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    Abstract     Patients with concussion (mild traumatic brain injury (mTBI)) frequently 
complain of both cognitive and emotional disturbances in the days to weeks after 
their injury, with a percentage of patients (5–20 %) remaining chronically symp-
tomatic. Relative to other static neuroimaging techniques, functional MRI (fMRI) 
offers great promise for elucidating the underlying neuropathology associated with 
dynamic processes such as higher-order cognition. Not surprisingly, the majority of 
mTBI studies have focused on working memory and attention, with results suggest-
ing a complex relationship between cognitive load/attentional demand and func-
tional activation. More recently researchers have used functional connectivity 
analyses to investigate how injury may affect intrinsic neuronal activation. Several 
groups have reported that connectivity within the default-mode network is disrupted 
following injury, which may also contribute to patient reports of increased distract-
ibility. The general benefi ts and drawbacks of the two methods (evoked versus con-
nectivity studies) are discussed in the context of the injury literature. Mood 
disturbances are also prevalent following concussion, but fewer studies (evoked or 
connectivity) have been conducted to investigate the integrity of the emotional pro-
cessing network. Finally, fMRI can also be used as a surrogate biomarker of 
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 pharmacological and cognitive rehabilitation treatment effi cacy, although only 
 preliminary work has been conducted in this area to date. The chapter also discusses 
the methodological challenges of performing and evaluating fMRI research with 
brain-injured patients, including clinical heterogeneity in patient selection criteria 
and variations in scan time post-injury. Finally, the chapter concludes with a discus-
sion of the physiological underpinnings of the blood oxygen level-dependent 
(BOLD) response and the many ways in which trauma can affect this complex sig-
nal. We conclude that the fMRI signal represents a complex fi lter through which 
researchers can more directly measure the physiological correlates of concussive 
symptoms, an important goal for this burgeoning fi eld.  

  Keywords     Mild traumatic brain injury   •   Functional magnetic resonance imaging   
•   Evoked activation   •   Functional connectivity   •   Confounds   •   Physiological basis  

        Introduction 

 Mild traumatic brain injury (mTBI) remains a poorly understood clinical phenom-
enon, despite lifetime incidence rates between 110 and 550 per 100,000 individuals 
[ 1 ]. This is primarily a result of the variable defi nitions of mTBI [ 2 ], which are 
entirely determined by clinical observations and self-reported symptomatology 
rather than objective markers. Findings from standard clinical neuroimaging 
sequences (CT scans; T 1  and T 2  weighted images) are typically negative for the 
majority of patients [ 3 ,  4 ], leading to a proliferation of studies that have attempted 
to defi ne more objective imaging biomarkers of mTBI [ 5 ,  6 ]. Since the seminal 
studies of McAllister et al. [ 7 ,  8 ], there has been great interest in using functional 
magnetic resonance imaging (fMRI) to study mTBI given its ability to perform in 
vivo measurements during demanding cognitive tasks [ 9 ] and, more recently, to 
characterize intrinsic neuronal activity [ 10 – 12 ]. 

 Single episode mTBI is characterized by subtle neurobehavioral defi cits within 
the fi rst few weeks of injury that typically resolve spontaneously within 3–6 months 
of injury in approximately 80–95 % of patients [ 5 ,  13 – 16 ]. Recent evidence suggests 
that the cumulative effects of multiple mTBIs result in a fourfold increase in neuro-
degenerative diseases [ 17 ] and a unique neuropathological syndrome involving 
tauopathies in periventricular spaces/deep cortical sulci with an overrepresentation 
of frontal and medial temporal pathology [ 18 ,  19 ]. Thus, although considerable chal-
lenges remain [ 20 ], mTBI offers a unique opportunity for examining both transient 
and permanent disruptions in cognitive and emotional functioning in human injury 
models. The chapter fi rst provides a review of mTBI research using both evoked 
paradigms as well as functional connectivity, which have more recently been used to 
study the effects of brain trauma. Next, we focus on the considerable methodological 
challenges of performing fMRI research with brain-injured patients. Finally, a review 
of the physiological underpinnings of the blood oxygen level- dependent (BOLD) 
response, which represents a complex fi lter through which researchers attempt to 
noninvasively capture the effects of neuronal injury, is also provided.  
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    Review of Current Findings from the Literature 

 fMRI offers great promise for elucidating the underlying neuropathology associated 
with neurobehavioral sequelae following mTBI, especially when used in conjunc-
tion with tasks that dynamically tap into higher-order cognitive functioning [ 5 ,  21 ]. 
The seminal fMRI studies on mTBI focused on working memory paradigms, with 
results suggesting a complex relationship between cognitive load and functional 
activation. In a series of studies on semi-acute (within 1 month of injury) mTBI 
patients, McAllister et al. [ 7 ,  8 ] reported hyperactivation in right dorsolateral pre-
frontal cortex (DLPFC) and lateral parietal regions for mTBI patients compared to 
healthy controls (HC) for moderate processing loads (1-back to 2-back conditions), 
but hypoactivation for the lower loads (0-back to 1-back conditions). Additional 
studies by McAllister and colleagues indicated that mTBI patients exhibited fronto- 
parietal hyperactivation in the 1-back to 2-back condition, but hypoactivation going 
from 2-back to 3-back. Other groups have reported a positive correlation between 
self-report measures of symptom severity and increased activation both within the 
working memory network (e.g., dorsolateral and ventrolateral prefrontal cortex) and 
other regions, suggesting potential compensatory activation [ 22 ]. Using both fMRI 
and event-related potentials, Gosselin reported that mTBI patients had decreased 
BOLD signal changes in the left and right mid-dorsolateral prefrontal cortex (which 
correlated with symptom severity), the putamen, the body of the caudate nucleus, 
and the right thalamus, coupled with a reduced N350 ERP amplitude [ 23 ]. Others 
have not observed signifi cant differences between a relatively large cohort of mTBI 
patients ( N  = 43) and HC ( N  = 20) on a similar  n -back task, instead fi nding that 
length of post-traumatic amnesia (PTA) was related to hippocampal deactivation 
(0-back > 2-back) [ 24 ]. 

 Demonstrating many of the methodological and interpretive challenges involved 
in imaging mTBI patients, results from fMRI studies of working memory using 
concussed athletes have been also been confl icting. In contrast to McAllister’s fi nd-
ings of hyperactivation in the right DLPFC, athletes with persistent post-concussive 
symptoms (PCS) imaged while performing both verbal and visual design working 
memory tasks show hypoactivation of the right DLPFC [ 25 ,  26 ]. Chen et al. [ 25 ] 
also report both hypo- and hyperactivation in the left prefrontal cortex that was not 
related to PCS severity and, in general, more diffuse activation patterns in the PCS 
athlete group. Longitudinal imaging of one patient at 6 months with PCS symptoms 
and later at 9 months without PCS symptoms provided evidence for a negative cor-
relation between right DLPFC activation and symptom severity but not between 
DLPFC activation and symptom duration. The correlation between PCS symptom 
severity and bilateral DLPFC hypoactivation was further supported using a whole 
brain analysis comparing nine low and nine high PCS severity patients in a verbal 
working memory task [ 27 ]. Importantly, multiple methodological differences exist 
between the McAllister fi ndings and those of Chen and colleagues including audi-
tory versus visual working memory, athletes versus emergency room patients, time–
post-injury, and operational defi nitions of symptom severity. 
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 There are additional examples of hyperactivation measured with fMRI during 
task. Using a pre- vs. post-injury design, Jantzen et al. showed hyperactivation of 
frontal regions post-injury even in the absence of cognitive performance differences 
[ 28 ] suggestive of a compensatory mechanism. The degree of abnormal activation 
(hyperactivation) may be indicative of a prolonged recovery profi le in athletes, par-
ticularly when accompanied by more sparse and diffuse activation patterns [ 29 ]. 
Finally, recent fMRI data suggest that signifi cant neuropathological changes can be 
missed if the focus of sports-related head injuries remains only on diagnosed con-
cussions. Based on the high frequency of American-rules football-offensive line-
man in postmortem neuropathological cases [ 18 ], it was proposed that sub-concussive 
hits also contribute to the development of chronic traumatic encephalopathy (CTE). 
To investigate the effects of sub-concussive hits, Talavage and colleagues scanned 
high school football athletes pre- and postseason with embedded sensors in the 
helmet to tally the number of head hits throughout the season. Results demonstrated 
that prolonged exposure to sub-concussive hits resulted in hypoactivation within left 
middle and superior temporal gyri, left middle occipital gyrus, and bilateral cerebel-
lum during an  n -back working memory task [ 30 ]. Interestingly, Talavage also 
showed that this pattern of decreased activity correlated with poorer working mem-
ory performance in non-concussed high school football players. 

 Several groups have also examined attentional and memory functioning follow-
ing mTBI. Smits et al. reported increased activation within the anterior cingulate 
gyrus, inferior frontal gyrus, insula, and posterior parietal areas during attention 
tasks with an increased incidence of post-concussive symptoms [ 22 ]. Previous 
results from our lab have indicated hypoactivation within several deep cortical, cer-
ebellar, and subcortical sites during an auditory attention task in independent adult 
[ 31 ] and pediatric mTBI [ 32 ] cohorts, with within-group comparisons also indicat-
ing decreased cortical activation for mTBI patients during more attentionally 
demanding conditions [ 31 ]. Similarly, we have also seen decreased cortical activa-
tion during within- subject comparisons in mTBI relative to HC during a multimodal 
numeric Stroop task in conjunction with aberrant task-induced deactivation within 
the default-mode network (DMN) [ 33 ]. Witt and colleagues used a three-stimulus 
(standard, target, and novel stimuli) auditory oddball paradigm with low attentional 
demand [ 34 ]. An ROI analysis suggested that mTBI patients exhibited less activity 
in right DLPFC compared to HC while detecting target stimuli. In addition, during 
detection of novel stimuli, patients exhibited decreased activation in areas in the 
DMN and increased in right superior and inferior parietal areas. Finally, Slobounov 
and colleagues reported increased volumes of activity for recently concussed ath-
letes within the DLPFC, parietal cortex, and hippocampus on a spatial memory task 
relative to non-concussed HC [ 35 ]. 

 The effects of treatment on BOLD activity following mTBI have also recently 
been explored. McAllister and colleagues examined whether pharmacological chal-
lenges to the dopaminergic system may explain some of these brain abnormalities 
in working memory circuitry following mTBI. The authors reported that whereas 
HC performance improved during the  n -back task following the administration of 
bromocriptine, compared to placebo, mTBI patients did not show any behavioral 
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improvement [ 36 ]. Moreover, HC in both drug conditions had higher activation in 
areas involved in working memory relative to patients, whereas mTBI patients on 
bromocriptine instead had higher activation in areas outside this working memory 
network. A similar complex pattern of activation was observed within the working 
memory circuitry when mTBI patients were placed on guanfacine, which indirectly 
affects dopamine transmission [ 37 ]. mTBI patients have also exhibited both 
increased and decreased activations following cognitive rehabilitation therapy on 
visually guided saccades and reading comprehension tasks in a relatively small 
sample of patients [ 38 ]. Although these fi ndings are all in their preliminary stages, 
it suggests that BOLD-based activity may offer a mechanism for noninvasively 
measuring how treatment affects disrupted neurophysiology following mTBI. 

 In addition to evoked studies of BOLD activity, researchers are increasingly turn-
ing to measures of functional connectivity (fcMRI) to examine neuronal health fol-
lowing mTBI. Connectivity studies are based on intrinsic neuronal fl uctuations that 
synchronously occur over spatially distributed networks in both humans and ani-
mals [ 39 ]. The majority (60–80 %) of the brain’s energy resources is expended to 
maintain homeostasis [ 40 ,  41 ], and intrinsic neuronal activity likely contributes to 
this heavy metabolic load. Previous research indicates changes in baseline metabo-
lism following TBI [ 42 ] as well as abnormal slow-wave electrophysiological activ-
ity during passive mental activity [ 43 – 45 ], providing the biological relevance for 
fcMRI as a biomarker of mTBI. 

 These intrinsic fl uctuations in neuronal activity tend to alias to low frequency 
fl uctuations (0.01–0.10 Hz) in BOLD signal, and therefore can be measured on any 
MRI scanner with a conventional echo-planar sequence. During these resting state 
scans, participants are simply asked to either fi xate on a visual stimulus or close 
their eyes for a relatively brief period of time (approximately 5 min). As such, rest-
ing state paradigms have been criticized based on the general lack of control over 
participant’s mental activities and the inability to specify what cognitive tasks the 
participant actually performed in the scanner [ 46 ]. Similarly, mTBI participants do 
not perform diffi cult cognitive tasks during resting state scans, which are of greater 
clinical interest given that patients tend to report more diffi culties under these con-
ditions in everyday life [ 5 ,  21 ]. Finally, noise has a more direct infl uence on the 
correlation coeffi cient in fcMRI relative to evoked signals [ 47 ], which can further 
complicate interpretation of group-wise results. 

 However, resting state scans also have several advantages over more traditional 
evoked studies and may eliminate several potential confounds associated with cogni-
tive tasks. Foremost, using a relatively simple task (i.e., passively maintaining fi xa-
tion), it is possible to probe the neuronal integrity of the multiple sensory, motor, and 
cognitive networks that exist in the human brain. Specifi cally, Smith and colleagues 
demonstrated that intrinsic neuronal activity measured from 36 participants was 
organized into distinct networks that mirror activity evoked across a variety (30,000 
archival data sets) of cognitive challenges [ 48 ]. Second, eliminating the complex 
requirements for presenting sensory stimuli and monitoring motor responses 
(e.g., interfacing with a computer, projecting stimuli, special nonferrous motor 
response devices) renders fcMRI more readily available for performing clinical scans. 
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Third, the passive nature of resting state scans (eyes closed or maintaining fi xation) 
reduces some of the confounds associated with evoked studies due to lack of effort, 
effects of pain, and fatigue. Fourth, in the presence of task-based behavioral differ-
ences, it is diffi cult to disambiguate whether differences in BOLD- related activity 
directly result from behavioral performance differences, alterations in neurophysiol-
ogy, or some combination of effects. Similarly, interpretation of evoked data is also 
frequently complicated by learning and/or practice effects, which are minimal dur-
ing a passive task. Finally, as has already been demonstrated by several research 
groups [ 49 – 51 ], fcMRI can be used across the entire TBI spectrum (e.g., mildest 
injury to minimally conscious patients). 

 To date, the majority of connectivity studies following TBI have focused on acti-
vation in the DMN. The primary nodes of the DMN include the rostral anterior 
cingulate gyrus (rACC), posterior cingulate gyrus (PCC), superior temporal/supramarginal 
gyrus (SMG), and ventromedial prefrontal cortex, with the rACC and PCC serving 
as central hubs [ 52 ]. The DMN is believed to mediate a variety of mental activities 
such as episodic memory review and future-oriented thought processes that occur 
during periods of unconstrained mental activity [ 53 ]. DMN activity parametrically 
varies with task diffi culty [ 54 ] and is predictive of attentional lapses during cogni-
tively demanding tasks [ 55 ,  56 ]. In addition, DMN BOLD signals are negatively 
(i.e., anticorrelated) correlated with activity in the lateral prefrontal cortex and infe-
rior parietal lobes [ 57 ], suggesting that the two networks may act in conjunction to 
produce states of high (decreased DMN activity) or low (increased DMN activity) 
attentiveness to external events. 

 Early fcMRI studies focused on severely injured [ 58 ] or minimally conscious 
[ 49 – 51 ] TBI patients, with most studies reporting decreased DMN connectivity (but 
see [ 59 ]). In the semi-acute phase of mTBI, reduced connectivity has been reported 
within the DMN using a seed-based approach, with increased connectivity between 
the rACC and ventrolateral prefrontal cortex [ 11 ]. These abnormalities in DMN 
connectivity remained relatively stable approximately 4 months post-injury. Another 
study utilized independent component analysis (ICA) to examine DMN connectiv-
ity, reporting reduced connectivity in the posterior hubs (PCC and SMG) of the 
DMN in conjunction with increased connectivity within the ventromedial prefrontal 
cortex [ 60 ]. Similarly, Johnson and colleagues reported generally reduced connec-
tions across multiple nodes of the DMN in recently concussed athletes relative to 
HC, as well as a larger departure from typical DMN connectivity as a function of the 
number of previous mTBI episodes [ 10 ]. However, a subsequent study by the same 
group did not fi nd any signifi cant differences within DMN connectivity unless a 
physical stress challenge was presented to recently concussed athletes [ 61 ]. 

 Others have reported disrupted interhemispheric fcMRI in the visual cortex, hip-
pocampus, and DLPFC during task-based connectivity analyses [ 62 ], as well as 
decreased symmetry of connectivity based on thalamic seeds [ 63 ]. Another group 
also used ICA to investigate fcMRI [ 12 ], reporting decreased functional connectiv-
ity within the motor-striatal network and increased connectivity in the right fronto-
parietal network. Finally, Stevens and colleagues reported disrupted (both increased 
and decreased) connectivity in 30 semi-acutely injured mTBI patients across 12 

A.R. Mayer and P.S.F. Bellgowan



255

different sensory and cognitive networks [ 64 ]. On the basis of these studies, fcMRI 
appears to be well poised for interrogating connectivity within all major structures 
and networks of the brain following mTBI.  

    Overarching Issues in FMRI Research Following mTBI 

 As alluded to in the preceding paragraphs, there are several potential confounds that 
need to be carefully considered when performing and evaluating fMRI studies of 
mTBI. Some of the more common clinical confounds include injury-related pain 
(orthopedic), fatigue, poor effort, cognitive defi cits, and the presence of other pre-
scribed medications (e.g., narcotics or sedatives) that may alter neurovascular cou-
pling [ 65 – 67 ]. Some of the nonspecifi c somatic confounds (e.g., pain and fatigue) 
and medication issues can be reduced or eliminated by recruiting orthopedically 
injured patients as control subjects, as has previously been done in the clinical lit-
erature [ 68 ,  69 ]. Confounds that can be controlled through careful experimental 
design include reducing heterogeneity in terms of both injury severity and post- 
injury scan time. For example, patients who are only dazed following a blow to the 
head, patients who are unconscious for up to 30 min, and patients with large subdu-
ral hematomas can all be classifi ed as having suffered from mTBI under current 
nosology [ 2 ]. However, the symptoms and recovery trajectories of these patients are 
likely to be very different [ 70 ,  71 ]. 

 Developing methods for improving the nosology of mTBI and understanding of 
symptom trajectory will be critical for coalescing disparate neuroimaging fi ndings. 
The temporal dynamics of mTBI has been elucidated using animal models, demon-
strating a complex, multifaceted, and time-varying pathology that characterizes 
mTBI in the minutes to weeks following injury [ 72 ]. However, inclusion criteria for 
previous studies in human mTBI have ranged from days to years post-injury, with 
some studies focusing on chronically symptomatic patients. Several meta-analyses 
have documented that the majority of single-episode mTBI patients are expected to 
recover spontaneously from a neurobehavioral perspective within a few weeks to a 
few months post-injury [ 5 ,  13 – 16 ]. Understanding why a percentage of single epi-
sode mTBI patients remain chronically symptomatic is critical for the fi eld. 
However, this cohort represents a subset of the larger mTBI population and fi ndings 
from this sample may not generalize. Thus, while it is important to recognize the 
heterogeneity and chaos associated with mTBI [ 20 ], it is also important to foster 
studies based on homogeneous samples in clearly defi ned time-windows (acute, 
subacute, or chronic post-injury stages). 

 It is notable that mTBI patients who meet strict inclusion criteria (homogeneous 
in both injury severity and scan-time post-injury) are challenging to enroll, and 
fMRI data is fi nancially costly to accumulate. The combination of these factors has 
resulted in another methodological challenge: namely, the utilization of low sample 
sizes despite the inherently low signal-to-noise ratio of fMRI [ 73 ]. Specifi cally, the 
majority of fMRI studies following mTBI have been reported with sample sizes just 
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at or below commonly accepted recommendations. As a result, it is likely that these 
studies may be underpowered, suffering from low positive predictive power and 
providing poor estimates of the true effect size [ 74 ]. Therefore, confl icting fi ndings 
from previously discussed working memory studies following mTBI may be the 
result of simple methodological differences (described above) and/or a result of the 
small sample sizes employed across the various studies. Importantly, fMRI studies 
of other cognitions (e.g., attentional and memory defi cits) are not exempt from 
this critique, but independent replication attempts of these fi ndings have been fewer. 
To combat the problem of small sample sizes, funding agencies have recently devel-
oped standard clinical defi nitions, common data elements, and informational platforms 
for creating community-wide data sharing initiatives (e.g., Federal Interagency 
Traumatic Brain Injury Research; FITBIR). These efforts should accelerate research 
in this critical area by permitting the pooling of data for meta-analyses. 

 A third methodological consideration relates to the self-reporting of symptoms. 
Importantly, symptom self-report may vary as a function of sample with sports- 
related populations underreporting neurobehavioral symptoms to return to play 
[ 75 – 77 ] whereas other mTBI populations may over-report symptoms [ 78 ,  79 ], espe-
cially in the presence of potential fi nancial compensation. Multiple sociological 
barriers may account for the underreporting of concussive symptoms ranging from 
lack of education regarding the seriousness of concussion (parents, players, and 
coaches), hesitancy to report symptoms that do not result in signifi cant pain, desire 
not to be removed from play, and stigmatization of concussion as a non-real injury 
[ 77 ,  80 ]. The peer pressure to continue play and not report injury is particularly 
important in vulnerable populations such as children who may not comprehend and 
underestimate the risks involved in continued participation, and in low socioeco-
nomic areas where participation is perceived as a path to future benefi t [ 81 ]. 
Additional pressures are on the coaching staffs who may feel pressured to win and 
underestimate the risk of returning a player to the fi eld prematurely. Unfortunately, 
the rate of underreporting of concussion symptoms in high school football has been 
reported to be as high as 53 % [ 82 ]. 

 Regardless of the sociological factors, underreporting of symptoms can lead to 
premature “return to play” decisions and put players at risk for exacerbated out-
comes related to the occurrence of multiple sports-related concussions [ 83 – 86 ]. 
Repeat concussions (concussions occurring within the same sports season) increase 
the risk of long-term cognitive and psychiatric dysregulation by 1.5–3-fold relative 
to those with a single concussive incident [ 87 ]. A study of nearly 3,000 concussions 
in NCAA athletes clearly demonstrates that an initial concussion dramatically 
increases that player’s risk of a repeat concussion [ 87 ,  88 ]. Athletes with a history 
of concussion are also more likely to report more baseline symptoms than are those 
with no history of concussion [ 85 ]. The increased risks of neuropathological inci-
dence and behavioral decline associated with repeat concussions has been modeled 
in piglets and shows a worse neuropathological and neurobehavioral outcome for 
injuries that occur in temporal proximity [ 89 ]. Importantly, neuronal recovery may 
lag behind the recovery of behavioral and cognitive symptoms, emphasizing the 
need for objective biomarkers of when it is truly safe to return to play.  
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    Psychiatric Sequelae and mTBI 

 Among the more challenging outcome measures to operationalize are psychiatric 
sequelae of TBI. Episodes of major depression are the most commonly diagnosed 
neuropsychiatric complication in TBI, regardless of injury severity [ 90 – 93 ]. The 
incidence of concussed high school and collegiate athletes reporting anxiety, depres-
sion, and irritability is reported to be range between 17 and 46 % [ 68 ,  94 – 96 ], 
whereas basal rates of self-reported mood disorders in collegiate athletes is equal to 
or slightly less (15–30 %) than the typical collegiate students [ 97 – 99 ]. Unfortunately, 
affective dysregulation resulting from sports-related concussion, at all ages, can 
linger for years in those diagnosed with post-concussion syndrome [ 100 – 105 ]. In 
pediatric and adolescent populations, TBI increases both rates of long-term depres-
sion and anxiety, dependent upon the lesion laterality and age at time of injury 
[ 106 – 108 ]. In addition, younger athletes reporting concussion-related mood 
sequelae have more prolonged depressive episodes [ 109 ,  110 ]. 

 Understanding and assessing the basis of mood dysregulation following mTBI is 
complicated by the possibility of having three potentially coexisting, yet distinct 
etiological mechanisms for depressed mood following mTBI. First, predisposition 
for mood disorder, including family history of mood disorders, has been shown to 
be a strong factor in the presence and severity of post-concussive depression [ 90 , 
 111 – 113 ]. Second, psychiatric sequelae may result from the indirect effects of TBI 
secondary to psychosocial and psychosomatic consequences of the injury (somato-
form depression). These include decreased the ability to perform at a job, poor 
social functioning, perceived stigma of a non-visible injury and depression second-
ary to other injuries or losses (e.g., deceased spouse) sustained during the traumatic 
incident [ 90 ,  91 ,  114 – 116 ]. 

 A fi nal primary etiological path for psychiatric sequelae is a biologically based 
disruption of the emotional processing neural network. Potential pathologies include 
direct damage to the network nodes and/or damage to white-matter connections 
within emotional processing networks. Secondary events such as neuroinfl amma-
tion may also contribute by inducing “sickness behavior” [ 117 – 119 ], and are 
believed to be critically involved in CTE and post-concussive disorder [ 120 ,  121 ]. 
Further support for a pathophysiological mechanism of the depressive mood state 
following concussion is supported by the neuroinfl ammatory model of post- 
concussive state that mechanistically mimics the infl ammatory model of major 
depressive disorder. Bellgowan and colleagues [ 122 ] demonstrated increased levels 
of the infl ammatory marker IL-1B negatively correlate with connectivity within the 
subgenual ACC and other regions of the medial emotional network [ 123 ]. Regardless 
of the etiology, all processes result in negative affect that increases stress and inter-
feres with the hypothalamic-pituitary-adrenal (HPA) axis [ 124 – 126 ], resulting in 
further dysregulation of emotional processing networks [ 127 ,  128 ]. 

 The increased incidence of mood disturbances observed in retired boxers and pro-
fessional football players with a history of concussion provides prognostic evidence 
for the neuropathological etiology of concussion-related mood dysregulation [ 18 ,  19 ]. 
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Of particular concern in those that have been diagnosed with CTE is the high rate of 
suicidality [ 18 ,  129 ,  130 ]. Suicide rates for concussed persons who are at risk for 
mood disorder or have a diagnostic history of mood disorder are also signifi cantly 
elevated [ 131 ,  132 ]. Though the mood disturbances reported in retired players and 
diagnosed CTE cases were obtained retrospectively and lack prior psychiatric history, 
others [ 84 ] have demonstrated that the later life diagnosis of clinical depression is 
correlated with concussion history [ 84 ].  

    fMRI Physiology and Trauma 

 The exact linkage between neuronal transmission and resultant hemodynamic activ-
ity (neurovascular coupling) remains an active area of investigation. During intrin-
sic activity (at rest), a tight coupling exists between the cerebral metabolic rate of 
glucose (CMR glu ), the cerebral metabolic rate of oxygen (CMRO 2, ) and cerebral 
blood fl ow (CBF) to maintain homeostasis [ 133 ]. Following excitatory neuronal 
transmission, energy (glucose) is required to reverse ionic infl ux and excess gluta-
mate needs to be rapidly removed from the synaptic cleft [ 134 – 136 ]. Excess gluta-
mate is taken up by astrocytes and converted to glutamine, nitric oxide is released 
co-temporally by neurons and vasoactive agents are released by astrocytes [ 134 ], all 
of which likely contribute to vasodilation and a concomitant increase in CBF. 
Importantly, there is a decoupling between CBF and oxidative metabolism [ 137 ] 
following neuronal activation, which leads to an excess in oxygenated blood, a 
decrease in the ratio of deoxyhemoglobin relative to oxyhemoglobin, and a subse-
quent increase in signal. 

 As such, it has long been recognized that the BOLD response represents an amal-
gamation of signals derived from the ratio of oxy- to deoxyhemoglobin (primary), 
CBF, and cerebral blood volume (CBV) [ 73 ,  138 ,  139 ]. The shape of the BOLD 
response is also complex in nature, with the canonical hemodynamic response func-
tion (HRF) consisting of two primary components, a positive signal change that 
peaks approximately 4–6 s post-stimulus onset, and a post-stimulus undershoot 
(PSU) that peaks 6–10 s after the stimulus ends [ 138 ,  140 ]. As previously discussed, 
the positive phase of the BOLD response has been associated with an increase in 
CBF, and subsequent change in the ratio of oxy- to deoxyhemoglobin intravascu-
larly [ 138 ]. The biophysical origins of the PSU remain more controversial. An early 
model attributed the PSU to temporal delays between when CBF (earlier response) 
and CBV (delayed response) returned to baseline levels [ 138 ,  141 ]. However, more 
recent work suggests that the duration of the PSU extends beyond even when CBV 
returns to baseline [ 142 ], leading others to suggest that increased metabolic demands 
(CMRO 2 ) following cellular signaling may contribute to the PSU [ 142 ,  143 ]. 

 Thus, there are several different individual mechanisms as well as combinatory 
effects by which head trauma can alter the different phases of the BOLD response. 
Foremost, trauma can result in frank neuronal (e.g., alterations in synchronous 
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neuronal activity) dysfunction, causing downstream effects on BOLD-based activity 
by changing the amount of glutamate in the synaptic cleft and the energetic needs of 
cells following neurotransmission [ 73 ,  134 ]. Direct support for this hypothesis 
comes from reports of neuronal loss in animal models of fl uid percussion injury 
[ 144 ] and abnormal cell signaling [ 145 ]. Indirect support for this hypothesis comes 
from fi ndings of altered concentrations of glutamate and glutamine in the semi- 
acute stage of mTBI during magnetic resonance spectroscopy [ 146 – 148 ] as well as 
through more invasive measures during more severe injury models [ 149 – 152 ]. 

 TBI has also been shown to directly reduce both CBF and metabolism, both of 
which would affect the BOLD response. CBF and transit time are reduced in human 
models of severe TBI [ 153 ], as well as cerebral perfusion [ 154 ]. Metabolic failure 
following TBI occurs even in the presence of normal perfusion [ 155 ], with an initial 
decoupling between CBF and CMR glu , followed by a generally reduced cerebral 
metabolism [ 72 ,  154 ]. Animal models suggest that alterations in CBF and CMR glu  
may be the most long-lasting physiological defi cits of concussion [ 72 ], and thus the 
BOLD response should also be similarly affected for a longer duration following 
injury. Trauma may also directly affect the structural integrity of the microvascula-
ture. Animal studies based on the fl uid percussion model indicate a semi-acute 
reduction in capillary number and diameter both at the injury site and distally [ 156 ], 
with other studies suggesting that TBI also results in neurogenic damage within the 
perivascular nerve network [ 157 ]. Hemosiderin depositions, secondary to microhe-
morrhages and infl ammation, have also been noted in the autopsy report of an mTBI 
patient who died 7 months post-injury [ 158 ]. 

 At present, it would be unfeasible to draw conclusions about the relative impor-
tance of these different mechanisms as they pertain to previously reported fi nding of 
hypo- and hyperactivation in clinical samples of mTBI [ 9 ,  31 ]. Animal models of 
injury frequently make recordings during the baseline state (e.g., anesthetized ani-
mals), which is known to produce differential dynamics between BOLD constitu-
ents (e.g., CBF, CMRO 2 , and CMR glu ) relative to more dynamic states (evoked 
activity). Several papers have recently examined fcMRI in animal models of neuro-
nal injury [ 159 ,  160 ], with other studies [ 161 ] reducing/eliminating anesthesia pro-
tocols that can alter the neuronal response and/or neurovascular coupling. Future 
animal studies that specifi cally examine how mTBI affects both intrinsic and evoked 
BOLD-related activity will greatly improve our knowledge of the true bench-to- 
bedside capabilities of this technique in a more controlled environment. 

 Similarly, multimodal neuroimaging techniques can be used in conjunction with 
standard BOLD imaging techniques to potentially isolate physiological changes 
associated with neuropathophysiology. For example, spectroscopy can be used in 
conjunction with fMRI to get more direct measures of the level of excitatory neu-
rotransmitters and measures of cellular energetics and death [ 146 ,  148 ,  162 ,  163 ]. 
Matthews and colleagues used combined DTI and fMRI methods to understand 
differences in amygdala activation to emotional faces in concussed Operation 
Enduring Freedom and Iraqi Freedom veterans with and without depressive symp-
toms [ 164 ]. fMRI results demonstrated abnormal amygdala activity in veterans with 
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depressive symptoms that was associated with lower fractional anisotropy (FA) in 
several white matter tracts, suggesting that functional disruption may be the direct 
results of structural pathology in white matter tracts. Similarly, we have examined 
the relationship between functional connectivity and FA within white matter tracts 
that connect the DMN and frontal areas during the semi-acute and more chronic 
stages of mTBI [ 11 ]. Finally, electroencephalography (EEG) and magnetoencepha-
lography (MEG) both provide a more direct measure of neuronal activity at much 
higher temporal resolution [ 23 ,  43 ,  165 ,  166 ], eliminating some of the interpretative 
problems associated with fMRI. Importantly, EEG and fMRI can be acquired simul-
taneously within the scanner environment [ 167 ,  168 ], providing an unheralded 
access into brain pathology following mTBI that affords both high spatial and tem-
poral fi delity. 

 As previously discussed, fMRI signals are critically linked to CBF, and the dys-
regulation of autonomic control of neurovascular coupling remains a challenge for 
future neuroimaging studies of mTBI. Arterial spin labeling measures of CBF have 
also been used to calibrate the BOLD signal [ 169 ,  170 ], although the measurements 
must be made in a quantitative fashion. Hypercapnic normalization is another fre-
quently used technique that is achieved through the administration of CO 2 , a volun-
tary breathhold scan or more regularized breathing [ 171 ,  172 ]. This method assumes 
that hypercapnia has a limited effect on neural activity and oxygen metabolism and 
thus primarily measures CBF [ 173 ,  174 ]. Previous results suggest that the hyper-
capnia method accounts for variability in subject vasculature and physiology differ-
ences during task performance, as well as changes in magnetic fi eld strength 
[ 175 – 177 ]. A primary limitation of the method is that it requires the subjects to 
calmly hold their breath during an EPI acquisition and/or the administration of CO 2 , 
both of which may increase the rate of anxiety in participants and subsequently 
affect subject motion.  

    fMRI Analyses 

 The fi nal section of the chapter discusses several analytic considerations for per-
forming fMRI research following mTBI. First, in spite of the known complexity of 
the BOLD response, previous research in both mild and more severe forms of TBI 
has typically estimated only a single parameter (typically a beta coeffi cient) by 
convolving an assumed canonical HRF (e.g., a gamma variate or a double gamma 
variate function) with known experimental conditions (e.g., onset of a particular 
trial) to derive a predictor function (e.g., regressor). Importantly, this assumes that 
the different phases of the hemodynamic response (positive phase and PSU) and 
their relationship to each other are largely unaffected by mTBI. To date, only a 
single study has explicitly examined the HRF in more severe TBI [ 178 ] reporting 
that although basic visual stimuli were associated with an increased volume of 
activation in the TBI group, there were no differences in the basic shape of the HRF. 
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More fMRI studies are needed in both human and animal models that explicitly 
compare the different aspects of the HRF as well as their individual sensitivity and 
specifi city. 

 Investigators have also traditionally utilized region of interest (ROI) or voxel- 
wise analyses to directly compare the BOLD response between mTBI patients and 
healthy controls. However, both of these analytic methods are based on the implicit 
assumption that heterogeneous initial injury conditions (e.g., patients in a motor 
vehicle accidents versus patients who experienced a blow to the left temple) results 
in a homogenous (i.e., high degree of spatial overlap) pattern of grey matter abnor-
malities that would survive group-wise statistics. Although lesions tend to be more 
common in the diencephalon, mid-brain, limbic circuit, and prefrontal cortex [ 6 , 
 179 ], the basic premise of the spatial homogeneity assumption is likely to be fl awed. 
Therefore, it is increasingly being recognized that novel approaches for classifying 
heterogeneous lesion locations are necessary for performing mTBI imaging research 
[ 180 – 182 ]. For example, in diffusion tensor imaging studies of white matter inju-
ries, variations on normative (i.e.,  z -scores) transformations [ 181 – 185 ] or bootstrap-
ping [ 186 ] have been utilized to identify voxel-wise abnormalities on a 
patient-by-patient basis. While the logical appeal of these newer approaches is 
clearly superior, the underlying assumptions are likely to be dependent on the sta-
tistical properties of the data (e.g., sample size, distribution properties, and nor-
malcy) and have not been thoroughly vetted in the context of typical neuroimaging 
data [ 180 ]. To our knowledge, these novel approaches have not yet been applied to 
BOLD imaging data to determine regions of anomalous activity on an individual 
subject level.  

    Conclusions 

 In summary, fMRI provides researchers with the ability to noninvasively measure 
the functional integrity of neuronal circuitry in both animal and human models of 
mTBI at relatively high spatial resolution. The ability to dynamically measure brain 
function during higher-order cognitive and emotive tasks represents a clear advan-
tage relative to other imaging techniques that are only capable of measuring struc-
tural integrity (e.g., susceptibility weighted imaging, DTI). Moreover, unlike other 
functional techniques, fMRI is equally capable of probing deep grey structures as 
well as cortex. However, the dynamic nature of the BOLD signal also makes it more 
susceptible to nonspecifi c effects of trauma (e.g., pain, fatigue), behavioral perfor-
mance, effort on testing, and normal day-to-day variations in human behavior. 
Moreover, the BOLD signal represents an indirect measure of neuronal activity that 
results from a complex mixture of many underlying physiological processes, all of 
which can be affected by trauma. Thus, clearly identifying the one, two, or multiple 
mechanistic causes of an “abnormal” BOLD signal will not be feasible when this 
technique is used in isolation.     
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