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    Abstract     Diagnostic and prognostic tools for risk stratifi cation of concussion 
patients are limited in the early stages of injury in the acute setting. Unlike other 
organ-based diseases where rapid diagnosis employing biomarkers from blood tests 
is clinically essential to guide diagnosis and treatment, such as for myocardial isch-
emia or kidney and liver dysfunction, there are no rapid, defi nitive diagnostic tests 
for traumatic brain injury (TBI). Research in the fi eld of TBI biomarkers has 
increased exponentially over the last 20 years with most of the publications on the 
topic of TBI biomarkers occurring in the last 10 years. Accordingly, studies assess-
ing biomarkers in TBI have looked at a number of potential markers that could lend 
diagnostic and, prognostic, as well as therapeutic information. Despite the large 
number of published studies, there is still a lack of any FDA-approved biomarkers 
for clinical use in adults and children. 

 Developments in the fi eld of proteomics, along with improved laboratory tech-
niques, have led to the discovery and rapid detection of new biomarkers not previ-
ously available. Proteomic research has recently developed due to advances in 
protein separation, identifi cation, and quantifi cation technologies that only became 
available in the last decade. Some proteins are highly expressed in the cerebrospinal 
fl uid following a TBI. However, this does not necessarily translate into availability 
in peripheral blood. With the increasing sensitivity of analytical tools for biomarker 
detection, measurement of biomarkers in peripheral blood has also improved. 
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 In an effort to prevent chronic traumatic encephalopathy (CTE) and long-term 
consequences of concussion/mild TBI, early diagnostic and prognostic tools are 
becoming increasingly important, particularly in sports injuries and in military per-
sonnel where concussions/mild TBI are common occurrences. The studies con-
ducted on biofl uid biomarkers for mild TBI to date show great promise. Should 
serum biomarkers for TBI be validated and become widely available, they could 
have many roles. They could help with clinical decision making by clarifying injury 
severity and help monitor progression of injury and/or recovery. Biomarkers could 
have a role in managing patients at high risk of repeated injury and could be incor-
porated into guidelines for return to duty, work, or sports activities. 

 This chapter will discuss the current literature on biofl uid biomarkers for 
concussion/mild TBI, address gaps in research, and discuss their future role.  

  Keywords     Biomarkers   •   Blood   •   Serum   •   Cerebrospinal fl uid   •   Concussion   •   Mild 
TBI   •   Head injury   •   S100β[beta]   •   GFAP   •   NSE   •   UCH-L1   •   SBDP150   •   SBDP145   
•   Tau   •   MBP   •   Neurofi lament proteins   •   Proteomics   •   Diagnosis   •   Prognosis   •   Risk 
stratifi cation   •   Detection   •   Pathophysiology   •   Monitoring   •   Biochemical markers  

        Introduction 

 Concussion is also known as mild traumatic brain injury (TBI) and is an unfortunately 
common occurrence in athletes of all ages. Diagnosis of concussion acutely depends 
on a variety of measures including neurological examination, neuropsychological 
evaluation, and neuroimaging. Neuroimaging techniques such as computed tomo-
graphic (CT) scanning and magnetic resonance imaging (MRI) are used to provide 
objective information. However, CT scanning has low sensitivity to diffuse brain 
damage and confers exposure to radiation. MRI can provide information on the 
extent of diffuse injuries but its widespread application is restricted by cost, avail-
ability, and its yet undefi ned role in management of these patients [ 1 ,  2 ]. Early and 
tailored management of athletes following a concussion can provide them with the 
best opportunity to avoid further injury. 

 The term “mild TBI” is really a misnomer. Individuals with mild TBI or con-
cussion are acutely at risk for bleeding and axonal injury [ 3 ,  4 ] and can suffer 
impairment of physical, cognitive, and psychosocial functioning [ 5 – 9 ] long term   . 
Repeated episodes of mild TBI can lead to chronic traumatic encephalopathy (CTE), 
a term used to describe clinical changes in cognition, mood, personality, behavior, 
and/or movement occurring years following concussion [ 10 ,  11 ]. With the growing 
incidence of CTE among athletes, strategies that reduce the risk of becoming injured 
need to be developed and diagnostic tools that could identify injuries earlier need to 
be explored. 

 The degree of brain injury depends on the primary mechanism/magnitude of 
injury, secondary insults, and the patient’s genetic and molecular response. Following 
the initial injury, cellular responses and neurochemical and metabolic cascades con-
tribute to secondary injury [ 12 ,  13 ]. There are two aspects to injury caused by TBI: 
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the damage caused by the initial impact or insult, and that which may subsequently 
evolve over the ensuing hours and days, referred to as secondary insults. Secondary 
insults can be mediated through physiologic events which decrease supply of oxygen 
and energy to the brain tissue or through a cascade of cytotoxic events. These events 
are mediated by many molecular and cellular processes [ 14 ,  15 ]. 

 Developments in the fi eld of proteomics along with improved laboratory tech-
niques have led to the discovery and rapid detection of new biomarkers not previ-
ously available. Proteomic research has recently developed due to advances in protein 
separation, identifi cation, and quantifi cation technologies that only became available 
in the last decade. Some proteins are highly expressed in the cerebrospinal fl uid 
(CSF) following a TBI. However, this does not necessarily translate into availability 
in peripheral blood. With the increasing sensitivity of analytical tools for biomarker 
detection, measurement of biomarkers in peripheral blood has also improved. 

 This chapter will discuss the current literature on biomarkers for concussion or 
mild TBI in the athlete, address gaps in research, and discuss the role of serum bio-
markers. Figure  13.1  describes the neuroanatomical locations of the biomarkers that 
will be reviewed.

       Need for Serum Biomarkers for Concussion 

 Diagnostic and prognostic tools for risk stratifi cation of concussion patients are 
limited in the early stages of injury in the acute setting. Unlike other organ-based 
diseases where rapid diagnosis employing biomarkers from blood tests is clinically 
essential to guide diagnosis and treatment, such as for myocardial ischemia or 

  Fig. 13.1    This fi gure describes the neuroanatomical locations of the blood-based biomarkers that 
will be reviewed       
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kidney and liver dysfunction, there are no rapid, defi nitive diagnostic tests for TBI. 
Research in the fi eld of TBI biomarkers has increased exponentially over the last 20 
years [ 16 ,  17 ], with most of the publications on the topic of TBI biomarkers occur-
ring in the last 10 years [ 18 ]. Accordingly, studies assessing biomarkers in TBI have 
looked at a number of potential markers that could lend diagnostic and, prognostic, 
as well as therapeutic information. Despite the large number of published studies, 
there is still a lack of any FDA-approved biomarkers for clinical use in adults and 
children [ 17 ,  18 ]. Properties that should be considered when evaluating a biomarker 
for clinical application include the following: does the biomarker: (1) demonstrate 
a high sensitivity and specifi city for brain injury; (2) stratify patients by severity of 
injury; (3) have a rapid appearance in accessible biological fl uid; (4) provide infor-
mation about injury mechanisms; (5) have well defi ned biokinetic properties; (6) 
monitor progress of disease and response to treatment; and (7) predict functional 
outcome [ 17 ,  19 ].  

    Biofl uid Biomarkers of Astroglial Injury 

    S100β[Beta] 

 S100β[beta] is the major low affi nity calcium binding protein in astrocytes [ 20 ] that 
helps to regulate intracellular levels of calcium and is considered a marker of astro-
cyte injury or death. It can also be found in non-neural cells such as adipocytes, 
chondrocytes, and melanoma cells [ 21 ,  22 ]. S100β[beta] is one of the most exten-
sively studied biomarkers [ 23 – 33 ] and elevation of S100β[beta] levels in serum has 
been associated with increased incidence of post-concussive syndrome and impaired 
cognition [ 34 ,  35 ]. Other studies have reported that serum levels of S-100β[beta] are 
associated with MRI abnormalities and with neuropsychological examination dis-
turbances after mild TBI [ 36 ,  37 ]. A number of studies have found signifi cant cor-
relations between elevated serum levels of S100β[beta] and CT abnormalities 
[ 38 – 40 ]. It has been suggested that adding the measurement of S100β[beta] concen-
tration to clinical decision tools for mild TBI patients could potentially reduce the 
number of CT scans by 30 % [ 40 ]. Other investigators have failed to detect associa-
tions between S100β[beta] and CT abnormalities [ 41 – 44 ]. 

 Amateur boxers have slightly elevated levels of S100β[beta] in CSF samples 
obtained by lumbar puncture after a bout [ 45 ]. In a study of S100β[beta] in basket-
ball and hockey players by Stalnacke et al. in 2003, there was a signifi cant correla-
tion between the change in S100β[beta] (postgame−pregame values) and jumps in 
basketball players ( r  = 0.706,  p  = 0.002). In one ice hockey player who experienced 
concussion during play, S100β[beta] was increased more than for the other players 
[ 46 ]. The same investigators conducted a study of soccer players and found that 
changes in S100β[beta] concentrations (postgame minus pregame values) were sta-
tistically correlated to the number of headers ( r  = 0.428,  p  = 0.02) and to the number 
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of other trauma events ( r  = 0.453,  p  = 0.02) [ 47 ]. Although S100β[beta] remains 
promising as an adjunctive marker, its utility in the setting of multiple trauma 
remains controversial because it also increases in trauma patients without head inju-
ries and therefore be considered nonspecifi c to TBI [ 48 – 51 ].  

    Glial Fibrillary Acid Protein 

 Glial fi brillary acidic protein (GFAP) is a monomeric intermediate protein found in 
astroglial skeleton that was fi rst isolated by Eng et al. in 1971 [ 52 ]. GFAP is found 
in white and gray brain matter and is strongly upregulated during astrogliosis [ 53 ]. 
Current evidence indicates that serum GFAP might be a useful marker for various 
types of brain damage from neurodegenerative disorders [ 54 ,  55 ] and stroke [ 56 ], to 
severe TBI [ 51 ,  57 – 61 ]. In 2010, Vos et al. described serum-increased GFAP profi le 
in severe and moderate TBI with GCS <12 and found an association with unfavor-
able outcome at 6 months [ 32 ].    More recently, Metting et al. found GFAP to be 
elevated in patients with axonal injury on MRI in patients with mild TBI at 3 months 
post-injury, but it was not predictive of global outcome at 6 months [ 62 ]. In a study 
by Papa et al. in 2012, GFAP was detectable in serum less than 1 h after a concus-
sion and was able to distinguish concussion patients from other trauma patients 
(without head injury) who had orthopedic injuries or who were in motor vehicle 
crashes [ 63 ]. In this same study, serum GFAP was signifi cantly higher in mild TBI 
patients with intracranial lesions on CT compared to those without lesions and pre-
dicted patients who required neurosurgical intervention [ 63 ]. Similarly, Metting 
et al. demonstrated that serum GFAP was increased in patients with an abnormal CT 
after mild TBI. These studies suggest that GFAP has a good specifi city for brain 
injury acutely after injury. 

 In amateur boxers, GFAP has also been found to be elevated in CSF samples 
obtained by lumbar puncture after a bout [ 45 ,  64 ]. Neselius et al. examined the CSF of 
30 Olympic boxers and 25 non-boxing matched controls at 1–6 days after a bout and 
after a rest period (>14 days). Both GFAP and S100β[beta] concentrations were sig-
nifi cantly increased after boxing as compared to controls. However, GFAP concentra-
tions remained elevated after the rest period but S100β[beta] did not. It was suggested 
that the presence of GFAP after the rest period indicated ongoing degeneration.   

    Biofl uid Biomarkers of Neuronal Injury 

    Neuron-Specifi c Enolase 

 Neuron-specifi c enolase (NSE) is one of the fi ve isozymes of the glycolytic enzyme 
enolase found in central and peripheral neuronal cell bodies and it has been shown to 
be elevated following cell injury [ 65 ]. NSE is also present in erythrocytes and 
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endocrine cells and has a biological half-life of 48 h [ 66 ]. This protein is passively 
released into the extracellular space only under pathological conditions during cell 
destruction. Several reports on serum NSE measurements of mild TBI have been pub-
lished [ 65 ,  67 – 70 ]. Many of these studies either utilized inadequate control groups or 
concluded that serum NSE had limited utility as a marker of neuronal damage. Early 
increased levels of NSE and MBP concentrations have been correlated with outcome 
in children, particularly those under 4 years of age [ 71 – 74 ]. A limitation of NSE is the 
occurrence of false-positive results in the setting of hemolysis [ 75 ,  76 ]. 

 Stalnacke et al. obtained blood samples from 44 female soccer players before 
and after a competitive game and found that both S100β and NSE were increased 
after the game. NSE was not related to the number of headers and other trauma 
events but S100β was [ 77 ].  

    Ubiquitin C-Terminal Hydrolase (UCH-L1) 

 A promising candidate biomarker for TBI currently under investigation is ubiquitin 
C-terminal hydrolase-L1 (UCH-L1). UCH-L1 was previously used as a histological 
marker for neurons due to its high abundance and specifi c expression in neurons 
[ 78 ]. This protein is involved in the addition and removal of ubiquitin from proteins 
that are destined for metabolism [ 79 ]. It has an important role in the removal of 
excessive, oxidized, or misfolded proteins during both normal and pathological con-
ditions in neurons [ 80 ]. Clinical studies in humans with severe TBI have confi rmed, 
using ELISA analysis, that the UCH-L1 protein is signifi cantly elevated in human 
CSF [ 81 ,  82 ], is detectable very early after injury, and remains signifi cantly elevated 
for at least 1 week post-injury [ 82 ]. Further studies in severe TBI patients have 
revealed a very good correlation between CSF and serum levels [ 83 ]. Increases in 
serum UCH-L1 have also been found in children with moderate and severe TBI 
[ 84 ]. Most recently, UCH-L1 was detected in the serum of mild and moderate trau-
matic brain injury (MMTBI) patients within an hour of injury [ 85 ]. Serum levels of 
UCH-L1 discriminated concussion patients from uninjured and non-head-injured 
trauma control patients who had orthopedic injuries or motor vehicle trauma with-
out head injury. Most notable was that levels were signifi cantly higher in those with 
intracranial lesions on CT than those without lesions, as well as those eventually 
requiring neurosurgical intervention [ 85 ].   

    Biofl uid Biomarkers of Axonal Injury 

    Alpha-II-Spectrin Breakdown Products 

 Alpha-II-spectrin (280 kDa) is the major structural component of the cortical 
membrane cytoskeleton and is particularly abundant in axons and presynaptic ter-
minals [ 86 ,  87 ]. It is also a major substrate for both calpain and caspase-3  cysteine 
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proteases [ 88 ,  89 ]. A hallmark feature of apoptosis and necrosis is an early cleav-
age of several cellular proteins by activated caspases and calpains. A signature of 
caspase- 3 and calpain-2 activation is cleavage of several common proteins such as 
cytoskeletal α[alpha]II-spectrin [ 90 ,  91 ]. Levels of spectrin breakdown products 
(SBDPs) have been reported in CSF from adults with severe TBI and they have 
shown a signifi cant relationship with severity of injury and clinical outcome [ 92 –
 98 ]. The time course of calpain-mediated SBDP150 and SBDP145 (markers of 
necrosis) differs from that of caspase-3-mediated SBDP120 (marker of apoptosis). 
Average SBDP values measured in CSF early after injury have been shown to cor-
relate with severity of injury, CT scan fi ndings, and outcome at 6 months post-
injury [ 99 ]. 

 Serum SBDP145 has also been measured in serum in children with TBI. Levels 
were signifi cantly greater in subjects with moderate and severe TBI than in controls 
and were correlated with dichotomized GOS at 6 months. This correlation did not 
hold true for mild TBI. More recently, however, serum levels of SBDP150 have 
been examined in patients with mild TBI and have shown signifi cant association 
with acute measures of injury severity, such as GCS score, intracranial injuries on 
CT, and neurosurgical intervention [ 100 ]. In this study, serum SBDP150 levels were 
much higher in patients with mild TBI/concussion than in other trauma patients 
who did not have a head injury [ 100 ].  

    TAU Protein 

 Following a concussion, axons appear to be most susceptible to damage. Two prom-
ising biofl uid biomarkers localized in the axons are tau protein and neurofi lament 
protein. A supposedly cleaved form of tau, c-tau, has been investigated as a poten-
tial biomarker of CNS injury. Tau is preferentially localized in the axon and tau 
lesions are apparently related to axonal disruption [ 101 ,  102 ]. CSF levels of c-tau 
were signifi cantly elevated in TBI patients as compared to control patients and these 
levels correlated with clinical outcome [ 103 ,  104 ]. Though levels of c-tau were also 
elevated in plasma from patients with severe TBI, there was no correlation between 
plasma levels and clinical outcome [ 105 ]. Total tau protein is highly expressed in 
thin, nonmyelinated axons of cortical interneurons [ 106 ], thus may be indicative of 
axonal damage in grey matter neurons. It has been found to be correlated with sever-
ity of injury in severe TBI [ 107 – 110 ]. Ost et al. found that total tau measured in CSF 
on days 2–3 post-injury discriminated between TBI and controls (normal pressure 
hydrocephalus) and also between good and bad outcome at 1 year per dichotomized 
GOS score [ 109 ]. However, total tau was not detected in serum throughout the 
study. In a study by Zetterberg et al. in amateur boxers, levels of total tau in CSF 
from lumbar puncture within 10 days of a bout were elevated in both boxers who 
had received many hits (>15) or high-impact hits to the head, as well as in boxers 
who reported few hits.  
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    Neurofi laments 

 Neurofi laments are heteropolymeric components of the neuron cytoskeleton that 
consist of a 68 kDa light neurofi lament subunit (NF-L) backbone with either 
160 kDa medium (NF-M) or 200 kDa heavy subunit (NF-H) side-arms [ 111 ]. 
Following TBI, calcium infl ux into the cell contributes to a cascade of events that 
activates calcineurin, a calcium-dependent phosphatase that dephosphorylates neu-
rofi lament side-arms, presumably contributing to axonal injury [ 112 ]. Phosphorylated 
NF-H has been found to be elevated in the CSF of adult patients with severe TBI as 
compared to controls [ 81 ]. Similarly, hyperphosphorylated NF-H has also been cor-
related with severity of brain injury in children [ 113 ]. In a study by Zurek et al. 
NF-H levels taken on the second to fourth days remained signifi cantly higher in 
patients with poor outcomes in comparison to patients with good outcomes. 
Additionally, NF-H was signifi cantly higher in those children with diffuse axonal 
injury on initial CT scan [ 113 ]. 

 NF-L has also been shown to be elevated in amateur boxers with mild TBI fol-
lowing a bout when measured in CSF after lumbar puncture [ 45 ,  64 ]. The levels 
were associated with the number of hits to the head, as well as subjective and objec-
tive estimates of the intensity of the fi ght.   

    Conclusion 

 In an effort to prevent CTE and long-term consequences of concussion/mild TBI, 
early diagnostic and prognostic tools are becoming increasingly important, particu-
larly in athletes and in military personnel, where concussions/mild TBI are common 
occurrences. The studies conducted on biofl uid biomarkers for mild TBI to date 
show great promise. Should serum biomarkers for TBI be validated and become 
widely available, they could have many roles. They could help with clinical decision 
making by clarifying injury severity and help monitor progression of injury and/or 
recovery. Biomarkers could have a role in managing patients at high risk of repeated 
injury and could be incorporated into guidelines for return to duty, work, or sports 
activities. 

  As a fi nal thought , we must continue the exploration and validation of bio-
markers for TBI, especially mild TBI. Ideally, biomarkers would provide infor-
mation on the pathophysiology of injury, improve stratifi cation, assist in the 
monitoring of injury progression, monitor response to treatment, and predict 
functional outcome. Despite the heterogeneity of TBI, there is a unique opportu-
nity to use the insight offered by biochemical markers to shed light on the com-
plexities of this injury process. The development of a clinical tool to help 
healthcare providers manage TBI patients more effectively and improve patient 
care is the ultimate goal.     
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