionality of integrated 
global positioning system (GPS) measurements which are acquired simultaneously 
with the infrared spectra. Such facilities can allow for the “mapping” of produce 
quality in situ, thereby allowing the producer to make corrective decisions. In such 
applications, interference of the environment, such as ambient light and fluctuat-
ing temperatures, should be either minimized or accounted for by appropriate data 
processing (Nicolaï et al. 2007). Another related emerging platform technology is 
hyperspectral imaging. It has the advantage of acquiring both spectral and spatial 
information of sample simultaneously. It has shown considerable potential in the 
pharmaceutical industry in terms of mapping active ingredients in tablets. Its poten-
tial as a PAT tool in the food industry is discussed in detail in Chap. 9.

Fig. 4.2   A selection of a benchtop and b–d miniature, microspectrometer and portable spectrometers
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Another significant consideration of the end user must be the development and 
maintenance of calibration equations. Many portable spectrometers rely on the end 
user to provide and maintain the calibration equations required. However, this can 
require a substantial investment in time, labour and cost. Companies are emerging, 
however, which offer transferable NIR calibration solutions. Such companies have 
developed calibration models over many years using benchtop spectrometers, and 
they license them out for transfer to portable spectrometers. A service contract can 
also be entered into whereby the company maintains, updates and ensures set ac-
curacy levels for the calibration model over time.

Continued research into the development of robust, fast miniature and micro-
spectrometers will facilitate the continued adoption of this technology as a PAT tool 
in the food industry.

4.4  Infrared Spectroscopy as a PAT Technology

Infrared spectroscopy has been widely investigated as a rapid non-destructive as-
sessment tool for food products. Fruit, vegetable, dairy and meat products have 
been the most widely investigated. However, the majority of these studies have 
been laboratory based. The greatest advantage in the use of infrared-based technol-
ogy as PAT tools will be their implementation in the form of on-line/at-line process 
analysers, which take advantage of rapid analysis times and the minimal sample 
presentation required. However, it should be noted that the requirements for lab-
oratory-based analysis will differ in comparison with on-line technology. Infrared 
spectroscopy also has the capacity to predict numerous indices of a material simul-
taneously. In order to realize the potential of such data-rich tools in the food indus-
try, appropriate data analysis (Chap. 2) and data management strategies (Chap. 3) 
are required. Food quality, however, cannot be considered as a single, well-defined 
attribute. In fact, it encompasses a number of properties or characteristics, which 
are often referred to as quality indices, of the product under test (Abbott 1999). 
While infrared spectroscopy can offer a solution to this challenge, one must ensure 
that the basis for the prediction of quality is fully understood, as well as its inherent 
limitations.

4.5  Applications

4.5.1  Dairy

The dairy industry has seen significant advances towards automation of production pro-
cesses. For example, the move to closed commercial cheese vats versus the traditional 
open cheese vat drove the desire for on-line milk coagulation monitoring systems.
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4.5.1.1  Raw Material

Milk composition and quality can vary depending on a number of factors, includ-
ing animal genetics, health, and (in some countries) season. Such variability could 
significantly impact the quality of the final product. For example, milk fat to protein 
ratio will significantly affect a number of processing steps (coagulation, synere-
sis) which ultimately affects cheese quality and quantity. Therefore, it is usual that 
processors would standardise milk fat and protein content prior to use. Therefore, 
the use of infrared spectroscopy to facilitate the production of high quality of milk 
has been investigated in applications ranging from monitoring rumen metabolism 
through to standardisation of milk in the milk processing plant (Fagan et al. 2009b).

    Off-line rapid analysis of milk composition using the FTIR measuring prin-
ciple has been successfully commercialized with products such as the MilkoScan™ 
FT 120 (Foss Analytical, Denmark). It utilizes FTIR technology to analyse up to 
600 samples/h and can be used for routine analysis, such as fat, protein, lactose, 
total solids and solids-non-fat, density, freezing point depression, urea and casein 
analysis, in compliance with International Dairy Federation (IDF) and Association 
of Analytical Communities (AOAC) standards.

The further development of on-line determination of milk composition and qual-
ity would be advantageous as such knowledge is essential for the efficient manage-
ment of dairy herds. Brandt et al. (2010), however, stated that while a number of 
sensors are available or in development which can be used for management support 
in improving mastitis detection, monitoring fertility and reproduction and adapting 
individual diets, there is still a requirement to adapt these sensors to the particu-
lar requirements of on-farm utilization such as robustness, calibration and mainte-
nance, costs, operating cycle duration, and high sensitivity and specificity.

        Tsenkova et al. (2001) examined the potential of predicting somatic cell count 
(SCC) of milk using NIR transflectance spectra obtained using a benchtop spectro-
photometer. They stated that the results indicated that NIR spectroscopy would be a 
suitable screening tool in such an application as the differentiation between healthy 
and mastitic milk samples was possible. More recently, an NIR spectroscopic sens-
ing system for on-line monitoring of milk quality during milking has been devel-
oped (Kawamura et al. 2007). The system was installed between a teatcup cluster 
and a milk bucket of a milking machine. The authors developed models for the 
prediction of fat, protein, lactose, SCC and milk urea nitrogen (MUN) during milk-
ing with sufficient precision and accuracy ( R2=0.82-0.95), although only four cows 
were monitored over time. Following this study, the sensing system was installed in 
an automatic milking system. The system recorded diffusion transmittance spectra 
(600-1050nm) with a 1-nm interval every 10  s during milking. Seventeen cows 
were used in this study. The models developed for fat, protein, lactose, SCC and 
MUN had R2 values of 0.95, 0.83, 0.72, 0.68 and 0.53, respectively. The authors 
used the SCC calibration model to discriminate between healthy cow samples and 
other cow samples. The resulting classification gave a probability, for classifying 
correctly, of 82 %. In both studies, the samples were divided into calibration (2/3) 
and validation (1/3) sets. Further validation of the models is therefore recommended 
in conjunction with testing on a wider range of animals.
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MIR spectroscopy has also been explored for the offline determination of milk 
traits (Cecchinato et al. 2009; Dal Zotto et al. 2008; De Marchi et al. 2009). Milk 
coagulation properties (MCP) will vary depending on a number of factors, includ-
ing heritable parameters (Cassandro et al. 2008). However, if this information is to 
be fully exploited, there would be a requirement for a rapid method of determining 
MCP in milk-recording systems. Dal Zotto et al. (2008) found that MIR spectros-
copy could predict the rennet coagulation time (RCT) of milk samples albeit with 
an R2 of 0.73, which suggested approximate quantitative predictions were possible. 
De Marchi et al. (2009) carried out a further examination of this approach. Using a 
dataset of over a thousand samples, RCT was predicted with an R of 0.79. In both 
studies, the range error ratio (RER) was similar: 9.2 and 10.6. Cecchinato et  al. 
(2009) investigated the variation of MCP predictions obtained by MIR spectros-
copy, as well as estimating the expected response from a breeding program focusing 
on the enhancement of MCP using MIR predictions as indicator traits. They found 
that estimated genetic correlations between measure and predictions of RCT were 
very high.

4.5.1.2  Process Monitoring

NIR technology has been successfully applied at laboratory and commercial scales 
for monitoring processes during cheese manufacture. In particular, the milk coagu-
lation process during cheese production has received a great deal of attention, and 
cutting the coagulum either before or after the optimum point results in losses of 
curd and fat. An increase in cheese moisture also occurs if the gel is too firm when 
cut. Originally, the determination of the cutting time was established by the cheese 
maker. Although accurate this method is not feasible in closed commercial vats and, 
together with an increased desire for automation in the cheese industry, has led to 
the need for an on-line objective method for the monitoring of milk coagulation. 
Instruments have been developed based on several technologies to this end. Ideally, 
a sensor to monitor milk coagulation could be installed on-line to allow for automa-
tion of the production process, without causing damage to the forming curd, and 
NIR sensors meet these requirements. Early methods, which utilized the changes 
in the optical properties of the milk, were reflection photometry (Hardy and Fanni 
1981) and absorbance (McMahon et al. 1984). Although the reflection photometry 
and absorbance methods were found to monitor coagulation, they found little us-
age. However, developments in fibre optics have overcome many of the problems 
associated with these techniques. Light in the NIR spectral region can be transmit-
ted through a fibre optic bundle and diffuse reflectance or transmission monitor. As 
the gel is formed, reflectance will increase while transmission will decrease. Payne 
et al. (1993) developed a method based on changes in diffuse reflectance during 
milk coagulation. Reflectance was measured using a fibre optic probe, utilizing 
a photodiode light source at a wavelength of 940 nm. The time to the inflection 
point ( tmax) was determined from the first derivative and was found to correlate 
well with Formograph cutting times. Linear prediction equations, which were con-
sidered to be of the form required for predicting cutting time, were also developed 
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using tmax. This technology has been commercialized as the CoAguLite sensor (Re-
flectronics Inc, Lexington, KY) (Fig.  4.3a). This technology could also be used 
in conjunction with other sensors; for example, the FiberView dairy waste sensor 
system (Fig. 4.3b) could be used to monitor waste streams in dairy facilities. This 
enables the location, occurrence or concentration of the discharge to be determined. 
It monitors solids concentration in dairy plant effluents in the range of 0–1 % solids 
(or higher), and due to its quick response to loss events, it allows operators to take 
corrective actions.

Syneresis is a critical phase in cheese manufacture, with the rate and extent of 
syneresis playing a fundamental role in determining the moisture, mineral and lac-
tose content of drained curd and hence that of the final cheese (Lawrence and Gilles 
1980; Pearse and Mackinlay 1989). Therefore, research is ongoing into the develop-
ment of a syneresis control technology. A number of potentially non-invasive tech-
nologies have been investigated for such an application, including ultrasound and 
computer vision (Everard et al. 2007; Fagan et al. 2008a; Taifi et al. 2006; Tellier 
et al. 1993) and NIR sensing (Castillo et al. 2005a; Fagan et al. 2009a; Fagan et al. 
2007a). Initial studies focused on offline optical sensing of whey samples (Castillo 
et al. 2005b). An adaption of this technology led to the development of a sensor 
which could be installed in the wall of a cheese vat for on-line continuous monitor-
ing of both coagulation and syneresis (Fagan et al. 2007a). The sensor operated at 
980 nm and was sensitive to casein micelle aggregation and curd firming during 
coagulation and to changes in curd moisture and whey fat contents during syneresis. 
This sensor was also used to predict whey fat content (i.e. fat losses), curd yield 
and curd moisture content with standard error predictions (SEPs) of 2.37 g, 0.91 
and 1.28 %, respectively (Fagan et al. 2008b). Further work used a wider spectral 
range (300–1100 nm) in conjunction with PLS regression to predict whey fat and 
curd moisture with root mean square error of cross-validation (RMSECV) values 
of 0.094 and 4.066 %, respectively (Fagan et al. 2009a). Mateo et al. (2009) de-
veloped another set of models which predicted the yield of whey ( R2 = 0.83, er-
ror = 6.13 g/100 g) using three terms, namely light backscatter, milk fat content and 
cutting intensity. These studies were carried out in laboratory-scale cheese vats (7–

Fig. 4.3   a The CoAguLite sensor for predicting the optimal cutting time. b The FiberView Dairy 
Waste Sensor System (Reflectronics Inc, KY)
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11 L). Therefore, further scaling up and development under commercial conditions 
of the technology would be required if it is to become viable at a commercial scale.

NIR spectroscopy has also been investigated as a process control tool in yogurt 
production. Cimander et  al. (2002) studied the potential of NIR spectroscopy to 
monitor yogurt fermentation in a 4.2-L laboratory-scale vat. A sensor signal fu-
sion approach was adopted with NIR (400–2500 nm), electronic nose, and standard 
bioreactor sensors installed as part of a multi-analyzer setup (Fig. 4.4a). While the 
electronic nose followed changes in galactose, lactic acid, lactose and pH, the NIR 
sensor signal correlated well with the changes in the physical properties during 
fermentation. Therefore, the signals from the sensors were fused using a cascade ar-
tificial neural network (ANN) as detailed in Fig. 4.4b. Results suggested that the ac-
curacy of the neural network prediction was acceptable. This approach was further 
investigated by Navrátil et al. (2004) under industrial conditions in a 1000-L vat. 
Signal responses from NIR and electronic nose sensors were subjected to PCA sep-
arately. The scores of the first principal component from each PCA were then used 
to make a trajectory plot for each fermentation batch. PLS regression of the NIR 
spectra was also used to predict pH and titratable acidity (expressed as Thorner de-
grees, °Th) during fermentation with reasonable success (SEPs of 0.17 and 6.6 °Th, 
respectively). MIR spectroscopy has also been employed to monitor the sorghum 
fermentation process (Correia et al. 2005). They used FTIR spectroscopy to detect 
differences due to the effect of lactic bacteria on sorghum fermentation. They found 
it was possible to differentiate between samples which used natural yogurt and Lac-
tobacillus fermentum as inocula due to variations in protein and starch structure.

Fig. 4.4   The multi-analyzer setup a applied during yogurt fermentations: C1, compensator bottle 
1, to trap condensating vapour and to compensate for minor flow rate variations; C2, compensator 
bottle 2 and b the neural network topology used for sensor fusion. The primary network received 
six input signals from the electronic nose and was cascaded by the secondary network, which 
received seven input signals: the output signals from the primary network for pH and lactic acid, 
four second-derivative NIRS signals (1402–1408 nm) and the first derivative of the reactor tem-
perature signal. A logic gate made the final decision for the state variable. (Cimander et al. 2002)
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4.5.1.3  Final Product Quality and Authenticity

It is stated in Chap. 12 that “Quality attributes for dairy products can be both the 
chemical composition of a given product like protein, moisture and fat content, 
and the sensory quality attributes like taste, smell and consistency.” Therefore, the 
integration of sensing technologies which provide information on such attributes 
is critical. Table  4.3 summarizes a number of studies which have examined the 
potential of NIR and MIR spectroscopies to predict the composition of dairy prod-
ucts. These have primarily been laboratory based. Offline laboratory-based infrared 
sensing systems which provide rapid compositional analysis of dairy products are 
available. These systems should conform to relevant standards such as ISO Stan-
dard 21543:2006 (ISO 2006). A number of studies have also investigated the predic-
tion of sensory quality attributes. Downey et al. (2005) predicted the maturity and 
sensory attributes of Cheddar cheese using NIR spectroscopy. Generally, second 
derivative spectra in the region of 750–1098 nm produced the most accurate mod-
els with age predicted with an RMSECV of 0.61 months, while the most success-
fully predicted sensory texture attributes were rubbery, chewy, mouthcoating and 
massforming with RER values of 8.8, 6.3, 7.6 and 8.5, respectively. NIR spectros-
copy was also employed to predict both the sensory and instrumental attributes of 
processed cheese using NIR spectroscopy (Blazquez et al. 2006). In general, they 
found that the models developed for predicting sensory texture in processed cheese 
were stronger than those for Cheddar cheese, with rubbery, chewy, mouthcoating 
and massforming predicted with RER values of 9.1, 12.0, 8.1 and 8.1, respectively. 
Fagan et al. (2007b) compared the NIR models developed by Blazquez et al. (2006) 
to models developed using MIR spectroscopy, which also predict sensory texture 
parameters of processed cheese. NIR spectroscopy was better at predicting creamy, 
chewy, and melting, with the R2 values of the NIR models indicating excellent pre-
dictions as opposed to the good predictions of the MIR models. The RER values for 
the NIR reflectance models indicated a high utility value, whereas the RER values 
obtained by Fagan et al. (2007b) had a good practical utility. However, the MIR-
derived fragmentable model had better accuracy than the NIR model, with excellent 
and good predictions, respectively.

The requirement to demonstrate the authenticity and safety of dairy products 
has also led to research into the use of infrared technology for such applications. 
Determination of the geographic origin and manufacturing conditions of cheese 
has received a great deal of attention (Boubellouta et al. 2010; Cattaneo et al. 2008; 
Karoui et al. 2004, 2005a, b, 2007a, 2008; Kocaoglu-Vurma et al. 2009; Pillonel 
et al. 2003). For example, Pillonel et al. (2003) studied the potential of MIR and 
NIR spectroscopies to discriminate between Emmental cheeses ( n = 20) based on 
geographic origin. Samples were obtained from six regions, and they found that 
MIR transmission spectra could be used to discriminate (i.e. 100 % correct clas-
sification) Swiss cheese from the other regions, while NIR spectra classified the 
samples by the six regions of origin. Karoui et  al. (2007a) also examined MIR 
spectroscopy to determine the authentication of 25 Gruyère “protected designation 
of origin” (PDO) and L’Etivaz PDO cheeses. They found that the spectral regions 



834  Infrared Spectroscopy

Composi-
tion

Product Spectral Mode Wavelength/
wave number

Prediction Ref.

Parameter Region Range Error
Moisture Cheese NIR R 400–2498 nm SECV = 0.5 Blazquez et al. 

(2004)
Content Cheese NIR R 900–2500 nm SEP = 0.429 Čurda and 

Kukačková 
(2004)

Cheese NIR R 515–1700 nm RMSEP = 1.72–2.21 da Costa Filho 
and Volery 
(2005)

Cheese NIR R 1900–2320 nm SEP = 0.889 Lee et al. (1997)
Cheese NIR R 1000–4000 nm SEP = 0.12–0.35 McKenna 

(2001)
Cheese NIR T 1000–4000 nm SEP = 0.12–0.35 McKenna 

(2001)
Cheese MIR ATR 5000–400 cm−1 SEP = 0.04–0.09 McQueen et al. 

(1995)
Cheese NIR R 1740–2280 nm SEP = 0.02–0.05 McQueen et al. 

(1995)
Cheese NIR R 400–2500 nm SECV = 0.05–0.92 Pérez-Marín 

et al. (2001)
Cheese NIR R 400–2498 nm SEC = 0.412 Rodriguez Otero 

et al. (1994)
Cheese NIR R 400–2500 nm RMSEP = 0.58 Wittrup and 

Nørgaard 
(1998)

Fat Cheese NIR R 1100–1498 nm SECV = 0.45 Blazquez et al. 
(2004)

Content Cheese FT-NIR R 900–2500 nm SEP = 0.997 Čurda and 
Kukačková 
(2004)

Cheese NIR R 1000–2500 nm RMSEP = 3.61 Karoui et al. 
(2007b)

Cheese NIR R 1900–2320 nm SPE = 0.855 Lee et al. (1997)
Cheese MIR ATR 5000–400 cm−1 SEP = 0.12–0.35 McQueen et al. 

(1995)
Cheese NIR R 1740–2280 nm SEP = 0.12–0.35 McQueen et al. 

(1995)
Cheese NIR R 400–2500 nm SECV = 0.05–0.92 Pérez-Marín 

et al. (2001)
Cheese NIR R 400–2498 nm SEC = 0.388 Rodriguez Otero 

et al. (1994)
Cheese NIR R 400–2500 nm RMSEP = 0.52 Wittrup and 

Nørgaard 
(1998)

Protein Cheese FT-NIR R 900–2500 nm SEP = 0.303 Čurda and 
Kukačková 
(2004)

Content Cheese NIR R 1000–2500 nm RMSEP = 2.34 Karoui et al. 
(2006)

Table 4.3   Application of near- and mid-infrared spectroscopy in cheese and yogurt composition 
analysis. (Modified from Woodcock (2008)
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3000–2800 cm−1 and 1500–900 cm−1 were most useful with 90.5 and 90.9 % correct 
classification results achieved, respectively. MIR spectroscopy (supplemented by 
partial 16S rDNA sequencing) has also been employed to monitor the population 
dynamics of microorganisms during cheese ripening (Oberreuter et al. 2003).

4.5.2  Cereal Grains and Seeds

NIR spectroscopy has been widely used in routine quality control analysis in the 
grain industry since the 1960s (Scotter 1990). This has included the assessment of 
moisture and protein content (Downey and Byrne 1987; Norris and Williams 1979; 

Composi-
tion

Product Spectral Mode Wavelength/
wave number

Prediction Ref.

Parameter Region Range Error
Cheese NIR R 1900–2320 nm SEP = 0.608 Lee et al. (1997)
Cheese MIR ATR 5000–400 cm−1 SEP = 0.04–0.09 McQueen et al. 

(1995)
Cheese NIR R 1740–2280 nm SEP = 0.04–0.09 McQueen et al. 

(1995)
Cheese NIR R 400–2500 nm SECV = 0.05–0.92 Pérez-Marín 

et al. (2001)
Cheese NIR R 400–2498 nm SEC = 0.397 Rodriguez Otero 

et al. (1994)
Yogurt MIR ATR 1800–1500 cm−1 REP = 7.25 Khanmoham-

madi et al. 
(2009)

Yogurt MIR ATR 1800–1500 cm−1 REP = 3.7 Khanmoham-
madi et al. 
(2009)

Yogurt MIR ATR 1515–1800 cm−1 RMSEP = 0.2 Moros et al. 
(2006)

Sugar Yogurt NIR R 400–1000 nm RMSEP = 0.2621 Shao and He 
(2009)

Content Yogurt MIR ATR 1500−900 cm−1 SEP = 0.105–0.05 Khurana et al. 
(2008)

Yogurt NIR R 400–1000 nm SEP = 0.389 He et al. (2007)
Yogurt NIR R 400–1000 nm RMSEP = 0.33–0.36 Shao et al. 

(2007)

Carbohy-
drate

Yogurt MIR ATR 2850–1083 cm−1 RMSEP = 36 Moros et al. 
(2006)

Calcium Yogurt MIR ATR 1461–1636 cm−1 RMSEP = 9 Moros et al. 
(2006)

Content
R reflection, T transmission, ATR attenuated total reflection  

Table 4.3  (continued) 
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Williams 1979; Williams and Cordeiro 1979, 1981). More recently, developments 
in this area have focused on assessment of grain quality at harvest, grain quality 
classification and sorting and grain blending.

Kawamura et al. (2003) developed an automated rice quality inspection system 
which utilized both visible and NIR technology. The objective was to develop a 
system which measured not only moisture content but also other rice quality indi-
ces in order to grade rough rice according to quality when it arrives at the drying 
facility. The system they developed consisted of a rice huller, a rice cleaner, an NIR 
instrument and a Vis segregator. This system enabled rough rice transported to a 
rice-drying facility to be classified into six qualitative grades.

Grain quality at harvesting is also a critical parameter as there can be significant 
within-field variability of grain quality parameters, for example, protein and mois-
ture content. Maertens et al. (2004) described some of the requirement for online 
grain quality assessment at harvest. They included the use of a robust NIR spec-
trometer, design of a measurement configuration that guarantees a constant grain 
sample presentation while also avoiding dirt and blockages, that the sensor should 
be calibrated on the harvester and not under simulated conditions in the laboratory 
and finally that appropriate signal processing techniques should be employed to fil-
ter the spectral data, both in the time and wavelength domain They also studied the 
potential of an NIR sensor mounted on the bypass of the grain elevator of a combine 
harvester for online prediction of wheat moisture and protein content. They found 
that the average prediction errors were 0.56 and 0.31 % for protein and moisture 
content, respectively, where moisture content was below 18 %.

Detection and removal of internal insects and fungal contamination from seeds 
(grains, beans and nuts) are important control measures for ensuring storage longev-
ity, seed quality and food safety (Pasikatan and Dowell 2001). NIR spectroscopy 
has been applied to the detection of infestation of such products. NIR spectroscopy 
has been used to differentiate among individual wheat kernels that are uninfested, 
those infested with weevil larvae or pupae, or those that contain a parasitoid pupa 
(Baker et al. 1999). Wang et al. (2002) recorded single-seed NIR spectra of a total 
of 1600 soya bean seeds, i.e. 700 sound seeds and 900 seeds damaged by weather, 
frost, sprout, heat or mould. The regions 750–1690 nm and 450–1690 nm gave the 
best classification of seeds into “sound” and “damaged” categories. They also found 
that an optimally developed neural network (parameters: momentum = 0.6, learning 
rate = 0.7, learning cycles = 150,000, wavelength region = 490–1690 nm) could clas-
sify seed according to six categories, i.e. “sound” (100 %) and five damage catego-
ries, “weather” (98 %), “frost” (97 %), “sprout” (64 %), “heat” (79 %) and “mold” 
(83 %), with reasonable success.

Aflatoxin B1 is recognized by the International Agency of Research on Cancer 
as a group 1 carcinogen for animals and humans, and Fernández-Ibañez et al. (2009) 
investigated the potential of Fourier transform NIR spectroscopy to detect aflatoxin 
B1 in cereal grains. They analysed maize and barley samples ( n = 152) and devel-
oped models ( R2 = 0.82–0.85) for prediction of the presence of aflatoxin B1, which 
suggested that NIR spectroscopy could be a suitable alternative for fast detection of 
aflatoxin B1 in cereals.
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4.5.3  Fruit and Vegetables

The application of NIR and MIR to quality assessment of fruit and vegetables has 
been widely studied (Table 4.4). In terms of infrared spectroscopy’s role as a PAT 
tool in this industry, it could be employed for the optimization of harvesting, defect 
identification, disease control, process control applications and overall quality clas-
sification.

4.5.3.1  Harvest Optimization

Prediction of the optimal harvest time of apples will minimize the occurrence of 
quality losses. Peirs et al. (2001) predicted the optimal harvest date of apples har-
vested no more than 8 weeks before the commercial picking date using Vis–NIR 
spectra collected post harvest in the laboratory (measurements were carried out on 
the same day or the day after picking). They stated that it was possible to measure 
apple maturity for harvest of individual cultivars within an orchard and that the 
number of days before the optimum harvest date was well predicted ( R = 0.90–0.93). 
Further work examined the potential of Vis–NIR spectroscopy to estimated apple 
pre- and post-storage quality indices at harvest (McGlone et al. 2002). The apples 
were harvested 1–3 weeks before and up to 1 week after the commercial harvest 
period. Spectral analysis in this case took place between 16 and 24 h after harvest. 
The authors found that although models were developed to predict quality indices 
of the apples they were still very poor in terms of prediction accuracies. Therefore, 
they were unlikely to be useful for sorting or grading due to the high rate of predic-
tion errors that would result. They also stated that the prediction models, with the 
exception of soluble solids content, may be almost solely dependent on changes in 
the apple chlorophyll level and not have any direct sensitivity to the constituents or 
properties of interest.

Clark et al. (2004) examined the potential of Vis–NIR spectroscopy to predict 
the storage potential of kiwifruit. They employed canonical discriminant analysis 
(CDA) to optimize the separation between the two categories, i.e. “sound fruit” and 
“fruit developing a disorder during storage”. They estimated that the overall inci-
dence of disorders could have been reduced from 33.9 to 17.9 % and 14.7 to 8.5 % 
depending on the harvest or when using all harvests from 13.7 to 6.8 %.

A similar approach has also been investigated for mango (Saranwong et  al. 
2004). Vis–NIR spectra of mango were collected on the day of harvest and models 
were developed to predict harvest and eating quality using multiple linear regres-
sion and PLS regression. They stated that the calibration equations developed were 
sufficiently accurate to determine the harvest quality, dry matter and starch content 
of hard green mango fruit non-destructively. Using this information, the soluble 
solids content of the ripe fruit, which is an eating quality index, could be precisely 
predicted at the time of harvest.
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It has also been demonstrated that infrared technology can be used for fruit 
assessment prior to harvesting. Pérez-Marín et al. (2009) used a handheld micro-
electro-mechanical system (MEMS) spectrometer and a diode-array Vis–NIR 
spectrophotometer to collect the spectra of nectarine during on-tree ripening 
( n = 144). They developed models to quantify changes in soluble solids content, 
flesh firmness, fruit weight and diameter. Both instruments provided good preci-
sion for soluble solids content ( R2 = 0.89; SEP = 0.75–0.81 %) and for firmness 
( R2 = 0.84–0.86; SEP = 11.6–12.7 N). The diode-array instrument predicted the two 
other physical parameters well ( R2 = 0.98 and SEP = 5.40  g for fruit weight and 
R2 = 0.75 and SEP = 0.46 cm for diameter), while the handheld MEMS instrument 
proved less accurate in this respect (Pérez-Marín et al. 2009).

A portable non-invasive instrument based on NIR spectroscopy has also been de-
veloped to measure the ripeness of wine grapes (Larrain et al. 2008). It was used to 
predict three ripeness variables with excellent success for Brix and pH ( R2 = 0.87–
0.93) and with less accuracy ( R2 = 0.56–0.80) for pH.

4.5.3.2  Defect Identification

Burks et al. (2000) applied NIR spectroscopy to the sorting and classification of 
figs. They classified the figs according to the number of categories (“passable”, 
“infested”, “rotten”, “sour”, “dirty”) with correct classifications ranging from 83 
to 100 %. However, 20 PLS factors were required which might limit the robust-
ness to the models. Vis–NIR spectroscopy in both transmission and reflectance 
modes has been employed to detect brown heart of pears (Fu et al. 2007). They 
found that, using discriminant analysis, they could discriminate between brown 
heart pears and non-brown heart pears. Transmission spectra were more successful 
than reflectance spectra in this classification: a classification rate of 91.2 % using 
transmission spectra.

A conceptual view of an NIR transmission-based system for apple assessment 
(Fig. 4.5) has been proposed by McGlone and Martinsen (2004). They employed 
two prototype on-line NIR transmission systems to determine the percentage of 
internal tissue browning in apples. One prototype used time-delayed integration 
spectroscopy (TDIS) in which light transmitted through a moving object was elec-
tronically tracked as it moved through the spectrometer’s field of view. The other 
used a large aperture spectrometer (LAS) in which the light from the object is ac-
cumulated in a series of one-shot measurements as the fruit progresses through the 
field of view (McGlone and Martinsen 2004). The systems operated 500 mm s−1. 
The LAS system gave the best results ( R2 = 0.9) for fast on-line assessment of 
apples.

Further developments in defect identification have focused on the use of mul-
tispectral or hyperspectral imaging (Ariana et al. 2006; Blasco et al. 2007). This 
emerging platform technology is discussed in Chap. 9.
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4.5.3.3  Quality Classification

A key quality characteristic of fruit is SSC. As fruit ripen, there is conversion of 
insoluble starch into soluble solids, to which the simple sugars (glucose, fructose 
and sucrose) make the largest contribution (Martinsen and Schaare 1998). Numer-
ous studies have investigated infrared spectroscopy to predict this parameter non-
destructively and have been summarized in Table 4.4. The majority of such stud-
ies have utilized NIR spectroscopy. A study by Lammertyn (2000) compared two 
optical configurations, i.e. a bifurcated and a 0°/45° optical configuration. They 
found that while the former configuration gave slightly better performance for the 
prediction of SSC, they recommended 0°/45° configuration for commercial appli-
cations as it had a lower cost and could be used for non-contact measurements. 
However, bifurcated reflectance-based instruments have found an array of applica-
tions (Fig. 4.6). It should be noted that numerous variables (e.g. cultivar, geographic 

Fig. 4.5   A conceptual view of NIR transmission system. As the fruit passes through a relatively 
large field-of-view in the TDIS system (a), a detector simultaneously accumulates many sequential 
points over three apples. In contrast, the LAS system (b) takes a simple snapshot, like a cam-
era, over a much shorter time for a small portion of one fruit (McGlone and Martinsen 2004). 
(Reprinted with permission from Journal of Near Infrared Spectroscopy 12(1), 37–43 (2004). 
Copyright: IM Publications LLP 2004)
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origin, etc.) can affect the performance of such predictive models, and therefore 
studies which have independently validated models, for example, over and within 
seasons, are crucial to an assessment of model robustness (Golic and Walsh 2006). 
Golic and Walsh (2006) collected NIR spectrum of peaches, nectarines and plums 
and found that model performance for SSC was acceptable when peaches and nec-
tarines were combined, but it was best if a separate plum model was employed. 
They also stated that model performance was stable over several seasons in terms 
of R2 (typical R2 > 0.8).

4.5.4  Meat and Poultry

4.5.4.1  Fresh Meat

A number of studies examined the application of infrared spectroscopy to fat ex-
tracts to predict meat quality as fatty acid composition of meat can determine its 
processing quality. Villé et al. (1995) developed a method for the determination of 
total fat and phospholipid content in intramuscular pig meat using FTIR spectros-
copy. They employed an extraction using chloroform and methanol. FTIR spectra 
were subsequently recorded in transmission mode, and utilizing selected regions of 
the FTIR spectra related to the C = O bond (1785–1697 cm−1) developed linear re-
gression equation to predict total fat ( R2 = 0.99). A study has also examined the use 
of FTIR spectroscopy in the NIR and MIR regions of fat extracts and non-processed 
pork to determine the fatty acid content in fat slices and fat extracts (Ripoche and 
Guillard 2001). They found that MIR spectra using an attenuated total reflectance 
samples accessory ( R2 ~ 0.91–0.98) and NIR transmission spectra ( R2 ~ 0.85–0.96) 
of fat extracts could be used to predict saturated fatty acids (SFA), monounsaturated 
fatty acids (MUFA), polyunsaturated fatty acids (PUFA), palmitic acid (C16:0), 
oleic acid (C18:1) and linoleic acid (C18:2). However, with 9–15 latent variables 

Fig. 4.6   A NIR (LabSpec) 
with bifurcated fibre optic 
probe for contact reflectance 
measurement
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included in the models, they may not be very robust. While NIR reflectance spec-
troscopy successfully predicted SFA, PUFA, C18:1 and C18:2 from spectral mea-
surements of the back and breast fat, MUFA and C16:0 could not be predicted. 
Mitsumoto et  al. (1991) used NIR spectroscopy in reflectance and transmittance 
mode to predict the quality of beef cuts Warner–Bratzler shear value (tenderness) 
( R = 0.798−0.826), protein ( R = 0.822−0.904), moisture ( R = 0.895−0.941), fat 
( R = 0.890−0.965) and energy content ( R = 0.899−0.961) were successfully predict-
ed using both modes. Park et al. (2001) also developed models for predicting the 
tenderness, i.e. Warner–Bratzler shear value of beef using NIR reflectance spectra 
and principal component regression (PCR). The coefficient of determination of the 
developed models were of a similar order ( R2 = 0.612 – 0.692). This technology has 
also been commercially investigated with instruments such as the QualitySpec BT 
Spectrometer from Analytical Spectral Devices (Fig. 4.7).

NIR spectroscopy has also been investigated at laboratory scale for determina-
tion of the maximum temperature to which beef had been subjected to during a heat 
treatment (Ellekjaer and Isaksson 1992), species identification (Ding and Xu 1999) 
and authenticity assessment (Fumiere et al. 2000). Other applications of NIR such 
as the detection of faecal contamination on poultry have been studied. Windham 
et al. (2003) applied Vis–NIR spectroscopy to discriminate between uncontaminated 
poultry breast skin and faeces. They found that the developed model could success-
fully classify faecal-contaminated material due to spectral differences between fae-
cal colour and myoglobin and/or hemoglobin content of the uncontaminated breast 
skin. However, hyperspectral imaging (Chap. 9) has also been utilized for such an 
application (Heitschmidt et al. 2007; Liu et al. 2007; Park et al. 2006a, b, 2007).

Fig. 4.7   The QualitySpec BT 
Spectrometer from Analyti-
cal Spectral Devices Inc. for 
measuring meat quality
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4.5.4.2  Ground Meat Quality

The quality of ground meat used as a raw material in products such as burgers and 
sausages is critical as processors must comply with product-type-dependent restric-
tions, i.e. chemical composition and origin of raw materials (Togersen et al. 1999). 
Togersen et al. (1999) utilized an on-line NIR sensor to determine the fat, water and 
protein contents in industrial-scale meat batches (beef and pork) in an industrial 
environment. The NIR sensor was installed at the outlet of a large meat grinder. The 
models developed had RMSECV of 0.82–1.49 %, 0.94–1.33 % and 0.35–0.70 % for 
fat, water and protein, respectively. Togersen et al. (2003) went on to predict the 
chemical composition of industrial-scale batches of frozen beef using a similar sys-
tem. The resulting RMSECVs were 0.48–1.11 % (fat), 0.43–0.97 % (moisture) and 
0.41–0.47 % (protein).

NIR spectroscopy has also been investigated as a tool for detecting adulteration 
of hamburgers (Ding and Xu 2000). They found it was possible to predict the level 
of adulterants in hamburgers with errors of 3.33, 2.99, 0.92 and 0.57 % for the adul-
terants mutton, pork, skim milk powder and wheat flour, respectively.

4.5.4.3  Meat Emulsion

Optical sensors have also been developed to monitor meat emulsion stability (Al-
varez et al. 2007, 2009, 2010a, b). Initial work focused on prediction of meat emul-
sion stability using reflection photometry (Alvarez et  al. 2007). They found that 
L* values increased at the beginning of chopping associated with reduced cooking 
losses, following 8 min of chopping there was a reduction in L* and b* values and 
an associated increase in cooking losses, which suggested the feasibility of an on-
line optical sensor technology to predict the optimum end point of emulsification in 
the manufacture of finely comminuted meat products. These authors then recorded 
light backscatter intensity from beef emulsions manufactured with different fat/lean 
ratio and chopping duration using a dedicated fibre optic prototype (Alvarez et al. 
2009). They found several optically derived parameters to be significantly correlat-
ed with fat loss during cooking. In subsequent work, they found normalized intensi-
ty decreased with increased chopping time as a result of emulsion homogenization, 
and with increased distance, chopping time had a positive correlation with fat losses 
during cooking, which in turn had a negative correlation with normalized light in-
tensity and loss of intensity. Therefore, they suggest that light extinction spectros-
copy could provide information about emulsion stability (Alvarez et al. 2010).

4.6  Future

Infrared spectroscopy has been demonstrated to be an excellent PAT tool for 
monitoring critical processes and prediction of quality indices during food pro-
cessing. Advances in equipment design will assist in the deployment of infrared 
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spectroscopy-based technologies as PAT tools in the food industry. This will include 
improvements in robustness, cost and advances in microspectrometers. However, 
where studies have primarily been at laboratory scale, further research is required to 
ensure appropriate scaling up and transfer of the technology to industry. The com-
bined acquisition of spectral and spatial information through the use of hyperspec-
tral imaging has a number of potential applications. However, further developments 
are required to reduce the cost and increase the acquisition and processing speed for 
it to be fully exploited in food quality and safety applications.
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