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Abstract The synthesis and characterization of new lithium salts has been a 
core component of electrolyte research for the past three decades. Upon the 
commercia lization of Li-ion batteries with a graphite anode, LiPF6 became the 
dominant salt for lithium battery electrolytes. But the advent of new electrodes/
cell chemistries (e.g., Si alloy anodes, high-voltage cathodes, Li-air, Li-S), as well 
as the need for exceptional battery safety, higher/lower temperature operation, 
improved durability/longer lifetimes, etc., has resulted in the pressing need for new 
electrolyte formulations. Lithium salts, either as a substitute for LiPF6 or as an addi-
tive, are one central focus for this electrolyte transformation.
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1.1  Introduction

Early lithium battery electrolyte research in the 1970s used available lithium salts—
i.e., principally LiClO4, LiAlCl4, LiBF4, LiPF6, and LiAsF6. Efforts at the time were 
devoted to stabilizing the stripping/plating of Li metal [1–3], as well as the use of inter-
calation electrodes [4]. LiPF6 was reported to not provide the best Li metal stripping/
plating efficiency amongst the salts studied [5, 6] and LiPF6 was also found initially to 
be problematic for the cycling of carbon electrodes [7, 8]. LiPF6 did not become the 
paramount salt for lithium battery electrolytes until carbon coke replaced Li metal 
(later to be replaced by graphite) and the solvents were optimized for the electrolyte 
utilized in the Li-ion batteries initially commercialized by Sony in 1991 [9–19].
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Many/most of the anions used for electrolyte lithium salts were initially  
developed in efforts to generate stronger superacids. The term superacid generally 
refers to acids which are more acidic than mineral Brønsted acids [20–27]. In par-
ticular, a widely used definition for superacids was given by Gillespie who defined 
this term to be applicable to acids which are more acidic than sulfuric acid [28–30]. 
The stronger the acidity, the weaker the coordination of the anions is with the asso-
ciated protons (H+ cations). The gas-phase acidity is given by:

 HA 
Ka

 A H− + +

 

and

 ∆ −G RTacid = lnKa  

In practice, however, the determination of the acidity of superacid anions in solu-
tion is not a trivial matter as the acidity of a given acid (HA) is a function of the 
solvent (S) used:

 HA SH+ +− +S A 
a



K

 

which is influenced by factors such as the steric bulk of the anions and solvent, ion 
pairing, etc. Three major substitution effects contribute to increasing the acidity of 
a neutral acid functional group (C–H, O–H, N–H, S–H, B–H, etc.) [20, 26]:

 1. field/inductive effects
 2. π-electron acceptor (resonance) and negative hyperconjugation effects
 3. substituent polarization effects

The influence of these factors is evident from the acidity variations noted for 
different substituents (Figs. 1.1 and 1.2) [20, 26]. No simple patterns in acidity behav-
ior are found for these effects, however, due to the interplay between them (i.e., these 
effects do not operate independently of one another) [20, 26]. For =Z(X)n substituents 
(replacing an =O: M=O → M=Z(X)n, where M=O might be CH3C(=O)H, HC(=O)NH2, 
HC(=O)OH, etc.), the acidification for the same X increases with increasing n [22]:

= <= <= <=

= <= <=

N(CN) C(CN) P(CN) S(CN)

NSO F C(SO F) P(SO F)

2 3 4

2 2 2 2 3

In addition, the acidifying effect of fluorosulfonyl groups is greater than that of the 
corresponding cyano groups (Fig. 1.2) [22].

Classical strong mineral acids include:

 

HF 365.7 HNO 330.5 HCl 328.0 HBr 318.2 HNO 317.8

HI
2 3( ) < ( ) < ( ) < ( ) < ( )

< 3309.3 H SO 302.2 HSO F 299.8 HClO 285 82 4 3 4( ) < ( ) < ( ) < ±( )
 

(experimental gas-phase acidity (ΔGacid) values in kcal mol−1) [31]. Interestingly, 
the gas-phase acidity may be increased somewhat by the replacement of fluorine 
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atoms with chlorine [32, 33]. The values noted above for HF and HCl are one 
example. The corresponding values for HCO2CH2F, HCO2CH2Cl, HCO2CHF2, 
and HCO2CHCl2 are 337.6, 335.4, 330.0, and 328.4 kcal mol−1, respectively [32]. 
This effect, which is opposite to that expected from electronegativity alone, is attributed 
to the greater delocalization of the charge on the chlorine atom relative to fluorine. 
Thus, HSO3Cl is expected to be a stronger acid than HSO3F [26, 32, 33].

Replacement of the acid protons with Li+ cations results in the corresponding 
lithium salts. Due to differences between the gas and condensed liquid-phase inter-
actions, as well as the varying factors which determine proton (H+) and Li+ cation 
coordination/solvation, the exact trends noted for anion acidity do not always hold 
for the relative strength of lithium salt interactions. But, overall, the ionic association 
tendency of anions to coordinate Li+ cations is governed by the same effects noted 
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Fig. 1.1 Experimental gas-phase acidity values (kcal mol−1) for various monosubstituents [20]
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above for acidity, as exemplified by DMSO electrolytes with lithium acetate 
salts with increasing anion fluorination which have the following increasing ionic 
association trend [34]:

 CO CH CO CH F CO CHF CO CF2 3 2 2 2 2 2
− − −

3
−> > >  

Efforts to develop new lithium salts began in the late 1970s and 1980s with the 
use of perfluoroalkylsulfate (e.g., SO3CF3

−) and bis(perfluoroalkanesulfonyl)imide 
(e.g., N(SO2CF3)2

−) anions. New salt development efforts gained momentum 
throughout the next three decades, but none of the developed salts have offered 
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significant advantages over—while retaining the benefits of—the LiPF6 salt, which 
serves as the standard for industry. Thus, LiPF6 continues to be the predominant salt 
used for most commercial Li-ion batteries.

Some of the new lithium salts, however, have been found to be very effective 
as electrolyte additives for the modification of electrolyte–electrode interfaces. 
Other lithium salts hold promise as future primary salts for lithium batteries 
(i.e., replacements for some or all of the LiPF6), especially for demanding battery 
electrolyte requirements such as low/high-temperature operation and superb safety 
characteristics, which cannot be met by the sole use of LiPF6 [35–38]. Thus, there 
is a continued need for rapid advances in lithium salts for the diverse range of lith-
ium battery chemistries which are now the focus of worldwide efforts to greatly 
improve vehicular and stationary energy storage technologies.

1.2  Electrolyte Salt Properties

Electrolyte salts must meet a broad and demanding range of properties—some of 
these include [12, 37, 39, 40] the following:

 1. Ionic Conductivity: A high Li+ cation transport rate is necessary to achieve high 
power (i.e., a high rate for the overall battery reaction) as the Li+ cation mobility 
within the bulk electrolyte is often one of the main sources of impedance for the 
battery [41]. The choice of a lithium salt’s anion dramatically influences the 
electrolyte’s conductivity due to the variations in the Li+ cation solvation and 
ionic association interactions resulting from the differences in anion structure 
and coordination strength. Although electrolyte conductivity is the parameter 
most frequently considered, the Li+ cation mobility is actually obtained from the 
product of the conductivity and Li+ cation transference (or transport) number 
(i.e., tLi+) (fraction of the current carried by the Li+ cations). This latter parameter 
is frequently not reported in the literature for a given electrolyte composition. 
The most common tLi+ measurement method is that reported by Bruce and 
Vincent [42–44]. Caution should be exercised in interpreting results from such 
measurements, however, as the data can be skewed by the reaction of the electro-
lyte with Li metal (active electrodes) resulting in erroneous tLi+ values, especially 
for liquid electrolytes.

 2. Salt Solubility/Crystalline Solvates: Achieving a reasonably high lithium salt 
solubility in the electrolyte solvent(s) is necessary to provide sufficient charge 
carriers for rapid ionic conduction, as well as to prevent salting out of the salt 
(i.e., precipitation). It is important to distinguish between salt solubility and 
crystalline solvates. A salt may be highly soluble, but also may readily form a 
crystalline solvate phase with a high melting point (Tm) resulting in the formation 
of solids in the electrolyte which effectively extracts the salt from the electrolyte 
solution (causing the conductivity to plummet). This is a particular concern for 
low-temperature cell operation.

1 Nonaqueous Electrolytes: Advances in Lithium Salts
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 3. Stability: Electrolytes must, in general, be robust (nonreactive with other cell 
components) within the electrochemical potential window utilized for the bat-
tery charge/discharge reactions [45], as well as at elevated temperature, to 
achieve thousands of charge/discharge cycles with low capacity loss (fade). 
The temperature and voltage(s) at which oxidation and/or reduction of the elec-
trolyte components occur are not independent of one another. As for chemical 
stability, the electrochemical stability of electrolytes (i.e., potential stability win-
dow) is strongly temperature dependent with a modest increase in temperature, 
in some cases, resulting in a substantial decrease in stability [46]. The potential 
window is also a strong function of the materials in contact with the electrolyte 
[46], as well as the presence of impurities. Thus, the potential window, as mea-
sured on an inert glassy carbon electrode, is not a clear indicator of the stability 
of an electrolyte in contact with active electrode materials (although a poor sta-
bility on this electrode likely also indicates a poor stability with more active 
electrodes). Stability is a complicated factor, however, as it may also be neces-
sary for the salt’s anions to selectively degrade—e.g., to form a solid-electro-
lyte interface (SEI) layer on the anode and/or cathode [12] and to stabilize the 
Al current collector [47].

 4. SEI Formation: The SEI is a layer formed between the electrode surface and the 
electrolyte through the degradation/reaction of both electrolyte components and 
electrode material(s) [12]. Ideally, only a limited amount of materials react, with 
the resulting SEI layer preventing further electrode–electrolyte reactions and 
enabling the facile transport of only Li+ cations between the electrode and elec-
trolyte (resulting in a low impedance). The lithium salt(s) present in the electro-
lyte, whether as a bulk salt or an additive, can dramatically influence the SEI’s 
composition, properties, and stability [48].

 5. Al Corrosion: The use of Al as a cathode current collector in commercial Li-ion 
batteries is nearly ubiquitous [47]. A given electrolyte must passivate the electro-
lyte–Al interface to prevent corrosive pitting of the current collector during cell 
cycling to high potential (>3.6 V vs. Li/Li+).

 6. Hydrolysis Stability: Many anions hydrolyze when exposed to water, especially 
at elevated temperature—often resulting in the formation of HF. This results in 
additional costs associated with the salt’s preparation, storage, and handling. 
This also strongly influences the cycling behavior and lifetime of batteries, espe-
cially when cycled to high temperature and/or high potential (>4.8 V vs. Li/Li+) 
[49–54]. HF formation may also result from the reaction of the anions with sol-
vent molecules (abstraction of a hydrogen) [55].

Other desirable features include low cost and low toxicity. Failure to meet one or 
more of these criterions prevents the practical use of a salt in lithium and Li-ion bat-
teries. It is important to note, however, that many of these properties are strongly 
dependent upon the electrolyte formulation (e.g., solvents used, salt concentration, 
additives). Thus, electrolyte compositions need to be tailored to specific battery 
applications/demands.
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1.3  Established Salts

A number of lithium salts are well established as salts which are used or have been 
previously used for lithium battery electrolytes, although many of these do not meet 
the necessary criterion for commercial battery electrolytes. Frequently studied 
lithium salts include (Fig. 1.3) [12, 40] the following:

 1. LiClO4: Lithium perchlorate was widely used for battery electrolyte research in 
the 1970s and 1980s due to its high ionic conductivity, high solubility in aprotic 
solvents, high thermal/electrochemical stability, and favorable SEI-forming prop-
erties [12, 56]. Electrolytes with the LiClO4 salt, however, typically do not passiv-
ate the Al current collector as well as those with LiPF6 [38, 57–60]. The high 
oxidation state of the ClVII atom also makes the anion a strong oxidant and thus the 
salt a potential explosive [61–63]. This has largely precluded the use of LiClO4 for 
commercial batteries.

 2. LiAsF6: Like LiClO4, lithium hexafluoroarsenate was widely used for electrolyte 
research in the 1970s and 1980s. In particular, it was found to improve the effi-
ciency of Li metal plating/stripping relative to electrolytes with LiClO4 [12]. 
LiAsF6 has many properties in common with LiPF6 [12, 40, 64], but the potential 
hazards associated with the salt have largely prevented its commercial usage. 
Although the AsV oxidation state is not toxic, the AsIII and As0 states, which 
might be formed from electrochemical reduction, are highly toxic.

 3. LiPF6: Lithium hexafluorophosphate is used almost exclusively in commercial 
Li-ion batteries. This salt has thus far demonstrated the best balance of essential 
properties necessary for a primary Li-ion electrolyte salt [12, 40]. In aprotic 
solvents, the resulting electrolytes have some of the highest conductivity values 
measured. LiPF6-based electrolytes react to form a stable interface with the Al 

Fig. 1.3 Widely used lithium salt anions: (a) AsF6
−, (b) PF6

−, (c) ClO4
−, (d) BF4

−, (e) SO3CF3
−, and 

(f) N(SO2CF3)2
− (TFSI−) (C1 (cis) and C2 (trans) conformations) (B—tan, C—gray, N—blue, 

O—red, F—light green, P—orange, S—yellow, Cl—dark green, As—purple)
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current collector at high potential [58–60, 65–68] and a stable SEI with graphite 
electrodes when used with carbonate solvents [12, 40]. The P–F bond is labile, 
however, and the salt thus readily undergoes hydrolysis [69–73] and has a rela-
tively low thermal stability [56, 71, 74–78]. The presence of HF in LiPF6-based 
electrolytes, and its impact on cell performance, is one of the principal concerns 
associated with this salt’s usage [49–54].

 4. LiBF4: Electrolytes with lithium tetrafluoroborate tend to have a significantly lower 
conductivity, relative to those with LiPF6 [79–81], which has been a major impedi-
ment to its use in commercial Li-ion cells. The B–F bond is less labile than the P–F 
bond. Thus, the LiBF4 salt is less susceptible to hydrolysis and more thermally stable 
than LiPF6 [56, 82–85], but electrolytes with this salt do passivate Al well at high 
potential [59, 67]. Despite the lower conductivity, electrolytes with LiBF4 have been 
shown to have improved cell cycling performance at low/high temperature, relative 
to cells with LiPF6-based electrolytes, due to the formation of a less resistive SEI 
layer and improved thermal stability [81, 82, 86–89]. LiBF4 may also serve as a use-
ful additive to electrolytes with LiPF6 [90] and it enables the use of γ-butyrolactone 
(GBL) as an electrolyte solvent (which is unstable with LiPF6) [91–96].

 5. LiSO3CF3: Lithium trifluoromethanesulfonate (triflate—most commonly abbre-
viated as “CF3SO3

−” in the scientific literature) was at one time widely used for 
electrolytes, especially for polymer electrolytes [97–107]. This salt has a high 
thermal stability [56] and is not susceptible to hydrolysis due to the stability of 
the C–F bond. Electrolytes with this salt, however, are found to be notably less 
conductive than those with LiPF6 [5, 108–110], and LiSO3CF3-based electrolytes 
corrode the Al current collector at high potential [59, 65–67]. Thus, while this 
salt has been extensively used for research purposes, it is not used in commercial 
Li-ion batteries.

 6. LiTFSI (i.e., LiN(SO2CF3)2): Many acronyms are used for the lithium 
bis(trifluoromethanesulfonyl)imide salt: LiTFSI, LiTFSA, LiNTf2, LiTf2N, etc. 
The terms “imide” and “amide” are frequently interchanged. Much of the initial 
interest in the LiTFSI salt was due to its tendency to form amorphous mixtures 
with poly(ethylene oxide), rather than crystalline phases, when mixed to form 
polymer electrolytes [97, 111–113]. The bis(perfluoroalkanesulfonyl)imide 
anions, such as TFSI−, are highly flexible with two low-energy conformations in 
which the –CF3 groups are either cis (C1) or trans (C2) to one another (Fig. 1.3f) 
[114–117]. The combination of the strongly electron-withdrawing fluorine atoms 
and resonance structures due to the sulfonyl groups results in extensive negative- 
charge delocalization across the –SO2–N–SO2– backbone of the anion [108, 
118]. Thus, TFSI−…Li+ cation coordination occurs predominantly through oxy-
gen atom coordination to the Li+ cations (rather than N…Li+ or F…Li+ cation 
coordination) [119–124]. Electrolytes with this salt generally are somewhat less 
conductive than the corresponding LiPF6 electrolytes [5, 11, 125]. The TFSI− 
anion has a high thermal stability and is not susceptible to hydrolysis due to the 
very stable C–F bonds [56, 126], but dilute aprotic solvent-base electrolytes with 
LiTFSI are known to strongly corrode the Al current collector at high potential 
[59, 60, 65–68]. This observation should be qualified with the fact that electrolytes 
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with ionic liquids with the TFSI− anion (with or without LiTFSI) do not corrode 
the Al current collector [127–132], nor do electrolytes with very high concentrations 
of LiTFSI [133]. Thus, simple generalizations about electrolyte salt properties 
(e.g., “the LiTFSI salt corrodes Al”) may be flawed.

1.4  Electrolyte Characterization Tools

Rigorous electrolyte characterization requires a thorough understanding of not only 
the properties of the electrolyte, but also the solution structure. Anion solvation in 
protic solvents (e.g., water, methanol, ammonia) occurs through hydrogen-bonding 
interactions. Protic solvents, however, have poor electrochemical stability due to the 
acidic protons (i.e., O–H, N–H, S–H). The aprotic solvents useful for electrolyte 
applications do not have acidic protons. Thus, in general, the anions remain unsol-
vated (naked) in electrolytes with such solvents. Dissolution of a lithium salt there-
fore occurs through the solvation of the Li+ cations by the formation of coordination 
bonds between the Li+ cations and electron lone-pairs of the solvent donor atoms. 
Anions also form coordination bonds to the Li+ cations using the electron lone-pairs 
on donor atoms (F, O, N, etc.). The competition between the solvent and anions for 
Li+ cation coordination—the occupancy of the Li+ cation’s coordination shell—
determines the solvate species which are present in the electrolyte. Thus, the ion 
solvation (solvent–Li+ cation interactions) and ionic association tendency of the 
anions (anion–Li+ cation interactions) are important features of electrolytes which are 
governed by the solvent/anion structure: steric factors which influence the coordina-
tion bond formation and packing around the cation, polarizability, charge delocaliza-
tion, etc. The following discussion provides a short overview of a methodology which 
may be used to identify the electrolyte interactions and how these are determinants for 
electrolyte properties [134–136]:

 1. Phase Diagrams and Solvate Crystal Structures: Solvent-lithium salt phase dia-
grams are an underutilized, but highly informative tool for examining electrolyte 
interactions. Acetonitrile (AN) is a particularly useful model solvent for compar-
ing a salt’s phase behavior as this solvent has only a single electron lone-pair and 
thus is either uncoordinated or coordinated to a single Li+ cation. Figure 1.4 
compares the phase diagrams of (AN)n–LiX mixtures with LiPF6, LiTFSI, 
LiClO4, LiBF4, and LiCO2CF3 [134, 135]. Figure 1.4 also shows the solvent/ion 
coordination in the solvate crystal structures determined for some of the indi-
cated phases in the phase diagrams: (AN)6:LiPF6 [137], (AN)5:LiPF6 [138], 
(AN)1:LiTFSI [139], (AN)4:LiClO4 [140], (AN)2:LiBF4 [141], and (AN)1:LiBF4 
[142]. Notable features include the tendency of the (AN)n–LiPF6 and (AN)n–
LiClO4 mixtures to form crystalline solvates with a high Tm. This is attributed to 
the small, symmetric, and relatively weakly coordinating anions which readily 
pack well within the solvate crystalline lattices. In contrast, dilute (AN)n–
LiTFSI mixtures form low Tm solvates and a crystallinity gap exists for more 
concentrated mixtures for which it is difficult or impossible to crystallize the 
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electrolytes—these features may be attributable to the bulky anion with lower 
symmetry and its influence on solvate formation. The ClO4

− and BF4
− anions are 

both tetrahedral and nearly of the same size (Fig. 1.3c, d). Interestingly, although 
the (AN)n–LiClO4 and (AN)n–LiBF4 mixtures form the same solvate crystalline 

Fig. 1.4 Phase diagrams of (AN)n–LiX mixtures with LiPF6, LiTFSI, LiClO4, LiBF4, and 
LiCO2CF3 [134, 135] and ion/solvent coordination within the solvate crystal structures: (a) 
(AN)6:LiPF6 [137], (b) (AN)5:LiPF6 [138], (c) (AN)1:LiTFSI [139], (d) (AN)4:LiClO4 [140], (e) 
(AN)2:LiBF4 [141], and (f) (AN)1:LiBF4 [142] (the sample Tg values are indicated by an “x” for 
fully amorphous samples and by a triangle for partially crystalline samples)
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phases (i.e., 4/1, 2/1, and 1/1 AN/LiX compositions), significant differences 
exist in the Tm of the 4/1 phases in which the Li+ cations are fully solvated by four 
AN molecules and the anions are uncoordinated (Fig. 1.4d). This can be 
explained by the difference in the solvation/ionic association tendency of the 
two salts, as the BF4

− anions have a greater tendency to displace the solvent 
molecules in the Li+ cation coordination shells (and thus a greater tendency to 
disrupt the solvate structure). The 6/1 and 5/1 solvates with LiPF6 also form 
solvates with four-fold Li+ cation coordination (Fig. 1.4a, b), but also include 
uncoordinated solvent molecules to facilitate the packing of the solvated Li+ 
cations and PF6

− anions together. Finally, the (AN)n–LiCO2CF3 mixtures do not 
form crystalline solvates. Only some of the excess AN is able to crystallize as a 
pure solvent phase.

 2. Li+ Cation Solvation: Electrolyte (average) solvation numbers are most com-
monly determined using vibrational spectroscopy by examining the solvent’s 
vibrational band(s). Upon coordination to a Li+ cation through an electron lone- 
pair, the electron density of the solvent molecule (and thus bond lengths/angles) 
changes resulting in variations in the solvent band positions [134, 135]. 
Integration of the peak area of the bands associated with the uncoordinated and 
coordinated solvent enables the calculation of the fraction of coordination solvent 
molecules—this number multiplied times the total number of solvent molecules 
in the electrolytes gives the average solvation number (Fig. 1.5). This analysis 
can be confounded, however, by overlapping vibrational bands, as well as varia-
tions in the relative intensity (scaling) of the peaks. Failure to account for these 
factors can result in a highly misleading interpretation of the experimental data. 
The scientific literature related to the determination of solvation numbers is rife 
with these problems. From an analysis of the AN Raman C–C and C≡N stretching 

Fig. 1.5 Calculated Li+ cation average solvation numbers (AN/Li) for (AN)n–LiX electrolytes. 
The dark solid line corresponds to the average of the data obtained from the analysis of the C–C 
and C≡N Raman vibrational stretching bands (note that values for approximately n > 9 are unreli-
able due to a compilation of experimental errors associated with the Raman solvent band deconvo-
lution) [134, 135]
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vibrations [134, 135], ion solvation for (AN)n–LiX mixtures increases in the 
order:

 LiPF LiTFSI LiClO LiBF LiCO CF26 4 4 3> ≥ > >>  

The maximum ion solvation number (average number of solvent molecules 
coordinated to the Li+ cations) for the AN mixtures is found to be about 4 [134, 
135]. Wide differences are noted for the solvation numbers for the varying 
anions. For example, for highly concentrated (>3 M) (AN)n–LiX (n = 4) liquid 
mixtures (i.e., four AN molecules present per Li+ cation) at 60 °C, the solvation 
numbers are approximately 3.2 for LiPF6, 2.8 for LiTFSI, 2.7 for LiClO4, 2.1 for 
LiBF4, and 1.0 for LiCO2CF3 [134, 135]. Note that these numbers are not the 
coordination numbers for the Li+ cations. Rather, they represent the average 
number of coordinated solvent molecules with the anions making up the differ-
ence in the Li+ cation coordination shells. Thus, the Li+ cations in the LiPF6 
electrolytes are expected to be well solvated, whereas those for the LiCO2CF3 
electrolytes are instead expected to be highly associated to the anions over the 
entire concentration range. Despite this, the solubility of LiCO2CF3 in AN is 
exceptionally high (>5 M). Thus, salt solubility and ionic association are not 
necessarily directly correlated with one another.

 3. Ionic Association: The ionic association present in electrolytes is most com-
monly also determined using vibrational spectroscopy by examining one or more 
anion vibrational bands which shift upon coordination to the Li+ cations [103–105, 
121, 134, 135, 143, 144]. Often, the assignment of the bands to specific modes 
of coordination is somewhat ambiguous and the analysis of the data is simply 
based upon guesswork. This can be very misleading. To resolve this problem, the 
study of the vibrational bands for model crystalline (solid) solvates with known 
structure is particularly useful for assigning the vibrational band positions to 
particular anion…Li+ cation coordination modes. This evaluation has been done 
for the salts LiClO4 [145, 146], LiBF4 [141], and LiDFOB [147]. Work is cur-
rently in progress to provide similar analyses for LiPF6, LiTFSI, and LiSO3CF3. 
An example of the modes of coordination for the BF4

− anion and the corre-
sponding anion band positions obtained from crystalline solvates (such as AGG-I 
(AN)2:LiBF4 and AGG-II (AN)1:LiBF4—Fig. 1.4e, f) is shown in Fig. 1.6 [141]. 
This characterization “tool” is quite useful for the evaluation (deconvolution) of 
the Raman band data for the liquid electrolytes shown in Fig. 1.7b. This form 
of analysis is greatly complemented by molecular dynamics (MD) simulations 
(validated by the experimental data) which provide a visual representation of the 
solvates present in solution (Fig. 1.8) [134–136]. As an example of the utility of 
this marriage of methods, the solvates shown in Fig. 1.8c, d represent contact ion 
pairs (CIP-I and CIP-II, respectively). But the solvates in Fig. 1.8b, e, g–j also 
contain BF4

− anions coordinated to a single-Li+ cation. Thus the spectral signa-
ture of these anions would be that of CIP-I anion coordination (Fig. 1.6b). The 
experimental spectroscopic data, therefore, does not provide direct information 
about the solvates present. Instead, it indicates the fraction of the anions present 
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with different modes of anion…Li+ cation coordination. This is an important 
distinction which is generally not made throughout the published scientific lit-
erature on electrolyte characterization. The ionic association tendency of lithium 
salts is found to increase in the order [134–136, 148]:

 LiAsF ,LiPF LiTFSI LiClO LiBF LiSO CF LiCO CF3 2 36 6 4 4 3< ≤ < < <  
A comparison of this with the Li+ cation solvation data (Fig. 1.5) indicates 

that this increasing ionic association tendency is opposite to that noted for the Li+ 
cation solvation. This is due to the competitive coordination of the solvent mol-
ecules and anions to the Li+ cations. Quantum chemical (QC) calculations and 
MD simulations find that (AN)n–LiX mixtures consist predominantly of Li+ cat-
ions with four-fold coordination to anions and/or AN solvent molecules (very 
little five-fold Li+ cation coordination is found for AN-based electrolytes) [134–136]. 
As noted above, aprotic solvent molecules, such as AN, have only weak interactions 
with anions. Thus, the Li+ cation coordination shell in solution consists of anions 
and/or solvent molecules. The competitive coordination between these determines 
the solvate distribution present in solution (Fig. 1.8) [134–136, 141].

 4. Transport Properties: The transport properties (e.g., viscosity and ionic conduc-
tivity) of electrolytes are one of the key metrics used to gauge electrolytes. The 
viscosity may be correlated with the wettability of an electrolyte with the porous 
separator and electrodes. Figure 1.9 shows the variation in the viscosity of 
(AN)n–LiX mixtures at 60 °C with different lithium salts [136]. Perhaps contrary 
to expectations, the most dissociated salts result in the highest viscosity for the 
more dilute mixtures. The differences in the viscosity for the different salts and 

Fig. 1.6 Varying modes of BF4
−…Li+ cation coordination: (a) SSIP, (b) CIP-I, (c) CIP-II, (d) 

AGG-I, (e) AGG-II, and (f) AGG-III and Raman band peak positions for the BF4
− anion v1 vibra-

tional band for different crystalline solvates (each line corresponds to a different crystalline sol-
vate) (no crystalline solvates with CIP-II coordination were available for analysis) [141]
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concentrations can be explained by the differences in solution structure (amount 
of uncoordinated solvent and number/distribution of solvates) (Figs. 1.8 and 1.10) 
[136]. Figure 1.11 shows the variation in the conductivity of the (AN)n–LiX 
mixtures at 60 °C with the different lithium salts [136]. The differences noted in 
terms of both salt concentration and anion structure can once again be explained 
by the differences in electrolyte solution structure (types and distribution of sol-
vates and uncoordinated anions, as well as the solvate formation/evolution 
dynamics) [136]. It is important to note that the AN electrolytes with LiPF6 have 
the highest conductivity, but also the highest viscosity (Fig. 1.9). Similarly, the AN 
electrolytes with LiCO2CF3 have the lowest conductivity and the lowest viscosity. 

Fig. 1.7 BF4
− anion band variation with concentration for the (AN)n–LiBF4 mixtures at (a) −80 °C 

and (b) 60 °C [134]
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This clearly shows that the conventional wisdom that conductivity is directly 
linked with viscosity—“a high conductivity is achieved for electrolytes with 
a low viscosity”—is inaccurate. Instead, both properties originate from the 
molecular-level interactions between the ions and solvent (i.e., solution struc-
ture). These properties are thus only indirectly correlated with one another. 
Frequently, it is found that a maximum in electrolyte conductivity is obtained 
near a 1 M salt concentration (Fig. 1.12) (for the AN electrolytes shown in 
Fig. 1.11, this corresponds to an AN/Li ratio of about 14 to 17—depending upon 
the salt’s formula weight [136]). In addition, the choice of aprotic solvent or 
solvent mixtures used greatly impacts the conductivity of an electrolyte 
(Figs. 1.12 and 1.13) [5, 149–153], but importantly the trend in the conductivity 
for different salts remains largely the same irrespective of the solvent(s) used. For 
example, the conductivity with different lithium salts in an EC:DMC  equimolar 
binary mixture with the solvents 3-methylsydnone (3-MSD) or 3- ethylsydnone 
(3-ESD) added is found to increase in the order [154]:

LiPF LiClO LiN SO CF LiTFSI LiN SO C F LiBF LiSO2 3 2 2 2 56 4 2 4> > ( ) ( ) > ( ) > > 33CF3

Fig. 1.8 Representative Li+ cation solvate species (i.e., coordination shells) extracted from the 
MD simulations for the (AN)n–LiBF4 mixtures (n = 30, 20, and 10) at 60 °C with BF4

− coordina-
tion: (a) SSIP; (b) CIP-I, CIP-II; (c) CIP-I; (d) CIP-II; (e) CIP-I, AGG-I; (f) AGG-I; (g) CIP-I, 
AGG-I (×3); (h) CIP-I, AGG-I (×3), AGG-III; (i) CIP-I, AGG-I (×2); (j) CIP-I (×2), AGG-I; and 
(k) AGG-I (×3). Only solvent and BF4

− anions within 3.33 Å of a Li+ cation are shown (Li—purple, 
B—tan, C—gray, N—blue, F—light green) [134]

1 Nonaqueous Electrolytes: Advances in Lithium Salts



16

which is similar to the trend in Fig. 1.11 (if LiClO4 and LiTFSI are interchanged). 
A similar order is also noted for the electrolytes in Table 1.1 and Fig. 1.14 [5, 
108–110, 125, 150–153, 155, 156]. This latter figure indicates that the EC:PC 
electrolyte with LiPF6 is slightly more conductive than the corresponding elec-
trolyte with LiAsF6, whereas the opposite is true for the 2-MeTHF:EC:PC 
 electrolytes. Also, there is a crossover in the conductivity for the 2-MeTHF:EC:PC 

Fig. 1.9 (a) Viscosity of (AN)n–LiX mixtures at 60 °C (AN/LiX (n) noted in plots) and (b) the 
same data for the dilute mixtures alone. Data for concentrated mixtures with LiPF6 and LiClO4 
were not gathered as these samples crystallize during the measurements [136]
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electrolytes with LiBF4 or LiSO3CF3 with varying temperature. These points 
demonstrate that the ion solvation and ionic association interactions within the 
electrolytes are a function of numerous factors and generalizations about salt 
properties/behavior should be used with caution, as noted above.

Fig. 1.10 Snapshot of the molecular simulations of (AN)n–LiX mixtures (n = 20) with (a) LiPF6 
and (b) LiBF4 (Li—purple, B—tan, C—gray, N—blue, F—light green, P—orange). Uncoordinated 
AN solvent molecules have been removed to aid in discerning the solvates present [136]
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Fig. 1.11 Ionic conductivity of (AN)n–LiX mixtures at 60 °C (solvent/LiX ratio (n) noted at the 
top of the plot) (LiSO3CF3 data not shown due to crystalline solvate formation) [136]

Fig. 1.12 Ionic conductivity of EC:PC (50:50 v:v) and 2-MeTHF:EC:PC (75:12.5:12.5 v:v:v) 
mixtures with LiAsF6 for different temperatures and salt concentrations [5]
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1.5  Advanced Salts—Fluoroborates and -Phosphates

Lithium salts with tetraalkylborate anions are highly soluble in dioxolane (up to 
3 M) [157]. This is due to the poorly coordinating tetraalkylborate anions which 
lack donor atoms with electron lone-pairs for Li+ cation coordination [158]. Thus, 
solvent molecules readily displace the anions in the Li+ cation coordination shells. 
This also accounts for the poor chemical stability of the salts [159]: lithium 

Fig. 1.13 Ionic conductivity of 1 M LiAsF6 electrolytes with the indicated solvents (either a single 
solvent or a 50:50 v:v binary mixture) [5]

Table 1.1 Conductivity (mS cm−1) of electrolytes with various lithium salts (1 M) at 25 °C (av:v; 
bw:w) [108–110, 125, 155, 156]

Lithium  
salt (anion)

PC:DME 
(50:50)a

PC:DMC 
(50:50)a

PC:DEC 
(50:50)b

PC:EMC 
(50:50)a

EC:DMC 
(50:50)a

EC:THF 
(50:50)a GBL

AsF6
− 14.8 – 7.6 – – 13.7 10.48

PF6
− 15.3 10.0 7.1 9.33 11.2 – 11.63

ClO4
− 13.5  6.8 4.5 6.26 10.1 13.5 –

N(SO2CF3)2
− 12.6 – – 7.57 – –  9.21

BF4
− 9.5 – 2.5 3.72 –  9.5  7.33

SO3CF3
− 6.1  2.1 – –  3.1  5.4 –

PC propylene carbonate, EC ethylene carbonate, DME 1,2-dimethoxyethane (or monoglyme), 
DMC dimethyl carbonate, DEC diethyl carbonate, THF tetrahydrofuran, GBL γ-butyrolactone
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tetramethylborate (i.e., LiB(CH3)4) (Figs. 1.15a and 1.16a) [158, 160–162] is stable 
in air [157], but lithium tetrabutylborate (i.e., LiB(C4H9)4) (Fig. 1.15c) is pyrophoric 
[157]. In the former salt, the Li+ cations are coordinated by the methyl hydrogens 
[158], but less favorable coordination may occur for anions with longer alkyl chains 
making the anions more reactive. Lithium tetraphenylborate (LiBPh4) (i.e., LiB(C6H5)4) 
(Figs. 1.15h and 1.16c) is stable only when the Li+ cations are fully solvated—this 

Fig. 1.14 Ionic conductivity of EC:PC (50:50 v:v) and 2-MeTHF:EC:PC (75:12.5:12.5 v:v:v) 
mixtures with the indicated lithium salts (1 M) [5]

d

e

b c

h

f

g

a
- -

-

- -

-

- -

Fig. 1.15 Examples of organoborate anions: (a) B(CH3)4
− [158, 160, 161], (b) B(C2H5)3(C4H9)− 

[160, 161], (c) B(C4H9)4
− [160, 161], (d) B(CH3)3(C6H5)− [160, 162], (e) B(CH3)2(C6H5)2

− [160], (f) 
B(CH3)(C6H5)3

− [160], (g) B(CH3)(C6H4(CH3))3
− [160], and (h) B(C6H5)4

− [160, 161]
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salt is typically sold commercially as the (DME)3:LiBPh4 solvate, while crystal 
structures have been reported for the (H2O)4:LiBPh4 [163], (H2O)2(DME)1:LiBPh4 
[164], (H2O)2(THF)2:LiBPh4 [165], (THF)1(12C4)1:LiBPh4 [166], (triglyme)1:LiBPh4 
[167], and P(EO)5:LiBPh4 [168] solvates—all with fully solvated Li+ cations and 
uncoordinated BPh4

− anions. The unsolvated LiBPh4 salt slowly reacts with dry air. 
PC-based electrolytes with LiBPh4 (and some DME) have a conductivity which is 
similar (slightly lower) to that of electrolytes with LiBF4, but the conductivity of 
THF- and DME-based electrolytes with LiBPh4 is higher than for those with LiBF4 
[169]. This may be attributable to variations in the ionic association interactions 
for the LiBF4 salt with the different solvents, whereas the LiBPh4 salt remains fully 
dissociated for all of the electrolyte formulations.

The anions from conjugate Brønsted–Lewis superacids represent the core lithium 
salts used for commercial lithium batteries (i.e., LiPF6 and LiBF4). The acidity 
order determined from QC calculations is as follows: HBF4 (287.7) < HPF6 
(276.6) < HTaF6 (268.3) < HAlCl4 (257.4) < HSbF6 (255.5) (DFT-calculated ΔGacid 

Fig. 1.16 Anion structures: (a) B(CH3)4
−, (b) B(C2H5)4

−, (c) B(C6H5)4
− (BPh4

−), (d) BF3(CF3)− 
(e) BF3(C2F5)− (FAB−), (f) BF2(CF3)2

−, (g) BF(CF3)3
−, (h) B(CF3)4

−, (i) BF3Cl−, (j) BF3(C6H5)−, (k) 
BF2(C6F5)2

−, (l) B(C6F5)4
− (BArF−), and (m) PF3(C2F5)3

− (FAP−) (B—tan, C—gray, F—light green, 
P—orange)
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values in kcal mol−1) [21]. LiBF4 and LiPF6 have both been extensively used for 
lithium battery research, and the latter is used in commercial Li-ion cells. The synthesis 
of LiTaF6 and LiNbF6 has been reported [170–175]. Although LiTaF6 is highly soluble 
in THF, after the salt dissolution the electrolyte subsequently polymerized [175]. 
The conductivity of a 0.33 M LiTaF6 electrolyte with sulfolane is 3.8 × 10−3 S cm−1 
at 75 °C [175] (which is somewhat lower than a 0.33 M LiPF6 electrolyte with sulfo-
lane at this temperature [5]). The conductivity of PC-based electrolytes with either 
LiTaF6 or LiNbF6 was also found to be lower than the corresponding electrolytes 
with LiPF6 [174]. Electrolytes with LiTaF6 result in very poor Li metal cycling effi-
ciency suggesting that the TaF6

− anions may also have poor reductive stability [6]. 
The reductive stability of the MF6

− anions is reported to follow the order 
SbF6

− < AsF6
− < PF6

− [176]. Electrolytes with LiSbF6 have a similar conductivity to 
those with LiPF6, but the LiSbF6 salt may be corrosive to metals [6]. The Li2SiF6 and 
Li3AlF6 salts tend to be poorly soluble in aprotic solvents, and the resulting electrolytes 
have a low conductivity [6]. In contrast to these salts, LiAsF6 is highly soluble and its 
use results in electrolytes with comparable and, in some cases, superior conductivity 
and properties to those with LiPF6 (Table 1.1 and Fig. 1.14) [5]. But the potential to 
reduce the anion AsV oxidation state to the highly toxic AsIII or As0 oxidation states, 
as noted above, has largely limited the commercial use of LiAsF6 [177].

LiAlCl4 has been widely used for Li/SO2Cl2 batteries [178] (as has LiGaCl4 
[179–186]), but LiAlCl4 has also been studied for use with intercalation cathodes. 
For example, an electrolyte composed of LiAlCl4⋅3SO2 was used for a Li/LiCoO2 
cell [187, 188]. This electrolyte has a very high conductivity (70–80 mS cm−1 at 
0–20 °C), but the salt undergoes a degradation side reaction to produce Cl2 which 
then reacts with Li metal to form LiCl [187, 188]:

 
LiAlCl AlCl / Cl Lidissolved4 3 21 2→ + + +( )

+ −e
 

 
1 2 2/ Cl Li LiCldissolved( ) ( ) ( )+ →s s  

A diverse range of analogues of BF4
− anions (Fig. 1.17) has been reported with 

the replacement of fluorine atoms with perfluoroalkyl chains. The conductivity of 
1 M salt in EC:EMC electrolytes with lithium salts with these anions is given in 
Table 1.2. Perhaps contrary to expectations, it is interesting to note that the electro-
lyte conductivity increases with increasing size/mass of the anions. One might 
instead expect that bulkier anions would be less mobile, thus decreasing the conduc-
tivity. This increase in the conductivity may be due to decreased ionic association 
interactions with increasing perfluoroalkyl chain lengths and numbers (Figs. 1.1 and 
1.2). A separate publication, however, indicated that an electrolyte with LiBF3C2F5 
(LiFAB) (Figs. 1.16e and 1.17a) has a lower conductivity than the corresponding 
LiBF4 electrolyte (1 M salt in EC:EMC 30:70 v:v) above 0 °C, but a higher conduc-
tivity at < −20 °C [190]. Yet another publication indicates that LiFAB electrolytes 
(EC:EMC 30:70 v:v) are more conductive than LiBF4 electrolytes (but less conduc-
tive than LiPF6-based electrolytes) from −10 to 25 °C [192]. The LiFAB salt has 
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Fig. 1.17 Examples of analogues of BF4
− and PF6

− anions: (a) BF3(CnF2n+1)− [189–193], (b) 
BF2(CnF2n+1)2

− [189, 191], (c) BF(CnF2n+1)3
− [189, 191], (d) B(CnF2n+1)4

− [189, 194, 195], (e) BF3Cl− 
[196], (f) BF3(C6HnF5−n)− [160, 197, 198], (g) BF2(C6HnF5−n)2

− [160, 197, 198], (h) BF(C6HnF5−n)3
− 

[160, 197, 198], (i) B(C6HnF5−n)4
− [160, 198–201], (j) BF3O(C2H4O)nCH3

− [202], (k) PF5(CnF2n+1)− [203, 
204], (l) PF4(CnF2n+1)2

− [203, 204], (m) PF3(CnF2n+1)3
− [70, 203–206], (n) PF2(CnF2n+1)4

− [63, 70, 203–
209], and (o) PF(CnF2n+1)5

− [204]

Table 1.2 Conductivity of electrolytes with various lithium salts at 20 °C and 1 M salt in EC:EMC 
(25:75 v:v) [189]

Lithium salt (anion) Conductivity (mS cm−1) Lithium salt (anion) Conductivity (mS cm−1)

PF6
− 8.52

BF4
− 2.91

BF3(CF3)− 3.21 BF3(C2F5)− 3.31
BF2(CF3)2

− 4.02 BF2(C2F5)2
− 4.62

BF(CF3)3
− 5.11 BF(C2F5)3

− 6.89
B(CF3)4

− 7.52 B(C2F5)4
− 8.55

BF3(SO2CF3)− 4.47 BF3(SO2C2F5)− 3.98
BF2(SO2CF3)2

− 5.83 BF2(SO2C2F5)2
− 5.23

BF(SO2CF3)3
− 7.62 BF(SO2C2F5)3

− 7.18
B(SO2CF3)4

− 8.55 B(SO2C2F5)4
− 8.21
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good compatibility with Al at high potential, as well as a high stability with a graph-
ite anode and nickel oxide-based cathode. The cell cycling behavior is compa-
rable to an electrolyte with LiPF6 and far better than one with LiBF4. Cells with 
LiFAB also had improved capacity retention relative to cells with LiPF6 after stor-
age at 60 °C [190]. For cells with graphite anodes and LiCoO2 cathodes, however, 
comparable performance to LiPF6 electrolytes was found at room temperature, but 
inferior performance was found at elevated temperature reportedly due to a degra-
dation reaction of the LiFAB electrolyte with the cathode [192]. Electrolytes with 
variants of BF4

− anions with perfluoroalkylsulfonyl groups (–SO2CnF2n+1) 
(Fig. 1.18a–d) have conductivity values somewhat higher than those with anions 
with the corresponding perfluoroalkyl groups (Table 1.2) [189]. Analogous 
anions with the fluorine atoms of BF4

− replaced with –PO2F2 groups have also 
been reported (Fig. 1.18e–g) [210].

k

ih

g

j

nm

e f

c

d

[
n

n

n

[ ]]

-

n

n

-
n

a
-

n

n

n

n

-
n

[
n

[
n ]]

-

b

[ ]n

- -

-

l
n[n

[

] [

n

]

n

n

[ ]]

-

o

-

n

[

[

n

]

n

n

[ ]]

- -

-

n
-

n

Fig. 1.18 Examples of BF4
− and PF6

− analogue anions with perfluoroalkylsulfonyl and phosphoro-
difluoridato groups: (a) BF3(SO2CnF2n+1)− [189], (b) BF2(SO2CnF2n+1)2

− [189], (c) BF(SO2CnF2n+1)3
− 

[189], (d) B(SO2CnF2n+1)4
− [189], (e) BF3(PO2F2)− [210], (f) BF2(PO2F2)2

− [210], (g) BF(PO2F2)3
− [210], 

(h) PF5(SO2CnF2n+1)− [204], (i) PF4(SO2CnF2n+1)2
− [204], (j) PF3(SO2CnF2n+1)3

− [204], (k) PF2(SO2Cn

F2n+1)4
− [204], (l) PF(SO2CnF2n+1)5

− [204], (m) PF5(PO2F2)− [210], (n) PF4(PO2F2)2
− [210], and (o) 

PF3(PO2F2)3
− [210]
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The LiBF3Cl salt (Figs. 1.16i and 1.17e) has a higher solubility than LiBF4 in 
aprotic solvents and hinders crystallization of electrolytes to a greater extent at low 
temperature [196]. In common with LiBF4, the LiBF3Cl salt passivates Al well at 
high potential. The salt also makes a more favorable SEI with graphite than compa-
rable electrolytes with LiBF4 [196].

Lithium salts with fluorinated phenylfluoroborate anions have been reported 
(Fig. 1.17f–i) [198]. The conductivity values for 0.5 M salt in PC:DMC (v:v) electro-
lytes at 30 °C are reported to be LiBF4 (3.7 mS cm−1), LiBF3(C6F5) (Fig. 1.17f) 
(4.0 mS cm−1), and LiBF3C3F7 (Fig. 1.17a) (6.1 mS cm−1), but the tLi+ values are 0.31, 
0.71, and 0.43, respectively [198]. The lithium tetrakis(pentafluorophenyl)borate salt 
(LiBArF) (i.e., LiB(C6F5)4) (Figs. 1.16l and 1.17i) [199, 200] has a very weakly coor-
dinating anion with 20 fluorine atoms per Li+ cation. Although this salt does form 
crystalline solvates with fully solvated Li+ cations (i.e., (AN)4:LiB(C6F5)4 [211] and 
(Et2O)4:LiB(C6F5)4 [212]), it also crystallizes as solvates in which the Li+ cations are 
partially coordinated by the anion fluorine atoms (i.e., (Et2O)1:LiB(C6F5)4⋅CH2Cl2 
[212], (toluene)1:LiB(C6F5)4⋅toluene [212], and (benzene)1:LiB(C6F5)4 [213]). Thus, 
the extensive fluorination of the anion actually facilitates the coordination of the 
anion to the Li+ cations (relative to LiBPh4). The properties of a wide variety of 
different LiBR4 salts with varying alkyl and/or aryl groups and substituents (–CH3, 
–OCH3, –F, –CF3) have been extensively explored as electrolytes by researchers at 
Exxon Research and Engineering Company in the early 1980s [161, 214]. The anodic 
oxidative stability of the salts varies by more than 1.6 V depending upon the R 
group, with aryl groups resulting in higher stability than alkyl groups and the 
addition of electron-withdrawing substituents further increasing the stability 
[157, 160]. Related salts have been reported, such as LiB(OC6F5)4 [215] and 
LiB(SC6F5)4 [215, 216], but these salts tend to result in PEO- based electrolytes with 
a very low conductivity.

Lithium trifluoroalkoxyborate salts (Fig. 1.17j) are liquid at room temperature 
with a neat salt conductivity on the order of 10−4 S cm−1 [202]. Carbonate-based 
electrolytes (EC:PC:DMC 1:1:3 v:v:v) with these salts have a conductivity 
>3 mS cm−1 at 20 °C (higher than comparable electrolytes with LiBF4) [202].

Analogues of PF6
− anions (Fig. 1.17k–o) have also been reported [63, 70, 203–

209]. Electrolytes (1 M salt in EC:DMC 50:50 w:w) with the LiPF3(C2F5)3 (LiFAP) 
salt (Figs. 1.16m and 1.17m) have a conductivity which is only slightly lower than 
those with LiPF6 [70]. Half cells with Li metal and LiMn2O4 cycled better with the 
electrolyte with LiFAP (relative to those with LiPF6) [70, 208]. LiFAP was found to 
not undergo hydrolysis (in sharp contrast to LiPF6) and to have improved thermal 
stability relative to LiPF6 [63, 70, 207, 209]. In addition, carbonate solvent-based 
electrolytes with a mixture of LiFAP and LiPF6 were reported to have superior 
cycling performance (relative to comparable electrolytes with the individual LiFAP 
and LiPF6 salts), especially at 80 °C [206]. Anions in which the PF6

− fluorine atoms 
have been replaced with –SO2CnF2n+1 or –PO2F2 groups have also been reported 
(Fig. 1.18h–o) [204, 210].

1 Nonaqueous Electrolytes: Advances in Lithium Salts



26

1.6  Advanced Salts—Perfluoroalkylacetates,  
-Sulfonates, and -Phosphates

The experimental gas-phase acidity values (ΔGacid in kcal mol−1) for alkyl- and per-
fluoroalkylacetates and sulfonates follow the order HCO2CH3 (341.1) < HCO2CF3 
(316.3) ≤ HSO3CH3 (315.0) < HSO3F (299.8) < HSO3CF3 (299.5) (Fig. 1.1) [21, 26]. 
The fluorocarbonate anion (i.e., CO2F−) is highly reactive and may be considered to 
be a fluorine anion, F−, solvated by CO2 [217]. Other perfluoroalkylacetate anions 
(i.e., CO2CnF2n+1

−) (Figs. 1.19a and 1.20a) have not been used to any significant 
extent for lithium battery electrolytes. The lithium salts with these anions tend to be 
highly aggregated (extensive anion…Li+ cation coordination interactions) in PC 
electrolytes [218]. This is in agreement with the results noted above for the 
(AN)n–LiCO2CF3 mixtures which have a very low solvation number over the 
entire concentration range (Fig. 1.5) and very low conductivity relative to other 
(AN)n–LiX mixtures (Fig. 1.11).

Fluorosulfonic acid (i.e., HSO3F) (Fig. 1.19b) was first reported in 1918 [236]. 
LiSO3F-based electrolytes with several aprotic solvents were found to have a similar 
oxidative stability to electrolytes with other lithium salts such as LiSO3CF3 [237]. 
The conductivity of 1 M LiSO3F electrolytes with PC and GBL is 1.4 and 
3.6 mS cm−1, respectively [237]. For a mixed-solvent electrolyte, 1 M LiSO3F in 
GBL:DME (1:1 mol:mol), however, the conductivity is 7.4 mS cm−1 at 25 °C [237] 
(to be compared with 1 M GBL:DME (1:1 mol:mol) electrolytes with LiBF4, LiPF6, 
and LiAsF6 which have conductivity values of 7.7, 11.2, and 11.8 mS cm−1 [238]). 
The crystal structure for LiSO3F has been reported [239].

Trifluoromethanesulfonic acid (i.e., HSO3CF3) (Fig. 1.19b) and the corre-
sponding sodium salt were first reported in 1954 [240, 241]. A 3M patent in 1956 
then reported the preparation of a variety of perfluoroalkylsulfonic acids and the 
corresponding sodium and potassium salts [242]. The use of LiSO3CF3 in battery 
electrolytes began in the 1970s and early 1980s [243, 244]. Lithium salts with per-
fluoroalkylsulfonate anions (Figs. 1.19b and 1.20b, c) tend to be more dissociated 
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Fig. 1.19 Examples of fluoroalkylacetate, -sulfonate, and -phosphate anions: (a) CO2CnF2n+1
− 

[218], (b) SO3CnF2n+1
− [219–222], (c) SO4(C2H4O)nCH3

− [223, 224], (d) SO3(C6F5)− [175, 221], (e) 
SO3(CF2)nSO3

2− [175, 222, 225], (f) SO3(C6F4)SO3
2− [226], (g) PO3(CnF2n+1)2− [72, 227–232], and 

(h) PO2(CnF2n+1)2
− [72, 227, 230, 233–235]
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than those with perfluoroalkylacetate anions due to the larger size of the sulfur 
atoms relative to carbon (making the anion “softer”) and more extensive resonance 
(and thus charge delocalization) due to the additional oxygen atom. This results in 
the sulfonate salts having a higher conductivity than the corresponding acetate salts 
(Table 1.3) [219, 221]. The conductivity of electrolytes with the perfluoroalkylsul-
fonate anions is not correlated with the mass of the anions (Table 1.3). All of the 
electrolytes with these salts, however, have a conductivity which is significantly 
lower than for the comparable electrolyte with LiPF6 (Tables 1.1 and 1.3, Fig. 1.14). 
The crystal structure for LiSO3CF3 is known for both low- and high-temperature 
phases [245–247]. The conductivity of amorphous PEO-based polymer electrolytes 
with the perfluoroalkylsulfonate salts follows the order [220]:

 LiSO C F LiSO CF LiSO C F LiSO C F3 10 3 8 3 421 3 3 17 9< < < < LiTFSI  

This ordering is likely due to a reduction in the partial negative charge on the 
anion oxygen atoms upon increasing chain length from –CF3 to –C4F9 (which 
reduces the ionic association tendency of the anions). An additional increase in the 
chain length (i.e., –C8F17 and –C10F21), however, does not then significantly decrease 
the ionic association interactions further and the more bulky anions decrease the 
anion mobility (and perhaps the Li+ cation mobility due to the correlated interac-
tions of the cations with the anions), thus lowering the conductivity (relative to 
LiSO3C4F9).

Note that lithium salts with nonfluorinated alkylsulfonate (e.g., LiSO3CH3) or 
benzenesulfonate (e.g., LiSO3(C6H5)) anions have a very low solubility in aprotic 
solvents and a correspondingly low conductivity (Table 1.3) [219]. Lithium salts with 
oligoethersulfate anions (Fig. 1.19c) are soluble in EC:DMC mixtures, but these 

Fig. 1.20 Anion structures: (a) CO2CF3
−, (b) SO3C4F9

−, (c) SO3C8F17
−, (d) SO3(C6F5)−, (e) 

SO3C3F6SO3
2−, (f) PO3C2F5

2−, (g) PO3F2−, and (h) PO2F2
− (C—gray, O—red, F—light green, 

P—orange, S—yellow)
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have a much lower conductivity (<10−3 S cm−1 at 30 °C) than comparable electrolytes 
with LiPF6 [223, 224]. The lithium salt with fluorinated benzenesulfonate anions 
(i.e., LiSO3(C6F5)) (Figs. 1.19d and 1.20d) is somewhat more soluble in aprotic 
solvents, but the conductivity of such electrolytes is relatively low (lower than for 
electrolytes with LiSO3CF3) (Table 1.3) [219, 248].

Monofluorophosphoric acid (i.e., H2PO3F) (Figs. 1.19g and 1.20g) and difluoro-
phosphoric acid (i.e., HPO2F2) (Figs. 1.19h and 1.20h) were first reported in 1929 and 
1927, respectively [227–229, 235]. Lithium salts with these anions have been prepared 
[230, 231, 233, 234]. The related HPHO2F acid and corresponding LiPHO2F salt, 
however, were much more challenging to prepare [249]. Trifluoromethanephosphonic 
acid (i.e., H2PO3CF3) (Fig. 1.19g) and bis(trifluoromethane)phosphonic acid 
(i.e., HPO2(CF3)2) (Fig. 1.19h) were synthesized in 1954–1955 [250, 251]. The 
relative acidity of these anions was reported to follow the order [251]:

 
HNO ,HCO CF ,HCO C F H AsO CF HAsO CF2 2 3 2 33 3 7 3 2 3 2

< < ( )  

 
H H2 3 2 4 2 2

PO CF ,HCl SO HBr HPO CF HClO3 3 4< < < ( ) <
 

Table 1.3 Conductivity of electrolytes with various lithium salts at 25 °C and 0.1 M 
salt in PC:DME (1:2 v:v) [219, 221]

Lithium salt (anion) Conductivity (mS cm−1) Molecular weight

PF6
− 4.4 152

CO2CF3
− 0.4 120

SO3CH3
− a 102

SO3CF3
− 2.3 156

SO3C4F9
− 2.3 306

SO3(C6H5)− 0.1–0.2b 164
SO3(C6F5)− 1.1 254
SO3C8F17

− 1.9 506
N(COCF3)2

− 0.8 215
N(SO2CF3)2

− 4.0 287
N(SO2C2F5)2

− 3.8 387
N(SO2C4F9)(SO2CF3)− 3.5 437
N(SO2CF3)(C6F4SO2F)− 3.0 347
N(SO2CF3)(SO2C8F17)− 3.2 637
N(SO2OCH2CF3)2

− 3.0 347
N(SO2OCH2CF2CF3)2

− 3.0 447
N(SO2OCH2CF2CF2H)2

− 2.9 411
N(SO2OCH(CF3)2)2

− 3.1 483
C(SO2CF3)3

− 3.6 418
C(SO2OCH2CF3)3

− 2.9 508
B(C6H3-3,5-(CF3)2)4

− 2.7 870
PO2(C2F5)2

− 0.6 308
aPractically insoluble
bca. 0.02 M
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The lithium trifluoromethanephosphate salt (i.e., Li2PO3CF3) (Fig. 1.19g) has 
also been synthesized [252]. This salt was reportedly soluble, forming a 1 M elec-
trolyte with a PC:DME mixture which was utilized for battery cycling [252]. 
Perfluorodiphenylphosphinic acid (i.e., HPO2(C6F5)2) and the crystal structure of 
the corresponding potassium salt have also been reported [253].

1.7  Advanced Salts—Imides, Methides, and Phosphorylimides

The bis(fluorocarbonyl)imide acid (i.e., H[N(COF)2]) (Fig. 1.21a) was first reported 
in 1973 [291], but anions with the X–CO–N–CO–X (X = C or F) backbone have not 
received much attention for battery electrolytes. In contrast, a diverse range of lith-
ium salts with imide (sometimes called amide) anions with the X–SO2–N–SO2–X 
(X = C or F) backbone have been prepared. This difference in focus is due to the 
difference, for example, in the acidifying capability of the –COCF3 and –SO2CF3 
groups (Fig. 1.2)—experimental gas-phase acidity values (ΔGacid in kcal mol−1) are 
HN(COCF3)2 (307.5) and HN(SO2CF3)2 (291.8) (ref: H2SO4 (302.2)) (Fig. 1.2) 
[20, 26]. The X–SO2–N–SO2–X backbone is able to adopt two low-energy confor-
mations (Fig. 1.3f) [114–117]. This flexibility, combined with the extensive charge 
delocalization due to resonance and the electron-withdrawing fluorine atoms [20, 26], 
tends to make these lithium salts highly soluble. In addition, solvent–salt mixtures 
with such salts often form crystalline solvates with a low Tm (in contrast with LiPF6) 
or crystallinity gaps (concentration ranges in which it is difficult or impossible to 
crystallize some or all of the electrolyte) (Fig. 1.4).

Lithium bis(methanesulfonyl)imide (or dimesylamide) (i.e., LiN(SO2CH3)2) 
(Figs. 1.21b and 1.22a) [258, 292–295] and lithium bis(butanesulfonyl)imide 
(i.e., LiN(SO2C4H9)2) [258] have been reported. In sharp contrast to the lithium salts 
with tetraalkylborate anions which are highly soluble in aprotic solvents, lithium 
salts with nonfluorinated bis(alkanesulfonyl)imide anions have poor solubility in 
 cyclic/acyclic carbonate and ether solvents [258]. This is likely due to the poor Li+ 
cation-coordinating ability of the tetraalkylborate anions—thus favoring solvent 
coordination to the Li+ cations, whereas the nonfluorinated bis(alkanesulfonyl)imide 
anions instead readily coordinate the Li+ cations with the anion oxygen atoms and 
the lack of electron-withdrawing fluorine atoms results in high electron density on 
the oxygen atoms (i.e., strong ionic association tendency)—thus restricting the sol-
vent coordination to the Li+ cations. LiN(SO2CH3)2 is insoluble in an EC:DMC 
mixture and has poor solubility in DMSO (<0.1 M), while LiN(SO2C4H9)2 has 
low solubility in EC:DMC (<0.1 M) and fair solubility in DMSO (~0.3 M) [258]. 
The conductivity at 25 °C of DMSO electrolytes with these salts (3.2 mS cm−1) was 
considerably lower than for a 0.5 M LiPF6 electrolyte with DMSO (9.8 mS cm−1). 
In addition, ionic liquid salts with the N(SO2CH3)2

− anion have a higher viscosity, 
lower conductivity, lower thermal stability, and lower electrochemical stability than 
the corresponding salts with the TFSI− anion [296].
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Fig. 1.21 Examples of imide anions: (a) N(COCnF2n+1)2
− [254–257], (b) N(SO2CnH2n+1)2

− [258], 
(c) N(SO2CnF2n+1)2

− [259–270], (d) N(COCnF2n+1)(SO2CnF2n+1)− [256, 257, 271–273], (e) 
N(SO2(C6H5))(SO2CF3)− [274–276], (f) N(SO2(C6F5))2

− [277], (g) N(SO2C2F4SO2)− [278, 279], (h) 
N(SO2C3F6SO2)− [269, 278, 279], (i) N(SO2C4F8SO2)− [278, 279], (j) CO(NSO2F)2

2− [280], (k) SO2 
(NSO2CnF2n+1)2

2− [281–283], (l) (CF2)n(SO2NSO2CF3)2
2− [284, 285], (m) N(SO2C2F4O(C2H4O)

CH3)2
− [277], (n) N(SO2C4H8SO3)2

3− [286], (o) N(SO2CH2CO2)2
3− [286], (p) N(SO2CH2CO(C6H4)

SO3)2
3− [286], (q) (C6H4)(SO2NSO2CF3)2

2− [287], (r) O((C6H5)SO2NSO2CF3)2
2− [287], (s) (C6H2)

(OC2H2O)(SO2NSO2CF3)2
2− [287], (t) N(SO2NSOF2)2

− [288], (u) N(CONSNSO2)− [289], and (v) 
N(SO2NSNSO2)− [290]
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The =NSO2CF3 group has a very strong acidifying effect when replacing an =O 
[26]. The (trifluorosulfonyl)(sulfonate)imide anion [297] can be viewed as the SO4

2− 
anion with a =NSO2CF3 group replacing an =O:

 

Fig. 1.22 Anion structures: (a) N(SO2CH3)2
− (trans conformation), (b) N(SO2(C6H5))2

− (trans 
conformation), (c) N(SO2(C6H5))2

− (cis conformation), (d) N(SO2F)2
− (FSI−), (e) N(SO2C2F5)2

− 
(BETI−) (trans conformation), (f) N(SO2C4F9)2

− (cis conformation), (g) N(SO2C4F9)2
− (trans con-

formation), (h) N(SO2C2F4SO2)−, (i) SO2(NSO2CF3)2
2−, ( j) C(SO2CF3)3

− (TriTFSM−), (k) 
C(SO2CF3)2(C6F5)−, (l) CH(SO2CF3)2

− (TFSM−) (trans conformation), and (m) CH(SO2CF3)2
− 

(TFSM−) (cis conformation) (C—gray, N—blue, O—red, F—light green, S—yellow)
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Similarly, the TFSI− anion can be viewed as the SO3CF3
− anion with a =NSO2CF3 

group replacing an =O:

 

Additional =NSO2CF3 groups give [298, 299]

 

Fluorination of the imide anions results in lithium salts with exceptionally high 
solubility in common aprotic solvents. Bis(trifluoromethanesulfonyl)imide acid or 
HTFSI (i.e., HN(SO2CF3)2) (Figs. 1.3f and 1.21c) was first reported in 1982 by 
Foropoulos and DesMarteau [300, 301], while the longer chain anions—
N(SO2RF)2

−—were reported a decade earlier by Meussdorffer and Niederprum [302]. 
In 1990, Armand patented the synthesis of LiTFSI and related fluorinated sulfonyl 
imide salts [303]. LiTFSI is now the most widely studied salt for this class of anions, 
but lithium bis(perfluoroethanesulfonyl)imide (LiBETI) (i.e., LiN(SO2C2F5)2) 
(Figs. 1.21c and 1.22e) has also been widely examined [49, 69, 207, 262, 304–310] 
with more than 200 publications reported for this latter salt. Electrolytes with LiBETI 
have a lower conductivity than those with LiPF6 or LiTFSI (Table 1.4), but this salt, 
like LiTFSI, has an exceptionally high thermal stability and does not undergo hydro-
lysis due to the high stability of the C–F bonds. In addition, unlike LiTFSI, electro-
lytes with aprotic solvents and LiBETI are reported to not strongly corrode Al at high 
potential [66, 68, 311–313]. Numerous other perfluoroalkanesulfonyl imide anions 
have also been prepared [259, 314], including cyclic anions such as lithium cyclic-
1,3-perfluoroethanedisulfonylimide (i.e., LiN(SO2C2F4SO2)) (Figs. 1.21g and 1.22h) 
and lithium cyclic-1,3- perfluoropropanedisulfonylimide (i.e., LiN(SO2C3F6SO2)) 

W.A. Henderson



33

(Fig. 1.21h)—PC:DME electrolytes with the latter have the highest conductivity of 
the imide salts noted in Table 1.4 [314]. The properties of most of these salts have not 
been extensively explored by the battery research community.

Anions with fluorosulfonyl groups (–SO2F) have garnered tremendous interest 
in recent years. Chief among these is lithium bis(fluorosulfonyl)imide (LiFSI) (i.e., 
LiN(SO2F)2) (Figs. 1.21c and 1.22d) [156, 260, 263, 315–333]. Bis(fluorosulfonyl)-
imide acid or HFSI (i.e., HN(SO2F)2) was first reported in 1962 [334], and, even 
though the synthesis of LiFSI was reported in 1995 [335], the limited availability 
and high cost of this salt have restricted its use in research studies until quite 
recently. Electrolytes with LiFSI typically have a conductivity equivalent to compa-
rable electrolytes with LiPF6 (making this one of the most conductive salts known) 
[156]. The thermal and hydrolytic stability of the FSI− anion is lower than for the 
TFSI− anion due to the lower stability of the S–F bond (relative to a C–F bond), but 
the LiFSI salt has improved thermal/hydrolysis stability relative to LiPF6 [156]. 
It was reported that use of the LiFSI salt in electrolytes results in severe Al corrosion 
at high potential [320], but it has recently been shown that this is likely due to chlo-
ride impurities in the salt rather than the LiFSI salt itself [156]. An additional favor-
able property (relative to LiPF6) is the wide liquidus range of electrolytes with 
LiFSI. As for LiTFSI-based electrolytes, LiFSI-based electrolytes tend to form sol-
vates with a low Tm or crystallinity gaps for specific electrolyte compositions.

Lithium salts with asymmetric anions may also be of interest as these tend to be 
more soluble and form solvates with a lower Tm than for salts with symmetric 
anions. Examples include lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide 
(LiFTI or LiFTA) (i.e., LiN(SO2F)(SO2CF3)) (Fig. 1.21c) [263–265, 336] and 
lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) (i.e., LiN(SO2F)

Table 1.4 Conductivity of 
electrolytes with various 
lithium salts at 20 °C and 
1 M salt in EC:DMC and 
EC:DEC (1:1 w:w) [259]

Lithium salt (anion) Conductivity (mS cm−1)

In EC:DMC
PF6

− 9.41
SO3CF3

− 2.51
N(SO2CF3)2

− 6.18
N(SO2C2F5)2

− 5.45
N(SO2C4F9)2

− 3.63
N(SO2CF3)(SO2C4F9)− 1.55
N(SO2C2F5)(SO2C4F9)− 3.11
N(SO2C3F6SO2)− 6.86

In EC:DEC
PF6

− 6.09
SO3CF3

− 1.63
N(SO2CF3)2

− 4.24
N(SO2C2F5)2

− 3.95
N(SO2C4F9)2

− 2.34
N(SO2CF3)(SO2C4F9)− 1.10
N(SO2C2F5)(SO2C4F9)− 2.28
N(SO2C3F6SO2)− 4.95
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(SO2C4F9)) (Fig. 1.21c) [264, 265, 337]. The LiFNFSI salt has a high thermal stability 
(>200 °C), forms electrolytes with a high conductivity (comparable to those with 
LiClO4), and does not significantly corrode the Al current collector at high poten-
tial. For battery testing, graphite/LiCoO2 cells with LiFNFSI had a much improved 
cycling performance over cells with LiPF6 when cycled at elevated temperature 
(60 °C). Asymmetric imide anions with carbonyl groups such as TSAC− (i.e., 
N(COCF3)(SO2CF3)−) (Fig. 1.21d) have also been reported [256, 266]. The experi-
mental gas-phase acidity value (ΔGacid in kcal mol−1) for HTSAC (298.2) is some-
what higher than for HTFSI (291.8), but lower than that for HFSI (301.2) [26]. The 
TSAC− anion, however, has been found to have a poor electrochemical stability rela-
tive to other imide anions. The anodic oxidative stability was slightly lower relative 
to anions such as FTI− and TFSI−, but the cathodic reductive stability of the TSAC− 
anion was notably poorer (almost 1 V less stable) [273, 338].

Many other variants of imide anions have been reported (Fig. 1.21). In general, 
these do not have improved properties or other advantages over more widely used 
anions (i.e., TFSI− and BETI−). One possible exception to this may be the bis(trifluoro-
methanesulfonamido) sulfone anion (i.e., LiSO2(NSO2CF3)2) (Figs. 1.21k and 1.22i) 
[281]. If this dilithium salt has a high solubility in aprotic solvents, then it may offer an 
advantage in terms of having a greater Li+/anion mass ratio with less fluorine atoms per 
Li+ cation than for LiPF6 and LiTFSI. The properties of the dilithium salt with this 
anion, however, are not yet available. The related acid H2[CO(NSO2F)2] (Fig. 1.21j) 
and the corresponding alkali metal salts (with Na+ or K+) have been reported [280].

Nonfluorinated lithium tris(alkanesulfonyl)methide salts have been examined for 
their suitability for battery electrolytes (Fig. 1.23a) [258]. The LiC(SO2CH3)3 salt 
has poor solubility in EC:DMC (<0.1 M), but good solubility in DMSO (~0.5 M). 
Increasing the alkyl chain length from methyl to ethyl (i.e., LiC(SO2C2H5)3) 
increases the solubility, EC:DMC (~0.3 M) and DMSO (>4 M), while using asym-
metric alkyl chain lengths (i.e., LiC(SO2CH3)(SO2C2H5)2) further increases the salt 
solubility, EC:DMC (~0.5 M) and DMSO (>4 M). These salts have a considerably 
lower conductivity (4.3 mS cm−1), however, in 0.5 M DMSO electrolytes at 25 °C 
than that for the corresponding LiPF6 electrolyte (9.8 mS cm−1) [258].

Lithium tris(perfluoroalkanesulfonyl)methide salts have also received some 
attention for battery electrolytes, especially the salt with the C(SO2CF3)3

− anion 
(TriTFSM−) (Figs. 1.22j and 1.23b). The experimental gas-phase acidity values 
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Fig. 1.23 Examples of methide anions: (a) C(SO2CnH2n+1)3
− [258, 339], (b) C(SO2CnF2n+1)3

− 
(TriTFSM−) [111, 340–353], and (c) CH(SO2CnF2n+1)2

− (TFSM−) [118, 341, 342, 354–360]
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(ΔGacid in kcal mol−1) are HC(COCF3)3 (300.6) and HC(SO2CF3)3 (289.0) 
(ref: HN(SO2CF3)2 (291.8)) (Fig. 1.2) [20, 26]. Despite the higher acidity of the 
TriTFSM− anion relative to TFSI− and calculations which indicate that the former 
anion will have a weaker Li+ cation affinity (i.e., lower ionic association tendency), 
the conductivity of polyether-based electrolytes with LiTriTFSM is lower than for 
similar electrolytes with LiTFSI [111, 341]. This may perhaps be related to the 
greater size/mass of the TriTFSM− anion. For liquid 1 M electrolytes with EC:DMC 
(50:50 v:v), the conductivity (mS cm−1) at 25 °C is LiAsF6 (11.0), LiTFSI (9.0), 
and LiTriTFSM (7.1) [343]. Despite the recent attention devoted to LiFSI (i.e., 
LiN(SO2F)2), no published work is yet available regarding the properties of electro-
lytes with lithium tris(fluorosulfonyl)methide salt, LiC(SO2F)3 [340, 350], and the 
bis(fluoromethanesulfonyl)methane (i.e., CH(SO2F)2

−) anion has not yet been 
reported. Some limited studies have, however, been reported for the related 
bis(trifluoromethanesulfonyl)methide anion (TFSM−) (i.e., CH(SO2CF3)2

−) 
(Figs. 1.22l, m and 1.23c). The acid, bis(trifluoromethanesulfonyl)methane (i.e., 
HCH(SO2CF3)2), was first prepared by Gramstad and Haszeldine in 1956 [355]. 
Poly(ethylene oxide) (PEO) electrolytes with the lithium salt (LiTFSM) (i.e., 
LiCH(SO2CF3)2) were found in one report to have a lower oxidative and reductive 
electrochemical stability than for similar electrolytes with LiTFSI [341], whereas 
another study indicated that such electrolytes with LiTFSM were stable with a volt-
age stability window of approximately 4.5 V [359]. As for LiTFSI and LiTriTFSM, 
the LiTFSM salt tends to plasticize poly(ethylene oxide) resulting in amorphous 
electrolytes with a relatively high conductivity, although somewhat lower than for 
comparable LiTFSI electrolytes [341, 359].

Lithium perfluoroalkanephosphorylimide salts (Fig. 1.24a) have not yet been 
reported, but such anions have been explored using QC calculations [361] and the 
sodium and potassium salts with the N(PO(C2F5)2)2

− anion (Fig. 1.25) have been 
prepared [365]. The lithium bis(difluorophosphoryl)imide salt (i.e., LiN(POF2)2) 
(Fig. 1.24a), however, has been synthesized [362, 363], as has the acid HN(PSF2)2 
(Fig. 1.24b) [367]. Nonfluorinated alkyl or phenylphosphorylimide salts are also 
known, such as LiN(PS(C6H5)2)2 (Fig. 1.24c) [368–370] and LiN(PO(C6H5)2)
(PS(CH3)2) [371]. No data is yet available, however, regarding the electrolyte char-
acteristics of lithium salts with such anions.
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Fig. 1.24 Examples of phosphorylimide anions: (a) N(PO(CnF2n+1)2)2
− [361–366], (b) 

N(PS(CnF2n+1)2)2
− [367], and (c) N(PS(C6H5)2)2

− [368–370]
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1.8  Advanced Salts—Organoborates, -Phosphates,  
and -Aluminates

In 1995, Barthel and Gores reported a new class of inexpensive and chemically, elec-
trochemically, and thermally stable salts based upon boron chelate complex anions 
with aromatic or aliphatic diols or carboxylic acids. The first such salt reported was 
lithium bis(1,2-benzenediolato(2-)-O,O′)borate (LiBBB) (Fig. 1.26a) [372]. The acid 
with this anion was originally reported in 1949 by Schafer [388]. The LiBBB salt has 
a high solubility in aprotic solvents (>1 M), but the oxidative stability is relatively 
low. A number of other nonfluorinated lithium salts with benzenediol nonfluorinated 

Fig. 1.25 Anion structure: 
N(PO(C2F5)2)2

− (C—gray, 
N—blue, O—red, F—light 
green, P—orange)
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Fig. 1.26 Examples of chelated organoborate anions: (a) B(O(C6H4)O)2
− (BBB−) [169, 372–378], 

(b) B(O(C6H3F)O)2
− (FLBBB−) [373, 379, 380], (c) B(O(C6F4)O)2

− (4FLBBB−) [373, 381], (d) 
B(O(C10H6)O)2

− (BNB−) [56, 169, 373–375, 378], (e) B(O(C6H4)CO2)2
− (BSB−) [56, 373, 375, 

382–385], (f) B(O(C6H4)(C6H4)O)2
− (BBPB−) [56, 169, 373, 375], (g) B(O(C6H3F)SO2)2

− (FSB−) 
[386], and (h) B(O(C5NH3)O)2

− (BPB−) [387]
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chelates were subsequently prepared: bis(2,3- naphthalenediolato(2-)-O,O′)borate 
(LiBNB) (Figs. 1.26d and 1.27e), bis(salicylato(2-))borate (LiBSB) (Fig. 1.26e and 
1.27g), and bis(2,2′-biphenyldiolato(2-)-O,O′)borate (LiBBPB) (Figs. 1.26f and 
1.27h) [373]. The conductivity of electrolytes with these salts was found to increase 
in the order LiBBPB < LiBSB < LiBNB ~ LiBBB (Table 1.5) [169, 374, 375]. All of 
these electrolytes have a significantly lower conductivity than comparable electro-
lytes with LiPF6, LiTFSI, and LiBETI (Table 1.5) [375]. The LiBSB-based elec-
trolyte was found to have a relatively high Li cycling efficiency, however, in contrast 
to the other salts [375]. A number of crystalline solvates have been reported for the 

Fig. 1.27 Anion structures: (a) B(CO2CO2)2
− (BOB−), (b) BF2(CO2CO2)2

− (DFOB−), (c) 
B(OCH3)4

−, (d) B(CO2CH(CH3)O)2
−, (e) B(O(C10H6)O)2

− (BNB−), (f) B(OC(CH3)2C(CH3)2O)2
−, 

(g) B(O(C6H4)CO2)2
− (BSB−), (h) B(O(C6H4)(C6H4)O)2

− (BBPB−), (i) B(O(C6H2F2)(C6H2F2)O)2
−, 

(j) B(CO2CH2CO2)2
−(BMB−), and (k) B(CO2CH3)4

− (B—tan, C—gray, O—red, F—light green)
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LiBBB and LiBSB salts: (H2O)2(THF)1:LiBBB, (H2O)1(AN)1:LiBBB, (AN)2:LiBSB, 
and (THF)2:LiBSB [389]. For the former solvate, the Li+ cations are coordinated to 
the diol oxygen atoms, but for the latter solvate these oxygens do not participate in 
the cation coordination. Instead, the carbonyl oxygens are coordinated to the Li+ 
cations.

The preparation of fluorinated chelated organoborate salts (i.e., LiB(C6H4−xFxO2) 
demonstrated that with increasing fluorination (x = 0, 1, or 4) (Fig. 1.26a, b, c) both 
the conductivity and oxidative stability increased [379, 381]. The oxidative stability 
limit (vs. Li/Li+) was found to vary considerably for these salts: 3.6 V for BBB−, 
3.8 V for FLBBB−/BNB−, 4.1 V for 4FLBBB−/BBPB−, and 4.5 V for BSB− [373]. 
It was suggested that these anions anodically degrade on the cathode surface to form 
thin, electrically insulated, but Li+ cation-conducting polymeric films which passify the 
electrode surface from further degradation of the salts or the solvents. A similar high 
salt solubility and oxidative stability limit was noted for the lithium bis(5-fluoro- 2-
olato-benzenesulfonato(2-)-O,O′)borate salt (LiFSB) (Fig. 1.26g) which has a sta-
bility limit of 4.6 V vs. Li/Li+ [386]. The current density decreased upon repeated 
cycling on a Pt electrode due to electrode passivation. The salt also passivated an 
Al electrode at high potential. The introduction of a nitrogen to the benzenediol 
chelate—lithium bis(2,3-pyridinediolato(2-)-O,O′)borate (LiBPB) (Fig. 1.26h), 
however, resulted in a salt with low solubility in DMC and DEC (in contrast to the 
other salts prepared), but the solubility was higher in EC or PC [387]. The conduc-
tivity of electrolytes with LiBPB was lower than for the other borate salts, but the 
salt did passivate Pt and Al electrodes, as for the other salts studied [387].

The first organoborate salt to attract significant interest from the broader battery 
research community was lithium bis(oxalato)borate (LiBOB) (i.e., LiB(CO2CO2)2) 
(Figs. 1.27a and 1.28a) [48, 79, 376, 380, 385, 390–484]. The first publication with 

Table 1.5 Conductivity of 
electrolytes with various 
lithium salts at 25 °C and 
0.3 M salt in PC:DME and 
PC:2-MeTHF (1:1 
equimolar) [375]

Lithium salt (anion) Conductivity (mS cm−1)

In PC:DME
PF6

− 9.23
N(SO2CF3)2

− 8.05
N(SO2C2F5)2

− 7.55
BBB− 4.21
BNB− 4.25
BSB− 2.45
BBPB− 1.09

in PC:2-MeTHF
PF6

− 6.57
N(SO2CF3)2

− 5.97
N(SO2C2F5)2

− 5.48
BBB− 3.07
BNB− 2.97
BSB− 1.28
BBPB− 0.92
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LiBOB was from Xu and Angell in 2001 [393], but a German patent application was 
filed for this salt by Metallgesellschaft AG in 1999 [548]. The acid and tetraalkyl-
ammonium salts with BOB− (called borodicatecholate) and related anions had been 
reported in 1994 by Ue [549], as well as earlier by others [550]. LiBOB electrolytes 
have a conductivity which is comparable to or lower than that for electrolytes with 
LiBF4 [79, 414], moderate stability to hydrolysis, high electrochemical stability 
(>4.5 V vs. Li/Li+), and high thermal stability [393, 394, 414, 448]. The salt has a 
relatively low solubility in acyclic carbonate solvents (i.e., the solubility limit is 0.8 M 
in EC:DMC 3:7) but is more soluble (>1 M) in nitrile, ester, and cyclic carbonate 
solvents [447]. The salt has been used as both a primary salt (replacement for LiPF6) 
and an additive (addition of small amounts to LiPF6 electrolytes). Notably, the 
electrode surface layers formed by this salt on both the anode and cathode enable 
cells with LiBOB to have excellent capacity retention when cycled at elevated 
temperature (≥60 °C) and when cycling cathodes up to 5 V (vs. Li+/Li).

Lithium difluoro(oxalato)borate (LiDFOB) (also called lithium oxalyldifluorob-
orate (LiODFB)) (i.e., LiBF2(CO2CO2)) (Figs. 1.27b and 1.28g), like LiBOB, has 
also received a great deal of attention from the lithium battery research community. 
This salt was first reported in Central Glass Company patents filed in 2000 [390–392] 
and then later in a US Army Research Laboratory (ARL) publication in 2006 [491]. 
Many studies have now demonstrated that LiDFOB is quite useful both as a primary 
salt (replacement for LiPF6) and as an additive to LiPF6 electrolytes [491–535]. 
LiDFOB has a higher solubility than LiBOB in linear carbonate solvents, but it is 
still lower than for other salts such as LiBF4, LiTFSI, and LiPF6. Electrolytes with 
the LiDFOB salt are better than those with LiBOB at passivating the Al current col-
lector and also tend to have a higher conductivity (i.e., the conductivity of a 1 M 
LiDFOB electrolyte in EC:DMC (1:1 v:v) at 25 °C is 8.6 mS cm−1 [506], which is 
somewhat lower than the conductivity of comparable electrolytes with LiPF6 or 
LiClO4 (Table 1.1)). As for LiBOB, enhanced battery performance is noted upon 
addition of LiDFOB to electrolytes including the cyclability/stabilization of 
electrode materials (such as LiFePO4 and Li4Ti5O12) at elevated temperature (60 °C) 
and of high-voltage cathode materials when cycled to 5 V due to favorable surface 
layers formed on the anode and cathode [40].

In addition to LiBOB and LiDFOB, a wide variety of additional organoborate 
anions have been synthesized (Figs. 1.28 and 1.29). Only limited information is 
available about the properties of the corresponding lithium salts. The 
LiB(CO2C(CF3)2O)2 salt (Fig. 1.29a), however, reportedly does not undergo hydro-
lysis and is thermally stable at 100 °C for 1 month, and electrolytes with this salt do 
not corrode Al at high potential [545]. The conductivity of electrolytes with 1 M salt 
in EC:DMC 1:1 at 25 °C is 7.0, 8.3, 6.3, and 1.9 mS cm−1, respectively, for the 
LiB(CO2C(CF3)2O)2, LiBF2(CO2C(CF3)2O), LiB(CO2CH(CF3)O)2, and LiB 
(CO2CH2C(CF3)2O)2 salts (Fig. 1.29a–d) [545]. Note that the concentration for the 
latter salt is only 0.8 M (instead of 1 M) due to its limited solubility in EC:DMC. For 
the fluorinated salts in Fig. 1.29h–p, the maximum conductivity (mS cm−1) (differ-
ing concentrations) for DME-based electrolytes at 25 °C is 5.88 (Fig. 1.29h), 5.39 
(Fig. 1.29i), 6.57 (Fig. 1.29j), 6.89 (Fig. 1.29k), 6.39 (Fig. 1.29l), 7.89 (Fig. 1.29m), 
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Fig. 1.28 Examples of chelated organoborate anions: (a) B(CO2CO2)2
− (BOB−) [48, 79, 376, 380, 

385, 390–484], (b) B(O(C6H4)O)(CO2CO2)− (BDOB−) [376, 377, 485, 486], (c) B(CO2CH2O)2
− 

[384, 487], (d) B(CO2CH(CH3)O)2
− [384, 487, 488], (e) B(CO2C(CH3)2O)2

− (BMLB−) [385], 
(f) B(OC(CH3)2C(CH3)2O)2

− [489, 490], (g) BF2(CO2CO2)− (DFOB−) [390–392, 491–535], 
(h) BF2(O(C6H4)O)− (DFBDB−) [485, 536, 537], (i) BF2(O(C6H3F)O)− (FLDFBDB−) [485, 537], 
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Fig. 1.28 (continued) (j) B(O(C6H3F)O)(CO2CO2)− (FLBDOB−) [377, 380, 485, 486, 536], (k) 
BF2(O(C6F4)O)− (4FLDFBDB−) [486, 537], (l) B(O(C6H4)O)(C5O5)− (BDCB−) [538], (m) 
B(CO2CO2)(C5O5)− (OCB−) [538], (n) B(C5O5)2

− (BCB−) [382, 383, 538], (o) B(O(C6H4)CO2)
(C5O5)− (CSB−) [382, 383], (p) BF2(CO2CH2CO2)− [539], (q) BF2(CO2C(CH3)2CO2)− [539], (r) 
B(CO2CO2)(CO2CH2CO2)− (MOB−) [540], (s) B(CO2CH2CO2)2

− (BMB−) [385, 484, 540, 541], (t) 
B(CO2C(CH3)2CO2)2

− [539], (u) B(CO2CHFCO2)2
− [540, 542], (v) B(CO2CF2CO2)2

− [392, 543], 
(w) BF2(CO2CH2CO2)− [392, 543], (x) BF2(CO2CF2CO2)− [392, 543], (y) BF2(CO2C2F4CO2)− [392, 
543], (z) B(CO2CO2)(CO2CF3)2

− [544], (aa) B(CO2C(CF3)2O)(CO2CF3)2
− [392], (bb) B(CO2CO2)

(OCH(CF3)2)2
− [392], (cc) B(CO2C(CF3)2O)(OCH(CF3)2)2

− [392, 543, 545, 546], and (dd) B(OC(
CF3)2C(CF3)2O)2

− (BPFPB−) [484, 541, 547]

7.55 (Fig. 1.29n), 7.79 (Fig. 1.29o), and 8.39 (Fig. 1.29p) [551, 552]. The conductivity 
of the electrolytes thus increases with increasing fluorination of the anions and is 
dependent upon the positioning of the fluorine atoms (with the para position less 
favorable for increasing the conductivity). Increased fluorination of the anions also 
increased the oxidative stability of DME- or EC:DMC-based electrolytes with  
the salts [551, 552]. With regard to Al passivation at high potential for these electro-
lytes (as well as those with EC:DMC), only the electrolytes with Fig. 1.29h, j, and 
n anions passivated the Al electrode—the electrolytes with the other six anions did 
not [551, 552]. Seemingly, the anions with fluorine atoms in the ortho or the para 
position on the benzene ring do not decompose to leave a passivating film on the  
Al surface.

The lithium bis(perfluoropinacolato)borate (LiBPFPB) salt (Fig. 1.28dd) is also 
reported to have a high oxidative stability [547]. No information is available about 
the Al corrosion behavior of electrolytes with this salt, but a 0.6 M LiBPFPB elec-
trolyte with DME at 25 °C has a conductivity of 11.1 mS cm−1 [547]. The conductiv-
ity of a 1 M electrolyte with the salt in PC at 25 °C, however, is 2.1 mS cm−1 
[547]—for comparison, the conductivity for a 1 M LiAsF6 electrolyte with PC at 
20 °C is 5.28 mS cm−1 [5].

A number of lithium salts with tetrakis(haloacyloxy)borate anions (i.e., 
LiB(CO2R)4) have also been synthesized (Fig. 1.30a–d) [553, 554]. These are 
 fluorinated and/or chlorinated versions of the tetra(acetato)borate anion (i.e., 
B(CO2CH3)4

−) (Figs. 1.27k and 1.30e). The acid and cesium salt with the 
B(CO2CF3)4

− anion were first reported in 1971 [561]. The lithium salt (i.e., 
LiB(CO2CF3)4) was subsequently reported in 1972 [562]. Electrolytes with these 
non-chelate salts have a relatively high conductivity (although lower than for LiPF6), 
high oxidative stability, and high cycle efficiency with a graphite electrode. The 
most conductive salt is LiB(CO2CF3)4 (comparable to the conductivity of electro-
lytes with LiTFSI). Lengthening the perfluoralkyl chains from –CF3 to –C2F5 
decreases the conductivity, as does replacing the fluorine atoms with chlorine atoms 
[553]. A lithium salt with the tetrakis(chlorosulfato)borate anion (i.e., B(SO3Cl)4

−) 
has been reported (Fig. 1.30f) [556], as has the acid with the tetrakis-
(trifluoromethanesulfonato)borate anion (i.e., B(SO3CF3)4

−) (Fig. 1.30g) [557]. 
Note that this anion differs from the B(SO2CF3)4

− anion noted in Fig. 1.18d.
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Fig. 1.29 Additional examples of chelated organoborate anions: (a) B(CO2C(CF3)2O)2
− [392, 

545, 546], (b) BF2(CO2C(CF3)2O)− [392, 545, 546], (c) B(CO2CH(CF3)O)2
− [392, 545, 546], (d) 

B(CO2CH2C(CF3)2O)2
− [392, 545, 546], (e) B(CO2(C6H3(CH3))O)2

− (3-MLBSB−) [56], (f) 
B(CO2(C6H2Cl2)O)2

− (DCLBSB−) [56], (g) B(CO2(C6HCl3)O)2
− (TCLBSB−) [56], (h) B(O(C6H4)

C(CF3)2O)2
− [551, 552], (i) B(O(C6H3F)C(CF3)2O)2

− [551, 552], (j) B(O(C6H3F)C(CF3)2O)2
− [551, 

552], (k) B(O(C6H3F)C(CF3)2O)2
− [551, 552], (l) B(O(C6H2F2)C(CF3)2O)2

− [551, 552], (m) 
B(O(C6H2F2)C(CF3)2O)2

− [551, 552], (n) B(O(C6H2F2)C(CF3)2O)2
− [551, 552], (o) B(O(C6HF3)

C(CF3)2O)2
− [551, 552], and (p) B(O(C6HF3)C(CF3)2O)2

− [551, 552]

The reaction of trialkoxyborates with butyllithium produces salts which are 
 liquid (for n ≥ 2) at ambient temperature without solvents (i.e., ionic liquids) 
(Fig. 1.30h) [558]. The ambient temperature conductivity for the n = 3 salt is 
2 × 10−5 S cm−1, while 1 M electrolytes of the salt in EC:PC have a conductivity 
<10−3 S cm−1.
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The nonfluorinated lithium tris(1,2-benzenediolato(2)-O,O′)phosphate (LiTBP) 
salt (Figs. 1.31a and 1.32a), reported by Sasaki and co-workers, has a relatively low 
thermal (<200 °C) and electrochemical (about 3.7 V (vs. Li/Li+)) stability [378, 564, 
565]. Adding a methyl group—lithium tris(4-methyl-1,2-benzenediolato(2)-O,O′)
phosphate (Li4-MLTBP) (Fig. 1.31b)—improves the thermal stability somewhat, 
but decreases the electrolyte conductivity (relative to LiTBP) [566]. Adding a 
fluorine atom—lithium tris(3-fluoro-1,2-benzenediolato(2)-O,O′)phosphate (Li3- 
FLTBP) (Fig. 1.31c)—improves the electrolyte conductivity and thermal/electro-
chemical stability (relative to LiTBP and Li4-MLTBP) [564, 565]. The conductivity 
of 0.5 M electrolytes with EC:DMC at 25 °C is about 2.62, 2.25, and 3.16 mS cm−1, 
respectively, for LiTBP, Li4-MLTBP, and Li3-FLTBP (as compared to 9.66 mS cm−1 
for LiPF6) [378, 564, 566]. Fully fluorinating the anion—lithium tris(3,4,5,6-
tetrafluoro-1,2-benzenediolato(2)-O,O′)phosphate (Fig. 1.31d)—further increases 
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Fig. 1.30 Examples of nonchelated organoborate anions: (a) B(CO2CF3)4
− [553, 554], (b) 

B(CO2C2F5)4
− [553, 554], (c) B(CO2CF2Cl)4

− [553, 554], (d) B(CO2CCl3)4
− [553, 554], (e) B(CO2CH3)4

− 
[554], (f) B(SO3Cl)4

− [555, 556], (g) B(SO3CF3)4
− [557], (h) B(O(CH2CH2O)nCH3)3(C4H9)− [558], 

(i) B(C6F5)2(O(CH2CH2O)nCH3)2
− [559], (j) B(CO2CF3)2(O(CH2CH2O)nCH3)2

− [559], and (k) B(C6F5)
(OCH3)3

− [560]
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the electrochemical stability, but the conductivity of a 0.6 mol kg−1 EC:DEC (2:1) 
electrolyte at 25 °C is relatively low (2.1 mS cm−1) [567]. The high mass, high fluo-
rination (12 F/Li+), and lack of improved properties (relative to LiPF6) have limited 
interest in this salt.

The nonfluorinated lithium tri(oxalato)phosphate (LiTOP) (i.e., LiP(CO2CO2)3) 
salt (Figs. 1.31h and 1.32b) has a high solubility and high (oxidative) electrochemi-
cal stability [569]. The related lithium tetrafluoro(oxalato)phosphate salt (LiFOP) 
(i.e., LiPF4(CO2CO2)) (Fig. 1.31j) was first formed in electrolytes with mixtures 
of LiPF6 and LiBOB [576]. The properties of this salt have been extensively char-
acterized in battery electrolytes [570–576]. In many respects, LiFOP has similar 
properties to LiPF6. Both salts have a similar thermal stability and result in electro-
lytes with a high conductivity [574, 575], but a carbonate solvent-based electrolyte 
(i.e., 1 M in EC:DEC:DMC 1:1:1) with LiFOP may be stored at 85 °C for weeks 
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Fig. 1.31 Examples of chelated organophosphate anions: (a) P(O(C6H4)O)3
− (TBP−) [378, 563–

567], (b) P(O(C6H3(CH3))O)3
− (4-MLTBP−) [564, 566], (c) P(O(C6H3F)O)3

− (3-FLTBP−) [564, 567], 
(d) P(O(C6F4)O)3

− [567], (e) P(CO2CH2O)3
− [568], (f) PF2(CO2CH2O)2

− [568], (g) PF4(CO2CH2O)− 
[568], (h) P(CO2CO2)3

− (TOP−) [568, 569], (i) PF2(CO2CO2)2
− [568], (j) PF4(CO2CO2)− (FOP−) 

[392, 543, 568, 570–576], (k) PF2(OC(CF3)2C(CF3)2O)2
− [577], (l) PF4(OC(CF3)2C(CF3)2O)− [577], 

(m) PF4(CO2C(CF3)2O)2
− [545, 546], (n) P(O(C6H4)(C6H4)O)3

− (TBPP−) [578], and (o) P(CO2(C6H4)
O)3

− (TSP−) [579]
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with no evident degradation, whereas extensive salt degradation occurs for a similar 
electrolyte with LiPF6 [574]. As for the LiBOB and LiDFOB salts, the addition of 
small amounts of LiFOP is found to improve the capacity retention of MCMB/
NMC cells, as well as the stability of the lithiated negative electrode [573]. This is 
attributed to the oxalate group reacting to form surface layers on both the cathode 
and carbon anode [574]. The first cycle irreversible capacity losses due to SEI for-
mation on the anode, however, are strongly dependent upon the type of carbon used 
for the anode [571, 572].

Other organophosphate anions have also been reported, such as those with 
perfluoropinacol (Fig. 1.31k, l), biphenylene (i.e., tris(2,2′-biphenylylene)phos-
phate (TBPP−)) (Fig. 1.31n), and salicylate (i.e., tris(salicylato(2-))phosphate 
(TSP−)) (Fig. 1.31o). No information is available about the use of these anions as 
lithium salts for battery electrolytes.

Fluorinated organoaluminate anions have also been examined for battery electro-
lytes (Figs. 1.33 and 1.34) [552, 580]. For smaller bidentate ligands (e.g., oxalate), 
the AlIII is typically coordinated by three ligands in solid-state salts, instead of two, due 
to its larger size relative to boron (Fig. 1.34a) [581]. This results in a six- coordinate 
Al(CO2CO2)3

3− trianion instead of a four-coordinate Al(CO2CO2)2
− anion, although 

there is spectroscopic evidence for the latter in aqueous solutions as the additional 

Fig. 1.32 Anion structures: (a) P(O(C6H4)O)3
−, (b) P(CO2CO2)3

− (TOP−), (c) P(CO2(C6H4))3
− 

(not TSP−), and (d) P((C6H4)(C6H4))3
− (not TBPP−) (C—gray, O—red, P—orange)
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Fig. 1.33 Examples of organoaluminate anions: (a) Al(OC(CF3)3)4
− (Al(PFTB)4

−) [552, 580], (b) 
Al(OCH(CF3)2)4

− (Al(HFIP)4
−) [552, 580], (c) Al(OCH2(CF3))4

− (Al(TFE)4
−) [552, 580], (d) 

Al(OC(CH3)(CF3)2)4
− (Al(HFTB)4

−) [552, 580], (e) Al(OC(C6H5)(CF3)2)4
− (Al(HFPP)4

−) [552, 
580], and (f) AlF(OC(C6H5)(CF3)2)3

− (AlF(HFPP)3
−) [552, 580]

Fig. 1.34 Anion structures: (a) Al(CO2CO2)3
3−, (b) Al(OC(CF3)3)4

− (Al(PFTB)4
−), (c) Al(OCH(CF3)2)4

− 
(Al(HFIP)4

−), (d) Al(OC(CH3)(CF3)2)4
− (Al(HFTB)4

−), and (e) Al(OC(C6H5)(CF3)2)4
− (Al(HFPP)4

−) 
(C—gray, O—red, F—light green, Al—tan)
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coordination sites are occupied by water molecules (i.e., Al(CO2CO2)2
−⋅2H2O) 

[582–584]. For more bulky ligands, however, four-coordinate anions are formed. 
The conductivity values (mS cm−1) (0.2 M salt in DME at 25 °C) for the lithium 
salts with the anions shown in Fig. 1.33a–f are reported to be 6.4 (Fig. 1.33a), 6.2 
(Fig. 1.33b), 1.6 (Fig. 1.33c), 6.2 (Fig. 1.33d), 3.5 (Fig. 1.33e), and 1.3 (Fig. 1.33f) 
[552, 580]. PC-based electrolytes with the LiAl(HFIP)4 (Figs. 1.33b and 1.34c) and 
LiAl(HFPP)4 (Figs. 1.33e and 1.34e) salts (0.3 M in PC) both passivated an Al elec-
trode at high potential in a similar manner to a LiPF6 electrolyte [552, 580].

1.9  Advanced Salts—Other Anions

HNF2 (Fig. 1.35a) is a gas with a Tb of −24 °C [590, 591]. This gas loses hydrogen 
when contacted with various materials to form tetrafluorohydrazine (N2F4). At low 
temperature (crystalline solid), this acid tends to detonate spontaneously [591]. 
The LiNF2 salt has not been reported, but it is predicted to be a dimeric complex 
[592, 593]. HN(CF3)2 (Fig. 1.35a) is a gas with a Tb of −6 °C [586–588]. The experi-
mental gas-phase acidity value for HN(CF3)2 is 324.3 kcal mol−1, which is signifi-
cantly higher (less acidic) than the corresponding values for HN(COCF3)2 (307.5) 
and HN(SO2CF3)2 (291.8) (Fig. 1.2) [26]. A German patent for Merck has been 
issued for the preparation of N(CF3)2

− salts (Fig. 1.35a), but this does not include the 
lithium salt [589]. Another report indicates that the alkali metal bis(trifluoromethyl)
amides, -phosphides, and -arsenides (i.e., MN(CF3)2, MP(CF3)2, and MAs(CF3)2) all 
have a high nucleophilic reactivity [594]. For the related methides, the experimental 
gas-phase acidity values for HCH(CF3)2 and HC(CF3)3 (Fig. 1.35b) are 343.9 and 
326.6 kcal mol−1, respectively (Fig. 1.2) [26]. The value for the latter is comparable 
to the gas-phase acidity of HCl (328.1 kcal mol−1) [595, 596].
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Fig. 1.35 Examples of fluorinated amide, methide, imine, alkoxide, and sulfur oxyimine anions: 
(a) N(CnF2n+1)2

− [585–594], (b) C(CnF2n+1)3
− [595, 596], (c) OC(CnF2n+1)3

− [597–601], (d) 
OCH(CnF2n+1)2

− [601–603], (e) N=C(CnF2n+1)2
− [604–611], and (f) N=S(O)(CnF2n+1)2

− [612–617]
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Trifluoromethanol (i.e., HOCF3) (Fig. 1.35c) is unstable at room temperature due 
to the elimination of HF [618, 619]:

 HOCF CF HF3 2→ = +O  

MOCF3 salts (M = K, Rb, and Cs) (Fig. 1.35c) have been prepared, however, by 
passing O=CF2 through an acetonitrile solution of the fluoride MF [620, 621]:

 O= +CF MF MOCF2 3  

and the crystal structures determined [597]. No reaction occurred when LiF or NaF 
was used [597], and some decomposition occurred for KF, suggesting that the lith-
ium trifluoromethoxide (or trifluoroorthocarbonate) salt is unstable (i.e., harder cat-
ions are more reactive). Additional salts with perfluoralkyl groups have also been 
prepared [598–600]:

 O= +CFR MF MOCF RF 2 F  

 
O= ( ) + ( )C CF MF MOCF CF3 2 3 2



 

with M = Rb or Cs and RF = –CF3, –C2F5, or –C3F7. It was found that the cesium salts 
were more thermally stable than the corresponding rubidium salts. The LiOCH(CF3)2 
(Figs. 1.35d and 1.36a) and LiOC(CF3)3 (Figs. 1.35d and 1.36b) salts are both 
volatile with the former subliming at 50 °C under vacuum (0.05 mmHg) and the 
latter having a Tb of 218 °C [601].

The difluoromethanimine acid (i.e., HN=CF2) (Fig. 1.35e) has been reported 
[604, 605]. This is a colorless gas which is stable at ambient temperature for hours 
in the gas phase at pressures lower than 5 mm Hg, but which disproportionates at 
higher pressure:

 2 2 2HN CF NCF FCN3= → +H  

The lithium hexafluoroisopropylidenimine salt (i.e., LiN=C(CF3)2) (Figs. 1.35e 
and 1.36c) has been reported [606–611]. The strong electron-withdrawing –CF3 

Fig. 1.36 Anion structures: (a) OCH(CF3)2
−, (b) OC(CF3)3

−, and (c) N=C(CF3)2
− (C—gray, 

N—blue, O—red, F—light green)
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groups make the double bond susceptible to nucleophilic attack. The difluorosulfur 
oxyimine (i.e., HN=S(O)F2) and bis(trifluoromethyl)sulfur oxyimine (i.e., HN=S(O)
(CF3)2) acids (Fig. 1.32f) are also known [612–617], and the lithium 
bis(trifluoromethyl)sulfur oxyimine salt (i.e., LiN=S(O)F2) (Fig. 1.32f) has been 
prepared [615]. No information is available, however, about the properties of this 
latter salt. Note that none of the anions shown in Fig. 1.35 have resonance to stabi-
lize the negative charge, except for the N=S(O)(CnF2n+1)2

− anions.
A family of lithium salts based upon monoanionic species with one or more 

Lewis acid groups (i.e., BF3) complexed to a Lewis base have also been reported 
(Fig. 1.37) [622–626]. The most promising of these for electrolyte applications is 
lithium bis(trifluoroborane)imidazolide (i.e., LiC3N2H3(BF3)2) (Fig. 1.37a). This 
salt has a high solubility—up to 2 M solutions in EC:EMC (1:3 v:v)—and a conduc-
tivity of 5.1 mS cm−1 at 20 °C for a 1 M electrolyte (as compared to equivalent 
LiBF4 and LiPF6 electrolytes with conductivity values of 1.78 and 7.71 mS cm−1, 
respectively) [622]. The salt also has a reasonably high (>4.5 V vs. Li/Li+) oxidative 
stability in DMC. Li/LiNi0.2Co0.8O2 cells with this electrolyte have a comparable 
performance to cells with LiPF6-based electrolytes [622].

The addition of Lewis acids such as B(OCH(CF3)2)3 and B(OC6F5)3—the so- called 
anion receptors—to electrolyte solutions containing highly associated salts, such as 
LiF and LiCO2CF3, has been demonstrated to result in much more conductive 
electrolytes (than the same electrolytes without the anion receptors) [627–636]. 
An earlier series of publications by Brownstein explored in detail the formation, or 
lack of formation, in solution of complex fluoroanions when Lewis acids were 
added to solutions with a wide variety of fluoroanion Lewis bases [637–642]. Two 
of the strongest superacids known—HSO3F-SbF5 (“magic acid”) and HF-SbF5 
(fluoroantimonic acid) [21, 557]—are also examples of complex formation between 
a Lewis base and Lewis acid.
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Fig. 1.37 Examples of Lewis acid–Lewis base complex anions: (a) N2C3H3(BF3)2
− [622–625], (b) 

N2C3H2(CH3)(BF3)2
− [622–625], (c) N2C3H2(CH3)(BF3)2

− [622–625], (d) N2C3H2(CH(CH3)2)
(BF3)2

− [622–625], (e) N2C7H5(BF3)2
− [622–625], (f) N(CH3)2(BF3)2

− [622–625], and (g) 
N2C4H4O2(BF3)− [626]
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The calculated (rather than experimental) gas-phase acidity values for methanides 
with –NO, –NO2, and –CN substituents are as follows (QC-calculated ΔGacid values 
in kcal mol−1) relative to CH4 (407.1): HCH2NO (353.5), HCH(NO)2 (318.5) 
(Fig. 1.38b), HC(NO)3 (303.9) (Fig. 1.38c), HCH2NO2 (348.5), HCH(NO2)2 (311.5) 
(Fig. 1.38e), HC(NO2)3 (298.0) (Fig. 1.38f), HCH2CN (363.9), HCH(CN)2 (322.9), 
and HC(CN)3 (288.8) (Fig. 1.38k) [693]. The addition of a single –NO2 group is 
therefore expected to be more effective at increasing the acidity than a single –CN 
group. But, while double and triple substitution significantly increases the acid 
strength further, the gains are much smaller than for the initial substituent and vary 
for the different functional groups. Thus, trisubstitution with the –CN groups is 
more effective (as determined from the calculations) at increasing the acidity than 
for the –NO and –NO2 groups [693]. Therefore, while resonance effects strongly 
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Fig. 1.38 Examples of nitroso-, nitro-, and cyano-substituted anions: (a) N(NO)2
− [643], (b) 

CH(NO)2
− [644], (c) C(NO)3

−, (d) N(NO2)2
− [645], (e) CH(NO2)2

− [646], (f) C(NO2)3
− [646], (g) 

CH(NO2)(CN)− [646], (h) C(NO)(NO2)(CN)− [646], (i) C(NO2)(CN)2
− [646], (j) N(CN)2

− (DCA−) 
[647, 648], (k) C(CN)3

− (TCM−) [648, 649], (l) B(CN)4
− (TCB−) [648, 650–654], (m) 

C(CN)2=C(CN)C(CN)2
− [655–659], (n) C5(CN)5

− [660–662], (o) C5B(CN)6
− [663], (p) C2N3(CN)2

− 
(DCTA−) [661, 664–668], (q) C3N2(CN)3

− [661, 669–671], (r) C4N(CN)4
− [661, 672–674], (s) C3N

2(CN)2(CnF2n+1)− (TDI−) (n = 1), (PDI−) (n = 2) and HDI− (n = 3) [675–686], (t) C7N2(CN)4(CnF2n+1)− 
[680], (u) C3N2(C2H5)(CF3)2

− [687], (v) C4N(CF3)4
− [688, 689], (w) C5(CF3)5

− [688, 690–692], and 
(x) C5B(CF3)6

− [663]
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influence the acidity of these methanides, the magnitude of the effect differs 
markedly depending upon both the degree of substitution and the identity of the 
functional groups.

Lithium salts with anions having nitroso or nitro functional groups have not been 
used for lithium battery electrolytes, despite the strong electron-withdrawing prop-
erties of these groups. This is due to the energetic characteristics of such anions 
[694–697]. For example, lithium dinitrosomethanide (i.e., LiCH(NO)2) (Fig. 1.38b), 
while stable at room temperature, is reported to be heat/shock sensitive and highly 
explosive, as well as highly toxic [644]. Anions with mixtures of the –NO, –NO2, and 
–CN substituents have also been prepared (Fig. 1.38g–i) [646], but salts with the 
nitrosodicyanomethanide (i.e., C(NO)(CN)2

−), nitrodicyanomethanide (i.e., C(NO2)
(CN)2

−) (Fig. 1.38i), and other related anions are also predicted to be highly ener-
getic and thus favorable for propellant applications [646]. Further, the trinitrogen 
dioxide or dinitrosamide anion (i.e., N(NO)2

−) is unstable [643]. This may also be 
the case for the C(NO)3

− anion as there are no reports for salts with this anion in the 
scientific literature, although salts with the CH(NO)2

− anion are known [447]. 
Lithium salts with the dicyanamide anion (LiDCA) (i.e., LiN(CN)2) (Fig. 1.38j), 
tricyanomethanide (LiTCM) (i.e., LiC(CN)3) (Fig. 1.38k), and tetracyanoborate 
(LiTCB) (i.e., LiB(CN)4) (Fig. 1.38l) have been little utilized for lithium battery 
applications [647–653]. The most likely explanation for this is the limited electro-
chemical stability of these anions to oxidation, relative to other lithium salt anions.

Other cyanocarbon acids are thought to be some of the strongest acids known. 
For example, the QC-calculated gas-phase acidity (ΔGacid in kcal mol−1) of 
1,1,2,3,3-pentacyanopropene (i.e., C(CN)2=C(CN)CH(CN)2) (267.2) (Fig. 1.38m) 
and pentacyano-cyclo-pentadienide (i.e., HC5(CN)5) (250.1) (Figs. 1.38n and 1.39j) 
(as compared to a similarly calculated value for HC(CN)3 (287.6)) are some of the 
lowest values known [21]. Sodium salts with the C(CN)2=C(CN)C(CN)2

− and 
C5(CN)5

− anions have been prepared [655, 656, 698–700].
The lithium salt with the 4,5-dicyano-1,2,3-triazolate anion (DCTA−) (also 

known as 1,2,3-triazole-4,5-dicarbonitrile (TADC−)) (Fig. 1.38p) was first studied 
by Michot in 1995 [701] and reported in two publications in 2003 [664, 665]. Little 
has been reported regarding the properties of the lithium salt. Alkali and alkali earth 
salts with the DCTA− anion have also been prepared [666, 667]. The thermal stabil-
ity of these salts was found to be excellent (>350 °C) [668]. In general, triazole salts 
are known to be energetic. The alkali metal salts, however, were found to have low 
sensitivity towards impact, friction, electrostatic discharge, and fast heating [668]. 
The acid with the related pyrazole-3,4,5-tricarbonitrile anion (PATC−) (Fig. 1.38q) 
was first reported in 1962 [669], but the lithium salt has not been investigated exten-
sively as an electrolyte salt [661, 670, 671]. Similarly, the acid with the tetracyano-
pyrrolide anion (TCP−) (Fig. 1.38r) was also reported in 1962 [672] and the sodium 
salt with this anion has been prepared [674]. Trifluoromethane-substituted versions 
of the C5(CN)5

− and TCP− anions have also been reported (Fig. 1.38v, w) [688–692], 
but the lithium salt has only been reported for LiC5(CF3)5 (Fig. 1.39k) [692].

Lithium salts with the 4,5-dicyano-2-(trifluoromethyl)imidazole (TDI−) 
(Fig. 1.39h) and 4,5-dicyano-2-(pentafluoroethyl)imidazole (PDI−) (Fig. 1.39i) 
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anions (Fig. 1.38s) were reported by Niedzicki in 2009 [677]. The acid with TDI− 
(i.e., HTDI) was first reported by Begland in 1974 [675]. A number of publications 
related to the use of these lithium salts for battery applications have been published 
[675–686], including a salt with the 4,5-dicyano-2-(n-heptafluoropropyl)imidaz-
olide (HDI−) anion (Fig. 1.38s). The LiTDI, LiPDI, and LiHDI salts have been 
found to have a high thermal stability (>250 °C), negligible hydrolysis, high oxida-
tive stability on Pt electrodes (4.8 V vs. Li/Li+), and passivate Al at high potential 
[679, 681]. Half cells with LiMn2O4 electrodes cycled (to 4.3 V vs. Li/Li+) with 
electrolytes (1 M in EC:DMC 50:50 w:w) containing LiTDI or LiPDI have a similar 
capacity and capacity retention to the same electrode cycled with an electrolyte with 
LiPF6 [681]. The rate performance of such cells is only slightly diminished relative 
to the cell with the LiPF6 electrolyte due to the somewhat lower conductivity of the 
LiTDI and LiPDI electrolytes (Table 1.6) [681]. Although PC-based electrolytes 
with these salts have been tested to determine the change in impedance with time 

Table 1.6 Conductivity of 
electrolytes with various 
lithium salts at 20 °C and 
1 M salt in EC:DMC (50:50 
w:w) [681]

Lithium salt (anion) Conductivity (mS cm−1)

PF6
− 10.8

N(SO2CF3)2
− 9.0

PDI− 6.3
TDI− 6.7
DCTA− 2.7

Fig. 1.39 Anion structures: (a) N(NO2)2
−, (b) C(NO2)3

−, (c) N(CN)2
−, (d) C(CN)3

−, (e) B(CN)4
−, 

(f) C(NO2)(CN)2
−, (g) C2N3(CN)2

− (DCTA−), (h) C3N2(CN)2(CF3)− (TDI−), (i) C3N2(CN)2(C2F5)− 
(PDI−), (j) C5(CN)5

−, and (k) C5(CF3)5
− (B—tan, C—gray, N—blue, O—red, F—light green)
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upon storage in contact with Li metal electrodes [682], it is not yet clear if these 
anions are stable when charged to low potential [679] as nitriles are known to have 
poor reductively stability [702]. A computational study has suggested that the 
related 4,5,6,7-tetracyano-2-fluoroalkyl benzimidazole anions (Fig. 1.38t) may also 
have favorable electrolyte properties [680].

A number of other anions have also been reported which do not fit readily into 
the classifications noted above (Figs. 1.40 and 1.41). Little information is available 
about the properties of these anions (Table 1.7). The relative ionic association ten-
dency (which influences electrolyte conductivity) for some of these may be esti-
mated by considering the impact of different substituents on an anion’s acidity 
(Figs. 1.1 and 1.2) and the additional information reported above. For example, the 
experimental gas- phase acidity values (ΔGacid in kcal mol−1) for HC(C6F5)(SO2CF3)2 
(301.3) (Fig. 1.22k) and HC(C6F5)(CN)2 (303.6) are higher than those for 
HN(SO2CF3)2 (291.8), HC(SO2CF3)3 (289.0), and HC(CN)3 (~294) due to the weaker 
electron- withdrawing effect of the –C6F5 group relative to –SO2CF3 and –CN for tri-
substitution (in contrast to monosubstitution) (Figs. 1.1 and 1.2) [26].

Finally, a relatively unique but diverse class of anions for battery electrolytes are 
the carboranes and boranes [711–727]. These anions are often chemically inert and 
superweakly coordinating [728]. Carboranes are composed of clusters of carbon 
and boron atoms, whereas boranes only have boron. These carbon and boron atoms 
are typically bonded to H, F, Cl, Br, and/or I atoms or other groups [718]. A variety of 
classifications are used for carboranes and boranes including closo- for a complete 
polyhedron (e.g., BnXn

2− with X = H, F, Br, Cl, I, and 6 ≤ n ≤ 12) and for polyhedron 
missing one, two, or more vertices: nido- (e.g., B5X9, B6X10), arachno-, etc. The 
basicity of the dodecaborate [B12X12]2− anions increases in the order X = F < Cl < Br < I 
[721]. It is noteworthy that carborane synthesis is time consuming and costly, 
whereas closo-dodecaborates have similar stability, but are easier and cheaper to 
prepare [713]. Lithium closo-borane salts (i.e., Li2B10Cl10 and Li2B12Cl12) dissolved 
in SOCl2 were used in electrolytes for Li/SOCl2 liquid cathode cells in 1979 [729]. 
Johnson and Whittingham then used these salts for electrolytes for the early Exxon 
work with Li/TiS2 cells in 1980 [712–714]. These salts were found to be poorly 
soluble in individual ether solvents, but did have a higher solubility in dioxolane: 
DME mixtures [712]. More recently, Li2B12FnH12−n (n = 9 and 12) salts have been 

Table 1.7 Conductivities and Al repassivation potential of electrolytes with various 
lithium salts at 25 °C and 1 M salt in PC:DME (1:1 v:v) [704]

Lithium salt (anion) Conductivity (mS cm−1) Al potential (V vs. Li/Li+)

PF6
− 15 >5

N(SO2CF3)2
− 12 3.7

N(SO2C2F5)2
−  9.5 4.4

N(SO2CF3)(CN)−  7.2 <4.2
N(SO2C4F9)(CN)−  5.6 >4.2
C(SO2CF3)(CN)2

− 12.5 4.7
C(SO2C4F9)(CN)2

−  8.3 >5
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developed by Air Products (as the Stabilife fluorinated electrolyte salts) with a number 
of intriguing electrolyte properties. A TGA analysis of the Li2B12F12 salt (Li2DFB) 
(Figs. 1.42 and 1.43) indicates that no mass loss occurs up to 450 °C. The salt is also 
inert in 98 % sulfuric and 70 % nitric acid, as well as 3 M KOH (in contrast with the 
B12H12

2− anion which reacts with sulfuric acid) [718]. The conductivity of Li2DFB 
electrolytes is lower than for comparable electrolytes with LiPF6 [717, 718], but the 
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Fig. 1.40 Examples of additional anions: (a) SO2(NCN)2
− [703], (b) N(SO2CnF2n+1)(CN)− [704], 

(c) C(SO2CnF2n+1)(CN)2
− [704–706], (d) C(SO2CnF2n+1)2(CN)− [705, 706], (e) SO2(C(CN)2)2

− [706], 
(f) N(COCnF2n+1)(CnF2n+1)− [254], (g) N(SO2CnF2n+1)(CnF2n+1)− [707], (h) N(SO2CnF2n+1)(C6F5)− 
[708], (i) N(SO2(CN))2

− [361, 709], (j) N(PO(CN)2)2
− [361], (k) C(SO2C2N2S(CF3))(CN)2

− [706], 
(l) N(SO2CnF2n+1)(SO2CN)− [361], (m) N(PO(CnF2n+1)2)(PO(CN)2)− [361], (n) S(OC2H5)
(NSO2CF3)2

− [289], (o) N(C(CF3)NSO2NC(CF3))− [255], (p) Al(N(SO2CF3)2)2(O(CH2CH2O)n 
CH3)2

− [559], and (q) PO(NSO2CF3)3
3− [710]
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electrolyte solvent/salt formulation can be tuned to obtain promising cell cycling 
performance, especially at elevated temperature (60 °C) [718]. In addition, the 
B12F12

2− anion is not reduced at 0 V (vs. Li/Li+) and undergoes a quasi-reversible 
oxidation reaction at 4.7 V (vs. Li/Li+) to form the stable radical cation B12F12

− 
[717]. The potential at which this oxidation reaction occurs can be tuned by chang-
ing the anion structure. The Li2B12H3F9 salt, for example, has a reversible oxidation 
reaction at 4.5 V (vs. Li/Li+) [716, 717]. These anions are thus able to provide 
overcharge protection for 4+ V Li-ion batteries, as has been demonstrated for 
MCMB/spinel cells [716, 724]. Note that many organic molecules designed for 
overcharge protection have poor solubility in carbonate solvents [724]. This is not 
the case for the Li2B12F9H3 salt which has a reasonably high solubility (≥0.5 M) 
while also serving as a divalent Li+ cation salt [717, 723].

1.10 Adoption Criterion for New Salts

Lithium salts have not been prepared for many of the anions noted above. For other 
anions, the corresponding lithium salts have been reported, but only in a single 
report with or without some limited electrolyte data provided. Such salts are often 

Fig. 1.41 Anion structure: 
C(SO2CF3)2(CN)− (C—gray, 
N—blue, O—red, F—light 
green, S—yellow)

2-
Fig. 1.42 Example  
of a fluorinated closo- 
dodecaborate 
anion: B12F12

2− [715–726]

Fig. 1.43 Anion structure: 
B12F12

2− (B—tan, F—light 
green)
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not widely available to the greater battery research community…and many of the 
practitioners in this community do not have the time, resources, or expertise neces-
sary to prepare and purify such salts. Thus, the useful properties and/or limitations 
of the salts often remain unknown and unutilized.

Ultimately, when developing new lithium salts, it is important to ask what advan-
tages are sought over the widely utilized salt LiPF6. This salt has been a cornerstone 
of Li-ion battery R&D for well over two decades. But it is clear that LiPF6 has limi-
tations. Properties or features of salts which would make them attractive candidates 
for commercial battery electrolytes include the following:

 (a) Simplified synthesis—If low-cost and/or nontoxic reagents which are easily 
handled are available for salt synthesis, this may reduce the overall expense of 
the salt production. Waste from the synthesis/purification methods is another 
consideration, as is the ease of salt purification to an electrochemical-grade 
material. The ownership of the intellectual property (IP) rights may be another 
important factor.

 (b) Reduced hazards—In some cases, the reagents, reaction intermediates, and/or 
final salts are highly toxic or have other undesirable properties (e.g., energetic 
materials, corrosive) which requires specialized handling of the materials and 
makes them undesirable for commercial batteries. The degradation products (if 
battery failure occurs) may also be highly toxic, as has been noted for the 
fluoro- organic products obtained from the reaction of LiPF6 and carbonate sol-
vents at high temperature when in contact with cathode materials [730]. Thus, 
the elimination of fluorine from the anions is a worthy goal, but one which is 
difficult to achieve based upon the information noted in this review.

 (c) Hydrolysis—LiPF6 readily hydrolyzes when contacted with water, especially at 
elevated temperature. This makes the synthesis, storage, and handling of this 
salt more onerous, thus adding cost to its use. A salt which is not susceptible to 
hydrolysis would greatly simplify the handing/transportation of the salt for 
large-scale battery production.

 (d) Divalent anions—Divalent anions may offer a means of increasing the Li+ cat-
ion content (for a fixed number of anions) or decreasing the amount of salt 
needed to retain the same number of Li+ cations in the electrolyte. This is 
dependent upon both of the Li+ cations having weak interactions with the 
anions, which is difficult to achieve, and the salt having a moderate–high solu-
bility in aprotic solvents, which is also difficult to achieve.

 (e) Redox shuttle mechanism—The use of a salt which has other functionality, 
such as a redox shuttle mechanism (e.g., B12F12

2−) (Figs. 1.42 and 1.43) which 
protects the cell against overcharging, would be desirable.

 (f) Thermal stability—The use of salts, either as primary salts or as additives, 
which result in electrolytes with high thermal stability (alone and in contact 
with electrodes)—enabling cell cycling at >60 °C—is a long sought after trait.

 (g) New solvents—LiPF6 was optimized for use with the cyclic/acyclic carbonate 
solvents used for Li-ion batteries. Often the use of LiPF6 for electrolytes with 
other solvents does result in the most conductive electrolytes (relative to other 
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salts), but there are exceptions. For example, LiPF6 reacts with GBL (forming 
brown or black solutions), but this solvent has many promising features for 
electrolytes [91–96]. Thus, LiPF6 has generally been replaced with LiBF4, 
LiTFSI, LiBOB, LiDFOB, etc. when GBL is used as an electrolyte solvent.

 (h) Low-temperature operation—The state-of-the-art carbonate-based electrolytes 
with LiPF6 do not perform well at low temperature. Typically, approaches to 
optimize electrolytes for low temperature involve the addition of other solvents 
(e.g., methyl butyrate) to the carbonate solvents [478]. The difference in con-
ductivity for electrolytes with different salts, however, becomes less significant 
at low temperature (Fig. 1.14). LiPF6 tends to make high-melting crystalline 
solvates (Fig. 1.4) with a wide variety of solvents. This may be a factor for 
long running-time operation of batteries at low temperature. Thus, other salts 
which form solvates with a low Tm or do not crystallize (for specific composi-
tions) (Fig. 1.4)—such as LiFSI, LiTFSI, or LiBETI—may be useful for such 
applications.

 (i) SEI formation—Salts which preferentially decompose to form protective layers 
on the anode, cathode, Al current collector, etc. (i.e., LiBOB, LiDFOB) are likely 
to be required for electrodes such as Si alloys, sulfur, and high-voltage cathodes 
[54, 731, 732]. In particular, the formation of HF in electrolytes with LiPF6 
(perhaps due to the reaction of the anions with solvent molecules, instead of 
water), especially at high potentials and high temperature, is deemed to be par-
ticularly problematic [49–54]. Replacing the LiPF6, the use of HF scavengers 
and the formation of protective layers are all ways to mitigate this problem.

Ultimately, the electrolyte formulations must meet the demanding criterion nec-
essary for long-term battery operation (high stability with selective reactions, high 
safety, etc.). Conductivity remains an important consideration for high-power appli-
cations. Increasingly, salt mixtures (rather than just solvent mixtures) are being used 
to tailor electrolyte formulations. This trend is likely to increase in the future due to 
the necessity of simultaneously optimizing so many electrolyte properties which 
influence the battery’s usable energy and power, lifetime, safety, cost, etc. New salts 
therefore remain one of the key variables available for the development of advanced 
electrolyte formulations.

1.11 Summary

A diverse range of anions have been prepared over the past three decades for lithium 
salts intended for lithium battery electrolyte applications. Many of these anions 
were originally prepared in efforts to generate stronger superacids. In general, it is 
found that selectively fluorinating the anions decreases the anion… Li+ cation (ionic 
association) interactions, thereby increasing the conductivity of electrolyte solu-
tions with the corresponding lithium salts. Anion fluorination also tends to increase 
the anodic stability of the anions to oxidation at high potential—an important 
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consideration for electrolyte formulations intended for use with high-voltage cath-
odes. In recent years, nitrile groups have also been used in lieu of fluorination. In 
some cases, however, salt stability is undesireable. For example, a common approach 
to improving electrolytes is the use of salt additives—sacrificial anions which 
degrade to produce interfacial layers with the anode, cathode and/or Al current 
collector—which stablize the interfaces with the electrolyte resulting in dramatic 
improvements in battery performance. New salts therefore remain one of the key 
variables available for the development of advanced electrolyte formulations with 
tailored properties for demanding energy storage applications.
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