
Topics in Special Functions III

Glen D. Anderson, Matti Vuorinen, and Xiaohui Zhang

Dedicated to Professor Hari M. Srivastava

Abstract The authors provide a survey of recent results in special functions of
classical analysis and geometric function theory, in particular, the circular and
hyperbolic functions, the gamma function, the elliptic integrals, the Gaussian
hypergeometric function, power series, and mean values.

1 Introduction

The study of quasiconformal maps led the first two authors in their joint work with
Vamanamurthy to formulate open problems or questions involving special functions
[14,16]. During the past two decades, many authors have contributed to the solution
of these problems. However, most of the problems posed in [14] are still open.

The present paper is the third in a series of surveys by the first two authors, the
previous papers [20, 23] being written jointly with the late Vamanamurthy. The aim
of this series of surveys is to review the results motivated by the problems in [14,16]
and related developments during the past two decades. In the first of these we studied
classical special functions, and in the next we focused on special functions occurring
in the distortion theory of quasiconformal maps. Regretfully, Vamanamurthy passed
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away in 2009, and the remaining authors acknowledge his crucial role in our joint
work. For an update to the bibliographies of [20, 23] the reader is referred to [12].

In 1993 the following monotone rule was derived [17, Lemma 2.2]. Though
simple to state and easy to prove by means of the Cauchy Mean Value Theorem,
this l’Hôpital Monotone Rule (LMR) has had wide application to special functions
by many authors. Vamanamurthy was especially skillful in the application of this
rule. We here quote the rule as it was restated in [21, Theorem 2].

Theorem 1.1 (l’Hôpital Monotone Rule). Let �1 < a < b < 1, and let f; g W
Œa; b� ! R be continuous functions that are differentiable on .a; b/, with f .a/ D
g.a/ D 0 or f .b/ D g.b/ D 0: Assume that g0.x/ ¤ 0 for each x 2 .a; b/: If
f 0=g0 is increasing (decreasing) on .a; b/, then so is f=g.

Theorem 1.1 assumes that a and b are finite, but the rule can be extended easily
by similar methods to the case where a or b is infinite. The LMR has been used
effectively in the study of the monotonicity of a quotient of two functions. For
instance, Pinelis’ note [146] shows the potential of the LMR. As a complement to
Pinelis’ note, the paper [21] contains many applications of LMR in calculus. Also
the history of LMR is reviewed there.

In this survey we give an account of the work in the special functions of classical
analysis and geometric function theory since our second survey. In many of these
results the LMR was an essential tool. Because of practical constraints, we have had
to exclude many fine papers and have limited our bibliography to those papers most
closely connected to our work.

The aim of our work on special functions has been to solve open problems in
quasiconformal mapping theory. In particular, we tried to settle Mori’s conjecture
for quasiconformal mappings [127] (see also [118, p. 68]). For the formulation of
this problem, let K > 1 be fixed and let M.K/ be the least constant such that

jf .z1/ � f .z2/j 6 M.K/jz1 � z2j1=K; for all z1; z2 2 B;

for everyK-quasiconformal mapping f W B ! B of the unit disk B onto itself with
f .0/ D 0. A. Mori conjectured in 1956 that M.K/ 6 161�1=K : This conjecture is
still open in 2013. Some of the open problems that we found will be discussed in
the last section.

2 Generalizations of Jordan’s Inequality

The LMR application list, begun in [21], led to the Master’s thesis of Visuri,
on which [109] is based. Furthermore, applications of LMR to trigonometric
inequalities were given in [109]. Numerous further applications to trigonometric
functions were found by many authors, and some of these papers are reviewed in
this section and the next.
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By elementary geometric methods one can prove that

2

�
6 sin x

x
< 1; 0 < x 6 �

2
;

a result known as Jordan’s inequality. In a recent work, Klén et al. [109] have
obtained the inequalities

cos2
x

2
6 sin x

x
6 cos3

x

3
; x 2 .�

p
27=5;

p
27=5/

and

cosh1=4 x <
sinh x

x
< cosh1=2x; x 2 .0; 1/:

Inspired by these results, Lv, Wang, and Chu [121] proved that, for a D
.log.�=2//= log

p
2 � 1:30299,

cos4=3
x

2
<

sin x

x
< cosa

x

2
; x 2 .0; �=2/;

where 4=3 and a are best constants and that for b D .log sinh1/=.log cosh1/ �
0:372168;

cosh1=3x <
sinh x

x
< coshbx; x 2 .0; 1/;

where 1=3 and b are best constants.
Many authors have generalized or sharpened Jordan’s inequality, either by

replacing the bounds by finite series or hyperbolic functions or by obtaining
analogous results for other functions such as hyperbolic or Bessel functions.
The comprehensive survey paper by Qi et al. [150] gives a clear picture of these
developments as of 2009. For example, in 2008 Niu et al. [143] obtained the sharp
inequality

2

�
C

nX

kD1
˛k.�

2 � 4x2/k 6 sin x

x
6 2

�
C

nX

kD1
ˇk.�

2 � 4x2/k; 0 < x � �=2;

for each natural number n, with best possible constants ˛k and ˇk . That same
year Wu and Srivastava [198] obtained upper and lower estimates on .0; �=2� for
.sin x/=x that are finite series in powers of .x � �/; where � 2 Œx; �=2�; while Zhu
[211] obtained bounds as finite series in powers of .�2 � 4x2/. Zhu [210] obtained
bounds for .sin x/=x as finite series in powers of .r2 � x2/ for 0 < x 6 r 6 �=2,
yielding a new infinite series
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sin x

x
D

1X

nD0
an.r

2 � x2/n; for 0 < jxj 6 r 6 �=2:

Yang [199] showed that a function f admits an infinite series expansion of the above
type if and only if f is analytic and even.

In 2011 Huo et al. [97] obtained the following generalization of Jordan’s
inequalities:

nX

kD1
�k.�

t � xt /k 6 sin x

x
� sin �

�
6

nX

kD1
!k.�

t � xt /k

for t > 2, n 2 N, and 0 < x � � < � , where the coefficients �k and !k are defined
recursively and are best possible.

More recently, in 2012, Chen and Debnath [74] have proved that, for
0 < x 6 �=2;

f1.x/ 6 sin x

x
6 f2.x/;

where

f1.x/ D 2

�
C 2����1

�
.�� � .2x/� /C .��2 C 4C 4�/��2��1

4�2
.�� � .2x/� /2

and

f2.x/ D 2

�
C 2����1

�
.�� � .2x/� /C ..� � 2/� � 2/��2��1

�
.�� � .2x/� /2;

for any � > 2, with equality when x D �=2.
In a recent work Sándor [164] (see also [165, p. 9]) proved that h.x/ �

Œlog.x= sin x/�= log..sinh x/=x/ is strictly increasing on .0; �=2/: He used this
result to prove that the best positive constants p and q for which

�
sinh x

x

�p
<

x

sin x
<

�
sinh x

x

�q

is true are p D 1 and q D Œlog.�=2/�= log..sinh.�=2//=.�=2// � 1:18:

In an unpublished manuscript, Barbu and Pişcoran [28] have proved, in
particular, that

.1 � x2=3/�1=4 < sinh x

x
< 1C x2

5
; x 2 .0; 1/:
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Kuo [116] has developed a method of obtaining an increasing sequence of lower
bounds and a decreasing sequence of upper bounds for .sin x/=x, and he has
conjectured that the two sequences converge uniformly to .sin x/=x.

Since there is a close connection between the function .sin x/=x and the Bessel
function J1=2.x/ (cf. [219]), it is natural for authors to seek analogs of the Jordan
inequality for Bessel and closely related functions. Baricz and Wu [35, 40], Zhu
[219, 220], and Niu et al. [144] have produced inequalities of this type. Zhu [221]
has also obtained Jordan-type inequalities for ..sin x/=x/p for any p > 0. Wu and
Debnath [195] have generalized Jordan’s inequality to functions f .x/=x on Œ0; ��
such that f is .nC1/-times differentiable, f .0/ D 0; and either n is a positive even
integer with f .nC1/ increasing on Œ0; �� or n is a positive odd integer with f .nC1/
decreasing on Œ0; ��:

3 Other Inequalities Involving Circular
and Hyperbolic Functions

3.1 Redheffer

In 1968 Redheffer [157] proposed the problem of showing that

sin�x

�x
> 1 � x2
1C x2

; for all real x (1)

or, equivalently, that

sin x

x
> �2 � x2
�2 C x2

; for all real x: (2)

A solution of this problem was provided by Williams [192], using infinite products,
who also proved the stronger inequality

sin�x

�x
> 1 � x2
1C x2

C .1 � x/2
x.1C x2/

; for x > 1:

Later, using Erdös-Turán series and harmonic analysis, Li and Li [120] proved the
double inequality

.1 � x2/.4 � x2/.9 � x2/
x6 � 2x4 C 13x2 C 36

6 sin�x

�x
6 1 � x2p

1C 3x4
; for 0 < x < 1:

They also found a method for obtaining new bounds from old for .sin x/=x, but Kuo
[116] gave an example to show that the new bounds are not necessarily stronger.
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In 2003 Chen et al. [76], using mathematical induction and infinite products, found
analogs of the Redheffer inequality for cos x:

cos x > �2 � 4x2
�2 C 4x2

; for jxj 6 �

2
;

and for hyperbolic functions

sinh x

x
6 �2 C x2

�2 � x2 ; for 0 < jxj 6 � I cosh x 6 �2 C 4x2

�2 � 4x2 ; for jxj 6 �

2
:

In 2008, inspired by the inequalities above, Zhu and Sun [224] proved that

�
�2 � 4x2
�2 C 4x2

�˛
6 cos x 6

�
�2 � 4x2
�2 C 4x2

�ˇ
; for 0 6 x 6 �

2
;

with best possible constants ˛ D 1 and ˇ D �2=16, and

�
�2 � x2
�2 C x2

��
6 sin x

x
6
�
�2 � x2
�2 C x2

�ı
; for 0 < x < �;

with best possible constants � D 1 and ı D �2=12. They obtained similar results
for the hyperbolic sine and cosine functions. In 2009 Zhu [216] showed that

�
�2 � x2p
�4 C 3x4

�˛
6 sin x

x
6
�

�2 � x2p
�4 C 3x4

�ˇ
; 0 < x 6 �;

holds if and only if ˛ > �2=6 and ˇ 6 1, with analogous results for cos x and
.tan x/=x. In 2009 Baricz and Wu [41] and in 2011 Zhu [222] proved Redheffer-
type inequalities for Bessel functions.

3.2 Cusa-Huygens

The inequality

sin x

x
<
2C cos x

3
; 0 < x < �=2

was discovered by N. de Cusa in the fifteenth century (cf. [71]) and proved
rigorously by Huygens [98] in the seventeenth century. In 2009 Zhu [218] obtained
the following inequalities of Cusa-Huygens type:

�
sin x

x

�˛
<
2

3
C 1

3
.cos x/˛; 0 < x <

�

2
; ˛ > 1;
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and
�

sinh x

x

�˛
<
2

3
C 1

3
.cosh x/˛; x > 0; ˛ > 1:

That same year Zhu [214] discovered a more general set of inequalities of Cusa type,
from which many other types of inequalities for circular functions can be derived.
He proved the following: Let 0 < x < �=2. If p > 1, then

.1 � ˛/C ˛.cos x/p <

�
sin x

x

�p
< .1 � ˇ/C ˇ.cos x/p (3)

if and only if ˇ 6 1=3 and ˛ > 1 � .2=�/p: If 0 6 p 6 4=5, then (3) holds if
and only if ˛ > 1=3 and ˇ 6 1 � .2=�/p: If p < 0, then the second inequality in
(3) holds if and only if ˇ > 1=3: In a later paper [219] Zhu obtained estimates for
.sin x/=x and .sinh x/=x that led to new infinite series for these functions. For some
similar results see also [194].

In 2011 Chen and Cheung [71] obtained the sharp Cusa-Huygens-type inequality

�
2C cos x

3

�˛
<

sin x

x
<

�
2C cos x

3

�ˇ
;

for 0 < x < �=2, with best possible constants ˛ D .log.�=2//= log.3=2/ � 1:11

and ˇ D 1:

In 2011 Neuman and Sándor [142] discovered a pair of optimal inequalities for
hyperbolic and trigonometric functions, proving that, for 0 < x < �=2, the best
positive constants p and q in the inequality

1

.cosh x/p
<

sin x

x
<

1

.cosh x/q

are p D .log.�=2//= log cosh.�=2/ � 0:49 and q D 1=3 and that for x ¤ 0 the
best positive constants p and q in the inequality

�
sinh x

x

�p
<

2

cos x C 1
<

�
sinh x

x

�q

are p D 3=2 and q D .log 2/= logŒ.sinh.�=2//=.�=2/� � 1:82:

3.3 Becker-Stark

In 1978 Becker and Stark [49] obtained the double inequality

8

�2 � 4x2 <
tan x

x
<

�2

�2 � 4x2 ; 0 < x <
�

2
;

where the numerator constants 8 and �2 are best possible.
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In 2008 Zhu and Sun [224] showed that

�
�2 C 4x2

�2 � 4x2
�˛

6 tan x

x
6
�
�2 C 4x2

�2 � 4x2
�ˇ
; 0 < x <

�

2
;

holds if and only if ˛ 6 �2=24 and ˇ > 1.
In 2010 Zhu and Hua [223] sharpened the Becker-Stark inequality by proving

that

�2 C ˛x2

�2 � 4x2 <
tan x

x
<
�2 C ˇx2

�2 � 4x2 ; 0 < x <
�

2
;

where ˛ D 4.8��2/=�2 � �0:76 and ˇ D �2=3�4 � �0:71 are the best possible
constants. They also developed a systematic method for obtaining a sequence of
sharp inequalities of this sort.

In 2011 Ge [88] obtained

8

�2 � 4x2 C
�
1 � 8

�2

�
<

tan x

x
<
�4

12

1

�2 � 4x2 C
�
1 � �2

12

�
;

for 0 < x < �=2. That same year Chen and Cheung [71] proved the sharp Becker-
Stark-type inequality

�
�2

�2 � 4x2
�˛

<
tan x

x
<

�
�2

�2 � 4x2
�ˇ
;

with best possible constants ˛ D �2=12 � 0:82 and ˇ D 1:

3.4 Wilker

In 1989 Wilker [190] posed the problem of proving that

�
sin x

x

�2
C tan x

x
> 2; for 0 < x <

�

2
(4)

and of finding

c � inf
0<x<�=2

�
sin x
x

�2 C tan x
x

� 2
x3 tan x

: (5)

Anglesio et al. [191] showed that the function in (5) is decreasing on .0; �=2/, that
the value of c in (5) is 16=�4, and that, moreover, the supremum of the expression
in (5) on .0; �=2/ is 8=45. Hence



Topics in Special Functions III 305

2C 16

�4
x3 tan x 6

�
sin x

x

�2
C tan x

x
6 2C 8

45
x3 tan x; (6)

for 0 < x < �=2, where 16=�4 � 0:164 and 8=45 � 0:178 are best possible
constants. (Note: [21] erroneously quoted [191] as saying that the function in (5) is
increasing.) In 2007 Wu and Srivastava [197] proved the Wilker-type inequality

� x

sin x

�2 C x

tan x
> 2; for 0 < x <

�

2
: (7)

However, Baricz and Sándor [39] discovered that (7) is implied by (4).
In 2009 Zhu [218] generalized (4) and obtained analogs for hyperbolic functions,

showing that, for 0 < x < �=2, ˛ > 1;

�
sin x

x

�2˛
C
�

tan x

x

�˛
>
� x

sin x

�2˛ C
� x

tan x

�˛
> 2

and that, for x > 0, ˛ > 1,

�
sinh x

x

�2˛
C
�

tanh x

x

�˛
>
� x

sinh x

�2˛ C
� x

tanh x

�˛
> 2:

These two results of Zhu are special cases of a recent lemma due to Neuman [138,
Lemma 2].

In 2012 Sándor [162] has proved that, for 0 < x � �=2, ˛ > 0;

� x

sin x

�2˛ C
� x

sinh x

�˛
>

�
sinh x

x

�2˛
C
�

sin x

x

�˛
> 2:

Using power series, Chen and Cheung [72] obtained the following sharper versions
of (6):

16

315
x5 tan x <

�
sin x

x

�2
C tan x

x
�
�
2C 8

45
x4
	
<

�
2

�

�6
x5 tan x; (8)

and

104

4725
x7 tan x <

�
sin x

x

�2
C tan x

x
�
�
2C 8

45
x4 C 16

315
x6
	
<

�
2

�

�8
x7 tan x: (9)

The constants 16=315 � 0:051 and .2=�/6 � 0:067 in (8) and 104=4725 � 0:022

and .2=�/8 � 0:027 in (9) are best possible. For 0 < x < �=2, Chen and Cheung
also obtained upper estimates complementary to (7):
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� x

sin x

�2 C x

tan x
< 2C 2

45
x3 tan x

and

� x

sin x

�2 C x

tan x
< 2C 2

45
x4 C 8

945
x5 tan x;

where the constants 2=45 and 8=945 are best possible.
In 2012, Sándor [164] has shown that

sin x

x
C q

sinh x

x
> q C 1; x ¤ 0

and

�
sinh x

x

�q
C sin x

x
> 2; 0 < x <

�

2
;

where q D Œlog.�=2/�= logŒ.sinh.�=2//=.�=2/� � 1:18:

Extensions of the generalized Wilker inequality for Bessel functions were
obtained by Baricz and Sándor [39] in 2008.

3.5 Huygens

An older inequality due to Huygens [98] is similar in form to (4):

2

�
sin x

x

�
C tan x

x
> 3; for 0 < jxj < �

2
(10)

and actually implies (4) (see [141]). In 2009, Zhu [217] obtained the following
inequalities of Huygens type:

.1 � p/ sin x

x
C p

tan x

x
> 1 > .1 � q/ sin x

x
C q

tan x

x

for all x 2 .0; �=2/ if and only if p > 1=3 and q 6 0;

.1 � p/ sinh x

x
C p

tanh x

x
> 1 > .1 � q/ sinh x

x
C q

tanh x

x

for all x 2 .0;1/ if and only if p 6 1=3 and q > 1;

.1 � p/ x

sin x
C p

x

tan x
> 1 > .1 � q/ x

sin x
C q

x

tan x
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for all x 2 .0; �=2/ if and only if p 6 1=3 and q > 1 � 2=� ; and

.1 � p/ x

sinh x
C p

x

tanh x
> 1 > .1 � q/ x

sinh x
C q

x

tanh x

for all x 2 .0;1/ if and only if p > 1=3 and q 6 0.
In 2012 Sándor [162] has showed that, for 0 < x � �=2, ˛ > 0,

2

�
sinh x

x

�˛
C
�

sin x

x

�˛
> 2

� x

sin x

�˛ C
� x

sinh x

�˛
> 3:

Chen and Cheung [72] also found sharper versions of (10) as follows: For
0 < x < �=2,

3C 3

20
x3 tan x < 2

�
sin x

x

�
C tan x

x
< 3C

�
2

�

�4
x3 tan x (11)

and

3

56
x5 tan x < 2

�
sin x

x

�
C tan x

x
�
�
3C 3

20
x4
	
<

�
2

�

�6
x5 tan x; (12)

where the constants 3=20 D 0:15 and .2=�/4 � 0:16 in (11) and 3=56 � 0:054 and
.2=�/6 � 0:067 in (12) are best possible.

Recently Hua [96] have proved the following sharp inequalities: For
0 < jxj < �=2,

3C 1

40
x3 sin x <

sin x

x
C 2

tan.x=2/

x=2
< 3C 80 � 24�

�4
x3 sin x;

where the constants 1=40 and .80 � 24�/=�4 are best possible, and, for x ¤ 0,

3C 3

20
x3 tanh x < 2

sinh x

x
C tanh x

x
< 3C 3

20
x3 sinh x;

where the constant 3=20 is best possible.

3.6 Shafer

The problem of proving

arctan x >
3x

1C 2
p
1C x2

; x > 0;
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was proposed by Shafer [166] in 1966. Solutions were obtained by Grinstein, Marsh,
and Konhauser [169] in 1967. In 2011 Chen, Cheung, and Wang [73] found, for each
a > 0, the largest number b and the smallest number c such that the inequalities

bx

1C a
p
1C x2

6 arctan x 6 cx

1C a
p
1C x2

are valid for all x > 0. Their answer to this question is indicated in the following
table:

a Largest b Smallest c

0 < a 6 �=2 b D �a=2 c D 1C a

�=2 < a 6 2=.� � 2/ b D 4.a2 � 1/=a2 c D 1C a

2=.� � 2/ < a < 2 b D 4.a2 � 1/=a2 c D �a=2

2 6 a < 1 b D 1C a c D �a=2

In 1974, in a numerical analytical context [167], Shafer presented the inequality

arctan x > 8x

3Cp
25C .80=3/x2

; x > 0;

which he later proved analytically [168]. In [213] Zhu proved that the constant
80=3 in Shafer’s inequality is best possible and also obtained the complementary
inequality

arctan x <
8x

3Cp
25C .256=�2/x2

; x > 0;

where 256=�2 is the best possible constant.

3.7 Fink

In [132, p. 247], there is a lower bound for arcsin x on Œ0; 1� that is similar to
Shafer’s for arctan x. In 1995 Fink [87] supplied a complementary upper bound.
The resulting double inequality is

3x

2C p
1 � x2 6 arcsin x 6 �x

2C p
1 � x2 ; 0 6 x 6 1; (13)

and both numerator constants are best possible. Further refinements of these
inequalities, along with analogous ones for arcsinh x, were obtained by Zhu [212]
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and by Pan with Zhu [145]. We note that, for 0 < x < 1, this double inequality is
equivalent to

2C cos x

�
<

sin x

x
<
2C cos x

3
; 0 < x <

�

2
;

in which the second relation is the Cusa inequality.

3.8 Carlson

In 1970 Carlson [67, (1.14)] proved the inequality

6
p
1 � x

2
p
2C p

1C x
< arccos x <

3
p
4 � p

1 � x
.1C x/1=6

; 0 6 x < 1: (14)

In 2012, seeking to sharpen and generalize (14), Chen and Mortici [75] determined,
for each fixed c > 0, the largest number a and smallest number b such that the
double inequality

a
p
1 � x

c C p
1C x

6 arccos x 6 b
p
1 � x

c C p
1C x

is valid for all x 2 Œ0; 1�. Their answer to this question is indicated in the following
table:

c Largest a Smallest b

0 < x < .2� � 4/=.4� �/ .1C a/�=2 2C p
2a

.2� � 4/=.4� �/ � x � .4� �/=.� � 2
p
2/ 8.a2 � 2/=a2 2C p

2a

.4� �/=.� � 2
p
2/ < x < 2

p
2 4.a2 � 1/=a2 .1C a/�=2

2
p
2 � x < 1 2C p

2a .1C a/�=2

These authors also proved that, for all x 2 Œ0; 1�, the inequalities

3
p
4 � p

1 � x
aC .1C x/1=6

6 arccos x 6
3

p
4 � p

1 � x
b C .1C x/1=6

hold on Œ0; 1�, with best constants a D .2
3

p
4 � �/=� � 0:01 and b D 0:

Moreover, in view of the right side of (14), in 2011 Chen, Cheung, and Wang
[73] considered functions of the form
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f .x/ � r.1 � x/p
.1C x/q

on Œ0; 1� and determined the values of p; q; r such that f .x/ is the best third-order
approximation of arccos x in a neighborhood of the origin. The answer is that, for
p D .� C 2/=�2, q D .� � 2/=�2, r D �=2, one has

lim
x!0

arccos x � f .x/
x3

D �2 � 8
6�2

:

With the values of p; q; r stated above, the authors were led to a new lower bound
for arccos:

arccos x > .�=2/.1 � x/.�C2/=�2

.1C x/.��2/=�2 ; 0 < x 6 1:

3.9 Lazarević

In [117] Lazarević proved that, for x ¤ 0;

�
sinh x

x

�q
> cosh x

if and only if q > 3: Zhu improved upon this inequality in [215] by showing that if
p > 1 or p 6 8=15, then

�
sinh x

x

�q
> p C .1 � p/ cosh x

for all x > 0 if and only if q > 3.1 � p/: For some similar results see also [194].
In 2008 Baricz [34] extended the Lazarević inequality to modified Bessel

functions and also deduced some Turán- and Lazarević-type inequalities for the
confluent hypergeometric functions.

3.10 Neuman

Neuman [137] has recently established several inequalities involving new combina-
tions of circular and hyperbolic functions. In particular, he has proved that if x ¤ 0;

then
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.cosh x/2=3 <
sinh x

arcsin.tanh x/
<
1C 2 cosh x

3
;

Œ.cosh 2x/1=2 cosh2 x�1=3 <
sinh x

arcsinh.tanh x/
<
.cosh 2x/1=2 C 2 cosh x

3
;

and

Œ.cosh 2x/ cosh x�1=3 <
sinh x

arctan.tanh x/
<
2.cosh 2x/1=2 C cosh x

3
:

4 Euler’s Gamma Function

For Re z > 0 the gamma function is defined by

� .z/ �
Z 1

0

t z�1e�t dt;

and the definition is extended by analytic continuation to the entire complex plane
minus the set of nonpositive integers. This function, discovered by Leonhard Euler
in 1729, is a natural generalization of the factorial, because of the functional identity

� .z C 1/ D z� .z/:

The gamma function is one of the best-known and most important special functions
in mathematics and has been studied intensively.

We begin our treatment of this subject by considering an important special
constant discovered by Euler and related to the gamma function.

4.1 The Euler-Mascheroni Constant and Harmonic Numbers

The Euler-Mascheroni constant � D 0:5772156649 : : : is defined as

� � lim
n!1 �n; (15)

where �n � Hn � logn, n 2 N and where Hn are the harmonic numbers

Hn �
nX

kD1

1

k
D
Z 1

0

1 � xn
1 � x dx: (16)
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The number � is one of the most important constants in mathematics and is useful in
analysis, probability theory, number theory, and other branches of pure and applied
mathematics. The numerical value of � is known to 29; 844; 489; 545 decimal
places, thanks to computation by Yee and Chan in 2009 [201] (see [77, p. 273]).

The sequence �n converges very slowly to �; namely with order 1=n: By replac-
ing logn in this sequence by log.n C 1=2/, DeTemple [84] obtained quadratic
convergence (see also [69]). In [130] Mortici made a careful study of how
convergence is affected by changes in the logarithm term. He introduced new
sequences

Mn � Hn � log
P.n/

Q.n/
;

where P andQ are polynomials with leading coefficient 1 and degP � degQ D 1:

By judicious choice of the degrees and coefficients of P and Q he was able to
produce sequences Mn tending to � with convergence of order 1=n4 and 1=n6.
He also gave a recipe for obtaining sequences converging to � with order 1=n2kC2;
where k is any positive integer. This study is based on the author’s lemma, proved
in [129], that connects the rate of convergence of a convergent sequence fxng to that
of the sequence fxn � xnC1g.

In 1997 Negoi [134] showed that if Tn � Hn � log.n C 1=2 C 1=.24n//, then
Tn C Œ4n3��1 is strictly decreasing to � and Tn C Œ48.nC 1/��3 is strictly increasing
to � , so that Œ48.n C 1/��3 < � � Tn < Œ48n3��1: In 2011 Chen [70] established
sharper bounds for � � Tn by using a lemma of Mortici [129].

Using another approach, in 2011 Chlebus [77] developed a recursive scheme
for modifying the sequence Hn � logn to accelerate the convergence to � to any
desired order. The first step in Chlebus’ scheme is equivalent to the DeTemple [84]
approximation, while the next step yields a sequence that closely resembles the one
due to Negoi [134].

In [8] Alzer studied the harmonic numbers (16), obtaining several new inequali-
ties for them. In particular, for n > 2, he proved that

˛
log.lognC �/

n2
6 H1=n

n �H1=.nC1/
nC1 < ˇ

log.lognC �/

n2
;

where ˛ D .6
p
6 � 2

3
p
396/=.3 log.log 2 C �// � 0:014 and ˇ D 1 are the best

possible constants and � is the Euler-Mascheroni constant.

4.2 Estimates for the Gamma Function

In [14, Lemma 2.39] Anderson, Vamanamurthy, and Vuorinen proved that

lim
x!1

log�
�
x
2

C 1
�

x log x
D 1

2
(17)
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and that the function .log� .1 C x=2//=x is strictly increasing from Œ2;1/ onto
Œ0;1/: In [13] Anderson and Qiu showed that .log� .x C 1//=.x log x/ is strictly
increasing from .1;1/ onto .1 � �; 1/; where � is the Euler-Mascheroni constant
defined by (15), thereby obtaining the strict inequalities

x.1��/x�1 < � .x/ < xx�1; x > 1: (18)

They also conjectured that the function .log� .x C 1//=.x log x/ is concave on
.1;1/, and this conjecture was proved by Elbert and Laforgia in [85, Sect. 3].
One should note that in 1989 Sándor [159] proved that the function .� .x C 1//1=x

is strictly concave for x � 7.
Later Alzer [4] was able to extend (18) by proving that, for x 2 .0; 1/,

x˛.x�1/�� < � .x/ < xˇ.x�1/�� ; (19)

with best possible constants ˛ D 1 � � D 0:42278 : : : and ˇ D .�2=6 � �/=2 D
0:53385 : : :. For x 2 .1;1/ Alzer was able to sharpen (18) by showing that (19)
holds with best possible constants ˛ D .�2=6 � �/=2 � 0:534 and ˇ D 1. His
principal new tool was the convolution theorem for Laplace transforms.

Another type of approximation for � .x/ was derived by Ivády [102] in 2009:

x2 C 1

x C 1
< � .x C 1/ <

x2 C 2

x C 2
; 0 < x < 1: (20)

In 2011 Zhao, Guo, and Qi [207] simplified and sharpened (20) by proving that the
function

Q.x/ � log� .x C 1/

log.x2 C 1/ � log.x C 1/

is strictly increasing from .0; 1/ onto .�; 2.1��//, where � is the Euler-Mascheroni
constant. As a consequence, they proved that

�
x2 C 1

x C 1

�˛
< � .x C 1/ <

�
x2 C 1

x C 1

�ˇ
; 0 < x < 1;

with best possible constants ˛ D 2.1 � �/ and ˇ D �:

Very recently Mortici [133] has determined by numerical experiments that the
upper estimate in (18) is a better approximation for � .x/ than the lower one when
x is very large. Hence, he has sought estimates of the form � .x/ � xa.x/, where
a.x/ is close to x � 1 as x approaches infinity. For example, he proves that

x.x�1/a.x/ < � .x/ < x.x�1/b.x/; x > 20;
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where a.x/ D 1 � 1= log x C 1=.2x/ � .1 � .log 2�/=2/=.x log x/ and where
b.x/ D 1 � 1= log x C 1=.2x/. The left inequality is valid for x > 2. Mortici has
also obtained a pair of sharper inequalities of this type, valid for x > 2, and has
showed how lower and upper estimates of any desired accuracy may be obtained.
His proofs are based on an approximation for log� .x/ in terms of series involving
Bernoulli numbers [25, p. 29] and on truncations of an asymptotic series for the
function .log� .x//=..x � 1/ log x/: These results provide improvements of (18).

4.3 Factorials and Stirling’s Formula

The well-known Stirling’s formula for nŠ,

˛n �
�n
e

�n p
2�n ; (21)

discovered by the precocious homeschooled and largely self-taught eighteenth-
century Scottish mathematician James Stirling, approximates nŠ asymptotically in
the sense that

lim
n!1

nŠ

˛n
D 1:

Because of the importance of this formula in probability and statistics, number
theory, and scientific computations, several authors have sought to replace (21) by a
simple sequence that approximates nŠmore closely (see the discussions in [47,48]).
For example, Burnside [63] proved in 1917 that

nŠ � ˇn � p
2�

�
nC 1=2

e

�nC1=2
; (22)

that is, lim
n!1.nŠ=ˇn/ D 1: In 2008, Batir [47] determined that the best constants a

and b such that

nnC1e�np2�p
n � a 6 nŠ <

nnC1e�np2�p
n � b (23)

are a D 1 � 2�e�2 � 0:1497 and b D 1=6 � 0:1667. Batir offers a numerical
table illustrating that his upper bound formula nnC1e�np2�=pn � 1=6 gives much
better approximations to nŠ than does either (21) or (22).

In a later paper [48] Batir observed that many of the improvements of Stirling’s
formula take the form

nŠ � e�a
�
nC a

e

�np
2�.nC b/ (24)
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for some real numbers a and b. Batir sought the pair of constants a and b that would
make (24) optimal. He proved that the best pairs .a; b/ are .a1; b1/ and .a2; b2/,
where

a1 D 1

3
C �

6
� 1

6

p
6 � �2 C 4=� � 0:54032; b1 D a21 C 1=6 � 0:45861

and

a2 D 1

3
C �

6
C 1

6

p
6 � �2 C 4=� � 0:95011; b2 D a22 C 1=6 � 1:06937;

where � D p
2C 22=3 C 24=3 � 2:47128 and a1 and a2 are the real roots of the

quartic equation 3x4 � 4x3 C x2 C 1=12 D 0.
Ramanujan [156] sought to improve Stirling’s formula (21) by replacing

p
2n in

the formula by the sixth root of a cubic polynomial in n:

� .nC 1/ � p
�
�n
e

�n
6

r

8n3 C 4n2 C nC 1

30
: (25)

In this connection there appears in the record also his double inequality, for x > 1,

6

r

8x3 C 4x2 C x C 1

100
<
� .x C 1/p
�
�
x
e

�x <
6

r

8x3 C 4x2 C x C 1

30
: (26)

Motivated by this inequality of Ramanujan, the authors of [18] defined the function
h.x/ � u.x/6 � .8x3 C 4x2 C x/, where u.x/ D .e=x/x� .x C 1/=

p
�;

and conjectured that h.x/ is increasing from .1;1/ into .1=100; 1=30/. In 2001
Karatsuba [106] settled this conjecture by showing that h.x/ is increasing from
Œ1;1/ onto Œh.1/; 1=30/; where h.1/ D e6=�3 � 13 � 0:011.

In an unpublished document, E. A. Karatsuba suggested modifying Ramanujan’s
approximation formula (25) by replacing the radical with the 2kth root of a polyno-
mial of degree k and determining the best such asymptotic approximation. Such a
program was partially realized by Mortici [132] in 2011, who proposed formula (27)
below for k D 4, but the more general problem suggested by Karatsuba remains an
open problem. Mortici’s proposed Ramanujan-type asymptotic approximation is as
follows:

� .nC 1/ � p
�
�n
e

�n
8

r

16n4 C 32

3
n3 C 32

9
n2 C 176

405
n � 128

1215
: (27)

In connection with (27), he defined the function

g.x/ � u.x/8 �
�
16x4 C 32

3
x3 C 32

9
x2 C 176

405
x

�
;
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where u.x/ D .e=x/x� .x C 1/=
p
�; and proved that g.x/ is strictly decreasing

from Œ3;1/ onto .g.1/; g.3/�, where g.1/ D �128=1215 � �0:105 and g.3/ D
256e24=.43046721�4/ � 218336=135 � �0:088: Mortici’s method for proving
monotonicity was simpler than Karatsuba’s, because he employed an excellent result
of Alzer [3] concerning complete monotonicity (see Sect. 4.6 below for definitions).
Mortici claimed that his method would also simplify Karatsuba’s proof in [106].
Finally, he proved that, for x > 3,

R.x; ˛/ <
� .x C 1/p
�
�
x
e

�x 6 R.x; ˇ/;

where R.x; t/ � 8

q
16x4 C 32

3
x3 C 32

9
x2 C 176

405
x � t , and ˛ D 128=1215,

ˇ D g.3/ are the best possible constants.
In 2012 Mahmoud, Alghamdi, and Agarwal [124] deduced a new family of upper

bounds for � .nC 1/ of the form

� .nC 1/ <
p
2�n

�n
e

�n
eM

Œm�
n ; n 2 N;

M Œm�
n � 1

2mC 3

"
1

4n
C

mX

kD1

2m � 2k C 2

2k C 1
2�2k	.2k; nC 1=2/

#

; n 2 N;

where 	 is the Hurwitz zeta function

	.s; q/ �
1X

kD0

1

.k C q/s
:

These upper bounds improve Mortici’s inequality (27).

4.4 Volume of the Unit Ball

The volume ˝n of the unit ball in R
n is given in terms of the gamma function by

the formula

˝n D �n=2

� .n=2C 1/
; n 2 N:

Whereas the volume of the unit cube is 1 in all dimensions, the numbers ˝n

strictly increase to the maximum ˝5 D 8�2=15 and then strictly decrease to 0 as
n ! 1 (cf. [60, p.264]). Anderson, Vamanamurthy, and Vuorinen [14] proved
that ˝1=n

n is strictly decreasing and that the series
P1

nD2 ˝
1= logn
n is convergent.

In [13] Anderson and Qiu proved that ˝1=.n log n/
n is strictly decreasing with limit

e�1=2 as n ! 1:
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In 2008 Alzer published a collection of new inequalities for combinations of
different dimensions and powers of˝n [7, Sect. 3]. We quote several of them below:

a
.2�e/n=2

n.n�1/=2 6 .nC 1/˝n � n˝nC1 < b
.2�e/n=2

n.n�1/=2 ; n > 1; (28)

where the best possible constants are a D .4 � 9�=8/.2=.�e//1=2=e D 0:0829 : : :

and b D ��1=2 D 0:5641 : : :;

a
.2�e/n

nnC2 6 ˝2
n �˝n�1˝nC1 < b

.2�e/n

nnC2 ; n > 2; (29)

with best possible constant factors a D .4=e2/.1 � 8=.3�// D 0:0818 : : : and
b D 1=.2�/ D 0:1591 : : :;

ap
n

6 ˝n

˝n�1 C˝nC1
<

bp
n
; n > 2; (30)

with best possible constants a D 3
p
2�=.6C 4�/ D 0:7178 : : : and b D p

2� D
2:5066 : : :; and

ap
n

6 .nC 1/
˝nC1
˝n

� n ˝n

˝n�1
<

bp
n
; n > 2; (31)

with best possible constants a D .4 � �/
p
2 D 1:2139 : : : and b D p

2�=2 D
1:2533 : : :.

Alzer’s work in [7] includes a number of new results about the gamma function
and its derivatives.

In 2010 Mortici [128], improving on some earlier work of Alzer [5, Theorem 1],
obtained, for n > 1 on the left and for n > 4 on the right,

a
2n
p
2�

6 ˝n

˝
n=.nC1/
nC1

<

p
e

2n
p
2�
;

where a D 64 �72011=12 �21=22=.10395 ��5=11/ D 1:5714 : : : : He sharpened the work
of Alzer [5, Theorem 2] and Qiu and Vuorinen [154] in the following result, valid
for n > 1:

r
2nC 1

4�
<
˝n�1
˝n

<

r
2nC 1

4�
C 1

16�n
:

Mortici also proved, in [128, Theorem 4], that, for n > 4;

�
1C 1

n

� 1
2� 1

4n

<
˝2
n

˝n�1˝nC1
<

�
1C 1

n

� 1
2

:
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This result improves a similar one by Alzer [5, Theorem 3, valid for n > 1], where
the exponent on the left is the constant 2� log2 �:Very recently, Yin [202] improved
Mortici’s result as follows: For n � 1,

.nC 1/.nC 1=6/

.nC ˇ/2
<

˝2
n

˝n�1˝nC1
<
.nC 1/.nC ˇ=2/

.nC 1=3/2
;

where ˇ D .391=30/1=3.

4.5 Digamma and Polygamma Functions

The logarithmic derivative of the gamma function,  .x/ � d
dx

log� .x/ D
� 0.x/=� .x/, is known as the digamma function. Its derivatives  .n/; n > 1;

are known as the polygamma functions  n: These functions have the following
representations [1, pp. 258–260] for x > 0 and each natural number n:

 .x/ D �� C
Z 1

0

e�t � e�xt

1 � e�t dt D �� � 1

x
C

1X

nD1

x

n.x C n/

and

 n.x/ D .�1/nC1
Z 1

0

tne�xt

1 � e�t dt D .�1/nC1nŠ
1X

nD0
.x C k/�n�1:

Several researchers have studied the properties of these functions. In 2007, refining
the left inequality in [6, Theorem 4.8], Batir [45] obtained estimates for  n in terms
of  or  k , with k < n. In particular, he proved, for x > 0 and n 2 N:

.n � 1/Š exp .�n .x C 1=2// < j n.x/j < .n � 1/Š exp .�n .x// ;

and, for 1 6 k 6 n � 1, x > 0,

.n � 1/Š
�

 k.x C 1=2/

.�1/k�1.k � 1/Š
�n=k

< j n.x/j < .n � 1/Š
�

 k.x/

.�1/k�1.k � 1/Š
�n=k

:

He also proved, for example, the difference formula

˛ <
�
.�1/n�1 n.x C 1/

��1=n � �
.�1/n�1 n.x/

��1=n
< ˇ;

where ˛ D .nŠ	.nC1//�1=n and ˇ D ..n�1/Š/�1=n are best possible, and the sharp
estimates
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�� <  .x/C log.e1=x � 1/ < 0;

where � is the Euler-Mascheroni constant.
In 2010 Mortici [131] proved the following estimates, for x > 0 and n > 1,

refining the work of Guo, Chen, and Qi [89]:

� 1

720

.nC 3/Š

xnC4 < j n.x/j �
�
.n � 1/Š
xn

C 1

2

nŠ

xnC1 C 1

12

.nC 1/Š

xnC2

	
< 0:

4.6 Completely Monotonic Functions

A function f is said to be completely monotonic on an interval I if .�1/nf .n/.x/ >
0 for all x 2 I and all nonnegative integers n. If this inequality is strict, then
f is called strictly completely monotonic. Such functions occur in probability
theory, numerical analysis, and other areas. Some of the most important completely
monotonic functions are the gamma function and the digamma and polygamma
functions. The Hausdorff-Bernstein-Widder theorem [189, Theorem 12b, p. 161]
states that f is completely monotonic on Œ0;1/ if and only if there is a nonnegative
measure � on Œ0;1/ such that

f .x/ D
Z 1

0

e�xtd�.t/

for all x > 0. There is a well-written introduction to completely monotonic
functions in [125].

In 2008 Batir [46] proved that the following function Fa.x/ related to the gamma
function is completely monotonic on .0;1/ if and only if a > 1=4 and that �Fa.x/
is completely monotonic if and only if a 6 0:

Fa.x/ � log� .x/ � x log x C x � 1

2
log.2�/C 1

2
 .x/C 1

6.x � a/ :

As a corollary he was able to prove, for x > 0, the inequality

exp

�
�1
2
 .x/ � 1

6.x � ˛/
�
<

� .x/

xxe�xp2� < exp

�
�1
2
 .x/ � 1

6.x � ˇ/
�
;

with best constants ˛ D 1=4 and ˇ D 0; improving his earlier work with Alzer [9].
In 2010 Mortici [131] showed that for every n > 1, the functions

f; g W .0;1/ ! R given by

f .x/ � j n.x/j � .n � 1/Š
xn

� 1

2

nŠ

xnC1 � 1

12

.nC 1/Š

xnC2 C 1

720

.nC 3/Š

xnC4
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and

g.x/ � .n � 1/Š
xn

C 1

2

nŠ

xnC1 C 1

12

.nC 1/Š

xnC2 � j n.x/j

are completely monotonic on .0;1/. As a corollary, since f .x/ and g.x/ are
positive, he obtained estimates for j n.x/j as finite series in negative powers of x.

Anderson and Qiu [13], as well as some other authors (see [2]), have studied the
monotonicity properties of the function f .x/ � .log� .x C 1//=x. In 2011 Adell
and Alzer [2] proved that f 0 is completely monotonic on .�1;1/:

In the course of pursuing research inspired by [13, 14] (see [53]), in 2012 Alzer
[7] discussed properties of the function

f .x/ �
�
1 � log x

log.1C x/

�
x log x;

which Qi and Guo [149] later conjectured to be completely monotonic on .0;1/.
In [53] Berg and Pedersen proved this conjecture.

In 2001 Berg and Pedersen [50] proved that the derivative of the function

f .x/ � log� .x C 1/

x log x
; x > 0

is completely monotonic (see also [51]). This result extends the work of [13, 85].
Very recently, Berg and Pedersen [52] showed that the function

Fa.x/ � log� .x C 1/

x log.ax/

is a Pick function when a � 1, that is, it extends to a holomorphic function mapping
the upper half plane into itself. The authors also considered the function

f .x/ �
�

�x=2

� .1C x=2/

�1=.x log x/

and proved that log f .x C 1/ is a Stieltjes function and hence that f .x C 1/ is
completely monotonic on .0;1/.

5 The Hypergeometric Function and Elliptic Integrals

The classical hypergeometric function is defined by

F.a; bI cI x/ � 2F1.a; bI cI x/ D
1X

nD0

.a; n/.b; n/

.c; n/

xn

nŠ
; jxj < 1;
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where .a; n/ � a.a C 1/.a C 2/ � � � .a C n � 1/ for n 2 N and .a; 0/ D 1 for
a ¤ 0. This function is so general that for proper choice of the parameters a, b,
c, one obtains logarithms, trigonometric functions, inverse trigonometric functions,
elliptic integrals, or polynomials of Chebyshev, Legendre, Gegenbauer, Jacobi, and
so on (see [1, Chap. 15]).

5.1 Hypergeometric Functions

The Bernoulli inequality [126, p. 34] may be written as

log.1C ct/ 6 c log.1C t /; (32)

where c > 1, t > 0. In [111] some Bernoulli-type inequalities have been obtained.
It is well known that in the zero-balanced case c D a C b the hypergeometric

function F.a; bI cI x/ has a logarithmic singularity at x D 1 (cf. [18, Theo-
rem 1.19(6)]). Moreover, as a special case [1, 15.1.3],

xF.1; 1; 2I x/ D log
1

1 � x : (33)

Because of this connection, Vuorinen and his collaborators [110] have generalized
versions of (32) to a wide class of hypergeometric functions. In the course of their
investigation they have studied monotonicity and convexity/concavity properties of
such functions. For example, for positive a; b let g.x/ � xF.a; bI a C bI x/, x 2
.0; 1/: These authors have proved that G.x/ � logg.ex=.1 C ex// is concave on
.�1;1/ if and only if 1=aC 1=b > 1: And they have shown that, for fixed a; b 2
.0; 1� and for x 2 .0; 1/, p > 0, the function

�
xp

1C xp
F

�
a; bI aC bI xp

1C xp

��1=p

is increasing in p. In particular,

p
r

1C p
r
F

�
a; bI aC bI

p
r

1C p
r

�
�
�

r

1C r
F

�
a; bI aC bI r

1C r

��1=2
:

Motivated by the asymptotic behavior of F.x/ D F.a; bI cI x/ as x ! 1�, Simić
and Vuorinen have carried the above work further in [170], finding best possible
bounds, when a; b; c > 0 and 0 < x; y < 1, for the quotient and difference

F.a; bI cI x/C F.a; bI cIy/
F.a; bI cI x C y � xy/ ; F.x/C F.y/ � F.x C y � xy/:
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In 2009 Karp and Sitnik [108] obtained some inequalities and monotonicity of ratios
for the generalized hypergeometric function. The proofs hinge on a generalized
Stieltjes representation of the generalized hypergeometric function.

5.2 Complete Elliptic Integrals

For 0 < r < 1, the complete elliptic integrals of the first and second kind are
defined as

K.r/ �
Z �=2

0

dtp
1 � r2 sin2 t

D
Z 1

0

dt
p
.1 � t 2/.1 � r2t2/ (34)

and

E.r/ �
Z �=2

0

p
1 � r2 sin2 t dt D

Z 1

0

r
1 � r2t2
1 � t 2 dt; (35)

respectively. Letting r 0 � p
1 � r2, we often denote

K0.r/ D K.r 0/; E0.r/ D E.r 0/:

These elliptic integrals have the hypergeometric series representations

K.r/ D �

2
F
�
1
2
; 1
2
I 1I r2� ; E D �

2
F
�
1
2
;� 1

2
I 1I r2� : (36)

5.3 The Landen Identities

The functions K and E satisfy the following identities due to Landen [64, 163.01,
164.02]:

K

�
2
p
r

1C r

�
D .1C r/K.r/; K

�
1 � r
1C r

�
D 1

2
.1C r/K0.r/;

E

�
2
p
r

1C r

�
D 2E.r/ � r 02K.r/

1C r
; E

�
1 � r
1C r

�
D E0.r/C rK0.r/

1C r
:

Using Landen’s transformation formulas, we have the following identities [177,
Lemma 2.8]: For r 2 .0; 1/, let t D .1 � r/=.1C r/. Then
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K.t2/ D .1C r/2

4
K0.r2/; K0.t2/ D .1C r/2K.r2/;

E.t2/ DE0.r2/C .r C r2 C r3/K0.r2/
.1C r/2

;

E0.t2/ D4E.r2/ � .3 � 2r2 � r4/K.r2/
.1C r/2

:

Generalizing a Landen identity, Simić and Vuorinen [171] have determined the
precise regions in the ab-plane for which a Landen inequality holds for zero-
balanced hypergeometric functions. They proved that for all a; b > 0with ab 6 1=4

the inequality

F

�
a; bI aC bI 4r

.1C r/2

�
6 .1C r/F

�
a; bI aC bI r2�

holds for r 2 .0; 1/, while for a; b > 0 with 1=aC 1=b 6 4; the following reversed
inequality is true for each r 2 .0; 1/ W

F

�
a; bI aC bI 4r

.1C r/2

�
> .1C r/F

�
a; bI aC bI r2� :

In the rest of the ab-plane neither of these inequalities holds for all r 2 .0; 1/: These
authors have also obtained sharp bounds for the quotient

.1C r/F.a; bI aC bI r2/
F.a; bI aC bI 4r=.1C r/2/

in certain regions of the ab-plane.
Some earlier results on Landen inequalities for hypergeometric functions can be

found in [152]. Recently, Baricz obtained Landen-type inequalities for generalized
Bessel functions [29, 37].

Inspired by an idea of Simić and Vuorinen [171], Wang, Chu, and Jiang
[188] obtained some inequalities for zero-balanced hypergeometric functions which
generalize Ramanujan’s cubic transformation formulas.

5.4 Legendre’s Relation and Generalizations

It is well known that the complete elliptic integrals satisfy the Legendre relation [64,
110.10]:

EK0 C E0K � KK0 D �

2
:
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This relation has been generalized in various ways. Elliott [86] proved the identity

F1F2 C F3F4 � F3F2 D � .1C �C �/� .1C �C 
/

� .�C �C 
 C 3
2
/� . 1

2
C �/

;

where

F1 D F.1
2
C�;� 1

2
�
I 1C�C �I x/; F2 D F.1

2
� �; 1

2
C 
I 1C �C 
I 1 � x/;

F3 D F.1
2
C�; 1

2
�
I 1C�C �I x/; F4 D F.� 1

2
� �; 1

2
C 
I 1C �C 
I 1 � x/:

Elliott proved this formula by a clever change of variables in multiple integrals.
Another proof, based on properties of the hypergeometric differential equation, was
suggested without details in [25, p. 138], and the missing details were provided in
[20]. It is easy to see that Elliott’s formula reduces to the Legendre relation when
� D � D 
 D 0 and x D r2.

Another generalization of the Legendre relation was given in [19]. With the
notation

u D u.r/ D F.a � 1; bI cI r/; v D v.r/ D F.a; bI cI r/;
u1 D u.1 � r/; v1 D v.1 � r/;

the authors considered the function

L.a; b; c; r/ D uv1 C u1v � vv1;

proving, in particular, that

L.a; 1 � a; c; r/ D � 2.c/

� .c C a � 1/� .c � aC 1/
:

This reduces to Elliott’s formula in case � D 
 D 1=2� a and � D cC a� 3=2. In
[19] it was conjectured that for a; b 2 .0; 1/, aCb � 1.� 1/, L.a; b; c; r/ is concave
(convex) as a function of r on .0; 1/. In [107] Karatsuba and Vuorinen determined,
in particular, the exact regions of abc-space in which the function L.a; b; c; r/ is
concave, convex, constant, positive, negative, zero, and where it attains its unique
extremum.

In [27] Balasubramanian, Naik, Ponnusamy, and Vuorinen obtained a differentia-
tion formula for an expression involving hypergeometric series that implies Elliott’s
identity. This paper contains a number of other significant results, including a proof
that Elliott’s identity is equivalent to a formula of Ramanujan [54, p. 87, Entry 30]
on the differentiation of quotients of hypergeometric functions.
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5.5 Some Approximations for K.r/ by arth r

Anderson, Vamanamurthy, and Vuorinen [15] approximated K.r/ by the inverse
hyperbolic tangent function arth, obtaining the inequalities

�

2

�
arth r

r

�1=2
< K.r/ <

�

2

arth r

r
; (37)

for 0 < r < 1. Alzer and Qiu [11] refined (37) as

�

2

�
arth r

r

�3=4
< K.r/ <

�

2

arth r

r
; (38)

with the best exponents 3=4 and 1 for .arth r/=r on the left and right, respectively.
Seeking to improve the exponents in (38), they conjectured that the double
inequality

�

2

�
arth r

r

�3=4C˛r
< K.r/ <

�

2

�
arth r

r

�3=4Cˇr
(39)

holds for all 0 < r < 1, with best constants ˛ D 0 and ˇ D 1=4. Very recently Chu
et al. [81] gave a proof for this conjecture.

András and Baricz [24] presented some improved lower and upper bounds for
K.r/ involving the Gaussian hypergeometric series.

5.6 Approximations for E.r/

In [90] Guo and Qi have obtained new approximations for E.r/ as well as for K.r/.
For example, they showed that, for 0 < r < 1,

�

2
� 1

2
log

.1C r/1�r

.1 � r/1Cr < E.r/ <
� � 1
2

C 1 � r2
4r

log
1C r

1 � r :

In recent work [82,178,185] Chu et al. have obtained estimates for E.r/ in terms of
rational functions of the arithmetic, geometric, and root-square mean, implying new
inequalities for the perimeter of an ellipse.

5.7 Generalized Complete Elliptic Integrals

For 0 < a < minfc; 1g and 0 < b < c 6 a C b, define the generalized complete
elliptic integrals of the first and second kind on Œ0; 1� by [95]
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Ka;b;c D Ka;b;c.r/ � B.a; b/

2
F.a; bI cI r2/; (40)

Ea;b;c D Ea;b;c.r/ � B.a; b/

2
F.a � 1; bI cI r2/; (41)

K0
a;b;c D Ka;b;c.r

0/ and E0
a;b;c D Ea;b;c.r

0/; (42)

for r 2 .0; 1/, r 0 D p
1 � r2. The end values are defined by limits as r tends to 0C

and 1�, respectively. Thus,

Ka;b;c.0/ D Ea;b;c.0/ D B.a; b/

2

and

Ea;b;c.1/ D 1

2

B.a; b/B.c; c C 1 � a � b/
B.c C 1 � a; c � b/ ; Ka;b;c.1/ D 1:

Note that the restrictions on the parameters a, b, and c ensure that the function
Ka;b;c is increasing and unbounded, whereas Ea;b;c is decreasing and bounded, as in
the classical case a D b D 1=2, c D 1.

Heikkala, Lindén, Vamanamurthy, and Vuorinen [94, 95] derived several differ-
entiation formulas and obtained sharp monotonicity and convexity properties for
certain combinations of the generalized elliptic integrals. They also constructed a
conformal mapping sna;b;c from a quadrilateral with internal angles b� , .c � b/� ,
.1 � a/� , and .1 � c C a/� onto the upper half plane. These results generalize the
work of [19]. For some particular parameter triples .a; b; c/, there are very recent
results by many authors [37, 181, 206, 209].

With suitable restrictions on the parameters a; b; c, Neuman [135] has obtained
bounds for Ka;b;c and Ea;b;c and for certain combinations and products of them.
He has also proved that these generalized elliptic integrals are logarithmically
convex as functions of the first parameter.

In 2007 Baricz [33,36,38] established some Turán-type inequalities for Gaussian
hypergeometric functions and generalized complete elliptic integrals. He also
studied the generalized convexity of the zero-balanced hypergeometric functions
and generalized complete elliptic integrals [31] (see also [30,32,37]). Very recently,
Kalmykov and Karp [103, 104] have studied log-convexity and log-concavity for
series involving gamma functions and derived many known and new inequalities
for the modified Bessel and Kummer and generalized hypergeometric functions
and ratios of the Gauss hypergeometric functions. In particular, they improved and
generalized Baricz’s Turán-type inequalities.
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5.8 The Generalized Modular Function and Generalized
Linear Distortion Function

Let a; b; c > 0with aCb � c. A generalized modular equation of order (or degree)
p > 0 is

F.a; bI cI 1 � s2/
F.a; bI cI s2/ D p

F.a; bI cI 1 � r2/
F.a; bI cI r2/ ; 0 < r < 1: (43)

The generalized modulus is the decreasing homeomorphism �a;b;c W .0; 1/ !
.0;1/, defined by

�a;b;c.r/ � B.a; b/

2

F.a; bI cI 1 � r2/
F.a; bI cI r2/ : (44)

The generalized modular equation (43) can be written as

�a;b;c.s/ D p�a;b;c.r/:

With p D 1=K, K > 0, the solution of (43) is then given by

s D '
a;b;c
K .r/ � ��1

a;b;c.�a;b;c.r/=K/:

Here 'a;b;cK is called the .a; b; c/-modular function with degree p D 1=K [19, 94,
95]. Clearly the following identities hold:

�a;b;c.r/�a;b;c.r
0/ D

�
B.a; b/

2

�2
;

'
a;b;c
K .r/2 C '

a;b;c
1=K .r

0/2 D 1:

In [94], the authors generalized the functional inequalities for the modular functions
and Grötzsch function � proved in [19] to hold also for the generalized modular
functions and generalized modulus in the case b D c � a. For instance, for 0 < a <
c � 1 and K > 1, the inequalities

�a;c�a;c.1�
p
.1 � u/.1 � t // � �a;c�a;c.u/C �a;c�a;c.t/

2
� �a;c�a;c.

p
ut / (45)

hold for all u; t 2 .0; 1/, with equality if and only if u D t , and

r1=K < '
a;c�a;c
K .r/ < e.1�1=K/R.a;c�a/=2r1=K; (46)

rK > '
a;c�a;c
1=K .r/ > e.1�K/R.a;c�a/=2rK: (47)
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For the special case of a D 1=2 and c D 1 the readers are referred to [18].
Wang et al. [181] presented several sharp inequalities for the generalized modular
functions with specific choice of parameters c D 1 and b D 1 � a.

A linearization for the generalized modular function is also presented in [94]
as follows: Let p W .0; 1/ ! .�1;1/ and q W .�1;1/ ! .0; 1/ be given by
p.x/ D 2 log.x=x0/ and q.x/ D p�1.x/ D p

ex=.ex C 1/, respectively, and for
a 2 .0; 1/, c 2 .a; 1�, K 2 .1;1/, let g; h W .�1;1/ ! .�1;1/ be defined by
g.x/ D p.'

a;c�a;c
K .q.x/// and h.x/ D p.'

a;c�a;c
1=K .q.x///. Then

g.x/ �


Kx; if x � 0;

x=K; if x < 0;
and h.x/ �



x=K; if x � 0;

Kx; if x < 0:

In the same paper the authors also studied how these generalized functions depend
on the parameter c. Corresponding results for the case c D 1 can be found in the
articles [19, 153, 204].

Recently Bhayo and Vuorinen [55] have studied the Hölder continuity and
submultiplicative properties of 'a;b;cK .r/ in the case where c D 1 and b D 1 � a

and have obtained several sharp inequalities for 'a;1�a;1K .r/:

For x;K 2 .0;1/; define

�aK.x/ �
� s
s0
�2
; s D '

a;1�a;1
K .r/; r D

r
x

1C x
;

and the generalized linear distortion function

�.a;K/ �
 
'
a;1�a;1
K .1=

p
2/

'
a;1�a;1
1=K .1=

p
2/

!2
; �.a; 1/ D 1:

For a D 1=2, these two functions reduce to the well-known special case denoted by
�K.x/ and �.K/, respectively, which play a crucial role in quasiconformal theory.
Several inequalities for these functions have been obtained as an application of the
monotonicity and convexity of certain combinations of these functions and some
elementary functions; see [55, 80, 122, 123, 180, 203]. For instance, the following
chain of inequalities is proved in [80]: for a 2 .0; 1=2�, K 2 .1;1/ and x; y 2
.0;1/,

max



2�aK.x/�

a
K.y/

�aK.x/C �aK.y/
; �aK

�
2xy

x C y

��
� �aK.

p
xy/

�
q
�aK.x/�

a
K.y/ � min



�aK.x/C �aK.y/

2
; �aK

�
x C y

2

��
;

with equality if and only if x D y.
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6 Inequalities for Power Series

The following theorem [95, Theorem 4.3] is an interesting tool in simplified proofs
for monotonicity of the quotient of two power series:

Theorem 6.1. Let
P1

nD0 anxn and
P1

nD0 bnxn be two real power series converging
on the interval .�R;R/. If the sequence fan=bng is increasing (decreasing) and
bn > 0 for all n, then the function

f .x/ D

1P
nD0

anx
n

1P
nD0

bnxn

is also increasing (decreasing) on .0; R/. In fact, the function

f 0.x/
 1X

nD0
bnx

n

!2

has positive Maclaurin coefficients.

A more general version of this theorem appears in [58] and [147, Lemma 2.1].
This kind of rule also holds for the quotient of two polynomials instead of two power
series (cf. [95, Theorem 4.4]):

Theorem 6.2. Let fn.x/ D Pn
kD0 akxk and gn.x/ D Pn

kD0 bkxk be two real
polynomials, with bk > 0 for all k. If the sequence fak=bkg is increasing
(decreasing), then so is the function fn.x/=gn.x/ for all x > 0. In fact, gnf 0

n �fng0
n

has positive (negative) coefficients.

In 1997 Ponnusamy and Vuorinen [147] refined Ramanujan’s work on asymp-
totic behavior of the hypergeometric function and also obtained many inequalities
for the hypergeometric function by making use of Theorem 6.1. Many well-known
results of monotonicity and inequalities for complete elliptic integrals have been
extended to the generalized elliptic integrals in [94, 95].

Motivated by an open problem of Anderson et al. [16], in 2006 Baricz [30]
considered ratios of general power series and obtained the following theorem. Note
the similarity of the last inequality in Theorem 6.3 with the left-hand side of the
inequality (45).

Theorem 6.3. Suppose that the power series f .x/ D P1
nD0 anxn with an > 0

for all n � 0 is convergent for all x 2 .0; 1/ and also that the sequence f.n C
1/anC1=an � ngn�0 is strictly decreasing. Let the function mf W .0; 1/ ! .0;1/ be
defined as mf .r/ D f .1 � r2/=f .r2/. Then
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k

vuu
t

kY

iD1
mf .ri / � mf

0

@
k

vuu
t

kY

iD1
ri

1

A ;

for all r1; r2; : : : ; rk 2 .0; 1/, where equality holds if and only if r1 D r2 D � � � D rk .
In particular, for k D 2 the inequalities

q
mf .r1/mf .r2/ � mf .

p
r1r2/;

1

mf .r1/
C 1

mf .r2/
� 2

mf .
p
r1r2/

;

mf .r1/Cmf .r2/ � 2mf

 r

1 �
q
.1 � r21 /.1 � r22 /

!

hold for all r1; r2 2 .0; 1/, and in all these inequalities equality holds if and only
if r1 D r2.

The following Landen-type inequality for power series is also due to Baricz [29].

Theorem 6.4. Suppose that the power series f .x/ D P1
nD0 anxn with an > 0 for

all n � 0 is convergent for all x 2 .0; 1/ and that for a given ı > 1 the sequence
fnŠan=.log ı/ngn�0 is decreasing. If �f .x/ D f .x2/, then

�f

�
2
p
r

1C r

�
< ��f .r/

holds for all r 2 .0; 1/ and � � ı4
p
2�5.

Anderson, Vamanamurthy, and Vuorinen [22] studied generalized convexity
and gave sufficient conditions for generalized convexity of functions defined by
Maclaurin series. These results yield a class of new inequalities for power series
which improve some earlier results obtained by Baricz. More inequalities for power
series can be found in [37, 80].

In 1928 T. Kaluza gave a criterion for the signs of the power series of a function
that is the reciprocal of another power series.

Theorem 6.5 ([105]). Let f .x/ D P
n�0 anxn be a convergent Maclaurin series

with radius of convergence r > 0. If an > 0 for all n � 0 and the sequence fangn�0
is log-convex, that is, for all n � 0

a2n � an�1anC1; (48)

then the coefficients bn of the reciprocal power series 1=f .x/ D P
n�0 bnxn have

the following properties: b0 D 1=a0 > 0 and bn � 0 for all n � 1.
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In 2011 Baricz, Vesti, and Vuorinen [42] showed that the condition (48) cannot be
replaced by the condition

an �
�
atn�1 C atnC1

2

�1=t
;

for any t > 0. However, it is not known whether the condition (48) is necessary.
In 2009 Koumandos and Pedersen [115, Lemma 2.2] proved the following

interesting result, which deals with the monotonicity properties of the quotient of
two series of functions.

Theorem 6.6. Suppose that ak > 0, bk > 0 and that fuk.x/g is a sequence of
positive C1-functions such that the series

1X

kD0
aku.l/k .x/ and

1X

kD0
bku.l/k .x/; l D 0; 1;

converge absolutely and uniformly over compact subsets of Œ0;1/. Define

f .x/ �

1P
kD0

akuk.x/

1P
kD0

bkuk.x/
:

1: If the logarithmic derivatives u0
k.x/=uk.x/ form an increasing sequence of

functions and if ak=bk decreases .resp. increases/, then f .x/ decreases .resp.
increases/ for x � 0.

2: If the logarithmic derivatives u0
k.x/=uk.x/ form a decreasing sequence of

functions and if ak=bk decreases .resp. increases/, then f .x/ increases .resp.
decreases/ for x � 0.

For inequalities of power series as complex functions, see [99–101] and the
references therein.

7 Means

A homogeneous bivariate mean is defined as a continuous function M W RC	R
C !

R satisfying minfx; yg � M.x; y/ � maxfx; yg and M.�x; �y/ D �M.x; y/ for
all x; y; � > 0. Important examples are the arithmetic mean A.a; b/, the geometric
mean G.a; b/, the logarithmic mean L.a; b/, the identric mean I.a; b/, the root-
square meanQ.a; b/, and the power meanMr.a; b/ of order r defined, respectively,
by
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A.a; b/ D aC b

2
; G.a; b/ D

p
ab;

L.a; b/ D a � b
log a � log b

; I.a; b/ D 1

e

�
aa

bb

�1=.a�b/
;

Q.a; b/ D
r
a2 C b2

2
; Mr.a; b/ D

r
r
ar C br

2
:

7.1 Power Means

The weighted power means are defined by

M�.!I a; b/ � �
!a� C .1 � !/b��1=� .� ¤ 0/;

M0.!I a; b/ � a!b1�! , with weights !; 1 � ! > 0. The power means are the
equally weighted means M�.a; b/ D M�.1=2I a; b/. As a special case, we have
M0.1=2I a; b/ D G.a; b/.

In [114] Kouba studied the ratio of differences of power means

�.s; t; pI a; b/ � M
p
s .a; b/ �Gp.a; b/

M
p
t .a; b/ �Gp.a; b/

;

finding sharp bounds for �.s; t; pI a; b/ in various regions of stp-space with a; b
positive and a ¤ b. This work extends the results of Alzer and Qiu [10], Trif [175],
Kouba [113], Wu [193], and Wu and Debnath [196]. Kouba also extended the range
of validity of the following inequality, due to Wu and Debnath [196]:

2�p=r � 2�p=s

2�p=t � 2�p=s <
M

p
r .a; b/ �Mp

s .a; b/

M
p
t .a; b/ �Mp

s .a; b/
<
r � s
t � s

to the set of real numbers r; t; s; p satisfying the conditions 0 < s < t < r and
0 < p 6 .4t C 2s/=3:

7.2 Toader Means

If p W RC ! R
C is a strictly monotonic function, then define

f .a; bIp; n/ �

8
ˆ̂<

ˆ̂:

1

2�

R 2�
0
p..an cos2 � C bn sin2 �/1=n/d� if n ¤ 0;

1

2�

R 2�
0
p.acos2 �bsin2 � /d� if n D 0;
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where a; b are positive real numbers. The Toader mean [174] of a and b is defined
as T .a; bIp; n/ � p�1.f .a; bIp; n//. It is easy to see that the Toader mean is
symmetric. For special choices of p, let Tq;n.a; b/ D T .a; bIp; n/ if p.x/ D xq

with q ¤ 0 and T0;n.a; b/ D T .a; bIp; n/ if p.x/ D log x. The means Tq;n
belong to a large family of means called the hypergeometric means, which have been
studied by Carlson and others [62,65,68]. It is easy to see that Tq;n is homogeneous.
In particular, we have

T0;2.a; b/ D A.a; b/; T�2;2.a; b/ D G.a; b/; T2;2.a; b/ D Q.a; b/:

Furthermore, the Toader means are related to the complete elliptic integrals: for
a � b > 0,

T�1;2.a; b/ D �a

2K.
p
1 � .b=a/2/ and T1;2.a; b/ D 2a

�
E.
p
1 � .b=a/2/:

In 1997 Qiu and Shen [151] proved that, for all a; b > 0 with a ¤ b,

M3=2.a; b/ < T1;2.a; b/:

This inequality had been conjectured by Vuorinen [176]. Alzer and Qiu [10] proved
the following best possible power mean upper bound:

T1;2.a; b/ < Mlog 2= log.�=2/.a; b/:

Very recently, Chu and his collaborators [78,79,83] obtained several bounds for T1;2
with respect to some combinations of various means.

7.3 Seiffert Means

The Seiffert means S1 and S2 are defined by

S1.a; b/ � a � b
2 arcsin a�b

aCb
; a ¤ b; S1.a; a/ D a;

and

S2.a; b/ � a � b
2 arctan a�b

aCb
; a ¤ b; S2.a; a/ D a:

It is well known that

3
p
G2A < L <

2G C A

3
:
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Sándor proved similar results for Seiffert means [160, 161]:

3
p
A2G < S1 <

G C 2A

3
< I (49)

and

3
p
Q2A < S2 <

AC 2Q

3
: (50)

The inequalities (49) and (50) are special cases of more general results obtained by
Neuman and Sándor [139, 140].

7.4 Extended Means

Let a; b 2 .0;1/ be distinct and s; t 2 Rn f0g, s ¤ t . We define the extended mean
[172] with parameters s and t by

Es;t .a; b/ �
�
t

s

as � bs
at � bt

�1=.s�t/

and also

Es;s.a; b/ � exp

�
1

s
C as log a � bs log b

as � bs
�
;

Es;0.a; b/ �
�

as � bs
s log.x=y/

�1=s
and E0;0.a; b/ �

p
ab:

We see that all the classical means belong to the family of extended means. For
example, E2;1 D A, E0;0 D G, E�1;�2 D H , and E1;0 D L and, more generally,
M� D E2�;� for � 2 R. The reader is referred to the survey [148] for many
interesting results on the extended mean.

In 2002 Hästö [91] studied a certain monotonicity property of ratios of extended
means and Seiffert means, which he called a strong inequality. These strong
inequalities were shown to be related to the so-called relative metric [92, 93].

7.5 Means and the Circular and Hyperbolic Functions

It is easy to check the following identities:

A.1C sin x; 1 � sin x/ D 1; G.1C sin x; 1 � sin x/ D cos x; (51)
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Q.1C sin x; 1 � sin x/ D
p
1C sin2 x; S1.1C sin x; 1 � sin x/ D sin x

x
; (52)

A.ex; e�x/ D cosh x; G.ex; e�x/ D 1; Q.ex; e�x/ D p
cosh 2x; (53)

L.ex; e�x/ D sinh x

x
; I.ex; e�x/ D ex coth x�1; (54)

S1.e
x; e�x/ D sinh x

arcsin.tanh x/
; S2.e

x; e�x/ D sinh x

arctan.tanh x/
: (55)

One can get many inequalities by combining the above identities and inequalities
between means. For example, combining (49) and (52), we have

3
p

cos x <
sin x

x
<

cos x C 2

3
;

where the second inequality is the well-known Cusa-Huygens inequality, and
combining (50), (53), and (55), we have

3
p
.cosh 2x/.cosh x/ <

sinh x

arctan.tanh x/
<

cosh x C 2
p

cosh 2x

3
:

More inequalities on mean values and trigonometric and hyperbolic functions can
be found in [136, 163, 165, 200, 208] and references therein.

7.6 Means and Hypergeometric Functions

In 2005 Richards [158] obtained sharp power mean bounds for the hypergeometric
function: Let 0 < a; b � 1 and c > maxf�a; bg. If c � maxf1 � 2a; 2bg, then

M�.1 � b=cI 1; 1 � r/ � F.�a; bI cI r/1=a

if and only if � � aCc
1Cc . If c � minf1 � 2a; 2bg, then

M�.1 � b=cI 1; 1 � r/ � F.�a; bI cI r/1=a

if and only if � � aCc
1Cc . These inequalities generalize earlier results proved by

Carlson [66].
For hypergeometric functions of form F.1=2� s; 1=2C sI 1I 1� rp/q , Borwein

et al. [61] exhibited explicitly iterations similar to the arithmetic-geometric mean.
Barnard et al. [43] presented sharp bounds for hypergeometric analogs of the
arithmetic-geometric mean as follows: For 0 < ˛ � 1=2 and p > 0,
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M�.˛I 1; r/ � F.˛; 1 � ˛I 1I 1 � rp/�1=.˛p/ � M�.˛I 1; r/

if and only if � � 0 and � � p.1 � ˛/=2.
Some other inequalities involving hypergeometric functions and bivariate means

can be found in the very recent survey [44].
For any two power means M� and M�, a function f is called M�;�-convex if it

satisfies

f .M�.x; y// � M�.f .x/; f .y//:

Recently many authors have proved that the zero-balanced Gaussian hypergeometric
function isM�;�-convex when � 2 f�1; 0; 1g. For details see [22,26,37,80]. Baricz
[31] generalized these results to the M�;�-convexity of zero-balanced Gaussian
hypergeometric functions with respect to a power mean for � 2 Œ0; 1�. Zhang et al.
[205] extended these results to the case ofM�;�-convexity with respect to two power
means: For all a; b > 0, � 2 .�1; 1�, and � 2 Œ0;1/ the hypergeometric function
F.a; bI aC bI r/ is M�;�-convex on .0; 1/.

The following interesting open problem is presented by Baricz [36]:

Open Problem. If m1 and m2 are bivariate means, then find conditions on
a1; a2 > 0 and c > 0 for which the inequality

m1.Fa1.r/; Fa2.r// � .�/Fm2.a1;a2/.r/

holds true for all r 2 .0; 1/, where Fa.r/ D F.a; c � aI cI r/.

7.7 Means and Quasiconformal Analysis

Special functions have always played an important role in the distortion theory
of quasiconformal mappings. Anderson, Vamanamurthy, and Vuorinen [18] have
systematically investigated classical special functions and their extensive applica-
tions in the theory of conformal invariants and quasiconformal mappings. Some
functional inequalities for special functions in quasiconformal mapping theory
involve the arithmetic mean, geometric mean, or harmonic mean. For example, for
the well-known Grötzsch ring function � and the Hersch-Pfluger distortion function
'K , the following inequalities hold for all s; t 2 .0; 1/ with s ¤ t :

p
�.s/�.t/ < �.

p
st/;

and

p
'K.s/'K.t/ < 'K.

p
st/ for K > 1:
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Recently, Wang, Zhang, and Chu [182, 183] have extended these inequalities as
follows:

M�.�.s/; �.t// < �.M�.s; t// if and only if � � 0;

M�.'K.s/; 'K.t// < 'K.M�.s; t// if and only if � � 0 and K > 1;

and

M�.'K.s/; 'K.t// > 'K.M�.s; t// if and only if � � 0 and 0 < K < 1:

Some similar results for the generalized Grötzsch function, generalized modular
function, and other special functions related to quasiconformal analysis can be found
in [155, 179, 184, 186, 187].

8 Epilogue and a View Toward the Future

In earlier work we have listed many open problems. See especially [14, pp. 128–
131] and [18, p. 478]. Many of these problems are still open. In Sects. 4, 6, and 7
above, we have also mentioned some open problems.

Finally, we wish to suggest some ideas for further research. In a frequently cited
paper [119] Lindqvist introduced in 1995 the notion of generalized trigonometric
functions such as sinp , and presently there is a large body of literature about this
topic. For the case p D 2 the classical functions are obtained. In 2010, Biezuner
et al. [59] developed a practical numerical method for computing values of sinp .
Recently, Takeuchi [173] has gone a step further, introducing functions depending
on two parameters p and q that reduce to the p-functions of Lindqvist when
p D q. In [56, 57, 112] the authors have continued the study of this family of
generalized functions and have suggested that many properties of classical functions
have a counterpart in this more general setting. It would be natural to generalize the
properties of trigonometric functions cited in this survey to the .p; q/-trigonometric
functions of Takeuchi.
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171. Simić, S., Vuorinen, M.: Landen inequalities for zero-balanced hypergeometric functions.
Abstr. Appl. Anal. 2012, 11 (2012) (Article ID 932061)

172. Stolarsky, K.B.: Generalizations of the logarithmic mean. Math. Mag. 48, 87–92 (1975)
173. Takeuchi, S.: Generalized Jacobian elliptic functions and their application to bifurcation

problems associated with p-Laplacian. J. Math. Anal. Appl. 385, 24–35 (2012)
174. Toader, Gh.: Some mean values related to the arithmetic-geometric mean. J. Math. Anal.

Appl. 218, 358–368 (1998)
175. Trif, T.: Note on certain inequalities for means in two variables. JIPAM. J. Ineq. Pure Appl.

Math. 6 (2005) (Article 43)
176. Vuorinen, M.: Hypergeometric functions in geometric function theory. In: Srinivasa Rao,

K., Jagannathan, R., Vanden Berghe, G., Van der Jeugt, J. (eds.) Special Functions and
Differential Equations, pp. 119–126. Proceedings of a workshop held at The Institute of
Mathematical Sciences, Madras, India, Jan 13–24, 1997. Allied Publishers (1998)

177. Vuorinen, M., Zhang, X.-H.: On exterior moduli of quadrilaterals and special functions.
J. Fixed Point Theory Appl. 13, 215–230 (2013)

178. Wang, M.-K., Chu, Y.-M.: Asymptotical bounds for complete elliptic integrals of the second
kind. J. Math. Anal. Appl. 402, 119–126 (2013)

179. Wang, G.-D., Qiu, S.-L., Zhang, X.-H., Chu, Y.-M.: Approximate convexity and concavity of
generalized Grötzsch ring function. Appl. Math. J. Chinese Univ. Ser. B 21, 203–206 (2006)

180. Wang, G.-D., Zhang, X.-H., Qiu, S.-L., Chu, Y.-M.: The bounds of the solutions to generalized
modular equations. J. Math. Anal. Appl. 321, 589–594 (2006)

181. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: Inequalities for the generalized elliptic integrals and
modular functions. J. Math. Anal. Appl. 331, 1275–1283 (2007)

182. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A Hölder mean inequality for the Hersch-Pfluger
distortion function. Sci. Sin. Math. 40, 783–786 (2010)

183. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality for the Grötzsch ring
function. Math. Inequal. Appl. 14, 833–837 (2011)

184. Wang, G.-D., Zhang, X.-H., Jiang, Y.-P.: Concavity with respect to Hölder means involving
the generalized Grötzsch function. J. Math. Anal. Appl. 379, 200–204 (2011)

185. Wang, M.-K., Chu, Y.-M., Qiu, S.-L., Jiang, Y.-P.: Bounds for the perimeter of an ellipse.
J. Approx. Theory 164, 928–937 (2012)

186. Wang, G.-D., Zhang, X.-H., Jiang, Y.-P.: Hölder concavity and inequalities for Jacobian
elliptic functions. Integral Transforms Spec. Funct. 23, 337–345 (2012)

187. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete
elliptic integrals. Rocky Mountain J. Math. (to appear)

188. Wang, M.-K., Chu, Y.-M., Jiang, Y.-P.: Ramanujan’s cubic transformation inequalities for
zero-balanced hypergeometric functions. Available via arXiv:1210.6126v1 [math.CA]

189. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1941)
190. Wilker, J.B.: Problem E 3306. Am. Math. Monthly 96, 55 (1989)
191. Wilker, J.B., Sumner, J.S., Jagers, A.A., Vowe, M., Anglesio, J.: Problems and solutions:

solutions of elementary problems: E 3306. Am. Math. Monthly 98, 264–267 (1991)
192. Williams, J.P.: Solutions of advanced problems: a delightful inequality 5642. Am. Math.

Monthly 76, 1153–1154 (1969)
193. Wu, S.-H.: Generalization and sharpness of the power means inequality and their applications.

J. Math. Anal. Appl. 312, 637–652 (2005)
194. Wu, S.-H., Baricz, Á.: Generalizations of Mitrinović, Adamović and Lazarević’s inequalities
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