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Chapter 1
Introduction and Related Work

A large number of well known data sets in the social sciences have a tabular
form. Each row refers to a period of time, and each column represents a variable
that characterizes the state of some entity during a time period. These variables
naturally divide into those actionable variables we can control (which we will call
“action variables”) and those we cannot (which we will call “state variables”). For
example, data sets regarding school performance for various U.S. states contain
“state variables” such as the graduation rate of students in the state and the student
to staff ratio during some time frame, while the “action” variables might refer to
the level of funding provided per student during that time frame, the faculty salary
levels during that time period, etc. Clearly, policy makers U.S. state can attempt to
change the levels of funding per student and/or change the faculty salaries in an
attempt to increase the graduation rate. In a completely different setting, political
science data sets about the stability of a country (such as the data sets created by
the well known Political Instability Task Force [4]) may have “state variables” such
as the GDP of a country during a time period, the infant mortality rate during the
same time period and the number of people killed in political conflict in the country
during that time period, while “action” variables might include information about
the investment in hospitals or education during that time frame, the number of social
workers available, and so forth. A government might want to see what actionable
policies it can try to implement to achieve a certain goal (e.g., bringing the infant
mortality rate below some threshold).

These are just two examples of problems that are not easily solved using current
algorithms for reasoning about actions in AI or by AI planning systems. The main
reasons are the following:

1. The relationships between the actions and their impact on the state are poorly
understood;

2. A set of actions, taken together, might have a cumulative effect on a state that
might somehow be more than a naive combination of the effects of those actions
individually—which of course are not known anyway; and

A. Parker et al., Data-driven Generation of Policies, SpringerBriefs in Computer Science,
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2 1 Introduction and Related Work

3. The actions under consideration may not succeed—an attempt to raise hospital
funding may be blocked for reasons outside of anyone’s control. In essence,
little reliable quantitative information exists on the correlative aspects of multiple
actions and whether these are somehow conditioned on other variables.

In this work, we first propose (Sect. 1.1) the notion of an event KB (this is not
novel, but generalizes several social science data sets such as those mentioned
above). Chapter 2 defines the concept of “state change attempts” (SCAs for short)
representing policies devised with the objective of reaching a certain goal, and
formulates various problems related to finding “optimal” (in a sense we will
make precise) SCAs relative to a goal. We develop a host of results on the
computational complexity of finding optimal SCAs. In Chap. 3, we study different
kinds of effect estimators and arrive at one that is especially useful due to its
computational properties. In Sect. 3.3, we first present a straightforward algorithm
called DSEE_OSCA to compute optimal SCAs. We then develop a vastly improved
algorithm called TOSCA based on tries. Though tries are a well known data struc-
ture, the novelty of our work is rooted in how TOSCA uses tries to solve optimal
SCA computation problems with lower computational complexity. In Chap. 4, we
discuss the formal relationship between computing solutions to OSCA problems and
solving Markov Decision Processes (which we take as representatives of problems
in the area of planning under uncertainty). Finally, in Chap. 5, we briefly describe
an implementation of both algorithms, together with an experimental analysis (that
uses both synthetic and real-world education data) to demonstrate that TOSCA is
fast and can be effectively used on real-world data sets.

1.1 Preliminaries on Event KBs

An event KB is a relational database whose rows correspond to some time period
(explicit or implicit) and whose columns are of two types—state attributes and
action attributes. Throughout this work, we will assume the existence of some
arbitrary, but fixed set A D fA1; : : : ; Ang of action attributes (also referred to as
the “action schema”), and another arbitrary, but fixed set S D fS1; : : : ; Smg of state
attributes (also referred to as the “state schema”). As usual, each attribute (state or
action) A has a domain dom.A/, which in this work we assume to be finite. A tuple
with respect to .A; S/ is any member of dom.A1/ � � � � � dom.An/ � dom.S1/ �
� � � � dom.Sm/. We use t.Si / (resp. t.Aj /) in the usual way to denote the value
assigned to attribute Si (resp. Aj ) by a tuple. An event knowledge base K is a
finite set of tuples with respect to .A; S/. We assume all attributes A have domain
dom.A/ � R. We use A to represent the set dom.A1/ � � � � � dom.An/ and S to
represent the set dom.S1/ � � � � � dom.Sm/. We say a tuple is an action tuple if it
contains only values for the action attributes and that it is a state tuple if it contains
only values for the state attributes.
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A1 A2 A3 A4 S1 S2 S3 S4 S5

t1: 9,532 61.6 7.8 4.2 81.1 49.1 51.3 50.6 Yes

t2: 9,691 63.2 7.8 5.7 82.3 52.1 54.6 53.3 No

t3: 9,924 63.8 8.1 3.1 82.0 59.8 60.4 60.1 Yes

t4: 10,148 64.2 7.6 3.4 83.4 60.5 64.2 63.3 Yes

t5: 10,022 64.0 7.2 2.9 83.2 63.9 68.9 66.9 Yes

Fig. 1.1 Small instance of an event KB containing hypothetical school performance data

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 S1 S2 S3 S4 S5 S6
t1: 2500 5.0 6.5 5.5 350 120 70 450 430 12 150 950 45 21 130 15 41 12
t1: 2610 5.5 6.0 5.0 380 180 80 470 450 15 150 950 48 18 123 18 46 11
t2: 2750 5.0 6.0 5.5 360 180 80 410 490 21 150 960 42 25 145 21 35 9
t3: 2800 5.0 5.5 6.0 350 180 90 500 560 20 155 970 51 31 160 12 32 9
t4: 3200 6.0 5.5 6.0 350 190 90 510 565 25 155 1000 53 35 175 14 31 11
t5: 3350 6.0 5.5 6.0 400 200 95 510 570 27 160 1005 55 24 152 15 62 8
t6: 3400 6.0 5.5 5.5 450 200 100 535 565 30 160 1075 46 12 146 10 67 11
t7: 3500 6.0 5.5 5.5 420 220 100 515 540 32 150 1100 41 15 135 16 59 6
t8: 3550 6.0 5.5 5.5 420 210 100 570 600 32 120 1150 38 16 138 15 56 5
t9: 3900 6.0 5.5 5.5 520 210 110 550 600 35 130 1200 39 9 98 8 85 7
t10: 4010 6.0 5.5 5.5 550 215 120 550 605 40 135 1200 41 5 82 7 89 4

Fig. 1.2 Small instance of an event KB containing action and state data for a city government.
Each tuple represents 1 year

Throughout this work, we will refer to two sample datasets, portions of which
appear in Figs. 1.1 and 1.2. In the following examples we discuss these two datasets.

Example 1.1. In Fig. 1.1, we present a small portion of a school event KB
containing data related to school performance in some region. The columns labeled
A1; : : : ; A4 represent action attributes, i.e., variables that are subject to influence:

• A1: Funding ($/Student),
• A2: Salaries (% of Total Funding),
• A3: Student/Staff Ratio, and
• A4: Proficiency Increase Target.

while the columns labeled S1; : : : ; S5 represent state attributes, i.e., those that
depend on the values of action attributes and are not subject to direct influence:

• S1: Graduation (%),
• S2: Math Proficiency,
• S3: Reading Proficiency,
• S4: Proficiency Score, and
• S5: Target Reached (Y/N).

Math and reading scores obtained from standardized tests are combined into
one annual proficiency score. School administrators have the goal of increasing
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proficiency and graduation percentages by certain amounts. The policies they create
will involve influencing the action attributes towards this end. �

Example 1.2. The second dataset we consider gives rise to what we will call a
city event KB, a small example of which is given in Fig. 1.2. The KB contains
information regarding taxes, funding, how funding is allocated, crime rates, arrests,
and other aspects of interest for a city government. This kind of data has in
the past decade slowly become available to the public through open government
outlets such as www.data.gov, www.data.gov.uk, or the so-called data blogs such as
those maintained by The New York Times1 or The Guardian,2 among many others
harboring many different kinds of data.

In our simple example, action attributes are represented in the columns labeled
A1; : : : ; A12:

• A1: Overall city budget (in millions of dollars);
• A2: Corporate tax rate (%): The domain of this attribute can be assumed to be an

ordered set of values such as dom.A2/ D f0:0; 0:5; 1:0; 1:5; : : : ; 50:0g;
• A3: Personal income tax (%): The domain can be assumed to be as in A2;
• A4: Sales tax: The domain can be assumed to be as in A2;
• A5: Funding for police department (in millions of dollars);
• A6: Funding for fire department (in millions of dollars);
• A7: Funding for street lighting (in thousands of dollars);
• A8: Funding for traffic control (in thousands of dollars);
• A9: Funding for public works: roads and bridges (in thousands of dollars);
• A10: Funding for city hospital (in millions of dollars);
• A11: Funding for parks and recreation (in thousands of dollars); and
• A12: Funding for education (in millions of dollars).

The state attributes are given by the columns labeled S1; : : : ; S6, and can be
described as follows:

• S1: Government approval rating (% of the population);
• S2: Fire-related incidents involving serious property damage;
• S3: Petty crimes;
• S4: Felonies;
• S5: Arrests made; and
• S6: Lawsuits against the City.

It is clear that city officials have a certain amount of control over the action
attributes, while state attributes cannot be directly controlled. The city government
may want to create policies that decrease the occurrence of petty crimes and
felonies, or increase government approval ratings if elections are nearing.
Throughout the following chapters, we will use this setup as a running example
to show how our approach can be used towards reaching such goals. �

1http://data.nytimes.com/
2http://www.guardian.co.uk/data

www.data.gov
www.data.gov.uk
http://data.nytimes.com/
http://www.guardian.co.uk/data
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Another kind of event KB that could be used is one containing information
regarding the tactical level behaviors of organizations of interest, as well as
characteristics of their sources of support and relations with the state in which they
are based. Such data is available from efforts such as [5] and [13].

1.2 Related Work

There is substantial work in the AI-planning community on discovering sequences
of actions that lead to a given outcome (usually specified as a goal condition,
similar to what is done in this work), see [9] for an overview. However, AI planning
assumes the effects of actions to be explicitly specified. Similarly, another related
area is that of Reasoning about Actions [1, 10]; work in this area generally assumes
that descriptions of effects of actions on fluent predicates, causal relationships
between such fluents, and conditions that enable actions to be performed are
available. In similar work, [3] uses a Bayesian reasoning method to model inferences
about an agent’s likely behavior based on external observations.

Our work approaches a problem that at first seems quite similar to AI planning
in a fundamentally different and data-driven way, but making assumptions that are
quite different:

1. There is a very large number of actions to choose from, given by the set of all
possible ways in which the values of action attributes can be changed;

2. Actions attempting to change the value of action attributes are taken more or less
in parallel, and all attempted changes succeed probabilistically depending on the
entire set of attempted changes; and

3. The effects of the changed parameters on the state can only be determined by
appeal to past data.

Research within the Machine Learning community on the problem of classifica-
tion [8] is also related to our endeavor. The main differences between that research
and our own is that we are not only interested in classifying situations in past data
(this is actually aided by the fact that goal conditions are provided), but in how to
arrive once again at similar situations. As we have seen, this also involves analyzing
costs of performing actions and their probabilities of success. In Chap. 3, we will
consider the use of classification algorithms for the underlying implementation of
one of the main components of our formalism.

Another related approach is that of case-based reasoning (CBR) [7], where the
knowledge base consists of a collection of so-called cases that were stored as
specific examples of how a problem was solved in the past. In CBR, new problems
are solved by iterating through the following steps: retrieval of cases that refer to
situations that are similar to the present one; reuse of such cases in the context of the
present situation (this step may involve adapting the solutions); and store the new
case in the knowledge base in order to apply it again in the future. For instance, a
CBR approach to home repairs in the presence of a lamp that won’t turn on might
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have a set of repairs that have worked in the past: change the light bulb, make sure
that it’s plugged in, check the wiring, etc. Though our approach also relies on past
experience in order to find a solution, the main difference with CBR is that event
DBs do not consist of “recipes”; as we have seen, different effect estimators will
produce different solutions given the same input data.

Finally, another approach that is closely related to this one is that of abductive
queries in probabilistic logic-based models [11, 12, 15]. In that research line, a
model is assumed to exist describing the behavior of an agent of interest (which
can be an individual or a group) in the form of an action probabilistic (ap) logic
program [2, 6, 14] containing rules of the form:

A W Œ`; u� C1 ^ : : :^ Cn,

which can be read as follows:

If the environment in which entity E operates currently satisfies conditions C1; : : : ; Cn, then
the probability that E will take some Boolean combination of actions A is between ` and u.

Similar to our approach, abductive queries consist of a probabilistic goal describing
some desired combination of actions and probability bounds with which they should
be entailed from the program. The model also contains functions describing the
cost of changing the environment, the effect that such changes will have on the
entity being modeled, and how likely the transition is to succeed. Abductive queries
in ap-programs therefore correspond to a model-heavy approach to solving the
problem that we are now proposing to solve in a data-driven manner. The advantage
to the model-heavy approach is that answers to the queries can be explained to
the user by means of appealing to the model itself; on the other hand, the data-driven
approach proves to be much more scalable (cf. Chap. 5).
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Chapter 2
Optimal State Change Attempts

In this chapter, we formalize the notion of a state change attempt. The idea is that
a state change attempt, when successfully applied to a given tuple, will change the
action attributes with the hope that these changes will result in a change in the state.
For instance, considering the school data described in the previous chapter, SCAs
represent policies designed with a certain goal in mind; we provide an example in
which a change in the action variables that decreases class size may lead to better
proficiency scores.

Definition 2.1 (State Change Attempt (SCA)). A simple state change attempt is
a triple .Ai ; vf; vt/ where vf; vt 2 Dom.Ai / for some Ai 2 A. A (non-simple)
state change attempt (SCA for short) is a set f.Ai1; vfi ; vt1/; : : : ; .Aik ; vfk; vtk/g of
simple state change attempts such that ij ¤ ik for all j ¤ k.

When clear from context, we will refer to these concepts as simple changes
and changes, respectively. Intuitively, a simple state change attempt modifies one
attribute, while a state change attempt may modify more than one.

Definition 2.2 (Applicability of an SCA). Given a tuple t , an action attribute Ai ,
and vf; vt 2 Dom.Ai/, a simple state change attempt .Ai ; vf; vt/ is applicable
with respect to t if and only if t.Ai / D vf . The result of applying a simple state
change attempt that is applicable with respect to t is t 0 where t 0.Ai / D vt and for
state attribute Sj ¤ Si , t 0.Aj / D t.Aj /. We use �.t; .Ai ; vf; vt// to denote t 0, the
tuple resulting from the application of SCA .Ai ; vf; vt/ to t .

A state change attempt SCA D f.Ai1; vf1; vt1/; : : : ; .Aik ; vfk; vtk/g is applicable
with respect to t if and only if all .Aij ; vfj ; vtj / for 1 � j � k are applicable with
respect to t .

Example 2.1. A simple state change attempt with respect to the school data from
Example 1.1 could be a1 D .A1; 8;700; 8;850/, indicating that funding is increased
from $8,700 to $8,850 per student, or a2 D .A2; 62:3; 65/ indicating that salaries
are increased from 62.3 to 65% of the budget. Let SCA D fa1; a2g be a state
change attempt. If we assume that the values of the action attributes in the current

A. Parker et al., Data-driven Generation of Policies, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4939-0274-3__2, © The Author(s) 2014
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environment are t D .8;700; 64; 7; 3:2/, then a1 is applicable with respect to t ,
but a2 is not. The result of applying a1 to t is �.t; .A1; 8;700; 8;850// D t 0 D
.8;850; 64; 7; 3:2/. �

Example 2.2. Looking now at the city government data from Example 1.2, a simple
state change attempt could be a3 D .A3; 6:5; 6:0/, indicating that personal income
tax is lowered from 6.5 to 6%, or a4 D .A10; 15; 21/, indicating that the funding for
city hospitals is increased from $12M per year to $15M per year. Let SCA D fa3; a4g
be a state change attempt. Assuming that the values of the action attributes in the
current environment correspond to the values of t1 in Fig. 1.2:

t1 D �
2;500; 5:0; 6:5; 5:5; 350; 120; 70; 450; 430; 12; 150; 950

�

then both a3 and a4 are applicable. The result of applying SCA is �.t; SCA/ D
�
2;500; 5:0; 6:0; 5:5; 350; 120; 70; 450; 430; 15; 150; 950

�
:

�

The result of applying a state change attempt is therefore the result of applying each
simple change. However, these changes do not occur without cost.

Definition 2.3 (Cost of a simple change attempt). Let a D .Ai ; vf; vt/ be a
simple state change attempt. The cost of attempting a is given by a real-valued
function cost W fA1; : : : ; Amg � R � R ! R, where cost.Ai ; vf; vt/ is the cost of
changing action attribute Ai from vf to vt .

Cost functions will be highly dependent on the application domain, and we
assume them to be provided by a user. The cost of an attempt, cost.SCA/ DP

a2SCA cost.a/, is the sum of the costs of the simple state change attempts in SCA.

Example 2.3. Consider the same simple changes a1 D .A1; 8;700; 8;850/ and a2 D
.A2; 62:3; 65/ from Example 2.1, and a third simple change a3 D .A4; 3:8; 3:9/ (i.e.,
increment the proficiency increase target from 3.8 to 3.9). A possible cost function
could be defined in terms of monetary cost, in which: cost.a1/ D 150 � s (where
s is a constant set to the number of students affected), cost.a2/ D 2:7 � A1, and
cost.a3/ D 0 (no monetary cost associated with changing the proficiency increase
target). �

Example 2.4. A different cost function may be defined for the city government
dataset, perhaps incorporating the political capital or risk necessary to undertake
government actions. Consider again the state change attempt SCA D fa3; a4g from
Example 2.2 where a3 D .A3; 6:5; 6:0/ and a4 D .A10; 15; 21/. Lowering income
tax may require striking deals with opposing political parties, and the effect on the
budget may be negative at first, thereby making a3 both financially and politically
costly: cost.a3/ D 200 C 0:5 � d , where d indicates how many half percentage
points the tax is lowered (1 for a3). Influencing the city’s policy towards a higher
hospital budget may require political actions that are less costly given the expected
benefits of such a change: cost.a4/ D 5 C 2 � d 0, where d 0 indicates the number of
$100K increments are being proposed (60 for a4). �
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To this point, we have looked at state change attempts that are always successful.
However, in general, we cannot expect this to be the case—the funding per
student may not change simply because one attempted to change it. We will
assume state change attempts are only probabilistically successful—they only
induce the change attempted according to a specified probability. Further, we will
assume that the probability of any simple change occurring successfully depends on
the entire set of changes attempted. For instance, when attempting to increase the
proficiency target alone, one may expect a relatively small probability of the change
actually occurring—the teacher’s union is unlikely to accept an increase in their
expected performance with no additional compensation. However, when attempting
to increase the proficiency target along with an increase in teacher salaries, as in
Example 2.3, there will be a higher probability that both changes will actually occur.

In general, such a change can cause four possible outcomes. It may be that both
the proficiency target increases and the salaries increase, or that the proficiency
target increases while the salaries do not change, or that the proficiency target stays
the same while the salaries increase, or that both do not change. The probability
of these outcomes is dependent on the total state change attempt: the school board
is more likely to accept a salary increase along with an increase in the proficiency
target while the teacher’s union is more likely to accept a proficiency target increase
as long as it also comes with a salary increase.

Example 2.5. Consider the situation described in Example 2.3. Here the state
change attempt a2 increases teacher salaries from 62.3 to 65%. On its own, this
policy may anger taxpayers (who would foot the bill for the increase) and may only
have a 10% probability of succeeding. Likewise, increasing per student funding
might have a 15% probability of success. However, if the taxpayers happen to be
willing to increase teacher salaries, then they will also tend to approve per student
funding increases, perhaps leading to a joint probability of 9% that both of these
will occur when attempted together.

Similar probability dependencies may be seen in the case of state change attempts
in Example 2.4. The city government may be more likely to increase funding for the
police department if other public safety increases are already being proposed (such
as an increment of the budget for street lighting). Similarly, any policy involving an
increment in funding is more likely to succeed along with an increment in the overall
budget, as opposed to in combination with a reduction in funding for a different
item. �

Let SCA and SCA0 � SCA be state change attempts; suppose we have the
conditional probabilities pOccur.SCA0jSCA/—this is the probability that only the
actions in SCA0 occur given that SCA is attempted. Such probabilities can either
be derived from historical data or be explicitly stated by a user. When we say
that a state change attempt SCA is “attempted” for a tuple t describing the current
situation, this means that each SCA0 � SCA has the chance pOccur.SCA0jSCA/ of
being successful, i.e., of having �.t; SCA0/ be the resulting tuple.
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Example 2.6. Consider once again some state change attempts from Example 2.3:
a1 D .A1; 8;700; 8;850/, and a2 D .A2; 62:3; 65/. If we apply the state change
attempt fa1; a2g, there are four possible outcomes:

1. a1 and a2 could occur, increasing the funding per student to $8;850 as well as
increasing teachers’ salaries to 65% of the budget;

2. a1 could occur without a2, increasing the funding per student without changing
the budget teacher’s salaries fraction of the budget;

3. a1 could fail while a2 occurs, leaving funding per student at $8;700 but increasing
teacher salaries; or

4. Both fail, leaving things as they are.

The probabilities of these outcomes are respectively given by the state change
conjunction strategy as follows:

pOccur.fa1; a2g j fa1; a2g/; pOccur.fa1g j fa1; a2g/;
pOccur.fa2g j fa1; a2g/, and pOccur.; j fa1; a2g/.

�

In the next section we will present effect estimators, which constitute an important
part of the policy generation process.

2.1 Effect Estimators

The goal in this work is to allow an end user to take an event KB K and a
goal G (some desired outcome condition on state attributes) that the user wants
to achieve and find an SCA that “optimally” achieves goal G in accordance with
some objective function (such as maximizing the probability of goal G being
achieved while minimizing cost). We assume without loss of generality that all goals
are expressed as standard conjunctive selection conditions [3] on state attributes.
We now define effect estimators.

Definition 2.4 (Effect Estimator). For action tuple t and goal G, an effect esti-
mator is a function ".t; G/ ! Œ0; 1� that maps a tuple and a goal to a probability
p 2 Œ0; 1�.

Intuitively, ".t; G/ specifies the conditional probability of goal G holding given
that we are in a situation where the action attributes are as specified in t . This
quantity can be estimated in many ways, some of which will be investigated later
on in Chap. 3. As an initial example, one can imagine using some machine learning
algorithm as an effect estimator to determine how often a school’s reading score
is above some number k given that the student-teacher ratio, funding per student,
teacher salaries, etc. have some specific values.
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2.2 State Change Effectiveness

We assume an environment where, just because a state change attempt is performed,
it is not necessarily the case that all parts of the state change attempt will actually
accomplish the attempted change. When one attempts to change the situation via
a state change attempt SCA, any subset of SCA may succeed. For instance, if a
certain policy involves decreasing the student/staff ratio and increasing the funding
per student, it may be that the student/staff ratio increases as expected, but that the
funding per student remains the same. Thus, to truly gauge the effectiveness of a
state change attempt, we must consider the probability of each subset of the attempt
occurring.1

Definition 2.5 (State Change Effectiveness). The probability of a state change
attempt SCA D f.Ai1; vf1; vt1/; : : : ; .Aik ; vfk; vtk/g satisfying goal G when applied
to the action tuple t is

pEff.t; G; SCA; "/ D
X

SCA02P.SCA/

pOccur.SCA0 j SCA/".�.t; SCA0/; G/:

The computation of pEff.t; G; SCA; "/ works by summing over all the state
changes that may occur given that SCA is attempted: since any subset of SCA
can occur, this summation ranges over SCA0 � SCA. For each SCA0 that may
occur, one multiplies its probability of occurring given that SCA was attempted
(pOccur.SCA0jSCA/) times the effectiveness of the given attempt according to "

(recall that �.t; SCA0/ is the action tuple resulting from the application of the state
change SCA0 to the original action tuple t). The following result shows that for
arbitrary effect estimators, computing state change effectiveness is intractable.

Proposition 2.1. For action attributes A, state attributes S, condition G, state
change attempt SCA, action tuple t , and effect estimator ", deciding whether
pEff.t; G; SCA; "/ > 0 is NP-hard. Furthermore, if ".:/ can be computed in
polynomial time with respect to the action schema, the problem is NP-complete.

Proof. Membership In NP: We show that deciding if pEff.t; G; SCA/ > 0 is in
NP with a witness SCA0 � SCA such that pOccur.SCA0/ � .1 � pOccur.SCA n
SCA0// > 0: Since pEff.s; G; SCA; "/ is a sum of non-negative terms, such an SCA0
must exist when pEff.t; G; SCA; "/ > 0, and this can be checked in polynomial time
with respect to jA j if ".:/ can be computed in this time.

NP-hardness: We show by reduction from the NP-complete subset-sum problem,
whereby we are given a finite set of integers I and an integer c and are asked to
decide if there is a subset I 0 � I such that

P
i2I 0 i D c [1]. Let I D fi1; : : : ; ing

and let jAj D fA1; : : : ; Ang with Dom.Ai/ D f0; iig for Ai 2 A. Let action

1In this work, we assume that each simple change attempt either succeeds or fails completely, i.e.,
no partial effects can occur.
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tuple t be the all-zero n-tuple. Define SCA D f.Aj ; 0; ij / j 1 � j � ng, and
define all pOccur.SCA0/ to be zero unless

P
A2A �.t; SCA0/.A/ D c, in which

case pOccur.SCA0/ D 1=2. let G be the condition >, " is a constant function that
returns 1 for any KB and conditions, and suppose K is the empty event KB. Under
these conditions pEff.t; G; SCA; "/ > 0 if and only if there is a subset of I summing
to c.

.)/: Suppose pEff.t; G; SCA; "/ > 0 to show there is a subset of I summing to c.
Since pEff.t; G; SCA; "/ > 0, there is SCA0 � SCA such that:

pOccur.SCA0/.1 � pOccur.SCA n SCA0// > 0:

This implies that pOccur.SCA0/ > 0, which in turn implies that for t 0 D �.t; SCA0/,P
A2A t 0.A/ D c. Since t is the zero n-tuple, all non-zero t.A/ result from changes

in SCA0, so we have that
P

.Aj ;0;ij / ij D c. This gives the set I 0 D fij j .Aj ; 0; ij / 2
SCA0g which describes a subset of I whose sum is c.

.(/: Let I 0 � I be the subset of I such that
P

ij2I 0 ij D c. Now consider state
change SCA0 D f.Aj ; 0; ij / j ij 2 I 0g. Clearly SCA0 � SCA and .�.t; SCA0/; �/ 2
�G.K /, so

pOccur.SCA0/ � .1 � pOccur.SCA n SCA0// (2.1)

will be a term in the sum defining pEff.t; G; SCA; "/. Since
P

ij2I 0 ij D c we know
that for t 0 D �.t; SCA0/,

P
A2A t 0.A/ D c and therefore that pOccur.SCA0/ > 0.

Since .1 � pOccur.SCA n SCA0// is at least 0:5, this is the only term in Eq. 2.1 that
may potentially be zero, proving that Eq. 2.1 is non-zero. Further, since all terms in
the sum defining pEff.t; G; SCA; "/ are zero or positive, this suffices to prove that
pEff.t; G; SCA; "/ > 0. �

2.3 Optimal State Change Attempts

We now present various problems related to finding optimal state change attempts or
policies. We assume that we are given A D hA1; : : : ; Ani and S D hS1; : : : ; Smi, an
event KB K , an action tuple t describing the current values of the action attributes,
a goal G over S, and functions cost and pOccur as mentioned earlier:

1. The Lowest Cost SCA Problem. Given real number �, does there exist an appli-
cable change attempt SCA such that cost.SCA/ � � and pEff.t; G; SCA; "/ > 0?

2. The Highest Probability SCA Problem. Given a real number p 2 Œ0; 1�, does
there exist a change attempt SCA such that pEff.t; G; SCA; "/ 	 p?

3. The Optimal Threshold Effectiveness Problem. Given a threshold p 2
Œ0; 1�, and cost k, does there exist a change attempt SCA such that
pEff.t; G; SCA; "/ 	 p and cost.SCA/ � k? This problem is the result of
combining both the Highest Probability and Lowest Cost problems stated above.
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4. The Limited Cardinality SCA Problems. Given a positive integer h, does there
exist an SCA such that jSCAj � h and SCA satisfies one of the conditions from the
problems above? For instance, the limited cardinality highest probability SCA
will, given a real number p 2 Œ0; 1�, tell if there exists a change attempt SCA
such that pEff.t; G; SCA; "/ 	 p and jSCAj � h.

All of these problems are stated as decision problems that ask whether an SCA
satisfying certain conditions exists. Search problems, to find such an SCA, can be
analogously stated. We refer to any state change attempt that is a solution to one
of these problems (say, problem P ) as an optimal state change attempt (OSCA, for
short) with respect to P .

Theorem 2.1. If the effect estimator used can be computed in PTIME, the decision
problems associated with the different definitions of optimal state change attempts
belong to the following complexity classes:

1. The Lowest Cost SCA problem is NP-complete.
2. The Highest Prob. SCA problem is #P -hard and in PSPACE.
3. The Optimal Threshold Effectiveness Problem is #P -hard and in PSPACE.
4. All Limited Cardinality SCA problems are in PTIME.

Proof. We prove each part in turn:

1. Membership in NP: Let " be an effect estimator that can be computed in
polynomial time with respect to jAj. A witness change attempt SCA, along with
SCA0 � SCA such that cost.SCA/ � �, pOccur.SCA0/.1 � pOccur.SCA n
SCA0// � ".t 0 D �.t; SCA0/; G/ > 0, and .�.t; SCA0/; �/ 2 �G.K / (implying
pEff.t; G; SCA; "/ > 0) can be verified in polynomial time with respect to jAj.
NP-Hardness: The NP -hardness proof from Proposition 2.1 can be extended for
this purpose by simply assuming that the only possible values in Dom.Ai/ are
0 and ij (cf. the reduction in the proof) and assigning � to be one greater than
the sum of state change attempt costs. Therefore, any subset of SCA as defined
for which there exists a subset of I summing to c can be seen as a state change
attempt with the required property.

2. # P-hard: Let F be a SAT formula with variables v0; : : : ; vn, and N be a number.
The problem of determining if the number of solutions to F is greater than or
equal to N is #P-complete [2, 4]. We let there be an action attribute Ai for i D
0; 1; : : : ; n, with domain Dom.Ai/ D f0; 1g. Let t.Ai / D 0 in the action tuple t

for all Ai . All applicable simple state change attempts have the form .Ai ; 0; 1/.
Define the cost function to always return 0. We let pOccur always be 0:5, and
let ".C1; C2/ be one if C2 D F and C1 exactly specifies a tuple t 0, where t 0
satisfies F , and zero otherwise. Define p to be N � 0:25. The number of solutions
to F is greater than or equal to N if and only if there is an applicable state
change attempt SCA such that the cost of SCA is less than or equal to 0 and
pEff.t; F; SCA; "/ 	 p.
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Membership in PSPACE: All possible state change attempts can be checked
by keeping track of only one at a time, which can clearly be done within the
polynomial space constraint.

3. Analogous to part 2.
4. Since the size of the state change attempt is at most h, the space of possible

state change attempts is bounded by a polynomial in jAj. To see why this is the
case, it suffices to recall that each Ai 2 A has a finite domain dom.Ai /, that
a state change attempt can specify at most one simple state change attempt per
attribute in A, and that C n

h 2 O.nh/, where n D jAj. Therefore, in the worst
case we have to check

P
A�A;jAj�h

�Q
Ai2A dom.Ai /

�
SCAs, which is a quantity

in O.nh/. �
In summary, in the proof of Theorem 2.1, all NP-hard reductions use the results of
Proposition 2.1, the #P -hard reductions use #SAT (the language fhF; nig, where F

is a formula with exactly n solutions), membership in NP is shown by providing
a witness, and membership in PSPACE and PTIME are shown by sketching
algorithms, with the necessary properties, which are discussed in more detail in
Sect. 2.4. In all cases, the source of the complexity can be seen to stem from jAj.

2.4 Basic Algorithms for Computing OSCAs

We begin by giving an explicit polynomial time algorithm for solving the limited
cardinality SCA problems; this corresponds to the procedure discussed in the proof
of Theorem 2.1. We will then show how to extend this algorithm to solve all the
problems posed in the last section.

This algorithm works by first enumerating each possible state change attempt
with size at most h, then choosing the one which solves the appropriate problem.
As discussed in the proof of Theorem 2.1, since there are only O.jAjh/ such state
change attempts, this algorithm runs in PTIME with respect to the number of action
attributes jAj. The algorithm for enumerating state change attempts of size at most
h along with their cost and probability of effectiveness is given as Algorithm 1, and
we can show that this algorithm runs in time in O.jAjh/.

Proposition 2.2. Algorithm 1 runs in time in O.jAjh/ and returns all .SCA; c; ef /

where jSCAj � h, c D cost.SCA/ and ef D pEff.t; G; SCA; "/.

Proof. The size of R is at most .jAj � maxi .jdom.Ai/j//h, and Algorithm 1
terminates in O.jRj/ steps. Since we consider maxi .jdom.Ai/j/ to be a constant,
this is O.jAjh/. Further, to see that R is correct, clearly c and ef are correct
for each .SCA; c; ef / (see line 10), so it remains to show that all SCA of size
� h are included in R. Consider any state chance attempt SCA to show there is
a .SCA; c; ef / in R. We show this by induction on jSCAj. As a base case, when
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Algorithm 1 limitedSCASet.t; G; "; h/

Returns the set .SCA; c; ef /, where c is the cost of state change attempt SCA and
ef is the probability of effectiveness of SCA
1: Let R D ; // the set to be returned.
2: Add .;; 0; pEff.t; G;;; "// to R. // Initialize R with empty state change attempt.
3: for each Ai 2 A do
4: for each value v 2 dom.Ai / do
5: continue if v D t .Ai / // Go to next value, t won’t be changed by this SCA.
6: // iterate over all members of R, growing those that are small enough.
7: for each .SCA; c; ef / 2 R do
8: continue if jSCAj D h.
9: Let SCA0 D SCA[ f.Ai ; t .Ai /; v/g.

10: Let c0 be the cost of SCA0 and ef 0 be pEff.t; G; SCA0; "/.
11: Add .SCA0; c0; ef 0/ to R.
12: end for
13: end for
14: end for
15: return R

jSCAj is zero, .SCA; c; ef / is in R. Supposing all SCA of size k are in R to show
that any SCAkC1 of size k C 1 is in R. Let SCAk [ f.A�i ; vf; vt/g be SCAkC1.
Because jSCAkj has size k, there is .SCAk; c; efk/ in R. Therefore when we run
line 11 with SCA0 D SCAk, Ai D A�i and v D vt , then .SCAkC1; ckC1; efkC1/

will be added to R. Thus all SCA of size less than or equal to k C 1 will be in R as
.SCA; c; ef / with correct c and ef . �

Using Algorithm 1, we can now compute solutions to each of the limited cardinality
SCA problems.

• Lowest Cost Limited SCA Algorithm: For cost threshold �, let R be lim-
itedSCASet.t; G; "; h/, eliminate all .SCA; c; 0/ from R, then eliminate all
.SCA; c; ef / from R where c > �. Return true if R is non-empty, false otherwise.
.SCA; c; ef / 2 R has minimal c.

• Highest Probability Limited SCA Algorithm: For probability threshold p, let
R be limitedSCASet.t; G; "; h/, eliminate all .SCA; c; ef / where ef < p and
return true if R is non-empty, false otherwise.

• Optimal Threshold Effectiveness Limited SCA Algorithm: For probability
threshold p and cost threshold �, let R be limitedSCASet.t; G; "; h/, and
eliminate all .SCA; c; ef / from R where either c > � or ef < p. Return true if
R is non-empty, false otherwise.

Each of those algorithms correctly computes the associated decision problem, as
a corollary of Proposition 2.2.

Corollary 2.1. Each of the following algorithms correctly computes the associated
decision problem: Lowest Cost Limited SCA Algorithm, Highest Probability Limited
SCA Algorithm, and Optimal Threshold Effectiveness Limited SCA Algorithm.
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To extend this technique to the non-limited, general versions of the various
problems, one simply needs to solve the limited version of the problem with h equal
to jAj; however, in this case the algorithm will no longer run in polynomial time
(cf. Theorem 2.1).

Again, each of the corresponding algorithms will correctly compute the
associated decision problem, as a corollary of Proposition 2.2.
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Chapter 3
Different Kinds of Effect Estimators

In this chapter we introduce several sorts of effect estimator, which yield the
likelihood of a given action tuple satisfying a given goal condition G. An
effect estimator essentially answers the question: “if I succeed in changing the
environment in this way, what is the probability that the environment satisfies my
goal?”. We also present the TOSCA algorithm, an optimized approach to computing
optimal state change attempts when using a special kind of effect estimator.

3.1 Learning Algorithms as Effect Estimators

In this section, we describe how to take any supervised learning algorithm [2]
(i.e., neural nets, decision trees, case based learning, etc.) and apply it to the
event knowledge base K to get an effect estimator. Supervised learning algorithms
require training data with categorization for that data as positive or negative
instances of a given category. From that training data, they construct a classifier,
or a procedure that classifies future cases—even those not already seen.

From a given goal condition G and knowledge base K , we can construct training
data to which we can apply any standard machine learning technique. To do this, we
categorize each member of K according to G: that is, if it satisfies G then the tuple
is a positive instance, while if it does not the tuple is a negative instance. We then
use only the action portion of the tuple along with these categorizations to train a
decision tree, a neural network, a support vector machine or some other classifier.
The resulting classifier will be the effect estimator—it will tell for any given action
tuple if the resulting state attributes are likely to be a positive instance (satisfying
the goal G) or not.

We abstractly model a machine learning algorithm as a learner, which, given the
appropriate information, will produce a classifier.

A. Parker et al., Data-driven Generation of Policies, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4939-0274-3__3, © The Author(s) 2014
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Definition 3.1 (Classification Algorithm). For event KB K and goal condition
G, a classification algorithm is a function learner W .K ; G/ 7! classifier, where
classifer is a function from action tuples to the interval Œ0; 1�.

Example 3.1. A neural network fits this definition in the following way [3]: we first
define learner to be a function that generates a neural network with input nodes
for each action attribute and exactly one output node with a domain of Œ0; 1�. The
learner function then trains the network via backpropogation according to K and
G, where those tuples in K that satisfy G are positive instances (expecting the
output node to have value 1) and those tuples in K that do not satisfy G are negative
instances (expecting the output node to have a value of 0). The resulting network is
the classifier function, and will, given a set of values for the action attributes, return
a value in the interval Œ0; 1�. �

We can use a classification algorithm to create a learned effect estimator.

Definition 3.2. Given a classification algorithm learner, a learned effect estimator
is defined to be "lrn.learner; K /.t; G/. We define the learned effect estimator to
return learner.K ; G/.t/.

Example 3.2. If we consider the learning algorithm to be C4.5, then "lrn.C 4:5; K /

.t; G/ will first construct a decision tree T according to samples from K classified
according to G. Then we will query the decision tree T to classify the action tuple t ,
and this classification will be our return value—1 if t is classified the same as tuples
satisfying G, and 0 if not (recall, t is an action tuple and the goal G is a formula
over state attributes, so there is no way to check if t satisfies G directly). �

3.2 Data Selection Effect Estimators

In this section we examine the special case of an effect estimator that uses selection
operations in a database to create an estimation. For our purposes, selection
operations will be denoted �G.K /, where K is an event KB and G is some
goal condition on the state tuples. The �G.K / operation returns the subset of K
satisfying the condition G.

Definition 3.3 (Data Selection Effect Estimator). For goal G and action tuple t ,
a data selection effect estimator is a function that takes an event knowledge base K
as input and returns an effect estimator: "� W K 7! .t; G/ 7! p, where p 2 Œ0; 1�.
We require the following conditions to hold:

1. It is possible to implement "� with a fixed number of selection operations on K ,
and

2. "�.K /.t; G/ D 0 whenever there does not exist any tuple in K whose action
attributes match t .
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A data selection effect estimator differs from a normal effect estimator in that it
depends explicitly on selection from event KB K . While data selection effect
estimators are limited to using only selection operators, we will see that there are
many ways to specify the relationship between G and the situation described by t

under this limitation (cf., for instance, Definitions 3.4, and 3.5).
In the following, we will slightly abuse the notation used for selection operators

in databases by writing �t .K / to denote the selection of all the tuples in K that
have the values described by t for the corresponding attributes.

Definition 3.4 (Data Ratio Effect Estimator). The data ratio effect estimator
returns the fraction of the time that G holds out of all times when the attributes
in t are matched.

"�r .K /.t; G/
defD
( j�t^G.K /j
j�t .K /j W j�t .K /j > 0

0 W j�t .K /j D 0

The data ratio effect estimator returns the marginal probability of G occurring
given that the values specified by the action tuple t occur.

Example 3.3. Suppose we have a school metrics database containing only three
columns: class size, teacher salary and graduation rate. The class size and teacher
salary are action attributes, while the graduation rate is a state attribute. We want to
determine from the data what fraction of the time a graduation rate is at least 95%
for an average class size of 20 and an average teacher salary of $60,000. According
to "�r , this fraction is the fraction of tuples in the database with class size 20 and
teacher salary $60,000 that have a graduation rate over 95% divided by the total
number of tuples in the database with class size 20 and teacher salary $60,000. �

Example 3.4. We can also look at how a data ratio effect estimator would operate
on the city government database. Suppose we only have the columns Funding
for Police Department, Funding for Street Lighting, and Petty Crimes, where the
two former are action attributes and the latter is a stat attribute. In this case, we
may want to determine what fraction of the time the incidence of petty crimes is
above 125 occurrences when funding for the police department is below $400M
and the funding for street lighting is below $85K. Using "�r , we divide the number
of tuples in the database where A5 � 400, A7 � 85, and S3 	 125 by the number
of tuples where A5 � 400 and A7 � 85. For the event database in Fig. 1.2, this
yields 1=3. �

One important feature of the data ratio effect estimator is that when there is
no information in the database on a given tuple, the data ratio effect estimator
assumes the tuple to be a negative instance. This will allow the quick elimination of
possibilities not contained in the database, and will reduce the search space needed
to compute optimal state change attempts.

Further examples of data selection effect estimators include cautious or
optimistic ratio effect estimators, which take the confidence interval into account.
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Definition 3.5 (Cautious Ratio Effect Estimators). The cautious ratio effect
estimator returns the probability of G given t to be the low end of the 95%
confidence interval:

"�c95K .t; G/
defD "�r .K /.t; G/ � 1:96 �

s
"�r .K /.t; G/.1 � "�r .K /.t; G//

j�t .K /j

(if �t .K / is empty, "�c95.K /.t; G/ is defined to be zero).

There is a whole class of cautious ratio effect estimators: one for every confidence
level (90, 80, 99%, etc.). There are also optimistic ratio effect estimators, which
return the high end rather than the low end of the confidence interval.

Since data selection effect estimators are computed via a finite number of
selection operations, effect estimators can always be computed in time in O.jK j/.
The complexity of finding SCAs changes when we insist on using data selection
effect estimators. Problems that were NP-complete or #P -hard with respect to the
size of the action schema are polynomial in jK j when only data selection effect
estimators are allowed, as discussed in the next section.

3.3 Computing OSCAs with Data Selection Effect Estimators

Using data selection effect estimators, we can devise specific algorithms for finding
optimal state change attempts. In this section we use only the data ratio effect
estimator (Definition 3.4). Algorithm 2 presents the DSEE_OSCA algorithm to
solve the optimal threshold effectiveness problem.

The DSEE_OSCA algorithm works by selecting all tuples in the event KB K
satisfying the goal condition, then adding the pair .SCA; f / to a data structure
Dat1 where f is the chance that SCA, when successful, results in a state satisfying
the goal G (i.e., "�r .K /.t; G/). In the next loop, two things happen: (i) f is
multiplied by the probability that SCA is successful, and (ii) we iterate through
all state change attempts and sum the probability of occurrence of each subset of
SCA with that subset’s probability of satisfying the goal G, adding the result to
data structure Dat2. At this point Dat2 contains pairs .SCA; ef /, where ef is
the probability of effectiveness of SCA according to Definition 2.5. The algorithm
then prunes all state change attempts without sufficiently high probabilities of
effectiveness, and returns the one with the lowest cost.

The following propositions state that the DSEE_OSCA algorithm is correct, as
well as analyze its running time.

Proposition 3.1. Algorithm 2 computes a state change attempt SCA with the
following properties:
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Algorithm 2 DSEE_OSCA(KB K , Goal G, Action tuple env, p)
A brute force algorithm for computing a state change attempt with minimal cost and
probability of effectiveness at least p

1: Let Dat1D ; // Dat1 will contain state change attempts and their probability of occurrence.
2: // Iterate through all tuples satisfying G in K .
3: for t 2 �G.K / do
4: // Create SCA such that �.env; SCA/ equals t on action attributes.
5: SCA D f.A; env.A/; t .A// j env.A/ ¤ t .A/g
6: If .SCA; �/ 2 Dat1 then continue. // Already visited
7: Let f D "�

r .K /.t; G/.
8: Add .SCA; f / to Dat1.
9: end for

10: Let Dat2D ;
11: for .SCA; f / 2 Dat1 do
12: Let nextF D pOccur.SCAjSCA/ � f .
13: for .SCA0; f 0/ 2 Dat1 do
14: if SCA0 ¨ SCA then
15: nextF D nextF C pOccur.SCA0jSCA/ � f 0

16: end if
17: end for
18: Add .SCA; ef / where .SCA; nextF / to Dat2.
19: end for
20: Remove any .SCA; ef / from Dat2 where ef < p.
21: return argmin.SCA;ef /2Dat2.cost.SCA//.

1. pEff.env; G; SCA; "�r .K // 	 p, and
2. There is no other applicable state change attempt SCA0 such that cost.SCA0/ � k

and pEff.env; G; SCA0; "�r .K // 	 p.

Proof. To show this, it suffices to show that in line 19 for all .SCA; ef / 2 Dat2,
ef D pEff.env; G; SCA; "�r .K //. Consider any .SCA; ef / 2 Dat2 on that line,
and note that due to the loop starting in line 9,

ef D
X

.SCA0 ;f 0/2Dat1;SCA0�SCA

f 0 � pOccur.SCA0 j SCA/:

Since for all .SCA0; f 0/ 2 Dat1, f 0 D "�r .K /.�.SCA0; env/; G/, this suffices to
show that ef D pEff.SCA; G; env; "�r .K //.

Finally, lines 20 and 21 guarantee that the only SCAs returned are those that have
probability of effectiveness at least p and cost at most k. �

Proposition 3.2. Algorithm 2 runs in time O.jK j2/.
Proof. The running time of the algorithm can be divided into two parts. First, the
loop in line 3 runs at most jK j times. In each iteration, we compute line 7, which
takes at most 2 � jK j computations for "�r (in the worst case, both select operations
return the entire database). This gives a total running time of O.jK j2/ for the
first loop. Then we get to the loop in line 11, which since jDat2j can be no larger
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than jK j, will run O.jK j/ times. The contained loop starting in line 13 will for the
same reason run O.jK j/ times, giving a run time of O.jK j2/ for that loop. This
puts the total run time at O.jK j2/. �

As a corollary to Propositions 3.1 and 3.2 we can arrive at the following result.

Corollary 3.1. If the effect estimator is a data selection effect estimator, then
the Lowest Cost, Highest Probability, Limited Cardinality, and Optimal Threshold
Effectiveness problems can all be solved in O.jK j2/ time and are therefore in
PTIME with respect to the number of tuples in the event KB.

Proof. Direct consequence of Propositions 3.1 and 3.2. �

Finally, we conclude this section with a more general result regarding the
complexity of deciding the probability of effectiveness of a given state change
attempt when the effect estimator can be computed in polynomial time.

Theorem 3.1. For goal G, state change attempt SCA, action tuple t , and event KB
K , if the effect estimator "� is a data selection effect estimator then deciding if
pEff.t; G; SCA; "�.K // > 0 takes O.jK j2/ time.

Proof. Consider Algorithm 2 and the analysis of its running time in the proof of
Proposition 3.2. If "� is not a data selection effect estimator but can be computed
in polynomial time, then the loop in line 3 can be computed in O.jj � E /, where
E is the cost of computing "�. Therefore, the total running time in this case is
O.jK j � E C jK j2/ �

3.4 Trie-Enhanced Optimal State Change Attempts (TOSCA)

In this section, we present the TOSCA algorithm that uses trie data structures [1]
to improve performance of finding an optimal state change attempt. In TOSCA,
a trie structure is used to index the event KB with the objective of reducing the
search space necessary for the data selection effect estimator in the DSEE_OSCA
algorithm; the algorithm is presented in Algorithm 2.

Preliminaries on Tries. A trie is a tree-based data structure composed of internal
nodes and leaf nodes. In the following, we will present the basics of the particular
adaptation of the trie data structure to our setting. An example of such a structure
can be found in Fig. 3.1, which is a trie indexing the database in Fig. 3.2.

An internal trie node is a pair .Atr; Edges/, where Atr 2 A [ S is an
attribute and Edges contains .v�; vC; N / triples, where v� and vC are values
from Dom.Atr/ with v� < vC and N is another trie node. A leaf node in a
trie maintained by TOSCA is simply a set of tuples from the event KB, denoted
tuples.N /. Tries have a unique root node.

A trie is data correct if for any leaf node N there is a unique path from the root
.Atr1; Edges1/; : : : ; .Atrk�1; Edgesk�1/; N such that for all t 2 tuples.N / and
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Fig. 3.1 On the left is an example trie data structure with Boolean action attributes A1, A2, and
A3 and Boolean state attribute S1. The database the trie represents is depicted in Fig. 3.2

Database

A1 A2 A3 S1

0 0 0 0

0 0 0 0

0 0 0 1
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00

0

01

1 1 1

1111

Fig. 3.2 The database indexed by the trie in Fig. 3.1

all i between 1 and k � 1, there is .v�; vC; .AtriC1; EdgesiC1// 2 Edgesi such
that v� � t.Atri / < vC. That is, the path to a leaf node determines which tuples
are stored there. A trie is construction correct if for all sibling nodes .v�1 ; vC1 ; N1/

and .v�2 ; vC2 ; N2/, v�1 	 vC2 or v�2 	 vC1 .
Trie creation is straightforward and is described in Algorithm 3. An essential

decision for trie creation is the order in which the attributes appear along any
given path. As such, we parameterize out the heuristic deciding the ordering;
examining different heuristics is a topic of future work.

The TOSCA Algorithm. We now introduce the Trie-enhanced Optimal State
Change Attempt (TOSCA) algorithm that uses tries to reduce the average case
running time for computing optimal state change attempts. TOSCA is divided into
the base and a helper, Algorithms 4 and 5, respectively. The following is an example
of how TOSCA works.
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Algorithm 3 createTrie(D,A t r)
Return a trie for KB K , using the attributes in the set A t r . The function choose is
a heuristic that returns the “best” attribute to split on next

if A t r D ; or D D ; then
create leaf node N and set tuples.N /D D.
return N .

end if
Let A D choose.D; A t r/ // Pick an attribute to split on.
Edges D ; // The set of edges for the new node.
for v 2 Dom.A/ do

// Get the tuples in D with value v for attribute A.
Let D0 D �ADv.D/.
if D0 ¤ ; then

// Create a new trie containing the tuples in D0

add .D0; createT rie.D0; A t r n A// to Edges.
end if

end for
return .A; Edges/.

Algorithm 4 TOSCA(Trie T , Goal G, Action tuple env, p)
Computes a state change attempt with minimal cost and probability of effectiveness
at least p, using a trie rather than a bare database
1: Let Dat1D TOSCA-Helper.T; G; env/.
2: Let Dat2 D ;.
3: for .SCA; f / 2 Dat1 do
4: Let nextF D pOccur.SCAjSCA/ � f .
5: for .SCA0; f / 2 Dat1 do
6: if SCA0 ¨ SCA then
7: nextF D nextF C pOccur.SCA0jSCA/ � f 0

8: end if
9: end for

10: Add .SCA; ef / with .SCA; nextF / to Dat2.
11: end for
12: Remove any .SCA; ef / from Dat2 where ef < p.
13: return argmin.SCA;ef /2Dat2.cost.SCA//.

Example 3.5. In our example run of Algorithm 4, we use a simple database
containing four tuples:

f.A1 D 1; E1 D 1/; .A1 D 2; E1 D 1/; .A1 D 3; E1 D 0/; .A1 D 3; E1 D 1/g;

and the trie T pictured in Fig. 3.3. We use the tuple .A1 D 0/ as the action tuple
env, the goal condition E1 D 1, and the threshold 0:7 as p.

The first step of Algorithm 4 is to create Dat1 via Algorithm 5, which recursively
traverses the trie, beginning at node A. At node B, Algorithm 5 recognizes
a leaf node and selects tuples from that node that satisfy the goal condition,
iterating through them in turn beginning with .A1 D 1; E1 D 1/. The state
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Algorithm 5 TOSCA-Helper(Trie T , Goal G, Action tuple env)
Returns a set of .SCA; v/ pairs, where SCA is a state change attempt and v is
"�.K /.G; Sit D �.SCA; env//

1: if T is a leaf node then
2: // The following is similar to Algorithm 2
3: Let Dat D ;
4: for t 2 �G.tuples.T // do
5: // Create SCA such that �.env; SCA/ D t

6: Let SCA D f.A; env.A/; t .A// j t .A/ ¤ env.A/g
7: If .SCA; �/ 2 Dat then continue to next t

8: f D "�

r .tuples.T //.t; G/.
9: Add .SCA; f / to Dat .

10: end for
11: return Dat .
12: else
13: // Recursively call for all children of T .
14: Let .A; Edges/ D T .
15: return [.v� ;vC;N /2EdgesTOSCA-Helper.N; G; env/

16: end if

Node A

Node B

A1 E1

A1

3

3 1

0

E1

11

12
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A1

[1,3)

[3,4)

Fig. 3.3 The trie used in
Example 3.5

change attempt that changes the environment tuple .A1 D 0/ to .A1 D 1/

is SCA D f.A1; 0; 1/g. The time saving step of the algorithm now occurs at
line 8, where we run "�r on the database tuples.T / instead of the entire database
(line 7 of Algorithm 2). Because there is only one tuple in tuples.T / with
A1 D 1, and because that tuple also satisfies the goal condition, f is set to 1 and
.f.A1; 0; 1/g; 1/ is added to Dat . Similarly, .fA1; 0; 2g; 1/ is added on the next tuple:
.A1 D 2; S1 D 1/, finishing the call to node B.

The call to node C has slightly different results. The only member of tuples.T /

to satisfy the goal condition is .A1 D 3; S1 D 1/. Further, "�r produces a result
of 1=2, as of the two tuples with value 3 for A1, only one of them satisfies the
condition that S1 D 1. The returned set from this recursive call therefore contains
only .f.A1; 0; 3/g; 1=2/.

After merging all recursive calls, the set

n�f.A1; 0; 3/g; 1=2
�
;
�f.A1; 0; 2/g; 1

�
;
�f.A1; 0; 1/g; 1

�o
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is returned and labeled Dat1 by Algorithm 4. The next loop multiplies the second
value of each member of Dat1 by the probability of the associated state change
attempt occurring, which is provided by a user a priori and we will assume to be 3=4

for all state change attempts. The inner loop then adds the probabilities associated
with subsets of the state change attempt (of which there are none in this example).
This results in the data structure Dat2 consisting of pairs .SCA; pEff.env; S1 D
1; SCA; "�r //, or

n�f.A1; 0; 3/g; 3=8
�
;
�f.A1; 0; 2/g; 3=4

�
;
�f.A1; 0; 1/g; 3=4

�o
:

At this point, those members of Dat2 with too low a probability of effectiveness
are eliminated (only .fA1; 0; 3g; 3=8/), and the SCA with lowest cost is returned. �

Proposition 3.3. Algorithm 4 computes state change attempt SCA satisfying the
following properties:

1. pEff.env; G; SCA; "�r .K // 	 p, and
2. There is no other applicable state change attempt SCA0 such that cost.SCA0/ <

cost.SCA/ and pEff.env; G; SCA0; "�r .K // 	 p.

Proof. To show this, it suffices to show that in line 15 for all .SCA; ef / 2 Dat2,
v D pEff.env; G; SCA; "�r /. Consider any .SCA; ef / 2 Dat2 on that line, and note
that due to the loop starting in line 3, we have:

ef D
X

.SCA0 ;f 0/2Dat1;SCA0�SCA

f 0 � pOccur.SCA0 j SCA/:

Since for all .SCA0; f 0/ 2 Dat1, f 0 D "�r .tuple.T //.�.env; SCA/; G/, (from
TOSCA-Helper) where tuples.T / is the set of all tuples satisfying �.env; SCA/,
this suffices to show that ef D pEff.SCA; G; env; "�r /.

Finally, lines 12 and 13 guarantee that the only SCAs returned are those that have
probability of effectiveness at least p and cost at most k. �

The worse case time complexity of Algorithm 4 is O.jK j2/. However, the
complexity of Algorithm 5 is O.jK j � k/, where k is the size of the largest leaf
node in trie T . While k is bounded by jK j, it is usually much smaller: on the order
of jK j=2h for a trie of height h. We expect Dat1 to have size O.jK j/, as it will be
the same as Dat1 in line 10 of Algorithm 2; however, it was produced by at most
2 � jK j=k recursive calls to Algorithm 5 (there are at most 2 � jK j=k nodes in the
trie). When given a leaf node, Algorithm 5 takes time in O.k2/. Thus, the running
time of Algorithm 5 is in O.jK j�k/. The loop in line 3 then runs in time in O.jK j2/
(it is the same loop as in Algorithm 2), resulting in an overall run time in O.jK j2/.
However, we will see that in practice, substantial speedup is gleaned from using the
O.jK j � k/ Algorithm 5 rather than the basic O.jK j2/ approach.

We will conclude this chapter with a brief discussion of two proposals for further
improvements that can be made to the trie-based approach.
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3.4.1 Reducing Trie Size by Bucketing Values

The fact that each distinct value of each attribute produces a new edge in the trie
means that the structure will grow in size quite rapidly. To ameliorate this problem,
we propose dividing the domain of each attribute into buckets. This division need
not be at even intervals, since we might prefer to define the buckets so that they
are all more or less of the same size given the KB. There are two important ways
in which this modification impacts our structure: first, we can decide what the
branching factor is at each internal node, and second, we can prune any branches
that correspond to values that do not satisfy condition C in Algorithm 5. Another
thing to note is that leaf nodes will in general contain more tuples than before.

As mentioned, the way in which search is performed in the trie must also be
adapted. We can prune any branches that are guaranteed to yield a value of zero
when the selection in line 8 is performed. For instance, if C is the condition
“Graduation% 	 85 and Reading Proficiency 	 75”, then the recursive calls in
line 15 of Algorithm 5 should disregard all buckets that have no possibility of
satisfying either condition, for instance Graduation% 2 Œ0; 10�, Œ11; 20�, etc.

3.4.2 Annotated Tries

Similar to the ideas described on bucketing values described above, we can
annotate the internal nodes of the trie so that search can be made more efficient.
The annotations we propose consist simply of the number of tuples that exist in the
database for each value (or each bucket) of the corresponding attribute that are below
that node in the trie. This can be done easily during the trie creation process, with
an overhead of one additional selection query for each possible value (or bucket) of
each attribute.

The use of these annotations during search is also similar to the use of buckets.
That is, each recursive call in line 15 will be performed only if the value (or bucket)
in question has the possibility of satisfying condition C , and its annotation is not
zero. Note that this is a refinement of the way in which search is performed when
only bucketing is used.
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Chapter 4
A Comparison with Planning Under Uncertainty

In order to investigate how our approach to solving the proposed class of problems
relates to traditional approaches such as planning under uncertainty, in this chapter
we will propose and discuss a mapping between an instance of an OSCA problem
and an instance of a Markov Decision Process. The ultimate goal is to show that
optimal state change attempt problems can indeed be solved by applying techniques
from the planning under uncertainty literature, but this approach will be ultimately
impractical.

First of all, let us recall the elements required to describe an instance of an OSCA
problem:

1. Set of action attributes: corresponds to the actionable attributes that we can
potentially act upon in order to change their values.

2. Set of state attributes: used to describe the situations of the environment that
we cannot directly change, including the outcome attributes that we may want to
influence.

3. A cost function for state change attempts: describes the cost of changing the
values of the action attributes.

4. An effect estimator: describes the conditional probability that a given goal holds
given an assignment of values to the action attributes.

5. Conditional probabilities for probability of occurrence of SCAs: describes the
probability that a certain state change attempt is successful given that another
state change was attempted.

6. A goal specified over the values of a subset of the state attributes: describes the
state of affairs that the user desires to accomplish.

The objective is to compute an optimal state change attempt with respect to cost
and/or probability of effectiveness given the goal; such an SCA intuitively represents
a policy that can be applied with the objective of reaching that specific goal. On the
other hand, in order to describe an instance of an MDP we require:

1. A finite set S of environment states.
2. A finite set A of actions.

A. Parker et al., Data-driven Generation of Policies, SpringerBriefs in Computer Science,
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3. A transition function T W S � A ! ˘.S/ specifying the probability of arriving
at every possible state given that a certain action is taken in a given state.

4. A reward function R W S � A ! R specifying the expected immediate reward
gained by taking an action in a state.

The objective is to compute a policy � W S ! A, specifying what action should be
taken in each state, that is optimal with respect to the expected utility obtained from
executing it.

4.1 Obtaining an MDP from the Specification
of an OSCA Problem

We will now propose how, given an instance of an OSCA problem as described
above, we can obtain the specification of a corresponding MDP in such a way
that optimal policies for this MDP correspond to solutions to the original OSCA
problem.

• State Space: The set SMDP of MDP states corresponds to the set of all possible
tuples .v1; : : : ; vm/ 2 dom.S1/ � : : : � dom.Sm/, where

Sm
iD1 Si D S, the set of

all state attributes.
• Actions: The set AMDP of possible actions in the MDP domain corresponds to

the set of all possible state change attempts. Without considering the fact that not
all SCAs will be applicable in every state, we can think of the set of actions as
containing any subset of h action attributes, each of which can be attempted to
be changed to any other possible value in its domain.

• Transition Function: The (conditional) probabilities of occurrence can be used
to define the transition function T for the MDP, since it is clear what the
effect of a change attempt is when it is successful. Formally, let s; s0 2
SMDP and a 2 AMDP; if s D .u1; : : : ; um/, s0 D .u01; : : : ; u0m/, and a D�
.A1

i1
; vf1; vt1/; : : : ; .Ah

ih
; vfh; vth/

�
for i1; : : : ; ih 2 f1; : : : ; jAjg, we define:

T .s; a; s0/ D
(

0 if a is not applicable in s,

pEff.s; Gs0 ; a; "/ otherwise.
(4.1)

where Gs0 denotes the condition that imposes the values in s0 on the state
attributes as the goal. However, if the OSCA problem requires the lowest cost
solution only (see Sect. 2.4), we simply define T to be as follows. Let Sa � SMDP

be the set of all states s0 for which pEff.s; Gs0 ; a; "/ ¤ 0:

T .s; a; s0/ D
(

0 if a is not applicable in s,
1
jSa j otherwise.

(4.2)
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• Reward Function: The reward function of the MDP, which describes the reward
directly obtained from performing action a 2 A in state s 2 S , is defined
based on two aspects: (1) the probability that a state satisfying the goal is
reached by taking action a in state s (this will depend on the effect estimator
being used), and (2) the cost of the change attempt associated with action a.
It should be noted that, as in the case of the transition function above, the
specific problem to be solved (lowest cost, highest probability, etc.), will directly
influence the way in which the corresponding reward function is defined (e.g., for
highest probability problems, cost is ignored). Let G be the goal corresponding
to the OSCA problem instance and, as above, let s 2 SMDP and a 2 AMDP

such that s D .u1; : : : ; um/ and a D �
.A1

i1
; vf1; vt1/; : : : ; .Ah

ih
; vfh; vth/

�
for

i1; : : : ; ih 2 f1; : : : ; jAjg:

R.s; a/ D
(

0 if a is not applicable in s,

pEff.s; G; a; "/ otherwise.
(4.3)

Similarly, for lowest cost, we have:

R.s; a/ D
(

0 if a is not applicable in s,

pEff.s; G; a; "/ � 1
cost.a/

otherwise.
(4.4)

As can be seen by the above mapping, the key point in which our problem differs
from planning problems is that SCAs involve executing actions in parallel which,
among other things, means that the number of possible simple SCAs that can be
considered in a given state is very large. This makes planning approaches infeasible
since their computational cost is intimately tied to the number of possible actions in
the domain (generally assumed to be fixed at a relatively small number). In the case
of MDPs, even though state aggregation techniques have been investigated to keep
the number of states being considered manageable [1, 3, 6], similar techniques for
action aggregation have not been developed.

To conclude this comparison with planning under uncertainty using MDPs, we
present the following results. The first states that given an instance of OSCA, the
proposed translation into an MDP is such that an optimal policy under Maximum
Expected Utility (MEU) for such an MDP expresses a solution for the original
instance. Note, however, that such a policy is actually a fully contingent plan in that it
prescribes an action for every possible state; this means that the state change attempt
prescribed in each state is chosen taking into account what would happen if the goal
is not immediately reached, and thus states that have a better utility computed in this
manner are preferred. A fair comparison with the approach taken in this work would
be to have our OSCA algorithms given above iterate until the goal is satisfied.

Proposition 4.1. Let O D .A; S; cost; "; pOccur; G/ be a specification of an OSCA
problem and M D .SMDP; AMDP; T; R/ be its corresponding translation into an
MDP. If � is a policy for M that is optimal with respect to the MEU criterion, then
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for any state s 2 SMDP, �.s/ yields a state change attempt that is a solution for O

for the values of the state attributes described by s.

Proof (sketch). Assume that the OSCA instance given is a highest probability
instance (the lowest cost case is analogous). By hypothesis we have that � is
MEU-optimal, which means that

�.s/ D arg max
a

 

R.s; a/ C max
a0

 
X

s02S

T .s; a; s0/ � Q.s0; a0/
!!

(4.5)

where Q is the action utility function defined as usual. Now, suppose towards
a contradiction that there exists a state s such that the state change attempt
corresponding to a D �.s/ is sub-optimal, i.e., there exists another state change
attempt a0 D � 0.s/ that has a higher probability of effectiveness in reaching the
goal; formally, pEff.s; G; � 0.s/; "/ > pEff.s; G; �.s/; "/. Since both the reward and
transition functions are defined in terms of probability of effectiveness, this directly
implies that

 

R.s; a0/ C max
b

 
X

s02S

T .s; a0; s0/ � Q.s0; b/

!!

>

 

R.s; a/ C max
b

 
X

s02S

T .s; a; s0/ � Q.s0; b/

!!

However, this contradicts Eq. 4.5 above since �.s/ was selected as the state change
attempt that maximizes this sum. The contradiction stemmed from the assumption
that �.s/ is sub-optimal; therefore, we can conclude that �.s/ corresponds to a
solution to O . �

Second, we analyze the computational cost of taking this approach. Since there
exists in the literature a large variety of algorithms for solving MDPs, we will only
analyze the size of the MDP resulting from the translation of an instance of OSCA.

Proposition 4.2. Let O D .A; S; cost; "; pOccur; G/ be a specification of an OSCA
problem and M D .SMDP; AMDP; T; R/ be its corresponding translation into an
MDP. Then, we have that:

jSMDPj D
mY

iD1

jdom.Si /j;

where Si 2 S, and:

jAMDPj �
nX

hD1

�
An

h � jV jh� ;
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where n D jAj, and jV j is the maximum number of possible values for an action
attribute.

Proof. For the size of the state space, simply recall that the MDP’s state space
corresponds to the set of all possible tuples .v1; : : : ; vm/ 2 dom.S1/�: : :�dom.Sm/,
where

Sm
iD1 Si D S.

In order to prove the upper bound on the number of actions, suppose that all SCAs
will be applicable in every state. Then, we have jAMDPj D Pn

hD1

�
An

h � jV jh�, where
n is the number of actions in the action schema A, and V is the set of possible values
for the action attributes (we assume jdom.Ai /j D jdom.Aj /j for all Ai ; Aj 2 A for
the purpose of this analysis). Basically, this formula states that any combination of
h action attributes can be chosen, and each can be attempted to be changed to any
other possible value in its domain. �
Consider that, for instance, the well-known Value Iteration algorithm [2, 5] iterates
over the entire state space a number of times that is polynomial in jS j, jAj, ˇ, and
B , where B is an upper bound on the number of bits that are needed to represent
any numerator or denominator of ˇ [4]. Now, each iteration takes time in O.jAj �
jS j2/, meaning that only for very small instances will MDPs of the size expressed
in Proposition 4.2 be feasible.

References

1. Craig Boutilier, Richard Dearden, and Mosiés Goldszmidt. Stochastic dynamic programming
with factored representations. Artificial Intelligence, 121(1–2):49–107, 2000.

2. Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics, 6,
1957.

3. Thomas Dean, Robert Givan, and Sonia Leach. Model reduction techniques for
computing approximately optimal solutions for Markov decision processes. In Dan Geiger
and Prakash Pundalik Shenoy, editors, Proceedings of the 13th Conference on Uncertainty
in Artificial Intelligence (UAI-97), pages 124–131, San Francisco, August 1–3 1997. Morgan
Kaufmann Publishers.

4. Michael Lederman Littman. Algorithms for Sequential Decision Making. PhD thesis,
Department of Computer Science, Brown University, Providence, RI, February 1996.

5. M. L. Puterman. Markov decision processes: Discrete Stochastic Dynamic Programming. John
Wiley and Sons, Inc., New York, 1994.

6. John Tsitsiklis and Benjamin van Roy. Feature-based methods for large scale dynamic
programming. Machine Learning, 22(1/2/3):59–94, 1996.



Chapter 5
Experimental Evaluation

In this chapter, we will describe a set of empirical results obtained from a prototype
implementation of limitedSCASet (Algorithm 1), DSEE_OSCA (Algorithm 2)
and TOSCA (Algorithm 4). limitedSCASet was implemented in a modular way
so that one could change the effect estimator, while the other algorithms were
implemented assuming the data ratio effect estimator (Definition 3.4). We did an
experimental analysis to determine the outcomes of four major questions:

1. Which kind of effect estimator gives the most accurate results?
2. Which techniques provide the best running time with large amounts of data?
3. Which techniques provide the best running time as the number of attributes and

their domain size increases?
4. Which techniques provide the best running time with real-world data?

In the following, we will present our findings for each case.

5.1 Question 1: Which Effect Estimator Gives the Most
Accurate Results?

To address this question, we used the Weka framework’s implementation of several
machine learning algorithms [5]. These include the AODE algorithm, which creates
Bayes nets [4]; the IBk algorithm, which uses K-nearest neighbor clustering [1]; and
the C4.5 algorithm, which uses entropy minimization techniques to create decision
trees that can be used for classification [2]. We used these algorithms to implement
respective learned effect estimators (Definition 3.2) and combined those effect
estimators with Algorithm 1 to get several different methods for determining the
optimal state change attempt. We compared these to the data ratio effect estimator.

To generate the data in this experiment, we produced k tuples with four action
attributes and three state attributes. Each tuple’s value for the action attributes was
chosen randomly from Œ0; 1�. To generate the values for the state attribute, we

A. Parker et al., Data-driven Generation of Policies, SpringerBriefs in Computer Science,
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Fig. 5.1 A comparison of the accuracy of all algorithms being evaluated, over synthetic data. The
learning effect estimators clearly are outperformed by the data ratio effect estimator; Algorithms
marked with * took longer than 2 days to complete for inputs of 20 or more tuples

generated random boolean formulas over the action attributes consisting of the
operators <; >; D; ¤, and ^. We allowed at most three “^” connectives in each
formula. In a given tuple, each state attribute value is set to 1 if its associated formula
is satisfied by the action attributes in that tuple, and set to 0 otherwise. Because we
have the formula defining the state attributes, we can easily check the accuracy of
the state change attempts returned by each algorithm. To do this, we apply the state
change attempt and determine the state attribute values. The accuracy of a given
algorithm will be the fraction of the time the resulting values for the state attributes
satisfy the goal condition.

For this experiment, the goal condition is generated randomly as above, the cost
of each simple state change is 1, and the probability of occurrence is set to 1 (all state
change attempts always occur as expected).

The results of these experiments are shown in Figs. 5.1, and 5.2. In these figures
we notice two things. First, we notice that the data ratio effect estimator (used
in DSEE_OSCA and TOSCA in the graphs) runs substantially faster than the
learning effect estimators. This is due to the algorithms needed for both estimators.
Since the data ratio effect estimator assumes that anything not occurring in the
database is a negative instance, it needs to consider substantially fewer possibilities
than the learning effect estimators. The learning effect estimators, on the other
hand, allow for any possible tuple to satisfy the goal condition and do not need
to limit themselves to those tuples already in the database. This generality incurs
substantial computational costs. Since they consider every combination of all the
attribute values in the database, they are only able to finish computation when
there are relatively few tuples. Normally one would hope that this generality would
nonetheless result in an increase in accuracy—since learning effect estimators
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Fig. 5.2 A comparison of average running time over at least 60 runs for the data selection OSCA
approach (DSEE_OSCA and TOSCA) and learning algorithms (AODE, IBk, and J48) over
synthetic data. The learning algorithms took longer than two days to compute the optimal SCA
for 20 or more tuples; DSEE_OSCA and TOSCA’s running times correspond to the two curves
that are touching the x-axis

consider more possible solutions than data ratio effect estimators they should be
able to find a better solution. However, in these experiments that is not the case: by
restricting itself to only those possible solutions currently in the database, data ratio
effect estimators actually increase their accuracy over the various learning effect
estimators.

Finally, Fig. 5.3 shows the comparison of the accuracy of DSEE_OSCA versus
that of TOSCA. As expected, since both algorithms make use of the data selection
effect estimator, the accuracy of both algorithms is comparable, as shown in
the figure.

5.2 Question 2: Which Techniques Scale Best?

We use the same experimental setup as in Question 1 (Sect. 5.1) to see how
DSEE_OSCA and TOSCA scale when presented with larger amounts of data.
Since the algorithms using the learning effect estimators could not scale past 20
tuples, they are not included in this experiment.

In these experiments, we provided the algorithms with 1–15,000 tuples. The
results are shown in Fig. 5.4, and they show that TOSCA performs better than
DSEE_OSCA as the database increases in size. We should note that TOSCA does
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Fig. 5.5 Performance of the naive algorithm DSEE_OSCA (Algorithm 2) versus the TOSCA
(Algorithm 4) in artificial data experiments with large amounts of data

have a pre-computation step whose running time has been left out of these figures.
However, the time needed to compute the trie is several orders of magnitude smaller
than the running time of TOSCA: for instance, it takes only 91 ms to construct the
trie with 10,000 tuples.

Another configuration of synthetic data generation: For the following set of
experiments, we used a schema with four action attributes and one state attribute,
each with domain containing the integers 0–99 (inclusive). For each trial, a new
database was generated where each tuple’s attributes were chosen uniformly at
random from the associated domain.

For each action attribute Ai 2 A, we randomly assigned a basic probability of
occurrence P.Ai / (real-world applications would infer this from historical data).
For state change attempts SCA and SCA0 
 SCA, pOccur was estimated as follows:

pOccur.SCA j SCA0/ D
Y

.Ai ;vf;vt/2SCA

P.Si /

cost..Ai ; vf; vt//

For our experiments we computed the cost of a simple state change attempt
.Ai ; vf; vt/ as the simple distance between vf and vt ; that is, cost..Ai ; vf; vt// D
jvt � vf j.

The results are shown in Figs. 5.5 and 5.6. The former shows a comparison
between the running times of the two algorithms for KBs up to 100k tuples, and
clearly shows that TOSCA outperforms DSEE_OSCA. The latter only shows how
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TOSCA performs with KBs of up to two million tuples; note that the times reported
for TOSCA include the time needed to compute the trie (though presumably, such
an index would be pre-computed in practice). Finally, the trie construction times for
the same runs reported in Fig. 5.6 are shown in Fig. 5.7.

5.3 Question 3: Which Techniques Provide the Best Running
Time as the Number of Attributes and Their Domain
Size Increases?

In Fig. 5.8 we see how DSEE_OSCA and TOSCA scale as the number of
attributes increases in a database with 8;000 tuples. None of the learning algorithm
effect estimators are depicted because they do not scale to such a large database.
This graph shows TOSCA outperforming DSEE_OSCA. This graph is important
because the trie in TOSCA should lose efficiency as the number of attributes
increases (the trie’s depth equals the number of attributes). However, this graph
shows that decrease in the trie’s efficiency does not affect the ability of the trie to
offer TOSCA a speedup over DSEE_OSCA.

The effect of varying the size of the domains of the action attributes is shown in
Fig. 5.9, where the size of the event KB was fixed at 8,000 tuples, each with four
action attributes and three state attributes. The plot shows the DSEE_OSCA and
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Fig. 5.8 The running times of DSEE_OSCA and TOSCA (over synthetic data) as the number of
action attributes increases and number of tuples is fixed at 8;000
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Fig. 5.9 Performance of the naive algorithm DSEE_OSCA (Algorithm 2) versus the TOSCA
(Algorithm 4) in synthetic data experiments when the size of the domain of action attributes is
varied. The number of tuples was fixed at 8;000, action attributes at 4, and state attributes at 3

TOSCA algorithms performing equally well for domains of size 2, which makes
sense since in this case the trie cannot be leveraged. For larger domain sizes, we see
a fairly constant difference in favor of TOSCA, which reflects the expected speedup
that does not vary since the size of the KB is fixed.

5.4 Question 4: Which Algorithms Perform Best
with Real-World Data?

We used the U.S. School Dataset [3], which includes data on school performance,
budget, and related variables for all schools in a given state, as described in
Chap. 1 (Example 1.1). We chose the state of Arizona for our tests. The variables
can naturally be divided into action and state attributes; to keep our experiments
manageable, we chose a subset of about 50 of the most important attributes,
preferring the general variables over the specific ones. We then varied the number of
attributes of the chosen 50 that would be considered action attributes, including sets
of 6, 12, and 24 action attributes. Again, since the algorithms using the learning
effect estimators could not scale past 20 tuples, they are not included in this
experiment. In each run, we took a random subset of the appropriate size from
one state’s data in the U.S. school data database and then generated a random
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goal condition based on the domains of the provided action variables. We then ran
both DSEE_OSCA and TOSCA, keeping track of the running times, including the
running time of building the trie for TOSCA. The results of these experiments are
shown in Fig. 5.10 and clearly show that TOSCA is faster than DSEE_OSCA for
any given number of action attributes.
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Chapter 6
Conclusions

The AI planning literature contains decades of substantial work on discovering
sequences of actions that lead to a given outcome that, similar to this work, is often
specified as a goal condition. In this work, we have described an approach to solve
problems that at first seems quite similar to those tackled by AI planning; however
the main characteristic of the problems of interest are that important assumptions
made in AI planning approaches cannot be made in this case. There are, however,
significant assumptions made in these works that cannot always be made, such as:

1. The number of actions available to solve the problem is assumed to be relatively
small,

2. The causal relationships within the model describing the environment are well
understood (e.g., if a block is picked up and put on top of another block, then
the rest of the blocks remain unchanged, and the new pile continues to exist until
some further action changes it).

3. The effects of actions taken in the environment are well understood (e.g., in the
example above, picking up the block only has the effect of the block no longer
being on the table).

In this work, we have described an approach to solve problems that at first seems
quite similar to those tackled by AI planning; however the main characteristic of
the problems of interest are that the above assumptions cannot be made: effects
of actions are not clearly understood, nor are the causal relationships between the
values of the parameters in the system, and there are a huge number of actions to
choose from. Our proposal was therefore to solve these problems in a data-driven
manner, where these poorly understood effects and relationships can be gleaned
from the data instead of assuming that they are packaged with the input.

In Chap. 1 we began by introducing this problem and the concept of event
databases, where attributes are assumed to be either of type action or state; the
former are those that can directly be manipulated (albeit at a certain cost and
with certain probability of success), while the latter constitute those that can
only be influenced indirectly. Two examples of this kind of data were introduced:
school performance Fig. 1.1 and city government Fig. 1.2. In Chap. 2, we formally

A. Parker et al., Data-driven Generation of Policies, SpringerBriefs in Computer Science,
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introduced the different pieces of this problem: (optimal) state change attempts,
effect estimators, cost functions, and probability of effectiveness, illustrating each
of them on the datasets from the running examples. We also showed that determining
optimal state change attempts is not an easy problem, proving that most interesting
versions of the optimization task belong to complexity classes widely believed to
be intractable. In Chap. 3, we began by taking a closer look at the different kinds
of effect estimators that can be defined, and focused on the data selection effect
estimator due to its computational properties. Also in this chapter, we introduced
the TOSCA algorithm, an approach that combines data selection effect estimators
with trie data structures to obtain optimal state change attempts more efficiently.
In Chap. 4, we explored how optimal state change attempts can be computed by
applying Markov Decision Processes, one of the most widely used models in
planning under uncertainty, and showed that, even though it is theoretically possible,
the size of the resulting problem prohibits its application in practice. Finally, in
Chap. 5 we presented empirical results obtained from running implementations of
our algorithms both on synthetic and real-world datasets, showing that the TOSCA
algorithm can be applied to event databases with hundreds of thousands, and even
millions. of tuples.
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