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Chapter 1
Benefits and Challenges of Adopting PAT  
for the Food Industry

P.J. Cullen, Colm P. O’Donnell and Colette C. Fagan

C. P. O’Donnell et al. (eds.), Process Analytical Technology for the Food Industry,  
Food Engineering Series, DOI 10.1007/978-1-4939-0311-5_1,  
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P.J. Cullen ()
School of Chemical Engineering, University of New South Wales,  
Sydney, Australia
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C. P. O’Donnell
School of Biosystems Engineering, University College Dublin, Dublin 4, Ireland

C. C. Fagan
Department of Food and Nutritional Sciences, University of Reading,  
P.O. Box 226, Reading RG6 6AP, UK

1.1 Introduction

Process analytical technology (PAT) is a framework for innovative process 
manufacturing and quality assurance. The concept is to design, analyse and control 
manufacturing processes through the measurement of identified critical control pa-
rameters which govern product variability. The identified benefits of the framework 
include increased process efficiency, reduced operating costs, increased process 
validation and ultimately improved final product quality and safety.

1.1.1 Evolution of PAT

Process analytical chemistry (PAC) is a term which developed during the 1940s to 
describe the application of analytical chemistry with techniques, algorithms and 
sampling equipment to solve developing problems related to various chemical pro-
cesses. Although industrial process analysers have been in use for more than 60 
years, the modern period of PAC essentially began with the formation of the Centre 
for Process Analytical Chemistry (CPAC) in 1984. The goal of PAC was to “supply 
quantitative and qualitative information about a chemical process” for monitoring, 
control and optimization. They went on to define five “eras” of PAC: (1) off-line, 
(2) at line, (3) on-line (4) in-line and (5) non-invasive, which describe the evolution 
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of sensor technologies (Mishra et al 2008). Its definition has evolved over the years 
to encompass analytical measurements and understating of chemical, physical and 
microbiological parameters governing processing. Changing the term “chemistry” 
to “technology” allowed a broader scope of the approach to other processes. The 
pharmaceutical industry, in particular, has adopted the approach as a strategy to un-
derstand and control variability within the sector. The broad definition given by the 
US Food and Drug Administration (FDA): “A system for designing, analyzing, and 
controlling manufacturing through timely measurements (i.e., during processing) 
of critical quality and performance attributes of raw and in-process materials and 
processes with the goal of ensuring final product quality” covers the requirements 
and desires of manufacturing within the food industry.

Since 1987, PAT has had a dedicated international conference (International 
Forum Process Analytical Chemistry, IFPAC, which brings together instrumenta-
tion manufacturers, researchers and industry users.

1.1.2 Learning From Other Process Industries

The food industry has always been to the fore with regard to adoption of sensors and 
the use of risk analysis strategies. By comparison, the pharmaceutical industry has 
been more restricted in the adoption of advanced control strategies due to validated 
batch production processes, high-value-added products and lack of specialised tech-
nologies. Nevertheless, it was identified that an improved production process was re-
quired and PAT emerged as a platform of future good manufacturing practice (GMP). 
Industrial adoption has still remained relatively low; however, the ideology and desire 
for the approach is evident between regulatory agencies and industry alike.

The pharmaceutical industry also recognised that PAT could provide additional 
benefits such as continuous validation. Q7A GMP Guidance for Active Pharmaceu-
tical Ingredients (API) defines validation as: a documented program that provides a 
high degree of assurance that a specific process, method, or system will consistently 
produce a result meeting predetermined acceptance criteria. PAT tools are capable 
of continuously measuring product acceptance criteria and critical control points 
(CPPs), thereby continuously evaluating if the process is behaving consistently.

Food treatment processes such as pasteurization need validation; the emergence 
of novel treatment processes such as high-pressure processing, pulsed electric 
fields, etc. necessitates process validation to ensure adequate treatment. A PAT strat-
egy may facilitate such validation. Also, similar complementary benefits as found in 
the pharmaceutical industry may occur within the food industry with increased PAT 
implementation. For example, Hazard Analysis Critical Control Point (HACCP) is 
used in the food industry to identify potential food safety hazards so that key actions 
can be taken to reduce or eliminate the risk of the hazards being realized. HACCP 
is a systematic preventive approach to food safety that addresses physical, chemi-
cal, and biological hazards as a means of prevention rather than finished product 
inspection. Integrating a PAT strategy within HACCP may support the overall goal 
of ensuring food safety through the use of process monitoring.
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Comparing both industries, we can see similarities and differences which in-
fluence the drivers to PAT adoption. The pharmaceutical industry is highly regu-
lated and is risk averse with actives synthesised via both chemical and biological 
routes; many processes are operated under sterile conditions in highly controlled 
environments. Batch production continues to dominate with low levels of automa-
tion. Product quality is typically monitored off-line using laboratory-based methods 
of analysis. Food production within developed countries is increasingly regulated 
and is risk adverse to microbial or chemical contamination. Production is typically 
non-sterile.

1.1.3 PAT Drivers in the Food Industry

Consumer: For the food industry, the consumer is a key driver for food production 
methodologies. Produce taste, nutrition, appearance, cost and shelf life are impor-
tant parameters influencing consumer purchase and thereby the choice of produc-
tion methodology. Technologies which can optimize the process will ultimately lead 
to consumer loyalty and repeat purchase. Consequently, the food industry has tra-
ditionally employed technologies to monitor food produce particularly as end-point 
quality control strategies.

Regulators Pharmaceutical regulators have played a fundamental role in the push 
to adopt PAT strategies within the pharmaceutical industries. For pharmaceutical 
current GMP (cGMP), both the FDA and the European Medicines Agency (EMA) 
openly encourages the use of PAT. The FDA formed a PAT advisory committee that 
includes industry participation which is intended to facilitate dialogue between the 
regulators and industry. They have issued a PAT guidance document and created a 
PAT training program for industry. By comparison, there has been little involve-
ment from food regulators in such a strategy. However, as PAT technologies begin 
to show promise as food safety prevention techniques this may change. Apart from 
production optimization, many of the PAT tools discussed within this book such 
as hyperspectral imaging have showed potential for contamination identification 
of foods within production facilities (Chap. 9). Similarly, PAT data may be useful 
in food traceability or potentially have a role to play in the development of proac-
tive hazard alert system in ensuring food security throughout the food chain. If the 
approach can show reduced risk to consumers, food regulators may become increas-
ingly interested in the approach.

Business One of the common reasons forwarded as to explain the limited uptake 
of PAT tools by the pharmaceutical industry has been the lack of a business case to 
improve current production processes given the high margins that drug companies 
traditionally operated within, coupled with the validation implications with adopt-
ing new production approaches. By comparison, the food manufacturing industry 
has typically been governed by lower profit margins and production efficiency. PAT 
tools may offer improved production cost and energy efficiency through process 
optimization along with increased quality control.
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Sustainability The concept of environmental sustainability in food processing has 
become a key issue in recent times as awareness of the importance of environmental 
protection, and the possible impacts associated with the manufacture and consump-
tion of food products, has increased. Environmental sustainability can be achieved 
by developing and implementing alternative environmental best-practice tech-
nologies and products which maximise the efficient use of resources and achieve 
cost savings, while minimising negative human and environmental impacts (Clark 
2011). Recently, PAT has been linked to green production strategies:

The Process Analytical Technology (PAT) initiative has made its name as a mechanism for 
monitoring processes in real time, facilitating process understanding and, in some cases, 
real-time release of product. With PAT, the focus has been on monitoring Critical Quality 
Attributes and controlling Quality Critical Process Parameters, and to a lesser degree 
manufacturing efficiency. It may be time to add sustainability to the list of PAT’s objectives. 
(Thomas 2009)

1.1.4 Technology Advances

Originally, PAC measurements were performed off-line; however, they moved con-
tinually closer to production to result in: at line, on-line and in-line measurements. 
The principal benefit from such a paradigm shift was a significant decrease in the 
time delay between sampling and analysis along with monitoring of more repre-
sentative samples. The past two decades have seen significant progress in the in-
corporation of on- and in-line process monitoring using advanced instrumentation. 
Optical and spectroscopic technologies have been to the fore in this advancement 
including computer vision, ultraviolet–visible (UV–Vis), near- and mid-infrared 
(NIR and MIR) and Raman spectroscopy. This rise was facilitated by related tech-
nological advances in solid-state detectors, fibre optics and instrumentation innova-
tions for in situ sampling (Chew and Sharrat 2010) along with a parallel evolution 
of computer processing power.

This use of increasingly sophisticated process analysers resulted in increasingly 
large data sets that require appropriate numerical strategies to unravel chemical 
information (or process signatures) and associated process states encoded within 
the analytical data. With increasing know-how and affordability of spectroscopic 
and chromatographic instrumentation for on-line and in-line process analysis, PAT 
data sets are often intrinsically multivariate in nature (Chew and Sharrat 2010). 
Chemometrics has emerged and is widely embraced as a useful tool to unravel the 
data obtained by PAT.

1.1.5 Challenges

To facilitate widespread adoption of PAT within the food industry, a number of chal-
lenges need to be overcome. Technologies must meet the challenges posed by the 
food manufacturing environment including: cleaning-in-place (CIP) compatibility, 
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harsh environments, real-time analysis, low-cost and ease of use. Technologies 
which provide food safety information directly from the production environment 
would be advantageous, with identification of microbial or chemical contamina-
tion. Suitable data management systems need to be developed and integrated with 
production to ensure that the benefits offered by PAT are achieved.

Unlike the pharmaceutical industry, variability with food production is some-
times welcomed. Indeed, one of the admirable aspects of artisan or “home-made” 
food is the variable nature of product. However, adoption of PAT does not mean that 
we have to produce foods which appear perfectly similar to some defined optimum. 
It is up to the manufacturers themselves to decide on what parameters they wish to 
optimize; indeed, PAT could be used to produce foods which display more artisan-
like features.

Finally, the food industry needs to be made more aware of PAT as a framework 
for innovative process manufacturing and quality assurance. More collaboration 
between industry, academia and regulators is required to unify the disperse efforts 
currently underway. Adoption of PAT as a strategy would bring together process en-
gineers, food scientists, technologists and microbiologists under one umbrella with 
the goal of providing the industry with a manufacturing framework for the twenty-
first century. Here, we can learn from and cooperate with other industries such as 
the pharmaceutical and petrochemical to further develop the strategy.
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2.1  Introduction

2.1.1  Definition of Chemometrics

Chemometrics, or multivariate data analysis, is the science which applies optimal 
mathematical and statistical methods to process data. Chemometrics includes the 
design of experiments upstream and the analysis of data to get valuable informa-
tion after measurements have been taken. The need for chemometrics tools mainly 
comes from the development of analytical instruments providing large amounts of 
increasingly complex data.

This scientific arena consists of a large variety of mathematical methods, aiming 
at processing numerous data sets to achieve diverse objectives. The scheme below 
is an overview of the chemometrics approach any scientist should follow when fac-
ing a multivariate data analysis issue (Fig. 2.1).

Even though the principles of chemometrics are based in mathematics and sta-
tistics, one does not need to have deep knowledge of either of these disciplines to 
analyse multivariate data. However, thorough knowledge of the application as well 
as common sense are required in order to analyse the outputs of the chemometrics 
software packages and avoid pitfalls and misinterpretations.

2.1.2  PAT and Chemometrics

Process analytical technology (PAT), as defined in Chap. 1, includes appropriate 
measurement devices, that can be placed at-, in- or on-line, combined with mul-
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tivariate statistical (chemometrics) tools to analyse data and monitor and control 
processes. Chemometrics is therefore essential to understanding and diagnosing 
real-time processes, and keeping them under multivariate statistical control. PAT is 
also strongly linked to the quality by design (QbD) concept, which implies quality 
integration from the product development stage. Within the PAT framework, Wold 
et al. identified five levels of chemometrics analysis corresponding to different data 
and objective complexity levels (Wold et al. 2006):

• PAT-1: calculating critical quality attributes (CQA), such as concentrations, from 
rapid and real-time multivariate measurements, such as spectra, by multivariate 
calibration (predictive modelling).

• PAT-2: sorting samples (raw materials, intermediate or final products) as accept-
able or not, based on multivariate measurements, such as spectra or property 
profiles, using multivariate statistical process control (MSPC).

• PAT-3: monitoring and classifying batch processes as acceptable or not from 
real-time multivariate measurements, such as process data, raw material data and 
spectra, using batch SPC (BSPC).

• PAT-4: combining data from all the critical process steps and raw materials to 
assess the final product quality using multi-block analysis.

• PAT-5: including feedback control to the process settings from the multivariate 
models, using process dynamic identification and time series modelling among 
others. This last level is not discussed further in this chapter.

Fig. 2.1  The multivariate data analysis approach: classification of chemometrics methods
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For each of these levels, the modelling approach works well if the training set used 
to build the model is representative of the acceptable (in-control) samples. This is 
ensured by covering the desired variability, either by using design of experiments 
(DoE) during the process development at laboratory and pilot scales or by using 
huge historical laboratory or production databases with sufficient variability. Fi-
nally, the robustness of the model has to be regularly evaluated during its life cycle 
through maintenance and updating.

2.2  Design of Experiments

Using historical databases to model processes requires a very large amount of ob-
servations to ensure a minimum of variability. When it is possible, a more rational 
way consists in choosing the observations or experiments to span the whole desired 
operating conditions, i.e. the design space, with a maximum of variability. DoE (ex-
perimental designs) corresponds to that part of chemometrics which aims at plan-
ning the relevant experiments, minimising the cost without decreasing information 
quality, quantifying the different factor effects, modelling and optimising the pro-
cesses (Gacula and Jagbir Singh 1984; Box and Draper 1987; Lundstedt et al. 1998; 
Leardi 2009). Different designs corresponding to different objectives are discussed 
in the following sections, such as screening and optimisation designs.

2.2.1  Problem Formulation

Understanding and modelling a process requires first to determine its multivariate 
inputs and outputs. On the one hand, the inputs represent the different factors or 
parameters which may have an influence on the outputs, such as temperature, pres-
sure or the type of catalyst for a chemical reaction. They correspond to the indepen-
dent measurements or variables which can be set independently of one another. The 
user’s expertise and some tools, such as the Ishikawa diagram, are needed to deter-
mine an exhaustive list of the potential variability sources. Factors which cannot be 
precisely set by the user, i.e. uncontrolled factors, cannot be considered as inputs. 
On the other hand, outputs correspond to the response measurements (or dependent 
variables) which have to be optimised, such as the yield of a chemical reaction.

2.2.2  Screening Designs

The DoE methodology often includes a first step which consists in implementing a 
screening design (Araujo and Brereton 1996a). The experiments are chosen in order 
to quantify the influential factors among a large number of factors.
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2.2.2.1  Full Factorial Designs (2k)

Full factorial designs are the basic designs which carry out all possible experiments 
with k two-level factors, low and high levels. All experiments at the boundaries of 
the design space are planned, as illustrated for three factors in Fig. 2.2a. The cor-
responding experimental matrix with its encoding system is shown in Table 2.1.

The main effects for each factor are calculated as the semi-difference between 
the high-level average and the low-level average. They represent the average direct 
impact of each factor on the response when increasing the encoded factor level from 
0 to 1.

First-degree interaction effects between two factors are then processed as the 
semi-difference between the effect of factor 1 at factor 2 high level and the effect 
of factor 1 at factor 2 low level. The second-degree interaction corresponds to the 
interaction between three factors. Interactions with a degree higher than 1 are how-
ever often small and difficult to interpret.

Table 2.1  Example of an experimental design for a full factorial design with three factors
Experiment Average I X1 X2 X3 X12 X13 X23 X123 Response Y

1 +1 -1 -1 -1 +1 +1 +1 -1 60
2 +1 +1 -1 -1 -1 -1 +1 +1 72
3 +1 -1 +1 -1 -1 +1 -1 +1 54
4 +1 +1 +1 -1 + 1 -1 -1 -1 68
5 +1 -1 -1 +1 +1 -1 -1 +1 52
6 +1 +1 -1 + 1 -1 +1 -1 -1 83
7 +1 -1 +1 + 1 -1 -1 +1 -1 45
8 +1 +1 +1 + 1 +1 +1 +1 +1 80
Effects 64.25 11.5 -2.5 0.75 0.75 5 0 0.25

X1
-1

X2

X3

+ 1

+ 1

+ 1

-1

-1

-1

a b

Fig. 2.2  a Full factorial design. b Fractional factorial design with three factors
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The resulting model equation for the experimental matrix in Table 2.1 is illus-
trated in Eq. 2.1:

 (2.1)

The significance of each effect has then to be determined by means of statistical 
tests. Estimating the experimental uncertainty sy  from m replicate measurements, 
the uncertainty of each calculated effect value is /σ =E ys n , where n is the num-
ber of designed experiments. An effect is thus significant at a risk α  if the calculat-
ed effect value (model parameter, e.g. for factor 1) is greater than (1 , ) .α ν σ− Et , where 
(1 , )α ν−t  is found in the Student’s law table and 1ν = −m  is the degree of freedom. 

Another way to assess the significance of each effect is to run an analysis of vari-
ance (ANOVA) and observe the calculated p values associated with each effect. The 
resulting significant effects, meaning that these factors are statistically influent on 
the response, have to be maintained for the remainder of the model development.

2.2.2.2  Fractional Factorial Designs (2k−p)

Fractional factorial designs are used to screen factors when the number of experi-
ments has to be lowered (Fig. 2.2b). The aliase principle allows selection of which 
experiments from the full factorial design must be run without losing significant 
information. The idea is to choose the experiments which lead to confound impor-
tant effects, such as main and first-degree interaction effects, with smaller and less 
interpretable effects, such as second (and more)-degree interaction effects. For ex-
ample, with three factors, Eq. 2.2 shows the aliase generator. The resulting experi-
mental matrix is in Table 2.2. The number of experiments is reduced to 2k−p, where 
p is the number of aliase generators. With three factors, only one aliase generator 
is allowed, dividing the number of experiments by two for similar model accuracy. 
The experimental matrix shows that main effects are confounded with first-order 
effects as the encoding is the same two by two. This only allows the interpretation 
of principal effects:

 (2.2)

Randomisation of the experiment order is usually needed to correct eventual sys-
tematic response errors. When experimental blocks are clearly identified, such as 

1 2 3 12 13 12364.25 11.5 2.5 0.75 0.75 5 0.25 .ε= + − + + + + +y x x x x x x

I X123= .

Table 2.2  Experimental design for the fractional factorial design with three factors coming from 
the full factorial design in Table 2.1
Experiment Average I X1 X2 X3 X12 X13 X23 X123

2 + 1 + 1 − 1 − 1 − 1 − 1 + 1 + 1
3 + 1 − 1 + 1 − 1 − 1 + 1 − 1 + 1
5 + 1 − 1 − 1 + 1 + 1 − 1 − 1 + 1
8 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
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analysis days, aliase generators are used to confound the block effects with high-
order interaction effects.

Some food applications were developed by Ellekjaer et al., who studied the ef-
fects of process variables and ingredients on sensory variables for processed cheese 
(Ellekjær et al. 1996), and Christiansen et al., who implemented a fractional facto-
rial design to model food dressings (Christiansen et al. 2004).

2.2.2.3  Other Screening Designs

Other screening designs using linear models are also commonly used to identify the 
few significant factors among many.

The Plackett–Burman designs are two-level saturated designs where all interac-
tion effects are neglected (Plackett and Burman 1946). The number of experiments 
is a multiple of four, and “saturated” means that this number is equal to the number 
of model parameters, i.e. the number of factors plus one (model constant), with-
out any degree of freedom left. For example, a six-factor Plackett–Burman design 
requires theoretically a minimum of seven experiments, running finally eight ex-
periments (multiple of four). The total number of experiments is hence drastically 
reduced.

The Rechtschaffner screening designs correspond to saturated two-level fraction-
al factorial designs to estimate main and first-order interaction effects (Rechtschaff-
ner 1967). For example, a six-factor Rechtschaffner design requires 22 experiments 
(1 + k + k( k − 1)/2, with k the number of factors).

2.2.3  Optimisation Designs: Response Surface Methodology

When two-level factorial designs have difficulties to model a process, showing a 
significant lack-of-fit when observing ANOVA results or when using validation 
experiments at the centre of the experimental domain, second-order designs, also 
called optimisation designs, are used. These designs propose to carry out experi-
ments at more than two levels, allowing curvature modelling. Non-linear response 
surfaces can thus be drawn to achieve the main goal of these designs, i.e. estimating 
the experimental area corresponding to the response optimum (Araujo and Brereton 
1996b).

2.2.3.1  Central Composite Designs

Central composite designs are widely used, since they can complete an existing 
full factorial screening design with 2k additional experiments, designing a “star” 
around the existing hyper-cube. Additional experiments to the centre can be re-
quired (Fig. 2.3 and Table 2.3). Five levels for each factor are thus investigated to 
model non-linearity.
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The model equation for a second-degree design is shown in Eq. 2.3:

 

(2.3)

2.2.3.2  Other Optimisation Designs

Central composite designs are the most popular optimisation designs. However, 
when the number of factors increases, the number of experiments rapidly becomes 
very large. Thus other second-degree designs are also commonplace.

The 3k three-level full factorial designs are an extension of the two-level full 
factorial designs seen in Sect. 2.2.2.1.

The Rechtschaffner optimisation designs, similar to the screening Rechtschaff-
ner designs in Sect. 2.2.2.3, correspond to saturated three-level fractional factorial 
designs to estimate main and first-order interaction effects. For example, a six-fac-
tor Rechtschaffner design requires 28 experiments (1 + k + k + k( k − 1)/2, with k the 
number of factors). Additional experiments in the centre are always recommended.

The Box–Behnken designs are incomplete three-level full factorial designs, with-
out experiments in the corners of the experimental domain (Ferreira et al. 2007). 
Application on several responses related to bread-making quality is illustrated in 
Rouillé et al. (2000).

Doehlert designs allow the estimation of all main effects, first-order interactions 
and quadratic effects without any confounding effects (Ferreira et al. 2004). Their 
geometric shape is polyhedronic based on hyper-triangles (simplexes). The speci-
ficity of the Doehlert designs is related to the ability to extend them to contiguous 
experimental domains for one or more factors in a sequential way. The number of 
levels is finally not the same for each factor.

2 2 2
0 1 1 2 2 3 3 12 12 13 13 23 23 11 1 22 2 33 3 .β β β β β β β β β β ε= + + + + + + + + + +y x x x x x x x x x

Table 2.3  Number of experiments for central composite designs
k Full factorial 

design 2k
Star points Centre Total
Number 2k α

2 4 4 1.414 3 11
3 8 6 1.682 3 17
4 16 8 2 3 27
5 32 10 2 4 46

Fig. 2.3  Central composite 
design with three factors
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2.2.3.3  Mixture Designs

When dealing with formulation optimisation, the closure constraint in the mixture 
(Eq. 2.4) has to be taken into account (Cornell 1990; Eriksson et al. 1998):

 
(2.4)

where xi is a compound (factor) of the mixture and c the total number of the 
compounds.

This mixture constraint leads to an interdependency between all factors and 
hence has several consequences. First, the representation of the experiments does 
not imply hyper-cubes but hyper-tetrahedrons (Fig. 2.4). Second, the underlying 
models are simplified. The linear model loses its constant term and the second-order 
model loses its constant and quadratic terms.

2.3  Exploratory Analysis

The first step of chemometrics analysis consists in performing an exploratory 
analysis in the multivariate space, also called descriptive analysis or unsupervised 
analysis which occurs without prior knowledge concerning neither the nature nor 
the group membership of the samples. Initially, data have to be preprocessed or 
“cleaned” before the exploratory treatment. This is often performed using principal 
component analysis (PCA).
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2.3.1  Data Preprocessing

Data preprocessing techniques are often used prior to modelling in order to reduce 
noise and undesired perturbations in the signal. Several preprocessing methods 
have been initially developed in near-infrared spectroscopy, due to its sensitivity to 
the external environment (temperature changes, humidity, etc.). The most suitable 
preprocessing technique will depend on the conditions; these must be compared to 
find the optimal combination on a given data set.

2.3.1.1  Classical Preprocessing Methods

The most widely used preprocessing methods consist in mean centring or scaling 
the data. They can be used for all types of multivariate data: continuous, discrete, 
spectroscopic or process data.

• Mean centring is the most common preprocessing. The principle is to subtract 
the variable mean to each value. Mean centring is quasi-systematic in projection 
methods such as PCA or PLS. It is used in order to centre the subspace to the 
barycentre of the original data set, for a better data visualisation (see Sect. 2.3.2). 
When building a predictive model, mean centring X data set implies that the con-
stant term ( b0) of the equation is not equal to zero (see Sect. 2.4.2.1, Eq. 2.13). 
Thus, in the cases where the intercept is expected to be null, the data should not 
be centred.

• Scaling is used to make the different variables comparable when included in a 
global multivariate analysis. The most common scaling technique is the unit-
variance scaling which divides each variable by its standard deviation, like a 
columnwise normalisation. The method must be systematically applied to data 
sets containing variables of different scales (e.g. pH, temperature) in order to 
give them equal weights in further processing. Scaling should not be applied to 
spectroscopic data because each variable is comparable and the intensity varia-
tions between wavelengths constitute the important information (e.g. spectral 
peaks). Other kinds of scaling are possible for this data, for instance, to stress the 
importance of specific variables by giving them higher weights.

• Auto-scaling is the combination of mean centring and unit-variance scaling.

2.3.1.2  Signal Correction Methods

The signal correction methods aim at correcting the influence of different perturba-
tions and/or enhancing information. In spectroscopic data, perturbations can be ad-
ditive, i.e. a constant, which can be wavelength dependent, is added to the spectrum, 
or multiplicative, where each element of the spectrum is multiplied by a constant. 
These phenomena are typical of light scattering effects, which induce a photon loss 
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(additive effect) and an increased path length (multiplicative effect), among others. 
Scatter correction must not be applied if the parameter of interest is physical in na-
ture (e.g. particle size, turbidity).

Almost all the methods cited below are “rowwise” methods, i.e. the preprocess-
ing is carried out sample by sample. It is not the case for mean centring and scaling, 
where all (calibration) samples are required in order to preprocess the data set, i.e. 
they are “columnwise” treatments.

A recent review of some of the mentioned signal correction preprocessing meth-
ods can be found in Rinnan et al. (2009).

• Baseline correction subtracts the undesired spectral background. The classic 
way is to subtract the lowest value of each spectrum from all the variables. De-
trending removes curvilinear baseline by approximating it with a wavelength-
dependent second-degree polynomial fit.

• Normalisation is used rowwise when there is a non-desired intensity variation 
between objects due to multiplicative effects. This allows focus on the data 
profile rather than the global intensity. Normalisation is done by dividing each 
spectrum by an estimation of its spectral intensity. This can be done using the 
following properties: its area (area normalisation), its maximal peak (maximum 
normalisation), a specific spectral point (peak normalisation), its length (unit 
vector normalisation), or the sum of the spectral values.

• Standard Normal Variate (SNV) is a path-length variation correction meth-
od used, like normalisation, to limit the spectral intensity variation problem 
(Fig. 2.5b). It is a rowwise auto-scaling, thus removing the spectrum mean value 
to all the spectrum variables and dividing them by the spectrum standard devia-
tion (Barnes et al. 1989).

• Multiplicative Signal Correction (MSC) is also a very common method for cor-
recting multiplicative scattering effects (Geladi et al. 1985). The principle is to 
fit each spectrum to a reference spectrum (generally, the average calibration da-
tabase spectrum, Eq. 2.5), and then to correct them as shown in Eq. 2.6. The 
reference spectrum must be representative to avoid an ill-fitting model. Different 
versions have been derived. For instance, the extended MSC (EMSC) is based on 
a polynomial baseline correction depending on the wavelength; it can also allow 
for the introduction of prior information in the spectra (Martens and Stark 2001):

 (2.5)

 
(2.6)

where xi is the measured spectrum, x is the mean spectrum (or a reference spec-
trum), a is the intercept, b the slope and xi

MSC the corrected spectrum.

• Smoothing is used to remove random noise. The principle is to use an average of 
neighbouring points. For example, the moving average method uses the average 
of a neighbouring window to calculate the new value. The Savitzky–Golay (SG) 
algorithm uses a polynomial fit (Savitzky and Golay 1964). The latter is the 

*= +x xi a b
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most widespread algorithm in chemometrics. The wider the window the higher 
the smoothing while a polynomial degree increase will better fit tiny spectral 
features and enhancing noise. Thus, a balance between these parameters must be 
found.

• Derivatives are generally used in spectroscopy to enhance spectral features; how-
ever, they also correct for additive effect, as a constant baseline (first derivatives, 
see Fig. 2.5c) or both the offset and the slope of the baseline (second derivatives, 
see Fig. 2.5d). The most classical algorithms used are the SG (Savitzky and Go-
lay 1964) and the Norris–Williams (Norris and Williams 1984) algorithms. Since 
computing derivatives enhances the noise, these two methods also smooth the 
spectrum.

2.3.1.3  Dimensionality Reduction Methods

Dimensionality reduction methods aim at eliminating uninformative signal, thus 
enhancing information and reducing collinearity:

• Variable selection is often used to remove uninformative or noisy variables 
and keep the relevant ones. For data with only a few variables (e.g. process 
data), the classical method is the stepwise-multiple linear regression (stepwise-
MLR) method, used to select the most informative variables during the model 
development. For data with a higher number of variables and containing more 
collinearities (e.g. spectroscopic data), other methods are preferred. A common 
method in spectroscopy is the interval-partial least squares (i-PLS), which selects 
the spectral regions in testing all possible combinations with one or several mov-
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ing window(s) of a fixed size (Nørgaard et al. 2000). A plethora of different 
methods have been developed. For uninformative variable elimination (UVE), 
the addition of dummy random variables allows the identification of spectral 
variables that are as uninformative as noise (Centner et al. 1996). The genetic 
algorithm (GA) is a stochastic method using the principle of evolution theory 
to select a subset of variables (Leardi and González 1998). A large number of 
parameters must be tuned to apply this method. Furthermore, being a stochastic 
technique, each run provides a different result.

Some comparison studies can be found in Abrahamsson et al. (2003).

• For predictive modelling purposes, orthogonal pretreatments, such as orthogo-
nal signal correction (OSC), remove variations which are not linked to Y (Wold 
et al. 1998a). Some variants deriving from the classical OSC and differing in 
the way the non-relevant part is modelled, can be cited: direct orthogonalisation 
(Andersson 1999), direct OSC (Westerhuis et al. 2001), piecewise OSC (Feudale 
et al. 2002a) and orthogonal-PLS (Trygg and Wold 2002). These methods have 
for objective to extract the net analyte signal (NAS), i.e. the part of the spectra 
related to the quantity of interest and which is orthogonal to the other compounds. 
It has been shown that these pretreatments do not always provide better model 
performances than partial least-squares (PLS) models (see Sect. 2.4.2.4) based on 
raw data. However, the models based on these preprocessed data provide a better 
understanding of the model. In this way, Svesson et al. propose some discussions 
and a comparison on different “OSC” algorithms (Svensson et al. 2002).

• Data compression methods aim at reducing the dimensionality of large data sets. 
Latent structures are extracted and used to rebuild a “cleaned” signal without 
noise. PCA is the most common method (see Sect. 2.4.2). Other methods are also 
widely used, like Fourier transformation (FT) working on the frequency domain 
(McClure et al. 1977; Wu et al. 1996) or wavelet transform (WT) working on 
time and frequency domains (Daubechies 1990; Alsberg et al. 1997). Both meth-
ods present the advantage of working on one spectrum at a time, whereas PCA 
needs all spectra. These methods are useful to reconstruct the corrected signal or 
to extract the latent structures (e.g. PCA scores, FT or WT coefficients) and use 
them as inputs to derive predictive or discrimination models.

A comparison of several preprocessing methods for improving the determination of 
moisture and protein contents of forage samples is given by Azzouz et al. (Azzouz 
et al. 2003).

2.3.2  Principal Component Analysis

2.3.2.1  Introduction—Objective of PCA

The PCA is the major workhorse of the chemometrics tools. The PCA method can 
be used for the following goals:
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• Visualisation of X in the multivariate space
• Outlier detection
• Variable selection
• Data compression, when reducing X dimensionality by removing noise
• Be the basics for other multivariate methods, such as unsupervised classification 

or MSPC

2.3.2.2  Geometrical Interpretation

The PCA can be seen as a better way to visualise samples represented by numer-
ous variables, by projecting their original coordinates into a new set of axes, called 
principal components (PC). These axes satisfy a number of properties, which make 
the sample visualisation easier.

The following graphs explain how PCA works for a simple X-matrix, composed 
of only three variables (Fig. 2.6a):

• Each sample is located in the original space with its three coordinates (Fig. 2.6b). 
The X-matrix can then be visualised as a cloud of points in the three-dimensional 
(3D) space (Fig. 2.6c).

• The coordinate system is translated to the barycentre of the sample cloud (star in 
Fig. 2.6d), for a better visualisation, by mean centring the variables.

• A new axis, called first PC, is built following the direction of the maximum 
spread of the samples (Fig. 2.6d); this helps better visualise the maximum vari-
ability of the sample set. The new coordinates of the samples are called Scores.

• A second axis, orthogonal to the first one, is then searched, to represent the maxi-
mum of the remaining sample set variance (Fig. 2.6g). This axis can be visual-
ised by placing the eye facing to the first PC (Fig. 2.6e–f).

• This process is done iteratively for the number of PCs equal to the number of 
original variables (three in this graphical example) (Fig. 2.6h).

Thus, PCA can be seen as a change of axes, designed to better visualise the sample 
variability, but maintaining the distances and scales between samples. For more 
convenience, the samples are usually visualised on a 2D plane, corresponding to the 
projection of the samples on this set of two axes (see Fig. 2.7, an example of plane 
PC1 × PC3).

2.3.2.3  Mathematical Computation

The spread, inertia or variance of the cloud of samples seen in the previous section 
is expressed mathematically by the variance–covariance matrix of X. Thus, the PCA 
decomposes the sample set space in the direction of the maximum of X-variance. 
The matrix of variance–covariance (V( p, p)) is computed as shown in Eq. 2.7, with 
X�  being the centred matrix of X:
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Fig. 2.6  Principal component analysis (PCA) geometrical visualisation
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To find the maximum inertia axes, the PCA algorithm diagonalises the matrix of 
variance–covariance, computing the eigenvalues and eigenvectors of V. Then, the 
eigenvalues are sorted in a descending order, since they are directly related to the 
variance explained by each axis.

The eigenvectors are called loadings (P) and correspond to the weights of each 
original variable to build the PC: the PC is thus a linear combination of the original 
variables.

Then, the initial data set X can be decomposed with the following expression:

 (2.8)

where P is the loading matrix and T the score matrix of the new coordinates in the 
PC subspace. Matrix dimensions are noted in parenthesis.

Since data contains a part of the information and a part of the noise (error), we 
can express X with the first k components, the p–k last components remaining in the 
error matrix (see Eq. 2.9 and Fig. 2.8a):

 (2.9)

where P is the loading matrix for k components and T the corresponding scores. 
Matrix dimensions are noted in parenthesis.

Thus, when a centred PCA is performed, each sample can be decomposed as 
shown in Fig. 2.8b. The variables are generally centred (see Sect. 2.3.1.1), to trans-
late the coordinate system origin to the barycentre of the sample cloud, and provide 
a better visualisation.

2.3.2.4  Interpretation of PCA

When a PCA is performed, scores and loadings are visualised to understand:

( , ) ( , ) ( , ) ,=X T PT
n p n p p p

X T P E( , ) ( , ) ( , ) ( , ) ,n p n k k p
T

n p= +

i. Projection on a plane (PC1 x PC 3) j. 2D visualization on plane (PC1 x PC 3)
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Fig. 2.7  PCA visualisation on a 2D plane
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• The relationship between samples (Score plot—Fig. 2.9a). If two samples have 
close scores (neighbouring coordinates in the PCs), it means that they have the 
same behaviour, and thus have similar levels in the original variables contribut-
ing mainly to the construction of these PCs.

• The correlation between variables and their contribution to the PCs (Loading 
plot—Fig. 2.9b). Variables are considered as vectors, building with different 
weights the PC directions. Therefore, if two variables show close directions 
(vectors from frame origin), it means that they are strongly correlated. 
Additionally, if they have higher values on the axis (high loading weights), it 
means that they contribute a lot to the calculation of the PC axis. This tool can 
thus be used for variable selection.

• The relationship between samples and variables (biplot—Fig. 2.9c). Biplot helps 
to interpret the relationship between samples and variables. Samples with high 
coordinates (far from origin) in a direction of a variable means that this sample 
has a high value for this variable. Biplot can be seen on a “correlation circle” 
plot, normalising each PC to one, thus helping the interpretation of the variable 
significance.

• The variance expressed by each axis (explained variance plot—Fig. 2.9d). The 
cumulated explained variance (or residual variance) shows the variability ex-
plained by each PC. Thus, the interpretation of trends and neighbouring samples 
or variables must be weighted by this explained variance. When the explained 
variance comes close to 0, the remaining PCs only express noise, and not struc-
tured information. If PCA is used to compress the information (see Sect. 2.3.1.3), 
determining this optimum number of PCs is very important. It is also crucial 
for classification purposes (see clustering, Sect. 2.5.1; SIMCA, Sect. 2.5.2.2) or 
process control (see MSPC in Sect. 2.6.1).
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N.B.: for discrete variables, loading plots are generally shown in 2D scatter plots 
(see Fig. 2.9b); however, for continuous variables, such as spectra, the loading plots 
are generally drawn one PC at a time (see Fig. 2.8b) for a clearer view. Furthermore, 
in spectroscopy, the first PC is generally very high, expressing systematic noise usu-
ally due to the light scattering effect.

2.3.3  Outlier Detection and Handling

Classical multivariate models for exploratory and predictive analyses are very sen-
sitive to outliers, i.e. extreme, atypical samples that are very different from the other 
samples of the population. The main reason is that the mean is a non-robust esti-
mator of the data location. Hence, it is of great importance to identify outliers and 
decide what to do with these samples, i.e. keeping them if they are representative of 
the variability which has to be modelled or removing them. There are indeed many 
causes for outliers leading to different decisions: wrong labelling, measurement er-
ror, deviating process, etc. Only multivariate outliers and multivariate tools will be 
investigated here.

2.3.3.1  Outlier Detection in Exploratory Analysis

Outliers can be detected during an exploratory analysis considering the X database 
of the samples.

X-leverage or T2

The most common diagnostic tool used to identify outliers is the X-leverage ( h) or 
Hotelling’s T2 distance calculated for each sample i:

 (2.10)

where T0 is the training (calibration) score matrix for a certain number of compo-
nents and ti the score vector for sample i.

The leverage, actually similar to the Mahalanobis distance (De Maesschalck 
et al. 2000), corresponds to the distance to the centre of the model. Outliers with a 
high leverage have a large influence on the model and have hence to be well inter-
preted (Fig. 2.10). This kind of outlier is also called “strong” outlier. A critical limit 
can be calculated according to a Fisher test ( F-test) for a given significance level α 
(e.g. 5 %) to detect outliers.
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X-residuals or Q

The other most associated diagnostic tool to identify outliers is the X-residuals or Q 
distance calculated for each sample. This is the non-modelled part of the variance. It 
corresponds to the distance to the model, i.e. the distance to the model hyperplane. 
Outliers with a high Q are not well modelled (Fig. 2.10). They often come from an 
atypical phenomenon in the process. This kind of outlier is also called “weak” or 
“moderate” outlier. In a similar way to the leverage, a critical limit can be computed 
using an F-test to detect outliers toward this distance.

Plotting the Q value against the leverage gives the so-called influence plot, which 
is a very useful diagnostic tool to identify simultaneously all the kinds of outliers.

2.3.3.2  Outlier Detection in Predictive Analysis

In the same way, outliers can be detected during a predictive analysis, with the same 
tools and using the PLS scores, as in Sect. 2.3.3.1, considering either X or Y data-
bases for the training then test samples.

The X–Y relationship can be additionally used in a predictive analysis to diag-
nose outliers. Plotting for all samples and first components the t (X-scores) against 
the u (Y-scores) is another way to identify outliers, which deviate from the correla-
tion straight line.

2.3.3.3  Robust Statistics

When using the above techniques to detect outliers, some problems can occur if too 
many outliers are present. Since the mean is a non-robust estimator, some outliers 
may not be detected (masking effect) or regular samples may be wrongly detected 
as outliers (swamping effect). Another way to handle outliers is thus to perform 
robust statistics, i.e. variants of the classical tools using more robust location and 
covariance estimators (Liang and Kvalheim 1996; Fernández Pierna et al. 2002; 
Daszykowski et al. 2007). The data majority is hence modelled, neglecting the out-
liers. Many attempts led to more robust estimators, such as the multivariate trim-
ming (MVT; Gnanadesikan and Kettenring 1972), the minimum volume estimator 

PC1
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outlier 1outlier 2Fig. 2.10  Two kinds of outli-
ers in exploratory analysis: 
outlier with a high leverage 
( outlier 1) and outlier with 
a large residual variance 
( outlier 2). Dashed line: 
distance to the centre of the 
model; dotted line: distance 
to the model
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(MVE; Rousseeuw 1984) or the minimum covariance determinant (MCD; Rous-
seeuw 1984).

Robust variants of PCA and PLS exist, coming from either the use of these ro-
bust estimators or the projection pursuit (PP) algorithm.

2.4  Quantitative Predictive Modelling

2.4.1  Introduction

The objective of predictive modelling methods is to correlate a set of explanatory 
variables X to one (y) or several properties of interest (Y).

All the models obey the following equation:

 (2.11)

where ŷ  is the predicted value of the real y and f  the function relating X and y.
f  is found by minimising the error between the real y values and the predicted ŷ  

values, with diverse algorithms of error minimisation.
The models are developed and optimised on a selected sample set for which X 

and y are well known, called the calibration or training set. The ultimate goal is to 
apply these models to predict y value(s) of unknown samples.

We can distinguish linear regression methods (see Sect. 2.4.2), which work well 
of course when the X–y link is linear, but even most of the time when the X–y link 
is non-linear. However, if the X–y relationship is more complex, non-linear or local 
correlation algorithms are available (see Sect. 2.4.3).

2.4.2  Linear Modelling

2.4.2.1  Linear Regression Principle

The basic regression model is the simple (univariate) linear model which relates one 
quantity of interest y (response) to one explicative variable x1 through the equation:

 (2.12)

where b is called the regression vector, composed here of two constants: b0 the off-
set (i.e. the value of y when x is equal to zero), and b1 the slope.

When X is multivariate, i.e. when each sample is described by p several vari-
ables, then a multivariate linear model relates X to y according to the following 
equation:

ˆ ( ),=y Xf

( ,1) 0 1 1( ,1)ˆ * ,= +y xn nb b
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 (2.13)

where b1…bp are the regression coefficients for each variable and refer to the re-
gression vector b in the right part of the equation and b0 the offset. Matrix dimen-
sions are noted in parenthesis.

The modelling goal is to find the optimal approach for calculating the regression 
coefficients b based on a set of experimental data. The following sections show the 
various ways for finding b from an X matrix and y reference values based on Eq. 2.13.

2.4.2.2  Multiple Linear Regression (MLR)

Multiple linear regression (MLR) is the simplest multivariate modelling method, as 
an extent of the simple linear regression to the multivariate case. To calculate b, the 
pseudo-inverse calculation is applied on the calibration set:

 (2.14)

This method has the advantage of being straightforward. However, if the explana-
tory variables are correlated (collinearity), the pseudo-inverse matrix calculation 
leads to unstable models. Another important limitation is that MLR cannot be cali-
brated if the number of samples is smaller than the number of variables (i.e. if n < p), 
because XTX is no more invertible. These two limitations are very often encoun-
tered in spectroscopy or imaging where the variables are numerous and strongly 
collinear. Thus, other modelling methods must be adopted for this kind of data.

2.4.2.3  Principal Component Regression (PCR)

In order to overcome the issue of variable correlation, MLR can be calculated on k 
scores of a PCA (see Sect. 2.3.2) instead of on original variables X. Equation 2.14 is 
then replaced by Eq. 2.15. Thus, this method is called principal component regres-
sion (PCR):

 (2.15)

Since scores are orthogonal, there is no more correlation between variables. Fur-
thermore, only the first few k informative scores are kept ( k < < p), as explained in 
Sect. 2.3.2.3 (see Eq. 2.8) overcoming the high dimensionality problem ( n > k).

However, the main drawback of this method is that the scores are calculated in or-
der to represent the maximum variance in X, which is not necessarily linked with y.
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2.4.2.4  PLS Regression

PLS regression has then been proposed to improve the y modelling (Wold et al. 
1983). Rather than calculating scores using only X-covariance with PCA as in PCR, 
the PLS algorithm takes into account the covariance between X scores and y, i.e. the 
variances of X and y and the correlation between X and y. Scores, referred here as 
latent variables (LV), are then built in order to capture as much information related 
to y as possible.

PLS can also predict several responses at a time; in this case, a latent subspace is 
also created for Y, and the covariance maximisation is made between X scores and 
Y scores. This modelling technique is generally called the PLS2 method.

PLS can be summarised in two interdependent steps:

• Dimensionality reduction of X and Y in latent subspaces using scores projec-
tions

• Integration of a vector, called weights (w), connecting both subspaces and pro-
viding the covariance between X and Y scores as optimisation criterion

Two major algorithms can be used for PLS modelling: an iterative procedure called 
non-linear iterative partial least squares (NIPALS) algorithm (Wold et al. 1983) or a 
direct procedure, known as the SIMPLS algorithm, which is faster (De Jong 1993).

2.4.2.5  Model Optimisation and Validation

The number of k latent variables (also called LVs) must be carefully chosen, to 
reduce the modelling subspace. If too many latent variables are used, noisy or non-
relevant part of X is considered in the calibration stage, leading to an overfitted 
and unstable model, unable to predict accurately unknown data. On the contrary, 
underfitting a model leads to poor performances in both calibration and prediction 
stages, as the model misses a relevant part of the signal.

There are different strategies for the calibration and validation of models, in 
order to avoid under- and overfitting.

The predictive power of a model can be estimated by a set of criteria called fig-
ures of merit (FOM) (see Annex: Figures of Merit). As there is no universal crite-
rion, several statistics have to be considered before any final decision. The classical 
ones are the root-mean-squared error (RMSE; see Eq. 2.33), the bias (systematic 
error, see Eq. 2.34) and the coefficient of determination R² (Eq. 2.35).The criteria 
are then calculated on calibration and validation sets to compare performances. A 
classical diagnostic tool is the graph showing the evolution of the RMSEs against 
the number of latent variables (Fig. 2.11a). The optimal number of latent variables 
is then given by the minimum of error for validation or cross-validation (RMSEV 
or RMSECV), checking that the error on the calibration set (RMSEC) remains close 
to avoid overfitting.

The most used validation technique for optimisation is the cross-validation 
method which involves an internal validation set. The principle is to divide the 
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calibration set into c blocs (contiguous or at random). c models are then built on 
the calibration set without the cth bloc. For each model, predictions on the removed 
bloc are recorded. The choice of c depends on the size of the data set. For very small 
data sets, one can use till n blocs, i.e. remove one sample at a time. This method is 
known as leave-one-out cross-validation (or Jackknifing). Cross-validation is com-
monly used since it does not require extra samples to evaluate the model. If only a 
small number of measurements are available, cross-validation will be the method 
of choice. However, the higher the number of blocs, the more optimistic (and thus 
less realistic) are the performance results for the future prediction of new samples.

As a result, it is better to use when possible an external validation set. This 
can be done by splitting the original calibration data set in two, providing an inde-
pendent validation set. Several methods have been developed to perform the split-
ting (Kennard and Stone 1969; Snee 1977; Clark 1997; Dantas-Filho et al. 2004; 
Galvao et al. 2005). However, the use of a brand new set of samples, completely 
independent from the calibration set (e.g. samples measured later, samples of a new 
batch…) is preferable to be more representative of the prediction error on future 
unknown samples.

Thus, to resume, when optimising a prediction model, the following features are 
monitored (see Fig. 2.11):

1. The evolution of the error in calibration and (cross-) validation against the num-
ber of LVs.

2. The prediction plot showing the real y values versus predicted y values, with the 
corresponding FOMs for the calibration and validation sets.
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3. The regression vector must not be noisy, otherwise k must be reduced.
4. The loading vectors must not be noisy. X and y scores, residuals, leverages and 

weights can also be checked (not shown).

2.4.2.6  Science-Based Calibration

A spectrum x of a sample can be decomposed by a combination of pure spectra of 
each component present in the sample (K), multiplied by their concentrations (c), 
plus a noise spectrum (e), as shown in Eq. 2.16.

If all m pure spectra are known, the corresponding concentrations can be esti-
mated using the regression coefficient B( p, m) calculated in Eq. 2.17. This method 
is called classical calibration (or direct calibration). As this assumption is not often 
encountered due to the complexity of studied samples, inverse calibration is much 
more widespread in chemometrics (see Sect. 2.4.2.2, Eq. 2.13):

 (2.16)

 (2.17)

However, new methods are emerging. Among them, we can cite the science-based 
calibration (SBC) which can be described as a combination of both calibration 
methods, i.e. classical and inverse calibrations (Marbach 2005).

As the pure spectrum of the component of interest (k1) can often been measured 
or estimated, the principle of SBC is to replace the unknown components (i.e. re-
placing c2k2 to cmkm and e, in Eq. 2.16, by only one signal (e*). This non-relevant 
signal can be described by a set of spectra X, measured on samples containing none 
or little variability of the component of interest. The mean spectrum x , the mean 
concentration of interest y  (if any) and the inverse of the covariance matrix Σ− are 
extracted from X. The regression coefficient b is estimated as in Eq. 2.19 and a new 
sample is then predicted as shown in Eq. 2.20:

 (2.18)

 
(2.19)

 (2.20)

Assuming the knowledge of k1, SBC is a method allowing using spectroscopy as a 
primary method, i.e. with no need of measuring the reference values y and establish-
ing a calibration model. This method is quite appropriate for PAT applications and 
is already used in this field (Marbach 2007a, b).
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2.4.3  Non-Linear Modelling

2.4.3.1  Non-Linear PLS

Data often suffer from non-linear behaviour with respect to the y reference. PLS 
generally deals well with weak or moderate non-linearity.

A classic methodology to circumvent the problem is to preprocess the X data 
(see Sect. 2.3.1 Data preprocessing section), making the relationship linear. PLS 
modelling can also be applied to non-linear X data by analysing the square or cube 
of the x values. The original y data in calibration can also be transformed with a 
non-linear function such as logarithm or exponential functions before modelling.

Non-linear PLS models have also been developed, such as quadratic PLS (QPLS; 
Wold et al. 1989), which are PLS models with polynomial inner relations, or spline-
PLS (Wold 1992) to cope with non-linearity in the data (X or y).

2.4.3.2  Local Modelling

The principle of local modelling is to select from the calibration database a subset 
of similar samples (in terms of X and/or y values) to the unknown sample and use 
only them for prediction. To predict each new sample, a new model is built. Several 
such methods have been implemented: locally weighted regression (Cleveland and 
Devlin 1988), CARNAC-D (Davies et al. 1988), or LOCAL (Shenk et al. 1998).

2.4.3.3  Least-Squares Support Vector Machines

Support vector machines (SVM) were originally established for classification 
purposes (see Sect. 2.5.2.3). More recently, SVM have been adapted for regres-
sion purposes, in particular with least-squares support vector machines (LS-SVM) 
regression models (Cogdill and Dardenne 2003).

SVM is a local modelling method, focusing on similarity between samples. 
 Instead of basing the model on variables, like the most common multivariate mod-
elling methods (PCA, PLS, ANN), the SVM replace the matrix X( n, p) with a “ker-
nel matrix” K( n, n) made up of similarity measurements between the n calibration 
samples. The computation of the kernel K is often based on a non-linear Gaussian 
distance based on a radial basis function (RBF) as shown in Eq. 2.21. The parameter 
σ tunes the kernel width and so the degree of non-linearity (a larger σ decreases the 
non-linearity degree):
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In LS-SVM, K is then used as explicative input for the prediction of the y response 
(Eq. 2.22). The objective is then to find the regression coefficient vector b of di-
mensionality n. For this, the minimisation criterion is quite different from classical 
least-squares regression (as with MLR) by the addition of an extra term (last part 
of the Eq. 2.23). The parameter γ regulates the importance of the minimisation of 
this second term:

 (2.22)

 

(2.23)

The predicted value of a new sample xnew is assessed according to its similarity with 
the calibration samples.

An application for the prediction of acidity in grapes is discussed in Chauchard 
et al. (2004a).

2.4.3.4  Artificial Neural Networks

There are many types of Artificial Neural Networks (ANN), but they are all non-
parametric models, i.e. they do not require to assume any (Gaussian) distribution 
assumption of the data, in opposition to most of the classical models (such as MLR, 
PCR or PLS). ANN are stochastic non-linear modelling tools, i.e. each ANN mod-
elling process will lead to a different result. They can provide either non-linear 
quantitative prediction or classification models.

They can be separated into two groups:

1. The unsupervised networks, i.e. that are not using the y values in their prediction 
(see Sect. 2.5.1.3), such as Kohonen Networks (self-organising map; SOM)

2. The supervised networks, the most widespread, using the y values to build the 
model

In the latter category, the most employed ANN is the multilayer perceptron (MLP). 
The MLP is composed of basic elements, called neurons or nodes, interconnected in 
layers. They are generally composed of three layers as shown in Fig. 2.12:

1. The input layer is composed of n1 nodes, corresponding to the n1 input vari-
ables (raw or compressed variables to reduce the number of nodes and risk of 
overfitting).

2. The hidden layer is made of n2 nodes; n2 is not determined by the database and 
must be tuned either (1) to increase the complexity of the NN if it is enable 
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to model the non-linear relationship or (2) to reduce its complexity in order to 
decrease the overdetermination and overfitting.

3. The output layer contains as many nodes ( n3) as the number of y values to be pre-
dicted. Neural networks can also be used as classifiers, in encoding the classes in 
a complete disjunctive coding.

The parameters of the ANN model are tuned iteratively during the ANN learning 
process.

The ANN calibration procedure consists in tuning the weight ( wij) linking all 
the node pairs ( i, j) by an iterative learning procedure in order to provide the least 
prediction error rate. Generally, the initial weight levels are set at random.

At each iteration, in a feed-forward propagation procedure, the output estimation 
Ok of each node k is computed as the weighted linear combination (weigths: wik) of 
the node outputs yi ( i = 1:nl) in the previous layer l and the adding of a bias ( w0k). 
This combination is then transformed by an activation function f. This function 
must have a binary threshold and is generally non-linear with a sigmoid shape (see 
example of O7 in Fig. 2.12).

At each iteration, the weights are tuned to reduce the prediction error given by 
the difference of the output values and the real ones. The most widespread NN 
learning technique is the back-propagation of the error gradient (Rumelhart et al. 
1986).

ANN are very powerful modelling tools; however, one of the main issues during 
neural network training is to prevent overfitting, i.e. make sure that the resulting 
model will be able to generalise its prediction to unknown samples (Ghosh and 
Turner 1994).
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To minimise this risk, the number of calibration samples must be rather large (at 
least around 30 per weight). Furthermore, the ANN size (number of nodes) must 
be as low as possible, by using compression methods (e.g. PCA scores) or node-
pruning techniques (Thimm and Fiesler 1997). The learning phase can also be tuned 
to avoid overfitting, for instance, by stopped-learning techniques (Weigend et al. 
1990) and dynamic-learning procedure or noise introduction.

2.4.4  Robustness Issue and Calibration Transfer

“Robustness” is a term used here to define the ability of a model to be stable or 
insensitive when facing operational condition changes. This meaning is different to 
the one used in the chapter dealing with the outliers (see Sect. 2.3.3.3), where “ro-
bust chemometrics” refers to the mathematical algorithm stability regarding sample 
variability and outliers.

First, the stability of the model will depend on some good modelling practices 
which have to be performed systematically.

The first step is to ensure a fair representation of the calibration data set, using, 
for example, a DoE (see Sect. 2.2), and to check for outliers (see Sect. 2.3.3). It is 
also highly recommended to have an external validation set, measured later than the 
calibration set, for the model performance assessment.

The data must then be preprocessed correctly in order to remove noise or scatter 
effects. Variable selection can also be carried out to focus on the important features.

The final step is to choose the dimensionality of the model, i.e. the number of 
latent variables as explained in Sect. 2.4.2.5.

In addition to these good practices, we can consider robustness problem as a 
calibration transfer issue. Two methods are commonly used in many cases. On the 
one hand, the exhaustive calibration (or global modelling) consists in concatenat-
ing the samples containing the new variability or condition to be modelled to the 
initial calibration database. A new model is thus built. This method requires a large 
number of new samples to be efficient. On the other hand, the bias and slope correc-
tion method adjusts directly the prediction estimations by matching the predictions 
in the different conditions (Bouveresse et al. 1996). However, this method does not 
perform well when the perturbation disappears.

Some other specific methods have been developed for calibration transfer or 
robustness problems, such as model transfer between instruments or drifts due to 
changes in the process environment (e.g. temperature). These robustness issues can 
be considered depending on the information availability.

2.4.4.1  Models Using a Standardisation Set

If the same samples are measured in different conditions, knowing the perturbation, 
a standardisation set is available (Fig. 2.13). In that case, prior correction methods, 
such as the direct standardisation (DS), alter the perturbed spectra to be as close 
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as possible to those of the calibration set. A more popular version of DS is the 
piecewise direct standardisation (PDS), which uses a moving window for the fitting 
(Wang et al. 1991; Bouveresse and Massart 1996). The inverse fitting (i.e. fitting old 
spectra to the new ones), known as (Piecewise) Reverse Standardisation ((P)RS), 
allows a definitive correction, i.e. new spectra do not have to be pretreated (Lima 
and Borges 2002). As these methods act on discrete perturbations, they are often 
used in model transfer between instruments. A PDS-like method, continuous PDS 
(CPDS), for correcting quantitative perturbations, such as temperature variation, 
has also been developed (Wülfert et al. 2000a).

Other methods try to take the variation into account in the modelling stage. The 
Repeatability file (Rep file) method uses spectral differences between the standardi-
sation samples measured in several conditions and adds them to the calibration 
database with a response value of zero (Westerhaus 1991; Tillmann and Paul 1998).

2.4.4.2  Models Using a Small Experimental Design

It is possible to build a small experimental design XDoE containing variations due 
to the perturbation (Fig. 2.14). For these methods, neither the perturbation level 
nor the y response needs to be measured. The aim of this small DoE is to model the 
perturbation subspace. The external parameter orthogonalisation (EPO) orthogon-
alises the calibration database X0 to this perturbation subspace (Roger et al. 2003). 
The new model is thus insensitive to the perturbation. If the perturbation disappears, 
the model performance is not affected. Similar methods have been developed, such 
as transfer by orthogonal projections (TOP), which has been used for calibration 
transfer between instruments (Andrew and Fearn 2004), or error removal by or-
thogonal subtraction (EROS), which uses replicates to model perturbations (Zhu 
et al. 2008). Some other variants using small DoEs have been developed, such as the 
OSC on DoE (Preys et al. 2008). All these methods have the additional advantage to 
interpret and diagnose the perturbed (removed) subspace.

2.4.4.3  Models When Only a Few Reference Control Points are Available

When neither a standardisation set nor a small experimental design is available, the 
direct orthogonal projection (DOP) method can be used as an alternative to exhaustive  

Fig. 2.13  Example of the 
construction of a standardisa-
tion set on two conditions
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calibration and bias and slope correction methods. DOP has been developed to ex-
ploit the information of very few real-time reference control points (Fig. 2.15). Vir-
tual standards of Xcontrol are built using samples of the initial calibration database by 
means of a kernel (Zeaiter et al. 2006). The difference between the measured spectra 
(Xcontrol) and their corresponding standard allows the modelling of the perturbation 
similarly to EPO. The calibration database is then corrected and a new model is 
rebuilt, now insensitive to the perturbation.

Reviews and comparisons of methods for robustness improvement or calibration 
transfer can be found in Zeaiter et al. (2005), Fearn (2001), Feudale et al. (2002b), 
Wülfert et al. (2000b), Chauchard et al. (2004b) and Igne et al. (2009).

2.5  Classification

In the PAT approach, the issue of sample classification is often encountered. For 
classification purposes, there are two ensembles of methods. The first one is the “un-
supervised classification” methods (or clustering) which aim at classifying similar 
samples without the use of prior knowledge (see Sect. 2.5.1). The second one is the 
“supervised classification” methods (or discrimination), where class memberships 
are used to build a model (see Sect. 2.5.2). The latter ensemble contains also quan-
titative prediction methods adapted to qualitative issues.

2.5.1  Clustering Techniques

2.5.1.1  Introduction

The clustering techniques are also called “unsupervised classification” techniques 
in the chemometrics field or “data-mining” techniques in the machine learning 

Fig. 2.15  Representation of 
few reference control points
 

Fig. 2.14  Example of a small 
experimental design crossing 
four y levels with five pertur-
bation levels
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field. They are exploratory tools which aim at finding “natural” clustering trends 
out of the inner data structure (X) without any other prior knowledge on the class 
assignment of the samples. Thus, all the methods described in this section measure 
the similarities between samples only according to their X values.

As mentioned in Sect. 2.3.2, PCA can be seen as a basis for cluster analysis 
since PCA scatter plots show the spread of samples in a low dimensional space. 
The groups can then be visualised by the operator to determine the sample clusters. 
The only parameter to set is the number of PC to retain, containing meaningful in-
formation and not residual noise. The interpretation of these classification results is 
based on the coordinates of the samples on the scatter plot relatively to the relevant 
loadings.

In genuine clustering methods, the crucial task is to tune the initial parameters, 
set a stopping criterion and assess the validity of the obtained clusters.

Some tools have been developed to help the user make final decisions. As an 
example, the cluster validity can be assessed by calculating indices or by statistical 
testing; it then helps to choose the best partition (Halkidi et al. 2002a, b).

Jain et al. have reviewed the different clustering techniques in 1999 (Jain et al. 
1999).

2.5.1.2  Hierarchical Clustering Analysis

Hierarchical Clustering Analysis (HCA) is a method which assembles or dissociates 
successively the ensembles of samples (Johnson 1966). In agglomerative hierarchi-
cal classification, n classes are considered at the beginning, i.e. one class per sample, 
and are regrouped successively until it constitutes a unique class. The result is given 
in a form of a classification tree, called dendrogram (Fig. 2.16), where the length of 
the branches represents the distance between groups. The choice of the final groups 
is decided by cutting at a threshold; thus, the number of clusters is not a parameter 
to be set beforehand, contrarily to the k-means techniques (see Sect. 2.5.1.3).

The inverse procedure, known as divisive hierarchical classification, considers 
samples as one unique group which is then split successively into two groups as 
different as possible until all samples are separated. The two approaches are not 
equivalent, and the latter is used much less than the former because it is computa-
tionally intensive.

In hierarchical classifications, two parameters must be set:

• The distance between samples: Euclidean distance (see Eq. 2.24) or Mahala-
nobis distance (see Eq. 2.25). It is noted that the distance can be computed on 
scores of a PCA if X is collinear.

• The clustering or “linkage” criterion. Classical clustering criteria are based on 
the minimisation of one of the following terms: the minimum distance (single 
linkage), the maximum distance (complete linkage), the average distance (aver-
age linkage), the distance between gravity centres or the increase of within-class 
inertia (Ward criterion), favouring tight groups.
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 (2.24)

 (2.25)

where xa and xb are the responses of samples a and b, and C−1 is the inverse of the 
variance–covariance matrix of all the data X.

Depending on the chosen parameters, the classification results can be different, 
as shown in Fig. 2.16.

As for an application example, agglomerative hierarchical clustering analysis 
has been applied to identify consumer tomato preferences (Serrano-Megías and 
López-Nicolás 2006).

2.5.1.3  Non-hierarchical Clustering Methods

Non-hierarchical clustering methods aim at building one final partition of the data. 
Contrary to the hierarchical approach, the user must set a fixed number of groups 
out of his prior knowledge, which can be a strong limitation to these techniques.

Many techniques of non-hierarchical clustering methods have been developed, 
especially in the data-mining field:

• Methods based on distance measurement to assess the similarities between sam-
ples, such as K-means

• Methods based on sample density, such as DB-scan (Ester et al. 1996; Daszykows-
ki et al. 2001)
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Fig. 2.16  Dendrograms built with Mahalanobis distance. Ward criterion ( upper left), single link-
age ( upper right), complete linkage ( lower left) and average linkage ( lower right)
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• Methods based on the relationship between variables and samples, such as OP-
TICS (Ankerst et al. 1999) or Kohonen Artificial Neural Networks (e.g. SOM)

This section will describe the most commonly used techniques in chemometrics, i.e. 
the K-means and Kohonen SOM.

K-means

K-means (MacQueen 1967) is an iterative procedure (see Fig. 2.17). As in HCA, the 
method can be used on scores of PCA depending on the kind of data:

• Initial conditions: The initial partition of k groups is generally generated at ran-
dom. K-means results are highly dependent on the initial partition and on the 
choice of the number of classes k.

• For each iteration, the barycentre of each class (i.e. the mean vector of the class) 
is recalculated and the samples are assigned to the nearest centre.

• Stopping criterion: This procedure is carried out until the termination criterion is 
reached (for instance: no assignment changes or maximum number of iterations 
reached).

Jain has reviewed the K-means algorithms (Jain 2009). In this article, criteria to 
find the optimal number of clusters are mentioned.

Kohonen SOM

The SOM method is a non-linear classification method based on ANN (Kohonen 
1990, 1998). As opposed as classical ANN techniques (see Sect. 2.5.2.3), this one is 
an unsupervised technique where p input neurons correspond to the p variables of 
X and k output neurons represent the k classes. It results in a 2D map, where similar 
patterns are found close to each other and the most dissimilar ones are far away 

Fig. 2.17  k-means algorithm principle

 



40 S. Roussel et al.

from each others. In 2001, an extension of SOM has been proposed to improve 
the application of the method in clustering analysis by using the agglomerative ap-
proach (Kiang 2001).

2.5.2  Supervised Discrimination

2.5.2.1  Introduction

In supervised discrimination methods, the sample classes of the calibration set are 
known and used. The goal is to build a discrimination model able to classify new 
samples. The model performance is assessed by a confusion matrix, showing the 
number of misclassified samples (see Annex: Figures Of Merit).

In the food industry, the main applications are product authentication, confor-
mity to a standard quality or product sorting. A review of methods and their use in 
the food industry can be found in (Berrueta et al. 2007).

2.5.2.2  Linear Supervised Discrimination

Factorial Discriminant Analysis

The Factorial Discriminant Analysis (FDA; Fisher 1936) is a projection on the la-
tent variables method which maximises the between-group variance (B) and mi-
nimises the global within-group variance (W) instead of focusing on the global 
variance (variance–covariance matrix) as in PCA.

A new sample is attributed to the group for which the Mahalanobis distance is 
minimal. Linear discriminant analysis (LDA) is very similar to FDA, and quadratic 
discriminant analysis (QDA) is performed when the heterogeneity of the groups has 
to be taken into account by computing a within-group variance per group.

FDA is very commonly used for discrimination applications. This method re-
quires however more samples than variables and as a result it is not directly suitable 
for spectroscopic data. To overcome this issue, FDA can be applied to selected 
wavelengths or to PCA or PLS scores. With the latter solutions, discriminant fac-
tors can be reconstructed into discriminant spectra for class interpretation (Devaux 
et al. 1988). Figure 2.18 shows the application of FDA for the discrimination of 
milling products. Extreme particle sizes (E35 and E50) were well discriminated by 
the first discriminant factor, whereas medium particle sizes (E40 and E45) over-
lapped (Fig. 2.18).

For example, FDA has been applied to PCA scores computed out of near-infrared 
spectra to discriminate between wheat flour types and thus authenticate products in 
the flour milling industry (Sirieix and Downey 1993).
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Soft Independent Modelling of Class Analogy

Soft independent modelling of class analogy (SIMCA) (Wold and Sjostrom 1977) 
is based on PCA and is thus suitable for high dimensional data.

Each class k is modelled by a specific PCA. Then, for each model a confidence 
interval is built to define the membership limit of the class. This membership 
criterion limit can be based on the Euclidean distance of the X-residuals ( Q), or, 
more often, on the combination of Q and Hotelling’s T² criteria. An unknown sam-
ple is then classified in class k if it falls within the class limits. A sample can be 
assigned to a “rejection class”, i.e. to any existing class, which is a specificity of 
SIMCA. However, a sample can be attributed to several classes if they overlap or 
are very close to each other.

The Cooman’s plot shows the residuals (or the T²) of two models (i.e. two class-
es) against each other with their respective confidence limits, determining the class 
overlap. The plot is split into four regions limited by the confidence interval of the 
X-residuals (Fig. 2.19):

Fig. 2.18  Example of FDA for the discrimination of milling products with different particle sizes. 
(Source: Novales et al. 1998)
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1. The lower-right part corresponds to samples assigned to class A (olive oil).
2. The upper-left part corresponds to samples assigned to class B (corn oil).
3. The lower-left part corresponds to an overlap between classes A and B, contain-

ing samples matching both models.
4. The upper-right part corresponds to rejected samples from classes A and B, i.e. 

outliers or samples belonging to another class if SIMCA includes more than two 
PCA class models.

Kohler et al. (2002) show an application for sorting different qualities of fish using 
SIMCA based on sample imaging.

Partial Least-Square Discriminant Analysis

Partial least-square discriminant analysis (PLS-DA) corresponds to a PLS regres-
sion on a set of Y( n, k) dummy binary variables (Fig. 2.20, right) describing k 
classes (Fig. 2.20, left; Barker and Rayens 2003). PLS models predict continuous 
values; the sample membership is then determined by the highest predicted value 
among the m values.

Roussel et al. have applied PLS-DA for the classification of white grape musts, 
testing the relevance of different analytical methods such as electronic nose, ultra-
violet (UV) and FT infrared spectroscopy and various classification methods (Rous-
sel et al. 2003).

Classification and Regression Trees

Classification and Regression Trees (CART; Breiman et al. 1984) are similar to 
divisive HCA (see Sect. 2.5.1.2) in the fact that they successively split the data 

Fig. 2.19  Cooman’s plot between classes A (olive oil) and B (corn oil). (On the courtesy of 
CAMO, Oslo, Norway)
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into two groups, forming a binary tree. At each node of the tree, the data are split 
according to one variable of the X values chosen by a forward selection. The pre-
dicted class of a new sample is then determined by the class majority of the samples 
belonging to the terminal node in which it falls.

2.5.2.3  Non-linear Supervised Discrimination

Support Vector Machines

SVM are non-linear discrimination methods for splitting two classes (encod-
ed [− 1; + 1]) of samples (Cortes and Vapnik 1995; Burges 1998). When a linear 
separation is not possible, SVM allow the user to switch from X( n, p) matrix to the 
Kernel matrix of similarity K(n, n), as defined in Sect. 2.4.3.3. The Kernel matrix 
takes into account the non-linearity and is able to draw a linear separation into 
this new space. SVM is a local method, as samples which are too far away from 
the separation do not participate in the model elaboration (weights equal to zero). 
Samples with non-zero weights are called support vectors. The choice of the linear 
separation (between all combinations giving the same error) is made by maximising 
the margin between classes, i.e. the chosen separation is the farthest away from all 
points in the space.

SVM is valid for the separation of two classes, but some tools have been es-
tablished to extend the application to multiple class data sets. An example on the 
determination of feed composition with hyperspectral NIR imaging is given by 
Fernández Pierna et al. (2006).

ANN

The ANN principle for classification is exactly the same as for quantitative predic-
tion (see Sect. 2.4.3.4). Instead of having only one output node, the ANN is com-
posed of as many output nodes as classes, with a disjunctive encoding.

MLP has been compared to other classification techniques by Roussel and Hardy 
et al. (2001) for genetically modified organism (GMO) soybean discrimination with 
NIR spectroscopy, or applied to olive oil adulteration detection with mass spectros-
copy (Goodacre et al. 1993).

Fig. 2.20  Conversion of 
classical encoding of three 
classes A, B and C, into a 
binary Y matrix
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2.5.2.4  A Particular Case: k-Nearest Neighbours (k-NN)

k-Nearest Neighbours (k-NN; Hart 1967) is more a classification rule than a model-
ling method. Starting from a calibration set, where all samples belong to a known 
class, a new sample is classified according to the k-nearest neighbours present in the 
calibration data set. The neighbourhood is generally assessed by the Euclidean dis-
tance. The unknown sample is assigned to the class majority among the k samples. 
If no majority is established, then the new sample is attributed to the class of its first 
nearest neighbours. The value of k is generally small; 3 or 5 is often encountered.

k-NN can be useful when updating the calibration data set, i.e. for adding new 
calibration samples, since no new model building is needed. Furthermore, the 
method can be useful after a hierarchical clustering for the class assignment of 
new samples. The lack of information on the characterisation of the classes and the 
potentially long computation time constitute the main drawbacks of the method.

We can mention an application in the development and validation of spectral 
libraries for the characterisation of ingredients in animal feed (Fernández-Ibáñez 
et al. 2010).

2.6  Multivariate Process Monitoring

2.6.1  Multivariate Statistical Process Control

2.6.1.1  Introduction

Since the quality of an end product is multivariate, generally not enough properties 
are measured to assess it correctly. Targeting the end-product specifications is thus 
not sufficient. Timely process measurements are hence important to be addition-
ally monitored and kept in control (Kourti 2006). Real-time release can also be 
performed in the frame of the PAT, instead of waiting the end of the process and the 
measurement of the end-product quality.

Process databases are usually composed of initial conditions (raw material char-
acterisation, information available before processing, etc.; Z), process variables (X) 
and quality attributes for the end product (Y) (Fig. 2.21). The variables are timely 
measurements, including real-time basic sensors, such as thermometers, and more 
complex analysers, such as NIR spectrometers. These process databases have usu-
ally a low statistical rank, since the variables are correlated, auto-correlated (i.e. 
with themselves over time) and cross-correlated (i.e. correlated with other variables 
at different time lags). These data usually contain a large amount of missing data 
as well, and present a low signal-to-noise ratio. These are all the reasons why the 
multivariate data-based latent variable methods, such as PCA and PLS, are power-
ful tools to handle and monitor process data.

Different objectives at different levels are considered when dealing with process 
data. The process is usually first analysed, then monitored and finally controlled if 
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the process is no more in its state of statistical control, i.e. the process variables and 
product properties are no more close to their target values (MacGregor et al. 2005).

2.6.1.2  Process Analysis

In a process understanding and monitoring framework, the first step consists in 
analysing historical databases. The objective is to explore the data, differentiating 
“good” and “bad” processes or batches, and identifying the reasons of eventual 
clusters, performing troubleshooting in hindsight. It allows improving the process 
and determining the reference database containing the “good” or in-control pro-
cesses or batches for the next step. A PLS is usually performed using the X and Y 
matrices (see Sect. 2.4.2.4).

When working with batches, the X  cube can be rowwise unfolded, so that each 
row corresponds to a batch. This method also allows handling of the cases when 
the different process variables are not measured with the same frequency or dura-
tion. The resulting score plot discriminates the clusters of processes or batches and 
the loading plot gives an interpretation of the clusters. When the batches do not 
always run the same duration, some algorithms attempt to align the batches, using 
for example dynamic time warping (Kassidas et al. 1998) or the indicator variable 
approach (Garcia-Munoz et al. 2003).

2.6.1.3  Process Monitoring and Fault Diagnosis

Monitoring the process aims at identifying if the process is in-control in real time. 
The nature of the deviation is then diagnosed; this corresponds to early fault diag-
nosing or fault detection and isolation (FDI). This helps the operator to perform 
corrective actions and avoids reliance on the end-product quality measurement.

The proposed modelling methodology is an extension of the univariate statisti-
cal process control (SPC) and the Shewhart control charts to the multivariate data 
(Montgomery 1997). Figure 2.22 shows why it is more accurate to build multi-
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variate control charts, using the covariance between the variables, instead of many 
univariate charts as variables.

A first multivariate control chart, Hotelling’s T2, corresponds to the multivariate 
distance of one sample to the centre of the model considering the A first components 
using the reference (in-control) database (Eq. 2.26). It should be emphasized that 
selecting the reference processes (see Sect. 2.6.1.2) is of a great importance, since 
the monitoring model is built upon them:

 
(2.26)

where 
i

2
t

s  is the variance of the t score for the ith component.
A second multivariate control chart, built for each sample, represents the resid-

ual variance, i.e. the squared prediction error (SPE), detecting abnormal situations, 
which are not modelled with the reference processes.

Upper control limits (UCL) are calculated for each of the two multivariate con-
trol charts with a certain risk α (Tracy et al. 1992). Contribution plots, stemming 
from the loadings, are available for each sample and each chart in order to immedi-
ately diagnose the fault when the limits are exceeded (Fig. 2.23).

Monitoring and fault diagnosis using MSPC for a milk pasteurisation process 
can be found in Tokatli et al. (2005).

Batch statistical process control (BSPC) is an extension of MSPC to the batch 
processes, where batch trajectories are monitored and compared to a target. Several 
algorithms are compared in Dahl et al. (1999) and van Sprang and Ramaker et al. 
(2002). Batch cube data are either unfolded or analysed as is with multi-way tech-

2

1

,
=

= ∑
2
i
2
t

t
s

i

A

A
i

T

x1

UCL

LCL

x2

U
CL

LC
L

A

B

C

D

observations (time)

ob
se

rv
at

io
ns

 (t
im

e)

Fig. 2.22  Univariate versus 
multivariate control charts. A 
is in-control and B out-of-
control in both univariate 
and multivariate cases. C is 
in-control in the univariate 
charts but not in the multivar-
iate case, and conversely for 
D. UCL upper control limit, 
LCL lower control limit

 



472 Multivariate Data Analysis (Chemometrics)

niques (see Sect. 2.7.2). When using the unfolding methods, Wold et al. propose 
that a first observation level models the X matrix, i.e. the batch evolution, according 
to columnwise unfolding, where each row represents an observation (Wold et al. 
1998b). The local time of each observation can be used as a dummy variable as 
well. The second level, called the batch level, corresponds to rowwise unfolding, 
where each row represents a batch, and models Z, X and Y simultaneously, i.e. the 
final batch results. Nomikos et al. proposed earlier a rowwise unfolding method us-
ing multi-way PCA (MPCA) and multi-way PLS (MPLS; Nomikos and MacGregor 
1995a, b). These methodologies can be used in real time for batch monitoring or 
afterwards for real-time release of the batches (Kourti 2006). In this case, the model 
is run at the end of the batch to see if the product can be released or not.

Multi-block PLS (MB-PLS; see Sect. 2.7.1) is used when sequential process 
operations can be separated and analysed together. Several algorithms are compared 
in Westerhuis et al. (1998).

2.6.1.4  Process Control

The processes can also be controlled, meaning that manipulated variables such as 
temperature or a valve opening can be set from a multivariate modelling. A feed-
back control consists in deciding a corrective action from a model output, such as a 
multivariate distance which deviates at a certain time of the process. A feed-forward 
control is based on a model input such as the raw material characterisation. Finally, 
end point determination is the estimation of the process settings to get the desired 
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product; manipulation of process variables and other applications are in the scope 
of process control based on latent variable methods.

2.6.2  Multivariate Curve Resolution

Multivariate curve resolution (MCR) methods aim at recovering or deconvolving 
“pure spectra” ST and their corresponding “concentration profiles” C in mixtures 
of several chemical compounds (see Eq. 2.27 and Fig. 2.24). Unlike PCA (see 
Sect. 2.3.2), MCR methods do not search for orthogonal latent variables, since two 
pure spectra may present overlapped area. To reduce rotational ambiguities, leading 
to the non-uniqueness of the solution, constraints on both spectra and concentration 
profiles can be applied. This helps the algorithm to find an optimal solution with 
increasing physicochemical meanings.

The classical constraints are the following:

• The non-negativity for spectra and/or concentration profiles
• The unimodality for concentration profiles, allowing only one maximum or min-

imum
• The closure, forcing the sum of the concentrations to be always constant
• Hard modelling can also be applied to the concentration profiles if a physico-

chemical model or kinetics are known
• Equality constraint is used if a pure spectrum is known.

 (2.27)

Different kinds of MCR methods have been developed since the first one (Lawton 
and Sylvestre 1971), and most of them are iterative (Jiang et al. 2004). The most 
commonly used iterative MCR method is the MCR-alternative least square (MCR-
ALS; Tauler 1995; de Juan and Tauler 2003) and includes four steps:

• Determination of the number of components (using, e.g. PCA)
• Initialisation with a set of C or ST initial estimates, using, e.g. simple-to-use in-

teractive self-modelling analysis (SIMPLISMA), evolving factor analysis (EFA) 
or prior knowledge

.=X CST

Fig. 2.24  Decomposition in spectra and concentration profiles
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• Iterative calculation of C and ST using ALS with the chosen constraints (Eqs. 2.28 
and 2.29):

 (2.28)

 (2.29)

• Checking convergence

MCR-ALS was more recently used with trilinear data as an alternative to multi-way 
methods (see Sect. 2.7.2), by applying the strong trilinear constraint, hence reducing 
totally the rotational ambiguity (de Juan and Tauler 2006).

Another extension of the MCR-ALS use is the application to multi-block matri-
ces. Rowwise augmented matrices (e.g. describing a multi-sensor analysis of a set 
of samples) or columnwise augmented matrices (e.g. describing a multi-condition 
experiment) can be handled with MCR-ALS, leading to additional decrease to ro-
tational ambiguity. Applications in biochemistry and environment science can be 
found in Felipe-Sotelo et al. (2006) and Navea et al. (2006).

2.7  Multi-block and Multi-way Analyses

Multivariate data are often structured in different tables (rowwise or columnwise) 
or in cubes, i.e. with a third way, such as time or wavelength. Some chemometrics 
tools were developed to deal with this kind of data.

2.7.1  Multi-block Analysis

2.7.1.1  Definition of Multi-block Data Sets

Multi-block data sets include data sets where (1) the same samples are characterised 
with different blocks of variables, and the nature and the number of the variables of 
these different blocks can vary, or (2) several blocks of samples are characterised 
with the same variables, and the number of these samples in each block can be dif-
ferent (Fig. 2.25).

2.7.1.2  Exploratory Multi-block Analyses

Different chemometrics methods have been developed to handle multi-block data 
sets for exploratory analysis, i.e. to identify common and specific information with-
in the different blocks of data. Correlation canonical analysis (CCA) (Hotelling 

1( )−=C XS S ST

1( )−=S C C C XT T
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1936) and procuste analysis (PA), which attempts to find the subspace where a 
block is close to a reference one, have been historically used. PCA on concatenated 
blocks, sometimes called SUM-PCA, or consensus-PCA (C-PCA) and multi-block 
PCA (MB-PCA), depending on the way the blocks are weighted, are direct exten-
sions of PCA. These methods however do not explicitly take into account the rela-
tionships between blocks. Hierarchical PCA (H-PCA; Wold et al. 1996), multiple 
co-inertia analysis (MCoA; Chessel and Hanafi 1996) and common component and 
specific weights analysis (CCSWA; Qannari et al. 2000) build common subspaces 
with “super-scores” where the different blocks show similar or specific pieces of 
information.

Different applications have been published. CCA has been applied to oil spectra 
after PCA preprocessing (Devaux et al. 1993). C-PCA and MB-PCA have been used 
for process monitoring (Qin et al. 2001). Dairy products have been characterised by 
different analytical techniques using CCSWA (Mazerolles et al. 2006).

2.7.1.3  Predictive Multi-block Analyses

For predictive purposes, MB-PCA has been extended to MB-PLS (Wold et al. 1984; 
Wangen and Kowalski 1988) and H-PCA to H-PLS (Wold et al. 1996). Different 
ways to deal with predictive multi-block applications were also developed, e.g. 
the PLS-path modelling (PLS-PM) approach (Wold 1982) and more recently the 
structural equation exploratory regression (SEER; Bry et al. 2009). L-PLS has been 
recently developed to handle data blocks linked through rows and columns simulta-
neously (Martens et al. 2005; Westad et al. 2008).
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2.7.2  Multi-way Analysis

2.7.2.1  Definition of Trilinear Data Sets

When data have a (hyper-) cube structure, i.e. a trilinear (or more) relationship 
between the sample way and two (or more) other variable ways (or modes), multi-
way tools are relevant to handle these multi-way data sets, also called N-way data 
sets (Fig. 2.26).

2.7.2.2  Exploratory Multi-way Analyses

A straightforward extension of PCA to three-way data is the PARAFAC (parallel 
factor analysis) trilinear model, developed by Harshman (Harshman 1970) and Car-
roll et al. (Carroll and Chang 1970; Harshman 1970):

 
(2.30)

where F is the number of components chosen for the model.
PARAFAC is a way to perform curve resolution, i.e. to estimate the profiles and 

concentrations of mixtures during a process, for example. Many related topics for 
PARAFAC have been developed by Bro, such as the uniqueness of the solution, the 
constraints (non-negativity, unimodality, etc.), the missing values and validation 
(Bro 1997). Due to the different chosen constraints, PARAFAC solutions often lead 
to meaningful physicochemical meanings, such as “pure” spectra.

PARAFAC has been applied to several issues, including process monitoring. For 
instance, the production of sugar beets has been monitored using fluorescence spec-
troscopy and PARAFAC (Bro 1999).

To handle shift problems in multivariate signals or batches with different dura-
tions, PARAFAC2 has been developed, assigning one set of profiles for each sam-
ple (Bro et al. 1999; Kiers et al. 1999).
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The Tucker3 model is another way to handle multi-way data sets (Tucker 1966). 
The solutions are not unique, and more difficult to interpret, since the optimal num-
ber of components is not the same for each variable mode. All kinds of multi-way 
data sets, and not only the trilinear (or more) data, can be modelled by the Tucker3 
model.

2.7.2.3  Predictive Multi-way Analyses

When the aim is to build predictive models, N-PLS (or N-way PLS) is commonly 
used as an extension to PLS for multi-way data sets (Bro 1996). For three-way data, 
two loading weight vectors for each component are calculated, one for each vari-
able mode.

De Belie et al. studied the chewing sound of different dry-crisp snacks using 
PARAFAC, Tucker3 and N-PLS multi-way methods (De Belie et al. 2003). A re-
view of the applications for chemical compound quantification in complex matrices 
using chromatography and multi-way analyses can be found in Ortiz and Sarabia 
(2007).

2.8  Conclusion

Within the framework of the process analytical technology (PAT) approach, mul-
tivariate data processing (chemometrics) techniques are very useful. They enable 
the chemometrics user to effectively plan experiments, model the very numerous 
sensor data and extract useful information for process monitoring or product char-
acterisation.
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tion review, Dr. Williams from the Canadian Grain Commission, CAMO (Oslo, Norway) and Dr. 
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Annex: Figures of Merit

Some statistical criteria (Figures of Merit) encountered during this chapter are 
mathematically defined here.

Root-mean-squared error (RMSE) is defined as the root square of the ratio of the 
prediction error sum of squares (PRESS) and the estimated degrees of freedom of 
the set. This square root value is generally preferred because the unit is the same as 
the original data. RMSE is calculated for a calibration set (RMSEC) and a predic-
tion (or validation) set (RMSEP):
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(2.31)

 (2.32)

 (2.33)

The bias is the mean error, i.e. the systematic part of the error:

 
(2.34)

The coefficient of determination ( R2) represents the spread of the predictions. It 
is important not to consider it alone. For example, the R2 value could be almost 1 
whereas the bias and/or the PRESS could be high:

 
(2.35)

In classification, standard errors are defined as the proportion of misclassified sam-
ples. A confusion matrix is generally built to summarise the results. The number of 
correctly classified objects corresponds to n11 and n22, and the misclassified ones to 
n21 and n12. It can also be seen in terms of first-order errors, which are similar to the 
lack of sensitivity (e.g. the proportion of samples A not classified in A), or second 
order, which represents the lack of specificity (e.g. the proportion of B classified in 
A) (Table 2.4).

It is important to note that some other figures of merit are widely used in certain 
applications and can be found in Olivieri et al. (2006).
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Table 2.4  Confusion matrix
Real classes
Class A Class B Second-order error

Number of samples 
in each class

N1 N2

Predicted classes Class A n11 n12 Impurities in class A
Class B n21 n22 Impurities in class B
First-order error Error in class A Error in class B Total error
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3.1  Introduction

Monitoring process performance is essential in any manufacturing process as pro-
ducing quality product within specification reproducibly is a prerequisite of an 
economically viable and safe process. Effective monitoring and control strategies 
lead to large amounts of diverse data regardless of the type of a manufacturing 
process. Monitoring is required in all stages of processing—the quality of raw 
materials is usually tested on intake, process equipment has to be rigorously quali-
fied, environment is controlled by implementing manufacturing area classifica-
tion where relevant, waste is treated prior to release and the quality of the final 
product is tested before release. Initiatives, such as Quality by Design (QbD) and 
a supporting enabling technology of process analytical technology (PAT) champi-
oned by the US Food and Drug Administration (FDA), aim to shift the focus for 
manufacturing from end-product-quality testing to building the quality in the pro-
cess. Such a shift in emphasis would not be possible without reliable and effective 
monitoring. Indeed, PAT has been defined as ‘a system for designing, analyzing, 
and controlling manufacturing through timely measurements (that is, during pro-
cessing) of critical quality and performance attributes of raw and in-process ma-
terials and processes, with the goal of ensuring final product quality’ (FDA 2004). 
Traditional process control strategies based upon information from laboratory as-
says and supervisory computer systems (supervisory control and data acquisition, 
SCADA) are routinely used to regulate process operation and correct disturbances 
resulting from raw material variations through to production plant variations. If 
PAT can provide additional information on disturbances and deviations, giving 
greater plant insight, then the effects of disturbances can be reduced and quality 
control tightened. However, greater benefits are to be gained by the systematic use 
of PAT tools in process development to increase fundamental understanding and 
more robust definition of the design and control space of the process operation as 
outlined in Chap. 1.

A particular challenge in attaining these benefits is the handling of highly hetero-
geneous processes and product quality data. Such data are characterised by varying 
frequency of various measurements typically with significant delays in the labo-
ratory measurements. They are also often highly correlated, non-linear in nature 
and with high levels of redundancy and noise. Whilst software products and data 
management systems described briefly in Sect. 3.2.1 can aid in data pipelining and 
preprocessing necessary for appropriate analysis, significant challenges in this area 
still remain to be addressed.

The Hazard Analysis Critical Control Point (HACCP) food safety standard and 
the ISO 22000:2005 food safety management systems—requirements for any orga-
nization in the food chain standard—are placing additional requirements upon the 
food industry in terms of process monitoring, control and data management that will 
be dealt with in Sect. 3.3.
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3.2  Information Management Systems

Rapidly developing computing, automation and measurement technologies resulted 
in increasingly large amounts of data being collected and stored by companies. It 
soon became apparent that competitive advantage can be gained by exploiting the 
wealth of this information for more effective decision making and as a result an 
area of business intelligence (BI) has emerged (Yeoh and Koronios 2010). The main 
tasks of a BI system include ‘intelligent exploration, integration, aggregation and a 
multidimensional analysis of data originating from various information resources’ 
(Olszak and Ziemba 2007). Accordingly, data should be treated as a highly valu-
able corporate resource which can be transformed from data mountain to quality 
information (Wang and Wang 2008). BI applications include the activities of data 
warehousing, decision support systems, query and reporting, online analytical pro-
cessing (OLAP), statistical analysis, forecasting and data mining. Technical aspects 
of data warehousing, OLAP and data mining are detailed in a range of comput-
ing science textbooks (e.g. Connolly and Begg 2010), although some data analysis 
methods used in data mining are also described in Chap. 2.

The number of process monitoring, data acquisition and processing systems 
available on the market, either targeted to particular business requirements or to 
general manufacturing industries, is increasing rapidly. The concerns over the com-
munication between systems from different vendors at different levels even within 
the same company lead to the introduction of International Society of Automation 
(ISA) 95 standard. This standard defines activities in the manufacturing environ-
ment as a multilevel model with relevant standards at each level or level interface. 
This model is often utilized to associate various software applications and networks 
with individual levels as indicated in Fig. 3.1.

In this multilevel model, level 0 refers to the actual production process with di-
rect sensing; control of the process is defined as level 1; and monitoring, supervisory 
and automated control as level 2. Batch, continuous and discrete control is classed 
as overlapping levels 1 and 2. Manufacturing operations management, including 
workflow or recipe control, record maintenance and optimization of the production 
process is defined as level 3 and business planning and logistics covering plant 
schedule, resource use, production, delivery and shipping is defined as level 4.

As Fig. 3.1 indicates, there is an overlap between levels in terms of applications 
with, for example, distributed control system (DCS) capabilities often supporting 
functions within level 3 or enterprise resource planning (ERP) systems (level 4) in-
tegrating with certain functions of the Laboratory Information Management System 
(LIMS), as illustrated in Sect. 3.2.1.

3.2.1  Information Management Systems

Food and beverage industry is becoming more and more tightly regulated as the 
public is increasingly demanding rigorous safety standards, at the same time as 
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becoming increasingly conscious of ‘processed’ foods. Regulatory agencies, such as 
FDA, are now placing requirements on the food products to be tracked throughout 
the manufacturing process and distribution thus driving the development of LIMSs 
and electronic laboratory notebooks (ELNs). Some of the basic functions that a 
LIMS should possess are outlined in Table 3.1. These functions enable seamless, 
secure and meaningful flow of analytical data to plant systems and decision makers.

Whilst laboratories traditionally operated relatively autonomously within orga-
nizations, it is clear that the increasing sophistication of manufacturing processes 
and increasing regulation demand that the number of laboratory analyses required 
increases dramatically. To achieve operational excellence under such conditions, the 
laboratory data must be managed effectively. This will become even more critical 
with the introduction of PAT methodologies to improve process monitoring. Tech-
niques such as infrared spectroscopy (described in detail in Chap. 4), Raman spec-
troscopy (Chap. 5), magnetic resonance imaging and nuclear magnetic resonance 
(Chap. 6), computer imaging (Chap. 7), thermal (Chap. 8) and hyperspectral imag-
ing (Chap. 9), and ultrasound (Chap. 10) as well as the emerging technologies de-
scribed in Chap. 11 tend to produce large sets of multidimensional data, which have 
to be effectively integrated with other on-line, off-line, continuous or discrete data 
monitored during the process. Figure 3.2 illustrates some of the issues with data di-
mensionality that are encountered even currently with raw material quality data re-
lating to a range of processing batches, from which continuous operating data (e.g. 
temperature) are collected together with laboratory-based, discrete measurements of 
various quality attributes of the product. Packaging and distribution data must also 
be linked to this array of process-related data to ensure traceability (see Sect. 3.4).

Traditional PAT methodologies tend to involve fewer independent samples (e.g. 
batches of raw materials or process batches) than measured variables and often 
require multivariate data analysis and preprocessing to present sensible data to the 
end user at any level in the company. Whilst in some areas of food manufacturing 
the volume of continuous on-line data collected during the process may be limited 

Fig. 3.1  ISA 95 applications and interfaces at individual levels
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relative to the discrete off-line laboratory measurements, data analysis methods ap-
plied within PAT may be equally applicable. However, the implementation of PAT 
concept and real-time release of product, resulting from real-time product qual-
ity measurements during production, will require the development of novel data 
analysis and modelling methodologies. These approaches will provide deeper 
understanding of the relationships between raw material characteristics, process 
parameters and the final product quality (Stenlund et al 2009). In terms of data 
management systems, such as LIMS, this means that any software environment 
with which PAT methods would be integrated will have to be capable of streaming 
required data and/or preprocessing it as required and then presenting the resulting 

Table 3.1  Laboratory information management system (LIMS) functions. (Reprinted from 
Cagindi and Otles (2004) with permission from Elsevier)
Function Capability
Instrument management Centralized storage of maintenance and calibration records
Data management Information about personnel, instruments, analytical meth-

ods, work procedures and costs mapped onto the database, 
organised

Validation Ensuring the integrity of data
Sample management Techniques for registration, processing, authorisation and 

archiving of routine and non-routine samples, standards and 
reference materials and commonly used test sequences

Resource management Instrument backlog reporting, as well as personnel time man-
agement, costs associated with analyses may be calculated 
and invoiced to client accounts

Communication management Ensuring that important information reaches decision makers 
with minimal delay

Quality management Achieved through audit trail and validation facilities; Quality 
Control is enhanced through specification libraries and 
action triggers with graphical data interpretation

Security Setting up passwords, authority levels and menus for each user, 
etc. to create a secure system

Fig. 3.2  Diagrammatic representation of data dimensionality in process monitoring
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model estimations/predictions in appropriate format (e.g. score plots in the case of 
principal component analysis; Mohan et al. 2006). The model structures would also 
have to be stored for future use and validation purposes.

A wide range of LIMS products are already available and used by food indus-
tries. Sansom (2008) and Blackman (2009) describe applications of LIMS systems 
from a range of providers by various food companies. For example, Labware’s 
LIMS product is being used by Kraft Foods since 1996, brewer Foster’s as well as 
by British Sugar, which uses it to carry out a wide range of roles from product qual-
ity analysis through to complex analytical testing, such as heavy metal analysis and 
process support investigations. Thermo Fisher’s food and beverage clients include 
Coca-Cola, the South African Sugar Association, ALcontrol Laboratories (a large 
European analytical company) or dairy product producer Muller using Nautilus 
LIMS in its UK laboratories to manage quality control data for raw materials, in-
process samples and finished dairy desserts. PerkinElmer’s Labworks are used by, 
for example, Ajinomoto (a Japanese-owned multination company producing food 
products, amino acids and pharmaceuticals) and Australian Wine Research Institute.

Siemens combines LIMS and ELN functionality in its Simatic IT R&D suite, which 
is marketed as a complete, integrated solution that can control the complete R&D pro-
cess from design through commercialisation to manufacturing (Sansom 2008). Sie-
men’s food and beverage customers include the brewers Inbev or Birra Peroni, the 
Chinese dairy company Mengniu or Loders Croklaan, producer of fats and oils.

There are already examples of LIMS systems integrating with various advanced 
analytical methods, such as proteomics, as described in Ganjei et al., 2003, detailing 
the application of Sapphire Proteomics Accelerator. Proteomics samples are fre-
quently annotated, split and fractioned from the master sample and subjected to a 
series of extractions from image files, resulting in complex multidimensional arrays 
of data from singular samples—not dissimilar to the data arrays produced by PAT 
methodologies. In this application, ‘LIMS unifies vast and disparate volumes of 
biological and chemical data, along with their related applications and tools, into a 
single, browser-based, scientific interface’ (Ganjei et al. 2003).

A natural extension for systems like LIMS is towards ERP systems. LIMSs typi-
cally operate at level 3 defined by ISA 95 standard, providing traceability in the 
micro supply chain processes and managing the data relating to individual analyti-
cal test results carried out on raw materials, finished products and environmental 
samples; the macro supply chain management processes are typically handled by 
level 4 systems, such as ERP. Such successful integration has already been reported 
by Chin (2003) in case of StarLIMS and SAP as implemented by Novozymes—a 
leading enzyme manufacturer—and BASF Agricultural Products.

3.3  HACCP, Food Safety and ISO 22000 Issues

Ropkins and Beck (2000) argue that traditional end-point food testing could not 
effectively ensure food safety due to a variety of reasons. These include substantial 
subsampling of food for analysis to ensure representative sample; limited assurance 
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of safety (only tested hazards can be assured); issues with current testing proce-
dures, e.g. time and resource demand, destructive nature and the difficulty of inter-
pretation; reactive nature of control; limiting the number of employees responsible 
for quality assurance and control personnel and the obvious fact of product safety 
being assured only at end point. Thus, HACCP system was proposed by the Codex 
Alimentarius Commission in 1993 as a systematic approach to the identification, 
assessment and control of hazards. The seven basic principles of HACCP imple-
mentation consist of:

1. Conduct hazard analysis, identifying all potential hazards—microbiological, 
chemical and physical—in terms of food safety considering all ingredients, 
processing steps, handling procedures and other activities involved in foodstuff 
production.

2. Identify critical control points (CCPs). These are procedures or operational steps 
that can be controlled to minimize the likelihood, eliminate the identified food 
safety hazards or reduce them to an acceptable level.

3. Define critical limits for ensuring the control of each CCP. These are the maxi-
mum or minimum values to which individual hazards must be controlled at a 
CCP to prevent, eliminate or reduce it to an acceptable level.

4. Establish monitoring procedures and their frequencies to ensure that critical lim-
its are not exceeded at any of the CCPs and define procedure(s) for maintaining 
control.

5. Define corrective actions to be taken if control is lost (i.e. monitoring indicates 
that critical limits have been exceeded). Corrective actions are intended to ensure 
that the product does not become unsafe for human consumption given the 
observed deviations.

6. Establish effective documentation and record-keeping procedures for developed 
HACCP procedure. All organisations have to maintain documentation on their 
hazard analysis, written HACCP plan, records documenting the monitoring 
of CCPs, critical limits, verification activities and the handling of processing 
deviations.

7. Establish verification procedures for routinely assessing the effectiveness of the 
HACCP procedure, once implemented. This is intended to ensure that the organ-
isations carry out the procedures that were designed and that they are successful 
in ensuring the production of safe products. The validation procedures include 
test and programmes to ensure the HACCP system is working effectively.

The application of these principles is detailed in the Codex Alimentarius Commis-
sion (1997) guidelines as a sequence of 12 implementation steps which are illus-
trated in Fig. 3.3.

In 2005, a new international standard, ISO 22000:2005, was introduced to ensure 
safe food supply chains worldwide and to extend the recommendations of HACCP 
system (Frost 2005). This standard places more emphasis on interactive communi-
cation with suppliers and customers along the food chain and introduces prerequi-
site programmes (PRPs) as basic conditions and activities necessary to maintain a 
hygienic environment throughout the food chain suitable for the production, han-
dling and provision of safe end products and safe food for human consumption.

AQ1
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Clearly, effective monitoring is critical to ensuring product quality from the 
point of view of food safety. Essential components of effective monitoring include 
representative measurement and a robust representation of the obtained informa-
tion, allowing appropriate action to be taken. This provides another critical area of 
PAT methodology application in food and beverage industry. Techniques described 
in subsequent chapters are capable of monitoring process behaviour and product 
characteristics throughout the manufacturing chain and capable of indicating non-
compliance with CCPs or PRPs.

In analogy to the application of PAT framework within the QbD strategy in the 
biopharmaceutical industry, PAT methodology provides a critical capability within 
the food industry to aid in product design and testing as well as in ensuring full 
compliance with the HACCP and ISO 22000:2005 requirements during processing. 
PAT methodologies have the potential to aid the identification of CCPs and their 
critical limits, their effective monitoring and control, but also effective communica-
tion with suppliers and customers. Multivariate data analysis techniques described 
in Chap. 2 have long been used successfully by chemometricians for interpretation 
of multidimensional data sets in various subject areas including food industry, for 
example Perez-Martinez et al. (2008). Their ability to reduce dimensionality by re-
moving the redundancy and noise leads to the identification of salient features in the 

1. Assemble HACCP team

5. On-site confirmation of flow diagram

6. List all potential hazards,
conduct a hazard analysis,

consider measures to control 
identified hazards

7. Determine Critical Control Points

8. Establish critical limits for each CCP

9. Establish monitoring system for each CCP

10. Establish corrective actions

11. Establish verification procedures

12. Establish Documentation, Record Keeping

2. Describe product

3. Identify intended use

4. Construct flow diagram

Fig. 3.3  Schematic of 
HACCP implementation 
steps
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data. These features can be used in process monitoring, fault detection and process 
optimization and also information exchange with stakeholders in the supply chain.

3.4  Traceability

Despite the introduction of food safety legislation, incidents of food-borne diseases 
and contaminations, such as bovine spongiform encephalopathy (BSE) and diox-
in poisoning in chicken feed, are widely publicised and contribute to the public’s 
wariness of industrially produced food. Equally ethical considerations and fears 
regarding the presence of genetically modified components of food products lead to 
increasing demands on complete traceability of food products. In addition, in cases 
where a non-compliant batch is inadvertently released for distribution, traceability 
facilitates fast and efficient recall of the product.

European Commission (regulation No 178/2002) defines traceability as the abil-
ity to trace and follow a food, feed, food-producing animal or substance intended to 
be, or expected to be incorporated into a food or feed, through all stages of produc-
tion, processing and distribution. This means that traceability has to be implement-
ed both vertically, reliably tracing and documenting the origin of all components of 
food (referred to in agricultural supply system as ‘from farm to fork’ or in fisheries 
as ‘from fish to dish’), and horizontally, carrying out the same stringent analysis and 
documentation steps throughout the processing steps.

There exists a range of legislation requiring various levels of stringency in 
traceability. For example, European regulations relating to general food and food-
producing animals (European regulation No 178/2002, article 18) or to specific 
industries (fishery products regulation 104/2000, article 4), US Bioterrorism and 
Response Act 2002 or Farm Security and Rural Investment Act 2002. Some of the 
legislation and standards (EU regulation 178/2002 and ISO 22005:2007) require 
a so-called one step up/one step down approach to information flow, although an 
aggregated information flow is also championed for particular foodstuffs (Folinas 
et al. 2006). In the one step up/one step down flow, only some traceability informa-
tion follows the product to the next stage of the chain, whilst the rest is kept at each 
stage. The information is not accessible directly to the final consumer, but can be 
recovered, should this be required. Such ‘filtering’ of information makes the trace-
ability system potentially much more flexible and easy to use. On the other hand, 
for organic products, fresh fish and meat or foods free of genetic modification, the 
aggregate information flow provides the customer with immediate access to infor-
mation about all stages of production and treatment.

Traceability, in particular for the latter model of information flow, places much 
more stringent requirements on the data management systems employed by the food 
industry. Thompson et al. (2005) argue that comprehensive planning during the ini-
tial stages of development is critical if the traceability system is to be successful. 
They identify three critical issues: (1) compatibility, (2) data standardisation and 
(3) the definition of a traceable resource unit (TRU; Moe 1998), i.e. a unit of trade 
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that has unique characteristics from a traceability point of view that no other unit 
can have.

The issues of compatibility and data standardisation place certain requirements 
upon data management systems employed by the companies within the supply 
chain. There are reports of advanced scanning technology, such as radio frequency 
identification (RFID) tags (Regattieri et al. 2007) for ‘Parmigiano Reggiano’ cheese 
traceability system. They argue that RFID can be particularly helpful in the man-
agement of perishable items with continuous monitoring of item routing reducing 
waste and improving customer satisfaction amongst other benefits. Another exam-
ple is the use of wireless sensor networks (WSN) for monitoring fruit storage and 
transport conditions (Ruiz-Garcia et al 2008) or the use of georeferenced data from 
geographical information systems (GIS) in improving traceability of high-quality 
honey using an open-source code-based GIS web site (Serrano et al. 2008).

Integration of current traceability activities with PAT technologies has already 
been reported in a number of applications. For example, Bollen et al. (2007) de-
scribe the use of optical image analysis (see Chap. 7 for more details on this method) 
in tracing in feed and packing lane mixing in fruit packing. However, the success 
of any application of a traceability system, whether integrated with PAT technolo-
gies or not, relies heavily on effective communication and data exchange between 
individual components of the system.

The issues of data compatibility, security and confidentiality have to be care-
fully considered in the development stage of a traceability system. Incorporating 
traceability into the ERP system within individual companies addresses these is-
sues at the level of individual entity in the supply chain. However, the diversity of 
ERP systems employed by different companies within a supply chain complicates 
integration across various entities. Electronic data interchange (EDI; Bechini et al. 
2008) enables data exchange in standardised format, as do programmes capable of 
Open Database Connectivity (ODBC) or standard Structure Query Language (SQL) 
enabling information access from various database formats (Thompson et al. 2005). 
Web services and electronic business using eXtensible Markup Language (ebXML) 
are presented by Bechini et al. (2008) as the most promising technologies for ef-
fective inter-enterprise business collaboration that would be required for successful 
traceability in food supply chain.
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4.1 Introduction

Infrared spectra of food products  can help to reveal information pertaining to mo-
lecular bonds present and hence provide details of their molecular structures. This 
ultimately can be related to various quality indices. Infrared spectroscopy is an ideal 
process analytical technology (PAT) tool that can rapidly, accurately and usually 
non-destructively assess the quality and functional properties of raw, in-process and 
final product materials. In addition to the need for efficiency, there is an emerging 
need in food processing for all major compositional and quality parameters to be 
determined, on-line and in real time. In addition to this, there is a need for food man-
ufacturers to be able to demonstrate the authenticity of their products (Woodcock 
2008).

Spectroscopic techniques, other than infrared spectroscopy, have been inves-
tigated as potential PAT technologies in the food industry. These include Raman 
spectroscopy (Chap. 5), fluorescence spectroscopy (Chap. 12) and UV–Vis spec-
troscopy. UV–Vis has been employed to detect adulterated and authentic spirits 
(Contreras et al. 2010),discriminate between brands (Barbosa-García et al. 2007), 
classify coffee (Souto et al. 2010) and quantify β-carotene (Biswas et al 2011). 
However, the focus of this chapter is infrared spectroscopy, and it will provide an 
overview of its theory, its instrumentation and its applicability as a PAT tool. Fi-
nally, it will review applications of infrared spectroscopy to food products.
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4.2 Theory of Near- and Mid-infrared Spectroscopy

Infrared spectroscopy results from the interaction of infrared radiation and matter. 
The energy provided by the infrared radiations results in transitions between quan-
tized vibrational energy states of molecules, i.e. resulting in molecular vibration. 
Atoms in a molecule can have a number of vibrational modes. Each mode ( i) in-
volves approximately harmonic displacements of the atoms from their equilibrium 
positions (Griffiths 2010). When atoms vibrate as a simple harmonic oscillator, i.e. 
according to Hooke’s law (Eq. 4.1) where x is the displacement away from equi-
librium, k is the proportionality (or force) constant and F is the force in newtons, 
the vibrational energy states ( Viv) can be described according to Eq. 4.2, where h is 
Planck’s constant, νi is the fundamental frequency of the particular mode and vi is 
the vibrational quantum number of the ith mode (0, 1, 2, etc.):

 (4.1)

 (4.2)

While the energy difference between vi = 0 and vi = 1 of most vibrational modes cor-
responds to the energy of radiation in the mid-infrared (MIR) range, overtone bands 
which relate to the transition between vi = 0 and states higher than vi = 1 are located 
in the near-infrared (NIR) region. Combination bands in the NIR region occur when 
there is a simultaneous promotion of two modes (Griffiths 2010).

A number of studies have assigned various food constituents (lipids, amides, 
moisture, sugars) to specific bands in MIR and NIR spectra. A selection of these 
regions and their associated mode of vibration of some food constituents are given 
in Tables 4.1 and 4.2. The characteristic broad peaks, resulting from overtone and 
combination bands, observed in the NIR spectra of a food product are shown in 
Fig. 4.1a; a corresponding MIR spectrum is shown in Fig. 4.1b. Such infrared spec-
tra (Fig. 4.1) can contain a wealth of information on the molecular make-up of a 
food product. However, the spectral response of a molecular group can be influenced 
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Fig. 4.1  Characteristic a NIR spectra and b MIR spectra of cheese
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by neighbouring molecular groups (Reh 2001). The complexity of food substances 
enhances these difficulties as the presence of various substances can result in peak 
shifts (Fagan and O’Donnell 2007). Therefore, powerful statistical techniques, for 
example, principal component analysis (PCA) and partial least squares (PLS) re-
gression, can be used for data compression and model development (Chap. 2).

Table 4.1  Selected molecular group absorption frequencies in the MIR region
Peak wave number (cm−1) Functional group Mode of vibration Constituent
Fingerprint region
1036, 1088 C–O Stretch
1060 C–O Stretch Carbohydrates
900–1200 C–O, C–C, O–H Stretch Carbohydrates
1115–1170 C–O Stretch
1232 C–H Bend
1240 C–O Stretch
1371 C–H Bend
1274, 1372, 1445, 1486 O–C–H, C–C–H, 

C–O–H
Bend

1400–1477 C–H Bend
Functional group region
1535–1570 Amide II Stretch Protein
1620–1690 Amide I Stretch Protein
1640 O–H Bend Moisture
1600–1900 Organic acids
1700–1765 C=O Stretch Lipids
2869 CH2 Symmetric stretch Lipid
2926 CH3 Anti-symmetric stretch Lipid
3047–3703 O–H Stretch Moisture

Table 4.2  Selected chemical assignments of absorption frequencies in the NIR region
Wavelength (nm) Functional group Functional group assignment Constituent
982 OH Second overtone; stretch Water
1458 OH First overtone; stretch Water
1940 OH Combination; asymmetric and 

scissoring stretch
Water

1210 C–H Second overtone; stretch Lipids
1728 C–H First overtone; stretch Lipids
1762 C–H First overtone; stretch Lipids
2308 C–H, CH2 Combination; stretch and 

deformation
Lipids

2348 C–H, =CH2 Combination; stretch and 
deformation

Lipids

1000–1020 N–H, Amide I Stretch Proteins
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4.3 Instrumentation

There have been significant developments in the field of infrared instrumentation 
over the past decades. Initially, equipment focused on the use of monochromator 
or filter (fixed or tunable)-based systems. However, developments in instrumenta-
tion, such as Fourier transform infrared (FTIR) spectrometers and polychromators 
with InGaAs detectors, substantially improved the instrumentation performance, 
the range of applications and therefore the popularity of such equipment. The prin-
ciples of such MIR and NIR instrumentation have been reviewed previously and 
will not be discussed further (Fagan and O’Donnell 2007; Griffiths 2010). How-
ever, technical developments in infrared spectroscopy instrumentation will facili-
tate the transfer of this technology from laboratory to on-line application, thereby 
enhancing its potential as a PAT tool. Equipment manufacturers have moved from 
benchtop laboratory instruments (Fig. 4.2a) to the manufacturing of portable min-
iature-type spectrometers (Fig. 4.2b) to microspectrometers (Fig. 4.2c). These have 
been driven in part by the requirement of end users who want to have the facility to 
bring the “spectrometer to the samples” rather than the “samples to the laboratory”. 
This has, for example, opened up opportunities for pre-harvest fruit and vegetable 
inspection. Such equipment may also include the added functionality of integrated 
global positioning system (GPS) measurements which are acquired simultaneously 
with the infrared spectra. Such facilities can allow for the “mapping” of produce 
quality in situ, thereby allowing the producer to make corrective decisions. In such 
applications, interference of the environment, such as ambient light and fluctuat-
ing temperatures, should be either minimized or accounted for by appropriate data 
processing (Nicolaï et al. 2007). Another related emerging platform technology is 
hyperspectral imaging. It has the advantage of acquiring both spectral and spatial 
information of sample simultaneously. It has shown considerable potential in the 
pharmaceutical industry in terms of mapping active ingredients in tablets. Its poten-
tial as a PAT tool in the food industry is discussed in detail in Chap. 9.

Fig. 4.2  A selection of a benchtop and b–d miniature, microspectrometer and portable spectrometers
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Another significant consideration of the end user must be the development and 
maintenance of calibration equations. Many portable spectrometers rely on the end 
user to provide and maintain the calibration equations required. However, this can 
require a substantial investment in time, labour and cost. Companies are emerging, 
however, which offer transferable NIR calibration solutions. Such companies have 
developed calibration models over many years using benchtop spectrometers, and 
they license them out for transfer to portable spectrometers. A service contract can 
also be entered into whereby the company maintains, updates and ensures set ac-
curacy levels for the calibration model over time.

Continued research into the development of robust, fast miniature and micro-
spectrometers will facilitate the continued adoption of this technology as a PAT tool 
in the food industry.

4.4 Infrared Spectroscopy as a PAT Technology

Infrared spectroscopy has been widely investigated as a rapid non-destructive as-
sessment tool for food products. Fruit, vegetable, dairy and meat products have 
been the most widely investigated. However, the majority of these studies have 
been laboratory based. The greatest advantage in the use of infrared-based technol-
ogy as PAT tools will be their implementation in the form of on-line/at-line process 
analysers, which take advantage of rapid analysis times and the minimal sample 
presentation required. However, it should be noted that the requirements for lab-
oratory-based analysis will differ in comparison with on-line technology. Infrared 
spectroscopy also has the capacity to predict numerous indices of a material simul-
taneously. In order to realize the potential of such data-rich tools in the food indus-
try, appropriate data analysis (Chap. 2) and data management strategies (Chap. 3) 
are required. Food quality, however, cannot be considered as a single, well-defined 
attribute. In fact, it encompasses a number of properties or characteristics, which 
are often referred to as quality indices, of the product under test (Abbott 1999). 
While infrared spectroscopy can offer a solution to this challenge, one must ensure 
that the basis for the prediction of quality is fully understood, as well as its inherent 
limitations.

4.5 Applications

4.5.1 Dairy

The dairy industry has seen significant advances towards automation of production pro-
cesses. For example, the move to closed commercial cheese vats versus the traditional 
open cheese vat drove the desire for on-line milk coagulation monitoring systems.
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4.5.1.1 Raw Material

Milk composition and quality can vary depending on a number of factors, includ-
ing animal genetics, health, and (in some countries) season. Such variability could 
significantly impact the quality of the final product. For example, milk fat to protein 
ratio will significantly affect a number of processing steps (coagulation, synere-
sis) which ultimately affects cheese quality and quantity. Therefore, it is usual that 
processors would standardise milk fat and protein content prior to use. Therefore, 
the use of infrared spectroscopy to facilitate the production of high quality of milk 
has been investigated in applications ranging from monitoring rumen metabolism 
through to standardisation of milk in the milk processing plant (Fagan et al. 2009b).

    Off-line rapid analysis of milk composition using the FTIR measuring prin-
ciple has been successfully commercialized with products such as the MilkoScan™ 
FT 120 (Foss Analytical, Denmark). It utilizes FTIR technology to analyse up to 
600 samples/h and can be used for routine analysis, such as fat, protein, lactose, 
total solids and solids-non-fat, density, freezing point depression, urea and casein 
analysis, in compliance with International Dairy Federation (IDF) and Association 
of Analytical Communities (AOAC) standards.

The further development of on-line determination of milk composition and qual-
ity would be advantageous as such knowledge is essential for the efficient manage-
ment of dairy herds. Brandt et al. (2010), however, stated that while a number of 
sensors are available or in development which can be used for management support 
in improving mastitis detection, monitoring fertility and reproduction and adapting 
individual diets, there is still a requirement to adapt these sensors to the particu-
lar requirements of on-farm utilization such as robustness, calibration and mainte-
nance, costs, operating cycle duration, and high sensitivity and specificity.

        Tsenkova et al. (2001) examined the potential of predicting somatic cell count 
(SCC) of milk using NIR transflectance spectra obtained using a benchtop spectro-
photometer. They stated that the results indicated that NIR spectroscopy would be a 
suitable screening tool in such an application as the differentiation between healthy 
and mastitic milk samples was possible. More recently, an NIR spectroscopic sens-
ing system for on-line monitoring of milk quality during milking has been devel-
oped (Kawamura et al. 2007). The system was installed between a teatcup cluster 
and a milk bucket of a milking machine. The authors developed models for the 
prediction of fat, protein, lactose, SCC and milk urea nitrogen (MUN) during milk-
ing with sufficient precision and accuracy ( R2=0.82-0.95), although only four cows 
were monitored over time. Following this study, the sensing system was installed in 
an automatic milking system. The system recorded diffusion transmittance spectra 
(600-1050nm) with a 1-nm interval every 10 s during milking. Seventeen cows 
were used in this study. The models developed for fat, protein, lactose, SCC and 
MUN had R2 values of 0.95, 0.83, 0.72, 0.68 and 0.53, respectively. The authors 
used the SCC calibration model to discriminate between healthy cow samples and 
other cow samples. The resulting classification gave a probability, for classifying 
correctly, of 82 %. In both studies, the samples were divided into calibration (2/3) 
and validation (1/3) sets. Further validation of the models is therefore recommended 
in conjunction with testing on a wider range of animals.
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MIR spectroscopy has also been explored for the offline determination of milk 
traits (Cecchinato et al. 2009; Dal Zotto et al. 2008; De Marchi et al. 2009). Milk 
coagulation properties (MCP) will vary depending on a number of factors, includ-
ing heritable parameters (Cassandro et al. 2008). However, if this information is to 
be fully exploited, there would be a requirement for a rapid method of determining 
MCP in milk-recording systems. Dal Zotto et al. (2008) found that MIR spectros-
copy could predict the rennet coagulation time (RCT) of milk samples albeit with 
an R2 of 0.73, which suggested approximate quantitative predictions were possible. 
De Marchi et al. (2009) carried out a further examination of this approach. Using a 
dataset of over a thousand samples, RCT was predicted with an R of 0.79. In both 
studies, the range error ratio (RER) was similar: 9.2 and 10.6. Cecchinato et al. 
(2009) investigated the variation of MCP predictions obtained by MIR spectros-
copy, as well as estimating the expected response from a breeding program focusing 
on the enhancement of MCP using MIR predictions as indicator traits. They found 
that estimated genetic correlations between measure and predictions of RCT were 
very high.

4.5.1.2 Process Monitoring

NIR technology has been successfully applied at laboratory and commercial scales 
for monitoring processes during cheese manufacture. In particular, the milk coagu-
lation process during cheese production has received a great deal of attention, and 
cutting the coagulum either before or after the optimum point results in losses of 
curd and fat. An increase in cheese moisture also occurs if the gel is too firm when 
cut. Originally, the determination of the cutting time was established by the cheese 
maker. Although accurate this method is not feasible in closed commercial vats and, 
together with an increased desire for automation in the cheese industry, has led to 
the need for an on-line objective method for the monitoring of milk coagulation. 
Instruments have been developed based on several technologies to this end. Ideally, 
a sensor to monitor milk coagulation could be installed on-line to allow for automa-
tion of the production process, without causing damage to the forming curd, and 
NIR sensors meet these requirements. Early methods, which utilized the changes 
in the optical properties of the milk, were reflection photometry (Hardy and Fanni 
1981) and absorbance (McMahon et al. 1984). Although the reflection photometry 
and absorbance methods were found to monitor coagulation, they found little us-
age. However, developments in fibre optics have overcome many of the problems 
associated with these techniques. Light in the NIR spectral region can be transmit-
ted through a fibre optic bundle and diffuse reflectance or transmission monitor. As 
the gel is formed, reflectance will increase while transmission will decrease. Payne 
et al. (1993) developed a method based on changes in diffuse reflectance during 
milk coagulation. Reflectance was measured using a fibre optic probe, utilizing 
a photodiode light source at a wavelength of 940 nm. The time to the inflection 
point ( tmax) was determined from the first derivative and was found to correlate 
well with Formograph cutting times. Linear prediction equations, which were con-
sidered to be of the form required for predicting cutting time, were also developed 
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using tmax. This technology has been commercialized as the CoAguLite sensor (Re-
flectronics Inc, Lexington, KY) (Fig. 4.3a). This technology could also be used 
in conjunction with other sensors; for example, the FiberView dairy waste sensor 
system (Fig. 4.3b) could be used to monitor waste streams in dairy facilities. This 
enables the location, occurrence or concentration of the discharge to be determined. 
It monitors solids concentration in dairy plant effluents in the range of 0–1 % solids 
(or higher), and due to its quick response to loss events, it allows operators to take 
corrective actions.

Syneresis is a critical phase in cheese manufacture, with the rate and extent of 
syneresis playing a fundamental role in determining the moisture, mineral and lac-
tose content of drained curd and hence that of the final cheese (Lawrence and Gilles 
1980; Pearse and Mackinlay 1989). Therefore, research is ongoing into the develop-
ment of a syneresis control technology. A number of potentially non-invasive tech-
nologies have been investigated for such an application, including ultrasound and 
computer vision (Everard et al. 2007; Fagan et al. 2008a; Taifi et al. 2006; Tellier 
et al. 1993) and NIR sensing (Castillo et al. 2005a; Fagan et al. 2009a; Fagan et al. 
2007a). Initial studies focused on offline optical sensing of whey samples (Castillo 
et al. 2005b). An adaption of this technology led to the development of a sensor 
which could be installed in the wall of a cheese vat for on-line continuous monitor-
ing of both coagulation and syneresis (Fagan et al. 2007a). The sensor operated at 
980 nm and was sensitive to casein micelle aggregation and curd firming during 
coagulation and to changes in curd moisture and whey fat contents during syneresis. 
This sensor was also used to predict whey fat content (i.e. fat losses), curd yield 
and curd moisture content with standard error predictions (SEPs) of 2.37 g, 0.91 
and 1.28 %, respectively (Fagan et al. 2008b). Further work used a wider spectral 
range (300–1100 nm) in conjunction with PLS regression to predict whey fat and 
curd moisture with root mean square error of cross-validation (RMSECV) values 
of 0.094 and 4.066 %, respectively (Fagan et al. 2009a). Mateo et al. (2009) de-
veloped another set of models which predicted the yield of whey ( R2 = 0.83, er-
ror = 6.13 g/100 g) using three terms, namely light backscatter, milk fat content and 
cutting intensity. These studies were carried out in laboratory-scale cheese vats (7–

Fig. 4.3  a The CoAguLite sensor for predicting the optimal cutting time. b The FiberView Dairy 
Waste Sensor System (Reflectronics Inc, KY)
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11 L). Therefore, further scaling up and development under commercial conditions 
of the technology would be required if it is to become viable at a commercial scale.

NIR spectroscopy has also been investigated as a process control tool in yogurt 
production. Cimander et al. (2002) studied the potential of NIR spectroscopy to 
monitor yogurt fermentation in a 4.2-L laboratory-scale vat. A sensor signal fu-
sion approach was adopted with NIR (400–2500 nm), electronic nose, and standard 
bioreactor sensors installed as part of a multi-analyzer setup (Fig. 4.4a). While the 
electronic nose followed changes in galactose, lactic acid, lactose and pH, the NIR 
sensor signal correlated well with the changes in the physical properties during 
fermentation. Therefore, the signals from the sensors were fused using a cascade ar-
tificial neural network (ANN) as detailed in Fig. 4.4b. Results suggested that the ac-
curacy of the neural network prediction was acceptable. This approach was further 
investigated by Navrátil et al. (2004) under industrial conditions in a 1000-L vat. 
Signal responses from NIR and electronic nose sensors were subjected to PCA sep-
arately. The scores of the first principal component from each PCA were then used 
to make a trajectory plot for each fermentation batch. PLS regression of the NIR 
spectra was also used to predict pH and titratable acidity (expressed as Thorner de-
grees, °Th) during fermentation with reasonable success (SEPs of 0.17 and 6.6 °Th, 
respectively). MIR spectroscopy has also been employed to monitor the sorghum 
fermentation process (Correia et al. 2005). They used FTIR spectroscopy to detect 
differences due to the effect of lactic bacteria on sorghum fermentation. They found 
it was possible to differentiate between samples which used natural yogurt and Lac-
tobacillus fermentum as inocula due to variations in protein and starch structure.

Fig. 4.4  The multi-analyzer setup a applied during yogurt fermentations: C1, compensator bottle 
1, to trap condensating vapour and to compensate for minor flow rate variations; C2, compensator 
bottle 2 and b the neural network topology used for sensor fusion. The primary network received 
six input signals from the electronic nose and was cascaded by the secondary network, which 
received seven input signals: the output signals from the primary network for pH and lactic acid, 
four second-derivative NIRS signals (1402–1408 nm) and the first derivative of the reactor tem-
perature signal. A logic gate made the final decision for the state variable. (Cimander et al. 2002)
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4.5.1.3 Final Product Quality and Authenticity

It is stated in Chap. 12 that “Quality attributes for dairy products can be both the 
chemical composition of a given product like protein, moisture and fat content, 
and the sensory quality attributes like taste, smell and consistency.” Therefore, the 
integration of sensing technologies which provide information on such attributes 
is critical. Table 4.3 summarizes a number of studies which have examined the 
potential of NIR and MIR spectroscopies to predict the composition of dairy prod-
ucts. These have primarily been laboratory based. Offline laboratory-based infrared 
sensing systems which provide rapid compositional analysis of dairy products are 
available. These systems should conform to relevant standards such as ISO Stan-
dard 21543:2006 (ISO 2006). A number of studies have also investigated the predic-
tion of sensory quality attributes. Downey et al. (2005) predicted the maturity and 
sensory attributes of Cheddar cheese using NIR spectroscopy. Generally, second 
derivative spectra in the region of 750–1098 nm produced the most accurate mod-
els with age predicted with an RMSECV of 0.61 months, while the most success-
fully predicted sensory texture attributes were rubbery, chewy, mouthcoating and 
massforming with RER values of 8.8, 6.3, 7.6 and 8.5, respectively. NIR spectros-
copy was also employed to predict both the sensory and instrumental attributes of 
processed cheese using NIR spectroscopy (Blazquez et al. 2006). In general, they 
found that the models developed for predicting sensory texture in processed cheese 
were stronger than those for Cheddar cheese, with rubbery, chewy, mouthcoating 
and massforming predicted with RER values of 9.1, 12.0, 8.1 and 8.1, respectively. 
Fagan et al. (2007b) compared the NIR models developed by Blazquez et al. (2006) 
to models developed using MIR spectroscopy, which also predict sensory texture 
parameters of processed cheese. NIR spectroscopy was better at predicting creamy, 
chewy, and melting, with the R2 values of the NIR models indicating excellent pre-
dictions as opposed to the good predictions of the MIR models. The RER values for 
the NIR reflectance models indicated a high utility value, whereas the RER values 
obtained by Fagan et al. (2007b) had a good practical utility. However, the MIR-
derived fragmentable model had better accuracy than the NIR model, with excellent 
and good predictions, respectively.

The requirement to demonstrate the authenticity and safety of dairy products 
has also led to research into the use of infrared technology for such applications. 
Determination of the geographic origin and manufacturing conditions of cheese 
has received a great deal of attention (Boubellouta et al. 2010; Cattaneo et al. 2008; 
Karoui et al. 2004, 2005a, b, 2007a, 2008; Kocaoglu-Vurma et al. 2009; Pillonel 
et al. 2003). For example, Pillonel et al. (2003) studied the potential of MIR and 
NIR spectroscopies to discriminate between Emmental cheeses ( n = 20) based on 
geographic origin. Samples were obtained from six regions, and they found that 
MIR transmission spectra could be used to discriminate (i.e. 100 % correct clas-
sification) Swiss cheese from the other regions, while NIR spectra classified the 
samples by the six regions of origin. Karoui et al. (2007a) also examined MIR 
spectroscopy to determine the authentication of 25 Gruyère “protected designation 
of origin” (PDO) and L’Etivaz PDO cheeses. They found that the spectral regions 
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Composi-
tion

Product Spectral Mode Wavelength/
wave number

Prediction Ref.

Parameter Region Range Error
Moisture Cheese NIR R 400–2498 nm SECV = 0.5 Blazquez et al. 

(2004)
Content Cheese NIR R 900–2500 nm SEP = 0.429 Čurda and 

Kukačková 
(2004)

Cheese NIR R 515–1700 nm RMSEP = 1.72–2.21 da Costa Filho 
and Volery 
(2005)

Cheese NIR R 1900–2320 nm SEP = 0.889 Lee et al. (1997)
Cheese NIR R 1000–4000 nm SEP = 0.12–0.35 McKenna 

(2001)
Cheese NIR T 1000–4000 nm SEP = 0.12–0.35 McKenna 

(2001)
Cheese MIR ATR 5000–400 cm−1 SEP = 0.04–0.09 McQueen et al. 

(1995)
Cheese NIR R 1740–2280 nm SEP = 0.02–0.05 McQueen et al. 

(1995)
Cheese NIR R 400–2500 nm SECV = 0.05–0.92 Pérez-Marín 

et al. (2001)
Cheese NIR R 400–2498 nm SEC = 0.412 Rodriguez Otero 

et al. (1994)
Cheese NIR R 400–2500 nm RMSEP = 0.58 Wittrup and 

Nørgaard 
(1998)

Fat Cheese NIR R 1100–1498 nm SECV = 0.45 Blazquez et al. 
(2004)

Content Cheese FT-NIR R 900–2500 nm SEP = 0.997 Čurda and 
Kukačková 
(2004)

Cheese NIR R 1000–2500 nm RMSEP = 3.61 Karoui et al. 
(2007b)

Cheese NIR R 1900–2320 nm SPE = 0.855 Lee et al. (1997)
Cheese MIR ATR 5000–400 cm−1 SEP = 0.12–0.35 McQueen et al. 

(1995)
Cheese NIR R 1740–2280 nm SEP = 0.12–0.35 McQueen et al. 

(1995)
Cheese NIR R 400–2500 nm SECV = 0.05–0.92 Pérez-Marín 

et al. (2001)
Cheese NIR R 400–2498 nm SEC = 0.388 Rodriguez Otero 

et al. (1994)
Cheese NIR R 400–2500 nm RMSEP = 0.52 Wittrup and 

Nørgaard 
(1998)

Protein Cheese FT-NIR R 900–2500 nm SEP = 0.303 Čurda and 
Kukačková 
(2004)

Content Cheese NIR R 1000–2500 nm RMSEP = 2.34 Karoui et al. 
(2006)

Table 4.3  Application of near- and mid-infrared spectroscopy in cheese and yogurt composition 
analysis. (Modified from Woodcock (2008)
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3000–2800 cm−1 and 1500–900 cm−1 were most useful with 90.5 and 90.9 % correct 
classification results achieved, respectively. MIR spectroscopy (supplemented by 
partial 16S rDNA sequencing) has also been employed to monitor the population 
dynamics of microorganisms during cheese ripening (Oberreuter et al. 2003).

4.5.2 Cereal Grains and Seeds

NIR spectroscopy has been widely used in routine quality control analysis in the 
grain industry since the 1960s (Scotter 1990). This has included the assessment of 
moisture and protein content (Downey and Byrne 1987; Norris and Williams 1979; 

Composi-
tion

Product Spectral Mode Wavelength/
wave number

Prediction Ref.

Parameter Region Range Error
Cheese NIR R 1900–2320 nm SEP = 0.608 Lee et al. (1997)
Cheese MIR ATR 5000–400 cm−1 SEP = 0.04–0.09 McQueen et al. 

(1995)
Cheese NIR R 1740–2280 nm SEP = 0.04–0.09 McQueen et al. 

(1995)
Cheese NIR R 400–2500 nm SECV = 0.05–0.92 Pérez-Marín 

et al. (2001)
Cheese NIR R 400–2498 nm SEC = 0.397 Rodriguez Otero 

et al. (1994)
Yogurt MIR ATR 1800–1500 cm−1 REP = 7.25 Khanmoham-

madi et al. 
(2009)

Yogurt MIR ATR 1800–1500 cm−1 REP = 3.7 Khanmoham-
madi et al. 
(2009)

Yogurt MIR ATR 1515–1800 cm−1 RMSEP = 0.2 Moros et al. 
(2006)

Sugar Yogurt NIR R 400–1000 nm RMSEP = 0.2621 Shao and He 
(2009)

Content Yogurt MIR ATR 1500−900 cm−1 SEP = 0.105–0.05 Khurana et al. 
(2008)

Yogurt NIR R 400–1000 nm SEP = 0.389 He et al. (2007)
Yogurt NIR R 400–1000 nm RMSEP = 0.33–0.36 Shao et al. 

(2007)

Carbohy-
drate

Yogurt MIR ATR 2850–1083 cm−1 RMSEP = 36 Moros et al. 
(2006)

Calcium Yogurt MIR ATR 1461–1636 cm−1 RMSEP = 9 Moros et al. 
(2006)

Content
R reflection, T transmission, ATR attenuated total reflection  

Table 4.3 (continued) 
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Williams 1979; Williams and Cordeiro 1979, 1981). More recently, developments 
in this area have focused on assessment of grain quality at harvest, grain quality 
classification and sorting and grain blending.

Kawamura et al. (2003) developed an automated rice quality inspection system 
which utilized both visible and NIR technology. The objective was to develop a 
system which measured not only moisture content but also other rice quality indi-
ces in order to grade rough rice according to quality when it arrives at the drying 
facility. The system they developed consisted of a rice huller, a rice cleaner, an NIR 
instrument and a Vis segregator. This system enabled rough rice transported to a 
rice-drying facility to be classified into six qualitative grades.

Grain quality at harvesting is also a critical parameter as there can be significant 
within-field variability of grain quality parameters, for example, protein and mois-
ture content. Maertens et al. (2004) described some of the requirement for online 
grain quality assessment at harvest. They included the use of a robust NIR spec-
trometer, design of a measurement configuration that guarantees a constant grain 
sample presentation while also avoiding dirt and blockages, that the sensor should 
be calibrated on the harvester and not under simulated conditions in the laboratory 
and finally that appropriate signal processing techniques should be employed to fil-
ter the spectral data, both in the time and wavelength domain They also studied the 
potential of an NIR sensor mounted on the bypass of the grain elevator of a combine 
harvester for online prediction of wheat moisture and protein content. They found 
that the average prediction errors were 0.56 and 0.31 % for protein and moisture 
content, respectively, where moisture content was below 18 %.

Detection and removal of internal insects and fungal contamination from seeds 
(grains, beans and nuts) are important control measures for ensuring storage longev-
ity, seed quality and food safety (Pasikatan and Dowell 2001). NIR spectroscopy 
has been applied to the detection of infestation of such products. NIR spectroscopy 
has been used to differentiate among individual wheat kernels that are uninfested, 
those infested with weevil larvae or pupae, or those that contain a parasitoid pupa 
(Baker et al. 1999). Wang et al. (2002) recorded single-seed NIR spectra of a total 
of 1600 soya bean seeds, i.e. 700 sound seeds and 900 seeds damaged by weather, 
frost, sprout, heat or mould. The regions 750–1690 nm and 450–1690 nm gave the 
best classification of seeds into “sound” and “damaged” categories. They also found 
that an optimally developed neural network (parameters: momentum = 0.6, learning 
rate = 0.7, learning cycles = 150,000, wavelength region = 490–1690 nm) could clas-
sify seed according to six categories, i.e. “sound” (100 %) and five damage catego-
ries, “weather” (98 %), “frost” (97 %), “sprout” (64 %), “heat” (79 %) and “mold” 
(83 %), with reasonable success.

Aflatoxin B1 is recognized by the International Agency of Research on Cancer 
as a group 1 carcinogen for animals and humans, and Fernández-Ibañez et al. (2009) 
investigated the potential of Fourier transform NIR spectroscopy to detect aflatoxin 
B1 in cereal grains. They analysed maize and barley samples ( n = 152) and devel-
oped models ( R2 = 0.82–0.85) for prediction of the presence of aflatoxin B1, which 
suggested that NIR spectroscopy could be a suitable alternative for fast detection of 
aflatoxin B1 in cereals.
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4.5.3 Fruit and Vegetables

The application of NIR and MIR to quality assessment of fruit and vegetables has 
been widely studied (Table 4.4). In terms of infrared spectroscopy’s role as a PAT 
tool in this industry, it could be employed for the optimization of harvesting, defect 
identification, disease control, process control applications and overall quality clas-
sification.

4.5.3.1 Harvest Optimization

Prediction of the optimal harvest time of apples will minimize the occurrence of 
quality losses. Peirs et al. (2001) predicted the optimal harvest date of apples har-
vested no more than 8 weeks before the commercial picking date using Vis–NIR 
spectra collected post harvest in the laboratory (measurements were carried out on 
the same day or the day after picking). They stated that it was possible to measure 
apple maturity for harvest of individual cultivars within an orchard and that the 
number of days before the optimum harvest date was well predicted ( R = 0.90–0.93). 
Further work examined the potential of Vis–NIR spectroscopy to estimated apple 
pre- and post-storage quality indices at harvest (McGlone et al. 2002). The apples 
were harvested 1–3 weeks before and up to 1 week after the commercial harvest 
period. Spectral analysis in this case took place between 16 and 24 h after harvest. 
The authors found that although models were developed to predict quality indices 
of the apples they were still very poor in terms of prediction accuracies. Therefore, 
they were unlikely to be useful for sorting or grading due to the high rate of predic-
tion errors that would result. They also stated that the prediction models, with the 
exception of soluble solids content, may be almost solely dependent on changes in 
the apple chlorophyll level and not have any direct sensitivity to the constituents or 
properties of interest.

Clark et al. (2004) examined the potential of Vis–NIR spectroscopy to predict 
the storage potential of kiwifruit. They employed canonical discriminant analysis 
(CDA) to optimize the separation between the two categories, i.e. “sound fruit” and 
“fruit developing a disorder during storage”. They estimated that the overall inci-
dence of disorders could have been reduced from 33.9 to 17.9 % and 14.7 to 8.5 % 
depending on the harvest or when using all harvests from 13.7 to 6.8 %.

A similar approach has also been investigated for mango (Saranwong et al. 
2004). Vis–NIR spectra of mango were collected on the day of harvest and models 
were developed to predict harvest and eating quality using multiple linear regres-
sion and PLS regression. They stated that the calibration equations developed were 
sufficiently accurate to determine the harvest quality, dry matter and starch content 
of hard green mango fruit non-destructively. Using this information, the soluble 
solids content of the ripe fruit, which is an eating quality index, could be precisely 
predicted at the time of harvest.
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It has also been demonstrated that infrared technology can be used for fruit 
assessment prior to harvesting. Pérez-Marín et al. (2009) used a handheld micro-
electro-mechanical system (MEMS) spectrometer and a diode-array Vis–NIR 
 spectrophotometer to collect the spectra of nectarine during on-tree ripening 
( n = 144). They developed models to quantify changes in soluble solids content, 
flesh firmness, fruit weight and diameter. Both instruments provided good preci-
sion for soluble solids content ( R2 = 0.89; SEP = 0.75–0.81 %) and for firmness 
( R2 = 0.84–0.86; SEP = 11.6–12.7 N). The diode-array instrument predicted the two 
other physical parameters well ( R2 = 0.98 and SEP = 5.40 g for fruit weight and 
R2 = 0.75 and SEP = 0.46 cm for diameter), while the handheld MEMS instrument 
proved less accurate in this respect (Pérez-Marín et al. 2009).

A portable non-invasive instrument based on NIR spectroscopy has also been de-
veloped to measure the ripeness of wine grapes (Larrain et al. 2008). It was used to 
predict three ripeness variables with excellent success for Brix and pH ( R2 = 0.87–
0.93) and with less accuracy ( R2 = 0.56–0.80) for pH.

4.5.3.2 Defect Identification

Burks et al. (2000) applied NIR spectroscopy to the sorting and classification of 
figs. They classified the figs according to the number of categories (“passable”, 
“infested”, “rotten”, “sour”, “dirty”) with correct classifications ranging from 83 
to 100 %. However, 20 PLS factors were required which might limit the robust-
ness to the models. Vis–NIR spectroscopy in both transmission and reflectance 
modes has been employed to detect brown heart of pears (Fu et al. 2007). They 
found that, using discriminant analysis, they could discriminate between brown 
heart pears and non-brown heart pears. Transmission spectra were more successful 
than reflectance spectra in this classification: a classification rate of 91.2 % using 
transmission spectra.

A conceptual view of an NIR transmission-based system for apple assessment 
(Fig. 4.5) has been proposed by McGlone and Martinsen (2004). They employed 
two prototype on-line NIR transmission systems to determine the percentage of 
internal tissue browning in apples. One prototype used time-delayed integration 
spectroscopy (TDIS) in which light transmitted through a moving object was elec-
tronically tracked as it moved through the spectrometer’s field of view. The other 
used a large aperture spectrometer (LAS) in which the light from the object is ac-
cumulated in a series of one-shot measurements as the fruit progresses through the 
field of view (McGlone and Martinsen 2004). The systems operated 500 mm s−1. 
The LAS system gave the best results ( R2 = 0.9) for fast on-line assessment of 
apples.

Further developments in defect identification have focused on the use of mul-
tispectral or hyperspectral imaging (Ariana et al. 2006; Blasco et al. 2007). This 
emerging platform technology is discussed in Chap. 9.
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4.5.3.3 Quality Classification

A key quality characteristic of fruit is SSC. As fruit ripen, there is conversion of 
insoluble starch into soluble solids, to which the simple sugars (glucose, fructose 
and sucrose) make the largest contribution (Martinsen and Schaare 1998). Numer-
ous studies have investigated infrared spectroscopy to predict this parameter non-
destructively and have been summarized in Table 4.4. The majority of such stud-
ies have utilized NIR spectroscopy. A study by Lammertyn (2000) compared two 
optical configurations, i.e. a bifurcated and a 0°/45° optical configuration. They 
found that while the former configuration gave slightly better performance for the 
prediction of SSC, they recommended 0°/45° configuration for commercial appli-
cations as it had a lower cost and could be used for non-contact measurements. 
However, bifurcated reflectance-based instruments have found an array of applica-
tions (Fig. 4.6). It should be noted that numerous variables (e.g. cultivar, geographic 

Fig. 4.5  A conceptual view of NIR transmission system. As the fruit passes through a relatively 
large field-of-view in the TDIS system (a), a detector simultaneously accumulates many sequential 
points over three apples. In contrast, the LAS system (b) takes a simple snapshot, like a cam-
era, over a much shorter time for a small portion of one fruit (McGlone and Martinsen 2004). 
(Reprinted with permission from Journal of Near Infrared Spectroscopy 12(1), 37–43 (2004). 
Copyright: IM Publications LLP 2004)
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origin, etc.) can affect the performance of such predictive models, and therefore 
studies which have independently validated models, for example, over and within 
seasons, are crucial to an assessment of model robustness (Golic and Walsh 2006). 
Golic and Walsh (2006) collected NIR spectrum of peaches, nectarines and plums 
and found that model performance for SSC was acceptable when peaches and nec-
tarines were combined, but it was best if a separate plum model was employed. 
They also stated that model performance was stable over several seasons in terms 
of R2 (typical R2 > 0.8).

4.5.4 Meat and Poultry

4.5.4.1 Fresh Meat

A number of studies examined the application of infrared spectroscopy to fat ex-
tracts to predict meat quality as fatty acid composition of meat can determine its 
processing quality. Villé et al. (1995) developed a method for the determination of 
total fat and phospholipid content in intramuscular pig meat using FTIR spectros-
copy. They employed an extraction using chloroform and methanol. FTIR spectra 
were subsequently recorded in transmission mode, and utilizing selected regions of 
the FTIR spectra related to the C = O bond (1785–1697 cm−1) developed linear re-
gression equation to predict total fat ( R2 = 0.99). A study has also examined the use 
of FTIR spectroscopy in the NIR and MIR regions of fat extracts and non-processed 
pork to determine the fatty acid content in fat slices and fat extracts (Ripoche and 
Guillard 2001). They found that MIR spectra using an attenuated total reflectance 
samples accessory ( R2 ~ 0.91–0.98) and NIR transmission spectra ( R2 ~ 0.85–0.96) 
of fat extracts could be used to predict saturated fatty acids (SFA), monounsaturated 
fatty acids (MUFA), polyunsaturated fatty acids (PUFA), palmitic acid (C16:0), 
oleic acid (C18:1) and linoleic acid (C18:2). However, with 9–15 latent variables 

Fig. 4.6  A NIR (LabSpec) 
with bifurcated fibre optic 
probe for contact reflectance 
measurement
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included in the models, they may not be very robust. While NIR reflectance spec-
troscopy successfully predicted SFA, PUFA, C18:1 and C18:2 from spectral mea-
surements of the back and breast fat, MUFA and C16:0 could not be predicted. 
Mitsumoto et al. (1991) used NIR spectroscopy in reflectance and transmittance 
mode to predict the quality of beef cuts Warner–Bratzler shear value (tenderness) 
( R = 0.798−0.826), protein ( R = 0.822−0.904), moisture ( R = 0.895−0.941), fat 
( R = 0.890−0.965) and energy content ( R = 0.899−0.961) were successfully predict-
ed using both modes. Park et al. (2001) also developed models for predicting the 
tenderness, i.e. Warner–Bratzler shear value of beef using NIR reflectance spectra 
and principal component regression (PCR). The coefficient of determination of the 
developed models were of a similar order ( R2 = 0.612 – 0.692). This technology has 
also been commercially investigated with instruments such as the QualitySpec BT 
Spectrometer from Analytical Spectral Devices (Fig. 4.7).

NIR spectroscopy has also been investigated at laboratory scale for determina-
tion of the maximum temperature to which beef had been subjected to during a heat 
treatment (Ellekjaer and Isaksson 1992), species identification (Ding and Xu 1999) 
and authenticity assessment (Fumiere et al. 2000). Other applications of NIR such 
as the detection of faecal contamination on poultry have been studied. Windham 
et al. (2003) applied Vis–NIR spectroscopy to discriminate between uncontaminated 
poultry breast skin and faeces. They found that the developed model could success-
fully classify faecal-contaminated material due to spectral differences between fae-
cal colour and myoglobin and/or hemoglobin content of the uncontaminated breast 
skin. However, hyperspectral imaging (Chap. 9) has also been utilized for such an 
application (Heitschmidt et al. 2007; Liu et al. 2007; Park et al. 2006a, b, 2007).

Fig. 4.7  The QualitySpec BT 
Spectrometer from Analyti-
cal Spectral Devices Inc. for 
measuring meat quality
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4.5.4.2 Ground Meat Quality

The quality of ground meat used as a raw material in products such as burgers and 
sausages is critical as processors must comply with product-type-dependent restric-
tions, i.e. chemical composition and origin of raw materials (Togersen et al. 1999). 
Togersen et al. (1999) utilized an on-line NIR sensor to determine the fat, water and 
protein contents in industrial-scale meat batches (beef and pork) in an industrial 
environment. The NIR sensor was installed at the outlet of a large meat grinder. The 
models developed had RMSECV of 0.82–1.49 %, 0.94–1.33 % and 0.35–0.70 % for 
fat, water and protein, respectively. Togersen et al. (2003) went on to predict the 
chemical composition of industrial-scale batches of frozen beef using a similar sys-
tem. The resulting RMSECVs were 0.48–1.11 % (fat), 0.43–0.97 % (moisture) and 
0.41–0.47 % (protein).

NIR spectroscopy has also been investigated as a tool for detecting adulteration 
of hamburgers (Ding and Xu 2000). They found it was possible to predict the level 
of adulterants in hamburgers with errors of 3.33, 2.99, 0.92 and 0.57 % for the adul-
terants mutton, pork, skim milk powder and wheat flour, respectively.

4.5.4.3 Meat Emulsion

Optical sensors have also been developed to monitor meat emulsion stability (Al-
varez et al. 2007, 2009, 2010a, b). Initial work focused on prediction of meat emul-
sion stability using reflection photometry (Alvarez et al. 2007). They found that 
L* values increased at the beginning of chopping associated with reduced cooking 
losses, following 8 min of chopping there was a reduction in L* and b* values and 
an associated increase in cooking losses, which suggested the feasibility of an on-
line optical sensor technology to predict the optimum end point of emulsification in 
the manufacture of finely comminuted meat products. These authors then recorded 
light backscatter intensity from beef emulsions manufactured with different fat/lean 
ratio and chopping duration using a dedicated fibre optic prototype (Alvarez et al. 
2009). They found several optically derived parameters to be significantly correlat-
ed with fat loss during cooking. In subsequent work, they found normalized intensi-
ty decreased with increased chopping time as a result of emulsion homogenization, 
and with increased distance, chopping time had a positive correlation with fat losses 
during cooking, which in turn had a negative correlation with normalized light in-
tensity and loss of intensity. Therefore, they suggest that light extinction spectros-
copy could provide information about emulsion stability (Alvarez et al. 2010).

4.6 Future

Infrared spectroscopy has been demonstrated to be an excellent PAT tool for 
monitoring critical processes and prediction of quality indices during food pro-
cessing. Advances in equipment design will assist in the deployment of infrared 
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 spectroscopy-based technologies as PAT tools in the food industry. This will include 
improvements in robustness, cost and advances in microspectrometers. However, 
where studies have primarily been at laboratory scale, further research is required to 
ensure appropriate scaling up and transfer of the technology to industry. The com-
bined acquisition of spectral and spatial information through the use of hyperspec-
tral imaging has a number of potential applications. However, further developments 
are required to reduce the cost and increase the acquisition and processing speed for 
it to be fully exploited in food quality and safety applications.
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5.1 Introduction

Raman spectroscopy is becoming a popular analytical tool in the field of process 
analytical technology (PAT) as it offers both the sampling convenience of near-
infrared (NIR) spectroscopy and the molecular specificity of mid-infrared (MIR) 
spectroscopy in a single measurement. The physical background of the Raman 
technique is based on inelastic scattering of light at distinct frequencies described 
as shifts (Raman shift) from the frequency of monochromatic incident radiation. 
Collecting distinct Raman shift due to light scattering, Raman spectroscopy allows 
probing chemical identity/structure of species in a process as a molecular finger-
printing tool. The technique is based on the laser technology and is evolving to 
provide better quality signal in a shorter time.

Having a unique physical basis, Raman spectroscopy is a molecule-specific, 
laser-excitation-dependent, sensitive and elaborate analytical tool that can be em-
ployed virtually to analysis of all kinds of food materials and ingredients. The 
uniqueness of Raman spectroscopy arises from the Raman effect discovered by Sir 
Venkata Raman in 1928. This special effect is due to the inelastic scattering of light 
upon interaction with matter which ends with photons having wave numbers less or 
greater than the monochromatic excitation at a fixed number.

Product quality and its assessment are manifest concerns of any industrial pro-
duction. Having an integrated process analysis and control implementing proper 
analytical instrumentation will enable monitoring of the product quality throughout 
the whole process line. Hence, implementing PATs in manufacturing industries will 
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help optimize a process reducing production cost and increasing product quality and 
make the process safer and sustainable (Kueppers and Haider 2003).

Since the quality attributes of muscle foods including meat and fish are diverse 
and their quality loss is very fast, there is a need for inexpensive and rapid analytical 
tools that can be employed to quality assessment of these foods. Protein content and 
solubility, microbial safety, peroxide value, fatty acid composition, and texture are 
among important quality-related features of meat and fish. Raman as a vibrational 
spectroscopic technique is known to be a rapid and cost-efficient tool to elucidate 
quality attributes of foods at the molecular level.

Although PAT is often synonymously used with on-line analysis, it is considered 
as a holistic approach to process-related chemical identification and quantifica-
tion (Hassel and Bowman 1998). Raman spectroscopy provides almost all possible 
modes of data acquisition enabling off-line, at-line, on-line, and in-line analyses in 
a rapid and cost-effective way. Even noncontact, noninvasive analysis can be con-
ducted with the use of fiber-optic probes.

Raman spectroscopy is becoming one of the prominent analytical tools for iden-
tification and quantification of chemical constituents present in foodstuff. Because 
of its sensitivity towards the chemical composition at the molecular level, Raman 
technique holds a great potential for the quality assessment of food products.

The attractiveness of the Raman technique as a process analytical tool arises 
mainly from three distinct facts. First, the technique provides fruitful information 
about the chemical structure (molecular fingerprint) of virtually all kinds of samples 
in any physical state. Raman scattering of photons can be used to differentiate or-
ganic or inorganic functional groups in a molecule, as every chemical bond in a 
molecule has a specific vibrational energy. The second fact is that there is almost no 
need for sample preparation and no sample destruction is involved during the course 
of analysis. Finally, the most abundant molecule present in biological substances, 
water, does not interfere with the organic functional groups in Raman spectra. This 
feature makes Raman spectroscopy more attractive than the other spectroscopic 
techniques that suffer from the water/moisture-related strong signals. Raman spec-
troscopy is known as a nondestructive optical analytical technique whose principle 
is based on the inelastic scattering of photons. Light scattering phenomena by a 
food sample is depicted in Fig. 5.1.

νo
νo

ν-

ν+

Fig. 5.1  Scattering of mono-
chromatic light by sample; vo 
is the frequency of incident 
photon, (v+) or (v−) frequen-
cies of the scattered photons
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5.2 Theory of Raman Spectroscopy

The first discovered scattering phenomenon, Rayleigh scattering, is related to po-
larizability of molecules. The extent of polarizability depends on the ability of a 
molecule’s electrons to be distorted by an externally applied electric field due to 
electromagnetic radiation (Ball 2001). Rayleigh scattering of photons has the same 
frequency/energy with the incident light so it is considered to be elastic scattering. 
However, Raman scattering is a special inelastic scattering phenomenon of light 
interacting with a matter.

Raman scattering is inherently a weak process, because only one in every 106–
108 photons scatter at a wavelength that is shifted from the incident. These scattered 
photons can either be “red shifted, so-called Stokes shift” or “blue shifted, so-called 
anti-Stokes shift” by increasing or decreasing, respectively, the ground vibrational 
energy level of molecules. In other words, Raman scattering produces a proportion 
of red shifted photons with less energy and blue shifted photons with higher energy 
than the incident monochromatic light. Thus, frequency shifts between the Raman 
scattered photons and the incident beam correspond to particular vibrational energy 
levels of molecules.

However, most of the scattered light has the same energy (wave number) with 
the incident that is known as Rayleigh scattering. Since Raman spectroscopy is 
based on detection of scattered light which is red or blue shifted, Rayleigh scatter-
ing has no contribution to Raman signal and it is normally rejected by a filter before 
entering the detector.

Despite some minor skepticism, the importance of the discovery of Raman scat-
tering was well acknowledged by the scientific committee even before the discov-
erer, C. V. Raman, was awarded the Nobel Prize in 1930. In his personal letter to C. 
V. Raman on September 1929, Niels Bohr says: “I take this opportunity to express 
my most cordial congratulations to your great discovery of the new radiation phe-
nomenon which has added so immensely to our knowledge of optics and atomic 
physics.” Albert Einstein also admitted the importance of Raman’s discovery, stat-
ing “C.V. Raman was the first to recognize and demonstrate that the energy of a 
photon can undergo partial transmission with matter. I still vividly recall the deep 
impression that this discovery made on us all.” Raman scattering was also an early 
proof of the quantum theory of light and the photon theory postulated by Einstein.

What C. V. Raman observed in 1928 was anti-Stokes Raman scattering, yielding 
blue-shifted scattered photons that receive energy from bond vibration and which 
is quite weak. For anti-Stokes Raman scattering, the scattering photons have larger 
energy (lower wavelength) than the incoming photons. Although down-conversion 
in energy was well understood by other optical processes, such as fluorescence, at 
the time of discovery, this up-conversion of energy by scattering was an unidenti-
fied effect. That is why Raman called it “A New Type of Secondary Radiation” in 
his original paper (Raman 1928).
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5.2.1 Selection Rules and Principles of Raman Technique

Although Raman scattering is used to investigate vibrational motions of molecular 
bonds, its principles do not apply to all types of vibrational modes. Selection rules 
should be considered to classify a molecular vibration as Raman or IR-active one. 
A vibration is said to be Raman active if it involves a change in polarizability of 
the molecule. However, IR-active vibrations are associated with dipole moment 
changes and not with the polarizability. The nature of polarizability ( α) is essential 
for determination of the Raman activity of a vibration. Interaction of an electro-
magnetic field (photons) with a sample causes charge separation through alignment 
of the positively charged nuclei along the negative pole and electrons to the posi-
tive pole. An induced dipole moment ( P) will be formed as a result of such charge 
separation processes. The induced dipole moment as a function of polarizability and 
electromagnetic field ( E) is given by

 (5.1)

The below equation can be used to express the Raman dipole moment, incorporat-
ing the macroscopic laser electric field:

 
(5.2)

where LM is local field correction factor ( EMicro  =  ( LM)1/4EMacro). In vacuum and 
for gases, macroscopic and microscopic fields are identical (i.e., LM = 1), but LM is 
2.5 for water and 4 for organic solvents. Since both P and E are vectors and LM is a 
measureable quantity (not given in the below equation), the induced dipole vector 
for a molecule is expressed as

 

(5.3)

Polarizability is a tensoral quantity and denoted by the first matrix on the right 
hand side of Eq. 5.3. The polarizability matrix has nine components (tensor) and a 
change in any of these components due to molecular vibrations can be a source of 
the Raman activity. The polarizability of a molecule is considered to be a constant 
value ( αo) at an equilibrium position (nuclear geometry) for molecules. When the 
molecule is free to vibrate around equilibrium position at an infinitesimal distance 
∆r, the instantaneous polarizability can be described by the Taylor series expansion 
of the components of polarizability with respect to the normal coordinates of the 
vibration (Ball 2001):

 (5.4)
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where higher-order derivatives are omitted since they are several orders of mag-
nitude smaller than the first derivative. Assuming simple harmonic motion of the 
vibration with a maximum amplitude of rmax and frequency νvib,

The incident light emerging from a laser source is monochromatic with a constant 
frequency of νL, induces an electromagnetic field, E, which also has harmonic be-
havior.

 (5.5)

where Emax is the maximum field. Arranging E, ∆r, and α in equation 1, the induced 
dipole is given as

 
(5.6)

The product of cosine functions in the last equation can be rearranged yielding

 

(5.7)
Using a trigonometric identity of cosine function, the electrical dipole moment can 
be expressed as

 (5.8)

Since the scattering of a photon relies on the polarizability of molecules, the above 
equation can be used to define two different sources for scattering, namely Rayleigh 
(when the outgoing scattering has the same frequency with the incoming photon) 
and Raman (when scattering photons have frequencies different from that of the 
incoming, one as ( )v vL vib+ anti-Stokes Raman scattering and the other ( )v vL vib−
Stokes Raman scattering) scattering. Equation 8 provides a gross selection rule for 
Raman-active modes by the classical treatment. According to the equation 8, the 
requirement for Rayleigh scattering is the presence of at least one nonzero compo-
nent in the polarizability tensor (at the equilibrium). However, for Raman scatter-
ing, the derivative of the polarizability tensor with respect to the normal coordinate 

r
α∂ 

  ∂
 must contain at least one nonzero term in any of the nine components. At this 

point, it will be noteworthy to define the selection rule for IR spectroscopy, since 
it provides complementary vibrational data to Raman spectroscopy. IR absorption 
emerges from vibrations as long as the derivative of the dipole moment is nonzero 
at the equilibrium position.
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5.2.2  Quantum Mechanical Description of Raman  
Scattering Effect

The quantum mechanical representation of the effect of light (electromagnetic ra-
diation) energy absorption at the molecular level can be schematically illustrated by 
the Jablonski diagram using the concepts of quantization of the electronic and vi-
brational energy levels. Electronic states are aligned vertically by increasing energy 
and grouped horizontally by spin multiplicity in the Jablonski diagram. A molecule 
at rest has two electronic states, namely the ground and excited, and each state has 
its own vibrational energy planes as illustrated in Fig. 5.2. In the ground state, the 
electrons occupy the lowest energy state as dictated by the Pauli exclusion princi-
ple. The ground state is named as singlet state S0, at which the total spin is zero. The 
electronic excited state is the condition of a nucleus (or molecule) generated upon 
gaining energy (at room temperature) as a result of absorption of electromagnetic 
radiation or inelastic collisions with other particles. The excited state has higher 
energy than the ground state and is composed of a singlet state (S1) with a total spin 
of zero and a triplet state (T1) with a total spin of one. The higher energy electronic 
states can be denoted by S2, T2, etc., if needed. In addition to electronic states, in-
ternal atomic vibrations are considered as minor perturbation to the electronic state. 
Since the energy level of vibrational states is remarkably smaller (nearly 0.2 eV 
for most organic molecules) than that of the electronic states, vibrational states are 
regarded as the substructure of the electronic states with narrow energy spacing. 
The energy spacing between electronic states typically lies at the ultraviolet (UV) 
and visible (Vis) level of the electromagnetic spectrum (200–700 nm), whereas the 
energy spacing for vibronic bands is in the NIR region (800–1104 nm).

Excitation of a molecule by electromagnetic radiation prompts electrons to a 
higher electronic or vibrational energy level. After excitation, electrons return to the 
ground state by two distinct mechanisms, radiative and nonradiative (heat) energy 
loss. When light sources operating at the IR region are used to excite a molecule, 
the energy to be absorbed will be just enough to change its vibrational energy level 
at the ground electronic state. The change in the vibronic energy level of molecules 
is known as absorption (IR absorption). Excitation at UV or Vis regions of electro-
magnetic spectrum can bring electrons to an energy level different from the ground 
state. A virtual electronic state is generally used to describe energy levels which 
lie between the ground and first excited electronic states. Absorption of Vis or UV 
radiation can excite molecules from a vibrational level in the ground electronic state 
to another vibrational level in the electronic excited state, usually the first excited 
singlet state S1.

Considering a transition from a lower to a higher vibrational level in the excited 
state upon optical energy absorption, three different but competing paths will be in-
volved to release this excess internal energy, taking the electrons back to the lowest 
vibrational energy status. These paths are heat loss (nonradiative decay), molecular 
decomposition (photochemical reaction), and luminescence (radiative decay). The 
energy release by molecular decomposition results in the formation of a new mol-
ecule. Radiative decay is indicated by a return to the ground state through emission 



1095 Raman Spectroscopy

of a photon. The transition phenomenon from a singlet excited state to a singlet 
ground state is called “fluorescence” with lifetimes on the order of nanoseconds or 
less. When relaxation into an excited triplet state occurs followed by the emission 
of a photon, the radiative phenomenon is called “phosphorescence” and exhibits a 
lifetime ranging from milliseconds to seconds (Lakowicz 1999).

Scattering of light either by Rayleigh or Raman phenomena is an instantaneous 
two-photon process which does not require any excitations corresponding to any 
electronic or vibronic transitions of the molecule. This implies that Raman scatter-
ing signals can be obtained using excitations at any frequency. However, the signal 
intensity is proportional to one-fourth power of the wavelength of laser excitation. 
For Raman spectroscopy, excitation sources operating at UV, Vis, or IR (usually 
NIR) can be utilized. At the standard temperature conditions, the Boltzmann distri-
bution of vibrational states impose that most molecules are present in their ground 
vibrational state. In either Rayleigh or Raman scattering, molecules start and fin-
ish in the electronic ground state. Figure 5.3 is used to illustrate changes in the 
quantized energy of molecules during scattering process in the simplified (diatomic 
energy level) Jablonski diagram.

Since light energy comes in discrete quanta known as photons, whose energy is 
directly proportional to wavelength, the charged particles in molecules will not able 
to absorb the light permanently. Therefore, the charged particles will soon reemit 
the light. Upon interacting with light, the charged particles begin to shift into a 
new quantum state, a “virtual” state. This virtual electronic state may or may not 
be permanently allowed. The virtual state lies below the excited state, allowing the 
electron to reside in the real excited state for a certain time allowed by the uncer-
tainty theorem (Pitt et al. 2005). The simultaneous absorption of an incident photon 
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with energy of hνL and emission of scattered photons at different energies are given 
by: Rayleigh scattered photon hνL, Stokes Raman scattered photon hνL − ∆Evib, and 
anti-Stokes Raman scattering hνL + ∆Evib. The Rayleigh scattering is the dominating 
process, since most photons scatter in this elastic (energy conserved) way. The pro-
cess starting from the ground vibrational state (0) by absorption of energy and the 
promotion to a higher-energy excited vibrational state (1) is known as Stokes scat-
tering in which the photon scatters inelastically at lower energy (shifted wavelength 
towards the red end of the spectrum). For this type of scattering, the energy differ-
ence between the incident and scattered photons corresponds to the energy of vibra-
tional modes. Since the population state of a molecule is principally in its ground 
vibrational state at room temperature, Stokes scattering is the significant Raman 
scattering effect for experiments at room conditions. Whereas anti-Stokes process 
starts at a vibrationally excited state (1) that is thermally populated and ends with a 
return the ground vibrational state (0). The relative intensities of these two Raman 
processes rely on the population of the various states of the molecule which is char-
acterized by the Boltzmann equation (Long 2002). However, anti-Stokes scattering 
will become significant compared to Stokes scattering at high temperatures. The 
difference in intensities of Raman bands in Stokes and anti-Stokes scattering can 
also be used to measure temperature. The positions of Stokes and anti-Stokes scat-
tering lines present in Raman spectra are characteristic of materials that can be used 
for composition/structure identification.

Comparing the intensities of scattering processes, Rayleigh scattering is 103–104 
times weaker than the incident light; at the same time, Raman scattering is 103–106 
times weaker than Rayleigh scattering. Magnitude of Raman shifts is independent 
of the wavelength of excitation.
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Fig. 5.3  Energy quantization for Rayleigh and Raman (Stokes and Anti-Stokes Raman scattering)
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5.2.3  Special Raman Techniques for Signal Intensity 
Improvement

Conventional Raman scattering is a linear two-photon spontaneous process in 
which only a tiny fraction of the incoming light (incident) exchanges quanta of 
vibrational and/or rotational energy with the molecule under investigation and 
scatters as incoherent Stokes or anti-Stokes frequencies. Hence, inherently, con-
ventional Raman is hampered by limited sensitivity. The signal intensity of clas-
sical Raman spectroscopy depends only on the fourth power of the frequency of 
the light used to induce the Raman effect. When the incident radiation matches 
an electronic transition of the irradiated molecule, a fraction of Raman-active 
vibrational modes of the molecule are enhanced, presenting from two to six orders 
of magnitude enhancement more than conventional (dispersive) Raman (McCreery 
2000) enhancement.

The resonance effect can be used to selectively observe a molecule that pos-
sesses an absorption transition (electronic) in a complex medium when the absorp-
tion energy matches with the energy of the incoming photons. If a chemical group 
of a molecule is not involved in electronic transition following irradiation, there 
will be no resonance effect for that chemical group and no resonance Raman will be 
detected for this case. The most common resonance enhancement is Franck–Con-
don enhancement. This enhancement is related to expansion of a molecule along 
a component of the normal coordinate of a vibrational motion upon an electronic 
excitation. The more the molecule involves in expansion, the larger the enhance-
ment factor.

Resonance enhancement does not necessarily start at a particular wavelength. 
Raman signal enhancement is also observed when the exciting laser is even a few 
hundred wave numbers below the electronic transition of a molecule. This is known 
as pre-resonance enhancement. The theory of resonance enhancement is beyond the 
scope of this study.

Surface-enhanced Raman scattering (SERS) is a special signal enhancement 
technique in which metallic surfaces (Au and Ag surfaces mostly) are utilized as 
host for absorption of the molecule of interest. The Raman signal enhances enor-
mously at the metal–molecule interface. Because of the large signal amplification, 
SERS has been extensively applied to ultrasensitive analytical applications. The 
SERS enhancement involves chemical mechanism through the charge transfer be-
tween metal and molecule under test and also the electromagnetic mechanism cou-
pling of the incident and scattered fields to the surface plasmons (collective excita-
tions of the conduction electrons in metal).

5.2.4 Nonclassical (Nonlinear) Raman Effects

Linear Raman spectroscopy is a sensitive and unique analytical tool, but it often suf-
fers from the fluorescence effect that may swamp the entire Raman signal of most 



112 R. Kizil and J. Irudayaraj

biological samples. Generally, the nonlinear Raman technique is more sensitive 
than the linear Raman technique and the fluorescence effect can be effectively dis-
criminated by the nonclassical Raman effect (Borman 1982). Important examples of 
these nonlinear Raman effects are  stimulated Raman scattering (SRS), stimulated 
Raman scattering (SRC), stimulated Raman gain (SRG), hyper-Raman scattering 
(HRS), inverse Raman scattering (IRS), coherent anti-Stokes Raman spectroscopy 
(CARS), and coherent Stokes Raman Spectroscopy (CSRA).

SRS is a nonlinear signal amplification technique that may be used to enhance 
the signal as high as 1013. The SRS was accidentally discovered when nitrobenzene 
cell was used as Q-switch of a ruby laser. In SRS phenomenon, light wave at a 
frequency of one of the Stokes-shifted photons is also incident on the sample be-
ing investigated simultaneously with a laser line at a defined frequency (Laubereau 
1982). So, a significant enhancement in Raman signal at a frequency corresponding 
to the strongest Raman transition can be observed. However, this technique has not 
found much applicability as a chemical analytical tool; rather, it is often utilized for 
extending the tuning ranges of the existing lasers.

SRG and IRS are closely related nonlinear techniques. The former involves 
stimulated gain at a Stokes-shifted frequency and the latter is stimulated loss at 
an anti-Stokes-shifted frequency. IRS can also be called stimulated Raman loss. 
The stimulated gain is thought to be an induced emission at a Stokes scattering 
frequency and is achieved by directing two laser lines, which are a pump laser at 
frequency νp and a probe laser, to the molecule being analyzed. The details of these 
techniques can be found elsewhere (Carreira and Horovitz 1982; Laubereau 1982). 
The coherent Raman output from nonlinear Raman techniques is highly direction 
dependent so that it can be easily separated from incoherent emissions, such as 
fluorescence. Compared to SRG, IRS provides better fluorescence rejection, since 
the signal beam is upshifted away from intense fluorescence emission.

Among nonlinear Raman techniques, CARS draw the most attention due to its 
extensive application in biological or chemical analysis. In CARS, two laser sourc-
es, a pump and probe laser, are mixed up and as a result of this a coherent beam at a 
third frequency is generated. Both CARS and CSRS involve vibrational coherences 
that can operate at electronically resonant conditions exhibiting resonance enhance-
ment. Like other coherent techniques, the directional nature of CARS and CSRS 
avoids fluorescence interference in the spectra.

HRS was first reported by Terhune and coworkers in 1965 using a pulsed ruby 
laser as the excitation source. A small fraction of this incident energy was converted 
into scattered radiation shifted slightly from the second harmonic of the ruby laser. 
The intensity of scattered photons was proportional to the square of the laser inten-
sity. HRS is a two-photon excited scattering phenomenon which provides comple-
mentary information to that of linear Raman and IR spectroscopes. The hyper Ra-
man effect relies on the hyperpolarizability which arises from the quadratic electric 
field of the laser. Although it can reveal vibrational modes that cannot be recorded 
by classical Raman or IR spectroscopy, HRS yields extremely weak signals with 
scattering cross sections 35 orders of magnitude smaller than one-photon excited 
classical Raman and 15 orders of magnitude less significant than two-photon ex-
cited nonlinear Raman techniques (Kneipp et al. 2006).
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5.3 Raman Instrumentation

A classical Raman instrumentation can be divided into three basic components:

• Laser source and excitation and optics
• Spectrometer and interface elements
• Detector and collecting optics

Although Raman instrumentation is divided into three main parts, there is a strong 
connection between the light source being used and the detecting system because of 
the operating region limitations in the detector technology. The Raman effect was 
first demonstrated by the discoverer using filtered sunlight as the monochromatic 
source of photons, a colored filter as the monochromator, and the human eye as the 
detector. The first easy-to-use Raman system, Cary 81 Raman spectrometer, was 
delivered to research laboratories in 1954; the system consisted of an excitation 
source of 3 kW helical Hg-arc, a Czerny-Littrow double monochromator with 1200 
grooves per mm grating as the spectrograph, and a photomultiplier tube (PMT) as 
the detector (Adar et al. 2007). Following these early stages of the discovery, instru-
mentation was first adapted to laser technology and semiconductor-based charge-
coupled device (CCD) detectors.

5.3.1 Raman Lasers

Lasers are used to excite molecules to generate Raman scattered photons out of 
samples which can be in solid (crystalline), liquid, or gaseous states. The lasers are 
coupled with spectrographs and then signal is transmitted to a detector. This brings 
inherently weak optical throughputs and necessities utilizing a high-power laser in 
Raman instrumentation. The use of lasers as a Raman source was first suggested in 
1961 by the inventor of the laser, Charles H. Townes, who worked as a professor 
of physics at Columbia University, MIT, and UC-Berkeley, and as a consultant to 
Bell Labs (Townes 1961). The theory of Raman and phonon maser was presented 
by Townes and students (Chiao et al. 1964). Weber and Porto (1965) conducted first 
laser-based Raman experiments for gases using a continuous wave (CW) He–Ne la-
ser. The involvement of laser in Raman experiments then was followed using other 
lasers such as the argon and krypton ion lasers which are expensive and require a 
supply of cooling water (Pitt et al. 2005).

The advances in spectrograph design enhanced the optical throughput especially 
after 1990 which was an important milestone for the use of lower-power lasers 
(typically 10–50 mW) in Raman instrumentation (Pitt et al. 2005). Well-collimated 
light at high-power output and thermal stabilization are required criteria for a laser 
to be implemented in fiber-optic-based industrial process control. New solid-state 
lasers meet these criteria and are attractive for industrial applications requiring rug-
ged and portable systems. It is important to note that all laser operations and fiber 
optics must have safety-appropriate switches and operational warning signals.



114 R. Kizil and J. Irudayaraj

The need for integrating lasers operating at NIR region (Nd-YAG laser, 1064 nm 
wavelength) within a Raman system has emerged as a necessity to avoid fluores-
cence effects that is frequently encountered in conventional Raman experiments of 
biological samples with Vis region excitation sources (Barbillat and da Silva 1997). 
This integration is usually not useful unless the system operates in conjunction with 
interferometric multiplexing detection.

There are lasers operating at UV, Vis, or NIR regions that can be used as the excita-
tion source in Raman instrumentation. Lasers providing UV emission lines between 
229 and 264 nm are typically larger in size and expensive than other lasers. Although 
laser line in UV region can bring thermal damages to samples, the sensitivity is auto-
matically increased due to the fourth-power wavelength dependence of Raman scat-
tering intensity. The selection for the laser source might seem simple and is mainly 
based on the wavelength selection and nominal output power of the selected laser 
line. Most Raman spectrometers use CW lasers, as long as wavelength and output 
stability are maintained. This is because Raman scattered signal sent to the detector is 
directly related to the power quantitatively serious problem and wavelength reference 
for Raman shift calculation of the laser. When Raman spectroscopy is involved in a 
continuous on-line process monitoring, system should provide stable peak intensities 
with minimal drift or fluctuations. The Raman laser line must be coupled to systems 
with detectors sensitive to Raman scattering being generated. For a typical Raman 
instrumentation, lasers operating at all Vis and UV wavelengths are currently coupled 
to multichannel detectors, which are generally CCDs, and NIR region lasers except 
830 nm excitation are being used with germanium (Ge) or indium gallium arsenide 
(InGaAs) single-channel detectors along with the Fourier transform Raman (FT-Ra-
man) configuration that provides multiplexing (Adar 2001).

5.3.2 Spectrometer (Spectrograph)

Spectrographs are the first instruments used to measure wavelengths, which still 
hold an important position in spectroscopy, particularly when equipped with opti-
cal multichannel analyzers (Laser Spectroscopy book). Spectrographs are optical 
instruments that form images from light that passes the entrance slit for slivering 
of the light then the images are laterally separated for different wavelengths ( λ) 
(spectral lines) of the incident radiation. This lateral dispersion is achieved either by 
spectral dispersion in prisms or by diffraction on plane or concave reflection grat-
ings. The spectral lines are identified by wavelength when captured by the detector.

The spectrometer design is essentially based on the detector being used. When 
the signal is detected with a PMT, it is required to transfer a tight focus to the exit 
slit of spectrometer to maintain optical spectral resolution. A spectrometer should 
minimize the tray light in the optical system. Czerny–Turner and Sergent-Rozey 
are two most common spectrometer designs; one uses slits along the horizontal 
trace and the other has the slits long the vertical line. The Czerney–Turner design 
essentially consists of two gratings; the first is focusing optics and three adjustable 
slits to filter out the Rayleigh scattered light and the second has gratings disperse 
the Raman light.
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When lasers were first introduced to Raman instrumentation in 1970s, the spec-
trometers of that period were based on either double or triple monochromator de-
signs. The first monochromator of double system and the first two of the triple 
monochromator system were used to filter out the stray light.

5.3.3 Detectors

Multiplexed fashion behavior like the photographic plate as well as electronic re-
sponse in a wide dynamic range with high signal to noise characteristic, digital data 
storage, and manipulation are the main requirements for a detector to be employed 
in a Raman system.

The early multichannel Raman detectors were the intensified photodiode array 
and imaging PMT having good signal quality but limited dynamic range capture 
(Adar et al. 2007). These detectors have currently been replaced by the high-sen-
sitivity CCD array detectors known as the CCD camera technology, delivering the 
speed and dynamic range benefits to multichannel detection. CCD detector is a two-
dimensional rectangular array composed of photosensitive elements with a typical 
resolution of 1024 × 256 pixels and operation rate of 50 kHz. During data collection, 
the horizontal rows of CCD are used to register wavelength, while the column ele-
ments are binned to record the intensity of scattered light at each wavelength. There 
are three different configurations available for the current CCD technology; front 
illuminated, thinned back-illuminated, and front or back deep depletion.

5.3.4 Base Raman Instrument Technology

Based on the signal detection technology, Raman system can be divided into two 
subgroups as dispersive Raman and interferometric FT-Raman instruments. Disper-
sive systems operate mainly at the Vis and UV region and should include compo-
nents that provide adequate resolution to measure the spectral lines and removal of 
the interference and stray light from the laser line. The resolution varies with the 
wavelength region and the dispersion of the grating within the spectral region of 
interest. As the resolution increases, the spectral/wavelength range coverage of the 
Raman system decreases. The most common grating density for the scanning grat-
ing operation in the Vis region is between 1000 and 2000 lines per mm. The early 
dispersive Raman instruments involved either double or triple monochromators but 
with the advent of holographic notch filters (HNFs) for filtering out the laser line 
the need for a sophisticated spectrograph in the instrumentation was lifted. The 
current technology enables both scanning and static grating mode of operations 
with array detectors such as CCD camera.

In a Raman experiment, a laser source is used to shine the incident light on 
the sample. Then inelastically scattered photons are collected through collection 
optics and filtered out from the cosmic rays and other interfering photons, such as 
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Rayleigh scattering. The final step in the experiment is detection of the scattered 
photons using a suitable detector. A PMT (in old technology) or CCD camera is 
employed to record Raman signals when UV and Vis sources are involved in excita-
tion (Fig. 5.4). InGaAs and Ge semiconductor detectors, the former operates at the 
room temperature but the latter must be cooled by liquid nitrogen, are needed if the 
excitation is done with a NIR range operating laser.

Filtering can be done using HNFs. A grating system separates photons by their 
wave numbers and Raman signal is recorded by a CCD camera. In a research grade 
dispersive Raman spectrometer, the sample is analyzed through a microscope.

FT-Raman configuration is specially designed to collect fluorescence-free and 
wavelength-stable spectra from a wide range of samples spanning from crystals to 
biological tissues (Chase 1987). A typical FT-Raman spectroscopy instrumentation 
is composed of an excitation source, a neodymium-doped yttrium aluminum garnet 
(Nd:YAG) laser which operates at NIR region (1064 nm), a sampling unit with proper 
collection optics (90 or 180° in general), an interferometer comprising a fixed and 
moving mirrors, and a detecting unit. A He–Ne laser (633-nm “red” excitation) is 
made collinear to the excitation laser, to aid obtaining the most proper optical align-
ment. In addition to guiding the Nd:YAG laser, the He–Ne laser in FT-Raman in-
strumentation serves as the reference laser for the operation of the interferometer. A 
line filter helps filtering plasma lines and the light is focused on a sample sitting in a 
sample compartment. In FT-Raman experiments, there is no need for sample prepa-
ration; the signal can be collected virtually from food samples at any physical state. 
The scattered light is then collected using either 180 or 90 back-scattering geometry 
and passes through a dielectric filter to cutoff the 1064- and 633-nm laser lines before 
entering the detector which can be nitrogen cooled Ge or room temperature InGaAs.

5.3.5 Process Raman Measurements with Fiber-optic Probes

It is convent to use a flow system to provide an on-line line sampling for Raman 
measurements when the analyte is a fluid. Continuous pumping of fluidic samples 
from a process vessel to a simple glass tube (vial) in the sample compartment of 

Fig. 5.4  A typical Raman experiment setup used to collect inelastically scattered light
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Raman spectrometer will be enough to acquire Raman signals during any timeframe 
of the process, because excitation line can penetrate a couple of centimeters in the 
glass without any interference. Since samples can be probed through fine glass con-
tainers, Raman spectroscopy offers a great flexibility compared to MIR and NIR ap-
proaches. For a Raman experiment, path length is of minor consideration; however, 
optical assembly must be designed to ensure that the feature of interest matches the 
beam and focal point for reproducibility of measurements (Smith and Dent 2005).

Nonetheless, flow cells may not satisfy the real process conditions, such as tem-
perature, and create lag from the real time due to transportation of samples from the 
process to the spectrometer. Delivering the incident light and conducting the scat-
tered radiation to a specific destination through fiber-optic probes provides a con-
venient means of adoption for on-line measurements in the field of spectroscopy, 
eliminating the time delay due to transportation of the sample from one medium to 
the other. Raman spectroscopy becomes more sampling flexible when the system is 
integrated with a fiber-optic probe.

A fiber-optic probe to be coupled to a Raman spectrometer has to perform both 
excitation and collection at the same time. The challenges of using a fiber-optic 
probe for Raman experiments include contraction of the laser beam into the de-
livery fiber optic (generally one fiber is used to deliver incident light), the probe 
design architecture, and contamination protection and coupling of the collecting 
fiber optics to the detector. The laser line is connected to fiber-optic probe using 
a coupler that attaches the fiber directly to output of the laser. A simple lens in the 
coupler can be used to inject the laser line into the fiber, precluding the misalign-
ment. Although a number of different fiber-optic designs are available, two design 
architecture is predominantly used. The first one is n-around-1 design and the sec-
ond one is coaxially filtered probe design. The n-around-1 probe design uses only 
one fiber for the delivery of the incident radiation and the rest of fiber for collection 
of scattered light.

5.4  PAT Applications of Raman Spectroscopy  
in Food Industry

PAT applications using Raman spectroscopy starts always with reliable attribution 
of the scattering bands/modes (features or markers) represented in the spectra to 
the sample’s chemical functional groups. Determination of the functional groups 
in the spectra is a critical step to identify the sample being investigated. A Raman 
spectroscopic analysis begins with the identification of a sample from its molecular 
fingerprints in the spectral form and continues with monitoring of alterations in 
band positions and intensities of some characteristic chemical functional groups, 
such as C–C, C–H, C = O, S–S, etc. Monitoring the spectral fingerprints, an analyzer 
can probe the chemical nature of a system under investigation during processing. 
Spectral information provides a good overview about the chemical structure (iden-
tity), conformational state of macromolecules such as proteins, level of saturation, 
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degree of crystallinity or polymorphism, and inter- and intramolecular interactions 
in the system of interest.

Attribution of Raman scattering modes to corresponding chemical functional 
groups is a key to most spectroscopic analysis. Since Raman technique is a well-es-
tablished molecular technique, assignments of chemical functional groups to most 
Raman modes are available through Raman atlases or references. Using such refer-
ences, even a novice of Raman spectroscopy can make successful band/peak assign-
ments, matching the spectral features with the chemical structure. In addition to the 
direct vibrational-mode-related qualitative analysis, experienced users can predict 
conformational states of proteins, changes in the level of unsaturation of lipids, and 
decomposition of polysaccharides from their Raman responses. Such information 
offered by Raman spectroscopy may provide useful insights on the assessment of 
process-related changes in a food system. The chart given in Fig. 5.5 summarizes 
significant Raman modes due to molecular stretch, bend, and other vibrations for 
major food components; proteins, fats, and carbohydrates.

Raman spectroscopy has been shown to provide promising benefits for the qual-
ity assessment of food products. Authentication of foods in a short time (in several 
minutes) and nondestructively using Raman and other vibrational spectroscopic 
techniques satisfy the current needs for quality screen of food products off-line. 
However, on-line monitor of foods or food processing using Raman spectroscopy is 
limited partly due to selectivity limitation of the technique or the lack of calibration. 
The current PAT using Raman spectroscopy in food science and industry is mainly 
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concentrated on the assessment of the quality of the final food product. Although 
Raman spectroscopy can be successfully employed to monitor physicochemical 
properties of food products during food processing, the complexity of most food 
systems precludes the industrial-scale application of the technique for on-line moni-
toring of product quality. Because the technique is very sensitive to detect a change 
in the composition or structure of macromolecules such as proteins, it is not se-
lective enough to probe only an interested change. The interested change cannot 
be directly evaluated from the information-rich spectral information, rather special 
data pretreatments are often necessary to draw a conclusion about the process. In 
addition, the product regulations are not very strict as it is for the pharmaceutical in-
dustry that may tolerate processing inefficiencies to a degree. However, deployment 
of Raman spectroscopy to on-line monitoring of the properties or the quality indices 
of food products during manufacturing or processing becomes an attractive alterna-
tive with the improvements in the instrumentation enabling fast and high-quality 
data collection and advances in quantification of spectral information through che-
mometrics.

Raman systems with Vis-range excitation should operate under dark ambient 
condition to prevent interference from outside light during process monitoring. 
However, laser sources operating at NIR field do not require dark condition for 
recording ambient noise- and fluorescence-free signal.

Comparing to MIR spectroscopy, Raman measurements provide spectral fea-
tures not interfered by the water (moisture)-related vibrational modes which are 
particularly important for the analyses of food and biological materials. In addition, 
Raman spectroscopy offers sampling flexibility of NIR spectroscopy, making mea-
surements available for the samples in a glass vial, or the laser line can be extended 
to remote a sample using a fiber-optic probe.

Carbohydrates show strong Raman responses in the fingerprint region due to 
various stretch-, bend-, twist-, and deformation-related vibrations of carbon atoms 
making covalent bonding with H, C, and O atoms (Fig. 5.5). The most distinct Ra-
man bands for polysaccharides arise from the skeletal mode vibrations of the reign 
structure recorded below 800 cm−1 (Fig. 5.6). The Raman peak at 478 cm−1 can 
directly be attributed to the polymeric glucose chain. This Raman mode can also 
provide quantitative information about the degree of polymerization of polysaccha-
rides (Celedon and Aguilera 2002). During the gelatinization process of starches, 
the Raman features due to crystalline phase almost disappear, whereas the O–H 
stretch mode becomes apparent as the uptake of water into starch granules becomes 
significant. Although the signal quality for starch gels was not good enough with the 
dispersive Raman setup used at that time, Kim et al. (1989) proposed a molecular-
based mechanism for the gelatinization process of starch, screening the Raman re-
sponses of starches and their gel forms using a Vis excitation.

Utilizing an FT-Raman spectrometer with NIR excitation for starch gel analysis, 
the signal quality of gelatinized polysaccharides was noticeably improved, dimin-
ishing the fluorescence effect. Using an FT-Raman configuration, Schuster et al. 
(2000) reported on-line monitoring of both gelatinization of potato starch and the 
subsequent enzymatic hydrolysis of the gel first to dextrin (liquefaction) and then to 
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glucose (saccharification). The conventional process monitoring approach for starch 
gelatinization and liquefaction is based on viscosity measurements. The progress 
of saccharification is traditionally assessed by determination of dextrose equiva-
lents through wet chemical techniques. With this novel spectrometric approach, 
Schuster et al. (2000) studied on-line monitoring of the gelatinization, liquefaction, 
and saccharification processes separately using a flow-through cell attached to the 
spectrometer. The flow cell was made up of a plastic material with a small CaF2 
window. The backside of the cell was coated with palladium mirror so that better-
quality Raman scattering could be acquired by backscattering. Circulating 0.4 ml/
min mixture from an experimental size (10 ml) gelatinization vessel to the flow cell, 
gelatinization at various temperatures were monitored by continuously collecting 
spectra, then liquefaction was monitored at 50 °C by adding α-amylase enzyme into 
the gelatinization reactor. Finally, the enzymatic saccharification of 50 g/l dextrin 
was monitored in a different batch, hydrolyzing dextrin to the simple sugar glucose. 
The chemical complexity of the reaction mixture makes the use of advanced data-
processing techniques necessary to extract useful quantitative information from Ra-
man data which is overlapped by the solvent and interfered by the byproducts. The 
same reaction system nowadays can be monitored by means of a fiber-optic probe 
attached to the Raman spectrometer and Raman scattering can be measured that can 
be used to collect through a thin transparent glass window of the reactor or the opti-
cal probe itself can be directly immersed in the mixture.

The swelling and gelatinization processes of starches at elevated temperatures re-
sult in apparent decrease in the intensity of all granular starch Raman bands except 
the water-uptake-related O–H bend (1633 cm−1) and stretch (3213 cm−1) modes. 
Monitoring changes in the relative intensity of major potato starch gel bands in the 
temperature range between 50 and 85 °C for 30 min, Schuster et al. (2000) draw an 
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attention to the break of intra- and intermolecular hydrogen bonds and formation of 
new hydrogen bonds with free water uptake upon the swelling of starch particles.

Although the signal quality gets poor due to optical transitions in the starch-wa-
ter dispersion during gelatinization, Raman spectroscopy provides clear evidences 
for the heat-induced deformation in the structure of starch. As shown in Fig. 5.7, 
granular starch gives strong skeletal mode (ring structure)-related Raman responses 
but they diminish drastically upon gelatinization (Kizil and Irudayaraj 2006). The 
skeletal mode C–C stretch was shown to be useful for determination of the loss of 
birefringence in starch granules as a function of temperature (Celedon and Aguilera 
2002).

Monitoring enzymatic hydrolysis reaction of pre-gelatinized potato starch, 
Schuster et al. (2000) have shown that the process brings three remarkable spec-
tral changes. The first one is diminishing of all Raman modes originating from the 
skeletal vibrations (below 800 cm−1) of granular starch. The second process-related 
change is an apparent wavelength shift of Raman mode at 947 cm−1 due to the 
cleavage of glycosidic linkages of the polysaccharide by the enzymatic activity. 
The last one is intensifying and broadening of the O–H-bend-related Raman peaks 
around 1633 cm−1.

FT-Raman monitoring of the subsequent enzymatic reaction (saccharification) 
in which dextrins produced by liquefaction is converted into dextrose results in 
total disappearance of the skeletal responses of granular starch (480 and 735 cm−1) 
in the Raman spectra and new bands appeared as the reaction proceeds (Fig. 5.8). 
Saccharification-related Raman bands in the low wavelength region were detected 
at 426 and 519 cm−1 and noted as Raman markers for the reaction. The enzymatic 
breakdown of the α,1–4 glycosidic linkage was monitored as a peak shift from 

Fig. 5.7  FT-Raman spectra of different starches and their gels. (Kizil and Irudayaraj 2006)
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934 cm−1 to the left. Since glucose is the final product, the process results in the 
formation of remarkable C–O (1128 cm−1) and C–O–H (1059 cm−1)-related Raman 
peaks.

Schuster et al. (2000) demonstrated the potential of Raman spectroscopy in on-
line monitoring of an industrially important process for glucose production. They 
showed that the structure of materials used in the process can be determined and 
reactions can be characterized by the wavelength shifts, disappearance of polysac-
charide Raman peaks, or appearance of new bands due to chemical conversion. 
This study infers that on-line monitoring of such a production scheme by means of 
Raman spectroscopy can provide a good control over the process, improving the 
product quality and yield through each reaction.

Since fat and oil do not mix with water and other hydrophilic constituents in 
food, Raman spectroscopic studies of lipids offer easy measurement advantage. The 
study of oils with Raman spectroscopy became more accessible after the develop-
ment of instrumentation which enables rejection of Rayleigh line with holographic 
filtering, high-sensitivity CCD detectors, and reduced fluorescence through the use 
of NIR-region excitation lasers. The high detection sensitivity of Raman towards 
π-bonds present in oils and fats makes it an attractive analytical tool to predict the 
level saturation and determine isomerization ratio of lipids.

Compositional analysis offered by Raman spectroscopy makes this technique 
very useful for determination of the nutritional and dietary value of food products. 
The fatty acid compositions of adipose tissue from chicken, beef, pork, and lamb 
can be predicted using even a home-built Raman spectrometer system operating 
with a 785-nm laser excitation at nearly 100-mW laser power and detecting the sig-
nal using a spectrograph coupled to a liquid-nitrogen-cooled CCD detector (Beattie 
et al. 2006). The Raman signal accumulated during 60 s of data acquisition period in 
the 270 and 1900 cm−1 Raman shift region was used to probe C–C, C = C, C–O, and 
C = O stretch modes and C–H bend vibrations of lipids (Fig. 5.9). Table 5.1 presents 
tentative assignment of bands in the Raman spectra of adipose tissue as presented 

Fig. 5.8  FT-Raman monitoring of saccharification. (Schuster et al. 2000)
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Table 5.1  Tentative assignment of bands in the Raman spectra of adipose tissue. (Modified from 
Beattie et al. 2006)
Band # Band position range (cm−1) Tentative assignment
1 1730–1750 C = O carbonyl stretch
2 1650–1680 cis (1650–1660, trans (1660–1680) 

C = C olefinic stretch
3 1400–1500 (CH2) methylene scissor deformation
4 1295–1305 (CH2) methylene twist deformation
5 1250–1280 (= CH2) in-plane cis olefinic H bend
6 1100–1135 (C–C) in-phase aliphatic C–C stretch 

all trans
7 1080–1090 (C–C) aliphatic C–C stretch all 

gauche
8 1060–1065 (C–C) aliphatic out of phase stretch 

all trans
9  800–920 Combination of (C1–C2) stretch, 

(CH3) rocking, C–O stretch
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by Beattie et al. (2006). Multivariate calibration models were developed for the esti-
mation of the bulk properties of adipose tissue and a detailed fatty acid profiling by 
partial least squares (PLS) regression provided prediction accuracy as good as other 
spectroscopic techniques such as NIR and Fourier transform infrared (FTIR). These 
results suggest that the approach can be considered as a secondary standard for the 
determination of chemical properties of animal fat. Such a spectroscopic approach, 
however, can be put to a practical on-line application, in which noncontact and rapid 
measurements with no sample preparation necessity can be maintained.

Raman spectroscopic information can also allow classification of fats and oils 
(adipose tissue samples) different from their botanical or animal origins, applying a 
multivariate discrimination tool to specific Raman data. Baeten et al. (1998) studied 
classification of 38 oils and fats from 21 different sources based on the level of 
unsaturation, applying principal component analysis (PCA) to Raman data acquired 
with a FT-Raman spectrometer. Beattie et al. (2007) studied classification of adi-
pose tissues from four different animal sources using a dispersive Raman system 
operating with a 785 nm a diode laser which produces less fluorescence background 
comparing to visible laser lines.

For the classification of adipose tissues from their Raman responses, a discrimi-
native multivariate statistical tool was employed. Raman spectra were collected 
from 255 different samples, of which 102 were used to build a discrimiation model 
while 153 were used for testing. To reduce the computational complexity in the 
analysis, PLS or PCA was applied to Raman spectral information, reducing the data 
to a manageable size. Finally, the latent variables obtained from the data reduction 
technique were transferred to a nonsupervised (nondirected) discrimination tool 
called partial least squares discriminant analysis (PLSDA). Figure 5.10 shows the 
separation of Raman observations obtained from four different sources. The circles 
depict the 90 % confidence intervals for the statistical grouping decision. Based on 
the Fig. 5.10, most of the lamb and beef adipose tissue samples are well separated 
and grouped into specific spaces defined by two discriminant score variates, dis-
criminant score (DS) 1 and 2. Only few beef (marked by an arrow) and lamb tissue 
samples were represented out of their groups described by the 90 % confidence 
intervals. However, the discriminant analysis was not able make a good separation 
for porcine and chicken adipose tissues, so both samples were clustered in the same 
group. The results show that Raman spectroscopy can be effectively used to differ-
entiate ruminant adipose tissues from the nonruminant ones.

The potential of Raman spectroscopy for rapid and nondestructive prediction of 
omega-6 and omega-3 fatty acids in pork adipose tissue was demonstrated utilizing 
a contact fiber-optic probe (Olsen et al. 2008). The Raman system for this study 
consists of a NIR region operating laser for excitation, a ball-type fiber-optic probe 
with a 6-mm-diameter spherical sapphire lens as the sampling device and an elec-
trothermal-cooled CCD as the detector. Raman spectra were collected from both 
the dorsal and ventral sides of cube-like cut adipose tissues by direct contacting the 
probe with the sample at 20 °C and from melted fat around 50 °C by immersing the 
probe into the melt.
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The acquisition time to collect Raman spectra was 20 s with the CCD detector. 
The Raman spectra from the melted samples were compared with FTIR results. For 
the analysis of omega-6 and omega-3 fatty acids, double bond structures of C = C 
are important. Raman spectroscopy gives free distinct peaks related to the HC = CH 
vibrations at 3009, 1655, and 1263 cm−1.

The band at 3009 cm−1 is apparent in both Raman and FTIR spectra and attrib-
uted to the asymmetric stretch of cis-configured C = C bonds that is often used as 
an indicator of degrees of unsaturation. The peak at 1655 cm−1 appears to be one of 
the prominent bands in Raman spectra of oils and fats, whereas it has very weak IR 
absorption. This peak is a characteristic of cis-configured C = C vibration of olefins 
and shifts between 1670 and 1650 cm−1 depending on various factors. This peak 
serves as a basis to predict the iodine value of margarines. The symmetric rocking 
of unconjugated cis-configured double bond scatter at 1263 cm−1. This Raman peak 
is free from interference of any trans bond vibrations and can be used to estimate 
the level of cis unsaturation of lipids.

Raman spectroscopic investigations, which offer in situ nondestructive analysis 
with sampling convention of fiber-optic probes, can be adapted to rapid yet accurate 
prediction of omega fatty acid contents of adipose tissues, making measurements 
possible directly from carcasses and their cuts. This approach is expected to bring 
a positive effect in marketing of meat products. Raman spectroscopy with fiber-
optic probing and a suitable regression method can be employed to on-line sort of 
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the carcasses or cuts based on the content of omega-3 and omega-6 fatty acids in 
slaughterhouses (Olsen et al. 2008).

Raman spectroscopy was shown to be a rapid and nondestructive quality as-
sessment tool for the analysis of edible oils and fats. Although during the 1980s 
and 1990s the FT-Raman setup was the primary choice for the analysis of fats and 
oils, which is a very powerful technique for overcoming the fluorescence effect, 
recent advances in Raman instrumentation made it possible to study oils and fats 
or high-lipid-containing samples with a good signal quality in a shorter time with 
a dispersive Raman system. The botanical origin (Baeten et al. 1998; Yang et al. 
2005), authenticity (Yang and Irudayaraj 2000; El-Abbasy et al. 2009), and degree 
of unsaturation (Barthus and Poppi 2001; Silveira et al. 2009) of edible oils and 
fats can be determined using chemical information obtained from selected Raman 
bands. For example, adulteration of olive oil with cheap vegetable oils such as sun-
flower, olive pomace, or hazelnut oil, which has long been a problem in the olive oil 
market, was studied to determine the amount of the adulterant, treating the spectral 
data by means of a regression tool such as PCA or PLS. Comparing the result of 
NIR, FTIR, and FT-Raman methods, the best standard error of prediction of the 
correlation was obtained from FT-Raman data as low as 1.72 % for pomace oil 
adulteration (Yang and Irudayaraj 2001). The detection limit for the sunflower oil 
in olive oil was determined as below as 500 ppm by using dispersive Raman spec-
troscopy with Vis range excitation, that actually is not a practical adulteration ratio 
for economical purposes but important for the trace element analysis (El-Abassy 
et al. 2009). FT-Raman spectroscopy was also demonstrated to be an effective tool 
for determination of conjugated linoleic acids in cow milk fat within the range of 
0.56–4.70 % (Bernuy et al. 2008).

Oxidation is a major chemical deterioration process for lipids. Lipid oxidation 
is a complex free-radical chain reaction, causing a variety of chemical and physi-
cal changes in lipids. The products of lipid oxidation can be identified using gas or 
liquid chromatography systems. Among the lipid oxidation products, aldehydes, 
which are responsible for the development of rancidity, can be determined through 
specific wet chemical techniques such as anisidine and 2-thiobarbituric acid (TBA) 
value analyses. The progress of the lipid oxidation reaction can be studied by chem-
ical parameters such as peroxide value and UV absorbance measurements at 232 
and 270 nm. Muik et al. (2005) showed that the oxidation process of edible oils can 
be monitored using FT-Raman spectroscopy, providing information about the extent 
of oxidation and the products. Formation of aldehydes, isomerizations of cis and 
trans double bonds, and conjugation of double bonds were determined screening 
the C–C stretch region of oil’s Raman spectra. Anisidine value and spectrophoto-
metric response at 270 nm as the primary standards can be correlated with Raman 
results to determine the extent of oxidation.

Proteins are one of the major components of nutritionally valuable foods, such 
as animal-based foods and some plant-based food like cereals and nuts. Proteins are 
composed of amino acids that are connected by peptide linkages. The structure of a 
protein is determined by the linear assortment of amino acid backbone chained via 
peptide linkages and progress through ordered arrangements (secondary, tertiary, 
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and quaternary structures) to form the final molecular shape. There is a close rela-
tionship between the structure and function for protein molecules. The myofibrillar 
proteins are the main contributors to the textural and functional properties of muscle 
foods. The functional properties such as foamability, water-holding capacity, solu-
bility, gel-forming ability, emulsifying activity and stability and viscosity, and the 
textural properties of high-protein-containing foods depend to a great extent on the 
structure of their protein content. Changes in the structure of proteins can happen 
through reversible or irreversible processes. Once the structure of a protein changes 
irreversibly, that protein will no longer exhibit its inherent functional properties 
possessed in its ordered form. Elucidation of protein structure using spectroscopic 
or other optical techniques as well as x-ray crystallography has always been of 
prime interest in biological fields since functional properties and chemical nature of 
a protein can be predicted from its structure.

Monitoring food processing operations using rapid and nondestructive Raman 
spectroscopic technique, which provides fruitful information about the chemical 
structure of proteins at the molecular level, provides a convenient and accurate 
means of on-line detection of food quality as well as prediction of the functional 
and textural properties of the final processed product.

Raman spectra contain plenty of information about protein backbone structure 
and side chains in the form of well-separated bands/peaks with varying intensities 
at distinct wave numbers. Protein Raman spectra contain nearly 30 peaks arising 
mainly from the vibrational modes of the backbone structure and some contribu-
tions from vibrations of amino acid side chains (Thomas 2002).

Raman peaks of proteins in the 500–1750 cm−1 region are attributed to the vi-
brations of the backbone structure (amide bond linked chain) and amino acid side 
changes as well as ringed structures of particular amino acids, such as tyrosine 
“tyr,” phenylalanine “phe,” and tryptophan “trp.” The Raman bands attributed to 
sulfur groups arise from the C–S and S–S stretch modes recorded below 700 cm−1. 
Since the disulfide bridge is structure stabilizing bonding, the S–S (508 cm−1) vibra-
tion modes are useful for determination of protein structure.

Proteins are composed of amino acids that are connected through covalent link-
ages, the peptide (amide) bonds. The linear assortment of amino acids via peptide 
bonds is known as protein backbone and the sequence of amino acids along the 
backbone determines the primary structure of proteins. Hence, length of a protein 
backbone structure can be represented by the number of peptide bonds covalently 
attached. Peptide bonds involve in the formation of hydrogen bonds between the 
water molecules and it also makes intramolecular hydrogen bonding with proteins 
own N–H and C = O groups. Hydrogen bonding is a weak force but important for 
stabilization of the protein structure along with other molecular interactions. There-
fore, it is important to probe backbone amide and sulfur group vibrations to under-
stand how protein structure changes. Secondary structure is ordered arrangement 
(conformation) of amino acids by means of a variety of molecular interactions in 
localized regions. The secondary structure of a protein can be predicted from the 
molecular vibrations of the amide group. These vibrations are C = O-, N–H-, and  
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C–N-related in-plane vibrations that appear in five different regions having differ-
ent names for each region. These are amide I, II, III, and amide A and B regions.

Among the amide-related vibrational modes, the most prominent one is the am-
ide I envelope appearing between 1590 and 1720 cm−1 of protein Raman spec-
tra. The amide I envelope is closely associated with the carbonyl (C = O) groups 
(nearly 80 % of all vibrational contribution) that serve as acceptors for the formation 
of hydrogen bonding in the backbone. Therefore, this Raman feature can be used 
to predict the secondary structure of proteins. Because the amide I region can be 
decomposed into various component peaks and most of these component peaks 
correspond to helical, turn, random coil, and sheet motifs at specific wavelengths. 
However, some of the component bands may arise from amino acid side chain and 
unordered structures. The component peaks in the amide I region are determined 
through curve-fitting algorithms using Gaussian or Lorentzian functions/shapes. 
Various mathematical approximations can be utilized to obtain the best fit to the 
amide I band with a series of component peaks. The peaks of the component bands 
obtained by curve fitting technique correspond to designated structural motifs, he-
lix, turn, and sheet. Raman band associated with the α-helical content of protein 
appears in the interval of 1650–1658 cm−1 in the amide I region. Proteins with high 
helical content generally give Raman amide I response centered at 1650 cm−1. This 
is clearly observed in the Raman spectra of muscle tissue samples from fresh hake 
fish (Fig. 5.11). Other prominent protein motifs, such as β-sheets give a rise to Ra-
man signals in the range of 1665–1680 cm–1, and random coil structures exhibit 
Raman bands at the interval of 1660–665 cm–1.

Although freezing is a useful food-preserving technique, which provides consid-
erable increase in the storage life of a food product, it may bring detrimental chang-
es in the textural and functional properties by changing the structure of proteins. 
Freezing of fish products tends to cause formation of high molecular weight ag-
gregates of proteins, which mainly contain myofibrillar proteins, myosin, and actin. 
Raman spectroscopic investigations have indicated that freezing-related changes in 
protein structure can be elucidated through the analysis of the amide I and III bands 
and the nature of hydrophobic interaction of proteins can be probed from the C–H 
stretch (2800–3000 cm−1; Herrero 2008). Careche and Li-Chan (1997) showed that 
myosin isolated from cod underwent structural modifications associated with a loss 
in the helical content due to freezing at − 20 °C and the protein involved in more 
hydrophobic interactions after frozen storage or formaldehyde addition. Structural 
changes in actomyosin from ling cod during cold storage were also determined 
in the presence of various cryoprotectants (Sultanbawa and Li-Chan 2001). Low-
temperature gelation process of protein extracts from underutilized fish species for 
making surimi, which is utilized as imitation shell fish in the Western world, causes 
unfolding of helical motifs and progress with cross-linking of the protein network 
(Ogawa et al. 1999). In addition to myofibrillar proteins, structure of connective tis-
sue from fresh and thawed cod fish can also be studied using Raman spectroscopy. 
Badii and Howell (2003) reported cold storage, formaldehyde, and fish oil addition 
effects on the structure of fish collagen. They showed that the amide I band centered 
at 1660 cm−1 along with secondary structure stabilizing bonds and interaction-re-
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lated Raman modes are prone to changes in the presence of fish oil and formalde-
hyde. Raman spectra show chemical treatment effects on the structure of fish col-
lagen particularly at the amide I band centered at 1660 cm−1, CH3 symmetric stretch 
(937 cm−1), Phe ring bend (1034 cm−1), protein backbone CN stretch (1128 cm−1), 
and aliphatic CH3 asymmetric rock (1160 cm−1) as well as Trp bands at 1554 and 
1451 cm−1 regions. Changes in the intensity and shape of Raman scattering bands 
due to the hydrophobic amino acids such as Phe and Trp suggest that some amino 
acid residues along the backbone get buried or exposed to the solvent upon chemi-
cal treatments. It is inferred that the structure of fish collagen and changes in the hy-
drophobic residues such as Phe and Trp can be monitored by Raman spectroscopy. 
These spectroscopically determined parameters can provide useful insights about 
quality improvement of stored food. It is also reported that protein Raman bands in 
876–951 cm−1 and 3071–3128 cm−1 region can also be used to predict water-holding 
capacity of fresh porcine meat (Pedersen et al. 2003).

Although all these studies provide valuable information about the secondary 
structure and hydrogen bonding assembly of food proteins, the analyses were per-
formed on proteins isolated and purified from a variety of fish species, not directly 
recording responses from the food (fish) itself. The chemical composition of food 
such as meat and fish is complicated and includes various organic compounds all 
contributing to the Raman spectra. Raman spectra of complex food have often 

Fig. 5.11  Raman peaks of fresh muscle tissue of hake, showing a prominent peak at 1665 cm−1 is 
due to helical content. (Careche et al. 1999)
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overlapping peaks and the dynamic nature of food may create artifact effect when 
analyzing the conformational state of proteins. For this reason, a good sampling 
strategy, posttreatment of data, and the choice of Raman instrumentation type are 
critical factors to obtain reliable results about the structure and composition of food 
samples.

There are a limited number of Raman spectroscopic studies that investigate food 
quality directly recording relevant quality measures from the food itself. Marquardt 
and Wold (2004) studied the potential of rapid quality screening of fish by a disper-
sive Raman system operating at 785-nm excitation line. The Raman system utilized 
in this study is capable of measuring a selected region along the fish samples by 
means of a fiber-optic head and a microscope objective. Coupling the probe head 
with a microscope objective, the Raman system can provide real-time screening 
of fish samples. The quality of fish is determined by attributes including chemi-
cal composition, color, freshness, and texture. Since Raman spectroscopy provides 
molecular level insight about the chemical composition of fish when good signal-
to-noise ratio is attained and bands are well separated, the quality measure related 
to the chemical composition can be well determined. Collagen and fat composition 
was investigated to correlate quality of fish with the chemical composition in this 
study. Apart from the freshness, color for some fish species, for example salmon, is 
the main factor that effects the consumer perception. The pink color of salmon fish 
is attributed to deposition of carotenoids astaxanthin and canthaxantin. Collagen is 
protein that significantly contributes to the texture of fish. Fat is another key quality 
effecting parameter which prominently influences the nutritional, sensory, and pro-
cessing properties of fatty fishes like salmon. The authors attempted to determine 
quality of different fishes using Raman spectra measured from the intact fish fillets 
of species with eight different content of carotenoids, collagen, or fat without per-
forming a reference measurement. Analyzing simultaneously the deposition of ca-
rotenoids in salmon muscle, collagen type (I and V), and fats, Marquardt and Wold 
(2004) showed the potential of Raman spectroscopy for rapid quality screening of 
fish species. In the analysis, it was critical to apply a data posttreatment routine 
to remove fluoresce background from Raman spectra. A fourth-order polynomial 
function was fitted to the raw spectra and then subtracted from the raw spectrum 
to eliminate fluorescence background intensities in the Raman spectra. In addition 
to the fluorescence interference, spectral overlap of chemical components can also 
occur when a complex sample such as muscle tissue is analyzed.

The collagen type I was differentiated from type V whose fluorescence was re-
corded to be half of the type I. The carotenoids in salmon was detected at 1005, 
1159, and 1518 cm−1 wave numbers. Based on the carotenoids and fat-related Ra-
man responses, white fish samples were discriminated using PCA. The heme group 
of myoglobin can also show resonance enhancement. Monitoring the structural 
changes of myoglobin in pressure-treated porcine meat, meat quality was studied by 
directly collecting spectra from meat samples by a resonance Raman spectrometer 
operating at 413 nm excitation laser source.

Prediction of the sensory quality of meat and meat products has long been inter-
est to food industry since the sensory quality attributes predominantly influence the 
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consumer’s perception. Consumer perception is generally measured through sen-
sory panels as a time-consuming and destructive quality-assurance method in meat 
industry. The prediction of consumer response using an instrumental technique that 
offers fast and nondestructive testing and sensitivity provides an alternative ap-
proach for the assessment of meat quality. Such an instrumental technique can be 
a promising tool of quality assessment for the food-processing industry and even 
for the inspectors and consumers. Although NIR and also MIR spectroscopy have 
been successfully employed to prediction of meat quality and compared with the re-
sults of shear force value, which is the primary instrumental measure for the meat’s 
tenderness, the more elaborate and moisture insensitive vibrational spectroscopic 
tool, Raman spectroscopy has not yet fully been implemented in this area. Only a 
few preliminary investigations for the prediction of the sensory attributes of meat 
and meat products were performed by Raman spectroscopy (Beattie et al. 2004; 
Brondum et al. 2000)

In the analysis of complex food system, proper selection of instrumentation to 
reduce optical interferences other than Raman scattering, the resonance effect form-
ing lasing, filtering the signal, and experience of multivariate data treatment improve 
the quality of Raman measurements and provide better interpretations of the results 
for quality assessment purposes. For example, resonance Raman spectroscopy was 
employed to monitor progress of lipid oxidation in mechanically separated turkey 
over the oxidative bleaching of β-carotene (Kathirvel et al. 2008). This study showed 
the potential of resonance enhancement of β-carotene peaks as the marker in meat 
samples for determination of the extent of lipid oxidation in turkey meat. As Raman 
instrumentation technology evolves, new Raman probe systems are being developed 
and coupled to Raman spectrometers that can make on-line investigation of food at-
tractive. A prototype Raman probe attached to a customized 671-nm microsystem di-
ode laser was used for in situ investigation of meat spoilage (Sowoidnich et al. 2010). 
The experimental setup is illustrated in Fig. 5.12 and the system was used to monitor 
biochemical changes in pork longissimus dorsi due to storage.
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Fig. 5.12  Raman experi-
mental setup employed to in 
situ investigation of meat. 
( 1) laser module, ( 2) Raman 
optical bench, ( 3) meat 
sample, ( 4) optical fiber, ( 5) 
launch optics, ( 6) spectrom-
eter, ( 7) CCD camera, ( 8) 
computer, ( 9) laser driver. 
(Sowoidnich et al. 2010)
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6.1 Introduction

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI)-based 
sensors provide a wealth of information concerning the properties of a material. 
Examples of the type of information that can be obtained from magnetic resonance 
(MR)-based measurements are shown in Fig. 6.1. Figure 6.1a is a plot correlating 
the MR proton signal to moisture content in navy beans, while Fig. 6.1b shows 
variations in internal properties of Roma tomatoes as a function of maturity. MR-
derived information is complementary to information obtained from other spec-
troscopy-based sensors because the information content is obtained from the entire 
sample. In contrast to MR, the information content from many other technologies 
(e.g., optical spectroscopy) often provides information primarily from the material 
surface or near-surface region. MR-based measurements have additional features, 
making them an attractive measurement technique to employ in process analytical 
technology (PAT). The MR signal is directly proportional to the number of nuclei in 
a specific sample volume and is linear from the detection limits of ~ 10 ppt to 100 % 
(Skloss et al. 1994). Highly specific chemical information may be obtained since 
spectra can be recorded from only one nucleus (1H, 31P, 23Na, or 13C) or a combina-
tion of nuclei. Multiple types of information, including chemical, physical state, 
sample internal structure at a range of length scales, pH, and temperature, may be 
measured. MR measurements can be made rapidly and at a speed compatible with 
most food processing lines. From the reliability standpoint, an MR spectrometer has 
no moving parts and needs minimal maintenance.

Incorporating an MR-based sensor into a process requires consideration of the 
influence of motion, temperature, and environmental factors. The influence of mo-
tion impacts the MR signal through changes in intensity, changes in effective re-
laxation times, and through limiting the time, a sample is in the measurement zone. 
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Temperature changes or variations impact the signal and the phase of components 
so that care must be taken to ensure appropriate sample temperature control and his-
tory for many measurements (e.g., solid–liquid ratio in cocoa butter). Environmen-
tally, the magnet and spectrometer electronics will generally need to be temperature 
controlled and the magnet protected from unintentional insertion of ferrous metals. 
All of these considerations can be addressed and successful implementations of 
MR-based process sensors can be achieved.
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Fig. 6.1  a Magnetic resonance calibration curve for determining the moisture content of navy 
beans. b Proton magnetic resonance images of tomatoes demonstrating differences in maturity
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One of the earliest implementations involved the measurement of proton spectra 
from a flowing process stream (Nelson et al. 1960). A 30-MHz system was em-
ployed and a sample spectra was recorded every 6 s from a 3-mm-diameter glass 
tube. This was demonstrated in a pilot plant process. Applications noted in the lit-
erature related to foods include the measurement of viscosity (Snoddy 1993), fat 
content in meat (McDonald 1995), and moisture content in foods (Tellier and Mari-
ette 1995). An MRI system was employed by Surrey Medical Imaging Systems to 
detect microbial spoilage in aseptically packaged infant formula and intravenous 
food packages. The system was based on a whole-body permanent magnet initially 
designed for clinical application. The magnet was coupled to a conveyor belt and 
the entire case of product was imaged to detect microbial contamination (McCarthy 
and Bobroff 2000). A higher-field superconducting magnet was employed in Japan 
for measuring the quality of watermelons for several years.

While NMR and MRI have been used for process control in food production, 
the applications remain limited in number of systems. This is in contrast to the 
petroleum refinery industry, where many NMR spectroscopy systems have been 
implemented to improve yield, and the polymer industry, where NMR is used for 
measuring melt index, xylene solubles, and other quality parameters. As the value 
of food products increase and the cost of MR sensors decrease, one can anticipate 
greater use of MR-based sensors in food production.

6.2 Theory of Nuclear Magnetic Resonance

MR is a phenomenon that occurs between atomic particles and an external magnetic 
field. The atomic particles responsible for this interaction are the electrons and the 
nucleus. The interaction between the atomic particles and an external magnetic field 
is similar to what happens when iron filings are placed near a bar magnet. The fil-
ings become oriented and a magnetic field is induced in the metal. However, unlike 
the filings, the physical orientation of the atomic particles is not altered. At most 
common magnetic field strengths, only the magnetic moment of the atomic particles 
is induced. The phenomenon of resonance is observed in these systems because 
they absorb and emit energy at specific frequencies. The specific frequency depends 
on the individual atomic particle and the strength of the applied magnetic field.

Work discussed in this chapter will focus on using the nucleus as the atomic par-
ticle, and in this case, the phenomenon is referred to as nuclear magnetic resonance. 
Common nuclei with magnetic moments include 1H, 31P, 15N, and 23Na. The most 
commonly studied nuclei in food systems is the 1H. In both medical and food appli-
cations of NMR, the technique is often referred to simply as MR. The term nuclear 
is omitted so that patients/consumers will not confuse this technique with nuclear 
procedures that use radioactive materials. MR is a safe, experimental procedure 
and does not harm or alter the sample, the operator, or the environment (McCarthy 
1994).
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When an ensemble of spins is placed in a magnetic field B  = (0, 0, B0), the en-
semble magnetization vector M precesses around this field at the Larmor frequency 
ω0 = γB0. Resonance phenomenon results upon application of a transverse radio fre-
quency (RF) field B1 oscillating at the same frequency ω0. At resonance, the magne-
tization simultaneously precesses around the longitudinal field B0 at ω0 and around 
the RF field B1 at ω1. A short burst of a resonant RF field is known in NMR as the 
RF pulse. If the duration of the RF pulse is t, then the magnetization will rotate by 
an angle ω1t about the direction B1 in the rotating frame.

The detection of the NMR signal is governed by Faraday’s law and depends on 
the motion of the magnetization vector. Suppose a receiver RF coil is placed around 
the sample with its symmetry axis transverse to the polarizing field B0, then a RF 
pulse will produce transverse magnetization precessing at the Larmor frequency ω0 
which will induce an oscillatory electromotive force (emf) at the same frequency 
ω0. Therefore, the primary NMR signal is measured in the time domain as an oscil-
lating, decaying emf (known as the free induction decay (FID) signal). For instance, 
for a single pulse experiment, where a 90° RF pulse ( ω1t = π/2) is applied to the 
equilibrium spin magnetization (0, 0, M0), the magnetization at time t after the RF 
pulse is M( t) = ( M0cosω0t exp (− t/T2), M0 sinω0t exp (− t/T2), 0), or in complex 
number notation M( t) = M0exp ( iω0t) exp (− t/T2). The time constant T2 character-
izes the transverse (spin–spin) relaxation, which has to do with interactions be-
tween spins of the ensemble. Another time constant, important in MR applications, 
is longitudinal (spin–lattice) relaxation time T1. This time parameter characterizes 
how fast the thermal equilibrium of the spin system is restored (for instance, after 
application of the RF pulse) and depends on the exchange of energy between the 
spin system and the lattice (this term refers to the surrounding thermal reservoir).

In conventional NMR spectroscopy, the spectrum of nuclear precession frequen-
cies provides information about the chemical environment of the spins, and there-
fore, it is important to remove the inhomogeneities in the B0 field prior to each 
experiment (this removal is achieved by careful adjustment of the currents in the 
magnet shim coils). However, if a profile of magnetic field is deliberately varied 
linearly across the sample, the Larmor frequencies of the sample spins will show 
the same spatial dependence. The linearly varying field is known as a field gradient, 
which is created by means of specially designed gradient coils. Since the gradient 
fields are much smaller than the field B0, the Larmor frequencies are affected only 
by gradient field components G parallel to B0. The Larmor frequency at the point r 
then can be written as:

 (6.1)

This linear relation between the Larmor frequency and the spin location, r, ex-
presses the fundamental idea of MRI (Callaghan 1991). The integrated NMR signal 
from a sample may be written as:

 (6.2)

0( ) ( · ).Bω γ= +r G r

( ) ( ) exp ( · )dS t iρ γ= ∫∫∫ r G r r
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where r is a position of the volume element dr and ρ(r) is the local spin density. 
The signal is so defined by taking into account that, relative to the reference reso-
nant frequency ω0 = γB0, heterodyne detection provides the signal frequency offsets 
in the audio range. The effects of transverse relaxation are not taken into account, 
since the dephasing due to the spread in γG·r is much more rapid. The concept of a 
reciprocal space vector, k, may be introduced:

 (6.3)

The fundamental relationship of MRI is based on the concept of the Fourier trans-
form and states that the signal S(k) and the spin density ρ(r) are mutually conjugate. 
Therefore, S(k) is measured in the time domain and the Fourier transform yields 
ρ(r) in the frequency domain:

 (6.4)

In general, the phase accumulation at the location r during the application of the 
time-dependent gradient G( t) can be written as:

 (6.5)

For the uniaxial flow of fluid along the z-direction, r = ( x, y, z( t)). The pulsed gradi-
ent spin echo (PGSE) pulse sequence can be employed to measure the velocity in 
one spatial dimension. PGSE uses two distinct rectangular shape phase encoding 
gradient pulses of the same duration τ, inducing phase accumulations ϕ1 and ϕ2:

 (6.6)

 (6.7)

If the first phase accumulation can be inverted by a 180° RF pulse, then the net 
phase is ϕ  =  ϕ2 –  ϕ1 =  γGz∆zτ, thus encoding the displacement of the fluid, Δz, over 
the flow time T (the time between the velocity encoding gradient pulses).

The MR signal will be:

 (6.8)

where P (Δz; x; T) is the probability density for a fluid element at radial position x to 
displace for a distance Δz within the flow time T. The values kx and qz are given by 
(2π)−1γGxt and (2π)−1γGzτ. The inverse Fourier transform is needed for reconstruc-
tion and yields a map of P (Δz; x; T) ρ ( x) for each radial position x:

 (6.9)

/2 .tγ π=k G

( ) ( ) exp( 2  · )d .S t iρ π= −∫∫∫ r k r r

0( ) ( ( ( ) )d ( )· d .t t t t tφ ω ω γ= − =∫ ∫r G r

φ γ γ τ1 1 1= =∫z G t t z Gz z( ) .d

φ γ γ τ2 2 2= =∫z G t t z Gz z( ) .d

( , ) ( ; ; ) ( ) exp ( 2  ) exp ( 2  )x x x z xS k q P z x T x i k x i q z dk d zρ π π= ∆ − − ∆ ∆∫∫

( ) ( ) ( ) ( ); ; ( ) , exp 2  exp 2  .x x x z xP z x T x S k q i k x i q z dk d zρ π π∆ = − − ∆ ∆∫∫
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If the flow of fluid is in steady state, division of the fluid displacement Δz by the 
flow time T yields velocity and the resulting image is referred as either the posi-
tion-displacement conditional probability density or the velocity profile. The PGSE 
method is also routinely used for measurements of the coefficients of molecular 
diffusion, D. The method uses the dependence of the echo signal on the amplitude 
of the encoding pulse gradients. The echo signal will be attenuated when the spins 
move in an uncorrelated fashion (for instance, due to self-diffusion), since the re-
phasing of the echo is not complete. The amplitude of the echo can be expressed as:

 (6.10)

where b is proportional to the amplitude and duration of the gradients. Thus, the 
parameter b can be varied by changing the amplitude of the gradient, and the diffu-
sion coefficient D can be found from the plot of E(b) versus b.

6.3 Magnetic Resonance Equipment

NMR equipment includes a computer with control software, RF electronics, a mag-
net, and a RF coil. The spectrometer is used to apply energy to the sample and 
record the decay of energy from the sample. The magnet is used to polarize the 
spins in the sample and the RF probe is used to couple the sample to the spectrom-
eter. MRI spectrometers additionally include magnetic field gradient coils which 
are used to induce linear gradients in the applied main magnetic field for spatially 
localizing the signal. A diagram of the basic components utilized to construct an 
MR sensor is shown in Fig. 6.2.

( ) exp ( )E b bD= −

Fig. 6.2  Major components of an NMR/MRI spectrometer
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The user interface is the control software and computer. The primary tasks for 
the software are control of data acquisition, processing of the data, and data storage. 
A variety of options exist from very sophisticated programming interfaces to simple 
one-button operation. One of the challenges in implementation of NMR or MRI 
sensors for control applications is the writing of specific software for the applica-
tion and integration of the information into control of the production process. This is 
especially true in the case of application to food systems where the range of quality 
factors is extensive (e.g., from viscosity control to sugar acid ratios in fresh fruit).

Control of the RF electronics is well advanced. The RF electronics are generally 
referred to as the console or spectrometer. The spectrometer includes RF electron-
ics to generate well-defined RF pulses, a high-power RF transmitter, electronics to 
control magnetic field shim coils, an analog to digital converter, and a low-noise 
amplifier to increase the signals from the sample. MRI systems also include linear 
gradient amplifiers to provide high-current gradient waveforms that coupled with 
gradient coils inside the magnet cavity produce linear variations in the main mag-
netic field. Spectrometers can vary from single-board computers to multi-board sys-
tems. Shown in Fig. 6.3 is a picture of a two-board system that includes one board 
built around a digital signal processing chip and one board that is a high-power RF 
amplifier. These were powered by batteries, controlled by a portable computer, and 
coupled to a small permanent magnet.

Magnets used for NMR and MRI can be based on permanent magnet materials, 
electromagnets, or superconducting magnets. For utilization in a production envi-
ronment, permanent magnets are generally the preferred option. Electromagnets 
require very stable constant current supplies and cooling water. Superconducting 
magnets require cryogenic gases to cool the magnet and vacuum jacketing to main-
tain magnet temperature. Permanent magnets require, at most, thermal blankets to 
keep them at a constant temperature.

Permanent magnets exist in a large number of different configurations. These 
configurations include single-sided, where the field and signal are acquired at a 
distance from the magnet surface as shown in Fig. 6.3, where a watermelon and can-
taloupe are shown positioned for measurement on such magnets. Alternate configu-
rations are based on cylindrical cavities like a Halbach design with the sample in 
the center of the cylinder (Fig. 6.4) and have two plates where the sample is located 

Fig. 6.3  Single-sided magnet configurations. (Photos courtesy of ABQMR Inc.)
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between the plates. Permanent magnets are made of an assembly of individual mag-
netized bricks. Materials that are used to fabricate the bricks include alnico alloys or 
rare-earth alloys. The bricks are often coupled to an iron yoke (shown in Fig. 6.3) or 
face plate to increase the magnetic field strength/uniformity. Field strength for these 
types of magnets range from 0.05 to 2.35 T (proton resonance frequencies from 2 to 
100 MHz). For example, the strength of the magnet shown in Fig. 6.3 is 0.04 T with 
a homogeneity of 2500 ppm over a volume of 0.11 m sphere. A prototype developed 
for sorting fruit is shown installed in a conveyor sorting citrus fruit (Fig. 6.5). This 
magnet has a field strength of 1 T and a homogeneity of better than 70 ppm over 
0.06 by 0.09 m elliptical imaging volume. Almost all past and current applications 
of MR for process control have utilized permanent magnets.

Development of NMR and MRI hardware is occurring at a rapid pace. There 
are many small companies that are developing unique magnets and unique small 
portable spectrometers. All of which can be combined into a process sensor system. 
The equipment and magnet costs have been reduced significantly in the past 15 
years. The range of costs for these types of sensors is from tens of thousands of US$ 
to > 500,000 US$ depending upon magnetic size and system configuration.
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Fig. 6.4  a The Halbach magnet just after manufacture. b The prototype design for a field portable 
NMR to measure freeze damage in navel oranges ( 1) is the spectrometer that consists of two PC 
boards, one a spectrometer and the other a radio frequency amplifier ( 2), is the conceptual design 
for the Halbach magnet shown in a. c The magnet enclosed in protective housing with an orange 
sample. d Experimental data for an orange recorded using this system
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6.4 Applications

The range of food properties that can be measured using NMR and MRI are exten-
sive. Chemical properties that can be measured include component concentrations, 
reaction rates, and exchange rates. Physical properties that can be measured are dif-
fusion coefficients, thermal properties, rheological properties, and phase behavior. 
The structure of a food material can be measured from the pore size or droplet size 
to insect damage and layer thicknesses. This range of potential measurements has 
resulted in a very diverse array of applications to process control and quality assur-
ance in the food industry using MR.

6.4.1 Measurements of Component Concentration

The measurement and control of component concentrations are critical to the qual-
ity, profitability, and safety of many food products, and NMR/MRI can be used to 
make these measurements. Most of the MR systems applied to measuring compo-
nent concentrations have been permanent magnet based low-resolution systems. 
The term low-resolution refers to the homogeneity and/or strength of the magnetic 
field. Either one or both of these features prevent chemical shift interactions from 
being resolved. These systems are good for measuring the signal magnitude, spin–
spin relaxation, spin–lattice relaxation, and diffusion behavior. The MR system 
shown in Fig. 6.4 is an example of a low-resolution spectrometer.

Fig. 6.5  A magnetic resonance imaging system coupled with a fruit conveyor used for detecting 
seeds in citrus fruit. An MRI taken with the system of a clementine fruit with two seeds is shown 
on the right. (Photo and image courtesy of Uri Rapoport, Aspect-AI Ltd.)
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Two groups made significant contributions to the early application of MR for 
moisture measurement: Tri-Valley Research and The Southwest Research Institute 
(McDonald 1995). These groups developed measurements based on analysis of the 
NMR signal in the time domain. The simplest approach used by these two groups 
was to measure the FID (signal after one 90° RF pulse). The FID from moist navy 
beans is shown in Fig. 6.6. The intensity of the signal at the beginning of the decay 
is proportional to the moisture content in this sample. A series of different bean 
samples were soaked in water as a function of time and then data was recorded as in 
Fig. 6.6. The initial signal magnitudes were then paired with moisture content mea-
sured using an oven-drying technique, and the plot in Fig. 6.1a was generated. This 
type of measurement can be implemented in-line or on-line to measure moisture 
content prior to adding sauce to beans, permitting the final product to have a more 
consistent bean to sauce ratio.

This development of these type of measurements has continued, especially note-
worthy have been the accomplishments of the Minispec Division of Bruker Optik 
GmbH which has applied low-resolution time-domain NMR to measure the mois-
ture and/or fat content of a wide variety of food materials, including cereal, bread, 
cookies, beans, lentils, powders, flavors, flour, cocoa powder, and chocolate (Todt 
et al. 2006). These techniques are standard practice in many quality assurance labo-
ratories and have been recognized as International Standard Methods (e.g., ISO 829 
International Standard 1991).
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Fig. 6.6  Free induction decay of moist navy beans, data taken at 1-Tesla field strength
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6.4.2 Rheology

The goal of most rheological measurements is to develop quantitative relationships 
between deformation and force and to connect these to structure and composition of 
a material. From a process monitoring and control standpoint, once these relation-
ships are developed, the rheological measurements are used as a tool to provide 
information about the operating status of a unit operation (Arola et al. 1997). This 
section describes the development and application of an MRI-based viscometer that 
meets the needs of industry for rapid characterization of complex fluids, in particu-
lar foods. Specifically, the goal of the work has been to provide a means to monitor 
rheological properties in-line or on-line in a food factory setting.

This type of viscometer is based on the use of MRI to directly measure velocity 
profiles in flowing pipe systems by using either a time-of-flight technique (e.g., 
McCarthy et al. 1992a) or a displacement phase-encoded imaging (e.g., Seymour 
et al. 1993). Although, ultimately, the displacement phase-encoded imaging is the 
more developed technique, the first work to report the combined use of tube vis-
cometry and flow visualization utilized the time-of-flight method (McCarthy et al. 
1992b). The importance of the work lies in the recognition that a “conventional” 
tube viscometer, as described by Steffe (1996), can be successfully used as an MRI 
flow system. For Newtonian and power law fluids, the rheological parameters were 
obtained by pressure drop measurements at multiple flow rates to create a rheo-
gram that reflected wall stresses and wall shear rate values. Good agreement was 
observed when comparing the theoretical velocity profiles using the rheological 
parameters to the MRI velocity images. Shortly thereafter, researchers recognized 
the potential to obtain rheological data from a single velocity profile.

6.4.2.1 Single Point Measurements and Fluid Characterization

The single point method was first introduced in 1994 (Powell et al. 1994) and de-
scribed in detail in a 1996 patent, based on work carried out in M. McCarthy’s 
research group (Maneval et al. 1996). For a single velocity image in pipe flow, data 
are obtained over a range of shear rate (e.g., velocity gradient), which ranges from 
the maximum shear rate at the pipe wall to a minimum at the pipe center.

For this single point method to be successful, a well-defined flow field must be 
established. To evaluate shear viscosity in tube (or pipe) flow, an incompressible 
fluid undergoes steady pressure-driven flow in the laminar regime. The conserva-
tion of linear momentum, which equates pressure forces to viscous forces, provides 
the relationship between the shear stress, σ, and the tube radius, r:

 (6.11)
( )( ) ,
2

Pr r
L

σ − ∆
=



M. J. McCarthy and K. L. McCarthy146

where ∆P is the pressure drop over the tube length L. In this method, the shear rate, 
γ� , is obtained at the same radial position using the velocity profile. The expression 
for the shear rate in tube flow is:

 (6.12)

where v is the axial velocity. Using Eqs. 6.11 and 6.12, the apparent viscosity η is 
determined by:

 (6.13)

Alternately, the shear stress can be plotted as a function of shear rate to determine 
rheological parameters for a specific model, e.g., Newtonian and power laws.

Initial publications that described the single point method illustrated proof of 
concept by presenting rheograms and/or spectra without fully characterizing the test 
fluids (Powell et al. 1994; Seymour et al. 1995; Arola et al. 1997). The most com-
plete characterization from the mid-1990s was the evaluation of 0.2 to 1.0 % aque-
ous polyacrylamide solutions by Li and McCarthy (1995). These solutions were 
modeled as shear-thinning power law fluids over a range of flow rates by evaluating 
an MRI velocity image and the simultaneous pressure drop. Flow behavior indices 
( n), but not consistency indices ( K), were given in a table for all model fluids at all 
volumetric flow rates. A rheogram that compared MRI data and conventional rota-
tional data for 1 % aqueous polyacrylamide solution illustrated excellent agreement 
between the two methods (Li and McCarthy 1995). In 1999, Sadikin characterized 
skim milk concentrates and coffee concentrates as Newtonian fluids ( n = 1). These 
results are given in Table 6.1, in terms of the more general Herschel–Bulkley model:

 (6.14)

where σ0 is the yield stress, K is the consistency index, and n is the flow behavior 
index. The shear rate ranges given in Table 6.1 were based on four to five flow rates 
for each concentrate; the coefficient of determination values ( R2) were greater than 
0.97 for all curve fits. These viscosity values are relevant to the spray drying of milk 
and coffee products. For many Newtonian materials like skim milk concentrate or 
coffee concentrate, the spin–spin relaxation time is often proportional to viscosity; 
however, this relationship can fail at higher solids levels.

6.4.2.2 Direct Measure of Yield Stress and Slip Velocity

A consistent theme of the MRI-based viscometer work has been to extend the shear 
rate range and the accuracy of the measurement technique while attempting to an-
ticipate an economically feasible cost unit for actual plant applications (Arola et al. 
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1997; Choi et al. 2002). As velocity and radial resolution improved, more subtle as-
pects of the flow imaging were revealed. McCarthy and McCarthy (1995) reported 
yield stress measurements ( σ0) for tomato concentrates (5.5–12 °Brix) that were 
obtained directly from the blunt center region characterized by R0:

 (6.15)

In addition, nonzero wall velocity was quantified for fluid suspensions that have 
been described as exhibiting “slip” behavior. Slip occurs when a thin layer of fluid, 
having a viscosity lower than the bulk fluid, forms at the wall of the viscometric 
device. This may occur in fruit and vegetable suspensions and high-fat foods. In 
conventional tube viscometry, an additional term is added to the volumetric flow 
rate and an effective slip velocity is found by acquiring data using multiple tube 
radii (Steffe 1996). In contrast, the slip velocity is directly measureable from the 
MR velocity image.

Lee et al. (2002) characterized tomato concentrates that ranged in soluble solids 
from 6–16 °Brix over the temperature range of 20–110 °C. This work was the first 
to characterize fluid foods that were not at ambient temperature and that exhibited 
wall slip by the MRI-based viscometer. After correction for the wall slip, the flu-
ids were modeled as Herschel–Bulkley fluids. The flow behavior indices were not 
significantly affected by temperature and the average flow behavior index ( )n  for 
each concentration was used in the model (Eq. 6.14), where the consistency index 
was given by an Arrhenius-type relationship:

 (6.16)

where KT is a constant and Ea/R is the activation energy term, with T in units of ab-
solute temperature. The rheological information was incorporated into a residence 
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Table 6.1  Skim milk concentrate and coffee concentrate characterized as Newtonian fluids by 
MRI-based viscometer
Fluid Model Parameters, SI units Shear rate 

range (s−1)
T (ºC)

K (Pasn) n σo (Pa)
Skim milk 

concentrate
Ambient

26.5 Brix Newtonian 9.3 × 10−3 1 – 4–61
31.9 Brix Newtonian 13.7 × 10−3 1 – 5–77
36.1 Brix Newtonian 33.4 × 10−3 1 – 3–72
Coffee concentrate Ambient
36.6 Brix Newtonian 8.1 × 10−3 1 – 5–93
41.8 Brix Newtonian 14.7 × 10−3 1 – 6–120
52.5 Brix Newtonian 61.4 × 10−3 1 – 6–117
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time distribution model to assess the uniformity of thermal processing of these com-
mercially important products.

Recognizing the heat sensitivity of many foods, researchers designed single-pass 
flow systems to replace the closed-loop circulation designs of the previously de-
scribed studies. Yoon and McCarthy (2002) characterized yogurt flowing at 25 and 
35 °C as Herschel–Bulkley fluids after correcting for wall slip. Processed cheese 
and processed cheese spread at 85 °C were modeled as power law fluids; no wall 
slip was evident for those fluids, though fat content was between 21 and 28 % (wb) 
(Yoon and McCarthy 2003). After correcting for wall slip, Wichchukit et al. (2005) 
characterized molten milk chocolate at 42 °C by the Casson model, frequently ap-
plied to fluid chocolate in the confectionery industry:

 (6.17)

where σ 0  is the Casson yield stress and ηCA  is the Casson viscosity. The Casson 
plastic viscosity and yield stress values of chocolate are affected by emulsifier level, 
among other factors, and was documented in this work. The deviation between the 
MRI-based viscometer and rotational viscometry results was due to uncorrected 
wall slip during the rotational measurement. The MRI-based viscometer Casson 
parameters were incorporated into an unsteady state mass balance to predict film 
thickness during the enrobing process, which is an important consideration in pro-
cess control of these products.

6.4.2.3 Development of Graphical User Interface

Sadikin (1999) recognized the need to implement a means to generate and display 
data to individuals with little or no knowledge of computer programming and for 
process control applications. As part of her Master of Science thesis project, she de-
veloped a graphical user interface (GUI) in MatLab (The Mathworks, Inc., Natick, 
Mass., USA). The GUI facilitates interacting with the computer code without pro-
gramming commands and represents a significant step toward implementing the 
MRI-based viscometry in a factory setting. The idea was to process the data from 
the MRI measurement and to construct the rheogram immediately after the flow im-
aging data acquisition was complete. The four most common constitutive equations 
were programmed: Newtonian, power law, Bingham plastic, and Herschel–Bulkley. 
The program has four major parts: reconstruction of the velocity image, generation 
of the velocity profile, determination of the shear rate range, and application of 
constitutive models. More extensive discussion is given in Choi et al. (2005). Cur-
rent and ongoing modifications to the GUI code include automating the selection 
of an MR velocity image, incorporating a symmetry check of the velocity profile, 
improving the reliability of the yield stress estimate, and achieving a specified shear 
rate range.

σ σ η γ
0 5

0
0 5 0 5. . .( ) ,= + CA �
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6.4.2.4 Example of Factory Application

The MRI technique and hardware for the MRI-based viscometer have advanced to 
the point of permitting real-time process control in a factory. An example applica-
tion is given in McCarthy and McCarthy (2009) for the blending of tomato pastes, 
packed at different Bostwick readings, for use in tomato ketchup production. The 
in-line viscosity measurements of 12 °Brix tomato concentrates provided by the 
MRI-based viscometer were correlated to the final ketchup quality, as measured 
by the Bostwick consistometer. The Bostwick consistometer, which measures the 
extent of flow in a trough, has remained an integral part of assessing the consistency 
of tomato products in the factory. Although a slow and laborious quality assurance 
test, US Department of Agriculture (USDA) ketchup grades are identified by the 
Bostwick measurement. The 12 °Brix tomato concentrate blends were characterized 
as Herschel–Bulkley fluids. The in-line rheology measurements of the intermedi-
ate product (the blends) were correlated to final product Bostwick measurements 
by identifying a range of blends that yielded the consistency required for grade A 
ketchup.

A striking aspect of the work was the ability to distinguish between tomato con-
centrates at the same soluble solids level (e.g., °Brix). Although not reported in Mc-
Carthy and McCarthy (2009), 9 °Brix blends were also prepared from the concen-
trates packed at 23 °Brix (designated as H-1) and at 35 °Brix (designated as H-8). 
Figure 6.7a illustrates an MR image acquired under no flow conditions to illustrate 
the proton signal at the zero axial velocity position (pixel 129 on the x-axis), across 
the diameter of the pipe (pixel range 78–172 on the y-axis). At a volumetric flow 
rate of 4.5 L/min in a 1.9 cm ID pipe, the velocity image is shown in Fig. 6.7b. The 
offset from pixel 129 ( x-axis) was due to wall slip; the slip velocity was 13.7 cm/s 
at an average fluid velocity of 26.2 cm/s. The apparent viscosities of the six blends 
at a soluble solids level of 9 °Brix is shown in Fig. 6.8. All blends were modeled as 
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Fig. 6.7  MR flow image of tomato concentrate at 9 °Brix for no flow conditions (a) and at a volu-
metric flow rate of 4.5 L/min (b). The blend is 80 % H-8 and 20 % H-1
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Herschel–Bulkley fluids; different blends at the same soluble solids level are easily 
distinguishable.

6.4.3 Fruit Quality

Evaluation of the quality of fruit is primarily based on surface appearance and se-
lecting a subsample of a lot for destructive testing. This subsample approach is sub-
optimal because of the range of individual variations within the batch yield many 
fruit that differ from the desired quality specifications. Ideally, the internal chemical 
and structural features of each and every fruit would be measured. High quality fruit 
should have the appropriate maturity, texture, chemical composition, structure, as 
well as the absence of defects (e.g., bruises, browning, mold, insect damage). There 
are a number of potential technologies that can be used to measure fruit quality, 
including infrared spectroscopy, mid-infrared spectroscopy, Raman spectroscopy, 
ultrasound, dielectric imaging, x-ray imaging, and MR techniques. A sensor system 
for any fresh fruit will most likely be constructed using two or more of these tech-
nologies to achieve an evaluation of the most important quality factors. MRI will 
often be one of the technologies of choice because MRI can be readily implemented 
to measure a wide range of fruit quality factors.
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MRI can be used to measure chemical properties, such as °Brix, °Brix/acid ratio, 
moisture content, oil content, and maturity, and structural features, such as brown-
ing, rot, insect damage, bruises, and presence of foreign material. A review by Hills 
and Clark (2003) of the applications and status of using NMR/MRI to measure the 
quality of horticultural products provides an excellent summary of the potential 
and current state-of-the-art to measure fruit internal quality factors (Hills and Clark 
2003). Over 30 different fruits and vegetables have been examined for internal qual-
ity factors. An example of the type of images that can be acquired at lines speed are 
shown in Fig. 6.9 for processing tomatoes. The results to date for applying NMR 
and MRI to detect the internal quality of fruits and vegetables are extensive and im-
pressive. These applications include coupling a conveyor with research grade MR 

Fig. 6.9  Mechanical damage in Roma processing tomatoes
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systems (Chen et al. 1996; Kim et al. 1999; Kim and McCarthy 2006; Hernandez 
et al. 2005; Hernandez-Sanchez et al. 2006; Zion et al. 1994, 1997). The prototype 
conveyor and imaging system shown in Fig. 6.5 was recently used by Kim et al. 
(2008) to develop algorithms to detect seeds and freeze damage in clementine fruit. 
The prototype has been redesigned and enlarged for application in a production 
sorting line, and the system is shown in Fig. 6.10 during installation.

Utilization of MR for sorting has involved development of hardware and soft-
ware. For applications like sorting citrus by number of seeds, the software develop-
ment is straightforward and can employ traditional image processing (Kim et al. 
2008; Barreiro et al. 2008) or multivariate image analysis techniques (Milczarek 
et al. 2009). Software based on either approach is very effective and generally re-
sults in greater than 90 % correct classification for both seedless and seeded fruit. 
For other quality attributes, the development of quantitative measures can be dif-
ficult since the definitions involve phrases like “substantially free of a specific de-
fect” or “the evaluation of a defect is subjective.” Hence, prior to implementing a 
sensor, a quantitative scale for the quality factor needs to be developed. Consider 
quantitative evaluation of the extent of freeze damage in citrus fruit.

The approach to detect freeze damage in California-grown citrus fruit is current-
ly destructive, and only a few fruit from a lot are examined. The sample fruits are 
investigated for determination of freeze damage by using a segment cut. The seg-
ment cut proceeds by removing both the stem and blossom end of the fruit such that 

Fig. 6.10  One-Tesla field strength magnet for MRI sorting of citrus fruit being installed in the 
packing line. The three tubes extending from the magnet will each have a lane of fruit feeding into 
the system. The three lanes will be imaged simultaneously. One image from the system is shown 
on the right. (Photo and image courtesy of Uri Rapoport Aspect AI Ltd., Netanya, Israel)
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a center section of fruit remains, that is, 1 to 1.5 in. in width. This center segment 
of the fruit is carefully opened to show the segments (opened from one cut, though 
only the peel). The segments are then inspected, and an orange must show damage 
to the entire length of both sides of two segments to be classified as freeze dam-
aged. Damage is a water-soaked appearance or evidence of previous water-soaking 
or the presence of crystals. The tolerance in a lot of fruit for freeze damage is 15 %. 
This definition of freeze damage is useful; however, it is difficult to translate to a 
quantitative scale for spectroscopic measurement.

Development of an MRI-based sensor to detect percentage of freeze damage in a 
citrus fruit needs to yield results that are comparable to the destructive segment cut 
method or at least translatable. The impact of freeze damage on fruit is well known; 
cell membrane and hence fruit structure are altered. In citrus, this results in a de-
crease in the proton spin–spin relaxation time (Gambhir et al. 2005), and by weigh-
ing the image intensity by spin–spin relaxation time, regions within the fruit that are 
freeze damaged can be detected. The relationship can be quantified by constructing 
a plot of T2 compared to percent of the orange frozen as shown in Fig. 6.11.

The difficulty becomes relating percent frozen in an orange to the results of the 
segment cut test. This is currently an open question, and the comparison is at best 
qualitative between NMR/MRI results and the segment cut. A relationship is most 
useful during the first week after a freeze event since the oranges that have been 
freeze damaged begin to lose moisture and begin to form voids. The progression of 
moisture loss and void formation in a freeze damaged orange is shown in Fig. 6.12 
as a function of the number of days after the freeze event. A central plane in the 
orange perpendicular to the stem blossom axis approximately 1 cm thick is used to 
follow the loss of moisture. Voids in the oranges begin to be easily detected at about 
1 week after the freeze and increase significantly as storage time is extended to ap-
proximately 1 month. The orange in Fig. 6.12 was held in cold storage and imaged 
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approximately once a week. Once the voids become significant, freeze damage can 
be detected using a density measurement and an MRI would not be required, prior 
to void formation. NMR/MRI is the only nondestructive method currently available 
to quantify freeze damage.

The challenge to compare the measurement of a spectroscopic technique to a vi-
sually determined quality factor is not unique to NMR/MRI. Evaluation of fruit vi-
sual, as well as structural features, is important to the consumer at purchase. Flavor, 
texture, and aroma become most important at consumption. Yet relating consumer 
preference and subjective evaluation to quantitative measures of fruit attributes is a 
challenge that will involve considerable work and development. It is important to 
note, though, that purchasers of fruit are now requiring attributes of lots that cannot 
easily be verified for each and every fruit (e.g., completely seedless mandarins). 
This economic driving force for continued development of quantitative evaluation 
of fruit quality should result in significant development of quantitative scales for 
fruit attributes and the need for advanced sensor systems.

Acknowledgments We appreciate the assistance of R. R. Milczarek, S. McCarthy, and L. Zhang 
in preparation of the figures for this chapter. We are indebted to Uri Rapoport of Aspect AI Ltd. 
and Eiichi Fukushima of ABQMR Inc., for sharing with us photographs and data from current PAT 
applications of NMR/MRI. Work shown in this chapter was supported by ConAgra Foods Inc., 
Paramount Citrus Association, and the Center for Process Analytical Chemistry at the University 
of Washington, Seattle, WA, USA.

Day 9 H03

50 100 150 200 250

50

100

150

200

250

Day 15 H03

50 100 150 200 250

50

100

150

200

250

Day 22 H03

50 100 150 200 250

50

100

150

200

250

Day 28 H03

50 100 150 200 250

50

100

150

200

250

Fig. 6.12  Development of voids in whole navel oranges (variety Washington) after being frozen 
in an orchard during the winter of 2007 in California

 



6 Magnetic Resonance Imaging and Nuclear Magnetic Resonance Spectroscopy 155

References

Arola DF, Barrall GA, Powell RL, McCarthy KL, McCarthy MJ (1997) Use of nuclear magnetic 
resonance imaging as a viscometer for process monitoring. Chem Eng Sci 52(13):2049–2057

Barreiro P, Zheng C, Sun D-W, Hernandez-Sanchez N, Perez-Sanchez JM, Ruiz-Cabello J (2008) 
Non-destructive seed detection in mandarins: Comparison of automatic threshold methods in 
FLASH and COMSPIRA MRIs. Postharvest Biol Technol 47:189–198

Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon, Oxford
Chen P, McCarthy MJ, Kim S-M, Zion B (1996) Development of a high-speed NMR technique for 

sensing maturity of avocados. Trans ASAE 39(6):2205–2209
Choi YJ, McCarthy KL, McCarthy MJ (2002) Tomographic techniques for measuring fluid flow 

properties. J Food Sci 67(7):2718–2724
Choi YJ, McCarthy KL, McCarthy MJ (2005) A MATLAB graphical user interface program for 

tomographic viscometer data processing. Comput Electron Agric 47:59–67
Gambhir PN, Choi YJ, Slaughter DC, Thompson JF, McCarthy MJ (2005) Proton spin-spin relax-

ation time of peel and flesh of Navel orange varieties exposed to freezing temperature. J Sci 
Food Agric 85:2482–2486

Hernandez-Sanchez N, Barreiro P, Ruiz-Cabello P (2006) On-line identification of seeds in man-
darins with magnetic resonance imaging. Biosyst Eng 95(4):529–536

Hills BP, Clark CJ (2003) Quality assessment of horticultural products by NMR. Ann Rep NMR 
Spectrosc 50:75–120

Lee Y, Bobroff S, McCarthy KL (2002) Rheological characterization of tomato concentrates and 
the effect on uniformity of processing. Chem Eng Commun 189(3):339–351

Li T-Q, McCarthy KL (1995) Pipe flow of aqueous polyacrylamide solutions studied by means of 
nuclear magnetic resonance imaging. J Nonnewton Fluid Mech 57(2):155–175

Kim S-M, McCarthy MJ (2006) Analysis of characteristics of in-line magnetic resonance sensor. 
Key Eng Mat 321-323:1221–1224

Kim S-M, Chen P, McCarthy MJ, Zion B (1999) Fruit internal quality evaluation using on-line 
nuclear magnetic resonance sensors. J Agric Eng Res 74(3):293–301

Kim SM, Milczarek RR, McCarthy MJ (2008) Fast detection of seeds and freeze damage of man-
darins using magnetic resonance imaging. Mod Phys Lett B 22(11):941–946

Maneval JE, McCarthy KL, McCarthy MJ, Powell RL (1996) Nuclear magnetic resonance imag-
ing rheometer, U.S. Patent No. 5532593

McCarthy MJ (1994) Magnetic resonance imaging in foods. Chapman and Hall, New York
McCarthy MJ, Bobroff S (2000) Nuclear magnetic resonance and magnetic resonance imaging for 

process analysis. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, 
pp 8265–8281

McCarthy KL, McCarthy MJ (1995) Yield stress measurements of tomato concentrates using mag-
netic resonance imaging. In: Narsimhan G, Okos MR, Lombardo S (eds) Advances in food 
engineering: proceedings of the 4th conference of food engineering. Purdue Research Founda-
tion, West Lafayette, pp 86–90

McCarthy KL, McCarthy MJ (2009) Relationship between in-line viscosity and Bostwick mea-
surement during ketchup production. J Food Sci 74(6):E291–E297

McCarthy MJ, Maneval JE, Powell RL (1992a) Structure/property measurements using magnetic 
resonance spectroscopy and imaging. In: Singh RP, Wirakartakusumah MA (eds) Advances in 
food engineering. CRC Press, Boca Raton

McCarthy KL, Kauten RJ, McCarthy MJ, Steffe JF (1992b) Flow profiles in a tube rheometer us-
ing magnetic resonance imaging. J Food Eng 16(1/2):109–125

McDonald PJ (1995) The use of nuclear magnetic resonance for on line process control and quality 
assurance. In: Gaonkar AG (ed) Food processing recent developments. Elsevier, Oxford

Milczarek RR, Saltveit ME, McCarthy MJ (2009) Assessment of tomato pericarp mechanical 
damage using multivariate analysis of magnetic resonance images. Postharvest Biol Technol 
52:189–195

Nelson FA, Reilly CA, Savage WE (1960) Process monitor using high resolution nuclear magnetic 
resonance. Ind Eng Chem 52(6):487–489



M. J. McCarthy and K. L. McCarthy156

Powell RL, Maneval JE, Seymour JD, McCarthy KL, McCarthy MJ (1994) Nuclear magnetic 
resonance imaging for viscosity measurements. J Rheol 38(5):1465–1470

Sadikin S (1999) Viscometric measurement by nuclear magnetic resonance imaging. Master of 
science in engineering. University of California, Davis, CA. 208 pp

Seymour JD, Maneval JE, McCarthy KL, McCarthy MJ, Powell RL (1993) NMR velocity phase 
encoded measurements of fibrous suspensions. Phys Fluids A Fluid Dyn 5(11):3010–3012

Seymour JD, Maneval JE, McCarthy KL, Powell RL, McCarthy MJ (1995) Rheological charac-
terization of fluids using NMR velocity spectrum measurements. J Texture Stud 26(1):89–101

Skloss TW, Kim AJ, Haw JF (1994) High resolution NMR process analyzer for oxygenates in 
gasoline. Anal Chem 66(4):536–542

Snoddy ML (1993) The potential of process NMR on flowing streams. Spectroscopy 8(3):41–47
Steffe JF (1996) Rheological methods in food process engineering, 2nd edn. Freeman Press, East 

Lansing
Tellier C, Mariette F (1995) On-line applications in food science. Ann Rep NMR Spectrosc 

31:105–122
Todt H, Guthausen G, Burk W, Schmalbein D, Kamlowski A (2006) Water/moisture and fat 

analysis by time-domain NMR. Food Chem 96:436–440
Wichchukit S, McCarthy MJ, McCarthy KL (2005) Flow behavior of milk chocolate melt and the 

application to coating flow. J Food Sci 70(3):E165–E171
Yoon WB, McCarthy KL (2002) Rheology of yogurt during pipe flow as characterized by mag-

netic resonance imaging. J Texture Stud 33:431–444
Yoon WB, McCarthy KL (2003) Flow behavior of processed cheese melts. J Food Process Eng 

26:559–576
Zion B, McCarthy MJ, Chen P (1994) Real-time detection of pits in processed cherries by mag-

netic resonance projections. Food Sci Technol LEB 27(5):457–462
Zion B, Kim S-M, McCarthy MJ, Chen P (1997) Detection of pits in olives under motion by 

nuclear magnetic resonance. J Sci Food Agric 75(4):496–502



157

Chapter 7
Computer Vision

Cheng-Jin Du and Qiaofen Cheng

C. P. O’Donnell et al. (eds.), Process Analytical Technology for the Food Industry, 
Food Engineering Series, DOI 10.1007/978-1-4939-0311-5_7,  
© Springer Science+Business Media, New York 2014

C.-J. Du ()
Warwick Systems Biology Centre, University of Warwick,  
Coventry House, CV4 7AL Coventry, UK
e-mail: c.du@warwick.ac.uk

Q. Cheng
Department of Food and Nutritional Sciences, Whiteknights,  
RG6 6AP Reading, UK
e-mail: q.cheng@reading.ac.uk

List of Abbreviations

3-D Three-dimensional
ANN Artificial neural network
CCD Charge coupled device
CMOS Complementary metal oxide silicon
DBC Differential box counting
FD Fractal dimension
GLCM Grey-level co-occurrence matrix
HSV Hue, saturation, and value
IMF Intramuscular fat
KFCM Kernel fuzzy c-means
MRI Magnetic resonance imaging
RGB Red, green, and blue
RLM Run length matrix
SC Statistical classification
SVM Support vector machine
WT Wavelet transform



158 C.-J. Du and Q. Cheng

7.1 Introduction

Computer vision is the science and technology that enables programming a com-
puter to simulate the physiological processes behind visual perception in humans, 
and to clone human behaviour of performance in colour, content, shape, and texture 
inspection. The history of computer vision can be traced back to the 1960s. Backed 
by the powerful learning systems, computer vision provides a mechanism in which 
human thinking process is simulated artificially and can help humans in making 
complicated judgments accurately, quickly, and very consistently over a long period 
(Abdullah et al. 2004). It is able to provide a rapid, consistent, and objective inspec-
tion tool for quality assurance and process control with a level of sensitivity and 
objectivity that humans cannot match.

The application potential of computer vision to the food industry has long been 
recognized (Tillett 1990). The food industry ranks among the top ten industries 
using computer vision technology (Gunasekaran 1996). By applying computer vi-
sion for automatic quality evaluation and process control, production speed and 
efficiency can be improved in addition to the increased assurance accuracy, with an 
accompanying reduction in production costs (Sun and Brosnan 2003). It could offer 
flexibility in application and be reasonable substitutes for the human visual deci-
sion-making process. Recently, computer vision techniques have been developed 
rapidly, and its hardware is relatively inexpensive and easy to use. Computers are 
by magnitudes faster and images are in better quality. Subsequently, computer vi-
sion plays a more and more important role in the food quality assurance and process 
control by maintaining accuracy and consistency while eliminating the subjectivity 
of manual inspections.

The organization of a computer vision system is highly application dependent. 
Typically, it is based on a computer endowed with image processing algorithms in 
connection with various instrumentations as shown in Fig. 7.1. This chapter is to in-

Fig. 7.1  A typical computer vision system. (Reprinted from Abdullah et al. (2006) with permis-
sion from Elsevier)
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troduce the instrumentation and the image processing techniques used in computer 
vision, illustrate their role in the food quality assurance and process control, outline 
the applications, and discuss the challenges encountered in the food industry.

7.2 Instrumentation

The instrumentation set-up of a typical computer vision system consists of an il-
lumination device, a camera, a frame-grabber, and a computer. Illumination is an 
important prerequisite of image acquisition. The quality of captured images can be 
greatly affected by the lighting condition. Choosing the right lighting configuration 
is a prerequisite to high-quality image acquisition. A high-quality image can help to 
reduce the time and complexity of subsequent image processing steps. By enhanc-
ing image contrast, a well-designed illumination system can improve the accuracy 
and lead to successful image analysis (Gunasekaran 1996).

There is no general guideline for choosing the right lighting strategy. Different 
application may require different illumination strategy. Novini (1990) reported that 
most lighting arrangement could be grouped as one of followings: front lighting, 
back lighting, and structured lighting. Care must be taken when acquiring images 
with reflection, which can be found even using the back lighting. In order to control 
the reflection, it is especially important to understand what happens when light hits 
the surface. Besides, the choice of illuminant itself is also a key factor of image 
quality. A white fluorescent bulb with high frequency is a popular choice for many 
computer vision systems (Pedreschi et al. 2006; Pandit et al. 2007).

The camera and frame-grabber are the two elements responsible for the capture 
of an image in digital form. The camera converts photons to electrical signals, and 
the frame-grabber then digitizes these signals to give a stream of data or image. 
During the past decades, considerable amount of research effort has been directed 
at developing techniques for image acquisition. There are various types of light-
sensitive cameras, such as the complementary metal oxide silicon (CMOS) cameras 
and charge-coupled device (CCD) cameras. Compared with CMOS cameras, CCD 
cameras have less noise, higher sensitivity, and a greater dynamic range. Therefore, 
it is frequently employed by computer vision systems for food quality assurance 
and process control.

CCD cameras can convert light into electrical charges and create high-quality, 
low-noise images with lots of pixels and excellent light sensitivity, which are free 
of geometric distortion and highly linear in their response to light. Recently, fishery, 
fruit, grain, meat, vegetable, and other food quality assurance issues have provided 
many actual and potential applications of the CCD camera. Among the applications, 
CCD cameras are widely used for quality classification, physical characteristic de-
tection, and property estimation of food products. In some cases, it is difficult to 
evaluate food quality in the spectral region typically used. Through the use of differ-
ent filters fitted to CCD cameras, analysis of images from selected spectral regions 
can be performed.
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In addition to CCD cameras, there is a growing interest in using other image 
acquisition techniques for food quality assurance and process control applications. 
These are technologies such as magnetic resonance imaging (MRI; see Chap. 6), 
thermal imaging (see Chap. 8), hyperspectral imaging (see Chap. 9), ultrasound (see 
Chap. 10), and X-ray (see Chap. 12).

7.3 Image Processing

Image processing is the core of a computer vision system. Once the image is ac-
quired, a preprocessing step will normally be carried out to obtain an enhanced 
image. After that, the image is segmented into disjoint and nonoverlapping regions, 
each of which typically corresponds to one object. The characteristics of these ob-
jects can then be measured, such as size, shape, colour, and texture. The objects are 
finally identified by classifying them into different groups.

7.3.1 Image Preprocessing

The captured image is subject to various types of noises, which may degrade the 
image quality. In order to improve the quality of an image, operations need to be 
performed on it to remove or decrease degradations suffered by the image during 
its acquisition. The purpose of preprocessing is to suppress unwilling distortions or 
enhance some image features that are important for further processing, and create 
a more suitable image than the original one for a specific application. Two types of 
image preprocessing approaches can be identified for food quality assurance and 
process control, i.e. spatial domain and transform domain methods.

7.3.1.1 Spatial Domain Methods

Spatial domain methods operate directly on the pixels of an image. Mean filtering 
is one of the most commonly used spatial domain methods for reducing noise in im-
ages. Each pixel value is replaced by the mean of its neighbourhood pixels:

 I m n
N

I m i n j i j Winout ( , ) ( , ), ( , ) ,= − − ∈∑∑1  (7.1)

where W is the neighbourhood around the pixel ( m, n), e.g. a 3 × 3 square, N is the 
total number of pixels in the neighbourhood W. The matrix formed by the weights 
1/ N  is called a kernel. Quite often, the weights are assigned unequal values such 
as Gaussian kernel. Unlike the uniformly weight of mean filtering, Gaussian filter 
assigns the weight more towards the value of the central pixels.
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One of the main problems for mean filtering is that it is unable to preserve the 
edges of an image well. When the kernel straddles on an edge, it will interpolate new 
values for pixels on the edge and thus blur the edge. In order to avoid edge blurring, 
one way is to use a median filter, which allows edges to be preserved while filtering 
out unwanted noises. It replaces the output pixel with the median of its neighbour-
ing pixel values instead of a weighted sum of those values. Another way to smooth 
an image while preserving edges is to use the bilateral filter proposed by Tomasi and 
Manduchi (1998). The implementation of bilateral filter is noniterative, local, and 
simple where the output denoised image I xout ( ) is a weighted average of the input 
noisy image I xin ( ). It combines colours based on both their geometric closeness 
(the spatial domain ) and their photometric similarity (the range domain ). The 
weight assigned to each neighbour decreases with both the distance in the spatial 
domain   and the distance in the range domain . The pixels at larger distances are 
assigned smaller weight, and the larger the pixels value difference, the smaller the 
pixels contribute to the weight. In practice, two Gaussian functions are used as the 
decreasing functions for the spatial and range domain respectively. A bilateral filter 
applies to an input image I xin ( ) and produces an output image I xout ( ) as follows:

 1
2 2

( ) ( )
( ) ( ) exp exp ( ) ,

2 2
in in

out in
s r

d−  ξ − ξ −   = Γ − − × ξ ξ   σ σ    
∫
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where Γ( )x  is a normalization term:
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The first Gaussian function measures the geometric closeness between the neigh-
bourhood centre x  and a nearby point ξ, where σs controls the extent of the spatial 
neighbourhood used to filter a pixel. The parameter σr of the second Gaussian func-
tion controls the discrimination power of an adjacent pixel because of the intensity 
value difference.

7.3.1.2 Transform Domain Methods

In many cases, transform domain methods are more effective than their spatial do-
main counterparts because noise can be more easily separated from the objects in 
the transform domain, where an image is expressed as a combination of a set of 
basic signals, known as the basis functions. In the process of transform domain 
methods, the input image firstly undergoes a forward transform, such as Fourier and 
wavelet, resulting in an array of transform coefficients. Then operations are carried 
out on the coefficients. Finally, an inverse transform is performed to reconstruct the 
processed coefficients.
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The Fourier transform decomposes an image into sinusoidal signals with dif-
ferent periods, which describe the spatial frequencies in an image. In the Fourier 
domain image, low- and medium-frequency components correspond to smooth 
regions or large structures and image features, while high-frequency components 
are dominated by noise. A low-pass filter can be used to denoise an image by sup-
pressing all frequencies higher than the cut-off frequency C0  while leaving smaller 
frequencies unchanged:

 H u v
if C
if C

( , ) ,=
≤
>





1
0

0

0

 D(u,v)
 D(u,v)  (7.3)

where H u v( , ) is the filter function and D u v u v( , ) = +2 2  is the distance of a point 
from the origin in the Fourier domain. The drawback of this filter function is to 
cause ringing artefacts in the filtered spatial domain image. Better results can be 
achieved with the Butterworth filter of nth order

 H u v
D u v C n( , )

[ ( , ) ]
.=

+
1

1 0
2/  (7.4)

The Fourier transform is an analysis of global frequency content in the image, 
which is not suitable for the analysis to be localized in the spatial domain. In con-
trast, wavelet transform (WT) captures both frequency and location information, 
and is more suitable for such application. As a result, WT provides a better tool to 
analyse edge regions in the image, where the signals are transient and time-variant 
(nonstationary). There are many types of wavelets available, among which a trans-
lation-invariant WT is more appropriate for image preprocessing. Normally, small 
WT coefficients correspond to noise. An image can be enhanced by reducing those 
coefficients to a value near zero.

7.3.2 Image Segmentation

Image segmentation partitions an image into its constituent objects, which is a chal-
lenging task because of the richness of visual information in food images. The tech-
niques of image segmentation developed for food quality assurance can be divided 
into four different philosophical approaches, i.e. thresholding-based, region-based, 
boundary-based, and classification-based segmentations.

7.3.2.1 Thresholding-Based Segmentation

Thresholding-based segmentation is a particularly effective technique for scenes 
containing solid objects resting upon a contrasting background, which distinguishes 
the object from the remaining part of an image with an optimal value. The key 
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of this method is the selection of threshold value. No universal methodology for 
threshold selection works on all kinds of images. A variety of techniques have been 
proposed to set the threshold value under different circumstances. The simple way 
is to set the threshold values as the dips of the grey-level histogram if two or more 
distinct modes exist. When the histogram is noisy, the locations of dips might be 
obscure and unreliable. This can be overcome by smoothing the histogram before 
trying to find separate modes. However, smoothing might shift the position of the 
dips in the histogram when two peaks are unequal in size.

The isodata algorithm proposed by Ridler and Calvard (1978) is an iterative 
threshold selection technique. A threshold value T 0  is initialized as the midway 
between the maximum and minimum grey level. Next, the means 0

Fµ  and 0
Bµ  of 

the foreground and background pixels are calculated, respectively. A new threshold 
value 1 0 0 / 2F BT = +µ µ  is then obtained. This process is repeated until the threshold 
value no longer changes.

Another way to look at the problem is to consider the values in the two regions as 
two classes. The optimum threshold separates those two classes in a way that their 
combined spread (within-class variance) is minimal (Otsu 1979). Define the within-
class variance as the weighted sum of each class variances:

 2 2 2( ) ( ) ( ) ( ) ( ),w F F B BT S T T S T T= +σ σ σ  (7.5)

where S T p iF i

T
( ) ( )=

=

−∑ 0

1
 and S T p iB i T

N
( ) ( )=

=

−∑ 1
 are the probabilities of the 

foreground and background, respectively, 2 ( )F Tσ  and 2 ( )B Tσ  are their variances. 
Minimizing the within-class variance is the same as maximizing the between-class 
variance, which is

 [ ]22 2 2( ) ( ) ( ) ( ) ( ) ( ) .b w F B F BT T S T S T T T= − = −σ σ σ µ µ  (7.6)

Thus, the optimal threshold can be obtained by iteratively updating the class prob-
abilities Si  and class means iµ  in turn.

7.3.2.2 Region-Based Segmentation

Thresholding-based segmentation methods only take into account the distribution 
of grey levels without considering any spatial information. Region-based methods 
exploit spatial context by grouping adjacent pixels or small regions together into 
larger regions, which can be divided into two basic classes: region growing-and-
merging and region splitting-and-merging. The former is a bottom-up method that 
groups pixels or subregions into larger regions according to a set of homogeneity 
criteria; and the latter is a top-down method that successively divides an image 
into smaller and smaller regions until certain criteria are satisfied. Region-based 
algorithms are computationally more expensive than those simpler techniques, e.g. 
thresholding-based segmentation, but region-based segmentation is able to utilize 
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several image properties directly and simultaneously determine the final boundary 
location. It shows the greatest promise in the segmentation of food products because 
strong a priori knowledge is normally not available.

An example of region-growing methods is the vector confidence connected al-
gorithm (Yoo et al. 2002). A seed point should be supplied for the initialization of 
the algorithm. This point can be calculated as the position with the median pixel 
value of the object. The vector mean m p and the covariance matrix C p  of a small 
neighbourhood region around the seed point are then computed. The membership of 
a pixel p  to the region is measured using the Mahalanobis distance D  as follows:

 D p
T

p p= − −−( ) ( ).p m C p m1  (7.7)

Taking distribution of the points (correlations) into account, Mahalanobis distance 
is a very useful way of determining the “similarity” of a set of values from an “un-
known” sample to a set of values measured from a collection of “known” samples. 
Besides the grey level, other image properties can be easily incorporated into the 
membership function, such as position, texture, and colour.

Region-splitting methods commonly use a data structure called quadtree, each 
node of which corresponds to a square-shaped region. The root node represents the 
whole image, while the leaf nodes represent a coherent region. As quadtrees impose 
one type of regular decomposition into an image, a merging process after each split 
must be applied to compare adjacent regions of four nodes with a common parent 
and merge them if they obey the criterion. The drawback of this method is that it is 
difficult to decide where to make the partition.

7.3.2.3 Boundary-Based Segmentation

The thresholding approach accomplishes segmentation by partitioning the image 
into sets of interior and exterior points. By contrast, boundary-based approaches 
attempt to find the edges directly by their high gradient magnitudes. The first step 
of a boundary-based segmentation method is to detect edges of an image. Edges 
are those pixels that have sharp grey-level changes or discontinuities, which can be 
detected by looking for the maximum in the first derivative or zero-crossings in the 
second derivative of the image. The detected edges can then be used to establish the 
boundaries of objects.

The detected edge points seldom form closed connected boundaries required for 
image segmentation. Hence, it is usually required to link those edges, which can be 
accomplished by searching a neighbourhood around an endpoint for other endpoints 
and then filling in boundary pixels as required to connect them. The application of 
the boundary-based segmentation is limited because completed boundaries are dif-
ficult and sometimes impossible to trace in some food images.

Due to the complex nature of food images, the segmentation approaches de-
scribed above are often found only partly suitable for performing such task. For 
some specific application, the performance could be improved by combining those 
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traditional methods. To partition a pizza-topping image into homogeneous regions 
automatically, Sun and Du (2004) developed a region growing-and-merging method 
known as “stick growing and merging”, which employs the traditional region-based 
segmentation as a dominant method and combines the strengths of both threshold-
ing- and edge-based segmentation techniques. The algorithm consists of four major 
steps: stick initialisation, stick merging, subregion merging, and boundary modifi-
cation. It is started from an initial decomposition of the image into small sticks and 
non-sticks. The small sticks are merged to obtain the initial subregions on the basis 
of homogeneity criteria. Then smaller subregions with only one stick are merged 
into larger subregions and subsequently all subregions are merged into regions ac-
cording to the criteria. Finally, non-sticks and separate small sticks are merged and 
the degree of boundary roughness is reduced by boundary modification. Figure 7.2b 
shows the segmented results of a pizza-topping image, which includes ham, red and 
green peppers, cheese shreds, and tomato sauce. The original image, Fig. 7.2a, is 
complex for several reasons: the inhomogeneous character inside the natural foods, 
object overlapping, shadows, and light reflection.

7.3.2.4 Classification-Based Segmentation

Classification-based methods attempt to assign each pixel to different objects based 
on classification techniques, including supervised and unsupervised methods. Su-
pervised methods require training data to be specified to train a classifier, while 
unsupervised methods learn a classification directly from the data, i.e. no training 
data required. Given the complex nature of food images, unsupervised techniques 
appear to be the preferable solution for reliably and consistently separating an im-
age into parts of interest without human intervention.

As one of the most effective unsupervised methods, the kernel fuzzy c-means 
(KFCM) algorithm has been used successfully for image segmentation. The major 
advantage is that each image pixel has a membership grade indicating its belong-
ingness degree to each cluster by the introduction of fuzziness. This makes KFCM 
more robust by retaining more information from the original image than the crisp 
segmentation methods, such as k-means, which assigns the image pixel to only one 

Fig. 7.2  An example of 
combined method for pizza-
topping image segmentation. 
a An example pizza image. b 
The result of image segmen-
tation. (Reprinted from Sun 
and Du (2004) with permis-
sion from Elsevier)
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of the clusters. Furthermore, by mapping the feature vectors to a higher dimensional 
space via the kernel trick (Boser et al. 1992), it is able to separate the image pixels 
non-linearly.

Suppose that an image has a size of n  pixels, and each pixel is denoted by a 
vector xk , the KFCM algorithm can be described as the task of finding l  cluster 
centroids so that the following objective function is minimized:

 J u K K KKFCM ik
w

k k k i i i
k

n

i

l

( , ) ( ( , ) ( , ) ( , )),U C x x x c c c= − +
==

∑∑ 2
11

 (7.8)

where U  is the membership matrix constrained to contain elements in the range 
[0, 1] so that u k niki

l
= ∀ = …

=∑ 1 1 2
1

, , , , , and uik  is the membership value of xk  
for class i ; C  is the set of cluster centroids, ck  is the centroid of kth class; and 
w ∈ ∞1, )  is a weighting exponent determining the fuzziness of each membership. 
Gaussian radial basis function is usually applied in practice as the kernel function, 
which is defined as

 (7.9)

For minimizing the objective function (7.8), there are two necessary conditions that 
could be derived as follows
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Fig. 7.3  An illustration for the classification-based segmentation method. a An example of beef-
steak image. b Marbling image obtained via the kernel fuzzy c-means method
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An example of beefsteak is shown in Fig. 7.3a. The beefsteak contained nearly 
70 % moisture, which caused heavy reflection during image acquisition and made 
the segmentation a challenge. Figure 7.3b shows the segmented marbling result 
using KFCM method. Since the objects in the beef image include fat, lean, and 
background, the number of cluster classes was set to three for KFCM algorithm. It 
can be observed that the performance is quite good, where most of the fat particles 
were segmented successfully.

7.3.3 Object Measurement

Once the image is segmented into discrete objects of interest, they can be described 
and represented for further processing and analysis by measuring their individual 
features. In general, a segmented object can be represented in features of its external 
characteristics or internal characteristics. Many features can be used to describe an 
object. Generally, the features that are the simplest to measure and that contribute 
substantially towards the classification are the best to use. Measurements that can 
be performed on features in images for food quality assurance can be grouped into 
four classes: size, shape, colour, and texture. For each class, a number of different 
specific measurements can be made, and there are a variety of different ways to 
perform the operations. Most computer vision systems offer at least a few measures 
in each class and produce a numeric output suitable for further image analysis.

7.3.3.1 Size

Three commonly used features for size measurement of an object can be found 
for food quality assurance: area, perimeter, and length and width. The most basic 
convenient measurement for size is area. For pixel-based representation, this is the 
number of pixels within an object, which can be straightforwardly determined by 
counting. The perimeter of an object is particularly useful for discriminating be-
tween objects with simple and complex shapes. Perimeter measurements can be 
easily computed during the extraction of an object from a segmented image. The 
length and width can also be used to measure the size of an object. It is necessary to 
locate the major axis of the object and measure its relative length and width.

7.3.3.2 Shape

Shape features are generally invariant to translation, rotation, and scaling. Usually, 
objects of one class can be distinguished from the others by their shapes, which are 
physical dimensional measurements that characterise the appearance of an object. 
Shape features can be measured independently and by combining size measurements. 
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Table 7.1 summarizes some of the most widely used shape features with combina-
tions of size measurements for food products.

Various techniques for shape description independent of size measurements have 
been investigated for food quality assurance. These techniques can be generally 
classified into three categories: boundary encoding, Fourier descriptor, and invariant 
moments. The boundary chain code shows the boundary tangent angle as a function 
of distance around an object, while the differential chain code reflects the curvature 
of the boundary. Both functions can be further analysed to obtain measurements of 
shape. The Fourier transform of one cycle of the boundary function is an alternative 
representation of the associated object’s shape. Using Fourier transform, the bound-
ary function spectrum can be low-pass filtered without destroying the characteristic 
shape of the object. Only the amplitudes and phases of the low-frequency impulses 
in the spectrum, i.e. the low-order Fourier coefficients, are required to characterise 
the basic shape of the object. These values are candidates for shape descriptors.

Invariant moments have some of the properties that good shape features must 
have. The magnitudes of invariant moments reflect the shape of an object and can 
be used in computer vision to distinguish different objects. Given a boundary func-
tion B x y( , ) , its moments can be computed by

Shape feature Formula

Area ratio Area
Maxdiameter·Mindiameter

Aspect ratio Maxdiameter
Mindiameter

Circularity Perimeter
Area

2

Compactness
2

4 ·Area
Perimeter

π

Diameterrange Maxdiameter Mindiameter−
Eccentricity

1
2

2−
Semi-minor
Semi-major

Roundness
2

4 ·Area
 ·Maxdiameterπ

Shapefactor1
2

4 ·Area
Perimeter

π

Shapefactor2 Maxdiameter
Area

Shape factor 3
3

Area
Maxdiameter

Shape factor 4 4 Area
Maxdiameter Mindiameterπ

⋅
⋅ ⋅

Table 7.1  Shape features 
with combinations of size 
measurements
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 (7.12)

The set of moments { }Muv  is unique for the boundary function. The invariant mo-
ments that are insensitive to translation, rotation, and scale changes are

 2 2
20 02 20 02 11and ( ) 4 ,+ − +µ µ µ µ µ  (7.13)

where 2
20 20 10 00/M M M= −µ , 2

02 02 01 00/M M M= −µ , and 11 11 10 01 00/M M M M= −µ .  
They characterise the object dispersion over the x-axis, y-axis, and both orienta-
tions, respectively.

7.3.3.3 Colour

In image analysis of food products, colour is an influential attribute and powerful 
descriptor that often simplifies object extraction and identification. Colour vision 
offers a tremendous amount of spatial resolution that can be used to quantify the 
colour distribution of ingredients. Colour features of an object can be extracted by 
examining every pixel within the object boundaries.

The red, green, and blue (RGB) colour space used in computer graphics is device 
dependent, which is designed for specific devices, e.g. cathode-ray tube display. 
Therefore, the RGB space has no accurate definition for a human observer, where 
the proximity of colours in the space does not indicate colour similarity in percep-
tion. Colour space transformations are effective means for distinguishing colour 
images, which is an operation on the original colour space to produce a new trans-
formed space.

Linear transformation is the simplest method for colour conversion from RGB 
space to others. However, colour space transformations such as HSV (hue, satura-
tion, and value) and L*a*b* are more complex, which are generated by non-linear 
transformations, and widely used in computer vision systems for food quality as-
surance.

7.3.3.4 Texture

Image texture is one of the main features measured for food quality assurance using 
computer vision. It is important to note that in computer vision context, the concept 
of texture is totally different from the one generally understood and used in the 
food industry. Food texture refers to the manner in which the food behaves in the 
mouth and is characterised by parameters such as hardness, cohesiveness, viscosity, 
elasticity, adhesiveness, brittleness, chewiness, and gumminess. However, image 
texture is an attribute representing the spatial arrangement of the grey levels of pix-
els in a region (Anon 1990). As a useful feature for object description, image texture 

M x y B x y dxdy u vuv
u v= ∈ …

−∞

∞

−∞

∞

∫∫ ( , ) , [ , , ).0 1 2
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can quantify some characteristics of the grey-level variation within an object, such 
as fineness, coarseness, smoothness, and graininess.

Initially, image texture analysis is based on the first-order grey-level statistics, 
which make direct use of the pixel histogram to characterise the relative amount of 
each intensity value. Four features are normally derived for texture characterisation, 
including mean, variance, skewness, and kurtosis. Among the other texture analysis 
methods for food quality assurance, most approaches are statistical, including the 
run length matrix (RLM) method and the grey-level co-occurrence matrix (GLCM) 
method. Moreover, several other texture description methods are based on trans-
form, such as Fourier transform and WT. In addition, fractal dimension (FD) has 
also been employed to numerically describe the image texture characteristics of 
various food products.

First introduced by Galloway (1975), the RLM approach characterises texture 
by the grey-level run, which is a set of consecutive pixels with the same grey level. 
The run length is the number of pixels in a run. Therefore, the run length of coarse 
textures will be longer than that of fine textures. Define a two-dimensional (2-D) 
matrix RLM( g, r) as the number of runs with different grey-level g and run length r. 
Several features can be derived from the RLM( g, r), e.g. short-run emphasis, long-
run emphasis, grey-level non-uniformity, run length non-uniformity, run length per-
centage, and low- and high-grey-level run emphases.

The GLCM method is one of the most frequently cited methods for texture anal-
ysis, which is a general procedure presented by Haralick et al. (1973) for extracting 
image texture information in the spatial domain. To obtain the spatial relationship 
contained in an image, a spatial-dependence GLCM is first constructed by estimat-
ing the second-order joint conditional probability density functions of pixel inten-
sity. Each element ( i, j) of GLCM, denoted by CMij, represents the probability that 
two pixels with the grey-level i and j co-occur in the image separated by a distance 
d in direction θ. Theoretically, a variety of GLCMs could be constructed from the 
image with different values of direction and distance. For the direction θ, the four 
angles 0°, 45°, 90°, and 135° are commonly used to achieve rotation invariance by 
averaging the results of each angle. For the distance d, values other than 1 are rarely 
used in the literature. A set of features can be derived from each GLCM to describe 
the texture characteristics within the image, such as the homogeneity, contrast, and 
presence of organized structure.

An image can be viewed as a hilly terrain surface whose height from the normal 
ground is proportional to the image grey value (Peleg et al. 1984). The image tex-
ture features such as roughness, smoothness, and graininess in the image could be 
described by the FD of this surface, which is invariant under translation, rotation, 
and certain scale transformation. Several approaches exist to estimate the FD of an 
image, such as the ε-blanket method that calculates FD by using dilatation and ero-
sion of an image (Peleg et al. 1984), the Frequency domain method that determines 
FD from the Fourier power spectrum of the image data (Quevedo 2002), and the 
differential box counting (DBC) method (Sarkar and Chaudhuri 1994). The fractal 
texture determined by the box counting method varied monotonically with image 
true values of FD, and could be a useful descriptor in texture recognition. Further-
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more, compared with other approaches in terms of computer complexity and accu-
racy, DBC is a simple, accurate, and computationally efficient method. The image is 
divided into Nsr distinct self-similar pieces, each of which is scaled down by a ratio 
sr in all dimensions, and becomes statistically identical to the original one. The FD 
of image could be computed by

 FD
N
sr
sr=

log( )
log( / )

.
1

 (7.14)

Using the DBC method, a number of values of Nsr could be estimated for different 
values of sr. Then FD of the image could be estimated by the slope of the least-
squares linear fit of the plot of log( )Nsr  versus log( / )1 sr .

The scale of an image is important for texture analysis because there might be 
several different textures in the same image with different scales. However, the 
traditional approaches for image texture analysis such as RLM, GLCM methods are 
limited in that they are restricted to the analysis of an image over a single scale. The 
development of multi-scale analysis such as WT has been proven to be useful to 
characterise different scales of textures effectively. WT has not only solid theoreti-
cal foundation in formal mathematical theory but also good empirical performance 
for multi-scale image analysis.

Common WT suffers from a lack of translation-invariant, where a simple shift 
of the image will result in non-trivial modifications of the values of wavelet coeffi-
cients. Since the steerable pyramid transform described by Simoncelli and Freeman 
(1995) has nice reconstruction properties, in addition to properties of translation-
invariance and rotation-invariance, it can be implemented for efficient and accurate 
linear decomposition of the image into high-pass and low-pass residual bands, and 
a set of orientated subbands.

Based on the steerable pyramid transform, the texture features can be obtained 
by computing the energy of each subband, which is widely used for wavelet-based 
texture characterisation. Assume the ith subband image ( Wi) has a size of M × N 
pixels. Then the energy of decomposed subbands in the frequency domain could be 
calculated as follows:

 E
M N

W i ji i
j

N

i

M

=
× ==

∑∑1 2

11

( , ).  (7.15)

7.3.4 Classification

Generally, classification identifies objects by classifying them into one of the finite 
sets of classes, which involves comparing the measured features of a new object 
with those of a known object or other known criteria and determining whether 
the new object belongs to a particular category of objects. Figure 7.4 shows the 
general classification system configuration used in computer vision for food quality 
assurance. A wide variety of approaches have been applied for this task. Among 
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the applications where classification techniques have been employed for building 
knowledge base, artificial neural network (ANN), and statistical approaches are the 
two main methods. In the meantime, fuzzy logic, decision tree, and support vector 
machine (SVM) have been used as well.

Initially inspired by biological nervous systems, ANN approaches combine the 
complexity of some of the statistical techniques with the objective of imitating 
human intelligence, which are characterised by their self-learning capability. The 
complete network represents a very complex set of interdependencies, and may 
incorporate any degree of non-linearity in theory. For food quality assurance, very 
general functions can be modelled to transform physical properties into quality fac-
tors. ANN technology allows the extension of computer vision technology into the 
areas of colour, content, shape, and texture inspection at near-human levels of per-
formance.

Statistical classification (SC) utilizes the statistical properties of the observations 
from the training set. It is generally characterised by having an explicit underlying 
probability model. There are three kinds of SC techniques mostly used among the 
applications, i.e. Bayesian classification, discriminant analysis, and nearest neigh-
bour. Bayesian classification is a probabilistic approach to learn and inference, 
in which probability is used to represent uncertainty about the relationship being 
learnt. Bayesian learning can produce the probability distributions of the quantities 
of interest, and make the optimal decisions by reasoning about these probabilities 
together with observed data. Discriminant analysis takes into account the different 
variables of an object and works by finding the so-called discriminant functions in 
such a way that the differences between the predefined groups are maximized. The 
obtained discriminant rules provide a way to classify each new object into one of 
the previous defined groups. The nearest neighbour is a non-parametric classifica-
tion technique by assigning the unknown case as the class most frequently repre-
sented among the nearest samples. It involves a training set of both positive and 
negative cases. A new sample is classified by calculating the distance to the nearest 
training case.

Fuzzy logic is introduced as a representation scheme and calculus for uncertain 
or vague notions and could provide a completely different way for the applica-
tions like the classification of food products. Compared with traditional techniques, 

Fig. 7.4  The general configuration of machine learning system
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fuzzy logic groups individual samples into classes that do not have sharply defined 
boundaries. It embodies the nature of human’s mind in some sense, as the concep-
tion of possibility and probability is truly underlined in this logic. In contrast with 
the absolute values and categories in the traditional Boolean logic, it mimics more 
human-like behaviour for decision making and reasoning by extending to handling 
of the intermediate categories of partial truth or partial false. And thus, it can simu-
late the human experience of generating complex decisions using approximate and 
uncertain information.

Decision tree acquires knowledge in the form of tree, which can also be rewritten 
as a set of discrete rules to make it easy to understand. The main advantage of deci-
sion tree classifier is its capability of using different feature subsets and decision 
rules at different stages of classification. The performance of a decision tree classi-
fier depends on how well the tree is constructed from the training data.

SVM is a state-of-the-art classification algorithm, which has a good theoretical 
foundation in statistical learning theory (Vapnik 1995). Instead of the minimization 
of the misclassification on the training set, SVM fixes the decision function based 
on structural risk minimization to avoid the overfitting problem. It performs clas-
sification by finding maximal margin hyperplanes in terms of a subset of the input 
data between different classes. The subset of vectors defining the hyperplanes is 
called support vectors. If the input data are not linearly separable, SVM firstly maps 
the data into a high (possibly infinite) dimensional feature space, and then classifies 
the data by the maximal margin hyperplanes. Furthermore, SVM is capable of clas-
sification in high-dimensional feature space with fewer training data.

To illustrate the performance of SVM classifiers, a 2-D data set with five sam-
ples for each class is shown in Fig. 7.5a, where the samples of class + 1 are repre-
sented by the dots in yellow colour, while the samples of class − 1 by the dots in 
blue colour. The performance of a linear SVM is illustrated in Fig. 7.5b. If the input 
data are not linearly separable, SVM firstly maps the data into a high-dimensional 
feature space using a kernel function, such as polynomial kernel and Gaussian ra-
dial basis function kernel and then classifies the data by the maximal margin hyper-
planes as shown in Figs. 7.5c and d, respectively.

7.4 Applications

Computer vision has applicability to various types of food product for quality as-
surance and process control, including fruits, grains, meats, vegetables, and other 
foods. Table 7.2 summarizes the reported major applications of computer vision in 
the food industry from the literature.

For fruit quality assurance, it has been used to classify apples into various grades 
according to the features of size, shape, colour, surface quality condition, and spec-
tral reflectance of blemishes (Leemans and Kleynen 2008). The size, shape, ripe-
ness, bruise, focal contamination, firmness, soluble-solid content, and anthocyanin 
distribution of strawberries have been evaluated by computer vision (Nagata and 



174 C.-J. Du and Q. Cheng

Tallada 2008). The mass of mango can be estimated from geometric dimensions 
such as length, maximum width, and maximum thickness measured by the com-
puter vision method (Spreer and Müller 2011). It is also feasible for computer vision 
to sort other fruits such as cherries, citrus, pears, pomegranate, raisins, table olives, 
and tomatoes according to different quality attributes.

The majority of grain applications using computer vision can be found for wheat, 
rice, and corn quality assurance, such as identification of damaged, impurity ker-
nels, classification of cereal grains and their varieties, and correlating the vitreosity 
and grain hardness. Substantial work uses morphological (size and shape) features 
(Igathinathane et al. 2009), while a few investigations are based on colour or tex-
tural features (Jayas et al. 2008). It was reported in the work of Majumdar and Jayas 
(2000) that the highest classification accuracies of CWRS wheat, CWAD wheat, 
barley, oats, and rye can be achieved when combining morphological, colour, and 
textural feature sets. To simultaneously discriminate and count filled/unfilled rice 
spikelets, Duan et al. (2011) use the bimodal imaging system which combines vis-
ible light imaging and soft X-ray imaging. Visible light imaging was applied to 
measure the projected area of the spikelet hull, while soft X-ray imaging yielded the 
projected area of the inner brown rice kernel.

Fig. 7.5  An illustration for the support vector machine classification method. a An illustrated data 
set. b–d The performances of a linear SVM classifier (b), a polynomial SVM classifier (c), a radial 
basis function SVM classifier (d)
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Category Products Applications
Fruits Apple Size, shape, and colour grading, bruises detection, calyx, and 

stalk-end recognition
Cherries Defect detection
Citrus fruit Grading citrus fruits according to their size, shape, and colour 

features
Mango Estimating mass from its geometric dimensions
Pears Stem and shape recognition
Pomegranate Colour sorting
Raisin Classification according to wrinkle edge density, average 

gradient magnitude, angularity, and elongation
Strawberry Evaluating size, shape, ripeness, bruise, focal contamination, 

firmness, soluble-solid content, and anthocyanin distribution
Table olive Grading according to defects on the surface
Tomato Determining maturity, shape, and colour classification

Grains Corn/maize Classification of different shape and size of kernels, measure-
ment of stress cracking

Edible bean Classification according to size, shape, and texture features
Rice Monitoring milling quality, assessing breakage and cracks, 

discrimination and counting rice spikelets
Wheat, barley, 

oat, and rye
Classification according to morphological and colour features 

of healthy and damaged kernels
Fishery and 

meats
Bivalve Study of larval growth

Crassostrea Detection of hinge lines
Fish Fish species recognition, sorting
Shrimp Estimating dehydration level
Beef Quantifying intramuscular fat, classification, predicting eating 

quality
Lamb Classification, predicting carcass grades, and eating quality
Pork Colour evaluation, carcass grading, eating quality prediction
Poultry Estimating fat content, classification according to colour and 

texture features, splenomegaly detection, viscera inspection, 
wholesomeness characterisation

Cooked meats Evaluating the physical changes (shrinkage, pores, and poros-
ity), quality classification

Vegetables Asparagus Defect inspection
Bell pepper Classification according to colour and damage
Carrot Evaluating forking, surface defects, curvature, and brokenness
Chicory Evaluating via shape and colour features
Lentil Classification according to shape
Mushroom Brown blotch or ginger blotch diseases recognition
Onion Defect detection
Potato Surface defect detection, classification according to size, 

shape, colour, and texture features
Others Biscuit Classification according to size, shape, and colour features

Cheese Determination of the shreddability, recognization of cheese 
shred dimensions, browning, and oiling off properties, 
inspection of the distribution and amount of ingredients in 
pasteurized cheese, monitoring curd syneresis

Table 7.2  Summary of computer vision applications for food quality evaluation 
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With advancements in image analysis techniques, computer vision has become a 
technology of great potential for fish, shrimp, meat, and poultry quality assurance. 
Using the widths and heights at various locations along fish, the fish species can be 
recognized (Balaban et al. 2008). By analysing colour during the drying process, 
shrimp dehydration level can be estimated automatically (Mohebbi et al. 2009). As 
one of the most important visually assessed attributes that determine the beef qual-
ity, the abundance of intramuscular fat (IMF) can be quantified with image process-
ing techniques. By image texture analysis, it is possible to classify tough and tender 
beef. Using various image features extracted, computer vision has shown practi-
cal for pork and lamb quality assurance (Zheng et al. 2008). Substantial progress 
has been made regarding the inspection of poultry carcasses with computer vision, 
including splenomegaly detection, viscera inspection, and wholesomeness charac-
terisation (Park 2008). The estimation of fat ingredient content in poultry meat is 
shown to be possible by computer vision system, even the material obtained in in-
dustrial conditions (Chmiel et al. 2011). In addition, for quality assurance of cooked 
meats as affected by cooking and cooling, computer vision has recently been shown 
great potential to perform such a task by evaluating the physical changes (shrink-
age, pores, and porosity) during the manufacturing procedures and their image fea-
tures (colour and texture; Du and Sun 2008a).

Furthermore, computer vision has been utilized to classify vegetables, such as 
bell peppers according to their colour and damage (Shearer and Payne 1990); car-
rots for forking, surface defects, curvature, and brokenness (Brandon et al. 1990); 
mushrooms with the brown blotch or ginger blotch diseases (Vízhányó and Felföldi 
2000); and onions into good or defective classes (Shahin et al. 2002). In addition, 
asparagus defects, including spreading tips, broken tips and scarred or cracked 
spears, can be inspected automatically (Rigney et al. 1992).

It is practical to extend computer vision techniques for quality assurance of other 
food products. For visual inspection of muffins, Abdullah et al. (2000) developed 
an automated system incorporating multivariate discriminant algorithms to statisti-
cally classify muffins based on surface colour. The biscuits on a moving conveyor 
belt can be classified in real time into one of four distinct groups: underbaked, mod-
erately baked, overbaked, and substantially overbaked (Nashat et al. 2011). Accord-
ing to the manufacturing procedures of pizza, computer vision has been applied for 
quality assurance of pizza base, sauce spread, and topping (Du and Sun 2008b). In 
addition, computer vision has been successfully established as a technique for qual-

Category Products Applications
Cookies Quality inspection for size, shape, baked dough colour, and 

fraction of top surface area
Muffin Classification according to shape and colour features
Oriental noodle Colour inspection, damage detection
Pizza Quality assurance of pizza base, sauce spread, and topping 

according to size, shape, colour, and texture features
Potato chip Classification according to colour and texture features

Table 7.2 (continued) 
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ity inspection of cheese, which are determination of the shreddability (Apostolo-
poulos and Marshall 1994), recognition of cheese shred dimensions (Ni and Gunas-
ekaran 1995), measurement of the meltability, browning, and oiling off properties 
of Cheddar and Mozzarella cheeses under different cooking conditions and sizes 
of sample (Wang and Sun 2002, 2003, 2004a, b), inspection of the distribution and 
amount of ingredients in pasteurized cheese (Jeliński et al. 2007), and monitoring 
curd syneresis in a cheese vat (Everard et al. 2007; Fagan et al. 2008).

7.5 Challenges and Future Perspectives

A number of difficult problems still need to be addressed for the computer vision 
application in food quality assurance and process control. Mechanically handling 
and packaging are a remaining challenge in applying computer vision for food qual-
ity assurance, especially for those fragile products like apples, pears, and berries 
that are easily bruised and marked when they are in contact with hard surfaces. To 
design an effective computer vision system for online applications, mechanical and 
electrical hardware functionality needs to be considered during the development. 
For example, in grain-handling facilities, the simple task of identifying a sprocket 
on the railcar for a robot to open and close the gate requires detection of differ-
ent types of sprockets, located at different positions on the railcars, under different 
lighting conditions (Jayas et al. 2005).

The image processing algorithms that are proposed must be put more in touch 
with image acquisition strategies. In general, the feedback between the output of 
an image processing algorithm and the setting of image acquisition parameters are 
largely ignored. The underlying physics of image acquisition are the very basis of 
the data to be worked with when attempting to quantify image features. It is impor-
tant to integrate the physics knowledge into image processing strategies, to fully 
analyse the variability in the acquisition equipment.

The success of a computer vision system highly depends on the segmentation 
quality of food images. There is no general algorithm available that can robustly 
segment a variety of relevant structures of food images over a range of data sets. 
Robust and accurate segmentation of images still remains a challenge in computer 
vision. Many methods proposed are often sensitive to variation in image acquisition 
parameters and their own initial settings. Furthermore, most of the segmentation 
algorithms are still computationally very expensive for online image segmentation. 
Due to the non-uniform sizes, shapes, surfaces, and colours of food images, it is 
necessary to incorporate context-based, constraining information into the segmen-
tation algorithm. Two core approaches could be employed, i.e. the expert system-
like approach and the mathematical optimization.

A critical issue in terms of all practical and theoretical development is the need 
to develop appropriate validation and evaluation approaches. There is a shortage 
of common databases where algorithms can be compared to each other. Not like in 
the medical image analysis community, almost no test databases in food application 
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are made available to the public, and efforts should be made in setting up such test 
database. In addition, evaluation methodology should be developed to assess the 
strengths and weakness of algorithms.

In some application areas for food quality assurance and control, physical mod-
els could be developed for simulation of food processing via integrating image-
derived quantitative information. A key challenge here is how to choose image fea-
tures that are valuable, and issues of accuracy, repeatability, and variability must be 
considered in the long run. Besides, the effective use of these models will require 
new knowledge from a variety of areas.

Rapid and accurate determination of the internal quality of food products pos-
es technical challenges because of their complex structural, physical, and chemi-
cal properties. Researchers are continuing to investigate new, better methods and 
techniques for assessing internal food quality. The reduction in the price of novel 
technologies that have been used in medicine, such as MRI and X-rays, opens the 
door to obtain non-invasive internal images, but these technologies are still far from 
being applied in real-time systems. The hyperspectral imaging technique described 
in Chap. 9 provides a new opportunity for determining the optical properties and 
quality of food products. Compared with other techniques currently available, the 
hyperspectral imaging technique is faster, simpler, and easier to use for determining 
the optical properties of turbid and opaque food products.

Food products are 3-D entities, and most activities occur in 3-D space. Thus, 
3-D imaging techniques such as MRI and X-rays are needed to improve our abil-
ity to study them. An inevitable consequence of the new opportunities offered by 
these techniques is that the size and complexity of image data are ever increasing. 
More sophisticated 3-D algorithms that operate on volume data sets are needed to 
be developed, and richer information could be obtained. Efforts have been directed 
towards better 3-D visualization and measurement of food structure, but current 
machines are unable to achieve this objective online and thus results are still at the 
laboratory level.

It is necessary to integrate the information uncovered at the molecular and cel-
lular level into information uncovered at the macroscopic level. Being a powerful 
tool, computer vision has an important role in terms of analysing data and integrat-
ing information. Currently, computer vision is typically applied for the macroscopic 
level images of food products. As microstructure is better characterised via advanc-
ing microscopy, findings at the molecular and cellular levels may be used to gain 
new insights.

In conclusion, the ever-improving capabilities of computers, image acquisition, 
and image processing techniques opens new horizons for the application of comput-
er vision in food quality assurance and control, which will continue to be an active 
area of research. As data from more research accumulate, hardware becomes faster 
and more affordable, and image-processing algorithm becomes more intelligent, it 
is expected that computer vision will find more real-world applications in the food 
quality assurance and control.
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8.1 Introduction

All objects above 0 K (− 273.15 °C) emit infrared (IR) rays, which are part of the 
electromagnetic spectrum. Electromagnetic spectrum comprises of radio waves, 
microwaves, IR rays, visible light, ultraviolet rays, X-rays, and gamma rays. The 
wavelength of IR rays is in the range of 0.78–1000 μm. The IR region is further 
divided into different regions: near IR (0.75–3 μm), mid-IR (3–6 μm), far IR (6–
15 μm), and extreme IR (15–1000 μm) (Meola and Carlomagno 2004). The inten-
sity of radiation emitted by an object is a function of its surface temperature, i.e., 
higher the temperature of the body, greater is the intensity of IR radiation emitted 
by the object. IR thermography was discovered by English physicist Sir William 
Herschel in the early 1800s when he discovered thermal radiation outside the deep 
red in the visible spectrum; he termed this as thermometrical spectrum or referred 
to as dark heat or simply invisible rays, which was later known as infrared. IR ra-
diation can be focused, refracted, reflected, and transmitted, similar to visible light. 
The emissivity, absorptivity, transmissivity, and reflectivity to IR radiation vary for 
different materials, but in general, objects which are good absorbers of IR radiation 
are also good emitters. The list of materials that have good and poor IR radiation 
properties are provided in Table 8.1 (Anonymous 2002).

Temperature measurement is an important aspect in any industrial process, and 
IR thermography has revolutionized the concept of temperature measurement. Tem-
perature measurements in agriculture and food industry are mostly performed us-
ing conventional methods such as thermometers, thermocouples, thermistors, and 
resistance temperature detectors (Nott and Hall 1999). These instruments can only 
determine temperature at specific points and most of these instruments need to es-
tablish a contact with the material, whereas infrared thermal imaging (IRTI) is a 
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non-contact, non-destructive technique that can provide temperature mapping of the 
object of interest. Hence, use of IRTI is widely increasing in many fields.

8.2 Emissivity

The emissivity is a measure of a material’s ability to radiate absorbed energy. The 
emissivity of a material is defined as the ratio of energy radiated by a particular 
material to energy radiated by a black body at the same temperature. From a black 
body, at a steady-state temperature, all the energy absorbed is emitted, so the emis-
sivity of black body is equal to 1, i.e., absorptivity = emissivity = 1. But for all 
objects that are not black bodies: absorptivity + transmissivity + emissivity = 1. 
Energy radiated from the black body is described by Planck’s law as:

 ( )2 /5
1  / 1C TW C e λ

λ λ= −  (8.1)

Where

Wλ  Spectral radiant emittance per unit wavelength and unit area (W/
m2 μm)

λ Wavelength (μm)
C1 and C2 First and second radiation constant
T Absolute temperature (K)

According to the Stefan–Boltzmann law, the total amount of radiation emitted by 
an object per unit area is directly related to the emissivity of the object and its tem-
perature:

 (8.2)

Where

E Total amount of radiation emitted by an object per unit area (W/m2)
σ Stefan–Boltzmann constant (5.67 × 10−8 W/m2K−4)
ε Emissivity of the object
T Temperature of the object (K)

4E T= σε

Table 8.1  Materials with good and poor infrared radiation properties. (Anonymous 2002)
Infrared property Good Poor
Transmissivity Sodium chloride, germanium, zinc 

selenide, diamond
Biological materials

Reflectivity Clean metals, aluminum foil Paper, rubber
Emissivity/absorptivity Black electric tape, water, paper,  

rubber, nonmetallic flat paints
Clean metals, aluminum foil
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8.3 Instrumentation

8.3.1 Thermal Imaging TI System 

IRTI system comprises of a thermal camera equipped with IR detector, a signal 
processing unit and an image acquisition system, usually a computer. The IR detec-
tor absorbs the IR energy emitted by the object and converts it into an electrical 
impulse. The electrical impulse is sent to the signal processing unit, which translates 
the information into a thermal image. Most of the thermal imaging (TI) devices scan 
at a rate of 30 times/s and can sense temperature ranging from − 20 to 1500 °C, but 
the temperature range can be increased further by using filters (Meola and Carlo-
magno 2004).

Target is the source or the object of interest which emits IR radiation. As the 
radiation from the source passes through the earth’s atmosphere, it is attenuated 
by scattering and absorption, since atmosphere is not perfectly transparent. The 
radiation is then received by the optical receiver, which delivers it to the detector. 
The electrical signal from the detector passes to the signal processor. The signal 
processor receives the signal from the detector, amplifies it, extracts the informa-
tion, and delivers the information to the final control device or the display unit 
(Fig. 8.1).

Target (source or area of interest)

Attenuating atmosphere

Optical receiver

Detector

Signal processor

Display

Fig. 8.1  Components of a 
thermal imaging system
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8.3.2 Detectors

Radiant energy cannot be measured directly, but must be converted to some other 
form such as electrical, thermal, or chemical energy. These conversion devices are 
called detectors. IR detectors could be broadly classified into two types: thermal 
detectors and photon or quantum detectors.

Thermal detectors are made of material with temperature-dependent property. 
During imaging, when an incident radiation is absorbed, the temperature of the 
device increases and produces a measurable physical change. In thermal detectors, 
the heating effect of the incident radiation causes a change in electrical property of 
the detector, whereas in photon detectors, there is a direct interaction between inci-
dent photons and the electrons of the detector material (Hudson 1969). One of the 
simplest measures for detector performance is responsivity, the detector output per 
unit input. Thermal detectors are relatively low cost, sensitive over a wide IR range, 
light, reliable, and convenient to use, but they have slow response and relatively 
low detectivity (Rogalski 2002). Some of the thermal detectors are thermocouple, 
thermopile, bolometer, pneumatic detector, and calorimetric detector.

Photon detectors are semiconductors in which the release of electrons is directly 
associated with photon absorption. In photon detectors, the radiation is absorbed 
within the material by interaction with electrons either bound to lattice atoms or 
with free electrons. Depending on the type of interaction, the photon detectors 
are further subdivided into intrinsic, extrinsic, photoemissive, and quantum well 
detectors (Rogalski 2002). Their main characteristics are short response time and 
limited spectral response (Davis and Lettington 1988). The operation of photon 
detector is based on the measurement of an electrical photocurrent generated by 
photon absorption in a semiconductor. Photon detectors have high detectivity, fast 
response, and good material properties, but high cost and difficulty in device pro-
cessing (Rogalski 2002). Some of the photon detectors are photoelectric detector, 
photoconductive detector, and photoelectromagnetic detector (Hudson 1969). The 
principal types of photon detectors used in thermal cameras are mercury cadmium 
telluride (HgCdTe), indium antimonide (InSb), platinum silicide (PtSi), and quan-
tum well photodetector (QWP) (Williams 2009).

A focal plane array (FPA) is an optical sensor placed at the focal plane of an opti-
cal system such as camera or telescope. IR FPA is composed of IR detector array 
which can be designed and manufactured to be sensitive to small wave IR region to 
very long wave IR region based on thermal and photon detectors.

TI device can be classified into two types: uncooled and cooled (Sierra Pacific 
Corporation (2009), Las Vegas, NV). Uncooled TI device is the most common one, 
and the IR detector elements are contained in a unit that operates at room tempera-
ture. Uncooled detectors work by changes in resistance, voltage, or current when 
exposed to IR radiation. They are less expensive, but their resolution and image 
quality tend to be lower than the cooled device and they have longer response time.

In the cooled TI device, the sensor elements are contained in a unit which is 
maintained in a temperature range of − 163 to − 265 °C, with − 193 °C being the 
most common temperature. The different ways to cool the detectors are liquefied 



1878 Thermal Imaging

gas, cryogenic engine, gas expansion, or thermoelectric effect, and the most com-
mon method is cryogenic cooling. The most commonly used cooled IR detectors 
are mercury cadmium telluride (HgCdTe), indium antimonide (InSb), and indium 
gallium arsenide (InGaAs). They have a very high resolution and can detect tem-
perature difference as low as 0.1 °C (Abdullah 2008).

8.3.3 Performance of an IR System

An IR imaging system is evaluated based on thermal sensitivity, scan speed, image 
resolution, and intensity resolution. The thermal sensitivity is expressed as the noise 
equivalent temperature difference (NETD), which is the difference of temperature 
at two points of the image which corresponds to a signal equal to the background 
noise of the camera. The scan speed is the rate at which a complete image is cap-
tured. New generation systems are characterized by acquisition speed higher than 
1600 Hz. The image resolution is the capability of a system to measure the surface 
temperature of small objects and is defined as the instantaneous field of view of 
the detector. The intensity resolution is expressed as the number of gray shades of 
which the thermal image is composed of, and the latest cameras allow small tem-
perature variation to be determined in a very hot ambience.

8.3.4 Advantages of TI

IR imaging is a noncontact, nondestructive technique which allows online testing 
during production and gives valuable information without impeding productivity 
and consuming time.

The IR imaging technique does not need an external source of illumination as 
required by other imaging techniques. Hence, TI provides a means for seeing at 
nighttime or under conditions of poor illuminations.

TI could be used under conditions of smoke and mist, because the wavelengths 
involved are 10–20 times longer than the wavelengths in the visible part of the spec-
trum; the radiation undergoes less scattering by particles in the atmosphere. Hence, 
visibility through smoke and mist is increased, which is particularly important in the 
surveillance used by the firefighters to enable them to see in smoke-filled buildings 
(Williams 2009).

IR imaging is capable of detecting damage arising in service such as delami-
nation, formation, and propagation of crack, disbands, and impact damage. It is 
also useful to assess the efficiency of cooling systems, curing processes, plasma 
treatment, cross-linking processes, material joining (bonding, welding), and simple 
monitoring of material under thermal or mechanical stimulation (Meola and Carlo-
magno 2004).

Cost-effective power management is critical to maintain the reliability of elec-
trical and mechanical systems, and IR thermography is the most effective, proven, 
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predictive maintenance technology available to quickly, accurately, and safely lo-
cate problems prior to failure (Kouridakis 2007).

Thermography lowers operating costs in the food industry by periodical inspec-
tion of equipment with thermal camera, thereby preventing costly failure and sub-
sequent shutdown of the process line.

8.4 Applications of TI in Food Industry

In the food industry, temperature is an important aspect of many processes and 
products. Basically, temperature is important for two reasons: First, to ensure that 
sufficiently high temperature has been reached in a certain process or product so 
that pathogens and microbes are completely killed (a few examples of such process-
es are cooking, sterilization, pasteurization;products include any meat). Second, to 
ensure that low temperature has been achieved to preserve the product (examples 
are freezing, refrigeration, and cooling). In a food industry, the product tempera-
tures may vary significantly due to various factors such as oven temperature, con-
veyor belt speed, product volume, product composition, and product separation or 
placement. When product temperature, as they exit the product line, is measured 
using IRTI, the variation in the temperature could be seen, and if required, suitable 
modification could be done to the belt speed, or wherever necessary, to maintain 
safe product temperature, which is otherwise not possible in conventional tempera-
ture measurement methods. Other than the temperature measurements, TI is widely 
useful for many other operations in the food industry such as detecting foreign 
materials in food and maintaining optimum conditions of storage. The various ap-
plications of TI in the food industry are presented in Table 8.2. The details of the 
thermal camera used in various food industry applications are listed in Table 8.3.

8.4.1 Detection of Foreign Bodies in Food

The presence of foreign bodies in food is a major safety concern and various meth-
ods are employed in the food industry. Visual inspection is commonly used but it is 
affected by several factors. Physical separation methods such as sieving, sedimenta-
tion, screening, filtering, and gravity systems are used for the detection of foreign 
objects as well as are more sophisticated systems such as metal detectors, X-ray 
machines, optical sensors, and ultrasonic methods. But there is no system capable 
of determining every contaminant regardless of size and shape.

Warmann and Märgner (2005) studied the detection of foreign bodies in hazel-
nuts and thermal image analysis of single nuts to inspect the quality of individual 
nuts using a Thermosensorik CMT 384 thermal camera. The hazelnuts along with 
foreign bodies were made to pass on a conveyor belt and slightly heated. After a 
fixed period of cooling time, thermal images were captured. They used image pro-
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Table 8.2  Applications of thermal imaging in postharvest and food industry operations. (Source: 
Vadivambal and Jayas 2010)
Product Problem Results from IR ther-

mal imaging studies
References

Apple ( Malus 
domestica)

Bruise detection in 
fruits is a major 
issue in fruit quality

Possible to determine 
bruises at an early 
stage

Baranowski et al. 
(2009); Varith et al. 
(2003); Danno et al. 
(1977)

Apple; Cherry tomato 
( Solanum lycopersi-
cum) Japanese per-
simmon ( Disopyros 
kaki L); Japanese 
pear ( Pyrus serotina 
Rehder); Tomato 
( Lycopersicon escul-
entum Mill)

Non-destructive 
method for maturity 
evaluation is not 
available

IR thermal imaging 
makes it possible 
to determine the 
maturity of fruits

Hellebrand et al. 
(2000); Offermann 
et al. (1998); Danno 
et al. (1980)

Wheat ( Triticum 
aestivum)

Lack of rapid online 
method to deter-
mine varietal purity

IR imaging has a 
potential to identify 
wheat classes

Manickavasagan et al. 
(2008a, 2008b)

Hazel nuts, chocolate 
chunks

Lack of system to 
determine all 
contamination in 
food, irrespective of 
shape or size

Possible to determine 
all sorts of impuri-
ties such as leaves, 
stalks, pedicels, 
thorns, and foul nuts

Warmann and Märgner 
(2005); Ginesu et al. 
(2004)

Potatoe ( Solanum 
tuberosum)

Maintaining optimum 
temperature in a 
storage facility is a 
challenge

Optimization of 
climate control in 
storage facility is 
feasible

Geyer et al. (2004)

Wheat Rapid detection of 
insect infestation is 
a challenge

Insect infestation 
could be determined 
to certain accuracy 
in wheat using IR 
thermal imaging

Manickavasagan et al. 
(2007)

Ground beef; grain Temperature mapping 
not feasible

Temperature mapping 
enables safe cook-
ing temperature and 
safe temperature 
to maintain seed 
quality

Berry (2000); Man-
ickavasagan et al. 
(2006)

Citrus ( Citrus sinensis) Citrus surface drying 
results in reduced 
sensory quality and 
shelf life

Drying time could be 
established; fruit 
quality could be 
improved

Fito et al. (2004)

Packaging material Non-destructive 
technique to detect 
packaging defect 
not available

IR imaging has poten-
tial to detect cracks, 
delamination, and 
voids in packaging 
material

Liu and Dias (2002)

IR infrared
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cessing algorithms for thresholding and texture analysis. The study implies that TI 
could be used to detect foreign materials and determine the quality of individual 
hazelnuts such as the ones with insect stings or foul nuts. Since their study was 
tested under laboratory conditions, the authors suggested that extensive test under 
industrial conditions need to be performed.

Ginesu et al. (2004) studied the potential of TI to detect foreign bodies in food 
products using a Thermosensorik CMT 384 thermal camera. To distinguish between 
a food material and a foreign body, either the emissivity or the different heat con-
ductive capacities of the material could be used. Since difference in emissivities 
may not produce good contrast images, they used the difference in heat capacities of 
food and other materials to detect undesirable materials. The food materials chosen 
were almonds and raisin and foreign bodies were wooden stick, stone, metal chip, 
and cardboard. They used a pulse thermography, and the experimental procedure 
was that the object was placed (food material and foreign body) on a conveyor belt 
under the camera and a heat pulse was applied, and then the decrease in surface tem-
perature was observed. Due to difference in heating capacities, different objects cool 
down at different rates. They recorded a long sequence (500 frames, 80 frames/s) 
and extracted the thermal images. They applied various image processing techniques 
such as binarization and statistical and morphological analysis and concluded that 
results are promising and TI has a potential to detect foreign bodies in food materials.

Meinlschmidt and Märgner (2002) conducted two different studies to detect for-
eign substances in food using Thermosensorik CMT 384 thermal camera. The first 
one was to detect the presence of cherries in chocolate chunks by their emissivity 
coefficient without applying any heat impact. The second study was to detect the 
presence of leaves, stalks, pedicels, and thorns in a variety of different fruits by 
difference in the heat conductivity or capacity of different materials by allowing 
the materials to pass on the conveyor belt with a heat source and a thermal camera 
captures the image during the state of decreasing temperature. Their results showed 
that thermography could be used to detect foreign substances in the food material, 
but they suggested that these methods have to be tested on a larger-scale material in 
real-time environment.

8.4.2 Quality of Meat

Nanni Costa et al. (2007) used thermography for the assessment of pork and ham 
suitability to be processed as dry-cured ham on the slaughter line. Thermal images 
were obtained on left and right ham of 40 carcasses of pigs using ThermaCAM 
P25 thermal camera. Their results showed no difference in the average temperature 
among the various parameters such as pH, color values, and ham defects, such as 
veining or red skin. But hams with lower fat cover showed a significantly warmer 
surface temperature, and it was suggested that lower thermal insulation due to a 
thinner subcutaneous adipose tissue might be responsible for higher skin tempera-
ture. They concluded that IR thermography could be a fast and non-invasive method 
to estimate the fat content of ham.
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Mikron MCL-160 is a highly accurate thermal camera with targeted application 
in the meat processing industry. This camera could be employed to inspect the meat 
when it exits the oven to ensure optimum temperature has been attained throughout 
the product range. It is also possible to remove a particular piece of meat that has not 
attained the minimum threshold temperature (Foodproduction daily 2008).

8.4.3 Storage and Postharvest Quality

To maintain an optimum temperature of 5 °C in a potato storage facility is a chal-
lenge, and TI offers a possibility to visualize processes like warming up, cooling, 
and air flow development in the storage facility. The potential of using TI to opti-
mize the climate control of potato storage was demonstrated by Geyer et al. (2004). 
An IR thermal camera, ThermaCAM SC500, was used for the experiments. The 
results of experiments supplied valuable information about temperature distribution 
in a big box potato store. There was a wide temperature range between the front 
and the sides of the wooden boxes ranging from 1.5 to 9 °C and wide temperature 
variation also occurred between the stacks of potatoes in the wooden box. Hence, 
thermography provided a good view of the temperature differences within a potato 
storage facility which could be used for designing a temperature control system to 
provide uniform temperature within the storage.

Varith et al. (2003) employed TI to detect bruises on apples, observing 100 % 
bruise detection for Fuji and McIntosh apples stored at 3 °C and air-heated at 26 °C 
within 180 s. Differences in the temperature response between bruised and sound 
tissue were attributed to thermal property differences. Varith et al. (2003) concluded 
that the bruise detection was mainly due to the variation in thermal diffusivity, not 
due to thermal emissivity differences, since they observed no temperature differ-
ences between bruised and sound tissue under steady-state conditions. Figure 8.2 
shows the temperature variation in bruised and sound tissues for Red Delicious 
apples. Varith et al. (2003) reported that the bruise damaged tissues were ~ 1–2 °C 
cooler than the sound tissue, probably due to the fact that bruises warm more slowly 
than sound tissue, implying that thermal diffusivity α was higher in bruised than in 
sound tissues. With the higher α, bruises can transfer heat from the apple’s exterior 
into the sound interior tissue, faster than the surrounding sound tissue, resulting in 
lower surface temperature in bruised than in sound tissue.

8.4.4 Detection of Insect Infestation in Grain

In Canadian grain handling facilities, Berlese funnel is the most commonly used 
method to detect insect infestation (Canadian Grain Commission 2004). It is a time-
consuming method and the accuracy is low for developing life stages. The TI could 
serve as an alternative method to detect insect infestation because the respiration 
of insects results in heat production higher than that of the grain (Damcevski et al. 
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1998; Emekci et al. 2002). An IR thermal camera, ThermaCAM SC500, was used 
by Manickavasagan et al. (2007) to test whether insect infestation could be deter-
mined using TI. The CWRS wheat kernels were artificially infested with eggs of 
Cryptolestes ferrugineus (Stephens) (rusty grain beetle) and thermal images were 
acquired on days 4, 8, 11, 15, 22, and 27 to represent four larval stages, pupal and 
adult stages, respectively. The classification accuracy for quadratic function was 
83.5 and 77.7 % for infested and sound kernels, respectively, and in linear analysis, 
classification accuracy was 77.6 and 83.0 % for infested and sound kernels, respec-
tively. They concluded that insect infestation could be determined by TI to certain 
accuracy, but it is less effective in identifying the developmental stages of the insect.

8.4.5 TI in Processing

Temperature is the most frequently measured variable in any process engineering, 
but its assessment is always not accurate (Berrie 2001). During pelleting, tempera-
ture is a critical parameter, and high temperature in a moist food or feed material re-
sults in a wide range of physical and chemical changes. Salas-Bringas et al. (2007) 
studied the non-contact temperature monitoring of a pelleting process of poultry 
feed using IR thermography and used ThermoVision A40M thermal camera. The 
experiment was carried out in a pellet press (Münch Edelstahl, Germany) with two 
corrugated rollers and assembled with a double conditioner. The IR camera was 
installed and temperature monitored at various locations such as pellets at the die 

Fig. 8.2  Temperature variation for bruise tissue and sound tissues in red delicious apples (the top 
left picture shows that bruise is cooler than the sound tissues, whereas the bottom picture shows 
the opposite trend). (Varith et al. 2003)
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exit and surface of rotating die/pellets, temperature of meal at the outlet of the con-
ditioner, and pellets at the outlet of the pellet press. The experiment showed that 
temperature increase in the meal was not only because of the friction in the die hole 
but also because of the stress, strain, and friction produced in the gap between the 
rollers and die ring, and the heat transfer from the hotter die. They concluded that IR 
thermography facilitates temperature measurement of sticky material, moving ob-
jects, and temperature distribution within the products in a process. They also sug-
gested that improved instrument design was required for operation in dusty, damp, 
steamy, and oily environments.

8.4.6 Escherichia coli Detection

Traditional methods for isolation and identification of Escherichia coli from con-
taminated food are time consuming and labor intensive (Catarame et al. 2003). 
Since E. coli respiration generates a small but significant amount of heat, this can be 
detected by thermal camera. Hahn et al. (2006) explored the possibility of determin-
ing E. coli at their earlier stage using TI. An IR thermal camera, Model D500, was 
used to image sterile agar and those inoculated with culture of E. coli. Detection 
accuracies ranged between 75 and 100 %, and hence, they concluded that E. coli 
could be detected using TI and the minimum time required for detecting microbial 
contamination was 5 h. They suggested that E. coli should be applied to vegetable 
and meat surface to determine whether they can be detected at the same rate in the 
food materials.

8.4.7 Temperature Mapping in Food and Grain

Inadequate cooking of ground beef may result in foodborne illnesses attributable 
to E. coli O157:H7; hence, it is recommended to cook the ground beef patties to at 
least 71 °C (USDA 1998). Berry (2000) assessed the temperature variability in beef 
patties cooked from frozen versus thawed state using IR thermography. Cooked 
beef patties were cut perpendicular to the flat surface within 5 s after removal from 
the electric griddles and IR images were captured within a second of making the cut 
using Agema Thermovision 550 thermal camera. The temperatures were observed 
in the range of 54.4–73.9 °C, but these cannot be assumed as actual temperatures 
but slightly lower due to rapid evaporative cooling of patty surfaces, on removal 
from the heating environment. IR imaging showed that internal temperatures were 
higher and more consistent for patties cooked from thawed state rather than from 
frozen conditions.

The nonuniformity of surface temperatures of grain after heating in an industrial 
microwave dryer (2450 MHz) was determined using TI by Manickavasagan et al. 
(2006). An IR camera, ThermaCAM SC500, was used to determine the surface tem-
perature distribution in barley, wheat, and canola. The average surface temperatures 
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after microwave treatment were between 72.5 and 117.5 °C, 65.9 and 97.5 °C and 
73.4 and 108.8 °C for barley, canola, and wheat, respectively. Hence, IRTI could be 
used to determine the surface temperature mapping of grain which is important in 
predicting the end use quality of grain.

8.4.8 Drying

Surface drying is an important unit operation in a fresh fruit processing plant. In a 
citrus surface dryer, using an excessive air temperature or drying the fruit for long 
time results in loss of sensory quality and reduced shelf life of the fruit. Fito et al. 
(2004) tested a system to control the surface drying time of citrus using IR imaging. 
An AGEMA Thermovision 470 camera was installed on the dryer to record the IR 
emission from the surface of the oranges, var. Valencia Late (Citrus sinensis). Their 
experiment showed occurrence of two drying steps: the lowest temperature value 
at the beginning of drying process was considered as the true wet-bulb temperature 
and the end of first drying step occurred when the entire orange surface was at a 
higher temperature than the wet-bulb temperature. The next step was the orange 
peel drying which occurred when no water was present on the orange surface, and 
it must be avoided because it contributes to the fruit surface damage. Drying time 
could be established using IR thermal cameras, and an empirical model was devel-
oped to correlate drying times with air conditions. Their study revealed that image 
analysis using IR thermal camera could be used as a non-destructive measure to 
determine final drying time and hence can improve the fruit quality.

8.4.9 Packaging

One of the key challenges in the packaging industry is to develop a nondestruc-
tive technique to detect package defects such as cracking, delamination, and voids. 
Liu and Dias (2002) studied the potential of TI to identify packaging defects. The 
principle is that when heat is applied to an object, it diffuses from the source to 
the surrounding material. Any flaw in the material affects the diffusion rate, which 
in turn affects the temperature in the vicinity of flaw and, as a result, changes the 
temperature profile on the surface of the material, which could be detected by sur-
face thermal response of IR imaging. In this study, a thin layer of thermal interface 
material (TIM) was sandwiched between silicon die and lid, and the four samples 
with different TIM defect were tested: without TIM defect, TIM delamination, 
lack of TIM, and no TIM. The testing system consisted of a heating source, an IR 
camera (3–5 μm) with InSb detector and a data acquisition and image processing 
system. Their results showed a temperature difference of 0.2–0.3 °C between the 
normal surface and surface with defects. They concluded that TI is a nondestructive 
 potential tool for detecting packaging defects.
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8.5 Conclusions

IRTI technique has been widely used in various fields such as civil, industrial, ag-
riculture, aerospace, and military applications. Use of IRTI in the food industry is 
gaining popularity, and many researches have been conducted to establish that IR 
imaging could be a useful tool in improving the efficiency of various operations such 
as drying, storage, meat processing, and detection of foreign substances in the food 
material. IR imaging was seen as an expensive technique, but with time and more 
research, IR imaging has become an affordable technique. TI technique has proven 
to be a valuable research, educational, and application tool in the food industry, and 
with TI, temperature testing and control has become more precise and reliable.
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9.1 Introduction

Spectroscopy examines the scattering and absorption of light energy from various 
regions of the electromagnetic spectrum, including the ultraviolet (UV), visible 
(Vis) and near-infrared (NIR) wavelength regions. Low-cost sensors have been 
developed to detect UV-Vis-NIR light reflected from, transmitted through and 
emitted from various materials. NIR sensing technology is well established as a 
non-destructive tool in food analysis for raw material testing, quality control and 
process monitoring, mainly due the advantages it allows over traditional methods, 
e.g. speed, little/no sample preparation, capacity for remote measurements (using 
fibre optic probes) and prediction of chemical and physical properties from a single 
spectrum. Spectrometers integrate spatial information to give an average spectrum 
for each sample studied; their inability to capture internal component distribution 
within food products may lead to discrepancies between predicted and measured 
composition. Furthermore, spectroscopic assessments with relatively small point-
source measurements do not contain spatial information, which is important to many 
food inspection applications. Computer vision systems, which capture spatial infor-
mation, have been developed for quality control in food processing. Red-green-blue 
(RGB) colour machine vision systems find widespread use in food quality control 
for the detection of surface defects and grading operations. However, conventional 
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colour cameras are poor identifiers of surface features sensitive to wavebands other 
than RGB, such as low but potentially harmful concentrations of contaminants on 
foods. To overcome this, multispectral imaging (MSI) systems have been developed 
to combine images acquired at a number (usually < 10) of narrow wavebands, sensi-
tive to features of interest on the object.

Hyperspectral imaging (HSI), also known as chemical or spectroscopic imag-
ing, is an emerging technique that integrates conventional imaging and spectros-
copy to attain both spatial and spectral information from an object. It was originally 
developed for remote sensing applications utilizing satellite imaging data of the 
earth, moon and planets, but has since found application in such diverse fields as 
astronomy, agriculture, pharmaceuticals and medical diagnostics. HSI, like other 
spectroscopy techniques, can be carried out in reflectance, transmission or fluores-
cence modes.

Hyperspectral images are made up of hundreds of contiguous wavebands for 
each spatial position of a target studied. Consequently, each pixel in a hyperspectral 
image contains a spectrum representing the light-absorbing and/or scattering prop-
erties of the spatial region represented by that pixel (although it should be noted that 
due to various optical, instrumental and background effects, each pixel spectrum 
may be influenced by its neighbouring pixels; this becomes a greater problem in 
high magnification imaging). The resulting spectrum acts like a fingerprint, which 
can be used to estimate chemical composition of that particular pixel. Hyperspectral 
images, known as hypercubes, can be represented as three-dimensional (3-D) blocks 
of data, comprising of two spatial and one wavelength dimension, as illustrated in 
Fig. 9.1. The hypercube allows for the visualization of biochemical constituents of a 
sample, separated into particular areas of the image, since regions of a sample with 
similar spectral properties tend to have similar chemical composition.

Some advantages of HSI over conventional RGB, NIR spectroscopy (NIRS) 
and MSI are outlined in Table 9.1. In combining the spectral information provided 
by spectroscopy and the spatial information provided by imaging, HSI offers im-
proved knowledge on the composition and distribution of components in a product. 
Moreover, HSI is a rapid method (typical scan time < 1 min) compared with tradi-
tional quality testing techniques such as high-performance liquid chromatography 
(HPLC) and gas chromatography–mass spectrometry (GC-MS) which may take 
hours including sample preparation steps, and since it is a non-destructive and non-
contact technique, samples may be further processed or tested as required. The non-
destructive, rugged and flexible nature of HSI makes it an attractive PAT tool for 
identification of critical control parameters that impact on finished product quality.

9.2 Instrumentation

It is currently unfeasible to obtain information in all three dimensions of a hyper-
cube simultaneously; one is limited to obtaining two dimensions at a time and a 3-D 
image is created by stacking the two-dimensional ‘slices’ in sequence.
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There are three fundamental ways of acquiring a hypercube, commonly known 
as whiskbroom, pushbroom and staredown. These descriptive names refer to the 
hardware methodology used to acquire the data stream:

• In a whiskbroom system, a complete spectrum (nW) is acquired at a single spa-
tial location. Once spectral acquisition is completed, the sample is repositioned 
in both x and y spatial directions. A back and forth rastering of all x and y loca-
tions (nX × nY) provides acquisition of a complete hypercube. In this mode, data 
are sequentially saved to file one spectrum at a time. This format is termed band 
interleaved by pixel, or BIP.

• A pushbroom system utilizes a two-dimensional charge-coupled device (CCD) 
detector to simultaneously acquire a two-dimensional data matrix representing 
an image frame ‘slice’ with spatial x spectral dimensions (nX × nW). The sec-
ond spatial dimension of the hypercube (nY) is achieved by scanning across the 

Fig. 9.1  Schematic showing hypercube structure; spatial axes x, y and wavelength axis ( λ)

 

Table 9.1  Comparison of RGB imaging (RGB), near-infrared spectroscopy (NIRS), multispectral 
imaging (MSI) and hyperspectral imaging (HSI) techniques
Attribute RGB NIRS MSI HSI
Spatial information ✓ ✕ ✓ ✓
Spectral information ✕ ✓ Limited ✓
Multiconstituent information Limited ✓ Limited ✓
Sensitivity to minor components ✕ ✕ Limited ✓



202 A. A. Gowen et al.

sample surface in a direction perpendicular to the camera imaging line. The indi-
vidual camera frames are streamed to the data file as sets of spectra, one frame at 
a time. Each frame is saved such that a complete row or column of the detector 
representing one complete spectrum is saved, followed by the next spectrum, etc. 
This is still a BIP format. Some detectors may be rotated 90°, such that the frame 
is output one complete wavelength channel at a time. This format is line based, 
and termed band interleaved by line, or BIL.

• A staredown imaging system also acquires two-dimensional data camera frame 
slices but in this case each frame is a more conventional spatial x spatial image 
(nX × nY). A complete hypercube is obtained by collecting (and saving) a se-
quence of these frames (nW) acquired one wavelength band at a time. This file 
format is known as band sequential, or BSQ.

Typical HSI systems contain the following components: focusing lens, wavelength 
modulator, detector, illumination and an acquisition system as shown in Fig. 9.2a. 
In the case of pushbroom line-scanning HSI systems, a spectrograph is used for 
wavelength modulation; a line of light reflected from or transmitted through the 
sample under investigation enters the objective lens and is separated into its com-
ponent wavelengths by diffraction optics contained in the spectrograph; a two-di-
mensional image (spatial dimension × wavelength dimension) is then formed on the 
detector; two-dimensional line images acquired sequentially at adjacent positions 
from the sample target are stacked to form a 3-D hypercube which may be pro-
cessed immediately in real time or stored for further analysis. For such pushbroom 
systems, relative movement between the object and detector is necessary and this 
may be achieved either by moving the sample (e.g. via use of a translation stage, 
see Fig. 9.2b, or a conveyor belt) and keeping the hyperspectral camera in a fixed 
position or by moving the camera and keeping the sample fixed.

Objective Lens

Wavelength
Modulator

Sample

Detector

To PC
Hypercube

Light Source

Camera

Spectrograph

Light Source

a b

Fig. 9.2   a Schematic showing typical components of a hyperspectral imaging system. b Example 
of prototype turnkey pushbroom hyperspectral imaging system
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Wavelength of incoming light in the ‘staring-imager’ configuration is typically 
modulated using a tuneable filter; acousto-optic tuneable filters (AOTFs) and liquid 
crystal tuneable filters (LCTFs) are the two most common types employed. More 
recently, staring-imager systems have been developed that incorporate a tunable 
laser as the light source, thus removing the need for a wavelength modulator (Mar-
galith 2007). In tunable laser hyperspectral systems, the broadband light source and 
filters are replaced with a tunable laser system based on optical parametric oscillator 
(OPO) technology. These systems’ main components are the OPO, the camera, and 
the control software, as presented schematically in Fig. 9.3. Test parameters can be 
specified in the control software, such as the wavelength range, the spectral resolu-
tion and the number of frames at each wavelength. The software then commands 
the OPO to tune to the first wavelength and fire. The OPO electronics generate a 
pulse that triggers the data acquisition by the camera. The OPO will then be tuned 
to the next wavelength and the process repeated until the scan is completed. The 
OPO beam is collected by optical fibre and directed to illuminate the target. The re-
flected light from the target is imaged on the focal plane array (FPA) of the camera. 
The signal collected at each pixel carries information regarding the reflectivity of 
the target at the position that corresponds to that pixel. The frames are then loaded 
into the memory of the computer for examination and can be saved in a variety of 
formats for subsequent analysis by other software packages.

The use of tunable, diffused, pulsed laser is characterised by low average power 
but very high peak power. This high peak power, coupled with fast camera gating 
(on the order of microseconds), usually provides signal-to-noise ratio sufficient to 

Fig. 9.3  Schematic of the tunable-filter-based hyperspectral imaging system. NIR near-infrared

 



204 A. A. Gowen et al.

collect only one laser pulse per wavelength, allowing entire hyperspectral image 
stacks to be recorded in well under 1 min. The pulsed laser can also be thought of as 
a tunable strobe photography light source, permitting motion to be captured with-
out significant blur even at high spatial resolutions. The spectral resolution of this 
approach is governed ultimately by the linewidth of the laser (Oertel et al. 2009).

The implementation of digital micro-mirror devices (DMDs) is a relatively new 
development in spectral imaging instrumentation. Kirkhus et al. (2009) recently 
reported the use of DMDs in NIR spectral imaging. In this setup, a scene is illu-
minated and imaged onto a camera via two DMDs. A mask is generated by image 
analysis of the scene in order to locate the region of interest. The mask is then 
applied to the illumination DMD to ensure that only the region of interest is il-
luminated. Likewise, the detection DMD receives only the light reflected from the 
region of interest. The application of this system in reference banking to correct for 
variation across images, 3-D measurements with structured light and remote inter-
actance measurements is reported by O´Farrell et al. (2010a).

Hyperspectral images can be obtained for reflected, transmitted or emitted light 
coming from the UV, through the Vis-NIR and up to the short-wave infrared (SWIR) 
regions of the electromagnetic spectrum. The camera, wavelength modulator and 
illumination conditions determine the wavelength range of the system. Commer-
cially available Vis-NIR HSI systems typically range between 400 and 1000 nm and 
utilize cameras with CCD or complementary metal oxide semiconductor (CMOS) 
sensors; longer wavelength systems require more expensive IR FPA detectors. The 
sample/target is usually diffusely illuminated by a tungsten-halogen light source. 
Data acquisition and storage is a major issue in HSI; a typical image of 320 × 240 
pixels in size will contain over 75,000 spectra, each with > 100 spectral data points, 
resulting in a file containing > 7,500,000 numbers; if each number is stored in float-
ing point double precision (16-bytes), the resultant image will be > 100 MB in size!

9.3 Data Analysis

Numerous techniques exist to analyse HSI data, all of which aim to optimally re-
duce the immensity of the data while retaining important spatial and spectral infor-
mation with the power to classify important chemical or physical areas of a scene. 
Typical steps followed in analysing hyperspectral images are briefly described be-
low. To gain further insights into these and other topics related to hyperspectral 
image analysis, Grahn and Geladi’s comprehensive book is highly recommended 
(Grahn and Geladi 2007).

Image Calibration Hyperspectral image calibration is required to account for spec-
tral and spatial variations in light source intensity, detector response and system 
optics. Calibration of spectral response can be achieved using narrow-band light 
sources (e.g. laser ‘pen lights’) or calibrated standard reference materials such as 
National Institute of Standards and Technology (NIST) glasses, and this calibra-
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tion should be verified periodically. Spatial calibration over the field of view of the 
HSI instrument should be carried out using a spatially and spectrally homogeneous 
sample (e.g. flat ceramic tile). Intensity calibration is required to compensate for 
changes in the detector response and should be carried out using certified reference 
standards (e.g. Spectralon grayscale standards). Development of suitable reflec-
tance standards and use of correct calibration transformations remains a challenge 
in HSI. Spatial and intensity calibration should, at the very minimum, be carried out 
on a daily basis as small changes in electrical power sources, illumination, detector 
response and system alignment may result in significant changes in the detected 
response. Inclusion of internal reference standards in each hyperspectral image 
acquired is recommended; this is also a good way to monitor the performance of 
the system over time.

Preprocessing Preprocessing is usually performed to remove non-chemical biases 
from the spectral and spatial information contained in a hyperspectral image (e.g. 
scattering effects due to surface inhomogeneities) and to prepare the data for further 
processing. Spatial operations usually carried out at the preprocessing stage include 
(but are by no means limited to): thresholding and masking to remove redundant 
background information from the hypercube, image filtering (e.g. Gaussian filter-
ing) to decrease noise and interpolation (e.g. bilinear interpolation) to decrease 
image size. A number of spectral preprocessing techniques exist, including poly-
nomial baseline correction, Savitzky-Golay derivative conversion, mean centering 
and unit variance normalisation.

Classification and Quantification Classification and/or quantification of the mate-
rial present in a scene are usually the main goals of HSI analysis, and multivariate 
chemometric methods are often applied to achieve them. There is an abundance of 
classification and regression algorithms available for hyperspectral image analysis; 
their performance tends to be goal, data set and to some extent instrument depen-
dent. Classification of hyperspectral images aims to identify objects of similar char-
acteristics using the spectral and spatial information contained in the hypercube. 
Target or anomaly detection, on the other hand, aims to identify objects with dif-
ferent spectral characteristics as compared to the image background. Various unsu-
pervised methods, including k-nearest neighbours and hierarchical clustering, can 
be applied in the spectral or spatial domains, or in both simultaneously, to achieve 
classification. Supervised classification methods, including partial least squares dis-
criminant analysis, linear discriminant analysis and spectral angle mapping require 
the selection of well-defined and representative calibration and training sets for 
classifier optimisation.

Hyperspectral image regression enables the prediction of constituent concentra-
tions in a sample at the pixel level, thus enabling the spatial distribution or mapping 
of a particular component in a sample to be visualised. Numerous approaches are 
available for the development of regression models (e.g. partial least squares regres-
sion, PLSR; principal components regression; step-wise linear regression). One of 
the advantages of HSI in this respect is the large volume of data available in each 
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hypercube with which to create calibration and training sets. This is also known as 
the curse of dimensionality, due to the resultant high computational load of high di-
mensional data. It is thus desirable to decrease the computational burden implied in 
HSI to manageable levels; this is especially relevant in the development of real-time 
applications. Using the fact that high dimensional space is mostly empty enables the 
use of projection methods that can distil only relevant information from data rich 
hypercubes, e.g. principal components analysis (PCA), independent components 
analysis (ICA) and multivariate curve resolution (MCR).

Image Processing Images from different planes in a hypercube may be combined 
using algorithms based on straightforward mathematical operators, e.g. addition, 
subtraction, multiplication and division. Image processing is also carried out to con-
vert the contrast developed by the classification/regression analysis into a picture 
depicting component distribution. Greyscale or colour mapping with intensity scal-
ing is commonly used to display compositional contrast between pixels in an image. 
Image fusion or false colour mapping, in which two or more images at different 
wavebands are represented as red, green or blue channels and combined to form a 
new RGB image may be employed to enhance apparent contrast between distinct 
regions of a sample.

9.4 Applications of HSI in Food Quality Monitoring

9.4.1 Contaminant Detection and Identification

Gómez-Sanchis et al. (2008) studied the feasibility of detecting rot caused by 
Penicillium digitatum (fungi) in mandarins with a HSI system operating in the 
320–1100-nm range. The study concluded that the minimum number of bands to 
optimise successful classification was 20 and obtained 91 % correct classification. 
Park et al. (2006) investigated the performance of a Vis-NIR hyperspectral reflec-
tance imaging system for poultry surface faecal contaminant detection. The system 
allowed for the selection of optimum bandwidths for the construction of an MSI 
system based on dual-band ratio algorithm to identify ingesta and faeces on poultry 
carcasses with 96.4 % accuracy. Further investigations (Park et al. 2007) employed 
the same system to identify the type and source of the faecal contaminants.

Qin et al. (2009) developed a HSI system (450–930 nm) to detect citrus canker 
in grapefruits, which is a severe disease that can affect the peel of most commercial 
citrus varieties. The use of the spectral information divergence (SID) classification 
method, which is based on quantifying the spectral similarities by using a prede-
termined canker reference spectrum, allowed for correct classification accuracy of 
96.2 %.

Hyperspectral reflectance imaging in the NIR region (900–1700 nm) has also 
been used for the detection of proteins of animal origin (e.g. meat and bone meal) 
in compound feeds (Fernandez Pierna et al. 2005) and was further demonstrated 
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for the screening of compound feeds (Fernandez Pierna et al. 2006). The proposed 
method has been tested and validated through studies in line with international stan-
dard ISO 17025 (Fernandez Pierna et al. 2010).

The research group of Kim et al. (2001) developed a laboratory-based HSI sys-
tem with a spectral range of 430–930 nm to conduct food quality and safety re-
search, primarily for the development of MSI systems for food process control, 
through detection of optimal bands and algorithm development. This system was 
recently used to conduct hyperspectral reflectance imaging experiments for the de-
tection of apple surface defects/contamination (Kim et al. 2002; Mehl et al. 2004; 
Liu et al. 2007) and identification of chilling damage on cucumber (Cheng et al. 
2004; Liu et al. 2005).

An MSI system was developed by the same research group to detect faecal con-
tamination on apples, based on optimal wavelengths identified by a hyperspectral 
fluorescence imaging system (Kim et al. 2002). This research team also used hyper-
spectral fluorescence images to develop a multispectral system for detection of fae-
cal contamination on pork and apple (Kim et al. 2003). Regions of contamination 
not readily visible to the human eye were easily identified from the multispectral 
fluorescence images obtained. Vargas et al. (2005) investigated hyperspectral fluo-
rescence imaging for the detection of faecal contamination on cantaloupes, employ-
ing PCA to identify dominant wavelengths for the development of a multispectral 
detection system.

Another research team (Heia et al. 2007) developed a detection method for par-
asites on codfish, by applying PLSR to transmission hyperspectral images. This 
method enabled non-destructive identification of parasites 2–3 mm deeper than 
could be detected by manual inspection of fillets.

The potential of HSI for identification of microorganisms of concern in food has 
also been reported. Dubois et al. (2005) demonstrated the potential application of 
NIR HSI as a high throughput technique for the differentiation of bacteria based 
on their NIR spectra. NIR images of food-specific cards containing both test and 
calibration bacteria samples were obtained in the spectral region 1200–2350 nm. 
Some bacteria were identifiable from spectral differences observed at unique wave-
lengths; however, in situations where particular microorganisms of concern were 
sought, PLS classification was preferable to separate the genera of bacteria present. 
The suitability of Raman HSI for the enumeration of waterborne pathogens has 
also been evaluated (Escoriza et al. 2006). It was shown that while Raman HSI can 
provide quantitative information for bacterial concentration in water samples, the 
Raman signal was poor for low bacteria concentration (≤ 1 × 107 cells/membrane), 
necessitating the pre-filtration of dilute water samples prior to examination.

More recently, a hyperspectral fluorescence imaging system has been developed 
at the US Department of Agriculture (USDA; Jun et al. 2010) to detect microbial 
biofilms on food contact surfaces such as stainless steel, high-density polyethyl-
ene (HDPE), plastic laminate (Formica) and polished granite. Pathogenic strains 
of Escherichia coli and Salmonella enterica were used for biofilm formation. High 
detection rates were reported for the steel, HDPE and granite surfaces. The use of 
two-wavelength band ratio images made possible the detection of both E.coli and S. 
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enterica biofilms. However, a high false-positive rate was reported for the Formica 
surface; this was attributed to low biofilm growth on this type of surface.

A team of Irish researchers have demonstrated the potential of Vis-NIR HSI 
reflectance imaging for detection of surface damage on mushrooms caused by 
bacterial disease (Gaston et al 2010b). Mushrooms were inoculated by Pseudomo-
nas tolaasii and PLS discriminant analysis models were developed to classify the 
mushroom surface into one of the three classes: undamaged, bruise damaged and 
diseased. High classification rates were reported, indicating the usefulness of this 
technique for disease detection.

9.4.2 Defect Identification

One research team (Nicolaï et al. 2006) developed an NIR hyperspectral reflectance 
system with a spectral range of 900–1700 nm to detect the bitter pit defect in apples. 
The system was capable of identifying bitter pit lesions invisible to the naked eye, 
but reduced luminosity at the image boundary caused some misclassification errors. 
Ariana et al. (2006) investigated the application of NIR hyperspectral reflectance 
imaging in the same spectral region for the detection of bruises on pickling cucum-
bers. Reflectance for bruised cucumber tissue was generally lower than that for 
normal tissue, and detection accuracy was dependant on the time after bruising. It 
was demonstrated that band ratio and difference algorithms were better than PCA 
for classification of bruised cucumbers.

A Vis-NIR (400–1000 nm) hyperspectral reflectance imaging system was devel-
oped to identify bruises on apples (Xing et al. 2005). A PCA analysis based on four 
wavebands enabled bruise identification with 86 % accuracy. Xing et al. (2006) also 
developed an MSI system to discriminate between bruises and the stem end/calyx 
on apples, a well-known problem in computer-vision-based apple sorting. Elmasry 
et al. (2008) developed a system operating in the same wavelength region but with 
a different apple variety and found that, by selecting a three-wavelength multispec-
tral system, bruised and sound apples could be successfully distinguished. ElMasry 
et al. (2009) also investigated the use of a Vis-NIR HSI system (400–1000 nm) and 
artificial neural network (ANN) for the detection of chilling injury in apples.

Kim et al. (2004) designed a hyperspectral fluorescence system to detect skin 
tumours on chicken carcasses. UV lamps were used to illuminate samples on a mov-
ing stage and hyperspectral images were obtained by acquiring adjacent line scans, 
as described previously.

Transmission HSI is potentially applicable for the online estimation of internal 
constituent concentrations and detection of internal defects within foods (Schmilo-
vitch et al. 2004). Qin and Lu (2005) applied hyperspectral transmission imaging to 
detect pits in tart cherries. Light was transmitted through individual cherries from 
a light source placed below the sample holder and recorded by an imaging spec-
trograph placed above the sample. Transmission images for four different sample 
orientations were tested, and it was shown that sample orientation and colour did 
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not significantly affect classification accuracy. This finding is important for high-
throughput operations, where it is difficult to keep sample orientation uniform.

Transmission hyperspectral images may also be obtained from moving samples. 
Ariana and Lu (2006) employed such an approach to investigate internal damage in 
cucumbers. Cucumbers were mounted on a rotating stage, illuminated from below 
and hyperspectral transmission line scans were captured from above the sample. An 
image thresholding method resulted in higher classification accuracies than PLS 
analysis, achieving overall classification accuracy up to 94.3 %.

9.4.3 Constituent Analysis

Cogdill et al. (2004) investigated the application of NIR hyperspectral transmission 
imaging for estimation of oil and moisture content in corn kernels. Stationary sam-
ples were illuminated from below via collimating optics through a sample presenta-
tion stage: A tuneable filter within the spectrograph removed the need for sample 
movement. Although this method was capable of predicting moisture content with 
high accuracy, it was not possible to accurately predict oil concentration.

Ottestad et al. (2009) reported noncontact NIR interactance spectroscopy in 
combination with multispectral imaging as a rapid non-destructive way to deter-
mine the average fraction of water existing as ice, as well as the spatial distribution 
of ice in super-chilled salmon fillets. Segtnan et al. (2008) achieved noncontact 
salt and fat distributional analysis in salted and smoked salmon fillets using NIR 
interactance imaging. It was found that NIR interactance imaging alone was able to 
predict NaCl contents locally in salted salmon fillets with root mean square error of 
cross-validation (RMSECV) = 0.56 % and R = 0.86. This research team also reported 
noncontact transflectance NIR imaging for representative on-line sampling of dried 
salted coalfish. A part of this study compares the principles of reflectance, contact 
transflectance and noncontact transflectance with regard to water determination in 
a set of 20 well-defined dried salted cod samples. Transflectance and noncontact 
transflectance performed equally well and were superior to reflectance measure-
ments for the selected application, since the measured light penetrated deeper into 
the sample.

ElMasry and Wold (2008) used an online HSI system (460–1040 nm) for quan-
titative measurements of moisture and fat distribution of fish fillets. Menesatti et al. 
(2008) used a system working in the 400–970-nm spectral range to provide qualita-
tive evaluation of fish freshness. An objective technique based on a combination 
of HSI and geometric morphometric tools was presented. This study represented 
an important methodological evolution in the assessment of fish freshness, as it 
minimised the error associated with the subjective choice of fish areas by operators.

Burger and Geladi presented the first reported application of HSI to cheese 
products in 2006 in an article on NIR hyperspectral image regression, where they 
developed regression models to predict cheese composition from hyperspectral im-
ages. The researchers also examined the effects of various spectral preprocessing 
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methods on the prediction ability of the developed regression models. A range of 
12 commercial cheese products were tested, specifically selected to span as wide 
a range as possible in terms of protein, fat and carbohydrate content. The average 
composition values on the packaging labels were used as standard reference values 
and a parallel set of reference values for protein and fat content was determined us-
ing standard techniques. The challenges of developing accurate calibration models 
using hyperspectral image data were discussed. One major issue is that reference 
values were only available for entire bulk samples, not at the individual pixel lev-
el! To overcome this limitation, the authors used the mean spectral response from 
sample images to build calibration models. PLSR models were developed on mean 
spectra subjected to various spectral pretreatments, and (considering the predic-
tion error of the regression models) results suggested that applying a 1st-derivative 
Savitsky-Golay smoothing was the most effective spectral pretreatment. Using this 
approach, a PLSR model with two or four latent variables could be used to satis-
factorily predict fat, protein and carbohydrate content. Typical prediction errors of 
1–2 % for protein and fat, and 2–3 % for carbohydrate were obtained, which were 
greater than the errors in the reference measurements (0.14 % protein and 0.41 % 
fat) but similar to results reported for other NIR spectrometers.

Gaston et al. (2010a) applied Vis-NIR reflectance HSI to predict polyphenol 
oxidase (PPO) enzyme activity on mushroom caps during the browning process. It 
was found that HSI can be used for rapid identification of mushrooms with a higher 
likelihood to develop enzymatic browning, hence aiding produce management deci-
sion makers in the industry.

9.4.4 Quality Evaluation

Light scattering from a surface is highly dependent on the product density and cell 
structures, so it follows that scattering profiles may indicate related properties, such 
as texture. Indeed, the relationship between hyperspectral scattering profiles (in the 
500–1000-nm spectral range) and texture has been explored to predict peach firm-
ness (Lu and Peng 2006). In this investigation, a Lorentzian distribution function 
was fitted to scattering data, and Lorentzian model parameters at each wavelength 
were used to build an empirical regression model to predict peach firmness.

Polder et al. (2002) showed that a hyperspectral reflectance imaging system in 
the spectral region of 396–736 nm was more effective than RGB imaging for dis-
criminating ripeness level in tomatoes, regardless of illumination condition tested. 
ElMasry et al. (2007) used a Vis-NIR HSI system region for non-destructive deter-
mination of strawberry quality. A subset of wavelengths was selected and multi-
linear regression was then used to predict moisture content, total soluble solids con-
tent and pH. A similar system was used to evaluate pork quality and marbling level 
(Qiao et al. 2007), employing a feed-forward neural network to classify samples, 
with up to 85 % classification accuracy.
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Noh and Lu (2007) examined the ability of fluorescence hyperspectral line imag-
es to predict apple quality, using a blue-laser diode to produce chlorophyll fluores-
cence: A hyperspectral line scan located 1.5 mm from the beam centre was analysed 
using a hybrid PCA–ANN method. No significant differences were observed from 
fluorescence data obtained after 1–5 min of continuous laser illumination; there-
fore, fluorescence measurements could be performed within 1 min of illumination. 
Spectral features were correlated to apple quality characteristics such as firmness 
and colour. It was noted that the relatively low correlation coefficients obtained in 
the study could be improved by using multiple line scans rather than single line 
scans.

Hyperspectral reflectance imaging in the Vis and NIR wavelength ranges has 
been demonstrated as useful for prediction of a number of quality attributes of 
mushrooms. Gowen et al. (2008a) developed an HSI system operating in wave-
length range of 400–1000 nm to detect bruise damage on white button mushrooms. 
Quality deterioration of sliced mushrooms was also investigated using the same 
system (Gowen et al. 2008b). Application of HSI for early detection of freeze 
damage in Agaricus bisporus mushrooms were also investigated by Gowen et al. 
(2009). A procedure based on PCA and linear discriminant analysis (LDA) was 
developed with accuracy of higher than 95 % for classification of freeze-damaged 
mushrooms after only 45 min thawing at which time freeze-thaw damage was not 
visibly evident. The developed models could be used to identify substandard mush-
room batches before surface damage is visibly evident, and developed into a tool for 
non-destructive grading of post-harvest mushroom quality.

The shelf life of mushrooms packaged using different polymer top films and per-
foration sizes was also investigated using the same HSI system to extract imaging 
data through the packaging film (Taghizadeh et al. 2010). Quality indicators such as 
weight loss, colour, maturity index and in-pack gas composition were measured and 
PLSR models were built to correlate HSI data with measured quality parameters. 
Results demonstrated that HSI can be used for rapid evaluation of mushroom qual-
ity, facilitating the non-destructive evaluation of the effect of the packaging systems 
on mushroom shelf life. The results obtained also showed that the polyester (PET) 
film perforated with holes of 1 mm in diameter was superior in terms of maintain-
ing overall quality. Perforated PET packaging film proved a viable alternative to the 
conventional PVC film, facilitating an increase in mushroom shelf-life from 10 to 
14 days.

9.4.5 PAT Applications of HSI

The growing body of literature on the application of HSI to food quality monitor-
ing (Table 9.2) suggests its suitability as a PAT tool. To date, the majority of work 
published in this area concerns the small-scale application in a research laboratory 
setting. However, developments in system components, such as improved cameras, 
faster hardware and more accurate and efficient algorithms, are resulting in short-
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ening processing and acquisition time, enabling real-time HSI quality monitoring 
systems. Recently, a number of publications highlight the application of HSI in a 
high-speed industrial setting.

Wold et al. (2010) reported noncontact NIR interactance imaging spectroscopy 
can be applied to determine the amount of edible meat in single live crabs on a con-
veyor belt at high speed. Each crab was scanned individually, 15 NIR images were 
obtained in wavelength range 760–1040 nm and the total scanning time was about 
between 0.5–1 s, facilitating scanning of up to 120 crabs per minute. The authors 
compared PLSR calibration models developed on average spectra from each crab 
with those based on average spectra from different regions of the samples. The 
frontal region of the crabs was shown to be optimal for prediction of meat content. 

Table 9.2  Summary of measurement mode, product type and wavelength region studied employed 
in a selection of recent papers published on hyperspectral imaging of food
Mode Product Wavelength 

region (nm)
Author, year

Reflectance Apple 447–951 Liu et al. (2007)
430–900 Mehl et al. (2004)
954–1350 Nicolaï et al. (2006)
500–950 Xing et al. (2005)
500–950 Xing et al. (2006)
500–950 Xing et al. (2007)

Corn 950–1700 Weinstock et al. (2006)
Cucumber 900–1700 Ariana et al. (2006)

447–951 Cheng et al. (2004)
447–951 Liu et al. (2005)

Citrus fruit 400–970 Menesatti et al. (2005)
Pasta 400–1700 Menesatti et al. (2004)
Peach 500–1000 Lu and Peng (2006)
Pork 430–1000 Qiao et al. (2007)
Potato 430–1000 Qiao et al. (2005)
Poultry 430–850 Lawrence et al. (2006)

430–850 Park et al. (2006)
430–850 Park et al. (2007)

Strawberry 400–1000 ElMasry et al. (2007)
Mushrooms 450–950 Gowen et al. (2008a, b, 2009); Gaston et al. 

(2010a, b)
Animal feed 1000–1700 Fernandez Pierna et al. (2005, 2006, 2010)

Fluorescence Apple 500–1040 Noh and Lu (2007)
Cantaloupe 425–774 Vargas et al. (2005)
Poultry 425–710 Kim et al. (2004)
Walnut 425–775 Jiang et al. (2007)

Transmittance Cherries 450–1000 Qin and Lu (2005)
Codfish 350–950 Heia et al. (2007)
Cucumbers 450–950 Ariana and Lu (2006)
Maize 750–1090 Cogdill et al. (2004)

Interactance Crab 760–1040 Wold et al. (2010)
Pork 760–1040 O´Farrell et al. (2010b)
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The same system was employed for on-line measurement of fat content in pork 
trimmings in an industrial setting as reported by O´Farrell et al. (2010a).

Researchers based in the USDA have developed a high-speed pushbroom line-
scanning system for inspection of chicken carcasses (Chao et al. 2010). The system 
is based on hyperspectral reflectance imaging, with the capability to obtain full-
range hyperspectral images (55 wavelengths between 389–744 nm) or multispectral 
images for faster processing. The selection of two wavelengths for the MSI mode, 
coupled with the short integration time of the detector-facilitated inspection of up to 
140 carcasses per minute. The general spectral imaging methodology developed has 
potential for implementation to other food quality monitoring tasks, such as apple 
bruise detection and mushroom quality evaluation.

9.5 Summary

HSI is an emerging tool for food quality and safety analysis: The spatial capabil-
ity of HSI enables characterisation of complex heterogeneous samples, while the 
spectral capability allows for the identification of a wide range of multi-constitu-
ent surface and sub-surface features. Due to the current high cost of HSI systems, 
most food-related HSI research has been geared towards identification of important 
wavebands for the development of low-cost MSI systems. However, with recent 
high-speed applications suitable for industrial settings, it is likely that HSI will be 
increasingly adopted for safety and quality control in the food industry. Future de-
velopments in HSI equipment manufacture, such as lower purchase costs and im-
provements in processing speed, will encourage more widespread utilisation of this 
emerging platform technology.
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10.1 Introduction

Ultrasound is now widely used for the diagnostics of materials and engineering 
structures, medical imaging, and is also used in food quality characterization and 
inspection. In most ultrasonic systems, piezoelectric contact transducers are used 
when inspecting solid materials and these require a coupling medium to be used 
between the material and the transducer.

This chapter looks into the application of non-contact ultrasound for food 
property measurements. The development of various non-contact transducers, e.g. 
electrostatic, piezoelectric and electromagnetic transducers, will be described. In 
situations where the signal-to-noise ratio (SNR) is too low, i.e. high acoustic imped-
ance mismatch between the air surface and container wall, additional signal-pro-
cessing techniques have to be implemented. This chapter will also describe various 
signal-processing techniques that can be used for air-coupled ultrasonic techniques.

In summary, the advantages and disadvantages of non-contact ultrasonic tech-
niques for food application are given below (Gan et al. 2003; Bhardwaj 2001):

•	 Does	not	need	special	coupling	media	or	gel	which	can	sometimes	damage	the	
test sample

•	 Can	be	used	for	complex	geometry	inspection
•	 Can	be	used	for	high-temperature	application
•	 Less	problems	of	accessibility	and	complex	geometry	because	the	inspection	can	

be carried out from one side
•	 Can	be	used	to	inspect	material	properties	in	a	food	container	on	a	conveyor	belt
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10.2 Theory of Diagnostic Ultrasound

Ultrasound (above 20 kHz range) is produced by movement of particles from a 
vibrating body in a given medium. The mechanical vibrations generated by these 
elements may travel through solids, liquids and gases. Sound can be described as 
the variations in pressure, particle displacement or particle velocity that propagate 
through any medium (Gan 2002). There are two major types of sound waves; longi-
tudinal (compressional) waves and shear (transverse) waves. The longitudinal wave 
has particle motions that travel in the same direction (parallel) as the direction of 
propagation of the signal. This type of wave can travel through solid, liquid and gas 
(Rose 2004). The velocity of the longitudinal signal, CL can be calculated from the 
elastic constants of a material using:
 

(10.1)

where

E Young’s modulus of elasticity
ρ Density of the medium
σ Poisson’s ratio for the material

In the shear wave mode the wave particles move or vibrate at 90° to the direction of 
the wave motion. It is typically observed in solids. The velocity of the shear wave 
can be calculated using:

 

(10.2)

Any change or discontinuity in the medium of travel will affect the ultrasonic prop-
erties (Blitz 1967). At any angle other than normal incidence, when a wave passes 
from one medium to another, which have different velocities, the wave is subjected 
to a phenomenon known as refraction. This is as shown in Fig. 10.1a. Refraction 
modifies the mode and direction of sound, and these modifications could be pre-
dicted using the Snell’s law, given by:
 

(10.3)

where
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θ2 Angle of refraction
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c1 Velocity in medium 1
c2 Velocity in medium 2

When a wave hits an interface at normal incidence, part of the energy will be reflect-
ed and some will be transmitted into the second medium, as shown in Fig. 10.1b. 
The amount of energy that is transmitted across the interface depends on the acous-
tic impedance Z of both media. The acoustic impedance Z is given by:

 
(10.4)

where

ρ Density of the medium
c Longitudinal velocity of the medium

Hence, the amount of the transmitted energy across an interface could be estimated 
by the transmission coefficient T0 given by:

 

(10.5)

Z cρ= ⋅
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(a)

θ1

θ2

Medium 1, e.g. air
Velocity c1
Acoustic impedance Z1  

Medium 2 e.g. food material
Velocity c2
Acoustic impedance Z2  

Fig. 10.1  Snell’s law for wave travelling across an interface of two media (a) and transmission 
and reflection of incident wave at 0° impinging an interface (b)
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and the amount of reflected energy is determined by the reflection coefficient R0 
given by:

 
(10.6)

As a wave propagates in a medium, the amount of energy from one point to another 
could be different (e.g. from medium 1 to medium 2). The loss of acoustic energy 
may be caused by absorption, diffraction, scattering or other interactions with the 
medium where most wave particles are converted into thermal energy due to inter-
nal friction and thermal conductivity (Kocis and Figura 1996).

In most situations, attenuation of sound α increases with frequency (Grandia and 
Fortunko 1995). When the signal attenuation is purely caused by absorption, the at-
tenuation factor is usually dependent on the square of the frequency.

As a simple example, attenuation of signal α is usually calculated in decibels us-
ing the ratio of signal amplitudes A which is given by:

 
(10.7)

By knowing the attenuation coefficient of a medium, the input signal amplitude can 
be corrected so that the desired output can be compensated for any loss of energy 
(Bushong and Archer 1991).

The change in propagation medium (from 1 to 2) will also affect the speed of the 
ultrasound c. In a simple case (in a contact mode as shown in Fig. 10.2a), the speed 
of ultrasound through transmission mode in a specific medium c is given by:

 

(10.8)

where

L  Distance of travel by the ultrasonic signal (in the case of pulse-echo approach, 
L will be doubled)

t Time taken for the ultrasonic signal from the source to receiver

An alternative method to carry out food property characterization or inspection is to 
use the non-contact ultrasonic. For non-contact ultrasonic method, two approaches 
can be used: (1) through transmission and (2) single sided, e.g. pulse echo and pitch 
catch (Castaings et al. 1998). The single-sided inspection is not so common for 
non-contact food inspection due to the large reflection on the first interface, which 
masks other signals that are reflected from the internal structure. Due to the large 
impedance mismatch between the air–material interfaces, the echo from the internal 
material will be small. For these reasons, the through-transmission method is pre-
ferred. The speed of sound for this configuration in the medium of interest c2 can be 
determined from (Schindel and Hutchins 1995):
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Fig. 10.2  Common methods of ultrasonic inspection of food products and food properties. a Con-
tact technique. b Noncontact technique
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(10.12)

In the through-transmission mode, the ultrasound will pass from medium 1 (air) 
into medium 2 (food material) and then back into medium 1 (air) as illustrated in 
Fig. 10.2b. The through-transmission technique in Fig. 10.2b is useful for detection 
of material properties, anomalies, debonding, delamination, etc., using transmitted 
amplitude A and arrival time t especially when the test specimen is nonstatic. Other 
derived parameters such as speed of sound, c, distance of sound propagation, d, 
and frequency, f, can also produce good and useful information regarding the food 
sample under evaluation (Vun et al. 2006).

10.3  Non-contact Ultrasonic Transducers for Food 
Inspection

There are four main types of transducers that can be used for non-contact inspection 
of food products and these are:

•	 Piezoelectric	transducer
•	 Electrostatic	capacitance	transducer
•	 Electromagnetic	transducer
•	 Lasers

In this section, we will only focus on transducers type1, 2 and 3.

Piezoelectric Transducers	 The	 piezoelectric	 transducer	 has	 been	 widely	 used	
for	 materials	 testing	 (Edmonds	 and	 Hickman	 2000; Garcia and Tanarro 1998).  
Figure 10.3	shows	a	configuration	of	a	contact	piezoelectric	transducer.	Different	
types of wave modes could be generated depending on the geometry and the polar-
ization	of	the	active	element.	At	the	back	of	the	element	is	a	high-density	backing	
material that has similar characteristic impedance to the active element. The aim of 
the backing material is to dampen and absorb any energy from the back of the ele-
ment, giving a broad bandwidth signal. In order to generate sound waves, a transient 
voltage is applied across the electrode, causing the element to vibrate and generate 
ultrasound. The captured signal at the receiver turns the mechanical vibration into 
electric chargers, which may be sensed using a suitable amplifier.

To transfer the sound generated by the active element into another medium, a 
suitable form of coupling medium, e.g. water, is required. Ultrasonic immersion 
testing is a popular technique for the investigation of materials such as metals, fibre-
reinforced polymers and many other materials (Xiang et al. 1998). However, not all 
materials can be immersed into water. For this reason, there has been increased inter-
est	in	using	air	as	the	coupling	medium.	Piezoelectric	air	transducers	are		inherently	
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resonant devices and require special backing and construction to obtain suitable 
damping coefficients. The characteristic impedance of the piezoelectric element is 
very different to that of air. Therefore, a quarter-wavelength-thick matching layer at 
the frequency of interest is usually introduced at the front surface (Pedersen et al. 
1982). Another way of reducing the impedance of the material is to use 1–3-con-
nectivity piezo-polymer composites (Hayward and Gachagan 1996), which contain 
an array of piezoelectric ceramic rods in a polymer filler matrix.

A 2–2-connectivity composite that consists of alternative layers of ceramic and 
fillers (Möckl et al. 1990) could also be used. These have a wider bandwidth than 
traditional piezoelectric materials. Another method, which could be used to im-
prove the impedance mismatch, is to use a piezoelectric polymer such as polyvi-
nylidene difluoride (PVDF) although the material has been found to perform better 
as a receiver (Manthey et al. 1992).

Electrostatic Capacitance Transducers An alternative transducer design is based 
on the capacitance or electrostatic principle. This has received much interest 
recently because of the excellent bandwidths that can be achieved. These devices 
consist of a thin metalized membrane film and a rigid contoured conducting back-
plate. These two structures form a capacitor. Applied voltages cause the membrane 
to vibrate, and hence generate ultrasound, whereas ultrasound impinging on the 
membrane changes the device’s capacitance, allowing it to be used for detection. 
Metallic backplates can be used (Carr and Wykes 1993), many employing a regu-
lar grooved backplate, which was found to improve the acoustic properties of the 
transducer (Rafiq and Wykes 1991). This type of transducer was found to be very 
sensitive at high bias voltages when a thin polymer membrane was used (Hietanen 
et al. 1993). Further investigation showed that the sensitivity of the transducer 

Case

Electrical connection

Backing material

Connector

Electrodes

Innersleeve

Protective face

Piezoelectric element

Fig. 10.3  Construction of a typical piezoelectric transducer
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could be increased by modifying the shape of the groove, e.g. to form a V-grooved 
backplate device (Pizarro et al. 1999). An additional approach is the fully micro-
machined device, where the complete structure is fabricated using complementary 
metal oxide semiconductor (CMOS) technology from a silicon wafer. Typically, 
such designs use a silicon substrate and a silicon nitride membrane (Ladabaum et al. 
1998), although another work has used a hexagonal cell structure with polysilicon 
membranes (Eccardt et al. 1997).

In this chapter, air-coupled capacitance devices were selected for non-contact 
food characterization and inspection. The configuration of this device is shown in 
Fig. 10.4. The design was based on silicon micromachining and had a layer of met-
alized dielectric membrane where its insulating side is placed against the surface of 
a rigid conducting backplate (Schindel 1995). The membrane usually has a thick-
ness of 3.5–10 µm. The polished backplate was usually made of (110) silicon wafer 
that was coated with silicon nitride and silicon dioxide. A photoresist layer was ap-
plied to the wafer and part of the photoresist was covered before exposing it, using 
the photolithographic techniques (Schindel 1995). This produced small patterns of 
holes with a depth of 40 µm and distance of 80 µm between the centres of the holes. 
The silicon nitrate and silicon dioxide layers were then removed using phosphoric 
acid and hydrofluoric acid respectively. The unwanted part of the silicon backplate 
was etched using potassium hydroxide. Finally 1000 Å of gold was coated on the 
contoured surface to form a conducting layer.

These small holes help to trap air beneath the membrane and reduce the mem-
brane rigidity, and thus produce a wider bandwidth and enhanced sensitivities 
(Maxfield et al. 1987). This transducer is affected by change in backplate surface, 
membrane tension and thickness; however, these features are difficult to control. 

Ultrasound

Metalized Polymer
film 

Silicon Micro Etched Air Pits-machined
Backplate 

Upper Conducting
Electrode 

Fig. 10.4  Schematic diagram of an air-coupled micromachined backplate transducer
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By using a smooth backplate, it is possible to achieve a centre frequency of up 
to 1 MHz, while a roughened backplate generates lower frequency components 
(Schindel 1995).

For such a transducer, the bandwidth of the signal is dependent on bias volt-
age, film thickness and the nature of the transient voltage used for excitation. The 
bandwidth increases with both bias voltage and reduced film thickness. Ultrasound 
is generated by applying a transient voltage V(t) across the insulator. The resulting 
transient electric field then excites vibrations in the membrane. The efficiency and 
bandwidth are both increased by superimposing a DC bias field upon the transient 
voltage. As a receiver, the detected sound wave at the membrane varies the capaci-
tance. In the presence of an imposed bias field, a dynamic charge upon the elec-
trodes is generated. The typical response and bandwidth of the transducer is shown 
in Fig. 10.5.

Electromagnetic Transducers Electromagnetic transducers have been used for the 
non-contact generation and detection of ultrasonic signals in metals for some time 
(Maxfield et al. 1987). They consist basically of a coil and a magnetic field, applied 
to a conducting substrate. The transmitter coil is conventionally driven with a tran-
sient current pulse. The characteristics of an electromagnetic acoustic transducer 
(EMAT) as an ultrasonic source depend on the direction of the applied magnetic 
field B and eddy current density J induced at a conducting surface. The presence 
of a Lorentz force F on the substrate causes an elastic wave to propagate into the 
volume of the material, or along the surface. EMAT detection works via an inverse 
process, where motion of the surface induces current into the coil.

The exact wave mode to which the EMAT is sensitive depends on the coil and 
magnetic field configuration. There are many examples, including meander-line, 
pancake and rectangular coils (Murayama 1996; Hu et al. 1988), and these are 
shown in Fig. 10.6. Meander-line coils, shown schematically in Fig. 10.6a, can be 
used for generating Rayleigh (surface) waves, Lamb waves in thinner material, and 
shear waves at a predetermined angle depending upon frequency of excitation and 
meander-line geometry. Spiral pancake coils can be used to generate and detect 
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radially polarized bulk shear waves (Fig. 10.6b; Dixon et al. 1994), and rectangular 
coils are also useful for many types of acoustic modes, as shown in Figs. 10.6c and 
d. These EMATs have been used for many applications, such as high-temperature 
measurements (Lee and Ahn 1992; Idris et al. 1994) and canned food inspection 
(Ho et al. 2007).

10.4 Signal Processing to Improve Low SNR

It has been known that the signal transmitted from an air-coupled transducer is 
weak due to the high acoustic impedance mismatch between transducer surface 
and air, and this leads to poor SNR. The SNR problem encountered in air-coupled 
experiments can be improved by using a high-power tone-burst signal. Such signals 
are very convenient, in that gated power amplifiers can be used to deliver high 
powers and, when combined with a broad bandwidth transducer, the frequency of 
operation can be varied. For piezoelectric transducers in particular, tone-burst exci-
tation leads to considerable advantages for air-coupled testing, in that the frequency 
can be tuned to the through-thickness resonance of the material. This increases the 
through-transmission signal levels substantially.
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Fig. 10.6  Different types of EMAT configurations. a Menderline for Rayleigh and Lamb wave 
generation. b Pancake for radially polarised shear wave generation. c Rectangular for shear wave 
generation. d Rectangular for longitudinal wave generation. (Adopted from Ho et al. 2005)
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There are, however, disadvantages to using a tone burst. First, the voltage 
excitation level is limited by the type of transducer used, and in the particular 
case of a capacitance transducer, the voltage must be restricted to avoid dielectric 
breakdown of the thin polymer membranes. In addition, the exact frequency of 
excitation must match the through-thickness resonance of the sample to achieve 
maximum efficiency, and this might need to be adjusted if the thickness of the 
material changes (for instance during an imaging experiment involving positional 
scanning). It may also be the case that the longitudinal velocity is either not known, 
or might vary. The main disadvantage in the context of defect detection is that a 
tone burst leads to relatively poor time resolution (Izuka 1998). Defects might be 
difficult to resolve, because multiple reflections might overlap in time, although 
cross-correlation can lead to accurate time-of-flight measurements. Because ca-
pacitance transducers can operate over a wide frequency range, it is thus better 
to use a technique that capitalizes on this property. The use of a swept frequency 
signal, instead of a single transient, allows a high-power, broad bandwidth signal 
to be used which, when combined with suitable processing, also gives excellent 
time resolution. It is this property that is used in the pulse compression technique 
(Rao 1994; Ermolov et al. 1996).

In the context of an air-coupled ultrasound experiment, a tone burst, tuned to 
the through-thickness resonance, is still likely to give the greatest signal amplitude. 
However, the advantage of using a wide bandwidth pulse compression approach, 
using a broadband swept frequency excitation at the source transducer, is that the 
full air-coupled spectral response of a material (e.g. with multiple resonances) can 
be obtained instantaneously. This can be achieved without frequency scanning as 
has been necessary in the past (Folkestad and Mylvaganam 1993). Increased ac-
curacy in time-of-flight measurements can potentially be obtained, and the tech-
nique provides the ability to recover small signals from well below the noise floor, 
although the pulse compression method is only valid for improving the SNR if the 
noise is random.

10.4.1 Simulation of the Pulse Compression Technique

The pulse compression method can be implemented by driving the ultrasonic 
source with a so-called chirp or linear frequency-modulated (FM) signal, where 
the frequency is swept continuously over a predetermined range, and then apply-
ing a cross-correlation operation. The chirp is an elongated waveform, with the 
overall duration of the signal and the rate of frequency sweep defining the chirp 
characteristics. Note that a chirp signal is not the only suitable source of waveform 
for pulse compression. Another type is the pseudorandom binary sequence (PRBS) 
technique (Elias 1980). This is sometimes referred to as bi-phase code modulation 
(Taseand R. Seller 1998), but is seldom used compared to a linear FM signal. In this 
technique, the transmitted signal is separated into subpulses, and these subpulses 
are further modulated into two levels—0° and 180° phase shift in the carrier—
according to the code items (Boehmer 1967). This technique is implemented by 
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 correlating or matching the received PRBS signal with one of the elements of the 
code. With a single element correlation, the resulting time sidelobe amplitude peaks 
are much greater compared to the linear FM signal. Finding the proper codes for 
pulse compression has been the subject of much research, where special Barker (Jia 
et al. 2000) and Golay (1961) codes have been introduced. However, these codes 
make the technique more complex, and hence it is rarely used in radar implementa-
tion. Even so, these codes do not have sufficiently large time-bandwidth products 
to make significant improvement of the sidelobes (Arthur 1996). M-sequences (Lee 
and Furgason 1982) and polyphase modulation (Felhauer 1992) are additional pseu-
dorandom codes. The polyphase is an improved version of the bi-phase codes. In 
addition, both the bi-phase and polyphase could be treated as an FM code which 
has been phase quantized. The polyphase modulations require more complex signal 
processing in the receiver. The drawbacks to the phase-coded technique make the 
linear FM more efficient and easy to use in various applications.

In the following, it will be shown that the chirp (linear FM) waveform in a pulse 
compression technique can lead to significant improvements in SNRs when applied 
to air-coupled through-transmission testing. Note that pulse compression has been 
used previously for improving the resolution of various measurements for medical 
applications (Venkatraman and Rao 1996), measuring flow (Gan et al. 2001b), spa-
tial characterisation of scattering microstructure (Rao and Aubry 1994), and food 
and drinks application (as describe in this chapter).

The pulse compression technique is best described using a simulation, where a 
chirp signal is buried in noise. This chirp signal can be represented as:

 

(10.13)

where

H( t) is the Hanning function given by:
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Fig. 10.7  a Simulated broadband chirp signal with a duration of 50 µs. b Frequency spectrum of 
the broadband chirp signal. (Adopted from Gan et al. 2001a)
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 (10.14)

The generated signal from Eq. (10.13) is as shown in Fig. 10.8a. The figure shows 
the bell-shaped envelope resulting from the Hanning filter, and this shape is impor-
tant to ensure good sensitivity. In addition, the Hanning amplitude weighting also 
helps to reduce the amount of sidelobes in the signal (Rao et al. 1995). Figure 10.8b 
shows the frequency spectrum of the Hanning-weighted chirp signal. In the figure, 
it can be seen that the lower and higher limits of the frequencies are maintained at 
200 kHz and 1.2 MHz. The signal is centred at 700 kHz, and the edge ripples have 
been removed. For this reason, most applications of the pulse compression tech-
nique used the Hanning chirp.

It is interesting to demonstrate that a chirp signal is useful for the detection of 
signals in the presence of high noise levels. The Hanning chirp signal in Fig. 10.8a 
was thus shifted by 40 µs in time, and mixed into a random noise level of twice the 
chirp signal amplitude. This simulates the noise levels that could typically be en-
countered in a real air-coupled material inspection experiment. This is as shown in 
Fig. 10.9a. In order to produce the compressed pulse signal, P( t), the received signal 
CT( t) is initially band-pass filtered within the chirp bandwidth. The filtered signal 
is as shown in Fig. 10.9b, with an SNR of about 6 dB. The band-pass filter removes 
the noise levels above and below the frequency range of the original chirp-driving 
signal, but the transmitted chirp signal is still not easily visible. The waveform is 
now cross-correlated with the reference signal C( t). In the time domain, the cross-
correlation function is represented by Eq. (10.15) and this process can be calculated 
using a matched filter (Millet 1970):

 P(t) = C(t) × [CT(t)]. (10.15)

The compressed pulse, P( t), is thus produced by the correlation of the received sig-
nal CT( t) with the original reference signal C( t). The correlated result is as shown 
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Fig. 10.8  a Simulated broadband chirp signal with a duration of 50 µs after a Hanning window 
was applied. b Frequency spectrum of the broadband chirp signal after Hanning window was 
applied. (Adopted from Gan et al. 2001a)
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in Fig. 10.9c and is in the form of a time signal. In the figure, the main peak in the 
pulse compression output |P( t)| represents the position in time of the transmitted 
signal, which is at a time delay of 40 µs. The SNR has been greatly improved com-
pared to Fig. 10.9b, as can be seen. The width of the |P( t)| peak can be reduced to 
give greater time resolution by increasing the bandwidth (B) of the generated chirp 
signal ( C( t)), whereas a greater peak amplitude can be obtained by elongating the 
time duration ( T) for the same bandwidth (Fig. 10.9c). It is thus of advantage to use 
as long a duration T of the chirp as possible, and to also maximize the bandwidth.

However, the pulse compression output can be interpreted much like a conven-
tional ultrasonic waveform, in that the amplitude of the compressed pulse (as a 
function of time) is related to the amplitude of the received chirp waveforms (as 
a function of time). Note also that the exact shape of |P( t)| will be modified if the 
original chirp pulse shape is distorted by the sample. This will almost always hap-
pen in the case of a simple plate at normal incidence, where maximum transmission 
amplitudes occur at well-defined frequencies. In these situations, |P( t)| also con-
tains information concerning the material through which the signal has travelled. In 
particular, it can be used to determine the different frequencies of resonance that are 
present. This will be illustrated later in this section.
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10.5 Applications

This section looks into the application of air-coupled ultrasound for the inspection 
system for the detection of:

• Internal properties in food containers (Pallav et al. 2008)
• Physiochemical changes in food properties (Meyer et al. 2006; Gan et al. 2006)
• Foreign objects in food products (Cho and Irudayaraj 2006; Pallav et al. 2007; 

Gan et al. 2002)

10.5.1 Detection of Internal Properties in Food Containers

The non-contact ultrasonic detection of food materials in a container such as liquids 
and food products is shown in Fig. 10.10. The pulse compression approach was 
used to detect the signal transmitted across the container. In order to provide initial 
calibration, the electrostatic transducers were aligned horizontally, with no sample 
in place, and separated by 170 mm. The applications used a pair of capacitance 
transducers to generate and detect the chirp signals. The transducers in the present 
experiments had an active aperture of 10 mm diameter. The transmitter, which had a 
membrane thickness of 5 µm, was driven by a pulse compression pulser/receiver unit. 

Charge Amplifier+200V
dc bias

Pulse
compression system 

Transmitter
Receiver

Cylindrical container

Tektronix
Oscilloscope

De-coupler

0mm reference

Fig. 10.10  The experimental setup of a liquid level measurement using two broadband capaci-
tance transducers. (Adopted from Gan et al. 2002)
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The transmitted chirp signal across a test sample was captured by another elec-
trostatic transducer, this time with a membrane thickness of 2.5 µm. A thicker 
membrane was used at the source in order to withstand the high voltage genera-
tion pulse and to avoid membrane breakdown. As a receiver, a thinner membrane 
was used so that the sensitivity can be increased. The output chirp voltage was 
superimposed upon a + 200 V dc bias using a capacitive decoupling circuit, be-
fore being applied to a capacitance source of bandwidth 1.5 MHz. The longitudinal 
waves propagated through the air to the sample. Through-transmitted signals were 
received by the capacitive receiver, input to a Cooknell CA6/C charge amplifier, 
and pulse-compressed data was recorded using a digital oscilloscope.

The first example of the non-contact ultrasonic application measured the liq-
uid level in the container. In this application, the transducers were aligned axially 
( α = 0°). The aim was to measure through-transmitted signals as the liquid level 
changed. A cylindrical bottle with an external diameter of 116 mm and thickness 
0.6 mm was then placed between the transducers. Measurements were obtained by 
varying the volume (and hence the liquid level) of liquid inside the container, with 
the transducer location fixed. Each variation of 2.6 × 10−5 m3 of water (correspond-
ing to 2.5 mm in level) was recorded. A second example was performed with the 
transducers tilted as shown in Fig. 10.10, at angle α = 12°. The aim was to try to 
obtain a signal that reflected from the liquid surface. Timing the arrival of this signal 
would give an estimate of liquid depth.

Figure 10.11 shows the recorded waveforms when the transducers are at α = 0°. 
The received amplitude remained constant as long as the water level remained 
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Fig. 10.11  Variation of the pulse compression output as the transducer was scanned vertically 
down a circular bottle containing liquid. The transducers were aligned axially, with α = 0°. 
(Adopted from Gan et al. 2002)
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above 0 m, but as this was approached, the amplitude increased due to signal scat-
tering from the water surface. As the water level reduced further, the peak amplitude 
reduced to zero as the liquid content was replaced by air. Note that Fig. 10.11 dem-
onstrates an excellent SNR.

A more practical arrangement would be that with tilted transducers, so that a 
reflection from the underside of the water surface could be obtained. The transduc-
ers were thus tilted to α = 12° from the horizontal plane. As before, the water level 
was varied by 2.5 mm for each measurement. The measured waveforms are shown 
in Fig. 10.12. As the amount of water in the container reduced by a step size of 
2.5 mm, the time of arrival of |P( t)| decreased and the pulse-compressed time peak 
moved to the left as shown. This was due to the shorter travel time for the signal 
reflected from the water surface.

The air-coupled setup can also be used for the inspection of canned food prod-
ucts on a production line. Figure 10.13 shows the air-coupled arrangement used to 
inspect cans in a laboratory-based mock-up of a production line. A transducer–re-
ceiver pair was aligned in through-transmission mode across the production line. 
An infrared proximity sensor was also used to signal the arrival of the can between 
the ultrasonic transducer pair. The output from the infrared sensor was used to trig-
ger the ultrasonic inspection system.
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Fig. 10.12  Change in time of arrival of the compressed pulse signal with variation of liquid level 
using transducers at α = 12°. The major peak is a reflection from the liquid surface. (Adopted from 
Gan et al. 2002)
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Canned products pose different challenges to ultrasonic propagation. Due to the 
high acoustic impedance of metal containers, most of the ultrasound is reflected at 
the air/can boundary. The corrugated surface of some cans leads to further loss of 
signal. A typical received waveform is shown in Fig. 10.14. It can be seen that the 
signal through the can arrived sooner than in air only because the canned product 
has much higher ultrasonic velocity than the air medium. Such signals could be 
used to determine the properties of the food in the can and whether the product in 
the can is properly filled.

Fig. 10.14  Through-transmitted pulse compression signal ( solid line) received across a canned 
meat product (beef chunks in a sauce). The signal through air only is shown as dotted line. 
(Adopted from Gan et al. 2002)

 

Fig. 10.13  A scanning sys-
tem for canned products on a 
conveyor belt. (Adopted from 
Gan et al. 2002)
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10.5.2 Detection of Physiochemical Changes in Food Properties

The same configuration in Fig. 10.10 can also be used to detect physiochemical 
changes in the food products. For illustration, unrefined palm oil has been used, 
 because it can be easily obtained. The unrefined palm oil used in this experiment 
was heated to a temperature of 60°C before being placed within a Plexiglas cell with 
a 3 mm wall thickness and an area of 70 × 70 mm. Time-of-flight data were recorded 
against temperature, the latter measured with a digital thermocouple device, in or-
der to observe the change in state of the heated palm oil as it cooled down to room 
temperature (Cho and Irudayaraj 2006).

Changes in the two ultrasonic parameters, i.e. ultrasonic amplitude and time of 
flight between the two transducers, were recorded in each case, and the results for 
received amplitude are shown in Fig. 10.15. It can be seen from the results that both 
contact and non-contact measurements are well correlated. The received amplitudes 
reduced as the temperature itself decreased, as a function of time. Note the disconti-
nuity in the data. Up to approximately 115 min of elapsed cooling time, the sample 
was in liquid form (see Fig. 10.16a). As the rate of change of the temperature slows 
down (i.e. from 115 min onwards), the oil property changed its state and crystalliza-
tion started to form in the oil. This is shown in Fig. 10.16b. The steep decrease in 
amplitude between 115 and 175 min in Fig. 10.16 was due to crystallisation, which 
caused increased scattering of ultrasound. From 175 min onwards, the transition 
from liquid to solid particles was largely completed. As oil particles merged, at-
tenuation increased due to greater scattering. The amplitude was also affected by 
the increased density and hence the acoustic impedance (the product of density and 

Fig. 10.15  Comparison of signal amplitudes produced by both contact measurements ( continuous 
line) and noncontact air-coupled measurements ( dots) as a function of time, as palm oil was cooled 
from 60°C to room temperature. (Gan et al. 2006)
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longitudinal velocity) of the media. The appearance of oil at room temperature is 
shown in Fig. 10.16c.

The time of flight was also monitored with time, and the results are shown in 
Fig. 10.17. As will be seen, the time taken to travel across the sample decreased as 
the temperature reduced (i.e. at greater times). The time-of-arrival data are consis-
tent with the air-coupled through-transmission amplitude data shown in Fig. 10.15 
in that there are phase transitions at T1 = 115 min (at 33 °C) and T2 = 175 min (at 22 
°C), shown as discontinuities in slope of the graph at these temperatures. It can be 
seen from the results that there is a slight variation in the results between the contact 
and non-contact techniques. This is thought to be due to the fact that the temperature 
of the medium affects the contact transducer, whereas the non-contact technique 
is not affected. The results show that the noncontact system was measuring the 
crystallization effect and was less affected by changes in temperature. Experiments 
were also performed on milk-based products, e.g. full-fat milk at pH ~ 5.5. In order 
to show that the system can detect changes at different pH levels, various mixtures 
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Fig. 10.16  Photograph of palm oil at different times during the experiment of Fig. 10.15, taken at 
a 0 min (60°C), b 115 min and c 175 min (22 °C). (Gan et al. 2006)
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were used. In this case, the product was destabilized by reducing the pH with acid to 
the 4.5–5.0 range. The pH reading was measured using litmus paper. The amplitude 
of the transmitted ultrasonic signals were collected at 60-s intervals, with ultrasonic 
amplitude the principal parameter measured. Imaging experiments were also per-
formed after the pH had been reduced, by scanning the transducer pair in air parallel 
to the flat surfaces of the container walls. The transducer pair was moved along the 
x-axis with a step size of 1 mm to a total range of 40 mm (see Fig. 10.15). When 
this was done, the transducers were then moved in the z direction with a step size of 
4 mm. The total area of the side scan was 40 × 36 mm. Images were then formed of 
spatial variations in through-transmitted amplitude.

The results showed that the transmitted signal is highly attenuated at certain 
locations due to significant destabilization of the milk product. An optical pho-
tograph of the container was then taken at the end of the experiment and this is 
shown in Fig. 10.18. The photograph was taken so as to illustrate the x–z plane. 
Comparison of Figs. 10.18a and b indicate that the air-coupled technique was able 
to detect structural changes within the sample as variations in the peak amplitude 
of the transmitted signals. The size of the coagulated areas could also be estimated.

10.5.3 Detection of Foreign Object in Food Products

An experimental arrangement was also established to allow cross-sectional air-
coupled imaging, using a combined linear ( x) and a rotational ( θ) scanning stage, 
as shown in the block diagram of Fig. 10.19. The PC used for data storage was also 
used to control the X-rotational stages. The total area of the scan varied depending 

Fig. 10.18  Noncontact through-transmission imaging of the full-fat milk sample mixed with sul-
phuric acid. a Cross-sectional image formed by scanning the air-coupled ultrasonic system. b A 
photograph of the Plexiglas container showing the resultant coagulated milk attached at the bottom 
of the container. (Gan et al. 2006)
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on the size of the test sample involved. The scan had a dimension of 45 mm with 
spatial intervals of 1 mm. In addition, 180° of data were collected with an angular 
step of 3°, giving 61 projections. All scanning and data acquisition were controlled 
by Labview.

A difference technique was used to enhance the resolution of the reconstructed 
tomographic image, by normalizing the collected data to a reference data set, col-
lected for a uniform liquid of known properties. The image was then that of the dif-
ference in properties between the imaged cross-section and that of the reference liq-
uid. The scan dimension was limited to 45 mm (for this application) mainly due to 
total reflections of the transmitted signal towards the edge of the scan (Gan 2002). 
Two types of artificial defects or foreign objects present in the liquid container 
were tested and the images were tomographically reconstructed. Initially, a circu-
lar aluminium rod with a diameter of 10 mm was placed inside the container. The 
container was then scanned across its cross-section. When this was completed, the 
circular defect was then replaced by a stainless steel plate of dimension 1.5 × 7 mm.

The image obtained from the peak signal amplitude is as shown in Figs. 10.20 
and 10.21. The defect of 10-mm diameter is shown in Fig. 10.20. It is distorted due 
to diffraction and refraction effects. However, it can be seen that the rod attenuated 
the through-transmitted signal. Figure 10.21 shows the image of the inserted plate 
and again, the plate has been detected. Both images indicate that an object with a 
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Fig. 10.19  An example of tomography system for food contamination cross-sectional imaging. 
(Adopted from Gan 2002)
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Fig. 10.21  Air-coupled 
tomographic reconstruc-
tion of a polymeric 
drinks bottle, containing 
a thin plate of length 
of 7 mm and width of 
1.5 mm

 

Fig. 10.20  Air-coupled 
tomographic reconstruc-
tion of a polymeric drinks 
bottle, containing a circular 
aluminium rod of diameter 
10 mm
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different acoustic impedance to the water could be detected using transducers lo-
cated in the air outside the container.

The above setup (Fig. 10.22) shows an illustration of how air-coupled ultra-
sound could be used to detect inclusions which were not visible externally by eye. 
Whole chocolate bars with different types of inclusions have been scanned, typical 
results being shown in Fig. 10.23. Here, Fig. 10.23a shows a conventional milk 
chocolate bar without inclusions, where the individual chocolate ‘squares’ are vis-
ible in the image. This is then modified when additives such as hazelnuts are add-
ed (Fig. 10.23b), with the nuts appearing as the darker areas. The nut inclusion is 
clearly visible in both amplitude and time of flight images. Such nuts could easily 
be counted as part of an on-line quality control system.

Another set of experiments was also carried out on a microwaveable polymer 
food container with dimensions of 180 × 110 × 49 mm. These experiments were con-
ducted to show that contamination or changes in density of the food in the form 
of liquid sauce, which could not be seen by naked eye, could be detected using 
the air-coupled scanning technique. The container had a wall thickness of approxi-
mately 0.45 mm. The container was placed between the transducers as shown in 
Fig. 10.24. A linear scan with a dimension of 100 mm and a step size of 1 mm was 

Fig. 10.22  Experimental arrangement for air-coupled ultrasonic inspection of food samples. 
(Adopted from Pallav et al. 2008)
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Transmitter

Receiver

Microwaveable food
container 

Scanning direction

Artificial anomalies

Fig. 10.24  Experiment arrangement to detect the content in a microwaveable polymer food 
container

 

Fig. 10.23  Air-coupled ultrasonic images of a a milk chocolate bar and b a similar bar containing 
hazelnuts. (Adopted from Pallav et al. 2008)
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performed across the cross-section of the container. The transducers were separated 
by 245 mm. The centre point of the transducers was placed at 25 mm from the bot-
tom of the container. In order to create artificial anomalies, corn flour was mixed 
into hot water to create starch. The starch that was not properly dissolved was firstly 
placed at the centre of the container and the results were recorded. The starchy areas 
were then randomly distributed and the scanned waveforms were recorded.

Figure 10.25 shows various results where the quantity of starch was randomly 
distributed in the containers. The density of distributed starch particles was gradu-
ally increased by 10, 20, 50 and 70 %. Figure 10.25 shows that the waveforms have 
very good SNR, and that the presence of the cube of starch could be clearly identi-
fied. In this figure, the first arrival peak was from the direct transmission of the sig-
nal while the second peak was suspected to be from multiple reflection of the signal.
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11.1 Introduction

The past decade has witnessed significant advancements in process control tech-
nologies and strategies. New and adapted process analytical technologies (PAT) 
are continually being developed, many of which show promise for food process 
applications. There is also significant potential for technology transfer of proven 
technologies from complementary process industries including the pharmaceuti-
cal and chemical sectors to the food industry. Technology platforms will continue 
to fuse, as witnessed with spectroscopy and imaging to form hyper-/multispectral 
imaging systems. This chapter introduces and assesses the potential of emerging 
PAT for the food industry.

11.1.1 Industrial Process Tomography

The number of applications to which tomographic methods such as electrical re-
sistance tomography (ERT) and optical coherence tomography (OCT) are applied 
is steadily increasing. Significant improvements in both spatial and temporal mea-
surement limits have recently been reported.

ERT, one of the most common modalities in tomography, is a novel high-speed 
and relatively low-cost method of process imaging with the ability to perform non-
invasive remote internal inspection through volume scanning. ERT measures the 
distribution of electrical resistance (or conductivity) in a two dimensional (2D) 
cross-sectional plane of a volume, be it in a pipe or vessel. Measurements can be 
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taken rapidly allowing real-time viewing of data. The information is shown on a 
tomogram which maps the degree of conductivity. Conductivity measurements are 
useful as the different phases of a multiphase process have very different values.

ERT has many advantages such as high speed, low cost, no radiation hazard, 
and non-intrusiveness (Sharifi and Young 2012b). It has the potential to enable for 
both qualitative analysis of flow by providing three dimensional (3D) conductivity 
images and quantitative analysis by providing the data required for measurement of 
some flow parameters such as velocity distribution and flow regime identification. 
In principle, ERT can be used to investigate and monitor any process where the 
main continuous phase is at least slightly conducting and the other phases and com-
ponents have differing values of conductivity. ERT is particularly useful in observ-
ing processes such as mixing, flow and separation. It is also useful for monitoring 
reactions where the reactants or products have different conductivities, or where 
reactions change overall conductivities such as crystallisation.

Sharifi and Young (2012a) demonstrated that ERT, when accompanied by tem-
perature measurements, has the ability to multidimensionally monitor milk concen-
tration and fat content with high accuracy. The authors concluded that the dynamic, 
spatially distributed information provided by ERT could be used to facilitate en-
hanced process control in the milk industry and may be part of the solution to the 
lack of appropriate sensors to monitor dairy concentration and composition. ERT is 
particularly suited to monitoring homogeneity of milk, fat content of raw milk, milk 
standardisation and total solids content of milk concentrate. Further improvement 
in the resolution of commercially available systems will facilitate adoption of this 
technique in the food industry.

OCT is a novel optical imaging methodology that uses low-power radiation in 
the near infrared region of the spectrum to rapidly and non-invasively produce high-
resolution images of turbid biological tissue (Ford and Tatam 2013). OCT uses low-
coherence interferometry to provide structural images, with a spatial resolution of 
a few micrometres, to a depth of 1–2 mm below the surface. Advantages of OCT 
include non-contact, micrometers resolution and high signal acquisition rate up to 
300 kHz (Bouma and Tearney 2002). OCT has developed rapidly over the past 
two decades into a valuable tool mostly for medical applications. However, more 
recently, the range of OCT applications reported have extended to non-destructive 
testing (NDT) of materials including the investigation of OCT as a PAT tool for 
food processing applications.

Leitner et al. (2011) employed spectral-domain and time-domain OCT to in-
vestigate food applications. Spectral-domain OCT has advantages in terms of im-
aging speed and sensitivity, enabling video rate imaging and in-line applications, 
while time-domain OCT permits the application of dynamic focusing and shows 
a constant sensitivity over the whole depth range. Leitner et al. (2011) demon-
strated the use of OCT for the analysis and the control of wax layer thickness on 
Braeburn apples. The quality and thickness of the natural wax layer is one im-
portant parameter throughout the storage and shelf life of apples. The wax layer, 
lenticel structures and subsurface structures were clearly visible in the images 
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obtained. Leitner et al. (2011) also reported on the capability of OCT imaging to 
visualise the structure and effectiveness of coatings during rehydration processes. 
OCT is well suited to meet future demands of in-process monitoring of coating in 
food processing applications.

11.2 Dynamic Light-Scattering Technology

Light-scattering techniques have been employed since the 1960s to investigate a 
wide range of particles. Traditional integrated light scattering and subsequently dy-
namic light-scattering (DLS) techniques have been employed to study many differ-
ent types of particles including the study of dynamics and structures of food colloids 
(Alexander and Dalgleish 2006). In DLS analysis, monochromatic polarised laser 
light is passed through a dilute single-scattering colloid solution. Information on the 
size and size distribution of the particles present can be obtained by monitoring the 
intensity of light at the detector which depends on the interference pattern created 
by the scattered light from all the particles in the scattering volume. Advantages 
of the technique include its non-invasive mode of measurement, ease of use, short 
processing times and relatively low cost. However, a major limitation of DLS is 
that it is only suitable for use with very diluted systems to avoid multiple scatter-
ing effects. Thus, the reported use of DLS in realistic food applications is limited 
(Alexander and Dalgleish 2006).

DLS has been extended to study optically thick media which exhibit a very high 
degree of multiple scattering using a technique called diffusing wave spectroscopy 
(DWS) which was first reported in 1987. DWS exploits the diffusive nature of the 
transport of light in strongly scattering media to relate the temporal fluctuations of 
multiply scattered light to the motion of the scatterers (Pine et al. 1990). Advantages 
of DWS include the capability to study particle motion in concentrated fluids such 
as colloids, microemulsions and other systems which are characterised by strong 
multiple scattering (Pine et al. 1990).

There are two different measurement modes in DWS applications, namely the 
backscattering mode where the laser and detector are placed on the same side of the 
sample and the transmission mode where light crossing the sample volume is ana-
lysed. A backscattering mode DWS system is better suited to process applications 
(Alexander and Dalgleish 2006).

DWS provides information on average particle size in a sample but not on par-
ticle-size distribution (PSD) since all particles within a scattering sample may po-
tentially contribute to the intensity of a scattered path. Mason and Weitz (1995) 
demonstrated that for concentrated hard-sphere suspensions, the mean-square 
displacement of the scatters as measured by DWS can be related to the complex 
viscoelastic function G* of which G′ and G″ are the real and imaginary parts, re-
spectively. A particular advantage of the technique is its ability to measure storage 
and loss modulus [G′, G″] over a wide frequency range.
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Since many food systems are suspensions of colloidal particles, DWS is par-
ticularly well suited towards monitoring and controlling stability and coagulation 
processes in the food industry and particularly in the dairy industry. Over the past 
decade, commercial laboratory and process instruments using DWS systems have 
been developed. The RheoLight measuring system developed by Optel in coopera-
tion with the NIZO food research institute in the Netherlands has been installed in 
several cheese factories to monitor milk coagulation and help improve cheese yield 
and process control. The RheoLight system is also well suited to monitoring prod-
uct formulation, e.g. mayonnaise manufacture.

In a recent study, Niederquell et al. (2012) demonstrated the potential of DWS 
to monitor the rheology of self-emulsifying drug delivery systems. The dynamic 
viscosities obtained from DWS were in accordance with data from capillary vis-
cometry. Also, obtained values of storage and loss modulus were successfully cor-
related with the weight variability of capsules that were filled on a machine. In 
conclusion, the DWS technique enabled rheological analysis of self-emulsifying 
systems over a broad frequency range. It was concluded that DWS has a high po-
tential application in a quality-by-design framework of formulation development 
and production.

While to date application of DWS in the food industry is very limited, its use is 
likely to rise in the years ahead with further advances in DWS signal interpretation 
and more robust equipment design.

11.3 Dielectric and Microwave Sensing

In terms of its use as a PAT tool in food systems, microwave and dielectric sensing 
have primarily been applied to determination of moisture content, and to a lesser 
degree salt content. However, other applications have also been investigated such 
as determination of authenticity, maturity, and other quality parameters. Damez 
et al. (2008) investigated the potential of dielectric properties to assess beef age-
ing to facilitate optimisation of storage conditions. They found that parameters 
such as contact impedance had potential to be used to identify the state of matu-
rations as it was correlated with meat fibre strength. The potential of microwave 
properties to assess the internal quality of fruit has also been demonstrated.

More recently, Cash (2012) outlined the robust potential of guided microwave 
spectrometry (GMS) for production measurements in both dairy and meat process-
ing using in-line analysers. Unlike infrared techniques which are limited by sample 
depth into the process line and are prone to coating effects, GMS systems are based 
on intrinsic measurement through the sample material cross section.

GMS was validated by Cash (2012) for the calibration and measurement of 
fat and total solids content in a continuous process stream of fluid milk used in 
cheese making. For fat content and total solids, the standard errors of prediction 
with respect to the offline reference method were 0.05  and 0.07 %. In ground meat 
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manufacturing, GMS aided in the optimisation of fat to protein ratios and more 
consistent finished product quality. For fat content, the standard error of prediction 
of the validation batches with respect to the offline reference method was 0.63 %. 
GMS was also shown not to be affected by fat build up, inherent in optical mea-
surements that can adversely influence other measurement devices. In future years, 
GMS is likely to be increasingly exploited in the dairy and meat industries as a 
robust process analytical tool.

11.4 X-Rays

Since Röntgen first discovered in 1895 that X-rays can identify inner structures, 
X-ray technology has been continually developed for both medical imaging and 
NDT applications (Mery et al. 2011). In addition to applications in security, welding 
quality control, medicine and automotive parts inspection, NDT testing is currently 
commercially employed in many food product inspection and analysis applications 
including the poultry, grain, dairy, fruit and fish processing industries.

X-ray inspection has distinct advantages over most other inspection technologies 
as it enables non-destructive imaging of interior features of a sample for detection 
of contaminants or compliance with quality parameters. However, X-ray inspection 
is still a relatively expensive technology which requires high voltage power and 
radiation shielding (Haff and Toyofuku 2008).

In the past decade, X-ray inspection has been demonstrated through reported 
research studies to have potential application for bone detection in poultry and fish, 
identification of insect infection in citrus, detection of codling moth larvae in apples 
and water content distribution and internal structure in fruit (Mery et al. 2011).

There are three main components in an X-ray inspection system, namely X-
ray generator, detector and computer. In most X-ray systems employed in food 
and pharmaceutical applications, X-rays are funnelled through a collimator from 
the exit window of an X-ray generator (Mettler-Toledo 2009). A collimator is a 
mechanical device which narrows down the X-ray stream. In most applications, 
the X-ray generator is positioned above the processing line and the X-ray beam 
passes downwards via the collimator through the product and the belt before strik-
ing the detector beneath. The beam is about 2 mm wide in the direction of con-
veyor travel and triangular in shape (Mettler-Toledo 2009). The X-ray detection 
surface is made from a scintillating material which converts X-rays into visible 
light. Photosensitive diodes are positioned underneath the scintillator strip and are 
optically connected to the scintillator and convert the level of visible light into an 
electrical signal which is sent to the inspection system computer (Mettler-Toledo 
2009). The computer compiles a grey-scale image of the inspected product, which 
is then captured and analysed for acceptance or rejection as appropriate using 
software tools. The amount of X-ray energy absorbed during the beam’s pas-
sage through a product is a function of the product thickness, product density 
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and atomic mass number (Mettler-Toledo 2009). Measurement of the differences 
in absorption between product and contaminant is the basis of X-ray inspection. 
Three important parameters which must be considered to improve an X-ray im-
age quality are resolution, signal-to-noise ratio and contrast level. Image quality 
also depends on the interactions between the different components in the of the 
X-ray systems including X-ray source, processing conveyor, detector and image 
analysis system (Haff and Toyofuku 2008).

Modern X-ray systems are capable of simultaneously measuring many food 
product quality metrics as well as detecting certain contaminants. Quality control 
checks that can be carried out include measurement of product mass, counting of 
individual components, checking of fill level, identification of faulty products and 
inspection of seal quality. Figure 11.1 shows X-ray images of a stack of potato chips 
in a recycled composite can with a metal base and a foil lid (Mettler-Toledo 2009). 
Despite the packaging, the machine can still detect a stainless steel contaminant and 
flavour lumps (hard agglomerates of powder and fat) in the package (Fig. 11.1a). In 
Fig. 11.1b where the stack of chips has collapsed, X-ray analysis can detect that the 
fill level has dropped below an acceptable standard.

Despite recent significant research advances, detection of organic contaminants 
in food products is a particular challenge in quality assurance of food products, as 
conventional X-ray systems are unsuitable for the their detection due to the low 

Fig. 11.1  X-ray image of 
stack of potato chips in a 
recycled composite can 
with a flavour lumps and 
b collapsed stack of chips. 
(Mettler-Toledo 2009)
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contrast observed with X-ray absorption. While inorganic contaminants give rise 
to a high-contrast image in X-ray detectors, organic contaminants are particularly 
difficult to detect using automated systems. While the absorption contrast can be 
increased through the application of X-ray energies in the 10–25-keV range to 
benefit from the higher attenuation, it results in a lower scanning speed or requires 
high X-ray power levels (Nielsen et al. 2013). Recently, emerging technologies 
based on techniques employing new X-ray modalities such as phase contrast and 
dark-field imaging which have higher sensitivity to organic materials have been 
developed. In a recent study, Nielsen et al. (2013) demonstrated the potential of 
dark field X-ray radiography with a grating-based interferometer for the identi-
fication of organic foreign bodies (Fig. 11.2). However, further development is 
required before this technology can be exploited by industry for online process 
inspection applications.

While recent developments in X-ray technology have enabled detection of de-
fects that were not previously possible, a key remaining challenge is to overcome 
the loss in the signal-to-noise ratio in X-ray images as the speed of the systems in-
crease. Further developments in this field will open new possibilities for automated 
inspection and quality monitoring in a wider range of food processing applications.

11.5 Terahertz Imaging

The terahertz (THz) region of the electromagnetic spectrum spans between 100 GHz 
and 30 THz. Recently, there is renewed interest in THz time-domain spectroscopy 
and imaging as a potential quality control and process monitoring tool due to tech-
nological developments in source and detector components.

THz systems are designed to operate in transmission or reflection modes. THz 
radiation has sufficient energy (1–10 meV) to promote molecular rotations and vi-
brations; and can thus be used for their identification (Gowen et al. 2012). THz 
radiation is non-ionising and sensitive to polar molecules such as water but interacts 
very weakly with materials composed of non-polar molecules, e.g. plastics. Thus, 
THz systems are particularly suited for analysis of packaged food products. THz 

Fig. 11.2  Sour cream: X-ray images of sour cream with three foreign bodies; eight layers of paper 
( left), a cigarette butt ( middle) and a fly ( right). (Nielsen et al. 2013)
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imaging also enables direct measurement of sample thickness, refractive index and 
absorption coefficient. A typical THz waveform is shown in Fig. 11.3.

There are many studies of THz imaging applied to pharmaceutical quality con-
trol including tablet coating characterisation, evaluation of dissolution properties 
and characterisation of polymorphisms (Shen 2011).

From a food safety perspective, compounds such as pesticides or antibiotics ex-
hibit characteristic absorption peaks at specific THz frequencies. Many recent stud-
ies have been published on THz applications for antibiotic and pesticide detection in 
foods. Chemometric analysis of the absorption coefficient or refractive index is fre-
quently applied for quantitative analysis of samples (Maurer and Leuenberger 2009).

THz techniques are well suited to moisture content measurement in dried foods. 
A linear relationship between moisture content and THz time-domain data (peak-to-
peak amplitude) or frequency-domain data in the range 0.2–0.6 THz was reported 
by Parasoglou et al. (2009) who examined the moisture content of confectionary 
wafers using THz TDS. Moreover, the possibility of characterising the molecular 
nature of water in low moisture content products (e.g. free vs. bound water) could 
be used for the determination of shelf life (Gowen et al. 2012).

Although the potential of THz technologies has been demonstrated to be suited 
to the measurement of quality parameters of selected food and pharmaceutical prod-

Fig. 11.3  Typical terahertz waveform. Reflection from the tablet surface (i.e. air/coating interface) 
and from the coating/core interface are indicated by dashed lines; drawn through arrows indicate 
how TPI (peak intensity, interface index, layer thickness) are related to the waveform. (Maurer and 
Leuenberger 2009)
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ucts, much research and development is required before these technologies are suit-
able for mainstream adoption by industry. The development of THz spectral library 
databases is something that is still in its infancy (Gowen et al. 2012). Other sig-
nificant areas to be addressed include the high cost of THz technologies relative to 
other sensing technologies, slow speed of THz image acquisition, further research 
on chemometric modelling techniques for improved analysis and understanding of 
THz spectra.

11.6 Particle Imaging PATs

PSD of suspensions and emulsions is an important parameter influencing the struc-
tural and sensory characteristics of foods. PDS is also an important factor of powder 
performance, governing flow and reconstitution behaviour. Crystal size distribution 
(CSD) is also found to influence the quality of many foods. Quantifying particle 
size is a difficult task due to the nature of particles (vast numbers, small size ranges, 
nonspherical shapes, cohesive and agglomerated particles, moving nature in liq-
uids or air, particle growth or dissolution). Monitoring PSD has been an identified 
critical control parameter for the small-molecule pharmaceutical and fine chemical 
industries for decades, with considerable innovation in in-line particle monitoring 
in recent times. There are a number of emerging approaches that can provide in-
formation on particle size and morphology, which could be employed as PAT tools 
to control food process operations. Outlined below are a number of emerging par-
ticle monitoring approaches, which offer in-line monitoring of particles carried in a 
liquid suspension or air.

11.6.1 Focused-Beam Reflectance Measurement

This approach focuses a laser beam through a window and collects the light that 
is scattered back to the probe to provide, in real time, a chord length distribution 
(CLD). The focused-beam reflectance measurement (FBRM) probe emits its laser 
beam rotating at a high velocity (9000 rpm), which propagates into the suspension 
(Amamou et al. 2010), overcoming problems due to particle motion. As the beam 
intersects suspended particles it is backscattered, this backscatter is collected by 
the FBRM optics and is converted into chord length as the product of the measured 
crossing time and the beam velocity (Worlitschek and Mazzotti 2003). The duration 
of each reaction is multiplied by the velocity of the scanning beam, resulting in a 
chord length. The measurement range is 0.8 ± 1000 mm, with the distribution sorted 
by chord length into a 38-channel distribution. Typically, many thousands of chord 
lengths are measured per second, with the numbers of counts dependent on the 
concentration of solids present in the suspension (Barrett and Glennon 1999). Both 
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modelling and empirical approaches have been used to establish the correlation be-
tween the chord length measured with FBRM and particle size. Due to its principles 
of measurement, the FBRM probe can be readily inserted online or into a reaction 
vessel without the need of installing a pre-dilution side stream as is required for 
other online previous particle sizing tools. A variety of applications using FBRM 
were developed and reported in the literature, including crystallization, floccula-
tion, slurries, polymorphic transitions, particle disruption and solubility measure-
ments (Yu and Erickson 2008) and references therein.

The most attractive advantage of this technique is its utility both for in situ mea-
surement of high solid-concentration suspensions and for following rapid crystal-
lization kinetics. However, the CLD is only an indication of the real population. 
This probe does not detect particle shape. In fact, CSD is more meaningful for the 
characterisation of a crystal product. Thus, many papers have discussed methods 
to recover the CSD value from a measured CLD. If the crystal shape is known, 
particularly when the crystals can be considered as spherical, this restoration is pos-
sible. Furthermore, if crystal shape does not change during freezing, the mean chord 
length can be considered proportional to the mean diameter.

11.6.2 Stereoscopic Particle Imaging

A novel particle imager (EyeconTM, Innopharmalabs) has been commercialised, 
which can determine both PSD and shape factors of powder streams in real 
time (Fig. 11.4). The system’s approach uses structural lighting to obtain par-
ticle tomography information from images in either stationary or moving envi-
ronments. The technology is based on high-speed 3D machine vision, enabling 
both particle size and shape quantification in the range of 50–3000 microns. 
A continuous image sequence of the particles is captured using illumination 
pulses with a length of 1 μs, freezing the movement of particles with particle 
velocities of up to several meters per second. The illumination is arranged ac-
cording to the principle of photometric stereo for capturing the 3D features of 
the particles in addition to a regular 2D image. The particle size is estimated 
from the images using both the 2D and 3D information, applying novel image 

Fig. 11.4  3D particle 
imaging in real time using 
stereoscopic technique. 
(Reproduced by permission 
of Innopharmalabs)

 



11 Emerging PAT Technologies 257

analysis methods and direct geometrical measurement. A series of algorithms 
facilitates particle detection, ellipse model fitting and size estimation. As the 
approach is based on direct measurement instead of indirect, such as laser dif-
fraction, there is no need for material based calibration. In addition, the method 
it is non-contact and can be applied, e.g. through a view glass on a granulator 
or dryer, without physical modification of the process equipment. PAT applica-
tions include granulation, drying, milling and spheroidisation processes. The 
novelty of the system includes high-speed measurements, no additional cali-
brations, ability to deal with complex particle morphology and no sampling 
requirements.

11.7 Electronic Tongue and Nose

Taste and smell testing are critical quality control tests within the food industry 
(Herbert et al. 2000). However, simultaneous determination of different com-
pounds has traditionally been challenging to obtain in real time, and normally, 
classification tools are not always well developed (Gutes et al. 2007). The elec-
tronic tongue (e-tongue) and nose (e-nose) are emerging bioinspired analytical 
systems that provide fast determination of several compounds or sample classifi-
cation. These technologies are typically an array of sensors combined with che-
mometric tools to characterise complex samples, and can be considered as ana-
lytical instruments that artificially reproduce the taste or smell sensation. Arrays 
of gas sensors are termed ‘electronic noses’ (Peris and Escuder-Gilabert 2009) 
while arrays of liquid sensors are referred to as ‘electronic tongues’ (Stetter and 
Penrose 2002). They have been employed for the recognition, classification and 
quantitative determination of multiple component concentrations. The analytical 
strategy is based on the measurement of a great number of samples covering the 
expected variability and afterwards, a visualization tool, such as principal compo-
nent analysis (PCA), is used for samples grouping, after which pattern recognition 
variants are used for classification (Gutes et al. 2007).

11.7.1 E-Nose

Despite the importance of aroma as an indicator of quality and product conformity, 
analytical monitoring by the food industry has traditionally been limited. This is 
principally due to the lack of reliable odour assessing instruments and the practical 
impossibility of employing sensory panels to the continuous monitoring of aroma 
(Ampuero and Bosset 2003). Typically, the instruments consist of headspace sam-
pling, sensor array and pattern recognition modules, to generate a signal pattern to 
characterise odours. As they are easy to build, cost-effective and provide a short 
time of analysis, e-noses are becoming increasingly popular as objective automated  
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non-destructive techniques to characterise food flavours (Peris and Escuder- 
Gilabert 2009). Compared to sensory panels, the main advantage of the e-nose is 
that once calibrated they can perform odour assessment on a continuous basis at a 
minimal cost. Furthermore, once established, this technique does not require trained 
personnel like a sensory panel does, is not subject to individual breakdown or varia-
tion of sensitivity (Sarig 2000), is not overloaded under normal operation and takes 
comparatively very little time. Just like the human olfactory system, e-noses do not 
need to be specially designed to detect a particular volatile. In fact, they can learn 
new patterns and associate them with new odours via training and data storage func-
tions as humans do. However, training of e-noses based on sensory panel classifica-
tions is required in order to obtain odour-meaningful classifications.

Although still developing, e-noses can potentially be applied to process control 
and monitoring, acceptance or rejection of raw material, intermediate and final 
products, assistance in the development of new products, as well as to the assess-
ment of synergistic effects of individual odorants (Ampuero and Bosset 2003). 
Reported PAT applications are listed in Table 11.1. García et al. (2005) have made 
use of an e-nose to identify spoiled Iberian hams during the curing process, with a 
100 % discrimination of two types of Iberian hams (spoiled and unspoiled) found. 
E-noses have been also applied to bioprocess monitoring where microbiological 
processes are involved in food production, i.e. to screen the aroma generation 
of lactic acid bacteria strains in the production of cheese and other fermented 
dairy products. Marilley et al. (2004) employed an e-nose to discriminate between 
seven different genotype strains of Lactobacillus casei isolated from Gruyère 
cheeses. Pani et al. (2008) used an e-nose to monitor changes in the aroma profile 
of tomato slices during air dehydration processes. The authors reported that the 
e-nose was able to characterise the process aromatic fingerprint, which could be 
used to parameterise the degradative events caused by dehydration. Bhattacharya 
et al. (2008) reported real-time smell monitoring of black tea during the fermenta-
tion process using an e-nose as well as prediction of the correct fermentation time. 
The approach showed promise to be used for the online prediction of optimum 
fermentation time by the industry.

11.7.2 E-Tongue

Reported applications of the e-tongue (Table 11.2) include freshness evaluation and 
shelf-life investigation, authenticity assessment, foodstuff recognition, quantitative 
analysis and process monitoring (Escuder-Gilabert and Peris 2010). These devices 
are designed to evaluate and compare tastes, imitating the human tongue. The com-
pounds responsible for taste may be identified by the sensory cells of taste, which 
transforms the information into an electrical signal allowing the brain to identify 
the basic standards of taste, which are bitter, acid, salty, sweet and, finally, ‘umami’ 
(pleasant savoury taste). The e-tongue simulates this approach, where once immersed 
in a liquid, a pattern of signals that depends on the composition of the matrix solution 
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Sample Type of study Sample han-
dling system

Detection 
system

Data 
processing 
algorithm

Ref.

Wine-must Discrimination 
between 
fermentation 
stages

SHS—per-
vaporation

A32S AromaS-
can: 32 CP

PCA Pinheiro 
et al. 
(2002)

Iberian hams 
(‘Montanera’)

Spoiling during 
the curing 
process

SHS 16 Tin-oxide 
thin films

PCA, PNN García et al. 
(2005)

Milk fermented 
with Lacto-
bacillus casei 
strains used 
in Gruyère 
cheese

Discrimination 
between 
genotype 
strains

INDEXSmart Nose MS PCA Esbensen 
et al. 
(2004)

Milk fermented 
with Lacto-
coccus lactis 
strains

Discrimination 
between 
odour inten-
sity scores

SHS FOX 3000: 12 
MOS

PCA Gutiérrez-
Méndez et 
al. (2008)

Australian red 
wines

Spoilage 
caused by 
Brettanomy-
ces yeast

SHS HP4440: MS PCA, PLS, 
SLDA

Cynkar et al. 
(2007)

Australian red 
wines

Spoilage 
caused by 
Brettanomy-
ces yeast

SPME (for 
MOS)

SHS (for MS)

FOX 3000: 12 
MOS

HP4440: MS

PLS Berna et al. 
(2008)

Tomato cv. 
Cencara

Dehydration 
processes of 
tomato slices

SHS Air Sense: 10 
MOS

PCA Pani et al. 
(2008)

Mangoes ( Man-
gifera indica 
L.)

Discrimination 
between har-
vest maturi-
ties within 
a ripening 
stage

Discrimination 
between 
ripening 
stages within 
a maturity 
stage Dis-
crimination 
between fruit 
varieties

SHS FOX 4000: 18 
MOS

DFA Lebrun et al. 
(2008)

Black tea Estimation of 
optimum 
fermentation 
time

SHS 8 MOS TDNN, 
SOM

Bhattacha-
rya et al. 
(2008)

PLS partial least squares, SPME solid phase microextraction, MOS metal oxide sensors, DFA 
deterministic finite automaton, TDNN time delay neural network

Table 11.1  Reported applications of e-noses in food process monitoring applications. (Peris and 
Escuder-Gilabert 2009)
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Sample Type of study Chemical sensors Data process-
ing algorithm

Ref.

Starting culture 
for light 
cheese 
production

Fermentation 
monitoring

Potentiometric sensors 
(30 chalcogenide 
glass and solvent 
polymeric working 
electrodes; Ag/AgCl 
reference electrode)

PLS Esbensen et al. 
(2004)

Discrimination of 
samples from fer-
mentation batches

Milk Online monitoring of 
sources of raw milk

Voltammetric working 
electrodes (Au, Pt 
and Rh) embedded 
in a dental material

PCA Winquist et al. 
(2005)

Online monitoring of 
the cleaning process 
of the pasteurization 
unit

Voltammetric working 
electrodes (Au, Pt, 
Rh and stainless 
steel) embedded in 
PEEK™

Red wine Monitoring of the age-
ing process

Voltammetric sensors 
(7 polypirrole-based 
sensors, 4 CPEs 
based on phthalocy-
anines and 2 CPEs 
based on perylenes; 
Ag|AgCl/KCl 
saturated reference 
electrode; Pt wire 
counter electrode)

PCA, 
SIMCA

Parra et al. 
(2006)

Discrimination of 
samples aged in oak 
barrels of different 
wood origin and 
toasting level

Wine Analysis of the effects 
of several treat-
ments on wine 
phenolic compounds 
composition

Potentiometric sensors 
(14 plasticized 
PVC sensors, 11 
chalcogenide glass 
sensors,1 glass pH 
electrode; Ag/AgCl 
reference electrode)

PCA, 
ANOVA, 
ASCA, 
PLS

Rudnitskaya 
et al. (2009)

Prediction of chemical 
parameters

PLS partial least squares, PCA principal component analysis, CPE carbon paste electrode, 
SIMCA soft independent modelling of class analogy, ANOVA analysis of variance, ASCA 
ANOVA-simultaneous component analysis

Table 11.2  Applications of e-tongues in food process monitoring. (Escuder-Gilabert and Peris 2010) 



11 Emerging PAT Technologies 261

is obtained. The signal is subsequently decomposed into qualitative and quantitative 
information by chemometric methods, with the useful information selected as final 
result (Dias et al. 2011). The sensor features of the e-tongue are different from those 
of the traditional chemical sensors, where instead of high selectivity for detecting 
substances, e-tongues have an ability to obtain global information about the solu-
tion, which is called the overall selectivity (Vlasov et al. 2002; Toko 2000; Legin 
et al. 2005). For the purpose of determining the flavour quality and intensity, the taste 
evaluation should not be based on specific substances but in all the matrix substances. 
Therefore, the main analytical properties of an e-tongue are the sensitivity and stabil-
ity, being selectivity a less important characteristic (Dias et al. 2011).

With respect to process monitoring, Escuder-Gilabert and Peris (2010) re-
viewed e-tongue applications. Fermentation process monitoring of a starting cul-
ture for cheese production (Esbensen et al. 2004) allowed detection of abnormal 
operating conditions at an early stage. Moreover, the capability of the e-tongue 
to quantify organic acids (such as citric, lactic and orotic) in the fermentation 
media was demonstrated with average prediction errors in the 5–13 % range. The 
authors concluded that the e-tongue was a promising tool for fermentation process 
monitoring. Winquist et al. (2005) employed an e-tongue as a PAT tool within a 
dairy process line for direct in-line measurements of different sources of raw milk 
and to monitor the cleaning process of the pasteurization unit. Parra et al. (2006) 
designed an e-tongue to monitor the ageing of red wines and to discriminate wine 
samples aged in oak barrels of different characteristics. Multivariate inspection of 
voltammetric data showed the high capability of discrimination and classification 
of this e-tongue.

The main drawback of these systems is the large amount of previous measure-
ments needed for the modelling, calibration or learning stage. However, flow analy-
sis, either flow injection and sequential injection, offer advantages in the develop-
ment of e-tongues (Gutes et al. 2007) and facilitation of in-line measurement.

11.8 Laser-Induced Fluorescence

Laser-induced fluorescence (LIF) is a spectroscopic method which utilizes the op-
tical emission from molecules that have been excited to higher energy levels by 
absorption of electromagnetic radiation. It is primarily used for flow visualization, 
and non-destructive evaluation of materials. In the food industry, it has the potential 
to be employed as a PAT tool for quality determination of products as well as moni-
toring of various unit operations. Fluorescence-based measurements also have the 
advantage of offering high specificity and sensitivity and it is viable to miniaturize 
and automate the technology (Widengren 2010). The fluorescence of a molecule is 
the light emitted spontaneously due to transitions from excited singlet states (S1) to 
various vibrational levels of the electronic ground state (S0,1 → S0,v; Hof et al. 2005). 
The emitted light can be characterised by a number of parameters, for example, the 
fluorescence intensity at a given wavelength.
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Planar laser-induced fluorescence (planer-LIF) imaging employs the fluo-
rescence of an organic medium induced by a laser sheet combined with image 
analysis for flow visualization (Fagan et al. 2009). Arratia and Muzzio (2004) 
stated that it can be used to unveil flow patterns and structures that serve as the 
starting point to analyse fluid mixing in stirred tanks. The laser, which is usu-
ally a neodymium-doped yttrium aluminium garnet or Argon-ion laser, is used 
to form a thin sheet of light which excites a fluorescent species within a flow. 
The fluorescent species is typically a tracer compound such as rhodamine B 
(Fagan et al. 2009). The selection of a tracer is dependent upon its absorption 
wavelength being compatible with the laser excitation wavelength, a large sepa-
ration between emission and excitation absorption spectra, and a high quantum 
efficiency to maximize signal strength (Crimaldi 2008). The emitted fluores-
cence is optically captured. However, planer-LIF is limited to optically clean 
systems with a constant refractive index (Wadley and Dawson 2005). Guillard 
et al. (2000a) developed advanced methods in planer-LIF image analysis in order 
to study the large-scale mixing structures obtained in a Rushton-turbine-agitated 
reactor. They stated that while a standard statistical approach allowed the obser-
vation of tracer dispersal, a dynamic structural approach, as detailed by (Guillard 
et al. 2000b), was required for deeper understanding of the 3D mixing process. 
Planer-LIF has been used to study fast mixing of two liquid streams in flow 
channels at millimetre size (Luo et al. 2007) while Wadley and Dawson (2005) 
used the technique to study mixing within static mixers for both turbulent and 
transitional flow regimes.

The use of naturally occurring fluorophores as indicators of product qual-
ity has also been examined. Fluorescence spectroscopy has been widely em-
ployed to characterise a range of food products including dairy (Andersen and 
Mortensen 2008; Christensen et al. 2003; Fagan et al. 2011), egg (Karoui et al. 
2008, 2007) and meat (Allais et al. 2004; Frencia et al. 2003; Schneider et al. 
2008; Wold et al. 2002). The majority of such studies utilize front-face fluo-
rescence spectroscopy (FFFS) as it overcomes the limitations associated with 
right-angle fluorescence spectroscopic techniques which cannot be applied to 
thick substances due to the large absorbance and scattering of light (Genot 
et al. 1992). Herbert et al. (2000) used tryptophan and vitamin A fluorescence 
spectra in conjunction with chemometric techniques to discriminate between 
soft cheeses, resulting in classification rates greater than 90 %. Fluorescence 
spectroscopy has also been utilized to monitor changes in milk powder during 
manufacture and storage (Liu and Metzger 2007). They found that it was pos-
sible to detect changes due to Maillard reaction, modification of the tryptophan 
environment and degradation of riboflavin. Herbert et al. (1999) monitored 
the evolution of tryptophan fluorescence resulting from milk coagulation in 
a 1 × 1 cm quartz cuvette. They stated that it was possible to detect stages of 
coagulation and differences between gels with varying rheological character-
istics. Fagan et al. (2011) also demonstrated that there is a basis for the devel-
opment of a syneresis control technology based on the utilization of naturally 
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present milk fluorophores. Using a FFFS probe installed in the wall of a labora-
tory scale cheese vat (Fig. 11.5), they were able to monitor changes in trypto-
phan, and riboflavin fluorescence during milk coagulation and syneresis.

Karoui et al. (2006) evaluated FFFS for its potential to rapidly monitor egg fresh-
ness. Utilizing tryptophan emission spectra of tryptophan, it was possible to classify 
samples with a correct classification rate of 54.3 %, while utilizing the fluorescence 
spectra due to Maillard reaction products the percentage of samples correctly clas-
sified was 91.4 %.

Fluorescence imaging has also been investigated for application in food safety 
applications. The potential of fluorescence imaging, for example, to detect diluted 
faecal matters from various parts of the digestive tract, including colon, caeca, 
small intestine and duodenum, on poultry carcasses has been studied (Cho et al. 
2009). Cho et al. (2009) also stated that one of the challenges in using fluores-
cence imaging to inspect agricultural material is the low fluorescence yield as 
fluorescence can be masked by ambient light. Using the equipment they devel-
oped (Fig. 11.6), the authors found that faeces spots on the carcasses, without 
dilution and up to 1:5 dilutions, could be detected with 100 % accuracy regard-
less of faeces type. Detection accuracy for faecal matters diluted up to 1:10 was 
96.6 % (Cho et al. 2009).

Fig. 11.5  Schematic of the fluorescent measuring equipment used for monitoring milk coagula-
tion and curd syneresis. (Fagan et al. 2011)
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Fig. 11.6  A schematic (a) and photo (b) of the LIF imaging system and a photo (c) and 5 × 5 
binned image at 22-ns gate-delay time (d) of contamination spots on poultry skin. (Adapted from 
Cho et al. 2009)
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12.1  Introduction

The process analytical technology (PAT) tools and analysers have been known 
within the food industry for decades. Previously, the focus with these tools was 
to implement on-/in-line analysers in the production process just to have real-time 
measurements to monitor the production. Within the past couple of years, the fo-
cus has changed from implementation of on-/in-line analysers just for monitoring 
the product attributes to the use of PAT technologies to understand and control the 
whole manufacturing process and to consistently ensure a predefined quality at the 
end of the manufacturing process.

Process variation within a manufacturing process is caused by, for example, un-
controlled disturbances like changes in the milk used in cheese making and the 
temperature of the surroundings. In an ideal world, there would be no changes to the 
uncontrolled variables. A given combination of settings for the process set points 
will always result in a product with a given quality. In the real world, the uncon-
trolled variables will change and a given combination of settings for the process set 
points will always result in a product that varies in quality. Variation in the product 
quality can be reduced if it is possible to determine the optimum settings for the 
process set point during the manufacturing process.

Prediction of the optimum settings for the process set points requires many years 
of experience for the production personnel or a control system that can take the 
changes to the uncontrolled disturbances into account and predict the set points. 
Such a control system can be developed based on the PAT tools such as on-/in-line 
analysers and multivariate data analysis. A schematic view of the principle behind a 
control system is shown in Fig. 12.1. Here, a manufacturing process with two pro-
cess steps is shown. An advanced control system can be built for the total process 
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Fig. 12.1  Schematic 
view of the principle 
behind a control 
system

 

or for each process step. The aims of an advanced control system are to be able to 
predict the quality of the end product based on knowledge of the raw material and 
process settings used and to be able to predict the optimum settings for the process 
set points based on knowledge of the raw material used and specification of the pre-
defined quality of the end product. An advanced control system is based on process 
models, which relates measurements of raw material and process variables to the 
outcome of a process or process step. The process model for process step 1 relates 
measurement of the raw material and the different process variables, like tempera-
ture, pH, speed and amounts of materials used in process step 1 with measurements 
of the semimanufactured product from step 1. The process model can be based on 
multivariate data analysis, first principle models or a combination. After model vali-
dation, this process model can be used to predict the optimum process settings for 
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process step 1 based on measurements of the given raw material used and a given 
setting for the expected quality of the semimanufactured product. A total process 
model or a combination of individual process models for steps in a production pro-
cess could be used to optimize a production process.

An advanced control system could be an ultimate solution for understanding and 
controlling a manufacturing process. Before it is possible to build a control system 
fully or partly based on multivariate data analysis, the necessary analysers used to 
measure the critical quality and control attributes need to be implemented and a 
system for automatic data collection installed. A PAT strategy needs to be developed 
and implemented.

This chapter focuses on advantages and challenges when implementing PAT and 
is based on experience gained during 7 years of work within the area. Case studies 
from dairy processing will demonstrate the potential for improved product consis-
tency and enhanced process control through minimising the variability of critical 
quality attributes.

12.2  A PAT Strategy

The drivers for an implementation of a PAT strategy are usually to gain a uniform 
and high product quality, improve yield and reduce production costs. The propaga-
tion of PAT within the manufacturing processes has led to focus on process under-
standing and continuous improvements. This is due to the fact that it has become 
possible to generate relevant and high-frequency data by use of, for example, spec-
troscopic analysers, where a measurement is performed within seconds or minutes 
instead of using reference methods that take hours. The driver for implementation 
of PAT must be that the new strategy gives value to the business. An economical 
driver will result in commitment and focus in an organisation.

Within a manufacturing company, it should be discussed if and how a PAT strat-
egy and the implementation of, for example, on-/in-line analysers gives value to the 
business. The number of possible PAT cases within a production site will depend on 
the size and complexity of the production.

During the development of a PAT strategy, one of the focus areas should be to 
identify possible changes to working routines within the organisation. Implemen-
tation of a PAT strategy can affect the routines in production and the laboratory. 
If changes are identified, the management should handle this and make sure that 
the routines are changed properly. This is an important task to ensure a successful 
implementation of a PAT strategy and the future work.

The purpose of a given PAT case has to be described in detail. What is the goal? 
What are the conditions for a successful application? What are the risks? How can 
the goal be reached—is it by implementation of an analyser, an advanced control 
system based on multivariate data analysis or both? What are the milestones? What 
is the business value?
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12.2.1  Business Value Calculations

In the calculations of the business value, all the investments and costs needed and 
the expected economic gains for the implementation of a PAT strategy are listed and 
estimated.

• Investments and other costs: e.g. analysers, changes to the production equipment 
and IT systems, costs of samples taken for calibration of an analyser, time used 
by production technicians, laboratory technicians, engineers and others during 
implementation, maintenance costs and also costs related to education of person-
nel and consultant assistance from suppliers.

• Economic gains: e.g. improved yield due to reduced process variation, increased 
product quality, reduced amount of product outside specifications, reduced prod-
uct costs and improved process knowledge.

Estimation of the economic gains is based on analysis of historic process and prod-
uct data. The historic data are analysed to identify the present process and product 
variation and from that the potential gain is estimated. Estimation of the value of 
improved process knowledge can be a challenge, but in spite of that, it is an impor-
tant gain, which needs to be addressed.

Another economic gain not mentioned above is reduced costs in the laboratory 
since there will be fewer samples to be measured by the reference method after 
implementation of an at-/on-/in-line analyser. The reason why it is not included in 
the list is that the calibration, validation and maintenance of an analyser require 
resources. Even though there will be fewer samples to measure, other tasks need to 
be taken care of instead, e.g. recalibration of an analyser.

There are different ways to estimate the business value, but a common estimate 
to use is the net present value (NPV). From the estimated investments, costs and 
economic gains, an NPV is calculated. The NPV indicates how much value a given 
project gives to the manufacturing company within a given period (e.g. 5 years).

The NPV is calculated as (12.1)

 (12.1)

C0 is the cash flow at date 0. C0 includes investments and costs of initiating a proj-
ect and the value will therefore be negative. C1, C2,…, CT are the cash flows from 
operation at year 1, 2,…, T and r1, r2,…, rT is the discount rate at year 1, 2,…, T 
(Grinblatt and Titman 2002).

In the screening period before a proposed PAT strategy is accepted and an imple-
mentation is initiated, the NPV will be an estimate since the investments and gains 
can only be estimated. It is important that the NPV is as realistic as possible since it 
is used to decide whether an implementation of a PAT strategy is initiated. During a 
project, more details become available and the NPV will be more accurate, because 
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at the time close to the implementation of analysers and other hardware the invest-
ments and other costs are known.

A high positive NPV indicates that the business value is high. The economic 
driver for implementation of a PAT strategy is there and implementation of the 
proposed PAT strategy may continue. The implementation of the strategy has to be 
accepted by the supply chain organisation, which is investing the money.

12.2.2  Organisation

Implementation of PAT obviously requires financial resources for investment in 
new equipment, but it also requires sufficient time resources and the people in-
volved need the right competences. This fact is sometimes neglected, but missing 
focus and resources results in a high risk that an implementation will fail. Commit-
ment from the supply chain organisation and management at the production site is 
crucial to a successful implementation.

The implementation of a PAT strategy should be managed by a project group, 
which is coordinated by a project manager. The project group should at least con-
sist of people with competences in the production process, at-/on-/in-line analysers, 
laboratory analysis, multivariate data analysis, IT and automation.

Besides the competences within the project group, the following people should 
be available during an implementation, but they do not necessarily need to be in the 
project group: people with competences in contract writing and purchase to ensure a 
good agreement when investing, technicians from production to ensure knowledge 
sharing related to the manufacturing process and involvement during implementa-
tion, a maintenance department to ensure an easy handover, laboratory technicians 
to ensure the use of right reference methods and maintenance of the analyser and the 
supplier to ensure support during implementation.

Involvement of the technicians from production and laboratory in an early stage 
is an advantage, because after implementation, they are the end users and it will be 
a part of the work to establish their ownership of the new techniques and strategy.

The establishment of ownership and commitment in an organisation is impor-
tant, and within a project organisation, the steering group has a central role in the 
work to secure commitment. The steering group consists of representatives from the 
supply chain organisation and/or management at the production site. The members 
of the steering group must have the authority to make superior decisions in relation 
to the project, because it is their responsibility to follow up on the progress of the 
project and to make superior decisions concerning the project, e.g. if changes are to 
be made to the purpose or description of a project. It is also the responsibility of the 
steering group to allocate enough and relevant resources to the project.
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12.2.3  Implementation of an Analyser

A positive business value for a given project and a project organisation in place 
are fundamental for initiation of a project. After project initiation, the more techni-
cal part starts. The first part of a project is usually implementation of one or more 
analysers. The implementation of an analyser involves several steps. These steps are 
described in this part and the focus will be on how to ensure a successful implemen-
tation and the challenges that can appear. The steps are:

• Set up requirements for the analyser
• Do a screening of the market and assess one or two relevant techniques
• Approve the investment
• Install and develop method
• Validate the method
• Carry out maintenance

12.2.3.1  Requirements for the Analyser

The investment in a new analyser requires specific knowledge on what the purpose 
and economic goal are for the implementation of an analyser. Without the knowl-
edge, it can be difficult to find the optimal analyser. Based on the knowledge, it is 
defined which data the analyser is going to provide to reach the goals and require-
ments for the analyser should be defined. The requirements can be defined based on 
questions like the ones listed below:

• What is the purpose of the analyser? For example, is it determination of the con-
tent of a quality attribute, like fat, protein and moisture content in cheese, or is it 
end-point detection, like detection of when a fermentation has ended?

• Should the measurement be at-line, on-line or in-line? What measurement inter-
val is needed? Which type of sample needs to be measured; is it a liquid, a slurry, 
a powder, a solid?

• Which product characteristics need to be measured? For example, is it physical 
characteristics, like particle size of a powder; sensory characteristics, like the 
taste of a cheese; or chemical characteristics, like moisture content in cheese? 
What ranges or concentrations are the characteristics normally in? What accura-
cy and precision is needed? What are the accuracy and precision of the reference 
method?

• Where on the production equipment is the analyser going to be installed; e.g. 
is it in a pipe or a vat? What is the temperature of the product when measured? 
Is the product corrosive? Are there any special characteristics of the product or 
process, e.g. if the measurements are done in-line, what is the pressure in the pipe 
or vat?
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• Is there a risk of segregation or a concentration gradient within the sample? This 
can affect the decision on if the measurements should be done in reflectance, 
transflectance or transmission.

• Which data from the analyser should be available for data storage, e.g. calculated 
concentrations and/or the spectra?

• How are the data going to be used in the production, e.g. for manual or advanced 
process control? Does the analyser need to be connected to the production server 
and IT network? If yes, how does it need to connect—through OPC, MODBUS, 
4–20 mA, etc.? How should the data be available for the technicians in produc-
tion, e.g. as a number or time series plot? How do the data need to be stored?

• How much maintenance can be accepted (maximum time to be used)? Should it 
be possible to control the instrument remotely?

The answers to all of these questions will result in a list of requirements for the 
analyser. The answers to the questions should focus on what is needed and NOT 
what would be nice. The list of requirements is then used when screening the market 
for potential solutions.

12.2.3.2  Screening of Market

A thorough screening of the market before the decision on which analyser to invest 
in is of high importance. The purpose of the screening is to collect enough informa-
tion on possible techniques to be able to decide which technique best complies with 
the requirements. Information is found through a literature search, a search on the 
Internet, seminars, by talking to people from your network and by having meetings 
with suppliers.

Be aware that the screening should be wide in the beginning. Do not focus on 
only one technique or one instrument; for example, the near infrared spectroscopy 
(NIR) is widely used in many applications within the food industry, like measure-
ments of moisture and protein content in bread, cheese, flour, meat, milk powder 
and pasta (Osborne et al. 1993). In spite of that, NIR and other spectroscopic tech-
niques are not always the right choice. For some applications, another and some-
times more simple technique is the optimal one, for example, measurements of salt 
by the use of conductivity measurements. Increased complexity for an analyser can 
lead to use of more resources for method development and validation. It can be a 
challenge to find the optimal technique, but the choice can influence whether or 
not the implementation of the PAT strategy will be a success. Since the analyser is 
to be implemented into a production environment and people without expert skills 
in sensor technology and multivariate data analysis are to handle the analyser, it is 
more important that the analyser is easy to use and robust, does not require a lot of 
maintenance and that data from the analyser is easy to access instead of choosing an 
analyser with outstanding accuracy and precision.

For applications where there is no obvious choice of analyser after a screening, 
it can be a challenge to decide on which technique to invest in. In such a case, it can 
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be an idea to borrow or lease the analyser(s), which seem to be the most relevant 
one(s), and make screening trials in the laboratory. Trials in the laboratory can give 
an indication whether the analyser can comply with the requirements.

12.2.3.3  Approval of Investment and Contract Writing

The next step is to get approval of the investment in the analyser decided upon. 
The investment process is different for the individual companies, but usually it is 
the project sponsor that needs to approve the investment and the project plan. The 
investment that needs to be approved should at least cover the analyser, sampling 
equipment, data collection system, the cost of changes to the production equipment, 
cost for taking calibration samples and doing reference analysis and cost of training 
courses in calibration and maintenance of the analyser.

After approval of the investment, a contract between the production site and the 
supplier should be signed. A detailed contract is normally an advantage for both 
parties, because the responsibilities during the delivery and installation will be out-
lined. The contract should cover:

• A description of the aim and functionalities of the analyser, e.g. why is the analy-
ser installed and how is it used?

• A description of the technical solution including installation instructions and 
timetable for the installation steps with responsibility information. Responsibil-
ity is shared between supplier and buyer depending on task.

• A description of the performance requirements, e.g. requirements for measure-
ment accuracy and precision, handling of analyser, data validity, maximum level 
of unscheduled down time, safety and cleaning. It is also important to be aware 
if there are any limitations for the analyser.

• General issues like period of guarantee, conditions of guarantee, insurance, pay-
ment, service and milestones for the installation including factory acceptance 
testing.

The contract negotiation can be a challenge, but if the details are not all discussed 
and agreed upon between the supplier and buyer, there might be bigger challenges 
during the installation if something deviates from plan and responsibilities are not 
defined. After signing the contract, the order can be placed.

12.2.3.4  Installation and Calibration

The physical installation of the analyser, the method development and calibration is 
the next step when the analyser is delivered. The challenges that can appear during 
the physical installation depend on whether the analyser has to be used at-line or 
on-/in-line. An at-line installation usually only requires some space in the labora-
tory or operator room close to the production. On- and in-line installations require 
changes to be done to the production equipment (vats, pipes, etc.) and are usually 
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more complex. One of the things to be aware of is to ensure that the installation of 
the analyser comply with the hygienic requirements in the production.

For both at-line and on-/in-line installations, sampling equipment for the calibra-
tion and validation samples has to be installed. Sampling needs to be performed 
in a way where the samples taken are representative. For calibration purposes, the 
samples taken need to be of the material measured by the analyser at a given time. 
For example, for flows in pipes and for more heterogeneous material, as seen in 
the food industry, sampling is a challenge. Sampling errors can be up to 1000 times 
larger than the analysis error (Gy 1998, 2004), so sampling is an important issue to 
focus on before implementation.

The physical installation of sampling equipment and the analyser may also re-
quire changes to the electrical system. The installation of the analyser and sampling 
equipment is based on recommendations from the equipment supplier, and it is rec-
ommended to follow these instructions closely to avoid performance issues. If any 
performance issues appear in spite of everything, the supplier should be able to 
solve the problem, since the instructions from the supplier are based on their experi-
ence and knowledge on the given application.

For some on-/in-line installations, it can be a challenge to find the optimal pro-
cess interfacing (e.g. flow cell, probe head and probe angle) due to a difficult prod-
uct matrix. In such cases, trials performed in collaboration with the supplier can be 
an advantage.

The physical installation should be completed by an approval from the supplier 
to ensure that the recommendations are followed.

Calibration can be initiated when the physical installation is approved, but before 
calibration samples are taken, calibration procedures should be in place and the 
responsibility for every step in the procedure should be addressed. The following 
should be defined and described:

• How often are calibration samples taken?
• How is a representative calibration sample taken?
• Who is responsible for taking samples?
• How is the sample handled after it is taken and until it is analysed in the labora-

tory? And who is responsible?
• Which reference method needs to be used and what is the exact procedure to fol-

low?
• How is the calibration data reported?

All of the above are described in the calibration procedure and technicians in both 
the laboratory and production need to be trained in the procedures. If no proper 
calibration procedure or training is available, there is a risk that samples are taken 
or handled in a wrong way or that a wrong reference method is used, which can lead 
to a calibration with unacceptable accuracy and precision or to a long calibration 
period. The training of persons who have no previous knowledge within analysers, 
statistics or multivariate data analysis can be a challenge, but it is one of the most 
important tasks to succeed in. The persons who are to take the samples and do the 
reference analysis have to understand the importance of the procedures. During 
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preparation of the calibration procedure, one should be aware that the more ad-
vanced a procedure is, the more errors or problems it can cause during the calibra-
tion period.

Calibration of an analyser is based on results from a reference analysis performed 
in the laboratory, and to achieve a good calibration it is important that the right ref-
erence method is used. The uncertainties of the reference analysis will influence the 
accuracy and precision of the calibration.

Calibration of an analyser requires samples, which contain varying amounts of 
the component of interest. Samples used for calibration should be taken in a way 
where they will cover the area of normal variation within the production. One can 
be tempted to take many samples from one production run and make a calibration 
based on these samples, but the calibration will not be robust enough to handle 
batch-to-batch variation. Calibration samples taken need to cover:

• All the products included in a given calibration
• Process variation for the component of interest
• Batch-to-batch variation, e.g. due to changes in raw materials

Variations in the production need to be included in the calibrations for the at-/on-/
in-line analyser.

At the beginning of the calibration step, it can be a good idea to have a limited 
number of people involved in the calibration procedure. This is due to the fact that 
with many people involved the risk for mistakes to happen will be higher. When 
the calibration procedure and routines for one or two technicians in the laboratory 
and production are successfully worked into the daily routines, more people can be 
introduced and trained.

12.2.3.5  Method Validation

Validation of the installation and calibration is the final step before the implementa-
tion is ended and the analyser is included into the maintenance procedures at the 
production site. Validation of the installation covers evaluation of whether, based on 
the experiences from the calibration period, there is anything in the practical han-
dling of the analyser that is not appropriate. It also covers an evaluation of whether 
the technical requirements are fulfilled.

Validation of a calibration covers the evaluation of whether the required accu-
racy and precision is reached. This validation is done based on results for validation 
samples, which are sampled and analysed using the exact same procedures as the 
calibration samples.

12.2.3.6  Maintenance

Maintenance of the implemented analyser is included into the normal maintenance 
procedure and is done by the personnel at the production site. The maintenance is 
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divided into two areas, hardware maintenance and calibration maintenance. Hard-
ware maintenance is done to ensure that the consumable parts, e.g. the light source, 
are changed in time to ensure that the analyser keeps working. Many analysers have 
the possibility to set up automatic tests for performance checking of the instru-
ments, and if these tests fail, alarms are activated.

Calibration maintenance is done to monitor and ensure the accuracy and preci-
sion of the method. Calibration maintenance includes making control charts for 
the reference analysis in the laboratory to ensure that the reference analysis is in 
control and can be used. It also includes making control charts for samples taken on 
a regular basis to monitor the prediction error (calculated as the difference between 
the predicted value from the analyser and the reference value from the laboratory). 
An example of a control chart is shown in Fig. 12.2.

If relevant, the calibrations are recalculated or updated. Recalibration can be 
necessary due to drift in the analyser signal or changes in the composition of the 
samples.

Maintenance is important for the continued success of the implementation of a 
PAT strategy. For the maintenance to be successful, it is important to have focus on 
resources and competences. The managers at the production site have the respon-
sibility to solve this challenge but it might be an idea to appoint a person, who is 
responsible for the maintenance and for giving the managers warning if challenges 
on competences and resources appear.

Fig. 12.2  Control chart for monitoring the difference between predicted and reference value
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12.2.4  Control Strategy

Process optimization and process control based on at-/on-/in-line analysers can be 
more or less automatic. Three different strategies can be used.

• Manual control: The results from the analyser are logged into the data collection 
system in the production in real time and shown on the production technicians’ 
screen in the control room. The production technicians will take action if neces-
sary, based on these results and their own experience.

• Advisory system: The results from the analyser are logged into the data collec-
tion system in the production in real-time together with all the other process vari-
ables. Based on the real-time data and a process model calculated from historical 
data, the advisory system will calculate the optimal settings for the process set 
point and advise the production technician on which changes to make if neces-
sary.

• Automatic control system: The results from the analyser are logged into the data 
collection system in the production in real time together with all other process 
variables. Based on the real-time data and a process model calculated from his-
torical data, the automatic control system will calculate the optimal settings for 
the process set point, and if necessary, the set points will be changed automati-
cally.

The control strategy to choose will be dependent on the IT structure available, the 
results of the business value calculation, the size of the production at the production 
site and on the available resources and competences. The control strategy should be 
selected based on requirements and not because it is the most simple or advanced 
strategy.

A manual, advisory or automatic control system, fully or partly based on mul-
tivariate data analysis, depends on the relevant process data and data from at-/on-/
in-line analysers being logged into the system in real time. Without real-time data 
collection and data handling systems, a control system is impossible to build into 
production.

Worldwide, there are many different suppliers of data collection and data han-
dling systems on the market, and which system is the most optimal depends on 
which other control systems there are on a given production site. Compatibility 
between the different IT systems on a production site is very important.

12.2.4.1  Data Collection and Data Handling System

Data collection and data handling is critical for whether an advisory or automatic 
control system will work or not. For the control strategies to succeed, all the rele-
vant process data and data from at-/on-/in-line analysers need to be logged. Process 
knowledge is important when deciding which data could be relevant and not. All 
process variables that can influence the final product should be logged. It is better to 
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log all the process data than to log too few data, because the nonsignificant process 
variables can easily be excluded from the process model during the modelling stage.

Whether the advisory or automatic control system is built for a single process 
unit or for a total production process, the steps needed to define relevant data are 
the same. A list of the process variables that are already logged should be made and 
the different steps in the production process should be analysed, based on this list, 
to decide if more process variables need to be logged. Afterwards, a plan for how to 
implement the data collection should be made. In the same way as for a new analy-
ser, a list of requirements should be made for the data collection and data handling 
system. The other steps like screening of the market, approval of investment and 
contract writing, installation and validation are just as important for a data collec-
tion and handling system as for a new analyser.

Since the process data and data from the at-/on-/in-line analysers are crucial for 
an automatic control or advisory system, the data always need to be valid and avail-
able. In some data collection and data handling systems, it is possible to register 
if an analyser fails and no data are logged into the system. In such a case, some 
systems can also give an alarm to raise awareness of missing data, by either send-
ing an email or an SMS. An alarm makes it possible to solve the problem as soon 
as possible.

Data collection, data handling and IT communication between the different IT 
systems in a production is crucial to a running PAT system, and focus on IT and IT 
risk management is important to ensure a well-functioning system.

A benefit from implementation of an extensive data collection and data handling 
system is that, from the data, there is complete traceability from raw material to fi-
nal product. All records for a given product will be stored within the data collection 
and data handling system.

12.2.4.2  Process Modelling

The basis of an advisory or automatic control system is the process model, which 
can be based on multivariate data analysis, first principle models or a combination. 
The process model relates measurements of raw material and process variables to 
the outcome of a process or process step and extracts information on how all the 
variables are behaving relative to one another. This will contribute to more process 
knowledge.

Before process modelling is initiated, it should be ensured that the logged data 
for the process variables and from the analysers are valid and of high quality. With-
out high-quality data, there is a risk that the process modelling will fail. The task 
requires resources to validate the process data and it can be a challenge.

In the same way as for the calibration of an analyser, the process data included 
in the modelling need to cover all the products included in a given process model, 
batch-to-batch variation and sufficient process variation. A data set with sufficient 
variation can take months to collect, particularly if variation during normal operat-
ing conditions is not big enough to reveal obvious cause–effect relations. In such 
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cases, step tests with planned and supervised changes to the process settings can 
usefully be made. The challenge is to define how big changes to the process settings 
can be allowed without the risk of producing product outside specifications.

12.3  Case Studies: Process Optimization Based  
on Quality Attribute Measurements

Quality attributes for dairy products can be both the chemical composition of a giv-
en product like protein, moisture and fat content, and the sensory quality attributes 
like taste, smell and consistency. The quality attributes of products or semimanufac-
tured products can be measured using PAT tools. Table 12.1 shows some examples 
of PAT tools employed for various operations within the dairy processing industry. 
The asterisks in the table indicate how widely the techniques are implemented.

The case studies in this chapter will focus on cheese production and describe the 
goals, advantages and challenges of implementing a measurement system for mois-
ture in semihard cheese and a sensory quality assurance system for cream cheese.

12.3.1  In-line Moisture Measurement for Semihard Cheese

Measurements of the quality attributes of products are important for process con-
trol, and for semihard cheese, one of the quality attributes is moisture content. The 
variation in and level of moisture in cheeses influences the yield. Control of the 
moisture content in cheese is therefore also a part of optimization of the yield in 
cheese production. In-line measurements of the moisture content make it possible to 
control the cheese vats and pressing system to reach a predefined moisture content. 
Control based on the measurements results in a reduced batch-to-batch and in-batch 
variation and gives good and stable quality and a higher yield.

The requirements that were defined for an analyser to measure moisture content 
in semihard cheese resulted in the selection of a technique based on microwave 
technology. The advantage of this technique is that some available microwave sen-
sors can measure in transmission through a cheese block, which is important be-
cause there is typically a moisture gradient within the block. A cheese block can be 
up to 140 mm high. The other requirements were, as described in Sect. 12.2.3, re-
lated to accuracy and precision of the measurements, data storage, data communica-
tion and the process conditions at the measuring point. In the given case, a specific 
requirement related to cleaning was defined, because the analyser was installed in a 
place where CIP (clean in place) was performed.

The instrument was delivered, installed into the production and approved by the 
supplier.
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12.3.1.1  Changes of Routines in Production and Laboratory

The decision to implement the in-line moisture analyser at a production site resulted 
in the need for new routines in production and in the laboratory. A routine for how 
calibration samples are taken during production needed to be introduced and in the 
laboratory there was a need for new routines concerning reference analysis. The 
change in routines can be a challenge and can also require new sorts of compe-
tences.

Changes in routines can also be caused by the product being measured and 
sampled. In the case of semihard cheese, one of the challenges in the calibration 
work was the sampling. The sampling needs to be performed in such a way that 
the samples taken from a block of cheese of minimum 20 × 20 × 9 cm is representa-
tive of the given cheese block and taken without changing the composition of the 
sample. There is a risk of changing the composition of a sample of fresh semihard 
cheese because when the sample is taken the cheese is cut, and when a fresh semi-
hard cheese is cut, whey starts to drain from the cheese. The whey drainage results 
in a decrease in moisture content in the sample taken to the laboratory for reference 
analysis. To ensure that the calibration for the analyser is as accurate as possible, 
specific routines were implemented for how to take the calibration samples and how 
to handle the sample prior to reference analysis. The calibration samples were taken 
at the production line, and as soon as the sample was cut from the cheese, it was 
placed into two bags and transported to the laboratory right away. In the laboratory, 
the sample and the small amount of whey that had drained from the cheese into the 
bag was mixed prior to the reference analysis to ensure that the measured moisture 
content was not affected by the whey drainage.

It is not enough just to implement a new routine. Another important part is to 
have the production and laboratory technicians to understand why it is necessary 
that they take the sample in the way described and why they must use a given 
reference method. For production personnel who are not familiar with on-/in-line 
analysers and do not understand why analysers need to be calibrated, it can be hard 
to understand why they need to follow routines that sometimes are time consuming 
and difficult to carry out. Project managers for an on-/in-line implementation need 
to be aware of this challenge and find a way to handle it. In cases where the new 
routines are more time consuming during the calibration period, it is also impor-
tant to get management support to have the necessary resources. If the necessary 
resources are not made available, there is a risk that the calibration period will be 
prolonged or that the calibration obtained will not be satisfactory and cannot be 
used for control purposes.

The calibration work should not be initiated until the routines are in place.

12.3.1.2  Calibration of the In-line Moisture Analyser

Implementation of the in-line moisture analyser required variation in the moisture 
content of the cheese. As described in Sect. 12.2.3, the calibration samples need 
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to cover all the products included in a given calibration, process variation for the 
component of interest and batch-to-batch variation.

In a dairy, different sorts of cheeses are produced. The cheeses differ in height, 
size, moisture, fat and protein content. Based on these variables, the cheeses can be 
grouped according to similarities. Some types of cheese are sufficiently alike so that 
they can be included in the same calibration to keep the number of calibrations to a 
minimum. Less number of calibrations results in less calibration maintenance work.

Calibration of the in-line moisture analyser (using microwave transmission) for 
each group of cheeses requires that samples are taken for every sort of cheese in-
cluded in the group and that the samples taken vary in height and moisture content. 
This seems like a fairly easy task, but within a production environment challenges 
appear. The planning of when samples are taken can be difficult.

In a cheese plant, the production is planned from week to week and the produc-
tion is highly flexible. The flexibility and the fact that different sorts of cheese are 
produced results in a production plan that varies from week to week, and during a 
day different sorts of cheese are produced. It is rarely the case that one sort of cheese 
is always produced on a specific day of the week. The flexibility in the production 
plans is a challenge when the people at the dairy have to schedule the resources for 
the calibration work.

The production at a dairy typically runs for 24 h a day, and sometimes the prod-
uct of interest is produced during the night when no laboratory technicians are on 
site. In other cases, the product of interest is planned for production during the day 
but a technical problem then arises during production and the production is delayed. 
Such cases can cause calibration work to be disrupted from time to time.

12.3.1.3  Benefits of Implementation of an In-line Moisture Analyser

Even though implementation of an in-/on-line analyser takes time and requires the 
right competences and resources, there are important benefits.

The measurements from the in-line moisture analyser resulted in new insight 
into the cheese-making process. The cheese-making process consists of multiple 
process steps. Cheese milk is added into a cheese vat and then culture and rennet is 
added to ensure acidification and coagulation. After the coagulation of the cheese 
milk, the coagulum is cut and stirred. Whey is removed from the cheese vat before 
the cheese curd is pumped into a pressing system, where it is pressed and formed 
into cheese blocks. The cheese blocks are then brined and stored.

The in-line moisture analyser is installed between the pressing and brining step 
as a measurement of a critical product quality attribute for the fresh produced semi-
hard cheese. The measurements of the moisture in the fresh cheeses revealed that 
the moisture content in most cases decreased within a batch; an example is shown 
in Fig. 12.3.

The first cheeses within a batch have higher moisture content than the last chees-
es within a batch. The measurements confirmed the intuitive knowledge about the 
process. It had never been possible to document this in detail before because this 
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kind of analysis would have required a lot of manual sampling and reference testing 
in the laboratory, which would have required many resources.

The benefit of the in-line moisture analysis is that the variation within the pro-
duction can be documented, and based on the measurements it is possible to make 
changes to the relevant process variables to reduce the systematic decrease in mois-
ture content within a batch of cheese.

An example of in-line moisture measurements for two batches where changes 
were made to the relevant process variables and three batches without changes is 
shown in Fig. 12.4.

The in-line measurements for the batches where changes were made to some 
relevant process variables show that the systematic decrease in moisture content has 
been reduced compared to the batches without changes. These results show one of 
the potentials for process optimization based on the in-line moisture measurements.

The process optimization and process control based on the in-line moisture mea-
surements can be done in three ways, manual control based on real-time feedback 
to the production technicians or control based on advanced process models for an 
advisory system or automatic control system. The implemented control strategy 
will vary from dairy to dairy dependent on the result of the business value calcu-
lation, the size of the production at the dairy and on the available resources and 
competences at the given dairy. The in-line measurements can be used for optimiza-
tion of the internal batch variation by subsidiary optimization for the most relevant 

Fig. 12.3  In-line measurements of moisture in cheeses for five different batches
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process step, but in the case of the advanced process control the measurements can 
also be used to build a process model, which is used to predict the optimal settings 
for the overall process set point to ensure a specified moisture content in the cheese 
produced.

12.3.2  Sensory Quality Assurance System for Cream Cheese

The key quality attributes for cream cheese are sensory attributes related to the 
consistency, taste, smell and appearance of the cheese. The sensory attributes need 
to be measured to be able to optimize the production according to these attributes. 
Sensory attributes can be difficult to measure with at-/on- and in-line analysers, but 
even though it is a challenge, there is a potential in optimization of the sensory qual-
ity of food products. The economic gains will be a reduction in amount of product 
outside specifications and thereby in the amount of rejected product.

Instead of using at-/on- or in-line analysers, a sensory quality assurance system 
was developed with the focus that the assessments could be used in an advanced 
control system. In the same way as for an instrumental analyser, as described in 
Sect. 12.2.3, requirements were defined for the sensory quality assurance system 

Fig. 12.4  In-line measurements of moisture in cheeses including batches where changes were 
made to the process variables to reduce the decrease in moisture content. Light blue and purple 
lines represent batches with changes. Blue, green and red lines represent batches without changes
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both within the performance area and for data collection. The assessments needed 
to give interval data and to be on a linear scale instead of nominal data and category 
scale. The assessments also had to focus on possible deviations from product speci-
fication for optimum product instead of assessing total characteristics like smell, 
taste, consistency and appearance. Some possible deviations could be that the cream 
cheese is too soft or that there are small grains of fat. An assessment of all possible 
deviations from specification for a product makes it possible to correlate the results 
to how the production was run, in order to gain process insight, to find the critical 
control points and to make it possible to control the production to produce a product 
with a predefined quality and reduce the amount of rejected product.

12.3.2.1  Principle of the Sensory Quality Assurance System

In the sensory quality assurance system, the assessment is divided into two steps. 
The first step for the assessors after they have tasted the product is to decide whether 
the product is approved, approved with a remark or rejected, based on the product 
specifications. “Approved with a remark” means that the product is within prod-
uct specifications but with small deviations from optimum product. The conclusion 
from the first step of the sensory assessment is whether the product can be sold.

The second step in the assessment relates to process optimization. Optimiza-
tion of the process to gain an improved sensory quality is focused on the ability to 
control the production to reduce the amount of product categorized as “approved 
with remark” or rejected. To reduce this amount, it is necessary to assess if a given 
product deviates from specifications for the optimum product, and if it does, then 
to assess by how much it deviates. Results from the second step in the assessment 
can then be used to investigate what, in the production process, caused the devia-
tion. For every product type, a list of possible deviations from optimum product is 
defined—see example in Fig. 12.5.

The degree of deviation is assessed on a line scale, where it is important that the 
line scale is unstructured. An unstructured line scale has no numbers on the scale, 
because such numbers can be seen as anchor points on the scale and the assessments 
will then usually be placed at these points. The only anchor points on the scale are 
None and Most, for which the assessors have definitions. Assessments on a line 
scale also give normally distributed data, which is preferred. Normally distributed 
data would not be achieved if the assessors were just to place a cross on predefined 
points. Without normally distributed data, it is not possible to make the relevant data 
analysis, like, for example, ANOVA.

12.3.2.2  Training of the Assessors and the Challenges

Implementation of a sensory quality assurance system includes training of asses-
sors. The assessors need to go through training to be able to manage the assessment 
system, just like an analyser needs to be calibrated. Training of the assessors is as 
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important as calibration of at-/on-/in-line analysers and it takes time and effort. The 
assessors need to get the right competences.

During training, the assessors need to understand the definition of maximum 
degree of deviations for a given product and have to assess reference samples taken 
from the production. The reference samples need to have various degrees of de-
viation. For every reference sample, the assessors need to agree on which area the 
sample is placed on the line scale, which is done during a discussion between the 
assessors based on the product specification. The training can be challenging be-
cause every assessor needs to agree on the decision. It is necessary to be aware that 
in a sensory quality assurance system the analyser is human and not a mechanical 
instrument, which can be reset or recalibrated. In some cases, this requires that work 
needs to be done to change the mindset of an assessor, who may previously have 
worked with other assessment systems.

The purpose of the training is to ensure that the assessors can repeat their test 
results on the same sample over time, that they can separate products with differ-
ent degrees of deviation from optimum product and that they can rank the products 
based on degree of deviation.

When this is documented, the system can be taken into use at the production site. 
To ensure and to document that the assessors can repeat themselves over time, a 
standard sample or a sample from production, which is used repeatedly, is assessed 
when products from normal production are being assessed. To document that there 
is agreement between the assessors, it is important to have replicates, so more as-
sessors need to assess the same products from normal production. This can result 
in changes in routines in the daily work, because the assessors and their managers 
need to plan when the assessments are performed.

Fig. 12.5  The sensory quality assurance system
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As for at-/on-/in-line analysers, calibration, validation and maintenance of the 
sensory quality assurance system and the assessors are of high importance. For a 
sensory quality assurance system, it requires that training sessions be carried out 
with regular intervals. For a successful implementation and continued use of a sen-
sory quality assurance system, resources are crucial, but as for calibration and main-
tenance of an analyser, it can often be a challenge to get enough resources because 
the assessors also have other tasks to solve during a working day. The managers at 
the production site have the responsibility to solve this challenge.

12.3.2.3  Benefits of Implementation of a Sensory Quality Assurance System

Implementation of a sensory quality assurance system requires time, training of 
the assessors and the right competences and resources, but there are very important 
benefits to gain from the work.

The assessments in the sensory quality assurance system are performed on a 
computer, and the data are saved into the data collection and data handling system 
together with relevant process data. The assessment results from the sensory quality 
assurance system can be analysed by statistics and multivariate data analysis, which 
makes it possible to correlate the results to how the production was run. This will 
generate more process knowledge. The assessments could be included into a pro-
cess model and into a control system to make it possible to control the production 
to ensure production of a product with a predefined quality and reduce the amount 
of rejected product.

Besides the economic gains, the results from the assessments can be used as 
part of a quality management system at a production site. As stated in the previous 
section about training of the assessors, it should be possible to document that the 
assessors can repeat themselves over time and to document that there is agreement 
between the assessors. Since the results from the assessments are automatically 
saved into a data collection and data handling system, the data will always be avail-
able and documentation on the performance of the assessors can be extracted. This 
documentation can then be used when an audit is performed at the production site.

12.4  Summary

The intent of this chapter was to present some food industry perspectives on the 
advantages and challenges when implementing a PAT strategy.

The driver behind implementation of a PAT strategy must be an economic gain 
obtained by improved yield, increased product quality, reduced amount of product 
outside specifications or reduced product costs. Besides the economic gains, the 
implementation of PAT results in other benefits like more process knowledge and 
understanding. As part of the implementation of a PAT strategy, a data collection 
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and data handling system is implemented which can give the advantage of complete 
traceability in a production site.

Management commitment and support is crucial to ensure a successful imple-
mentation of PAT, because the necessary focus, resources and competences have 
to be available throughout a project and after implementation. It is important to 
be aware that the investment made during an implementation of a PAT strategy is 
not only in physical instrumentation (e.g. in an analyser) but also in resources and 
competences for calibration, validation and maintenance of the analyser and main-
tenance of a data collection and data handling system. The steps and challenges to 
overcome when implementing an analyser were described. The list of steps is not 
necessarily complete, but hopefully it will be an inspiration and basis for further 
discussion at sites where a PAT strategy is going to be implemented.
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