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Preface

The volume “Analytic Number Theory, Approximation Theory, and Special
Functions” consists of 35 articles written by eminent scientists from the
international mathematical community, who present both research and survey
works. The volume is dedicated to professor Hari M. Srivastava in honor of his
outstanding work in mathematics.

Professor Hari Mohan Srivastava was born on July 5, 1940, at Karon in District
Ballia of the province of Uttar Pradesh in India. He studied at the University of
Allahabad, India, where he obtained his B.Sc. in 1957 and M.Sc. in 1959. He
received his Ph.D. from the Jodhpur University (now Jai Narain Vyas University),
India, in 1965. He begun his university-level teaching career at the age of 19.

H. M. Srivastava joined the Faculty of Mathematics and Statistics of the
University of Victoria in Canada as associate professor in 1969 and then as a full
professor in 1974. He is an Emeritus Professor at the University of Victoria since
2006.

Professor Srivastava has held several visiting positions in universities of the USA,
Canada, the UK, and many other countries.

He has published 21 books and monographs and edited volumes by well-known
international publishers, as well as over 1,000 scientific research journal articles
in pure and applied mathematical analysis He has served or currently is an active
member of the editorial board of several international journals in mathematics. It
is worth mentioning that he has published jointly with more than 385 scientists,
including mathematicians, statisticians, physicists, and astrophysicists, from several
parts of the world. Professor Srivastava has supervised several graduate students in
numerous universities towards their master’s and Ph.D. degrees.

Professor Srivastava has been bestowed several awards including most recently
the NSERC 25-Year Award by the University of Victoria, Canada (2004), the
Nishiwaki Prize, Japan (2004), Doctor Honoris Causa from the Chung Yuan
Christian University, Chung-Li, Taiwan, Republic of China (2006), and Doctor
Honoris Causa from the University of Alba Iulia, Romania (2007).

The name of professor Srivastava has been associated with several mathematical
terms, including Carlitz–Srivastava polynomials, Srivastava–Panda multivariable

v
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H -function, Srivastava–Agarwal basic (or q-) generating function, Srivastava–
Buschman polynomials, Chan–Chyan–Srivastava polynomials, Srivastava–Wright
operators, Choi–Srivastava methods in Analytic Number Theory, and Wu–
Srivastava inequality for higher transcendental functions.

In this volume dedicated to professor Srivastava an attempt has been made to
discuss essential developments in mathematical research in a variety of problems,
most of which have occupied the interest of researchers for long stretches of time.
Some of the characteristic features of this volume can be summarized as follows:

– Presents mathematical results and open problems in a simple and self-contained
manner.

– Contains new results in rapidly progressing areas of research.
– Provides an overview of old and new results, methods, and theories towards the

solution of long-standing problems in a wide scientific field.

The book consists of the following five parts:

1. Analytic Number Theory, Combinatorics, and Special Sequences of Numbers
and Polynomials

2. Analytic Inequalities and Applications
3. Approximation of Functions and Quadratures
4. Orthogonality, Transformations, and Applications
5. Special and Complex Functions and Applications

Part I consists of nine contributions. A. Ivić presents a survey with a detailed
discussion of power moments of the Riemann zeta function �.s/, when s lies on the
“critical line” <s D 1=2. It includes early results, the mean square and mean fourth
power, higher moments, conditional results, and some open problems. M. Hassani
gives some explicit upper and lower bounds for �n, where 0 < �1 < �2 < �3 < � � �
are consecutive ordinates of nontrivial zeros � D ˇ C i� of the Riemann zeta
function, including the asymptotic relation �n log2 n � 2�n logn � 2�n log logn
as n ! 1. Y. Ihara and K. Matsumoto prove an unconditional basic result
related to the value-distributions of f.L0=L/.s; �/g� and of f.� 0=�/.s C i�/g� ,
where � runs over Dirichlet characters with prime conductors and � runs over
R. J. Choi presents a survey on recent developments and applications of the
simple and multiple gamma functions �n, including results on multiple Hurwitz
zeta functions and generalized Goldbach–Euler series. A. A. Bytsenko and E.
Elizalde consider a partition function of hyperbolic three-geometry and associated
Hilbert schemes. In particular, the role of (Selberg-type) Ruelle spectral functions
of hyperbolic geometry for the calculation of partition functions and associated
q-series is discussed. Y. Simsek considers families of twisted Bernoulli numbers
and polynomials and their applications. Several relationships between Bernoulli
functions, Euler functions, some arithmetic sums, Dedekind sums, Hardy Berndt
sums, DC-sums, trigonometric sums, and Hurwitz zeta function are given. A. K.
Agarwal and M. Rana discuss a combinatorial interpretation of a generalized basic
series. Namely, using a bijection between the Bender–Knuth matrices and the n-
color partitions established by Agarwal (ARS Combinatoria 61, 97–117, 2001), they
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extend a recent result to a 3-way infinite family of combinatorial identities. A. Sofo
proves some identities for reciprocal binomial coefficients, and M. Merca shows
that the q-Stirling numbers can be expressed in terms of the q-binomial coefficients
and vice versa.

Part II is dedicated to analytic inequalities and several applications. Ibrahim
and Dragomir give a survey of some recent results for the celebrated Cauchy–
Bunyakovsky–Schwarz inequality for functions defined by power series with
nonnegative coefficients. G. D. Anderson, M. Vuorinen, and X. Zhang provide a
survey of recent results in special functions of classical analysis and geometric
function theory, in particular the circular and hyperbolic functions, the gamma
function, the elliptic integrals, the Gaussian hypergeometric function, power series,
and mean values. M. Merkle gives a collection of some selected facts about the
completely monotone (CM) functions that can be found in books and papers
devoted to different areas of mathematics. In particular, he emphasizes the role of
representation of a CM function as the Laplace transform of a measure and also
presents and discusses a little known connection with log-convexity. S. Abramovich
considers results on superquadracity, especially those related to Jensen, Jensen–
Steffensen, and Hardy’s inequalities. S. Ding and Y. Xing present an up-to-date
account of the advances made in the study of Lp theory of Green’s operator applied
to differential forms, includingLp-estimates, Lipschitz and BMO norm inequalities,
as well as inequalities with Lp.logL/˛ norms. B. Yang uses methods of weight
coefficients and techniques of real analysis to derive a multidimensional discrete
Hilbert-type inequality with a best possible constant factor. F. Qi, Q.-M. Luo,
and B.-N. Guo establish sufficient and necessary conditions such that the function
.e˛t�eˇt /=.e	t�e
t / is monotonic, logarithmic convex, logarithmic concave, 3-log-
convex, and 3-log-concave on R. P. Cerone obtains approximation and bounds of
the Gini mean difference and provides a review of recent developments in the area.
Finally, M. A. Noor considers the parametric nonconvex variational inequalities and
parametric nonconvex Wiener–Hopf equations. Using the projection technique, he
establishes the equivalence between them.

Approximation of functions and quadratures is treated in Part III. N. K. Govil and
V. Gupta discuss Stancu-type generalization of operators introduced by Srivastava
and Gupta (Math. Comput. Modelling 37, 1307–1315, 2003). M. Mursaleen and
S. A. Mohiuddine prove the Korovkin-type approximation theorem for functions
of two variables, using the notion of statistical summability .C; 1; 1/, recently
introduced by Moricz (J. Math. Anal. Appl. 286, 340–350, 2003). In 1961, Baker,
Gammel, and Wills formulated their famous conjecture that if a function f is
meromorphic in the unit ball and analytic at 0, then a subsequence of its diagonal
Padé approximants converges uniformly in compact subsets to f . This conjecture
was disproved in 2001, but it generated a number of related unresolved conjectures.
D. S. Lubinsky reviews their status. A. R. Hayotov, G. V. Milovanović, and K. M.
Shadimetov construct the optimal quadrature formulas in the sense of Sard, as
well as interpolation splines minimizing the semi-norm in the space K2.P2/, where
K2.P2/ is a space of functions ' which ' 0 is absolutely continuous and ' 00 belongs
to L2.0; 1/ and

R 1
0
.' 00.x/ C !2'.x//2dx < 1. Finally, a survey on some specific
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nonstandard methods for numerical integration of highly oscillating functions,
mainly based on some contour integration methods and applications of some kinds
of Gaussian quadratures, including complex oscillatory weights, is presented by
G. V. Milovanović and M. P. Stanić.

In Part IV, C. Ferreira, J. L. López, and E. Pérez Sinusía study asymptotic
reductions between the Wilson polynomials and the lower-level polynomials of the
Askey scheme, and K. Castillo, L. Garza, and F. Marcellán analyze a perturbation
of a nontrivial probability measure d
 supported on an infinite subset on the real
line, which consists of the addition of a time-dependent mass point. A. F. Loureiro
and S. Yakubovich consider special cases of Boas–Buck-type polynomial sequences
and analyze some examples of generalized hypergeometric-type polynomials. P. W.
Karlsson gives an analysis of Goursat’s hypergeometric transformations, and A.
Kılıçman considers partial differential equations (PDE) with convolution term and
proposes a new method for solving PDE. Finally, using the fixed point method,
C. Park proves the Hyers–Ulam stability of the orthogonally additive–additive
functional equation.

Special functions and complex functions with several applications are presented
in Part V. Á. Baricz, P. L. Butzer, and T. K. Pogány have provided a generalization
of the complete Butzer–Flocke–Hauss (BFH) ˝-function in a natural way by
using two approaches and obtain several interesting properties. Á. Baricz and T.
K. Pogány consider properties of the product of modified Bessel functions and
establish discrete Chebyshev-type inequalities for sequences of modified Bessel
functions of the first and second kind. S. Porwal and D. Breaz investigate the
mapping properties of an integral operator involving Bessel functions of the first
kind on a subclass of analytic univalent functions. V. V. Mityushev introduces
and uses the Poincaré ˛-series (˛ 2 R

n) for classical Schottky groups in order
to solve Riemann–Hilbert problems for n-connected circular domains. He also
gives a fast algorithm for the computation of Poincaré series for disks that are
close to each other. N. E. Cho considers inclusion properties for certain classes
of meromorphic multivalent functions. He introduces several new subclasses of
meromorphic multivalent functions and investigates various inclusion properties of
these subclasses. Finally, I. Lahiri and A. Banerjee discuss the influence of Gross-
problem on the set sharing of entire and meromorphic functions. It is hope that the
book will be particularly useful to researchers and graduate students in mathematics,
physics, and other computational and applied sciences.

Finally, we wish to express our deepest appreciation to all the mathematicians
from the international mathematical community, who contributed their papers for
publication in this volume dedicated to Hari M. Srivastava, as well as to the
referees for their careful reading of the manuscripts. A thank also goes to professor
Marija Stanić (University of Kragujevac, Serbia), for her help during the technical
preparation of the manuscript. Last but not least, we are very thankful to Springer
for its generous support for the publication of this volume.

Belgrade, Serbia Gradimir V. Milovanović
Zürich, Switzerland Michael Th. Rassias
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The Mean Values of the Riemann Zeta-Function
on the Critical Line

Aleksandar Ivić

Dedicated to Professor Hari M. Srivastava

Abstract In this overview we give a detailed discussion of power moments of �.s/,
when s lies on the “critical line” Re s D 1

2
. The survey includes early results, the

mean square and mean fourth power, higher moments, conditional results and some
open problems.

1 Introduction

The classical Riemann zeta-function

�.s/ D
1X

nD1
n�s D

Y

p

.1 � p�s/�1 .s D � C i t; �; t 2 R; � > 1/ (1)

admits analytic continuation to C. It is regular on C except for a simple pole at
s D 1. The product representation in (1) shows that �.s/ does not vanish for � > 1.
The Laurent expansion of �.s/ at s D 1 reads

�.s/ D 1

s � 1
C �0 C �1.s � 1/C �2.s � 1/2 C � � � ;

where the so-called Stieltjes constants �k are given by

�k D .�1/k
kŠ

lim
N!1

 
X

m6N

logk m

m
� logkC1 N

k C 1

!

.k D 0; 1; 2; : : :/; (2)

A. Ivić (�)
Katedra Matematike, Rudarsko-geološki Fakultet, Universitet u Beogradu,
Djušina 7, 11000 Beograd, Serbia
e-mail: ivic@rgf.bg.ac.rs; aivic_2000@yahoo.com

G.V. Milovanović and M.Th. Rassias (eds.), Analytic Number Theory, Approximation
Theory, and Special Functions, DOI 10.1007/978-1-4939-0258-3__1,
© Springer Science+Business Media New York 2014
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4 A. Ivić

and � D �0 D �� 0.1/ D 0:5772157 : : : is the Euler constant. It was Euler [19] who
first introduced �.s/, albeit only for real values of the variable s. Riemann, in his
epoch making memoir [91] of 1859, was the first to consider �.s/ as a function of
the complex variable s. Thus �.s/ justly bears the name the Riemann zeta-function.

The product in (1) is called the Euler product. As usual, p denotes prime
numbers, so that by its very essence �.s/ represents an important tool for the
investigation of prime numbers. This is even more evident from the relation

��
0.s/
�.s/

D
1X

nD1
�.n/n�s .� > 1/;

which follows by logarithmic differentiation of (1), where the von Mangoldt
function�.n/ is defined as

�.n/ D
�

logp if n D p˛;

0 if n ¤ p˛:
.˛ 2 N/

The zeta-function can be also used to generate many other important arithmetic
functions (see, e.g.. Chap. 1 of the author’s book [52]). For example, one has, for a
given k 2 N,

�k.s/ D
1X

nD1
dk.n/n

�s .� > 1/; (3)

where the (general) divisor function dk.n/ represents the number of ways n can be
written as a product of k factors, so that in particular d1.n/ � 1 and

d.n/ � d2.n/ D
X

ıjn
1

is the number of positive divisors of n. The function dk.n/ is a multiplicative
function of n (dk.mn/ D dk.m/dk.n/ if m and n are coprime), and

dk.p
˛/ D .�1/˛

 
�k
˛

!

D k.k C 1/ � � � .k C ˛ � 1/

˛Š

for primes p and ˛ 2 N.
Another significant aspect of �.s/ is that it can be generalized to many other

similar Dirichlet series (or L-functions); see, e.g., the paper of Bombieri [9].
In fact, �.s/ can be considered as a prototype of such functions. There exist many
generalizations of the zeta-function in the literature, notably to the so-called Selberg
class of L-functions. This class was introduced in 1989 by Selberg (see [93]), and
for a good overview the reader is referred to Kaczorowski [70].
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As remarked at the beginning, the Riemann zeta-function admits analytic
continuation to C, where the complex variable has traditionally the notation s D
� C i t .�; t 2 R/. There are many ways to see this. For example, for x > 1, one has

X

n6x
n�s D

Z x

1�0
u�sdŒu D Œxx�s C s

Z x

1

Œuu�s�1du

D O.x1�� /C s

Z x

1

.Œu � u/u�s�1du C s

s � 1
� sx1�s

s � 1
:

If � > 1 and x ! 1, it follows that

�.s/ D s

s � 1 C s

Z 1

1

.Œu � u/u�s�1du:

By using the customary notation .x/ D x�Œx�1=2, this relation can be written as

�.s/ D 1

s � 1 C 1

2
� s

Z 1

1

 .u/u�s�1du: (4)

Since
R yC1
y

 .u/du D 0 for any real y, integration by parts shows that (4) provides
the analytic continuation of �.s/ to the half-plane � > �1, and in particular it shows
that �.0/ D �1=2. On successive integrations by parts of the integral in (4) one can
obtain the analytic continuation of �.s/ to C.

A notable feature of �.s/, whose analogues are true for many Dirichlet series, is
the functional equation, proved first by Riemann [91]. In a symmetric form it says
that for s 2 C,

��s=2�.s/� . 1
2
s/ D ��.1�s/=2�.1 � s/� . 1

2
.1 � s//: (5)

For a proof of this fundamental result, see, e.g., the monographs of Karatsuba–
Voronin [71], the author [52], and in particular the classical work of Titchmarsh
[98], which contains seven different proofs of the functional equation. Alternatively
we can write (5) as

�.s/ D �.s/�.1 � s/; (6)

where

�.s/ WD � .1
2
.1 � s//

� . 1
2
s/

�s�1=2;

and � .s/ is the familiar gamma-function. This expression can be put into other
equivalent forms. For example, we have

�.s/ D 2s�s�1 sin. 1
2
�s/� .1 � s/ D .2�/s

2� .s/ cos.�s=2/
; (7)
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where we used the well-known identities

� .s/� .1 � s/ D �

sin.�s/
; � .s/� .s C 1

2
/ D 21�2s

p
�� .2s/: (8)

We note that (6) gives the identity

�.s/�.1 � s/ D 1: (9)

All identities (5)–(9) hold for s 2 C.
A fundamental problem in the theory of �.s/ is the study of its zeros. From (5) it

follows that �.�2n/ D 0 for n 2 N. These zeros are the only real zeros of �.s/ and
are called the trivial zeros of �.s/. Riemann [91] in 1859 calculated a few complex
zeros of �.s/ and found that they lie on the line Re s D 1

2
, which is called the

critical line in the theory of �.s/. The first four pairs of complex zeros (arranged in
size according to their absolute value) are (see, e.g., Haselgrove [28])

1

2
˙i14:134725: : : ; 1

2
˙i21:022039: : : ; 1

2
˙i25:010857: : : ; 1

2
˙ i30:424876 : : : :

The number of complex zeros � D ˇ C i� of �.s/ with 0 < � 6 T (multiplicities
included) is denoted by N.T /. The asymptotic formula for N.T / is the famous
Riemann–von Mangoldt formula. It was enunciated by Riemann [91] in 1859, but
proved by von Mangoldt [101] in 1895. It says the following (see [52, 71] or [98]
for a proof). Let

S.T / WD 1

�
arg �. 1

2
C iT /: (10)

Then

N.T / D T

2�
log
� T

2�

�
� T

2�
C 7

8
C S.T /CO

� 1

T

�
; (11)

where the O-term is a continuous function of T and

S.T / D O.logT /: (12)

Here arg �. 1
2

C iT / is evaluated by continuous variation starting from arg �.2/ D 0

and proceeding along straight lines, first up to 2CiT and then to 1=2CiT , assuming
that T is not an ordinate of a zeta zero. If T is an ordinate of a zero, then we set
S.T / D S.T C 0/.

The Riemann hypothesis (henceforth RH for short) is the conjecture, stated by
Riemann in [91], that very likely all complex zeros of �.s/ have real parts equal
to 1/2. Mainly for this reason the line � D 1=2 is called the “critical line” in the
theory of �.s/. Notice that Riemann was rather cautious in formulating the RH
and that he used the wording “very likely” (“sehr wahrscheinlich” in the German
original) in connection with it. Riemann goes on to say in his paper: “One would
of course like to have a rigorous proof of this, but I have put aside the search
for such a proof after some fleeting vain attempts because it is not necessary for
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the immediate objective of my investigation”. The RH is undoubtedly one of the
most celebrated and difficult open problems in whole Mathematics. Its proof (or
disproof) would have very important consequences in multiplicative number theory,
especially in problems involving the distribution of primes. It would also very likely
lead to generalizations to many other zeta-functions (Dirichlet series) having similar
properties as �.s/. For a comprehensive account on the RH the reader should consult
the paper [8] of Bombieri and the monograph [12] of Borwein et al. Despite the
impressive numerical evidence in favour of the RH, there are certain arguments
against its truth; see, e.g., the author’s paper in [12].

The RH implies (see, e.g., [52, 98] for a proof) that

�. 1
2

C i t/ � exp

�
C log t

log log t

�

.C > 0/: (13)

A slightly weaker bound than (13), which in practice can often replace the RH, is
the bound

�. 1
2

C i t/ �" .jt j C 1/"; (14)

which is known as the Lindelöf hypothesis (LH for short). It is also unproved, and it
is not known whether (14) implies the RH, although this is not very likely.

The aim of this paper is to give an account on the mean values of j�. 1
2

C i t/j.
This is one of the central themes in the theory of �.s/. There are two monographs
dedicated solely to it: the author’s [42] and that of Ramachandra [90]. However,
since the time of writing of these works, there have been new developments, and
they will be discussed in this paper. Of course, the moments on any �-line are also
of interest. If � > 1, this is easy in view of the absolute convergence of the series
in (1). When � D 1, see the author’s recent paper [58] for a sharp asymptotic
formula for the second moment in question and [7] for general moments. When �
lies in the critical strip 1

2
< � < 1, there are many results in the literature; see, e.g.,

the survey paper of Matsumoto [79] concerning mean square results. For general
moments of j�.� C i t/j see Chap. 8 of [52] and the author’s paper [53]. Due to
the restrictions on the length of this paper, complete proofs of all the lemmas and
theorems will not be given, but relevant references are given where the interested
reader can find all the details.

And finally when � < 1
2

this case is essentially reduced to the case � > 1
2

in
view of the functional equation (6) and the asymptotic formula

�.s/ D
�
2�

t

��Ci t�1=2
ei.tC�=4/

�

1CO

�
1

t

��

; (15)

which easily follows from the classical Stirling formula for the gamma-
function � .s/. Note that the term O.1=t/ admits an asymptotic expansion in
terms of the descending powers of t .
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Notation. Owing to the nature of this text, absolute consistency in notation could
not be attained, although whenever possible standard notation is used. By N;Z;R;C

we denote the set of natural numbers, integers, real numbers and complex numbers,
respectively. The symbol " will denote arbitrarily small positive numbers, not
necessarily the same ones at each occurrence. The symbols f .x/ D O.g.x// and
f .x/ � g.x/ both mean that jf .x/j 6 Cg.x/ for some constants C > 0 and
x > x0 > 0. By f .x/ �a;b;::: g.x/ we mean that the constant implied by the
�-symbol depends on a; b; : : : .

2 Early Results

When one has a (complex-valued) function F.t/ integrable on Œ0; T , the mean
value integral

R T
0

jF.t/j2dt provides information about the mean value of F.t/ and
the distribution of its values. In zeta-function theory, of particular interest are the
moments

Ik.T / WD
Z T

0

j�. 1
2

C i t/j2kdt: (16)

Although the right-hand side of (16) makes sense if Re k > 0, usually one takes
k 2 N. Namely in this case one can use the obvious identity jzj2 D z � Nz, and if one
has a “good” expression for z D �. 1

2
C i t/, then by multiplying the expressions for

z and Nz one can tackle Ik.T /, at least in principle.
Historically, the first significant results concern the asymptotic evaluation of

I1.T / and I2.T / at the beginning of the twentieth century. This was achieved
by Hardy–Littlewood [25, 26] and Ingham [39], respectively. The results are
contained in

Theorem 2.1. We have

I1.T / D
Z T

0

j�. 1
2

C i t/j2dt D T logT CO.T /;

I2.T / D
Z T

0

j�. 1
2

C i t/j4dt D 1

2�2
T log4 T CO.T log3 T /:

(17)

We shall, in essence, indicate here the proofs of these classical results. Before this is
done, however, some remarks are in order. First, note that both asymptotic formulas
displayed in (17) are “weak” in the sense that the error term is only by a log-
factor smaller than the main term. Secondly, observe that the first formula shows
that the average value of j�. 1

2
C i t/j in Œ0; T  is about logT , while the second one

shows that it is larger. This phenomenon, which is ubiquitous in the theory of �.s/,
shows the complexity/irregularity of j�. 1

2
C i t/j. Indeed, at the time of the writing

of this text, we do not know (unconditionally) the true order of magnitude of this
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function nor the exact distribution of its (real) zeros. It is clear that no asymptotic
formula for Ik.T / is known when k > 2. On the other hand, nowadays there is
plenty of information about the fundamental functions I1.T / and I2.T /. This will
be discussed in detail in Sects. 3 and 4, respectively.

To find an appropriate expression for z D �. 1
2

C i t/ above, one uses the so-called
approximate functional equations (henceforth AFE for short) for suitable power of
�.s/ (see, e.g., Chap. 4 of [42, 52] and [59]). In general an AFE for an L-function
F.s/ D P1

nD1 f .n/n�s is an expression for F.s/, when s lies outside of the region
of absolute convergence of F.s/, involving finite sums of f .n/n�s and f .n/ns�1.
Some of the most common AFEs for �.s/ are given below.

Theorem 2.2. For 0 < �0 6 � 6 2; x > jt j=�; s D � C i t ,

�.s/ D
X

n6x
n�s C x1�s

s � 1 CO.x�� /: (18)

Theorem 2.3. Let 0 6 � 6 1I x; y; t > C > 0I 2�xy D t . Then uniformly in �
we have

�.s/ D
X

n6x
n�s C �.s/

X

n6y
ns�1 CO.x�� /CO.t1=2��y��1/: (19)

Theorem 2.4. Let 0 < � < 1I x; y; t > C > 0I 4�2xy D t2. Then uniformly in �
we have

�2.s/ D
X

n6x
d.n/n�s C �2.s/

X

n6y
d.n/ns�1 CO.x1=2�� log t/: (20)

Theorem 2.2 is elementary, and its proof will be given shortly. It does not require
the functional equation (6)–(7), while (19) and (20) do. These formulas were proved
in a classic paper by Hardy–Littlewood [27], and their proof is more involved.
In fact, Theorem 2.3 is a weakened form of the result known in the literature as
the “Riemann–Siegel” formula (see the work of Siegel [94]). This is one of the
deepest results on zeta-function theory, obtained by Siegel (op. cit.) after looking
at Riemann’s notes, which are kept in the library of the Göttingen University. Both
error terms, in the general case, are best possible; see [52] or [42] for this.

Proof of Theorem 2.2. We have, for Re s > 1 and N > 2,

X

n>N

n�s D
Z 1

N

��sdŒ�  D �N1�s C s

Z 1

N

Œ���s�1d�

D N1�s

s � 1 � 1
2
N�s � s

Z 1

N

 .�/��s�1d�;
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where  .x/ D x � Œx � 1
2
. Therefore

�.s/ D
X

n6N
n�s C

X

n>N

n�s

D
X

n6N
n�s C N1�s

s � 1
� 1

2
N�s � s

Z 1

N

 .�/��s�1d�; (21)

and by analytic continuation (21) is valid for � > 0, the last summand being �
.1C jt j/N�� . If u > x .> 1/, we set

A.u/ WD
X

x<n6u

n�i t ;

and apply the following elementary, standard lemma (see [52, Chap. 1]) from the
theory of exponential sums (e.x/ WD exp.2�ix/):

Lemma 2.1. Let f .x/ be a real-valued function on the interval Œa; b and let f 0.x/
be continuous and monotonic on Œa; b and jf 0.x/j 6 ı < 1. Then

X

a<n6b
e.f .n// D

Z b

a

e.f .x//dx CO
�
.1 � ı/�1

�
:

We apply Lemma 2.1 with

f .x/ D 1

2�
jt j logx; ı D 1

2
;

provided that x > jt j=� . This gives

A.u/ D
Z u

x

y�i tdy CO.1/ D u1�i t � x1�i t

1 � i t
CO.1/:

For x 6 N partial summation gives

X

x<n6N
n�s D �

Z N

x

u���1A.u/du C A.N/N��

D �

Z N

x

u�s � u���1x1�i t

1 � i t du CO.x�� C xN�� /C N1���i t

1 � i t

D N1�s

1� s
� x1�s

1 � s CO.x�� C xN�� /:
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Substituting this expression in (21) we finally have, for �0 6 � 6 2,

�.s/ D
X

n6x
n�s C x1�s

1 � s
CO.x�� /CO.xN�� C jt jN�� /:

If we let N ! 1, we obtain (18). Note that the basic idea of the preceding proof
was to estimate the tails in the series for �.s/ by Lemma 2.1. This, however, is
particular to the sums of n�s , when the corresponding integral of x�s can be easily
evaluated. Thus Theorem 2.2 cannot be easily generalized to other L-functions.
Again, note that the functional equation for �.s/ was not used in the proof, which is
one way to show the elementary nature of Theorem 2.2.

Proof of Theorem 2.1. We begin the proof of the first formula in (17). In (18) we
take s D 1

2
C i t; T=2 6 t 6 T; x D T to obtain

�. 1
2

C i t/ D S CO.T �1=2/; S WD
X

n6T
n�1=2�i t :

This gives

Z T

T=2

j�. 1
2

C i t/j2dt D
Z T

T=2

jS j2dt C
Z T

T=2

S �O.T �1=2/dt CO.1/

D
Z T

T=2

jS j2dt CO.T /: (22)

since trivially S � T 1=2.
The first formula in (17) follows easily from (22) and the general following result,

well known as the mean value theorem for Dirichlet polynomials. This is formulated
here as (see, e.g., Chap. 5 of [52] for a proof)

Lemma 2.2. Let a1; : : : ; aN be arbitrary complex numbers. Then

Z T

0

ˇ
ˇ
ˇ
X

n6N
ann

it
ˇ
ˇ
ˇ
2

dt D T
X

n6N
janj2 CO

�X

n6N
njanj2

�
; (23)

and (23) remains valid if N D 1, provided that the series on the right-hand side
converge.

Applying (23), once with T and once with T=2 and subtracting the resulting
expressions, we obtain

Z T

T=2

jS j2dt D
Z T

T=2

X

n6T

1

n
CO

�X

n6T
1
�

D 1
2
T logT CO.T /: (24)
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Replacing in (24) T by T 2�j and summing over j D 0; 1; 2; : : : we obtain the first
formula in (17).

The proof of the second formula in (17) is more involved, but certainly less
difficult than Ingham’s original proof in [39]. It is the one given in Chap. 5 of [52]
and is based on the work of Ramachandra [89]. The essential arithmetic ingredient
that is used is

Lemma 2.3. For a suitable constant c.a/ .> 0/ we have

X

n6x
d 2.n/na D

(
c.a/x1Ca log3 x CO.x1Ca log2 x/ .a > �1/;

.4�2/�1 log4 x CO.log3 x/ .a D �1/:
(25)

Proof of Lemma 2.3. One obtains (25) by partial summation from
X

n6x
d 2.n/ D ��2x log3 x CO.x log2 x/; (26)

hence the proof of (25) reduces to establishing (26). To this end, note that we have
the Dirichlet series representations

1X

nD1
d 2.n/n�s D �4.s/

�.2s/
;

1X

nD1

.n/n�2s D 1

�.2s/
; (27)

which are valid for Re s > 1 and Re s > 1=2, respectively, where 
.n/ is the
familiar Möbius function, generated by 1=�.s/. The first identity in (27) follows
from d.pj / D j C 1 and

�4.s/

�.2s/
D
Y

p

1 � p�2s

.1 � p�s/4
D
Y

p

1C p�s

.1 � p�s/3

D
Y

p

.1C p�s/
�
1C

1X

jD1
1
2
.j C 1/.j C 2/p�js

�

D
Y

p

�
1C

1X

jD1
.j C 1/2p�js

�
D
1X

nD1
d 2.n/n�s :

From the first identity in (27) we have, on equating the coefficients of the Dirichlet
series appearing in the identity,

d2.n/ D
X

k`2Dn
d4.k/
.`/:
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This gives, setting n D k`2,

X

n6x
d 2.n/ D

X

k`26x

d4.k/
.`/ D
X

`6x1=2

.`/

X

k6x`�2

d4.k/

D
X

`6x1=2

.`/

�
1
6
x`�2 log3.x`�2/CO.x`�2 log2 x/

�

D ��2x log3 x CO.x log2 x/:

Here we used the weak asymptotic formula (since the generating function �4.s/ of
d4.n/ has a pole of degree four at s D 1)

X

n6x
d4.n/ D 1

6
x log3 x CO.x log2 x/

and the identity

1X

nD1

.n/n�2 D 1

�.2/
D 6

�2
:

Recall the inversion formula (this is (A.7) of [52])

e�x D 1

2�i

Z cCi1

c�i1
� .s/x�sds .c; x > 0/: (28)

Setting s D 1
2

C i t; T=2 6 t 6 T and using (28) we infer that

1X

nD1
d.n/e�n=T n�s D 1

2�i

Z

Re wD2
�2.s C w/� .w/T wdw

D �2.s/CO.T �c/C 1

2�i

Z

Re wD�3=4
�2.s C w/�2.1 � s � w/� .w/T wdw

D �2.s/CO.T �c/C 1

2�i

Z

Re wD�3=4
�2.s C w/

1X

nD1
d.n/nwCs�1� .w/T wdw

D �2.s/CO.T �c/C 1

2�i

Z

Re wD�3=4
�2.s C w/

X

n>T

d.n/nwCs�1� .w/T wdw

��2.s/
X

n6T
d.n/ns�1 CO.T �c/

C 1

2�i

Z

Re wD1=4
�2.s C w/

X

n6T
d.n/nwCs�1� .w/T wdw: (29)
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Here c > 0 can be arbitrarily large, and we used the residue theorem, the
functional equation for �.s/ and finally Stirling’s formula for � .s/, which makes
the contribution of the residue of �2.s C w/� .w/T w at the double pole w D 1 � s

small. From (6) and (7) we have

�2. 1
2

C i t/��1. 1
2

C i t/ D j�. 1
2

C i t/j2; (30)

so we can deduce from (29) and (30) that

j�. 1
2

C i t/j2 D
6X

kD1
Jk.t/CO.T �c/ .T=2 6 t 6 T / (31)

for any fixed c > 0, where with Jk � Jk.t/ we have

J2 D NJ1 D �.1
2

C i t/
X

n6T
d.n/n�1=2Ci t ;

J3 D ��1. 1
2

C i t/
X

n>T

d.n/e�n=T n�1=2�i t ;

J4 D ��1. 1
2

C i t/
X

n6T
d.n/.e�n=T � 1/n�1=2�i t ;

J5 D � 1

2�i
��1. 1

2
C i t/

Z

Re wD�3=4;j Im wj6log2 T
�2. 1

2
C i t C w/

�
X

n>T

d.n/nw�1=2Ci t � .w/T wdw;

J6 D � 1

2�i
��1. 1

2
C i t/

Z

Re wD1=4;j Im wj6log2 T
�2. 1

2
C i t C w/

�
X

n6T
d.n/nw�1=2Ci t � .w/T wdw: (32)

This seemingly complicated procedure allows us, when we integrate (31)–(32), to
use (25) for a D �1 in the mean square integral of J1 and for a > �1 the other
formula for the ensuing integrals. In this way we obtain the second formula in (17).
More precisely, we have

Z T

T=2

j�. 1
2

C i t/j4dt D 2

Z T

T=2

jJ1j2dt C
Z T

T=2

.J 21 C J 22 /dt

CO

 
6X

kD3

Z T

T=2

jJkj2dt
!

CO

 
6X

kD3

ˇ
ˇ
ˇ

Z T

T=2

.J1CJ2/Jkdt
ˇ
ˇ
ˇ

!

CO.1/: (33)
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Now we apply Lemmas 2.2 and 2.3, obtaining first

2

Z T

T=2

jJ1j2dt D T
X

n6T
d2.n/n�1CO

�X

n6T
d2.n/

�

D .4�2/
�1
T log4 TCO.T log3 T /; (34)

since j�.1
2

˙ i t/j D 1. Therefore (34) indeed contributes the main term to our
formula, since at the end we replace T by T 2�j and sum the resulting expressions.
Using (18) with a > �1 we have, again by Lemma 2.2,

Z T

T=2

jJ3j2dt � T
X

n>T

d2.n/e�2n=T n�1 C
X

n>T

d2.n/e�2n=T � 1;

Z T

T=2

jJ4j2dt � T
X

n6T
d2.n/.e�2n=T � 1/2n�1 C C

X

n6T
d2.n/.e�2n=T � 1/2

� T �1
X

n6T
d2.n/nC T �2

X

n6T
d2.n/n2 � T log3 T;

Z T

T=2

jJ5j2dt � T 5=2
X

n>T

d2.n/n�5=2 C T 3=2
X

n>T

d2.n/n�3=2 � T log3 T;

Z T

T=2

jJ6j2dt � T 1=2
X

n6T
d2.n/n�1=2 C T �1=2

X

n6T
d2.n/n1=2 � T log3 T:

Next, we write

i

Z T

T=2

J 21 dt D
Z 1=2CiT

1=2CiT=2
J 21 .s/ds; J1.s/ WD ��1.s/

X

n6T
d.n/n�s ; (35)

and consider the last integral as an integral of the complex variable s. To avoid
Lemma 2.3 with a D �1 we replace, by Cauchy’s theorem, the segment of
integration in (35) by segments joining the points

1
2

C 1
2
iT; 1

4
C 1

2
iT; 1

4
C iT; 1

2
C iT:

On using (15) it is seen that the integrals over the horizontal segments are �
T log3 T , as desired. On the other hand, again by the mean value theorem for
Dirichlet polynomials,

Z 1=4CiT

1=4CiT=2
J 21 .s/ds � T �1=2

Z T

T=2

ˇ
ˇ
ˇ
X

n6T
d.n/n�1=4Ci t

ˇ
ˇ
ˇ
2

dt � T log3 T:

The same procedure may be applied to the integral of J 22 to yield

Z T

T=2

.J 21 C J 22 /dt � T log3 T:
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The remaining integrals in (33) are written as

i

Z 1=2CiT

1=2CiT=2
J1.s/Jk.s/ds C i

Z 1=2CiT

1=2CiT=2
J2.s/Jk.s/ds .k D 3; 4; 5; 6/;

and are treated similarly. In the integrals with J1.s/, the segment of integration Œ 1
2

C
1
2
iT; 1

2
CiT  is being replaced by the segment of integration Œ 3

8
C 1

2
iT; 3

8
iT with an

error � T log3 T , while in the integrals containing J2.s/, this segment is replaced
by the segment Œ 5

8
C 1

2
iT; 5

8
C iT , again with an error � T log3 T . Applying the

Cauchy–Schwarz inequality, Lemma 2.2, and collecting all the estimates we finally
obtain

Z T

T=2

j�. 1
2

C i t/j4dt D .4�2/�1T log4 T CO.T log3 T /;

which yields the second asymptotic formula in (17) on replacing T by T 2�j and
summing the resulting expressions over j D 1; 2 : : :.

Later research revealed that there is another main term in the first formula in (17).
Namely, if one defines

Z T

0

j�. 1
2

C i t/j2dt D T
�

log
T

2�
C 2� � 1

�
C E.T /; (36)

where � is Euler’s constant, then E.T / is a true error term in (36) in the sense that

E.T / D o.T / .T ! 1/: (37)

In fact, Titchmarsh [98] gives in Chap. 7, by the method of Atkinson [1], the
proof that

E.T / D O".T
1=2C"/; (38)

and states that Ingham [39] obtained O.T 1=2 logT /. Later Titchmarsh [97]
improved further the bound in (38) to O.T 5=12 log2 T /, by using van der Corput’s
theory of exponential sums (see the monograph [20] of Graham and Kolesnik
for a detailed account). However the pioneering work in this field was done by
F.V. Atkinson (see [1–3]). His most important achievement was made in [4] in
1949, when he produced an explicit formula for E.T /, which serves as the basis
of modern research of this function. This will be discussed in detail in the next
section.
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3 The Second Moment

Atkinson’s explicit formula for the function E.T /, defined by (36), is one of the
most important results of zeta-function theory. It is given here as

Theorem 3.1. Let 0 < A < A0 be any two fixed constants such that AT < N <

A0T and let N 0 D N 0.T / D T=.2�/CN=2� .N 2=4CNT=.2�//1=2. Then

E.T / D ˙1.T /C˙2.T /CO.log2 T /; (39)

where

X

1
.T / D 21=2.T=.2�//1=4

X

n6N
.�1/nd.n/n�3=4e.T; n/ cos.f .T; n//; (40)

X

2
.T / D �2

X

n6N 0

d.n/n�1=2.logT=.2�n//�1 cos.g.T; n//; (41)

with

f .T; n/ D 2T arsinh
�p
�n=.2T /

�C
p
2�nT C �2n2 � �=4

D �1
4
�C2p2�nT C 1

6

p
2�3n3=2T �1=2

C a5n
5=2T �3=2 C a7n

7=2T �5=2 C � � � ;
g.T; n/ D T logT=.2�n/ � T C �=4; (42)

where

e.T; n/ D .1C �n=.2T //�1=4
n
.2T=�n/1=2arsinh .

p
�n=.2T /

o�1

D 1CO.n=T / .1 6 n < T /; (43)

and arsinhx D log.x C p
1C x2 /:

Remark 3.1. If we estimate trivially the sums in (40) and (41) (using the inequality
jPF.n/j 6

P jF.n/j), we obtain the boundE.T / � T 1=2 logT . Of course, using
exponential sum techniques is possible to obtain better results. It was indicated in
Corollary 15.4 of [52] how one obtains

E.T / �" T
35=108C"

� 35

108
D 0:32407

�
:

The latest record is due to Watt [105], who proved that

E.T / �" T
131=416C"

�131

416
D 0:314903 : : :

�
: (44)
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His proof is based on a refined version of the Bombieri–Iwaniec method for the
estimation of exponential sums. For this, see [10,11] and the survey article of Huxley
and the author [38].

Remark 3.2. There is another explicit formula for E.T /, also with the error term
O.log2 T /. Obtained almost 30 years after Atkinson’s work, this result is due to
Balasubramanian [5] and says that

E.T / D 2
X

n6K

X

m6K;m¤n

sin.T logn=m/p
mn logn=m

C 2
X

n6K

X

m6K;m¤n

sin.2�1 � T logmn/p
mn .2� 01 � logmn/

CO.log2 T /; (45)

where �1 D �1.T / D 1
2
T log.T=.2�// � 1

2
T � 1

8
�;K D p

T=.2�/. Both
Atkinson’s formula and Balasubramanian’s (45) contain two exponential sums, but
(45) contains double sums, whereas Atkinson’s formula contain one-dimensional
sums with the divisor function d.n/. The proof of (45) consists of the integration of
the sharp version of the Riemann–Siegel formula [see (19)].

Remark 3.3. A proof of Atkinson’s formula, different from [4], was obtained
in 1987 by Motohashi [82]. His error term O.logT / is better than Atkinson’s
O.log2 T /, and the proof is based on his approximate functional equation for
�2. 1

2
C i t/. There are two other different proofs of Atkinson’s formula. They are

due to Jutila [68, 69] and Lukkarinen [78] and are both based on the use of Laplace
transforms of j�. 1

2
C ix/j2.

We are not going to give a full proof of Atkinson’s formula (for this see [4, 42,
52]), but we shall only indicate the salient points of the argument. Atkinson starts
from the decomposition

�.u/�.v/ D
1X

mD1

1X

nD1
m�un�v D �.u C v/C f .u; v/C f .v; u/; (46)

where

f .u; v/ WD
1X

rD1

1X

sD1
r�u.r C s/�v .Re u > 1;Re v > 1/:

The “diagonal” terms m D n give rise to �.u C v/, while the “non-diagonal” terms
m ¤ n contribute to f .u; v/C f .v; u/. The main problem, appearing several times
in the course of the proof, is to obtain analytic continuation of a certain expression.
In the case at hand, we seek the representation in (46) to hold outside the region of
absolute convergence of the complex variables u and v. Applying partial summation
to the sum

P1
sD1.r C s/�v it is seen that

f .u; v/ � .v � 1/�1�.u C v � 1/C 1
2
�.u C v/
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is regular for Re.u C v/ > 0. Thus (46) holds by analytic continuation when u; v
both lie in the critical strip, apart from the poles at v D 1; u Cv D 1 and u Cv D 2.
In the case when Re u < 0;Re.uCv/ > 2, one uses the familiar Poisson summation
formula (see (A.25) of [52]), namely,

X

a6n6b

0

f .n/ D
Z b

a

f .x/dx C 2

1X

nD1

Z b

a

f .x/ cos.2�nx/dx;

which holds if f 0.x/ is bounded on Œa; b, and the dash 0 in summation means that
1
2
f .a/ and 1

2
f .b/ are to be taken instead of f .a/ and f .b/, respectively, if a and b

are integers. This gives

1X

rD1
r�u.r C s/�v D s1�u�vn

Z 1

0

y�u.1C y/�vdy

C 2
X

mD1

Z 1

0

y�u.1C y/�v cos.2�msy/dy
o
:

Summation over s shows that

g.u; v/ WD f .u; v/ � � .u C v � 1/� .1 � u/� �1.v/�.u C v � 1/

D 2

1X

sD1
s1�u�v

1X

mD1

Z 1

0

y�u.1C y/�v cos.2�msy/dy: (47)

To investigate the convergence of the last expression, we note that for

Re u < 1; Re.u C v/ > 0; n > 1; e.u/ D exp.2�iu/

we have

2

Z 1

0

y�u.1Cy/�v cos.2�msy/dy D nu�1
Z 1

0

y�u.1Cy=n/�v
�

e.y/Ce.�y/
�

dy

D nu�1
Z i1

0

y�u.1C y=n/�ve.y/dy

Cnu�1
Z �i1

0

y�u.1C y=n/�ve.�y/dy

� nRe u�1

ju � 1j :

This bound holds uniformly for bounded u and v, which follows after integration by
parts. Thus the double series in (47) is absolutely convergent for Re u < 0, Re v > 1,
Re.u C v/ > 0, by comparison with

P1
sD1 js�vjP1mD1 jmu�1j, and represents an
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analytic function of both variables in this region. Hence (47) holds throughout this
region, and grouping together terms with ms D n together we have

g.u; v/ D 2

1X

nD1
�1�u�v.n/

Z 1

0

y�u.1C y/�v cos.2�ny/dy; (48)

where �k.n/ D P
d jn dk is the sum of the kth powers of divisors of n, so that

�0.n/ � d.n/. Therefore, if g.u; v/ is the analytic continuation of the function
given by (47), then for 0 < Re u < 1; 0 < Re v < 1; u C v ¤ 1 we have

�.u/�.v/ D �.u C v/C �.u C v � 1/� .u C v � 1/

�
� .1 � u/

� .v/
C � .1 � v/

� .u/

�

Cg.u; v/C g.v; u/: (49)

It is, however, the exceptional case u C v D 1, in which we are interested. Here we
may use the fact that g.u; v/ is continuous. We write u C v D 1 C ı; 0 < jıj < 1

2

and let ı ! 0. It follows that, for 0 < Re u < 1,

�.u/�.1� u/ D 1

2

�
� 0.1 � u/

� .1 � u/
C � 0.u/
� .u/

�

C 2� � log 2� C g.u; 1 � u/C g.1 � u; u/; (50)

with a view to the eventual application u D 1
2

C i t in mind. Reasoning as in (48) we
have, for Re u < 0,

g.u; 1 � u/ D 2

1X

nD1
d.n/

Z 1

0

y�u.1C y/u�1 cos.2�ny/dy; (51)

and so what we need is the analytic continuation of (51) valid when Re u D 1
2
.

At this point the Voronoï formula for�.x/ comes into play, where

�.x/ WD
X

n6x

0

d.n/� x.logx C 2� � 1/� 1=4; (52)

and the dash 0, similarly as in Poisson’s summation formula, means that the last term
in the sum in (52) is to be halved if x 2 N. At the beginning of the twentieth century
Voronoï [102] proved the exact, explicit formula

�.x/ D �2��1x1=2
1X

nD1
d.n/n�1=2

n
K1.4�

p
nx/C 1

2
�Y1.4�

p
nx/

o
; (53)

where K1; Y1 are Bessel functions in standard notation (see, e.g., the treatise [103]
of Watson) and the series above is boundedly, but not absolutely, convergent. In the
present context it is more expedient to use a truncated version of (53), namely
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�.x/ D .�
p
2/�1x1=4

1X

nD1
d.n/n�3=4

�
n
cos.4�

p
nx/� 3.32�

p
nx/�1 sin.4�

p
nx/

o
CO.x�3=4/: (54)

It is not difficult to see that the definitions of E.T / and �.x/ are similar and
that there are also similarities between Atkinson’s formula for E.T / and Voronoï’s
formula for �.x/. Indeed, there is a deep connection between these two problems,
and for a study of this phenomenon, the reader is referred to [54, 55, 67, 68].

Returning to the discussion of the proof of Theorem 3.1, let N 2 N and

h.u; x/ WD 2

Z 1

0

y�u.1C y/u�1 cos.2�xy/dy:

Then we have, with D.x/ WD P

n6x
d.n/,

X

n>N

d.n/h.u; n/ D
Z 1

NC1=2
h.u; x/dD.x/

D
Z 1

NC1=2
.logX C 2�/h.u; x/dx C

Z 1

NC1=2
h.u; x/d�.x/

D ��.N C 1
2
/h.u; N C 1

2
/C

Z 1

NC1=2
.logx C 2�/h.u; x/dx

�
Z 1

NC1=2
@h.u; x/

@x
dx:

Hence (51) becomes

g.u; 1 � u/ D
X

n6N
h.u; n/d.n/ ��.N C 1

2
/h.u; N C 1

2
/

C
Z 1

NC1=2
.logx C 2�/h.u; x/dx �

Z 1

NC1=2
@h.u; x/

@x
dx

D g1.u/� g2.u/C g3.u/� g4.u/; (55)

say. Here g1.u/ and g2.u/ are analytic functions in the region Re u < 1. Consider
next g4.u/. We have

h.u; x/ D
Z i1

0

y�u.1C y/u�1e.xy/dy C
Z �i1

0

y�u.1C y/u�1e.�xy/dy;

which gives after differentiation over x that

@h.u; x/

@x
� xRe u�2
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for Re u 6 1 and bounded u. Using only the estimate �.x/ �" x
1=3C" (see [52] or

[38]) it is seen that the integral defining g4.u/ is an analytic function of u, at any
rate when Re u < 2=3.

It remains to consider g3.u/. Let, for brevity, X D N C 1
2
. Then

g3.u/ D
Z 1

X

.logx C 2�/
nZ i1

0

y�u.1C y/u�1e.xy/dy

C
Z �i1

0

y�u.1C y/u�1e.�xy/dy
o
dx: (56)

For Re u < 0 an integration by parts shows that the first two integrals in (56) are
equal to

� .2�i/�1.logX C 2�/

Z i1

0

y�u�1.1C y/u�1e.Xy/dy

� .2�i/�1
Z 1

X

dx
Z i1

0

y�u�1.x C y/u�1e.y/dy

D �.2�i/�1.logX C 2�/

Z i1

0

y�u�1.1C y/u�1e.Xy/dy

C .2�i/�1
Z i1

0

y�u�1.X C y/ue.y/dy:

In the last integral above, the line of integration may be taken as Œ0; 1/ and the
variable y replaced by y D Xz. The other two integrals in (56) are treated similarly,
and the results may be combined to produce

g3.u/ D ���1.logX C 2�/

Z 1

0

y�u�1.1C y/u�1 sin.2�Xy/dy

C .�u/�1
Z 1

0

y�u�1.1C y/u�1 sin.2�Xy/dy: (57)

Noting that the integrals in (57) are uniformly convergent when Re u 6 1 � ", it
follows that (57) provides us with an analytic continuation which is valid when
Re u D 1

2
, and thus we may proceed to integrate (50). When u D 1

2
C i t we have

�.u/�.1� u/ D j�. 1
2

C i t/j2;
so that the integration of (50) gives

2iI.T / D
Z 1=2CiT

1=2�iT
�.u/�.1� u/du

D 1
2

�
� log� .1 � u/C log� .u/

�ˇˇ
ˇ
1=2CiT
1=2�iT C2iT .� � log 2�/
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C
Z 1=2CiT

1=2�iT

�
g.u; 1� u/C g.1 � u; u/

�
du

D log
� .1

2
C iT /

� . 1
2

� iT /
C 2iT .2� � log 2�/C 2

Z 1=2CiT

1=2�iT
g.u; 1 � u/du:

If one uses Stirling’s formula for the gamma-function (see, e.g., [18]), namely

� .s/ D p
2�jt j��1=2 exp

(

� 1
2
�jt j C i

�

t log jt j � t C �t

2jt j
�

� � 1

2

��)

�
�

1C i

2t
.� � �2 � 1

6
/CO.jt j�2

�

; (58)

this becomes

I.T / D T
�

log
T

2�
C 2�

�
� i

Z 1=2CiT

1=2�iT
g.u; 1� u/du

D T
�

log
T

2�
C 2�

�
C I1 � I2 C I3 � I4 CO.1/; (59)

where for n D 1; 2; 3; 4

In WD �i
Z 1=2CiT

1=2�iT
gn.u/du;

so that

I1 D 4
X

n6N
d.n/

Z 1

0

sin.T log.1C y/=y/ cos.2�ny/

y1=2.1C y/1=2 log.1C y/=y
dy;

I2 D 4�.x/

Z 1

0

sin.T log.1C y/=y/ cos.2�Xy/

y1=2.1C y/1=2 log.1C y/=y
dy;

I3 D 2

�
.logX C 2�/

Z 1

0

sin.T log.1C y/=y/ sin.2�Xy/

y3=2.1C y/1=2 log.1C y/=y
dy;

C 1

i�

Z 1

0

sin.2�Xy/

y
dy
Z 1=2CiT

1=2�iT
.1C y�1/uu�1du;

I4 D
Z 1

X

�.x/dx
Z 1=2CiT

1=2�iT
@h.u; x/

@x
du; (60)
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whereN 2 N, X D N C 1
2
, and as in the formulation of Theorem 3.1 we restrictN

to the range AT < N < A0T; 0 < A < A0. One can transform the last integral in
(60) to obtain

I4 D 4�.x/

Z 1

X

dx
Z 1

0

cos.2�xy/

y1=2.1C y/3=2 log.1C y/=y

�
�

T cos
�
T log

1C y

y

�
� sin

�
T log

1C y

y

��1

2
C log�1

1C y

y

�	

dy:

(61)

The main difficulty lies now in the evaluation of the integrals in (60) and (61)
which represent In. Since the integrals in question are exponential integrals, one
needs two lemmas (see Lemmas 15.1 and 15.2 of [52]) for the evaluation of such
integrals. This is rather technical and involved, and the details are therefore omitted.
The transformations of In lead ultimately to the expressions in (39)–(42).

Atkinson’s formula lay forgotten for almost 30 years until Heath-Brown [30, 31]
used it to obtain important results. In [30] he proved a mean square result which is
stated here as

Theorem 3.2. We have

Z T

2

E2.t/dt D CT 3=2 CO.T 5=4 log2 T /; C D 2

3
.2�/�1=2

1X

nD1
d 2.n/n�3=2:

(62)

Remark 3.4. By using (27) one can rewrite the constant C as

C D 2

3
.2�/�1=2

�4.3=2/

�.3/
D 10:3047 : : : :

Remark 3.5. If f .x/ D ˝.g.x// as usual means that limx!1 f .x/=g.x/ ¤ 0,
then from (62) it clearly follows that

E.T / D ˝.T 1=4/: (63)

The omega result (63) is far from the upper bound (44).

Problem 1. What is the true order of E.T /?

The mean square formula (62) suggests that E.T / is “small” on the average; in
particular, it is commonly conjectured that one has

E.T / D O".T
1=4C"/; (64)

but this is certainly beyond reach by present methods.



The Mean Values of the Riemann Zeta-Function on the Critical Line 25

Proof of Theorem 3.2. Writing R.T / for the error term in Atkinson’s formula, we
obtain

Z 2T

T

E2.t/dt D
Z 2T

T

X2

1
.t/dt C 2

Z 2T

T

X

1
.t/
�X

2
.t/CR.t/

�
dt

C
Z 2T

T

�X

2
.t/CR.t/

�2
dt: (65)

We choose N D T in Atkinson’s formula (40) to obtain that

Z 2T

T

X2

1
.t/dt D 2

Z 2T

T

p
t=.2�/

X

m6N

X

n6N
� � � dt:

Here the diagonal termsm D n clearly contribute

2

3
.2�/�1=2

1X

nD1
d 2.n/n�3=2

�
.2T /3=2 � T 3=2

�
CO".T

1C"/:

The non-diagonal termsm ¤ n give rise to an expression of the type

X

m¤n6T

1

4
.�1/mCnd.m/d.n/

Z 2T

T

g.t/ cos.f .t//dt;

where, with f .T; n/ given by (42), we have

f .t/ D f .t;m/� f .t; n/; g.t/ D g1.t/g2.t/g3.t/g4.t/;

g1.t/ D
�

t

2�m
C 1

4

��1=4
; g2.t/ D

�
t

2�n
C 1

4

��1=4
;

g3.t/ D .ar sinh
p
�m=2t/

�1
; g4.t/ D .ar sinh

p
�n=2t/

�1
:

The functions gi .t/ are monotonic, and we may apply the standard first derivative
test, namely (see, e.g., Chap. 2 of [52]).

Lemma 3.1. Let F.x/ be a real differentiable function such that F 0.x/ is
monotonic and jF 0.x/j > m > 0 in Œa; b, and G.x/ is a positive, monotonic
function such that jG.x/j 6 G in Œa; b. Then

ˇ
ˇ
ˇ
ˇ
ˇ

Z b

a

G.x/eiF .x/dx

ˇ
ˇ
ˇ
ˇ
ˇ

� G=m: (66)
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Since f 0.t; n/ D 2ar sinh
p
�n=2t , the contribution of the terms m ¤ n is then,

on using (66),

� T
X

m¤n6T
d.m/d.n/.mn/�3=4jn1=2 �m1=2j�1 �" T

1C":

The contribution of the remaining terms in (65) is estimated similarly. In evaluating
the mean square of

P
2.T / we shall obtain

Z 2T

T

X2

2
.t/dt � T log4 T;

keeping in mind that

N 0 D N 0.t/ D t=.2�/CN=2� .N 2=4C nt=.2�//1=2 	 T;

where N D T depends on t . Further, on using the Cauchy–Schwarz inequality for
integrals, we obtain

Z 2T

T

X

1
.t/
X

2
.t/dt �

�Z 2T

T

X2

1
.t/dt

Z 2T

T

X2

2
.t/dt

	 1=2
� T 5=4 logT;

and the integrals with R.t/ are estimated on using Atkinson’s bound R.T / �
log2 T . Collecting the preceding estimates we have

Z 2T

T

E2.t/dt D C
�
.2T /3=2 � T 3=2

�
CO.T 5=4 logT /;

and the assertion of Theorem 3.2 follows if we replace T by T 2�j ; j D 1; 2; : : :

and sum the resulting expressions.
One can improve on Theorem 3.2 and obtain

Z T

2

E2.t/dt D CT 3=2 CO.T log4 T /: (67)

The bound in (67) was obtained independently by Preissman [86] and the author [42]
in Chap. 2. The best current result is due to Lau and Tsang [76] who proved that

F.T / D O.T log3 T log logT /; F.T / WD
Z T

2

E2.t/dt � CT 3=2: (68)

It should be also noted that Lee and Tsang [77] proved that

Z T

0

F.t/dt D �3��2T 2 log2 T log logT CO.T 2 log2 T /; (69)
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which in particular implies that

F.T / D ˝�.T log2 T log logT /:

Problem 2. What is the true order of F.T /?

In view of the result of (69) of [77], F.T / is probably of the order

T log2 T log logT:

Their formula (69) is significant from another aspect. Namely it shows a difference
in behaviour between E.T / and �.x/, the error term in the classical Dirichlet
divisor problem. If L.x/ is the analogue of F.T / in (68) for�.x/, then we have the
result of Lau and Tsang [74] that

Z X

0

L.x/dx D �.8�2/�1X2 log2 X C cX2 logX CO.X2/;

which is different from (69). One can compare this with the author’s result [45],
who proved the Laplace transform formula

Z 1

0

�2.x/e�x=T dx D C1T
3=2 C .A1 log2 T C A2 logT C A3/T CO".T

2=3C"/;

where C1 > 0;A1 > 0. On the other hand, using integration by parts and (69), it is
not difficult to see that

Z 1

0

E2.x/e�x=T dx D D1T
3=2 CB1T log2 T log logT CO.T log2 T /;

which has a different structure than the above formula. For a detailed analysis on
results and problems involving�.x/ and E.T /, see the paper of Tsang [100].

Problem 3. Find an exact asymptotic formula for
R1
0
E2.x/e�x=T dx.

Continuing our discussion on E.T /, note that the defining relation (36) yields

E.T C x/ � E.T / > �2Cx logT .0 6 x 6 T; T > T0/:

Hence integration gives

Z TCx

T

E.t/dt D xE.T /C
Z x

0

.E.T C u/�E.T //du

> xE.T / � 2C logT
Z x

0

udu

D xE.T / � Cx2 logT: (70)
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Therefore we obtain

E.T / 6 x�1
Z TCx

T

E.t/dt C Cx logT .0 < x 6 T; T > T0/; (71)

and in a similar fashion we also have

E.T / > x�1
Z T

T�x
E.t/dt � Cx logT .0 < x 6 T; T > T0/: (72)

Combining (71) and (72) we have

jE.T /j 6 x�1
Z TCx

T�x
jE.t/jdt C 2Cx logT .0 < x 6 T; T > T0/: (73)

From this inequality one can relate the order of E.T / to the mean square formula
forE.T /. Namely, if F.T / denotes the error term in (62), then from (73) we obtain

jE.T /j � x�1=2
�Z TCx

T�x
E2.t/dt

�1=2
C x logT

� x�1=2
�
C.TCx/3=2�C.T�x/3=2CF.TCx/�F.T�x/

�1=2Cx logT

� T 1=4 C x�1=2 max
T�x6t6TCx jF.t/j1=2 C x logT:

Choosing x D .max � � � /1=3.logT /�2=3 this leads to

Theorem 3.3. If F.T / denotes the error term in (62), then

E.T / � T 1=4 C
 

max
T�pT6t6TCpT

jF.t/j
!1=3

log4=3 T: (74)

From (67) and (74) it follows that

E.T / � T 1=3 log8=3 T;

which is a non-trivial result, but the sharpest exponent of Watt [105] requires much
more effort.

One can improve the omega result (63). Namely, Hafner and the author [21, 22]
showed that there exist positive constants C and D such that

E.T / D ˝C
n
.T logT /1=4.log logT /.3Clog 4/=4 exp.�Cplog log logT /

o
(75)
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and

E.T / D ˝�
n
T 1=4 exp

�
D.log logT /1=4.log log logT /�3=4

�o
: (76)

Lau and Tsang [75] used the method of Soundararajan [95], who like Hafner–Ivić
proved the analogous result for�.x/ (the error term in the divisor problem), namely
they proved

E.T / D ˝

�

.T logT /
1
4 .log logT /

3
4 .2

4
3 �1/.log log logT /� 5

8

	

:

Soundararajan’s method does not yield an ˝C or ˝� result, but just an !

result. However, it improves either (75) or (76), but one cannot tell which one.
A quantitative omega result was obtained by the author [41]. It was shown there
that there exist constants B;C > 0 such that every interval ŒT; T C C

p
T , for

T > T0, contains numbers �1; �2 such that

E.�1/ > B�
1=4
1 ; E.�2/ < �B�1=42 : (77)

The conjecture thatE.T / D O".T
1=4C"/ is supported not only by omega results and

the mean square formula for E.T / but also by the results on higher moments and
the distribution of values of E.t/ (see the review paper of Tsang [100]). The author
[40] proved (see also Chap. 15 of [52])

Z T

0

jE.t/jAdt �"

(
T .AC4C"/=4 if 0 6 A 6 35=4;

T .35AC38C"/=108 if A > 35=4:
(78)

The proof depended on the use of the best-known exponent for the order of j�. 1
2

C
i t/j, which has been since improved to 32=205C"D 0:15609 : : :C", due to Huxley
[37]. This enabled Heath-Brown [32] to extend the first bound in (78) to A 6 28=3,
which one expects to be the true order of magnitude of the integral in question for all
k > 0. He also showed, by using properties of almost periodic functions, that there
exists a well-behaved distribution function f .t/ such that (
.�/ denotes measure)

X�1

˚
x 2 Œ1; X W x�1=4E.x/ 2 I


 !
Z

I

f .t/dt

as X ! 1 for any interval I. He then deduced that the moments

ck WD lim
T!1T

�1�k=4
Z T

0

jE.t/jkdt

exist for all real k 2 Œ0; 9, as do the odd moments

dk WD lim
T!1T

�1�k=4
Z T

0

Ek.t/dt .k D 1; 3; 5; 7; 9/:
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Several results of the type

Z T

0

Ek.t/dt D dkT
1Ck=4 CO".T

1Ck=4�ıkC"/ (79)

have been obtain for various integral k and suitable ık > 0. We mention the works
of Tsang [99], the author [47], Sargos and the author [64], and the works of Zhai
[107, 108] who obtained asymptotic formulas of the form (79) for k 6 9 .k 2 N/.
In all known cases it turned out that dk for odd k is positive (this is trivial for even
k), and so one may ask:

Problem 4. Does dk exist for all k 2 N? If yes, is it true that dk > 0 for all odd k?

In [63] te Riele and the author investigated the distribution of the zeros of E.T /,
which is a continuous function for T > 0. For example, they showed that there
exists a constant c > 0 such that E.t/�� has a zero of odd order in ŒT; T C c

p
T 

for T > T0. If tn denotes the nth zero of E.t/ � � , then the first ten tn’s are

t1 D 1:199593; t2 D 4:757482; t3 D 9:117570; t4 D 13:545429; t5 D 17:685444;

t6 D 22:098708; t7 D 27:706900; t8 D 31:884578; t9 D 35:337567;

t10 D 40:500321:

One has then

tnC1 � tn D O.t1=2n /; (80)

and in the opposite direction Heath-Brown and Tsang [33] proved the following
result. Let ı > 0 be any given small quantity. Then for any T > T0.ı/, there are at
least c4ı

p
T log5 T disjoint subintervals of length c5ı

p
T log�5 T in ŒT; 2T  , such

that jE.t/j > .1
2
c3 � ı/t1=4 whenever t lies in any of these intervals. In particular,

E.t/ does not change sign in any of these intervals, so that

tnC1 � tn D ˝.t1=2n log�5 tn/: (81)

Thus, up to a logarithmic factor, (80) and (81) settle the question of the order of the
gap between the consecutive zeros of E.T /.

The reason why the zeros of E.t/ � � are considered, and not simply the zeros
of E.t/, is that � is the mean value of E.t/. Namely Hafner and the author [21, 22]
proved that

G.T / D O.T 3=4/; G.T / D ˝˙.T 3=4/;
Z T

2

G2.t/dt D BT 5=2 CO.T 2/;

where G.T / WD E.T / � � and B > 0 is an explicit constant. As usual, F.x/ D
˝˙.H.x// means that F.x/ D ˝C.H.x// and F.x/ D ˝�.H.x// both hold.
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These results determine, up to the value of the numerical constants that are involved,
the true order of the functionG.T /. In fact one has the explicit formula

G.T / D 1

2

�
2T

�

�3=4X

n6T
d.n/n�5=4e2.T; n/ sin.f .T; n//

� 2
X

n6c0T
d.n/n�1=2.logT=.2�n//�2 sin.g.T; n//CO.T 1=4/;

which is clearly an integrated version of Atkinson’s formula. Here

c0 D 1

2�
C 1

2
�
r
1

4
C 1

2�
;

e2.T; n/ D
�
1C �n

2T

��1=4
(�

2T

�n

�1=2
ar sinh

��n

2T

�1=2
)�2

:

4 The Fourth Moment of j�.1
2

C it/j

For more than fifty years Ingham’s formula (17) for the fourth moment withstood
improvements. Then in 1979 Heath-Brown [31] obtained a substantial sharpening
of (17). He proved that (� is Euler’s constant)

Z T

0

j�. 1
2

C i t/j4dt D a4T log4 T C a3T log3 T

C a2T log2 T C a1T logT C a0T CO".T
7=8C"/ (82)

with

a4 D .2�2/�1; a3 D 2.4� � 1 � log 2� � 12� 0.2/��2/��2:

His proof uses a new approximate functional equation for j�. 1
2

C i t/j2k , as well
as results involving the asymptotic formula for

P
n6x d.n/d.n C r/ (the so-called

additive divisor problem, where r .2 N/ is not necessarily fixed, but may vary
with x). This in turn depended on estimates for the Kloosterman sums

S.m; nI c/ WD
X

16d6c
e

�
md C nd 0

c

�

.e.z/ D exp.2�iz//;

where dd 0 � 1mod c. Sums of Kloosterman sums have become very important in
many problems from analytic number theory in the last 35 years, due to the efforts
of R. Bruggeman, H. Iwaniec, N. Kuznetsov, Y. Motohashi and others.
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Heath-Brown also indicated how one can evaluate in closed form the remaining
coefficients aj in (82), but his expressions are cumbersome. If the main term for
the fourth moment in (82) is written as Tp4.L/; L D log.T=.2�//, where p4 is
a polynomial of degree four, then Conrey [13] and the author [43] independently
evaluated the coefficients of p4.x/. Conrey, whose analysis is based on [31], has
shown that p4.x/ D g0.x/C g1.x/, where

g0.x/ D Res
sD0

2xs�4.s C 1/

s.s C 1/�.2s C 2/

and

g1.x/ D
� d

ds

�2 .xe2� /s
˚
1
2
�2.s C 1/� s�1�.2s C 1/� �.2s C 2/




.s C 1/�.s C 2/

ˇ
ˇ
ˇ
ˇ
ˇ
sD0
:

Numerical calculation shows that

Tp4.L/ D T
�
0:050660L4C0:496227L3C0:937279L2C1:35334L�0:040924

�
;

where the coefficients are accurate within six decimal places. The forthcoming
papers of Hiary and Odlyzko [34], and Rubinstein and Yamagishi [92] contain many
numerical results concerning various moments of j�. 1

2
C i t/j.

An important moment in the theory of the fourth moment of j�. 1
2

C i t/j is
Motohashi’s work [83], later expounded in his monograph [85]. It yields an explicit
formula for the weighted integral

I.T;�/ WD .�
p
�/�1

Z 1

�1
j�. 1

2
C i.T C t//j4e�.t=�/2dt .0 < � < T= logT /:

(83)

Remark 4.1. The range 0 < � < T= logT is very wide and is sufficient for
applications.

Remark 4.2. The Gaussian exponential factor e�.t=�/2 inserted in the integrand
facilitates convergence problems and analytic continuation essential to Motohashi’s
method of proof. It is, of course, not the only weight function which may be used
in this context, as clearly shown in [85] (see also Theorem 4.1 below). On the other
hand, it is clear that the resulting expression(s) for the fourth moment will not be
the analogue(s) of Atkinson’s formula for the mean square of j�. 1

2
C i t/j.

Problem 5. Does there exist an analogue of Atkinson’s formula for the mean
square of j�. 1

2
C i t/j, also for the fourth moment of j�. 1

2
C i t/j?

No one has ever found such a formula, so the answer is probably not, but this has
not been proved.

To formulate Motohashi’s result on (83), we need some notation from the spectral
theory of the non-Euclidean Laplacian. As usual,Hj .s/ is the Hecke series
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Hj .s/ D
1X

nD1
tj .n/n

�s D
Y

p

.1 � tj .p/p
�s C p�2s/�1 .� > 1/;

associated with the Maass wave form  j .z/, where �j .1/tj .n/ D �j .n/ and
�j .n/ is the nth Fourier coefficient of  j .z/. The function Hj .s/ can be continued
analytically to an entire function on C. It satisfies the functional equation, similar to
the functional equation for �.s/, namely

Hj .s/ D 22s�1�2s�2� .1�sCi�j /� .1�s�i�j /."j cosh.��j /�cos.�s//Hj .1�s/;
where "j .D ˙1/ is the so-called parity sign of  j .z/ .z D xC iy/. This means that
"j D 1 if  j .z/ is an even function of x and "j D �1 if  j .z/ is an odd function
of x. By

�

	j D �2j C 1

4

	

[ f0g

we denote the eigenvalues (discrete spectrum) of the hyperbolic Laplacian

� D �y2
 �

@

@x

�2
C
�
@

@y

�2!

acting over the Hilbert space composed of all � -automorphic functions which are
square integrable with respect to the hyperbolic measure (� D PSL.2;Z/). Further
˛j D j�j .1/j2.cosh��j /�1, where �j .1/ is the first Fourier coefficient of the Maass
wave form corresponding to the eigenvalue	j to which the HeckeL-functionHj .s/

is attached. We have Hj .
1
2
/ > 0 and

X

�j6T
˛jH

3
j .

1
2
/ � T 2 log8 T: (84)

Motohashi’s general formula for weighted integral of the fourth moment of j�. 1
2

C
i t/j will involve not only Maass wave forms (non-holomorphic cusp forms) but
holomorphic cusp forms as well. Thus let

ffj;2k.z/g; 1 6 j 6 d2k; k > 6

be the orthonormal basis, which consists of eigenfunctions of Hecke operators
T2k.n/, of the Petersson unitary space of holomorphic cusp forms of weight 2k
for the full modular group. Hence for every n 2 N there is a tj;2k.n/ such that

T2k.n/.'j;2k.z// D n�1=2
X

adDn;d>0

� a

d

�k X

b .mod d/

'j;2k

�az C b

d

�
D tj;2k.n/'j;2k.z/:

The corresponding Hecke series

Hj;2k.s/ D
1X

nD1
tj;2k.n/n

�s
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as in the case of Hj .s/ converges absolutely at least for � > 2. The function
Hj;2k.s/ is entire and is �j kc for some c > 0. If �j;2k.1/ is the first Fourier
coefficient of Hj;2k.s/, then one defines

˛j;2k WD .2k � 1/Š22�4k��2k�1j�j;2k.1/j2:

With this notation we can formulate Motohashi’s fundamental result. Since it
is of a fairly general nature, we need to assume certain conditions on the weight
function g.r/: the function g.r/ takes real values on the real axis; and there exists
a large positive constant A such that g.r/ is regular and O..jr j C 1/�A/ in the
horizontal strip j Im r j 6 A. With

Ik.g/ WD
Z 1

�1
j�. 1

2
C i t/j2kg.t/dt .k 2 N/ (85)

we have the exact formula, which we state here as

Theorem 4.1.

I2.g/ D fI2;r C I2;d C I2;c C I2;hg.g/; (86)

where

I2;r .g/ WD
Z 1

�1
X

a;b;k;l>0IakCbl64
c.a; kI b; l/Re

2

4

 
� .a/

�

!k  
� .b/

�

!l

. 12Ci t/
3

5 g.t/dt

� 2�
n
.� � log.2�//g. 12 i/C 1

2 ig
0. 12 i/

o
(87)

with effectively computable real, absolute constants c.a; kI b; l/ and

I2;d .g/ WD
1X

jD1
˛jH

3
j .

1
2
/�.�j Ig/;

I2;c.g/ WD 1

�

Z 1

�1
j�. 1

2
C ir/j6

j�.1C 2ir/j2�.r Ig/dr

I2;h.g/ WD
1X

kD6

d2kX

jD1
˛j;2kH

3
j;2k.

1
2
/�.. 1

2
� 2k/i Ig/: (88)

Here � is Euler’s constant and

�.r Ig/ D
Z 1

0

.y.1C y//�1=2gc.log.1C 1=y//

� Re
h
y�1=2�ir

�
1C i

sinh.�r/

�� 2. 1
2

C ir/

� .1C 2ir/
F. 1

2
C ir; 1

2
C ir I 1C 2ir I �1=y/

i
dy
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with the hypergeometric function F and

gc.x/ WD
Z 1

�1
g.t/ cos.xt/dt:

Remark 4.3. The functionF appearing above is the Gauss hypergeometric function
2F1.aI bI cI z/. In standard notation it is

2F1.aI bI cI z/ D � .c/

� .a/� .b/

1X

nD0

� .aC n/� .b C n/

� .c C n/

zn

nŠ
.jzj < 1/:

It is clear that the Gaussian exponential weight is a good candidate for the function
g appearing in Theorem 4.1. With this function, after several simplifications, one is
led to Motohashi’s explicit formula with a logarithmic error term. This is

Theorem 4.2. Let D be an arbitrary positive constant and let us assume that

T 1=2.logT /�D 6 � 6 T .logT /�1: (89)

Then we have, in the notation of (83),

I.T;�/D �p
2T

1X

jD1
˛jH

3
j .

1
2
/�
�1=2
j sin

�
�j log

�j

4eT

�
e�

1
4
.��j =T /

2CO.log3DC9 T /;

(90)

where the O-constant depends only onD.

The proofs of Theorems 4.1 and 4.2 are more difficult than the proof of
Atkinson’s formula and will not be given here. Sums of Kloosterman sums naturally
arise in the course of the proof, and their transformation via the Bruggeman–
Kuznetsov trace formula (see, e.g., [85]) plays an important rôle. However, we shall
indicate how one can derive some consequences from (90) involving the function
E2.T /, the error term in the asymptotic formula (82). Hence,

E2.T / D
Z T

0

j�. 1
2

C i t/j4dt

�
�
a4T log4 T C a3T log3 T C a2T log2 T C a1T logT C a0T

�
; (91)

and E2.T / D o.T / .T ! 1/. At a first glance the range for� in (89) looks rather
restrictive, but it will turn out that this is not the case. Another problem is that (90)
is not an explicit formula for E2.T /, but for a weighted integral.

The smooth structure and fast decay of the Gaussian weight function e�
1
4
.��j =T /

2

in (90) will enable us to pass from I.T;�/ to E2.T /. First we note that, similarly to
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Theorem 4.2, integrating the expression in Theorem 4.1, one obtains

Z T

0

I.t; �/dt D TP4.logT /C S.T;�/CR.T;�/; P4.x/ D
4X

jD0
aj x

j ; (92)

where

S.T;�/ WD �
p
T=2

1X

jD1
˛j �

�3=2
j H3

j .
1
2
/ cos

�
�j log

�j

4eT

�
e�

1
4
.��j =T /

2

;

R.T;�/ WD T 1=2 logC.D/ T; (93)

assuming that (89) holds. Suppose henceforth that T " 6 � 6 T exp.�p
logT / and

put first T1 D T �� logT , T2 D 2T C� logT . Then

Z T2

T1

I4.t; �/dt D
Z 1

�1
j�. 1

2
C ix/j4

�
1

�
p
�

Z T2

T1

e�.t�x/2=�2dt
�

dx

>
Z 2T

T

j�. 1
2

C ix/j4
�

1

�
p
�

Z 2TC� logT

T�� logT
e�.t�x/2=�2dt

�

dx:

But for T 6 u 6 2T we have, by the change of variable t � x D �v,

1

�
p
�

Z 2TC� logT

T�� logT
e�.t�x/2=�2dt D 1p

�

Z .2T�x/=�ClogT

.T�x/=��logT
e�v2dv

D 1p
�

Z 1

�1
e�v2dv CO

�Z 1

logT
e�v2

�
dv

D 1CO
�

e� log2 T
�
:

By the same technique we can bound from above
R T2
T1
I4.t; �/dt with T1 D T C

� logT , T2 D 2T �� logT . The results are contained in

Lemma 4.1. For 0 < " < 1 fixed and T " 6 � 6 T exp.�p
logT /, we have with

the above notation

Z 2T

T

j�. 1
2

C i t/j4dt 6 2TP4.log 2T / � TP4.logT /CO.� log5 T /

CS.2T C� logT;�/� S.T �� logT;�/

CR.2T C� logT;�/�R.T �� logT;�/ (94)
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and
Z 2T

T

j�. 1
2

C i t/j4dt > 2TP4.log 2T /� TP4.logT /CO.� log5 T /

CS.2T �� logT;�/� S.T C� logT;�/

CR.2T �� logT;�/� R.T C� logT;�/: (95)

To obtain an upper bound forE2.T / from Lemma 4.1 note that, for � 	 T , we have
uniformly for A > 0 sufficiently large

S.�;�/ D �
p
�=2

X

�j6AT��1
p

logT

˛j �
�3=2
j H3

j .
1
2
/CO.1/:

But using (84), (94)–(95) and partial summation it follows that

Z 2T

T

j�. 1
2

C i t/j4dt D 2TP4.log 2T / � TP4.logT /CO.� log5 T /

CO.T 1=2 logC T /CO.T��1=2 logC T /:

Choosing � D T 2=3 logC T it follows that we have obtained E2.2T / � E2.T / �
T 2=3 logC T , which implies

Theorem 4.3. There is a constant C > 0 such that

E2.T / � T 2=3 logC T: (96)

Remark 4.4. The bound in (96) was obtained by Motohashi and the author [62].
Motohashi in his monograph [85] obtained the value C D 8. In [62] it was also
proved that

E2.T / D ˝.
p
T /: (97)

The proof uses the fact that not all Gh vanish, where for a fixed 
h

Gh WD
X

�jD
h
˛jH

3
j .

1
2
/:

It was also indicated (see also [42]) that, if one could prove a certain linear
independence of ˛jH3

j .
1
2
/ over the integers, one would obtain

lim sup
T!1

jE2.T /jp
T

D C1;
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which is stronger than (97). In [84] (see also [85]), Motohashi proved that

E2.T / D ˝˙.
p
T /; (98)

but there is still a large gap between (98) and the upper bound in (96).

Problem 6. What is the true order of magnitude of E2.T /? It is reasonable to
conjecture that

E2.T / �" T
1=2C": (99)

The conjectural bound in (99) is supported by two mean value results, proved by
Motohashi and the author [60, 61]. In [60] it was shown that

Z T

0

E2.t/dt � T 3=2;

while the result of [61] on the mean square of E2.T / is stated as

Theorem 4.4. There is a constant C > 0 such that

Z T

0

E2
2 .t/dt � T 2 logC T: (100)

The value C D 22 in (100) is worked out by Motohashi in [85]. On the other hand,
the author [48] proved that

Z T

0

E2
2 .t/dt 
 T 2; (101)

so that (100) and (101) determine, up to a logarithmic factor, the true order of the
integral in question.

Problem 7. What is the true order of magnitude of the integral in (100)? Is it
perhaps true that there exists a constant A > 0 such that

Z T

0

E2
2 .t/dt D AT 2 C F.T /; F.T / D o.T 2/ .T ! 1/‹ (102)

One may further conjecture (see [46]) that F.T / D O".T
3=2C"/ and F.T / D

˝.T 3=2�ı/ hold (for any given ı; " > 0) if (102) holds. The upper bound for F.T /
is very strong. Namely, similarly to (73), one obtains

jE2.T /j 6 x�1
Z TCx

T�x
jE2.t/jdt C 2Cx log4 T .0 < x 6 T; T > T0/;
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whence by the Cauchy–Schwarz inequality for integrals it follows that

E2.T / � x�1=2
�Z TCx

T�x
E2
2 .t/dt

�1=2
C x log4 T: (103)

Suppose now that F.T / D O".T
3=2C"/ holds. Then (102) implies

E2.T / � x�1=2
�
xT CF.T C x/�F.T � x/

�1=2 C x log4 T �" T
1=2C"; (104)

and even the weak F.T / � T 2 logC T (implied by Theorem 4.4) gives the bound
in Theorem 4.3. One also obtains from F.T / D O".T

3=2C"/ the (hitherto unproved)
bound

�. 1
2

C i t/ �" jt j1=8C": (105)

This follows from (see Lemma 7.1 of [42])

Lemma 4.2. Let k 2 N be fixed and T=2 6 t 6 2T . Then

j�. 1
2

C i t/jk � logT

 

1C
Z log2 T

� log2 T
j�. 1

2
C i t C iT /jke�jvjdv

!

: (106)

Proof. Let D be the rectangle with vertices ˙c ˙ i log2 T , where c D 1= logT .
With s D 1

2
C i t we have, by the residue theorem,

�k.s/ D 1

2�i

Z

D

�k.s C z/� .z/dz: (107)

As T ! 1 the integrals over the horizontal sides of D are o.1/. By the functional
equation (6) and (15)

j�. 1
2

� c C i t/j � j�. 1
2

C c C i t/jT c � j�. 1
2

C c C i t/j:

Since s D 0 is a simple pole of � .s/, then for any real v we have

� .˙c ˙ iv/ � e�jvj.c C jvj/�1: (108)

Hence (107) and (108) yield

�k.s/ � 1C
Z log2 T

� log2 T
j�. 1

2
C c C i t C iv/jke�jvj.c C jvj/�1dv: (109)
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Now set s0 D s C c C iv D 1
2

C c C i t C iv. By (28) we have

1

2�i

Z 1Ci1

1�i1
�k.s0 C w/� .w/dw D

1X

nD1
dk.n/e

�nn�s0 � 1:

In the last integral we shift the line of integration to Re w D �c and use again the
residue theorem and Stirling’s formula. There are poles at w D 0 and w D 1 � s0
with residues �k.s0/ and O.1/. We obtain

�k.s0/ � 1C
Z 1

�1
j�. 1

2
C i t C iv/jke�jvj.c C jvj/�1dv: (110)

Hence from (109) and (110) we have

�k. 1
2

C i t/ � 1C
Z log2 T

� log2 T
e�juj

�
1C

Z 1

�1
j�. 1

2
C i t C iu C iv/jk

� e�jvj.c C jvj/�1dv
�
.c C juj/�1du:

To estimate the right-hand side of the above expression first note that trivially

Z log2 T

� log2 T
e�juj.c C juj/�1du � c�1 D logT:

In the remaining integral we make the substitution v D x � u and invert the order
of integration. This gives

�k. 1
2

C i t/ � logT C
Z 1

�1
j�. 1

2
C i t C ix/jk

�
�Z 1

�1
e�juj�jx�uj.c C juj/�1.c C jx � uj/�1du

�

dx;

and the proof of the lemma will be finished if we can show that
Z 1

�1
e�juj�jx�uj.c C juj/�1.c C jx � uj/�1du � c�1e�juj:

This is obvious when x D 0, and since the cases x > 0 and x < 0 are treated
analogously, only the case x > 0 will be considered. Write

Z 1

�1
e�juj�jx�uj.c C juj/�1.c C jx � uj/�1du

D
Z 0

�1
C
Z x

0

C
Z 1

x

D I1 C I2 C I3;
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say. Then

I1 D
Z 1

0

e�x.c C v/�1.c C x C v/�1

� e�x
�Z c

0

c�2dv C
Z 1

c

v�2dv
�

� e�xc�1:

In a similar vein it is proved that

I2 � e�xc�1; I3 � e�xc�1;

and Lemma 4.2 follows. ut
Having at our disposal (106) with k D 4, we easily obtain

j�. 1
2

C i t/j4 � log t
�
1C I2.t C log2 t/ � I2.t � log2 t/

�

� log t
�

log6 t C max
t�log2 t6x6tClog2 t

jE2.x/j
�
:

(111)

Therefore F.T / D O".T
3=2C"/ implies E2.T / D O".T

1=2C"/, which in turn [by
(111)] implies the bound (105).

The omega result (96) was sharpened by the author [44] to the following: there
exist constantsA > 0;B > 1 such that, for T > T0, every interval ŒT; BT  contains
points T1; T2 such that

E2.T1/ > AT
1=2
1 ; E2.T2/ < �AT 1=22 :

This is the analogue of the omega result contained in (77) forE.T /. Further, in [46]
it was proved that the same interval contains also points T3; T4 for which

Z T3

0

E2.t/dt > AT
3=2
3 ;

Z T3

0

E2.t/dt < �AT 3=23 :

For the integral of E2.t/ one can derive an explicit formula, as was done in [49,50].
We have

Theorem 4.5. Let

�.T / WD .logT /3=5.log logT /�1=5;

R1.�h/ WD
r
�

2

�

2�i�h
� . 1

4
� 1

2
i�h/

� . 1
4

C 1
2
i�h/

�3
� .2i�h/ cosh.��h/:
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Then there exists a constant C > 0 such that

Z T

0

E2.t/dt D 2T
3
2 Re

8
<

:

1X

jD1
˛jH

3
j .

1
2
/

T i�j

. 1
2

C i�j /.
3
2

C i�j /
R1.�j /

9
=

;

CO.T 3
2 e�C�.T //:

(112)

From Stirling’s formula for the gamma-function it follows that R1.�j / � �
�1=2
j ,

hence by partial summation it follows that the series on the right-hand side of (112)
is absolutely convergent, and it can be also shown (see [42, 49, 51]) that Re f: : :g
is also ˝˙.1/. Thus from Theorem 4.5 we can easily deduce all previously known
˝-results for E2.T /. The error term in (112) is similar to the error term in the
strongest known form of the prime number theorem (see, e.g., [42, Chap. 12]). This
is by no means a coincidence.

In concluding this discussion on the fourth moment of j�. 1
2

C i t/j, let us mention
that many bounds, including the pointwise for E2.T /, ultimately depend on the
exponential sum

X

K<�j6K062K
˛jH

3
j .

1
2
/ exp

�

i�j log

�
T

�j

��

.1 � K 6 T 1=2/:

However, at present, all that appears possible seems to be trivial estimation, coming
from the bound (84).

5 Higher Moments

We have seen in the previous two sections that we have plenty of information about
I1.T / and I2.T / [see (16)]. Unfortunately, the situation changes with Ik.T / when
k > 2. The most important result on higher moments is due to Heath-Brown [29].
He proved (with C D 17)

Theorem 5.1.

I6.T / D
Z T

0

j�. 1
2

C i t/j12dt � T 2.logT /C : (113)

From Theorem 5.1, the bound I2.T / � T log4 T and Hölder’s inequality we obtain

Corollary 5.1. With some C D C.A/ we have

Z T

0

j�. 1
2

C i t/jAdt � T .AC4/=8 logC T .4 6 A 6 12/: (114)
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In (114) A is a fixed constant, but does not have to be an integer. For A > 12 there
are some results (see Chap. 8 of [52]), but essentially the best one can do is

Z T

0

j�. 1
2

C i t/jAdt �" T
1C.A�4/
.1=2/C" .A > 12/; (115)

where


.�/ WD lim sup
t!1

log j�.� C i t/j
log t

.� 2 R/;

so that the best-known result is 
.1=2/ 6 32=205 .D 0:15609 : : :/, due to Huxley
[37]. The function 
.�/ is continuous, convex downwards and satisfies 
.�/ D 0

for � > 1 and 
.�/ D 1=2�� for � 6 0, the second assertion being a consequence
of the first assertion and the functional equation for �.s/. The Lindelöf hypothesis
is that 
.1=2/ D 0 or, equivalently, that 
.�/ D 0 for � > 1=2. It is easy to
show, by using (106), that the Lindelöf hypothesis is equivalent to the statement that
Ik.T / �k;" T

1C" for each k. For several other equivalent statements to the Lindelöf
hypothesis, see Chap. 13 of Titchmarsh’s book [98]. The Lindelöf hypothesis is a
consequence of the Riemann hypothesis (op. cit.), since the latter implies the bound

�. 1
2

C i t/ � exp

�

C
log t

log log t

�

.C > 0/: (116)

It is not known whether the Lindelöf hypothesis implies the Riemann hypothesis,
but this does not seem to be likely.

We shall proceed now to prove Theorem 5.1. The original proof of (113) in [29]
is based on the use of Atkinson’s formula and the use of the Gaussian exponential
weight as a truncating device. In this sense Heath-Brown’s proof represents an
important application of Atkinson’s formula. The proof given below is from [61].
It uses Theorem 4.4, showing incidentally its strength, and gives first

Theorem 5.2. Let T 6 t1 < t2 < : : : < tR 6 2T be points such that trC1 � tr >
� .r D 1; : : : ; R � 1/ with logT � � � T= logT . Then

RX

rD1

Z trC�

tr

j�. 1
2

C i t/j4dt � R� log4 T CR�1=2��1=2T logC T: (117)

Proof. Theorem 5.2 improves (replacing “"” by a log-factor) on a result of Iwaniec
[65]. The expected term for the left-hand side of (117) is R� log4 T , and the sum in
question is clearly 
 R� log4 T . To obtain (117), let f .t/ be a smooth function
with support in Œ�2�; 2� such that f .t/ D 1 for �� 6 t 6 �. Using the
definition of E2.T / we obtain [see (129)]
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Z trC�

tr

j�. 1
2

C i t/j4dt 6
Z 1

�1
f .t/j�. 1

2
C i tr C i t/j4dt

D
Z 1

�1
f .t/

˚
Qk CQ0k



.log.t C tr //dt �

Z trC2�

tr�2�
f 0.t � tr /E2.t/dt

� � log4 T C��1
Z trC2�

tr�2�
jE2.t/jdt:

Therefore it follows that

RX

rD1

Z trC�

tr

j�. 1
2

C i t/j4dt � R� log4 T C��1
RX

rD1

Z trC2�

tr�2�
jE2.t/jdt: (118)

Note that the intervals Œtr � 2�; tr C 2� .r D 1; 2; : : : ; R � 1/ are not necessarily
disjoint. However, if we split the sum on the right-hand side of (118) into five sumsP

j .0 6 j 6 4/, where in
P

j summation is over the points �r WD t5rCj , then the
intervals Œ�r � 2�; �r C 2� are disjoint. This is because trC1 � tr > � implies that

�rC1 � 2� D t5rC5Cj � 2� > t5rCj C 5� � 2� D �r C 3� > �r C 2�:

Thus, we obtain, by the Cauchy–Schwarz inequality for integrals, with some
suitable Rj such that Rj 6 R,

RX

rD1

Z trC2�

tr�2�
jE2.t/jdt � max

j

RX

rD1

�Z �rC2�

�r�2�
jE2.t/j2dt

�1=2
.4�/1=2

� �1=2 max
j

 
RX

rD1

Z �rC2�

�r�2�
jE2.t/j2dt

!1=2

R
1=2
j

� .�R/1=2

 Z 5T=2

T=2

E2
2 .t/dt

!1=2

� .�R/1=2T logC T;

where we used (99). This completes the proof of Theorem 5.2. ut
Proof of Theorem 5.1. By (106) of Lemma 4.2, we have

j�. 1
2

C i t/j4 � log t

 

1C
Z tClog2 t

t�log2 t
j�. 1

2
C iu/j4e�jujdu

!

: (119)
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Suppose that j�. 1
2

C i tr /j > V > log4 T for a system of points ftrg such that

TC1=3 6 t1 < t2 < : : : < tR 6 2T �1=3; trC1�tr > log3 T .r D 1; 2; : : : ; R�1/:
Then (119) gives

V 4 � logT
Z trClog2 T

tr�log2 T
j�. 1

2
C iu/j4du .r D 1; 2; : : : ; R/:

If we consider separately points ftrg with even and odd indices and denote their
number by R0 and R1, respectively, then with a slight abuse of notation summation
gives

RjV
4 � logT

RjX

rD1
j�. 1

2
C iu/j4du .j D 0; 1/:

If we apply Theorem 5.2 to the last sum, it follows that

RV 4 � R� log5 T CR1=2��1=2T logC T; (120)

and then, with � D ıV 4 log�5 T and ı > 0 sufficiently small, (120) yields

R � T 2V �12 logC T .trC1 � tr > log3 T; r D 1; 2; : : : ; R1/: (121)

Finally we note that

Z 2T

T

j�. 1
2

C i t/j12dt 6
RX

rD1

Z trC�

tr

j�. 1
2

C i t/j12dt;

with tr WD T C .r �1/ log3 T;R � T . Those tr where j�. 1
2

C i t/j 6 logC T make a
negligible contribution, and the remaining points (again relabelling them by picking
even and odd indices) are chosen to satisfy V 6 j�. 1

2
C i t/j 6 2V; logC T 6 V �

T 1=6 (since �. 1
2

C i t/ � t1=6). By using (121) for each such system of points we
infer that

Z 2T

T

j�. 1
2

C i t/j12dt � logT max
V
V 12T 2V �12 logC T D T 2 logCC1 T:

Replacing T by T 2�j and summing the resulting expressions over j we obtain
Theorem 5.1. More careful analysis leads to an explicit value of C in (113).
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6 The Conjectural Formula for Ik.T /

The conjectural formula for Ik.T / in question is due to Conrey et al. [14, 15]. It is
of the form

Ik.T / D
Z T

0

j�. 1
2

C i t/j2kdt D .1C o.1//

Z T

0

Pk

�

log
� t

2�

��

dt .T ! 1/:

(122)

In (122) Pk.x/ is the polynomial, all of whose coefficients depend on the (fixed)
integer k > 1, given explicitly by the 2k-fold residue

Pk.x/ D .�1/k
kŠ2

1

.2�i/2k

Z

jz1jD"1
� � �
Z

jz2k jD"2k

�G.z1; : : : ; z2k/�
2.z1; : : : ; z2k/

Q2k
iD1 z2ki

exp
n
1
2
x

kX

iD1
.zi � ziCk/

o
dz1 : : : dz2k;

(123)
where the "i ’s are small positive numbers. We have

�.z1; : : : ; zm/ D
Y

16i<j6m
.zj � zi / D jzj�1i jm�m;

which is the Vandermonde determinant,

G.z1; : : : ; z2k/ D Ak.z1; : : : ; z2k/
kY

iD1

kY

jD1
�.1C zi � zjCk/;

and finally Ak is the Euler product (e.�/ WD exp.2�i�/)

Ak.z1; : : : ; z2k/ D
Y

p

kY

i;jD1
.1 � p�1�ziCzkCj /

�
Z 1

0

kY

jD1

�
1 � e.�/p�1=2�zj

��1�
1 � e.��/p�1=2CzkCj

��1
d�:

The authors actually conjecture, in all cases, an error term in (122) of the order
Ok;".T

1=2C"/, which in the general case this author finds too optimistic. In fact the
paper brings forth a conjecture (via characteristic polynomials from random matrix
theory (see, e.g., the work [80] of Mehta on random matrices) for the complete
main term in the asymptotic formulas for a wide class of L-functions. Coefficients
of Pk.x/ are given when 2 6 k 6 7, and numerically computed moments are
compared to the values obtained for the main term by the moments conjecture.
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As already mentioned, further numerical calculations involving Pk.x/ were carried
out by Hiary and Odlyzko [34], and Rubinstein and Yamagishi [92]. In all cases
when an asymptotic formula for the moment was rigorously proved, the main term in
question coincided with the expression predicted by the authors, which renders the
conjectural formulas quite important. Heretofore there have been several conjectures
for particularL-functions, to mention here just the works of Keating and Snaith [72],
and Conrey and Gonek [16] on the conjectural formula for Ik.T /.

The “recipe” for obtaining explicitly the conjectural formula for Ik.T / is best
explained by using the function

Z.t/ WD �. 1
2

C i t/
�
�.1

2
C i t/

��1=2
; �.s/ D �.s/�.1 � s/; (124)

commonly called Hardy’s function. Used originally by Hardy (see [23, 24]) to
prove that there are infinitely many zeros of �.s/ on the “critical line” Re s D 1

2
,

this function has several remarkable properties, easily derived from the functional
equation and the definition (7) of �.s/. It turns out conveniently thatZ.t/ 2 R when
t 2 R and that j�.1

2
C i t/j D 1, hence j�. 1

2
C i t/j D jZ.t/j when t 2 R. In [14]

one looks first at the “shifted moment”

M.˛1; : : : ; ˛2k/ WD
Z T

0

Z.1
2

C t C ˛1/ : : : Z.
1
2

C t C ˛2k/dt;

where the ˛j are distinct complex numbers with Re˛j > �1=4, so that the
integrand becomes j�. 1

2
C i t/j2k when ˛1 D � � � D ˛2k D 0. In M.˛1; : : : ; ˛2k/

we substitute each factor by the approximate expression

Z.s/ D ��1=2.s/
X

n6
p
t=.2�/

n�s C ��1=2.1 � s/
X

n6
p
t=.2�/

ns�1 CO.t��=2/; (125)

where s D � C i t; 0 < � < 1, and in (18) of Theorem 2.3 we take x D y Dp
t=.2�/. If s D z C i t; t > 1 with z bounded (but not necessarily real), then [see

(7) and (15)]

�.s/ D
�
t

2�

�1=2�s
ei tC�i=4

�

1CO

�
1

t

��

;

�.1 � s/ D
�
t

2�

�s�1=2
e�i t��i=4

�

1CO

�
1

t

��

:

These formulas are used to determine which products containing �.s/ and �.1 � s/
are oscillating, when (125) is inserted in M.˛1; : : : ; ˛2k/. Then one proceeds
heuristically as follows:

1. The error term O.t��=2/ is ignored everywhere, and the product of Z-values is
expanded, producing 22k terms.
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2. Of these 22k terms, only the terms with the same number of s’s and 1 � s’s are
considered. The reasoning is that �.s/ is highly oscillating and there should be a
lot of cancellation unless each s gets paired with a 1� s.

3. For any such terms, the main contribution comes from the “diagonal” term (when
m1m2 : : : mk D n1n2 : : : nk) when the sums are multiplied out.

4. The truncated diagonal sums are extended to infinity, and the sums which diverge
are replaced by the corresponding analytic continuation (the assumption Re˛j >
�1=4 is used in this process).

5. Setting finally ˛j ! 0 .8j / one eventually obtains the expression (123)
for Ek.x/.

It is not easy to justify the heuristic steps (1)–(4). In fact, the terms which are
omitted in this process cannot be neglected individually. It appears that some sort
of cancellation takes place among these terms (as they are taken without absolute
values signs) so that at the end the above steps lead to the correct asymptotic formula
for Ik.T /. Perhaps the strongest reason that gives credence to the conjecture is
that, as already stated, in all moments involving L-functions when an asymptotic
formula exists, it coincides with the prediction given by [14]. This paper contains
explicit examples of unitary, symplectic and orthogonal families ofL-functions with
relevant conjectures involving the moments.

If one writes Pk.x/ as

Pk.x/ D
k2X

rD0
cr .k/x

k2�r ; (126)

then all the coefficients cr .k/ can be evaluated explicitly. In particular, the leading
coefficient c0.k/ of Pk.x/ is given as

c0.k/ D ak

k�1Y

jD0

j Š

.j C k/Š
;

where the “arithmetic” part ak is given by

ak D
Y

p

.1 � p�1/k
2

2F1.k; kI 1I 1=p/;

and the “geometric” part is the product over j . The conjectural formula in fact
provides no information about the error term

Ek.T / WD Ik.T / �
Z T

0

Pk

�

log
� t

2�

��

dt; (127)

where it is assumed that Pk.x/ is given by (126) and Ek.T / is the error term in the
sense that, for fixed k 2 N, one has
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Ek.T / D o.T / .T ! 1/: (128)

Note that integration by parts reveals that

Z T

0

Pk

�

log
� t

2�

��

dt D TQk.logT /; (129)

where Qk.x/ is another polynomial of degree k2, all of whose coefficients depend
on k. We have seen in Sects. 3 and 4 that (127) and (128) hold true when k D 1

and k D 2, in which cases much more than (128) is known. But as discussed in
Sect. 5, no asymptotic formula for Ik.T / when k > 2 is known, so that one can
only speculate about the size of Ek.T / in the general case.

It seems plausible to the author that

Z T

0

j�. 1
2

C i t/j6dt D TQ3.logT /C E3.T /;

E3.T / D O".T
3=4C"/; E3.T / D ˝.T 3=4/

holds, where the main term Q3.x/ is an explicit polynomial in x of degree nine, as
given by (126) and (129).

In what concerns the true order of higher moments of j�. 1
2

C i t/j, the situation
is even more unclear. Already for the eighth moment it is hard to ascertain what
goes on, much less for the higher moments. The main term for the general 2kth
moment should involve a main term of the type suggested by Conrey et al. [14],
but it could turn out that the error term Ek.T / in the general case (when k > 4)
contains expressions which make it larger than the term TQk.logT /. For this
see the discussion in [57] (also [85, pp. 218–219]). Essentially the argument is as
follows. In general, from the knowledge about the order of Ek.T /, one can deduce
a bound for �. 1

2
C iT / via the elementary estimate

�. 1
2

C iT / �k .logT /.k
2C1/=.2k/ C

�
logT max

t2ŒT�1;TC1
jEk.t/j

�1=.2k/
; (130)

which is the proved analogously to (111) (see Lemma 4.2 of [42]). The conjectured
bounds

Ek.T / �";k T k=4C" .k 6 4/ (131)

by (130) all imply �. 1
2

C i t/ �" jt j1=8C", which is out of reach at present, but is
still much weaker than the Lindelöf hypothesis that �. 1

2
C i t/ �" jt j". On the other

hand, we know that the omega result

Ek.T / D ˝.T k=4/ (132)
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holds for k D 1; 2, and as already explained (see [57]), there are reasons to believe
that (132) holds for k D 3. Perhaps it holds for k D 4 also, but the truth of
(132) for any k > 4 would imply that the Lindelöf hypothesis is false and ipso
facto the falsity of the Riemann hypothesis (RH). Namely, it is well known that
the RH implies (116), which is stronger than the Lindelöf hypothesis, namely, that
log j�. 1

2
C i t/j �" " log jt j. The reason why, in general, (131) makes sense is that a

boundEk.T / � T ck for some fixed k .> 4/with ck < k=4would imply [by (130)]
the bound �. 1

2
C i t/ �" jt jck=.2k/C" with ck=.2k/ < 1=8. But the most one can get

[by using (130)] from the error term in the mean square and the fourth moment of
j�. 1

2
C i t/j is the bound

�. 1
2

C i t/ �" jt j1=8C":

It does not appear likely to me that, say from the twelfth moment (k D 6), one
will get a better pointwise estimate from (130) for �. 1

2
C i t/ than what one can get

from the mean square formula (k D 1). Nothing, of course, precludes yet that this
does not happen, just that it appears not to be likely. As in all such dilemmas, only
rigorous proofs will reveal in due time the real truth.

7 Lower Bound and the Upper Bound Under the RH

There are many mean value results for the lower bound of powers of �.s/, some of
which are easily generalized to more generalL-functions. We present now one such
result, which holds in the wide range � > 1

2
. This is

Theorem 7.1. If k > 1 is a fixed integer, � > 1
2

is fixed,

12 log logT 6 H 6 T; T > T0 > 0;

then uniformly in �

Z TCH

T�H
j�.� C i t/jkdt 
 H: (133)

Proof. Let �1 D � C 2; s1 D �1 C i t; T � 1
2
H 6 t 6 T C 1

2
H . Then �.s1/ 
 1

and therefore

Z TC 1
2H

T� 1
2H

j�.�1 C i t/jkdt 
 H: (134)

Let now E be the rectangle with vertices � C iT ˙ iH; �2 C iT ˙ iH .�2 D � C 3/

and let X be a parameter which satisfies
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T �c 6 X 6 T c (135)

for some constant c > 0. The residue theorem gives then

1

e
�k.s1/ D 1

2�i

Z

E

�k.w/

w � s1
exp

�
� cos

�w � s1
3

��
Xs1�wdw:

On E we have j Re 1
3
.w � s1/j 6 1, and on its horizontal sides

ˇ
ˇ
ˇIm

�w � s1

3

�ˇˇ
ˇ > 1

3
� H
2

> 2 log logT:

Note that for w D u C iv .u; v 2 R/ we have

j exp.� cos w/j D
ˇ
ˇ
ˇexp

�
� 1
2
.eiw C e�iw/

�ˇˇ
ˇ

D
ˇ
ˇ
ˇexp

�
� 1
2
.eiue�v C e�iuev/

�ˇˇ
ˇ D exp.� cos u � cosh v/:

The above function exp.� cos w/ sets the limit to the lower bound forH (a multiple
of log logT ) in Theorem 7.1. Observe now that, if w lies on the horizontal sides of
E, we have

ˇ
ˇ
ˇ
ˇ
ˇ
exp

�
� cos

�w � s1

3

��
ˇ
ˇ
ˇ
ˇ
ˇ

6 exp
�
� 1
2

cos 1 exp.2 log logT /
�

D exp
�
� 1
2

cos 1.logT /2
�
:

Therefore the condition (135) ensures that, for suitable C; c1 > 0,

�k.�1 C i t/ � X2

Z TCH

T�H
j�.� C iv/jk exp

�
�c1ejv�t j=3

�
dv

CX�1
Z TCH

T�H
exp

�
�c1ejv�t j=3

�
dv C e�C log2 T :

Integrating this estimate over t 2 ŒT � 1
2
H; T C 1

2
H and using (134) we obtain

H � X2

Z TCH

T�H
j�.� C iv/jkdv

 Z TC 1
2
H

T� 1
2
H

exp
�
�c1ejv�t j=3

�
dt

!

CX�1
Z TCH

T�H
dv

 Z TC 1
2
H

T� 1
2
H

exp
�
�c1ejv�t j=3

�
dt

!

� X2

Z TCH

T�H
j�.� C iv/jkdv CX�1H:

(136)
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Let now

I W D
Z TCH

T�H
j�.� C iv/jkdv;

and choose X D H". Then (136) gives I 
 H1�2", showing that I cannot be too
small. Then we choose X D H1=3I�1=3, so that (since �. 1

2
C i t/ � jt j1=6) trivially

T �k=18 � X � H � T;

and (135) is satisfied. With this choice of X , (136) reduces to H � H2=3I 1=3, and
(133) follows. Slightly sharper results than (133), involving powers of log logT , are
known. They are extensively discussed, e.g., by Ramachandra in [89, 90]. In what
concerns power moments on � D 1

2
, namely Ik.T /, it was proved (op. cit.) that

unconditionally one has

Ik.T / 
 T .logT /k
2

(137)

for any fixed integer k > 1. The lower bound furnished by (137) is of the
same order of magnitude as the conjectural formula (122). Recently Radziwill and
Soundararajan [88] showed that (unconditionally)

Z T

0

j�. 1
2

C i t/j2kdt > e�30k4T .logT /k
2

holds for any real k > 1 and T > T0. This bound not only holds for any k > 1, but
also it is explicit and at the same time continuous in k, although the constant e�30k4

is certainly not the best one possible. ut
Unfortunately, it is the upper bound for Ik.T / that is much more difficult to

attain. Even under the RH one cannot, at present, obtain an upper bound of the form
Ik.T / � T .logT /k

2
for all k > 2. Radziwill [87], however, has succeeded recently

in establishing this bound (under the RH) for k 6 2:18, and this is where the matter
stands at present. This shows the great difficulty of the evaluation of Ik.T /.

However, recently Soundararajan [96] complemented (137) by obtaining, under
the RH, the non-trivial upper bound

Z T

0

j�. 1
2

C i t/j2kdt �" T .logT /k
2C"; (138)

which is valid for any fixed k > 0 and any given " > 0. In view of (137) this result,
apart from “"”, is therefore best possible. His method of proof is based on a large
values estimate for log j�. 1

2
C i t/j, and the author [56] recently generalized it to

replace “"” by an explicit function and to include the bound for “short” intervals of
the type ŒT �H; T CH. This is, in the notation of (122),
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Theorem 7.2. LetH D T � where 0 < � 6 1 is a fixed number, and let k be a fixed
positive number. Then, under the RH, we have

Ik.T CH/� Ik.T �H/ D
TCHZ

T�H
j�. 1

2
C i t/j2kdt � H.logT /k

2
�
1CO.1= log3 T /

�
:

(139)

Theorem 7.2 will be deduced from a large values estimate for log j�. 1
2

C i t/j.
Setting log2 T WD log.logT /; log3 T WD log.log2 T /, we have

Theorem 7.3. LetH D T � where 0 < � 6 1 is a fixed number, and let 
.T;H; V /
denote the measure of points t from ŒT �H; T CH such that

log j�. 1
2

C i t/j > V; 10
p

log2 T 6 V 6 3 log 2T

8 log2.2T /
: (140)

Then, under the RH, for 10
p

log2 T 6 V 6 log2 T , we have


.T;H; V / � H
V

p
log2 T

exp

�

� V 2

log2 T

�
1 � 7

2� log3 T

��

; (141)

for log2 T 6 V 6 1
2
� log2 T log3 T , we have


.T;H; V / � H exp

�

� V 2

log2 T

�
1 � 7V

4� log2 T log3 T

�2 �

; (142)

and for 1
2
� log2 T log3 T 6 V 6 3 log 2T

8 log2.2T /
, we have


.T;H; V / � H exp.� 1
20
�V logV /: (143)

To see how Theorem 7.3 implies Theorem 7.2, first note that the contribution of t
satisfying log j�. 1

2
C i t/j 6 1

2
k log2 T to the left-hand side of (139) is

6 H
n
.logT /k=2

o2k D H.logT /k
2

: (144)

Likewise the bound (139) holds, by (141) and (142), for the contribution of t
satisfying log j�. 1

2
C i t/j > 10k log2 T . Thus we can consider only the range

V C j � 1
log3 T

6 log j�. 1
2

C i t/j 6 V C j

log3 T
; (145)

where 1 6 j � log3 T; V D 2`� 12 k log3 T; 1 6 ` 6 3
2

C � log 10
log 2

�
. If we set
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U D U.V; j IT / WD V C j � 1
log3 T

; (146)

then we have

Ik.T CH/ � Ik.T �H/ � H.logT /k
2C

C log3 T max
U

.T;H;U / exp

�
2k
�
U C 1

log3 T

��
;

(147)

where
.T;H;U / is the measure of t 2 ŒT �H; T CH for which log j�. 1
2
Ci t/j >

U and the maximum is over U satisfying (146)–(147). If we use (141) and (142) of
Theorem 7.3, then in the relevant range for U , we obtain


.T;H;U / exp
�
2k.U C 1= log3 T /

� � H log2 T exp
�
2kU � U 2G.T /

�
;

G.T / WD 1

log2 T

�
1CO

� 1

log3 T

��
:

Since '.U / D 2kU �U 2G.T / attains its maximal value at U D k=G.T /, we have


.T;H;U / exp
�
2k
�
U C 1

log3 T

�� � H log2 T exp
�
k2
�
1CO

� 1

log3 T

��
log2 T

�

D H.logT /k
2.1CO.1= log3 T //;

so that (147) yields then (139) of Theorem 7.2.

The proof of Theorem 7.3 is based on the following lemmas, whose proofs may
be found in Soundararajan [96] (see also [57]).

Lemma 7.1. Assume the RH. Let T 6 t 6 2T; T > T0; 2 6 x 6 T 2. If 	0 D
0:4912 : : : denotes the unique positive real number satisfying e�	0 D 	0 C 1

2
	20,

then for 	 > 	0 we have

log j�. 12Ci t/j 6 Re

8
<

:

X

26n6x

�.n/

n
1
2C 	

logxCi t log n

log.x=n/

log x

9
=

;
C .1C	/

2

logT

log x
CO

� 1

log x

�
:

Lemma 7.2. Assume the RH. If T 6 t 6 2T; 2 6 x 6 T 2; � > 1
2
, then

X

26n6x;n¤p

�.n/

n�Ci t logn

log.x=n/

logx
� log3 T:

Lemma 7.3. Let 2 6 x 6 T; T > T0. Let 1 � H 6 T and r 2 N satisfy xr 6 H .
For any complex numbers a.p/ (p denotes primes) we have
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Z TCH

T

ˇ
ˇ
ˇ
X

p6x

a.p/

p
1
2Ci t

ˇ
ˇ
ˇ
2r

dt � HrŠ
�X

p6x

ja.p/j2
p

�r
:

Now we can give a sketch of the proof of Theorem 7.3. We assume the RH and let

x D HA=V ; z D x1= log2 T ; A D A.T; V / . > 1/;

where A will be suitably chosen below. We follow the method of proof of [57, 96]
and accordingly consider three cases.

Case 1. When 10
p

log2 T 6 V 6 log2 T , we take A D 1
2

log3 T .

Case 2. When log2 T 6 V 6 1
2
� log2 T log3 T , we take A D log2 T log3 T

2V
.

Case 3. When 1
2
� log2 T log3 T 6 V 6 .3 log 2T /=.8 log2 2T / we take A D 2=� .

Note that the last bound for V comes from the bound (135) with C D 3=8 (under
the RH). Suppose that log j�. 1

2
C i t/j > V > 10

p
log2 T holds. Then Lemmas 7.1

and 7.2 yield

V 6 S1.t/C S2.t/C 1C 	0

2A�
V CO.log3 T /; (148)

where we set

S1.t/ WD
ˇ
ˇ
ˇ
X

p6z

log.x=p/

logx
p
� 12� 	0

logx�i t
ˇ
ˇ
ˇ; S2.t/ WD

ˇ
ˇ
ˇ
X

z<p6x

log.x=p/

logx
p
� 1
2� 	0

logx�i t
ˇ
ˇ
ˇ:

(149)
This means that either

S1.t/ > V1 D V

�

1 � 7

8A�

�

(150)

or

S2.t/ > V

8A�
; (151)

since we easily get a contradiction if neither (150) nor (151) holds. Let now

i.T;H; V / .i D 1; 2/ denote the measure of the set of points t 2 ŒT �H; T CH

for which (150) and (151) hold, respectively. Supposing that (150) holds then, by
using Lemma 7.3 with a.p/ D log.x=p/

log x p�	0= log x , we obtain


1.T;H; V /V
2r
1 6

Z TCH

T

jS1.t/j2rdt � HrŠ
�X

p6z

1

p

�r
: (152)
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The condition in Lemma 7.3 (xr 6 H with x D z) is equivalent to

Ar

V log2 T
6 1: (153)

Recalling that

X

p6X

1

p
D log2 X CO.1/;

it follows that

log z D logx

log2 T
D A�

V log2 T
logT 6 logT

log2 T
;

since A 6 V in all cases. Therefore we have

X

p6z

1

p
6 log2 T .T > T0/: (154)

Noting that Stirling’s formula yields rŠ � rr
p
re�r , we infer from (152) and (154)

that


1.T;H; V / � H
p
r
�r log2 T

eV 2
1

�r
: (155)

In Cases 1 and 2 and also in Case 3 when V 6 2
�

log22 T , one chooses

r D

V 2
1

log2 T

� �
> 1

�
:

With this choice of r , it is readily seen that (153) is satisfied and (155) gives


1.T;H; V / � H

p
V

log2 T
exp

�
� V 2

1

log2 T

�
: (156)

Finally in Case 3 when 2
�

log22 T 6 V 6 .3 log 2T /=.8 log2 2T / and A D 2=� , we
have

V1 D V

�

1 � 7

8A�

�

D V

�

1 � 7

16

�

>
V

2
:

Thus with the choice r D ŒV=2 we see that (153) is again satisfied and

p
r
�r log2 T

eV 2
1

�r
6

p
V

�
2 log2 T

eV

�r
6 V

1
2� r

4 � exp.� 1
10
V logV /;
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giving in this case


1.T;H; V / � H exp.� 1
10
V logV /: (157)

We bound 
2.T;H; V / in a similar way by using (151). It follows, again by
Lemma 7.3, that

� V

8A�

�2r

2.T;H; V / 6

Z TCH

T

jS2.t/j2rdt

� HrŠ
� X

z<p6x

1

p

�r
D HrŠ

�
log2 x � log2 z CO.1/

�r

� H
n
r
�

log3 T CO.1/
�or

:

We obtain


2.T;H; V / � H
�8A

V

�2r�
2r log3 T

�r � H exp

�

� V

2A
logV

�

: (158)

Namely the second inequality in (158) is equivalent to

�
A

V

�2
r log3 T � exp

�

� V

2rA
logV

�

: (159)

In all Cases 1–3 we take

r D

V

A
� 1

� �
> 1

�
:

The condition xr 6 H in Lemma 7.3 is equivalent to rA 6 V , which is trivial with
the above choice of r . To establish (159) note first that

�
A

V

�2
r log3 T 6 A

V
log3 T: (160)

In Case 1 the second expression in (160) equals log23 T=.2V /, while

exp

�

� V

2rA
logV

�

D exp
��. 1

2
C o.1// logV

� D V �1=2Co.1/:

Therefore it suffices to have

log23 T

V
� V �1=2Co.1/;
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which is true since 10
p

log2 T 6 V . In Case 2 the analysis is similar. In Case 3 we
have A D 2=� , hence .A log3 T /=V � .log3 T /=V and

exp

�

� V

2rA
logV

�

D exp
�
��1
2
� C o.1/

�
logV

�
D V

�. 1
2
�Co.1//

;

so that (159) follows again. Thus we have shown that in all cases


2.T;H; V / � H exp

�

� V

2A
logV

�

: (161)

Theorem 7.3 follows now from (155), (156) and (161). Namely, in Case 1, we have

V 2
1

log2 T
D
V 2
�
1 � 7

4� log3 T

�2

log2 T
6 V

logV

log3 T
D V logV

2A
;

which gives (141). If Case 2 holds, we have again

V 2
1

log2 T
D
V 2
�
1 � 7V

4� log2 T log3 T

�2

log2 T
6 V 2 logV

log2 T log3 T
D V logV

2A
;

and (142) follows. In Case 3 when 1
2
� log2 T log3 T 6 V 6 2

�
log22 T we have


.T;H; V / � H exp
�
� V 2

1

log2 T

�
CH exp.��V logV /

� H exp.� �

20
V logV /;

since

V 2
1

log2 T
> V 2

4 log2 T
> �V log2 T log3 T

8 log2 T
> �

20
V logV:

In the remaining range of Case 3 we have


.T;H; V / � H exp.� 1
10
V logV /CH exp

�� V

2A
logV

�

� H exp.� 1
10
V logV /C exp.� �

4
V logV /;

and (143) follows. The proof of Theorem 7.3 is complete.
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8 Miscellaneous Results

A natural way to bound high moments of j�. 1
2

C i t/j is to try to bound

Z T

0

j�. 1
2

C i t/j2kˇˇ
X

N<n62N
ann
�1=2�i t ˇˇ2dt .an �" N

"/; (162)

in conjunction with approximate functional equations for �. 1
2

C i t/. This is
especially useful when k D 1 or k D 2, with the aim of obtaining bounds for
the sixth or eighth moment.

The first result in this direction is due to Iwaniec [66] in 1980. He proved that,
if N 6 T 1=10,
Z T

0

j�. 1
2

C i t/j2jjN.it/j2dt �" T
1C" X

n6N
janj2; N.s/ WD

X

n6N
ann
�s: (163)

The proof depended on the Laplace transform of j�. 1
2

C ix/j2 and the estimate of
Weil [106] (in a somewhat modified form) for the Kloosterman sums. This is the
bound

jS.m; nI c/j 6 .m; n; c/1=2c1=2d.c/;

S.m; nI c/ D
X

ad�1 .mod c/

exp
�2�i.dmC an/

c

�
;

obtained by Weil as a consequence of the RH for curves over finite fields.
A little later Deshouillers and Iwaniec [17] studied, in the above notation,

I.T;N / WD 1

T

Z T

0

j�. 1
2

C i t/j4jjN.it/j2dt: (164)

For I.T;N / in (164) they proved that

I.T;N / �" T
".1CN2T �1=2 CN5=4T �1=4/

X

n6N
janj2; (165)

which may be compared to the conjectured bound

I.T;N / �" T
".1CNT �1/

X

n6N
janj2;

which is incidentally equivalent to the Lindelöf hypothesis (if logN � logT ).
An improvement of (165) was obtained by Watt [104] who proved the bound
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I.T;N / �" T
".1CN2T �1=2/max

n6N
janj2:

The proof is based on technical refinements within the circle of ideas to be found
in [17].

The asymptotic formula for

J.T;N / WD
Z T

0

j�. 1
2

C i t/j2jN.it/j2dt

was obtained by Balasubramanian et al. [6].
Namely, they proved that, for logN � logT; a.n/ �" n

",

J.T;N / D T
X

h;k6N

a.h/

h

a.k/

k
.h; k/

�

log
T .h; k/2

2�hk
C 2� � 1

�

CO.T log�B T /CO".N
2T "/

for any given constant B > 0. Thus one has an asymptotic formula if N � T 1=2�ı ,
where ı is any positive constant, and the formula is conjectured to hold even for
N � T 1�ı . In any case, on Hooley’s hypothesis R� on incomplete Kloosterman
sums (see Hooley [35]), the bound for N can be extended to T 4=7�ı . Moreover, if
a.n/ D 
.n/F.n/, where F is a function satisfying F.x/ � 1 and F 0.x/ � x�1
for 16 x 6 N , then the bound is � T 9=17�ı , unconditionally.

An interesting special case, related to classical work of Atle Selberg, arises when
a.n/ D 
.n/.1 � logn= logN/I then J.T;N / � T .1 C logT= logN/ for N �"

T 9=17�" as T ! 1. This implies that
P
.ˇ � 1

2
/ 6 .0:0845 C o.1//T; where

the sum is over all zeros ˇ C i� of �.s/ such that ˇ > 1
2

and 0 < � < T . The
deepest result needed in [6] is Weil’s estimate for Kloosterman sums [106]. Their
result is complemented by the result of Motohashi [81], whose method is based on
the method of Atkinson, used in the proof of his famous formula (Theorem 3.1).
Motohashi replaces the error terms in the formula for J.T;N / byO".T 1=3C"N 4=3/.
None of the above results, unfortunately, are strong enough to bring improvements
on the best-known bounds for the sixth or eighth moment of j�. 1

2
C i t/j, namely

[see (114)],

I3.T / � T 5=4 logC T; I4.T / � T 3=2 logC T:

The more difficult case of the asymptotic evaluation of the integral

K.T;N / WD
Z T

0

j�. 1
2

C i t/j4jN.it/j2dt (166)
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was done by Hughes and Young [36]. They established that an asymptotic formula
indeed holds forK.T;N / if the length N of the Dirichlet polynomial satisfies N 6
T 1=11�". To deal with K.T;N / they considered the more general “twisted fourth
moment integral”, namely

I.h; k/ WD
Z 1

�1

�
h

k

��i t
�. 1

2
C˛Ci t/�. 1

2
CˇCi t/�. 1

2
C��i t/�. 1

2
Cı�i t/w.t/dt;

where w.t/ is a suitable smooth function, .h; k/ D 1, and ˛; ˇ; �; ı are complex
numbers � 1= logT , with the idea of letting eventually ˛; ˇ; �; ı all tend to
zero. Then, summing the resulting expression over suitable h; k, one obtains the
asymptotic formula for K.T;N / in (166). The relatively short range for N , namely
N 6 T 1=11�", is compensated by the fact that one indeed obtains an asymptotic
formula and not just an upper bound as was done in previous works. For example,
Watt [104] obtains the desired upper bound for N � T 1=4, but his method does not
produce an asymptotic formula for the integralK.T;N /.

It is also of interest to evaluate the Laplace transforms of powers of j�. 1
2

C i t/j.
To this end let

Lk.s/ WD
Z 1

0

j�. 1
2

C ix/j2ke�sxdx .k 2 N; � D Re s > 0/: (167)

A classical result of Kober from 1936 [73] says that

L1.2�/ D � � log.4��/

2 sin �
C

NX

nD0
cn�

n CO.�NC1/ .� ! 0C/

for any given integer N > 1, where the cn’s are effectively computable constants
and � is Euler’s constant.

For complex values of s the functionL1.s/was studied by Atkinson [1] and more
recently by Jutila [69]. Jutila noted that Atkinson’s argument actually gives

L1.s/ D �ie 1
2 is
h
log.2�/ � � C

��

2
� s
�
i
i

C 2�e�
1
2 is

1X

nD1
d.n/ exp

��2�ine�is
�C 	1.s/

in the strip 0 < Re s < � , where the function 	1.s/ is holomorphic in the strip
j Re sj < � . Moreover, in any strip j Re sj 6 � with 0 < � < � , we have

	1.s/ �� .jsj C 1/�1:
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Atkinson [2] obtained the asymptotic formula, as � ! 0C,

L2.�/ D 1

�

�

A log4
1

�
C B log3

1

�
C C log2

1

�
CD log

1

�
CE

�

C	2.�/; (168)

where

A D 1

2�2
; B D 1

�2

�
2 log.2�/� 6� C 24� 0.2/

�2

�
;

and

	2.�/ �"

�
1

�

� 13
14C"

;

and indicated how the exponent 13/14 can be replaced by 8/9. This is of historical
interest, since it is one of the first applications of Kloosterman sums to zeta-function
theory. Atkinson in fact showed that (� D Re s > 0)

L2.s/ D 4�e�
1
2 s

1X

nD1
d4.n/K0.4�i

p
ne�

1
2 s/C �.s/; (169)

where d4.n/ is the divisor function generated by �4.s/, K0 is the Bessel function,
and the series in (169) as well as �.s/ are both analytic in the region jsj < � . When
s D � ! 0C one can use the asymptotic formula

K0.z/ D 1
2

p
�z�1=2e�z

�
1 � 8z�1 CO.jzj�2/� .j arg zj < � < 3�

2
; jzj > 1/

to make a simplification of (169).
The author [43] gave explicit, albeit complicated expressions for the remaining

coefficients C;D and E in (168). More importantly, he established that

	2.�/ � ��1=2 .� ! 0C/; (170)

which is actually best possible. In [43] it was also proved that

	k

� 1

T

�
D O.T ck�1/

where in general one defines, for a fixed k 2 N,

	k

� 1

T

�
D
Z 1

0

j�. 1
2

C i t/j2ke�t=T dt � TQk2.logT /
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for a suitable polynomialQk2.x/ in x of degree k, provided that

Z T

0

Ek.t/dt D O.T ck / .ck > 0/:

Here Ek.T / is defined by (127). Since, by the bound (see [60–62])

Z T

0

E2.t/dt D O.T 3=2/

we have c2 D 3=2, it follows that

	2

� 1

T

�
D O.T 1=2/;

which is equivalent to 	2.�/ � ��1=2 .� ! 0C/: Moreover the coefficients of
Qk2.y/ can be expressed as linear combinations of the coefficients of Pk2.y/.

The author [49] obtained in fact the following result on L2.s/.

Theorem 8.1. Let 0 6 � < �
2

be given. Then for 0 < jsj 6 1 and j arg sj 6 �

we have

L2.s/D1

s
.A log4

1

s
C B log3

1

s
C C log2

1

s
CD log

1

s
CE/CG2.s/

Cs� 12
8
<

:

1X

jD1
˛jH

3
j .

1
2
/
�
s�i�j R.�j /� . 12Ci�j /Csi�j R.��j /� . 12�i�j /

�
9
=

;
;

(171)
where

R.y/ WD
r
�

2

�

2�iy
� . 1

4
� i

2
y/

� . 1
4

C i
2
y/

�3
� .2iy/ cosh.�y/ (172)

and in the above region G2.s/ is a regular function satisfying (C > 0 is a suitable
constant)

G2.s/ � jsj�1=2 exp

�

� C log.jsj�1 C 20/

.log log.jsj�1 C 20//2=3.log log log.jsj�1 C 20//1=3

	

:

(173)

Remark 8.1. The constants A; B; C; D; E in (171) are the same ones as in
Atkinson’s (165).
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Remark 8.2. From Stirling’s formula for the gamma-function it follows that
R.�j / � �

�1=2
j . In view of (84) this means that the series in (171) is absolutely

convergent and uniformly bounded in s when s D � is real. Therefore, when
s D � ! 0C, (171) gives a refinement of (170).

Remark 8.3. From (4) and (7) it transpires that 	.�/ is an error term when
0 < � < 1. For this reason we considered the values 0 < jsj 6 1 in (171), although
one could treat the case jsj > 1 as well.

Remark 8.4. From (171) and elementary properties of the Laplace transform one
can easily obtain the Laplace transform of

E2.T / WD
Z T

0

j�. 1
2

C i t/j4dt � TP4.logT /; P4.x/ D
4X

jD0
aj x

j ;

where a4 D 1=.2�2/.
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62. Ivić, A., Motohashi, Y.: On the fourth power moment of the Riemann zeta-function. J. Number

Theory 51, 16–45 (1995)
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Explicit Bounds Concerning Non-trivial Zeros
of the Riemann Zeta Function

Mehdi Hassani

Dedicated to Professor Hari M. Srivastava

Abstract In this paper, we get explicit upper and lower bounds for �n, where
0 < �1 < �2 < �3 < � � � are consecutive ordinates of non-trivial zeros � D
ˇC i� of the Riemann zeta function. Meanwhile, we obtain the asymptotic relation
�n log2 n � 2�n logn � 2�n log logn as n ! 1.

1 Introduction

The Riemann zeta function is defined for Re.s/ > 1 by �.s/ D P1
nD1 n�s and

extended by analytic continuation to the complex plan with a simple pole at s D 1

with residues 1. It is known [3, 7] that

N.T / WD
X

0<�6T
�.ˇCi�/D0

1 D T

2�
log

T

2�e
CO.logT /: (1)

As a consequence of (1) we get

X

0<�6T
�.ˇCi�/D0

1

�
D 1

4�
log2 T � log.2�/

2�
logT C E.T /;

with E.T / D O.1/. Recently, we obtained an explicit form of this approximate
formula by proving that 3

50
< E.T / < 109

250
for any T > �1 (see [1, Theorem 1]),

where
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Fig. 1 Graph of the point set .n; �n/ for 2 6 n 6 250 and functions 2�n
logn .1 C a

log logn
logn / with

a D 3=4 and a D 5=2

�1 D minf� > 0 W �.ˇ C i�/ D 0g Ñ 14:134725141734693790457251983562:

More generally, we set 0 < �1 < �2 < �3 < � � � to be consecutive ordinates of the
imaginary parts of non-trivial zeros � D ˇ C i� of �.s/. Another consequence of
(1) is

�n � 2�n

logn
; as n ! 1:

Our intention in writing this note is to obtain explicit forms of this approximate
formula. More precisely, we show the following.

Theorem 1.1. For any integer n > 5 we have

2�n

logn

�

1C 3

4

log logn

logn

�

6 �n 6 2�n

logn

�

1C 5

2

log logn

logn

�

: (2)

Figure 1 shows graph of the point set .n; �n/ for 2 6 n 6 250, and lower and
upper bounds appeared in (2). We note that the left-hand side of (2) is valid for
2 6 n 6 4, too.

One may obtain better bounds for �n by using numerical information, which we
obtain during proof of Theorem 1.1. More precisely, by considering Tables 1 and 2,
we have the following.

Theorem 1.2. Assume that we choose pairs 	 and n	 from Table 1, and also we
choose pairs � and n� from Table 2. Then, we have

2�n

logn

�

1C 	

2�

log logn

logn

�

6 �n and �n 6 2�n

logn

�

1C �

2�

log logn

logn

�

;

respectively, for n > n	 and for n > n�.
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Table 1 Some values of 	 and n	 for which the inequality (11) is valid
for n > n	

	 n	 Ñ 	 n	 Ñ
�2� 3.9 3�=2 4984.5
�� 5.1 5�=3 392062.1
�1 7.8 7�=4 138610176.5
0 10.7 9�=5 2499273431483.9
1 16.7 11�=6 109511051064367600190250.3
� 97.1 5.795 876581819433015771165641491644046075.5

Table 2 Some values of � and n� for which the inequality (12) is valid
for n > n�

� n� Ñ � n� Ñ
20� 8:8 6� 1197.1
10� 11:7 5� 26245.8
8� 64:3 4� 80727920.5
7� 217:7 3� 74219923532062069835922351534787.7

On the other hand, we mention that the constants 3
4

and 5
2

in Theorem 1.1, as
more as, the constants 	

2�
and �

2�
in Theorem 1.2, are not optimal. More precisely,

if we let

Rn WD

�n
2�n
log n

� 1
log log n

log n

; (3)

then Theorem 1.1 yields that 3
4

6 Rn 6 5
2

for any integer n > 5. But, the proof of
above theorems includes an argument in its heart, which implies that lim

n!1Rn D 1.

Indeed, we show the following.

Theorem 1.3. Let

�n D �n log2 n � 2�n log n

n log logn
: (4)

Then, we have lim
n!1�n D 2� .

Corollary 1.1. For any real " 2 .0; 1/, there exists positive integer n" such that for
n > n" we have

2�n

logn

�

1C .1 � "/ log logn

logn

�

6 �n 6 2�n

logn

�

1C .1C "/
log logn

logn

�

:
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Fig. 2 Graph of the pointset .n; Rn/ for 4000 6 n 6 5000 and 9000 6 n 6 10000, where Rn is
defined by (3)

Fig. 3 Graph of the point set .n;�n/ for 2 6 n 6 500, where�n is defined by (4), and horizontal
line at height 2�

Remark 1.1. Figure 2 pictures some values of Rn for several values of n. As our
computations show, one may have the inequalityRn > 1 for n > 3. This means that
one may have the validity of the left-hand side of (2) with 1 instead of 3

4
, for any

integer n > 3. This conjecture is pictured in Fig. 3 in another point of view, where
we plot values of �n for 2 6 n 6 500 and horizontal line at height 2� . Also, it
seems that there exists a positive integer m Ñ 250 such that RnCm > Rn for any
integer n > 3.

Remark 1.2. The truth of Corollary 1.1 asserts that as n ! 1 we have

�n D 2�n

logn

�

1C .1C o.1//
log logn

logn

�

:

One may ask for such asymptotic expansions with more precise terms.
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In the next two sections, we prove our results. To generate figures which appeared
on present paper, as more as, during proofs, we will do several computations running
over the numbers �n, all of which have been done by using Maple software and are
based on the tables of zeros of the Riemann zeta function due to Odlyzko [4].

2 Lambert W Function, the Key of Proof

The main idea to get explicit results similar to (2) is applying an explicit version of
the Riemann–von Mangoldt formula (1). This can be found in the following result
due to Rosser, which is Theorem 19 of [6].

Proposition 2.1. For any T > 2 we have jN.T /� F.T /j 6 R.T /, with

F.T / D T

2�
log

T

2�e
C 7

8
and R.T / D 137

1000
logT C 443

1000
log logT C 397

250
:

For our purpose, we need to modify the truth of above proposition as follows. For the
whole text, we set

` D 14

25
and u D 11

50
:

Lemma 2.1. Let

L.T / D 1

2�
T logT � `T and U.T / D 1

2�
T logT � uT: (5)

Then, for T > �1 � 10�5 we have

L.T / 6 N.T / 6 U.T /: (6)

Moreover, U.T / and L.T / are strictly increasing for T > e2�u�1 Ñ 1:465653 and
T > e2�`�1 Ñ 12:411008, respectively.

Proof. We consider Proposition 2.1 to writeF.T /�R.T / 6 N.T / 6 F.T /CR.T /
for T > 2. On the other hand, for T > �1�10�5 we haveF.T /CR.T / 6 U.T / and
L.T / 6 F.T /�R.T /. This proves both sides of (6). Monotonicity of the functions
U.T / and L.T / is straightforward. ut

The following lemma brings lower and upper bounds for N.T / to bounds for �n
in terms of inverses of mentioned bounds for N.T /.

Lemma 2.2. Assume that L.T / and U.T / are defined as in (5), and denote by
L�1.T / and U�1.T / their inverses, respectively. Then, for any integer n > 1

we have
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U�1.n/ 6 �n 6 L�1.n/: (7)

Proof. Assume that n > 1 is any arbitrary integer and ı 2 .0; 1/ is any arbitrary
real. We have N.�n/ D n. Thus, we get N.�n C ı/ > n and N.�n � ı/ 6 n � 1.
Therefore, we obtain

1CN.�n � ı/ 6 n 6 N.�n C ı/: (8)

Right-hand sides of (6) and (8) give �n C ı > U�1.n/. Thus, we get �n > U�1.n/.
Similarly, left-hand sides of (6) and (8) give L.�n � ı/ 6 N.�n � ı/ 6 n � 1 < n.
So, we get �n � ı 6 L�1.n/, and this implies validity of �n 6 L�1.n/. ut

In order to use inequalities (7), we need formulas for the inverses of the functions
L.T / andU.T /. This may be done in terms of the LambertW functionW.x/, which
is defined by the relation W.x/eW.x/ D x for x 2 Œ�e�1;C1/. The Lambert W
function has the asymptotic expansion W.x/ D logx C O.log logx/ as x ! 1,
(see [5, p. 111]). The following lemma summarizes what we need about the inverses
of the functions L.T / and U.T /.

Lemma 2.3. Assume that a and b are some positive real numbers, and let

f .T / D 1

a
T logT � bT:

We denote the inverse function of f by f �1. Then, for T > eab�1 the function f is
strictly increasing and we have

f �1.T / D aT

W.ae�abT /
: (9)

In particular, as T ! C1, we obtain f �1.T / � aT =logT .

Proof. Assume that T > 0. Then, by definition of the Lambert W function, we
imply that f .eW .ae�abT /Cab/ D T or equivalently f �1.T / D eW .ae�abT /Cab . Defi-
nition of the LambertW function also gives that aT D W.ae�abT /eW .ae�abT /Cab .
Thus, we obtain (9). The asymptotic relation comes from W.ae�abT / � logT ,
which is valid as T ! C1. ut

Finally, to get our desired explicit results, we need some explicit bounds for the
LambertW function. The following proposition, which is Theorem 2.8 of [2], offers
such sharp bounds.

Proposition 2.2. Assume that ˛ > 0 is real, and let

!˛.x/ WD logx � log logx C ˛
log logx

logx
:
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Then, for every x > e we have

!1
2
.x/ 6 W.x/ 6 ! e

e�1
.x/; (10)

with equality only for x D e.

3 Proof of Results

3.1 Proof of the Left-Hand Side of (2)

We let cu D 2�e�2�u. By applying the validity of Lemma 2.3, considering the left-
hand side of (7), and considering the right-hand side of (10), we obtain

�n > U�1.n/ D 2�n

W.cun/
> 2�n

! e
e�1
.cun/

;

for cun > e or equivalently for n > e
cu

Ñ 1:7. Moreover, by computation, for any
integer n > 1 we get

�n > 2�n

! e
e�1
.cun/

WD g.n/;

say. We let

h.n/ WD
g.n/ � 2�n

log n
n log log n

log2 n

:

Now, we note that the function h W .e;C1/ �! .�1; 2�/ defined by h.n/ is
continuous and strictly increasing. Moreover, we have

lim
n!eC

h.n/ D �1 and lim
n!C1h.n/ D 2�:

Therefore, for any real 	 2 .�1; 2�/, there exists unique n	 2 .e;C1/ such that
h.n/ > 	 for n > n	 with equality only for n D n	. Hence, for n > n	 we obtain

�n > 2�n

logn
C 	

n log logn

log2 n
: (11)

In Table 1 we list some values of 	 and related values of n	. We use information of
this table choosing 	 D 3�

2
, from which we obtain the inequality
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�n > 2�n

logn
C 3�n log logn

2 log2 n
;

for n > 4985. By computation, we confirm validity of it for 2 6 n 6 4984, too.
This completes the proof of left-hand side of (2).

3.2 Proof of the Right-Hand Side of (2)

Let c` D 2�e�2�`. We use the validity of Lemma 2.3, the right-hand side of (7), and
the left-hand side of (10) to get

�n 6 L�1.n/ D 2�n

W.c`n/
6 2�n

!1=2.c`n/
;

for c`n > e or equivalently for n > e
c`

Ñ 14:6. As more as, by computation, for any
integer n > 8, we obtain

�n 6 2�n

!1=2.c`n/
WD v.n/;

say. We set

z.n/ WD
v.n/ � 2�n

log n
n log log n

log2 n

:

Also, we let

y1 WD lim
n!1=c`C

1

z.n/
D log.� log c`/

2� log c`
Ñ �0:049167:

We note that the function y W .1=c`;C1/ ! .y1; 1=.2�// defined by y.n/ D
1=z.n/ is continuous and strictly increasing. Thus, there exists unique n0 > 1=c`
such that y.n0/ D 0. By computation, we observe that n0 Ñ 7:745051. Now, we
note that the function z W .n0;C1/ ! .2�;C1/ defined by z.n/ is continuous and
strictly decreasing. Moreover, we have

lim
n!nC

0

z.n/ D C1 and lim
n!C1 z.n/ D 2�:

Therefore, for any � 2 .2�;C1/, there exists unique n� 2 .n0;C1/ such that
z.n/ 6 � for n > n� with equality only for n D n�, and consequently, for n > n�
we get
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�n 6 2�n

logn
C �

n log logn

log2 n
: (12)

Table 2 includes some values of � and related values of n�. Considering our
computational tools, we choose � D 5� from this table, from which for n > 26246

we obtain the inequality

�n 6 2�n

logn
C 5�n log logn

log2 n
:

By computation, we confirm validity of it for 5 6 n 6 26245, too. This completes
the proof of right-hand side of (2).

3.3 Proof of Theorem 1.3

We note that inequalities (11) and (12) imply

lim inf
n!1 �n > 2� and lim sup

n!1
�n 6 2�;

respectively. This gives assertion of Theorem 1.3.
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On the Value-Distribution of Logarithmic
Derivatives of Dirichlet L-Functions

Yasutaka Ihara and Kohji Matsumoto

Dedicated to Professor Hari M. Srivastava

Abstract We shall prove an unconditional basic result related to the
value- distributions of f.L0=L/.s; �/g� and of f.� 0=�/.s C i�/g� , where � runs
over Dirichlet characters with prime conductors and � runs over R. The result
asserts that the expected density function common for these distributions are in
fact the density function in an appropriate sense. Under the generalized Riemann
hypothesis, stronger results have been proved in our previous articles, but our
present result is unconditional.

1 Introduction and Statement of the Result

The present paper is a part of authors’ research on the value-distribution of
L-functions over global fields and is regarded as a supplement of our former papers
[3, 7]. In [3], we defined and studied the “would-be density function” M�.w/
(� > 1=2) for the value-distribution of L0=L.s; �/ on the complex plane C for
certain family of L-functions over any global field (s: fixed with Re.s/ D �)
and established the expected connection under some restrictive hypothesis. This
was generalized and strengthened in [8] under GRH, the generalized Riemann
hypothesis. In [7] we treated the analogous “would-be” density function M�.w/
for the logL case, and in this case, when the base field is the rational number field
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Q, we were able to obtain an unconditional result on the expected connection. The
purpose of the present paper is to show that a parallel unconditional result for the
L0=L case over Q can be obtained with but small modifications of the methods used
in [7].

Let s D � C i� be a complex variable, �.s/ be the Riemann zeta function, �
a Dirichlet character with prime conductor, and L.s; �/ the associated Dirichlet
L-function. We study the value-distribution of .L0=L/.s; �/ when � varies or
.� 0=�/.s C i� 0/ when � 0 varies. In the latter case, defining �� 0.n/ D n�i� 0

(� 0 2 R,
n D 1; 2; : : :), we may regard that �.s C i� 0/ D L.s; �� 0/ and the “character” �� 0

varies. Therefore our object consists of two types of infinite families of characters,
(FI) all Dirichlet characters � of prime conductors, or (FII) characters of the form
�� 0 , � 0 2 R.

LetM�.w/ for � > 1=2 be the function of w 2 C defined in [3]. The construction
of M�.w/ will be reviewed at the beginning of Sect. 2. Here we take K D Q
(in terms of [8], this corresponds to the function M�.w/ for “Case 1”, K D Q;
P1 D .1/).

We shall prove the following theorem.

Theorem 1.1. Let s D � C i� 2 C be fixed, with � D Re s > 1=2. Then the
equality

Avg�˚

�
L0

L
.s; �/

�

D
Z

C
M�.w/˚.w/jdwj (1)

holds simultaneously for both families .FI/ and .FII/, where jdwj D dudv=2� for
w D u C iv, the meaning of Avg� is defined below, and the test function ˚ is one of
the following:

(i) ˚ is any continuous bounded function.
(ii) ˚ is the characteristic function of either a compact subset of C or the

complement of such a subset.

Finally, when s D 1, (at least) in case of the family .FI/, the test function ˚ can be
any continuous function of at most polynomial growth.

The above statement for � > 1 and stronger but conditional results for � > 1=2
under GRH [over more general base fields for the family (FI)] were already shown
in [3,6,8] (cf. also a survey article [5]). The purpose of the present paper is to prove
this theorem unconditionally for any � > 1=2.

The definition of Avg� is as follows.
Case (FI). For any prime f .> 2/, let X.f / denote the set of all primitive

Dirichlet characters whose conductor is precisely f , and X 0.f / D X 0.f; s/ be
the subset of X.f / consisting of all � such that L.s; �/ 6D 0 for our fixed s. By a
theorem of Montgomery [13] it satisfies

lim
f!1

jX 0.f /j
jX.f /j D 1: (2)
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(For any finite set A we denote by jAj its cardinality.) For any complex-valued
function �.�/ on X 0.f /, we define the averages

AvgX 0.f /�.�/ D 1

jX.f /j
X

�2X 0.f /

�.�/; (3)

Avgf�m�.�/ D 1

�.m/

X

f�m
AvgX 0.f /�.�/; (4)

where m is any positive integer, f runs over all odd prime numbers up to m, and
�.m/ denotes the number of prime numbers up to m. Now define

Avg��.�/ D lim
m!1

�
Avgf�m�.�/

�
: (5)

When we state a formula for Avg�, it will always include the claim that the limit
exists. We remark here that the main statement of the theorem deals only with
the averages of those �.�/ which are bounded on the union of X 0.f / over all
f (because the test function ˚ is bounded). Therefore, if we replace X 0.f / by
a smaller subset preserving the condition (2), the average (3) [resp. (4)] changes
only by a quantity which tends to 0 as f ! 1 (resp. m ! 1), hence the limit
average (5) remains the same (e.g., the subset “X 0.f /” in [7] or the subset denoted
by X 00.f / defined below in Sect. 2 used for the proof). As regards the additional
statement for s D 1, note that X 0.f; 1/ D X.f /.

Case (FII). The definition of Avg� in this case is simply

Avg��.�� 0/ D lim
T!1

1

2T

Z T

�T
�.�� 0/d� 0; (6)

for any integrable function �.�� 0/ of � 0.
A closely related problem is the study on the value-distribution of logL.s; �/.

In [7], we have constructed a continuous nonnegative density function M�.w/
parametrized by � > 1=2 and established the following theorem.

Theorem 1.2 ([7]). For any s 2 C with � D Re.s/ > 1=2,

Avg�˚.logL.s; �// D
Z

C
M� .w/˚.w/jdwj (7)

holds simultaneously for both families (FI) and (FII) for a suitable choice of the
branch of the logarithm, a suitable definition of the average Avg�, where ˚ is as in
Theorem 1.1.

Our Theorem 1.1 implies that the exact analogue of Theorem 1.2 holds in the
L0=L case.
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To prove these unconditional results, our method is to apply several mean
value results on L-functions. As for the logL case, such mean value theorems
were obtained in [7] to prove Theorem 1.2. It is possible to use the same mean
value theorems in our present situation because L0=L can be written as an integral
involving logL in the integrand, by using the Cauchy integral formula. Note that the
idea of applying the Cauchy integral formula in such a situation already appeared in
Kershner and Wintner [11] in the (FII) case (see Remark 3.1).

In the following sections we will prove Theorem 1.1. Since the basic structure of
the proof is similar to those developed in [3,7], we will only point out the differences
from those and omit the details.

2 Proof in the Case (FI)

First of all, we review how to construct the density function M�.w/ (in the case
K D Q) in [3]. Let p be a prime number and

c�;p D � logp

p2� � 1 ; r�;p D p� logp

p2� � 1 :

Write w 2 C as w D c�;p C rei� , where r � 0 and � 2 R, and defineM�;p by

M�;p.w/ D p2� � 1

jp� � ei� j2 � ı.r � r�;p/

r
;

where ı.�/ stands for the usual one-dimensional Dirac delta function. Let P D Py
be the set of all prime numbers not greater than y, and define M�;P as the
convolution product of M�;p (p 2 P ) with respect to jdwj. Then, for � > 1=2,
M�;P .w/ converges uniformly to a nonnegative real-valuedC1-function as y ! 1
[3, Theorem 2], which we denote by M�.w/.

Now we start the proof of Theorem 1.1. As mentioned in Sect. 1, the assertion
of Theorem 1.1 was already shown in [3] when � > 1. Therefore it is sufficient to
consider the case 1=2 < � � 1. The final statement for s D 1 then follows directly
by combining [9, Sect. 5] (Theorem 5) with [8, Sect. 5] (Lemma A).

As in [7, Sect. 7], take a number �0 satisfying 1=2 < �0 < 1 and �0 � � , and
let 0 < 3"1 < �0 � 1=2, ˛0 D �0 � "1, ˛1 D �0 � 2"1, ˛2 D 1=2 C "1. Then
1=2 < ˛2 < ˛1 < ˛0 < �0 < 1. These constants are regarded to be fixed, and
the implied constants of Landau’s O-symbol or Vinogradov’s symbol below may
depend on them.

Let T D j� jC2, and letX 00.f / be the set of all � 2 X.f / for whichL.s0; �/ ¤ 0

for any s0 D � 0 C i� 0 in the region � 0 � �0, j� 0j � T . Then obviously, X 00.f / 
X 0.f / and Proposition 2.1 of [7] (which is based on a theorem of Montgomery [13])
asserts that
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lim
f!1

jX 00.f /j
jX.f /j D 1: (8)

So it suffices to prove the theorem where the average is defined with respect to
X 00.f /.

We study the case ˚ D  z first, where z 2 C and  z is the additive character of
C defined by  z.w/ D exp.i Re.Nzw//. When once this case is established, we can
deduce the assertion of the case (FI) of Theorem 1.1 for general ˚ satisfying (i) and
(ii), quite similarly to the argument in [7, Sect. 9] (see also Remark 3.2).

In the case ˚ D  z, the right-hand side of (1) is equal to

Z

C
M�.w/ z.w/jdwj D QM�.z/;

the Fourier dual of M�.z/ (see Theorem 3 of [3]). Since  z is bounded, the average
(3) [and so (4), (5)] does not change if we replace X 0.f / by X 00.f /. Therefore,
noting jX.f /j D f � 2 for any odd prime f , we find that what we have to prove in
this case is

lim
m!1

1

�.m/

X

f�m

1

f � 2
X

�2X 00.f /

 z

�
L0

L
.s; �/

�

D QM�.z/: (9)

First we introduce the “finite truncation” of L-functions. Let 1 < y < m, P D Py
as above, and write P D fp1; : : : ; prg, r D �.y/ � y= logy. Define

LP .s; �/ D
Y

p2P
.1 � �.p/p�s/�1

and

logLP .s; �/ D �
X

p2P
Log.1� �.p/p�s/;

where “Log” means the principal branch. By [3], M�;P .w/ is the density function
for the value-distribution of .L0P =LP /.s; �/ and let QM�;P .z/ be its Fourier dual.

The starting point of the proof of (9) is the following inequality:

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

�.m/

X

f�m

1

f � 2

X

�2X 00.f /

 z

�
L0

L
.s; �/

�

� QM�.z/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

�.m/

X

f�m

1

f � 2
X

�2X 00.f /

�

 z

�
L0

L
.s; �/

�

�  z

�
L0P
LP

.s; �/

�	
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
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C
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

�.m/

X

f�m

1

f � 2

X

�2X 00.f /

 z

�
L0P
LP

.s; �/

�

� QM�;P .z/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

C ˇ
ˇ QM�;P .z/ � QM�.z/

ˇ
ˇ

D Xld
P .z/C Y ldP .z/CZld

P .z/; (10)

say. This is an analogue of [7, (125)], and “ld”s (which stand for the “logarithmic
derivative”) are attached only for the purpose of distinguishing our notation from
that in [7].

In order to estimate Xld
P .z/, we first introduce some more notation. For each

Dirichlet character �, from the half plane fs0 j � 0 > 1=2g, we exclude all the
segments of the form f� 0 C i Im � j 1=2 < � 0 � Re �g (for all possible zeros �
of L.s0; �/ with Re � > 1=2) and denote the remaining region by G�. In the region
G�, we can define the value of logL.s0; �/ by the analytic continuation along the
horizontal path f� 00 C i� 0 j � 00 � � 0g. Define

RP .s
0; �/ D logL.s0; �/� logLP .s0; �/

for s0 2 G�.˛1/ D G�\f� 0 > ˛1g. Let c and ı be fixed small positive numbers, and
let ˇ0 D ˇ0.ı/ > 1, ˇ1 D ˇ1.ı/ D 2ˇ0, H.�/, Q0.�/, Q1.�/, fP .s0; �/, FP .�; �/
be as in [7, Sect. 7]. The distance between the boundaries of the two sets Q0.�/ and
Q1.�/ is "2 D minf"1; cg. Let X1.f / be the set of all � 2 X 00.f / such that

FP .�; �/ � �
�"2
2

�2 � ı

2

�2
; (11)

and X2.f / its complement in X 00.f /, that is, all those � 2 X 00.f / satisfying

FP .�; �/ < �
�"2
2

�2 � ı

2

�2
: (12)

We divide

X

�2X 00.f /

�

 z

�
L0

L
.s; �/

�

�  z

�
L0P
LP

.s; �/

�	

D
X

�2X1.f /
C

X

�2X2.f /
D Sld1 .f /C Sld2 .f /; (13)

say.
Consider Sld2 .f /. First, using the fact j z.w/� z.w0/j � jzj�jw�w0j [3, (6.5.19)],

we obtain

jSld2 .f /j � jzj
X

�2X2.f /

ˇ
ˇ
ˇ
ˇ
L0

L
.s; �/ � L0P

LP
.s; �/

ˇ
ˇ
ˇ
ˇ : (14)



Dirichlet L-Functions 85

Since (12) holds for � 2 X2.f /, by Lemma 7.2 of [7] we obtain

jfP .s0; �/j < ı=2 .s0 2 Q0.�//: (15)

Therefore by Lemma 7.1 of [7] we find that H.�/  G�.˛1/ (especially
L.s0; �/ ¤ 0 for s0 2 H.�/) and jRP .s0; �/j < ı for s0 2 H.�/.

Let U D U.s/ be the circle of radius "2=2 whose center is s. Then U  H.�/

(because ��"2=2 � �0�"2=2 > �0�"1 D ˛0), and so .L0=L/.s0; �/ is holomorphic
on and inside U . Therefore by the Cauchy integral formula we have

L0

L
.s; �/ D .logL.s; �//0 D 1

2�i

Z

U.s/

logL.s0; �/
.s0 � s/2 ds0

D 1

�"2

Z 2�

0

logL
�
s C "2

2
ei� ; �

�
e�i�d�; (16)

and similarly

L0P
LP

.s; �/ D 1

�"2

Z 2�

0

logLP
�
s C "2

2
ei� ; �

�
e�i�d�: (17)

Substituting (16) and (17) into (14), we obtain

jSld2 .f /j � jzj
�"2

Z 2�

0

X

�2X2.f /

ˇ
ˇ
ˇRP

�
s C "2

2
ei� ; �

�ˇˇ
ˇ d�: (18)

Here we note that U  Q0.�/. In fact, we have already seen that U  H.�/, and
also we see U  f� 0 < ˇ0g because ˇ0 is large. Therefore (15) holds for s0 2 U .
This implies, as is shown in the proof of Lemma 7.1 of [7],

jRP .s0; �/j � 2jfP .s0; �/j .s0 2 U /: (19)

Combining (18) and (19) and using Schwarz’s inequality, we have

jSld2 .f /j � 2jzj
�"2

Z 2�

0

X

�2X2.f /

ˇ
ˇ
ˇfP

�
s C "2

2
ei� ; �

�ˇˇ
ˇ d�

� jzjf 1=2

Z 2�

0

0

@
X

�2X2.f /

ˇ
ˇ
ˇfP

�
s C "2

2
ei� ; �

�ˇˇ
ˇ
2

1

A

1=2

d�: (20)

Since � 0 D Re.s C ."2=2/e
i�/ > ˛0 > ˛1 for s0 D � 0 C i� 0 2 U , using [7, (133)]

(this is the point where a mean-value result on L-functions is necessary) we obtain

jSld2 .f /j � jzjf 1=2A.� 0; f; y/1=2 � jzjf 1=2A.�; f; y/1=2; (21)
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where

A.�; f; y/ D fy1�2˛1 C f .1�˛1/=.1�˛2/ exp

�

B0
y1�˛2
logy

��

1C j� j C 1

f 2˛2

�

(22)

with a certain absolute positive constant B0.
The treatment of Sld1 .f / can be done exactly in the same manner as in the

argument around [7, (135), (136)]. We have jSld1 .f /j � A.�; f; y/, and, combining
this with (21), we obtain

Xld
P .z/ � 1

�.m/

X

f�m

1

f
.jzjf 1=2A.�; f; y/1=2 CA.�; f; y//: (23)

This is the L0=L-analogue (exactly the same form!) of Proposition 7.4 of [7].
Now we consider Y ldP .z/. Divide

1

�.m/

X

f�m

1

f � 2
X

�2X 00.f /

 z

�
L0P
LP

.s; �/

�

into J ld.m/0 C J
ld.m/
1 C J

ld.m/
2 , analogously to the decomposition of [7, (137)]. The

treatment of J ld.m/0 and J ld.m/2 is exactly the same as that of J .m/0 and J .m/2 in [7].

As for J ld.m/1 , we first note that, when the conductor f of � is larger than y, it holds
that

 z

�
L0P
LP

.s; �/

�

D
X

nP2ZP

Ald�;P .nP I z; Nz/�nP
P P

�i�nP ; (24)

where ZP D Q
p2P Z, and for nP D .np/p2P 2 ZP ,

�
nP
P D

Y

p2P
�.p/np ; P�i�nP D

Y

p2P
p�i� np

and Ald�;P .nP I z; Nz/ is given by [3, (5.1.7)] (without “ld”). This follows from
[3, (1.5.4) and (5.1.6)] and is the L0=L-analogue of [7, (138)]. Starting from (24),
we proceed similarly to the argument around [7, (139)–(147)]. (On this occasion
we note that

P
np2Z is missing after the product symbol

Q
p2P in the first line of

[7, (147)].) We use [3, (5.1.14)] instead of [7, (89)] and [3, (3.1.10)] instead of
[7, (32)]. Proposition 5.3 of [7] includes the presentL0=L case, and so we can apply
it. Then, instead of �.y/ in [7] (see [7, (116)]),

�ld .y/ D �ld .�; y/ D
�
y1�� if 1=2 < � < 1;
logy if � D 1:

(25)
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appears. The conclusion is that Y ldP .z/ satisfies the same inequality as that in
Proposition 7.5 of [7] (with replacing �.y/ by �ld .y/).

Finally we choose y D .logm/!2 with 0 < !2 < 2. Then we find that Xld
P .z/,

Y ldP .z/ tend to 0 as m ! 1. Also Theorem 3 of [3] implies that Zld
P .z/ ! 0 as

m ! 1. Therefore we now complete the proof of (9). Moreover this convergence
is uniform in jzj � R for any R > 0.

3 Proof in the Case (FII)

As in the case (FI), it is enough to consider the case ˚ D  z, i.e., to prove

lim
T!1

1

2T

Z T

�T
 z

�
� 0

�
.� C i� 0/

�

d� 0 D QM�.z/ (26)

(cf. [7, (92)]). Similarly to [7, (95)], we begin with the inequality
ˇ
ˇ
ˇ
ˇ
1

2T

Z T

�T
 z

�
� 0

�
.� C i� 0/

�

d� 0 � QM�.z/

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
1

2T

Z T

�T

�

 z

�
� 0

�
.� C i� 0/

�

�  z

�
� 0P
�P
.� C i� 0/

�	

d� 0
ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ
1

2T

Z T

�T
 z

�
� 0P
�P
.� C i� 0/

�

d� 0 � QM�;P .z/

ˇ
ˇ
ˇ
ˇ

C ˇ
ˇ QM�;P .z/� QM�.z/

ˇ
ˇ

D Xld
P .z/C Y ldP .z/CZld

P .z/; (27)

say. Note that the meaning of these Xld
P .z/, Y

ld
P .z/, Z

ld
P .z/ is different from that in

Sect. 2.
The method of evaluating Xld

P .z/ is a little different from the argument in [7];
rather, we follow the idea in Sect. 2. Noting j zj D 1 we have

Xld
P .z/ � 1

2T

Z 2

�2
2d� 0

C 1

2T

Z

I.T /

ˇ
ˇ
ˇ
ˇ z

�
� 0

�
.� C i� 0/

�

�  z

�
� 0P
�P
.� C i� 0/

�ˇˇ
ˇ
ˇ d�

0; (28)

where I.T / D Œ�T;�2[ Œ2; T . Let I1.T / (resp. I2.T /) be the set of all � 0 2 I.T /
for which (11) [resp. (12)], with replacing � by � 0 and putting � D 1 (the trivial
character), holds. Decompose the second integral on the right-hand side of (28) as
Xld
1 CXld

2 , where Xld
j denotes the integral on Ij .T / (j D 1; 2). Then

Xld
P .z/ � 4

T
C 1

2T
.Xld

1 CXld
2 /: (29)
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Consider Xld
2 . When � 0 2 I2.T /, as in Sect. 2, we see that �.s00/ ¤ 0 and

jRP .s00; 1/j � 2jfP .s00; 1/j < ı for any s00 2 H.� 0/. Therefore .� 0=�/.s00/ is
holomorphic on and inside the circle U 0 of radius "2=2 whose center is � C i� 0, so

� 0

�
.� C i� 0/ D 1

2�i

Z

U 0

log �.s00/
.s00 � � � i� 0/2

ds00: (30)

Similarly to (20), we obtain

Xld
2 � jzjT 1=2

Z 2�

0

�Z

I2.T /

ˇ
ˇ
ˇfP

�
� C i� 0 C "2

2
ei� ; 1

�ˇˇ
ˇ
2

d� 0
�1=2

d�: (31)

A mean square estimate of jfP j was obtained in Lemma 5 of [12] (see also [7, (102),
(106)]). Applying this lemma, we have

1

2T
Xld
2 � jzj

(

y1�2˛1C" C T 1�2˛1C" exp

 

C1

�
y

logy

�1=2!)

; (32)

for any small " > 0, where C1 is an absolute positive constant.
As for Xld

1 , we first use j zj D 1 to obtain

Xld
1 � 2meas.I1.T //; (33)

where meas.A/ means the one-dimensional Lebesgue measure of the set A. Using
(11) for � 0 2 I1.T /, we have

meas.I1.T // �
Z

I1.T /

FP .�
0; 1/d� 0

D
Z ˇ1

˛1

d� 00
Z TC2c

�T�2c
jfP .� 00 C i� 00; 1/j2d� 00

Z

J1.� 00/

d� 0; (34)

where J1.� 00/ D I1.T / \ Œ� 00 � 2c; � 00 C 2c. The innermost integral is � 4c and
is equal to 0 if � 00 2 .�2 C 2c; 2 � 2c/. Therefore we can apply Lemma 5 of
[12] [7, (102), (106)] to the right-hand side of (34). Combining with (33), we obtain

1

2T
Xld
1 �

Z 2

˛1

(

y1�2˛1C" C T 1�2˛1C" exp

 

C1

�
y

logy

�1=2!)

d� 00

C
Z ˇ1

2

�
1

� 00
y1�2� 00C" C 1

� 00T
y2�2� 00C"

	

d� 00

� y1�2˛1C" C T 1�2˛1C" exp

 

C1

�
y

logy

�1=2!

Cy�3C" logˇ1 C 1

T
y�2C" logˇ1: (35)
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Since the factor logˇ1 can be absorbed into the implied constant, from (29), (32),
and (35), we obtain

Xld
P .z/ � .jzj C 1/

(

y1�2˛1C" C T 1�2˛1C" exp

 

C1

�
y

logy

�1=2!)

C 1

T
C y�3C": (36)

The way of evaluating Y ldP .z/ is almost the same as that around [7, (109)–(122)];
only replace �.y/ by �ld .y/. As an analogue of Proposition 6.2 of [7], we obtain

Y ldP .z/ � 1

T
exp

�

C3

�

jzjy3=2�� C y

logy

��

(37)

with an absolute constant C3 > 0.
Choosing y D .logT /!1 (0 < !1 < 1), from (36), (37), and Theorem 3 of [3],

we find, as in [7], that Xld
P .z/, Y

ld
P .z/, and Zld

P .z/ tend to 0 as T ! 1, uniformly
in jzj � R for any R > 0. This proves (26).

Remark 3.1. Bohr and Jessen [2] proved the case (FII) of Theorem 1.2 for ˚ with
(ii), and Jessen and Wintner [10] reformulated the result in terms of asymptotic
distribution functions. Kershner and Wintner [11] then proved that the analogue of
the Jessen-Wintner theory is valid in the � 0=�.s/ case (see also [1, 14]). Therefore
the case (FII) of our Theorem 1.1, for˚ with (ii), is essentially included in Kershner
and Wintner [11], though the density function is not explicitly given in their paper.
The general (FII) case can be deduced from their result by the argument suggested
in Remark 9.1 of [7]. Our method in the present paper is rather different from theirs
and has advantages such as the unified treatment of both the cases (FI) and (FII) and
the explicit construction of the density functionM�.w/. In fact, the functionM�.w/
and its Fourier dual themselves are interesting objects of research (see [4, 8]).

Remark 3.2. To show the general conclusion of our theorem from the special case
˚ D  z, we can apply the method given in [7, Sect. 9], as indicated at the beginning
of Sect. 2. This step can be explained as a consequence of a general theorem on
weak convergence of probability measures.

Here we show how to deduce the case (i) of Theorem 1.1 from the case ˚ D  z.
In case (FI), the left-hand side of (1) is

lim
m!1

1

�.m/

X

f �m

1

X.f /

X

�2X 0.f /

˚

�
L0

L
.s; �/

�

D lim
m!1

1

�.m/ � 1

X

f�m

1

X 0.f /
X

�2X 0.f /

˚

�
L0

L
.s; �/

�

: (38)
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Let ıw be the complex Dirac measure which is nonzero only at w, and define


m D 1

�.m/ � 1
X

f �m

1

X 0.f /
X

�2X 0.f /

ıL0=L.s;�/:

Then this is a probability measure, and the right-hand side of (38) can be written as

lim
m!1

Z

C
˚.w/d
m.w/:

Therefore (1) for any continuous bounded ˚ is nothing but the weak convergence
of probability measures 
m to M�.w/jdwj. It is a well-known fact that the weak
convergence of probability measures can be verified if we can check the special
case ˚ D  z.

In case (FII), we define the probability measure


T .A/ D 1

2T
measf� 0 2 Œ�T; T  j .L0=L/.s C i� 0/ 2 Ag

(where A is any Borel subset of C) and proceed similarly. The above argument was
pointed out by Professor Philippe Biane and Professor Katusi Fukuyama, to whom
the authors express their sincere gratitude.
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Multiple Gamma Functions
and Their Applications

Junesang Choi

Dedicated to Professor Hari M. Srivastava

Abstract The double Gamma function �2 and the multiple Gamma functions �n
were defined and studied systematically by Barnes in about 1900. Before their
investigation by Barnes, these functions had been introduced in a different form
by, for example, Hölder, Alexeiewsky, and Kinkelin. Although these functions did
not appear in the tables of the most well-known special functions, yet the double
Gamma function was cited in the exercises by Whittaker and Watson’s book and
recorded also by Gradshteyn and Ryzhik’s book. In about the middle of the 1980s,
these functions were revived in the study of the determinants of the Laplacians
on the n-dimensional unit sphere Sn. Here, in this expository paper, from the middle
of the 1980s until today, we aim at giving an eclectic review for recent developments
and applications of the simple and multiple Gamma functions.

1 Introduction and Preliminaries

The double Gamma function �2 and the multiple Gamma functions �n were
defined and studied systematically by Barnes [11–14] in around 1900. Before their
investigation by Barnes, these functions had been introduced in a different form
by, for example, Hölder [80], Alexeiewsky [5], and Kinkelin [83]. Although these
functions did not appear in the tables of the most well-known special functions,
yet the double Gamma function was cited in the exercises by Whittaker and
Watson [124, p. 264] and recorded also by Gradshteyn and Ryzhik [77, p. 661,
Entry 6.441(4); p. 937, Entry 8.333]. In about the middle of the 1980s, these
functions were revived in the study of the determinants of the Laplacians on the
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n-dimensional unit sphere Sn (see [25,30,89,100,103,118,121]). Shintani [110] also
used the double Gamma function to prove the classical Kronecker limit formula.
Friedman and Ruijsenaars [73] showed that Shintani’s work on multiple Zeta and
Gamma functions can be simplified and extended by making use of difference
equations. Its p-adic analytic extension appeared in a formula of Cassou–Noguès
[21] for the p-adicL-functions at the point 0. Choi et al. (see [31,41,42]) used these
functions in order to evaluate some families of series involving the Riemann Zeta
function as well as to compute the determinants of the Laplacians. Choi et al. [31]
addressed the converse problem and applied various formulas for series associated
with the Zeta and related functions with a view to developing the corresponding
theory of multiple Gamma functions. Adamchik [4] discussed some theoretical
aspects of the multiple Gamma functions and their applications to summation of
series and infinite products. Matsumoto [92] proved several asymptotic expansions
of the Barnes double Zeta function and the double Gamma function and presented
an application to the Hecke L-functions of real quadratic fields. Ruijsenaars [107]
showed how various known results concerning the Barnes multiple Zeta and Gamma
functions can be obtained as specializations of the simple features shared by a quite
remarkably extensive class of functions.

The main object of this expository paper is to give an eclectic review of certain
recent developments and applications of the classical Gamma function, the multiple
Gamma functions, and their related functions.

1.1 Gamma Function

The origin of the Gamma function can be traced back to two letters from Leonhard
Euler (1707–1783) to Christian Goldbach (1690–1764), just as a simple desire to
extend factorials to values between the integers. The first letter (dated October 13,
1729) dealt with the interpolation problem, while the second letter (dated January
8, 1730) dealt with integration and tied the two together.

The Gamma function � .z/ developed by Euler is usually defined by

� .z/ WD
Z 1

0

e�t t z�1 dt .Re.z/ > 0/: (1)

We also present here several equivalent forms of the Gamma function � .z/, one by
Weierstrass:

� .z/ D e��z

z

1Y

kD1

��
1C z

k

��1
ez=k

	

.z 2 CnZ�0 I Z
�
0 WD f0;�1;�2; : : :g/; (2)

where C is the set of complex numbers and � denotes the Euler–Mascheroni
constant defined by (see, e.g., [27, 37, 50, 74, 79, 85, 105])
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� WD lim
n!1

 
nX

kD1

1

k
� log n

!

Š 0:57721 56649 01532 86060 6512 : : : ; (3)

and the other by Gauss:

� .z/ D lim
n!1

�
.n � 1/Š nz

z.z C 1/ � � � .z C n � 1/
	

D lim
n!1

�
nŠ nz

z.z C 1/ � � � .z C n/

	
�
z 2 C n Z

�
0

�
; (4)

since

lim
n!1

n

z C n
D 1 D lim

n!1
nz

.nC 1/z
:

In terms of the Pochhammer symbol .	/� or the shifted factorial, since

.1/n D nŠ .n 2 N0 WD N [ f0gI N WD f1; 2; 3; � � � g/ ;

which is defined (for 	; � 2 C), in terms of the familiar Gamma function � , by

.	/� WD
�
1; � D 0I 	 2 C n f0g;
	.	C 1/ � � � .	C n � 1/; � D n 2 NI 	 2 C;

D � .	C �/

� .	/

�
� 2 N0I 	 2 C n Z

�
0

�
;

it being understood conventionally that .0/0 WD 1, the definition (4) can easily be
written in an equivalent form:

� .z/ D lim
n!1

.n � 1/Š nz

.z/n
.z 2 C n Z

�
0 /:

For a complex number z, we have the following asymptotic expansion:

log� .z/ D
�

z � 1

2

�

log z � z C 1

2
log.2�/C

nX

kD1

B2k

2k.2k � 1/z2k�1 CO
�
z�2n�1

�
;

(5)

for jzj ! 1; j arg.z/j 5 � � � .0 < � < �/; n 2 N0, whereBk.x/ are the Bernoulli
polynomials defined by the generating function

zexz

ez � 1 D
1X

kD0
Bk.x/

zk

kŠ
.jzj < 2�/
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and the Bernoulli numbers are defined by Bk WD Bk.0/. Taking exponentials on
each side of (5) yields an asymptotic formula for the Gamma function:

� .z/ Dzze�z

r
2�

z



1C 1

12 z
C 1

288 z2
� 139

51840 z3
� 571

2488320 z4

C 163879

209018880 z5
C 50043869

75246796800 z6
CO

�
z�7
�
�

.jzj ! 1I j arg.z/j 5 � � � .0 < � < �//: (6)

The asymptotic formula (6), in conjunction with the recurrence relation

� .z C 1/ D z� .z/

is useful in computing the numerical values of � .z/ for large real values of z.
Some useful consequences of (5) or (6) include the asymptotic expansions

log� .z C ˛/ D
�

z C ˛ � 1

2

�

log z � z C 1

2
log.2�/CO

�
z�1
�

.jzj ! 1I j arg.z/j 5 � � �I j arg.z C ˛/j 5 � � �I 0 < � < �/;

and

� .z C ˛/

� .z C ˇ/
D z˛�ˇ



1C .˛ � ˇ/.˛ C ˇ � 1/

2z
CO

�
z�2
�
�

.jzj ! 1I j arg.z/j 5 � � �I j arg.z C ˛/j 5 � � �I 0 < � < �/;

where ˛ and ˇ are bounded complex numbers.
The Psi (or Digamma) function  .z/ defined by

 .z/ WD d

d z
flog � .z/g D � 0.z/

� .z/
or log � .z/ D

Z z

1

 .t/ dt (7)

possesses the following properties:

 .z/ D lim
n!1

 

logn �
nX

kD0

1

z C k

!

I (8)

 .z/ D �� � 1

z
C
1X

nD1

z

n.z C n/
D �� C .z � 1/

1X

nD0

1

.nC 1/.z C n/
; (9)

where � is the Euler–Mascheroni constant defined by (3).
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These results clearly imply that  .z/ is meromorphic (i.e., analytic everywhere
in the bounded complex z-plane except for poles) with simple poles at z D �n
.n 2 N0/ with its residue �1. Also we have

 .1/ D ��;

which follows at once from (9).
The Polygamma functions  .n/.z/ .n 2 N/ are defined by

 .n/.z/ WD dnC1

dznC1
log� .z/ D dn

dzn
 .z/ .n 2 N0I z 2 C n Z

�
0 /:

In terms of the generalized (or Hurwitz) Zeta function �.s; a/ (see Sect. 2.2), we can
write

 .n/.z/ D .�1/nC1 nŠ
1X

kD0

1

.kCz/nC1 D .�1/nC1 nŠ �.nC1; z/ .n 2 NI z 2 C n Z
�
0 /;

which may be used to deduce the properties of .n/.z/ .n 2 N/ from those of �.s; z/
.s D nC 1I n 2 N/.

For various other properties of Gamma function and its related functions, refer
to [1, 6, 7, 9, 19, 20, 48, 49, 70, 81, 84, 88, 90, 94, 98, 99, 101, 102, 122, 123].

1.2 Double and Multiple Gamma Functions

Barnes [11] defined the double Gamma function �2 D 1=G satisfying each of the
following properties:

(a) G.z C 1/ D � .z/G.z/ .z 2 C/;
(b) G.1/ D 1;
(c) Asymptotically,

logG.z C nC 2/ DnC 1C z

2
log.2�/C


n2

2
CnC 5

12
Cz2

2
C.nC 1/z

�

logn

� 3n2

4
�n�nz� logAC 1

12
CO �n�1� .n ! 1/; (10)

where � is the Gamma function given in (1) and A is called the Glaisher–
Kinkelin constant defined by (see [76])

logA D lim
n!1

(
nX

kD1
k log k �

�
n2

2
C n

2
C 1

12

�

lognC n2

4

)

; (11)
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the numerical value of A being given by

A Š 1:282427130 � � � :

From this definition, Barnes [11] deduced several explicit Weierstrass canonical
product forms of the double Gamma function �2, one of which is recalled here
in the form

f�2.zC1/g�1 D G.zC1/

D .2�/
1
2 z exp

�

�1
2

z�1
2
.�C1/z2

� 1Y

kD1

��
1C z

k

�k
exp

�

�zC z2

2k

�	

;

where � denotes the Euler–Mascheroni constant given by (3).
Barnes [11] also gave the following two more equivalent forms of the double

Gamma function �2:

f�2.z C 1/g�1 D G.z C 1/ D.2�/ 12 z exp

�

�1
2

z.z C 1/� 1

2
�z2

�

�
1Y

kD1

� .k/

� .z C k/
exp



z .k/C 1

2
z2 0.k/

�

I

f�2.z C 1/g�1 D G.z C 1/ D .2�/
1
2 z exp

"�

� � 1

2

�

z �
 
�2

6
C 1C �

!
z2

2

#

� .z C 1/

�
1Y

mD0

1Y

nD0
0
�

1C z

mC n

�

exp

 

� z

mC n
C z2

2.mC n/2

!

;

where the prime denotes the exclusion of the case n D m D 0 and the Psi
(or Digamma) function is given by (7). Each form of these products is convergent
for all finite values of jzj, by the Weierstrass factorization theorem (see Conway
[60, p. 170]).

The double Gamma function satisfies the following relations:

G.1/ D 1 and G.z C 1/ D � .z/G.z/ .z 2 C/:

For sufficiently large real x and a 2 C, we have the Stirling formula for the
G-function:

logG.x C a C 1/ D x C a

2
log.2�/� logAC 1

12
� 3x2

4
� ax

C
�
x2

2
� 1

12
C a2

2
C ax

�

logx CO
�
x�1

�
.x ! 1/:

(12)
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The following special values of G (see Barnes [11]) may be recalled here:

G

�
1

2

�

D 2
1
24 ��� 1

4 �e 1
8 �A� 32 I (13)

G.nC 2/ D 1Š 2Š � � � nŠ and G.nC 1/ D .nŠ/n

1�2�32�43 � � �nn�1 .n 2 N/:

There are two known ways to define the n-ple Gamma functions �n. First of all,
Barnes [14] (see also Vardi [118]) defined �n by using the n-ple Hurwitz Zeta
functions given in Sect. 2 (see, e.g., [35,53], [114, Chap. 2]). Secondly, a recurrence
relation of the Weierstrass canonical product forms of the n-ple Gamma functions
�n was given by Vignéras [119] who used the theorem of Dufresnoy and Pisot [64]
which provides the existence, uniqueness, and expansion of the series of Weierstrass
satisfying a certain functional equation.

By making use of the aforementioned Dufresnoy–Pisot theorem and starting with

f1.x/ D �� x C
1X

nD1

hx

n
� log

�
1C x

n

�i
;

Vignéras [119] obtained a recurrence relation of �n .n 2 N/ which is stated here as
Theorem 1.1 below (see, e.g., [4, 35, 48, 52, 53]).

Theorem 1.1. The n-ple Gamma functions �n are defined by

�n.z/ D ŒGn.z/
.�1/n�1

.n 2 N/;

where Gn.z C 1/ D exp Œfn.z/ and the functions fn.z/ are given by

fn.z/ D �zAn.1/C
n�1X

kD1

pk.z/

kŠ

h
f
.k/
n�1.0/� A.k/n .1/

i
C An.z/;

with

An.z/ D
X

m2N0n�1�N

2

4 1

n

�
z

L.m/

�n
� 1

n � 1

�
z

L.m/

�n�1
C � � �

C.�1/n�1 z

L.m/
C .�1/n log

�

1C z

L.m/

�
3

5 ;

where L.m/ D m1 Cm2 C � � � Cmn if m D .m1; m2; : : : ; mn/ 2 N0
n�1 � N and

the polynomials pn.z/ given by
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pn.z/ WD

8
<̂

:̂

1n C 2n C 3n C � � � C .N � 1/n .z D N I N 2 N n f1g/;
BnC1.z/ � BnC1

nC 1
.z 2 C/;

satisfy the following relations:

p0n.z/ D B 0nC1.z/
nC 1

D Bn.z/ and pn.0/ D 0;

Bn.z/ being the Bernoulli polynomial of degree n in z.

By analogy with the Bohr–Mollerup theorem (see [10, p. 14]; see also [114,
p. 13]), which guarantees the uniqueness of the Gamma function � , one can give,
for the double Gamma function and (more generally) for the multiple Gamma
functions of order n .n 2 N/, a definition of Artin [10] by means of the following
theorem (see Vignéras [119, p. 239]).

Theorem 1.2. For all n 2 N, there exists a unique meromorphic function Gn.z/
satisfying each of the following properties:

(a) Gn.z C 1/ D Gn�1.z/Gn.z/ .z 2 C/;
(b) Gn.1/ D 1;
(c) For x = 1, Gn.x/ are infinitely differentiable and

dnC1

dxnC1
flogGn.x/g = 0I

(d) G0.x/ D x.

It is not difficult to verify (see, e.g., [114, pp. 40–41]) that f�n.z/g�1 is an entire
function with zeros at z D �k .k 2 N0/ with multiplicities

 
nC k � 1

n � 1

!

.n 2 NI k 2 N0/: (14)

In our earlier investigations, we gave explicit forms of the multiple Gamma
functions �n .n D 3; 4; 5/ (see, e.g., [31, 57]). Now, by observing (14), we can
present the following explicit form of the multiple Gamma functions �n .n 2 N/ for
a potential and easier future use.

Theorem 1.3. The n-ple Gamma functions �n in Theorem 1.1 can be written in a
more explicit form as follows:

�n.1Cz/ D exp ŒQn.z/
1Y

kD1

8
<

:

�
1C z

k

��.nCk�2
n�1 /

exp

2

4

 
nC k � 2

n � 1

!0

@
nX

jD1

.�1/j�1
j

zj

kj

1

A

3

5

9
=

;
;
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where Qn.z/ is a polynomial in z of degree n given by

Qn.z/ WD .�1/n�1
"

�zAn.1/C
n�1X

kD1

pk.z/

kŠ

�
f
.k/
n�1.0/�A.k/n .1/

�
#

;

fn.z/ WD � zAn.1/C
n�1X

kD1

pk.z/

kŠ

h
f
.k/
n�1.0/� A.k/n .1/

i
C An.z/;

An.z/ WD
1X

kD1
.�1/n�1

 
nC k � 2
n � 1

!2

4� log
�
1C z

k

�
C

nX

jD1

.�1/j�1
j

zj

kj

3

5 ; (15)

and

pn.z/ D 1

nC 1

nC1X

kD1

 
nC 1

k

!

BnC1�kzk .n 2 N/:

Remark 1.1. In order to get explicit forms of the multiple Gamma functions
�n.1C z/ in Theorem 1.3, it is indispensable to compute An.1/ explicitly. In fact,
by using the Taylor–Maclaurin expansion of log.1 C t/ in (15) and certain series
involving Zeta functions, Choi et al. [31] found that

An.z/ D 1

.n � 1/Š
n�1X

jD0
s.n� 1; j /

"
jX

kD0
.�1/k

 
j

k

!

�0.�k; 1C z/zj�k C .�1/jC1�0.�j /

�
j�1X

`D0
.�1/` �.�`/

j � `
zj�` C zjC1

j C 1

�
Hj C �

��
n�jX

kD2
.�1/k �.k/

k C j
zkCj

#

; (16)

where �.s; a/ and �.s/ are the generalized (or Hurwitz) Zeta function and the
Riemann Zeta function, respectively, and s.n; k/ denotes the Stirling numbers of
the first kind (see [114, pp. 56–57]) andHn denotes the harmonic numbers given by

Hn WD
nX

kD1

1

k
.n 2 N/:

Now, by applying (16) in Theorem 1.3, we can give explicit forms of the multiple
Gamma functions �n .n 2 N/ whose cases .n D 3; 4; 5/ are recalled here as the
following corollary (see [31]).
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Corollary 1.1. Each of the following expressions holds true:

�3.1C z/ D exp
�
c1z C c2z

2 C c3 z3
�

�
1Y

kD1

(
�
1C z

k

��.kC1
2 /

exp

" 
k C 1

2

!�
z

k
� z2

2 k2
C z3

3 k3

�#)

;

where

c1 D 3

8
� 1

4
log.2�/� logA; c2 D 1

8
C 1

4
log.2�/C �

4
; c3 D �1

4
� �2

36
� �

6
I

�4.1C z/ D exp
�
d1zCd2z2Cd3z3Cd4z4

�

�
1Y

kD1

(
�
1C z

k

��.kC2
3 /

exp

" 
k C 2

3

!�
z

k
� z2

2 k2
C z3

3 k3
� z4

4 k4

�#)

;

where

d1 D 7

24
� logA�1

2
logB�1

6
log.2�/; d2 D � 1

144
C�

6
C1

4
log.2�/C1

2
logA;

d3 D �2
9

��
6

� 1

12
log.2�/��

2

54
; d4 D 11

144
C �

24
C�2

48
C�.3/

12
I

�5.1C z/ D exp
�
e1z C e2z

2 C e3z
3 C e4z

4 C e5z
5
�

�
1Y

kD1

(
�
1C z

k

��.kC3
4 /

exp

" 
k C 3

4

! 
z

k
� z2

2 k2
C z3

3 k3
� z4

4 k4
C z5

5 k5

!#)

;

where

e1 D 409

1728
� 1

8
log.2�/� 11

12
logA � 1

6
logC � 3 �.3/

16�2
C 1

20
�.4/� 1

20
�.5/;

e2 D � 1

16
C �

8
C 11

48
log.2�/C 3

4
logAC �.3/

16�2
;

e3 D �149
864

� 11

72
� � 1

8
log.2�/ � 1

6
logA � 1

12
�.2/;

e4 D 7

64
C 1

16
� C 1

48
log.2�/C 11

96
�.2/C 1

16
�.3/;

e5 D � 5

288
� 1

120
� � 1

20
�.2/� 11

120
�.3/� 1

20
�.4/:
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For various other properties and applications of the double and multiple
Gamma functions, refer to [15, 16, 18, 22–24, 29, 34, 36, 47, 59, 71, 72, 75, 76,
86, 87, 91, 96, 97, 106].

2 Multiple Hurwitz Zeta Functions

In this section, we first introduce (and investigate the various properties and
relationships satisfied by) the multiple Hurwitz Zeta function �n.s; a/ .n 2 N/ and
consider its relatively more familiar special case when n D 1, that is, the Hurwitz
(or generalized) Zeta function �.s; a/. We then deal with the Riemann Zeta function.

2.1 Multiple Hurwitz Zeta Functions

Barnes [14] introduced and studied the generalized multiple Hurwitz Zeta function
�n .s; a j w1; � � � ; wn/ defined, for Re.s/ > n, by the n-ple series

�n.s; a j w1; : : : ;wn/ WD
1X

m1;:::;mnD0

1

.a C˝/s
.Re.s/ > nI n 2 N/ ; (17)

where˝ D m1 w1C� � �Cmn wn and the general conditions for a and the parameters
w1; : : : ;wn are given in Barnes [14] who used it in the study of the multiple Gamma
functions (see Sect. 1). We consider only the simple case of (17) when wj D 1

.j D 1; : : : ; ; nI j; n 2 N/ and

�n .s; a/ WD
1X

k1;:::;knD0
.aC k1 C � � � C kn/

�s .Re.s/ > nI a 2 C n Z
�
0 /; (18)

which is also referred to as n-ple (or, simply, multiple) Hurwitz Zeta function.
We shall give some known properties and characteristics of the function �n.s; a/
in (18), including its analytic continuation.

Let s D � C it .�; t 2 R/ where R denotes the set of real numbers. First, for
convergence, we consider �n.s; a/ in (18) for the case when a > 0:

�n.s; a/ D
1X

k1;:::;knD0
.a C k1 C � � � C kn/

�s .Re.s/ D � > nI a > 0/: (19)

Theorem 2.1. The series for �n.s; a/ in (19) converges absolutely for � > n. The
convergence is uniform in every half-plane � > n C ı .ı > 0/, so �n.s; a/ is an
analytic function of s in the half-plane � > n.
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Next we present an integral representation of �n.s; a/, which is given by

Theorem 2.2. If Re.s/ D � > n, then

� .s/�n.s; a/ D
Z 1

0

xs�1e�ax

.1 � e�x/n
dx .Re.s/ > nI n 2 N/: (20)

In order to extend �n.s; a/ to the half-plane on the left of the line � D n, we derive
another representation in terms of a contour integral. The contour C is essentially
a Hankel’s loop (cf., e.g., Whittaker and Watson [124, p. 245]), which starts from
1 along the upper side of the positive real axis, encircles the origin once in the
positive (counterclockwise) direction, and then returns to 1 along the lower side of
the positive real axis.

Theorem 2.3. If a > 0, then the function defined by the following contour integral:

In.s; a/ D � 1

2�i

Z .0C/

1
.�z/s�1e�az

.1 � e�z/n
dz (21)

is an entire function of s. Moreover,

�n.s; a/ D � .1 � s/ In.s; a/ .Re.s/ D � > n/: (22)

In (22), valid for � > n, the function In.s; a/ is an entire function of s, and � .1�s/
is analytic for every complex s for s 2 C n N. We, therefore, can use this equation
to define �n.s; a/ for � 5 n, that is, outside � > n as desired.

Definition 2.1. If Re.s/ D � 5 n, we define �n.s; a/ by

�n.s; a/ WD � .1 � s/In.s; a/; (23)

where In.s; a/ is given in (21).

This equation (23) provides the analytic continuation of �n.s; a/ to the whole
complex s-plane.

Theorem 2.4. The function �n.s; a/ defined by (23) is analytic for all s except for
simple poles at s D k .1 5 k 5 n/, with their respective residues given by

Res
sDk �n.s; a/ D 1

.n � k/Š.k � 1/Š lim
z!0

dn�k

dzn�k
zne�az

.1 � e�z/n
.k D 1; � � � ; nI n 2 N/:

In particular, when s D n, its residue is 1=.n� 1/Š.
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2.2 Relationship Between �n .s; x/ and B
.˛/
n .x/

The generalized Bernoulli polynomials B.˛/
n .x/ of degree n in x are defined by the

generating function

� z

ez � 1
�˛

exz D
1X

nD0
B.˛/
n .x/

zn

nŠ
.jzj < 2�I 1˛ WD 1/ (24)

for arbitrary (real or complex) parameter ˛.
The value of �n.�`; x/ can be calculated explicitly for ` 2 N0. Taking s D �`

in the relation (22) with a replaced by x, we find that

�n.�`; x/ D � .1C `/In.�`; x/ D `Š In.�`; x/: (25)

Now, from (24) and (25), we have the desired relationship:

�n.�`; x/ D .�1/n `Š

.nC `/Š
B
.n/

nC`.x/ .` 2 N0/: (26)

Setting n D 1 in (26), we have the well-known result:

�.�`; x/ D �B`C1.x/
`C 1

.` 2 N0/; (27)

where �.s; x/ WD �1.s; x/ is the Hurwitz (or generalized) Zeta function [see (34)].
It is known (see [26]) that �n.s; x/ is expressible as a finite combination of the

generalized Zeta function �.s; x/ with polynomial coefficients in x:

�n.s; x/ D
n�1X

jD0
pn;j .x/�.s � j; x/; (28)

where

pn;j .x/ D 1

.n � 1/Š
n�1X

`Dj
.�1/nC1�j

 
`

j

!

s.n; `C 1/x`�j

and s.n; k/ are the Stirling numbers of the first kind.
Since �.s; x/ can be continued analytically to a meromorphic function having a

simple pole at s D 1 with its residue 1, the representation (28) shows that �n.s; x/
is analytic for all s except for simple poles only at s D k .k D 1; : : : ; nI n 2 N/

with their respective residues given by

Res
sDk �n.s; x/ D pn;k�1.x/ .k D 1; : : : ; nI n 2 N/:
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From (28), �n.s; x/ can be expressed explicitly for the first few values of n:

�2.s; x/ D.1 � x/�.s; x/C �.s � 1; x/;

�3.s; x/ D1

2

�
x2 � 3x C 2

�
�.s; x/C

�
3

2
� x

�

�.s � 1; x/C 1

2
�.s � 2; x/;

�4.s; x/ D1

6

˚��x3 C 6x2 � 11x C 6
�
�.s; x/C �

3x2 � 12x C 11
�
�.s � 1; x/

�.3x � 6/�.s � 2; x/C �.s � 3; x/g : (29)

2.3 The Vardi–Barnes Multiple Gamma Functions

Vardi [118, p. 498] gave another expression for the multiple Gamma functions�n.a/
whose general form was also studied by Barnes [14]:

�n.a/ D
"

nY

mD1
R
.�1/m. a

m�1/
n�mC1

#

Gn.a/ .n 2 N/; (30)

where

Gn.a/ WD exp
�
� 0n.0; a/

�
with � 0n.s; a/ D @

@s
�n.s; a/

and

Rm WD exp

 
mX

kD1
� 0k.0; 1/

!

with R0 D 1:

In particular, the special cases of (30) when n D 1 and n D 2 give other forms of
the simple and double Gamma functions �1 D � and �2:

� .a/ D exp
��� 0.0/C � 0.0; a/

� D p
2� exp

�
� 0.0; a/

�
; (31)

where �.s/ WD �.s; 1/ is the Riemann Zeta function [see (43)];

�2.a/ D A.2�/
1
2� 1

2 a exp

�

� 1

12
C � 02.0; a/

�

; (32)

where we have used (29) and the known identity (see Voros [121, p. 462,
Eq. (A.11)]):

logA D 1

12
� � 0.�1/:
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Here we can give another proof of the multiplication formula for �2 different
from that of Barnes [11] by using (32) (see Choi and Quine [35]). We consider

n�1X

`D0

n�1X

jD0
�2

�

s; a C `C j

n

�

D
n�1X

`D0

n�1X

jD0

1X

k1; k2D0

�

a C `C j

n
C k1 C k2

��s

D ns
1X

k1; k2D0

n�1X

`D0

n�1X

jD0
.na C `C j C nk1 C nk2/

�s

D ns
1X

k1;k2D0
.na C k1 C k2/

�s D ns�2.s; na/;

which, upon differentiating with respect to s, yields

n�1X

`D0

n�1X

jD0
� 02
�

s; a C `C j

n

�

D .logn/ns�2.s; na/C ns� 02.s; na/:

By virtue of (32), we readily obtain the following multiplication formula for �2:

n�1Y

`D0

n�1Y

jD0
�2

�

a C `C j

n

�

D C.n/.2�/�
1
2 n.n�1/an�

n2a2

2 Cna�2.na/; (33)

where

C.n/ WD An
2�1�e 1

12 .1�n2/�.2�/ 12 .n�1/�n 5
12 :

An interesting identity is also obtained from (33):

n�1Y

`D0

n�1Y

jD0
0�2

�
`C j

n

�

D C.n/

n
;

where the prime denotes the exclusion of the case when ` D 0 D j .

2.4 The Hurwitz (or Generalized) Zeta Function

The Hurwitz (or generalized) Zeta function �.s; a/ is defined by

�.s; a/ WD
1X

kD0
.k C a/�s .Re.s/ > 1I a 2 C n Z

�
0 /: (34)
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It is easy to see that �.s; a/ D �1.s; a/ for the case when n D 1 in (18). Thus
we can deduce many properties of �.s; a/ from those of �n.s; a/. Indeed, the series
for �.s; a/ in (34) converges absolutely for Re.s/ D � > 1. The convergence is
uniform in every half-plane � > 1 C ı .ı > 0/, so �.s; a/ is an analytic function
of s in the half-plane Re.s/ D � > 1. Setting n D 1 in (20), we have the integral
representation

� .s/�.s; a/ D
Z 1

0

xs�1e�ax

1 � e�x
dx D

Z 1

0

xs�1e�.a�1/x

ex � 1
dx

D
Z 1

0

xa�1

1 � x

�

log
1

x

�s�1
dx .Re.s/ > 1I Re.a/ > 0/: (35)

Moreover, �.s; a/ can be continued meromorphically to the whole complex s-plane
(except for a simple pole at s D 1 with its residue 1) by means of the contour
integral representation (see Theorem 2.3):

�.s; a/ D �� .1 � s/

2�i

Z

C

.�z/s�1e�az

1 � e�z
dz;

where the contour C is the Hankel loop of Theorem 2.3. The connection between
�.s; a/ and the Bernoulli polynomialsBn.x/ is also given in (27).

From the definition (34) of �.s; a/, it easily follows that

�.s; a/ D �.s; nC a/C
n�1X

kD0
.k C a/�s .n 2 N/I (36)

�

�

s;
1

2
a

�

� �

�

s;
1

2
aC 1

2

�

D 2s
1X

nD0
.�1/n.a C n/�s :

2.5 Hurwitz’s Formula for �.s; a/

The series expression �.s; a/ was originally meaningful for � > 1 .s D � C it/.
Hurwitz obtained another series representation for �.s; a/ valid in the half-plane
� < 0:

�.1 � s; a/ D � .s/

.2�/s

n
e�

1
2 � isL.a; s/C e

1
2 � isL.�a; s/

o
(37)

.0 < a 5 1; � D Re.s/ > 1I 0 < a < 1; � > 0/;
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where the function L.x; s/ is defined by

L.x; s/ WD
1X

nD1

e2� inx

ns
.x 2 RI � D Re.s/ > 1/; (38)

which is often referred to as the periodic (or Lerch) Zeta function.
We note that the Dirichlet series in (38) is a periodic function of x with period

1 and that L.1; s/ D �.s/, the Riemann Zeta function (see Sect. 2.3). The series in
(38) converges absolutely for � > 1. Yet, if x … Z, Z being the set of integers, the
series can also be seen to converge conditionally for � > 0. So the formula (37) is
also valid for � > 0 if a 6D 1.

If we take a D p=q in the Hurwitz formula (37), we obtain

�

�

1 � s;
p

q

�

D 2� .s/

.2�q/s

qX

rD1
cos

�
�s

2
� 2�rp

q

�

�

�

s;
r

q

�

.1 5 p 5 qI p; q 2 N/;

which holds true, by the principle of analytic continuation, for all admissible values
of s 2 C.

For other interesting properties of �.s; a/, see [66–69].

2.6 Hermite’s Formula for �.s; a/

We recall Hermite’s formula for �.s; a/:

�.s; a/ D 1

2
a�sC a1�s

s � 1C2
Z 1

0

�
a2 C y2

�� 12 s
n
sin
�
s arctan

y

a

�o dy

e2�y � 1
: (39)

We note that the integral involved in (39) converges for all admissible values of
s 2 C. Moreover, the integral is an entire function of s. A special case of the formula
(39) when a D 1 is attributed to Jensen.

Setting s D 0 in (39), we have

�.0; a/ D 1

2
� a:

It is also known that

 .s/ D log s � 1

2s
� 2

Z 1

0

t dt

.t2 C s2/ .e2�t � 1/
.Re.s/ > 0/: (40)

Taking the limit in (39) as s ! 1, by virtue of the uniform convergence of the
integral in (39), we get
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lim
s!1

�

�.s; a/ � 1

s � 1

	

D lim
s!1

a1�s � 1
s � 1 C 1

2a
C 2

Z 1

0

y dy

.a2 C y2/ .e2�y � 1/
;

which, in view of (40), yields

lim
s!1

�

�.s; a/� 1

s � 1
	

D ��
0.a/

� .a/
D � .a/: (41)

Differentiating (39) with respect to s and setting s D 0 in the resulting equation, we
have

�
d

ds
�.s; a/

	

sD0
D
�

a � 1

2

�

log a � a C 2

Z 1

0

arctan
�
y

a

�

e2�y � 1 dy;

which yields

d

ds
�.s; a/

ˇ
ˇ
ˇ
ˇ
sD0

D log� .a/ � 1

2
log.2�/; (42)

which is equivalent to the identity (31). In addition to (42), it is easy to find from
the definition (34) of �.s; a/ that

@

@a
�.s; a/ D �s�.s C 1; a/:

The respective special cases of (41) and (42) when a D 1 become

lim
s!1

�

�.s; a/ � 1

s � 1

	

D lim
�!0

�

�.1C �; a/ � 1

�

	

D �

and

� 0.0/ D �1
2

log.2�/;

where �.s/ is the Riemann Zeta function [see definition (43)].

2.7 The Riemann Zeta Function

The Riemann Zeta function �.s/ is defined by

�.s/ WD

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1X

nD1

1

ns
D 1

1 � 2�s
1X

nD1

1

.2n� 1/s
.Re.s/ > 1/;

1

1 � 21�s
1X

nD1

.�1/n�1
ns

.Re.s/ > 0I s 6D 1/:

(43)
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It is easy to see from the definitions (43) and (34) that

�.s/ D �.s; 1/ D .2s � 1/
�1
�

�

s;
1

2

�

D 1C �.s; 2/ (44)

and

�.s/ D 1

ms � 1

m�1X

jD1
�

�

s;
j

m

�

.m 2 N n f1g/:

In view of (44), we can deduce many properties of �.s/ from those of �.s; a/ given
in the previous section. In fact, the series �.s/ D P1

nD1 n�s in (43) represents an
analytic function of s in the half-plane Re.s/ D � > 1. Setting a D 1 in (35), we
have an integral representation of �.s/ in the form

� .s/�.s/ D
Z 1

0

xs�1e�x

1 � e�x
dx D

Z 1

0

xs�1

ex � 1
dx

D
Z 1

0

1

1 � x

�

log
1

x

�s�1
dx .Re.s/ > 1/:

Furthermore, just as �.s; a/, �.s/ can be continued meromorphically to the whole
complex s-plane (except for a simple pole at s D 1 with its residue 1) by means of
the contour integral representation:

�.s/ D �� .1 � s/
2�i

Z

C

.�z/s�1e�z

1 � e�z
dz;

where the contour C is the Hankel loop of Theorem 2.3.
Here, for later use, we choose to recall some properties and relationships of �.s/:

�.s/ D �.s; nC 1/C
nX

kD1
k�s .n 2 N0/:

The connection between �.s/ and the Bernoulli numbers is given as follows:

�.�n/ D

8
<̂

:̂

�1
2

.n D 0/

� BnC1
nC 1

.n 2 N/:

The Riemann’s functional equation for �.s/ is

�.1� s/ D 2.2�/�s� .s/ cos

�
1

2
�s

�

�.s/ (45)
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or, equivalently,

�.s/ D 2.2�/s�1 � .1 � s/ sin

�
1

2
�s

�

�.1� s/: (46)

Taking s D 2nC 1 .n 2 N/ in (45), the factor cos
�
1
2
�s
�

vanishes and we find that

�.�2n/ D 0 .n 2 N/; (47)

which are often referred to as the trivial zeros of �.s/.
We have the well-known identity

�.2n/ D .�1/nC1 .2�/
2n

2.2n/Š
B2n .n 2 N0/;

which enables us to list the following special values:

�.2/ D �2

6
; �.4/ D �4

90
; �.6/ D �6

945
;

�.8/ D �8

9450
; �.10/ D �10

93555
; : : : :

It is easy to derive from (46) and (47) that (cf., e.g., Srivastava [113, p. 387,
Eq. (1.15)])

� 0.�2n/ D lim
�!0

�.�2nC �/

�
D .�1/n .2n/Š

2.2�/2n
�.2nC 1/ .n 2 N/:

3 A Set of Mathematical Constants

There are some classes of mathematical constants involved naturally in the Gamma
and multiple Gamma functions. Here we introduce those well-known mathematical
constants associated with the Gamma and multiple Gamma functions and show how
they are involved, if possible (see [28]; see also [115, Chap. 7]).

We begin by noting that � is a constant so chosen that � .1/ D 1 in the
Weierstrass product form of the Gamma function � .z/ [see (2)] and the constant �
is the very Euler constant in (2).

In fact, the function

f .z/ D
1Y

nD1

�
1C z

n

�
e�

z
n

can be seen to be an entire function having zeros at the negative integers. The
function f .z � 1/ is an entire function having zeros at the origin as well as at the
negative integers.
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It is known that

f .z � 1/ D eg.z/zf .z/; (48)

where g.z/ is some entire function. The logarithmic derivative of (48) gives

1X

nD1

�
1

nC z � 1 � 1

n

�

D g0.z/C 1

z
C
1X

nD1

�
1

nC z
� 1

n

�

: (49)

The sum on the left side of (49) can be expressed as

�
1

z
�1
�

C
1X

nD2

�
1

nCz�1� 1
n

�

D 1

z
�1C

1X

nD1

��
1

nCz
�1
n

�

C
�
1

n
� 1

nC1
�	

D 1

z
�1C

1X

nD1

�
1

nCz
� 1
n

�

C1

D 1

z
C
1X

nD1

�
1

nCz
� 1
n

�

:

Setting this in (49) yields g0.z/ � 0. Thus g.z/ is a constant and let g.z/ D � . To
determine � , putting z D 1 in (48) gives

1 D f .0/ D e�
1Y

nD1

�

1C 1

n

�

e� 1
n :

Therefore, taking the natural logarithm yields the Euler constant (also called Euler–
Mascheroni constant) given in (3) (see, e.g., [33, 125]).

The Glaisher–Kinkelin constant A given in (11) is a constant which involves
naturally in the theory of the double Gamma function �2 D 1=G (see, e.g., (10),
(12) and (13)).

We introduce two interesting mathematical constants, in addition to the Glaisher–
Kinkelin constant A, by recalling the Euler–Maclaurin summation formula
(cf. Hardy [78, p. 318]):

nX

kD1
f .k/ � C0 C

Z n

a

f .x/ dx C 1

2
f .n/C

1X

rD1

B2r

.2r/Š
f .2r�1/.n/;

where C0 is an arbitrary constant to be determined in each special case and

B0 D 1; B1 D �1
2
; B2 D 1

6
; B4D� 1

30
; B6 D 1

42
; B8 D � 1

30
; B10 D 5

66
; : : : ;

and B2nC1 D 0 .n 2 N/ are the Bernoulli numbers. For another useful summation
formula, see Edwards [65, p. 117].
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Letting f .x/ D x2 logx and f .x/ D x3 logx in (68) with a D 1, we obtain

logB D lim
n!1

"
nX

kD1
k2 log k �

�
n3

3
C n2

2
C n

6

�

lognC n3

9
� n

12

#

(50)

and

logC D lim
n!1

"
nX

kD1
k3 log k �

�
n4

4
C n3

2
C n2

4
� 1

120

�

lognC n4

16
� n2

12

#

;

(51)

respectively; here B and C are constants whose approximate numerical values are
given by

B Š 1:03091 675 : : : and C Š 0:97955 746 : : : :

The constants B and C were considered recently by Choi and Srivastava [40, 42].
Bendersky [17] (see also [2, p. 199]) presented a set of constants includingB and

C defined, respectively, by (50) and (51): There exist constantsDk defined by

logDk WD lim
n!1

 
nX

mD1
mk logm � p.n; k/

!

.k 2 N0/ ; (52)

where the definition of p.n; k/ in Adamchik [2, p. 198, Eq. (20)] is corrected here
as follows:

p.n; k/ WD nk

2
lognC nkC1

k C 1

�

logn � 1

k C 1

�

C kŠ

kX

jD1

nk�j BjC1
.j C 1/Š.k � j /Š

"

lognC �
1 � ıkj

� jX

`D1

1

k � `C 1

#

and ıkj is the Kronecker symbol defined by ıkj D 0 .k 6D j / and ıkj D 1 .k D j /.
For the constantsDk .k 2 N0/ defined in (52), we can show that

D0 D .2�/
1
2 ; D1 D A; D2 D B; D3 D C

and

logDk D BkC1Hk

k C 1
� � 0.�k/ .k 2 N0/ ;

where Bn are the Bernoulli numbers andHn are the harmonic numbers.
The constants introduced in this section can be seen to be involved in the theory

of multiple Gamma functions. For example, the following log-multiple Gamma
integral (see [31, p. 523, Eq. (2.50)])
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Z 3
2

0
log�3.t C 2/ dt D

Z 1

0
logG.t C 1/ dt C

Z 1

0
log�3.t C 1/ dt C

Z 1
2

0
log� .t C 1/ dt

C 2

Z 1
2

0
logG.t C 1/ dt C

Z 1
2

0
log�3.t C 1/ dt

D �259
768

� 29

1920
log 2C 9

16
log� � 15

16
logA � 5

4
logB C 15

16
logC:

For other analogous or generalized classes of mathematical constants and their
applications, see [32, 40, 45, 58], [46, Theorem 2, p. 403].

4 Series Associated with the Zeta Functions

A rather classical (over two centuries old) theorem of Christian Goldbach (1690–
1764), which was stated in a letter dated 1729 from Goldbach to Daniel Bernoulli
(1700–1782), was revived in 1986 by Shallit and Zikan [109] as the following
problem:

X

!2S
.! � 1/�1 D 1; (53)

where S denotes the set of all nontrivial integer kth powers, that is,

S WD ˚
nk j n; k 2 N n f1g
:

Goldbach’s theorem (53) assumes the elegant form (cf. Shallit and Zikan [109,
p. 403])

X

!2S
.! � 1/�1 D

1X

kD2
f�.k/� 1g D 1 (54)

or, equivalently,

1X

kD2
F .�.k// D 1;

where F.x/ WD x � Œx denotes the fractional part of x 2 R. As a matter of fact, it
is fairly straightforward to observe also that

1X

kD2
.�1/kF .�.k// D 1

2
;

1X

kD1
F .�.2k// D 3

4
and

1X

kD1
F .�.2k C 1// D 1

4
:
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The subject of closed-form summation of series involving the Zeta functions has
been remarkably widely investigated (see [8, 31, 41, 42, 44, 46, 111, 112, 114, 115]).
Among the various methods and techniques used in the vast literature on the
subject, Srivastava and Choi [114, 115] gave reasonably detailed accounts of
those using the binomial theorem, generating functions, multiple Gamma functions
(see [11–14, 41, 42, 89, 118]), and hypergeometric identities, presented a rather
extensive collection of closed-form sums of series involving the Zeta functions,
and showed that many of those summation formulas find their applications in the
evaluations of the determinants of the Laplacians for the n-dimensional sphere Sn

with the standard metric (see [25, 31, 41, 61, 89, 100, 103, 108, 114, 115, 118, 121]).
Here we choose to recall some closed-form summations of series involving the

Zeta functions expressed (or evaluated) by means of the Gamma and multiple
Gamma functions and their related functions (see [114, 115]; see also references
[38, 39, 43, 51, 56, 82]):

1X

kD2
�.k; a/

tk

k
D log� .a � t/ � log� .a/C t .a/ .jt j < jaj/I

1X

kD2
�.k; a/tk�1 D � .a � t/C  .a/ .jt j < jaj/I (55)

1X

kD2
f�.k/� 1g t

k

k
D log� .2 � t/C .1 � �/t .jt j < 2/I

1X

kD2
�.k; a/

zkC1

k C 1
D  .a/

2
z2 C z log� .a � z/C

Z �z

0

log� .aC t/ dt

D Œ2a � 1 � log.2�/
z

2
C Œ .a/ � 1

z2

2
C .a � 1/ log� .a � z/

� logG.a � z/C .1 � a/ log� .a/C logG.a/ .jzj < jaj/I

1X

kD1

f�.2k/� 1g z2kC1

2k C 1 D
1

2

�

Œ3� log.2�/zC log
G.2C z/� .2� z/

G.2� z/� .2C z/

	

.jzj < 2/I

1X

kD2

�.k; a/
zkC2

kC 2 D
1� a
2

Œ1� 2aC log.2�/ zC Œ1� log.2�/
z2

4
C Œ .a/� 1 z

3

3

C .a� 1/2 log� .a � z/� .zC a� 1/ logG.a� z/� .a� 1/2 log� .a/

C .a� 1/ logG.a/�
Z

�z

0
logG.t C a/ dt .jzj < jaj/:

We also recall a known general formula for the series associated the Zeta functions
(see [114, p. 149, Theorem 3.1]; see also [44]) asserted by the following theorem.
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Theorem 4.1. For every nonnegative integer n,

1X

kD2

�.k; a/

.k/nC1
tnCk D .�1/n

nŠ
Œ� 0.�n; a � t/�� 0.�n; a/

C
nX

kD1

.�1/nCk
nŠ

 
n

k

!
�
.Hn�Hn�k/ �.k � n; a/�� 0.k � n; a/

�
tk

CŒHnC .a/ tnC1

.nC 1/Š
.jt j < jajI n 2 N0/;

where � 0.s; a/ D @
@s
�.s; a/.

5 Generalized Goldbach–Euler Series

We first present the corrected expression for a certain widely recorded generalized
Goldbach–Euler series. The corrected forms are then shown to be connected with
the problem of closed-form evaluation of series involving the Zeta functions, which
happens to be an extensively investigated subject since the time of Euler as, for
example, in the Goldbach theorem (see (53) and (54)). It should be remarked in
passing that the arguments in this section is based on the paper [55].

The generalized Goldbach–Euler series has been widely investigated and
recorded in the following form (see [95, p. 59, Eq. (9)]; see also [77, p. 894,
Entry 8.363 (7)] and [93, p. 88, Eq. (5)]):

1X

kD2

1X

nD0

1

.pnC r/k � 1
D 1

p



 

�
r

p

�

�  

�
r � 1

p

��

(56)

.p 2 NI r D p ¤ 1 or r D p C 1/:

For convenience, we rewrite the cases r D p ¤ 1 and r D p C 1 .p 2 N/ of the
generalized Goldbach–Euler series (56) in the following separate forms:

1X

kD2

1X

nD1

1

.pn/k � 1
D 1

p



 .1/�  
�

1 � 1

p

��

.p 2 N n f1g/ (57)

and

1X

kD2

1X

nD1

1

.pnC 1/k � 1
D 1C 1

p



 

�
1

p

�

�  .1/

�

.p 2 N/: (58)



118 J. Choi

The special case of the generalized Goldbach–Euler series (58) when p D 1 is
recorded in [93, p. 88] (see also [95, p. 59, Eq. (10)]):

1X

kD2

1X

nD2

1

nk � 1 D 1: (59)

By using Mathematica (Version 6) with a view to finding an approximate numerical
value of the series in (59), we observed that

10X

kD2

10X

nD2

1

nk � 1 ' 1:02912 and
100X

kD2

100X

nD2

1

nk � 1 ' 1:1204:

Obviously, we can also show the error in the expression in (59) [and so in (57) and
(58) as well] by observing that

1X

kD2

1X

nD2

1

nk � 1 >
1X

kD2

1X

nD2

1

nk
D
1X

nD2

1

n.n � 1/ D 1:

5.1 Corrected Expressions for the Generalized
Goldbach–Euler Series

The duly corrected forms of the generalized Goldbach–Euler series (57) and (58)
are asserted by Theorem 5.1 below (see [55, Theorem 1]).

Theorem 5.1. Each of the following results holds true:

X

!2Sp;0
.! � 1/�1 D 1

p



 .1/�  

�

1� 1

p

��

.p 2 N n f1g/ (60)

and

X

!2Sp;1
.! � 1/�1 D 1C 1

p



 

�
1

p

�

�  .1/

�

.p 2 N/; (61)

where the set Sp; 0 is defined .for fixed p 2 N n f1g/ by

Sp;0 WD ˚
.pn/k W n 2 N and k 2 N n f1g
 (62)

and the set Sp; 1 is defined .for fixed p 2 N/ by

Sp;1 WD ˚
.pnC 1/k W n 2 N and k 2 N n f1g
: (63)
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5.2 Closed-Form Evaluation of Series Involving
Zeta Functions

Just as the Zeta-function series in (54), the series (60) and (61) can be expressed as
series involving the Riemann and Hurwitz (or generalized) Zeta functions (see [55,
Theorem 2]).

Theorem 5.2. Each of the following results holds true:

X

!2Sp;0
.! � 1/�1 D

1X

kD2

�.k/

pk
D 1

p



 .1/�  
�

1 � 1

p

��

.p 2 N n f1g/ (64)

and

X

!2Sp;1
.! � 1/�1 D

1X

kD2

1

pk
�

�

k; 1C 1

p

�

D 1C 1

p



 

�
1

p

�

�  .1/
�

.p 2 N/;

(65)

where the sets Sp;0 and Sp;1 are defined by (62) and (63), respectively.

Remark 5.1. In view of the identity (36), the special case of (64) when p D 1 yields
the Goldbach theorem (54). Each of the series involving the Zeta function in (64)
and (65) is an obvious special case of (55).

6 Determinants of Laplacians

During the last two decades, the problem of evaluation of the determinants of the
Laplacians on Riemann manifolds has received considerable attention by many
authors including (among others) D’Hoker and Phong [61, 62], Sarnak [108], and
Voros [121], who computed the determinants of the Laplacians on compact Riemann
surfaces of constant curvature in terms of special values of the Selberg Zeta function.
Although the first interest in the determinants of the Laplacians arose mainly for
Riemann surfaces, it is also interesting and potentially useful to compute these
determinants for classical Riemannian manifolds of higher dimensions, such as
spheres. In this chapter, we are particularly concerned with the evaluation of the
functional determinant for the n-dimensional sphere Sn with the standard metric.

In computations of the determinants of the Laplacians on manifolds of constant
curvature, an important rôle is played by the closed-form evaluations of the series
involving the Zeta function given in Chap. 3 (cf., e.g., Choi and Srivastava [41, 42],
and Choi et al. [31]) as well as the theory of the multiple Gamma functions presented
in Sect. 1 (cf., e.g., Voros [121], Vardi [118], Choi [25], and Quine and Choi [103]).
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6.1 The n-Dimensional Problem

Let f	ng be a sequence such that

0 D 	0 < 	1 5 	2 5 � � � 5 	n 5 � � � I 	n " 1 .n ! 1/I (66)

henceforth we consider only such nonnegative increasing sequences. Then we can
show that

Z.s/ WD
1X

nD1

1

	sn
; (67)

which is known to converge absolutely in a half-plane Re.s/ > � for some � 2 R.

Definition 6.1 (cf. Osgood et al. [100]). The determinant of the Laplacian � on
the compact manifoldM is defined to be

det0� WD
Y

	k¤0
	k; (68)

where f	kg is the sequence of eigenvalues of the Laplacian� on M .

The sequence f	kg is known to satisfy the condition as in (66), but the product
in (68) is always divergent; so, in order for the expression (68) to make sense, some
sort of regularization procedure must be used (see e.g., [63, 104, 116, 120]). It is
easily seen that, formally, e�Z0.0/ is the product of nonzero eigenvalues of �. This
product does not converge, butZ.s/ can be continued analytically to a neighborhood
of s D 0. Therefore, we can give a meaningful definition:

det0� WD e�Z0.0/;

which is called the Functional Determinant of the Laplacian� on M .

Definition 6.2. The order 
 of the sequence f	kg is defined by


 WD inf
n
˛ > 0

ˇ
ˇ
ˇ
1X

kD1

1

	˛k
< 1

o
:

The analogous and shifted analogous Weierstrass canonical products E.	/ and
E.	; a/ of the sequence f	kg are defined, respectively, by

E.	/ WD
1Y

kD1

(�

1 � 	

	k

�

exp

 
	

	k
C 	2

2	2k
C � � � C 	Œ


Œ
	
Œ


k

!)
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and

E.	; a/ WD
1Y

kD1

(�

1 � 	

	k C a

�

exp

 
	

	k C a
C � � � C 	Œ


Œ
 .	k C a/Œ


!)

;

where Œ
 denotes the greatest integer part in the order 
 of the sequence f	kg.
There exists the following relationship between E.	/ and E.	; a/ (see

Voros [121]):

E.	; a/ D exp

0

@
Œ
X

mD1
Rm�1.�a/	

m

mŠ

1

A E.	 � a/

E.�a/ ;

where, for convenience,

RŒ
.	 � a/ WD dŒ
C1

d	Œ
C1
f� logE.	; a/g :

The shifted series Z.s; a/ of Z.s/ in (67) by a is given by

Z.s; a/ WD
1X

kD1

1

.	k C a/s
:

Formally, indeed, we have

Z0.0;�	/ D �
1X

kD1
log.	k � 	/;

which, if we define

D.	/ WD exp
��Z0.0;�	/� ; (69)

immediately implies that

D.	/ D
1Y

kD1
.	k � 	/:

In fact, Voros [121] gave the relationship betweenD.	/ and E.	/ as follows:

D.	/ D expŒ�Z0.0/ exp

2

4�
Œ
X

mD1
FPZ.m/

	m

m

3

5

� exp

2

4�
Œ
X

mD2
C�m

 
m�1X

kD1

1

k

!
	m

mŠ

3

5E.	/;
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where an empty sum is interpreted to be nil and the finite part prescription is applied
(as usual) as follows (cf. Voros [121, p. 446]):

FP f .s/ WD
8
<

:

f .s/; if s is not a pole,

lim
�!0

�

f .s C �/ � Residue

�

�

; if s is a simple pole,

and

Z.�m/ D .�1/mmŠC�m:

Now consider the sequence of eigenvalues on the standard Laplacian �n on Sn.
It is known from the work of Vardi [118] (see also Terras [117]) that the standard
Laplacian�n .n 2 N/ has eigenvalues


k WD k.k C n� 1/ (70)

with multiplicity

ˇnk WD
 
k C n

n

!

�
 
k C n � 2

n

!

D .2k C n � 1/ .k C n � 2/Š

kŠ .n � 1/Š
(71)

D2k C n � 1

.n � 1/Š

n�2Y

jD1
.k C j / .k 2 N0/ :

From now on we consider the shifted sequence f	kg of f
kg in (70) by
�
n�1
2

�2
as

a fundamental sequence. Then the sequence f	kg is written in the following simple
and tractable form:

	k D 
k C
�
n � 1

2

�2
D
�

k C n � 1
2

�2
(72)

with the same multiplicity as in (71).
We will exclude the zero mode, that is, start the sequence at k D 1 for later use.

Furthermore, with a view to emphasizing n on Sn, we choose the notations Zn.s/,
Zn.s; a/, En.	/, En.	; a/, andDn.	/ instead of Z.s/, Z.s; a/, E.	/, E.	; a/, and
D.	/, respectively.

We readily observe from (69) that

Dn

 �
n � 1
2

�2!

D det0�n;

where det0�n denote the determinants of the Laplacians on Sn (n 2 N).
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Choi [25] computed the determinants of the Laplacians on the n-dimensional
unit sphere Sn (n D 1; 2; 3) by factorizing the analogous Weierstrass canonical
product of a shifted sequence f	kg in (72) of eigenvalues of the Laplacians on
Sn into multiple Gamma functions, while Choi and Srivastava [41, 42] and Choi
et al. [31] made use of some closed-form evaluations of the series involving Zeta
function given in [114, Chap. 3] for the computation of the determinants of the
Laplacians on Sn (n D 2; 3; 4; 5; 6; 7). Quine and Choi [103] made use of Zeta-
regularized products to compute det0�n and the determinant of the conformal
Laplacian, det .�Sn C n.n � 2/=4/.

In the following sections we compute the determinants of the Laplacians on Sn

(n D 1, 2 and 3).

6.2 Factorizations into Simple and Multiple Gamma Functions

We begin by expressing En.	/ .n D 1; 2; 3/ as the simple and multiple Gamma
functions. Our results are summarized in the following proposition (see Choi [25];
see also Voros [121]).

Theorem 6.1. The analogous Weierstrass canonical products En.	/ .n D 1; 2; 3/

of the shifted sequence f	kg in (72) can be expressed in terms of the simple and
multiple Gamma functions as follows:

E1.	/ D 1
n
�
�
1 � p

	
�
�
�
1C p

	
�o2 ;

E2.	/ D
˚
�2
�
1
2

�
4
ec1	�

�
1
2

� p
	
�
�
�
1
2

C p
	
�

�
�
1 � 2

p
	
� �
1C 2

p
	
� n
�2

�
1
2

� p
	
�
�2

�
1
2

C p
	
�o2 ;

and

E3.	/ D ec2	

1 � 	

�2

�
1 � p

	
�
�2

�
1C p

	
�

n
�3

�
1 � p

	
�
�3

�
1C p

	
�o2 ;

where, for convenience,

c1 WD 2.� � 1C 2 log 2/ and c2 WD log.2�/ � 3
2
;

and � is the Euler–Mascheroni constant defined by (3).



124 J. Choi

6.3 Evaluations of det0 �n .n D 1; 2; 3/

By making use of Theorem 6.1, we can compute the determinants of the Laplacians
on Sn .n D 1; 2; 3/ explicitly.

Theorem 6.2. The following evaluations hold true:

det0�1 D 4�2;

det0�2 D exp
�
1
2

� 4 � 0.�1/� D e
1
6 A4 D 3:195311496 � � � ;

det0�3 D � exp


�.3/

2�2

�

D 3:338851215 : : : ;

where A is the Glaisher–Kinkelin’s constant defined by (11).
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1 Introduction

This paper deals with highest-weight representations of infinite-dimensional Lie
algebras and Hilbert schemes of points and considers applications of these concepts
to partition functions, which are ubiquitous and very useful in physics. The
role of (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the
calculation of the partition functions and associated q-series will be discussed.
Among mathematicians, partition functions are commonly associated with new
mathematical invariants for spaces, while for physicists they are one-loop partition
functions of quantum field theories. In fact, partition functions (elliptic genera)
can be conveniently transformed into product expressions, which may inherit
the homological properties of appropriate (poly)graded Lie algebras. In quantum
field theory the connection referred to above is particularly striking in the case
of the so-called AdS/CFT correspondence. In the anti-de Sitter space AdS3, for
instance, one has Ruelle/Selberg spectral functions, whereas on the conformal
field theory (CFT) side, on the other hand, one encounters partition functions and
modular forms. What we are ready to show here is that these objects do have
a common background, expressible in terms of Euler-Poincaré and Macdonald
identities which, in turn, describe homological aspects of (finite or infinite) Lie
algebra representations. This is both quite remarkable and useful.

Being more specific, we will be dealing in what follows with applications of
modular forms and spectral functions (mainly related to the congruence subgroup
of SL.2;Z/) to partition functions, Hilbert schemes of points, and symmetric
products. Here are the contents of the paper. In Sect. 2 we shortly discuss the case
of two-geometries and then present Thurston’s list of three-geometries. This list has
been organized in terms of the corresponding compact stabilizers being isomorphic
to SO.3/, SO.2/, or the trivial group f1g, respectively. The analogue list of four-
geometries and the corresponding stabilizer subgroups are also considered in this
section. Special attention is paid to the important case of hyperbolic three-geometry.

In Sect. 3 we introduce the Petterson-Selberg and the Ruelle spectral functions
of hyperbolic three-geometry. Then, in Sect. 3.1, we consider examples for which
we explicitly show that the respective partition functions can be written in terms
of Ruelle’s spectral functions associated with q-series, although the hyperbolic
side remains still to be explored. In Sect. 4 we briefly explain the relationship
existing between the Heisenberg algebra and its representation and with the Hilbert
scheme of points in Sect. 4.1. This allows to construct a representation of products
of Heisenberg and Clifford algebras on the direct sum of homology groups of
all components associated with schemes. Hilbert schemes of points of surfaces
are discussed in Sect. 4.2; we rewrite there the character formulas and Göttsche’s
formula in terms of Ruelle’s spectral functions.

In Sect. 4.3 we pay attention to the special case of algebraic structures of
the K-groups K QH�N .X

N / of �N -equivariant Clifford supermodules on XN , fol-
lowing the lines of [1]. This case is important since the direct sum F�� .X/ D
˚1N K QH�N .XN / naturally carries a Hopf algebra structure, and it is isomorphic to



On Partition Functions of Hyperbolic Three-Geometry and Associated Hilbert Schemes 133

the Fock space of a twisted Heisenberg superalgebra with K QH�N .X/ Š K� .X/.
In terms of the Ruelle spectral function we represent the dimension of a direct sum of
the equivariant K-groups (related to a suitable supersymmetric algebra). We analyze
elliptic genera for generalized wreath and symmetric products on N -folds; these
cases are examples of rather straightforward applications of the machinery of
modular forms and spectral functions discussed above. Finally, in the conclusions,
Sect. 5, we briefly outline some issues and further perspectives for the analysis of
partition functions in connection with deformation quantization.

2 Classification of Low-Dimensional Geometries

The problem of the classification of geometries is most important in complex
analysis and in mathematics as a whole and also plays a fundamental role in
physical theories. Indeed, in quantum field theory, functional integration over spaces
of metrics can be separated into an integration over all metrics for some volume
of a definite topology, followed by a sum over all topologies. But even for low-
dimensional spaces (say, e.g., the three-dimensional case) of fixed topology, the
moduli space of all metric diffeomorphisms is infinite dimensional. And this leads
back to the deep mathematical task associated with the classification problem. In this
section we present a brief discussion of the classification (uniformization) issue and
of the sum over the topology for low-dimensional cases, along the lines of [2–4].

All curves of genus zero can be uniformized by rational functions, those of genus
one by elliptic functions, and those of genus higher than one by meromorphic func-
tions, defined on proper open subsets ofC. These results, due to Klein, Poincaré, and
Koebe, are among the deepest achievements in mathematics. A complete solution
of the uniformization problem has not yet been obtained (with the exception of the
one-dimensional complex case). However, there have been essential advances in this
problem, which have brought to the foundation of topological methods, covering
spaces, existence theorems for partial differential equations, existence and distortion
theorems for conformal mappings, etc.

Three-Geometries. According to Thurston’s conjecture [5], there are eight model
spaces in three dimensions:

X D G=� D
(
R
3 (Euclidean space); S3 (spherical space); H3 (hyperbolic space)

H2 � R ; S2 � R ; CSL.2;R/ ; Nil3 ; Sol3

)

:

An important remark is in order. This conjecture follows from considering the
identity component of the isotropy group, � � �x of X , through a point, x. � is
a compact, connected Lie group, and one must distinguish the three different cases:
� D SO.3/; SO.2/ and f1g.
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Table 1 List of the four-geometries

Stabilizer-subgroup � Space X

SO.4/ R
4, S4; H4

U.2/ CP 2; CH2

SO.2/� SO.2/ S2 �R
2; S2 � S2; S2 �H2; H2 �R

2; H2 �H2

SO.3/ S3 �R; H3 �R

SO.2/ Nil3 �R; ePSL.2;R/� R; Sol4

S1 F 4

Trivial Nil4; Sol4m;n (including Sol3 � R/; Sol41

1. � D SO.3/. In this case the space X has constant curvature: R3; S3 (modeled
on R

3), orH3 (which can be modeled on the half-space R2 � R
C).

2. � D SO.2/. In this case there is a one-dimensional subspace of TX that is
invariant under � , which has a complementary plane field Px . If the plane field
Px is integrable, thenX is a productR�S2 orR�H2. If the plane fieldPx is non-
integrable, then X is a nontrivial fiber bundle with fiber S1: S1 ,! X � ˙g�2
( CSL.2;R/-geometry), ˙g stands for a surface of genus g, S1 ,! X � T 2

(Nil3-geometry) or S1 ,! X � S2 (S3-geometry).
3. � D f1g. In this case we have the three-dimensional Lie groups: CSL.2;R/ ; Nil3,

and Sol3.

The first five geometries are familiar objects, so we briefly discuss the last three
of them. The group CSL.2;R/ is the universal covering of SL.2;R/, the three-
dimensional Lie group of all 2 � 2 real matrices with determinant equal to 1.
The geometry of Nil is the three-dimensional Lie group of all 3 � 3 real upper
triangular matrices endowed with ordinary matrix multiplication. It is also known
as the nilpotent Heisenberg group. The geometry of Sol is the three-dimensional
(solvable) group.

Four-Geometries. The list of Thurston three-geometries has been organized in
terms of the compact stabilizers � . The analogue list of four-geometries can also
be organized using connected groups of isometries only (Table 1). Here we have
the four irreducible four-dimensional Riemannian symmetric spaces: sphere S4,
hyperbolic spaceH4, complex projective space CP2, and complex hyperbolic space
CH2 (which we may identify with the open unit ball in C

2, with an appropriate
metric). The other cases are more specific and we shall illustrate them for the sake of
completeness only.

The nilpotent Lie group Nil4 can be presented as the split extension R
3 ÌU R

of R3 by R, where the real three-dimensional representation U of R has the form
U.t/ D exp.tB/ with

B D
0

@
0 1 0

0 0 1

0 0 0

1

A :
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In the same way, the soluble Lie groups Sol4m;n D R
3 ÌTm;n R, on real

three-dimensional representations Tm;n of R, Tm;n.t/ D exp.tCm;n/, where
Cm;n D diag.˛; ˇ; �/ and ˛ C ˇ C � D 0 for ˛ > ˇ > � . Furthermore e˛, eˇ ,
and e� are the roots of 	3 � m	2 C n	 � 1 D 0, with m; n positive integers.
If m D n, then ˇ D 0 and Sol4m;n D Sol3 � R. In general, if Cm;n / Cm0;n0 ,
then Sol4m;n Š Sol4m0;n0

. It gives infinitely many classes of equivalence. When
m2n2 C 18 D 4.m3 C n3/ C 27, one has a new geometry, Sol40, associated with
the group SO.2/ of isometries rotating the first two coordinates. The soluble group
Sol41 is most conveniently represented as the matrix group

8
<

:

0

@
1 b c

0 ˛ a

0 0 1

1

A W ˛; a; b; c 2 R; ˛ > 0

9
=

;
:

Finally, the geometry F 4 is associated with the isometry group R
2ÌPSL.2;R/ and

stabilizer SO.2/. Here the semidirect product is taken with respect to the action
of the group PSL.2;R/ on R

2. The space F 4 is diffeomorphic to R
4 and has

alternating signs in the metric. A connection of these geometries with complex and
Kählerian structures (preserved by the stabilizer � ) can be found in [3].

We conclude this section with some comments. In two-dimensional quantum
theory it is customary to perform the sum over all topologies. Then, any functional
integral of fixed genus g can be written in the form

Z
ŒDg D

1X

gD0

Z

.fixed genus/
ŒDg:

A necessary first step to implement this in the three-dimensional case is the classi-
fication of all possible three-topologies (by Kleinian groups). Provided Thurston’s
conjecture is true, every compact closed three-dimensional manifold can be rep-
resented as

S1
`D1 Gn`=�n` , where n` 2 .1; : : : ; 8/ represents one of the eight

geometries, and � is the (discrete) isometry group of the corresponding geometry.
It has to be noted that gluing the above geometries, characterizing different coupling
constants by a complicated set of moduli, is a very difficult task. Perhaps this
could be done, however, with a bit of luck, but the more important contribution
to the vacuum persistence amplitude should be given by the compact hyperbolic
geometry, the other geometries appearing only for a small number of exceptions [6].
Indeed, many three-manifolds are hyperbolic (according to a famous theorem by
Thurston [5]). For example, the complement of a knot in S3 admits a hyperbolic
structure unless it is a torus or satellite knot. Moreover, according to the Mostow
Rigidity Theorem [7], any geometric invariant of a hyperbolic three-manifold is a
topological invariant. Our special interest here is directed towards hyperbolic spaces.
Some examples of partition functions and elliptic genera written in terms of spectral
functions of H3 spaces and their quotients by a subgroup of the isometry group
PSL.2;C/ � SL.2;C/=f˙1g can be found in [8, 9].
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3 The Ray-Singer Norm: Hyperbolic Three-Geometry

If Lp is a self-adjoint Laplacian on p-forms, then the following results
hold. There exists "; ı > 0 such that for 0 < t < ı the heat kernel
expansion for Laplace operators on a compact manifold X is given by
Tr
�
e�tLp

� D P
0�`�`0 a`.Lp/t

�` CO.t"/. The zeta function of Lp is the Mellin
transform

�.sjLp/ D M
�
Tr e�tLp

� D Œ� .s/�1
Z

R
C

Tr e�tLp t s�1dt: (1)

This function equals Tr
�
L�sp

�
for s > .1=2/ dimX . Let � be an orthogonal

representation of �1.X/. Using the Hodge decomposition, the vector spaceH.X I�/
of twisted cohomology classes can be embedded into ˝.X I�/ as the space of
harmonic forms. This embedding induces a norm j � jRS on the determinant line
detH.X I�/. The Ray-Singer norm jj � jjRS on detH.X I�/ is defined by [10]

jj � jjRS defD j � jRS
dimXY

pD0



exp

�

� d

ds
�.sjLp/jsD0

��.�1/pp=2
; (2)

where the zeta function �.sjLp/ of the Laplacian acting on the space of p-forms
orthogonal to the harmonic forms has been used. For a closed connected orientable
smooth manifold of odd dimension, and for the Euler structure � 2 Eul.X/, the
Ray-Singer norm of its cohomological torsion �an.X I �/ D �an.X/ 2 detH.X I�/
is equal to the positive square root of the absolute value of the monodromy of �
along the characteristic class c.�/ 2 H1.X/ [11]: jj�an.X/jjRS D jdet �c.�/j1=2.
And in the special case where the flat bundle � is acyclic (namely the vector space
Hq.X I�/ of twisted cohomology is zero), we have

Œ�an.X/
2 D jdet �c.�/j

dimXY

pD0



exp

�

� d

ds
�.sjLp/jsD0

��.�1/pC1p

: (3)

3.1 Spectral Functions of Hyperbolic Three-Geometry

For a closed oriented hyperbolic three-manifold of the form X� D H3=� and for
acyclic �, the analytic torsion reads [12–14]: Œ�an.X� /

2 D R.0/, where R.s/ is the
Ruelle function.1 A Ruelle-type zeta function, for Re s large, can be defined as the

1Vanishing theorems for the type .0; q/ cohomology of locally symmetric spaces can be found in
[15]. Again, if � is acyclic (H.XI�/ D 0), the Ray-Singer norm (3) is a topological invariant: it
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product over prime closed geodesics � of factors det .I��.�/e�s`.�//, where `.�/ is
the length of � , and can be continued meromorphically to the entire complex plane
C [16]. The function R.s/ is an alternating product of more complicated factors,
each of which is a Selberg zeta function Z� .s/. The relation between the Ruelle
and Selberg functions is

R.s/ D
dimX�1Y

pD0
Z� .p C s/.�1/j : (4)

The Ruelle function associated with closed oriented hyperbolic three-manifold X�
has the form R.s/ D Z� .s/Z� .2C s/=Z� .1C s/.

We would like here to shed light on some aspects of the so-called AdS3/CFT2
correspondence, which plays a very important role in quantum field theory. Indeed,
it is known that the geometric structure of three-dimensional gravity allows
for exact computations, since its Euclidean counterpart is locally isomorphic to
constant curvature hyperbolic space. Because of the AdS3/CFT2 correspondence,
one expects a correspondence between spectral functions related to Euclidean AdS3
and modular-like functions (Poincaré series).2 One assumes this correspondence
to occur when the arguments of the spectral functions take values on a Riemann
surface, viewed as the conformal boundary of AdS3. According to the holographic
principle, strong ties exist between certain field theory quantities on the bulk of
an AdS3 manifold and related quantities on its boundary at infinity. To be more
precise, the classes of Euclidean AdS3 spaces are quotients of the real hyperbolic
space by a discrete group (a Schottky group). The boundary of these spaces can be
compact oriented surfaces with conformal structure (compact complex algebraic
curves). A general formulation of the “Holography Principle” states that there
is a correspondence between a certain class of fields, their properties and their
correlators in the bulk space, where gravity propagates, and a class of primary fields,
with their properties and correlators of the conformal theory on the boundary. More
precisely, the set of scattering poles in 3D coincides with the zeros of a Selberg-
type spectral function [14,17]. Thus, encoded on a Selberg function is the spectrum
of a three-dimensional model. In the framework of this general principle, we would
like to illustrate the correspondence between spectral functions of hyperbolic three-
geometry (its spectrum being encoded in the Petterson-Selberg spectral functions)
and Poincaré series associated with the conformal structure in two dimensions.

Let us consider a three-geometry with an orbifold description H3=� . The
complex unimodular group G D SL.2;C/ acts on the real hyperbolic three-space

does not depend on the choice of the metric onX and � used in the construction. If X is a complex
manifold (smooth C1-manifold or topological space), then E ! X is the induced complex (or
smooth, or continuous) vector bundles. We writeHp;q.XIE/ ' H0;q.XI�p;0X ˝E/ holonomic
vector bundles �p;0X ! X (see [15] for details).
2The modular forms in question are the forms for the congruence subgroup of SL.2;Z/, which is
viewed as the group that leaves fixed one of the three nontrivial spin structures on an elliptic curve.
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H3 in a standard way, namely for .x; y; z/ 2 H3 and g 2 G, one has g � .x; y; z/ D
.u; v;w/ 2 H3. Thus, for r D x C iy, g D


a b

c d

�

,

u C iv D Œ.ar C b/.cr C d/C acz2 � Œjcr C d j2 C jcj2z2�1;

w D z � Œjcr C d j2 C jcj2z2�1 :

Here the bar denotes complex conjugation. Let � 2 G be the discrete group of G
be defined as

� D fdiag.e2n�.Im �CiRe �/; e�2n�.Im �CiRe �// W n 2 Zg D fgn W n 2 Zg ;
g D diag.e2�.Im �CiRe �/; e�2�.Im �CiRe �// : (5)

One can define a Selberg-type zeta function for the group � D fgn W n 2 Zg
generated by a single hyperbolic element of the form g D diag.ez; e�z/, where
z D ˛ C iˇ for ˛; ˇ > 0. In fact, we will take ˛ D 2�Im � , ˇ D 2�Re � . For the
standard action of SL.2;C/ onH3, one has

g

2

4
x

y

z

3

5 D
2

4
e˛ 0 0

0 e˛ 0

0 0 e˛

3

5

2

4
cos.ˇ/ � sin.ˇ/ 0
sin.ˇ/ cos.ˇ/ 0
0 0 1

3

5

2

4
x

y

z

3

5 : (6)

Therefore, g is the composition of a rotation in R
2, with complex eigenvalues

exp.˙iˇ/ and a dilatation exp.˛/. The Patterson-Selberg spectral functionZ� .s/ is
meromorphic on C and can be attached to H3=� . It is given, for Re s > 0, by the
formulas [17–19]

Z� .s/ WD
Y

k1;k2�0
Œ1 � .eiˇ/k1.e�iˇ/k2e�.k1Ck2Cs/˛ ; (7)

log Z� .s/ D �1
4

1X

nD1

e�n˛.s�1/

nŒsinh2
�
˛n
2

�C sin2
�
ˇn

2

�

: (8)

The zeros of Z� .s/ are the complex numbers �n;k1;k2 D � .k1 C k2/ C
i .k1 � k2/ ˇ=˛ C 2�in=˛, n 2 Z (for details, see [18]). It can be also shown
that the zeta function Z� .s/ is an entire function of order three and finite type. It
is bounded in absolute value, for Re s � 0 as well as for Re s � 0, and can be
estimated as follows:

jZ� .s/j �
1Y

k1Ck2�jsj

ejsj`
1Y

k1Ck2�jsj

.1 � e.jsj�k1�k2/`/ � C1e
C2jsj3 ; (9)
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where C1 and C2 are suitable constants. The first factor on the right hand side of
(9) yields exponential growth, while the second factor is bounded, what proves the
required growth estimate. The spectral functionZ� .s/ is an entire function of order
three and finite type and can be written as a Hadamard product [17]

Z� .s/ D eQ.s/
Y

�2˙
.1 � s

�
/ exp

�
s

�
C s2

2�2
C s3

3�3

�

; (10)

where � � �n;k1;k2 , and we denote the set of such numbers by ˙ , Q.s/ being
a polynomial of degree at most three. It follows from the Hadamard product
representation of Z� .s/ (10) that

d

ds
log Z� .s/ D d

ds
Q.s/C

X

�2˙

.s=�/3

s � �
: (11)

Let us define �.y ˙ i�/ WD .d=ds/ logZ� .s/ for s D y ˙ i�. Then

�.y ˙ i�/ D d

ds
Q.s D y ˙ i�/C i�1

X

y˙i"2˙

.y ˙ i�/3

.y ˙ i"/3.˙� � "/
: (12)

Generating Functions. Using the equality

sinh2
�˛n

2

�
C sin2

�
ˇn

2

�

D j sin.n��/j2 D j1 � qnj2
4jqjn

and (8), we get

log
1Y

mD`
.1 � qmC"/ D

1X

mD`
log.1 � qmC"/ D �

1X

nD1

q.`C"/n.1 � qn/jqj�n
4nj sin.n��/j2

D log


Z� .�.1 � i t//

Z� .�.1 � i t/C 1C i t/

�

; (13)

log
1Y

mD`
.1 � qmC"/ D

1X

mD`
log.1 � qmC"/ D �

1X

nD1

q.`C"/n.1 � qn/jqj�n
4nj sin.n��/j2

D log


Z� .�.1C i t//

Z� .�.1C i t/C 1 � i t/

�

; (14)

log
1Y

mD`
.1C qmC"/ D

1X

mD`
log.1C qmC"/ D �

1X

nD1

.�1/nq.`C"/n.1 � qn/jqj�n
4nj sin.n��/j2

D log


Z� .�.1 � i t/C i�.�//

Z� .�.1C i t/C 1 � i t C i�.�//

�

; (15)
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log
1Y

mD`
.1C qmC"/ D

1X

mD`
log.1C qmC"/ D �

1X

nD1

.�1/nq.`C"/n.1 � qn/jqj�n
4nj sin.n��/j2

D log


Z� .�.1C i t/C i�.�//

Z� .�.1C i t/C 1 � i t C i�.�//

�

; (16)

where ` 2 ZC; " 2 C, t D Re �=Im � , � D `C ", and �.�/ D ˙.2�/�1. Let us next
introduce some well-known functions and their modular properties under the action
of SL.2;Z/. The special cases associated with (13) and (14) are (see [20])

f1.q/ D q�
1
48

Y

m>0

.1� qmC
1
2 / D �D.q

1
2 /

�D.q/
; (17)

f2.q/ D q�
1
48

Y

m>0

.1C qmC
1
2 / D �D.q/

2

�D.q
1
2 /�D.q2/

; (18)

f3.q/ D q
1
24

Y

m>0

.1C qmC1/ D �D.q
2/

�D.q/
; (19)

where �D.q/ � q1=24
Q
n>0.1 � qn/ is the Dedekind �-function. The linear span

of f1.q/; f2.q/, and f3.q/ is SL.2;Z/-invariant [20]
�
g 2


a b

c d

�

, g � f .�/ D

f
�
a�Cb
c�Cd

��
. As f1.q/ � f2.q/ � f3.q/ D 1, we get

R.s D 3=2�.3=2/i t/�R.� D 3=2�.3=2/i tCi�.�//�R.� D 2�2itCi�.�// D 1 :

For a closed oriented hyperbolic three-manifold of the form X D H3=� (and any
acyclic orthogonal representation of �1.X/) a set of useful generating functions is
collected in Table 2.

4 Generalized Symmetric Products of N -Folds

4.1 Hilbert Schemes and Heisenberg Algebras

Before entering the discussion of the main topic in this section, a short comment
about Heisenberg algebras and Hilbert schemes will be in order. Preliminary to
the subject of symmetric products and their connection with spectral functions, we
briefly explain the relation between the Heisenberg algebra and its representations,
and the Hilbert scheme of points, mostly following the lines of [21].
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Table 2 List of generating functions

1Q

nD`

.1� qnC"/ D
h

Z� .�.1�i t//

Z� .�.1�i t/C1Ci t/

i
D R.s D �.1� i t //

1Q

nD`

.1� qnC"/ D
h

Z� .�.1Ci t//

Z� .�.1Ci t/C1�i t/

i
D R.s D �.1C i t //

1Q

nD`

.1C qnC"/ D
h

Z� .�.1�i t/Ci�.�//

Z� .�.1�i t/Ci�.�/C1Ci t/

i
D R.� D �.1� i t /C i�.�//

1Q

nD`

.1C qnC"/ D
h

Z� .�.1Ci t/Ci�.�//

Z� .�.1Ci t/Ci�.�/C1�i t/

i
D R.� D �.1C i t /C i�.�//

1Q

nD`

.1� qnC�/n D R.s D �.1� i t //` 1Q

nD`

R.s D .nC "C 1/.1� i t //

1Q

nD`

.1� qnC�/n D R.s D �.1C i t //` 1Q

nD`

R.s D .nC "C 1/.1C i t //

1Q

nD`

.1C qnC�/n D R.� D �.1� i t /C i�.�//` 1Q

nD`

R.� D .nC "C 1/.1� i t /C i�.�//

1Q

nD`

.1C qnC�/n D R.� D �.1C i t /C i�.�//`
1Q

nD`

R.� D .nC "C 1/.1C i t /C i�.�//

To be more specific, note that the infinite-dimensional Heisenberg algebra
(or, simply, the Heisenberg algebra) plays a fundamental role in the representation
theory of affine Lie algebras. An important representation of the Heisenberg algebra
is the Fock space representation on the polynomial ring of infinitely many variables.
The degrees of polynomials (with different degree variables) give a direct sum
decomposition of the representation, which is called weight space decomposition.

The Hilbert scheme of points on a complex surface appears in algebraic
geometry. The Hilbert scheme of points decomposes into infinitely many connected
components according to the number of points. Betti numbers of the Hilbert scheme
have been computed in [22]. The sum of the Betti numbers of the Hilbert scheme of
N -points is equal to the dimension of the subspaces of the Fock space representation
of degreeN .

Algebraic Preliminaries. LetR D QŒp1; p2; : : : be the polynomial ring of infinite
many variables fpj g1jD1. Define P Œj  as j@=@pj and P Œ�j  as a multiplication
of pj for each positive j . Then, the commutation relation holds: Œ P Œi ; P Œj   D
iıiCj;0 IdR, i; j 2 Z=f0g. We define the infinite-dimensional Heisenberg algebra as
the Lie algebra generated by P Œj  and K with defining relation

Œ P Œi ; P Œj   D iıiCj;0KR; Œ P Œi ; K  D 0; i; j 2 Z=f0g: (20)
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The above R labels the representation. If 1 2 R is the constant polynomial, then
P Œi1 D 0; i 2 ZC and

R D SpanfP Œ�j1 � � �P Œ�jk  1 j k 2 ZC [ f0g; j1; : : : ; jk 2 ZCg : (21)

1 is a highest-weight vector. This is known in physics as the bosonic Fock
space. The operators P Œj  .j < 0/ (P Œj  .j > 0/) are the creation (anni-
hilation) operators, while 1 is the vacuum vector. Define the degree operator

D W R ! R by D.p
m1
1 p

m2
2 � � � / defD .

P
i imi/p

m1
1 p

m2
2 : : : . The representation

R has D eigenspace decomposition; the eigenspace with eigenvalue N has a
basis pm11 p

m2
2 � � � .Pi imi / D N . Recall that a partition of N is defined by

a nonincreasing sequence of nonnegative integers �1 � �2 � � � � such thatP
` �` D N . One can represent � as .1m1; 2m2; : : :/ (where 1 appears m1-times, 2

appears m2-times, and so on, in the sequence). Therefore, elements of the basis
correspond bijectively to a partition �. The generating function of eigenspace
dimensions, or the character in the terminology of representation theory, is known
to have the form

TrR q
D defD

X

N�0
qN dim fr 2 R j Dr D Nr g D

1Y

nD1
.1 � qn/�1 : (22)

Let us define now the Heisenberg algebra associated with a finite-dimensional Q-
vector space V with nondegenerate symmetric bilinear form . ; /. Let W D .V ˝
t QŒt / ˚ .V ˝ t�1QŒt�1/, then define a skew-symmetric bilinear form on W by
.r ˝ t i ; s ˝ t j / D iıiCj;0.r; s/. The Heisenberg algebra associated with V can
be defined as follows: take the quotient of the free algebra A.W / divided by the
ideal I generated by Œr; s � .r; s/1 .r; s 2 W /. It is clear that when V D Q one
has the above Heisenberg algebra. For an orthogonal basis frj gpjD1 the Heisenberg
algebra associated with V is isomorphic to the tensor product of p-copies of the
above Heisenberg algebra.

Let us consider next the super-version of the Heisenberg algebra, known as the
super-Heisenberg algebra. The initial data are constituted by a vector space, V , with
decomposition V D Veven ˚ Vodd, and a nondegenerate bilinear form satisfying
.r; s/ D .�1/jr jjsj.r; s/. In this formula, r; s are either elements of Veven or Vodd,
while jr j D 0 if r 2 Veven and jr j D 1 if r 2 Vodd. As above, we can define W , the
bilinear form onW , and A.W /=I, where now we replace the Lie bracket Œ ;  by the
super-Lie bracket. In addition, to construct the free-super-Lie algebra in the tensor
algebra, we set

.r ˝ t i ; s ˝ t j / D .r ˝ t i /.s ˝ t j /C .s ˝ t j /.r ˝ t i /

for r; s 2 Vodd. By generalizing the representation on the space of polynomials
of infinitely many variables one can get a representation of the super-Heisenberg
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algebra on the symmetric algebra R D S�.V ˝ t QŒt / of the positive degree part
V ˝ t Q Œt . As above, we can define the degree operator D. The following character
formulas hold:

TrR qD D
1Y

nD1

.1C qn/dimVodd

.1 � qn/dimVeven
D R.� D 1 � i t C i�.�//dimVodd

R.s D 1 � i t/dimVeven
; (23)

STrR q
D D

1Y

nD1
.1 � qn/dimVodd�dimVeven D R.s D 1 � i t/dimVodd�dim Veven ; (24)

where we have counted the odd degree part by �1 and replaced the usual trace by
the super-trace.3

If we consider the generating function of the Poincaré polynomials associated
with sets of points, we get the character of the Fock space representation of the
Heisenberg algebra. This is, in general, the integrable highest-weight representation
of the corresponding affine Lie algebra and is known to have modular invariance, as
was proven in [23]. This occurrence is naturally explained through the relation to
partition functions of conformal field theory on a torus. In this connection, the affine
Lie algebra has a close relationship to conformal field theory.

4.2 One-Dimensional Higher Variety

Let us consider the N -fold symmetric product SNX of a Kähler manifold X , that
is, the SNX D ŒXN=SN  WD X � � � � �X„ ƒ‚ …

N

=SN orbifold space, SN being the

symmetric group ofN elements. Objects of the category of the orbispace ŒXN=SN 

are the N -tuples .x1; : : : ; xN / of points in X ; arrows are elements of the form
.x1; : : : ; xN I �/, where � 2 SN . In addition, the arrow .x1; : : : ; xN I �/ has as its
source .x1; : : : ; xN / and as its target .x�.1/; : : : ; x�.N//. This category is a groupoid
for the inverse of .x1; : : : ; xN I �/ is .x�.1/; : : : ; x�.N/I ��1/. (The orbispace as a
groupoid has been described in [24,25].) For a one-dimensional higher variety (i.e.,
for a surface) the following results hold:

3In the case when V has the one-dimensional odd degree part only (the bilinear form is .r; r/D 1

for a nonzero vector r 2 V ) and the above condition is not satisfied, we can modify the definition
of the corresponding super-Heisenberg algebra by changing the bilinear form onW as .r˝ t i ; r˝
t j / D ıiCj;0 . The resulting algebra is termed an infinite-dimensional Clifford algebra. The above
representation R is the fermionic Fock space in physics and it can be modified as follows: the
representation of the even degree part was realized as the space of polynomials of infinitely many
variables; the Clifford algebra is realized on the exterior algebra R D ��.

L
j Qdpj / of a vector

space with a basis of infinitely many vectors. For j > 0 we define r ˝ t�j as an exterior product
of dpj and r ˝ t j as an interior product of @=@pj .
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• For a Riemann surface (dimX D 1) SNX and XN are isomorphic under the
Hilbert-Chow morphism.

• If X is a nonsingular quasi-projective surface, the Hilbert-Chow morphism
� W XŒN ! SNX gives a resolution of the singularities of the symmetric
product SNX [26]. In particular, XŒN is a nonsingular quasi-projective variety
of dimension 2N .

• If X has a symplectic form,XŒN has also a symplectic form. ForN D 2 this has
been proven in [27], and for N general in [28].

• The generating function of the Poincaré polynomials Pr.XŒN / of XŒN is given
by

1X

ND0
qN Pr .X

ŒN / D
1Y

nD1

.1C r2n�1qn/b1.X/.1C r2nC1qn/b3.X/

.1 � r2n�2qn/b0.X/.1 � r2nqn/b2.X/.1 � r2nC2qn/b4.X/

D
Q
jD1;2 R.� D �2j�1.1 � i t/C i�.�//b2j�1.X/

Q
jD1;2;3R.s D �2j�2.1 � i t//b2j�2.X/

; (25)

where �2j�1 D j � 1=2; �2j�2 D j � 1 and r D exp.�i�).

4.3 Equivariant K-Theory, Wreath Products

We study here a direct sum of the equivariant K-groups F� .X/ WD ˚N�0K�N
.XN /

associated with a topological � -space [1]. � is a finite group and the wreath
(semidirect) product �N ÌSN acts naturally on theN th Cartesian productXN . One
can calculate the torsion free part of K	� .Y / (where � acts on Y and � is a finite
group) by localizing on the prime ideals of R.� /, the representation ring of � (for
details, see [29]) K	� .Y / Š L

f�gK	.Y � /�� , where K�N
.XN / � K�N .X

N /˝ C.
Here f�g runs over the conjugacy classes of elements in � , Y � are the fixed point
loci of � , and�� is the centralizer of � in � . The fixed point set fXN g� is isomorphic
to XN D X

P
n Nn , � 2 SN , and �� Š Q

nSNn Ë .Z=n/Nn . The cyclic groups
Z=n act trivially in K	.XN /, and therefore, the following decomposition for the
RN -equivariantK-theory holds [30]:

K	.SNX/ Š
M

f�g
K	..SN /� //�� Š

M

P
nNnDN

O

n

K	.SNn/SNn : (26)

As an example of such K-group we here analyze the group K�QH�N .X
N / which has

been introduced in [1]. The semidirect product �N can be extended to the action of
a larger finite supergroup QH�N , which is a double cover of the semidirect product
.� � Z2/

N Ì SN . The category of QH�N -equivariant spin vector superbundles over
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XN is the category of �N -equivariant vector bundlesE overXN such thatE carries
a supermodule structure with respect to the complex Clifford algebra of rank N .4

It has been shown [1] that the following statements hold:

1. The direct sum F�� .X/ WD ˚1ND0K QH�N .XN / carries naturally a Hopf algebra
structure.

2. It is isomorphic to the Fock space of a twisted Heisenberg superalgebra (in this
section super means Z2-graded) associated with K�QH�N .X/ Š K� .X/.

3. If X is a point, the K-group K QH�N .X
N / becomes the Grothendieck group of

spin supermodules of QH�N .

Such a twisted Heisenberg algebra has played an important role in the theory
of affine Kac-Moody algebras [31]. The structure of the space F�� .X/ under
consideration can be modeled on the ring ˝C of symmetric functions with a linear
basis given by the so-called SchurQ-functions (or equivalently on the direct sum of
the spin representation ring of QH�N for all N ). The graded dimension of the ring
˝C is given by the denominator

Q
nD0.1 � q2n�1/�1. On the basis of Göttsche’s

formula [22] it has been conjectured [32] that the direct sum H.S/ of the homology
groups for Hilbert scheme SŒN  ofN -points on a (quasi-)projective surface S should
carry the structure of the Fock space of a Heisenberg algebra, which was realized
subsequently in a geometric way [21,33]. Parallel algebraic structures such as Hopf
algebra, vertex operators, and Heisenberg algebra as part of vertex algebra structures
[31, 34] have naturally showed up in H.S/ as well as in F� .X/. If S is a suitable
resolution of singularities of an orbifold X=� , there appears close connections
between H.S/ and F� .X/ [1]. In fact the special case of � trivial is closely related
to the analysis considered in [35]. It would be interesting to find some applications
of results discussed above in string theory.

The Generating Function. The orbifold Euler number e.X; � / was introduced in
[36] in the study of orbifold string theory and it has been interpreted as the Euler
number of the equivariant K-group K� .X/ [37]. Define the Euler number of the
generalized symmetric product to be the difference

e.XN ; QH�N/ WD dimK�;0QH�n.X
N /� dimK�;1QH�N .X

N / ;

the series
P1

ND0 qN e.XN ; QH�N/ can be written in terms of spectral functions:

1X

ND0
qN e.XN ; QH�N/ D

1Y

nD1
.1 � q2n�1/�e.X;� / D

h
q�

25
24 .q � 1/f3.q/

ie.X;� /

D R.s D 1=2� .1=2/i t/�e.X;� / : (27)

4A fundamental example of QH�N -vector superbundles over XN (X compact) is the following:
given a � -vector bundle V over X , consider the vector superbundle V ˚ V over X with the
natural Z2-grading. One can endow the N th outer tensor product .V ˚ V /�N with a naturalQH�N -equivariant vector superbundle structure over XN .
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One can give an explicit description of F�� .X/ as a graded algebra. Indeed,
the following statement holds [1]: as a .ZC � Z2/-graded algebra, F�� .X; q/ is
isomorphic to the supersymmetric algebra S

�L1
ND1 q2N�1K� .X/

�
. In particular,

dimq F
�
� .X/ D

1Y

nD1

.1C q2n�1/dimK1
� .X/

.1� q2n�1/dimK0
� .X/

D ŒR.� D 1=2� .1=2/i t C .1=2/i�.�//dimK1
� .X/

ŒR.s D 1=2� .1=2/i t/dimK0
� .X/

; (28)

where the supersymmetric algebra is equal to the tensor product of the symmetric
algebraS

�L1
ND1 q2N�1K0

� .X/
�

and the exterior algebra�
�L1

ND1 q2N�1K1
� .X/

�
.

In the case when Xpt is a point we have

X

N�0
qN dimF�� .Xpt / D

1Y

nD1
.1 � q2n�1/�j��

j D ŒR.s D 1=2� .1=2/i t/�j��

j :

(29)
In (29) � is a finite group with r C 1 conjugacy classes; � � WD f�j grjD0 is the set
of complex irreducible characters, where �0 denotes the trivial character. By �� we
denote the set of conjugacy classes.

5 Conclusions

Having advocated in this paper the basic role of modular forms and spectral
functions with their connection to Lie algebra cohomologies and K-theory methods,
we are now, in concluding, naturally led to other crucial problems, related to
the deformation procedure. For instance, one might ask whether the form of the
partition functions could be algebraically interpreted by means of infinitesimal
deformations of the corresponding Lie algebras. No doubt this analysis will require
a new degree of mathematical sophistication. Perhaps all the concepts of what
could eventually be called the “deformation theory of everything” might be possibly
tested in the case of associative algebras, which are algebras over operads [38].
In many examples dealing with algebras over operads, arguments of the universality
of associative algebras are called forth. This strongly suggests that a connection
between the deformation theory (deformed partition functions) and algebras over
operads might exist. We expect to be able to discuss this key problem in forthcoming
work.
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Families of Twisted Bernoulli Numbers, Twisted
Bernoulli Polynomials, and Their Applications

Yilmaz Simsek

Dedicated to Professor Hari M. Srivastava

Abstract This chapter is motivated by the fact that the theories and applications
of the many methods and techniques used in dealing with some different families
of the twisted Bernoulli numbers, the twisted Bernoulli polynomials, and their
families of interpolation functions, which are the family of twisted zeta functions,
the family of twisted L-functions. By using the p-adic Volkenborn integral, twisted
.h; q/-Bernoulli numbers and twisted .h; q/-Bernoulli polynomials are introduced.
The p-adic meromorphic functions, which interpolation twisted .h; q/-Bernoulli
numbers and twisted .h; q/-Bernoulli polynomials, associated with the p-adic
Volkenborn integral, are presented. Furthermore relationships between Bernoulli
functions, Euler functions, some arithmetic sums, Dedekind sums, Hardy Berndt
sums, DC-sums, trigonometric sums, and Hurwitz zeta function are given.

1 Introduction

The Bernoulli numbers are named after the great Swiss mathematician Jacob
Bernoulli (1654–1705), who used these numbers in the power sums, which is
defined by

S.p; n/ D
nX

kD0
kp:
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The sum S.p; n/ is the so-called Faulhaber’s formula, named after Johann
Faulhaber, a German mathematician (5 May 1580–10 September 1635). The sum
S.p; n/ is given explicitly by the Bernoulli polynomials as follows:

S.p; n/ D BpC1.nC 1/� BpC1.0/
p C 1

:

Therefore, the history of the Bernoulli numbers and the Bernoulli polynomials
goes back to Bernoulli in the sixteenth century. From Bernoulli to this time, the
Bernoulli numbers can be defined in many different ways and areas. Thus many
applications of these numbers and their generating functions have been looked
for by many authors in the literature. Many different special functions are used
to construct generating functions for the Bernoulli numbers and the Bernoulli
polynomials. The Bernoulli polynomials are associated with many of special
functions, for example, in particular the Riemann zeta function, the Hurwitz zeta
function, the family of L-functions, and trigonometric functions. The Bernoulli
polynomials are an Appell sequence, i.e., a Sheffer sequence for the ordinary
derivative operator. The Bernoulli numbers and the Bernoulli polynomials have
many applications in Analytic Number Theory. We summarize this chapter as
follows: In Sect. 1, we give definitions and some properties of the Bernoulli
numbers and the Bernoulli polynomials. We present definitions of the twisted
Bernoulli numbers and the twisted Bernoulli polynomials. We introduce various
properties of these numbers and polynomials. We also consider the twisted Bernoulli
polynomials and numbers in terms of a Dirichlet character. In Sect. 2, we present q-
analogue of the generating functions for Bernoulli-type numbers and polynomials.
We define the modified twisted q-Bernoulli numbers and the modified twisted q-
Bernoulli polynomials. We also introduce generalized modified twisted q-Bernoulli
numbers and polynomials. We give many series representations and relations related
to these numbers and polynomials. In Sect. 3, we introduce three families of
interpolation functions of the modified twisted q-Bernoulli numbers and modified
twisted q-Bernoulli polynomials. These interpolation functions are related to three
families of modified twisted q-extension Riemann zeta function, modified twisted
q-extension Hurwitz zeta function, and modified twisted q-extension Dirichlet
L-functions. We also present a p-adic interpolation function of the modified
twisted generalized q-Bernoulli numbers. In Sect. 4, we define twisted .h; q/-
Bernoulli numbers and polynomials by using p-adic Volkenborn integral. We
also give two variable p-adic meromorphic functions associated with the p-adic
Volkenborn integral. These functions interpolate twisted .h; q/-Bernoulli numbers
and polynomials at negative integers. In Sect. 5, we give functional equation of
Dedekind eta functions which include Dedekind sums. We also give some arithmetic
sums related to the Hardy–Berndt sums and trigonometric functions and Bernoulli
functions. Finally we present DC-sums which are related to not only the Hardy–
Berndt sums but also trigonometric functions and Euler functions and the Y.h; k/
sums.
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Throughout of this chapter, we use the following notations:

N WD f1; 2; 3; : : :g ; Z
� D f�1;�2;�3; : : :g ; and N0 WD N[ f0g :

Here Z denotes the set of integers, R denotes the set of real numbers, RC denotes
the set of positive real numbers, and C denotes the set of complex numbers. We also
assume that ln .z/ denotes the principal branch of the many-valued function ln .z/
with the imaginary part Im .ln .z// constrained by �� < Im .ln .z// 5 � . Finally,

�
n

k

�

D mŠ

nŠ.m � n/Š

and ŒxG denotes the largest integer � x.

2 The Family of the Bernoulli Polynomials and Numbers

The Bernoulli polynomials Bn.x/ are defined by means of the following generating
function:

FB.t; x/ D tetx

et � 1
D
1X

nD0
Bn.x/

tn

nŠ
.jt j < 2�/: (1)

The numbers Bn D Bn.0/ are called the Bernoulli numbers, which are defined by
means of the following generating function:

FB.t/ D t

et � 1 D
1X

nD0
Bn
tn

nŠ
.jt j < 2�/: (2)

By using (1) and (2), we get the following functional equation:

FB.t; x/ D etxFB.t/:

It easily follows from the above functional equation that

1X

nD0
Bn.x/

tn

nŠ
D
 1X

nD0
xn
tn

nŠ

! 1X

nD0
Bn
tn

nŠ

!

:

Therefore

Bn.x/ D
nX

kD0

�
n

k

�

xn�kBk: (3)
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By using (1), we obtain the following functional equation:

FB.t; x C 1/� FB.t; x/ D tetx :

From the above equation, one can easily obtain

Bn.x C 1/� Bn.x/ D nxn�1; (4)

where n 2 N0. It easily follows from (4) that

Bn.0/ D Bn.1/; (5)

where n 2 Nn f1g.
We are now ready to give recursion formula for computing Bernoulli numbers.

Substituting x D 1 into (3), in view of (5), we have

Bn D
nX

kD0

�
n

k

�

Bk; (6)

where B0 D 1 and n > 1
By using the above recursion formula, we have the following list for the first few

of the Bernoulli numbers:

B0 D 1; B1 D �1
2
; B2 D 1

6
; B4 D � 1

30
; B6 D 1

42
; B8 D � 1

30
;

B10 D 5

66
; B12 D � 691

2730
; B14 D 7

6
; B16 D �3617

510
; B18 D 43867

798
; : : :

and B2nC1 D 0 .n 2 N/.
By using (3) and (6), we have the following list for the first few of the Bernoulli

polynomials:

B0.x/ D 1; B1.x/ D x � 1

2
; B2.x/ D x2 � x C 1

6
; B3.x/ D x3 � 3

2
x2 C 1

2
x;

B4.x/ D x4 � 2x3 C x2 � 1

30
; B5.x/ D x5 � 5

2
x4 C 5

3
x3 � 1

6
x; : : : :

By using (1), one can easily derive the following well-known basic identities for the
Bernoulli polynomials:

By (1), we obtain the following partial differential equation:

@

@x
FB.x; t/ D tFB.x; t/:

By using the above partial differential equation, we have

d

dx
Bn.x/ D nBn�1.x/:
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We set FB.t; 1 � x/ D FB.�t; x/. By using the above functional equation, one can
easily get

Bn.1 � x/ D .�1/nBn.x/:

One also has

.�1/nBn.�x/ D Bn.x/C nxn�1:

We remark that the Bernoulli polynomials are the Appell polynomials (cf. [20, 76,
77]). The von Staudt–Clausen Theorem:

This theorem was given by Karl Georg Christian von Staudt and Thomas
Clausen independently in 1840. This theorem is given as follows (cf. [87, p. 55,
Theorem 5.10]):

Theorem 2.1. Let n be even and positive integer. Then

Bn C
X

.p�1/jn

1

p

is an integer. The sum extends over all primes p for which p � 1 divides 2n.

A consequence of this is that the denominator of B2n is given by the product of
all primes p for which p � 1 divides 2n. Thus, these denominators are square-free
and divisible by 6 (cf. [21, 22, 76, 77, 87]).

Asymptotic Approximation
By the Stirling formula, as n goes to infinity,

jB2nj � 4
p
n�

� n

�e

�2n

(cf. [76, 77]).

2.1 The Twisted Bernoulli Polynomials and Numbers

The twisted Bernoulli numbers are defined by means of the following generating
function:

F�.t/ D t

�et � 1
D
1X

nD0
Bn;�

tn

nŠ
; (7)

where �r D 1, � ¤ 1, and r 2 Z
C are the set of positive integers (cf. [15, 33, 43, 45,

61, 63, 66, 68]).
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The twisted Bernoulli numbers are related to the Frobenius–Euler numbers,
which are defined as follows:

Let u be an algebraic number. For u 2 C with juj > 1, the Frobenius–Euler
numbers Hn.u/ belonging to u are defined by means of the following generating
function:

1 � u

et � u
D
1X

nD0
Hn.u/

tn

nŠ
: (8)

By using the above equation and following the usual convention of symbolically
replacingHn.u/ byHn.u/, we have

H0 D 1

and for n � 1,

.H.u/C 1/n D uHn.u/:

We also note that

Hn.�1/ D En;

where En denotes the classical Euler numbers, which are defined by (94) (cf. [33,
42, 76, 77, 79]).

By using (7) and (8), a relation between the twisted Bernoulli numbers and the
Frobenius–Euler numbers is given by

Bn;� D n

� � 1
Hn�1.��1/; .� ¤ 1/: (9)

The twisted Bernoulli polynomials Bn;� .x/ are defined by means of the following
generating function:

F�.t; x/ D F�.t/e
tx ; (10)

that is,

F�.t; x/ D tetx

�et � 1
D
1X

nD0
Bn;� .x/

tn

nŠ
(11)

(cf. [33, 41, 42, 57, 62, 63, 68, 79]).
We note that the twisted Bernoulli numbers are special case of the Apostol–

Bernoulli numbers (cf. [77]).
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By using (7) and (10), we easily have

Bn;�.x/ D
nX

kD0

�
n

k

�

xn�kBk;� : (12)

Setting the following functional equation, which is used to get the difference
equation for the twisted Bernoulli polynomials, we have

�F�.t; x C 1/� F�.t; x/ D tetx: (13)

It is easily from (11) and (13) that

�Bn;� .x C 1/� Bn;� .x/ D nxn�1;

which yields

�Bn;� .1/ D Bn;� .0/; (14)

where n > 1 and

�Bn;� .0/� Bn;�.�1/ D n .�1/n�1 :

2.2 Computing the Twisted Bernoulli Numbers

Let �r D 1 .� 2 Z
C/; � ¤ 1. By using umbral calculus convention in (7), we get

t D �e.B�C1/t � eB� t . From the above equation, we have

t D
1X

nD0

�
�.B� C 1/n � Bn;�

� tn

nŠ
:

Therefore, we get the following recursion formula for the twisted Bernoulli
numbers:

B0;� D 0 (15)

and

�.B� C 1/n � Bn;� D
(
1=.� � 1/; if n D 1;

0; if n > 1;

where
�
B�
�n

is replaced by Bn;� .
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Substituting x D 1 into (12), in view of (14), we also get the another recursion
formula, which is given as follows:

Bn;� D
nX

kD0

�
n

k

�

�Bk;� ;

where n � 2 and B1;� D 1=.� � 1/.
By using the above recursion formula, we have the following list for the first few

of the twisted Bernoulli numbers:

B0;� D 0; B1;� D 1

� � 1 ; B2;� D � 2�

.� � 1/2
; B3;� D 9� � 3�2

.� � 1/3 ;

B4;� D 4� � 48�2 C 20�3

.� � 1/4
; : : : :

The first few of the twisted Bernoulli polynomials are given below:

B0;� .x/ D 0; B1;� .x/ D 1

� � 1
; B2;� .x/ D 2

� � 1
x � 2�

.� � 1/2 ;

B3;� D 3

� � 1x
2 � 6�

.� � 1/2
x C 9� � 3�2

.� � 1/3
; : : : :

Because of (15), it is not difficult to derive the following important results for the
twisted Bernoulli polynomials.

If � ¤ 1, then degree of the twisted Bernoulli polynomialsBn;� .x/ is n � 1.
Observe that if x D 0, then (11) reduces to (7). Also, if � ! 1, then (7) reduces

to (2).
Integral Formula

Integrating equation (10) with respect to x from y to z, we have

zZ

y

F�.t; x/dx D F�.t/

zZ

y

etxdx D 1

t
F�.t/

�
etz � ety

�
:

From the above integral equation, we get the following integral formula:

zZ

y

Bn;� .x/dx D BnC1;� .z/� BnC1;� .y/
nC 1

:

Multiplication Formula
We set the following functional equation: Let d be a positive integer.

F�.t; x/ D 1

d

d�1X

jD0
�j F�d

�

dt;
x C j

d

�

:
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By using this equation, we get the following multiplication formula:

Bn;�.dx/ D dn�1
d�1X

jD0
�j Bn;�d

�

x C j

d

�

:

Addition Formula
By using (11), we arrive at the following addition formula:

Bn;� .x C y/ D
nX

kD0

�
n

k

�

yn�kBk;�.x/:

2.3 Convolution of the Twisted Bernoulli Polynomials

Here, we firstly give a generating function for the generalized twisted Bernoulli
polynomialsB.m/

n;� .x/ in x as follows:

F
.m/

� .t; x/ D
�

t

�et � 1

�m
etx D

1X

nD0
B
.m/

n;� .x/
tn

nŠ
; (16)

m 2 N. It is easily observed that

B
.1/

n;� .x/ D Bn;�.x/ and B
.1/

n;� D Bn;� :

The generalized twisted Bernoulli numbers B.m/

n;� are defined by means of the
following generating function:

F
.m/

� .t/ D
�

t

�et � 1

�m
D
1X

nD0
B
.m/

n;�

tn

nŠ

From the above function, we derive

F
.mC1/
� .t/ D F

.m/

� .t/F�.t/:

By using this equation, we give the following formula, which is computed the
numbers B.m/

n;� :

B
.mC1/
n;� D

nX

kD0

�
n

k

�

B
.m/

k;� Bn�k;� :
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The first few of the generalized twisted Bernoulli numbers B.m/

n;� are given below:

B
.2/

0;� D 0; B
.2/

1;� D 0; B
.2/

2;� D 2

.� � 1/2
; B

.2/

3;� D � 12�

.� � 1/3
; : : : I

B
.3/

0;� D 0; B
.3/

1;� D 0; B
.3/

2;� D 0; B
.3/

3;� D 6

.� � 1/3 ; : : : :

By using (16), we have

B
.m/

n;� .x/ D
nX

kD0

�
n

k

�

xn�kB.m/

k;� :

By using the above formula, the first few of the generalized twisted Bernoulli
polynomialsB.m/

n;� .x/ are given below:

B
.2/

0;� .x/ D 0; B
.2/

1;� .x/ D 0; B
.2/

2;� .x/ D 2

.� � 1/2 ; B
.2/

3;� D 6

.� � 1/2
x � 12�

.� � 1/3
; : : : I

B
.3/

0;� .x/ D 0; B
.3/

1;� .x/ D 0; B
.3/

2;� .x/ D 0; B
.3/

3;� .x/ D 6

.� � 1/3
; : : : :

Substitutingm D 2 into (16), we have

1X

nD0
B
.2/

n;� .x C y/
tn

nŠ
D
�

tetx

�et � 1

��
tety

�et � 1

�

:

By using (11) in the above equation, we obtain

B
.2/

n;� .x C y/ D
nX

kD0

�
n

k

�

Bk;�.x/Bn�k;� .y/: (17)

We derive the following well-known differential equation:

�
�
F�.t; x C y/

�2 D .x C y � 1/tF�.t; x C y � 1/� t2
d

dt

�
et.xCy�1/

�et � 1

�

:

By using the above equation, we obtain the following identity:

�B
.2/

n;� .x C y/ D n.x C y � 1/Bn�1;� .x C y � 1/C .n� 1/Bn;�.x C y � 1/: (18)
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Combining (17) and (18), we get convolution formula of the twisted Bernoulli
polynomials by the following theorem:

Theorem 2.2.

nX

kD0

�
n

k

�

Bk;� .x/Bn�k;� .y/ D n.xCy�1/Bn�1;� .xCy�1/C.n�1/Bn;� .xCy�1/:

Secondly, we give a generating function for the twisted Euler polynomials En;�.x/
as follows:

g�.t; x/ D 2etx

�et C 1
D
1X

nD0
En;�.x/

tn

nŠ
: (19)

We derive the following functional equation:

F�2

�

2t;
x C y

2

�

D F�.t; x C y/ � t

2
g�.t; x C y/:

By using this equation with (11) and (19), we give a relation between the twisted
Bernoulli polynomials and the twisted Euler polynomials as follows:

Theorem 2.3.

Bn;�2

�
x C y

2

�

D 2�nBn;� .x C y/ � n2�n�1En�1;� .x C y/ ;

or

nX

kD0

�
n

k

�

Bk;� .x/En�k;�.y/ D Bn;� .x C y/� n

2
En�1;� .x C y/ :

We note that the special case x D y D 0 of Theorems 2.2, we get twisted version
of the Euler identity, which is given by

nX

kD0

�
n

k

�

Bk;�Bn�k;� D �nBn�1;� .�1/C .n � 1/Bn;�.�1/:

If � ! 1, we have Euler identity:

n�2X

kD2

�
n

k

�

BkBn�k D �.nC 1/Bn

(cf. [1, 16, 18, 76, 77]).
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2.4 The Twisted Bernoulli Polynomials and Numbers in Terms
of a Dirichlet Character

Here, in terms of a Dirichlet character � of conductor f 2 Z
C, the sets of positive

integer and the twisted generalized Bernoulli numbers and polynomials are defined,
respectively, by means of the following generating functions:

G�;� .t/ D
fX

aD1

�.a/�ateat

�f ef t � 1
D
1X

nD0
Bn;�;�

tn

nŠ
(20)

and

G�;� .t; x/ D
fX

aD1

�.a/�ate.xCa/t

�f ef t � 1
D
1X

nD0
Bn;�;� .x/

tn

nŠ
: (21)

Clearly, we have

Bn;�;� .0/ D Bn;�;� :

Observe that if � D 1, then G�;1.t; x/ D F�.t; x/ and Bn;�;1 D Bn;�, which are
certain algebraic numbers (cf. [21–91]).

From (21), we have G�;� .t; x/ D G�;� .t/e
tx . From this functional equation,

we get

Bn;�;� .x/ D
nX

kD0

�
n

k

�

xn�kBk;�;� :

By using (11) and (21), we get the following functional equation:

G�;� .t; x/ D 1

f

fX

aD1
�.a/�aF�f

�

f t;
x C a

f

�

:

By using this equation, we have

1X

nD0
Bn;�;� .x/

tn

nŠ
D
1X

nD0

0

@f n�1
fX

aD1
�.a/�aBn;�f

�
x C a

f

�
1

A tn

nŠ
:

Comparing the coefficients of tn=nŠ on both sides of the above equation, we arrive
at the following result:
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Theorem 2.4.

Bn;�;� .x/ D f n�1
fX

aD1
�.a/�aBn;�f

�
x C a

f

�

and

Bn;�;� D f n�1
fX

aD1
�.a/�aBn;�f

�
a

f

�

: (22)

By using (22), we give the first few of the numbers Bn;�;� :

B0;� D 0;

B1;�;� D 1

�f � 1
fX

aD1
�.a/�a;

B2;� D 1

f 2
�
�f � 1

�
fX

aD1
a�.a/�a � 2�f

f
�
�f � 1

�2

fX

aD1
�.a/�a; : : : :

3 q-Analogue Generating Functions

We assume that q is a real number with 0 < q < 1. We denote

Œx W q D Œx D 1 � qx

1 � q :

Note that

lim
q!1 Œx W q D x:

To obtain an integral expression of the q-zeta function, Wakayama and Yamasaki
[85] defined the following q-functions:

L
.v/
q;C.t; z/ D tv

1X

nD0
q�v.nCz/ exp .Œ� .nC z/t/ (23)

and

L.v/q;�.t; z/ D tv
1X

nD1
qv.n�z/ exp .Œn � zt/ (24)
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when

�� � arg.t/ < �

z 2 Dq D
�

z 2 C W jIm.z/j < �

2 jlog qj
	

and

Rq.z/ D
n
t 2 C W jarg.t/ � .Im.z// log qj < �

2

o
:

For any z 2 Dq , RC  Rq.z/, RC denotes the positive real axis.

Lemma 3.1 ([85]). We assume that �� � arg.t/ < � and z 2 Dq . The function

L
.v/
q;C.t; z/ is holomorphic in Rq.z/. The function L

.v/
q;�.t; z/ is entire. The functions

L
.v/

q;˙.t; z/ satisfy, respectively,

L
.v/

q;˙.qt; z/ D e�t
�
L
.v/

q;˙.t; z/˙ �
q1�zt

�v
etŒ1�z

�
:

Lemma 3.2 ([85]). Put z D x C p�1y 2 Dq .x; y 2 R/ and ˇy D cos.y log q/.
For t > 0, we have

ˇ
ˇ
ˇL.v/q;C.t; z/

ˇ
ˇ
ˇ � exp

�

�t q
�xˇy � 1
1 � q

�
0

B
@.q�xt/v C

�
ve�1

ˇy

�v

1 � e�tq�xˇy

1

C
A :

Further, suppose that z 2 Jq D
n
z D x C p�1y 2 Dq W x > 0; q�x cos.y

log q/ > 1g. The function t˛L.v/q;C.t; z/ is an integrable function on Œ0;1/ provided
Re.˛/ > 0.

Wakayama and Yamasaki [85] also defined the following q-function, which is
linear combination of the functions L.v/q;C.t; z/ and L

.v/
q;�.t; z/:

L
.v/
q;0.t; z/ D L

.v/
q;C.t; z/C L.v/q;�.t; z/ D tv

1X

nD�1
qv.nCz/ exp

��tq�.nCz/ŒnC zt
�
;

where t 2 Rq.z/. One can easily see that the function L
.v/
q;0.t; z/ is periodic, that is,

L
.v/
q;0.t; z C 1/ D L

.v/
q;0.t; z/:



Families of Twisted Bernoulli Numbers and Polynomials 163

Thus, this function has the following Fourier expansion:

Proposition 3.1 ([85]). Let z 2 Dq . For t 2 Rq.z/, we have

L
.v/
q;0.t; z/ D � .1 � q/v

log q
e

t
1�q

1X

nD�1

�
1 � q
t

�mıq
� .v Cmıq/e

2�
p�1mz;

where

ıq D 2�
p�1

log q
:

Proof. By applying Fourier transform to

f .v/
q .�; z/ D q�v.�Cz/ exp

��tq�.�Cz/ Œ�C z
�
;

we have

ef .v/
q .w; z/ D

Z 1

�1
f .v/
q .�; z/e�2�

p�1�wd�:

After some elementary calculations, we have

ef .v/
q .w; z/ D � .1 � q/v

log q
e

t
1�qC2�

p�1wz
�
1 � q
t

�vCwıq

� .v C wıq/:

Applying the Poisson summation formula to the above function f .v/
q .�; z/, we have

L
.v/
q;0.t; z/ D tv

1X

nD�1
f .v/
q .n; z/ D tv

1X

mD�1
ef .v/
q .m; z/:

See for detail [85, Proof of Proposition 2.4]. Thus we arrive at the desired result.

3.1 q-Analogues of Bernoulli Polynomials

Wakayama and Yamasaki [85] defined q-analogues of Bernoulli polynomials by
means of the following generating function:

G
.v/
q .t; z/ D � .1� q/v.v � 1/Š

log q
e

t
1�q �L

.v/
q;�.t; z/ D

1X

nD0
QB.v/n .z; q/

tn

nŠ
.0 < q < 1; t 2 C/:

The functionG.v/
q .t; z/ is holomorphic at t D 0. This function satisfies the following

q-difference equation:
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G.v/
q .qt; z/ D e�t

�
G.v/
q .t; z/C �

q1�zt
�v
etŒ1�z

�
:

Substituting t D 0 into the above equation, we have

G.v/
q .0; z/ D � .1 � q/v.v � 1/Š

log q
:

By using the above q-difference equation, recursion formula for the polynomials
QB.v/
n .z; q/ is given by [85]

QB.v/
0 .z; q/ D � .1 � q/v.v � 1/Š

log q
;

nX

kD0
.�1/k

�
n

k

�

qk QB.v/

k .z; q/ D .�1/n QB.v/
n .z; q/C vŠ

�
n

v

�

q.1�z/v Œ1 � zn�v :

Remark 3.1. For t 2 .0; 2�/, we have

lim
q"1

G.v/
q .t; z/ D tv

et � 1
e.1�z/t :

This gives us generating function for the classical Bernoulli polynomials for v D 1.
That is,

lim
q"1

QB.1/
n .z; q/ D Bn.z/

which is defined in (1). The polynomials QB.1/
n .z; q/ have been studied by Tsumura

[82] and also the author [68] which are given in the next section.

3.2 The Modified Twisted q-Bernoulli Numbers

In [68], the author studied the modified twisted Bernoulli numbers and polynomials
and their interpolation functions. In complex s-plane, the generating function of the
modified twisted q-Bernoulli numbers is given by [68]

Hq;� .t/ D
1X

nD0
B�n;� .q/

tn

nŠ
D B�0;� .q/C B�1;� .q/

t

1Š
C � � � C B�n;� .q/

tn

nŠ
C � � � ;

where �r D 1 (r 2 Z
C); � ¤ 1 and q 2 R with 0 < q < 1.

This function is the unique solution of the following q-difference equation:

Hq;� .t/ D �etHq;� .qt/ � t: (25)
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By using the above q-difference equation, the recurrence formula of the modified
twisted q-Bernoulli numbers is given by

B�0;� .q/ D q � 1
log q�

and

�

nX

kD0

�
n

k

�

qkB�k;� .q/� B�k;�.q/ D
(
1; if n D 1;

0; if n > 1:

Lemma 3.3 ([68]). Suppose that q 2 R with 0 < q < 1, for r 2 Z
C and � ¤ 1,

�r D 1. Then

Hq;� .t/ D t

1X

nD1
��nq�n exp .�q�nŒnt/ : (26)

Proof. The right-hand side of (26) is uniformly convergent in the wider sense and
satisfies q-difference equation in (25).

Observe that for q 2 R with 0 < q < 1, we have �r D 1:

Hq;1.t/ D Hq.t/ D t

1X

nD1
q�n exp .�q�nŒnt/

(cf. [63, 64, 68, 71, 82]). By using Lemma 3.3, we have

1X

mD0
B�m;� .q/

tm

mŠ
D
1X

mD1

 
m

.q � 1/m�1
m�1X

kD0

�
m � 1
k

�
.�1/k

�qm�k � 1

!
tm

mŠ
:

By comparing the coefficients tm

mŠ
on both sides of the above equation, we obtain

B�m;� .q/ D m

.q � 1/m�1
m�1X

kD0

�
m � 1
k

�
.�1/k

�qm�k � 1 :

To define interpolation functions of the twisted q-Bernoulli numbers and
polynomials, we need Lemma 3.3; for q 2 R with 0 < q < 1, r; k 2 Z

C and
� ¤ 1, �r D 1, we have

dk

dtk
H� .t; q/ jtD0D B�k;�.q/ D �.�1/kk

1X

nD1
��nq�knŒnk�1: (27)
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3.3 The Modified Generalized Twisted q-Bernoulli Numbers

Now we define the following generating function which is a generalization of
(26). Let � be a Dirichlet character of conductor f 2 Z

C; the modified twisted
generalized q-Bernoulli numbers are defined by means of the following generating
function:

For q 2 R with 0 < q < 1, for r 2 Z
C and � ¤ 1,

�r D 1;

we define

K�;�.t; q/ D
1X

nD1
��n�.n/q�n exp .�q�nŒnt/ D

1X

nD0
B�n;�;�.q/

tm

mŠ
: (28)

The right-hand side of (28) is uniformly convergent in the wider sense. Hence, by
using derivative operator dk

dtk
to Eq. (28), we obtain

dk

dtk
H�;�.t; q/ jtD0D B�k;�;�.q/ D .�1/kC1k

1X

nD1
��n�.n/q�knŒnk�1; (29)

where q 2 R with 0 < q < 1, r 2 Z
C and � ¤ 1, �r D 1.

Observe that if � � 1, then (28) reduces to (26).

3.4 The Modified Twisted q-Bernoulli Polynomials

The modified twisted q-Bernoulli polynomials B�m;� .x; q/ are defined by means of
the following generating function [68]:

Let q 2 R with 0 < q < 1, r 2 Z
C and � ¤ 1,

�r D 1:

We set

Hq;� .t; x/ D t

1X

nD1
��nq�n exp .�q�nŒnC xt/ D

1X

mD0
B�m;� .x; q/

tm

mŠ
(30)

or

Hq;� .t; x/ D Hq;� .t; q/e
�t Œx:
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From (30), we have

1X

mD0
B�m;�.x; q/

tm

mŠ
D e�t Œx

1X

mD0
B�m;�.q/

tm

mŠ
:

By using Taylor series of the ex function in the above, we have

1X

mD0
B�m;�.x; q/

tm

mŠ
D
 1X

mD0
B�m;�.q/

tm

mŠ

! 1X

mD0
.�1/mŒxm t

m

mŠ

!

:

By using Cauchy product in the right side of the above equation, we get

1X

mD0
B�m;� .x; q/

tm

mŠ
D
1X

mD0

 
mX

kD0
.�1/m�k

�
m

k

�

Œxm�kB�k;�.q/
!
tm

mŠ
:

By comparing the coefficients of tn=nŠ in both sides of the above equation, we arrive
at the following theorem:

Theorem 3.1 ([68]). Let �r D 1,
�
r 2 Z

C�; � ¤ 1. We have

B�m;� .x; q/ D
mX

kD0
.�1/m�k

�
m

k

�

Œxm�kB�k;� .q/: (31)

By using (31), we have

B�m;� .x; q/ D m

.q � 1/m�1
m�1X

kD0
.�1/k

�
m � 1
k

�
qxj

�qm�k � 1 :

From (30), we have

Hq;� .t; x/ D t

1X

nD1
��nq�n exp .�q�n.ŒnC qnŒx/t/ (32)

D t

1X

nD1
��nq�n exp .�q�n.ŒnC x/t/ D

1X

mD0
B�m;� .x; q/

tm

mŠ
:

We now give multiplication (Raabe) relation of the twisted q-Bernoulli polynomials
as follows.



168 Y. Simsek

Theorem 3.2. Let n; r 2 Z
C, .�r D 1/, � ¤ 1. If r ® k, then we have

B�n;� .x; q/ D Œkn�1
k�1X

jD0
��j q�njB�

n;�k

�
x C j

k
; qk

�

: (33)

Proof. By (32), we have

1X

nD0
B�n;� .x; q/

tn

nŠ

D
1X

mD1
t��mq�m exp .�q�m.ŒmC x/t/

D
k�1X

jD0
��j q�j

1X

yD1
t��ykq�yk exp

�

�q�yk
�

y C x C j

k
; qk

��

.q�j Œkt/
�

D 1

Œk

k�1X

jD0
��j

1X

nD0
B�
n;�k

�
x C j

k
; qk

�
.q�j Œkt/n

nŠ
:

By comparing coefficients tn=nŠ on both sides of the above equation, we arrive at
the desired result.

Corollary 3.1. Let n 2 Z
C. �r D 1 .r 2 Z

C/I � ¤ 1. If r j k, then we have

B�n;� .x; q/ D Œkn�1
k�1X

jD0
��j q�njB�n

�
x C j

k
; qk

�

; (34)

where B�n .x; q/ is defined by

B�n .x; q/ D
nX

kD0
.�1/n�k

�
n

k

�

Œxn�kB�k .q/: (35)

Replacing x by kx into (33), we have

B�n;� .kx; q/ D Œkn�1
k�1X

jD0
��j q�njB�

n;�k

�

x C j

k
; qk

�

:

Thus, we have multiplication formula as follows:
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Corollary 3.2. Let n; r 2 Z
C, �r D 1, � ¤ 1. If r ® k, then we have

1

Œk

k�1X

jD0
��j q�njB�

n;�k

�

x C j

k
; qk

�

D Œk�nB�n;� .kx; q/; (36)

and if r j k, then we have

1

Œk

k�1X

jD0
��j q�njB�n

�

x C j

k
; qk

�

D Œk�nB�n;� .kx; q/:

We now find derivative of the twisted q-Bernoulli polynomials:

Theorem 3.3.

d

dx
B�n;� .x; q/ D log q

n
1�q B�n�1;� .x; q/:

Proof. By applying derivative operator to (31), we have

d

dx
B�m;� .x; q/ D log q

1 � q
mX

kD0
.�1/m�1�k

�
m � 1

k

�

mŒxm�1�kB�k;�.q/:

After some elementary calculations, we arrive at the desired result.

3.5 The Modified Generalized Twisted q-Bernoulli Polynomials

The modified generalized twisted q-Bernoulli polynomials are defined by means of
the following generating function:

Let q 2 R with 0 < q < 1, for r 2 Z
C and � ¤ 1, �r D 1. We define

K�;�.x; t; q/ D
1X

nD1
��n�.n/q�n exp .� .q�nŒnC Œx/ t/ D

1X

mD0
B�m;�;�.x; q/

tm

mŠ
;

(37)
or

K�;�.x; t; q/ D K�;�.t; q/e
�t Œx;

where � is a Dirichlet character of conductor f (cf. [68]).
By using (37), we have

B�n;�;�.x; q/ D
nX

kD0

�
n

k

�

Œxn�k B�n;�;�.q/:
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We derive the following functional equation:

K�;�.x; t; q/ D 1

Œf 

fX

kD1
��k�.k/Hqf ;�f

�
Œf 

qk
t;
x C k

Œf 

�

: (38)

By using the above equation and (30), we have the following theorem:

Theorem 3.4.

B�n;�;�.x; q/ D Œf n�1
fX

kD1
��kq�nk�.k/B�

n;�f

�
x C k

Œf 
; qf

�

: (39)

By substituting x D 0 into (39), we have the following result:

B�n;�;�.q/ D Œf n�1
fX

kD1
��kq�kn�.k/B�

n;�f

�
k

Œf 
; qf

�

: (40)

4 Modified q-Zeta Functions

By the integral expression of the gamma function � .s/, Hurwitz’s zeta function

�.s; x/ D
1X

nD0

1

.x C n/s

is obtained by the Mellin transform of the generating function for the Bernoulli
polynomials FB.t; 1 � x/ in (1) (cf. [76, 77, 85, 88]):

�.s; x/ D 1

� .s/

Z 1

0

t s�1FB.�t; 1 � x/dt
t
.Re.s/ > 1/:

For any 0 < a � C1 and 0 < " < min fa; 2�g, �.s; x/ is represented by
the following the integral expression, which is called meromorphic continuation
of �.s; x/ (cf. [85]):

�.s; x/ D � .1 � s/

2�
p�1

Z

C.";a/

.�t/se.1�x/t
et � 1

dt

t
C 1

� .s/

Z 1

0

t s�1FB.�t; 1 � x/dt
t
;

where C."; a/ is a contour along the real axis from a to ", counterclockwise around
the circle of radius " with center at the origin, and then along the real axis from "

to a. This integral expression is related to Riemann around 1859. By using Cauchy
residue theorem, we can easily see that �.s; x/ has a simple pole at s D 1:

Res
sD1 f�.s; x/g D B0.x/ D 1;
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one can also show that for m 2 N,

�.1�m; x/ D �Bm.x/
m

:

Let 0 < q < 1. Dirichlet-type q-series has been defined by

�q.s; t; z/ D
1X

nD1

q.nCz/t

ŒnC zs

where Re.t/ > 0 (cf. [43, 57, 68, 82, 85]).
In [85], Wakayama and Yamasaki defined the following Dirichlet-type q-series:

�.v/q .s; z/ D �q.s; s � v; z/ D
1X

nD1

q.nCz/.s�v/

ŒnC zs
.v 2 N/:

The meromorphic continuation of the above function was obtained not only by the
binomial expansion but also by the Euler–MacLaurin summation formula.

Since z 2 Jq and Re.s/ > v C 1, t s�v�1L.v/q;C.t; z/ is integrable on Œ0;1/, by
Lemma 3.2. We are now ready to apply Mellin transformation to (23). Thus we
have

�.v/q .s; x/ D 1

� .s/

Z 1

0

t s�vL.v/q;C.t; z/
dt

t
;

where Re.s/ > v C 1 (cf. [85]).
By using the Mellin transformation and Lemma 3.3, we define modified twisted

q-zeta function. Applying the Mellin transformations to the equation (26), we find
the q-analogue of the twisted Riemann zeta functions as follows:

Definition 4.1 ([68]). Let s 2 C and q 2 R with 0 < q < 1. Let r 2 Z
C, �r D 1,

� ¤ 1. We define

��;q.s/ D
1X

nD1

��nq�n

.q�nŒn/s
: (41)

The right-hand side of this series converges whenRe.s/ > 1. Analytic continuation
of the q-analogue of the twisted Riemann zeta function was given by (cf. [68, 72]);
see also cf. [86, 88, 92].

We now give analytic continuation of the q-analogue of the twisted Riemann zeta
function. Firstly we need the Euler–MacLaurin summation formula cf. [86, 88, 92]:
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Let f .x/ be any (complex-valued) C1 function on Œ1;1/ and let m and N be
two positive integers. Then the Euler–MacLaurin summation formula is defined as
follows:

mX

nD1
f .n/ D

mZ

1

f .x/dx C
NX

kD0
.�1/k BkC1

.k C 1/Š

�
f .k�1/.m/� f .k�1/.1/

�

� .�1/NC1
.N C 1/Š

mZ

1

BNC1.x/f
.NC1/

.x/dx; (42)

where Bk .x/ is the kth Bernoulli functions, which are defined by

Bn .x/ D Bn.x � ŒxG/ D
(
0; if n D 1; x 2 Z;

Bn .fxg/ ; otherwise;
(43)

where fxg is the fractional part of x and Bn.x/ denotes Bernoulli polynomials.
Since Bn .x C 1/ D Bn .x/, Bn .x/ is the periodic function. Hence Bn .x/ remains
bounded over the whole interval Œ1;1/. Fourier expansion of this function is
given by

Bn .x/ D �nŠ
X

j2Znf0g

e2�ijx

.2�ij /n
(44)

(cf. [86, 88]). By substituting n D 2 into (44), we obtain

B2 .x/ D 1

�2

1X

yD1

cos.2�yx/

y2
; (45)

where B2 .x/ D .x � ŒxG/
2 � .x � ŒxG/C 1

6
. For every positive integer N � 2,

Zhao [92] obtained upper bounded of the function BM .x/ as follows:

Lemma 4.1. For every positive integer N � 2 and x > 1, we have

j BN .x/ j� 4N Š

.2�/N
:

Set

f .x/ D ��xq�x

.q�xŒx/s
:

From the above equation, we find the following derivatives:

d

dx
f .x/ D .1 � q/s

�
��1qs�1

�x
.s � 1C qx/ log q

.1 � qx/sC1
;
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and

d2

dx2
f .x/ D .1 � q/s

�
��1qs�1

�x
.log q/2..1 � qx/2 C s.s C 1/� 3s.1� qx//

.1 � qx/sC2
:

By substituting m ! 1, N D 1, d
dx
f .x/, and d2

dx2
f .x/ into (42), we obtain the

q-analogue of the twisted Riemann zeta function by the following theorem:

Theorem 4.1. Let s 2 C with Re.s/ > 1 and let r 2 Z
C, �r D 1, � ¤ 1. Thus we

have

��;q.s/ D
1X

jD0

 
s C j � 1

j

!
.1� q/sqsCj�1
�.1 � s � j / log q

C qs�1
2�

C qs�1.s � 1C q/ log q

12�.q � 1/
CY�;q.s/;

(46)

where

Y�;q.s/ D � .1� q/
s

2

1X

jD0

 
sC j C 1

j

!
1Z

1

..x � ŒxG/2 �
�

x � ŒxG/C 1

6

�
�
��1qs�1Cj

�x

� .logq/2..1� qx/2 C s.s C 1/� 3s.1� qx//dx: (47)

From the above theorem, the right-hand side of the above formula (46) defines a
meromorphic function on C whose only singularity is a simple pole of order 1 at
s D 1. We now calculate residue of the function �w;q.s/ at s D 1. By using (46),
we have

ressD1.��;q.s// D q � 1

� log q
:

Thus we arrive at the following corollary:

Corollary 4.1. The function ��;q.s/ is analytically continued to the whole complex
plane, except for a simple pole at s D 1 with residue .q � 1/=.� log q/.

Remark 4.1. In [72], Simsek and Srivastava studied some properties of the fam-
ily of zeta functions. As already observed by (among others) the author [68],
the q-Riemann zeta function is defined by

�q.s/ WD
1X

nD1

q�n

.q�nŒn/s
DW ��;q.s/�D1;

where q 2 R with 0 < q < 1, r 2 Z
C, �r D 1, � ¤ 1. The function �q.s/ is a

meromorphic function on C with simple pole at s D 1. Moreover, in its limit case
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when q ! 1, (41) reduces to the twisted Riemann zeta function ��� .s/ defined by

.Re.s/ > 1I �r D 1 .r 2 Z
C/; � ¤ 1/,

��� .s/ WD
1X

nD1

��n

ns
DW Lis.��1/ (48)

in terms of the polylogarithm function Lis.z/ defined below. For a set of complex
numbers fcng, Tsumura [82] defined a q-extension of Dirichlet series as follows:

f.s/ D
1X

nD1

cnq
�n

.q�nŒn/s
.Re.s/ > 1/;

which, in the special case when n 2 Z;

cn D ��n;

yields the modified twisted Riemann zeta function ��;q.s/ defined by (41).
Furthermore, as already observed by Tsumura [82], the q-Riemann zeta function
�q.s/, that is,

�q.s/ D ��;q.s/
ˇ
ˇ
�D1 ;

can also be continued analytically to the whole complex s-plane, except for a simple
pole at s D 1 with residue:

q � 1
log q

:

Remark 4.2. In [64], the author defined generating functions similar to (26). By
using the Mellin transformation to these functions, we constructed not only q-zeta
function and q-L-functions but also q-Dedekind-type sums.

4.1 Modified Twisted q-Extension Hurwitz Zeta Function

Here, we define a modified twisted q-extension of the Hurwitz zeta function.
In terms of the generating function Hq;� .t; x/ occurring in (32), we have

the following integral representation for the modified twisted q-extension of the
Hurwitz zeta q-function ��;q.s; x/ defined by (50), which involves the Mellin
transformation:

For q 2 R with 0 < q < 1, �r D 1
�
r 2 Z

C�, � ¤ 1,

1

� .s/

Z 1

0

t s�1Hq;� .t; x/
dt

t
D ��;q.s; x/; (49)



Families of Twisted Bernoulli Numbers and Polynomials 175

and min fRe.s/;Re.x/g > 0, where the additional constraint Re.x/ > 0 is required
for the convergence of the infinite integral occurring in (49). By using the above
integral expression, we are to define a modified twisted q-extension of the Hurwitz
zeta function as follows:

Definition 4.2 ([68]). For a given positive integer r , let �r D 1 .r 2 Z
C/ and

� ¤ 1. Suppose also that q 2 R with 0 < q < 1, 0 < x � 1, and s 2 C. Then we
define a modified twisted q-extension of the Hurwitz zeta function by

�w;q.s; x/ D
1X

nD0

��nq�n

.q�nŒnC x/s
: (50)

Remark 4.3. In its limit case when q ! 1, then ��;q.s; x/ yields the twisted
Hurwitz zeta function ��.s; z/, which is defined by [68]: .Re.s/ > 1I �r D 1

(r 2 Z
C/; � ¤ 1/,

��.s; z/ D
1X

nD0

��n

.nC z/s
DW ˚.��1; s; z/; (51)

where ˚.z; s; x/ denotes the familiar Hurwitz–Lerch zeta function defined by (cf.
e.g., [76, p. 121 et seq.], [27, 77])

˚.z; s; a/ D
1X

nD0

zn

.nC a/s
;

which converges for (a 2 CŸZ
�
0 , s 2 C when jzj < 1; Re.s/ > 1 when jzj D 1)

where, as usual,

Z
�
0 WD Z

� [ f0g :
The above-defined general Hurwitz–Lerch zeta function ˚.z; s; a/ contains, as its
special cases, not only the Riemann and Hurwitz (or generalized) zeta functions

�.s/ D ˚.1; s; 1/ and �.s; a/ D ˚.1; s; a/

and the Lerch zeta function

`s.�/ D
1X

nD1

e2�in�

ns
D e2�i�˚.e2�i� ; s; 1/;

where � 2 RI Re.s/ > 1, but also such other important functions of Analytic
Function Theory as the polylogarithm [occurring already in (48)]:

Lis.z/ D
1X

nD1

zn

ns
D z˚.z; s; 1/;
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where for s 2 C when jzj < 1; Re.s/ > 1 when jzj D 1 and the Lipschitz–Lerch
zeta function (cf. [76, p. 122, Eq. (2.5) (11)], [72, p. 2980, Remark 3])

�.�; a; s/ D
1X

nD1

e2�in�

.nC a/s
D ˚.e2�i� ; s; a/ DW L.�; a; s/

(a 2 CŸZ
�
0 ; Re.s/ > 0 when � 2 RnZ; Re.s/ > 1 when � 2 Z), which was

first studied by Rudolf Lipschitz (1832–1903) and Matyas Lerch (1860–1922) in
connection with Dirichlet’s famous theorem on primes in arithmetic progressions
(cf. [72, p. 2980, Remark 3]), and the Dirichlet’s eta function �.s/

��1;1.s; 1/ D ˚.�1; s; 1/ D
1X

nD1

.�1/n�1
ns

;

where Re.s/ > 1 (cf. [15, 27], [72, p. 2980, Remark 3], [76, 77]).

In [72, p. 2980, Remark 4], due to Simsek and Srivastava, some interesting
multiparameter generalizations of the Hurwitz–Lerch zeta function ˚.z; s; a/ were
investigated by Garf et al. [23], Lin et al. [48], and Choi et al. [14].

This function interpolates the modified twisted Bernoulli polynomialsB�k;�.x; q/
at negative integers, which is given by the next theorem [68].

By using Definition 4.2 and (32), we arrive at the following theorem:

Theorem 4.2. If k 2 Z
C, then we have

��;q.1 � k; x/ D .�1/kC1
k

B�k;�.x; q/:

4.2 Modified Twisted q-L-Functions

We recall work of Iwasawa [30] and Koblitz [45] that Dirichlet L-series is defined
as follows:

Let f W Z ! C be a periodic function with period d , f .x C d/ D f .x/. Then
the Dirichlet L-series is defined by

L.s; f / D
1X

nD1

f .n/

ns

for Re.s/ > 1 and extended by analytic continuation to other s 2 C.
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The generalized Bernoulli numbers are

Bn;f D nŠ.coefficient of tn in
dX

aD1

f .a/teat

edt � 1
:

One can see that for n a positive integer L.�n; f / D �Bn;f =n (cf. [30, 45]).
When f D � is a character, i.e., a homomorphism� W .Z=dZ/ ! C

� from
the multiplicative group of integers modd (where � is extended �.n/ D 0 for
all n having a common factor with d ), the L-function equals the following Euler
product if Re.s/ > 1:

L.s; �/ D
Y�

1 � �.p/

pn

��1
;

where the product is taken over all prime p.
It is well known that L-functions occur in many situations in Analytic Number

Theory. For example, the class number h of an imaginary quadratic field Q.
p�d/

of discriminant �d is given by

h D w
p
d

2�
L.1; �/ D � w

2d

d�1X

aD1
a�.a/;

where w D 2, 4, or 6 is the number of roots of unity in Q.
p�d/ and � W .Z=dZ/ !

f�1; 1g is the Legendre symbol or quadratic residue symbol (cf. [45, p. 25]).
We shall also want to consider modified two variable twisted q-analogue

L-functions. We assume that q 2 R with 0 < q < 1, �r D 1
�
r 2 Z

C�, � ¤ 1.
Upon substituting from (49) into the right-hand side of (38), we obtain the

following formula involving the Mellin transformation:

L�;q.s; x; �/ D 1

Œf  � .s/

fX

kD1
��k�.k/

Z 1

0

t s�1Hqf ;�f
�
Œf 

qk
t;
x C k

Œf 

�
dt

t

D Œf s�1
fX

kD1
.�q/�k �.k/�qf ;�f

�

s;
x C k

Œf 

�

;

with

min fRe.s/;Re.x/g > 0:

From the above equation, modified two variable twisted q-analogue L-function
related to the modified twisted q-extension of the Hurwitz zeta function is provided
by the next theorem:
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Theorem 4.3. Let s 2 C. Let � be a Dirichlet character of conductor f and let
q 2 R with 0 < q < 1, �r D 1

�
r 2 Z

C�, � ¤ 1. Then

L�;q.s; x; �/ D
fX

kD1
.�q/�k �.k/�qf ;�f

�

s;
x C k

Œf 

�

: (52)

By substituting (50) into (52), for q 2 R with 0 < q < 1, �r D 1
�
r 2 Z

C�, � ¤ 1,
modified two variable twisted q-analogueL-function is explicitly given by

L�;q.s; x; �/ D
1X

nD0

��n�.n/q�n

.q�nŒnC x/s
: (53)

If we substitute x D 1 into (53), we have modified twisted q-analogue Dirichlet
L-function as follows:

Definition 4.3 ([68]). Let s 2 C. Let � be a Dirichlet character of conductor f and
let q 2 R with 0 < q < 1, �r D 1

�
r 2 Z

C�, � ¤ 1. We define

L�;q.s; �/ D
1X

nD1

��n�.n/q�n

.q�nŒn/s
; Re.s/ > 1: (54)

Remark 4.4. When � � 1, (54) reduces to (41) and

lim
q!1 L�;q.s; �/ D L�.s; �/;

which is a Dirichlet L-function [41, 43, 66, 67]. In [43], Koblitz defined twisted
L-functions as follows: Let r 2 Z

C, set of positive integers, let � be a Dirichlet
character of conductor f 2 Z

C, and let �r D 1, � ¤ 1. Twisted L-functions are
defined by

L.s; �;w/ D
1X

nD1

�.n/�n

ns
:

Since the function n ! �.n/�n has period f r , this is a special case of the Dirichlet
L-functions. This function interpolates Carlitz’s q-Bernoulli numbers at nonpositive
integers.

Relation between ��;q.s; x/ and L�;q.s; �/ is given as follows:

Theorem 4.4 ([68]). Let s 2 C. Let � be a Dirichlet character of conductor f and
let q 2 R with 0 < q < 1, �r D 1

�
r 2 Z

C�, � ¤ 1. Then

Lq;� .s; �/ D 1

Œf s

fX

aD1
��aq.s�1/a�.a/��f ;qf

�

s;
a

Œf 

�

: (55)
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Proof. Substituting n D aCmf , wherem D 0; 1; : : : ;1 and a D 1; 2; : : : ; f into
Definition 4.3, we obtain

Lq;w.s; �/ D
fX

aD1
waq�a�.a/

1X

mD0

w�mf q�mf

.q�a�mf Œa Cmf /s
:

By using

Œa Cmf  D ŒaC qaŒf Œm W qf 

in the above equation, after elementary calculations, we obtain the desired result.
ut

By substituting s D 1 � n, n is a positive integer, into Theorem 4.4 and using
Theorem 4.2, we have

Lq;� .1 � n; �/ D .�1/nC1 Œf n�1
n

fX

kD1
��aq�an�.a/B�

n;�f

�
a

f
; qf

�

:

By substituting (40) into the above equation, we arrive at the following theorem:

Theorem 4.5 ([68]). If n � 1, where n is a positive integer, then we have

Lq;� .1 � n; �/ D .�1/nC1
n

B�n;�;�.q/:

In the next sections, we give modified twisted partial q-zeta function and p-adic
interpolation function of the modified twisted q-Bernoulli polynomials, which are
constructed by Simsek and Srivastava [72].

4.3 A Class of Modified Twisted Partial q-Zeta Function

Simsek and Srivastava [72] defined twisted partial q-zeta functions, which are given
here in detail. We assume that q 2 C with j q j< 1. Then a class of modified twisted
partial q-zeta function is defined as follows:

Definition 4.4 ([72]). Let s 2 C and r; n 2 Z
C. Let � be a Dirichlet character of

conductor f and let q 2 R with 0 < q < 1, �r D 1, and � ¤ 1. Also let a and F be
integers with 0 < a < F . We define

H�;q.s; a W F / D
1X

n�a.modF /

q�n.s�1/��n

Œns
: (56)
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From (56), we have

H�;q.s; a W F / D
1X

mD0

q�.aCmF /.s�1/��.aCmF /

Œa CmF s

so that by writing Œa C mF  D ŒF Œ a
F

C m W qF  and after some elementary
calculations, we find that

H�;q.s; a W F / D ��aqa.1�s/

ŒF s

1X

mD0

qmF.1�s/��mF

Œ a
F

Cm W qF s :

By substituting (50) into the above equation, then we obtain the following relation-
ship betweenH�;q.s; a W F / and ��;q.s; x/:

H�;q.s; a W F / D qa.1�s/

�aŒF s
��F ;qF

�
s;
a

F

�
: (57)

Substituting s D 1 � n .n 2 Z
C/ into (57), if make use of Theorem 4.2 and (31),

we arrive at the following relation:

H�;q.1 � n; a W F / D qanŒan

n�a

nX

kD0
.�1/1Ck

�
n

k

�
ŒF k�1

Œak
B�
k;�F

.qF /: (58)

We now modify the twisted partial q-zeta function explicitly by the following
theorem:

Theorem 4.6. Let s 2 C and r; n 2 Z
C. Let � be a Dirichlet character of conductor

f and let q 2 R with 0 < q < 1, �r D 1 and � ¤ 1. Then

H�;q.s; a W F / D qa.1�s/Œa1�s

.1 � s/�a

1X

kD0
.�1/1Ck

�
1 � s
k

�
ŒF k�1

Œak
B�
k;�F

.qF /:

Proof. By substituting s D 1 � n into (58) and using (31), then we arrive at the
desired result.

Corollary 4.2. Let �r D 1 .r 2 Z
C/ and � ¤ 1. We have

H�;q.0; a W F / D qa

�a

�

B�
1;�F

.qF / � Œa

ŒF 
B�
0;�F

.qF /

�

:
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The function H�;q.s; a W F / is analytically continued to the whole complex s-plane
except for a simple pole at s D 1 with residue

B�
0;�F

.qF /

ŒF �a
:

By using (55) in the above, we find relation between H�;q.s; a W F / and L�;q.s; �/
as follows [72]:

Theorem 4.7. Let � be a Dirichlet character with conductor f D f� and f�jF
and let �r D 1 .r 2 Z

C/ and � ¤ 1. We have

L�;q.s; �/ D
FX

aD1
�.a/H�;q.s; a W F /: (59)

Theorem 4.8 ([72]). Let � is a Dirichlet character with conductor f D f� and
f�jF and s 2 C and let �r D 1 .r 2 Z

C/ and � ¤ 1. Then we have

L�;q.s; �/ D 1

1 � s
FX

aD1
�.a/qa.1�s/��aŒa1�s

�
1X

kD0
.�1/1Ck

�
1 � s

k

�
ŒF k�1

Œak
B�
k;�F

.qF /:

We now give some applications of Theorem 4.8.
If we substitute s D 0 into Theorem 4.8, then we easily arrive at the following

corollary [72]:

Corollary 4.3. Let � is a Dirichlet character with conductor f D f� and f�jF
and let �r D 1 .r 2 Z

C/ and � ¤ 1. Then we have

L�;q.0; �/ D
FX

aD1

�.a/qa

�a

�

B�
1;�F

.qF /� Œa

ŒF 
B�
0;�F

.qF /

�

:

If we substitute s D 2 into Theorem 4.8, then we easily arrive at the following
corollary [72]:

Corollary 4.4. Let � be a Dirichlet character with conductor f D f� and f�jF
and let �r D 1 .r 2 Z

C/ and � ¤ 1. Then we have

L�;q.2; �/ D
1X

kD0

FX

aD1

�.a/ŒF k�1B�
k;�F

.qF /

.�q/a ŒakC1
: (60)
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4.4 A p-Adic Interpolation Function of the Modified Twisted
Generalized q-Bernoulli Numbers

Here we give p-adic interpolation function for the modified twisted generalized
q-Bernoulli numbers. This function was constructed by Simsek and Srivastava [72].

Throughout this section, q 2 Cp , with j q � 1 jp< p
� 1
p�1 and j � � 1 jp� 1.

Consequently, we note that qx D exp.x log q/ for q 2 Cp , with j x jp< 1.
We give some notations which are related to (among others) Washington [87],

Kim [37, 68] and the author [70] and Simsek and Srivastava [72].
Let the integer p� be defined by p� D p if p > 2 and p� D 4 if p D 2

(cf. [17, 21, 22, 29, 30, 35, 37, 38, 43–45, 70, 79, 87]). Let w denote the Teichmüller
character, having conductor fw D p�. For an arbitrary character �, we define �n D
�w�n, where n 2 Z, in the sense of the product of characters. Let F be a positive
integral multiple of fw D p� and f D f�. If q 2 Cp , then we assume j 1 � q jp<
p
� 1
p�1 . Let

< a >D< a; q >D w�1.a/Œa D Œa

w.a/
.

We note that < a >� 1.mod p�p�
1

p�1 / cf. [29, 37, 38].
Thus, we have< aCp�t >D w�1.aCp�t/ŒaCp�t  D w�1.a/ .ŒaC qaŒp�t /

� 1.mod p�p�
1

p�1 /, here t 2 Cp , with j 1 � q jp� 1:

D D
n
s 2 Cp Wj s jp� p�p�

1
p�1

o
;

where D  Cp (cf. [87]). For j q � 1 jp< p
� 1
p�1 , we note that < a >P

N �
1.modp�/. Then logp a D logp < a > (cf. [87]).

By using (58) and Theorem 4.6, we now define a p-adic meromorphic function
H�;p;q.s; a W F / on D as follows (cf. [72]):

Definition 4.5. Let p� j F and p� ® a. Let s 2 D. Then we define

H�;p;q.s; a W F / D .qa < a >/1�s

.1 � s/�a
1X

kD0
.�1/1Ck

�
1 � s
k

�
ŒF k�1

Œak
B�
k;�F

.qF /: (61)

According to Washington [87], < a; q
1
F > and

1X

kD0
.�1/1Ck

�
1 � s

k

�
ŒF k�1

Œak
B�
k;�F

.qF /

are analytic in D.
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Theorem 4.9 ([72]). Suppose that p� j F and p ® a. Then the p-adic
meromorphic functionH�;p;q.s; a W F / satisfies the following relation:

H�;p;q.1 � n; a W F / D w�n.a/H�;q.1 � n; a W F /, n � 1: (62)

Proof. Substituting s D 1 � n into (61), then, we have

H�;p;q.1 � n; a W F /

D .qa < a >/n

n�a

nX

kD0
.�1/n�k

�
n

k

�
ŒF k�1

Œak
B�
k;�F

.qF /

D qanw�n.a/Œan

n�a

nX

kD0
.�1/n�k

�
n

k

�
ŒF k�1

Œak
B�
k;�F

.qF /

D w�n.a/H�;q.1 � n; a W F /:
Thus the proof of theorem is completed. ut

The p-adic meromorphic functionH�;p;q.s; a W F / interpolates modified twisted
Bernoulli numbers.

By substituting (58) into (62), we arrive at the following corollary:

Corollary 4.5 ([72]). Suppose that p� j F and p� ® a. Let n 2 Z
C; we have

H�;p;q.1 � n; a W F / D
.�1/nC1w�n.a/B�

k;�F
. a
F
; qF /

n
: (63)

Now, we are ready to define p-adic interpolation function of the modified twisted
generalized q-Bernoulli numbers at negative integer. This function is denoted by
L�;p;q.s; �/, which is defined as follows [72]:

Definition 4.6. Let � be a Dirichlet character of conductor f and let F be any
multiple of p� and f . A p-adic meromorphic (analytic if � ¤ 1) function
L�;p;q.s; �/ on D is defined by

L�;p;q.s; �/ D
FX

a D 1

p ® a

�.a/H�;p;q.s; a W F /: (64)

Thus we give the main theorem in this section as follows [72]:

Theorem 4.10. Let � be a Dirichlet character of conductor f and let F be any
multiple of p� and f . There exists a p-adic meromorphic (analytic if � ¤ 1)
function L�;p;q.s; �/ on D such that

L�;p;q.1 � n; �/ D .�1/nC1
n

.B�n;�;�w�n.q/ � Œpn�1�w�n.p/B�n;�p ;�w�n .q
p//:
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If � D 1, then L�;p;q.s; �/ is analytic except for a pole at s D 1 with residue:

1

ŒF 

FX

a D 1

p ® a

�.a/��aB�
0;�F

.qF /:

Furthermore, we have the formula

L�;p;q.s; �/ D 1

.1� s/ŒF s
FX

a D 1

p ® a

�.a/��a .qa < a >/
1�s

1X

kD0

.�1/1Ck

 
1� s
k

!

Œa; q
1
F �kB�

k;�F
.qF /

Proof. By using (64), we give analytic property of this function as follows. At s D
1, Lp;q;� .s; �/ has residue:

lim
s!1

.1�s/L�;p;q .s; �/D
FX

a D 1

p ® a

�.a/ lim
s!1

.1�s/H�;p;q.s; a W F / D 1

ŒF 

FX

a D 1

p ® a

�.a/��aB�

0;�F
.qF /;

where we use (61) in the above. If � ¤ 1 and � ¤ 1, then L�;p;q.s; �/ has no pole
at s D 1. If n � 1, then we have

L�;p;q.1 � n; �/ D
FX

a D 1

p ® a

�.a/H�;p;q.1 � n; a W F /:

By substituting (63) into the above, we have

L�;p;q.1 � n; �/ D .�1/nC1ŒF n�1
n

FX

a D 1

p ® a

�w�n.a/qna��aB�
n;�F

� a

F
; qF

�
:

From the above, we obtain

Lp;q;� .1 � n; �/ D .�1/nC1ŒF n�1
n

FX

aD1
�w�n.a/qna��aB�

n;�F

� a

F
; qF

�

�
.�1/nC1Œ pF

p
n�1

n

F
pX

bD1
�w�n.bp/qnbp��bpB�

n;�F

�
bp

F
; qF

�

D � .�1/
nC1

n

�
B�n;�w�n;� .q/ � �w�n.p/Œpn�1B�n;�w�n;�p .q

p/
�
:

This completes the proof of theorem. ut
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5 Twisted .h; q/ Bernoulli Numbers and Polynomials

Here, we define new type Bernoulli numbers and polynomials by using p-adic
Volkenborn integral. We firstly give some notations and definitions.

Let vp be the normalized exponential valuation of Cp with jpjp D p�vp.p/ D
p�1. When one talks of q-extension, q is variously considered as an indeterminate,
a complex number q 2 C, or p-adic number q 2 Cp . If q 2 Cp , then we assume

that j1 � qjp < p
� 1
p�1 , so that qx D exp.x log q/ for jxjp � 1. If q 2 C, then we

assume jqj < 1 (cf. [33, 35, 37]).
For f 2UD.Zp;Cp/D

˚
f j f W Zp ! Cp is uniformly differentiable function



,

the p-adic q-integral (q-Volkenborn integration) is defined by Kim (cf. [36]):

Iq.f / D
Z

Zp

f .x/d
q.x/ D lim
N!1

1

ŒpN q

pN�1X

xD0
qxf .x/; (65)

where 
q denotes p-adic q-Haar distribution which is originally introduced by
Kim [36],


q.aC pNZp/ D qa

ŒpN q
; N 2 Z

C:

If q ! 1 in (65), then we have

I1.f / D
Z

Zp

f .x/d
1.x/ D lim
N!1

1

pN

pN�1X

xD0
f .x/ (66)

(cf. [2, 58, 84]).
Observe that in (66), we easily see that I1.f / D lim

q!1 Iq.f /,

I1.f1/ D I1.f /C f
0

.0/; (67)

where f1.x/ D f .x C 1/ and f
0

.0/ D d
dx
f .x/ jxD0 (cf. [36, 58]).

Let p be a fixed prime. For a fixed positive integer f with .p; f / D 1, we set

X D Xf D lim N

Z=ZfpN ; X1 D Zp; X
� D

[

0 < a < fp

.a; p/ D 1

a C fpZp

and

a C fpNZp D ˚
x 2 X j x � a.mod fpN /



;
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where a 2 Z satisfies the condition 0 � a < fpN . For f 2 UD.Zp;Cp/,
Z

Zp

f .x/d
1.x/ D
Z

X

f .x/d
1.x/; (68)

(cf. [33, 35–37]).
By using (67), one can easily see that

I1.fb/ D I1.f /C
b�1X

jD0
f

0

.j /; (69)

where fb.x/ D f .x C b/; .b 2 Z
C/ (cf. [37]).

According to [60, 89], for each integer N � 0, CpN denotes the multiplicative
group of the primitive pN th roots of unity in C

�
p D Cp n f0g. Let

Tp D
n
� 2 Cp W �pN D 1, for N � 0

o
D [

N�0CpN :

The dual of Zp , in the sense of p-adic Pontrjagin duality, is Tp D Cp1 , the direct
limit (under inclusion) of cyclic groups CpN of order pN with N � 0, with the
discrete topology. Tp admits a natural Zp-module structure which we shall write
exponentially, viz., �x for � 2 Tp and x 2 Zp . Tp can be embedded discretely in Cp

as the multiplicative p-torsion subgroup, and we choose, for once and all, one such
embedding. If � 2 Tp , then �� W .Zp;C/ ! .Cp; �/ is the locally constant character,
x ! �x , which is the locally analytic character if � 2 ˚

� 2 Cp W vp.� � 1/ > 0


.

Then �� has continuation to a continuous group homomorphism from .Zp;C/ to
.Cp; �/ (cf. [33, 40, 60, 66, 70, 89]); see also the references cited in each of these
earlier works.

Substituting f .x/ D ��.x/q
hxetx into (67), then we have

�qhet I1.��.x/q
hxetx/ D I1.�v.x/q

hxetx/C h logq C t:

Therefore

F .h/
w;q .t/ D I1.�w.x/q

hxetx/ D logqh C t

wqhet � 1
D
1X

nD0
B.h/
n;w.q/

tn

nŠ
(70)

for jt j < p�1=.p�1/ and h is an integer.
The twisted .h; q/-extension of Bernoulli numbersB.h/

n;w.q/ are defined by means
of the generating function:

F
.h/

�;q .t/ D log qh C t

�qhet � 1 D
1X

nD0
B
.h/

n;� .q/
tn

nŠ
, j t C log

�
�qh

� j< 2�; (71)
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where �r D 1 .r 2 Z
C/I � ¤ 1. By applying the umbral calculus convention in the

above equation, and the usual convention of symbolically replacing .B.h/

� .q//n by

B
.h/

n;� .q/, then we have

B
.h/

0;� .q/ D log qh

�qh � 1
(72)

�qh.B
.h/

� .q/C 1/n � B
.h/

n;� .q/ D ı1;n; n � 1;

where ı1;n is denoted by Kronecker symbol.

Remark 5.1. If � D 1, then (71) reduces to the following generating function:

log qh C t

qhet � 1
D
1X

nD0
B
.h/
n;1.q/

tn

nŠ
;

(cf. [37]).

Remark 5.2. In recent years, many authors have studied on various interesting
unification of the classical Bernoulli numbers Bn and the Apostol–Bernoulli
numbers Bn.	/, which are defined by means of the following generating function:

t

	et � 1 D
1X

nD0
Bn.	/

tn

nŠ

(cf. [4, 37, 49, 50, 52, 75, 77, 79]). The twisted .h; q/-Bernoulli numbers are related
to the the Apostol–Bernoulli numbers, that is,

1X

nD0
B
.h/

n;� .q/
tn

nŠ
D log qh

�qhet � 1 C t

�qhet � 1

D
1X

nD0

�
log

�
�nqnh

�
Bn�1.qh/C Bn.�q

h/
� tn

nŠ
:

Therefore, we obtain relation between the Apostol–Bernoulli numbers and the
twisted (h; q/-Bernoulli numbers:

B
.h/

n;� .q/ D log
�
�nqnh

�
Bn�1.qh/C Bn.�q

h/:

Remark 5.3. If q ! 1 in the above, then we have (2). If q ! 1, then (71) reduces
to (7).

We now give relation between the twisted .h; q/-extension of Bernoulli numbers
and the Frobenius–Euler numbers as follows:
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By (71), we have

1X

nD0
B
.h/

n;� .q/
tn

nŠ
D
�

log qh

�qh � 1

��
1 � ��1q�h

et � ��1q�h

�

C
�

t

�qh � 1
��

1 � ��1q�h
et � ��1q�h

�

D
�

1

�qh � 1

� 1X

nD0

��
log qh

�
Hn.�

�1q�h/C nHn�1.��1q�h/
� tn

nŠ
:

By comparing the coefficients of tn=nŠ on both sides of the above, we easily obtain

B
.h/

n;� .q/ D
�
log qh

�
Hn.�

�1q�h/C nHn�1.��1q�h/
�qh � 1

: (73)

If q ! 1 in (73), then we have

Bn;� D nHn�1.��1/
� � 1

; n � 1

(cf. [33, 70]).
The Witt’s formula for B.h/

n;� .q/ is given by the following theorem:

Theorem 5.1. For h 2 Z and q 2 Cp with j q � 1 jp< p�
1

p�1 , we have

B
.h/

n;� .q/ D
Z

Zp

��.x/q
hxxnd
1.x/: (74)

Proof. By using Taylor series of etx in (70), we have

I1

 

��.x/q
hx

1X

nD1

xntn

nŠ

!

D
1X

nD1

�
I1.��.x/q

hxxn/
� tn

nŠ
D
1X

nD0
B
.h/

n;� .q/
tn

nŠ
:

By comparing coefficients tn=nŠ in the above equation, we arrive at the desired
result.

Twisted .h; q/-extension of Bernoulli polynomialsB.h/

n;� .z; q/ is defined by means
of the following generating function:

F
.h/

�;q .t; z/ D .t C log qh/etz

�qhet � 1 D I1.��.x/q
hxet.zCx// D

1X

nD0
B
.h/

n;� .z; q/
tn

nŠ
: (75)

We note that

B
.h/

n;� .0; q/ D B
.h/

n;� .q/; B
.h/
n;1.z; q/ D B.h/

n .z; q/

(cf. [37, 66]).
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If q ! 1 in (75), then we arrive at (1).
Twisted version of Witt’s formula for B.h/

n;� .z; q/ is given by the following
theorem:

Theorem 5.2. For h 2 Z and q 2 Cp with j q � 1 jp< p� 1
p�1 ; we obtain

B
.h/

n;� .z; q/ D
Z

Zp

��.x/q
hx.x C z/nd
1.x/: (76)

Theorem 5.3. For n � 0 any positive integer k, we have

B
.h/

n;� .z; q/ D kn�1
k�1X

aD0
��.a/q

haB
.h/

n;�k

�
a C z

k
; qk

�

:

Proof. By using (68) and (76), it is easy to see that

B
.h/

n;� .z; q/ D
Z

X

��.x/q
hx.x C z/nd
1.x/

D lim
N!1

1

kpN

kpN�1X

xD0
�xqhx.x C z/n

D 1

k
lim
N!1

1

pN

k�1X

aD0

pN�1X

xD0
�aCkxqh.aCkx/.a C kx C z/n:

By using (76) in the above equation, we obtain the desired result.

The polynomials B.h/

n;� .z; q/ are given explicitly by the following theorem:

Theorem 5.4. For n � 0, we have

B
.h/

n;� .z; q/ D
nX

kD0

�
n

k

�

zn�kB.h/

k;� .q/:

Proof. By using Taylor series of etz in (75), we have

1X

nD0

�

B
.h/

n;� .z; q/
1

nŠ

�

tn D
1X

nD0

 
nX

kD0
B
.h/

k;� .q/
zn�k

kŠ.n � k/Š

!

tn:

By comparing coefficients tn in the above equation, we obtain the desired result.

Remark 5.4. By using (74) and the binomial theorem in (76), and after some
elementary calculations, we easily arrive at the another proof of Theorem 5.4.
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Let � be a Dirichlet character with conductor f . The generalized twisted .h; q/-
extension of Bernoulli numbers is defined by means of the generating function:

F
.h/

�;�;q.t/ D
fX

aD1

�.a/��.a/q
haeat .t C log qh/

�f qhf ef t � 1 D
1X

nD0
B
.h/

n;�;� .q/
tn

nŠ
.

Note that

B
.h/
n;�;1.q/ D B.h/

n;�.q/

(cf. [37]).

Theorem 5.5. Let � be a Dirichlet character of conductor f 2 Z
C. We obtain

B
.h/

n;�;� .q/ D
Z

Zp

�.x/��.x/q
hxxnd
1.x/: (77)

Proof. If we take f .x/ D �.x/��.x/q
hxetx in (69), we get

�f qf hef t I1.��.x/�.x/q
hxetx/ D I1.��.x/�.x/q

hxetx/

C
f �1X

aD0
qha�.a/��.a/e

ta
�
logqh C t

�
:

After some elementary calculations in the above equation, we have

F
.h/

�;�;q.t/ D
Z

Zp

�.x/��.x/q
hxetxd
1.x/

D
f �1X

aD0

�.a/��.a/q
haeat .t C logqh/

�f qhf ef t � 1
(78)

D
1X

nD0
B
.h/

n;�;� .q/
tn

nŠ
.

By using the Taylor series of etz in (78), we obtain

1X

nD0
B
.h/

n;�;� .q/
tn

nŠ
D
Z

Zp

�.x/�� .x/q
hxetxd
1.x/

D
1X

nD0

 Z

Zp

�.x/��.x/q
hxxnd
1.x/

!
tn

nŠ
:

By comparing coefficients tn=nŠ in the above equation, we easily arrive at the
desired result. ut
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We define

f .x/ D �.x/��.x/q
hxet.xCz/:

By substituting the above function into (69), then we obtain the generalized twisted
.h; q/-extension of Bernoulli polynomialsB.h/

n;�;� .z; q/, which are given by means of
the following generating function:

F
.h/

�;�;q.t; z/ D
Z

Zp

�.x/��.x/q
het.xCz/d
1.x/

D
fX

aD1

�.a/��.a/q
hae.zCa/t .t C log qh/

�f qhf ef t � 1 (79)

D
1X

nD0
B
.h/

n;�;� .z; q/
tn

nŠ
.

Note that substituting z D 0 into (79), we have B.h/

n;�;� .0; q/ D B
.h/

n;�;� .q/. If q ! 1

in (79), we arrive at (10).
Relation between B.h/

n;�;� .z; q/ and B.h/

k;�;� .q/ is given by the following theorem:

Theorem 5.6. Let � be a Dirichlet character of conductor f 2 Z
C. We have

B
.h/

n;�;� .z; q/ D
nX

kD0

�
n

k

�

zn�kB.h/

k;�;� .q/:

Proof. By using the Taylor series of et.xCz/ in (79), we get

1X

nD0
B
.h/

n;�;� .z; q/
tn

nŠ
D
1X

nD0

 
nX

kD0

�
n

k

�

zn�k
Z

Zp

�.x/��.x/q
hxxkd
1.x/

!
tn

nŠ
:

By using (77) in the above equation and comparing coefficients tn=nŠ, we easily
arrive at the desired result.

Remark 5.5. Integral representation of the generalized twisted .h; q/-Bernoulli
polynomials is easily given as follows:

B
.h/

n;�;� .z; q/ D
Z

Zp

�.x/��.x/q
hx.x C z/nd
1.x/; (80)

where q 2 Cp; j q � 1 jp< p�
1

p�1 .
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Theorem 5.7. For any positive integer n, we have

B
.h/

n;�;� .z; q/ D f n�1
f �1X

aD0
�.a/��.a/q

haB
.h/

n;�f

�
a C z

f
; qf

�

: (81)

Proof. By using (68) and (80), it is easy to see that

B
.h/

n;�;� .z; q/ D
Z

X

�.x/��.x/q
hx.x C z/nd
1.x/

D lim
N!1

1

fpN

fpN�1X

xD0
�.x/�xqhx.x C z/n

D 1

f
lim
N!1

1

pN

f�1X

aD0

pN�1X

xD0
�.a C f x/�aCf xqh.aCf x/.a C f x C z/n

D f n�1
f�1X

aD0
�.a/�aqha

Z

X

��f .x/q
f hx

�

x C aC z

f

�n
d
1.x/:

By using (76) in the above equation, we obtain the desired result. ut

5.1 The Family of the Twisted (h; q)-Zeta Functions
and .h; q/-L-Function

Here, we assume that q 2 C with j q j< 1 and s 2 C. Let �r D 1 (r 2 Z
C); � ¤ 1.

By applying the Mellin transformation to (70) and (75), we have the following
integral representations:

Z 1

0

t s�1e�tF .h/

�;q .�t/
dt

t
D � .s/�

.h/

�;q .s/ (82)

and by using similar method in the above, we have
Z 1

0

t s�2F .h/

�;q .�t; x/dt D � .s/�
.h/

�;q .s; x/: (83)

By using (82) and (83), we define new twisted .h; q/-zeta functions as follows
(cf. [66]):

Definition 5.1. Let s 2 C , x 2 R
C. We define

�
.h/

�;q .s/ D
1X

nD1

�n�1q.n�1/h

ns
� h log q

s � 1

1X

nD1

�n�1q.n�1/h

ns�1
;
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and

�
.h/

�;q .s; x/ D
1X

nD0

�n�1q.n�1/h

.nC x/s
� h log q

s � 1
1X

nD0

�n�1qnh

.nC x/s�1
:

Remark 5.6. Observe that when q ! 1 and �.h/q .s/ reduces to

�.s/ D
1X

nD1

1

ns
;

Riemann zeta function and �.h/q .s; x/ reduces to

�.s; x/ D
1X

nD1

1

.nC x/s
;

Hurwitz zeta function (cf. [1, 4–91]). We also note that �.h/�;q .s/ are analytically
continued for Re.s/ > 1.

The value of twisted .h; q/-zeta function at negative integers is given explicitly
by the following theorem:

Theorem 5.8. Let n 2 Z
C. We obtain [66]

�
.h/

�;q .1 � n/ D �B
.h/

n;� .q/

n
:

Proof. Proof of this theorem is similar to that of Theorem 8 in [79]. In view of (82),
we define y.s/ by the following contour integral:

y.s/ D
Z

C

zs�2e�zF
.h/

�;q .�z/d z; (84)

where C is Hankel’s contour along the cut joining the points z D 0 and z D 1 on
the real axis, which starts from the point at 1, encircles the origin (z D 0) once in
the positive (counterclockwise) direction, and returns to the point at 1 . Here, as
usual, we interpret zs to mean exp.s log z/, where we assume log to be defined by
log t on the top part of the real axis and by log tC2�i on the bottom part of the real
axis. We thus find from definition (84) that

y.s/ D .e2�is � 1/
Z 1

"

t s�2e�tF .h/

�;q .�t/dt C
Z

C"

zs�2e�zF
.h/

�;q .�z/d z;
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where C" denotes a circle of radius " > 0 (and centered at the origin), which is
described in the positive (counterclockwise) direction. Assume first that Re.s/ > 1.
Then

Z

C"

! 0 as " ! 0;

so we have

y.s/ D .e2�is � 1/

Z 1

0

t s�2e�tF .h/

�;q .�t/dt;

which, upon substituting from (70) into it, yields

y.s/ D .e2�is � 1/� .s/�.h/�;q .s/:

Consequently,

�
.h/

�;q .s/ D y.s/

.e2�is � 1/� .s/ ; (85)

which, by analytic continuation, holds true for all s ¤ 1. This evidently provides us
with an analytic continuation of �.h/w;q.s/.

Let s ! 1 � n in (85), where n is a positive integer. Since

e2�is D e2�i.1�n/ D 1 ( n 2 Z
C),

we have

lim
s!1�n

˚
.e2�is � 1/� .s/
 D lim

s!1�n

�
.e2�is � 1/

sin.�s/

�

� .1 � s/
	

(86)

D 2�i.�1/n�1
.n � 1/Š .n 2 Z

C/

by means of the familiar reflection formula for � .s/. Furthermore, since the
integrand in (84) has simple pole order n C 1 at z D 0, it can also be found from
definition (84) with s D 1 � n that

y.1 � n/ D
Z

C

z�n�1e�zF
.h/

�;q .�z/d z

D 2�i Res
zD0

n
z�n�1e�zF

.h/

�;q .�z/
o

D .2�i/
.�1/n
nŠ

B
.h/

n;� .q/; (87)
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where we have made of the power-series representation in (70). Thus, by Cauchy
residue theorem, we easily arrive at the desired result upon suitably combining (86)
and (87) with (85).

Remark 5.7. The value of �.h/�;q .s; x/ function at negative integers is given explicitly

as follows: for n 2 Z
C,

�
.h/

�;q .1 � n; x/ D �B
.h/

n;� .x; q/

n
: (88)

Proof of (88) runs parallel to that of Theorem 5.8, so we choose to omit the details
involved.

The twisted .h; q/-L-function is defined as follows:

Definition 5.2 ([66]). Let s 2 C. Let � be a Dirichlet character of conductor f 2
Z
C. We define

L
.h/

�;q.s; �/ D
1X

nD1

qnh�n�.n/

ns
� log qh

s � 1

1X

nD1

qnh�n�.n/

ns�1
:

Remark 5.8. Observe that if � ! 1 in the above equation, we have

L.h/q .s; �/ D
1X

nD1

qnh�.n/

ns
� log qh

s � 1

1X

nD1

qnh�.n/

ns�1
:

If q ! 1 in the above equation, then we have

L.s; �/ D
1X

nD1

�.n/

ns
;

where L.s; �/ is the Dirichlet L-function (cf. [37, 51, 68, 79, 90]).

Relation between �.h/�;q .s; z/ and L.h/�;q.s; �/ is given by the following theorem:

Theorem 5.9. Let s 2 C. Let � be a Dirichlet character of conductor f 2 Z
C.

We have [66]

L
.h/

�;q.s; �/ D 1

f s

fX

aD1
qha�a�.a/�

.h/

�f ;qf

�

s;
a

f

�

: (89)
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Proof. Substituting n D aCmf , wherem D 0; 1; : : : ;1 and a D 1; 2; : : : ; f � 1
into Definition 4, we obtain

L.h/w;q.s; �/ D
fX

aD1
qha�a�.a/

1X

mD0

qmf h�f m

.a Cmf /s

� log qh

s � 1

fX

aD1
qha�a�.a/

1X

mD0

qmf h�f m

.a Cmf /s�1

D 1

f s

fX

aD1
qha�a�.a/

0

B
@
1X

mD0

qmf h�f m
�
mC a

f

�s � log qf h

s � 1
1X

mD1

qmf h�f m

�
mC a

f

�s�1

1

C
A :

By using Definition 3 in the above equation, we obtain the desired result. ut
The value of twisted .h; q/-L-function at negative integers is given explicitly by

the following theorem:

Theorem 5.10. Let � be a Dirichlet character of conductor f 2 Z
C. Let n 2 Z

C.
We have [66]

L
.h/

�;q.�n; �/ D �B
.h/

nC1;�;� .q/
nC 1

: (90)

Proof. Substituting s D 1 � n; n 2 Z
C into (89), we have

L
.h/

�;q.1 � n; �/ D f n�1
fX

aD1
qha�a�.a/�

.h/

�f ;qf

�

1 � n;
a

f

�

:

By using (88) in the above equation, we obtain

L
.h/

�;q.1 � n; �/ D �f
n�1

n

fX

aD1
qha�a�.a/B

.h/

n;�f

�
a

f
; qf

�

D �1
n
B
.h/

n;�;� .q/:

By substituting (81) into the above equation, we arrive at the desired result. ut

5.2 p-Adic .h; q/-Interpolation Function

Let p be an odd prime. Let vp W Cp ! Q[ f1g denote the p-adic valuation of Cp
normalized so that vp.p/ D 1. The absolute value on Cp is denoted by j : jp , and
j x jpD p�vp.x/ for x 2 Cp . The integer p� is defined by

p� D
(
p; if p > 2;

4; if p D 2:
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Let w denote the Teichmüller character, having conductor fw D p�. For an arbitrary
character �, we define �n D �w�n, where n 2 Z, in the sense of the product of
characters. Let

D D
n
s 2 Cp W j s jp�j p� j�1 p� 1

p�1

o

and

j p� j�1 p� 1
p�1 > 1

(cf. [30, 37, 44, 70, 87, 91]); see also the references cited in each of these earlier
works.

We recall [30,46,91] that p-adic analogue of (90) is the Kubota–Leopoldtp-adic
L-function Lp.s; �/, which is unique analytic function on D (except for a simple
pole at s D 1 when � � 1) for which

Lp.1 � n; �/ D � .1 � �n.p/p
n�1/Bn;�n

n
;

where n 2 Z
C and �n denotes the Dirichlet character �w�n.

Here, we can use some notations which are due to Washington [87], Koblitz [43],
and Kim [37]. Let w denote the Teichmüller character, having conductor fw D p�.
For an arbitrary character �, we define �n D �w�n, where n 2 Z, in the sense of

the product of characters. If q 2 Cp, then we assume that j 1 � q jp< p
� 1
p�1 . Let

< a >D w�1.a/a D a=w.a/. We note that < a >� 1.modp�Zp/. Thus, we see
that

< a C p�t > D w�1.a C p�t/.a C p�t/

D w�1.a/a C w�1.a/.p�t/ � 1.modp�ZpŒt /;

where t 2 Cp withj t jp� 1, .a; p/ D 1.
We are ready to give p-adic analogues of the twisted two variable q-L-function.

Let F be a positive integral multiple of p� and f D f�.
We define

L
.h/

�;p;q.s; t; �/ D 1

.s � 1/F
FX

a D 1

.a; p/ D 1

�.a/ < a C p�t >1�s qha�a

�
1X

kD0

�
1 � s

k

��
F

a C p�t

�k
B
.h/

k;�F
.qF /; (91)
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where � 2 Tp and � is a Dirichlet character of conductor f and F be any multiple

of p� and f . Then L.h/�;p;q .s; t; �/ is analytic for t 2 Cp with j t jp� 1, provided
s 2 D, except s D 1 when � ¤ 1.

In [70], we proved the following theorem:

Theorem 5.11. Let � 2 Tp . Let � be a Dirichlet character of conductor f and F
be any multiple of p� and f . Let s 2 D. Then we have

L
.h/

�;p;q.s; t; �/ D 1

.s � 1/F
FX

a D 1

.a; p/ D 1

�.a/ < a C p�t >1�s qha�a

�
1X

kD0

�
1 � s
k

��
F

a C p�t

�k
B
.h/

k;�F
.qF /:

Then L.h/�;p;q.s; t; �/ is analytic for h 2 Z
C and t 2 Cp withj t jp� 1, provided

s 2 D, except s D 1. Also, if t 2 Cp with j t jp� 1, this function is analytic for
s 2 D when � ¤ 1 and meromorphic for s 2 D, with simple pole at s D 1 having
residue

log qh

qh� � 1
�
1 � qhF �F

1 � qh� � 1 � qhpF
1 � qph

�

when � D 1. In addition, for each n 2 Z
C, we have

L
.h/

�;p;q.1 � n; t; �/ D �B
.h/

n;�n;�
.p�t; q/� �n.p/p

n�1B.h/
n;�n;1

.p�1p�t; qp/
n

:

Proof of this theorem is the same as that of Theorem 4.10.

Remark 5.9. Observe that if � D 1, then

L
.h/
1;p;q .s; t; �/ D L.h/p;q.s; t; �/

(cf. [37]).

lim
q!1 Lp;q.s; �/ D Lp.s; �/

(cf. [17, 21, 22, 30, 37, 40, 44, 70, 87, 87, 91]).

We now give some applications related to the twisted p-adic interpolation
function for the .h; q/-extension of the generalized twisted Bernoulli polynomials.

Let

Y D ˚
q 2 Cp Wj q � 1 j< 1
 ;
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and let Y D Cp n Y be the complement of the open unit disc around 1. According
to Kim [35], if q 2 Y and ordp.1 � q/ ¤ �1, then


q.a C dpNZp/ D qa

ŒdpN q

is the measure. We assume that q 2 Y and ordp.1� q/ ¤ �1 (cf. see also [40]).
By using (80), we modify twisted p-adic interpolation function as follows:

L
.h/

�;p;q .s; �/ D 1

s � 1
Z

X�

�.x/��.x/ < x >
�s qhxd
q.x/;

where � 2 Tp and q 2 Y , with ordp.1 � q/ ¤ �1, and � is a Dirichlet character
of conductor f and F is any multiple of p� and f and s 2 D.

Substituting s D 1�n, n 2 Z
C into the above, after some calculations, we obtain

L
.h/

�;p;q .1 � n; �/

D �1
n

Z

X�

��.x/�.x/ < x >
n�1 qhxd
q.x/

D �1
n

�Z

X

�n.x/��.x/q
hxxnd
q.x/ �

Z

pX

�n.px/��.px/q
phxxnd
qp .x/

�

D �1
n

�
B
.h/

n;�;� .q/� �n.p/pn�1B.h/
n;�;1.q

p/
�
:

Consequently, we arrive at the following theorem:

Theorem 5.12. Let � 2 Tp and q 2 Y , with ordp.1 � q/ ¤ �1. Let � be a
Dirichlet character of conductor f and F be any multiple of p� and f . Let s 2 D;
then we have [70]

L
.h/

�;p;q.s; �/ D 1

s � 1

Z

X�

�.x/�� .x/ < x >
�s qhxd
q.x/:

For n 2 Z
C, we have

L
.h/

�;p;q .1� n; �/ D �1
n

Z

X�

��.x/�.x/ < x >
n�1 qhxd
q.x/

D �1
n

�
B
.h/

n;�;� .q/� �n.p/p
n�1B.h/

n;�;1.q
p/
�
:

Remark 5.10. By using the function L.h/�;p;q .s; t; �/, Kummer congruence of the
generalized .h; q/-twisted Bernoulli numbers can be obtained.
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Most of the congruence relations for the Bernoulli numbers and the generalized
Bernoulli numbers follow from p-adic L-function. We recall from work of Wash-
ington [87, p. 60, Corollary 5.13] that for m; n 2 Z and � ¤ 1 and pq ® f , then

Lp.m; �/ � Lp.n; �/.modp/;

and both members are p-integral. Kummer’s Congruences
Suppose m � n 6� 0 .modp � 1/ are positive even integers. Then

Bm

m
� Bn

n
.modp/

(cf. [87, p. 61, Corollary 5.14]).

6 Bernoulli Functions and Arithmetic Sums

The history of the Dedekind sums can be traced back, respectively, to Julius
Wilhelm Richard Dedekind (1831–1916), who did important work in abstract
algebra (particularly ring theory), algebraic number theory, and the foundations
of the real numbers, and Hans Adolph Rademacher (1892–1969), who also did
important work in mathematical analysis and number theory. It is well known that
Dedekind sums, named after Richard Dedekind, are certain sums of products of a
sawtooth function. Dedekind introduced them to express the functional equation of
the Dedekind eta function. They have subsequently been much studied in number
theory and have occurred in some problems of topology and other branches of
mathematics. Although two-dimensional Dedekind sums have been around since
the nineteenth century and higher-dimensional Dedekind sums have been explored
since the 1950s, it is only recently that such sums have figured prominently in so
many different areas. The Dedekind sums have also many applications in some
realms such as number theory, modular forms, random numbers, the Riemann–Roch
theorem, and the Atiyah–Singer index theorem.

In many applications of elliptic modular functions to number theory, the eta
function plays a central role. It was introduced by Dedekind in 1877 and is defined
by the upper half plane

H D f� 2 C W Im.z/ > 0g

by the following equation:

� .�/ D e�i�=12
1Y

mD1

�
1 � e2�im�

�
:
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The infinite product has the form
1Q
nD1
.1 � xn/ where x D e2�i� . If � 2 H,

then j x j< 1, so the product converges absolutely and is nonzero. Furthermore,
since the convergence is uniform on compact subsets of H, �.�/ is analytic on H.
The function �.�/ is related to analysis, number theory, combinatorics, q-series,
Weierstrass elliptic functions, modular forms, and Kronecker limit formula. The
behavior of this function under the modular group � .1/, defined by

� .1/ D
�

A D

a b

c d

�

W ad � bc D 1; a; b; c; d 2 Z

	

;

is given by the following functional equation:

Theorem 6.1. Let A D

a b

c d

�

2 � .1/. Then

log �.Az/ D log �.z/C �i.aC d/

12c
� �i

�
s.d; c/� 1

4

�
C 1

2
log.cz C d/;

where s.d; c/ is called the Dedekind sums, which are defined by (92).

Let h and k be coprime integers with k > 0; the classical Dedekind sum s.h; k/,
which firstly arose in the transformation formula of the Dedekind eta function, is
defined as follows:

s .h; k/ D
k�1X

aD1

��a

k

����ha

k

��

; (92)

where ..x// denotes the sawtooth function ..x// W R ! R,

..x// D
(
x � ŒxG � 1

2
; if x 2 RnZ;

0; if x 2 Z;

(cf. [6, 26]).
Using the theory of elliptic functions, Dedekind showed that a certain reciprocity

formula holds for these sums, that is,

s.h; k/C s.k; h/ D �1
4

C 1

12

�
h

k
C k

h
C 1

hk

�

;

where .h; k/ D 1 and h; k 2 N (cf. [6, 26]).
In 1950, Apostol [3] gave relation between Dedekind sums and Bernoulli

polynomials and functions. He generalized the Dedekind sums as follows:

Sp.h; k/ D
X

amod k

a

k
Bp

�
ah

k

�

;
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where .h; k/ D 1 and h; k 2 N and Bp.x/ is the pth Bernoulli function, which is
defined by (43) and (44).

We consider now some arithmetic sums. We need some properties of the Euler
functions, which are given below.

The first kind mth Euler functionEm.x/ is defined as follows:

Em.x/ D 2.mŠ/

.�i/mC1
1X

nD�1

e.2nC1/�ix

.2nC 1/mC1
; (93)

wherem 2 N, 0 � x < 1 (cf. [39, 69, 74, 76, 77]).
Observe that if 0 � x < 1, then (1) reduces to the first kind nth Euler polynomials

En.x/ which are defined by means of the following generating function:

2etx

et C 1
D
1X

nD0
En.x/

tn

nŠ
.jt j < �/ :

Observe that En.0/ D En denotes the first kind Euler number which is given by the
following recurrence formula:

E0 D 1 and En D �
nX

kD0

 
n

k

!

Ek: (94)

Some of them are given by 1, �1=2, 0, 1=4, : : :, En D 2nEn.1=2/ and E2n D 0

(n 2 N) (cf. [1, 6–92]) and see also the references cited in each of these earlier
works.

From (93) it is easy to see that

1X

nD0

1

.2nC 1/2mC2
D .�1/mC1�2mC2E2mC1

4.2mC 1/Š
; (95)

(cf. [1, 6–92]) and see also the references cited in each of these earlier works.
The second kind Euler numbers, E�m are defined by means of the following

generating functions:

sechx D 1

cosh x
D 2ex

e2x C 1
D
1X

nD0
E�n

xn

nŠ

�
jxj < �

2

�
(96a)

(cf. [1, 6–92]) and see also the references cited in each of these earlier works. By
(96a), it is easy to see that

E�m D
mX

nD0

 
m

n

!

2nEn;
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From the aboveE�0 D 1,E�1 D 0,E�2 D �1,E�3 D 0,E�4 D 5, : : :, andE�2mC1 D 0

(cf. [39, 69, 77]).
The first and the second kind Euler numbers are also related to tan z and sec z.

tan z D e2iz

2i

�
2

e2iz C 1

�

� e�2iz

2i

�
2

e�2iz C 1

�

:

From the above equation, we have

tan z D
1X

jD0
.�1/n22jC1

 
2jC1X

kD0

 
2j C 1

k

!

Ek

!
z2jC1

.2j C 1/Š
:

By using (94), one can find that

tan z D
1X

nD0
.�1/nC1 2

2nC1E2nC1
.2nC 1/Š

z2nC1
�
jzj < �

2

�
(97)

(cf. [39, 69, 77]).

i tan z D eiz � e�iz
eiz C e�iz

D 1 � 2

e2iz � 1 C 4

e4iz � 1
:

From the above equation, we have

z tan z D
1X

nD0
.�1/n 4

n.1 � 4n/B2n

.2n/Š
z2nI

see also (cf. [39, 69, 77]) and the references cited in each of these earlier works. By
using the above, we arrive at (97):

sec z D
1X

nD0
.�1/n E

�
2n

.2n/Š
z2n

�
jzj < �

2

�

(cf. [39, 69, 77]) and see also the references cited in each of these earlier works.
Kim [39] and the author [69] have studied on the Dedekind-type DC .Daehee-

Changhee/ sums, which are defined as follows:

Definition 6.1 ([39]). Let h and k be coprime integers with k > 0. Then

Tm.h; k/ D 2

k�1X

jD1
.�1/j�1 j

k
Em

�
hj

k

�

; (98)

where Em.x/ denotes the mth (first kind) Euler function.
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We now modify (93) as follows:

Em.x/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

2.mŠ/

.�i/mC1
1X

nD0

sin..2nC 1/�x/

.2nC 1/mC1
; if mC 1 is odd;

2.mŠ/

.�i/mC1
1X

nD0

cos..2nC 1/�x/

.2nC 1/mC1
; if mC 1 is even.

(99)

IfmC1 is even, thenm is odd; consequently, (99) reduces to the following relation:
For y 2 N andm D 2y � 1, we have

E2y�1.x/ D 4.�1/y .2y � 1/Š
�2y

1X

nD0

cos..2nC 1/�x/

.2nC 1/2y
:

If mC 1 is odd, then m is odd; hence (99) reduces to the following relation:
For m D 2y, y 2 N, we have

E2y.x/ D 4.�1/y .2y/Š
�2yC1

1X

nD0

sin..2nC 1/�x/

.2nC 1/2yC1
:

Hence, from the above equation, we arrive at the following Lemma.

Lemma 6.1 ([69]). Let y 2 N and 0 � x � 1. Then we have

E2y�1.x/ D .�1/y4.2y � 1/Š

�2y

1X

nD0

cos..2nC 1/�x/

.2nC 1/2y
(100)

and

E2y.x/ D .�1/y4.2y/Š
�2yC1

1X

nD1

sin..2nC 1/�x/

.2nC 1/2yC1
: (101)

We now modify the sum Tm.h; k/ for odd and even integerm:

Definition 6.2 ([69]). Let h and k be coprime integers with k > 0. Then

T2y�1.h; k/ D 2

k�1X

jD0
.�1/j�1 j

k
E2y�1

�
hj

k

�

(102)

and

T2y.h; k/ D 2

k�1X

jD0
.�1/j�1 j

k
E2y

�
hj

k

�

; (103)

where E2y�1.x/ and E2y.x/ denote the Euler functions.
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By substituting equation (100) into (102), we have

T2y�1.h; k/ D �8.�1/
y.2y � 1/Š

k�2y

k�1X

jD1
.�1/j j

1X

nD0

cos
�
�hj.2nC1/

k

�

.2nC 1/2y
: (104)

From the above we have

T2y�1.h; k/D � 8.�1/y.2y � 1/Š
k�2y

1X

nD0

1

.2nC1/2y
k�1X

jD1
.�1/j j cos

�
�hj.2nC 1/

k

�

:

(105)
We next recall from [12, 24] that

k�1X

jD1
je

.2nC1/�hij
k D

8
ˆ̂
<̂

ˆ̂
:̂

k

e
.2nC1/�ih

k � 1
; if 2nC 1 6� 0 .k/;

k.k � 1/
2

; if 2nC 1 � 0 .k/:

From the above, it is easy to get

k�1X

jD1
.�1/j je .2nC1/�hij

k D k

e
.kC.2nC1/h/�i

k � 1
:

By using an elementary calculations, we have

k�1X

jD1
.�1/j j cos

�
.2nC 1/�hj

k

�

D �k
2

(106)

and

k�1X

jD1
.�1/j j sin

�
.2nC 1/�hj

k

�

D
k tan

�
�h.2nC1/

2k

�

2
; (107)

where 2nC 1 6� 0 .k/. By substituting (106) into (105) and after some elementary
calculations, we obtain

T2y�1.h; k/ D 8.�1/y.2y � 1/Š
k�2y

1X

nD0

1

.2nC 1/2y
:

By substituting (95) into the above, we easily arrive at the following theorem.
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Theorem 6.2. Let y 2 N, then we have [69]

T2y�1.h; k/ D 4E2y�1:

By substituting equation (101) into (103), we have

T2y.h; k/ D 8.�1/y.2y/Š
k�2yC1

k�1X

jD1
.�1/j j

1X

nD0

sin
�
.2nC1/hj�

k

�

.2nC 1/2yC1
: (108)

By substituting (107) into the above, we arrive at the following theorem.

Theorem 6.3. Let h and k be coprime positive integers. Let y 2 N, then we have
[69]

T2y.h; k/ D 4.�1/y.2y/Š
�2yC1

1X

nD0
2nC16�0.mod k/

tan
�
h�.2nC1/

2k

�

.2nC 1/2yC1
: (109)

The DC-sums related to many special functions (cf. [69]). In [74], Srivastava proved
the following formulae which are related to Hurwitz zeta function, trigonometric
functions, and Euler polynomials:

E2y�1
�p

q

�
D .�1/y 4.2y � 1/Š

.2q�/2y

qX

jD1
�

�

2y;
2j � 1

q

�

cos

�
�p.2j � 1/

q

�

;

where y; q 2 N, p 2 N0I 0 � p � q, and

E2y

�p

q

�
D .�1/y 4.2y/Š

.2q�/2yC1

qX

jD1
�

�

2y C 1;
2j � 1
2q

�

sin

�
�p.2j � 1/

q

�

;

where y; q 2 N, p 2 N0I 0 � p � q and �.s; x/ denotes the Hurwitz zeta function.
By substituting p D 0 in the above, then we have

E2y�1.0/ D .�1/y 4.2y � 1/Š

.2q�/2y

qX

jD1
�

�

2y;
2j � 1

q

�

:

By using the above equation, we modify the sum T2y�1.h; k/ as follows:

Corollary 6.1. Let y; q 2 N. Then we have [69]

T2y�1.h; k/ D .�1/y 4.2y � 1/Š
.2q�/2y

qX

jD1
�

�

2y;
2j � 1

q

�

:
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The famous property of the all arithmetic sums is the reciprocity law. By using
contour integration, we prove reciprocity law of (109).

The initial different proof of the following reciprocity theorem is due to Kim
[39], for the sum Ty.h; k/.

Theorem 6.4. Let h, k, y 2 N with h � 1 .mod 2/ and k � 1 .mod 2/ and
.h; k/ D 1. Then we have [69]

kh2yC1T2y.h; k/C hk2yC1T2y.k; h/

D .�1/y�2y�1� .2y C 1/

2� .4y C 2/
E4yC1 C 4�2.2y/Š

y�1X

aD0

E2aC1E2y�2a�1h2aC2k2y�2a
.2aC 1/Š.2y � 2aC 1/Š

;

where � .n C 1/ D nŠ and En denote Euler gamma function and first kind Euler
numbers, respectively.

Proof. We shall give just a brief sketch as the details are similar to those in
[9, Theorem 4.2], [12, Theorem 3], [25] or [26]. For the proof we use contour
integration method. So we define

Fy.z/ D tan�hz tan�kz

z2yC1
:

Let CN be a positive oriented circle of radiusRN , with 1 � N < 1, centered at the
origin. Assume that the sequence of radii RN is increasing to 1. RN is chosen so
that the circles always at a distance greater than some fixed positive integer number
from the points m

2h
and n

2k
, wherem and n are integers.

Let

IN D 1

2�i

Z

CN

tan�hz tan�kz

z2yC1
d z:

From the above, we get

IN D 1

2�

2�Z

0

tan
�
�hRN e

i�
�

tan
�
�kRN e

i�
�

�
RNei�

�2y d�:

By CN , ifRN ! 1, then tan
�
RNe

i�
�

is bounded. Consequently, we easily see that

lim
N!1 IN D 0 as RN ! 1:

Thus, on the interior CN , the integrand of IN that is Fy.z/ has simple poles at
z1 D 2mC1

2h
, �1 < m < 1, and z2 D 2nC1

2k
, �1 < n < 1. If we calculate

the residues at the z1 and z2, we easily obtain, respectively, as follows:

� 22yC1k2y

�.2mC 1/2yC1
tan

�
.2mC 1/�h

2k

�

; �1 < m < 1
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and

� 22yC1h2y

�.2nC 1/2yC1
tan

�
.2nC 1/�k

2h

�

; �1 < n < 1:

If h and k are odd integers, then Fy.z/ has double poles at z3D 2jC1
2

, �1<j<1.
Thus the residue is easily found to be

� .2y C 1/22yC1

2.2j C 1/4yC2�2hk
; �1 < j < 1:

The integrand of IN has pole of order 2y C 1 at z4 D 0, y 2 N. Recall the
familiar Taylor expansion of tan z in (97). By straightforward calculation, we find
the residues at the z4 as follows:

.�1/y .2�/2yC2
y�1X

aD1

E2aC1E2y�2a�1h2aC1k2y�2a�1

.2a C 1/Š.2j � 2a � 1/Š :

Now we are ready to use residue theorem; hence we find that

IN D �2
2yC1h2y

�

X

j 2mC1
2h j<RN

tan
�
.2mC1/�k

2h

�

.2mC 1/2yC1
� 22yC1k2y

�

X

j 2nC1
2k j<RN

tan
�
.2nC1/�k

2h

�

.2nC 1/2yC1

� .2y C 1/22y

�2hk

1X

jD�1

1

.2j C 1/4yC2
C .�1/y .2�/2yC2

y�1X

aD0

E2aC1E2y�2a�1h2aC1k2y�2a�1

.2aC 1/Š.2y � 2a � 1/Š :

By using (95) and lettingN ! 1 into the above, after straightforward calculations,
we arrive at the desired result.

Remark 6.1. We also recall from [55, p. 20, Eqs. (11.2) and (11-3)] that

tan z D
1X

kD1
Tk

z2k�1

.2k � 1/Š
; (110)

where

Tk D .�1/k�1 B2k
.2k/

.22k � 1/22k:
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The integrand of IN has pole of order 2y C 1 at z4 D 0, y 2 N. Recall the
familiar Taylor expansion of tan z in (110). By straightforward calculation, we find
the residues at the z4 as follows:

�2y
yC1X

aD0

TaTy�aC1
.2a � 1/Š.2y � 2a � 1/Š

h2a�1k2y�2aC1:

Thus we modify Theorem 6.4 as follows:

kh2yC1T2y.h; k/C hk2yC1T2y.k; h/ D .�1/y�2y�1� .2y C 1/

2� .4y C 2/
E4yC1

C .�1/y .2y/Š
4y

yC1X

aD0

TaTy�aC1
.2a � 1/Š.2y � 2a � 1/Šh

2a�1k2y�2aC1:

We now give relation between Hurwitz zeta function, tan z, and the sum T2y.h; k/.
Hence, substituting n D rkCj , 0 � r � 1, 1 � j � k into (109), and recalling

that tan.� C ˛/ D tan˛, then we have

T2y.h; k/ D 4.�1/y.2y/Š
�2yC1

kX

jD1

1X

rD0

tan
�
�h2.rkCj /C1

2k

�

.2.rk C j /C 1/2yC1

D 4.�1/y.2y/Š
�2yC1.2k/2yC1

kX

jD1
tan

�
�h.2j C 1/

2k

� 1X

rD0

1
�
r C 2jC1

2k

�2yC1 :

Thus we arrive at the following theorem:

Theorem 6.5. Let h and k be coprime positive integers. Let y 2 N. Then we have
[69]

T2y.h; k/ D 4.�1/y.2y/Š
.2k�/2yC1

kX

jD1
tan

�
�h.2j C 1/

2k

�

�

�

2y C 1;
2j C 1

2k

�

; (111)

where �.s; x/ denotes the Hurwitz zeta function.

We set

e2iz

1C e2iz
D i tan z C e�2iz

1C e�2iz
; (112)

where i 2 D �1.
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Hence setting 2iz D h�i.2nC 1/=k, with .h; k/ D 1, n 2 N in (111) with
(109), we obtain the following corollary:

Corollary 6.2. Let h and k be coprime positive integers. Let y 2 N; then we have
[69]

T2y.h; k/
4i.�1/yC1.2y/Š

.2k�/2yC1

1X

nD1
2nC1 6�0 .modk/

1

.2nC 1/2yC1

 
e
h�i.2nC1/

k

1C e h�i.2nC1/
k

� e�

h�i.2nC1/
k

1C e�

h�i.2nC1/
2k

!

:

(113)

In (109) if h and k are odd and y D 0, then T2y.h; k/ reduces to the Hardy–Berndt
sum s5.h; k/ which is defined by:

Let h and k be integers with .h; k/ D 1. Then

s5.h; k/ D
kX

jD1
.�1/jCŒhj =kG

��j

k

��
: (114)

From the above, recall from [12] that we have

s5.h; k/ D
kX

jD1
.�1/j j

k
.�1/Œhj =kG : (115)

By substituting the well-known Fourier expansion (cf. [12, 24])

.�1/ŒxG D 4

�

1X

nD0

sin..2nC 1/�x/

2nC 1

into (115), we get

s5.h; k/ D 4

k�

1X

nD0

1

2nC 1

kX

jD1
.�1/j j sin

�
.2nC 1/�hj

k

�

:

By substituting (108) into the above, we immediately find the following result:

Lemma 6.2. Let h and k be odd with .h; k/ D 1. Then we have [69]

T0.h; k/ D 2s5.h; k/:

By using Lemma 6.2 and Theorem 6.3, we arrive at the following theorem:

Theorem 6.6. Let h and k be odd with .h; k/ D 1. Then we have [69]

S5.h; kIy/ D T2y.h; k/

2
:
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Remark 6.2. Substituting y D 0 into Theorem 6.6, we get s5.h; k/ D 2S5.h; kI 0/.
Consequently, the sum T2y.h; k/ gives us generalized Hardy–Berndt sum s5.h; k/.

In [71], we define the following Y.h; k/ sum:

Y.h; k/ D 4ks5.h; k/;

where h and k are odd with .h; k/ D 1. Thus from Lemma 6.2, we have the
following corollary:

Corollary 6.3. Let h and k be odd with .h; k/ D 1. Then we have [66]

T0.h; k/ D Y.h; k/

2k
:

Observe that the sum T2y.h; k/ also gives us generalization of the sum Y.h; k/.
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Combinatorial Interpretation of a Generalized
Basic Series

A.K. Agarwal and M. Rana

Dedicated to Professor Hari M. Srivastava

Abstract Recently Goyal and Agarwal (ARS Combinatoria, to appear) have
interpreted a generalized basic series as a generating function for a colour par-
tition function and a weighted lattice path function. This resulted in an infinite
family of combinatorial identities. Using a bijection between the Bender–Knuth
matrices and the n-colour partitions established by the first author in Agarwal
(ARS Combinatoria, 61, 97–117, 2001), in this paper we extend the main result
of Goyal and Agarwal to a 3-way infinite family of combinatorial identities.
We illustrate by two examples that our main result has the potential of yielding
many Rogers–Ramanujan–MacMahon type combinatorial identities.

1 Introduction, Definitions and the Main Result

A series involving factors like rising q-factorial .aI q/n defined by

.aI q/n D
1Y

iD0

.1 � aqi /

.1 � aqnCi /

is called basic series (or q-series or Eulerian series). The following two “sum-
product” basic series identities are known as Rogers–Ramanujan identities:
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1X

nD0

qn
2

.qI q/n D
1Y

nD1
.1� q5n�1/�1.1� q5n�4/�1; (*)

1X

nD0

qn
2Cn

.qI q/n D
1Y

nD1
.1 � q5n�2/�1.1 � q5n�3/�1: (**)

They were first discovered by Rogers [20] and rediscovered by Ramanujan in 1913.
MacMahon [19] gave the following partition theoretic interpretations of .�/ and
.��/, respectively:

Theorem A. The number of partitions of n into parts with minimal difference 2
equals the number of partitions of n into parts which are congruent to ˙1 .mod 5/.

Theorem B. The number of partitions of n into parts with minimal part 2 and
minimal difference 2 equals the number of partitions of n into parts which are
congruent to ˙2 .mod 5/.

Partition theoretic interpretations of many more q-series identities like .�/ and
.��/ have been given by several mathematicians. See, for instance, Göllnitz [13,14],
Gordon [15], Connor [12], Hirschhorn [18], Agarwal and Andrews [6], Subbarao
[22] and Subbarao and Agarwal [23].

In all these results ordinary partitions were used. In [7] n-colour partitions were
defined. Using these partitions several more basic series identities were interpreted
combinatorially (see, for instance, [1–4, 16]). Recently in [17] the basic series

1X

nD0

qn.nCk�1/.�qI q2/n
.q4I q4/n ;

where k is a positive integer, was interpreted as generating function of two different
combinatorial objects, viz., an n-colour partition function and a weighted lattice
path function. This led to an infinite family of combinatorial identities. Our objective
here is to extend the main result of [17] by using Bender and Knuth matrices. This
gives us an infinite family of 3-way identities which have the potential of yielding
many Rogers–Ramanujan–MacMahon type combinatorial identities like Theorems
A and B. First we recall the following definitions from [7]:

Definition 1.1. A partition with “nC t copies of n” (also called an .nC t/-colour
partition), t � 0, is a partition in which a part of size n, n � 0, can occur in .nC t/

different colours denoted by subscripts: n1; n2; : : : ; nnCt . For example, the partitions
of 2 with “nC 1 copies of n” are

21; 21 C 01; 11 C 11; 11 C 11 C 01;

22; 22 C 01; 12 C 11; 12 C 11 C 01;

23; 23 C 01; 12 C 12; 12 C 12 C 01:
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Fig. 1 Lattice paths

Note that zeros are permitted if and only if t is greater than or equal to one. Also, in
no partition are zeros permitted to repeat.

Definition 1.2. The weighted difference of two parts mi , nj , m � n is defined by
m � n � i � j and denoted by ..mi � nj //.

Definition 1.3. We reproduce the following definitions of lattice paths from [8]:
All paths will be of finite length lying in the first quadrant. They will begin on the
y-axis and terminate on the x-axis. Only three moves are allowed at each step:

Northeast: from .i; j / to .i C 1; j C 1/

Southeast: from .i; j / to .i C 1; j � 1/, only allowed if j > 0
Horizontal: from .i; 0/ to .i C 1; 0/, only allowed along x-axis

All our lattice paths are either empty or terminate with a southeast step: from
.i; 1/ to .i C 1; 0/.

The following terminology will be used in describing lattice paths (Fig. 1):

Peak: Either a vertex on the y-axis which is followed by a southeast step or a vertex
preceded by a northeast step and followed by a southeast step.

Valley: A vertex preceded by a southeast step and followed by a northeast step.
Note that a southeast step followed by a horizontal step followed by a northeast
step does not constitute a valley.

Mountain: A section of the path which starts on either the x-axis or y-axis, which
ends on the x-axis, and which does not touch the x-axis anywhere in between the
end points. Every mountain has at least one peak and may have more than one.

Plain: A section of the path consisting of only horizontal steps which starts either
on the y-axis or at a vertex preceded by a southeast step and ends at a vertex
followed by a northeast step.

The Height of a vertex is its y-coordinate. The Weight of a vertex is its
x-coordinate. The Weight of a path is the sum of the weights of its peaks.

Example 1.1. The following path has five peaks, three valleys, three mountains and
one plain.

In this example, there are two peaks of height three and three of height two, two
valley of height one and one of height zero.

The weight of this path is 0C 3C 9C 12C 17 D 41.
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Definition 1.4. A plane partition � of a positive integer � is an array of
non-negative integers for which

P
i;j ni;j D � and rows and columns are arranged

in non-increasing order. The non-zero entries ni;j are called the parts of � .

n1;1 n1;2 n1;3 � � �
n2;1 n2;2 n2;3 � � �
:::

:::
:::

Bender and Knuth [11] proved the following:

Theorem (Bender and Knuth). There is a one-to-one correspondence between
plane partitions of �, on the other hand, and infinite matrices ai;j .i; j � 1/ of
non-negative integer entries which satisfy

X

r�1
r

8
<

:

X

iCjDrC1
ai;j

9
=

;
D �;

on the other.

Note. For the definition and other details of the one-to-one correspondence of this
theorem which is denoted by � the reader is referred to [9].

Corresponding to every non-negative integer � we shall call the matrices of
the above theorem BK�-matrices (BK for Bender and Knuth). These are infinite
matrices but will be represented in the sequel by the largest possible square matrices
whose last row (column) is non-zero. Thus, for example, we will represent six
BK3-matrices by

�
3
�
;

�
1 0

1 0

�

;

�
1 1

0 0

�

;

�
0 0

0 1

�

;

0

@
0 0 1

0 0 0

0 0 0

1

A ;

0

@
0 0 0

0 0 0

1 0 0

1

A :

We give here three more definitions:

Definition 1.5. We define a matrixEi;j as an infinite matrix whose .i; j /th entry is
1 and the other entries are all zeros. We call Ei;j distinct units of BK�-matrix.

Definition 1.6. In the set of all units the order is defined as follows: If rCs < pCq
then Er;s < Ep;q and if r C s D p C q, then Er;s < Ep;q , where r < p. Thus, the
units satisfy the order:

E1;1 < E1;2 < E2;1 < E1;3 < E2;2 < E3;1 < E1;4 < E2;3 < E3;2 < � � � :
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Definition 1.7. The order difference of two units Ep;q; Er;s .p C q � r C s/ is
defined by q � s � 2r and is denoted by ffEp;q �Er;sgg.

The following result was proved in [17].

Theorem 1.1. For a positive integer k, let Ak.�/ denote the number of n-colour
partitions of � such that

.1:1:a/ the parts are greater than or equal to k,

.1:1:b/ the parts are of the form .2l � 1/1 or .2l/2, if k is an odd and of the form

.2l � 1/2 or .2l/1, if k is an even,

.1:1:c/ if mi is the smallest or the only part in the partition, then
m � i C k � 1 .mod 4/and
.1:1:d/ the weighted difference between any two consecutive parts is non-
negative and is � 0 .mod 4/.

Let Bk.�/ denote the number of lattice paths of weight � which start at .0; 0/,
such that

.1:1:e/ they have no valley above height 0,

.1:1:f/ there is a plain of length � k � 1 .mod 4/ in the beginning of the path;
other plains, if any, are of length which are multiples of 4 and
.1:1:g/ the height of each peak of odd .resp., even/ weight is 1 .resp. 2/ if k is
odd and 2 .resp., 1/ if k is even. Then

Ak.�/ D Bk.�/; for all �; (1)

and

1X

�D0
Ak.�/q

� D
1X

�D0
Bk.�/q

� D
1X

nD0

qn.nCk�1/.�qI q2/n
.q4I q4/n : (2)

In this paper we shall prove the following result which provides a 3-way extension
of Theorem 1.1:

Theorem 1.2. For k, � � 1, let Ck.�/ denote the number of Bk�-matrices 4 such
that

.1:2:a/ if k is odd .resp. even/, then even .resp. odd/ columns are zero,

.1:2:b/ all rows after the second row are zero,.

.1:2:c/ if Ei;j is the .i; j /th entry in 4 such that either it is the only non-zero
entry or i C j is minimum, then j � k .mod 4/,
.1:2:d/ the order difference of any two units of 4 is non-negative and is �
0 .mod 4/,
.1:2:e/ for odd k > 1, the first .k � 1/=2 odd columns are zeroand
.1:2:f/ for even k > 2, the first .k � 2/=2 even columns are zero, then

Ak.�/ D Ck.�/; for all k and �:
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Note. In view of (1.2.d) the entries in 4 cannot exceed 1.

Example 1.2. A1.5/ D 2, since the relevant n-colour partitions are 51, 42 C 11;
C1.5/ D 2, since the relevant BK5-matrices are

0

B
B
B
B
B
@

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C
C
C
C
C
A
;

0

@
1 0 0

0 0 1

0 0 0

1

A :

Example 1.3. A3.8/ D 2, in this case the relevant n-colour partitions are 82, 51C31;
C3.8/ D 2, since the relevant BK8-matrices in this case are

0

B
B
B
B
B
@

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1

C
C
C
C
C
A
;

0

B
B
B
B
B
@

0 0 1 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C
C
C
C
C
A
:

Remark 1.1. Theorem 1.2 extends the Identity (1) to a 3-way identity

Ak.�/ D Bk.�/ D Ck.�/: (3)

Using Agarwal’s bijection [5] between BK�-matrices and n-colour partitions of �,
we shall prove Theorem 1.2 in the next section. In Sect. 3 we discuss two particular
cases and obtain new combinatorial interpretations of two well-known basic series
identities, viz.,

1X

nD0

qn
2
.�qI q2/n
.q4I q4/n D .�qI q2/1.q3I q3/1.q3I q6/1

.q2I q2/1 ; (4)

1X

nD0

qn
2C2n.�qI q2/n
.q4I q4/n D .�qI q2/1.q6I q6/1.qI q6/1.q5I q6/1

.q2I q2/1 : (5)

Identity (4) is due to Slater [21, p. 154, Eq. (25)] and Identity (5) was given by
Andrews [10, p. 105].

Here we recall Agarwal’s bijection from [5] for clarity. Let

4 D a1;1E1;1 C a1;2E1;2 C � � � C a2;1E2;1 C a2;2E2;2 C � � � (6)

be BK�-matrices, where ai;j are non-negative integers which denote the multiplici-
ties of Ei;j .
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We map each unit Ep;q of 4 to a single part mi of an n-colour partition of �.
The mapping denoted by f is defined as

f W Ep;q ! .p C q � 1/p; (7)

and the inverse mapping f �1 is easily seen to be

f �1 W mi ! Ei;m�iC1: (8)

For � D 3, this bijection is illustrated in the following table:

BK3-matrices � f.�/

.3/ D 3E1;1 311 D 11 C 11 C 11
�
1 1

0 0

�

D E1;1C E1;2 11 C 21
�
1 0

1 0

�

D E1;1C E2;1 11 C 22
0

@
0 0 1

0 0 0

0 0 0

1

AD E1;3 31

�
0 0

0 1

�

D E2;2 32

0

@
0 0 0

0 0 0

1 0 0

1

AD E3;1 33

2 Proof of Theorem 1.2

We shall prove that if 4 is a matrix enumerated by Ck.�/, then the n-colour
partition f .4/ is enumerated byAk.�/, and conversely, if � is an n-colour partition
enumerated by Ak.�/, then the BK�-matrix f �1.�/ is enumerated by Ck.�/.

Let the matrix enumerated by Ek.�/ has representation (6). Clearly, in view of
the note given after Theorem 1.2, each ai;j D 1 or 0. Let Ep;q , Er;s.pC q � r C s/

be two units of 4 which correspond to two n-colour parts mi , nj of f .4/. Then
mi D .pC q � 1/p and nj D .r C s � 1/r by (7). Since .pC q � r C s/, therefore
m � n and

..mi � nj // D .pC q � 1/�p � .r C s � 1/� r D q � s � 2r D ffEp;q �Er;sgg;

which is non-negative and � 0 .mod 4/. This shows that .1:2:d/ implies .1:1:d/.
Since f .Ei;j / D .i C j � 1/i D mi (say), by (7), so if Ei;j is the only non-zero
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entry in 4 or i C j is minimum, it means that in f .4/ either mi is the only part or
the least part. Thus .1:2:c/ implies .1:1:c/.

Next, we see that if k is odd, then by .1:2:a/ even columns in 4 are zero which
means that in Ep;q , q is odd. Further since p � 2 by .1:2:b/, we conclude that

f .Ep;q/ D
(

q1; if p D 1;

.q C 1/2; if p D 2:

This shows that in f .4/ the parts are of the form .2l � 1/1 or .2l/2. Similarly, we
can show that if k is even, then in f .4/ the parts are of the form .2l � 1/2 or .2l/1.
Thus .1:2:a/ and .1:2:b/ imply .1:1:b/. Finally, when k is odd, say, .2l � 1/, the
first .l � 1/ odd columns, that is, 1st, 3rd, : : :, .2l � 3/th are zero by .1:5d/ and
since E1;2l�3 D .2l � 3/1 and E2;2l�3 D .2l � 2/2, we see that in f .4/ the parts
are � k. Thus .1:2:e/ implies .1:1:a/ when k is odd. Similarly, we can show that
.1:2:f/ implies .1:1:a/ when k is even. Thus f .4/ is enumerated by Ak.�/.

To see the reverse implication, let � be an n-colour partition of � enumerated by
Ak.�/. We shall prove that the BK�-matrix f �1.�/ is enumerated by Ck.�/.

Let mi; nj .m � n/ be two parts of � such that f �1.mi/ D Ep;q and
f �1.nj / D Er;s. Then Ep;q D Ei;m�iC1 and Er;s D Ej;n�jC1 by (8). Since
.m � n/, we have p C q D mC 1 � nC 1 D r C s, and

ffEp;q �Er;sgg D ffEi;m�iC1 �Ej; n � j C 1gg
D .m � i C 1/� .n � j C 1/� 2j
D m � n � i � j

D ..mi � nj //:

Thus .1:1:d/ implies (1.2.d) since f �1.mi/ D Ei;m�iC1 D Ei;j (say) [by (8)], so if
mi is the only part or the least part of � , it means that in f �1.�/ either Ei;j is the
only non-zero entry or i C j is minimum. Thus (1.1.c) implies (1.2.c).

To prove (1.2.a), (1.2.b), (1.2.e) and (1.2.f), we first consider the case when k
is odd. Since f �1..2l � 1/i / D E1;2l�1 and f �1..2l/2/ D E2;2l�1, we see that
in f �1.�/ even columns are zero and all rows after the second row are zero. This
proves (1.2.a) and (1.2.b). Furthermore, by (1.1.a) we see that in f �1..2l � 1/1/ D
E1;2l�1, .2l � 1/ � k and in f �1..2l/2/ D E2;2l�1, .2l/ � k, that is, (1.2.e) and
(1.2.f) are satisfied. Similarly, we can prove the case when k is even. This completes
the proof of Theorem 1.2. ut

3 Identities (4) and (5) and Their Combinatorial Meanings

By a little series manipulations, Identities (4) and (5) can be written in the following
forms, respectively:
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1Y

nD 1

n� ˙1;˙2 .mod 6/

1

1 � qn D
 1X

nD0

qn
2
.�qI q2/

.q4I q4/n

!
0

B
B
B
@

1Y

n D 1

n� ˙2;˙3; 6 .mod 12/

1

1 � qn

1

C
C
C
A

(9)

and

1Y

nD 1

n �˙2; 3 .mod 6/

1

1� qn
D
 1X

nD0

qn
2C2n.�qI q2/
.q4I q4/n

! 1Y

nD1

1

1 � q4n�2
!

: (10)

Now an appeal to Theorem 1.2 with k D 1 and k D 3 gives the following 4-way
combinatorial interpretations of the identities (9) and (10), respectively:

Theorem 3.1. Let D1.�/ and E1.�/ denote the number of partitions of � into
parts � ˙2;˙3; 6 .mod 12/ and the number of partitions of � into parts �
˙1;˙2 .mod 6/, respectively. Then

E1.�/ D
�X

kD0
A1.k/D1.� � k/ D

�X

kD0
B1.k/D1.� � k/ D

�X

kD0
C1.k/D1.� � k/:

Theorem 3.2. Let D3.�/ denote the number of partitions of � into parts
� 2 .mod 4/, and let E3.�/ denote the number of partitions of � into
parts � ˙2; 3 .mod 6/. Then

E3.�/ D
�X

kD0
A3.k/D3.� � k/ D

�X

kD0
B3.k/D3.� � k/ D

�X

kD0
C3.k/D3.� � k/:

Remark 3.1. Each of Theorems 3.1 and 3.2 yields six combinatorial identities in
the usual sense.

Remark 3.2. A different combinatorial interpretation of Identity (10) was given by
Alladi and Berkovich in [9].

4 Conclusion

The work done in this paper shows a nice interaction between the theory of basic
series and combinatorics. Theorem 1.2 in conjunction with Theorem 1.1 gives a
3-way identity for each value of k. Thus we get infinitely many combinatorial
identities. In particular cases, viz., k D 1 and k D 3, we get 4-way combinatorial
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interpretations of two well-known basic series identities of L. J. Slater and G. E.
Andrews. It would be of interest if more applications of Theorems 1.1 and 1.2
are found.
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Identities for Reciprocal Binomials

Anthony Sofo

Dedicated to Professor Hari M. Srivastava

Abstract Euler’s results related to the sum of the ratios of harmonic numbers and
binomial coefficients are investigated in this paper. We give a particular example
involving quartic binomial coefficients.

1 Introduction and Preliminaries

In the paper [24], Sofo and Srivastava studied the expression of infinite sums of
harmonic numbers in closed form. In this paper the author extends the results given
in [24]; we continue with the study of representations in closed form of the sum

X

n�1

Hn
�
nCk
k

�p I k; p 2 N WD f1; 2; 3; : : :g

in terms of zeta functions. For the harmonic numbers Hn and the generalized
harmonic numbersH.s/

n defined by

Hn WD H.1/
n and H.s/

n WD
nX

kD1

1

ks
.s 2 CI n 2 N/;

the following elegant formulas:

1X

nD1

H.1/
n

.nC 1/2
D � .3/ and

1X

nD1

H.1/
n

n3
D 5

4
� .4/
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were discovered by Euler in relation to Euler sums. In terms of the Riemann zeta
function, �.s/ is defined by (see [26])

� .s/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

1X

kD1

1

ks
D 1

1 � 2�s
1X

kD1

1

.2k � 1/s
; Re.s/ > 1;

1

1 � 21�s
1X

kD1

.�1/k�1
ks

; Re.s/ > 0I s ¤ 1;

and there is also a recurrence formula

.2nC 1/ � .2n/ D 2

n�1X

rD1
� .2r/ � .2n � 2r/ ;

which shows that in particular, for n D 2; 5� .4/ D 2 .� .2//2 and that more
generally � .2n/ is a rational multiple of .� .n//2. Another elegant recursion known
to Euler was

2

1X

nD1

H.1/
n

nq
D .q C 2/ � .q C 1/�

q�2X

rD1
� .r C 1/ � .q � r/ :

Also in terms of the psi function,

Hn D
Z 1

0

1 � tn

1 � t dt D
nX

rD1

1

r
D � C  .nC 1/ ; Hn WD 0; (1)

where � denotes the Euler–Mascheroni constant defined by

� D lim
n!1

 
nX

rD1

1

r
� log .n/

!

D � .1/ � 0:5772156649 : : : ;

and where  .z/ denotes the psi, or digamma function defined by

 .z/ D d

d z
log� .z/ D � 0 .z/

� .z/
D
1X

nD0

�
1

nC 1
� 1

nC z

�

� �;

and the gamma function

� .z/ D
Z 1

0

uz�1e�udu;
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for Re.z/ > 0. For a complex number a and a nonnegative integer n let .a/n denote
the rising factorial defined by .a/0 D 1 and

.a/n D a .a C 1/ .a C 2/ � � � .aC n � 1/ D � .aC n/

� .a/

for n > 0.
The polygamma function  .˛/ .z/ is defined as

 .˛/ .z/ D d˛C1

d z˛C1
Œlog� .z/ D d˛

d z˛
Œ .z/ ; z ¤ f0;�1;�2;�3; : : :g :

To evaluate H.˛/
z�1 we have available a relation in terms of the polygamma function

 .˛/ .z/, for real arguments z,

H
.˛C1/
z�1 D � .˛ C 1/C .�1/˛

˛Š
 .˛/ .z/ : (2)

Euler sums have been recently considered by Liu and Wang [13], and recently
Dil and Kurt [10] evaluated various binomial identities involving power sums
with harmonic numbers. Further work in the summation of harmonic numbers and
binomial coefficients has also been done by Basu [2], Choi [5], Choi and Srivastava
[8], Chu [9], and Munarini [14]. The identity

1X

nD1

H.1/
n�

nCk
k

� D k

.k � 1/2

for k > 1 is alluded to by Cloitre as reported in [25] and later proved in [19]. In [19],
the author also gave the identity

1X

nD1

�
1
2

�n
H.1/
n�

nCk
k

�

D .�1/kC1 k
"

ln2 2C2 ln 2
k�1X

rD1

 
k�1
r

!
.�1/r
r

C2
k�1X

rD1

 
k�1
r

!
.�1/r .1�2r/

r2

#

:

Similarly in [21] the author proved the identities

1X

nD1

H.2/
n�

nCk
k

� D k

k � 1

�
� .2/�H.2/

k�1
�

and

1X

nD1

.Hn/
2

�
nCk
k

� D k

k � 1

�

� .2/C 2

.k � 1/2 �H.2/

k�1
�

:
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Specifically, we investigate closed form representations for sums of harmonic
numbers and binomial coefficients; we then give a particular example involving
quartic binomial coefficients. The works [1, 17–20, 22, 23] and [27], and references
therein, also investigate various representations of binomial sums and zeta functions
in simpler form by the use of the beta function and other techniques. Srivastava
has also contributed many works on series and harmonic numbers (see, e.g.,
[4, 6, 7, 11, 12, 15, 16, 28, 29]).

2 Some Lemmas

The following lemmas are required for the proof of the main theorem:

Lemma 2.1. Let k; n, and p 2 N. Then,

1
�
nCk
k

�p D .kŠ/p

.nC 1/p

kX

rD2

pX

mD1

Ap�m .k; r/
.nC r/m

; (3)

where

Ap�m .k; r/ D 1

.p �m/Š
lim
n!�r

dp�m

dnp�m

8
ˆ̂
<̂

ˆ̂
:̂

.nC r/p

kQ

rD2
.nC r/p

9
>>>=

>>>;

: (4)

Proof. By partial fraction expansion

1
�
nCk
k

�p D
�

kŠ

nC 1

�p
1

.nC 2/
p

kC1

D
�

kŠ

nC 1

�p
1

kQ

rD2
.nC r/p

D .kŠ/p

.nC 1/p

kX

rD2

pX

mD1

Ap�m .k; r/
.nC r/m

and Ap�m .k; r/ is given by (4). ut
Corollary 2.1. For p D 4 we have

1
�
nCk
k

�4 D .kŠ/4

.nC 1/4

kX

rD2

�
A3 .k; r/

nC r
C A2 .k; r/

.nC r/2
C A1 .k; r/

.nC r/3
C A0 .k; r/

.nC r/4

	

;
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where

A0 .k; r/ D lim
n!�r

8
ˆ̂
<̂

ˆ̂
:̂

.nC r/4

kQ

rD2
.nC r/4

9
>>>=

>>>;

D
"
2

kŠ

 
k

r

! 
r

2

!#4

I

A1 .k; r/ D lim
n!�r

d

dn

8
ˆ̂
<̂

ˆ̂
:̂

.nC r/4

kQ

rD2
.nC r/4

9
>>>=

>>>;

D �4A0 .k; r/ Y .1/� .k; r/ ;

and Y .q/˙ .k; r/ D H
.q/

k�r ˙ H
.q/

r�2 for q 2 N; r � 2;

A2 .k; r/ D 1

2Š
lim
n!�r

d 2

dn2

8
ˆ̂
<̂

ˆ̂
:̂

.nC r/4

kQ

rD2
.nC r/4

9
>>>=

>>>;

D 2A0 .k; r/



4
�
Y .1/� .k; r/

�2 C Y
.2/
C .k; r/

�

I

A3 .k; r/ D 1

3Š
lim
n!�r

d 3

dn3

8
ˆ̂
<̂

ˆ̂
:̂

.nC r/4

kQ

rD2
.nC r/4

9
>>>=

>>>;

D �2
3
A0 .k; r/



16
�
Y .1/� .k; r/

�3 C12Y .1/� .k; r/ Y
.2/
C .k; r/C2Y .3/� .k; r/

�

:

Proof. The proof follows by the evaluation of Ap�m .k; r/ for p D 4 and m D
1; 2; 3; 4. ut
Lemma 2.2. Let a and b be positive real numbers, p; q 2 N. Then for a ¤ b

R .a; b/ D
X

n�1

Hn

.nC a/ .nC b/
D 1

2 .a � b/

h
Ha�1 �Hb�1 CH

.2/
a�1 �H

.2/

b�1
i
;

(5)

and for b D a

R .a; a/ D
X

n�1

Hn

.nC a/2
D � .3/C � .2/Ha�1 �Ha�1H.2/

a�1 �H.3/
a�1: (6)
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Further, for p > 2,

Rp�1 .a; b/ D
X

n�1

Hn

.nC a/p .nC b/
D .�1/p�1
.p � 1/Š

@p�1

@ap�1
R .a; b/ ; (7)

and for p D 1, R0 .a; b/ D R .a; b/. Finally, for p; q � 2,

Rp�1;q�1 .a; b/ D
X

n�1

Hn

.nC a/p .nC b/q

D .�1/pCq
.p � 1/Š .q � 1/Š

@pCq�2

@ap�1@bq�1
R .a; b/ ; (8)

and for p D q D 1, R0;0 .a; b/ D R .a; b/.

Proof. From [3], for a ¤ b

X

n�1

 .n/

.nCa/ .nCb/ D 1

2 .a�b/
�
 0 .bC1/� 0 .aC1/� 2 .bC1/C 2 .aC1/�

D
X

n�1

Hn � 1
n

� �

.nC a/ .nC b/
:

We can also evaluate

X

n�1

1

.nC a/ .nC b/
D 1

a � b
.Ha �Hb/ ;

X

n�1

1

n .nC a/ .nC b/
D 1

ab .a � b/ .aHb � bHa/ :

We also have the property

H.˛/
n D 1

n˛
CH

.˛/
n�1:

Hence, using the identity of the polygamma functions (2), we attain (5). To prove (6)
we begin with the identity given in [3]:

X

n�1

 .n/

.nCa/vC2 D
X

n�1

Hn� 1
n
��

.nCa/vC2 (9)

D .�1/vC1
.vC1/Š

�
1

2
 .vC2/ .aC1/�

vX

rD0
 .v�r/ .aC1/ .rC1/ .aC1/

�
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and choose v D 0 so that

X

n�1

Hn � 1
n

� �
.nC a/2

D  .aC 1/ 0 .aC 1/� 1

2
 00 .a C 1/ : (10)

Now we notice that
X

n�1

�

.nC a/2
D � 0 .a C 1/ ;

X

n�1

1

n .nC a/2
D � C  .aC 1/

a2
�  0 .aC 1/

a
;

substituting in (10) and simplifying and using the polygamma identity (2) we
obtain (6). To prove (7) we utilize (5) and differentiate with respect to a, .p � 1/
times. Similarly to prove (8) we utilize (5) and differentiate .p � 1/ times with
respect to a and .q � 1/ times with respect to b. ut
Corollary 2.2. From Lemma 2.2 for p D 4, a D 1; b D r , q D 1; 2; 3, and m a
positive integer, let

V
.m/

˙ .r � 1/ D H
.m/
r�1 ˙Hm

r�1:

Then

R3;3 .1; r/ D 1

3Š3Š

@6

@a3@b3
R .a; b/

ˇ
ˇ
ˇ
ˇ
.aD1;bDr/

D
X

n�1

Hn

.nC1/4 .nCr/4 (11)

D 4� .5/

.r � 1/4 �
2� .2/ � .3/

.r � 1/4 C
� .4/Hr�1

.r � 1/4 C � .3/
 

20

.r � 1/6 C
4Hr�1

.r � 1/5 C
H
.2/
r�1

.r � 1/4
!

C � .2/
 
10Hr�1

.r � 1/6 C
4H

.2/
r�1

.r � 1/5 C
H
.3/
r�1

.r � 1/4
!

�
10
�
Hr�1H

.2/
r�1 CH.3/

r�1 C V .2/

C

.r � 1/
�

.r � 1/6

�
2

��
H
.2/

r�1

�2 C 2Hr�1H
.3/

r�1 C 3H.4/

r�1

�

.r � 1/5 � H
.2/

r�1H
.3/

r�1 CHr�1H
.4/

r�1 C 2H.5/

r�1

.r � 1/4 ;

R3;2 .1; r/ D � 1

3Š2Š

@5

@a3@b2
R .a; b/

ˇ
ˇ
ˇ
ˇ
.aD1;bDr/

(12)

DX

n�1

Hn

.nC 1/4 .nC r/3 D
2� .5/

.r � 1/3 �
� .2/ � .3/

.r � 1/3



234 A. Sofo

� � .4/

2 .r � 1/4 C � .3/
�

10

.r � 1/5 C
Hr�1

.r � 1/4
�

C � .2/
 
H
.2/
r�1

.r � 1/4 C
4Hr�1

.r � 1/5
!

C 5V
.2/

C

.r�1/
.r�1/6 �

�
H
.2/
r�1

�2C2Hr�1H
.3/
r�1C3H.4/

r�1

.r�1/4 �
4
�
Hr�1H

.2/
r�1 CH.3/

r�1

�

.r�1/4 ;

R3;1 .1; r/ D 1

3Š1Š

@4

@a3@b
R .a; b/

ˇ
ˇ
ˇ
ˇ
.aD1;bDr/

D
X

n�1

Hn

.nC 1/4 .nC r/2
(13)

D 2� .5/

.r � 1/2 � � .2/ � .3/

.r � 1/2 � � .4/

2 .r � 1/3
C 4� .3/

.r � 1/4

C� .2/Hr�1
.r � 1/4 � Hr�1H.2/

r�1 CH
.3/
r�1

.r � 1/4 C 2V .2/� .r � 1/

.r � 1/5
;

and

R3;0 .1; r/ D � 1

3Š0Š

@3

@a3
R .a; b/

ˇ
ˇ
ˇ
ˇ
.aD1;bDr/

D
X

n�1

Hn

.nC 1/4 .nC r/
(14)

D 2� .5/

r � 1 � � .2/ � .3/

36 .r � 1/
� 2� .4/

4 .r � 1/2 (15)

C � .3/

.r � 1/3
C 35� .2/

72 .r � 1/4
C V .2/� .r � 1/

2 .r � 1/4 :

Proof. Consider (11),

X

n�1

Hn

.nC 1/4 .nC r/4
(16)

D
X

n�1

Hn

.r � 1/4


1

.nC 1/4
� 4

.r � 1/ .nC 1/3
C 10

.r � 1/2 .nC 1/2

C 1

.nCr/4C 4

.r�1/ .nCr/3C 10

.r�1/2 .nCr/2� 20

.r�1/2 .nC1/ .nCr/
�

:
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Now each of the sums can be listed as follows. From (9) and after some
simplifications,

X

n�1

Hn

.nC 1/4
D 2� .5/� � .2/ � .3/ ;

X

n�1

Hn

.nC 1/3
D 2

� .4/

4
;

X

n�1

Hn

.nC 1/2
D 2� .3/ ;

X

n�1

Hn

.nC 1/ .nC r/
D V

.2/
C .r � 1/

2 .r � 1/
; r ¤ 1;

X

n�1

Hn

.nC r/2
D 2� .3/C � .2/Hr�1 �Hr�1H.2/

r�1 �H
.3/
r�1;

X

n�1

Hn

.nC r/3

D �.4/

4
C � .3/Hr�1 C �.2/H

.2/
r�1 �

�
H
.2/
r�1
�2

2
�Hr�1H.3/

r�1 � 3H
.4/
r�1
2

and

X

n�1

Hn

.nC r/4
D 2� .5/� � .2/ � .3/C � .4/Hr�1 C � .3/H

.2/
r�1 C � .2/H

.3/
r�1

�H.2/
r�1H

.3/
r�1 �Hr�1H.4/

r�1 � 2H
.5/
r�1:

Putting each of these sums into (16) and collecting like terms we attain the
identity (11).

Similar analysis leads us to the sum identities (12), (13), and (14). ut
Theorem 2.1. Let k; p 2 N. Then for k � 2

X

n�1

Hn
�
nCk
k

�p D
kX

rD2

pX

mD1
.kŠ/p Ap�m .k; r/Rp�1;m�1 .1; r/ ; (17)
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and for k D 1

2
X

n�1

Hn

.nC 1/p
D p� .p C 1/�

p�2X

mD1
� .mC 1/ � .p �m/ ; (18)

where Ap�m .k; r/ is defined in (4) and Rp�1;m�1 .1; r/ is defined in (8).

Proof. Expand

X

n�1

Hn

p
D
X

n�1

.kŠ/p Hn

.nC 1/p .nC 2/
p

kC1
D
X

n�1

.kŠ/p Hn

.nC 1/p
kQ

rD2
.nC r/p

D
X

n�1

.kŠ/p Hn

.nC 1/p

kX

rD2

pX

mD1

.kŠ/p Ap�m .k; r/
.nC r/m

;

where Ap�m .k; r/ is given by (4). Now interchanging the order of summation

X

n�1

Hn
�
nCk
k

�p D
kX

rD2

pX

mD1
.kŠ/p Ap�m .k; r/

X

n�1

Hn

.nC 1/p .nC r/m

D
kX

rD2

pX

mD1
.kŠ/p Ap�m .k; r/ Rp�1;m�1 .1; r/

by Lemma 2.2. For k D 1 the identity (18) comes from [23]; hence, the proof is
complete. ut
Corollary 2.3. Let p D 4. Then

X

n�1

Hn

�
nCk
k

�4 D
kX

rD2

4X

mD1
.kŠ/4 A4�m .k; r/ R3;m�1 .1; r/

D
kX

rD2
.kŠ/4 .A3 .k; r/ R3;0 .1; r/CA2 .k; r/ R3;1 .1; r/

CA1 .k; r/ R3;2 .1; r/CA0 .k; r/ R3;3 .1; r// :

Proof. From Theorem 2.1, we choose p D 4 and we have the evaluations of
A0 .k; r/,A1 .k; r/,A2 .k; r/ andA3 .k; r/ from Corollary 2.1. SimilarlyR3;0 .1; r/,
R3;1 .1; r/,R3;2 .1; r/, andR3;3 .1; r/ are evaluated in Corollary 2.2; hence, the proof
is complete. ut
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Example 2.1. We have

X

n�1

Hn
�
nC3
3

�4 D 2916� .5/� 1458� .3/ � .2/C 2835

2
� .4/

C42525

4
� .3/C 77355

8
� .2/� 485757

16
:
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A Note on q-Stirling Numbers

Mircea Merca

Dedicated to Professor Hari M. Srivastava

Abstract The q-Stirling numbers of both kinds are specializations of the complete
or elementary symmetric functions. In this note, we use this fact to prove that the
q-Stirling numbers can be expressed in terms of the q-binomial coefficients and
vice versa.

1 Introduction

We start with the q-analogue of the classical binomial coefficients which are called
the q-binomial coefficients and are defined by

 
n

k

!

q

D

8
<̂

:̂

Œnq Š

Œkq ŠŒn � kqŠ ; for k 2 f0; : : : ; ng,

0; otherwise,

where

Œnq Š D Œnq Œn � 1q � � � Œ1q;

is q-factorial, with Œ0qŠ D 1 and

Œnq D 1C q C � � � C qn�1 D 1 � qn

1 � q ; q ¤ 1

is q-number.
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The q-Stirling numbers of the first kind s.n; k/q and the second kind S.n; k/q are
a natural extensions of the classical Stirling numbers [3]. These are the coefficients
in the expansions

.x/n;q D
nX

kD0
s.n; k/qx

k

and

xn D
nX

kD0
S.n; k/q.x/k;q ;

where

.x/n;q D
n�1Y

kD0
.x � Œkq/;

with .x/0;q D 1.
In this paper, we prove:

Theorem 1.1. Let k and n be two positive integers. Then

1: s.nC 1; nC 1 � k/q D .1 � q/�k
kX

iD0
.�1/k�i q.iC1

2 /

 
n � i
k � i

! 
n

i

!

q

I

2:

 
n

k

!

q

D q�.
kC1
2 /

kX

iD0
.1 � q/i

 
n� i

k � i

!

s.nC 1; nC 1 � i/qI

3: S.nC 1C k; nC 1/q D .1 � q/�k
kX

iD0
.�q/i

 
nC k

k � i

! 
nC i

i

!

q

I

4:

 
nC k

k

!

q

D q�k
kX

iD0
.q � 1/i

 
nC k

k � i

!

S.nC 1C i; nC 1/q:

2 Proof of Theorem 1.1

In order to indicate that

	 D Œ	1; 	2; : : : ; 	r  or 	 D Œ1t12t2 : : : ntn 
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is an integer partition [1] of n, i.e.,

n D 	1 C 	2 C � � � C 	r and 	1 > 	2 > � � � > 	r > 0

or

n D t1 C 2t2 C � � � C ntn;

we use the notation 	 ` n. We denote by l.	/ the number of parts of 	, i.e.,

l.	/ D r or l.	/ D t1 C t2 C � � � C tn:

For each partition 	 ` k, the Schur function s	 in n variables can be defined as the
ratio of two n � n determinants as follows [4, I.3]:

s	.x1; x2; : : : ; xn/ D
det
�
x
	jCn�j
i

�

16i;j6n

det
�
x
n�j
i

�

16i;j6n

;

where we consider that 	j D 0 for j > l.	/.
To prove the theorem we use the following Schur function formula [4, p. 47]:

s	.x1 C 1; : : : ; xn C 1/ D
X



	
d	
s
.x1; : : : ; xn/; (1)

where

d	
 D det

 
	i C n � i

j C n � j

!

16i;j6n
:

If 	 D Œ1k, it is well known that s	 is the kth elementary symmetric function ek,

ek.x1; x2; : : : ; xn/ D
X

16i1<i2<���<ik6n
xi1xi2 : : : xik :

This implies

ek.x1 C 1; : : : ; xn C 1/ D
kX

mD0
dŒ1k Œ1mem.x1; : : : ; xn/: (2)

According to [2, Theorem 1], it is an easy exercise to show that

dŒ1k Œ1m D
 
n �m
k �m

!

:
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Taking into account that the q-Stirling numbers of the first kind and the q-binomial
coefficients are specializations of the elementary symmetric functions, i.e.,

s.n; n � k/q D .�1/kek
�
Œ1q; Œ2q; : : : ; Œn � 1q

�

and
 
n

k

!

q

D q�.
k
2/ek.1; q; : : : ; q

n�1/;

we can write

s.nC 1; nC 1 � k/q D .�1/kek
�
1 � q
1 � q ;

1 � q2

1 � q ; : : : ;
1 � qn

1 � q

�

D
�

� 1

1 � q
�k kX

iD0

 
n � i
k � i

!

ei .�q;�q2; : : : ;�qn/

D
�

� 1

1 � q
�k kX

iD0
.�q/i

 
n � i

k � i

!

ei .1; q; : : : ; q
n�1/

D .1 � q/�k
kX

iD0
.�1/k�i q.iC1

2 /

 
n � i

k � i

! 
n

i

!

q

and the first identity is proved.
It is immediate from the relation (2) that

ek.x1; : : : ; xn/ D
kX

mD0
.�1/k�m

 
n �m

k �m

!

em.1C x1; : : : ; 1C xn/:

Now
 
n

k

!

q

D q�.
k
2/.�q/�kek.�q;�q2; : : : ;�qn/

D q�.
k
2/.�q/�k

kX

iD0
.�1/k�i

 
n� i

k � i

!

ei .1 � q; : : : ; 1 � qn/

D q�.
kC1
2 /

kX

iD0
.�1/i .1 � q/i

 
n � i

k � i

!

ei

�
1 � q
1 � q ; : : : ;

1 � qn

1 � q
�

D q�.
kC1
2 /

kX

iD0
.1 � q/i

 
n � i

k � i

!

s.nC 1; nC 1 � i/q

and the second identity is proved.
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On the other hand, for 	 D Œk it is well known that s	 is the kth complete
symmetric function hk ,

hk.x1; x2; : : : ; xn/ D
X

16i16i26:::6ik6n
xi1xi2 : : : xik :

By (1), we obtain

hk.x1 C 1; : : : ; xn C 1/ D
kX

mD0
dŒkŒmhm.x1; : : : ; xn/; (3)

where

dŒkŒm D
 
n � 1C k

k �m

!

:

Taking into account that

 
nC k

k

!

q

D hk.1; q; : : : ; q
n/

and

S.nC k; n/q D hkŒ1q; Œ2q; : : : ; Œnq ;

we have

S.nC 1C k; nC 1/q D hk

�
1 � q

1 � q
;
1 � q2
1 � q

; : : : ;
1 � qnC1
1 � q

�

D .1 � q/�k
kX

iD0

 
n � k
k � i

!

hi .�q;�q2; : : : ;�qnC1/

D .1 � q/�k
kX

iD0
.�q/i

 
n � k
k � i

! 
nC i

n

!

q

:

The third identity is proved.
By (3), we deduce that

hk.x1; : : : ; xn/ D
kX

mD0
.�1/k

 
n � 1C k

k �m

!

hm.1C x1; : : : ; 1C xn/:
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We have
 
nC k

n

!

q

D .�q/�khk.�q;�q2; : : : ;�qnC1/

D .�q/�k
kX

iD0
.�1/k�i

 
nC k

k � i

!

hi .1 � q; : : : ; 1 � qnC1/

D q�k
kX

iD0
.�1/i .1 � q/i

 
nC k

k � i

!

hi

�
1 � q
1 � q ; : : : ;

1 � qnC1
1 � q

�

D q�k
kX

iD0
.q � 1/i

 
nC k

k � i

!

S.nC 1C i; nC 1/q

and the last identity is proved.
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A Survey on Cauchy–Bunyakovsky–Schwarz
Inequality for Power Series

Alawiah Ibrahim and Silvestru Sever Dragomir

Dedicated to Professor Hari M. Srivastava

Abstract In this paper, we present a survey of some recent results for the celebrated
Cauchy–Bunyakovsky–Schwarz inequality for functions defined by power series
with nonnegative coefficients. Particular examples for fundamental functions of
interest are presented. Applications for some special functions are given as well.

1 Introduction

The Cauchy–Bunyakovsky–Schwarz inequality, or for short the CBS inequality,
is also known in the literature as the Cauchy’s, the Schwarz’s, or the Cauchy–
Schwarz’s inequality. It plays an important role in different branches of modern
mathematics such as Hilbert space theory, probability and statistics, classical
real and complex analysis, numerical analysis, qualitative theory of differential
equations and their applications.

It is well known that the classical CBS inequality has been generalized, refined
and applied by a remarkably large number of researchers for different and various
motivations. For the detail, see particularly the survey paper [9], the relevant
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chapters in the books [10], [12, Chap. 2], [11, Chap. 1] and the numerous references
which are cited therein.

The main aim of this paper is to survey some recent results obtained by the
authors, that is, to identify the inequalities for power series that are related to
the CBS inequality. Utilizing the classical results that have been available in the
literature such as the de Bruijn inequality and the Buzano and Schwarz results, we
provide some refinements and improvement of the CBS inequality for functions
defined by power series with nonnegative coefficients. Particular examples that are
related to some fundamental complex functions such as exponential, logarithm,
trigonometric and hyperbolic functions are presented. Some applications for special
functions such as polylogarithm, hypergeometric, Bessel and modified Bessel
functions of the first kind are presented as well.

This paper contains seven sections including Sect. 1 as above. Section 2 provides
the basic inequalities of the CBS type in real and complex numbers and in inner
product spaces. The corresponding version of the CBS inequality for functions
defined by power series is also given. Some results related to the celebrated CBS
type such as the de Bruijn inequality and the Buzano and Schwarz results are
mentioned as a foundation for the next sections. These are followed by the recent
results on the CBS inequality for functions defined by power series with nonnegative
coefficients on utilizing the de Bruijn, the Buzano, and the Schwarz results and
by making use of the different techniques based on the continuity of the modulus
(see Sects. 3–6, respectively). The inequalities in Sects. 3–6 can be applied for some
fundamental complex functions and for the special functions such as polylogarithm,
hypergeometric, Bessel and modified Bessel functions as well, which are given in
Sect. 7.

2 The CBS Type Inequalities

2.1 CBS Inequality for Real and Complex Numbers

In the following, we state the Cauchy–Bunyakovsky–Schwarz’s (CBS) inequality for
real numbers which is also known in the literature as the Cauchy’s inequality [16,
p. 83] (see also [10, p. 1]).

Theorem 2.1. If a D .a1; a2; : : : ; an/ and b D .b1; b2; : : : ; bn/ are sequences of
real numbers, then

 
nX

kD1
akbk

!2

�
nX

kD1
a2k

nX

kD1
b2k (1)

with equality if and only if the sequences a and b are proportional, i.e., there is a
real number r 2 R such that ak D rbk for each k 2 f1; 2; : : : ; ng.
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The following version of the CBS inequality for complex numbers also holds.

Theorem 2.2. If a D .a1; a2; : : : ; an/ and b D .b1; b2; : : : ; bn/ are sequences of
complex numbers, then

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
akbk

ˇ
ˇ
ˇ
ˇ
ˇ

2

�
nX

kD1
jak j2

nX

kD1
jbkj2 (2)

with equality if and only if the sequences a and b are proportional, i.e., there is a
complex number c 2 C such that ak D cbk for any k 2 f1; 2; : : : ; ng.

Remark 2.1. The inequality

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
pkakbk

ˇ
ˇ
ˇ
ˇ
ˇ

2

�
nX

kD1
pk jakj2

nX

kD1
pk jbkj2 ; (3)

where pk � 0, while ak; bk 2 C; k 2 f1; 2; : : : ; ng is called the weighted version of
the CBS inequality (2).

Remark 2.2. By the CBS inequality for real numbers (1) and the generalized
triangle inequality for complex numbers, i.e.,

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
zk

ˇ
ˇ
ˇ
ˇ
ˇ

�
nX

kD1
jzkj ; zk 2 C; k 2 f1; 2; : : : ; ng ; (4)

we also have
ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
akbk

ˇ
ˇ
ˇ
ˇ
ˇ

2

�
 

nX

kD1
jakbkj

!2

�
nX

kD1
jak j2

nX

kD1
jbkj2 : (5)

2.2 De Bruijn Inequality

There are a large number of refinements of the CBS inequalities (1) and (2) in the
literature (see [2, 8, 17] and the reference cited therein). For instance, in 1960, de
Bruijn ([5], [16, p. 89], [10, p. 48]) established the following refinement of the
classical CBS inequality.

Theorem 2.3 ([5]). If b D .b1; b2; : : : ; bn/ is a sequence of real numbers and z D
.z1; z2; : : : ; zn/ is a sequence of complex numbers, then

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
bkzk

ˇ
ˇ
ˇ
ˇ
ˇ

2

� 1

2

nX

kD1
b2k

 
nX

kD1
jzkj2 C

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
z2k

ˇ
ˇ
ˇ
ˇ
ˇ

!
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�
nX

kD1
b2k

nX

kD1
jzkj2

!

: (6)

Equality holds in (6) if and only if for k 2 f1; 2; : : : ; ng, bk D Re .	zk/, where 	 is
a complex number such that the quantity 	2

Pn
kD1 z2k is nonnegative real number.

The proof of Theorem 2.3 can also be found in the book of Mitrinovic et al. [16,
p. 89] and Dragomir [10, p. 48].

Remark 2.3. The weighted version of the de Bruijn inequality also holds, namely

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
pkbkzk

ˇ
ˇ
ˇ
ˇ
ˇ

2

� 1

2

nX

kD1
pkb

2
k

 
nX

kD1
pk jzkj2 C

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
pkz2k

ˇ
ˇ
ˇ
ˇ
ˇ

!

; (7)

where pk � 0, bk 2 R, zk 2 C, k 2 f1; 2; : : : ; ng.

2.3 A Generalization for Power Series

The following result holds [7].

Theorem 2.4. Let F W .�r; r/ ! R, F.x/ D P1
kD0 ˛kxk with ˛k � 0, k 2 N. If

a D .a1; a2; : : : ; an/ and b D .b1; b2; : : : ; bn/ are sequences of real numbers such
that

aj bj ; a
2
j ; b

2
j 2 .�r; r/ for any j 2 f1; 2; : : : ; ng ;

then one has the inequality

0

@
nX

jD1
F
�
aj bj

�
1

A

2

�
nX

jD1
F
�
a2j

� nX

jD1
F
�
b2j

�
: (8)

Particular inequalities of (8) for some fundamental functions hold [7] and are given
as follows:

1. If a and b are sequences of real numbers, then one has the inequality

 
nX

kD1
exp .akbk/

!2

�
nX

kD1
exp

�
a2k
� nX

kD1
exp

�
b2k
�
;

 
nX

kD1
sinh .akbk/

!2

�
nX

kD1
sinh

�
a2k
� nX

kD1
sinh

�
b2k
�
;
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nX

kD1
cosh .akbk/

!2

�
nX

kD1
cosh

�
a2k
� nX

kD1
cosh

�
b2k
�
:

2. If a and b are such that akbk 2 .�1; 1/ ; k 2 f1; 2; : : : ; ng, then one has the
inequality

 
nX

kD1
tan .akbk/

!2

�
nX

kD1
tan

�
a2k
� nX

kD1
tan
�
b2k
�
;

 
nX

kD1
arcsin .akbk/

!2

�
nX

kD1
arcsin

�
a2k
� nX

kD1
arcsin

�
b2k
�
;

(
nX

kD1

1

.1 � akbk/m
) 2

�
nX

kD1

1
�
1 � a2k

�m

nX

kD1

1
�
1 � b2k

�m ; m > 0:

2.4 CBS Inequality in Inner Product Spaces
and the Related Results

Let H be a linear space over the real or complex number field K. The functional
h�; �i W H � H ! K is called an inner product on H if it satisfies the following
conditions:

(i) hx; xi � 0 for any x 2 H and hx; xi D 0 if and only if x D 0.
(ii) h˛x C ˇy; zi D ˛ hx; zi C ˇ hy; zi for any ˛; ˇ 2 K and x; y; z 2 H .

(iii) hy; xi D hx; yi for any x; y 2 H .

If we denote kxk WD phx; xi, x 2 H , then one may state the following
properties:

(a) kxk � 0 for any x 2 H and kxk D 0 if and only if x D 0.
(b) k˛xk D j˛j kxk for any ˛ 2 K and x 2 H .
(c) kx C yk � kxk C kyk for any x; y 2 H (the triangle inequality).

That is, k�k is a norm on H .
A fundamental consequence of the above properties (a)–(c) is called the Schwarz

inequality, that is,

jhx; yij2 � hx; xi hy; yi (9)

for any x; y 2 H . The equality holds in (9) if and only if the vectors x and y are
linearly dependent, i.e., there exists a nonzero constant ˛ 2 K so that x D ˛y.

In [3], Buzano obtained the following extension of the celebrated Schwarz’s
inequality (9) for a real or complex inner product space .H I h�; �i/.
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Theorem 2.5. Let a; b; x 2 H . Then

jha; xi hx; bij � 1

2
Œkak � kbk C jha; bij kxk2 ; (10)

with equality holds if and only if there exists a scalar 	 2 K .R or C/ such that
x D 	a.

It is clear that for a D b, the above inequality (10) becomes the standard Schwarz
inequality (9).

Further, in 1985, Dragomir [6] has obtained the following refinement of the
Schwarz inequality in inner product space .H I h�; �i/ over the real and complex
number field K.

Theorem 2.6. For any x; y 2 H and e 2 H with kek D 1, the following refinement
of the Schwarz inequality holds:

kxk kyk � jhx; yi � hx; ei he; yij C jhx; ei he; yij � jhx; yij : (11)

Remark 2.4. If in the first inequality of (11) we choose e D z
kzk , z 2 Hn f0g, then

we get

kxk kyk kzk2 � jhx; zi hz; yij �
ˇ
ˇ
ˇhx; yi kzk2 � hx; zi hz; yi

ˇ
ˇ
ˇ (12)

for any x; y; z 2 H .

2.5 CBS Inequality for Power Series

Let

f .z/ D
1X

nD0
anzn (13)

be a power series convergent on the disk D .0;R/, R > 0. If the coefficients an
in (13) are complex numbers and applying the well-known CBS inequality (2), then
we can deduce that

jf .z/j2 D
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0
anzn

ˇ
ˇ
ˇ
ˇ
ˇ

2

�
1X

nD0
janj2

1X

nD0
jzj2n D 1

1 � jzj2
1X

nD0
janj2 (14)

for any z 2 D .0;R/\D .0; 1/.
If we assume that the coefficients in the representation function (13) are

nonnegative and utilizing the weighted version of the CBS inequality (3), then we
can state that
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jf .zw/j2 D
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0
anznwn

ˇ
ˇ
ˇ
ˇ
ˇ

2

�
1X

nD0
an jzj2n

1X

nD0
an jwj2n D f

�jzj2�f �jwj2� (15)

for any z;w 2 C with zw; jzj2 ; jwj2 2 D .0;R/.
In the power series (13) with real coefficients an, we can naturally construct

another power series which will have as coefficients the absolute values of the
coefficient of the original series, namely

fA .z/ D
1X

nD0
janj zn; z 2 D .0; 1/ ; (16)

where an D janj sgn .an/, n 2 f0; 1; 2; : : :g with sgn .x/ is the real signum function
defined to be 1 if x > 0, �1 if x < 0 and 0 if x D 0. It is obvious that the new power
series fA .z/ in (16) have the same radius of convergence as the original power series
f .z/ in (13).

3 Applications of the De Bruijn Inequality for Power Series

On utilizing the de Bruijn inequality (6), Cerone and Dragomir [4] established some
inequalities for power series (13) with nonnegative coefficients as follows:

Theorem 3.1 ([4]). Let f .z/ D P1
nD0 anzn be an analytic function defined by a

power series with nonnegative coefficients an, n � 0, and convergent on the open
disk D .0;R/  C; R > 0. If a is a real number and z a complex number such that
az; a2; z2; jzj2 2 D .0;R/, then

jf .az/j2 � 1

2
f
�
a2
� h
f
�jzj2�C ˇ

ˇf .z2/
ˇ
ˇ
i
: (17)

Proof. First of all, notice that by the de Bruijn inequality (6) for the choice bk Dp
akck , zk D p

akwk with ak � 0, ck 2 R, and wk 2 C, k 2 f0; 1; : : : ; ng, we can
state the weighted inequality:

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
akckwk

ˇ
ˇ
ˇ
ˇ
ˇ

2

� 1

2

nX

kD1
akc

2
k

 
nX

kD1
ak jwk j2 C

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
akw2k

ˇ
ˇ
ˇ
ˇ
ˇ

!

: (18)

Now, on making use of (18) for the partial sums of the function f .z/ D Pn
kD0 akzk

with nonnegative coefficients ak , we are able to state that

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
aka

kzk
ˇ
ˇ
ˇ
ˇ
ˇ

2

� 1

2

nX

kD1
aka

2k

 
nX

kD1
ak jzj2k C

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
akz2k

ˇ
ˇ
ˇ
ˇ
ˇ

!

(19)

for any n � 0, a 2 R, z 2 C with az; a2; z2; jzj2 2 D .0;R/.
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Taking the limit as n ! 1 in (19) and noticing that all the involved series in (19)
are convergent onD .0;R/, we deduce the desired inequality (17). ut

The inequality (17) is a valuable source of particular inequalities for real numbers
a and complex numbers z as will be outlined in the following.

1. If in (17) we choose the fundamental power series f .z/ D 1

1 � z
D
1X

nD0
zn, z 2

D .0; 1/, then we can state that

�
1 � jzj2 C ˇ

ˇ1 � z2
ˇ
ˇ� j1 � azj2 � 2

�
1 � a2� �1 � jzj2� ˇˇ1 � z2

ˇ
ˇ (20)

for any a 2 .�1; 1/ and z 2 D .0; 1/.
2. If in (17) we choose the function f .z/ D exp .z/ D P1

nD0 1
nŠ

zn, z 2 C, then we
have

jexp .az/j2 � 1

2
exp

�
a2
� h

exp
�
jzj2
�

C ˇ
ˇexp.z2/

ˇ
ˇ
i

(21)

for any a 2 R and z 2 C. In particular, the choice z D i in (21) generates the
following simple and interesting result:

jexp .ia/j2 � e2 C 1

2e
exp

�
a2
�

(22)

for any a 2 R.

3. Now, if we choose the power series f .z/ D � ln .1 � z/ D
1P
nD0

1
n

zn, z 2 D .0; 1/

and apply the inequality (17), then we get the following inequality for logarithms:

jln .1 � az/j2 � 1

2
ln

�
1

1 � a2
�

ln

�
1

1 � jzj2
�

C ˇ
ˇln
�
1 � z2

�ˇˇ
�

(23)

for any a 2 .�1; 1/ and z 2 D .0; 1/. Moreover, if in (23) we choose z D ˙ib
with b 2 .�1; 1/, then we obtain the simpler result:

jln .1˙ iab/j2 � 1

2
ln

�
1

1� a2

�

ln

�
1C b2

1� b2

�

(24)

for any a; b 2 .�1; 1/.
4. Further, if we utilize the following function as power series representations with

nonnegative coefficients:
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cosh .z/ D
1X

nD0

1

.2n/Š
z2n; z 2 C;

sinh .z/ D
1X

nD0

1

.2nC 1/Š
z2nC1; z 2 C;

1

2
ln

�
1C z

1 � z

�

D
1X

nD1

1

2n � 1 z2n�1; z 2 D .0; 1/ ;

sin�1 .z/ D
1X

nD0

�
�
nC 1

2

�

p
� .2nC 1/ nŠ

z2nC1; z 2 D .0; 1/ ;

tanh�1 .z/ D
1X

nD1

1

2n� 1
z2n�1; z 2 D .0; 1/ ;

where � is the gamma function, then we can state the following inequalities:

jcosh .az/j2 � 1

2
cosh

�
a2
� h

cosh
�
jzj2
�

C ˇ
ˇcosh.z2/

ˇ
ˇ
i
;

jsinh .az/j2 � 1

2
sinh

�
a2
� h

sinh
�
jzj2
�

C ˇ
ˇsinh.z2/

ˇ
ˇ
i

for all a 2 R, z 2 C and

ˇ
ˇ
ˇ
ˇln

�
1C az

1 � az

�ˇˇ
ˇ
ˇ

2

� 1

2
ln

�
1C a2

1� a2

�"

ln

 
1C jzj2
1 � jzj2

!

C
ˇ
ˇ
ˇ
ˇln

�
1C z2

1 � z2

�ˇˇ
ˇ
ˇ

#

;

ˇ
ˇsin�1 .az/

ˇ
ˇ2 � 1

2
sin�1

�
a2
� h

sin�1
�
jzj2
�

C ˇ
ˇsin�1.z2/

ˇ
ˇ
i
;

ˇ
ˇtanh�1 .az/

ˇ
ˇ2 � 1

2
tanh�1

�
a2
� h

tanh�1
�
jzj2
�

C ˇ
ˇtanh�1.z2/

ˇ
ˇ
i
;

for a 2 .�1; 1/, z 2 D .0; 1/.

Cerone and Dragomir [4] have also proved an analogous inequality of (17) for
functions defined by the power series with real coefficients.

Theorem 3.2. Let f .z/ D P1
nD0 anzn be a function defined by power series with

real coefficients and convergent on the open disk D .0;R/  C; R > 0. If a 2 R

and z 2 C are such that az; a2; z2; jzj2 2 D .0;R/, then

jf .az/j2 � 1

2
fA
�
a2
� h
fA

�
jzj2
�

C ˇ
ˇfA.z

2/
ˇ
ˇ
i
: (25)
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Proof. Again, utilizing the de Bruijn inequality with positive weights (18), we have

jf .az/j2 D
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0
janj sign .an/ anzn

ˇ
ˇ
ˇ
ˇ
ˇ

� 1

2

1X

nD0
janj Œsign .an/

2 a2n

" 1X

nD0
janj jzj2n C

ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0
janj z2n

ˇ
ˇ
ˇ
ˇ
ˇ

#

D 1

2
fA
�
a2
� h
fA

�
jzj2
�

C ˇ
ˇfA.z

2/
ˇ
ˇ
i

(26)

for any a 2 R, z 2 C with az; a2; z2; jzj2 2 D .0;R/. ut
In the following examples, we exemplify how the above inequality (25) may be

used to establish some inequalities for real and complex numbers:

1. If we take the function

f .z/ D sin .z/ D
1X

nD0

.�1/n
.2nC 1/Š

z2nC1; z 2 C;

then

fA.z/ D
1X

nD0

1

.2nC 1/Š
z2nC1 D sinh .z/ D 1

2
.ez � e�z/

for z 2 C. Applying the inequality (25) for this function will produce the result

jsin .az/j2 � 1

2
sinh

�
a2
� h

sinh
�
jzj2
�

C ˇ
ˇsinh.z2/

ˇ
ˇ
i

(27)

for any a 2 R and z 2 C. Now, if in (27) we choose z D ib with b 2 R, then we
obtain the inequality

jsin .iab/j2 � sinh
�
a2
�

sinh
�
b2
�

(28)

for any a; b 2 R.
2. The function

f .z/ D cos .z/ D
1X

nD0

.�1/n
.2n/Š

z2n; z 2 C;

has the transform

fA.z/ D cosh .z/ D 1

2
.ez C e�z/
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for z 2 C. Utilizing the inequality (25) for f .z/ as above gives

jcos .az/j2 � 1

2
cosh

�
a2
� h

cosh
�
jzj2
�

C ˇ
ˇcosh.z2/

ˇ
ˇ
i

(29)

for any a 2 R and z 2 C. In particular, we have from (29) with z D ib, b 2 R,

jcos .iab/j2 � cosh
�
a2
�

cosh
�
b2
�

for each a; b 2 R.

The following result is also obtained in [4], which shows a connection between
two power series, one having positive coefficients.

Theorem 3.3. Let f .z/ D P1
nD0 anzn and g.z/ D P1

nD0 bnzn be two power series
with an > 0 and bn 2 R, n � 0. If f is convergent on D .0;R1/, g is convergent
on D .0;R2/ and the numerical series

P1
nD0 b2n=an is convergent, then we have the

inequality

jg .z/j2 � 1

2

1X

nD0
b2n=an

h
f
�
jzj2
�

C ˇ
ˇf .z2/

ˇ
ˇ
i

(30)

for any z 2 C with z 2 D .0;R2/ and a; jzj2 2 D .0;R1/.

Proof. Utilizing the de Bruijn weighted inequality (18) we can state that

jg .z/j2 D
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0

bn

an
anzn

ˇ
ˇ
ˇ
ˇ
ˇ

2

� 1

2

1X

nD0
an

�
bn

an

�2 " 1X

nD0
an jzj2n C

ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0
anz2n

ˇ
ˇ
ˇ
ˇ
ˇ

#

D 1

2

1X

nD0

b2n
an

h
f
�
jzj2
�

C ˇ
ˇf .z2/

ˇ
ˇ
i

(31)

for any z 2 C with z; z2; jzj2 2 D .0;R1/\D .0;R2/. ut
Remark 3.1. The above inequality (30) is useful in comparing different functions
for which a bound for the numerical series

P1
nD0 b2n=an is known.

The following corollaries hold [4].

Corollary 3.1. Let g.z/ D P1
nD0 bnzn be a power series with real coefficients and

convergent on D .0;R/. If the numerical series
P1

nD0 b2n is convergent, then



258 A. Ibrahim and S.S. Dragomir

jg .z/j2 � 1

2

1X

nD0
b2n � 1 � jzj2 C ˇ

ˇ1 � z2
ˇ
ˇ

�
1 � jzj2

�
j1 � z2j

; (32)

for any z 2 C with z 2 D .0;R/ and z; jzj2 2 .0; 1/.
Corollary 3.2. Let g.z/ be as in Corollary 3.1. If the numerical series

P1
nD0

�
nŠb2n

�

is convergent, then

jg .z/j2 � 1

2

1X

nD0

�
nŠb2n

� h
exp

�
jzj2
�

C ˇ
ˇexp.z2/

ˇ
ˇ
i
; (33)

for any z 2 D .0;R/.

If we consider the series expansion

1

z
ln

�
1

1 � z

�

D
1X

nD0

zn

nC 1
; z 2 D .0; 1/ n f0g ;

then utilizing the inequality (32) for the choice bn D 1=.n C 1/ and taking into
account that

1X

nD0

1

.1C n/2
D
1X

nD1

1

n2
D � .2/ D �2

6
; (34)

where � is the Riemann zeta function, we can state the following inequality:

jln .1 � z/j2 � �2

12
jzj2

0

@1 � jzj2 C ˇ
ˇ1 � z2

ˇ
ˇ

�
1 � jzj2

�
j1 � z2j

1

A (35)

for any z 2 D .0; 1/.

4 Power Series Inequality via the Buzano Result

S. S. Dragomir has observed that from [5], on utilizing the Buzano inequality (10)
in the complex inner product space .H I h�; �i/, one can obtain the discrete inequality
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ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

jD1
pj cj xj

nX

jD1
pj xj bj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� 1

2

2

6
4

0

@
nX

jD1
pj
ˇ
ˇcj
ˇ
ˇ2

nX

jD1
pj
ˇ
ˇbj
ˇ
ˇ2

1

A

1=2

C
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

jD1
pj cj bj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

3

7
5

nX

jD1
pj
ˇ
ˇxj
ˇ
ˇ2 ; (36)

where pj � 0, xj ; bj ; cj 2 C, j 2 f1; : : : ; ng. If we take in (36) bj D cj , for
j 2 f1; 2; : : : ; ng, then we get

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

jD1
pj cj xj

nX

jD1
pj cj xj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� 1

2

2

4
nX

jD1
pj
ˇ
ˇcj
ˇ
ˇ2 C

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

jD1
pj c

2
j

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

3

5
nX

jD1
pj
ˇ
ˇxj
ˇ
ˇ2 ; (37)

for any pj � 0; xj ; cj 2 C; j 2 f1; 2; : : : ; ng.
As pointed out in [4], if xj ; j 2 f1; 2; : : : ; ng are real numbers, then (36)

generates the de Bruijn refinement of the celebrated weighted CBS inequality

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

jD1
pj xj zj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

� 1

2

nX

jD1
pj x

2
j

2

4
nX

jD1
pj
ˇ
ˇzj
ˇ
ˇ2 C

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

jD1
pj z2j

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

3

5 ; (38)

where pj � 0; xj 2 R; zj 2 C; j 2 f1; 2; : : : ; ng.
The following result has been obtained in [13] by Ibrahim and Dragomir.

Theorem 4.1. Let f .z/ D P1
nD0 anzn be a power series with nonnegative

coefficients an and convergent in the open disk D.0;R/. If x; ˛; ˇ 2 C so that ˛x,
ˇx, j˛j2, ˇ2, aˇ, jxj2 2 D.0;R/, then

ˇ
ˇ
ˇf .˛x/ f

�
ˇx
�ˇˇ
ˇ � 1

2

h
f
�
j˛j2

�
f
�
jˇj2

�i1=2 C
ˇ
ˇ
ˇf
�
˛ˇ
�ˇˇ
ˇ

�

f
�
jxj2

�
: (39)

Proof. On utilizing the inequality (36), for the choices pn D an, cn D ˛n, xn D xn,
bn D ˇn, n � 0, we have

ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
an˛

n.x/n
mX

nD0
an

�
ˇ
�n
xn

ˇ
ˇ
ˇ
ˇ
ˇ

� 1

2

2

4

 
mX

nD0
an j˛j2n

mX

nD0
an jˇj2n

!1=2

C
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
an˛

n.ˇ/n

ˇ
ˇ
ˇ
ˇ
ˇ

3

5
mX

nD0
an jxj2n ; (40)

for any m � 0.
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Since ˛x, ˇx, j˛j2, jˇj2, ˛ˇ, jxj2 belong to the convergence disk D .0;R/,
hence the series in (40) are convergent and letting m ! 1, we deduce the desired
inequality (39). ut

A particular case of interest is as follows:

Corollary 4.1. Let f .z/ be as in Theorem 4.1 and z; x 2 C with zx, zx, jzj2, z2,
jxj2 2 D .0;R/. Then

jf .zx/ f .zx/j � 1

2

h
f
�jzj2�C ˇ

ˇf
�
z2
�ˇˇ
i
f
�jxj2�: (41)

This follows from (39) by choosing ˛ D z, ˇ D z.

Remark 4.1. In particular, if x D a 2 R, then from (41) we deduce the
inequality (17) [4].

The above result (39) has some natural applications for particular complex
functions of interest as follows:

1. If we apply the inequality (39) for f .z/ D 1

1 � z
, z 2 D .0; 1/, then we get

ˇ
ˇ
ˇ
ˇ

1

1 � ˛x
� 1

1 � ˇx

ˇ
ˇ
ˇ
ˇ � 1

2

"�
1

1 � j˛j2 � 1

1 � jˇj2
�1=2

C
ˇ
ˇ
ˇ
ˇ

1

1 � ˛ˇ

ˇ
ˇ
ˇ
ˇ

#
1

1 � jxj2 ;
(42)

for any x; ˛; ˇ 2 D .0; 1/. This is equivalent with

2
�
1 � jxj2

� ˇˇ
ˇ1 � ˛ˇ

ˇ
ˇ
ˇ

r�
1 � j˛j2

�
.1 � jˇj/2

� j1 � ˛xj
ˇ
ˇ
ˇ1 � ˇx

ˇ
ˇ
ˇ

"ˇ
ˇ
ˇ1 � ˛ˇ

ˇ
ˇ
ˇC

r�
1 � j˛j2

�
.1 � jˇj/2

#

; (43)

for x; ˛; ˇ 2 D .0; 1/. In particular, if ˇ D ˛, then we get from (43) that

2 .1 � jxj/
�
1 � j˛j2

� ˇ
ˇ1 � ˛2ˇˇ

� j1 � ˛xj j1 � ˛xj
hˇ
ˇ1 � ˛2ˇˇC 1 � j˛j2

i
; (44)

for any x; ˛ 2 D .0; 1/.
2. If we apply (39) for f .z/ D exp.z/, z 2 C, then we get the inequality

ˇ
ˇ
ˇexp

�
˛x C ˇx

�ˇˇ
ˇ

� 1

2

�
exp

�
j˛j2 C jˇj2

��1=2 C
ˇ
ˇ
ˇexp

�
˛ˇ
�ˇˇ
ˇ

�

exp
�
jxj2

�
; (45)
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for any ˛; ˇ; x 2 C. In particular, if ˛ D ˇ, then we get from (45) that

jexp .2˛Re .x//j � 1

2

�
exp.2 j˛j2/

�1=2 C ˇ
ˇexp

�
˛2
�ˇˇ
�

exp
�
jxj2

�
; (46)

for any ˛; x 2 C.
3. If we apply (39) for the Koebe function f .z/ D z= .1 � z/2, z 2 D.0; 1/, then we

get
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

˛ˇ jxj2

.1 � ˛x/2
�
1 � ˇx

�2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� 1

2

0

B
@

j˛ˇj
�
1 � j˛j2

� �
1 � jˇj2

� C

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

˛ˇ
�
1 � ˛ˇ

�2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

C
A

jxj2
�
1 � jxj2

�2 ; (47)

for any x; ˛; ˇ 2 D .0; 1/. If we simplify (47), then we get

1 � jxj2
ˇ
ˇ
ˇ.1 � ˛x/

�
1 � ˇx

�ˇˇ
ˇ

�

0

B
@

1

2
�
1 � j˛j2

� �
1 � jˇj2

� C 1

2
ˇ
ˇ
ˇ1 � ˛ˇ

ˇ
ˇ
ˇ
2

1

C
A

1=2

; (48)

for any ˛; ˇ; x 2 D .0; 1/. In particular, if ˇ D ˛, then we get from (48) that

1 � jxj2
j.1 � ˛x/ .1 � ˛x/j �

0

B
@

1

2
�
1 � j˛j2

�2 C 1

2 j1 � ˛2j2

1

C
A

1=2

; (49)

for any ˛; x 2 D .0; 1/.
4. If we apply the same inequality (39) for the function

f .z/ D cosh.z/ D
1X

nD0

z2n

.2n/Š
; z 2 C,

then we obtain
ˇ
ˇ
ˇcosh

�
˛x C ˇx

�
C cosh

�
˛x � ˇx

�ˇˇ
ˇ

�
 
1

2

�
cosh

�
j˛j2 C jˇj2

�
C cosh

�
j˛j2 � jˇj2

���1=2
C
ˇ
ˇ
ˇcosh

�
˛ˇ
�ˇˇ
ˇ

!

� cosh
�
jxj2

�
, (50)
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for any x; ˛; ˇ 2 C. In particular, for ˇ D ˛, we get that from (50)

jcosh .2˛ Re .x//C cosh .2i˛ Im .x//j
�
h
cosh

�
j˛j2

�
C ˇ
ˇcosh

�
˛2
�ˇˇ
i

cosh
�
jxj2

�
(51)

that holds for any ˛; x 2 C.

The following result contains an inequality which connects the power series
function f .z/ with its transform fA .z/ proved by Ibrahim and Dragomir in [13].

Theorem 4.2. Let f .z/ D P1
nD0 anzn be a function defined by a power series with

real coefficients and convergent on the open disk D .0;R/  C, R > 0. If ˛; ˇ; x
are complex numbers such that ˛x; ˇx; ˛ˇ; j˛j2 ; jˇj2 ; ˇˇx2ˇˇ 2 D .0;R/, then

ˇ
ˇ
ˇf .˛x/ f

�
ˇx
�ˇˇ
ˇ � 1

2

�h
fA

�
j˛j2

�
fA

�
jˇj2

�i1=2 C
ˇ
ˇ
ˇfA

�
˛ˇ
�ˇˇ
ˇ

�

fA

�
jxj2

�
: (52)

Proof. By choosing pn D janj, cn D ˛n, bn D ˇn and xn D sgn .an/ xn, n � 0

in (36) we have

ˇ
ˇ
ˇ
ˇ

mX

nD0
an .˛x/

n

mX

nD0
an
�
ˇx
�n
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

mX

nD0
janj sgn .an/ ˛n .x/

n

mX

nD0
janj sgn

�
an
�
xn
�
ˇ
�n
ˇ
ˇ
ˇ
ˇ

� 1

2

� mX

nD0
janj j˛j2n

mX

nD0
janj jˇj2n

�1=2
C
ˇ
ˇ
ˇ
ˇ

mX

nD0
janj

�
˛ˇ
�n
ˇ
ˇ
ˇ
ˇ

� mX

nD0
janjjxj2n (53)

for any ˛; ˇ, x 2 C with ˛x, ˇx, ˛ˇ, j˛j2 ; jˇj2 ; jxj2 2 D.0;R/. Taking the limit
as m ! 1 in (53) and noticing that all the involved series are convergent, then we
deduce the desired inequality (52). ut

In what follows we provide some applications of the inequality (52) for particular
functions of interest:

1. If we take the function

f .z/ D 1

1C z
D
1X

nD0
.�1/n zn; z 2 D .0; 1/ ;
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then

fA.z/ D
1X

nD0
zn D 1

1� z
; z 2 D .0; 1/ :

Applying Theorem 4.2, we get the following inequality:

2
ˇ
ˇ
ˇ1 � ˛ˇ

ˇ
ˇ
ˇ
�
1 � jxj2

� h�
1 � j˛j2

� �
1 � jˇj2

�i1=2

� j1C ˛xj
ˇ
ˇ
ˇ1C ˇx

ˇ
ˇ
ˇ

�ˇ
ˇ
ˇ1 � ˛ˇ

ˇ
ˇ
ˇC

h�
1� j˛j2

� �
1 � jˇj2

�i1=2�

; (54)

for any ˛; ˇ; x 2 D .0; 1/. In particular, if ˛ D ˇ, then from (54) we obtain

2
ˇ
ˇ1 � ˛2

ˇ
ˇ �1� j˛j2��1� jxj2� � j1C ˛xj j1C ˛xj �1� j˛j2 C ˇ

ˇ1 � ˛2ˇˇ�; (55)

for any ˛; x 2 D .0; 1/.
2. For the function

f .z/ D e�z D
1X

nD0

.�1/n
nŠ

zn; z 2 C;

we have the transform

fA.z/ D
1X

nD0

zn

nŠ
D ez; z 2 C:

Utilizing the inequality (52) we obtain

1

j exp.˛x C ˇx/j 6 1

2

n
exp

h1

2

�j˛j2 C jˇj2�C jxj2
i

C exp
�jxj2�ˇˇexp

�
˛ˇ
�ˇˇ
o
; (56)

for any ˛; ˇ; x 2 C. In particular, if ˛ D ˇ in (56), then we get

1

jexp .2˛Re .x//j � 1

2

h
exp

�
j˛j2 C jˇj2

�
C exp

�
jxj2

� ˇ
ˇexp

�
˛2
�ˇˇ
i
; (57)

for any ˛; x 2 C.
3. If in (52) we choose the function

f .z/ D cos z D
1X

nD0

.�1/n
.2n/Š

z2n; z 2 C;



264 A. Ibrahim and S.S. Dragomir

then

fA.z/ D
1X

nD0

1

.2n/Š
z2n D cosh .z/ D 1

2
.ez C e�z/ :

Applying the inequality (52) will produce the result
ˇ
ˇ
ˇcos .˛x/ cos

�
ˇx
�ˇˇ
ˇ (58)

� 1

2

�h
cosh

�
j˛j2

�
cosh

�
jˇj2

�i1=2 C
ˇ
ˇ
ˇcosh

�
˛ˇ
�ˇˇ
ˇ

�

cosh
�
jxj2

�
;

for any ˛; ˇ; x 2 C. In particular, if we choose ˛ D ˇ in (58), then we obtain the
inequality

jcos .˛x/ cos .˛x/j � 1

2

h
cosh

�
j˛j2

�
C ˇ
ˇcosh

�
˛2
�ˇˇ
i

cosh
�
jxj2

�
; (59)

for any ˛; x 2 C.

Ibrahim and Dragomir [13] have proved the following result, which connects two
power series, one having positive coefficients.

Theorem 4.3. Let g .z/ D P1
nD0 gnzn and f .z/ D P1

nD0 anzn be two power series
with gn 2 C and an > 0 for n � 0. If f and g are convergent on D .0;R1/ and
D .0;R2/, respectively, and the numerical series

P1
nD0 jgnj2=an is convergent, then

we have the inequality:

jg .z/ g .z/j � 1

2

1X

nD0

jgnj2
an

h
f
�
jzj2
�

C ˇ
ˇf
�
z2
�ˇˇ
i

(60)

for any z 2 C with z; z2; jzj2 2 D .0;R1/ \D .0;R2/.

Proof. On utilizing the inequality (37) for the choices pn D an, cn D zn, xn D
gn=an, n � 0, we have

ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
gnzn

mX

nD0
gnzn

ˇ
ˇ
ˇ
ˇ
ˇ

� 1

2

"
mX

nD0
an

�
jzj2
�n C

ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
an
�
z2
�n
ˇ
ˇ
ˇ
ˇ
ˇ

#
mX

nD0

jgnj2
an

; (61)

for any m � 0.
Observe that

Pm
nD0 gnzn D Pm

nD0 gn .z/
n and then

ˇ
ˇPm

nD0 gnzn
ˇ
ˇ Dˇ

ˇPm
nD0 gn .z/

n
ˇ
ˇ. Replacing this in (61) we get

ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
gnzn

mX

nD0n
gn .z/

n

ˇ
ˇ
ˇ
ˇ
ˇ

� 1

2

mX

nD0

jgnj2
an

"
mX

nD0
an

�
jzj2
�n C

ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
an
�
z2
�n
ˇ
ˇ
ˇ
ˇ
ˇ

#

: (62)
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Since z; z2; jzj2 2 D .0;R1/ \D .0;R2/, hence the series in (62) are convergent
and letting m ! 1, we deduce the desired inequality (60). ut
Remark 4.2. If the coefficients gn, n � 0 are real, then we recapture the inequal-
ity (30) (or the inequality (27) from the paper [4]).

Corollary 4.2. Let g .z/ D P1
nD0 gnzn be a power series with complex coefficients

and convergent on the open disk D .0;R/. If the numerical series
P1

nD0 jgnj2 is
convergent, then

jg.z/g.z/j � 1

2

1X

nD0
jgnj2

2

41 � jzj2 C ˇ
ˇ1 � z2

ˇ
ˇ

�
1 � jzj2

�
j1 � z2j

3

5 ; (63)

for any z 2 D .0; 1/\D .0;R/.

This follows from (60) for f .z/ D 1=.1� z/, z 2 D .0; 1/.
If we consider the series expansion

1

iz
ln

�
1

1 � iz

�

D
1X

nD0

in

nC 1
znI z 2 D .0; 1/ n f0g ;

then, on utilizing the inequality (63) for the choice gn D in=.nC 1/ and taking into
account the identity (34) we can state the following inequality:

ˇ
ˇ
ˇ
ˇln

�
1

1 � iz
�

ln

�
1

1 � iz
�ˇˇ
ˇ
ˇ � �2

12

 
jzj2

1 � jzj2
! 

1 � jzj2 C ˇ
ˇ1 � z2

ˇ
ˇ

j1 � z2j

!

; (64)

for z 2 D .0; 1/.

Corollary 4.3. Let g .z/ D P1
nD0 gnzn be a power series with complex coefficients

and convergent on the open disk D .0;R/. If the numerical series
P1

nD0 nŠ jgnj2 is
convergent, then

jg.z/g.z/j � 1

2

1X

nD0
nŠ jgnj2

h
exp

�
jzj2
�

C ˇ
ˇexp

�
z2
�ˇˇ
i
; (65)

for any z 2 D .0;R/.

This follows from Theorem 4.3 by choosing f .z/ D exp .z/.
Some applications of the inequality (65) are as follows:

1. If we apply the inequality (65) for the function sin .iz/ D
1P
nD0

i
.2nC1/Š z

2nC1, then

we obtain the inequality
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jsin.iz/ sin.iz/j � 1

2

1X

nD0

nŠ

Œ.2nC 1/Š2

h
exp

�
jzj2
�

C ˇ
ˇexp

�
z2
�ˇˇ
i
; (66)

for any z 2 C.

2. If we apply the inequality (65) for the function sinh .iz/ D
1P
nD0

.�1/ni
.2nC1/Šz

2nC1, then

we obtain the inequality

jsin.z/j2 � 1

2

1X

nD0

nŠ

Œ.2nC 1/Š2

h
exp

�
jzj2
�

C ˇ
ˇexp

�
z2
�ˇˇ
i
; (67)

for any z 2 C. Indeed, observing that

jsinh .iz/ sinh .iz/j D ji sin .z/ � i sin .z/j D jsin .z/ sin .z/j D jsin zj2 (68)

and by (65) we have

jsinh .iz/ sinh .iz/j � 1

2

1X

nD0

nŠ

Œ.2nC 1/Š2

h
exp

�
jzj2
�

C ˇ
ˇexp

�
z2
�ˇˇ
i
; (69)

then we deduce desired inequality (67).

The next result is also given in [13].

Theorem 4.4. Let g .z/ D P1
nD0 gnzn, h .z/ D P1

nD0 hnzn and f .z/ DP1
nD0 anzn be three power series with gn; hn 2 C and an > 0 for n � 0. If

f; g and h are convergent on D .0;R1/, D .0;R2/ and D .0;R3/, respectively,
and the numerical series

P1
nD0 jgnj2=an,

P1
nD0 jhnj2=an and

P1
nD0 gnhn=an are

convergent, then we have the inequality:

jg.z/h.z/j � 1

2

0

@

" 1X

nD0

jgnj2
an

1X

nD0

jhnj2
an

#1=2

C
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0

gnhn

an

ˇ
ˇ
ˇ
ˇ
ˇ

1

A f
�
jzj2
�
; (70)

for any z 2 C with z; jzj2 2 D .0;R1/\D .0;R2/ \D .0;R3/.

Proof. On utilizing the Buzano inequality (36) for the choices pn D an, cn D
gn=an, bn D hn=an, xn D zn, n � 0, we can state that

jg.z/h.z/j D
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0
an

�
gn

an

�

zn
1X

nD0
an

�
hn

an

�

zn
ˇ
ˇ
ˇ
ˇ
ˇ
; (71)
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� 1

2

0

@

" 1X

nD0
an

ˇ
ˇ
ˇ
ˇ
gn

an

ˇ
ˇ
ˇ
ˇ

2 1X

nD0
an

ˇ
ˇ
ˇ
ˇ
hn

an

ˇ
ˇ
ˇ
ˇ

2
#1=2

C
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0
an

�
gn

an

��
hn

an

�ˇˇ
ˇ
ˇ
ˇ

!

�
1X

nD0
an

�
jzj2
�n
;

D 1

2

0

@

" 1X

nD0

jgnj2
an

1X

nD0

jhnj2
an

#1=2

C
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0

gnhn

an

ˇ
ˇ
ˇ
ˇ
ˇ

1

Af
�
jzj2
�
;

for any z 2 C with z; jzj2 2 D .0;R1/\D .0;R2/\D .0;R3/. ut
Remark 4.3. In particular, if gn D hn, then from (70) we have

jg.z/j2 � f
�
jzj2
� 1X

nD0

jgnj2
an

; (72)

for any z; jzj2 2 D .0;R1/ \D .0;R2/.

Remark 4.4. Also if hn D gn, then we get the following inequality:

jg.z/g.z/j � 1

2

 1X

nD0

jgnj2
an

C
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0
g2n

ˇ
ˇ
ˇ
ˇ
ˇ

!

f
�
jzj2
�
; (73)

for any z; jzj2 2 D .0;R1/ \D .0;R2/.

Corollary 4.4. Let g.z/ and h.z/ be power series as in Theorem 4.4. If the

numerical series
P1

nD0 jgnj2, P1nD0 jhnj2 and
P1

nD0
ˇ
ˇ
ˇgnhn

ˇ
ˇ
ˇ are convergent, then

jg.z/h.z/j � 1

2
�
1 � jzj2

�

0

@

" 1X

nD0
jgnj2

1X

nD0
jhnj2

#1=2

C
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0
gnhn

ˇ
ˇ
ˇ
ˇ
ˇ

1

A ; (74)

for any z 2 D .0; 1/\D .0;R2/\D .0;R3/.

If we consider the series

1

iz
ln

�
1

1 � iz
�

D
1X

nD0

in

.nC 1/
zn; z 2 D .0; 1/ n f0g

and

ln

�
1

1C iz

�

D
1X

nD1

.�i/n
n

zn; z 2 D .0; 1/ ;
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then on utilizing the inequality (74) for the choices g0 D h0 D 0, gn D in=.nC 1/,
hn D .�i/n=n, n � 1 and taking into account that

1X

nD0
gnhn D

1X

nD1

1

n.nC 1/
D 1 (75)

and the equality (34), we obtain the following inequality:

ˇ
ˇ
ˇ
ˇln

�
1

1 � iz

�

ln

�
1

1C iz

�ˇˇ
ˇ
ˇ � �2 C 6

12

� jzj
1 � jzj2

�

; (76)

for any z 2 D .0; 1/.

5 Power Series Inequality via a Refinement
of the Schwarz Inequality

If we write the inequality (12) for the particular inner product space .KnI h�; �i/,
where

hx; yip D
nX

jD1
pj xj yj

for x D .x1; x2; : : : ; xn/, y D .y1; y2; : : : ; yn/ 2 K
n and p D .p1; p2; : : : ; pn/ with

pj � 0, j 2 f1; 2; : : : ; ng, then we get the discrete inequality

0

@
nX

jD1
pj
ˇ
ˇxj
ˇ
ˇ2

1

A

1=20

@
nX

jD1
pj
ˇ
ˇyj
ˇ
ˇ2

1

A

1=2
nX

jD1
pj
ˇ
ˇzj
ˇ
ˇ2 �

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

jD1
pj xj zj

nX

jD1
pj zj yj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

jD1
pj xj yj

nX

jD1
pj
ˇ
ˇzj
ˇ
ˇ2 �

nX

jD1
pj xj zj

nX

jD1
pj zj yj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
; (77)

where pj � 0, xj ; yj ; zj 2 K, j 2 f1; 2; : : : ; ng. In particular, if we take in (77)
yj D xj for j 2 f1; 2; : : : ; ng, then we obtain

nX

jD1
pj
ˇ
ˇxj
ˇ
ˇ2

nX

jD1
pj
ˇ
ˇzj
ˇ
ˇ2 �

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

jD1
pj xj zj

nX

jD1
pj xj zj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

(78)
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�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

jD1
pj x

2
j

nX

jD1
pj
ˇ
ˇzj
ˇ
ˇ2 �

nX

jD1
pj xj zj

nX

jD1
pj xj zj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
;

for pj � 0, xj ; zj 2 K, j 2 f1; 2; : : : ; ng.
On applying the inequality (77) for power series, Ibrahim and Dragomir [14]

established the following result.

Theorem 5.1. Let f .z/ D P1
nD0 anzn be a power series with nonnegative coef-

ficients an and convergent on the open disk D .0;R/. If x; y; z 2 C, so that
jxj2 ; jyj2 ; jzj2, xz, zy, xy 2 D .0;R/, then

h
f
�
jxj2

�
f
�
jyj2

�i1=2
f
�
jzj2
�

� jf .xz/ f .zy/j (79)

�
ˇ
ˇ
ˇf .xy/ f

�
jzj2
�

� f .xz/ f .zy/
ˇ
ˇ
ˇ :

Proof. If we choose pn D an, xn D xn, yn D yn, zn D zn , n 2 f0; 1; 2; : : : ; mg
in (77), then we have

"
mX

nD0
an

�
jxj2

�n
#1=2 " mX

nD0
an

�
jyj2

�n
#1=2 mX

nD0
an

�
jzj2
�n

�
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
an .xz/n

mX

nD0
an .zy/

n

ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
an .xy/

n
mX

nD0
an

�
jzj2
�n �

mX

nD0
an .xz/n

mX

nD0
an .xy/

n

ˇ
ˇ
ˇ
ˇ
ˇ
: (80)

Since jxj2, jyj2, jzj2, xz, zy, xy belong to the convergence diskD .0;R/ and taking
the limit as m ! 1 in (80), we deduce the desired result (79). ut

Some examples for particular functions that are generated by power series with
nonnegative coefficients are as follows:

1. If we choose in the above inequality (79) for f .z/ D 1=.1�z/, z 2 D .0; 1/, then
we have

j.1 � xz/ .1� zy/j
h�
1� jxj2

� �
1 � jyj2

�i1=2 �
1 � jzj2

� � 1 �
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.1 � xz/ .1 � zy/

.1 � xy/
�
1 � jzj2

� � 1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
; (81)

for any x; y; z 2 D .0; 1/. In particular for z D x in (81) we get
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ˇ
ˇ�1 � x2

�
.1 � xy/

ˇ
ˇ

�
1 � jxj2

�3=2 �
1 � jyj2

�1=2 � 1 �
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
1 � x2

�
.1 � xy/

.1 � xy/
�
1 � jxj2

� � 1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
; (82)

for any x; y 2 D .0; 1/. Also, if z D a 2 R and x; y 2 C, then from (81), we
obtain

j.1 � ax/ .1 � ay/j
h�
1 � jxj2

� �
1 � jyj2

�i1=2
.1 � a2/

� 1 �
ˇ
ˇ
ˇ
ˇ
.1 � ax/ .1 � ay/

.1 � xy/ .1 � a2/ � 1
ˇ
ˇ
ˇ
ˇ ; (83)

for any x; y 2 D .0; 1/ and a 2 .�1; 1/.
2. If we apply (79) for f .z/ D exp.z/, z 2 C, then we get

exp

 
jxj2 C jyj2

2
C jzj2

!

� jexp .xz C zy/j

�
ˇ
ˇ
ˇexp

�
xy C jzj2

�
� exp .xz C zy/

ˇ
ˇ
ˇ ; (84)

for any x; y; z 2 C. In particular, for z D x in (84), we get

exp

 
3 jxj2 C jyj2

2

!

� ˇ
ˇexp

�
x2 C xy

�ˇˇ

�
ˇ
ˇ
ˇexp

�
xy C jxj2

�
� exp

�
x2 C xy

�ˇˇ
ˇ ; (85)

for any x; y 2 C. Also, if z D a 2 R and x; y 2 C, then from (84),

exp

 
jxj2 C jyj2

2
C a2

!

� jexp Œa .x C y/j

� ˇ
ˇexp

�
xy C a2

� � exp Œa .x C y/
ˇ
ˇ ; (86)

for any x; y 2 C and a 2 R.
3. For the Koebe function f .z/ D z=.1 � z/2, z 2 D .0; 1/, we get from (79) the

following inequality:

1
�
1 � jxj2

� �
1 � jyj2

� �
1 � jzj2

�2 � 1
ˇ
ˇ
ˇŒ.1 � xz/ .1 � zy/2

ˇ
ˇ
ˇ

�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1
h
.1 � xy/

�
1 � jzj2

�i2 � 1

Œ.1 � xz/ .1 � zy/2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
; (87)
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for any x; y; z 2 D .0; 1/. In particular, for y D x in (87), we get

1
h�
1 � jxj2

� �
1 � jzj2

�i2 � 1
ˇ
ˇ
ˇŒ.1 � xz/ .1 � xz/2

ˇ
ˇ
ˇ

�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1
h
.1 � x2/

�
1 � jzj2

�i2 � 1

Œ.1 � xz/ .1 � xz/2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
; (88)

for any x; z 2 D .0; 1/. Also for z D x, we have from (87)

1
�
1 � jxj2

�3 �
1 � jyj2

� � 1
ˇ
ˇ
ˇŒ.1 � x2/ .1� xy/

2
ˇ
ˇ
ˇ

�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1
h
.1 � xy/

�
1 � jxj2

�i2 � 1

Œ.1 � x2/ .1 � xy/
2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
; (89)

for any x; y 2 D .0; 1/. If z D a 2 R and x; y 2 C, then from (87)

1
�
1 � jxj2

� �
1 � jyj2

�
.1 � a2/

2
� 1
ˇ
ˇ
ˇŒ.1 � ax/ .1 � ay/2

ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
ˇ

1

Œ.1 � xy/ .1 � a2/2 � 1

Œ.1 � ax/ .1 � ay/2
ˇ
ˇ
ˇ
ˇ
ˇ
; (90)

for any x; y 2 D .0; 1/ and a 2 .�1; 1/.
Remark 5.1. If z D 0, then from (79) we obtain

h
f
�
jxj2

�
f
�
jyj2

�i1=2 � jf .0/j � jf .xy/ � f .0/j ; (91)

where f .0/ D a0 > 0, jxj2, jyj2, xy 2 D .0;R/.

Some applications of the inequality (91) for particular functions of interest are as
follows:

1. If we apply the inequality (91) for the function f .z/ D exp .z/, z 2 C, then we
obtain the inequality

exp

 
jxj2 C jyj2

2

!

� 1 � jexp .xy/ � 1j ; (92)
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for any x; y 2 C. Moreover, if y D x, then from (92) we get

exp
�
jxj2

�
� 1 � ˇ

ˇexp
�
x2
�� 1

ˇ
ˇ ;

for any x 2 C.
2. If we apply the same inequality (91) for the function f .z/ D cos .z/, z 2 C, then

we get the following inequality:

h
cos

�
jxj2

�
cos

�
jyj2

�i1=2 � 1 � jcos .xy/ � 1j ; (93)

for any x; y 2 C. Also, if y D x, then from (93) we get

cos
�
jxj2

�
� 1 � ˇ

ˇcos
�
x2
� � 1ˇˇ ;

for any x 2 C.
3. For the function f .z/ D 1=.1� z/, z 2 D .0; 1/ and applying the inequality (91)

we obtain

1
h�
1 � jxj2

� �
1 � jyj2

�i1=2 � 1 �
ˇ
ˇ
ˇ
ˇ
xy

1 � xy

ˇ
ˇ
ˇ
ˇ ;

for any x; y 2 C with jxj2 ; jyj2 ; xy 2 D .0; 1/.

Remark 5.2. If y D x in (79), then we get

f
�
jxj2

�
f
�
jzj2
�

� jf .xz/f .xz/j �
ˇ
ˇ
ˇf
�
x2
�
f
�
jzj2
�

� f .xz/f .xz/
ˇ
ˇ
ˇ ; (94)

for x; z 2 C with jxj2 ; jzj2 ; xz; zx 2 D .0;R/. Moreover, for z D a 2 R, from (94),
we deduce

f
�
jxj2

�
f
�
a2
� � jf .ax/j2 � ˇ

ˇf
�
x2
�
f
�
a2
� � f 2 .ax/

ˇ
ˇ ; (95)

for any x 2 C, a 2 R. If we choose in (95) a D 1, then we have the inequality

f
�
jxj2

�
f .1/� jf .x/j2 � ˇ

ˇf
�
x2
�
f .1/� f 2 .x/

ˇ
ˇ ; (96)

for any x 2 C.

For some applications, we apply the inequality (96) for the function f .z/ D
exp .z/; then we have

exp
�
jxj2 C 1

�
� jexp .2x/j � ˇ

ˇexp
�
x2 C 1

�� exp .2x/
ˇ
ˇ ; (97)
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for any x 2 C. Since jexp .2x/j ¤ 0, then (97) is equivalent with

exp
�
jxj2 C 1

�

jexp .2x/j � 1 �
ˇ
ˇ
ˇexp .x � 1/2 � 1

ˇ
ˇ
ˇ ;

for any x 2 C.

Remark 5.3. If z D x in (79), then we get

h
f
�
jxj2

�
f
�
jyj2

�i1=2
f
�
jxj2

�
� ˇ
ˇf
�
x2
�
f .xy/

ˇ
ˇ

�
ˇ
ˇ
ˇf .xy/ f

�
jxj2

�
� f

�
x2
�
f .xy/

ˇ
ˇ
ˇ ; (98)

for x; y 2 C with x2; xy; jxj2 ; jyj2 2 D .0;R/.

If we apply the inequality (98) for the function f .z/ D exp.z/, z 2 C, then we get

exp

 
3 jxj2 C jyj2

2

!

� ˇ
ˇexp

�
x2 C xy

�ˇˇ�
ˇ
ˇ
ˇexp

�
xyC jxj2

�
� exp

�
x2 C xy

�ˇˇ
ˇ;(99)

for any x; y 2 C. Moreover, if x D a 2 R, then from (99) we obtain

exp

 
3a2 C jyj2

2

!

� jexp Œa .a C y/j ; (100)

for any y 2 C; a 2 R.

Theorem 5.2 ([14]). Let f .z/ D P1
nD0 anzn be a power series with real coef-

ficients an and convergent on D .0;R/  C, R > 0. If x; y; z 2 C, so that
jxj2 ; jyj2 ; jzj2, xz, zy, xy 2 D .0;R/, then

h
fA

�
jxj2

�
fA

�
jyj2

�i1=2
fA

�
jzj2
�

� jf .xz/ f .zy/j

�
ˇ
ˇ
ˇfA .xy/ fA

�
jzj2
�

� f .xz/ f .zy/
ˇ
ˇ
ˇ : (101)

Proof. By choosing pn D janj � 0, xn D xn, yn D yn, zn D sgn .an/ zn, n � 0

in (77), we have

ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
an .xz/n

mX

nD0
an .zy/

n

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
janj sgn .an/ xn .z/

n

mX

nD0
janj sgn .an/ zn .y/n

ˇ
ˇ
ˇ
ˇ
ˇ
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�
 

mX

nD0
janj jxj2n

!1=2  mX

nD0
janj jyj2n

!1=2 mX

nD0
janj jsgn .an/ znj2

�
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
janj xn .y/n

mX

nD0
janj jsgn .an/ znj2

�
mX

nD0
janjxn Œsgn .an/ .z/

n �
mX

nD0
janj Œsgn .an/ zn .y/n

ˇ
ˇ
ˇ
ˇ
ˇ

D
 

mX

nD0
janj

�
jxj2

�n
!1=2  mX

nD0
janj

�
jyj2

�n
!1=2 mX

nD0
janj

�
jzj2
�n

�
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
janj .xy/n

mX

nD0
janj

�
jzj2
�n �

mX

nD0
an .xz/n

mX

nD0
an .zy/

n

ˇ
ˇ
ˇ
ˇ
ˇ

(102)

for any x; y; z 2 C with xy; xz; zy; jxj2 ; jyj2 ; jzj2 2 D .0;R/. Taking the limit as
m ! 1 in (102), then we deduce the desired inequality (101). ut

In what follows we provide some applications of the inequality (101) for
particular functions of interest:

1. If we take the function

f .z/ D 1

1C z
D
1X

nD0
.�1/n zn; z 2 D .0; 1/ ;

then

fA .z/ D
1X

nD0
zn D 1

1 � z
; z 2 D .0; 1/ :

Applying the inequality (101), we can state that


1

1 � jxj2 � 1

1 � jyj2
�1=2 �

1

1 � jzj2
�

�
ˇ
ˇ
ˇ
ˇ

1

1C xz
� 1

1C zy

ˇ
ˇ
ˇ
ˇ

D 1
h�
1 � jxj2

� �
1 � jyj2

�i1=2 �
1 � jzj2

� � 1

j.1C xz/ .1C zy/j ;



A Survey on CBS Inequality for Power Series 275

D
j.1C xz/ .1C zy/j �

h�
1 � jxj2

� �
1 � jyj2

�i1=2 �
1 � jzj2

�

h�
1 � jxj2

� �
1 � jyj2

�i1=2 �
1 � jzj2

�
j.1C xz/ .1C zy/j

�
ˇ
ˇ
ˇ
ˇ

1

1 � xy
� 1

1 � jzj2 � 1

1C xz
� 1

1C zy

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ.1C xz/ .1C zy/ � .1 � xy/

�
1 � jzj2

�ˇˇ
ˇ

ˇ
ˇ
ˇ.1 � xy/

�
1 � jzj2

�ˇˇ
ˇ j.1C xz/ .1C zy/j

:

Hence we have

j.1C xz/ .1C zy/j
h�
1 � jxj2

� �
1 � jyj2

�i1=2 �
1 � jzj2

��1 �
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.1C xz/ .1C zy/

.1 � xy/
�
1 � jzj2

� � 1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
; (103)

for any x; y; z 2 D .0; 1/. In particular, if y D x, z D a 2 R, then from (103)
we get

j1C axj2
�
1� jxj2

�
.1 � a2/

� 1 �
ˇ
ˇ
ˇ
ˇ
ˇ

.1C ax/2

.1 � x2/ .1 � a2/
� 1

ˇ
ˇ
ˇ
ˇ
ˇ
;

for any x 2 D .0; 1/ ; a 2 R.
2. For the function f .z/ D exp .�z/ D P1

nD0
.�1/n
nŠ

zn, z 2 C, we have the transform

fA.z/ D
1X

nD0

1

nŠ
zn D exp .z/ ; z 2 C:

Utilizing the inequality (101) we obtain

exp

� jxj2 C jyj2
2

Cjzj2
�

jexp .xz C zy/j�1 �
ˇ
ˇ
ˇexp

�
xy C jzj2 C xz C zy

� � 1
ˇ
ˇ
ˇ ;

(104)

for any x; y; z 2 C. In particular, if y D x, z D a 2 R, then from (104) we get

exp
�
jxj2 C a2

�
jexp .2ax/j � 1 �

ˇ
ˇ
ˇexp

�
jxj2 C a C 2ax

�
� 1

ˇ
ˇ
ˇ ;

for any x 2 C, a 2 R.

In the following result, we state a connection between two power series, one
having positive coefficients while the other having complex coefficients.
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Theorem 5.3 ([14]). Let g.z/ D P1
nD0 gnzn and f .z/ D P1

nD0 anzn be two power
series with gn 2 C and an > 0, n � 0. If f and g are convergent on D .0;R1/ and

D .0;R2/, respectively, and the numerical series
P1

nD0
jgnj2
an

is convergent, then we
have the inequality

1X

nD0

jgnj2
an

f
�
jzj2
�

� jg.z/g.z/j �
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0

jgnj2
an

f
�
z2
� � g.z/g .z/

ˇ
ˇ
ˇ
ˇ
ˇ
; (105)

for any z 2 C with z; z2 jzj2 2 D .0;R1/\D .0;R2/.

Proof. On utilizing the inequality (78) for the choices pn D an, xn D zn, zn D gn
an

,
n 2 f0; 1; 2; : : : ; mg, we have

mX

nD0
an jzj2n

mX

nD0
an

ˇ
ˇ
ˇ
ˇ
gn

an

ˇ
ˇ
ˇ
ˇ

2

�
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
anzn

�
gn

an

� nX

nD0
anzn

�
gn

an

�ˇˇ
ˇ
ˇ
ˇ

D
mX

nD0
an

�
jzj2
�n mX

nD0

jgnj2
an

�
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
gnzn

nX

nD0
gnzn

ˇ
ˇ
ˇ
ˇ
ˇ
;

�
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
anz2n

mX

nD0
an

ˇ
ˇ
ˇ
ˇ
gn

an

ˇ
ˇ
ˇ
ˇ

2

�
mX

nD0
anzn

�
gn

an

� nX

nD0
anzn

�
gn

an

�ˇˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
an
�
z2
�n

mX

nD0

jgnj2
an

�
mX

nD0
gnzn

nX

nD0
gnzn

ˇ
ˇ
ˇ
ˇ
ˇ
; (106)

for any m � 0. Observe that
Pm

nD0 gnzn D Pm
nD0 gn .z/

n and then

ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
gnz

n

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
gn .z/

n

ˇ
ˇ
ˇ
ˇ
ˇ
: (107)

Replacing (107) in (106) we get

mX

nD0

jgnj2
an

mX

nD0
an

�
jzj2
�n �

ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
gn .z/

n

nX

nD0
gnzn

ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
ˇ

mX

nD0
an
�
z2
�n

mX

nD0

jgnj2
an

�
mX

nD0
gnzn

nX

nD0
gnzn

ˇ
ˇ
ˇ
ˇ
ˇ
: (108)

Since z; z2 jzj2 2 D .0;R1/\D .0;R2/, hence the series in (108) are convergent and
letting m ! 1, we deduce the desired inequality (105). ut
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Remark 5.4. If the coefficients gn, n � 0 are real, then we have the inequality

1X

nD0

g2n
an
f
�
jzj2
�

� jg.z/g.z/j �
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0

g2n
an
f
�
z2
� � g2.z/

ˇ
ˇ
ˇ
ˇ
ˇ
; (109)

for any z 2 C with z; z2; jzj2 2 D .0;R1/\D .0;R2/.

Corollary 5.1. Let g.z/ D P1
nD0 gnzn be a power series with complex coefficients

and convergent on the open disk D .0;R/. If the numerical series
P1

nD0 jgnj2 is
convergent, then

�
1

1 � jzj2
� 1X

nD0
jgnj2 � jg.z/g.z/j �

ˇ
ˇ
ˇ
ˇ
ˇ

�
1

1 � z2

� 1X

nD0
jgnj2 � g.z/g .z/

ˇ
ˇ
ˇ
ˇ
ˇ
; (110)

for any z 2 D .0; 1/\D .0;R/.

This follows from (105) for f .z/ D 1=.1� z/, z 2 D .0; 1/.
If we consider the series expansion

1

iz
ln

�
1

1 � iz
�

D
1X

nD0

in

nC 1
zn; z 2 D .0; 1/ n f0g ;

then on utilizing the inequality (110) for the choice gn D in=.nC1/ and taking into
account the equality (34), we can state the following inequality:

�2

6

 
jzj2

1 � jzj2
!

�
ˇ
ˇ
ˇ
ˇln

�
1

1 � iz
�

ln

�
1

1 � iz
�ˇˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
�2

6

�
z2

1� z2

�

C ln

�
1

1 � iz

�

ln

�
1

1C iz

�ˇˇ
ˇ
ˇ ; (111)

for any z 2 D .0; 1/.

Corollary 5.2. Let g.z/ D P1
nD0 gnzn be a power series with complex coefficients

and convergent on the open disk D .0;R/. If the numerical series
P1

nD0 nŠ jgnj2 is
convergent, then

1X

nD0
nŠ jgnj2 exp

�
jzj2
�

� jg.z/g.z/j �
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0
nŠ jgnj2 exp

�
z2
� � g.z/g .z/

ˇ
ˇ
ˇ
ˇ
ˇ
; (112)

for any z 2 D .0;R/.

This follows from Theorem 5.3 by choosing f .z/ D exp .z/.



278 A. Ibrahim and S.S. Dragomir

If we apply the inequality (112) for the function

sin .iz/ D
1X

nD0

i

.2nC 1/Š
z2nC1;

then we obtain the inequality

1X

nD0

nŠ

.2nC 1/Š
exp

�
jzj2
�

� jsin.iz/ sin.iz/j (113)

�
ˇ
ˇ
ˇ
ˇ
ˇ

1X

nD0

nŠ

.2nC1/Š exp
�
z2
�� sin2.iz/

ˇ
ˇ
ˇ
ˇ
ˇ
;

for any z 2 C.

6 More Power Series Inequalities on CBS Type

Utilizing a different technique based on the continuity properties of modulus, in this
section, we provide more inequalities for power series related to the CBS inequality.
These results contain in [15]. We begin by proving the following result.

Theorem 6.1. Assume that the power series f .z/ D P1
nD0 pnzn with real coef-

ficients is convergent on the disk D .0;R/, R > 0. If x; z 2 C are such that
x; xz; jxj jzj2 2 D .0;R/, then we have the inequality

fA
�jxj jzj2�fA .jxj/�jfA .jxj z/j2 � jf .x/f .x jzj z/� f .xz/f .x jzj/j � 0: (114)

Proof. If z 2 D .0;R/, then

ˇ
ˇzn � zj

ˇ
ˇ2 D ˇ

ˇzn � zj
ˇ
ˇ
ˇ
ˇzn � zj

ˇ
ˇ � ˇ

ˇzn � zj
ˇ
ˇ
ˇ
ˇ
ˇjzjn � jzjj

ˇ
ˇ
ˇ (115)

for any n; j 2 N. We also have

ˇ
ˇzn � zj

ˇ
ˇ2 D jznj2 � 2Re

�
znzj

�C ˇ
ˇzj
ˇ
ˇ2 D jzj2n � 2Re

�
znzj

�C jzj2j

and

ˇ
ˇzn � zj

ˇ
ˇ �
ˇ
ˇ
ˇjzjn � jzjj

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇzn jzjn C zj jzjj � zn jzjj � zj jzjn

ˇ
ˇ
ˇ

for any n; j 2 N.
Utilizing (115) we get the inequality

jzj2n � 2Re
�
znzj

�C jzj2j �
ˇ
ˇ
ˇzn jzjn C zj jzjj � jzjj zn � jzjn zj

ˇ
ˇ
ˇ (116)
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for any n; j 2 N. If we multiply (116) by jpnj jxjn ˇˇpj
ˇ
ˇ jxjj � 0 where x 2

D .0;R/ and n; j 2 N, then we have

jpnj jxjn jzj2n pj jxjj C jpnj jxjn pj jxjj jzj2j � 2Re
�
jpnj jxjn zn

ˇ
ˇpj

ˇ
ˇ jxjj zj

�

�
ˇ
ˇ
ˇpnxn jzjn znpj x

jCpnxnpj xj jzjj zj�pnxnznpj x
j jzjj �pnxn jzjn pj xj zj

ˇ
ˇ
ˇ

(117)

for any n; j 2 N.
Summing over n and j from 0 to k and utilizing the triangle inequality for the

modulus, we have from (117)

kX

nD0
jpnj jxjn jzj2n

kX

jD0

ˇ
ˇpj

ˇ
ˇ jxjj C

kX

nD0
jpnj jxjn

kX

jD0

ˇ
ˇpj

ˇ
ˇ jxjj jzj2j

� 2Re

0

@
kX

nD0
jpnj jxjn zn

kX

jD0

ˇ
ˇpj

ˇ
ˇ jxjj .z/j

1

A

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

kX

nD0
pnx

n jzjn zn
kX

jD0
pj x

j C
kX

nD0
pnx

n

kX

jD0
pj x

j jzjj zj

�
kX

nD0
pnx

nzn
kX

jD0
pj x

j jzjj �
kX

nD0
pnx

n jzjn
kX

jD0
pj x

j zj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
: (118)

Since
Pk

jD0
ˇ
ˇpj

ˇ
ˇ jxjj .z/j D Pk

nD0 jpnj jxjn zn, then

Re

0

@
kX

nD0
jpnj jxjn zn

kX

jD0

ˇ
ˇpj

ˇ
ˇ jxjj .z/j

1

A D
ˇ
ˇ
ˇ
ˇ
ˇ

kX

nD0
jpnj jxjn zn

ˇ
ˇ
ˇ
ˇ
ˇ

2

: (119)

Hence, from the inequality (118), we have

kX

nD0
jpnj jxjn jzj2n

kX

nD0
jpnj jxjn �

ˇ
ˇ
ˇ
ˇ
ˇ

kX

nD0
jpnj jxjn zn

ˇ
ˇ
ˇ
ˇ
ˇ

2

�
ˇ
ˇ
ˇ
ˇ
ˇ

kX

nD0
pnx

n

kX

nD0
pnx

n jzjn zn �
kX

nD0
pnx

nzn
kX

nD0
pnx

n jzjn
ˇ
ˇ
ˇ
ˇ
ˇ
: (120)

Since all the series whose partial sums are involved in (120) are convergent, then by
taking the limit over k ! 1 in (120), we deduce the desired inequality (114). ut
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Corollary 6.1. If
P1

nD0 jpnj < 1, i.e., fA .1/ < 1, then for any � 2 C with
j�j D 1, we have

fA

�
jzj2
�
fA .1/� jfA .z/j2 � jf .�/f .� jzj z/� f .�z/f .� jzj/j � 0: (121)

In particular, for � D 1, we have

fA

�
jzj2
�
fA .1/� jfA .z/j2 � jf .1/f .jzj z/� f .z/f .jzj/j � 0 (122)

for any z; jzj2 2 D .0;R/.

Some applications of the inequalities (114) and (122) are as follows:

1. If we apply the inequality (114) for the function f .z/ D 1

1 � z
, z 2 D .0; 1/,

then we get

j1 � zj
.1� jxj/ �1 � jxj jzj2� j1 � jxj zj2 �

ˇ
ˇ
ˇ
ˇ

1 � jzj
.1 � x/ .1 � xz/ .1 � x jzj/ .1� x jzj z/

ˇ
ˇ
ˇ
ˇ

(123)

for any x; z 2 C with x; jxj jzj2 2 D .0; 1/.

2. If we apply the inequality (114) for the function f .z/ D 1

1C z
D
1P
nD0

.�1/n zn,

z 2 D .0; 1/, then we get the inequality

j1 � zj
.1 � jxj/ �1 � jxj jzj2� j1 � jxj zj2 �

ˇ
ˇ
ˇ
ˇ

1 � jzj
.1C x/ .1C xz/ .1C x jzj/ .1C x jzj z/

ˇ
ˇ
ˇ
ˇ

(124)

for any x; z 2 C with x; xz; jxj jzj2 2 D .0; 1/.
3. If we apply the inequality (122) for the function f .z/ D exp.z/, z 2 C, then we

get the inequality

exp
�
jzj2 C 1

�
� jexp .z/j2 � jexp .z jzj C 1/� exp .z C jzj/j (125)

for any z 2 C.

Remark 6.1. The inequality (114) can also be written in the form

det

"
fA

�
jxj jzj2

�
fA .jxj z/

fA .jxj z/ fA .jxj/

#

�
ˇ
ˇ
ˇ
ˇdet


f .x/ f .xz/
f .x jzj/ f .x jzj z/

�ˇˇ
ˇ
ˇ (126)

for any x; z 2 C with x; xz; jxj jzj2 2 D .0;R/.
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Theorem 6.2 ([15]). Assume that the power series f .z/ D P1
nD0 pnzn with real

coefficients is convergent on the disk D .0;R/, R > 0. If x; z 2 C are such that
x; xz; jxj jzj2 2 D .0;R/, then we have the inequality

fA .jxj/ fA
�
jxj jzj2

�
� Re

�
f 2
A .jxj z/

�

� 1

2
jf .x/f .x jzj z/C f .x/f .x jzj z/ � f .xz/f .x jzj/� f .x jzj/ f .xz/j :

(127)

Proof. If z 2 D .0;R/, then

ˇ
ˇzn � .z/j

ˇ
ˇ2 D ˇ

ˇzn � .z/j ˇˇ ˇˇzn � .z/j
ˇ
ˇ

� ˇ
ˇzn � .z/j ˇˇ

ˇ
ˇ
ˇjzjn � jzjj

ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇjzjn zn C .z/j jzjj � jzjj zn � jzjn .z/j

ˇ
ˇ
ˇ (128)

for any n; j 2 N. We also have

ˇ
ˇzn � .z/j

ˇ
ˇ2 D jznj2 � 2Re

�
znzj

�C ˇ
ˇzj
ˇ
ˇ2 D jzj2n � 2Re

�
znzj

�C jzj2j (129)

for any n; j 2 N. Utilizing (128) we have the inequality

jzj2n � 2Re
�
znzj

�C jzj2j �
ˇ
ˇ
ˇjzjn zn C .z/j zn � jzjj zn � jzjn .z/j

ˇ
ˇ
ˇ (130)

for any n; j 2 N. Now, on utilizing a similar argument to the one in the proof of
Theorem 6.1, we deduce the desired result (127). The details are omitted. ut
Corollary 6.2. If z D x in (127), then we have

fA .jxj/ fA
�
jxj3

�
� Re

�
f 2
A .jxj x/�

� 1

2

ˇ
ˇ
ˇf .x/f

�
jxj3

�
C f .x/f

�jxj x2� � f .jxj2/f .jxj x/ � f .jxj x/ f �x2�
ˇ
ˇ
ˇ

(131)

for any x 2 C such that x; jxj x; jxj x2 2 D .0;R/.

In the following, we give some applications of above inequality (131) for
particular complex functions of interest:

1. If we take the function f .z/ D 1

1C z
, z 2 D .0; 1/, then we have fA.z/ D 1

1 � z
,

z 2 D .0; 1/. Applying (131), we get the following inequality:
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1

.1 � jxj/
�
1 � jxj3

� � Re

�
1

1 � jxj x
�2

� 1

2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2C jxj x2 C jxj3
.1C x/

�
1C jxj3

�
.1C jxj x2/

� 2C x2 C jxj2
.1C x2/ .1C jxj x/

�
1C jxj2

�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

(132)

for any x; jxj x; jxj x2 2 D .0; 1/.
2. If we apply the inequality (131) for the function f .z/ D exp.z/, z 2 C, then

we get

exp
�
jxj C jxj3

�
� Re Œexp .2 jxj x/

�1
2

ˇ
ˇ
ˇexp.xC jxj3/C exp.xC jxj x2/� exp.jxj2 C jxj x/� exp.jxj xCx2/

ˇ
ˇ
ˇ

(133)

for any x 2 C.

Theorem 6.3 ([15]). Assume that the power series f .z/ D P1
nD0 pnzn with real

coefficients is convergent on the disk D .0;R/, R > 0. If x; y 2 C are such that
jxj2 ; jyj2 < R, then we have the inequality

fA

�
jxj2

�
fA

�
jyj2

�
� jfA .xy/j2 jf .jxj x/f .jyjy/ � f .jyj x/f .jxj y/j : (134)

Proof. If x; y 2 C, then we have
ˇ
ˇxn .y/j � xj .y/n

ˇ
ˇ2 D ˇ

ˇxn .y/j � xj .y/nˇˇ ˇˇxn .y/j � xj .y/nˇˇ

� ˇ
ˇxn .y/j � xj .y/nˇˇ

ˇ
ˇ
ˇjxjn jyjj � jxjj jyjn

ˇ
ˇ
ˇ (135)

for any n; j 2 N. We have upon simple calculations that

jxj2n jyj2j � 2Re
�
xnyn .x/j .y/j

�C jyj2n jxj2j

�
ˇ
ˇ
ˇjxjn xn jyjj .y/j C jyjn .y/n jxjj xj � jyjn xn jxjj .y/j � jxjn .y/n jyjj xj

ˇ
ˇ
ˇ

(136)

for any n; j 2 N.
If we multiply the inequality (136) with jpnj

ˇ
ˇpj

ˇ
ˇ � 0 and summing over n and

j from 0 to k, then we have

kX

nD0
jpnj jxj2n

1X

jD0

ˇ
ˇpj

ˇ
ˇ jyj2j C

kX

nD0
jpnj jyj2n

kX

jD0

ˇ
ˇpj

ˇ
ˇ jxj2j
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� 2Re

0

@
kX

nD0
jpnj xnyn

kX

jD0

ˇ
ˇpj

ˇ
ˇ .x/j .y/j

1

A

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

kX

nD0
pn jxjn xn

kX

jD0
pj jyjj .y/j C

kX

nD0
pn jyjn .y/n

kX

jD0
pj jxjj xj

�
kX

nD0
pn jyjn xn

kX

jD0
pj jxjj .y/j �

kX

nD0
pn jxjn .y/n

kX

jD0
pj jyjj xj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
: (137)

Due to the fact that
Pk

nD0 jpnj xnynP1jD0
ˇ
ˇpj

ˇ
ˇ .x/j .y/j D

ˇ
ˇ
ˇ
Pk

nD0 jpnjxnyn
ˇ
ˇ
ˇ
2

,

the inequality (137) is equivalent with

kX

nD0
jpnj jxj2n

kX

nD0
jpnj jyj2n �

ˇ
ˇ
ˇ
ˇ
ˇ

kX

nD0
jpnj xnyn

ˇ
ˇ
ˇ
ˇ
ˇ

2

�
ˇ
ˇ
ˇ
ˇ
ˇ

kX

nD0
pn jxjn xn

kX

nD0
pn jyjn .y/n �

kX

nD0
pn jyjn xn

kX

nD0
pn jxjn .y/n

ˇ
ˇ
ˇ
ˇ
ˇ
: (138)

Since all the series with the partial sums involved in (138) are convergent, then by
taking the limit over k ! 1 in (138), we deduce the desired result from (134). ut
Remark 6.2. The inequality (134) is also equivalent to

det

2

4
fA

�
jxj2

�
fA .xy/

fA .xy/ fA

�
jyj2

�

3

5 �
ˇ
ˇ
ˇ
ˇdet


f .jxj x/ f .jyj x/
f .jxj y/ f .jyj y/

�ˇˇ
ˇ
ˇ (139)

for any x; y 2 C with jxj2 ; jyj2 < R.

The inequality (134) has some applications for particular complex functions of
interest which will be pointed out as follows:

1. If we apply the inequality (134) for the function f .z/ D 1

1 � z
, z 2 D.0; 1/, then

we get

1
�
1 � jxj2

� �
1 � jyj2

� � 1

j1 � xyj2

�
ˇ
ˇ
ˇ
ˇ

1

.1 � x jxj/ .1 � jyj y/ � 1

.1 � jyj x/ .1 � jxj y/
ˇ
ˇ
ˇ
ˇ (140)
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for any x; y 2 C. In particular, if in (140) we choose y D 0, then we obtain the
simpler inequality

1

1 � jxj2 � 1 �
ˇ
ˇ
ˇ
ˇ

1

1 � x jxj � 1

ˇ
ˇ
ˇ
ˇ (141)

for any x 2 C.
2. If we apply the inequality (134) for the function f .z/ D exp.z/, z 2 C, then

we have

exp
�
jxj2 C jyj2

�
� jexp .xy/j2 � jexp .x jxj C jyj y/� exp .jyj x C jxj y/j

(142)

for any x; y 2 C. In particular, if in (142) we choose y D 0, then we get

exp
�
jxj2

�
� 1 � jexp .x jxj/� 1j (143)

for any x 2 C.
3. If we take the function f .z/ D cos .z/, z 2 C, then we have fA.z/ D cosh .z/,

z 2 C. Utilizing the inequality (134) for f .z/ as above gives

cosh
�
jxj2

�
cosh

�
jyj2

�
� jcosh .xy/j2

� jcos.x jxj/ cos .jyj y/� cos.jyj x/ cos.jxj y/j (144)

for any x; y 2 C. In particular, we have, with y D 0 in (144),

cosh
�
jxj2

�
� 1 � jcos .x jxj/� 1j (145)

for any x 2 C.

Theorem 6.4 ([15]). Assume that the power series f .z/ D P1
nD0 pnzn with real

coefficients is convergent on the disk D .0;R/, R > 0. If x; y 2 C are such that
jxj2 ; jyj2 < R, then we have the inequality

fA

�
jxj2

�
fA

�
jyj2

�
� Re

�
f 2
A .xy/

�

�1
2

jf .jxj x/f .jyj y/Cf .jxj x/f .jyj y/�f .jxj y/f .jyj x/�f .jyj x/f .jxj y/j :
(146)

Proof. If x; y 2 D .0;R/, then we have

ˇ
ˇxn .y/j � .x/j yn

ˇ
ˇ2 D ˇ

ˇxn .y/j � .x/j ynˇˇ ˇˇxn .y/j � .x/j ynˇˇ

� ˇ
ˇxn .y/j � .x/j ynˇˇ

ˇ
ˇ
ˇjxjn jyjj � jxjj jyjn

ˇ
ˇ
ˇ (147)
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for any n; j 2 N. Doing simple calculations we get that

jxj2n jyj2j � 2Re
�
xn .y/j xj .y/n

�C jxj2j jyj2n

�
ˇ
ˇ
ˇjxjn xn jyjj .y/j C jxjj .x/j jyjn yn � jxjn yn jyjj .x/j � jyjn xn jxjj .y/j

ˇ
ˇ
ˇ

(148)

for any n; j 2 N.
If we multiply (148) with jpnj

ˇ
ˇpj

ˇ
ˇ � 0 and summing over n and j from 0 to k,

then we get

kX

nD0
jpnj jxj2n

kX

jD0

ˇ
ˇpj

ˇ
ˇ jyj2j � 2Re

2

4
kX

nD0
jpnj xn .y/n

kX

jD0

ˇ
ˇpj

ˇ
ˇ xj .y/j

3

5

C
kX

nD0
jpnj jyj2n

kX

jD0

ˇ
ˇpj

ˇ
ˇ jxj2j

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

kX

nD0
pn jxjn xn

kX

jD0
pj jyjj .y/j C

kX

nD0
pny

n jyjn
kX

jD0
pj jxjj .x/j

�
kX

nD0
pn jxjn yn

kX

jD0
pj jyjj .x/j �

kX

nD0
pn jyjn xn

kX

jD0
pj jxjj .y/j

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

(149)

for any n; j 2 N.
Since all the series whose partial sums are involved in (149) are convergent, then

by taking the limit over k ! 1 in (149), we deduce the desired result (146). ut
The inequality (146) is also a valuable source of particular inequalities for

complex functions of interest that will be outlined in the following:

1. In (146), we take the function f .z/ D exp.z/, z 2 C, then we can state that

exp
�
jxj2 C jyj2

�
� Re Œexp .2xy/

� 1

2
jexp .jxj x C jyj y/C exp .jxj x/C jyjy/

� exp .jxj y/C jyj x/ � exp .jyj x C jxj y/j (150)

for any x; y 2 C. If in (150) we choose y D 0, then we obtain the simpler result:

exp
�
jxj2

�
� 1 � 1

2
jexp .jxj x/C exp .jxj x/ � 2j (151)

for any x 2 C.
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2. If we apply the inequality (146) for the function f .z/ D cos .z/, z 2 C, with its
transform fA.z/ D cosh .z/, z 2 C, then we get

cosh
�
jxj2

�
cosh

�
jyj2

�
� Re

�
cosh2 .xy/

�

� 1

2
jcos.jxj x/ cos .jyj y/C cos.jxj x/ cos .jyj y/

� cos.jxj y/ cos.jyjx/� cos.jyj x/ cos.jxj y/j ; (152)

for any x; y 2 C. In particular, if in (152) we choose y D 0, then we obtain that

cosh
�
jxj2

�
� 1 � 1

2
jcos.jxj x/C cos.jxj x/� 2j (153)

for any x 2 C.

7 Applications to Special Functions

7.1 Definition and Basic Concepts

In this section, we give some inequalities for special functions such as polylog-
arithm, hypergeometric, Bessel and modified Bessel functions of the first kind.
Before we state our results for these special functions that can be obtained on
utilizing the de Bruijn, the Buzano and the Schwarz inequality, we recall here the
definitions and some basic concepts.

The polylogarithm Lin .z/ also known as Jonquiére’s function is a function
defined by the power series:

Lin .z/ D
1X

kD1

zk

kn
: (154)

This series (154) converges absolutely for all complex values of the order n and the
argument z where z 2 D .0; 1/.

The polylogarithm of nonnegative order n arises in the sums of the form

Li�n .r/ D
1X

kD1
knrk D 1

.1� r/nC1
sX

iD0
En;i r

n�i ;

where En;i is an Eulerian number, namely, we recall that

En;k WD
kC1X

jD0
.�1/j

 
nC 1

j

!

.k � j C 1/n :



A Survey on CBS Inequality for Power Series 287

Polylogarithms also arise in sum of generalized harmonic numbersHn;r as

1X

nD1
Hn;rz

n D Lir .z/

1 � z
;

for z 2 D .0; 1/, whereHn;r WD P1
kD1 1

kr
and Hn;1 WD Hn D P1

kD1 1k .
The polylogarithm function involves the ordinary logarithm for n D 1, i.e.,

Li1 .z/ D ln

�
1

1 � z

�

, while for n D 2, we have

Li2 .z/ D
1X

kD1

zk

k2
; z 2 D .0; 1/ ; (155)

which is called the dilogarithm or Spence’s function. Other special forms of low-
order polylogarithms include

Li�2 .z/ D z .z C 1/

.1 � z/3
; Li�1 .z/ D z

.1 � z/2
; Li0 .z/ D z

1 � z

for all z 2 D.0; 1/. The polylogarithm also has relationship to other functions for
the special cases of argument z. For instance

Lin .1/ D � .n/ ; Lin .�1/ D �� .n/ ; Lin .˙i/ D 1

2s
� .n/˙ iˇ .n/ ;

where � .n/ ; � .n/ and ˇ .n/ are the Riemann zeta, Dirichlet eta and Dirichlet beta
function, respectively.

The hypergeometric function 2F1 .a; bI cI z/ is defined for all jzj < 1 by the series

2F1 .a; bI cI z/ D
1X

nD0

.a/n .b/n

.c/n

zn

nŠ
(156)

for arbitrary a; b; c 2 R with c ¤ 0;�1;�2; : : :, and the .t/n, n 2 f0; 1; 2; : : :g is a
Pochhammer symbol which is defined by

.t/n D
(
1; if n D 0;

t .t C 1/ � � � .t C n � 1/ ; if n > 0:
(157)

Hypergeometric function (156) with particular arguments of a; b, and c reduces to
elementary functions, for example,
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2F1 .1; 1I 1I z/ D 1

1 � z
D 2F1 .1; 2I 2I z/ ;

2F1 .1; 2I 1I z/ D 1

.1 � z/2
; 2F1 .a; bI bI z/ D 1

.1 � z/a
;

2F1 .1; 1I 2I z/ D 1

z
ln
� 1

1 � z

�
; 2F1 .1; 1I 2I �z/ D 1

z
ln .1C z/ :

The Bessel functions of the first kind J˛ .z/ are defined as the solutions to the Bessel
differential equation, i.e.,

z2
d 2y

d z2
C z

dy

d z
C �

z2 � ˛2� y D 0 (158)

for an arbitrary real or complex order ˛. This solution of (158) is an analytic function
of z in C, except for a point z D 0 when ˛ is not an integer. These solutions, denoted
by J˛ .z/, are defined by Taylor series expansion around the origin [1, p. 360], i.e.,

J˛ .z/ D
1X

nD0

.�1/n
� .nC ˛ C 1/ nŠ

� z

2

�2nC˛
; (159)

where � .x/ is the gamma function.
For non-integer order ˛, J˛ .z/ and J�˛ .z/ are linearly independent and therefore

the two solutions of the differential equation (158). The J˛ .z/ and J�˛ .z/ are
linearly dependent for ˛ integer; hence, the following relationship is valid [1,
p. 358]:

J�˛ .z/ D .�1/˛ J˛ .z/ : (160)

If z in (158) is replaced by the arguments ˙iz, then the solutions of the second-
order differential equation, I˛ .z/, are called the modified Bessel functions of the
first kind. It is easy to verify from (159) that the modified Bessel function is defined
by the following power series [1, p. 375]:

I˛ .z/ D
1X

nD0

1

� .nC ˛ C 1/ nŠ

� z

2

�2nC˛
(161)

for ˛; z 2 C. We observe that the function I˛ .z/ has all the nonnegative coefficients.
Similar to Bessel functions, the modified Bessel function (161) also satisfies the
following relations:

I˛ .�z/ D .�1/˛ I˛.z/ and I�˛ .z/ D I˛ .z/
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for ˛ 2 Z; z 2 C. The modified Bessel functions of the first kind of order ˛, I˛ .z/,
can be expressed by the Bessel function of the first kind, that is,

J˛ .iz/ D i˛I˛ .z/ : (162)

7.2 Some Inequalities for Polylogarithm Functions

It is clearly seen that the polylogarithm function (154) is the power series with
nonnegative coefficients and convergent on the open disk D.0; 1/, so that all the
results in Sects. 3–6 hold true. Therefore, for instance from (17), (39), (79), (114)
and (134), we have the following corollaries.

Corollary 7.1. If Lin .z/ is the polylogarithm function, then we have

jLin .az/j2 � 1

2
Lin

�
a2
� h
Lin

�
jzj2
�

C ˇ
ˇLin.z2/

ˇ
ˇ
i

(163)

for a 2 .�1; 1/ ; z 2 C with az; a2; z2; jzj2 2 D .0; 1/ and n is a negative or a
positive integer.

Corollary 7.2. If Lin .z/ is the polylogarithm function, then we have

ˇ
ˇ
ˇLin .˛x/Lin

�
ˇx
�ˇˇ
ˇ�1
2

h
Lin

�j˛j2�Lin
�jˇj2�

i1=2 C
ˇ
ˇ
ˇLin

�
˛ˇ
�ˇˇ
ˇ

�

Lin
�jxj2� (164)

for any ˛; ˇ; x 2 C with j˛j2 ; jˇj2 ; jxj2 ; ˛ˇ; ˛x; ˇx 2 D .0; 1/ and n is a negative
or a positive integer.

Corollary 7.3. If Lin .z/ is the polylogarithm function, then we have

h
Lin

�
jxj2

�
Lin

�
jyj2

�i1=2
Lin

�
jzj2
�

� jLin .xz/ Lin .zy/j

�
ˇ
ˇ
ˇLin .xy/Lin

�
jzj2
�

�Lin .xz/ Lin .zy/
ˇ
ˇ
ˇ (165)

for any x; y; z 2 C such that jxj2 ; jyj2 ; jzj2 ; xz; zy; xy 2 D .0; 1/ and n is a
negative or a positive integer.

Corollary 7.4. If Lin .z/ is the polylogarithm function, then we have

Lin

�
jxj jzj2

�
fA .jxj/� jLin .jxj z/j2 � jLin.x/Lin .x jzj z/ �Lin.xz/Lin.x jzj/j

(166)
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and

Lin
�jxj2�Lin

�jyj2�� jLin .xy/j2 � jLin.jxj x/Lin .jyj y/�Lin.jyj x/Lin.jxj y/j ;
(167)

for any x; y; z 2 C with x; xz; jxj jzj2 ; jxj2 ; jzj2 2 D .0; 1/ and n is a negative or a
positive integer.

In the following, we present some results that connect different order
polylogarithms.

Theorem 7.1 ([4]). Let Lin .z/ be the polylogarithm function, a 2 .�1; 1/, z 2
D .0; 1/ and p; q; r integers such that the following series exist. Then

ˇ
ˇLirCpCq .az/

ˇ
ˇ2 � 1

2
LirC2p

�
a2
� h
LirC2q

�
jzj2
�

C ˇ
ˇLirC2q.z2/

ˇ
ˇ
i
: (168)

Proof. Utilizing the de Bruijn inequality (18) with positive weights we have

ˇ
ˇLirCpCq .az/

ˇ
ˇ2 D

ˇ
ˇ
ˇ
ˇ
ˇ

1X

kD1

1

kr
� a

k

kp
� zk

kq

ˇ
ˇ
ˇ
ˇ
ˇ

2

� 1

2

 1X

kD1

1

kr
� a

k

kp

!" 1X

kD1

1

kr
� jzj2k
k2q

C
ˇ
ˇ
ˇ
ˇ
ˇ

1X

kD1

1

kr
� z2k

k2q

ˇ
ˇ
ˇ
ˇ
ˇ

#

D 1

2
LirC2p

�
a2
� h
LirC2q

�
jzj2
�

C ˇ
ˇLirC2q.z2/

ˇ
ˇ
i

(169)

and the inequality (168) is proved. ut
Theorem 7.2 ([13]). Let ˛; ˇ; x 2 C, ˛x; ˇx; j˛j2 ; jˇj2 ; ˛ˇ; jxj2 2 D .0; 1/ and
p; q; r integers such that the following series exist. Then
ˇ
ˇ
ˇLirCpCq .˛x/LirCpCq

�
ˇx
�ˇˇ
ˇ

� 1

2

�h
LirC2q

�
j˛j2

�
LirC2q

�
jˇj2

�i1=2 C
ˇ
ˇ
ˇLirC2q

�
˛ˇ
�ˇˇ
ˇ

�

LirC2p
�
jxj2

�
:

(170)

Proof. Utilizing the Buzano inequality (36) for pk D 1=kr , ck D ˛k=kq , bk D
ˇk=kq and xk D xk=kp , we have

ˇ
ˇ
ˇLirCpCq .˛x/LirCpCq

�
ˇx
�ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1X

kD1

1

kr
˛k

kq
.x/k

kp

1X

kD1

1

kr

�
ˇ
�k

kq
.x/k

kp

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
;

� 1

2

0

B
B
@

2

6
4
1X

kD1

1

kr

�
j˛j2

�k

k2q

1X

kD1

1

kr

�
jˇj2

�k

k2q

3

7
5

1=2

C

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1X

kD1

1

kr

�
˛ˇ
�k

k2q

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

C
C
A

1X

kD1

1

kr

�
jxj2

�k

k2p
;
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D 1

2

�h
LirC2q

�
j˛j2

�
LirC2q

�
jˇj2

�i1=2 C
ˇ
ˇ
ˇLirC2q

�
˛ˇ
�ˇ
ˇ
ˇ

�

LirC2p
�
jxj2

�
; (171)

and the inequality is proved. ut
On making use of the above result (170), we can get some simpler inequalities.

For instance, if ˛ D z, ˇ D z, then from (170) we can state that
ˇ
ˇLirCpCq .zx/LirCpCq .zx/

ˇ
ˇ

� 1

2

h
LirC2q

�
jzj2
�

C ˇ
ˇLirC2q

�
z2
�ˇˇ
i
LirC2p

�
jxj2

�
: (172)

Moreover, if x D a 2 R, then from (172) we deduce the inequality (163) or the
inequality (33) in paper [4].

Theorem 7.3. Let x; y; z 2 C with jxj2 ; jyj2 ; jzj2 ; xz; zy; xy 2 D .0; 1/ and
p; q; r integers such that the following series exist. Then

h
LirC2q

�
jxj2

�
LirC2q

�
jyj2

�i1=2
LirC2p

�
jzj2
�

� ˇ
ˇLirCpCq .xz/ LirCpCq .zy/

ˇ
ˇ

�
ˇ
ˇ
ˇLirC2q .xy/LirC2p

�
jzj2
�

� LirCpCq .xz/ LirCpCq .zy/
ˇ
ˇ
ˇ : (173)

Proof. Utilizing the discrete inequality (77) for pk D 1
kr

, xk D xk

kq
, yk D yk

kq
,

zk D zk

kp
; k 2 f1; 2; : : : ; mg, we have

 
mX

kD1

1

kr

ˇ
ˇ
ˇ
ˇ
xk

kq

ˇ
ˇ
ˇ
ˇ

2
!1=2  mX

kD1

1

kr

ˇ
ˇ
ˇ
ˇ
yk

kq

ˇ
ˇ
ˇ
ˇ

2
!1=2 mX

kD1

1

kr

ˇ
ˇ
ˇ
ˇ

zk

kp

ˇ
ˇ
ˇ
ˇ

2

�
ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1

1

kr
xk

kq
.z/k

kp

nX

kD1

1

kr
zk

kp
.y/

k

kq

ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
ˇ

mX

kD1

1

kr
xk

kq
.y/

k

kq

nX

kD1

1

kr

ˇ
ˇ
ˇ
ˇ

zk

kp

ˇ
ˇ
ˇ
ˇ

2

�
mX

kD1

1

kr
xk

kq
.z/k

kp

mX

kD1

1

kr
zk

kp
.y/

k

kq

ˇ
ˇ
ˇ
ˇ
ˇ
I

hence

 
mX

kD1

1

krC2q
�
jxj2

�k
!1=2  mX

kD1

1

krC2q
�
jyj2

�k
!1=2 mX

kD1

1

krC2p
�
jzj2
�k

�
ˇ
ˇ
ˇ
ˇ
ˇ

mX

kD1

1

krCpCq
.xz/k

mX

kD1

1

krCpCq
.zy/k

ˇ
ˇ
ˇ
ˇ
ˇ

�
mX

kD1

.xy/k

krC2q
mX

kD1

�
jzj2
�k

krC2p
�

mX

kD1

.xz/k

krCpCq
mX

kD1

.zy/k

krCpCq
; (174)

form � 0.
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Taking the limit asm ! 1 in (174), then we deduce the desired inequality (173).
ut

On making use of the above result (173), we can get some simpler inequalities;
for instance, if y D x, then from (173) we can state that

LirC2q
�
jxj2

�
LirC2p

�
jzj2
�

� ˇ
ˇLirCpCq .xz/ LirCpCq .xz/

ˇ
ˇ

�
ˇ
ˇ
ˇLirC2q

�
x2
�
LrC2p

�
jzj2
�

� LirCpCq .xz/ LirCpCq .xz/
ˇ
ˇ
ˇ ; (175)

for x; z 2 C. Moreover, if z D a 2 R, then from (175) we deduce the inequality

LirC2q
�
jxj2

�
LirC2p

�
a2
� � ˇ

ˇLirCpCq .ax/
ˇ
ˇ2

�
ˇ
ˇ
ˇLirC2q

�
x2
�
LirC2p

�
a2
� �Li2rCpCq .ax/

ˇ
ˇ
ˇ ; (176)

for any x 2 C, a 2 R.
From a different perspective, we can state the following inequality which

incorporates the Riemann zeta function, �:

Corollary 7.5. Let z 2 D .0; 1/ and p; q; r integers such that r C 2p > 1. Then

ˇ
ˇLirCpCq .az/

ˇ
ˇ2 � 1

2
� .r C 2p/

h
LirC2q

�
jzj2
�

C ˇ
ˇLirC2q.z2/

ˇ
ˇ
i
: (177)

Proof. The proof follows by Theorem 7.1 for a D 1. ut
Corollary 7.6. Let ˛; ˇ 2 D .0; 1/ and p; q; r integers such that r C 2p > 1. Then

ˇ
ˇ
ˇLirCpCq .�˛i/LirCpCq

�
ˇi
�ˇˇ
ˇ

� 1

2
� .r C 2p/

�h
LirC2q

�
j˛j2

�
LirC2q

�
jˇj2

�i1=2 C
ˇ
ˇ
ˇLirC2q

�
˛ˇ
�ˇˇ
ˇ

�

:

(178)

The proof follows by Theorem 7.2 for x D i .

Corollary 7.7. Let x 2 D .0; 1/ and p; q; r integers. Then

� .r C 2p/LirC2q
�
jxj2

�
� ˇ
ˇLirCpCq .x/

ˇ
ˇ2

�
ˇ
ˇ
ˇ� .r C 2p/LirC2q

�
x2
�� Li2rCpCq .x/

ˇ
ˇ
ˇ : (179)

The proof follows by (176) for a D 1.
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On utilizing the inequalities (177)–(179) and taking into account that some
particular values of � .n/ are known, such as (34) and �.4/ D �4=90, then we can
state the following inequalities:

1:
ˇ
ˇLiqC1 .z/

ˇ
ˇ2 � �2

12

h
Li2q

�
jzj2
�

C ˇ
ˇLi2q.z2/

ˇ
ˇ
i

2:
ˇ
ˇLiqC2 .z/

ˇ
ˇ2 � �4

180

h
Li2q

�
jzj2
�

C ˇ
ˇLi2q.z2/

ˇ
ˇ
i

3:
ˇ
ˇ
ˇLiqC1 .�˛i/LiqC1

�
ˇi
�ˇˇ
ˇ

� �2

12

�h
Li2q

�
j˛j2

�
Li2q

�
jˇj2

�i1=2 C
ˇ
ˇ
ˇLi2q

�
˛ˇ
�ˇˇ
ˇ

�

4:
ˇ
ˇ
ˇLiqC2 .�˛i/LiqC2

�
ˇi
�ˇˇ
ˇ

� �2

180

�h
Li2q

�
j˛j2

�
Li2q

�
jˇj2

�i1=2 C
ˇ
ˇ
ˇLi2q

�
˛ˇ
�ˇˇ
ˇ

�

5:
ˇ
ˇ
ˇLiqC3 .�˛i/LiqC3

�
ˇi
�ˇˇ
ˇ

� �4

180

�h
Li2.qC1/

�
j˛j2

�
Li2.qC1/

�
jˇj2

�i1=2 C
ˇ
ˇ
ˇLi2.qC1/

�
˛ˇ
�ˇˇ
ˇ

�

6:

ˇ
ˇ
ˇ
ˇ
�2

6
Li2q

�
x2
� �L2iqC1 .x/

ˇ
ˇ
ˇ
ˇ � �2

6
Li2q

�
jxj2

�
� ˇ
ˇLiqC1 .x/

ˇ
ˇ2

7:

ˇ
ˇ
ˇ
ˇ
�4

90
Li2q

�
x2
� �L2iqC2 .x/

ˇ
ˇ
ˇ
ˇ � �4

90
Li2q

�
jxj2

�
� ˇ
ˇLiqC2 .x/

ˇ
ˇ

8:

ˇ
ˇ
ˇ
ˇ
�4

90
Li2.qC1/

�
x2
� �L2iqC3 .x/

ˇ
ˇ
ˇ
ˇ � �4

90
Li2.qC1/

�
jxj2

�
� ˇ
ˇLiqC3 .x/

ˇ
ˇ2

for any ˛; ˇ; x; z 2 D .0; 1/ and q an integer.

7.3 Some Inequalities for Hypergeometric Functions

It is clearly seen that the hypergeometric function (156) is the power series with
nonnegative coefficients and convergent on the open disk D.0; 1/, so that all the
results in Sects. 3–6 hold true. Therefore, for instance from (134), we have the
following corollaries (see [15]).
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Corollary 7.8. Let 2F1 .a; bI cI z/ be the hypergeometric function. Then

2F1

�
a; bI cI jxj2

�

2
F1

�
a; bI cI jyj2

�
� j2F1 .a; bI cI xy/j2

� j2F1 .a; bI cI jxj x/2 F1 .a; bI cI jyj y/ �2 F1 .a; bI cI jyj x/2 F1 .a; bI cI jxj y/j
(180)

for any a; b; c 2 R, with c ¤ 0;�1;�2; : : : and x; y 2 C such that jxj ; jyj < 1.

Corollary 7.9. If in (180) we choose c D b, then we have

1
h�
1 � jxj2

� �
1 � jyj2

�ia � 1

j1 � xyj2a

�
ˇ
ˇ
ˇ
ˇ

1

Œ.1 � jxj x/ .1 � jyj y/a � 1

Œ.1� jyj x/ .1 � jxj y/a
ˇ
ˇ
ˇ
ˇ (181)

for any a 2 R, x; y 2 C such that jxj ; jyj < 1.

Remark 7.1. For a D 1, the inequality (181) reduces to (140).

Corollary 7.10. If in (180) we choose a D b D 1, c D 2, then we have

ln

�
1

1 � jxj2
�

ln

�
1

1 � jyj2
�

�
ˇ
ˇ
ˇ
ˇln

�
1

1 � xy
�ˇˇ
ˇ
ˇ

2

�
ˇ
ˇ
ˇ
ˇln

�
1

1 � jxj x
�

ln

�
1

1 � jyj y
�

� ln

�
1

1 � jyj x
�

ln

�
1

1 � jxj y
�ˇˇ
ˇ
ˇ (182)

for x; y 2 C with jxj ; jyj < 1.

7.4 Some Inequalities for Bessel Functions

Similar to the polylogarithm and hypergeometric function, the modified Bessel
function (161) is also the power series with nonnegative coefficients and convergent
on the open disk D.0; 1/, so that all the results in Sects. 3–6 hold true. Therefore,
for instance from (134), we have the following corollaries (see [15]).

Corollary 7.11. If J˛ .x/ and I˛ .x/ are the Bessel function and modified Bessel
function for the first kind, respectively, then we have

I˛

�
jxj2

�
I˛

�
jyj2

�
� jI˛ .xy/j2 � jJ˛.jxj x/J˛ .jyj y/ � J˛.jyj x/J˛.jxj y/j

(183)

for ˛ 2 R, x; y 2 C with jxj ; jyj < 1.
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In particular, if y D ˛ D 0 in (183), then for any jxj < 1, we obtain that

I0

�
jxj2

�
� 1 � jJ0.jxj x/ � 1/j (184)

where

J0 .z/ D
1X

kD0

.�1/n
.kŠ/2

� z

2

�2k
and I0 .z/ D

1X

kD0

1

.kŠ/2

� z

2

�2k
; jzj < 1:
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Topics in Special Functions III

Glen D. Anderson, Matti Vuorinen, and Xiaohui Zhang

Dedicated to Professor Hari M. Srivastava

Abstract The authors provide a survey of recent results in special functions of
classical analysis and geometric function theory, in particular, the circular and
hyperbolic functions, the gamma function, the elliptic integrals, the Gaussian
hypergeometric function, power series, and mean values.

1 Introduction

The study of quasiconformal maps led the first two authors in their joint work with
Vamanamurthy to formulate open problems or questions involving special functions
[14,16]. During the past two decades, many authors have contributed to the solution
of these problems. However, most of the problems posed in [14] are still open.

The present paper is the third in a series of surveys by the first two authors, the
previous papers [20, 23] being written jointly with the late Vamanamurthy. The aim
of this series of surveys is to review the results motivated by the problems in [14,16]
and related developments during the past two decades. In the first of these we studied
classical special functions, and in the next we focused on special functions occurring
in the distortion theory of quasiconformal maps. Regretfully, Vamanamurthy passed
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away in 2009, and the remaining authors acknowledge his crucial role in our joint
work. For an update to the bibliographies of [20, 23] the reader is referred to [12].

In 1993 the following monotone rule was derived [17, Lemma 2.2]. Though
simple to state and easy to prove by means of the Cauchy Mean Value Theorem,
this l’Hôpital Monotone Rule (LMR) has had wide application to special functions
by many authors. Vamanamurthy was especially skillful in the application of this
rule. We here quote the rule as it was restated in [21, Theorem 2].

Theorem 1.1 (l’Hôpital Monotone Rule). Let �1 < a < b < 1, and let f; g W
Œa; b ! R be continuous functions that are differentiable on .a; b/, with f .a/ D
g.a/ D 0 or f .b/ D g.b/ D 0: Assume that g0.x/ ¤ 0 for each x 2 .a; b/: If
f 0=g0 is increasing (decreasing) on .a; b/, then so is f=g.

Theorem 1.1 assumes that a and b are finite, but the rule can be extended easily
by similar methods to the case where a or b is infinite. The LMR has been used
effectively in the study of the monotonicity of a quotient of two functions. For
instance, Pinelis’ note [146] shows the potential of the LMR. As a complement to
Pinelis’ note, the paper [21] contains many applications of LMR in calculus. Also
the history of LMR is reviewed there.

In this survey we give an account of the work in the special functions of classical
analysis and geometric function theory since our second survey. In many of these
results the LMR was an essential tool. Because of practical constraints, we have had
to exclude many fine papers and have limited our bibliography to those papers most
closely connected to our work.

The aim of our work on special functions has been to solve open problems in
quasiconformal mapping theory. In particular, we tried to settle Mori’s conjecture
for quasiconformal mappings [127] (see also [118, p. 68]). For the formulation of
this problem, let K > 1 be fixed and let M.K/ be the least constant such that

jf .z1/� f .z2/j 6 M.K/jz1 � z2j1=K; for all z1; z2 2 B;

for everyK-quasiconformal mapping f W B ! B of the unit diskB onto itself with
f .0/ D 0. A. Mori conjectured in 1956 that M.K/ 6 161�1=K : This conjecture is
still open in 2013. Some of the open problems that we found will be discussed in
the last section.

2 Generalizations of Jordan’s Inequality

The LMR application list, begun in [21], led to the Master’s thesis of Visuri,
on which [109] is based. Furthermore, applications of LMR to trigonometric
inequalities were given in [109]. Numerous further applications to trigonometric
functions were found by many authors, and some of these papers are reviewed in
this section and the next.
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By elementary geometric methods one can prove that

2

�
6 sinx

x
< 1; 0 < x 6 �

2
;

a result known as Jordan’s inequality. In a recent work, Klén et al. [109] have
obtained the inequalities

cos2
x

2
6 sinx

x
6 cos3

x

3
; x 2 .�p27=5;p27=5/

and

cosh1=4 x <
sinh x

x
< cosh1=2x; x 2 .0; 1/:

Inspired by these results, Lv, Wang, and Chu [121] proved that, for a D
.log.�=2//= log

p
2 � 1:30299,

cos4=3
x

2
<

sin x

x
< cosa

x

2
; x 2 .0; �=2/;

where 4=3 and a are best constants and that for b D .log sinh1/=.log cosh1/ �
0:372168;

cosh1=3x <
sinh x

x
< coshbx; x 2 .0; 1/;

where 1=3 and b are best constants.
Many authors have generalized or sharpened Jordan’s inequality, either by

replacing the bounds by finite series or hyperbolic functions or by obtaining
analogous results for other functions such as hyperbolic or Bessel functions.
The comprehensive survey paper by Qi et al. [150] gives a clear picture of these
developments as of 2009. For example, in 2008 Niu et al. [143] obtained the sharp
inequality

2

�
C

nX

kD1
˛k.�

2 � 4x2/k 6 sin x

x
6 2

�
C

nX

kD1
ˇk.�

2 � 4x2/k; 0 < x � �=2;

for each natural number n, with best possible constants ˛k and ˇk . That same
year Wu and Srivastava [198] obtained upper and lower estimates on .0; �=2 for
.sin x/=x that are finite series in powers of .x � �/; where � 2 Œx; �=2; while Zhu
[211] obtained bounds as finite series in powers of .�2 � 4x2/. Zhu [210] obtained
bounds for .sinx/=x as finite series in powers of .r2 � x2/ for 0 < x 6 r 6 �=2,
yielding a new infinite series
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sin x

x
D
1X

nD0
an.r

2 � x2/n; for 0 < jxj 6 r 6 �=2:

Yang [199] showed that a function f admits an infinite series expansion of the above
type if and only if f is analytic and even.

In 2011 Huo et al. [97] obtained the following generalization of Jordan’s
inequalities:

nX

kD1

k.�

t � xt /k 6 sin x

x
� sin �

�
6

nX

kD1
!k.�

t � xt /k

for t > 2, n 2 N, and 0 < x � � < � , where the coefficients 
k and !k are defined
recursively and are best possible.

More recently, in 2012, Chen and Debnath [74] have proved that, for
0 < x 6 �=2;

f1.x/ 6 sin x

x
6 f2.x/;

where

f1.x/ D 2

�
C 2����1

�
.�� � .2x/� /C .��2 C 4C 4�/��2��1

4�2
.�� � .2x/� /2

and

f2.x/ D 2

�
C 2����1

�
.�� � .2x/�/C ..� � 2/� � 2/��2��1

�
.�� � .2x/�/2;

for any � > 2, with equality when x D �=2.
In a recent work Sándor [164] (see also [165, p. 9]) proved that h.x/ �

Œlog.x= sin x/= log..sinh x/=x/ is strictly increasing on .0; �=2/: He used this
result to prove that the best positive constants p and q for which

�
sinhx

x

�p
<

x

sin x
<

�
sinhx

x

�q

is true are p D 1 and q D Œlog.�=2/= log..sinh.�=2//=.�=2//� 1:18:

In an unpublished manuscript, Barbu and Pişcoran [28] have proved, in
particular, that

.1 � x2=3/�1=4 <
sinhx

x
< 1C x2

5
; x 2 .0; 1/:
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Kuo [116] has developed a method of obtaining an increasing sequence of lower
bounds and a decreasing sequence of upper bounds for .sin x/=x, and he has
conjectured that the two sequences converge uniformly to .sin x/=x.

Since there is a close connection between the function .sin x/=x and the Bessel
function J1=2.x/ (cf. [219]), it is natural for authors to seek analogs of the Jordan
inequality for Bessel and closely related functions. Baricz and Wu [35, 40], Zhu
[219, 220], and Niu et al. [144] have produced inequalities of this type. Zhu [221]
has also obtained Jordan-type inequalities for ..sin x/=x/p for any p > 0. Wu and
Debnath [195] have generalized Jordan’s inequality to functions f .x/=x on Œ0; �
such that f is .nC1/-times differentiable, f .0/ D 0; and either n is a positive even
integer with f .nC1/ increasing on Œ0; � or n is a positive odd integer with f .nC1/
decreasing on Œ0; �:

3 Other Inequalities Involving Circular
and Hyperbolic Functions

3.1 Redheffer

In 1968 Redheffer [157] proposed the problem of showing that

sin�x

�x
> 1 � x2
1C x2

; for all real x (1)

or, equivalently, that

sinx

x
> �2 � x2

�2 C x2
; for all real x: (2)

A solution of this problem was provided by Williams [192], using infinite products,
who also proved the stronger inequality

sin�x

�x
> 1 � x2
1C x2

C .1 � x/2
x.1C x2/

; for x > 1:

Later, using Erdös-Turán series and harmonic analysis, Li and Li [120] proved the
double inequality

.1 � x2/.4 � x2/.9 � x2/

x6 � 2x4 C 13x2 C 36
6 sin�x

�x
6 1 � x2p

1C 3x4
; for 0 < x < 1:

They also found a method for obtaining new bounds from old for .sinx/=x, but Kuo
[116] gave an example to show that the new bounds are not necessarily stronger.



302 G.D. Anderson et al.

In 2003 Chen et al. [76], using mathematical induction and infinite products, found
analogs of the Redheffer inequality for cos x:

cosx > �2 � 4x2

�2 C 4x2
; for jxj 6 �

2
;

and for hyperbolic functions

sinhx

x
6 �2 C x2

�2 � x2
; for 0 < jxj 6 �I coshx 6 �2 C 4x2

�2 � 4x2
; for jxj 6 �

2
:

In 2008, inspired by the inequalities above, Zhu and Sun [224] proved that

�
�2 � 4x2
�2 C 4x2

�˛
6 cos x 6

�
�2 � 4x2
�2 C 4x2

�ˇ
; for 0 6 x 6 �

2
;

with best possible constants ˛ D 1 and ˇ D �2=16, and

�
�2 � x2

�2 C x2

��
6 sin x

x
6
�
�2 � x2
�2 C x2

�ı
; for 0 < x < �;

with best possible constants � D 1 and ı D �2=12. They obtained similar results
for the hyperbolic sine and cosine functions. In 2009 Zhu [216] showed that

�
�2 � x2p
�4 C 3x4

�˛
6 sin x

x
6
�

�2 � x2p
�4 C 3x4

�ˇ
; 0 < x 6 �;

holds if and only if ˛ > �2=6 and ˇ 6 1, with analogous results for cos x and
.tanx/=x. In 2009 Baricz and Wu [41] and in 2011 Zhu [222] proved Redheffer-
type inequalities for Bessel functions.

3.2 Cusa-Huygens

The inequality

sin x

x
<
2C cosx

3
; 0 < x < �=2

was discovered by N. de Cusa in the fifteenth century (cf. [71]) and proved
rigorously by Huygens [98] in the seventeenth century. In 2009 Zhu [218] obtained
the following inequalities of Cusa-Huygens type:

�
sinx

x

�˛
<
2

3
C 1

3
.cosx/˛; 0 < x <

�

2
; ˛ > 1;
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and
�

sinhx

x

�˛
<
2

3
C 1

3
.coshx/˛; x > 0; ˛ > 1:

That same year Zhu [214] discovered a more general set of inequalities of Cusa type,
from which many other types of inequalities for circular functions can be derived.
He proved the following: Let 0 < x < �=2. If p > 1, then

.1� ˛/C ˛.cos x/p <

�
sin x

x

�p
< .1 � ˇ/C ˇ.cos x/p (3)

if and only if ˇ 6 1=3 and ˛ > 1 � .2=�/p: If 0 6 p 6 4=5, then (3) holds if
and only if ˛ > 1=3 and ˇ 6 1 � .2=�/p: If p < 0, then the second inequality in
(3) holds if and only if ˇ > 1=3: In a later paper [219] Zhu obtained estimates for
.sin x/=x and .sinhx/=x that led to new infinite series for these functions. For some
similar results see also [194].

In 2011 Chen and Cheung [71] obtained the sharp Cusa-Huygens-type inequality

�
2C cosx

3

�˛
<

sin x

x
<

�
2C cosx

3

�ˇ
;

for 0 < x < �=2, with best possible constants ˛ D .log.�=2//= log.3=2/ � 1:11

and ˇ D 1:

In 2011 Neuman and Sándor [142] discovered a pair of optimal inequalities for
hyperbolic and trigonometric functions, proving that, for 0 < x < �=2, the best
positive constants p and q in the inequality

1

.coshx/p
<

sin x

x
<

1

.coshx/q

are p D .log.�=2//= log cosh.�=2/ � 0:49 and q D 1=3 and that for x ¤ 0 the
best positive constants p and q in the inequality

�
sinhx

x

�p
<

2

cosx C 1
<

�
sinhx

x

�q

are p D 3=2 and q D .log 2/= logŒ.sinh.�=2//=.�=2/ � 1:82:

3.3 Becker-Stark

In 1978 Becker and Stark [49] obtained the double inequality

8

�2 � 4x2 <
tanx

x
<

�2

�2 � 4x2 ; 0 < x <
�

2
;

where the numerator constants 8 and �2 are best possible.
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In 2008 Zhu and Sun [224] showed that

�
�2 C 4x2

�2 � 4x2
�˛

6 tanx

x
6
�
�2 C 4x2

�2 � 4x2

�ˇ
; 0 < x <

�

2
;

holds if and only if ˛ 6 �2=24 and ˇ > 1.
In 2010 Zhu and Hua [223] sharpened the Becker-Stark inequality by proving

that

�2 C ˛x2

�2 � 4x2 <
tan x

x
<
�2 C ˇx2

�2 � 4x2
; 0 < x <

�

2
;

where ˛ D 4.8��2/=�2 � �0:76 and ˇ D �2=3�4 � �0:71 are the best possible
constants. They also developed a systematic method for obtaining a sequence of
sharp inequalities of this sort.

In 2011 Ge [88] obtained

8

�2 � 4x2
C
�

1 � 8

�2

�

<
tanx

x
<
�4

12

1

�2 � 4x2
C
�

1 � �2

12

�

;

for 0 < x < �=2. That same year Chen and Cheung [71] proved the sharp Becker-
Stark-type inequality

�
�2

�2 � 4x2
�˛

<
tanx

x
<

�
�2

�2 � 4x2
�ˇ
;

with best possible constants ˛ D �2=12 � 0:82 and ˇ D 1:

3.4 Wilker

In 1989 Wilker [190] posed the problem of proving that

�
sin x

x

�2
C tanx

x
> 2; for 0 < x <

�

2
(4)

and of finding

c � inf
0<x<�=2

�
sinx
x

�2 C tanx
x

� 2

x3 tanx
: (5)

Anglesio et al. [191] showed that the function in (5) is decreasing on .0; �=2/, that
the value of c in (5) is 16=�4, and that, moreover, the supremum of the expression
in (5) on .0; �=2/ is 8=45. Hence
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2C 16

�4
x3 tanx 6

�
sin x

x

�2
C tanx

x
6 2C 8

45
x3 tanx; (6)

for 0 < x < �=2, where 16=�4 � 0:164 and 8=45 � 0:178 are best possible
constants. (Note: [21] erroneously quoted [191] as saying that the function in (5) is
increasing.) In 2007 Wu and Srivastava [197] proved the Wilker-type inequality

� x

sinx

�2 C x

tanx
> 2; for 0 < x <

�

2
: (7)

However, Baricz and Sándor [39] discovered that (7) is implied by (4).
In 2009 Zhu [218] generalized (4) and obtained analogs for hyperbolic functions,

showing that, for 0 < x < �=2, ˛ > 1;

�
sin x

x

�2˛
C
�

tan x

x

�˛
>
� x

sinx

�2˛ C
� x

tan x

�˛
> 2

and that, for x > 0, ˛ > 1,

�
sinhx

x

�2˛
C
�

tanhx

x

�˛
>
� x

sinhx

�2˛ C
� x

tanhx

�˛
> 2:

These two results of Zhu are special cases of a recent lemma due to Neuman [138,
Lemma 2].

In 2012 Sándor [162] has proved that, for 0 < x � �=2, ˛ > 0;

� x

sin x

�2˛ C
� x

sinhx

�˛
>

�
sinh x

x

�2˛
C
�

sin x

x

�˛
> 2:

Using power series, Chen and Cheung [72] obtained the following sharper versions
of (6):

16

315
x5 tanx <

�
sinx

x

�2
C tan x

x
�


2C 8

45
x4
�

<

�
2

�

�6
x5 tan x; (8)

and

104

4725
x7 tanx <

�
sin x

x

�2
C tan x

x
�


2C 8

45
x4 C 16

315
x6
�

<

�
2

�

�8
x7 tanx: (9)

The constants 16=315 � 0:051 and .2=�/6 � 0:067 in (8) and 104=4725 � 0:022

and .2=�/8 � 0:027 in (9) are best possible. For 0 < x < �=2, Chen and Cheung
also obtained upper estimates complementary to (7):
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� x

sin x

�2 C x

tanx
< 2C 2

45
x3 tanx

and

� x

sinx

�2 C x

tanx
< 2C 2

45
x4 C 8

945
x5 tanx;

where the constants 2=45 and 8=945 are best possible.
In 2012, Sándor [164] has shown that

sin x

x
C q

sinhx

x
> q C 1; x ¤ 0

and

�
sinhx

x

�q
C sin x

x
> 2; 0 < x <

�

2
;

where q D Œlog.�=2/= logŒ.sinh.�=2//=.�=2/ � 1:18:

Extensions of the generalized Wilker inequality for Bessel functions were
obtained by Baricz and Sándor [39] in 2008.

3.5 Huygens

An older inequality due to Huygens [98] is similar in form to (4):

2

�
sin x

x

�

C tanx

x
> 3; for 0 < jxj < �

2
(10)

and actually implies (4) (see [141]). In 2009, Zhu [217] obtained the following
inequalities of Huygens type:

.1 � p/
sin x

x
C p

tan x

x
> 1 > .1 � q/

sin x

x
C q

tan x

x

for all x 2 .0; �=2/ if and only if p > 1=3 and q 6 0;

.1 � p/
sinhx

x
C p

tanhx

x
> 1 > .1 � q/

sinhx

x
C q

tanhx

x

for all x 2 .0;1/ if and only if p 6 1=3 and q > 1;

.1 � p/
x

sin x
C p

x

tan x
> 1 > .1 � q/

x

sin x
C q

x

tan x
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for all x 2 .0; �=2/ if and only if p 6 1=3 and q > 1 � 2=�; and

.1 � p/
x

sinhx
C p

x

tanhx
> 1 > .1 � q/

x

sinhx
C q

x

tanhx

for all x 2 .0;1/ if and only if p > 1=3 and q 6 0.
In 2012 Sándor [162] has showed that, for 0 < x � �=2, ˛ > 0,

2

�
sinhx

x

�˛
C
�

sinx

x

�˛
> 2

� x

sin x

�˛ C
� x

sinhx

�˛
> 3:

Chen and Cheung [72] also found sharper versions of (10) as follows: For
0 < x < �=2,

3C 3

20
x3 tan x < 2

�
sin x

x

�

C tanx

x
< 3C

�
2

�

�4
x3 tan x (11)

and

3

56
x5 tanx < 2

�
sin x

x

�

C tanx

x
�


3C 3

20
x4
�

<

�
2

�

�6
x5 tan x; (12)

where the constants 3=20 D 0:15 and .2=�/4 � 0:16 in (11) and 3=56 � 0:054 and
.2=�/6 � 0:067 in (12) are best possible.

Recently Hua [96] have proved the following sharp inequalities: For
0 < jxj < �=2,

3C 1

40
x3 sin x <

sin x

x
C 2

tan.x=2/

x=2
< 3C 80 � 24�

�4
x3 sin x;

where the constants 1=40 and .80� 24�/=�4 are best possible, and, for x ¤ 0,

3C 3

20
x3 tanhx < 2

sinhx

x
C tanhx

x
< 3C 3

20
x3 sinh x;

where the constant 3=20 is best possible.

3.6 Shafer

The problem of proving

arctanx >
3x

1C 2
p
1C x2

; x > 0;
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was proposed by Shafer [166] in 1966. Solutions were obtained by Grinstein, Marsh,
and Konhauser [169] in 1967. In 2011 Chen, Cheung, and Wang [73] found, for each
a > 0, the largest number b and the smallest number c such that the inequalities

bx

1C a
p
1C x2

6 arctanx 6 cx

1C a
p
1C x2

are valid for all x > 0. Their answer to this question is indicated in the following
table:

a Largest b Smallest c

0 < a 6 �=2 b D �a=2 c D 1C a
�=2 < a 6 2=.� � 2/ b D 4.a2 � 1/=a2 c D 1C a
2=.� � 2/ < a < 2 b D 4.a2 � 1/=a2 c D �a=2

2 6 a <1 b D 1C a c D �a=2

In 1974, in a numerical analytical context [167], Shafer presented the inequality

arctanx > 8x

3Cp
25C .80=3/x2

; x > 0;

which he later proved analytically [168]. In [213] Zhu proved that the constant
80=3 in Shafer’s inequality is best possible and also obtained the complementary
inequality

arctanx <
8x

3Cp
25C .256=�2/x2

; x > 0;

where 256=�2 is the best possible constant.

3.7 Fink

In [132, p. 247], there is a lower bound for arcsin x on Œ0; 1 that is similar to
Shafer’s for arctanx. In 1995 Fink [87] supplied a complementary upper bound.
The resulting double inequality is

3x

2C p
1 � x2

6 arcsin x 6 �x

2C p
1 � x2 ; 0 6 x 6 1; (13)

and both numerator constants are best possible. Further refinements of these
inequalities, along with analogous ones for arcsinhx, were obtained by Zhu [212]
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and by Pan with Zhu [145]. We note that, for 0 < x < 1, this double inequality is
equivalent to

2C cos x

�
<

sin x

x
<
2C cosx

3
; 0 < x <

�

2
;

in which the second relation is the Cusa inequality.

3.8 Carlson

In 1970 Carlson [67, (1.14)] proved the inequality

6
p
1� x

2
p
2C p

1C x
< arccosx <

3
p
4 � p

1 � x

.1C x/1=6
; 0 6 x < 1: (14)

In 2012, seeking to sharpen and generalize (14), Chen and Mortici [75] determined,
for each fixed c > 0, the largest number a and smallest number b such that the
double inequality

a
p
1 � x

c C p
1C x

6 arccosx 6 b
p
1 � x

c C p
1C x

is valid for all x 2 Œ0; 1. Their answer to this question is indicated in the following
table:

c Largest a Smallest b

0 < x < .2� � 4/=.4 � �/ .1C a/�=2 2Cp2a
.2� � 4/=.4� �/ � x � .4� �/=.� � 2p2/ 8.a2 � 2/=a2 2Cp2a
.4� �/=.� � 2p2/ < x < 2p2 4.a2 � 1/=a2 .1C a/�=2
2
p
2 � x <1 2Cp2a .1C a/�=2

These authors also proved that, for all x 2 Œ0; 1, the inequalities

3
p
4 � p

1 � x

aC .1C x/1=6
6 arccosx 6

3
p
4 � p

1 � x
b C .1C x/1=6

hold on Œ0; 1, with best constants a D .2
3
p
4 � �/=� � 0:01 and b D 0:

Moreover, in view of the right side of (14), in 2011 Chen, Cheung, and Wang
[73] considered functions of the form
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f .x/ � r.1 � x/p

.1C x/q

on Œ0; 1 and determined the values of p; q; r such that f .x/ is the best third-order
approximation of arccosx in a neighborhood of the origin. The answer is that, for
p D .� C 2/=�2, q D .� � 2/=�2, r D �=2, one has

lim
x!0

arccosx � f .x/
x3

D �2 � 8
6�2

:

With the values of p; q; r stated above, the authors were led to a new lower bound
for arccos:

arccosx > .�=2/.1� x/.�C2/=�2
.1C x/.��2/=�2

; 0 < x 6 1:

3.9 Lazarević

In [117] Lazarević proved that, for x ¤ 0;

�
sinh x

x

�q
> coshx

if and only if q > 3: Zhu improved upon this inequality in [215] by showing that if
p > 1 or p 6 8=15, then

�
sinhx

x

�q
> p C .1 � p/ coshx

for all x > 0 if and only if q > 3.1 � p/: For some similar results see also [194].
In 2008 Baricz [34] extended the Lazarević inequality to modified Bessel

functions and also deduced some Turán- and Lazarević-type inequalities for the
confluent hypergeometric functions.

3.10 Neuman

Neuman [137] has recently established several inequalities involving new combina-
tions of circular and hyperbolic functions. In particular, he has proved that if x ¤ 0;

then
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.coshx/2=3 <
sinh x

arcsin.tanhx/
<
1C 2 coshx

3
;

Œ.cosh 2x/1=2 cosh2 x1=3 <
sinhx

arcsinh.tanhx/
<
.cosh 2x/1=2 C 2 coshx

3
;

and

Œ.cosh 2x/ coshx1=3 <
sinhx

arctan.tanhx/
<
2.cosh 2x/1=2 C coshx

3
:

4 Euler’s Gamma Function

For Re z > 0 the gamma function is defined by

� .z/ �
Z 1

0

t z�1e�t dt;

and the definition is extended by analytic continuation to the entire complex plane
minus the set of nonpositive integers. This function, discovered by Leonhard Euler
in 1729, is a natural generalization of the factorial, because of the functional identity

� .z C 1/ D z� .z/:

The gamma function is one of the best-known and most important special functions
in mathematics and has been studied intensively.

We begin our treatment of this subject by considering an important special
constant discovered by Euler and related to the gamma function.

4.1 The Euler-Mascheroni Constant and Harmonic Numbers

The Euler-Mascheroni constant � D 0:5772156649 : : : is defined as

� � lim
n!1 �n; (15)

where �n � Hn � logn, n 2 N and where Hn are the harmonic numbers

Hn �
nX

kD1

1

k
D
Z 1

0

1 � xn
1 � x dx: (16)
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The number � is one of the most important constants in mathematics and is useful in
analysis, probability theory, number theory, and other branches of pure and applied
mathematics. The numerical value of � is known to 29; 844; 489; 545 decimal
places, thanks to computation by Yee and Chan in 2009 [201] (see [77, p. 273]).

The sequence �n converges very slowly to �; namely with order 1=n: By replac-
ing logn in this sequence by log.n C 1=2/, DeTemple [84] obtained quadratic
convergence (see also [69]). In [130] Mortici made a careful study of how
convergence is affected by changes in the logarithm term. He introduced new
sequences

Mn � Hn � log
P.n/

Q.n/
;

where P andQ are polynomials with leading coefficient 1 and degP � degQ D 1:

By judicious choice of the degrees and coefficients of P and Q he was able to
produce sequences Mn tending to � with convergence of order 1=n4 and 1=n6.
He also gave a recipe for obtaining sequences converging to � with order 1=n2kC2;
where k is any positive integer. This study is based on the author’s lemma, proved
in [129], that connects the rate of convergence of a convergent sequence fxng to that
of the sequence fxn � xnC1g.

In 1997 Negoi [134] showed that if Tn � Hn � log.n C 1=2C 1=.24n//, then
Tn C Œ4n3�1 is strictly decreasing to � and Tn C Œ48.nC 1/�3 is strictly increasing
to � , so that Œ48.n C 1/�3 < � � Tn < Œ48n3�1: In 2011 Chen [70] established
sharper bounds for � � Tn by using a lemma of Mortici [129].

Using another approach, in 2011 Chlebus [77] developed a recursive scheme
for modifying the sequence Hn � logn to accelerate the convergence to � to any
desired order. The first step in Chlebus’ scheme is equivalent to the DeTemple [84]
approximation, while the next step yields a sequence that closely resembles the one
due to Negoi [134].

In [8] Alzer studied the harmonic numbers (16), obtaining several new inequali-
ties for them. In particular, for n > 2, he proved that

˛
log.lognC �/

n2
6 H1=n

n �H1=.nC1/
nC1 < ˇ

log.lognC �/

n2
;

where ˛ D .6
p
6 � 2

3
p
396/=.3 log.log 2 C �// � 0:014 and ˇ D 1 are the best

possible constants and � is the Euler-Mascheroni constant.

4.2 Estimates for the Gamma Function

In [14, Lemma 2.39] Anderson, Vamanamurthy, and Vuorinen proved that

lim
x!1

log�
�
x
2

C 1
�

x logx
D 1

2
(17)
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and that the function .log� .1 C x=2//=x is strictly increasing from Œ2;1/ onto
Œ0;1/: In [13] Anderson and Qiu showed that .log� .x C 1//=.x logx/ is strictly
increasing from .1;1/ onto .1 � �; 1/; where � is the Euler-Mascheroni constant
defined by (15), thereby obtaining the strict inequalities

x.1��/x�1 < � .x/ < xx�1; x > 1: (18)

They also conjectured that the function .log� .x C 1//=.x logx/ is concave on
.1;1/, and this conjecture was proved by Elbert and Laforgia in [85, Sect. 3].
One should note that in 1989 Sándor [159] proved that the function .� .x C 1//1=x

is strictly concave for x � 7.
Later Alzer [4] was able to extend (18) by proving that, for x 2 .0; 1/,

x˛.x�1/�� < � .x/ < xˇ.x�1/�� ; (19)

with best possible constants ˛ D 1 � � D 0:42278 : : : and ˇ D .�2=6 � �/=2 D
0:53385 : : :. For x 2 .1;1/ Alzer was able to sharpen (18) by showing that (19)
holds with best possible constants ˛ D .�2=6 � �/=2 � 0:534 and ˇ D 1. His
principal new tool was the convolution theorem for Laplace transforms.

Another type of approximation for � .x/ was derived by Ivády [102] in 2009:

x2 C 1

x C 1
< � .x C 1/ <

x2 C 2

x C 2
; 0 < x < 1: (20)

In 2011 Zhao, Guo, and Qi [207] simplified and sharpened (20) by proving that the
function

Q.x/ � log� .x C 1/

log.x2 C 1/� log.x C 1/

is strictly increasing from .0; 1/ onto .�; 2.1��//, where � is the Euler-Mascheroni
constant. As a consequence, they proved that

�
x2 C 1

x C 1

�˛
< � .x C 1/ <

�
x2 C 1

x C 1

�ˇ
; 0 < x < 1;

with best possible constants ˛ D 2.1� �/ and ˇ D �:

Very recently Mortici [133] has determined by numerical experiments that the
upper estimate in (18) is a better approximation for � .x/ than the lower one when
x is very large. Hence, he has sought estimates of the form � .x/ � xa.x/, where
a.x/ is close to x � 1 as x approaches infinity. For example, he proves that

x.x�1/a.x/ < � .x/ < x.x�1/b.x/; x > 20;
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where a.x/ D 1 � 1= logx C 1=.2x/ � .1 � .log 2�/=2/=.x logx/ and where
b.x/ D 1 � 1= logx C 1=.2x/. The left inequality is valid for x > 2. Mortici has
also obtained a pair of sharper inequalities of this type, valid for x > 2, and has
showed how lower and upper estimates of any desired accuracy may be obtained.
His proofs are based on an approximation for log� .x/ in terms of series involving
Bernoulli numbers [25, p. 29] and on truncations of an asymptotic series for the
function .log� .x//=..x � 1/ logx/: These results provide improvements of (18).

4.3 Factorials and Stirling’s Formula

The well-known Stirling’s formula for nŠ,

˛n �
�n

e

�n p
2�n ; (21)

discovered by the precocious homeschooled and largely self-taught eighteenth-
century Scottish mathematician James Stirling, approximates nŠ asymptotically in
the sense that

lim
n!1

nŠ

˛n
D 1:

Because of the importance of this formula in probability and statistics, number
theory, and scientific computations, several authors have sought to replace (21) by a
simple sequence that approximates nŠ more closely (see the discussions in [47,48]).
For example, Burnside [63] proved in 1917 that

nŠ � ˇn � p
2�

�
nC 1=2

e

�nC1=2
; (22)

that is, lim
n!1.nŠ=ˇn/ D 1: In 2008, Batir [47] determined that the best constants a

and b such that

nnC1e�n
p
2�p

n � a 6 nŠ <
nnC1e�n

p
2�p

n � b
(23)

are a D 1 � 2�e�2 � 0:1497 and b D 1=6 � 0:1667. Batir offers a numerical
table illustrating that his upper bound formula nnC1e�n

p
2�=

p
n � 1=6 gives much

better approximations to nŠ than does either (21) or (22).
In a later paper [48] Batir observed that many of the improvements of Stirling’s

formula take the form

nŠ � e�a
�
nC a

e

�np
2�.nC b/ (24)
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for some real numbers a and b. Batir sought the pair of constants a and b that would
make (24) optimal. He proved that the best pairs .a; b/ are .a1; b1/ and .a2; b2/,
where

a1 D 1

3
C 	

6
� 1

6

p
6 � 	2 C 4=	 � 0:54032; b1 D a21 C 1=6 � 0:45861

and

a2 D 1

3
C 	

6
C 1

6

p
6 � 	2 C 4=	 � 0:95011; b2 D a22 C 1=6 � 1:06937;

where 	 D p
2C 22=3 C 24=3 � 2:47128 and a1 and a2 are the real roots of the

quartic equation 3x4 � 4x3 C x2 C 1=12 D 0.
Ramanujan [156] sought to improve Stirling’s formula (21) by replacing

p
2n in

the formula by the sixth root of a cubic polynomial in n:

� .nC 1/ � p
�
�n

e

�n
6

r

8n3 C 4n2 C nC 1

30
: (25)

In this connection there appears in the record also his double inequality, for x > 1,

6

r

8x3 C 4x2 C x C 1

100
<
� .x C 1/p
�
�
x
e

�x <
6

r

8x3 C 4x2 C x C 1

30
: (26)

Motivated by this inequality of Ramanujan, the authors of [18] defined the function
h.x/ � u.x/6 � .8x3 C 4x2 C x/, where u.x/ D .e=x/x� .x C 1/=

p
�;

and conjectured that h.x/ is increasing from .1;1/ into .1=100; 1=30/. In 2001
Karatsuba [106] settled this conjecture by showing that h.x/ is increasing from
Œ1;1/ onto Œh.1/; 1=30/; where h.1/ D e6=�3 � 13 � 0:011.

In an unpublished document, E. A. Karatsuba suggested modifying Ramanujan’s
approximation formula (25) by replacing the radical with the 2kth root of a polyno-
mial of degree k and determining the best such asymptotic approximation. Such a
program was partially realized by Mortici [132] in 2011, who proposed formula (27)
below for k D 4, but the more general problem suggested by Karatsuba remains an
open problem. Mortici’s proposed Ramanujan-type asymptotic approximation is as
follows:

� .nC 1/ � p
�
�n

e

�n
8

r

16n4 C 32

3
n3 C 32

9
n2 C 176

405
n � 128

1215
: (27)

In connection with (27), he defined the function

g.x/ � u.x/8 �
�

16x4 C 32

3
x3 C 32

9
x2 C 176

405
x

�

;
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where u.x/ D .e=x/x� .x C 1/=
p
�; and proved that g.x/ is strictly decreasing

from Œ3;1/ onto .g.1/; g.3/, where g.1/ D �128=1215� �0:105 and g.3/ D
256e24=.43046721�4/ � 218336=135 � �0:088: Mortici’s method for proving
monotonicity was simpler than Karatsuba’s, because he employed an excellent result
of Alzer [3] concerning complete monotonicity (see Sect. 4.6 below for definitions).
Mortici claimed that his method would also simplify Karatsuba’s proof in [106].
Finally, he proved that, for x > 3,

R.x; ˛/ <
� .x C 1/p
�
�
x
e

�x 6 R.x; ˇ/;

where R.x; t/ � 8

q
16x4 C 32

3
x3 C 32

9
x2 C 176

405
x � t , and ˛ D 128=1215,

ˇ D g.3/ are the best possible constants.
In 2012 Mahmoud, Alghamdi, and Agarwal [124] deduced a new family of upper

bounds for � .nC 1/ of the form

� .nC 1/ <
p
2�n

�n

e

�n
eM

Œm
n ; n 2 N;

M Œm
n � 1

2mC 3

"
1

4n
C

mX

kD1

2m � 2k C 2

2k C 1
2�2k�.2k; nC 1=2/

#

; n 2 N;

where � is the Hurwitz zeta function

�.s; q/ �
1X

kD0

1

.k C q/s
:

These upper bounds improve Mortici’s inequality (27).

4.4 Volume of the Unit Ball

The volume ˝n of the unit ball in R
n is given in terms of the gamma function by

the formula

˝n D �n=2

� .n=2C 1/
; n 2 N:

Whereas the volume of the unit cube is 1 in all dimensions, the numbers ˝n

strictly increase to the maximum ˝5 D 8�2=15 and then strictly decrease to 0 as
n ! 1 (cf. [60, p.264]). Anderson, Vamanamurthy, and Vuorinen [14] proved
that ˝1=n

n is strictly decreasing and that the series
P1

nD2 ˝
1= log n
n is convergent.

In [13] Anderson and Qiu proved that ˝1=.n log n/
n is strictly decreasing with limit

e�1=2 as n ! 1:
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In 2008 Alzer published a collection of new inequalities for combinations of
different dimensions and powers of˝n [7, Sect. 3]. We quote several of them below:

a
.2�e/n=2

n.n�1/=2
6 .nC 1/˝n � n˝nC1 < b

.2�e/n=2

n.n�1/=2
; n > 1; (28)

where the best possible constants are a D .4 � 9�=8/.2=.�e//1=2=e D 0:0829 : : :

and b D ��1=2 D 0:5641 : : :;

a
.2�e/n

nnC2
6 ˝2

n �˝n�1˝nC1 < b
.2�e/n

nnC2
; n > 2; (29)

with best possible constant factors a D .4=e2/.1 � 8=.3�// D 0:0818 : : : and
b D 1=.2�/ D 0:1591 : : :;

ap
n

6 ˝n

˝n�1 C˝nC1
<

bp
n
; n > 2; (30)

with best possible constants a D 3
p
2�=.6 C 4�/ D 0:7178 : : : and b D p

2� D
2:5066 : : :; and

ap
n

6 .nC 1/
˝nC1
˝n

� n
˝n

˝n�1
<

bp
n
; n > 2; (31)

with best possible constants a D .4 � �/
p
2 D 1:2139 : : : and b D p

2�=2 D
1:2533 : : :.

Alzer’s work in [7] includes a number of new results about the gamma function
and its derivatives.

In 2010 Mortici [128], improving on some earlier work of Alzer [5, Theorem 1],
obtained, for n > 1 on the left and for n > 4 on the right,

a
2n
p
2�

6 ˝n

˝
n=.nC1/
nC1

<

p
e

2n
p
2�
;

where a D 64 �72011=12 �21=22=.10395 ��5=11/ D 1:5714 : : : : He sharpened the work
of Alzer [5, Theorem 2] and Qiu and Vuorinen [154] in the following result, valid
for n > 1:

r
2nC 1

4�
<
˝n�1
˝n

<

r
2nC 1

4�
C 1

16�n
:

Mortici also proved, in [128, Theorem 4], that, for n > 4;

�

1C 1

n

� 1
2� 1

4n

<
˝2
n

˝n�1˝nC1
<

�

1C 1

n

� 1
2

:
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This result improves a similar one by Alzer [5, Theorem 3, valid for n > 1], where
the exponent on the left is the constant 2�log2 �: Very recently, Yin [202] improved
Mortici’s result as follows: For n � 1,

.nC 1/.nC 1=6/

.nC ˇ/2
<

˝2
n

˝n�1˝nC1
<
.nC 1/.nC ˇ=2/

.nC 1=3/2
;

where ˇ D .391=30/1=3.

4.5 Digamma and Polygamma Functions

The logarithmic derivative of the gamma function,  .x/ � d
dx

log� .x/ D
� 0.x/=� .x/, is known as the digamma function. Its derivatives  .n/; n > 1;

are known as the polygamma functions  n: These functions have the following
representations [1, pp. 258–260] for x > 0 and each natural number n:

 .x/ D �� C
Z 1

0

e�t � e�xt

1 � e�t dt D �� � 1

x
C
1X

nD1

x

n.x C n/

and

 n.x/ D .�1/nC1
Z 1

0

tne�xt

1 � e�t dt D .�1/nC1nŠ
1X

nD0
.x C k/�n�1:

Several researchers have studied the properties of these functions. In 2007, refining
the left inequality in [6, Theorem 4.8], Batir [45] obtained estimates for  n in terms
of  or  k , with k < n. In particular, he proved, for x > 0 and n 2 N:

.n � 1/Š exp .�n .x C 1=2// < j n.x/j < .n � 1/Š exp .�n .x// ;

and, for 1 6 k 6 n � 1, x > 0,

.n � 1/Š

�
 k.x C 1=2/

.�1/k�1.k � 1/Š
�n=k

< j n.x/j < .n � 1/Š

�
 k.x/

.�1/k�1.k � 1/Š
�n=k

:

He also proved, for example, the difference formula

˛ <
�
.�1/n�1 n.x C 1/

��1=n � �
.�1/n�1 n.x/

��1=n
< ˇ;

where ˛ D .nŠ�.nC1//�1=n and ˇ D ..n�1/Š/�1=n are best possible, and the sharp
estimates
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�� <  .x/C log.e1=x � 1/ < 0;

where � is the Euler-Mascheroni constant.
In 2010 Mortici [131] proved the following estimates, for x > 0 and n > 1,

refining the work of Guo, Chen, and Qi [89]:

� 1

720

.nC 3/Š

xnC4
< j n.x/j �


.n � 1/Š

xn
C 1

2

nŠ

xnC1
C 1

12

.nC 1/Š

xnC2

�

< 0:

4.6 Completely Monotonic Functions

A function f is said to be completely monotonic on an interval I if .�1/nf .n/.x/ >
0 for all x 2 I and all nonnegative integers n. If this inequality is strict, then
f is called strictly completely monotonic. Such functions occur in probability
theory, numerical analysis, and other areas. Some of the most important completely
monotonic functions are the gamma function and the digamma and polygamma
functions. The Hausdorff-Bernstein-Widder theorem [189, Theorem 12b, p. 161]
states that f is completely monotonic on Œ0;1/ if and only if there is a nonnegative
measure 
 on Œ0;1/ such that

f .x/ D
Z 1

0

e�xtd
.t/

for all x > 0. There is a well-written introduction to completely monotonic
functions in [125].

In 2008 Batir [46] proved that the following function Fa.x/ related to the gamma
function is completely monotonic on .0;1/ if and only if a > 1=4 and that �Fa.x/
is completely monotonic if and only if a 6 0:

Fa.x/ � log� .x/ � x logx C x � 1

2
log.2�/C 1

2
 .x/C 1

6.x � a/ :

As a corollary he was able to prove, for x > 0, the inequality

exp

�

�1
2
 .x/ � 1

6.x � ˛/
�

<
� .x/

xxe�x
p
2�

< exp

�

�1
2
 .x/ � 1

6.x � ˇ/
�

;

with best constants ˛ D 1=4 and ˇ D 0; improving his earlier work with Alzer [9].
In 2010 Mortici [131] showed that for every n > 1, the functions

f; g W .0;1/ ! R given by

f .x/ � j n.x/j � .n � 1/Š
xn

� 1

2

nŠ

xnC1
� 1

12

.nC 1/Š

xnC2
C 1

720

.nC 3/Š

xnC4
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and

g.x/ � .n � 1/Š

xn
C 1

2

nŠ

xnC1
C 1

12

.nC 1/Š

xnC2
� j n.x/j

are completely monotonic on .0;1/. As a corollary, since f .x/ and g.x/ are
positive, he obtained estimates for j n.x/j as finite series in negative powers of x.

Anderson and Qiu [13], as well as some other authors (see [2]), have studied the
monotonicity properties of the function f .x/ � .log� .x C 1//=x. In 2011 Adell
and Alzer [2] proved that f 0 is completely monotonic on .�1;1/:

In the course of pursuing research inspired by [13, 14] (see [53]), in 2012 Alzer
[7] discussed properties of the function

f .x/ �
�

1 � logx

log.1C x/

�

x logx;

which Qi and Guo [149] later conjectured to be completely monotonic on .0;1/.
In [53] Berg and Pedersen proved this conjecture.

In 2001 Berg and Pedersen [50] proved that the derivative of the function

f .x/ � log� .x C 1/

x logx
; x > 0

is completely monotonic (see also [51]). This result extends the work of [13, 85].
Very recently, Berg and Pedersen [52] showed that the function

Fa.x/ � log� .x C 1/

x log.ax/

is a Pick function when a � 1, that is, it extends to a holomorphic function mapping
the upper half plane into itself. The authors also considered the function

f .x/ �
�

�x=2

� .1C x=2/

�1=.x log x/

and proved that logf .x C 1/ is a Stieltjes function and hence that f .x C 1/ is
completely monotonic on .0;1/.

5 The Hypergeometric Function and Elliptic Integrals

The classical hypergeometric function is defined by

F.a; bI cI x/ � 2F1.a; bI cI x/ D
1X

nD0

.a; n/.b; n/

.c; n/

xn

nŠ
; jxj < 1;
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where .a; n/ � a.a C 1/.a C 2/ � � � .a C n � 1/ for n 2 N and .a; 0/ D 1 for
a ¤ 0. This function is so general that for proper choice of the parameters a, b,
c, one obtains logarithms, trigonometric functions, inverse trigonometric functions,
elliptic integrals, or polynomials of Chebyshev, Legendre, Gegenbauer, Jacobi, and
so on (see [1, Chap. 15]).

5.1 Hypergeometric Functions

The Bernoulli inequality [126, p. 34] may be written as

log.1C ct/ 6 c log.1C t/; (32)

where c > 1, t > 0. In [111] some Bernoulli-type inequalities have been obtained.
It is well known that in the zero-balanced case c D a C b the hypergeometric

function F.a; bI cI x/ has a logarithmic singularity at x D 1 (cf. [18, Theo-
rem 1.19(6)]). Moreover, as a special case [1, 15.1.3],

xF.1; 1; 2I x/ D log
1

1 � x
: (33)

Because of this connection, Vuorinen and his collaborators [110] have generalized
versions of (32) to a wide class of hypergeometric functions. In the course of their
investigation they have studied monotonicity and convexity/concavity properties of
such functions. For example, for positive a; b let g.x/ � xF.a; bI a C bI x/, x 2
.0; 1/: These authors have proved that G.x/ � logg.ex=.1 C ex// is concave on
.�1;1/ if and only if 1=aC 1=b > 1: And they have shown that, for fixed a; b 2
.0; 1 and for x 2 .0; 1/, p > 0, the function

�
xp

1C xp
F

�

a; bI aC bI xp

1C xp

��1=p

is increasing in p. In particular,

p
r

1C p
r
F

�

a; bI a C bI
p
r

1C p
r

�

�
�

r

1C r
F

�

a; bI aC bI r

1C r

��1=2
:

Motivated by the asymptotic behavior of F.x/ D F.a; bI cI x/ as x ! 1�, Simić
and Vuorinen have carried the above work further in [170], finding best possible
bounds, when a; b; c > 0 and 0 < x; y < 1, for the quotient and difference

F.a; bI cI x/C F.a; bI cIy/
F.a; bI cI x C y � xy/

; F.x/C F.y/� F.x C y � xy/:
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In 2009 Karp and Sitnik [108] obtained some inequalities and monotonicity of ratios
for the generalized hypergeometric function. The proofs hinge on a generalized
Stieltjes representation of the generalized hypergeometric function.

5.2 Complete Elliptic Integrals

For 0 < r < 1, the complete elliptic integrals of the first and second kind are
defined as

K.r/ �
Z �=2

0

dtp
1 � r2 sin2 t

D
Z 1

0

dt
p
.1 � t2/.1 � r2t2/ (34)

and

E.r/ �
Z �=2

0

p
1 � r2 sin2 t dt D

Z 1

0

r
1 � r2t2
1 � t2 dt; (35)

respectively. Letting r 0 � p
1 � r2, we often denote

K0.r/ D K.r 0/; E0.r/ D E.r 0/:

These elliptic integrals have the hypergeometric series representations

K.r/ D �

2
F
�
1
2
; 1
2
I 1I r2� ; E D �

2
F
�
1
2
;� 1

2
I 1I r2� : (36)

5.3 The Landen Identities

The functions K and E satisfy the following identities due to Landen [64, 163.01,
164.02]:

K

�
2
p
r

1C r

�

D .1C r/K.r/; K

�
1 � r

1C r

�

D 1

2
.1C r/K0.r/;

E

�
2
p
r

1C r

�

D 2E.r/ � r
02K.r/

1C r
; E

�
1 � r
1C r

�

D E0.r/C rK0.r/
1C r

:

Using Landen’s transformation formulas, we have the following identities [177,
Lemma 2.8]: For r 2 .0; 1/, let t D .1 � r/=.1C r/. Then



Topics in Special Functions III 323

K.t2/ D .1C r/2

4
K0.r2/; K0.t2/ D .1C r/2K.r2/;

E.t2/ DE0.r2/C .r C r2 C r3/K0.r2/
.1C r/2

;

E0.t2/ D4E.r2/� .3� 2r2 � r4/K.r2/
.1C r/2

:

Generalizing a Landen identity, Simić and Vuorinen [171] have determined the
precise regions in the ab-plane for which a Landen inequality holds for zero-
balanced hypergeometric functions. They proved that for all a; b > 0with ab 6 1=4

the inequality

F

�

a; bI a C bI 4r

.1C r/2

�

6 .1C r/F
�
a; bI aC bI r2�

holds for r 2 .0; 1/, while for a; b > 0 with 1=aC 1=b 6 4; the following reversed
inequality is true for each r 2 .0; 1/ W

F

�

a; bI aC bI 4r

.1C r/2

�

> .1C r/F
�
a; bI aC bI r2� :

In the rest of the ab-plane neither of these inequalities holds for all r 2 .0; 1/: These
authors have also obtained sharp bounds for the quotient

.1C r/F.a; bI aC bI r2/
F.a; bI aC bI 4r=.1C r/2/

in certain regions of the ab-plane.
Some earlier results on Landen inequalities for hypergeometric functions can be

found in [152]. Recently, Baricz obtained Landen-type inequalities for generalized
Bessel functions [29, 37].

Inspired by an idea of Simić and Vuorinen [171], Wang, Chu, and Jiang
[188] obtained some inequalities for zero-balanced hypergeometric functions which
generalize Ramanujan’s cubic transformation formulas.

5.4 Legendre’s Relation and Generalizations

It is well known that the complete elliptic integrals satisfy the Legendre relation [64,
110.10]:

EK0 C E0K � KK0 D �

2
:
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This relation has been generalized in various ways. Elliott [86] proved the identity

F1F2 C F3F4 � F3F2 D � .1C 	C 
/� .1C 
C �/

� .	C 
C � C 3
2
/� . 1

2
C 
/

;

where

F1 D F.1
2
C	;� 1

2
��I 1C	C 
I x/; F2 D F.1

2
� 	; 1

2
C �I 1C 
C �I 1� x/;

F3 D F.1
2
C	; 1

2
��I 1C	C 
I x/; F4 D F.� 1

2
� 	; 1

2
C �I 1C 
C �I 1 � x/:

Elliott proved this formula by a clever change of variables in multiple integrals.
Another proof, based on properties of the hypergeometric differential equation, was
suggested without details in [25, p. 138], and the missing details were provided in
[20]. It is easy to see that Elliott’s formula reduces to the Legendre relation when
	 D 
 D � D 0 and x D r2.

Another generalization of the Legendre relation was given in [19]. With the
notation

u D u.r/ D F.a � 1; bI cI r/; v D v.r/ D F.a; bI cI r/;
u1 D u.1� r/; v1 D v.1 � r/;

the authors considered the function

L.a; b; c; r/ D uv1 C u1v � vv1;

proving, in particular, that

L.a; 1 � a; c; r/ D � 2.c/

� .c C a � 1/� .c � aC 1/
:

This reduces to Elliott’s formula in case 	 D � D 1=2� a and 
 D cC a� 3=2. In
[19] it was conjectured that for a; b 2 .0; 1/, aCb � 1.� 1/,L.a; b; c; r/ is concave
(convex) as a function of r on .0; 1/. In [107] Karatsuba and Vuorinen determined,
in particular, the exact regions of abc-space in which the function L.a; b; c; r/ is
concave, convex, constant, positive, negative, zero, and where it attains its unique
extremum.

In [27] Balasubramanian, Naik, Ponnusamy, and Vuorinen obtained a differentia-
tion formula for an expression involving hypergeometric series that implies Elliott’s
identity. This paper contains a number of other significant results, including a proof
that Elliott’s identity is equivalent to a formula of Ramanujan [54, p. 87, Entry 30]
on the differentiation of quotients of hypergeometric functions.
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5.5 Some Approximations for K.r/ by arth r

Anderson, Vamanamurthy, and Vuorinen [15] approximated K.r/ by the inverse
hyperbolic tangent function arth, obtaining the inequalities

�

2

�
arth r

r

�1=2
< K.r/ <

�

2

arth r

r
; (37)

for 0 < r < 1. Alzer and Qiu [11] refined (37) as

�

2

�
arth r

r

�3=4
< K.r/ <

�

2

arth r

r
; (38)

with the best exponents 3=4 and 1 for .arth r/=r on the left and right, respectively.
Seeking to improve the exponents in (38), they conjectured that the double
inequality

�

2

�
arth r

r

�3=4C˛r
< K.r/ <

�

2

�
arth r

r

�3=4Cˇr
(39)

holds for all 0 < r < 1, with best constants ˛ D 0 and ˇ D 1=4. Very recently Chu
et al. [81] gave a proof for this conjecture.

András and Baricz [24] presented some improved lower and upper bounds for
K.r/ involving the Gaussian hypergeometric series.

5.6 Approximations for E.r/

In [90] Guo and Qi have obtained new approximations for E.r/ as well as for K.r/.
For example, they showed that, for 0 < r < 1,

�

2
� 1

2
log

.1C r/1�r

.1 � r/1Cr < E.r/ <
� � 1

2
C 1 � r2

4r
log

1C r

1 � r :

In recent work [82,178,185] Chu et al. have obtained estimates for E.r/ in terms of
rational functions of the arithmetic, geometric, and root-square mean, implying new
inequalities for the perimeter of an ellipse.

5.7 Generalized Complete Elliptic Integrals

For 0 < a < minfc; 1g and 0 < b < c 6 a C b, define the generalized complete
elliptic integrals of the first and second kind on Œ0; 1 by [95]
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Ka;b;c D Ka;b;c .r/ � B.a; b/

2
F.a; bI cI r2/; (40)

Ea;b;c D Ea;b;c .r/ � B.a; b/

2
F.a � 1; bI cI r2/; (41)

K0a;b;c D Ka;b;c .r
0/ and E0a;b;c D Ea;b;c .r

0/; (42)

for r 2 .0; 1/, r 0 D p
1 � r2. The end values are defined by limits as r tends to 0C

and 1�, respectively. Thus,

Ka;b;c .0/ D Ea;b;c .0/ D B.a; b/

2

and

Ea;b;c .1/ D 1

2

B.a; b/B.c; c C 1 � a � b/
B.c C 1 � a; c � b/ ; Ka;b;c .1/ D 1:

Note that the restrictions on the parameters a, b, and c ensure that the function
Ka;b;c is increasing and unbounded, whereas Ea;b;c is decreasing and bounded, as in
the classical case a D b D 1=2, c D 1.

Heikkala, Lindén, Vamanamurthy, and Vuorinen [94, 95] derived several differ-
entiation formulas and obtained sharp monotonicity and convexity properties for
certain combinations of the generalized elliptic integrals. They also constructed a
conformal mapping sna;b;c from a quadrilateral with internal angles b� , .c � b/� ,
.1 � a/� , and .1 � c C a/� onto the upper half plane. These results generalize the
work of [19]. For some particular parameter triples .a; b; c/, there are very recent
results by many authors [37, 181, 206, 209].

With suitable restrictions on the parameters a; b; c, Neuman [135] has obtained
bounds for Ka;b;c and Ea;b;c and for certain combinations and products of them.
He has also proved that these generalized elliptic integrals are logarithmically
convex as functions of the first parameter.

In 2007 Baricz [33,36,38] established some Turán-type inequalities for Gaussian
hypergeometric functions and generalized complete elliptic integrals. He also
studied the generalized convexity of the zero-balanced hypergeometric functions
and generalized complete elliptic integrals [31] (see also [30,32,37]). Very recently,
Kalmykov and Karp [103, 104] have studied log-convexity and log-concavity for
series involving gamma functions and derived many known and new inequalities
for the modified Bessel and Kummer and generalized hypergeometric functions
and ratios of the Gauss hypergeometric functions. In particular, they improved and
generalized Baricz’s Turán-type inequalities.
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5.8 The Generalized Modular Function and Generalized
Linear Distortion Function

Let a; b; c > 0with aCb � c. A generalized modular equation of order (or degree)
p > 0 is

F.a; bI cI 1 � s2/

F.a; bI cI s2/ D p
F.a; bI cI 1 � r2/
F.a; bI cI r2/ ; 0 < r < 1: (43)

The generalized modulus is the decreasing homeomorphism 
a;b;c W .0; 1/ !
.0;1/, defined by


a;b;c .r/ � B.a; b/

2

F.a; bI cI 1 � r2/

F.a; bI cI r2/ : (44)

The generalized modular equation (43) can be written as


a;b;c .s/ D p
a;b;c .r/:

With p D 1=K ,K > 0, the solution of (43) is then given by

s D '
a;b;c
K .r/ � 
�1a;b;c .
a;b;c .r/=K/:

Here 'a;b;cK is called the .a; b; c/-modular function with degree p D 1=K [19, 94,
95]. Clearly the following identities hold:


a;b;c .r/
a;b;c .r
0/ D

�
B.a; b/

2

�2
;

'
a;b;c
K .r/2 C '

a;b;c
1=K .r

0/2 D 1:

In [94], the authors generalized the functional inequalities for the modular functions
and Grötzsch function 
 proved in [19] to hold also for the generalized modular
functions and generalized modulus in the case b D c� a. For instance, for 0 < a <
c � 1 and K > 1, the inequalities


a;c�a;c .1�p.1 � u/.1 � t// � 
a;c�a;c .u/C 
a;c�a;c .t/
2

� 
a;c�a;c .
p

ut/ (45)

hold for all u; t 2 .0; 1/, with equality if and only if u D t , and

r1=K < 'a;c�a;cK .r/ < e.1�1=K/R.a;c�a/=2r1=K; (46)

rK > 'a;c�a;c1=K .r/ > e.1�K/R.a;c�a/=2rK: (47)
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For the special case of a D 1=2 and c D 1 the readers are referred to [18].
Wang et al. [181] presented several sharp inequalities for the generalized modular
functions with specific choice of parameters c D 1 and b D 1 � a.

A linearization for the generalized modular function is also presented in [94]
as follows: Let p W .0; 1/ ! .�1;1/ and q W .�1;1/ ! .0; 1/ be given by
p.x/ D 2 log.x=x0/ and q.x/ D p�1.x/ D p

ex=.ex C 1/, respectively, and for
a 2 .0; 1/, c 2 .a; 1, K 2 .1;1/, let g; h W .�1;1/ ! .�1;1/ be defined by
g.x/ D p.'a;c�a;cK .q.x/// and h.x/ D p.'a;c�a;c1=K .q.x///. Then

g.x/ �
�
Kx; if x � 0;

x=K; if x < 0;
and h.x/ �

�
x=K; if x � 0;

Kx; if x < 0:

In the same paper the authors also studied how these generalized functions depend
on the parameter c. Corresponding results for the case c D 1 can be found in the
articles [19, 153, 204].

Recently Bhayo and Vuorinen [55] have studied the Hölder continuity and
submultiplicative properties of 'a;b;cK .r/ in the case where c D 1 and b D 1 � a

and have obtained several sharp inequalities for 'a;1�a;1K .r/:

For x;K 2 .0;1/; define

�aK.x/ �
� s

s0
�2
; s D '

a;1�a;1
K .r/; r D

r
x

1C x
;

and the generalized linear distortion function

	.a;K/ �
 
'a;1�a;1K .1=

p
2/

'a;1�a;11=K .1=
p
2/

!2

; 	.a; 1/ D 1:

For a D 1=2, these two functions reduce to the well-known special case denoted by
�K.x/ and 	.K/, respectively, which play a crucial role in quasiconformal theory.
Several inequalities for these functions have been obtained as an application of the
monotonicity and convexity of certain combinations of these functions and some
elementary functions; see [55, 80, 122, 123, 180, 203]. For instance, the following
chain of inequalities is proved in [80]: for a 2 .0; 1=2, K 2 .1;1/ and x; y 2
.0;1/,

max

�
2�aK.x/�

a
K.y/

�aK.x/C �aK.y/
; �aK

�
2xy

x C y

�	

� �aK.
p
xy/

�
q
�aK.x/�

a
K.y/ � min

�
�aK.x/C �aK.y/

2
; �aK

�
x C y

2

�	

;

with equality if and only if x D y.
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6 Inequalities for Power Series

The following theorem [95, Theorem 4.3] is an interesting tool in simplified proofs
for monotonicity of the quotient of two power series:

Theorem 6.1. Let
P1

nD0 anxn and
P1

nD0 bnxn be two real power series converging
on the interval .�R;R/. If the sequence fan=bng is increasing (decreasing) and
bn > 0 for all n, then the function

f .x/ D

1P
nD0

anx
n

1P
nD0

bnxn

is also increasing (decreasing) on .0;R/. In fact, the function

f 0.x/
 1X

nD0
bnx

n

!2

has positive Maclaurin coefficients.

A more general version of this theorem appears in [58] and [147, Lemma 2.1].
This kind of rule also holds for the quotient of two polynomials instead of two power
series (cf. [95, Theorem 4.4]):

Theorem 6.2. Let fn.x/ D Pn
kD0 akxk and gn.x/ D Pn

kD0 bkxk be two real
polynomials, with bk > 0 for all k. If the sequence fak=bkg is increasing
(decreasing), then so is the function fn.x/=gn.x/ for all x > 0. In fact, gnf 0n �fng0n
has positive (negative) coefficients.

In 1997 Ponnusamy and Vuorinen [147] refined Ramanujan’s work on asymp-
totic behavior of the hypergeometric function and also obtained many inequalities
for the hypergeometric function by making use of Theorem 6.1. Many well-known
results of monotonicity and inequalities for complete elliptic integrals have been
extended to the generalized elliptic integrals in [94, 95].

Motivated by an open problem of Anderson et al. [16], in 2006 Baricz [30]
considered ratios of general power series and obtained the following theorem. Note
the similarity of the last inequality in Theorem 6.3 with the left-hand side of the
inequality (45).

Theorem 6.3. Suppose that the power series f .x/ D P1
nD0 anxn with an > 0

for all n � 0 is convergent for all x 2 .0; 1/ and also that the sequence f.n C
1/anC1=an � ngn�0 is strictly decreasing. Let the functionmf W .0; 1/ ! .0;1/ be
defined as mf .r/ D f .1 � r2/=f .r2/. Then
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k

vu
u
t

kY

iD1
mf .ri / � mf

0

@
k

vu
u
t

kY

iD1
ri

1

A ;

for all r1; r2; : : : ; rk 2 .0; 1/, where equality holds if and only if r1 D r2 D � � � D rk .
In particular, for k D 2 the inequalities

q
mf .r1/mf .r2/ � mf .

p
r1r2/;

1

mf .r1/
C 1

mf .r2/
� 2

mf .
p
r1r2/

;

mf .r1/Cmf .r2/ � 2mf

 r

1 �
q
.1 � r21 /.1 � r22 /

!

hold for all r1; r2 2 .0; 1/, and in all these inequalities equality holds if and only
if r1 D r2.

The following Landen-type inequality for power series is also due to Baricz [29].

Theorem 6.4. Suppose that the power series f .x/ D P1
nD0 anxn with an > 0 for

all n � 0 is convergent for all x 2 .0; 1/ and that for a given ı > 1 the sequence
fnŠan=.log ı/ngn�0 is decreasing. If 	f .x/ D f .x2/, then

	f

�
2
p
r

1C r

�

< �	f .r/

holds for all r 2 .0; 1/ and � � ı4
p
2�5.

Anderson, Vamanamurthy, and Vuorinen [22] studied generalized convexity
and gave sufficient conditions for generalized convexity of functions defined by
Maclaurin series. These results yield a class of new inequalities for power series
which improve some earlier results obtained by Baricz. More inequalities for power
series can be found in [37, 80].

In 1928 T. Kaluza gave a criterion for the signs of the power series of a function
that is the reciprocal of another power series.

Theorem 6.5 ([105]). Let f .x/ D P
n�0 anxn be a convergent Maclaurin series

with radius of convergence r > 0. If an > 0 for all n � 0 and the sequence fangn�0
is log-convex, that is, for all n � 0

a2n � an�1anC1; (48)

then the coefficients bn of the reciprocal power series 1=f .x/ D P
n�0 bnxn have

the following properties: b0 D 1=a0 > 0 and bn � 0 for all n � 1.
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In 2011 Baricz, Vesti, and Vuorinen [42] showed that the condition (48) cannot be
replaced by the condition

an �
�
atn�1 C atnC1

2

�1=t
;

for any t > 0. However, it is not known whether the condition (48) is necessary.
In 2009 Koumandos and Pedersen [115, Lemma 2.2] proved the following

interesting result, which deals with the monotonicity properties of the quotient of
two series of functions.

Theorem 6.6. Suppose that ak > 0, bk > 0 and that fuk.x/g is a sequence of
positive C1-functions such that the series

1X

kD0
aku.l/k .x/ and

1X

kD0
bku.l/k .x/; l D 0; 1;

converge absolutely and uniformly over compact subsets of Œ0;1/. Define

f .x/ �

1P
kD0

akuk.x/

1P
kD0

bkuk.x/
:

1: If the logarithmic derivatives u0k.x/=uk.x/ form an increasing sequence of
functions and if ak=bk decreases .resp. increases/, then f .x/ decreases .resp.
increases/ for x � 0.

2: If the logarithmic derivatives u0k.x/=uk.x/ form a decreasing sequence of
functions and if ak=bk decreases .resp. increases/, then f .x/ increases .resp.
decreases/ for x � 0.

For inequalities of power series as complex functions, see [99–101] and the
references therein.

7 Means

A homogeneous bivariate mean is defined as a continuous functionM W RC�R
C !

R satisfying minfx; yg � M.x; y/ � maxfx; yg and M.	x; 	y/ D 	M.x; y/ for
all x; y; 	 > 0. Important examples are the arithmetic mean A.a; b/, the geometric
mean G.a; b/, the logarithmic mean L.a; b/, the identric mean I.a; b/, the root-
square meanQ.a; b/, and the power meanMr.a; b/ of order r defined, respectively,
by
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A.a; b/ D aC b

2
; G.a; b/ D

p
ab;

L.a; b/ D a � b
log a � log b

; I.a; b/ D 1

e

�
aa

bb

�1=.a�b/
;

Q.a; b/ D
r
a2 C b2

2
; Mr.a; b/ D

r
r
ar C br

2
:

7.1 Power Means

The weighted power means are defined by

M	.!I a; b/ � �
!a	 C .1 � !/b	�1=	 .	 ¤ 0/;

M0.!I a; b/ � a!b1�! , with weights !; 1 � ! > 0. The power means are the
equally weighted means M	.a; b/ D M	.1=2I a; b/. As a special case, we have
M0.1=2I a; b/ D G.a; b/.

In [114] Kouba studied the ratio of differences of power means

�.s; t; pI a; b/ � M
p
s .a; b/ �Gp.a; b/

M
p
t .a; b/ �Gp.a; b/

;

finding sharp bounds for �.s; t; pI a; b/ in various regions of stp-space with a; b
positive and a ¤ b. This work extends the results of Alzer and Qiu [10], Trif [175],
Kouba [113], Wu [193], and Wu and Debnath [196]. Kouba also extended the range
of validity of the following inequality, due to Wu and Debnath [196]:

2�p=r � 2�p=s

2�p=t � 2�p=s
<
M

p
r .a; b/�M

p
s .a; b/

M
p
t .a; b/�M

p
s .a; b/

<
r � s
t � s

to the set of real numbers r; t; s; p satisfying the conditions 0 < s < t < r and
0 < p 6 .4t C 2s/=3:

7.2 Toader Means

If p W RC ! R
C is a strictly monotonic function, then define

f .a; bIp; n/ �

8
ˆ̂
<

ˆ̂
:

1

2�

R 2�
0
p..an cos2 � C bn sin2 �/1=n/d� if n ¤ 0;

1

2�

R 2�
0 p.acos2 � bsin2 � /d� if n D 0;
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where a; b are positive real numbers. The Toader mean [174] of a and b is defined
as T .a; bIp; n/ � p�1.f .a; bIp; n//. It is easy to see that the Toader mean is
symmetric. For special choices of p, let Tq;n.a; b/ D T .a; bIp; n/ if p.x/ D xq

with q ¤ 0 and T0;n.a; b/ D T .a; bIp; n/ if p.x/ D logx. The means Tq;n
belong to a large family of means called the hypergeometric means, which have been
studied by Carlson and others [62,65,68]. It is easy to see that Tq;n is homogeneous.
In particular, we have

T0;2.a; b/ D A.a; b/; T�2;2.a; b/ D G.a; b/; T2;2.a; b/ D Q.a; b/:

Furthermore, the Toader means are related to the complete elliptic integrals: for
a � b > 0,

T�1;2.a; b/ D �a

2K.
p
1 � .b=a/2/ and T1;2.a; b/ D 2a

�
E.
p
1 � .b=a/2/:

In 1997 Qiu and Shen [151] proved that, for all a; b > 0 with a ¤ b,

M3=2.a; b/ < T1;2.a; b/:

This inequality had been conjectured by Vuorinen [176]. Alzer and Qiu [10] proved
the following best possible power mean upper bound:

T1;2.a; b/ < Mlog 2= log.�=2/.a; b/:

Very recently, Chu and his collaborators [78,79,83] obtained several bounds for T1;2
with respect to some combinations of various means.

7.3 Seiffert Means

The Seiffert means S1 and S2 are defined by

S1.a; b/ � a � b

2 arcsin a�b
aCb

; a ¤ b; S1.a; a/ D a;

and

S2.a; b/ � a � b
2 arctan a�b

aCb
; a ¤ b; S2.a; a/ D a:

It is well known that

3
p
G2A < L <

2G C A

3
:
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Sándor proved similar results for Seiffert means [160, 161]:

3
p
A2G < S1 <

G C 2A

3
< I (49)

and

3
p
Q2A < S2 <

AC 2Q

3
: (50)

The inequalities (49) and (50) are special cases of more general results obtained by
Neuman and Sándor [139, 140].

7.4 Extended Means

Let a; b 2 .0;1/ be distinct and s; t 2 Rn f0g, s ¤ t . We define the extended mean
[172] with parameters s and t by

Es;t .a; b/ �
�
t

s

as � bs

at � bt

�1=.s�t /

and also

Es;s.a; b/ � exp

�
1

s
C as log a � bs log b

as � bs

�

;

Es;0.a; b/ �
�

as � bs
s log.x=y/

�1=s
and E0;0.a; b/ �

p
ab:

We see that all the classical means belong to the family of extended means. For
example, E2;1 D A, E0;0 D G, E�1;�2 D H , and E1;0 D L and, more generally,
M	 D E2	;	 for 	 2 R. The reader is referred to the survey [148] for many
interesting results on the extended mean.

In 2002 Hästö [91] studied a certain monotonicity property of ratios of extended
means and Seiffert means, which he called a strong inequality. These strong
inequalities were shown to be related to the so-called relative metric [92, 93].

7.5 Means and the Circular and Hyperbolic Functions

It is easy to check the following identities:

A.1C sin x; 1 � sin x/ D 1; G.1C sin x; 1 � sin x/ D cosx; (51)
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Q.1C sinx; 1 � sin x/ D
p
1C sin2 x; S1.1C sinx; 1 � sinx/ D sin x

x
; (52)

A.ex; e�x/ D coshx; G.ex; e�x/ D 1; Q.ex; e�x/ D p
cosh 2x; (53)

L.ex; e�x/ D sinhx

x
; I.ex; e�x/ D ex coth x�1; (54)

S1.e
x; e�x/ D sinhx

arcsin.tanhx/
; S2.e

x; e�x/ D sinhx

arctan.tanhx/
: (55)

One can get many inequalities by combining the above identities and inequalities
between means. For example, combining (49) and (52), we have

3
p

cos x <
sin x

x
<

cosx C 2

3
;

where the second inequality is the well-known Cusa-Huygens inequality, and
combining (50), (53), and (55), we have

3
p
.cosh 2x/.coshx/ <

sinhx

arctan.tanhx/
<

coshx C 2
p

cosh 2x

3
:

More inequalities on mean values and trigonometric and hyperbolic functions can
be found in [136, 163, 165, 200, 208] and references therein.

7.6 Means and Hypergeometric Functions

In 2005 Richards [158] obtained sharp power mean bounds for the hypergeometric
function: Let 0 < a; b � 1 and c > maxf�a; bg. If c � maxf1 � 2a; 2bg, then

M	.1 � b=cI 1; 1� r/ � F.�a; bI cI r/1=a

if and only if 	 � aCc
1Cc . If c � minf1� 2a; 2bg, then

M
.1 � b=cI 1; 1� r/ � F.�a; bI cI r/1=a

if and only if 
 � aCc
1Cc . These inequalities generalize earlier results proved by

Carlson [66].
For hypergeometric functions of form F.1=2� s; 1=2C sI 1I 1� rp/q , Borwein

et al. [61] exhibited explicitly iterations similar to the arithmetic-geometric mean.
Barnard et al. [43] presented sharp bounds for hypergeometric analogs of the
arithmetic-geometric mean as follows: For 0 < ˛ � 1=2 and p > 0,
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M	.˛I 1; r/ � F.˛; 1 � ˛I 1I 1 � rp/�1=.˛p/ � M
.˛I 1; r/

if and only if 	 � 0 and 
 � p.1 � ˛/=2.
Some other inequalities involving hypergeometric functions and bivariate means

can be found in the very recent survey [44].
For any two power means M	 and M
, a function f is called M	;
-convex if it

satisfies

f .M	.x; y// � M
.f .x/; f .y//:

Recently many authors have proved that the zero-balanced Gaussian hypergeometric
function isM	;	-convex when 	 2 f�1; 0; 1g. For details see [22,26,37,80]. Baricz
[31] generalized these results to the M	;	-convexity of zero-balanced Gaussian
hypergeometric functions with respect to a power mean for 	 2 Œ0; 1. Zhang et al.
[205] extended these results to the case ofM	;
-convexity with respect to two power
means: For all a; b > 0, 	 2 .�1; 1, and 
 2 Œ0;1/ the hypergeometric function
F.a; bI aC bI r/ is M	;
-convex on .0; 1/.

The following interesting open problem is presented by Baricz [36]:

Open Problem. If m1 and m2 are bivariate means, then find conditions on
a1; a2 > 0 and c > 0 for which the inequality

m1.Fa1.r/; Fa2 .r// � .�/Fm2.a1;a2/.r/

holds true for all r 2 .0; 1/, where Fa.r/ D F.a; c � aI cI r/.

7.7 Means and Quasiconformal Analysis

Special functions have always played an important role in the distortion theory
of quasiconformal mappings. Anderson, Vamanamurthy, and Vuorinen [18] have
systematically investigated classical special functions and their extensive applica-
tions in the theory of conformal invariants and quasiconformal mappings. Some
functional inequalities for special functions in quasiconformal mapping theory
involve the arithmetic mean, geometric mean, or harmonic mean. For example, for
the well-known Grötzsch ring function
 and the Hersch-Pfluger distortion function
'K , the following inequalities hold for all s; t 2 .0; 1/ with s ¤ t :

p

.s/
.t/ < 
.

p
st/;

and

p
'K.s/'K.t/ < 'K.

p
st/ forK > 1:
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Recently, Wang, Zhang, and Chu [182, 183] have extended these inequalities as
follows:

M	.
.s/; 
.t// < 
.M	.s; t// if and only if 	 � 0;

M	.'K.s/; 'K.t// < 'K.M	.s; t// if and only if 	 � 0 andK > 1;

and

M	.'K.s/; 'K.t// > 'K.M	.s; t// if and only if 	 � 0 and 0 < K < 1:

Some similar results for the generalized Grötzsch function, generalized modular
function, and other special functions related to quasiconformal analysis can be found
in [155, 179, 184, 186, 187].

8 Epilogue and a View Toward the Future

In earlier work we have listed many open problems. See especially [14, pp. 128–
131] and [18, p. 478]. Many of these problems are still open. In Sects. 4, 6, and 7
above, we have also mentioned some open problems.

Finally, we wish to suggest some ideas for further research. In a frequently cited
paper [119] Lindqvist introduced in 1995 the notion of generalized trigonometric
functions such as sinp , and presently there is a large body of literature about this
topic. For the case p D 2 the classical functions are obtained. In 2010, Biezuner
et al. [59] developed a practical numerical method for computing values of sinp .
Recently, Takeuchi [173] has gone a step further, introducing functions depending
on two parameters p and q that reduce to the p-functions of Lindqvist when
p D q. In [56, 57, 112] the authors have continued the study of this family of
generalized functions and have suggested that many properties of classical functions
have a counterpart in this more general setting. It would be natural to generalize the
properties of trigonometric functions cited in this survey to the .p; q/-trigonometric
functions of Takeuchi.
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Completely Monotone Functions: A Digest
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Abstract This work has a purpose to collect selected facts about the completely
monotone (CM) functions that can be found in books and papers devoted to
different areas of mathematics. We opted for lesser known ones and for those
which may help in determining whether or not a given function is completely
monotone. In particular, we emphasize the role of representation of a CM function
as the Laplace transform of a measure, and we present and discuss a little-known
connection with log-convexity. Some of presented methods are illustrated by several
examples involving Gamma and related functions.

1 Introduction

A positive function defined on .0;C1/ of the class C1, such that the sequence of
its derivatives alternates signs at every point, is called completely monotone (CM)
function. A brief search in MathSciNet reveals a total of 286 items that mention this
class of functions in the title from 1932 till the end of the year 2011; 98 of them
have been published since the beginning of 2006.

This vintage topic was developed in 1920s/1930s by S. Bernstein, F. Hausdorff,
and V. Widder, originally with relation to the so-called moment problem, cf.
[3, 13, 14, 26, 27]. The much-cited (but perhaps not that much read) Widder’s
book [28] contains a detailed account on properties of CM functions and their
characterizations. The second volume of Feller’s probability book [8] discusses CM
functions through their relationship with infinitely divisible measures, which are
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fundamental in defining Lévy processes. In the past several decades, Lévy processes
have gained popularity in financial models, as well as in biology and physics; this is
probably a reason for increased interest in CM functions, too. There are also other
interesting topics in probability and statistics where CM functions play a role; see
[16] for one such topic. Aside from probability and measure theory, CM and related
functions appear in the field of approximations of functions, as documented in [6].
Finally, they are naturally linked to various inequalities; several general inequalities
for CM functions can be found in [17]; for a quite recent contribution in this area,
see [2].

This text has a purpose to collect well-known facts about CM functions, together
with some less-known ones, which may help in determining whether or not a given
function is completely monotone. In that sense, this work can be thought of as being
an extension and supplement to another paper in the same spirit—[24] by Miller and
Samko. In particular, we emphasize the role of representation of a CM function as
a Laplace transform of a measure, and we present and discuss a little-known (and
even less being used) connection between CM function and log-convexity. Some of
the methods discussed in Sects. 2–5 are illustrated by several examples involving
Gamma and related functions in Sect. 6. References and examples reflect author’s
preferences and are by no means complete; the same can be said for the selection of
topics that are discussed in this work.

2 Representations of Completely Monotone Functions

We start with a classical definition of CM functions, and we present two pos-
sible representations in terms of integral transforms of measures and alternative
representations for Stieltjes transforms and CM probability densities.

2.1 Integral Representations

Definition 2.1. A function f defined on .0;C1/ is completely monotone if it has
derivatives of all orders and

.�1/kf .k/.t/ > 0; t 2 .0;C1/; k D 0; 1; 2; : : : : (1)

In particular, this implies that each CM function on .0;C1/ is positive,
decreasing, and convex, with concave first derivative.

By (1), there exist limits of f .k/.x/ as x ! 0 for any k � 0; if those limits are
finite, then f can be extended to Œ0;C1/ and (1) will also hold for x D 0 (with
strict inequality for all k). Limits at zero need not be finite, as in f .x/ D 1=x, for
example.



Completely Monotone Functions: A Digest 349

Clearly, limx!C1 f .k/.x/ D 0 for all k � 1. The limit of f .x/ at C1 must be
finite, and if it is non-zero, then it has to be positive (e.g., f .x/ D 1C e�x).

Lemma 2.1. The function f is CM if and only if [28]

f .x/ D
Z

Œ0;C1/
e�xt d
.t/; (2)

where 
.t/ is a positive measure on Borel sets of Œ0;C1/ .i.e., 
.B/ � 0 for every
Borel set B 2 RC/ and the integral converges for 0 < x < C1.

In other words, completely monotone functions are real one-side Laplace
transforms of a positive measure on Œ0;C1/. If the measure 
 has an atom at
t D 0, then limx!C1 f .x/ > 0. The measure 
 is a probability measure if and
only if limx!0

C

f .0/ D 1 (by monotone convergence theorem).
The Lebesgue integral in (2) can be expressed as a Lebesgue-Stieltjes integral

f .x/ D
Z

Œ0;C1/
e�xt dg.t/; (3)

where g.t/ D 
.Œ0; t / is the distribution function of 
, with g.0�/ D 0. For a
positive measure 
, the function g is non-decreasing, and by change of variables
t D � log s we get the following result:

Lemma 2.2. The function f is completely monotone on .0;C1/ if and only if

f .x/ D
Z

Œ0;1

sx dh.s/; (4)

where h.s/ D �g.� log s/ is a non-decreasing function.

If f is a CM function which is the Laplace transform of a measure 
, as in (2),
we write f D L. d
/ or f .x/ D L. d
.t//. Similarly, the relation (3) between f
and a distribution function g can be denoted as f D L. dg/. If 
 has a density h
with respect to Lebesgue measure, we write f .x/ D L.h.t/ dt/ or only f D L.h/.
It follows from inversion formulas that each CM f determines one positive measure

 via relation f D L. d
/ and it is of interest in many applications to find that
measure.

Remark 2.1. Since measures are determined by their Laplace transforms, if f D
L. d
/, then f is CM if and only if 
 is a positive measure. If there exists a
continuous density h of 
, then f is CM if and only if h.t/ � 0 for all t � 0.

Let us now observe a subclass of CM functions which contains all functions f
that can be represented as Stieltjes transform of some positive measure 
, that is,

f .x/ D
Z

Œ0;C1/
d
.s/

x C s
: (5)
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It is easy to verify that each function of the form (5) with a positive measure 
 is
CM; hence f D L.�/, where � is a positive measure. To find �, we start with

1

x C s
D
Z

Œ0;C1/
e�.xCs/u du;

and, after a change of order of integration, we arrive at the following result.

Lemma 2.3. The Stieltjes transform of a positive measure 
 as defined by (5) can
be represented as a Laplace transform

f .x/ D
Z

Œ0;C1/
e�xu

�Z

Œ0;C1/
e�su d
.s/

�

du:

That is, f D L.�/, where the measure � is absolutely continuous with respect to
Lebesgue measure, with a density L. d
/.

Stieltjes transforms f have the property that �f is reciprocally convex (in
terminology introduced in [21], a function g.x/ is reciprocally convex if it is defined
for x > 0 and concave there, whereas g.1=x/ is convex). As proved in [21], each
reciprocally convex function generates an increasing sequence of quasi-arithmetic
means, and hence CM functions that are also Stieltjes transforms are interesting as
a tool for generating means.

2.2 Completely Monotone Probability Densities

Let f be a probability density with respect to Lebesgue measure on Œ0;C1/, that is,

Z C1

0

f .x/ dx D 1 and f .x/ � 0 for all x � 0:

Then f is a CM function if and only if (2) holds, which, after integration with
respect to x 2 .0;C1/, gives (via Fubini theorem for f � 0)

1 D
Z C1

0

1

t
d
.t/:

Defining a new probability measure � by �.B/ D R
B
1
t

d
.t/, we have that

f .x/ D
Z

Œ0;C1/
te�xt d�.t/ D

Z

Œ0;C1/
te�xt dG.t/; (6)

where G is the distribution function for �. The function x 7! te�xt is the density
of exponential distribution Exp.t/. Therefore, a density f of a probability measure
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on .0;C1/ is a CM function if and only if it is a mixture of exponential densities.
Note that (6) can be written as f .x/ D E .T exT /, where T is a random variable
with distribution function G; by letting S D 1=T , we find that

f .x/ D E

�
1

S
ex=S

�

D
Z

Œ0;C1/
1

s
e�x=s dH.s/; (7)

whereH is the distribution function of S . The latter form is taken as a definition of
what is meant by a CM density in [17, 18.B.5]; this is more natural than (6) because
the mixing measure H is defined on values of expectations (s) of exponential
distributions in the mixture, rather than on their reciprocal values as in (6).

3 Further Properties and Connection with Infinitely
Divisible Measures

Starting from the mentioned representations of CM functions, an interesting crite-
rion for equality of two CM functions is derived in [7]:

Lemma 3.1. If f and g are CM functions and if f .xn/ D g.xn/ for a positive
sequence fxng such that the series

P
n 1=xn diverges, then f .x/ D g.x/ for all

x � 0.

As a corollary to Lemma 3.1, we can see that if CM functions f and g agree in
any proper subinterval of .0;C1/, then f .x/ D g.x/ for all x � 0. A converse
result, which is also proved in [7], is more surprising: if f is CM and if the seriesP

n 1=xn converges, then there exists another CM function g ¤ f , such that
f .xn/ D g.xn/ for all n.

3.1 Convolution and Infinitely Divisible Measures

Given measures 
 and � on Œ0;C1/ and their distribution functions g
 and g� , we
define the convolution 
 � � as a measure with the distribution function defined by

g
��.t/ D
Z

Œ0;t 

g
.t � u/ dg�.u/ D
Z

Œ0;t 

g�.t � v/ dg
.v/: (8)

To show equality of integrals above, we use the formula for integration by parts in
Lebesgue-Stieltjes integral (see [15] or [4]) and note that the function u 7! g
.t�u/
is continuous from the left, while u 7! g�.u/ is continuous from the right; hence the
additional term due to discontinuities in the integration by parts’ formula equals
zero, that is,
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Z

Œ0;t 

g
.t � u/ dg�.u/ D �
Z

Œ0;t 

g�.u/ dg
.t � u/

and then we apply change of variables in the last integral, u D t � v.
Repeated convolution is defined by induction, using associativity. In particular,

the nth convolution power of a measure 
, denoted by 
n�, is defined by n � 1

repeated convolutions 
 � 
 � � � � � 
.
A measure 
 is called infinitely divisible (ID) if for every natural number n there

exists a measure 
n such that 
 D 
n�n .
In the next two lemmas we collect some basic properties of CM functions. For a

collection of other properties we refer to [24].

Lemma 3.2. If f and g are CM functions with f D L. d
/ and g D L. d�/, then
for a > 0,

af D L. d.a
//; f C g D L. d.
C �//; fg D L. d.
 � �//:

Therefore, if f; g are CM, then af C bg .a; b > 0/ and fg are also CM.

Proof. The first two properties follow from the definition of Laplace transform.
The third property for arbitrary positive measures is proved in [8, p. 434]. ut
Lemma 3.3. (i) If g0 is CM, then the function x 7! f .x/ D e�g.x/ is CM.
(ii) If logf is CM, then f is CM .the converse is not true/.

(iii) If f is CM and g is a positive function with a CM derivative, then x 7!
f .g.x// is CM.

Proof. To prove (i), let h.x/ D e�g.x/ and note that h > 0 and h0 D �g0h < 0. Then
by induction, using Leibniz chain rule, it follows that .�1/nh.n/ > 0. In particular,
if logf is CM, then .� logf /0 is also CM, and (ii) follows from (i) with g D
� logf . The function x 7! e�x is a CM function but its logarithm is not the one,
so the converse does not hold. For (iii), we note that f D L. d
/ for some positive
measure 
; hence

d

dx
f .g.x// D �g0.x/

Z C1

0

e�g.x/t t d
.t/: (9)

By part (i), the function x 7! e�g.x/t is CM for every t > 0, and so the function
x 7! g0.x/e�g.x/t is also CM as a product of two CM functions. Then from
representation (9) it follows that the first derivative of �f .g.x// is CM, which
together with positivity of f yields the desired assertion. ut

Note that if we can find measures � and �t in representations g0.x/ D L. d�/ and
e�g.x/t D L. d�t /, then from (9) we find that
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d

dx
f .g.x// D �

Z C1

0

t

Z C1

0

e�ux d.� � �t /.u/ d
.t/: (10)

It turns out that CM functions f of the form as in (i) of Lemma 3.3 are Laplace
transforms of ID measures. If f .0/ D 1, the associated measure is a probability
measure, which is the case that is of interest in applications. Proofs of statements of
the next lemma can be found in [8].

Lemma 3.4. (i) A function f is the Laplace transform of an ID probability
measure if and only if

f .x/ D e�g.x/; (11)

where g is a positive function with a CM derivative and g.0/ D 0. Equivalently,
f is the Laplace transform of an ID positive measure if and only if f .x/ > 0

for all x > 0, and the function x 7! � logf .x/ has a CM derivative. This
measure is a probability measure if and only if f .0C/ D 1.

(ii) A function f is the Laplace transform of an ID probability measure if and only if

� logf .x/ D
Z C1

0

1 � e�xt

t
d
.t/; (12)

where 
 is a positive measure such that

Z C1

1

1

t
d
.t/ < C1: (13)

Remark 3.1. 1ı If logf is CM, then � logf has a CM derivative and by
Lemma 3.4(i), f D L. d
/, where 
 is an ID positive measure. By CM
property of logf , we have that logf D L. d�/, where � is some other
positive measure. Note that positivity of � implies that logf .0/ > 0, that
is, 
.Œ0;C1// D f .0/ > 1, and so, 
 cannot be a probability measure.

2ı Non-negative functions with a CM first derivative have a special name—
Bernstein functions; Lemmas 3.3 and 3.4 explain their role in probability theory;
more about this class of functions can be found in [25].

4 Majorization, Convexity and Logarithmic Convexity

A good source for studying all three topics that are very much interlaced is the book
[17]. In this short digest we include only necessary definitions and results that one
can need for understanding a connection with CM functions.

For a vector x 2 R
n define xŒi to be the i th largest coordinate of x, so that

xŒ1 � xŒ2 � � � � � xŒn:
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We say that x is majorized by y in notation x � y if

kX

iD1
xŒi  �

kX

iD1
yŒi  for k D 1; 2; : : : ; n � 1 and

nX

iD1
xŒi  D

nX

iD1
yŒi :

For example, .1; 1; 1/ � .2; 1; 0/. Clearly, majorization is invariant to permutations
of coordinates of vectors.

A function f which is defined on a symmetric set S  R
n (S is symmetric

if x 2 S implies that y 2 S where y is any vector obtained by permuting the
coordinates of x) is called Schur-convex if for any x; y 2 S ,

x � y ) f .x/ � f .y/: (14)

The following result, due to Fink [9], reveals an interesting relationship between
concepts of Schur-convexity and complete monotonicity.

Lemma 4.1. For a CM function f and a non-negative integer vector of a dimension
d > 1, m D .m1;m2; : : : ; md/, let

ux.m/ D .�1/m1f .m1/.x/.�1/m2f .m2/.x/ � � � .�1/md f .md /.x/:

Then ux.m/ is a Schur-convex function on m for every x > 0 and d > 1.

An important corollary of 4.1 is with d D 2, taking m D .1; 1/ and n D .2; 0/.
Clearly, m � n and from the above definition of Schur-convexity we get that
ux.1; 1/ � ux.0; 2/, that is, .f 0.x//2 � f .x/f 00.x/, which is, knowing that
f .x/ > 0, equivalent to .logf .x//00 � 0. We formulate this result as a separate
lemma.

Lemma 4.2. Any CM function f is log-convex, i.e., the function logf .x/ is convex.

A converse does not hold, for example, the Gamma function restricted to
.0;C1/ is log-convex, but it is not CM. However, the fact that each CM function is
also log-convex helps us to search for possible candidates for complete monotonic-
ity only among functions that are log-convex. In addition, there is a very rich theory
that produces inequalities using convexity or Schur-convexity, and we can use it for
CM functions.

Log-convexity of CM functions is equivalent to decreasing of the ratio
f 0.x/=f .x/, and (arguing that f .2k/ and �f .2kC1/ are CM) this implies

Corollary 4.1. If f is a CM function, then the ratio

x 7!
ˇ
ˇ
ˇ
ˇ
f .kCj /.x/
f .k/.x/

ˇ
ˇ
ˇ
ˇ

is decreasing for every integers k; j .
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In the next lemma we give two consequences of convexity and log-convexity of
CM functions. Similar inequalities for CM functions can be found in [16], but with
more involved proofs.

Lemma 4.3. If f is completely monotone, then

f .x/C f .y/ � f .x � "/C f .y C "/ � f .0/C f .x C y/; (15)

f .x/f .y/ � f .x � "/f .y C "/ � f .0/f .x C y/ (16)

where 0 � " < x < y, assuming that f .0/ is defined as f .0C/ .as in Sect. 2.1,
finite or not/.

Proof. If ' is a convex function, then the divided difference

�';".x/ D '.x/ � '.x � "/
"

is increasing with x; hence in the present setup,

�f;".x/ � �f;".y C "/ and �f;x�".x � "/ � �f;x�".x C y/;

which proves (15). The same proof holds for (16), but with logf in place of f . ut
Let us note that under assumptions of Lemma 4.3,

.x; y/ � .x � "; y C "/ � .0; x C y/;

and so we have just proved that the functions .x; y/ 7! f .x/C f .y/ and .x; y/ 7!
f .x/f .y/ are Schur-convex on RC�RC. More generally, for any f being CM, the
functions of n variables

nX

iD1
f .xi / and

nY

iD1
f .xi / (17)

are Schur-convex on R
nC. For a proof of this statement see [17].

Finally, the fact that f 0 is concave (i.e., f 000 < 0) is equivalent to each of three
inequalities in the next lemma [19, 20].

Lemma 4.4. For a CM function f , it holds

f 0.x/C f 0.y/
2

<
f .y/ � f .x/

y � x
< f 0

�
x C y

2

�

; for all x; y > 0; (18)

f .y/ � f .x/
y � x <

f .y � "/� f .x C "/

y � x � 2" ; for 0 < x < y and 0 < " <
y � x

2
:

(19)



356 M. Merkle

5 Inversion Formulas

It is sometimes easier to find a measure
 that corresponds to function f via Laplace
transform in (3) than to show that f is CM by verifying the definition; in view of
applications, it is definitely useful and desirable to know the associated measure.
In many cases we can use properties of Laplace transform and the tables that can be
found in textbooks. In many applications the Laplace transform is not limited to real
argument, and it is more common to define f .z/ by (3), where complex argument z
belongs to some half space Re z � a, for some positive a. We may use the power of
complex Laplace transform calculus applied to real function of real argument, due
to well-known properties of regular functions.

Due to similarity between Fourier transform, complex Laplace transform, and
real Laplace transform, we may use inversion formulas for all three mentioned
classes, whenever it is appropriate. In probability theory, for a random variable Z,
the function x 7! E eixZ (which corresponds to Fourier transform, except the sign
in the exponent) is called the characteristic function, whereas the real Laplace
transform (mind the sign!) x 7! E exZ is called the moment generating function.
There are several formulas that can be found in textbooks, but we will mention here
only a not widely known inversion theorem that enables finding a finite measure 

defined on Borel sets of R, provided that we know its characteristic function

'.x/ D
Z C1

�1
ei tx dF.t/; (20)

where F.t/ D 
f.�1; t g. The following result (given here in a slightly general-
ized version) is due to Gil-Pelaez [10].

Lemma 5.1. For ' and F as in (20), with '.0/ being finite, we have that, for all
t 2 R,

F.t/C F.t�/
2

D '.0/

2
� 1

�

Z C1

0

Re

�
e�i tx'.x/

ix

�

dx: (21)

Note that the underlying measure here need not necessarily be restricted to
the positive part of the real axis. As an example of how (21) can be used to determine
a measure 
 such that f D L.
/, consider a simple case f .x/ D e�x , where
we already know that the measure is Dirac at t D 1. Supposing that we wish
to use (21) to derive this, note that if f is the Laplace transform of 
, then its
characteristic function is '.x/ D f .�ix/ D eix , and (21) yields (assuming that t is
a point of continuity of F )

F.t/ D 1

2
� 1

�

Z C1

0

sin x.1 � t/

x
dx: (22)

Knowing that
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Z C1

0

sin.ax/

x
dx D �

2
sgn a;

we find that F.t/ D 0 for t < 1 and F.t/ D 1 for t > 1; hence (by right-continuity
and non-decreasing of F ), the corresponding measure 
 is indeed a Dirac measure
at t D 1.

For other formulas and methods, including numerical evaluation of inverse, see
[5]. In the next lemma we complement some examples from [24] by effectively
finding the corresponding measure.

Lemma 5.2. We have the following representations:

e�ax D L. dıa.t//; (23)

where ıa is the probability measure with unit mass (Dirac measure) at a � 0 ;

1

.ax C b/c
D L

�

e�bt=a
tc�1

ac� .c/

�

; a; b; c � 0; a2 C b2 > 0I (24)

log

�

aC b

x

�

D L. d
.t// a � 1; b > 0; (25)

where the measure 
 is determined by its distribution function


.Œ0; t / D log a C
Z x

0

1 � e�bs=a

s
dsI

log.1C x/

x
D L.E1.t//; (26)

where (see [1, p. 56]) E1 is exponential integral

E1.t/ D
Z C1

1

e�tu
du

u
I

ea=x D L

 

dı0.t/C aI1.2
p
at /p

at
dt

!

; (27)

where I1 is a modified Bessel function as defined in [1].

Proof. The relation (23) is obvious, and (24) is a consequence of standard rules for
(complex) Laplace transform:
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L

�

e�bt=a
tc�1

ac� .c/

�

D 1

ac� .c/
L.tc�1/.x � b=a/D 1

ac� .c/
� � .c/

.x�b=a/cD 1

.axCb/c

To prove (25), denote its left side by f , and observe that, by (24),

f 0.x/ D a

ax C b
� 1

x
D L

�
e�bt=a � 1

�
:

Now we use the rule

L

�
g.t/

t

�

D
Z C1

x

L.g.t//Œy dy

to conclude that

f .x/ D log a �
Z C1

x

f 0.y/ dy D L.log a dı0/� L

�
e�bt=a � 1

t

�

;

which yields (25). To prove (27), we note that

ak

kŠxk
D L

�
aktk�1

kŠ.k � 1/Š

�

;

which tells us that

e
a
x D 1C L

 C1X

kD1

aktk�1

.k � 1/ŠkŠ

!

:

Now we observe that

C1X

kD1

aktk�1

.k � 1/ŠkŠ
D aI1.2

p
at/p

at
;

and (27) follows.
The simplest way to prove (26) would be to perform an integration on the right-

hand side and show that it yields the left side. However, in order to show the
derivation, we start with the observation that

f .x/ WD log.1C x/

x
D F.1; 1; 2I �x/;

where F.a; b; cI �/ D 2F1.a; b; cI �/ is a Gauss’ hypergeometric function; hence
there is the following integral representation [1]:
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f .x/ D
Z 1

0

ds

1C sx
:

Now we use (25) to find that

1

1C sx
D 1

s

Z C1

0

e�xte�t=s dt;

and, exchanging the order of integration, we find that

f .x/ D
Z C1

0

e�xt
�Z 1

0

e�t=s
ds

s

�

dt:

Finally, a change of variables 1=s D u in the inner integral shows that it is equal to
E1.t/, and the formula is proved. ut

6 Some Examples Related to the Gamma Function

Functions related to the Gamma function are good candidates to be CM, and there
is a plenty of such results in literature. The function g.x/ D log� .x/ is a unique
convex solution of Krull’s functional equation

g.x C 1/� g.x/ D f .x/; x > 0; (28)

with f .x/ D logx and with g.1/ D 0. The same equation, but with
f .x/ D .logx/.nC1/, n D 0; 1; 2; : : :, has for its solutions functions �.n/.x/ D
.log� .x//.nC1/. Although logx is not CM, all its derivatives are monotone
functions, which automatically implies the same property for �.n/.x/; n � 2,
and alike functions via the following result (see [22]).

Lemma 6.1. Suppose that x 7! f .x/ is a function of the class C1.0;C1/ with
all derivatives being monotone functions, with f 0.x/ ! 0 as x ! C1. Then there
is a unique (up to an additive constant) solution g of (28) in the class C1, with

g0.x/ D lim
n!C1

 

f .x C n/�
nX

kD0
f 0.x C k/

!

(29)

and

g.j /.x/ D �
C1X

kD0
f .j /.x C k/ .j � 2/: (30)
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From (29) and (30) it follows that if ˙f is CM (or if only ˙f 00 is such), then
�g00 is a CM, while ˙g and ˙g0 need not be CM . Our first example is formulated
in the form of a lemma, and its proof provides a pattern that can be used in many
similar cases.

Lemma 6.2. The function

W.x/ D ��log� .x/ � .x � 1/ logx
�00 D 1

x
C 1

x2
� � 0.x/

has the following integral representation:

W.x/ D
Z C1

0

�

1C t � t

1 � e�t

�

e�xt dt (31)

and it is a CM function.

Proof. The integral representation follows from

L

�

.�1/nC1 tn

1 � e�t

�

D �.n/.x/; n D 1; 2; : : : ; (32)

and

L.ta/ D � .a C 1/

xaC1
; a > �1: (33)

The CM property follows from positivity of the function under integral sign, which
is equivalent to the inequality et > 1C t for t > 0. ut
Remark 6.1. The function g.x/ D log� .x/� .x � 1/ logx satisfies the functional
equation (28) with f .x/ D log .x=.x C 1//x ; it can be easily checked that f 00 is
CM; hence from Lemma 6.1 we can conclude without any additional work that W
as defined above is CM.

Lemma 6.3. For a � 0 and x > 0, let

Ga.x/ D log� .x/ �
�

x � 1

2

�

logx � 1

12
� 0.x C a/C x � 1

2
log.2�/:

The following representation holds:

Ga.x/ D
Z C1

0

t � 2C .2C t/e�t � .t3=6/e�at
2t2.1 � e�t /

e�xt dt: (34)

The function x 7! Ga.x/ is CM if and only if a � 1=2 and the function x 7!
�Ga.x/ is CM if and only if a D 0.
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Proof. Starting with

G00a .x/ D � 0.x/ � 1

12
� 000.x C a/ � 2

x
C x � 1=2

x2
;

it is easy to show (in a similar way as in Lemma 6.2) that

G00a .x/ D
Z C1

0

t � 2C .2C t/e�t � .t3=6/e�at

2.1� e�t /
e�xt dt: (35)

Further, we have that

lim
x!C1Ga.x/ D lim

x!C1G
0
a.x/ D 0;

and

Ga.x/ D
Z C1

x

Z C1

v

G00a .u/ du dv;

hence (34) holds. The complete monotonicity is related to the sign of the function

ha.t/ D t � 2C .2C t/e�t � t3

6
e�at : (36)

The functionGa is CM if and only if ha.t/ � 0 for all t � 0. From (36) we see that
this is equivalent to

a � log 6C log..2C t/e�t C t � 2/� 3 log t

�t WD u.t/: (37)

Using standard methods, we can find that u is a decreasing function; hence

u.t/ � lim
t!0

C

u.t/ D 1

2
;

and so, (37) holds if and only if a � 1=2.
Further, �Ga is CM if and only if ha.t/ � 0 for all t � 0, which is equivalent to

a � u.t/; (38)

where u.t/ is defined in (37). Since u is decreasing, we have that u.t/ �
lim

t!C1 u.t/ D 0, and so, (38) holds if and only if a � 0, that is, a D 0. ut

Remark 6.2. Let

Fa.x/ D log� .x/ �
�

x � 1

2

�

logx � 1

12
� 0.x C a/; a � 0; x > 0:
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This function is studied in [18, Theorem 1], where it is shown that x 7! F0.x/

is concave on x > 0 and that x 7! Fa.x/ is convex on x > 0 for a � 1
2
. Since

Fa.x/
00 D G00a .x/ where Ga is defined as above, this example gives much stronger

statement.

Lemma 6.4. For b � 0 and c � 0, let

fb;c .x/ D ex� .x C b/

xxCc
; x > 0: (39)

The function

'b;c.x/ D logfb;c.x/ D x C log� .x C b/� .x C c/ log x (40)

is CM if and only if b � 1
2

C 1p
12

and c D b � 1
2

and then it has the representation

'b;b� 12 .x/ D
Z

Œ0;C1/
1

t2

�
te�bt

1 � e�t
C t

�

b � 1

2

�

� 1

�

dt: x > 0: (41)

Proof. By expanding log� .x C b/ in (40) by means of Stirling’s formula [1, p.
258], it follows that for ı D b � c ¤ 1

2
,

lim
x!C1'b;c.x/ D

�

ı � 1

2

�

� .C1/;

so 'b;c is not a CM function (see Sect. 2.1). Let ı D 1=2 and let

Gb.x/ WD 'b;b� 1
2
.x/ D x C log� .x C b/�

�

x C b � 1

2

�

logx:

Further, we find without difficulties that

lim
x!C1Gb.x/ D lim

x!C1G
0
b.x/ D 0 (42)

and that

G00b .x/ D � 0.x C b/� 1

x
C b � 1

2

x2
:

In the same way as shown in Lemma 6.2, we find that G00b .x/ D L.hb.t/ dt/, where

hb.t/ D te�bt

1 � e�t
C t

�

b � 1

2

�

� 1: (43)



Completely Monotone Functions: A Digest 363

By standard methods we find that

h.t/ D
�
b2

2
� b

2
C 1

12

�

t2 C o.t2/ .t ! 0/; (44)

so the Laplace transform Gb.x/ of the function t 7! g.t/=t2 exists for all x > 0

and applying Fubini theorem as in Lemma 6.3 and using (42) we find that

Gb.x/ D
Z C1

x

Z C1

v

G00a .u/ du dv D
Z

Œ0;C1/
h.t/

t2
e�tx dt;

which is the representation (41). Then Gb will be CM if and only if h.t/ � 0 for
each t � 0 (see Remark 2.1). By (44) we have that h.0/ < 0 for b 2 .b1; b2/, where
b1;2 D 1

2
˙ 1p

12
; further, c D b�1=2 > 0 gives b > 1=2, so only b � b2 remains as

a possibility. It is straightforward to check that @hb.t/
@b

> 0 for all t � 0, so it suffices
to show that hb2.t/ � 0 for t � 0, which can be done along the lines of [11]. ut
Remark 6.3. Complete monotonicity of functions fb;c and 'b;c for various values of
parameters was discussed in [11,12]. Let us remark that, by Lemma 3.3, the function
fb;c is CM whenever 'b;c is the one.

Let us mention that the Barnes function G.x/ satisfies the relation

logG.x C 1/� logG.x/ D log� .x/; x > 0;

which is (28) with g D log� . Here also the function x 7! .logG.x//00 D
2� 0.x/C .x � 1/� 00.x/ is CM. More details about the properties of the G-function
as a solution of Krull’s equation can be found in [23].
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New Applications of Superquadracity

Shoshana Abramovich

Dedicated to Professor Hari M. Srivastava

Abstract In the recent years numerous articles were published related to
superquadracity. Here we put together some of these results, in particular those
related to Jensen, Jensen–Steffensen, and Hardy’s inequalities. These inequalities
are analogs of inequalities satisfied by convex functions and in those cases that
the superquadratic functions are nonnegative we get refinements of inequalities
satisfied by convex functions.

1 Introduction

In this survey we present some new applications of superquadracity obtained after
the publication of “On superquadracity” by Abramovich [2]. Here we state only
a part of the results with no proofs. This may serve as an introductory work
to a detailed book on superquadracity that includes all the known theorems and
their proofs on superquadracity which is planned to be written by S. Abramovich,
J. Pečarić, S. Banić, and S. Varošanec. All over this survey we get analogs of
inequalities satisfied by convex functions and in the case that our superquadratic
functions are nonnegative, we get refinements of results that use only convexity.

There is another class of functions called superquadratic functions or weakly
superquadratic functions; see [2, 18, 27, 28] and their references. Here we quote
results from [1–23, 25–33].

Let us start with repeating the definition and basic properties of superquadratic
functions (called in [27, 28] “strongly superquadratic functions”):
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Definition 1.1 ([6, 7]). A function ' W Œ0; b/ ! R is superquadratic provided that
for all 0 � x < b there exists a constant C'.x/ 2 R such that

'.y/ � '.x/ � C'.x/ .y � x/C ' .jy � xj/ (1)

for every y, 0 � y < b.

From the definition of superquadracity we easily get:

Lemma 1.1 ([7]). The function ' is superquadratic on Œ0; b/ if and only if

1

An

nX

iD1
ai ' .xi / � ' .x/ � 1

An

nX

iD1
ai' .jxi � xj/ (2)

holds, where xi 2 Œ0; b/, i D 1; : : : ; n, and ai � 0, i D 1; : : : ; n, are such that

An D
nX

iD1
ai > 0 and x D 1

An

nX

iD1
aixi .

The function ' is superquadratic on Œ0; b/, if and only if

Z

˝
' .f .s// d
 .s/�'

�Z

˝
f .s/ d
 .s/

�
�
Z

˝
'
�ˇˇ
ˇf .s/�

Z

˝
f .�/ d
 .�/

ˇ
ˇ
ˇ
�

d
 .s/ ;

(3)
where f is any nonnegative 
-integrable function on a probability measure space
.˝;
/.

Lemma 1.2 ([7]). Let ' be a superquadratic function with C' .x/ as in Defini-
tion 1.1. Then

(i) '.0/ � 0:

(ii) If '.0/ D ' 0.0/ D 0, then C'.x/ D ' 0.x/ whenever ' is differentiable at
0 < x < b:

(iii) If ' � 0, then ' is convex and '.0/ D ' 0.0/ D 0.

Lemma 1.3 ([7]). Suppose that ' W Œ0; b/ ! R is continuously differentiable
and '.0/ � 0. If ' 0 is superadditive or ' 0.x/=x is nondecreasing, then ' is
superquadratic.

The power functions ' .x/ D xp , x � 0, are superquadratic when p � 2 and
subquadratic, that is, �' is superquadratic when 1 � p � 2. When ' .x/ D x2, (1)
reduces to equality and therefore the same holds for (2) and (3).

In Sect. 2 we compile some inequalities related to Jensen and Jensen–Steffensen
inequalities. In Sect. 3 Hardy type inequalities are presented and in Sect. 4 various
other inequalities are stated. All these inequalities stem from the properties of
superquadracity, as stated in its definition and in Lemmas 1.1–1.3.
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2 Jensen and Jensen–Steffensen Type Inequalities for
Superquadratic Functions

Now we state several results that refine and generalize Jensen’s type inequalities for
superquadratic functions (2) and (3) presented in the first section. We also show how
we get Jensen–Steffensen type inequalities for superquadratic functions that satisfy
additional conditions like being nonnegative or having superadditive derivatives.
Next we consider how Jensen’s type inequalities are derived for functions like
K .x/ D ' .x/ x� , 0 � x < 1, � 2 RC where ' .x/ is superquadratic.

In cases for which our function is superquadratic and positive we always get a
refinement of a similar Jensen’s type inequality for convex functions.

2.1 Improvement of the Basic Jensen’s Inequality for
Superquadratic Functions

To improve (2), we first introduce as in [15] some notations. In D f1; : : : ; ng, n 2 N,

I is any finite set of integers, An D
nP

iD1
ai for ai 2 R, i D 1; : : : ; n.

For a function ' defined on RC, xk � 0, ak > 0, k 2 In and for every I � In
we denote

�I D
X

k2I
ak'

 ˇˇ
ˇ
ˇ
ˇ
xk

ak
�
P

j2I xjP
j2I aj

ˇ
ˇ
ˇ
ˇ
ˇ

!

; �n D
nX

kD1
ak'

 ˇˇ
ˇ
ˇ
ˇ
xk

ak
�
Pn

jD1 xjPn
jD1 aj

ˇ
ˇ
ˇ
ˇ
ˇ

!

;

�2 .i; j / Dai'
�ˇˇ
ˇ
ˇ
xi

ai
� xi C xj

ai C aj

ˇ
ˇ
ˇ
ˇ

�

C aj '

�ˇˇ
ˇ
ˇ
xj

aj
� xi C xj

ai C aj

ˇ
ˇ
ˇ
ˇ

�

; 1 � i � j � n;

dI D
X

k2I
ak'

�
xk

ak

�

�
 
X

k2I
ak

!

'

0

B
@

P

k2I
xk

P

k2I
ak

1

C
A ;

dn D
nX

kD1
ak'

�
xk

ak

�

�
 

nX

kD1
ak

!

'

0

B
B
@

nP

kD1
xk

nP

kD1
ak

1

C
C
A :

Using these notations our results are obtained in the following Theorem 2.1.

Theorem 2.1 ([15]). Let xk � 0, ak > 0, k D 1; : : : ; n, I � In and I D In=I .

(a) If ' .x/ is superquadratic on RC, then
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dn � dI C AI'

0

@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

nX

jD1

xj

An
�
X

i2I

xi

AI

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

AC
X

i2I
ai'

0

@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

xi

ai
�

nX

jD1

xj

An

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

A :

(b) If ' .x/ is also nonnegative on RC, then

dn � dICAI'
0

@AI
An

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

i2I

xi

AI
�
X

i2I

xi

AI

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

ACAI'
0

@AI
An

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

i2I

xi

AI
�
X

i2I

xi

AI

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

A ;

(4)
and for n � 2

dn � max
I
In

.�I / � max
1�i<j�n�2 .i; j / :

The proof follows from the identity

nX

iD1
ai'.xi /� An'

 
nX

iD1

aixi

An

!

�
 
X

i2I
ai'.xi / �AI'

�P
i2I ai xi
AI

�!

D
X

i2I
ai'.xi /C AI'

�P
i2I aixi
AI

�

�An'
 

nX

iD1

ai xi

An

!

;

and from the basic Jensen’s inequality for superquadratic functions (2).
The same reasoning, which leads to (4), leads also to

nX

iD1
ai'.xi /� An'

 
nX

iD1

aixi

An

!

�
nX

kD1
ak'

 ˇˇ
ˇ
ˇ
ˇ
xk �

nX

iD1

aixi

An

ˇ
ˇ
ˇ
ˇ
ˇ

!

� AI'

0

@AI
An

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

i2I

ai xi

AI
�
X

i2I

ai xi

AI

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

AC AI'

0

@AI
An

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

i2I

ai xi

AI
�
X

i2I

ai xi

AI

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

A

� An' .0/ D 0

for nonnegative superquadratic functions.

2.2 Jensen–Steffensen’s and Slater–Pečarić Inequalities
for Nonnegative Superquadratic Functions

In [9] the authors dealt with refinements of Jensen–Steffensen’s inequality and
Slater–Pečarić inequality for positive superquadratic functions. These inequalities
are refinements of similar inequalities for convex functions. Two of the results are
as follows:
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Theorem 2.2. Let ' W Œ0;1/ ! R be differentiable superquadratic and nonneg-
ative, let � be a nonnegative monotonic n-tuple in R

n, and let a be a real n-tuple
satisfying Steffensen’s coefficients, that is, 0 � Aj � An, j D 1; : : : ; n, An > 0,

Aj D
jX

iD1
ai ; Aj D

nX

iDj
ai ; j D 1; : : : ; n:

Let � be defined by

� D 1

An

nX

iD1
ai �i :

Then

nX

iD1
ai ' .�i /� An'

�
�
�

�
k�1X

jD1
Aj'

�
�jC1 � �j

�C Ak'
�
� � �k

�

C AkC1'
�
�kC1 � �

�
C

nX

jDkC2
Aj'

�
�j � �j�1

�

�
 

kX

iD1
Ai C

nX

iDkC1
Ai

!

'

0

B
B
B
B
B
@

nX

iD1
ai
�j�i � �j�

kX

iD1
Ai C

nX

iDkC1
Ai

1

C
C
C
C
C
A

� ..n � 1/An/ '

0

B
B
B
B
@

nX

iD1
ai
�j�i � �j�

.n � 1/An

1

C
C
C
C
A
;

where k 2 f1; : : : ; n � 1g satisfies �k � � � �kC1.

If also
nX

iD1
ai'
0 .�i / ¤ 0, and we defineM D

nX

iD1
ai �i'

0 .�i /=
nX

iD1
ai'
0 .�i /, then,

for s satisfying �s � M � �sC1, s C 1 � n,

nX

iD1
ai' .�i / � An' .M/ �

0

@
s�1X

jD1
Aj'

�
�jC1 � �j

�

C As' .M � �s/C AsC1' .�sC1 �M/C
nX

jDsC2
Aj '

�
�j � �j�1

�
1

A
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� An' .M/ �
0

@
sX

jD1
Aj C

nX

jDsC1
Aj

1

A'

0

B
B
B
B
B
@

nX

iD1
ai j�i �M j

sX

jD1
Aj C

nX

jDsC1
Aj

1

C
C
C
C
C
A

� An' .M/ � ..n � 1/An/ '

0

B
B
@

nP

iD1
ai j�i �M j
.n � 1/An

1

C
C
A :

2.3 Generalization of the Jensen–Steffensen Inequalities
for Functions with Superadditive Derivatives

In the next two theorems the main result of [16] is presented and its integral version
that appears in [14].

Theorem 2.3 ([16, Theorem 1]). Let ' W Œ0; b/ ! R be continuously differentiable
and ' 0 W Œ0; b/ ! R be superadditive function. Let a D .a1; : : : ; an/ be a real
n-tuple satisfying

0 � Aj D
jX

iD1
ai � An; j D 1; : : : ; n; An > 0;

and x D .x1; : : : ; xn/ be a monotonic n-tuple in Œ0; b/n. Then,

(a) The inequality

' .c/� ' .0/C ' 0 .c/ .x � c/C 1

An

nX

iD1
ai' .jxi � cj/ � 1

An

nX

iD1
ai ' .xi / (5)

holds for each c 2 Œ0; b/ where x D 1

An

nX

iD1
aixi .

Inserting c D x in (5) we get

1

An

nX

iD1
ai ' .xi / � ' .x/C ' .0/ � 1

An

nX

iD1
ai ' .jxi � xj/ :
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(b) If in addition ' .0/ � 0, then ' is superquadratic and

1

An

nX

iD1
ai' .xi / � ' .c/C ' 0 .c/ .x � c/C 1

An

nX

iD1
ai' .jxi � cj/ : (6)

Inserting c D x in (6) we get

1

An

nX

iD1
ai' .xi / � ' .x/ � 1

An

nX

iD1
ai' .jxi � xj/ :

(c) If in addition ' � 0 and ' .0/ D '
0

.0/ D 0, then ' is convex increasing and
superquadratic and

1

An

nX

iD1
ai' .xi / � ' .c/ � ' 0 .c/ .x � c/ � 1

An

nX

iD1
ai' .jxi � cj/ � 0:

The proof of (5) follows from observing that when ' is continuously differen-
tiable on Œ0; b/ and ' 0 is superadditive on Œ0; b/ then the function D W Œ0; b/ ! R

defined by

D .y/ D ' .y/� ' .z/ � ' 0 .z/ .y � z/ � ' .jy � zj/C ' .0/

is nonnegative on Œ0; b/, nonincreasing on Œ0; z/, and nondecreasing on Œz; b/, for
0 � z < b, and when xk � c � xkC1 we get that

D .x1/ � D .x2/ � � � � � D .xk/ � 0 and 0 � D .xkC1/ � D .xkC2/ � � � � � D .xn/ ;

and

nX

iD1
aiD .xi / D

kX

iD1
aiD .xi /C

nX

iDkC1
aiD .xi /

D
k�1X

iD1
Ai .D .xi / �D .xiC1//CAkD .xk/

CAkC1D .xkC1/C
nX

iDkC2
Ai .D .xi /�D .xi�1// � 0:

and hence

nX

iD1
aiD .xi / D

nX

iD1
ai
�
' .xi /�' .c/�' 0 .c/ .xi�c/�' .jxi � cj/C' .0/� � 0:

Now we present the integral version of Theorem 2.3 which is proved by similar
reasoning that leads to Theorem 2.3.
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Theorem 2.4 ([14]). Let f W Œ˛; ˇ ! Œ0; b/ be a continuous and monotonic
function, where �1 < ˛ < ˇ < C1. Let ' W Œ0; b/ ! R be continuously
differentiable and ' 0 W Œ0; b/ ! R be superadditive function. Let 	 W Œ˛; ˇ ! R be
either continuous or of the bounded variation satisfying

	 .˛/ � 	 .x/ � 	 .ˇ/ for all x 2 Œ˛; ˇ ; 	 .ˇ/ � 	 .˛/ > 0

and

x D 1

	 .ˇ/�	 .˛/
Z ˇ

˛

f .t/ d	 .t/ ; y D 1

	 .ˇ/�	 .˛/
Z ˇ

˛

' .f .t// d	 .t/ : (7)

Then,

(a) The inequality

' .c/ � ' .0/C ' 0 .c/ .x � c/C 1

	 .ˇ/ � 	 .˛/

Z ˇ

˛

' .jf .t/ � cj/ d	 .t/ � y

(8)

holds for each c 2 Œ0; b/ where x and y are defined in (7).
Inserting c D x in (8) we get

' .x/� ' .0/C 1

	 .ˇ/ � 	 .˛/
Z ˇ

˛

' .jf .t/ � xj/ d	 .t/ � y:

(b) If in addition ' .0/ � 0, the function ' is superquadratic and

y � ' .c/C ' 0 .c/ .x � c/C 1

	 .ˇ/ � 	 .˛/
Z ˇ

˛

' .jf .t/ � cj/ d	 .t/ : (9)

Inserting c D x in (9) we get

y � ' .x/C 1

	 .ˇ/ � 	 .˛/
Z ˇ

˛

' .jf .t/ � cj/ d	 .t/ :

(c) If in addition ' � 0 and ' .0/ D ' 0 .0/ D 0, the function ' is superquadratic
and convex increasing and

y � ' .c/ � ' 0 .c/ .x � c/ � 1

	 .ˇ/ � 	 .˛/
Z ˇ

˛

' .jf .t/ � cj/ d	 .t/ � 0:
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2.4 Jensen’s Type Inequalities for K .x/ D x�' .x/, Where '

Is Superquadratic

We prove now some inequalities that hold when the given function K .x/ satisfies
K .x/ D x�' .x/, � 2 RC, where ' is a superquadratic function. These inequalities
include and generalize the results related to superquadratic function ' W Œ0; b/ ! R.

Lemma 2.1 ([4]). Let K .x/ D x�' .x/, � 2 RC, where ' .x/ is superquadratic
on Œ0; b/. Then

K .y/�K .x/ � ' .x/ .y� � x� /C C' .x/ y
� .y � x/C y�' .jy � xj/ ; (10)

holds for x 2 Œ0; b/, y 2 Œ0; b/. Moreover,

NX

iD1
aiK .yi / �K

 
NX

iD1
aiyi

!

� '

0

@
NX

jD1
aj yj

1

A

0

@
NX

iD1
aiy

�
i �

0

@
NX

jD1
aj yj

1

A

�1

A

C C'

0

@
NX

jD1
aj yj

1

A
NX

iD1
ai y

�
i

0

@yi �
NX

jD1
aj yj

1

A

C
NX

iD1
aiy

�
i '

0

@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
yi �

NX

jD1
aj yj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

A (11)

holds for xi 2 Œ0; b/, yi 2 Œ0; b/, 0 � ai � 1, i D 1; : : : ; n, and
NX

iD1
ai D 1I and

Z

˝

K .f .s// d
 .s/ �K
�Z

˝

f .s/ d
 .s/

�

�
Z

˝

�
' .x/ .f � .s/� x� /C C' .x/ f

� .s/ .f .s/ � x/

Cf � .s/ ' .jf .s/ � xj/ d
 .s/ (12)

holds, where C' is as in (1), f is any nonnegative 
-integrable function on the
probability measure space .˝;
/ and x D R

˝
f .s/ d
 .s/.

If ' is subquadratic, then the reverse inequality of (10), (11), and (12) hold, in
particular
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Z

˝

K .f .s// d
 .s/ �K

�Z

˝

f .s/ d
 .s/

�

�
Z

˝

�
' .x/ .f � .s/� x� /C C' .x/ f

� .s/ .f .s/ � x/

Cf � .s/ ' .jf .s/ � xj/ d
 .s/ : (13)

Inequalities (10), (11), and (12) are satisfied in particular by K .x/ D xp , p �
� C 2. For � < p � � C 2, � 2 RC the reverse inequalities hold. They reduce to
equalities for p D � C 2.

The proof is obtained by multiplying (1) by y� , and by simple manipulations we
get that K .x/ D x�' .x/ satisfies (10) when ' is superquadratic.

By fixing in (10) a probability measure 
 and a nonnegative integrable function
f , setting x D R

˝ f d
 and C' .x/ is as in the definition of superquadracity, we
obtain forK .x/ D x�' .x/, � 2 RC, where ' .x/ is superquadratic, that (12) holds.

Inequality (11) is the discrete case of (12).
Similarly, since �' is superquadratic, inequality (13) and the reverse inequalities

of (10) and (11) are obtained for subquadratic functions.

Lemma 2.2 ([4]). Let K .x/ D x�' .x/ D x��1 .x/, � � 1, where ' is a
differentiable positive superquadratic function and  .x/ D x' .x/. Then the
bound obtained for K .x/ D x�' .x/ is stronger than the bound obtained for
K .x/ D x��1 .x/, that is:

K .y/�K .x/ � ' .x/ .y� � x� /C '
0

.x/ y� .y � x/C y�' .jy � xj/

implies that

K .y/�K .x/ �  .x/
�
y��1 � x��1

�C 
0

.x/ y��1 .y � x/C y��1 .jy � xj/ :
(14)

Moreover, if K .x/ D xn' .x/,  k .x/ D xk' .x/, n is an integer, k D
1; 2; : : : ; n, and ' .x/ is nonnegative superquadratic, then the inequalities

Z

˝

K .f .s// d
 .s/ �K

�Z

˝

f .s/ d
 .s/

�

�
Z

˝

�
' .x/ .f n .s/ � xn/C C' .x/ f

n .s/ .f .s/� x/

C f n .s/ ' .jf .s/ � xj/ d
 .s/

�
Z

˝

�
 k .x/

�
f n�k .s/� xn�k

�C C k .x/ f
n�k .s/ .f .s/ � x/

C f n�k .s/  k .jf .s/ � xj/� d
 .s/

�
Z

˝

 n .jf .s/ � xj/ d
 .s/ � 0 (15)
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hold for all probability measure spaces .˝;
/ of 
-integrable nonnegative
functions f , where x D R

˝
f .s/ d
 .s/.

Furthermore, if ' .x/ is positive, increasing, convex, subquadratic, and ' .0/ D
' 0 .0/ D 0, then x' .x/ is superquadratic and

Z

˝

�
' .x/.f n.s/�xn/CC' .x/f n.s/.f .s/�x/Cf n.s/' .jf .s/�xj/� d
.s/

�
Z

˝

K .f .s// d
 .s/ �K

�Z

˝

f .s/ d
 .s/

�

�
Z

˝

�
 k .x/

�
f n�k .s/ � xn�k

�C C k .x/ f
n�k .s/ .f .s/� x/

C f n�k .s/  k .jf .s/ � xj/� d
 .s/

�
Z

˝

 n .jf .s/ � xj/ d
.s/ � 0I k D 1; : : : ; n: (16)

In particular, if ' .x/ D xp , x � 0, p � 1, then (15) is satisfied when p � 2 and
(16) is satisfied when 1 � p � 2. When p D 2 equality holds in the first inequality
of (15) and in the first inequality of (16).

In the proof we show that when ' is differentiable, nonnegative superquadratic
or ' is differentiable, positive increasing, convex, and ' .0/ D ' 0 .0/ D 0, where
 .x/ D x' .x/, then as according to Lemma 1.2, C' .x/ D ' 0 .x/, we show that

' .x/ .y� � x�/C ' 0 .x/ y� .y � x/C y�' .jy � xj/

�  .x/
�
y��1 � x��1�C  0 .x/ y��1 .y � x/C y��1 .jy � xj/

leads to the results stated in the lemma.
As ' is positive superquadratic and therefore convex, this lemma gives a

refinement of Jensen’s inequality for convex functions.

2.5 Normalized Jensen Functional

In [3] the authors consider the normalized Jensen functional

Jn .f; x;p/ D
nX

iD1
pif .xi /� f

 
nX

iD1
pixi

!

;

where
nX

iD1
pi D 1, f W I ! R and I is an interval in R.
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We quote here only one of the theorems there and then its generalization:

Theorem 2.5. Let x D .x1; : : : ; xn/ 2 I n, p D .p1; : : : ; pn/, q D .q1; : : : ; qn/ be

nonnegative n-tuples satisfying
nX

iD1
pi D 1,

nX

iD1
qi D 1, qi > 0, i D 1; : : : ; n. Let

m D min
1�i�n

�
pi

qi

�

; M D max
1�i�n

�
pi

qi

�

:

If I is Œ0; a/ or Œ0;1/ and ' is a superquadratic function on I , then

Jn .'; x;p/�mJn .'; x;q/

� m'

 ˇˇ
ˇ
ˇ
ˇ

nX

iD1
.qi � pi / xi

ˇ
ˇ
ˇ
ˇ
ˇ

!

C
nX

iD1
.pi �mqi / '

0

@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
xi �

nX

jD1
pj xj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

A

and

Jn .'; x;p/�MJn .'; x;q/

� �
nX

iD1
.Mqi � pi/ '

0

@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
xi �

nX

jD1
qj xj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

A � '

 ˇˇ
ˇ
ˇ
ˇ

nX

iD1
.pi � qi / xi

ˇ
ˇ
ˇ
ˇ
ˇ

!

:

We state another generalization of Jensen’s inequality for superquadratic
functions and apply it to a generalization of a normalized Jensen’s functional.

Theorem 2.6 ([3]). Assume that x D .x1; : : : ; xn/ with xi � 0 for i 2
f1; : : : ; ng ; p D .p1; : : : ; pn/ is a probability sequence and q D .q1; : : : ; qk/ is
another probability sequence with n; k � 2. Then for any superquadratic function
' W Œ0; a/ ! R we have the inequality

nX

i1;:::;ikD1
pi1 � � �pik'

0

@
kX

jD1
qj xij

1

A

� '

 
nX

iD1
pixi

!

C
nX

i1;:::;ikD1
pi1 � � �pik'

0

@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

kX

jD1
qj xij �

nX

iD1
pixi

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

A :

From this we get for superquadratic functions:

Theorem 2.7. Let p, q, r be probability measures and ri > 0, i D 1; : : : ; n, and let
' be a superquadratic function, then
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nX

i1;:::;ikD1
pi1 � � �pik'

0

@
kX

jD1
qj xij

1

A � '

 
nX

iD1
pixi

!

�m
0

@
X

ri1 � � � rik'
0

@
kX

jD1
qj xij

1

A � '

 
nX

iD1
rixi

!1

A

� m'

 ˇˇ
ˇ
ˇ
ˇ

nX

iD1
.ri � pi/ xi

ˇ
ˇ
ˇ
ˇ
ˇ

!

C
nX

i1;:::;ikD1

�
pi1pi2 � � �pik �mri1 � � � rik

�
'

0

@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

kX

jD1
qj xij �

nX

sD1
psxs

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

A

and

nX

i1;:::;ikD1
pi1 � � �pik'

0

@
kX

jD1
qj xij

1

A � '
 

nX

iD1
pixi

!

�M
0

@
X

ri1 � � � rik'
0

@
kX

jD1
qj xij

1

A � '
 

nX

iD1
rixi

!1

A

� �'
 ˇˇ
ˇ
ˇ
ˇ

nX

iD1
.ri � pi / xi

ˇ
ˇ
ˇ
ˇ
ˇ

!

�
nX

i1;:::;ikD1

�
pi1pi2 � � �pik �Mri1 � � � rik

�
'

0

@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

kX

jD1
qj xij �

nX

jD1
rsxs

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

A ;

where

m WD min
1�i1;:::;ik�n

�
pi1 � � �pik
ri1 � � � rik

�

; M WD max
1�i1;:::;ik�n

�
pi1 � � �pik
ri1 � � � rik

�

:

In [29, 30] the author F. G. Mitroi extends these two results even more by
introducing a more general functional.

2.6 Jensen’s Inequality and Isotonic Linear Functionals

Jensen’s inequality for superquadratic functions, like many other inequalities for
that class of functions, can be generalized for isotonic linear functionals. First we
define isotonic linear functionals as in [25].
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Let E be a nonempty set and L be a linear class of real-valued function
f W E ! R having the properties:

L1: f; g 2 L ) . f̨ C ˇg/ 2 L for all ˛; ˇ 2 R;
L2: 1 2 L, i.e., if f .t/ D 1 for t 2 E , then f 2 L.

Let A W L ! R be a functional with properties:
A1: A . f̨ C ˇg/ D ˛A .f /C ˇA .g/ for f; g 2 L; ˛; ˇ 2 R (A is linear/;
A2: f 2 L, f .t/ � 0 on E ) A .f / � 0 (A is isotonic).

Furthermore, if the functional A has a property
A3: A .1/ D 1, where .1/ D 1 for all t 2 E , then we say that A is normalized.

For this functionals Banić and Varošanec proved in [25] that

Theorem 2.8. Let L satisfy conditions L1, L2 and A satisfy conditions A1, A2
on a nonempty set E . Suppose that k 2 L with k � 0 and A .k/ > 0 and that
' W Œ0;1/ ! R is a continuous superquadratic function. Then for all nonnegative

f 2 L such that kf; k' .f / ; k'
�ˇˇ
ˇf � A.kf /

A.k/
� 1
ˇ
ˇ
ˇ
�

2 L we have

'

�
A .kf /

A .k/

�

�
A .k' .f //� A

�
k'
�ˇˇ
ˇf � A.kf /

A.k/
� 1
ˇ
ˇ
ˇ
��

A .k/
: (17)

If ' is a subquadratic function, then a reversed inequality in (17) holds.

By suitable choice of the functions f and k in the above theorem, the authors get
a refinement of the functional Hölder’s inequality.

Theorem 2.9. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on
a nonempty set E . Let p � 2 and define q by 1

p
C 1

q
D 1. Then for nonnegative

functions g; h 2 L such that gh, gp , hq;
ˇ
ˇ
ˇg � hq�1 A.gh/

A.hq/

ˇ
ˇ
ˇ
p 2 L and A .hq/ > 0 the

following inequality

A .gh/ �


Agp �A
�ˇˇ
ˇ
ˇg � hq�1 A .gh/

A .hq/

ˇ
ˇ
ˇ
ˇ

p�� 1
p

A
1
q .hq/ (18)

holds. In case 0 < p < 2 the inequality in (18) is reversed.

Similarly they obtain a functional Minkowski’s inequality for superquadratic
functions.

Theorem 2.10. Let L and A be as in the previous theorem. If p � 2, then for all
nonnegative functions g, h, on E such that .g C h/p , gp , hq 2 L, we have



New Applications of Superquadracity 379

A
1
p ..g C h/p/ �

0

B
@A .gp/ �A

0

B
@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
g � .g C h/

A
�
g .g C h/p�1

�

A .g C h/p

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

p
1

C
A

1

C
A

1
p

C

0

B
@A .hp/� A

0

B
@

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
h� .g C h/

A
�
h .g C h/p�1

�

A .g C h/p

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

p
1

C
A

1

C
A

1
p

:

3 Superquadratic Functions and Hardy’s Inequality

3.1 Refinements of Hardy’s Type Inequalities

A very interesting application of the properties of superquadratic functions to get
Hardy’s type inequality was dealt by Oguntuase and Persson in [31]. One of Hardy’s
inequalities they considered is

Z 1

0
x�k

�Z x

0
f .t/ dt

�p
dx �

� p

k � 1

�p Z 1

0
xp�kf p .x/ dx; k > 1; p � 1:

Their refinements is as follows:

Theorem 3.1. Let p > 1, k > 1, 0 < b � 1, and let the function f be locally
integrable on .0; b/ such that 0 <

R b
0
xp�kf p .x/ dx < 1.

(i) If p � 2, then

Z b

0

x�k

�Z x

0

f .t/ dt

�p
dx

C k � 1
p

Z b

0

Z b

t

ˇ
ˇ
ˇ
ˇ
ˇ
p

k � 1
� t

x

�1� k�1
p

f .t/� 1

x

Z x

0

f .t/ dt

ˇ
ˇ
ˇ
ˇ
ˇ

p

x
p�k�

k�1
p dx t

k�1
p �1 dt

�
� p

k � 1
�p Z b

0

�

1�
�x

b

� k�1
p

�

xp�kf p .x/ dx: (19)

(ii) If 1 < p � 2, then the inequality holds in the reversed direction.

Now we get new scales of refined Hardy type inequalities by using the ideas
and techniques of [31] and implement them on the functionsK.x/ D x�'.x/, � 2
RC, where '.x/ is superquadratic, by using Jensen type inequalities which these
functions satisfy as expressed in Sect. 2.

From the definition of superquadracity we get in [4] that

Theorem 3.2. For ' .x/ D xp , p � 2 .therefore C' .x/ D ' 0 .x/ D pxp�1/,
� 2 RC, we find that
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Z b

0

�
1 � x

b

�
f pC� .x/

dx

x
�
Z b

0

�
1

x

Z x

0

f .t/ dt

�pC� dx

x

�
Z b

0

Z b

t

�

f � .t/ �
�
1

x

Z x

0

f .�/ d�

����
1

x

Z x

0

f .�/ d�

�p dx

x2
dt

C
Z b

0

Z b

t

f � .t/

�

f .t/ � 1

x

Z x

0

f .�/ d�

�

p

�
1

x

Z x

0

f .�/ d�

�p�1 dx

x2
dt

C
Z b

0

Z b

t

f � .t/

�ˇˇ
ˇ
ˇf .t/ � 1

x

Z x

0

f .�/ d�

ˇ
ˇ
ˇ
ˇ

�p dx

x2
dt; (20)

where f is nonnegative and locally integrable on Œ0; b/. The reverse inequality holds
when 1 < p � 2.

By using (20) we are now ready to derive our new scales of refined Hardy type
inequalities.

Theorem 3.3. Let p � 2, k > 1, 0 < b � 1, and � 2 RC, and let the function f
be nonnegative and locally integrable on .0; b/. Then

�
p C �

k � 1
�pC� Z b

0

�

1 �
�x

b

� k�1
pC�

�

xpC��kf pC� .x/ dx

�
Z b

0

x�k
�Z x

0

f .t/ dt

�pC�
dx

�
�
k � 1

p C �

�Z b

0

Z b

t

  

f .t/
p C �

k � 1

�
t

x

�1� k�1
pC�

!�

�
�
1

x

Z x

0

f .�/ d�

��!

�
�
1

x

Z x

0

f .�/ d�

�p
x

�
1� k�1

pC�

�
.pC��1/�2

t
k�1
pC� �1 dx dt

C
�
k � 1
p C �

�1�� Z b

0

Z b

t

�
f .t/ t

1� k�1
pC�

��

�
�

f .t/
p C �

k � 1
�
t

x

�1� k�1
pC�

� 1

x

Z x

0

f .�/ d�

�

� p

�
1

x

Z x

0

f .�/ d�

�p�1
x

�
1� k�1

pC�

�
.pC1/�2

t
k�1
pC� �1 dx dt

C
� k � 1
p C �

�1��Z b

0

Z b

t

�
f .t/ t

1� k�1
pC�

��
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�
ˇ
ˇ
ˇ
ˇ
ˇ
f .t/

p C �

k � 1
�
t

x

�1� k�1
pC�

� 1

x

Z x

0

f .�/ d�

ˇ
ˇ
ˇ
ˇ
ˇ

p

� x

�
1� k�1

pC�

�
.pC1/�2

t
k�1
pC� �1 dx dt:

Moreover, if � is a nonnegative integer, then the right-hand side of (21) is
nonnegative. If 1 < p � 2, then inequality (21) is reversed. Equality holds when
p D 2. When � D 0, inequality (21) coincides with (19).

3.2 Refined Hardy Type Inequalities with General Kernels
and Measures

The following results were proved by Oguntuase et al. [33]:

Proposition 3.1. Let b 2 .0;1/n, u W .0;b/ ! R is a weight function which is
locally integrable in .0;b/ and v is defined by

v.t/ D t1 � � � tn
Z b1

t1

� � �
Z bn

tn

u.x/

x21 � � �x2n
dx; t 2 .0; b/:

Suppose I D .a; c/, 0 � a < c � 1, ' W I ! R, and f W .0;b/ ! R is an
integrable function, such that f .x/ 2 I , for all x 2 .0;b/.
(i) If ' is superquadratic, then the following inequality holds:

Z b1

t1

� � �
Z bn

tn

u.x/'

�
1

x1 � � �xn
�Z x1

0

� � �
Z xn

0

f .t/ dt
dx

x1 � � � xn

C
Z b1

t1

� � �
Z bn

tn

Z b1

t1

� � �
Z bn

tn

'

�ˇˇ
ˇ
ˇf .t/�

1

x1 � � � xn
Z x1

0

� � �
Z xn

0

f .t/ dt

ˇ
ˇ
ˇ
ˇ

�
u.x/

x21 � � � x2n
dx dt

�
Z b1

0

� � �
Z bn

0

v .x/ ' .f .x//
dx

x1 � � �xn : (21)

(ii) If ' is subquadratic, then (21) holds in the reversed direction.

Proposition 3.2. Let b 2 Œ0;1/, u W .b;1/ ! R be a weight function which is
locally integrable in .0;b/ and define v by

v.t/ D 1

t1 � � � tn
Z t1

b1

� � �
Z tn

bn

u.x/ dx < 1; t 2 .b;1/:

Suppose I D .a; c/, 0 � a < c � 1, ' W I ! R, and f W .b;1/ ! R is an
integrable function, such that f .x/ 2 I , for all x 2 .b;1/.
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(i) If ' is superquadratic, then the following inequality holds:

Z
1

b1

� � �
Z

1

bn

u.x/'
�

x1 � � �xn
Z

1

x1

� � �
Z

1

xn

f .t/
dt

t 21 � � � t 2n
�

dx
x1 � � � xn

C
Z

1
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� � �
Z

1

bn

Z t1
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� � �
Z tn

bn

'

�ˇˇ
ˇ
ˇf .t/� x1 � � � xn

Z
1

x1

� � �
Z

1

xn

f .t/
dt

t 21 � � � t 2n

ˇ
ˇ
ˇ
ˇ

�

� u.x/ dx
dt

t 21 � � � t 2n

�
Z

1

b1

� � �
Z

1

bn

v.x/'.f .x//
dx

x1 � � � xn : (22)

(ii) If ' is subquadratic, then the inequality sign in (22) is reversed.

In [19] the authors extended the above propositions as follows:
Let .˝1;˙1; 
1/; .˝2;˙2; 
2/ be measure spaces and let Ak be defined as

follows:

Akf .x/ WD 1

K.x/

Z

˝2

k.x; y/f .y/ d
2.y/; (23)

where f W ˝2 ! R is measurable, k W ˝1 � ˝2 ! R is a measurable and
nonnegative kernel and

K.x/ WD
Z

˝2

k.x; y/ d
2.y/ < 1; x 2 ˝1: (24)

Their result reads:

Theorem 3.4. Let u be a weight function, k.x; y/ � 0. Assume that k.x;y/

K.x/
u.x/ is

locally integrable on ˝1 for each fixed y 2 ˝2. Define v by

v.y/ WD
Z

˝1

k.x; y/

K.x/
u.x/ d
1.x/ < 1:

Suppose I D .0; c/, c � 1, ' W I ! R. If ' is a superquadratic function, then the
inequality

Z

˝1

'.Akf .x//u.x/ d
1.x/

C
Z

˝2

Z

˝1

' .jf .y/ � Akf .x/j/ u.x/k.x; y/

K.x/
d
1.x/ d
2.y/

�
Z

˝2

'.f .y//v.y/ d
2.y/ (25)
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holds for all measurable functions f W ˝2 ! R, such that Imf � I , where Ak is
defined by (23) and (24) .

If ' is subquadratic, then the inequality sign in (25) is reversed.

By using the above results with concrete kernels we can obtain a refinement
of some classical inequalities. Here we only give the following complement and
refinement of the following well-known inequality:

Z 1
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0
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x C y
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0
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0
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Corollary 3.1. Let p > 1 and f 2 Lp.RC/. If p � 2, then
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x C y
dx

�p
dy

C
0

@ �

sin
�
�
p

�

1

A

p�1 Z 1

0

y
� 1
p

Z 1

0

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
f .y/y

1
p �

sin
�
�
p

�

�
x
1
p

Z 1

0

f .y/

x C y
dy

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

p

� x
1
p�1

x C y
dx dy

�
0

@ �

sin
�
�
p

�

1

A

p Z 1

0

f p.y/ dy: (26)

If 1 < p � 2, then (26) holds in the reversed direction.

4 More Inequalities Related to Superquadracity

4.1 Inequalities for Averages

For a function f let

An .f / D 1

n� 1

n�1X

rD1
f
� r

n

�
.n � 2/

and

Bn .f / D 1

nC 1

nX

rD0
f
� r

n

�
.n � 1/ :
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For these An .f / and Bn .f / we get in [6] the following theorems:

Theorem 4.1. If f is superquadratic on Œ0; 1, then for n � 2

AnC1 .f /� An .f / �
n�1X

rD1
	rf .xr / ;

where

	r D 2r

n .n � 1/ ; xr D n � r

n .nC 1/
:

Further,

AnC1 .f /� An .f / � f

�
1

3n

�

C
n�1X

rD1
	rf .yr / ;

where

yr D j2n � 1 � 3r j
3n .nC 1/

:

If f is also nonnegative, then for n � 3,

AnC1 .f /� An .f / � f

�
1

3n

�

C f

�
16

81 .nC 3/

�

:

The theorem is proved by using the identity

�n D n � 1

n

nX

rD1
f

�
r

nC 1

�

�
n�1X

rD1
f
� r

n

�

D
n�1X

rD1

r

n



f

�
r C 1

nC 1

�

� f
� r

n

��

C
n�1X

rD1

n � r
n



f

�
r

nC 1

�

� f
� r

n

��

and by using the basic Jensen’s inequality (2) for superquadratic functions, taking
into account that

r C 1

nC 1
� r

n
D n � r
n .nC 1/

:

Theorem 4.2. If f is superquadratic on Œ0; 1, then for n � 2,

Bn�1 .f / � Bn .f / �
nX

rD1
	rf .xr / ;
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where

	r D 2r

n .n � 1/ ; xr D n � r

n .nC 1/
:

Further

Bn�1 .f /� Bn .f / � f

�
1

3n

�

C
nX

rD1
	rf .yr / ;

where yr D j2nC 1 � 3r j =.3n .n � 1// the opposite inequalities hold if f is
subquadratic.

If f is also nonnegative, then for n � 2,

Bn�1 .f /� Bn .f / � f

�
1

3n

�

C f

�
16

81n

�

:

The proof uses the identity

�n D .nC 1/ ŒBn�1 .f / � Bn .f /

D
nX

rD1

r

n



f

�
r � 1

n � 1

�

� f
� r

n

��

C
n�1X

rD0

n � r
n

h
f
� r

n � 1

�
� f

� r

n

�i
:

We now formulate generalized versions of the earlier results in which f .r=n/ is
replaced by f .ar=an/ and 1=.n˙1/ is replaced by 1=cn˙1, under suitable conditions
on the sequences .an/ and .cn/.

Theorem 4.3. Let .an/n�1 and .cn/n�0 be sequences such that an > 0 and cn > 0

for n � 1 and

(A1) c0 D 0 and cn is increasing,
(A2) cnC1 � cn is decreasing for n � 0,
(A3) cn.anC1=an � 1/ is decreasing for n � 1.

Given a function f , let

An Œf; .an/ ; .cn/ D An .f / D 1

cn�1

n�1X

rD1
f

�
ar

an

�

:

Suppose that f is superquadratic and nonnegative. Then

AnC1 .f / � An .f / � 1

cncn�1

n�1X

rD1
cr

�ˇˇ
ˇ
ˇ
arC1
anC1

� ar

an

ˇ
ˇ
ˇ
ˇ

�

C 1

cncn�1

n�1X

rD1
.cn�cr / f

�ˇˇ
ˇ
ˇ
ar

an
� ar

anC1

ˇ
ˇ
ˇ
ˇ

�

:
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Theorem 4.4. Let .an/n�0 and .cn/n�0 be sequences such that an > 0 and cn > 0

for n � 1 and

(B1) c0 D 0 and cn is increasing,
(B2) cn � cn�1 is increasing for n � 1,
(B3) cn .1 � an�1=an/ is increasing for n � 1,
(B4) either a0 D 0 or .an/ is increasing.

Given a function f , let

Bn Œf; .an/ ; .cn/ D Bn .f / D 1

cnC1

nX

rD0
f

�
ar

an

�

; n � 1:

Suppose that f is superquadratic and nonnegative. Then

Bn�1 .f /� Bn .f / � 1

cncnC1

n�1X

rD1
crf

�ˇˇ
ˇ
ˇ
ar

an
� ar�1
an�1

ˇ
ˇ
ˇ
ˇ

�

C 1

cncnC1

n�1X

rD1
.cn�cr / f

�ˇˇ
ˇ
ˇ
ar

an � 1
� ar

an

ˇ
ˇ
ˇ
ˇ

�

:

4.2 Bohr’s Inequality

An inequality of Bohr states: for any z;w 2 C and for any p; q > 1 with 1
p

C 1
q

D 1

jz C wj2 � p jzj2 C q jwj2

holds with equality iff w D .p � 1/ z.
This inequality has many extensions and generalizations.
In [13] Bohr’s theorem is extended for z;w 2 RC by replacing the power 2 with

powers r � 2 and with powers 1 � r � 2 W
Theorem 4.5. For any A;B 2 RC and for any p; q 2 R with 1

p
C 1

q
D 1,

(i) For r � 2 and 1 < p � 2 .q � 2/ we get the inequality:

p jAjr C q jBjr � 1

2r�2
j.p � 1/AC Bjr C 1

2r�2
jB � Ajr (27)

and for q, 1 < q � 2 .p � 2/ we get that

p jAjr C q jBjr � 1

2r�2
jAC .q � 1/Bjr C 1

2r�2
jB �Ajr (28)
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equality holds in (27) and (28) when r > 2 if p D q D 2 and A D B .
Moreover, if r D 2 equality holds in (27) and (28) if p D q D 2, which is the
parallelogram law.

(ii) For 1 � r � 2, if p � 2 .1 < q � 2/, we get that

p jAjr C q jBjr � 1

2r�2
j.p � 1/AC Bjr C 1

2r�2
jB � Ajr

and analogously if 1 < p � 2 .q � 2/

p jAjr C q jBjr � 1

2r�2
jAC .q � 1/Bjr C 1

2r�2
jB �Ajr :

For p D q D 2, 1 � r � 2 we get that

jAC Bjr � 2r�1
�jAjr C jBjr� � jAC Bjr C jB �Ajr

which we may consider as an extension of the parallelogram law.
(iii) For r D 2 if 1 < p � 2 .q � 2/ we get that

j.p � 1/ACBj2 C jB�aAj2 � p jAj2 Cq jBj2 � jAC .q�1/Bj2 C jB�Aj2 ;

and if 2 � p .1 < q � 2/

jAC .q�1/Bj2 C jB�Aj2 � p jAj2 Cq jBj2 � j.p�1/AC Bj2 C jB �Aj2 :

4.3 On Exponential Convexity and Cauchy’s Means

New Cauchy type means related to superquadracity are dealt with in [17,20,21,23].
These means are obtained by applying the so-called exp-convex method established
in [24, 34]. Here we demonstrate only Cauchy means discussed in [21].

The definition of exponential convexity is:

Definition 4.1. A function ' W .a; b/ ! R is said to be exponentially convex if it
is continuous and

mX

i;jD1
uiuj '.xi C xj / � 0

holds for all m 2 N and all choices ui 2 R, i D 1; 2; : : : ; m and xi 2 .a; b/ such
that xi C xj 2 .a; b/, 1 � i; j � m.
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If ' W .a; b/ ! RC is an exponentially convex function, then ' is also
log-convex, that is, log' is convex.

It is easy to verify that if ' W .a; b/ ! RC is a log-convex function, then for any
x1; x2; y1; y2;2 .a; b/ such that x1 � y1, x2 � y2, x1 ¤ x2, y1 ¤ y2 the following
is valid:

�
' .x2/

' .x1/

� 1
x2�x1 �

�
' .y2/

' .y1/

� 1
y2�y1

:

Let L be a linear class of continuous functions ' W Œ0; b/ ! R. Let f W Œ˛; ˇ !
.0; b/ be continuous and monotonic and 	 W Œ˛; ˇ ! R be either continuous or of
bounded variation satisfying 	 .˛/ � 	 .x/ � 	 .ˇ/. We define the functional � on
L by

�' D 1
	.ˇ/�	.˛/

ˇZ

˛

h
' .f .t// � '

�ˇˇ
ˇf .t/ � f

ˇ
ˇ
ˇ
�i

d	.t/ � '.f /;

where

f D 1

	.ˇ/ � 	.˛/
Z ˇ

˛

f .t/d	.t/:

In the discrete case we define the functional� on L by

�' D 1

An

nX

iD1
ai Œ'.xi / � '.jxi � xj/ � ' .x/ ;

where x 2 .0; b/n is a monotonic n�tuple, a is a real n�tuple satisfying 0 � Aj D
jP

iD1
ai � An, j D 1; : : : ; n, An > 0 and x D 1

An

nP

iD1
aixi .

Let s 2 RC. We define the superquadratic function  s W Œ0; b/ ! R by

 s.x/ D

8
<̂

:̂

sxesx � esx C 1

s3
; s ¤ 0;

1

3
x3; s D 0:

Applying the functional � to  s we have

� s D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1

s3

"
1

	.ˇ/ � 	.˛/
Z ˇ

˛

�
Rs.f .t//� Rs.jf .t/ � f j/

�
d	.t/ � Rs.f /

#

; s ¤ 0;

1

3

"
1

	.ˇ/� 	.˛/

Z ˇ

˛

�
f 3.t/ � jf .t/ � f j3

�
d	.t/ � f 3

#

; s D 0;

(29)
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where we denote Rs.x/ D sxesx � esx C 1.
Analogously, applying the functional� to  s , we have

� s D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1

s3

"
1

An

nX

iD1
ai .Rs.xi / � Rs.jxi � xj//� Rs.x/

#

; s ¤ 0;

1

3

"
1

An

nX

iD1
ai
�
x3i � jxi � xj3� � x3

#

; s D 0:

(30)

For � s and � s we get

Theorem 4.6. Let � s and� s be defined as in (29) and in (30) . Then

(a) The functions s 7! � s and s 7! � s are exponentially convex.
(b) If � s > 0, and� s > 0, the functions s 7! � s and s 7! � s are log-convex.

To see that s 7! � s is exponentially convex we observe that

F .x/ D
mX

i;jD1
uiuj p iCj

2

.x/

is superadditive and F .0/ D 0 and therefore superquadratic, hence

�F D
mX

i;jD1
uiuj �p iCj

2

.x/ � 0:

The same type of results we get when we define the superquadratic function �s W
Œ0; b/ ! R, s 2 RC by

�s.x/ D

8
ˆ̂
<

ˆ̂
:

xs

s.s � 2/ ; s ¤ 2;

x2

2
logx; s D 2;

(31)

with the convention 0 log 0 WD 0.
Applying the functional � to �s we have

��s D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1

s.s � 2/

"
1

	.ˇ/� 	.˛/

Z ˇ

˛
.f s.t/� jQjs/ d	.t/ � f s

#

; s ¤ 2;

1

2

"
1

	.ˇ/� 	.˛/

Z ˇ

˛

�
f 2.t/ log f .t/� Q2 log jQj

�
d	.t/ � f

2
log f

#

; s D 2;

(32)

where Q D f .t/ � f .
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Similarly, if we apply the functional� to �s , we have

��s D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1

s.s � 2/

"
1

An

nX

iD1
ai
�
xsi � jDjs�� xs

#

; s ¤ 2;

1

2

"
1

An

nX

iD1
ai
�
x2i logxi � D2 log jDj�� x2 logx

#

; s D 2;

(33)

where D D xi � x.
From this we get the next theorem which can be proved in a similar way as

Theorem 4.6.

Theorem 4.7. Let ��s and��s be defined as in (32) and (33). Then

(a) The functions s 7! ��s and s 7! ��s are exponentially convex.
(b) If ��s > 0, and ��s > 0 the functions s 7! ��s and s 7! ��s are log-convex.

Theorem 4.7 enables us to define new means. If we choose ' D �s and  D �r ,
where r; s 2 RC, r ¤ s, r; s ¤ 2, then we have

min
˛�t�ˇ f .t/ �

�
��s

��r

� 1
s�r

� max
˛�t�ˇ f .t/:

We denote the new means by

Ms;r.f I	/ D
�
��s

��r

� 1
s�r

:

For r; s 2 RC we can extend this mean as follows:

Ms;r .f I	/ D exp

0

@
r.r � 2/

�
1

	.ˇ/�	.˛/
R ˇ
˛
.f s.t/ � jQjs/d	.t/ � f s

�

s.s � 2/
�

1
	.ˇ/�	.˛/

R ˇ
˛
.f r .t/ � jQjr /d	.t/ � f

r
�

1

A

1
s�r

;

for r ¤ s .r; s ¤ 2/;

Mr;r .f I	/D exp

 
1

	.ˇ/�	.˛/

R ˇ
˛ .f

r .t/ logf .t/� jQjr log jQj/d	.t/� f r
logf

1
	.ˇ/�	.˛/

R ˇ
˛ .f

r .t/� jQjr /d	.t/� f r � 2r � 2
r.r � 2/

!

;

for r ¤ 2; and

M2;2.f I	/ D exp

0

@
1

	.ˇ/�	.˛/
R ˇ
˛ .f

2.t/ log2 f .t/�Q2 log2 jQj/d	.t/�f 2 log2 f

2
�

1
	.ˇ/�	.˛/

R ˇ
˛ .f

2.t/ log f .t/�Q2 log jQj/d	.t/ � f 2 log f
� � 1

2

1

A;

whereQ D f .t/ � f .
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These means satisfy:

Theorem 4.8. Let r; s; u; v 2 RC such that r � u, s � v, r ¤ s, u ¤ v. Then

Ms;r.f I	/ � Mv;u.f I	/:

This follows from the log-convexity of s 7! ��s . Then, for any r; s; u; v 2 RC,
such that r � u, s � v, r ¤ s, u ¤ v, we have

Ms;r .f I	/ D
�
��s

��r

� 1
s�r

�
�
��v

��u

� 1
v�u

D Mv;u.f I	/:

In the discrete case we use for the new means the notation

Ms;r.xI a/ D
�
��s

��r

� 1
s�r

;

and for r; s 2 RC we define the Cauchy type means

Ms;r.xI a/ D

0

B
B
@

r.r � 2/

�
1
An

nP

iD1
ai
�
xsi � jDjs� � xs

�

s.s � 2/

�
1
An

nP

iD1
ai
�
xri � jDjr�� xr

�

1

C
C
A

1
s�r

; r ¤ s; r; s ¤ 2;

Mr;r.xI a/D exp

0

B
B
@

1
An

nP

iD1
ai
�
xri logxi�jDjr log jDj��xr logx

1
An

nP

iD1
ai
�
xri �jDjr��xr

� 2r�2
r.r�2/

1

C
C
A ; r¤2;

M2;2.xI a/ D exp

0

B
B
@

1
An

nP

iD1
ai
�
x2i log2 xi � D2 log2 jDj�� x2 log2 x

2

�
1
An

nP

iD1
ai
�
x2i logxi � D2 log jDj�� x2 logx

� � 1

2

1

C
C
A ;

where D Dxi � x.
We can easily check that these means are also symmetric and the special cases

are limits of the general case.

4.4 Fejer and Hermite–Hadamard Type Inequalities

In [12] Fejer and Hermite–Hadamard type inequalities for superquadratic functions
were discussed. Here are two results presented in [12]:
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Theorem 4.9. Let f be a superquadratic integrable function on Œa; b and let p
be nonnegative integrable and symmetric about x D .a C b/=2, 0 � a < b. Let
P .t/ be

P .t/ D
Z b

a

f

�

tx C .1 � t/
a C b

2

�

p .x/ dx; t 2 Œ0; 1 ;

and let Q.t/ be

Q.t/ D
Z b

a

1

2



f

�
1C t

2
a C 1 � t

2
x

�

p

�
x C a

2

�

Cf
�
1C t

2
b C 1 � t

2
x

�

p

�
x C b

2

��

dx; t 2 Œ0; 1 ;

then for 0 � s � t � 1, t > 0,

P .s/ � P .t/ �
Z b

a

t C s

2t
f

�

.t � s/

�ˇˇ
ˇ
ˇ
aC b

2
� x

ˇ
ˇ
ˇ
ˇ

��

p .x/ dx

�
Z b

a

t � s

2t
f

�

.t C s/

�ˇˇ
ˇ
ˇ
aC b

2
� x

ˇ
ˇ
ˇ
ˇ

��

p .x/ dx:

And, if 0 � s � t � 1, we get that

Q.s/�Q.t/ � �
Z b

a

�
1 � tCs

2

� j2x � a � bj C tCs
2
.b � a/

.1 � t/ j2x � a � bj C t .b � a/

� f

�
t � s
2

.b � a � jaC b � 2xj/
�

p .x/ dx

�
Z b

a

t�s
2
.b � a � ja C b � 2xj/

.1 � t/ j2x � a � bj C t .b � a/

� f

��

1 � t C s

2

�

j2x � a � bj C t C s

2
.b � a/

�

p .x/ dx:

4.5 Refinements of Some Classical Inequalities

In [26] the authors obtained a sequence of inequalities for superquadratic functions.
Especially, when the superquadratic function is also increasing and therefore
convex, then refinements of classical known results are obtained.
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Here we demonstrate two of their results. In Theorem 2.1 there, a converse of
Jensen’s inequality for superquadratic functions is proved:

Theorem 4.10. Let .˝;A;
/ be a measure space with 0 < 
 .˝/ < 1 and let '
be a superquadratic function. If f W ˝ � Œm; 
 ! Œ0;1/ is such that f; ' ı f 2
L1 .
/, then we have

1


 .˝/

Z

r

.' ı f / d
C�c � M � f

M �m
' .m/C f �m

M �m' .
/ ;

where f D 1


 .˝/

Z

˝

f d
 and

�c D 1


 .˝/

1

M �m
Z

˝

Œ.M � f / ' .f �m/C .f �m/' .M � f / d
:

In [26, Theorem 4], the integral version of the reversal of Jensen’s inequality is
proved:

Theorem 4.11. Let .˝;A;
/ be a measure space with 0 < 
 .˝/ < 1 and let '
be a superquadratic function. If p; g W ˝ ! Œ0;1/ are functions and a; u 2 Œ0;1/

are real numbers such that

p; pg; p' .g/ ; p'

�ˇˇ
ˇ
ˇ

R
˝
pg d


R
˝ p d


� g
ˇ
ˇ
ˇ
ˇ

�

2 L1 .
/ ; 0 <

Z

˝

p d
 < u;

and ua � R
˝
pg d
 � 0, then

'

�
ua � R

˝ pg d


u � R
˝
p d


�

� u' .a/� R
˝ p' .g/ d


u � R
˝
p d


C�RJ ;

where

�RJ D 1

u � R
˝ p d


Z

˝

p'

�ˇˇ
ˇ
ˇ

R
˝
pg d


R
˝ p d


� g
ˇ
ˇ
ˇ
ˇ

�

d


C
�Z

˝

p d


�

'

�ˇˇ
ˇ
ˇ

R
˝ pg d

R
˝
p d


� a
ˇ
ˇ
ˇ
ˇ

�

C
�

u �
Z

˝

p d


�

'

� R
˝ p d


u � R
˝
p d


ˇ
ˇ
ˇ
ˇ

R
˝ pg d

R
˝
p d


� a
ˇ
ˇ
ˇ
ˇ

��

:
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Abstract The purpose of this paper is to present an up-to-date account of the
advances made in the study of Lp theory of Green’s operator applied to differential
forms.

1 Introduction

We all know that Green’s operator G is one of key operators which are widely
studied and used in several areas, including analysis and PDEs. For example,
Green’s operator is often applied to study the solutions of various differential
equations and to define Poisson’s equation for differential forms. Much progress has
been made during recent years in the study of Green’s operator G and some other
related operators, such as the Laplacian operator � and the harmonic projection
operatorH ; see [1,2,4,7,20,23,26,27]. Differential forms have become invaluable
tools for many fields of sciences and engineering, including theoretical physics,
general relativity, potential theory, and electromagnetism. They can be used to
describe various systems of PDEs and to express different geometric structures
on manifolds. In many situations, the process to study solutions of PDEs involves
estimating the various norms of the operators. The purpose of this paper is to present
an up-to-date account of the progress made in investigation of Lp theory of Green’s
operator and the related compositions that are applied to differential forms.
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We keep using the traditional notation. Let˝ be a bounded domain in R
n, n � 2,

B and �B be the balls with the same center and diam .�B/ D � diam .B/. We do
not distinguish the balls from cubes, throughout this paper. We use jEj to denote the
n-dimensional Lebesgue measure of a set E � R

n. For a function u, the average
of u over B is expressed by uB D 1

jBj
R
B

udx. All integrals involved in this paper

are the Lebesgue integrals. We say w is a weight if w 2 L1loc .R
n/ and w > 0 a.e.

Differential forms are extensions of differentiable functions in R
n. For example, the

function u.x1; x2; : : : ; xn/ is called a 0-form. A differential 1-form u.x/ in R
n can be

expressed as u.x/ D Pn
iD1 ui .x1; x2; : : : ; xn/dxi ; where the coefficient functions

ui .x1; x2; : : : ; xn/, i D 1; 2; : : : ; n, are differentiable. Similarly, a differential
k-form u.x/ can be expressed as

u.x/ D
X

I

uI .x/dxI D
X

ui1i2:::ik .x/dxi1 ^ dxi2 ^ � � � ^ dxik ;

where I D .i1; i2; : : : ; ik/, 1 � i1 < i2 < � � � < ik � n; see [2] for more properties
and applications of differential forms. Let ^l D ^l .Rn/ be the set of all l-forms in
R
n, D0.˝;^l / be the space of all differential l-forms in ˝ , and Lp.˝;^l / be the

l-forms u.x/ D P
I uI .x/dxI in˝ satisfying

R
˝

juI jp < 1 for all ordered l-tuples
I , l D 1; 2; : : : ; n. We express the exterior derivative by d and the Hodge star
operator by ?. The Hodge codifferential operator d? is given by d? D .�1/nlC1 ?
d?, l D 1; 2; : : : ; n. If u D ˛i1i2:::ik .x1; x2; : : : ; xn/dxi1 ^ dxi2 ^ � � � ^ dxik D
˛IdxI ; i1 < i2 < � � � < ik; is a differential k-form, then

?u D ?˛i1i2:::ik dxi1 ^ dxi2 ^ � � � ^ dxik D .�1/
P
.I /˛I dxJ ;

where I D .i1; i2; : : : ; ik/, J D f1; 2; : : : ; ng � I , and
P
.I / D k.kC1/

2
CPk

jD1 ij :
For example, in ^1.R3/, we have ?dx1 D .�1/2dx2 ^ dx3 D dx2 ^ dx3: We write

kuks;˝ D �R
˝

jujs�1=s and jjujjs;˝;w D �R
˝

jujsw.x/dx�1=s , where w.x/ is a weight.
Let ^l˝ be the l th exterior power of the cotangent bundle and C1.^l˝/ be the
space of smooth l-forms on ˝ . We set

W.^l˝/ D
n
u 2 L1loc .^l˝/ W u has generalized gradient

o
:

The harmonic l-fields are defined by H.^l˝/ D fu 2 W.^l˝/ W du D d?u D
0; u 2 Lp for some 1 < p < 1g: The orthogonal complement of H in L1 is
defined by

H? D fu 2 L1 W< u; h >D 0 for all h 2 Hg:

Then, the Green’s operator G is defined as G W C1.^l˝/ ! H? \ C1.^l˝/

by assigning G.u/ as the unique element of H? \ C1.^l˝/ satisfying Poisson’s
equation �G.u/ D u � H.u/; where H is the harmonic projection operator that
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mapsC1.^l˝/ ontoH, so thatH.u/ is the harmonic part of u. See [2,13,20,23,28]
for more properties of Green’s operator. For a measurable set E  R

n and ! 2
D0.E;^l /, the vector-valued differential form

r! D
�
@!

@x1
; : : : ;

@!

@xn

�

consists of differential forms @!
@xi

2 D0.E;^l /; where the partial differentiation is

applied to the coefficients of !. We useW 1;p.E;^l / to denote the Sobolev space of
l-forms which equals Lp.^lE/\ L

p
1 .^lE/ with norm

k!kW 1;p.E/ D diam .E/�1k!kp;E C kr!kp;E :

For 0 < p < 1 and a weight w.x/, the weighted norm of ! 2 W 1;p.E;^l / overE
is denoted by

k!kW 1;p.E/; w D diam .E/�1k!kp;E;w C kr!kp;E;w:

The differential equation d?A.x; d!/ D 0 is called the homogeneous A-harmonic
equation or the A-harmonic equation, and the nonlinear elliptic partial differential
equation

d?A.x; d!/ D B.x; d!/ (1)

is called the nonhomogeneous A-harmonic equation for differential forms, where
A W ˝�^l .Rn/ ! ^l .Rn/ andB W ˝�^l .Rn/ ! ^l�1.Rn/ satisfy the conditions:

jA.x; �/j � aj�jp�1; A.x; �/ � � � j�jp and jB.x; �/j � bj�jp�1 (2)

for almost every x 2 ˝ and all � 2 ^l .Rn/. Here a; b > 0 are constants and
1 < p < 1 is a fixed exponent associated with (1). A solution to (1) is an element
of the Sobolev space W 1;p

loc .˝;^l�1/ such that

Z

˝

A.x; d!/ � d' C B.x; d!/ � ' D 0

for all ' 2 W
1;p
loc .˝;^l�1/ with compact support. Let A W ˝ � ^l .Rn/ ! ^l .Rn/

be defined by A.x; �/ D �j�jp�2 with p > 1. Then A satisfies required conditions
and d?A.x; d!/ D 0 becomes the p-harmonic equation

d?.dujdujp�2/ D 0 (3)

for differential forms. If u is a function (a 0-form), the equation (3) reduces to the
usual p-harmonic equation div.rujrjp�2/ D 0 for functions. We should notice that
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if the operator B D 0 in (1), then (1) reduces to the homogeneous A-harmonic
equation. Some results have been obtained in recent years about different versions
of the A-harmonic equation. In real life applications, we will use differential forms
that not only depend on the coordinate variable x 2 R

n but also the time variable t .
For example, when we study a force vector field F, this vector often varies with
x 2 R

3 and the time t . Hence, we need to study differential forms with the time
variable t . We use

u.x; t/ D
X

I

uI .x; t//dxI D
X

ui1i2:::ik .x; t/dxi1 ^ dxi2 ^ � � � ^ dxik (4)

to denote the differential k-form with a parameter t , where the coefficients

ui1i2:::ik .x; t/ D ui1i2:::ik .x1; x2; : : : ; xn; t/; 1 � i1 < i2 < � � � < ik � n;

are differentiable functions of .x1; x2; : : : ; xn; t/. We always assume that t 2 Œ0;1/

is a parameter. For differential forms with a parameter t , the nonhomogeneous
A-harmonic equation (1) becomes the parametricA-harmonic equation

d?A.x; du.x; t// D B.x; ut .x; t//; (5)

which can be considered as the generalized heat or diffusion equation.

2 The Lp-Estimates for Green’s Operator

The purpose of this section is to present Lp norm inequalities for Green’s operator
and the Laplace-Beltrami operator � D dd? C d?d applied to differential
forms. The Laplace-Beltrami operator and Green’s operator play an important
role in many fields, including partial differential equations, harmonic analysis, and
quasiconformal mappings. The following series basic Lp norm inequalities were
established in [7].

Theorem 2.1. Let u 2 C1.^l˝/, l D 0; 1; : : : ; n, and 1 < s < 1. Then, there
exists a constant C , independent of u, such that

k�.G.u//ks;M � Ckuks;M : (6)

Theorem 2.2. Let u 2 C1.^l˝/, l D 0; 1; : : : ; n. Assume that 1 < s < 1. Then,
there exists a constant C , independent of u, such that

kG.�u/ks;M � Ckuks;M : (7)
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Theorem 2.3. Let u 2 C1.^l˝/, l D 0; 1; : : : ; n. If 1 < s < 1, then there exists
a constant C , independent of u, such that

k.G.u//Dks;D � Ckuks;D (8)

for any convex and boundedD with D  ˝ .

Corollary 2.4. Let u 2 C1.^l˝/, l D 0; 1; : : : ; n. Assume that 1 < s < 1. Then,
for any convex and boundedD withD  ˝ , there exists a constant C , independent
of u, such that

kG.u/� .G.u//Dks;D � CkG.u/� cks;D (9)

for any closed form c and

kG.u/� .G.u//Dks;D � Ckuks;D: (10)

The following inequality (11) is considered as an analogue of the Poincaré
inequality for Green’s operator.

Theorem 2.5. Let u 2 C1.^l˝/, l D 0; 1; : : : ; n. Assume that 1 < s < 1. Then,
there exists a constant C , independent of u, such that

kG.u/� .G.u//Bks;B � C diam .B/kduks;B (11)

for all balls B with B  ˝ .

Using Theorem 2.5, the following Sobolev-Poincaré imbedding theorem about
Green’s operatorG applied to a differential form u was also obtained in [7].

Theorem 2.6. Let u 2 C1.^l˝/, l D 0; 1; : : : ; n. Assume that 1 < s < 1. Then,
there exists a constant C , independent of u, such that

kG.u/� .G.u//BkW 1;s.B/ � Ckduks;B (12)

for all balls B with B  ˝ .

The study of different versions of the A-harmonic equation for differential
forms has developed rapidly in recent years. Many interesting results related to the
A-harmonic equations have been established recently; see [3, 8, 10–12, 14, 16, 18,
22, 25]. Next, we present the weighted norm inequalities for the solutions to the
nonhomogeneousA-harmonic equation

A.x; g C du/ D hC d?v (13)

for differential forms, where g; h 2 D0.˝;^l / andA W ˝�^l
R
n ! ^l

R
n/ satisfies

the following conditions:

jA.x; �/j � aj�jp�1 and < A.x; �/; � > � j�jp (14)
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for almost every x 2 ˝ and all � 2 ^l .Rn/. Here a > 0 is a constant and 1 < p <
1 is a fixed exponent associated with (13).

Definition 2.7. We call u and v a pair of conjugateA-harmonic tensor in˝ if u and
v satisfy the conjugate A-harmonic equation

A.x; du/ D d?v (15)

in ˝ . Similarly, we call u an A-harmonic tensor in ˝ if u satisfies the A-harmonic
equation

d?A.x; du/ D 0: (16)

Note that du D d�v is an analogue of a Cauchy-Riemann system in R
n.

A differential l-form u 2 D0.˝;^l / is called a closed form if du D 0 in ˝ .
Similarly, a differential l C 1-form v 2 D0.˝;^lC1/ is called a coclosed form
if d?v D 0. For example, du D d�v is an analogue of a Cauchy-Riemann system
in R

n. Clearly, the A-harmonic equation is not affected by adding a closed form to
u and coclosed form to v. Therefore, any type of estimates between u and v must be
modulo such forms. Throughout this paper, we always assume that 1

p
C 1

q
D 1.

Definition 2.8. A weight w.x/ is called an Ar.E/-weight for some r > 1 on a
subset E  R

n and write w 2 Ar.E/, if w.x/ > 0 a.e., and

sup
B

�
1

jBj
Z

B

wdx

� 
1

jBj
Z

B

�
1

w

�1=.r�1/
dx

!.r�1/
< 1

for any ball B  E .

See [2] for properties of Ar.E/-weights. We will need the following generalized
Hölder’s inequality.

Theorem 2.9. Let u 2 C1.^l˝/, l D 1; 2; : : : ; n, be an A-harmonic tensor in ˝ .
Assume that � > 1, 1 < s < 1, and w 2 Ar.˝/ for some r > 1. Then, there exists
a constant C , independent of u, such that

kG.�u/ks;B;w˛ � Ckuks;�B;w˛ (17)

for any ball B  ˝ and any real number ˛ with 0 < ˛ � 1.

Theorem 2.10. Let u 2 C1.^l˝/, l D 1; 2; : : : ; n, be an A-harmonic tensor in
˝ . Assume that � > 1, 1 < s < 1, and w 2 Ar.˝/ for some r > 1. Then, there
exists a constant C , independent of u, such that

k�.G.u//ks;B;w˛ � Ckuks;�B;w˛ (18)

for any ball B  ˝ and any real number ˛ with 0 < ˛ � 1.
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Combining Theorems 2.9 and 2.10, we have the following Ar.˝/-weighted
inequality.

Corollary 2.11. Let u 2 C1.^l˝/, l D 1; 2; : : : ; n, be an A-harmonic tensor
in ˝ . Assume that � > 1, 1 < s < 1, and w 2 Ar.˝/ for some r > 1. Then, there
exists a constant C , independent of u, such that

k�.G.u//CG.�u/ks;B;w˛ � Ckuks;�B;w˛ (19)

for any ball B  ˝ and any real number ˛ with 0 < ˛ � 1.

The following theorem is called Ar.˝/-weighted Sobolev-Poincaré imbedding
theorem for Green’s operator G.

Theorem 2.12. Let G.u/ 2 C1.^l˝/, l D 1; 2; : : : ; n, be an A-harmonic tensor
in ˝ . Assume that � > 1, 1 < s < 1, and w 2 Ar.˝/ for some r > 1. Then, there
exists a constant C , independent of u, such that

kG.u/� .G.u//BkW 1;s.B/;w � Ckduks;�B;w (20)

for all balls B with �B  ˝ .

Corollary 2.13. Let u 2 C1.^l˝/, l D 1; 2; : : : ; n, be an A-harmonic tensor
in ˝ . Assume that � > 1, 1 < s < 1, and w 2 Ar.˝/ for some r > 1. Then, there
exists a constant C , independent of u, such that

k.G.u//Bks;B;w˛ � C1kuks;�B;w˛ ; (21)

kG.u/� .G.u//Bks;B;w˛ � C2kuks;�B;w˛ (22)

for all balls B with �B  ˝ and any real number ˛ with 0 < ˛ � 1.

Theorem 2.14. Let u 2 C1.^l�1˝/, l D 1; 2; : : : ; n, and v 2 C1.^lC1˝/, l D
0; 1; 2; : : : ; n� 1, be a pair of solutions to the conjugate A-harmonic equation (15)
in ˝ . Then, there exists a constant C , independent of u and v, such that

kG.du/� .G.du//Dkpp;D � Ckd?vkqq;D (23)

for any convex and bounded domainD with D  ˝ .

We have the following global Sobolev-Poincaré-type imbedding theorem for
Green’s operator.

Theorem 2.15. Let u 2 C1.^l�1˝/, l D 1; 2; : : : ; n, and v 2 C1.^lC1˝/,
l D 0; 1; 2; : : : ; n � 1, be a pair of solutions to the conjugate A-harmonic equation
(15) in ˝ . Then, there exists a constant C , independent of u and v, such that

kG.u/� .G.u//Dkp
W 1;p.D/

� Ckd?vkqq;D
for any bounded domainD with D  ˝ .
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Theorem 2.16. Let u 2 C1.^l�1˝/, l D 1; 2; : : : ; n, and v 2 C1.^lC1˝/,
l D 0; 1; 2; : : : ; n � 1, be a pair of solutions to the conjugate A-harmonic equation
(15) in ˝ . Then, there exists a constant C , independent of u and v, such that

kG.d?v/� .G.d?v//Dkqq;D � Ckdukpp;D
for any bounded domainD with D  ˝ .

3 Lipschitz and BMO Norm Inequalities

In this section, we will study the Lipschitz norm and BMO norm inequalities for
Green’s operator applied to differential forms. Throughout this section, we always
assume that M  R

n is a bounded domain. Let ! 2 L1loc .M;^l /, l D 0; 1; : : : ; n.
We write ! 2 locLip k.M;^l /, 0 � k � 1, if

k!k locLip k ;M D sup
�Q�M

jQj�.nCk/=nk! � !Qk1;Q < 1 (24)

for some � � 1. Further, we write Lipk.M;^l / for those forms whose coefficients
are in the usual Lipschitz space with exponent k and write k!kLipk ;M for this norm.
Similarly, for ! 2 L1loc .M;^l /, l D 0; 1; : : : ; n, we write ! 2 BMO.M;^l / if

k!k?;M D sup
�Q�M

jQj�1k! � !Qk1;Q < 1 (25)

for some � � 1. When ! is a 0-form, (25) reduces to the classical definition of
BMO.M/.

The following four lemmas are used in [27] to prove the Lipschitz and BMO
norm inequalities.

Lemma 3.1. Let u 2 D0.M;^l / be a solution to the nonhomogeneousA-harmonic
equation (1) in M and � > 1 be a constant. Then there exists a constant C ,
independent of u, such that

kdukp;B � C diam .B/�1ku � ckp;�B
for all balls or cubes B with �B  M and all closed forms c. Here 1 < p < 1.

Lemma 3.2. Let u be a smooth differential form satisfying the nonhomogeneous
A-harmonic equation in M , � > 1 and 0 < s; t < 1. Then there exists a constant
C , independent of u, such that

kuks;B � C jBj.t�s/=stkukt;�B
for all balls or cubes B with �B  M .
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Lemma 3.3. Let 0 < ˛ < 1, 0 < ˇ < 1, and s�1 D ˛�1 C ˇ�1. If f and g are
measurable functions on R

n, then k fg ks;E�k f k˛;E � k g kˇ;E for any E  R
n.

Using the same method developed in the proof of Propositions 5.15 and 5.17 in
[20], we can prove that for any closed ball B D B [ @B , we have

kdd�G.u/ks;B C kd�dG.u/ks;B C kdG.u/ks;B C kd�G.u/ks;B C kG.u/ks;B
� C.s/kuks;B :

Note that for any Lebesgue measurable function f defined on a Lebesgue measur-
able set E with jEj D 0, we have

R
E fdx D 0. Thus, kuks;@B D 0 and

kdd�G.u/ks;@BCkd�dG.u/ks;@BCkdG.u/ks;@BCkd�G.u/ks;@BCkG.u/ks;@B D 0

since j@Bj D 0. Therefore, we obtain

kdd�G.u/ks;B C kd�dG.u/ks;B C kdG.u/ks;B C kd�G.u/ks;MB C kG.u/ks;B

D kdd�G.u/ks;B C kd�dG.u/ks;B C kdG.u/ks;B C kd�G.u/ks;B C kG.u/ks;B

� C.s/kuks;B D C.s/kuks;B :

Hence, we have the following lemma.

Lemma 3.4 ([27]). Let u be a smooth differential form defined in M and 1 < s <

1. Then, there exists a positive constant C D C.s/, independent of u, such that

kdd�G.u/ks;B C kd�dG.u/ks;B C kdG.u/ks;B C kd�G.u/ks;MB C kG.u/ks;B
� C.s/kuks;B

for any ball B  M .

Lemma 3.5 ([27]). Let du 2 Ls.M;^l / be a smooth form and G be Green’s
operator, l D 1; : : : ; n, and 1 < s < 1. Then, there exists a constant C ,
independent of u, such that

kG.u/� .G.u//Bks;B � C jBj diam .B/kduks;B (26)

for all balls B  M .

We first obtained Lemma 3.5 in [27]. Then, using Lemma 3.5, we proved the
following inequality for Green’s operator with Lipschitz norm.

Theorem 3.6. Let du 2 Ls.M;^l /, l D 1; 2; : : : ; n, 1 < s < 1, be a smooth form
in a domainM . Then, there exists a constant C , independent of u, such that

kG.u/k locLip k ;M � Ckduks;M ; (27)

where k is a constant with 0 � k � 1.
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We also proved the following norm comparison theorem between the Lipschitz
norm and the BMO norm in [27].

Theorem 3.7. Let u 2 Lsloc .M;^l /, l D 1; 2; : : : ; n, 1 < s < 1, be a solution of
the A-harmonic equation (1) in a bounded domain M and G be Green’s operator.
Then, there exists a constant C , independent of u, such that

kG.u/k locLip k ;M � Ckuk?;M ; (28)

where k is a constant with 0 � k � 1.

We have presented some estimates for the Lipschitz norm k � k locLip k;M . Next,
present the following inequality between the BMO norm and the Lipschitz norm
for Green’s operator.

Theorem 3.8. Let u 2 Ls.M;^l /, l D 1; 2; : : : ; n, 1 < s < 1, be a smooth form
in a bounded, convex domain M and G be Green’s operator. Then, there exists a
constant C , independent of u, such that

kG.u/k?;M � CkG.u/k locLip k ;M : (29)

Next theorem says that we estimate BMO norm k � k?;M of Green’s operator in
terms of Ls norm.

Theorem 3.9. Let du 2 Ls.M;^l /, l D 1; 2; : : : ; n, 1 < s < 1, be a smooth form
in a bounded, convex domain M and G be Green’s operator. Then, there exists a
constant C , independent of u, such that

kG.u/k?;M � Ckduks;M : (30)

Based on the above results, we discuss the weighted Lipschitz and BMO norms.
For ! 2 L1loc .M;^l ;w/, l D 0; 1; : : : ; n, we write ! 2 locLip k.M;^l ;w/, 0 �
k � 1, if

k!k locLip k ;M;w D sup
�Q�M

.
.Q//�.nCk/=nk! � !Qk1;Q;w < 1 (31)

for some � > 1, whereM is a bounded domain, the measure 
 is defined by d
 D
w.x/dx, and w is a weight. For convenience, we write the following simple notation
locLip k.M;^l / for locLip k.M;^l ;w/. Similarly, for ! 2 L1loc .M;^l ;w/, l D
0; 1; : : : ; n, we will write ! 2 BMO.M; ^l ;w/ if

k!k?;M;w D sup
�Q�M

.
.Q//�1k! � !Qk1;Q;w < 1 (32)
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for some � > 1, where the measure 
 is defined by d
 D w.x/dx, w is a
weight, and ˛ is a real number. Again, we shall write BMO.M;^l / to replace
BMO.M;^l ;w/ when it is clear that the integral is weighted.

We say a pair of weights .w1.x/;w2.x// satisfies the Ar;	.E/-condition in a set
E  R

n and write .w1.x/;w2.x// 2 Ar;	.E/, for some 	 � 1 and 1 < r < 1 with
1=r C 1=r 0 D 1 if

sup
B�E

�
1

jBj
Z

B

.w1/
	dx

� 1
	r
�
1

jBj
Z

B

w
�	r0

r

2 dx

� 1
	r0

< 1: (33)

The following version of weak reverse Hölder inequality appeared in [12].

Lemma 3.10. Suppose that u is a solution to the nonhomogeneous A-harmonic
equation (1) in M , � > 1 and p; q > 0. There exists a constant C , depending only
on � , n, p, a, b, and q, such that kdukp;Q � C jQj.q�p/=pqkdukq;�Q for all Q with
�Q  M .

Using the Hölder inequality and Lemma 3.10, we extend inequality (26) into the
following weighted version.

kG.u/� .G.u//Bks;B;w1 � C jBj diam .B/kduks;�B;w2 (34)

for all balls B with �B  M , where .w1.x/;w2.x// 2 Ar;	.M/ for some 	 � 1,
1 < r < 1 and � > 1.

Theorem 3.11. Let du 2 Ls.M;^l ; �/, l D 1; 2; : : : ; n, 1 < s < 1, be a solution
of the nonhomogeneousA-harmonic equation in a bounded, convex domainM and
G be Green’s operator, where the measure 
 and � are defined by d
 D w1dx,
d� D w2dx and .w1.x/;w2.x// 2 Ar;	.M/ for some 	 � 1 and 1 < r < 1 with
w1.x/ � " > 0 for any x 2 M . Then, there exists a constant C , independent of u,
such that

kG.u/k locLip k;M;w1 � Ckduks;M;w2 ; (35)

where k is a constant with 0 � k � 1.

We now estimate the k � k?;M;w˛1 norm in terms of the Ls norm.

Theorem 3.12. Let du 2 Ls.M;^l ; �/, l D 1; 2; : : : ; n, 1 < s < 1, be a solution
of the nonhomogeneous A-harmonic equation in a bounded domain M and G be
Green’s operator, where the measures 
 and � are defined by d
 D w1dx, d� D
w2dx and .w1.x/;w2.x// 2 Ar;	.M/ for some 	 � 1 and 1 < r < 1 with
w1.x/ � " > 0 for any x 2 M . Then, there exists a constant C , independent of u,
such that

kG.u/k?;M;w1 � Ckduks;M;w2 : (36)
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As applications, we display some estimates for the Jacobian J.x; f / of a
mapping f W ˝ ! R

n, f D .f 1; : : : ; f n/. We know that the Jacobian J.x; f /
of a mapping f is an n-form, specifically, J.x; f /dx D df 1 ^ � � � ^ df n; where
dx D dx1 ^ dx2 ^ � � � ^ dxn. Let f W ˝ ! R

n, f D .f 1; : : : ; f n/ be a mapping,
whose distributional differential Df D Œ@f i=@xj  W ˝ ! GL.n/ is a locally
integrable function in M with values in the space GL.n/ of all n � n-matrices.
We use

J.x; f / D detDf.x/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

f 1
x1
f 1
x2
f 1
x3
: : : f 1

xn

f 2
x1
f 2
x2
f 2
x3
: : : f 2

xn

:::
:::

:::
: : :

:::

f n
x1
f n
x2
f n
x3
: : : f n

xn

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

to denote the Jacobian determinant of f . Let u be the subdeterminant of Jacobian
J.x; f /, which is obtained by deleting the l rows and l columns, l D 0; 1; : : : ; n�1,
that is,

u D J.xj1 ; xj2 ; : : : ; xjn�l
If i1 ; f i2 ; : : : ; f in�l / D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

f i1
xj1

f i1
xj2

f i1
xj3

: : : f i1
xjn�l

f i2
xj1

f i2
xj2

f i2
xj3

: : : f i2
xjn�l

:::
:::

:::
: : :

:::

f in�l
xj1

f in�l
xj2

f in�l
xj3

: : : f in�l
xjn�l

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

(37)

which is a subdeterminant of Jacobian J.x; f /, here fi1; i2; : : : ; in�lg 
f1; 2; : : : ; ng and fj1; j2; : : : ; jn�lg  f1; 2; : : : ; ng. Also, it is easy to see that

J.xj1 ; xj2 ; : : : ; xjn�l
If i1 ; f i2 ; : : : ; f in�l /dxj1 ^ dxj2 ^ � � � ^ dxjn�l

is an .n � l/-form. Thus, all estimates for differential forms are applicable to the
.n� l/-form J.xj1 ; xj2 ; : : : ; xjn�l

If i1 ; f i2 ; : : : ; f in�l /dxj1 ^ dxj2 ^ � � � ^ dxjn�l
.

For example, choosing u D J.x; f /dx and applying Theorems 3.11 and 3.12, we
have the following Theorems 3.13 and 3.14, respectively.

Theorem 3.13. Let G.J.x; f /dx/ 2 locLip k.˝;^n/, 0 � k � 1, where J.x; f /
is the Jacobian of the mapping f D .f 1; : : : ; f n/ W ˝ ! R

nand ˝ is a bounded
domain in R

n, and G is Green’s operator. Then, G.J.x; f /dx/ 2 BMO.˝;^n/

and

kG.J.x; f //k?;˝ � CkG.J.x; f //k locLip k;˝ ; (38)

where C is a constant.
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Theorem 3.14. Let u 2 Ls.M;^n�l ; �/, 1 < s < 1, be the .n � l/-form defined
by (37), l D 1; 2; : : : ; n� 1, and G be Green’s operator, where the measures 
 and
� are defined by d
 D w1dx, d� D w2dx and .w1.x/;w2.x// 2 Ar;	.M/ for some
	 � 1 and 1 < r < 1 with w1.x/ � " > 0 for any x 2 M . Then, there exists a
constant C , independent of u, such that

kG.u/k locLip k;M;w1 � Ckduks;M;w2 ;

where k is a constant with 0 � k � 1.

Applying Theorem 3.12 to the .n�l/-form defined in (37), we have the following
result.

Theorem 3.15. Let G be Green’s operator and du 2 Ls.M;^n�lC1/, l D
1; 2; : : : ; n � 1, 1 < s < 1, where u is the .n � l/-form defined by (37) in a
bounded, convex domainM . Then, there exists a constantC , independent of u, such
that

kG.u/k?;M � Ckduks;M :

4 Inequalities with Lp.log L/˛ Norms

A continuously increasing function ' W Œ0;1/ ! Œ0;1/ with '.0/ D 0 and
'.1/ D 1 is called an Orlicz function. The Orlicz space L'.˝/ consists of all
measurable functions f on ˝ such that

Z

˝

'

� jf j
k

�

dx < 1 (39)

for some k D k.f / > 0. L'.˝/ is equipped with the nonlinear Luxemburg
functional

kf k' D inf fk > 0 W 1

j˝j
Z

˝

'

� jf j
k

�

dx � 1g: (40)

A convex Orlicz function ' is often called a Young function. A special useful Young
function ' W Œ0;1/ ! Œ0;1/, termed an N -function, is a continuous Young
function such that '.x/ D 0 if and only if x D 0 and limx!0 '.x/=x D 0,
limx!1 '.x/=x D C1: If ' is a Young function, then k � k' defines a norm
in L'.˝/, which is called the Luxemburg norm. If ' is a Young function, then
k � k' defines a norm in L'.˝/, which is called the Luxemburg norm. The Orlicz
space L .˝/ with  .t/ D tp log˛.eC t=c/ will be denoted by Lp.logL/˛.˝/ and
the corresponding norm will be denoted by kf kLp.logL/˛.˝/, where 1 � p < 1,
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˛ � 0, and c > 0 are constants. The spaces Lp.logL/0.˝/ and L1.logL/1.˝/ are
usually referred to as Lp.˝/ and L logL.˝/, respectively. From [13], we have the
equivalence

kf kLp.logL/˛.˝/ �
�Z

˝

jf jplog˛
�

e C jf j
jjf jjp;˝

�

dx

�1=p
: (41)

Similarly, we have

kf kLp.logL/˛.˝;
/ �
�Z

˝

jf jplog˛
�

e C jf j
jjf jjp;˝

�

d


�1=p
; (42)

where
 is a measure defined by d
 D w.x/dx and w.x/ is a weight. In this chapter,
we simply write

kf kLp.logL/˛.E;w˛/ D
�Z

E

jf jplog˛
�

e C jf j
jjf jjp;E

�

w˛dx

�1=p
(43)

and kf kLp.logL/˛.E/ D kf kLp.logL/˛.E;1/, where w is a weight.
In [4], the authors prove the following three inequalities for Green’s operator

with Lp.logL/˛ norms.

Theorem 4.1. Let ! 2 D0.E;^k/ be a solution of the nonhomogeneous
A-harmonic equation in a domain E  R

n and d! 2 Lp.E;^kC1/, k D
0; 1; : : : ; n, 1 < p < 1. G is Green’s operator. Then, there is a constant C ,
independent of !, such that

kG.!/ � .G.!//BkLp.logL/˛.B/ � C jBj diam .B/kd!kLp.logL/˛.�B/: (44)

for all balls B with �B  E and diam .B/ � d0: Here ˛ > 0 is any constant and
� > 1 and d0 > 0 are some constants.

Theorem 4.2. Let ! 2 D0.E;^k/ be a solution of the nonhomogeneous
A-harmonic equation in a domain E  R

n and d! 2 Lp.E;^kC1/,
k D 0; 1; : : : ; n. G is Green’s operator. Assume that 1 < p < 1 and
.w1.x/;w2.x// 2 Ar.E/ for some 1 < r < 1 . Then, there is a constant C ,
independent of !, such that

kG.!/ � .G.!//Bk
Lp.logL/˛.B;w

ˇ
1 /

� C jBj diam .B/kd!k
Lp.logL/˛.�B;w

ˇ
2 /
: (45)

for all balls B with �B  E and diam .B/ � d0: Here ˛ > 0 is any constant and
� > 1, 0 < ˇ � 1 and d0 > 0 are some constants.

Theorem 4.3. Assume G is Green’s operator and ˝  R
n is a bounded L'.
/-

domain with '.t/ D tplog˛
�
e C t

c

�
, where c D kG.!/ � .G.!//B0kp;˝ , 1 <

p < 1, and B0  ˝ is a fixed ball. Let ! 2 D0.˝;^0/ be a solution of the
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nonhomogeneous A-harmonic equation in ˝ and d! 2 Lp.˝;^1/ as well as
.w1.x/;w2.x// 2 Ar.˝/ for some 1 < r < 1. Then, there exists a constant C ,
independent of !, such that

kG.!/ � .G.!//˝k
Lp.logL/˛.˝;w

ˇ
1 /

� C j˝j diam .˝/kd!k
Lp.logL/˛.˝;w

ˇ
2 /
; (46)

where ˇ is a constant with 0 < ˇ � 1.

5 Inequalities with L' Norms

In the last section, we present the inequalities for Green’s operator with Lp.logL/˛

norms. In this section, we will study the Poincaré-type inequalities with unbounded
factors for Green’s operator on the solutions of the nonhomogeneous A-harmonic
equation for differential forms

d?A.x; du/ D B.x; du/

in R
n. Furthermore, we discuss both local and global Poincaré inequalities with L'

norms (Orlicz norms) for Green’s operator applied to differential forms in L'.m/-
averaging domains. These results are extensions ofLp norm inequalities for Green’s
operator and can be used to estimate the norms of differential forms or the norms
of other operators, such as the projection operator. The Poincaré-type inequalities
have been widely studied and used in PDEs, analysis, and the related areas, and
different versions of the Poincaré-type inequalities have been established during
the recent years; see [1, 2, 4, 12, 22]. We all know that Green’s operator is one of
key operators which are widely used in many areas, such as analysis and PDEs.
In many situations, we often need to evaluate the integrals with unbounded factors.
For instance, if the object P1 with mass m1 is located at the origin and the object
P2 with mass m2 is located at .x; y; z/ in R

3, then Newton’s Law of Gravitation
states that the magnitude of the gravitational force between two objects P1 and P2
is jFj D m1m2G=d

2.P1; P2/, where d.P1; P2/ D p
x2 C y2 C z2 is the distance

betweenP1 and P2, andG is the gravitational constant. Hence, we need to deal with
an integral whenever the integrand contains jFj as a factor and the integral domain
includes the origin. Moreover, in calculating an electric field, we will evaluate the
integral

E.y/ D 1

4��0

Z

D

�.x/
y � x

ky � xk3 dx;

where �.x/ is a charge density and x is the integral variable. The integrand is
unbounded if y 2 D. This is the motivation to study the Poincaré-type inequalities
for Green’s operatorG with unbounded factors. All results presented in this section
can be found in [26].
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Theorem 5.1. Let du 2 Lsloc .˝;^l /, l D 1; 2; : : : ; n, 1 < s < 1, be a solution
of the nonhomogeneous A-harmonic equation in a bounded domain ˝ and G be
Green’s operator. Then, there exists a constant C , independent of u, such that

�Z

B

jG.u/� .G.u//B js 1

jx � xB j˛ dx
�1=s

� C.n; s; ˛; 	;˝/jBj�
�Z

�B

jdujs 1

jx � xB j	 dx
�1=s

(47)

for all balls B with �B  ˝ and any real numbers ˛ and 	 with ˛ > 	 � 0, where
� D 1

n
� ˛�	

ns
and xB is the center of ball B and � > 1 is a constant.

Since

1

d.x; @˝/
� 1

rB � jxj
for any x 2 B , where rB is the radius of ball B  ˝ , using the same method
developed in the proof of Theorem 5.1, the author proved the following Poincaré-
type inequality for Green’s operator with unbounded factors in [26].

Theorem 5.2. Let du 2 Lsloc .˝;^l /, l D 1; 2; : : : ; n, 1 < s < 1, be a solution of
the nonhomogeneousA-harmonic equation in a bounded domain ˝ , G be Green’s
operator. Then, there exists a constant C , independent of u, such that

�Z

B

jG.u/� .G.u//B js 1

d˛.x; @˝/
dx

�1=s

� C.n; s; ˛; 	;˝/jBj�
�Z

�B

jdujs 1

jx � xB j	 dx
�1=s

(48)

for all balls B with �B  ˝ and any real numbers ˛ and 	 with ˛ > 	 � 0, where
� D 1

n
� ˛�	

ns
and xB is the center of ball B and � > 1 is a constant.

Definition 5.3. A proper subdomain ˝  R
n is called a ı-John domain, ı > 0, if

there exists a point x0 2 ˝ which can be joined with any other point x 2 ˝ by a
continuous curve �  ˝ so that

d.�; @˝/ � ıjx � �j
for each � 2 � . Here d.�; @˝/ is the Euclidean distance between � and @˝ .

Lemma 5.4 ([18] Covering Lemma). Each ˝ has a modified Whitney cover of
cubes V D fQig such that

[iQi D ˝;
X

Qi2V
�p

5
4Qi

� N�˝
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and some N > 1, and if Qi \Qj 6D ;, then there exists a cube R (this cube need
not be a member of V) in Qi \ Qj such that Qi [ Qj  NR. Moreover, if ˝ is
ı -John, then there is a distinguished cube Q0 2 V which can be connected with
every cube Q 2 V by a chain of cubes Q0;Q1; : : : ;Qk D Q from V and such that
Q  �Qi , i D 0; 1; 2; : : : ; k, for some � D �.n; ı/.

The following global Poincaré-type inequalities for Green’s operator with
unbounded factors in John domains were also proved in [26].

Theorem 5.5. Let u 2 D
0

.˝;^0/ be a solution of the nonhomogeneous A-
harmonic equation (1) and s be a fixed exponent associated with (1). Then, there
exists a constant C.n;N; s; ˛; 	;Q0;˝/, independent of u, such that

�Z

˝

jG.u/� .G.u//Q0 js
1

d˛.x; @˝/
dx

�1=s

� C.n;N; s; ˛; 	;Q0;˝/

�Z

˝

jdujsg.x/dx
�1=s

(49)

for any bounded ı-John domain ˝  R
n, where g.x/ D P

i �Qi

1

jx�xQi j	 . Here ˛

and 	 are constants with 0 � 	 < ˛ < minfn; sC	�ng, sC	 > n, and the fixed
cubeQ0  ˝ , the cubesQi  ˝ , and the constantN > 1 appeared in Lemma 5.4;
xQi is the center of Qi .

Next, we present the global norm inequality in the L'.m/-averaging domains,
which are extension of John domains and Ls-averaging domain; see [2].

Definition 5.6 ([5]). We say a Young function ' lies in the class G.p; q; C /,
1 � p < q < 1, C � 1, if (i) 1=C � '.t1=p/=˚.t/ � C and (ii)
1=C � '.t1=q/=�.t/ � C for all t > 0, where ˚ is a convex increasing function
and � is a concave increasing function on Œ0;1/.

From [5], each of ';˚ , and � in above definition is doubling in the sense that its
values at t and 2t are uniformly comparable for all t > 0 and the consequent fact
that

C1t
q � ��1.'.t// � C2t

q; C1t
p � ˚�1.'.t// � C2t

p; (50)

where C1 and C2 are constants. Also, for all 1 � p1 < p < p2 and ˛ 2 R,
the function '.t/ D tp log˛C t belongs to G.p1; p2; C / for some constant C D
C.p; ˛; p1; p2/. Here logC.t/ is defined by logC.t/ D 1 for t � e and logC.t/ D
log.t/ for t > e. Particularly, if ˛ D 0, we see that '.t/ D tp lies in G.p1; p2; C /,
1 � p1 < p < p2.

We first prove the following generalized Poincaré inequality that will be used to
establish the global inequality.

Theorem 5.7. Let ' be a Young function in the class G.p; q; C /, 1 � p < q < 1,
C � 1,˝ be a bounded domain and q.n�p/ < np. Assume that u 2 D0.˝;^l / is
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any differential l-form, l D 0; 1; : : : ; n� 1, and '.jduj/ 2 L1loc .˝;m/. Then, there
exists a constant C , independent of u, such that

Z

B

' .jG.u/� .G.u//B j/ dm � C

Z

B

' .jduj/ dm (51)

for all balls B with B  ˝ .

Lemma 5.8. Let u 2 D0.˝;^l /, l D 0; 1; : : : ; n � 1, be an A-harmonic tensor
on ˝ . Assume that � > 1 and 1 < s < 1. Then, there exists a constant C ,
independent of u, such that

k�G.u/� .�G.u//Bks;B � C diam .B/kduks;�B (52)

for any ball B with �B  ˝ .

Using Lemma 5.8 and the method developed in the proof of Theorem 5.7,
the authors also prove the following version of Poincaré-type inequality for the
composition of � and G.

Theorem 5.9. Let ' be a Young function in the class G.p; q; C /, 1 � p < q < 1,
C � 1,˝ be a bounded domain, and q.n�p/ < np. Assume that u 2 D0.˝;^l / is
any differential l-form, l D 0; 1; : : : ; n� 1, and '.jduj/ 2 L1loc .˝;m/. Then, there
exists a constant C , independent of u, such that

Z

B

' .j�G.u/� .�G.u//B j/ dm � C

Z

B

' .jduj/ dm (53)

for all balls B with B  ˝ .

The following L'.m/-averaging domains can be found in [9].

Definition 5.10 ([9]). Let ' be an increasing convex function on Œ0;1/ with
'.0/ D 0. We call a proper subdomain ˝  R

n an L'.m/-averaging domain, if
m.˝/ < 1 and there exists a constant C such that

Z

˝

'.� ju � uB0 j/dm � C sup
B�˝

Z

B

'.� ju � uB j/dm (54)

for some ball B0  ˝ and all u such that '.juj/ 2 L1loc .˝;m/, where �; � are
constants with 0 < � < 1, 0 < � < 1 and the supremum is over all balls B  ˝ .

From the above definition we see that Ls-averaging domains and Ls.m/-
averaging domains are special L'.m/-averaging domains when '.t/ D t s in
Definition 5.10. Also, uniform domains and John domains are very special L'.m/-
averaging domains; see [2, 9] for more results about domains.
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Theorem 5.11. Let ' be a Young function in the class G.p; q; C /, 1 � p < q <

1, C � 1,˝ be a boundedL'.m/-averaging domain and q.n�p/ < np. Assume
that u 2 D0.˝;^0/ and '.jduj/ 2 L1.˝;m/. Then, there exists a constant C ,
independent of u, such that

Z

˝

' .jG.u/� .G.u//B0 j/ dm � C

Z

˝

' .jduj/ dm; (55)

where B0  ˝ is some fixed ball.

Choosing '.t/ D tp log˛C t in Theorems 5.11, we obtain the following Poincaré
inequalities with the Lp.log˛C L/-norms.

Corollary 5.12. Let '.t/ D tp log˛C t , 1 � p1 < p < p2 and ˛ 2 R and ˝
be a bounded L'.m/-averaging domain and p2.n � p1/ < np1. Assume that u 2
D0.˝;^0/, '.jduj/ 2 L1.˝;m/, Then, there exists a constantC , independent of u,
such that
Z

˝

jG.u/ � .G.u//B0 jp log˛
C

.jG.u/ � .G.u//B0 j/ dm � C

Z

˝

jdujp log˛
C

.jduj/ dm;
(56)

where B0  ˝ is some fixed ball.

Note that (56) can be written as the following version with the Luxemburg norm

kG.u/� .G.u//B0kLp.log˛
C

L/.˝/ � CkdukLp.log˛
C

L/.˝/

provided the conditions in Corollary 5.12 are satisfied.

6 Actions on Minimizers

In this section, we discuss both local and global L' -norm inequalities for Green’s
operator acting on minimizers for functionals defined on differential forms in
L'-averaging domains. These results are extensions of Lp-norm inequalities for
Green’s operator and can be used to estimate the norms of other operators applied
to differential forms.

We say that a differential form u 2 W 1;1
loc .˝;�

`/ is a k-quasi-minimizer for the
functional

I.˝I v/ D
Z

˝

'.jdvj/dx (57)

if and only if, for every ' 2 W 1;1
loc .˝;�

`/ with compact support,

I.supp'I u/ � k � I.supp'I u C '/;
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where k > 1 is a constant. We say that ' satisfies the so-called�2-condition if there
exists a constant p > 1 such that

'.2t/ � p'.t/ (58)

for all t > 0, from which it follows that '.	t/ � 	p'.t/ for any t > 0 and 	 � 1;
see [15].

The results presented in this section were recently obtained in [1]. We will need
the following lemma which can be found in [15] or [19].

Lemma 6.1. Let f .t/ be a nonnegative function defined on the interval Œa; b with
a � 0. Suppose that for s; t 2 Œa; b with t < s,

f .t/ � M

.s � t/˛ CN C �f .s/

holds, where M;N; ˛ and � are nonnegative constants with � < 1. Then, there
exists a constant C D C.˛; �/ such that

f .�/ � C

�
M

.R � �/˛ CN

�

for any �;R 2 Œa; b with � < R.

Theorem 6.2. Let u 2 W 1;1
loc .˝;�

`/ be a k-quasi-minimizer for the functional (57),
' be a Young function in the class G.p; q; C /, 1 � p < q < 1, C � 1 and
q.n � p/ < np, ˝ be a bounded domain, and G be Green’s operator. Then, there
exists a constant C, independent of u, such that

Z

B

'.jG.u/� .G.u//B j/dx � C

Z

2B

' .ju � cj/ dx (59)

for all balls B D Br with radius r and 2B  ˝ , where c is any closed form.

Since each of ';˚ and � is doubling, from the proof of Theorem 6.2 or directly
from (50), we have

Z

B

'

� jG.u/� .G.u//B j
	

�

dx � C

Z

2B

'

� ju � cj
	

�

dx (60)

for all balls B with 2B  ˝ and any constant 	 > 0. From definition of the
Luxemburg norm and (60), the following inequality with the Luxemburg norm

kG.u/� .G.u//Bk'.B/ � Cku � ck'.2B/ (61)

holds under the conditions described in Theorem 6.2.
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Note that in Theorem 6.2, c is any closed form. Hence, we may choose c D 0 in
Theorem 6.2 and obtain the following version of '-norm inequality which may be
convenient to be used.

Corollary 6.3. Let u 2 W
1;1
loc .˝;�

`/ be a k-quasi-minimizer for the functional
(57), ' be a Young function in the class G.p; q; C /, 1 � p < q < 1, C � 1 and
q.n � p/ < np, ˝ be a bounded domain, and G be Green’s operator. Then, there
exists a constant C, independent of u, such that

Z

B

'.jG.u/� .G.u//B j/dx � C

Z

2B

' .juj/ dx (62)

for all balls B D Br with radius r and 2B  ˝ .

Theorem 6.4. Let u 2 W 1;1
loc .˝;�

0/ be a k-quasi-minimizer for the functional (57),
' be a Young function in the class G.p; q; C /, 1 � p < q < 1, C � 1 and
q.n � p/ < np, ˝ be any bounded L' -averaging Domain, and G be Green’s
operator. Then, there exists a constant C, independent of u, such that

Z

˝

'.jG.u/� .G.u//B0 j/dx � C

Z

˝

' .ju � cj/ dx; (63)

where B0  ˝ is some fixed ball and c is any closed form.

We know that any John domain is a special L' -averaging domain. Hence, we
have the following inequality in John domain.

Theorem 6.5. Let u 2 W 1;1
loc .˝;�

0/ be a k-quasi-minimizer for the functional (57),
' be a Young function in the class G.p; q; C /, 1 � p < q < 1, C � 1 and
q.n�p/ < np, ˝ be any bounded John domain, andG be Green’s operator. Then,
there exists a constant C, independent of u, such that

Z

˝

'.jG.u/� .G.u//B0 j/dx � C

Z

˝

' .ju � cj/ dx; (64)

where B0  ˝ is some fixed ball and c is any closed form.

Choosing '.t/ D tp log˛C t in Theorem 6.5, we obtain the following inequalities
with the Lp.log˛CL/-norms.

Corollary 6.6. Let u 2 W
1;1
loc .˝;�

0/ be a k-quasi-minimizer for the functional
(57), '.t/ D tp log˛C t , ˛ 2 R, q.n � p/ < np for 1 � p < q < 1 and G be
Green’s operator. Then, there exists a constant C, independent of u, such that

R
˝ jG.u/� .G.u//B0 jp log˛C .jG.u/� .G.u//B0 j/ dx

� C
R
˝

ju � cjp log˛C .ju � cj/ dx
(65)

for any bounded L' -averaging domain ˝ , where B0  ˝ is some fixed ball and c
is any closed form.
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We can also write (65) as the following inequality with the Luxemburg norm

kG.u/� .G.u//B0kLp.log˛
C

L/.˝/ � Cku � ckLp.log˛
C

L/.˝/ (66)

provided the conditions in Corollary 6.6 are satisfied.
Similar to the local case, we may choose c D 0 in Theorem 6.5 and obtain the

following version of L' -norm inequality.

Corollary 6.7. Let u 2 W
1;1
loc .˝;�

0/ be a k-quasi-minimizer for the functional
(57), ' be a Young function in the class G.p; q; C /, 1 � p < q < 1, C � 1

and q.n � p/ < np, ˝ be any bounded L' -averaging domain, and G be Green’s
operator. Then, there exists a constant C, independent of u, such that

Z

˝

'.jG.u/� .G.u//B0 j/dx � C

Z

˝

' .juj/ dx; (67)

where B0  ˝ is some fixed ball.

It should be noticed that both of the local and global norm inequalities for Green’s
operator presented in this section can be used to estimate other operators applied to
a k-quasi-minimizer. Here, we give an example using Theorem 6.5 to estimate the
projection operator H . Similar to the case of harmonic tensors, we can prove the
similar result for k-quasi-minimizers. Using the basic Poincaré inequality to�G.u/
and noticing that d commute with� andG, we can prove the following Lemma 6.8.

Lemma 6.8. Let u 2 W 1;1
loc .˝;�

`/ be a k-quasi-minimizer for the functional (57).
Assume that � > 1 and 1 < s < 1. Then, there exists a constant C , independent of
u, such that

k�G.u/� .�G.u//Bks;B � C diam .B/kduks;�B (68)

for any ball B with �B  ˝ .

Using Lemma 6.8 and the method developed in the proof of Theorem 6.5, we
can prove the following inequality for the composition of � and G.

Theorem 6.9. Let u 2 W 1;1
loc .˝;�

`/ be a k-quasi-minimizer for the functional (57),
' be a Young function in the class G.p; q; C /, 1 � p < q < 1, C � 1 and
q.n � p/ < np, ˝ be a bounded domain, and G be Green’s operator. Then, there
exists a constant C, independent of u, such that

Z

B

' .j�G.u/� .�G.u//B j/ dx � C

Z

2B

' .ju � cj/ dx (69)

for all balls B D Br with radius r and 2B  ˝ , where c is any closed form.

Now, we are ready to estimate the projection operator applied to a k-quasi-
minimizer for the functional defined by (57).
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Theorem 6.10. Let u 2 W
1;1
loc .˝;�

`/ be a k-quasi-minimizer for the functional
(57), ' be a Young function in the class G.p; q; C /, 1 � p < q < 1, C � 1 and
q.n�p/ < np,˝ be a bounded domain, andH be projection operator. Then, there
exists a constant C, independent of u, such that

Z

B

'.jH.u/� .H.u//B j/dx � C

Z

2B

' .ju � cj/ dx (70)

for all balls B D Br with radius r and 2B  ˝ , where c is any closed form.

Remark. (i) We know that the Ls-averaging domains and uniform domains are
the special L' -averaging domains. Thus, Theorems 6.4 also holds if ˝ is tan
Ls-averaging domain or uniform domain. (ii) Theorem 6.10 can also be extended
into the global case in L'.m/-averaging domain.

7 Compositions with the Maximal Operators

The main purpose of this section is to present some Ls-norm estimates for the
compositive operatorsMsıG andM]

sıG. HereMs is the Hardy-Littlewood maximal
operator, M]

s is the sharp maximal operator, and G is Green’s operator, applied to
differential forms.

For a locally Ls-integrable form u.y/, the Hardy-Littlewood maximal operator
Ms is defined by

Ms.u/ D Msu D Msu.x/ D sup
r>0

�
1

jB.x; r/j
Z

B.x;r/

ju.y/jsdy
�1=s

; (71)

where B.x; r/ is the ball of radius r , centered at x, 1 � s < 1. We write M.u/ D
M1.u/ if s D 1. Similarly, for a locally Ls-integrable form u, we define the sharp
maximal operator M]

s by

M
]
s.u/ D M

]
su D M

]
su.x/ D sup

r>0

�
1

jB.x; r/j
Z

B.x;r/

ju.y/� uB.x;r/jsdy
�1=s

: (72)

These operators and Green’s operator play an important role in many diverse fields,
including partial differential equations and analysis. All results presented in this
section were obtained in [10]. From [21], we know that if u 2 Ls.M;^l /, 1 < s <

1, then M.u/ 2 Ls.M/; specifically, we have the following lemma.

Lemma 7.1. Let u 2 Ls.M;^l /, l D 0; 1; 2; : : : ; n, 1 < s < 1, be a differential
form in a domain M and M be the Hardy-Littlewood maximal operator defined in
(1) with s D 1.

kM.u/ks;M � Ckuks;M (73)

for some constant C , independent of u.



420 S. Ding and Y. Xing

We first introduce the following estimate for the Hardy-Littlewood maximal
operator.

Theorem 7.2. Let Ms be the Hardy-Littlewood maximal operator defined in (71)
and u 2 Lt.M;^l /, l D 1; 2; : : : ; n, 1 � s < t < 1, be a differential form in a
domainM . Then, Ms.u/ 2 Lt.M/ and

kMs.u/kt;M � Ckukt;M (74)

for some constant C , independent of u.

If we replace u by G.u/ in Theorem 7.2 and use Lemma 3.4, we have the
following estimate for the composition of the Hardy-Littlewood maximal operator
and Green’s operator.

Theorem 7.3. Let Ms be the Hardy-Littlewood maximal operator defined in (71),
1 � s < t < 1, G be Green’s operator, and u 2 C1.^lM /, l D 1; 2; : : : ; n, be a
differential form in a domainM . Then,

kMs.G.u//kt;M � Ckukt;M (75)

for some constant C , independent of u.

We now develop some estimates related to the sharp maximal operator M]
s and

Green’s operator and then study the relationship between kM]
sks;M and kMsks;M .

Theorem 7.4. Let u 2 C1.^lM /, l D 1; 2; : : : ; n, 1 < s < 1, be a differential
form in a bounded domain M , M]

s be the sharp maximal operator defined in (72),
and G be Green’s operator. Then,

kM]
s.G.u//ks;M � C jM j1=skuks;M (76)

for some constant C , independent of u.

Theorem 7.5. Let u 2 Lsloc .M;^l /, l D 0; 1; 2; : : : ; n�1, 1 < s < 1, be a smooth
differential form in a bounded domain M , M be the Hardy-Littlewood maximal
operator defined in 73), and M

]
s be the sharp maximal operator defined in (74).

Then,

kM]
suks;M � CkMsduks;M (77)

for some constant C , independent of u.

Next, we introduce the fractional maximal operator of order ˛. Let u.y/ be a
locally Ls-integrable form, 1 � s < 1, and ˛ be a real number. We define the
fractional maximal operator Ms;˛ of order ˛ by
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Ms;˛u.x/ D sup
r>0

�
1

jB.x; r/j1C˛=n
Z

B.x;r/

ju.y/jsdy
�1=s

: (78)

Clearly, (78) for ˛ D 0 reduces to the Hardy-Littlewood maximal operator, and
hence, we write Ms.u/ D Ms;0.u/.

Theorem 7.6. Let u 2 Ls.M;^l /, l D 0; 1; 2; : : : ; n, 1 < s < 1, be a smooth
differential form satisfying equation (1) in a bounded domainM , Ms be the Hardy-
Littlewood maximal operator defined in (71), and Ms;˛ be the fractional maximal
operator of order ˛. Then,

kMsdu.x/ks;M � CkMs;˛.u.x/ � c/ks;M (79)

for some constant C , independent of u, where ˛ D s and c is any closed form.

Note that in Theorem 7.6, c is any closed form. Thus, we can choose c D 0 in
Theorem 7.6, to obtain the following corollary.

Corollary 7.7. Let u 2 Ls.M;^l /, l D 1; 2; : : : ; n, 1 < s < 1, be a smooth
differential form satisfying equation (1) in a bounded domainM , Ms be the Hardy-
Littlewood maximal operator defined in (71), and Ms;˛ be the fractional maximal
operator of order ˛. Then,

kMsdu.x/ks;M � CkMs;˛u.x/ks;M (80)

for some constant C , independent of u.

Lemma 7.7 ([2]). If w 2 Ar.M/, then there exist constants ˇ > 1 and C ,
independent of w, such that

k w kˇ;B� C jBj.1�ˇ/=ˇ k w k1;B (81)

for all balls B  M .

Theorem 7.8. Let Ms be the Hardy-Littlewood maximal operator defined in (71),
G be Green’s operator, and u 2 C1.^lM / be a solution to the A-harmonic
equation (1) in a domain M , where 1 � s < t < 1 and , l D 1; 2; : : : ; n. Assume
that w 2 Ar for some r > 1. Then, there exists a constant C , independent of u, such
that

kMs.G.u//kt;B;w � Ckukt;�B;w (82)

for all balls B with �B  M , where � > 1 is a constant.

Using the similar method to the proof of Theorem 7.8, we can prove the following
theorem.
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Theorem 7.9. Let u 2 C1.^lM /, l D 1; 2; : : : ; n, 1 < s < 1, be a solution to
the A-harmonic equation (1) in a domain M , M]

s be the sharp maximal operator
defined in (72), and G be Green’s operator. Assume that w 2 Ar for some r > 1.
Then, there exists a constant C , independent of u, such that

kM]
s.G.u//ks;B;w � Ckuks;�B;w (83)

for all balls B with �B  M , where � > 1 is a constant.

We say a pair of weights .w1.x/;w2.x// satisfies the Ar;	.E/-condition in a set
E  Rn and write .w1.x/;w2.x// 2 Ar;	.E/, for some 	 � 1 and 1 < r < 1 with
1=r C 1=r 0 D 1 if

sup
B�E

�
1

jBj
Z

B

.w1/
	dx

�1=	r  
1

jBj
Z

B

�
1

w2

�	r 0=r

dx

!1=	r 0

< 1: (84)

The class of Ar;	.E/-weights (or the two-weight) appears in [17]. It is easy to
see that the Ar;	.E/-weight is an extension of the usual Ar.E/-weight.

Theorem 7.10. Let Ms be the Hardy-Littlewood maximal operator defined in (71)
and u 2 Lt.M;^l /, l D 1; 2; : : : ; n, be a solution to the A-harmonic equation (1)
in a domain M , where 1 � s < t < 1. Assume that .w1.x/;w2.x// 2 Ar;	.M/

for some 	 � 1 and 1 < r < 1. Then, there exists a constant C , independent of u,
such that

kMs.u/kt;B;w˛1 � Ckukt;�B;w˛2 (85)

or

�Z

B

jMs.u/jtw˛1dx
�1=t � C

�Z

�B

jujtw˛2dx
�1=t

(86)

for all balls B with �B  M . Here ˛ and � > 1 are constants with 0 < ˛ < 	.

Note that Theorem 7.10 contains two weights, w1.x/ and w2.x/, and two
parameters, 	 and ˛. These features make the inequality be more flexible and more
useful. For example, if we choose ˛ D 1 in Theorem 7.10, we have the following
corollary.

Corollary 7.11. Let Ms be the Hardy-Littlewood maximal operator defined in (71)
and u 2 Lt.M;^l /, l D 1; 2; : : : ; n, be a solution to the A-harmonic equation (1)
in a domain M , where 1 � s < t < 1. Assume that .w1.x/;w2.x// 2 Ar;	.M/

for some 	 � 1 and 1 < r < 1. Then, there exists a constant C , independent of u,
such that
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kMs.u/kt;B;w1 � Ckukt;�B;w2 (87)

for all balls B with �B  M . Here � > 1 is a constant.

If we put w1.x/ D w2.x/ D w.x/ in (87), we have

kMs.u/kt;B;w � Ckukt;�B;w (88)

where w.x/ 2 Ar.M/, which is the Ar -weighted inequality.
It is easy to see that if we choose w1.x/ D w2.x/ and 	 D 1 in the last definition

of the weights, we have

sup
B�E

�
1

jBj
Z

B

wdx

�1=r  
1

jBj
Z

B

�
1

w

�r 0=r

dx

!1=r 0

< 1;

that is,

sup
B�E

0

@
�
1

jBj
Z

B

wdx

� 
1

jBj
Z

B

�
1

w

�1=.r�1/
dx

!r�11

A

1=r

< 1

since r 0=r D 1=.r � 1/. Thus, we see that the Ar;	.M/-weight reduces to the usual
Ar.M/-weight if w1.x/ D w2.x/ and 	 D 1.

Lemma 7.12 ([2]). Let ' be a strictly increasing convex function on Œ0;1/ with
'.0/ D 0 and D be a domain in R

n. Assume that u is a function in D such that
'.juj/ 2 L1.DI
/ and 
.fx 2 D W ju � cj > 0g/ > 0 for any constant c. Then, for
any positive constant a, we have

Z

D

'.
1

2
aju � uD;
j/d
 �

Z

D

'.ajuj/d
 � C

Z

D

'.2aju � uD;
j/d
;

where C is a positive constant and uD;
 D 1

.D/

R
D

ud
.

Choosing '.x/ D xt , t > s � 1, and replacing u by Ms.G.u// and M
]
s.G.u//,

respectively, in Lemma 7.12, we can prove the following Theorem 7.13.

Theorem 7.13. Let Ms be the Hardy-Littlewood maximal operator defined in (71),
M
]
s be the sharp maximal operator defined in (72), and G be Green’s operator.

Assume that u 2 Lt.M;^l ; 
/, l D 1; 2; : : : ; n, is a differential form in a domain
M , 1 � s < t < 1, and the measure 
.x/ is defined by d
 D w.x/dx, where w is
a weight. Then,
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C1kMs.G.u//� .Ms.G.u///M;
kt;M;w � kMs.G.u//kt;M;w

� C2kMs.G.u//� .Ms.G.u///M;
kt;M;w;

C3kM]
s.G.u//� .M

]
s.G.u///M;
kt;M;w � kM]

s.G.u//kt;M;w

� C4kM]
s.G.u//� .M]

s.G.u///M;
kt;M;w;
where C1; C2; C3 and C4 are constants, independent of u.

We all know that differential forms have many applications in geometric analysis
and physics; see [6, 24]. For example, we can apply our results to the Jacobian
J.x; f / of a mapping f W M ! R

n, f D .f 1; : : : ; f n/. It is well know that
Jacobian J.x; f / is an n-form, specifically,

J.x; f /dx D df 1 ^ � � � ^ df n;

where dx D dx1^dx2^� � �^dxn. For example, let f D .f 1; f 2/ be a differential
mapping in R

2. Then,

J.x; f /dx ^ dy D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

f 1
x f

1
y

f 2
x f

2
y

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

dx ^ dy D .f 1
x f

2
y � f 1

y f
2
x /dx ^ dy;

df 1 ^ df 2 D
�
f 1
x dx C f 1

y dy
�

^
�
f 2
x dx C f 2

y dy
�

D f 1
y f

2
x dy ^ dx C f 1

x f
2
y dx ^ dy

D
�
f 1
x f

2
y � f 1

y f
2
x

�
dx ^ dy;

where we have used the property

dxi ^ dxj D
�
0; i D j

�dxj ^ dxi ; i 6D j:

Clearly,

J.x; f /dx ^ dy D df 1 ^ df 2:

Let f W M ! R
n, f D .f 1; : : : ; f n/ be a mapping, whose distributional

differential Df D Œ@f i=@xj  W ˝ ! GL.n/ is a locally integrable function
on M with values in the space GL.n/ of all n � n-matrices. A homeomorphism
f W M ! R

n is said to beK-quasiconformal, 1 � K < 1, if its differential matrix
Df.x/ and the Jacobian determinant
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J.x; f / D detDf.x/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

f 1
x1
f 1
x2
f 1
x3
: : : f 1

xn

f 2
x1
f 2
x2
f 2
x3
: : : f 2

xn

:::
:::

:::
: : :

:::

f n
x1
f n
x2
f n
x3
: : : f n

xn

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

satisfy

jDf.x/jn � KJ.x; f /;

where jDf.x/j D maxfjDf.x/hj W jhj D 1g denotes the norm of the Jacobi matrix
Df.x/. Let u be the subdeterminant of Jacobian J.x; f /, which is obtained by
deleting the k rows and k columns, k D 0; 1; : : : ; n � 1, say,

J.xj1 ; xj2 ; : : : ; xjn�k
If i1 ; f i2 ; : : : ; f in�k / D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

f i1
xj1

f i1
xj2

f i1
xj3

: : : f i1
xjn�k

f i2
xj1

f i2
xj2

f i2
xj3

: : : f i2
xjn�k

:::
:::

:::
: : :

:::

f in�k
xj1

f in�k
xj2

f in�k
xj3

: : : f in�k
xjn�k

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

;

which is an .n � k/ � .n � k/ subdeterminant of J.x; f /, fi1; i2; : : : ; in�kg 
f1; 2; : : : ; ng and fj1; j2; : : : ; jn�kg  f1; 2; : : : ; ng. Also, it is easy to see that

J.xj1 ; xj2 ; : : : ; xjn�k
If i1 ; f i2 ; : : : ; f in�k /dxj1 ^ dxj2 ^ � � � ^ dxjn�k

is an .n � k/-form. Thus, all estimates for differential forms are applicable to the
.n� k/-form J.xj1 ; xj2 ; : : : ; xjn�k

If i1 ; f i2 ; : : : ; f in�k /dxj1 ^ dxj2 ^ � � � ^ dxjn�k
.

For example, choosing u D J.x; f / and applying Theorems 7.8 and 7.9 to u,
respectively, we have the following theorems.

Theorem 7.15. Let Ms be the Hardy-Littlewood maximal operator defined in (71),
G be Green’s operator, and J.x; f / 2 Lt .M;^n/, 1 � s < t < 1, be the Jacobian
of the mapping f D .f 1; : : : ; f n/ W M ! R

n. Then, Ms.G.J.x; f /// 2 Lt .M/

and

kMs.G.J.x; f ///kt;M � CkJ.x; f /kt;M
for some constant C , independent of J.x; f /.
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Theorem 7.16. Let J.x; f / 2 Ls.M;^n/ be the Jacobian of the mapping f D
.f 1; : : : ; f n/ W M ! R

n in a bounded domain M , M]
s , 1 < s < 1, be the sharp

maximal operator defined in (72), and G be Green’s operator. Then,

kM]
s.G.J.x; f ///ks;M � C jM j1=skJ.x; f /ks;M

for some constant C , independent of J.x; f /.

Note.

(1) If we apply Theorems 7.8 and 7.9 to an .n � k/ � .n � k/ subdeterminant of
J.x; f /, we will have the similar estimates for subdeterminant of J.x; f /.

(2) We can also apply the other results obtained in previous sections to the Jacobian
J.x; f / or its subdeterminants to obtain different estimates. Considering the
length of the chapter, we do not include them here.
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Multidimensional Discrete Hilbert-Type
Inequalities, Operators and Compositions

Bicheng Yang

Dedicated to Professor Hari M. Srivastava

Abstract Hilbert-type inequalities with their operators are important in analysis
and its applications. In this paper by using the methods of weight coefficients and
technique of real analysis, a multidimensional discrete Hilbert-type inequality with
a best possible constant factor is given. The equivalent forms, two types of reverses,
a more accurate inequality with parameters, as well as a strengthened version of
Hardy-Hilbert’s inequality with Euler constant are obtained. We also consider the
relating operators with the norms, some particular examples and the compositions
of two discrete Hilbert-type operators in certain conditions.

1 Introduction

Assuming that p > 1; 1
p

C 1
q

D 1; f .x/; g.y/ � 0; f 2 Lp.RC/; g 2 Lq.RC/;

jjf jjp D
�Z 1

0

f p.x/dx

	 1
p

> 0;

jjgjjq > 0; we have the following Hardy-Hilbert’s integral inequality (cf. [10]):

Z 1

0

Z 1

0

f .x/g.y/

x C y
dxdy <

�

sin.�=p/
jjf jjpjjgjjq; (1)
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where the constant factor �=sin.�=p/ is the best possible. If am; bn � 0, a D
famg1mD1 2 `p , b D fbng1nD1 2 `q;

jjajjp D
( 1X

mD1
apm

) 1
p

> 0;

jjbjjq > 0; then we still have the following discrete variant of the above inequality

1X

mD1

1X

nD1

ambn

mC n
<

�

sin.�=p/
jjajjpjjbjjq; (2)

with the same best constant �=sin.�=p/ (cf. [10]). Inequalities (1) and (2) are
important in analysis and its applications (cf. [10, 20, 24, 25, 27, 29]).

In 1998, by introducing an independent parameter 	 2 .0; 1, Yang [22] gave an
extension of (1) at p D q D 2. Recently, Yang [24, 27] gave some extensions of (1)
and (2) as follows:

If 	1; 	2; 	 2 R; 	1 C	2 D 	; k	.x; y/ is a non-negative homogeneous function
of degree �	; with

k.	1/ D
Z 1

0

k	.t; 1/t
	1�1dt 2 RC;

�.x/ D xp.1�	1/�1;  .y/ D yq.1�	2/�1; f .x/; g.y/ � 0;

f 2 Lp;�.RC/ D
(

f I jjf jjp;� WD
�Z 1

0

�.x/jf .x/jpdx
	 1=p

< 1
)

;

g 2 Lq; .RC/; jjf jjp;�; jjgjjq; > 0; then
Z 1

0

Z 1

0

k	.x; y/f .x/g.y/dxdy < k.	1/jjf jjp;� jjgjjq; ; (3)

where the constant factor k.	1/ is the best possible. Moreover, if k	.x; y/ is finite
and k	.x; y/x	1�1.k	.x; y/y	2�1/ is decreasing with respect to x > 0 .y > 0/;

then for am;bn � 0;

a 2 `p;� D
(

aI jjajjp;� WD
� 1X

nD1
�.n/janjp

	 1=p
< 1

)

;

b D fbng1nD1 2 `q; , jjajjp;� , jjbjjq; > 0, we have

1X

mD1

1X

nD1
k	.m; n/ambn < k.	1/jjajjp;� jjbjjq; ; (4)

where the constant factor k.	1/ is still the best possible.
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Clearly, for 	 D 1, k1.x; y/ D 1=.x C y/, 	1 D 1=q, 	2 D 1=p, (3) reduces to
(1), while (4) reduces to (2). Some other results including multidimensional Hilbert-
type integral inequalities are provided by [3, 4, 11, 13, 16, 18, 34–37, 39, 44].

About half-discrete Hilbert-type inequalities with the non-homogeneous kernels,
Hardy et al. provided a few results in Theorem 351 of [10]. But they did not prove
that the constant factors are the best possible. However, Yang [23] gave a result with
the kernel 1=.1C nx/	 by introducing a variable and proved that the constant factor
is the best possible. In 2011, Yang [26] gave the following half-discrete Hardy-
Hilbert’s inequality with the best possible constant factor B .	1; 	2/:

Z 1

0

f .x/

1X

nD1

an

.x C n/	
dx < B .	1; 	2/ jjf jjp;� jjajjq; ; (5)

where 	1	2 > 0, 0 � 	2 � 1, 	1 C 	2 D 	;

B .u; v/ D
Z 1

0

1

.1C t/uCv
tu�1dt .u; v > 0/

is the beta function. Zhong et al. [40–46] investigated several half-discrete Hilbert-
type inequalities with particular kernels.

Using the way of weight functions and the techniques of discrete and integral
Hilbert-type inequalities with some additional conditions on the kernel, a half-
discrete Hilbert-type inequality with a general homogeneous kernel of degree �	 2
R and a best constant factor k .	1/ is obtained as follows:

Z 1

0

f .x/

1X

nD1
k	.x; n/an dx < k.	1/jjf jjp;� jjajjq; ;

which is an extension of (5) (see Yang and Chen [31]). At the same time, a half-
discrete Hilbert-type inequality with a general non-homogeneous kernel and a best
constant factor is given by Yang [28].

Remark 1.1. (1) Many different kinds of Hilbert-type discrete, half-discrete and
integral inequalities with applications are presented in recent twenty years.
Special attention is given to new results proved during 2009–2012. Included are
many generalizations, extensions and refinements of Hilbert-type discrete, half-
discrete and integral inequalities involving many special functions such as beta,
gamma, hypergeometric, trigonometric, hyperbolic, zeta, Bernoulli functions,
Bernoulli numbers and Euler constant.

(2) In his five books, Yang [24,25,27,29,30] presented many new results on Hilbert-
type operators with general homogeneous kernels of degree of real numbers
and two pairs of conjugate exponents as well as the related inequalities. These
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research monographs contained recent developments of discrete, half-discrete
and integral types of operators and inequalities with proofs, examples and
applications.

In this paper, by using the methods of weight coefficients and techniques of real
analysis, a multidimensional discrete Hilbert-type inequality with a best possible
constant factor is given, which is an extension of (4). The equivalent forms, two
types of reverses, a more accurate inequality with parameters and its equivalent
form, as well as a strengthened version of Hardy-Hilbert’s inequality with Euler
constant are obtained. We also consider the operator expression with the norm, some
particular examples as applications and the compositions of two discrete Hilbert-
type operators in certain conditions. The lemmas and theorems in this chapter have
provided an extensive account of this type of inequalities and operators.

2 Main Results, the Equivalent Forms and Reverses

If i0; j0 2 N .N is the set of positive integers), ˛; ˇ > 0; we put

jjxjj˛ W D
 

i0X

kD1
jxkj˛

! 1
˛

.x D .x1; : : : ; xi0/ 2 Ri0 /;

jjyjjˇ W D
 

j0X

kD1
jykjˇ

! 1
ˇ

.y D .y1; : : : ; yj0/ 2 Rj0/:

In the latter part of this chapter, we agree that p 2 Rnf0; 1g; 1
p

C 1
q

D 1; 	; 	1; 	2 2
R, 	1 C 	2 D 	; k	.x; y/ .� 0/ is a finite homogeneous function of degree �	 in
R2C; satisfying for any u; x; y 2 RC;

k	.ux; uy/ D u�	k	.x; y/:

Definition 2.1. For m D .m1; : : : ; mi0/ 2 Ni0 ; n D .n1; : : : ; nj0/ 2 Nj0 ; define
two weight coefficients !	.	2; n/ and$	.	1;m/ as follows:

!	.	2; n/ W D jjnjj	2ˇ
X

m

k	.jjmjj˛; jjnjjˇ/ 1

jjmjji0�	1˛

;

$	.	1;m/ W D jjmjj	1˛
X

n

k	.jjmjj˛; jjnjjˇ/ 1

jjnjjj0�	2ˇ

;

where
P

m D P1
mi0D1 � � �P1m1D1 and

P
n D P1

nj0D1 � � �P1n1D1 :
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Lemma 2.1. If am D a.m1;:::;mi0 / � 0; then

(1) For p > 1; we have the following inequality:

J1 WD
(
X

n

jjnjjp	2�j0ˇ

Œ!	.	2; n/p�1

 
X

m

k	.jjmjj˛; jjnjjˇ/am
!p) 1

p

�
(
X

m

$	.	1;m/jjmjjp.i0�	1/�i0˛ apm

) 1
p

: (6)

(2) For p < 0; or 0 < p < 1; we have the reverse of (6).

Proof. (1) For p > 1; by Hölder’s inequality with weight (cf. [15]), it follows

X

m

k	.jjmjj˛; jjnjjˇ/am

D
X

m

k	.jjmjj˛; jjnjjˇ/
"

jjmjj.i0�	1/=q˛

jjnjj.j0�	2/=pˇ

am

#" jjnjj.j0�	2/=pˇ

jjmjj.i0�	1/=q˛

#

�
(
X

m

k	.jjmjj˛; jjnjjˇ/ jjmjj.i0�	1/.p�1/˛

jjnjjj0�	2ˇ

apm

) 1
p

�
(
X

m

k	.jjmjj˛; jjnjjˇ/
jjnjj.j0�	2/.q�1/ˇ

jjmjji0�	1˛

) 1
q

DŒ!	.	2; n/ 1q jjnjj
j0
p �	2
ˇ

(
X

m

k	.jjmjj˛; jjnjjˇ/ jjmjj.i0�	1/.p�1/˛

jjnjjj0�	2ˇ

apm

) 1
p

: (7)

Then we have

J1 �
(
X

n

X

m

k	.jjmjj˛; jjnjjˇ/ jjmjj.i0�	1/.p�1/˛

jjnjjj0�	2ˇ

apm

) 1
p

D
(
X

m

X

n

k	.jjmjj˛; jjnjjˇ/ jjmjj.i0�	1/.p�1/˛

jjnjjj0�	2ˇ

apm

) 1
p

D
(
X

m

$	.	1;m/jjmjjp.i0�	1/�i0˛ apm

) 1
p

:
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Hence, (6) follows.
(2) For p < 0; or 0 < p < 1; by the reverse Hölder’s inequality with weight

(cf. [15]), we obtain the reverse of (7). Then we still obtain the reverse of (6).
ut

Lemma 2.2. If am D a.m1;:::;mi0 / � 0, bn D b.n1;:::;nj0 / � 0; then

(1) For p > 1; we have the following inequality equivalent to (6):

I D
X

n

X

m

k	.jjmjj˛; jjnjjˇ/ambn

�
(
X

m

$	.	1;m/jjmjjp.i0�	1/�i0˛ apm

) 1
p
(
X

n

!	.	2; n/jjnjjq.j0�	2/�j0ˇ bqn

) 1
q

:

(8)

(2) For p < 0; or 0 < p < 1; we have the reverse of (8) equivalent to the reverse
of (6).

Proof. (1) For p > 1; by Hölder’s inequality (cf. [15]), it follows

I D
X

n

jjnjj
j0
q �.j0�	2/
ˇ

Œ!	.	2; n/
1
q

"
X

m

k	.jjmjj˛; jjnjjˇ/am
#"

Œ!	.	2; n/
1
q jjnjj.j0�	2/�

j0
q

ˇ
bn

#

� J1

(
X

n

!	.	2; n/jjnjjq.j0�	2/�j0
ˇ

b
q
n

) 1
q

: (9)

Then by (6), we have (8).
On the other hand, assuming that (8) is valid, we set

bn WD jjnjjp	2�j0ˇ

Œ!	.	2; n/p�1

 
X

m

k	.jjmjj˛; jjnjjˇ/am
!p�1

; n 2 Nj0 :

Then it follows

J
p
1 D

X

n

!	.	2; n/jjnjjq.j0�	2/�j0ˇ bqn:

If J1 D 0; then (6) is trivially valid; if J1 D 1; then by (7), (6) keeps the form
of equality (D 1/. Suppose that 0 < J1 < 1: By (8), we have

0 <
X

n

!	.	2; n/jjnjjq.j0�	2/�j0
ˇ

b
q
n D J

p
1 D I

�
(
X

m

$	.	1;m/jjmjjp.i0�	1/�i0˛ a
p
m

) 1
p
(
X

n

!	.	2; n/jjnjjq.j0�	2/�j0
ˇ

b
q
n

) 1
q

< 1:
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It follows

J1 D
(
X

n

!	.	2; n/jjnjjq.j0�	2/�j0
ˇ

b
q
n

) 1
p

6
(
X

m

$	.	1;m/jjmjjp.i0�	1/�i0˛ a
p
m

) 1
p

;

and then (6) follows. Hence, inequalities (8) and (6) are equivalent.
(2) for p < 0; or 0 < p < 1; by the same way, we have the reverse of (8) equivalent

to the reverse of (6). The lemma is proved.
ut

Setting

'.m/ WD jjmjjp.i0�	1/�i0˛ ;  .n/ WD jjnjjq.j0�	2/�j0ˇ ;

Q'.m/ WD .1 � �	.m//jjmjjp.i0�	1/�i0˛ .�	.m/ 2 .0; 1/I m 2 Ni0 /

and

Q .n/ WD .1 � #	.n//jjnjjq.j0�	2/�j0ˇ .#	.n/ 2 .0; 1/I n 2 Nj0/;

by Lemmas 2.1 and 2.2, we have the following theorem:

Theorem 2.1. Suppose that p > 1; there exist constants Ki > 0 .i D 1; 2/;

such that

$	.	1;m/ < K1; !	.	2; n/ < K2 .m 2 Ni0 ; n 2 Nj0/:

If am D a.m1;:::;mi0 / � 0; bn D b.n1;:::;nj0 / � 0; satisfying

0 < jjajjp;' WD
(
X

m

jjmjjp.i0�	1/�i0˛ apm

) 1
p

< 1;

0 < jjbjjq; WD
(
X

n

jjnjjq.j0�	2/�j0ˇ bqn

) 1
q

< 1;

then we have the following equivalent inequalities:

X

n

X

m

k	.jjmjj˛; jjnjjˇ/ambn < K
1
p

1 K
1
q

2 jjajjp;' jjbjjq; ; (10)

J WD
(
X

n

jjnjjp	2�j0ˇ

 
X

m

k	.jjmjj˛; jjnjjˇ/am
!p) 1

p

< K
1
p

1 K
1
q

2 jjajjp;': (11)
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Theorem 2.2. Suppose that p < 0; there exist constants Ki > 0 .i D 1; 2/;

such that

$	.	1;m/ < K1 .m 2 Ni0 /;

0 < K2.1 � #	.n// < !	.	2; n/ < K2 .n 2 Nj0/:

If am D a.m1;:::;mi0 / � 0; bn D b.n1;:::;nj0 / � 0; satisfying 0 < jjajjp;' < 1; and

0 < jjbjjq; Q WD
(
X

n

.1 � #	.n//jjnjjq.j0�	2/�j0ˇ bqn

) 1
q

< 1;

then we have the following equivalent inequalities:

X

n

X

m

k	.jjmjj˛; jjnjjˇ/ambn > K
1
p

1 K
1
q

2 jjajjp;' jjbjjq; Q ; (12)

(
X

n

jjnjjp	2�j0ˇ

.1 � #	.n//p�1

 
X

m

k	.jjmjj˛; jjnjjˇ/am
!p) 1

p

> K
1
p

1 K
1
q

2 jjajjp;' : (13)

Theorem 2.3. Suppose that 0 < p < 1; there exist constants Ki > 0 .i D 1; 2/;

such that

0 < K1.1 � �	.m// < $	.	1;m/ < K1 .m 2 Ni0 /;

!	.	2; n/ < K2 .n 2 Nj0/:

If am D a.m1;:::;mi0 / � 0; bn D b.n1;:::;nj0 / � 0; satisfying

0 < jjajjp; Q' WD
(
X

m

.1 � �	.m//jjmjjp.i0�	1/�i0˛ apm

) 1
p

< 1;

and 0 < jjbjjq; < 1; then we have the following equivalent inequalities:

X

n

X

m

k	.jjmjj˛; jjnjjˇ/ambn > K
1
p

1 K
1
q

2 jjajjp; Q' jjbjjq; ; (14)

(
X

n

jjnjjp	2�j0ˇ

 
X

m

k	.jjmjj˛; jjnjjˇ/am
!p) 1

p

> K
1
p

1 K
1
q

2 jjajjp; Q': (15)
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3 The Best Constant Factor

Lemma 3.1. Suppose that h.t/ is a non-negative measurable function in
RC; a 2 R; and there exists a constant ı0 > 0; such that for any ı 2 Œ0; ı0/;

k.a ˙ ı/ WD
Z 1

0

h.t/t .a˙ı/�1dt 2 R:

Then we have

k.a ˙ ı/ D k.a/C o.1/ .ı ! 0C/: (16)

Proof. For any ı 2 Œ0; ı0=2/; it follows

h.t/t .a˙ı/�1 � g.t/ WD
(
h.t/t .a�ı0=2/�1; t 2 .0; 1;
h.t/t .aCı0=2/�1; t 2 .1;1/:

Since we find

0 �
Z 1

0

g.t/dt D
Z 1

0

h.t/t .a�ı0=2/�1dt C
Z 1

1

h.t/t .aCı0=2/�1dt

�
Z 1

0

h.t/t .a�ı0=2/�1dt C
Z 1

0

h.t/t .aCı0=2/�1dt

D k.a � ı0=2/C k.˛ C ı0=2/ 2 R;

then for any ı 2 .0; ı0=2/; by Lebesgue control convergence theorem (cf. [14]), it
follows

k.a ˙ ı/ D
Z 1

0

h.t/t .a˙ı/�1dt D
Z 1

0

h.t/ta�1dt C o.1/ .ı ! 0C/;

and then (16) follows. The lemma is proved. ut
Lemma 3.2 ([29]). If s 2 N; �; M > 0; �.u/ is a Non-negative measurable
function in .0; 1; and

DM WD
(

x 2 RsCI
sX

iD1
x
�
i � M�

)

;

then we have

Z
� � �
Z

DM

�

 
sX

iD1

� xi
M

��
!

dx1 � � �dxs D
Ms� s. 1

�
/

�s� . s
�
/

Z 1

0

�.u/u
s
� �1du: (17)
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Lemma 3.3. For s 2 N;� > 0; " > 0; c D .c1; : : : ; cs/ 2 Œ0; 1/s; we have

Z

fu2Rs
C

I ui�1g
jjujj�s�"� du D

� s. 1
�
/

"s"=� �s�1� . s
�
/
; (18)

X

m

jjm� cjj�s�"� D
� s. 1

�
/

"s"=� �s�1� . s
�
/

CO.1/ ." ! 0C/: (19)

Proof. For M > s1=� ; we set

�.u/ D
(
0; 0 < u < s

M� ;

.M u1=�/�s�"; s
M� � u � 1:

Then by (17), it follows

Z

fu2Rs
C

Iui�1g
jjujj�s�"� du D lim

M!1

Z
� � �
Z

DM

�

 
sX

iD1

� xi
M

��
!

dx1 � � �dxs

D lim
M!1

Ms� s. 1
�
/

�s� . s
�
/

Z 1

s=M�

.M u1=�/�s�"u
s
� �1du

D
� s. 1

�
/

"s"=� �s�1� . s
�
/
;

namely, (18) follows. By (18), we find

X

m

jjm � cjj�s�"� �
Z

fx2Rs
C

Ixi�1Cci g
jjx � cjj�s�"� dx

D
Z

fu2Rs
C

Iui�1g
jjujj�s�"� du D

� s. 1
�
/

"s"=��s�1� . s
�
/
:

For s D 1; 0 <
P2

mD1 jjm � cjj�1�"� < 1I for s � 2; by (18), we have

0 <
X

fm2NsI9i0;mi0D1;2g
jjm� cjj�s�"� � aC

X

fm2Ns�1Imi�3g
jjm� cjj�.s�1/�.1C"/�

� a C
Z

fx2Rs�1
C

Ixi�1Cci g
jjx � cjj�.s�1/�.1C"/� dx
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D a C
Z

fu2Rs
C

Iui�1g
jjujj�.s�1/�.1C"/� du

D a C
� s�1. 1

�
/

.1C "/.s � 1/.1C"/=��s�2� . s�1
�
/
< 1 .a 2 RC/;

and then

X

m

jjm � cjj�s�"� D
X

fm2NsI9i0;mi0D1;2g
jjm� cjj�s�"� C

X

fm2NsImi�3g
jjm� cjj�s�"�

� O1.1/C
Z

fx2Rs
C

Ixi�1Cci g
jjx � cjj�s�"� dx

D O1.1/C
Z

fu2Rs
C

Iui�1g
jjujj�s�"� du D O1.1/C

� s. 1
�
/

"s"=��s�1� . s
�
/
:

Then we have (19). The lemma is proved. ut
In Theorems 3.1–3.3, we suppose that k.	1/ 2 RC; and

K1 D
� j0. 1

ˇ
/

ˇj0�1� . j0
ˇ
/
k.	1/; K2 D � i0. 1

˛
/

˛i0�1� . i0
˛
/
k.	1/:

Theorem 3.1. With the same assumptions of Theorem 2.1 .p > 1/, if there exists a
constant ı0 > 0; such that for any Q	i 2 .	i � ı0; 	i C ı0/ .i D 1; 2/; Q	1 C Q	2 D 	;

QK2.1 � Q#	.n// < !	. Q	2; n/ .n 2 Nj0/; (20)

where

QK2 D � i0. 1
˛
/

˛i0�1� . i0
˛
/
k. Q	1/ 2 RC and Q#	.n/ D O

� 1

jjnjj�ˇ
�

2 .0; 1/ .� > 0/;

then the constant factor K
1
p

1 K
1
q

2 in (10) and (11) is the best possible.

Proof. For 0 < " < qı0; Q	1 D 	1 C "
q
; Q	2 D 	2 � "

q
; we set

Qam WD jjmjj�i0C	1�
"
p

˛ .m 2 Ni0 /; Qbn WD jjnjj�j0C	2�
"
q

ˇ .n 2 Nj0/:

Then by (19), (16) and (20), we obtain
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jj Qajjp;' jj Qbjjq; D
(
X

m

jjmjjp.i0�	1/�i0˛ Qapm
) 1

p
(
X

n

jjnjjq.j0�	2/�j0ˇ
Qbqn
) 1

q

D
(
X

m

jjmjj�i0�"˛

) 1
p
(
X

n

jjnjj�j0�"ˇ

) 1
q

D 1

"

"
� i0. 1

˛
/

i
"=˛
0 ˛i0�1� . i0

˛
/

C "O.1/

# 1
p

2

4
� j0. 1

ˇ
/

j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C " QO.1/
3

5

1
q

;

QI W D
X

n

"
X

m

k	.jjmjj˛; jjnjjˇ/ Qam
#

Qbn

D
X

n

"

jjnjjQ	2ˇ
X

m

k	.jjmjj˛; jjnjjˇ/jjmjj�i0CQ	1˛

#

jjnjj�j0�"ˇ

D
X

n

!	. Q	2; n/jjnjj�j0�"ˇ > QK2

X

n

 

1 �O.
1

jjnjj�ˇ
/

!

jjnjj�j0�"ˇ

D .K2 C o.1//

2

4
� j0. 1

ˇ
/

"j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C QO.1/�O.1/

3

5 :

If there exists a constantK � K
1
p

1 K
1
q

2 ; such that (10) is valid when replacingK
1
p

1 K
1
q

2

by K; then in particular, we have

.K2 C o.1//

2

4
� j0. 1

ˇ
/

j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C " QO.1/ � "O.1/
3

5 < " QI < "Kjj Qajjp;' jj Qbjjq; 

D K

"
� i0. 1

˛
/

i
"=˛
0 ˛i0�1� . i0

˛
/

C "O.1/

# 1
p

2

4
� j0. 1

ˇ
/

j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C " QO.1/
3

5

1
q

:

For " ! 0C; we find

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

� i0. 1
˛
/

˛i0�1� . i0
˛
/
k.	1/ � K

"
� i0. 1

˛
/

˛i0�1� . i0
˛
/

# 1
p
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
q

;

and then K
1
p

1 K
1
q

2 � K: Hence,K D K
1
p

1 K
1
q

2 is the best possible of (10).
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The constant factorK
1
p

1 K
1
q

2 in (11) is still the best possible. Otherwise, we would
reach a contradiction by (9) (for !	.	2; n/ < K2/ that the constant factor in (8) is
not the best possible. The theorem is proved. ut
Theorem 3.2. With the same assumptions of Theorem 2.2 .p < 0/; if

#	.n/ D O
� 1

jjnjj�ˇ
�

2 .0; 1/ .� > 0/;

there exists a constant ı0 > 0; such that for any Q	i 2 .	i � ı0; 	i C ı0/ .i D 1; 2/;
Q	1 C Q	2 D 	;

!	. Q	2; n/ < QK2 .n 2 Nj0/; (21)

where

QK2 D � i0. 1
˛
/

˛i0�1� . i0
˛
/
k. Q	1/ 2 RC;

then the constant factor K
1
p

1 K
1
q

2 in (12) and (13) is the best possible.

Proof. For 0 < " < qı0; Q	1 D 	1 C "
q
; Q	2 D 	2 � "

q
; we set Qam; Qbn as in

Theorem 3.1. Then by (19), (21) and (16), we obtain

jjQajjp;' jj Qbjjq; Q D
(
X

m

jjmjjp.i0�	1/�i0
˛ Qapm

) 1
p
(
X

n

.1� #	.n//jjnjjq.j0�	2/�j0
ˇ

Qbqn
) 1

q

D
(
X

m

jjmjj�i0�"
˛

) 1
p
(
X

n

�

1�O
�

1

jjnjj�ˇ
��

jjnjj�j0�"

ˇ

) 1
q

D 1

"

 
� i0 . 1

˛
/

i
"=˛
0 ˛i0�1� .

i0
˛
/
C "O.1/

!1
p
 

� j0 . 1
ˇ
/

j
"=ˇ
0 ˇj0�1� .

j0
ˇ
/
C " QO.1/� "O.1/

!1
q

;

QI D
X

n

"
X

m

k	.jjmjj˛; jjnjjˇ/ Qam
#

Qbn D
X

n

!	. Q	2; n/jjnjj�j0�"
ˇ

< QK2
X

n

jjnjj�j0�"
ˇ

D .K2 C o.1//

2

4
� j0. 1

ˇ
/

"j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C QO.1/
3

5 :

If there exists a constant K � K
1
p

1 K
1
q

2 ; such that (12) is valid when replacing

K
1
p

1 K
1
q

2 by K; then we have
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.K2 C o.1//

2

4
� j0. 1

ˇ
/

j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C " QO.1/
3

5 > " QI > "Kjj Qajjp;' jj Qbjjq; Q 

D K

"
� i0. 1

˛
/

i
"=˛
0 ˛i0�1� . i0

˛
/

C "O.1/

# 1
p

2

4
� j0. 1

ˇ
/

j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C " QO.1/� "O.1/
3

5

1
q

:

For " ! 0C; it follows

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

� i0. 1
˛
/

˛i0�1� . i0
˛
/
k.	1/ > K

"
� i0. 1

˛
/

˛i0�1� . i0
˛
/

# 1
p
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
q

;

and then K
1
p

1 K
1
q

2 � K: Hence, K D K
1
p

1 K
1
q

2 is the best possible constant factor
of (12).

The constant factorK
1
p

1 K
1
q

2 in (13) is still the best possible. Otherwise, we would
reach a contradiction by the reverse of (9) that the constant factor in (12) is not the
best possible. The theorem is proved. ut
Theorem 3.3. With the same assumptions of Theorem 2.3 .0 < p < 1/, if

�	.m/ D O

�
1

jjmjj�˛

�

2 .0; 1/ .� > 0/;

and there exists a constant ı0 > 0; such that for any Q	i 2 .	i�ı0; 	iCı0/ .i D 1; 2/;
Q	1 C Q	2 D 	;

!	. Q	2; n/ < QK2 .n 2 Nj0/; (22)

where

QK2 D � i0. 1
˛
/

˛i0�1� . i0
˛
/
k. Q	1/ 2 RC;

then the constant factor K
1
p

1 K
1
q

2 in (14) and (15) is the best possible.

Proof. For 0 < " < jqjı0, Q	1 D 	1 C "
q

, Q	2 D 	2 � "
q

, we set Qam; Qbn as in
Theorem 3.1. Then by (19), (22) and (16), we obtain

jj Qajjp; Q' jj Qbjjq; 
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D
(
X

m

.1 � �	.m//jjmjjp.i0�	1/�i0˛ Qapm
) 1
p
(
X

n

jjnjjq.j0�	2/�j0
ˇ

Qbqn
) 1
q

D
(
X

m

�

1 �O

�
1

jjmjj�˛

��

jjmjj�i0�"˛

) 1
p
(
X

n

jjnjj�j0�"
ˇ

) 1
q

D 1

"

"
� i0. 1˛ /

i
"=˛
0 ˛i0�1� . i0˛ /

C "O.1/ � " OO.1/
# 1
p

2

4
� j0. 1

ˇ
/

j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C " QO.1/
3

5

1
q

;

QI D
X

n

"
X

m

k	.jjmjj˛; jjnjjˇ/ Qam
#

Qbn D
X

n

!	. Q	2; n/jjnjj�j0�"
ˇ

< QK2
X

n

jjnjj�j0�"
ˇ

D .K2 C o.1//

2

4
� j0. 1

ˇ
/

j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C " QO.1/
3

5 :

If there exists a constantK � K
1
p

1 K
1
q

2 ; such that (14) is valid when replacingK
1
p

1 K
1
q

2

by K; then we have

.K2 C o.1//

2

4
� j0. 1

ˇ
/

j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C " QO.1/
3

5 > " QI > "Kjj Qajjp; Q' jj Qbjjq; 

D K

"
� i0. 1

˛
/

i
"=˛
0 ˛i0�1� . i0

˛
/

C "O.1/� " OO.1/
# 1
p

2

4
� j0. 1

ˇ
/

j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C " QO.1/
3

5

1
q

:

For " ! 0C; we find

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

� i0. 1
˛
/

˛i0�1� . i0
˛
/
k.	1/ � K

"
� i0. 1

˛
/

˛i0�1� . i0
˛
/

# 1
p
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
q

;

and then K
1
p

1 K
1
q

2 � K: Hence,K D K
1
p

1 K
1
q

2 is the best possible of (14).

The constant factorK
1
p

1 K
1
q

2 in (15) is still the best possible. Otherwise, we would
reach a contradiction by the reverse of (9) that the constant factor in (14) is not the
best possible. The theorem is proved. ut
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Corollary 3.1. Suppose that k.	1/ 2 RC;

K1 D
� j0. 1

ˇ
/

ˇj0�1� . j0
ˇ
/
k.	1/; K2 D � i0. 1

˛
/

˛i0�1� . i0
˛
/
k.	1/;

and

K1.1 � �	.m// < $	.	1;m/ < K1 .m 2 Ni0 /; (23)

where

�	.m/ D O

�
1

jjmjj�˛

�

2 .0; 1/ .� > 0/:

If there exists a constant ı0 > 0; such that for any Q	i 2 .	i � ı0; 	i Cı0/ .i D 1; 2/,
Q	1 C Q	2 D 	,

QK2.1 � Q#	.n// < !	. Q	2; n/ < QK2 .n 2 Nj0/; (24)

where

Q#	.n/ D O

�
1

jjnjj�ˇ

�

2 .0; 1/ .� > 0/; QK2 D � i0. 1
˛
/

˛i0�1� . i0
˛
/
k. Q	1/ 2 RC;

then the constant factor K
1
p

1 K
1
q

2 in Theorems 3.1–3.3 is the best possible.

Theorem 3.4. If k	.x; y/y	2�j0 is a strict decreasing function with respect to
y 2 RC, there exists a constant ı0 > 0; such that for any Q	1 2 .	1 � ı0; 	1 C
ı0/; k	.x; y/x

Q	1�i0 is strict decreasing with respect to x 2 RC,

k. Q	1/ WD
Z 1

0

k	.t; 1/t
Q	1�1dt 2 R;

and there exists a constant ı1 < 	1 � ı0; satisfying

k	.t; 1/ � L

tı1
.t 2 .0;1//;

then the constant factor K
1
p

1 K
1
q

2 in Theorems 3.1–3.3 is the best possible with

k.	1/ D
Z 1

0

k	.t; 1/t
	1�1dt 2 RC:
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Proof. We need to prove that the conditions of Corollary 3.1 are fulfilled. For any
Q	i 2 .	i � ı0; 	i C ı0/ .i D 1; 2/, Q	1 C Q	2 D 	,

k	.jjxjj˛; jjnjjˇ/ 1

jjxjji0�Q	1˛

.x D .x1; : : : ; xi0//

is strict decreasing with respect to xi 2 RC .i D 1; : : : ; i0/: Setting

DM WD
(

x 2 Ri0CI
i0X

iD1
x˛i � M˛

)

;

by the decreasing property and (17), we find

!	. Q	2; n/ D jjnjjQ	2
ˇ

X

m

k	.jjmjj˛; jjnjjˇ/ 1

jjmjji0�Q	1˛

< jjnjjQ	2
ˇ

Z

R
i0
C

k	.jjxjj˛; jjnjjˇ/
jjxjji0�Q	1˛

dx

D jjnjjQ	2
ˇ

lim
M!1

Z

DM

k	

�
M jj x

M
jj˛; jjnjjˇ

� M
Q	1�i0

jj xM jji0�Q	1˛

dx

D jjnjjQ	2
ˇ

lim
M!1

2

4
M
Q	1� i0 . 1˛ /
˛i0� . i0˛ /

Z 1

0
k	.Mu

1
˛ ; jjnjjˇ/ u

i0
˛ �1

u.i0�Q	1/=˛
du

3

5

D � i0. 1˛ /

˛i0�1� . i0˛ /
k. Q	1/ D QK2:

Hence, it follows

K2 D � i0. 1
˛
/

˛i0�1� . i0
˛
/
k.	1/ > 0

and then k.	1/ 2 RC. ForM > i
1=˛
0 , we set

�.u/ D
8
<

:

0; 0 < u < i0
M˛ ;

k	.M u1=˛; jjnjjˇ/ 1

u.i0�

Q	1/=˛
; i0
M˛ � u � 1:

Then by the decreasing property and (17), we have

!	. Q	2; n/ > jjnjjQ	2ˇ
Z

fx2R
i0
C

Ixi�1g
k	.jjxjj˛; jjnjjˇ/ 1

jjxjji0�Q	1˛

dx
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!	. Q	2; n/ > jjnjjQ	2ˇ
Z

fx2R
i0
C

Ixi�1g
k	.jjxjj˛; jjnjjˇ/ 1

jjxjji0�Q	1˛

dx

D jjnjjQ	2ˇ lim
M!1

Z

DM

�

� i0X

iD1

� xi
M

���

M
Q	1�i0dx1 � � �dxi0

D jjnjjQ	2ˇ lim
M!1

"
M
Q	1� i0. 1

˛
/

˛i0� . i0
˛
/

Z 1

i0
M˛

k	.M u
1
˛ ; jjnjjˇ/ u

i0
˛ �1

u.i0�Q	1/=˛
du

#

D � i0. 1
˛
/

˛i0�1� . i0
˛
/

Z 1

i
1=˛
0 =jjnjjˇ

k	.v; 1/v
Q	1�1dv

�
v D M jjnjj�1ˇ u1=˛

�

D QK2.1 � Q#	.n// > 0;

where

0 < Q#	.n/ W D 1

k. Q	1/
Z i

1=˛
0 =jjnjjˇ

0

k	.v; 1/v
Q	1�1dv

� L

k. Q	1/
Z i

1=˛
0 =jjnjjˇ

0

v
Q	1�ı1�1dv

� L

k. Q	1/
i
.Q	1�ı1/=˛
0

Q	1 � ı1
1

jjnjj	1�ı0�ı1ˇ

:

Setting � D 	1 � ı0 � ı1 > 0; it follows

Q#	.n/ D O

�
1

jjnjj�ˇ

�

2 .0; 1/:

By the same way, we can prove that

K1 D
� j0. 1

ˇ
/

ˇj0�1� . j0
ˇ
/
k.	1/;

and

K1.1 � �	.m// < $	.	1;m/ < K1 .m 2 Ni0 /;

with

�	.m/ D O

�
1

jjmjj�˛

�

2 .0; 1/ .� > 0/:
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By Corollary 3.1, the constant factorK
1
p

1 K
1
q

2 in Theorems 3.1, 3.2 and 3.3 is the best
possible. The theorem is proved. ut
Corollary 3.2. If k	.x; y/ is a positive decreasing function with respect to x .y/ 2
RC, 	1 < i0; 	2 < j0; there exists a constant 0 < ı0 < j0 � 	2; such that for any
Q	1 2 .	1 � ı0; 	1 C ı0/,

k. Q	1/ D
Z 1

0

k	.t; 1/t
Q	1�1dt 2 R;

and there exists a constant ı1 < 	1 � ı0; satisfying

k	.t; 1/ � L

tı1
.t 2 .0;1//;

then the constant factor K
1
p

1 K
1
q

2 in Theorems 3.1–3.3 is the best possible with

k.	1/ D
Z 1

0

k	.t; 1/t
	1�1dt 2 RC:

Remark 3.1. By (23) and (24), we find

lim
n!1!	.	2; n/ D K2 D � i0. 1

˛
/

˛i0�1� . i0
˛
/
k.	1/;

lim
m!1$	.	1;m/ D K1 D

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/
k.	1/:

4 The More Accurate Inequality and Its Equivalent Form

Definition 4.1. For 0 < ˛; ˇ � 1, � D .�1; : : : ; �i0 / 2 .0; 1=2i0, � D
.�1; : : : ; �j0 / 2 .0; 1=2j0, m � � D .m1 � �1; : : : ; mi0 � �i0/ 2 Ri0C, n � � D
.n1 � �1; : : : ; nj0 � �j0 / 2 Rj0

C , define two weight coefficients w	.	2; n/ and
W	.	1;m/ as follows:

w	.	2; n/ W D
X

m

k	.jjm � � jj˛; jjn� � jjˇ/
jjn� � jj	2ˇ

jjm � � jji0�	1˛

;

W	.	1;m/ W D
X

n

k	.jjm � � jj˛; jjn� � jjˇ/ jjm� � jj	1˛
jjn � � jjj0�	2ˇ

:
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Lemma 4.1. If for t > 0, .�1/ih.i/.t/ > 0 .i D 1; 2/, then for b > 0, 0 < ˛ � 1,
we have

.�1/i d
i

dxi
h..b C x˛/1=˛/ > 0 .x > 0I i D 1; 2/: (25)

Proof. We find

d

dx
h..b C x˛/1=˛/ D h0..b C x˛/1=˛/.b C x˛/

1
˛�1x˛�1 < 0

and

d2

dx2
h..b C x˛/1=˛/ D d

dx
Œh0..b C x˛/

1
˛ /.b C x˛/

1
˛�1x˛�1

D h00..b C x˛/
1
˛ /.b C x˛/

2
˛�2x2˛�2

C˛
� 1

˛
� 1

�
h0..b C x˛/

1
˛ /.b C x˛/

1
˛�2x2˛�2

C.˛ � 1/h0..b C x˛/
1
˛ /.b C x˛/

1
˛�1x˛�2;

i.e.,

d2

dx2
h..b C x˛/1=˛/ D h00..b C x˛/

1
˛ /.b C x˛/

2
˛�2x2˛�2

Cb.˛ � 1/h0..b C x˛/
1
˛ /.b C x˛/

1
˛�2x˛�2 > 0:

Hence, (25) follows. The lemma is proved. ut
Lemma 4.2. With the same assumptions of Definition 4.1, if

.�1/i @
i

@xi

�
k	.x; y/x

	1�i0� > 0; .�1/i @
i

@yi

�
k	.x; y/y

	2�j0� > 0 .i D 1; 2/;

then

(i) We have

w	.	2; n/ < K2 .n 2 Nj0/; (26)

W	.	1;m/ < K1 .m 2 Ni0 /I (27)

(ii) For p > 1; setting Q	1 D 	1 C "
q
; Q	2 D 	2 � "

q
; we have

QK2.1 � Q�	.n// < w	. Q	2; n/;
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where

Q�	.n/ D 1

k. Q	1/
Z i

1=˛
0 =jjn�� jjˇ

0

k	.v; 1/v
Q	1�1dv 2 .0; 1/;

QK2 D � i0. 1
˛
/

˛i0�1� . i0
˛
/
k. Q	1/; k. Q	1/ D

Z 1

0

k	.v; 1/v
Q	1�1dv:

Proof. (i) By Lemma 4.1 and Hermite-Hadamard’s inequality (cf. [15]), similarly
to Theorem 3.4, it follows

w	.	2; n/ <
Z

.1=2;1/j0
k	.jjx � � jj˛; jjn� � jjˇ/

jjn� � jj	2ˇ
jjx � � jji0�	1˛

dx

D
Z

fu2R
j0
C

Iui> 1
2��i g

k	.jjujj˛; jjn� � jjˇ/
jjn � � jj	2ˇ
jjujji0�	1˛

du

�
Z

R
j0
C

k	.jjujj˛; jjn� � jjˇ/
jjn � � jj	2ˇ
jjujji0�	1˛

du D K2:

Hence, we have (26). By the same way, we have (27).
(ii) By the decreasing property and the same way as in Theorem 3.4, we have

w	. Q	2; n/ > jjn� � jjQ	2ˇ
Z

fx2R
i0
C

Ixi�1C�i g
k	.jjx � � jj˛; jjn � � jjˇ/dx

jjx � � jji0�Q	1˛

D jjn� � jjQ	2ˇ
Z

fu2R
i0
C

Iui�1g
k	.jjujj˛; jjn� � jjˇ/du

jjujji0�Q	1˛

D � i0. 1
˛
/

˛i0�1� . i0
˛
/

Z 1

i
1=˛
0 =jjn�� jjˇ

k	.v; 1/v
Q	1�1dv

D QK2.1 � Q�	.n// > 0:
The lemma is proved.

ut
Setting ˚.m/ WD jjm� � jjp.i0�	1/�i0˛ .m 2 Ni0 / and �.n/ WD jjn� � jjq.j0�	2/�j0ˇ

.n 2 Nj0/, we have:

Theorem 4.1. If 0 < ˛; ˇ � 1, � 2 .0; 1=2i0, � 2 .0; 1=2j0,

.�1/i @
i

@xi
.k	.x; y/x

	1�i0 / > 0; .�1/i @
i

@yi
.k	.x; y/y

	2�j0/ > 0 .i D 1; 2/;
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there exists a constant ı0 > 0; such that for any Q	1 2 .	1 � ı0; 	1 C ı0/;

k. Q	1/ WD
Z 1

0

k	.t; 1/t
Q	1�1dt 2 R;

and there exists a constant ı1 < 	1 � ı0, satisfying

k	.t; 1/ � L

tı1
.t 2 .0;1//;

then for p > 1, am, bn � 0, 0 < jjajjp;˚ , jjbjjq;� < 1, we have the following
inequality:

I.�; �/ WD
X

n

X

m

k	.jjm� � jj˛; jjn � � jjˇ/ambn < K
1
p

1 K
1
q

2 jjajjp;˚ jjbjjq;� ; (28)

where the constant factor

K
1
p

1 K
1
q

2 D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

ˇi0�1� . i0
˛
/

# 1
q

k.	1/

is the best possible with

k.	1/ D
Z 1

0

k	.t; 1/t
	1�1dt 2 RC:

Proof. As in Lemma 2.2, by Hölder’s inequality, we still have

I.�; �/ D
X

n

X

m

k	.jjm� � jj˛; jjn � � jjˇ/ambn

�
(
X

m

W	.	1;m/jjm� � jjp.i0�	1/�i0˛ apm

) 1
p

�
(
X

n

w	.	2; n/jjn � � jjq.j0�	2/�j0ˇ bqn

) 1
q

:

Then by (26) and (27), we have (28).
For 0 < " < qı0; Q	1 D 	1 C "

q
, Q	2 D 	2 � "

q
; by the assumptions, we find

k. Q	1/ D k.	1/C o.1/." ! 0C/;

and for ı1 < 	1 � ı0; 	1 � ı1 > 0;
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0 � Q�	.n/ D 1

k. Q	1/
Z i

1=˛
0 =jjn�� jjˇ

0

k	.v; 1/v
Q	1�1dv

� L

k. Q	1/
Z i

1=˛
0 =jjn�� jjˇ

0

v
Q	1�ı1�1dv

� Li
.Q	1�ı1/=˛
0

k. Q	1/. Q	1 � ı1/

1

jjn � � jj	1�ı0�ı1ˇ

;

and then

Q�	.n/ D O

�
1

jjn � � jj�ˇ

�

.� D 	1 � ı0 � ı1 > 0/:

We set

Qam WD jjm� � jj�i0C	1�
"
p

˛ ; Qbn WD jjn � � jj�j0C	2�
"
q

ˇ .m 2 Ni0 ; n 2 Nj0/:

Then by (18), we obtain

jj Qajjp;˚ jj Qbjjq;� D
(
X

m

jjm � � jjp.i0�	1/�i0˛ Qapm
) 1

p
(
X

n

jjn � � jjq.j0�	2/�j0ˇ
Qbqn
) 1

q

D
(
X

m

jjm � � jj�i0�"˛

) 1
p
(
X

n

jjn � � jj�j0�"ˇ

) 1
q

D 1

"

 
� i0. 1

˛
/

i
"=˛
0 ˛i0�1� . i0

˛
/

C "O.1/

! 1
p

0

@
� j0. 1

ˇ
/

j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C " QO.1/
1

A

1
q

;

QI .�; �/ W D
X

n

"
X

m

k	.jjm � � jj˛; jjn � � jjˇ/ Qam
#

Qbn D
X

n

w	. Q	2; n/jjn � � jj�j0�"
ˇ

> QK2
X

n

0

@1 �O.
1

jjnjj	1�ı1
ˇ

/

1

A jjnjj�j0�"
ˇ

D QK2
2

4
� j0. 1

ˇ
/

"j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C QO.1/ �O.1/

3

5 :
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If there exists a constantK � K
1
p

1 K
1
q

2 ; such that (28) is valid when replacingK
1
p

1 K
1
q

2

by K; then we have

.K2 C o.1//

2

4
� j0. 1

ˇ
/

"j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C QO.1/ �O.1/
3

5 < " QI.�; �/ < "Kjj Qajjp;' jj Qbjjq; 

D K

"
� i0. 1

˛
/

i
"=˛
0 ˛i0�1� . i0

˛
/

C "O.1/

# 1
p

2

4
� j0. 1

ˇ
/

j
"=ˇ
0 ˇj0�1� . j0

ˇ
/

C " QO.1/
3

5

1
q

:

For " ! 0C; we find

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

� i0. 1
˛
/

˛i0�1� . i0
˛
/
k.	1/ � K

"
� i0. 1

˛
/

˛i0�1� . i0
˛
/

# 1
p
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
q

;

and then K
1
p

1 K
1
q

2 � K: Hence, K D K
1
p

1 K
1
q

2 is the best possible constant factor of
(28). The theorem is proved. ut
Theorem 4.2. With the same assumptions of Theorem 4.1, for 0 < jjajjp;˚ < 1;

we have the following inequality equivalent to (28) with the best constant factor

K
1
p

1 K
1
q

2 W

J.�; �/ W D
(
X

n

jjn � � jjp	2�j0ˇ

 
X

m

k	.jjm � � jj˛; jjn� � jjˇ/am
!p) 1

p

< K
1
p

1 K
1
q

2 jjajjp;˚ : (29)

Proof. We set bn as follows:

bn WD jjn� � jjp	2�j0ˇ

 
X

m

k	.jjm � � jj˛; jjn � � jjˇ/am
!p�1

; n 2 Nj0 :

Then it follows ŒJ.�; �/p D jjbjjqq;� : If J.�; �/ D 0; then (29) is trivially valid
since 0 < jjajjp;˚ < 1I if J.�; �/ D 1; then it is impossible since the right-hand
side of (29) is finite. Suppose that 0 < J.�; �/ < 1: Then by (28), we find

jjbjjqq;� D ŒJ.�; �/p D I.�; �/ < K
1
p

1 K
1
q

2 jjajjp;˚ jjbjjq;� ;
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namely,

jjbjjq�1q;� D J.�; �/ < K
1
p

1 K
1
q

2 jjajjp;˚ ;

and then (29) follows.
On the other hand, assuming that (29) is valid, by Hölder’s inequality, we have

I.�; �/ D
X

n

.�.n//�1=q
"
X

m

k	.jjm� � jj˛; jjn � � jjˇ/am
#

Œ.�.n//
1
q bn

� J.�; �/jjbjjq;� : (30)

Then by (29), we have (28). Hence (29) and (28) are equivalent.

By the equivalency, the constant factor K
1
p

1 K
1
q

2 in (29) is the best possible.

Otherwise, we would reach a contradiction by (30) that the constant factor K
1
p

1 K
1
q

2

in (28) is not the best possible. The theorem is proved. ut
Remark 4.1. (1) For � D � D 0; (28) reduces to (10). Hence, (28) is a more

accurate of inequality of (10). We still can consider the reverses of (28) and
(29) as in the front section.

(2) If 0 < 	1 � i0; 0 < 	2 � j0; then

k	.x; y/ D 1

.x C y/	
.	 > 0/; k	.x; y/ D ln.x=y/

x	 � y	 .0 < 	 � 1/

and

k	.x; y/ D
sY

kD1

1

x	=s C aky	=s
.0 < a1 < � � � < as; 0 < 	 � s/

all satisfy the conditions of

.�1/i @
i

@xi
.k	.x; y/x

	1�i0 / > 0; .�1/i @
i

@yi
.k	.x; y/y

	2�j0/ > 0 .i D 1; 2/;

for using Theorems 4.1 and 4.2.



454 B. Yang

5 Euler Constant in a Strengthened Version
of Hardy-Hilbert’s Inequality

For i0 D j0 D 1, 	 D 1, 	1 D 1
r
, 	2 D 1

s

�
r > 1; 1

r
C 1

s
D 1

�
, k	.x; y/ D 1

xCy in
Definition 2.1, we have the following weight coefficients:

!.s; n/ WD !1

�1

s
; n
�

D n1=s
1X

mD1

1

.mC n/m1=s
;

$.r;m/ WD $1

�1

r
;m
�

D m1=r

1X

nD1

1

.mC n/n1=r
;

and then in Theorem 2.1, we have the following Hardy-Hilbert’s inequality with a
best constant factor �=sin.�=r/ W

I1 WD
1X

nD1

1X

mD1

1

mC n
ambn <

�

sin.�
r
/

 1X

mD1
m

p
s �1apm

! 1
p
 1X

nD1
n
q
r �1bqn

! 1
q

: (31)

In this section, we build a strengthened version of (31) with Euler constant � D
0:57721566C as follows (cf. [33]):

I1 <

( 1X

mD1


�

sin.�
r
/

� 1 � �

m1=s

�

m
p
s �1apm

) 1
p
( 1X

nD1


�

sin.�
r
/

� 1 � �
n1=r

�

n
q
r �1bqn

) 1
q

:

(32)

Note. The other name of Euler constant � D �0 is called Stieltjes constant of 0-
order, which is the first term constant of the Laurent series of Riemann &� function
&.s/ in the isolated singular point s D 1 as follows (cf. [27]):

&.s/ D 1

s � 1
C
1X

nD0
.�1/n �n

nŠ
.s � 1/n .0 < js � 1j < 1/:

The Riemann &� function, gamma function, beta function and Bernoulli function
are very important in Number Theory and its applications. About the modern
development of Analysis Number Theory, please refer to [1, 2, 5, 6, 9, 12, 17, 19].

Lemma 5.1 ([25, 38]). If .�1/iF .i/.t/ > 0 .t 2 .0;1/I i D 0; 1; 2; 3/; then we
have

� 1

12
F.1/ <

Z 1

1

P1.t/F.t/dt < � 1

12
F
�3

2

�
;

where P1.t/ D t � Œt  � 1
2

is Bernoulli function of 1-order.
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Setting f .t/ WD 1

.xCt /t1=r .x � 1; t > 0/; we find

f 0.t/ D �1
.x C t/2t1=r

� 1

r.x C t/t1C.1=r/
D � .r C 1/t C x

r.x C t/2t1C.1=r/
:

By Euler-Maclaurin summation formula (cf. [27]), it follows

$.r; x/ D x
1
r

1X

nD1

1

.x C n/n1=r
D x

1
r

Z 1

1
f .t/dt C 1

2
f .1/C

Z 1

1
P1.t/f

0.t/dt
�

D x
1
r

Z 1

0
f .t/dt � x

1
r

Z 1

0
f .t/dt C x

1
r

2
f .1/C x

1
r

Z 1

1
P1.t/f

0.t/dt

D �

sin. �r /
�
Z 1

x

0

u� 1
r du

1C u
C x

1
r

2.x C 1/
� x

1
r

Z 1

1
P1.t/

.r C 1/t C x

r.x C t/2t1C.1=r/ dt:

Setting

G.t; x/ WD .r C 1/tx C x2

r.x C t/2t1C.1=r/ ; A.x/ WD x1� 1r
Z 1

x

0

u� 1
r

1C u
du; B.x/ WD

Z 1

1
P1.t/G.t; x/dt

and

�.r; x/ WD A.x/C B.x/ � x

2.x C 1/
.x 2 Œ1;1//;

then we have the following decomposition:

$.r;m/ D �

sin.�
r
/

� �.r;m/

m
1
r

.m 2 N/:

Lemma 5.2. We have

min
x�1 �.r; x/ D �.r; 1/ D �

sin.�
r
/

�$.r; 1/: (33)

Proof. By ([7]), Lemma 2.1, we have

Z 1
x

0

u� 1r
1C u

du � r.2r � 1/x 1
r

.r � 1/Œ.2r � 1/x C r � 1
.x � 1/:

Then we find

A0.x/ D
�
1 � 1

r

�
x� 1r

Z 1
x

0

u� 1r du

1C u
� 1

x C 1
� .1 � 1

r /r.2r � 1/
.r � 1/Œ.2r � 1/x C r � 1

� 1

x C 1

D .2r � 1/
.2r � 1/x C r � 1 � 1

x C 1
D r

.x C 1/Œ.2r � 1/x C r � 1
:
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Setting F1.t/ D 1

.xCt /2t1=r and F2.t/ D 1

.xCt /3t1=r ; then by Lemma 5.1, it follows

B 0.x/ D
Z 1

1

P1.t/G
0
x.t; x/dtD

r C 1

r

Z 1

1

P1.t/F1.t/dt�2x
Z 1

1

P1.t/F2.t/dt

>
r C 1

r

�
� 1

12
F1.1/

�
C 2x

12
F2

�3

2

�
D � r C 1

12r.x C 1/2
C 4x

3.2x C 3/3

�2

3

� 1
r
:

Then we have

� 0x.r; x/ D A0.x/C B 0.x/� 1

2.x C 1/2

D r

.x C 1/Œ.2r � 1/x C r � 1
� r C 1

12r.x C 1/2
C 4x

3.2x C 3/3

�2

3

� 1
r � 1

2.x C 1/2

D .�2r2 C 5r C 1/x C .5r2 C 6r C 1/

12r.x C 1/2Œ.2r � 1/x C r � 1 C 4x

3.2x C 3/3

�2

3

� 1
r
:

(1) If 1 < r < 5=2;�2r2 C 5r C 1 > 0 and then � 0x.r; x/ > 0:
(2) If r � 5=2; .2=3/1=r > 4=5; then we obtain

� 0x.r; x/ >
.�2r2 C 5r C 1/x C .5r2 C 6r C 1/

12r.x C 1/2Œ.2r � 1/x C r � 1 C 16x

15.2x C 3/3

D 5Œ.�2r2 C 5r C 1/x C .5r2 C 6r C 1/.2x C 3/3

60r.x C 1/2.2x C 3/3Œ.2r � 1/x C r � 1

C 64rx.x C 1/2Œ.2r � 1/x C r � 1

60r.x C 1/2.2x C 3/3Œ.2r � 1/x C r � 1

>
.48r2 � 44r C 40/x4 C .160r2 C 1076r C 92/x3

60r.x C 1/2.2x C 3/3Œ.2r � 1/x C r � 1
> 0 .x 2 Œ1;1//:

Hence, �.r; x/ is increasing with respect to x 2 Œ1;1/; and then we have
(33). The lemma is proved. ut

Lemma 5.3. For k 2 N; k � 5; the function

I.r; k/ WD
Z k

0

u� 1r du

1C u
� k� 1r
2.1C k/

�
k�1X

mD1

m� 1r
1Cm

is strict decreasing with respect to r 2 .1;1/:
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Proof. For k � 5; we find

I 0r .r; k/ D 1

r2

(

� k� 1r ln k

2.1C k/
C
"Z 4

0

u� 1r ln u

1C u
du � ln 2

3 � 2 1r
� ln 3

4 � 3 1r

#

�
"
k�1X

mD4

m� 1r lnm

1Cm
�
Z k

4

u� 1r ln u

1C u
du

#)

:

It is evident that for u � 4;

d

du

 
u� 1r ln u

1C u

!

D u� 1r
1C u

�

� ln u

ru
� ln u

1C u
C 1

u

�

<
u� 1r
1C u

�
1

u
� ln u

1C u

�

< 0;

and then u� 1r ln u=.1C u/ is decreasing with respect to u � 4: It follows that

k�1X

mD4

m�1=r lnm

1Cm
�
Z k

4

u�1=r ln u

1C u
du � 0:

Setting u D e�y; we obtain

J.r/ W D
Z 4

0

u�1=r ln u

1C u
du D �

Z 1

� ln 4

ye.�1C 1
r /y

1C e�y
dy < �1

5

Z 1

� ln 4
ye.�1C

1
r /ydy

D r41� 1r
5.r � 1/

�
ln 4 � r

r � 1

�
D s41=s

5
.ln 4 � s/:

If 1 < s D r=.r � 1/ < ln 4; namely, r > ln 4=.ln 4 � 1/ D 3:5887C; then we find

d

ds

(
s4

1
s

5
.ln 4 � s/

)

D 4
1
s

5
.ln 4 � s/

�
1 � ln 4

s

�
� s4

1
s

5
< 0;

and

s4
1
s

5
.ln 4 � s/ <

4

5
.ln 4 � 1/:

In this case,

Z 4

0

u� 1r ln u

1C u
du � ln 2

3 � 2 1r
� ln 3

4 � 3 1r
<
4

5
.ln 4 � 1/� ln 2

3 � 21=3:5887 � ln 3

4 � 31=3:5887

< �0:083996 < 0:

If ln 4 � r=.r � 1/, then J.r/ < 0.
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Therefore, I 0r .r; k/ < 0 and then I.r; k/ is strict decreasing with respect to r 2
.1;1/: The lemma is proved. ut
Lemma 5.4 ([8]). If r > 1, 1

r
C 1

s
D 1; then we have the following inequalities:

$.r;m/ <
�

sin.�
r
/

� 1 � �

m
1
r

.m 2 N/; (34)

!.s; n/ <
�

sin.�
r
/

� 1 � �

n
1
s

.n 2 N/; (35)

where 1 � � D 0:42278433C is the best value .� is Euler constant/.

Proof. For k 2 N; k � 5; we have

�.r; 1/ D �

sin.�
r
/

�$.r; 1/ D
Z 1

0

u� 1r
1C u

du �
1X

mD1

m� 1r
1Cm

D
Z k

0

u� 1r
1C u

du C
Z 1

k

u� 1r
1C u

du �
k�1X

mD1

m� 1r
1Cm

�
1X

mDk

m� 1r
1Cm

:

Setting g.t/ WD 1=Œ.1C t/t1=r ; then by Euler-Maclaurin summation formula, we
have
Z 1

k

u� 1r du

1C u
C u� 1r
2.1C k/

<

1X

mDk

m� 1r
1Cm

<

Z 1

k

u� 1r du

1C u
C u� 1r
2.1C k/

� g0.k/
12

:

It follows

I.r; k/C g0.k/
12

< �.r; 1/ < I.r; k/;

inf
r>1
I.r; k/C 1

12
inf
r>1
g0.k/ 6 inf

r>1
�.r; 1/ � inf

r>1
I.r; k/ .k � 5/:

Since for any k � 5;

0 � inf
r>1
g0.k/ D � sup

r>1


1

.1C k/2k1=r
C 1

r.1C k/k1C.1=r/

�

� �


1

.1C k/2
C 1

.1C k/k

�

! 0 .k ! 1/;

then it follows lim
k!1 inf

r>1
g0.k/ D 0: Hence by Lemma 4.1, we obtain

inf
r>1
�.r; 1/ D lim

k!1 inf
r>1
I.r; k/ D lim

k!1 lim
r!1 I.r; k/
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D lim
k!1

"Z k

0

du

1C u
� 1

2.1C k/
�

k�1X

mD1

1

1Cm

#

D 1 � lim
k!1

"
kC1X

mD1

1

m
� ln.1C k/� 1

2.k C 1/

#

D 1 � �:

Therefore, since infm�1 �.r;m/ D �.r; 1/; we have

$.r;m/ � �

sin.�
r
/

� �.r; 1/

m
1
r

<
�

sin.�
r
/

� infr>1 �.r; 1/

m
1
r

D �

sin.�
r
/

� 1 � �
m

1
r

.m 2 N/:

It is evident that the constant 1� � in (34) is the best possible. By the same way, we
still have (35). The lemma is proved. ut

For i0 D j0 D 1; 	 D 1; 	1 D 1
r
; 	2 D 1

s

�
r > 1; 1

r
C 1

s
D 1

�
, k	.x; y/ D 1

xCy
in (8), we have

I1 �
 1X

mD1
$.r;m/m

p
s �1apm

! 1
p
 1X

nD1
!.s; n/n

q
r �1bqn

! 1
q

:

Then by (34) and (35), it follows:

Theorem 5.1. If r > 1; 1
r

C 1
s

D 1; am; bn � 0;

0 <

1X

mD1
m

p
s �1apm < 1; 0 <

1X

nD1
n
q
r �1bqn < 1;

then we have (32) with the best possible constant factor �=sin.�=r/.
In particular, for r D q; s D p; we have

I1 <

( 1X

mD1

"
�

sin.�
p
/

� 1 � �
m1=p

#

apm

) 1
p
( 1X

nD1

"
�

sin.�
p
/

� 1 � �

n1=q

#

bqn

) 1
q

: (36)

For r D p; s D q; we have the dual form of (36) as follows:

I1 <

( 1X

mD1

"
�

sin.�
p
/

� 1��
m1=q

#

mp�2apm

) 1
p
( 1X

nD1

"
�

sin.�
p
/

� 1��
n1=p

#

nq�2bqn

) 1
q

:
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Corollary 5.1 ([32]). If r > 1; 1
r

C 1
s

D 1; am; bn � 0;

0 <

1X

mD1
m

p
s �1apm < 1; 0 <

1X

nD1
n
q
r �1bqn < 1;

then we have the following inequality with the best possible constant �=sin.�=r/ W

I1 <

( 1X

mD1


�

sin.�
r
/

� 1

2m
1
s Cm� 1r

�

m
p
s �1apm

) 1
p

�
( 1X

nD1


�

sin.�
r
/

� 1 � �
2n

1
r C n� 1

s

�

n
q
r �1bqn

) 1
q

:

Proof. By the same way of Theorem 5.1, we need only to prove the following
inequality:

$.r;m/ <
�

sin.�
r
/

� 1

2m1=s Cm�1=r
.m 2 N/: (37)

We find

A.m/ D m1� 1r
Z 1

m

0

u� 1r
1C u

du D m1� 1r
Z 1

m

0

1X

kD0
.�1/kuk�

1
r du

D m1� 1r
1X

kD0
.�1/k

Z 1
m

0

uk�
1
r du

D
1X

kD0

.�1/k
.k C 1

s
/mk

>

3X

kD0

.�1/k
.k C 1

s
/mk

and

B.m/ D
Z 1

1

P1.t/G.t;m/dt D
Z 1

1

P1.t/


m

.mC t/2t1=r
C m

r.mC t/t1C1=r

�

dt

> � 1

12


m

.mC 1/2
C m

r.mC 1/

�

:

For m � 2; we obtain

m

mC 1
D
�
1C 1

m

��1
< 1 � 1

m
C 1

m2
;

m

.mC 1/2
D 1

m

�
1C 1

m

��2
<
1

m

�
1 � 2

m
C 3

m2

�
I
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form D 1; the above inequalities are still valid. Then we have

�.r;m/ D A.m/CB.m/ � m

2.mC 1/
> fm.s/C gm.s/ .m 2 N/;

where

fm.s/ W D s C 1

12s
C 1

.1C s/m
C 1

12sm2
C 1

3.1C 3s/m3
;

gm.s/ W D � 1

12sm
� 1

2.1C 2s/m2
� 7

12
� 1

2m
C 1

12m2
� 7

12m3
:

For s > 1; m 2 N; we find

f 0m.s/ D 1 � 1

12s2
� 1

.1C s/2m
� 1

12s2m2
� 1

.1C 3s/2m3

> 1 � 1

12
� 1

4
� 1

12
� 1

16
> 0;

g0m.s/ D 1

12s2m
C 1

.1C 2s/2m2
> 0:

Then we obtain

�.r;m/ > fm.s/C gm.s/ > lim
s!1C

.fm.s/C gm.s// D 1

2
� 1

12m
� 1

2m3
:

For m � 3; since

�1

2
� 1

12m
� 1

2m3

��
1C 1

2m

�
D 1

2
C 1

m

�1

6
� 1

24m
� 1

2m2
� 1

4m3

�
>
1

2
;

we have

1

2
� 1

12m
� 1

2m3
>

1

2.1C 1
2m
/

D 1

2Cm�1
;

and then we find

$.r;m/ D �

sin.�
r
/

� �.r;m/

m
1
r

<
�

sin.�
r
/

� 1

m
1
r

�1

2
� 1

12m
� 1

2m3

�

<
�

sin.�
r
/

� 1

m
1
r .2Cm�1/

D �

sin.�
r
/

� 1

2m
1
r Cm� 1s

.m � 3/:

Since � < 0:6; 1 � � > 1=3; and .1 � �/.2C 2�1/ > 1; then it follows
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$.r; 1/ <
�

sin.�
r
/

� 1 � �

1
1
r

<
�

sin.�
r
/

� 1

2 � 1 1r C 1� 1s
;

$.r; 2/ <
�

sin.�
r
/

� 1 � �

2
1
r

<
�

sin.�
r
/

� 1

2 � 2 1r C 2� 1s
:

Hence, (37) is valid for m 2 N: The corollary is proved. ut

6 The Operator Expressions and Some Examples

For p > 1; '.m/ D jjmjjp.i0�	1/�i0˛ .m 2 Ni0 /; and  .n/ D jjnjjq.j0�	2/�j0ˇ ;

wherefrom

Œ .n/1�p D jjnjjp	2�j0ˇ .n 2 Nj0/;

we define two real weight normal discrete spaces lp;' and lq; as follows:

lp;' W D
8
<

:
a D famgI jjajjp;' D

(
X

m

'.m/jamjp
) 1

p

< 1
9
=

;
;

lq; W D
8
<

:
b D fbngI jjbjjq; D

(
X

n

 .n/jbnjq
) 1

q

< 1
9
=

;
:

As the assumptions of Theorem 2.1, in view of the fact that

J < K
1
p

1 K
1
q

2 jjajjp;';

we have the following definition:

Definition 6.1. Define a multidimensional Hilbert-type operator T W lp;' ! lp; 1�p
as follows: For a 2 lp;' ; there exists a unique representation Ta 2 lp; 1�p ; satisfying

.Ta/.n/ WD
X

m

k	.jjmjj˛; jjnjjˇ/am .n 2 Nj0/:

For b 2 lq; ; we define the following formal inner product of Ta and b as follows:

.Ta; b/ WD
X

n

X

m

k	.jjmjj˛; jjnjjˇ/ambn:
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Then by Theorem 3.4 (or Corollary 3.2), for 0 < jjajjp;'; jjbjjq; < 1; we have
the following equivalent inequalities:

.Ta; b/ < K
1
p

1 K
1
q

2 jjajjp;' jjbjjq; 

jjTajjp; 1�p < K
1
p

1 K
1
q

2 jjajjp;' : (38)

It follows that T is bounded with

jjT jj WD sup
a.¤�/2lp;'

jjTajjp; 1�p
jjajjp;' � K

1
p

1 K
1
q

2 :

Since the constant factorK
1
p

1 K
1
q

2 in (38) is the best possible, we have

Corollary 6.1. With the same assumptions of Theorem 3.4 .or Corollary 3.2/, T is
defined by Definition 6.1, it follows

jjT jj D K
1
p

1 K
1
q

2 D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

k.	1/:

Remark 6.1. In Corollary 6.1,

(1) If for x > y; k	.x; y/ D 0; then we define the first kind Hardy-type operator
as follows:

.T1a/.m/ WD
X

m�n
k	.jjmjj˛; jjnjjˇ/am .m 2 Ni0 /:

We find

k1.	1/ WD
Z 1

0

k	.t; 1/t
	1�1dt 2 RC;

and then

jjT1jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

k1.	1/:

(2) If for 0 < x < y; k	.x; y/ D 0; then we define the second kind Hardy-type
operator as follows:

.T2a/.m/ WD
X

m�n
k	.jjmjj˛; jjnjjˇ/am .m 2 Ni0 /:
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We find

k2.	1/ WD
Z 1

1

k	.t; 1/t
	1�1dt 2 RC;

and then

jjT2jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

k2.	1/:

Example 6.1. (1) We set

k	.x; y/ D 1

x	 C y	

�
	 > 0; 0 < 	1 < i0; 0 < 	2 < j0

�
;

k	.x; y/ D 1

x	 C y	

�
	 > 0; 0 < 	1 < i0; 0 < 	2 < j0

�
;

which is a positive decreasing function with respect to x .y/ 2 RC: For ı0 D
1
2

minf	1; 	2; i0 � 	1; j0 � 	2g > 0; and Q	1 2 .	1 � ı0; 	1 C ı0/; it follows

k. Q	1/ D
Z 1

0

1

t	 C 1
t
Q	1�1dt

�

v D t	D 1

	

Z 1

0

1

v C 1
v

Q	1
	 �1dv

�

D �

	 sin�. Q	1=	/
2 RC:

Setting ı1 D 0 .< 	1 � ı0/; we have

k	.t; 1/ D 1

t	 C 1
� 1 D 1

tı1
.t 2 .0;1//:

Then by Corollary 6.1, we have

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

�

	 sin.�	1
	
/
:

(2) We set k	.x; y/ D .x C y/�	 .	 > 0; 0 < 	1 < i0; 0 < 	2 < j0/,
which is a positive decreasing function with respect to x .y/ 2 RC: For
ı0 D 1

2
minf	1; 	2; i0 � 	1; j0 � 	2g > 0; and Q	1 2 .	1 � ı0; 	1 C ı0/; it

follows

k. Q	1/ D
Z 1

0

1

.t C 1/	
t
Q	1�1dt D B. Q	1; 	 � Q	1/ 2 RC:



Multidimensional Discrete Hilbert-Type Inequalities, Operators and Compositions 465

Setting ı1 D 0 .< 	1 � ı0/; we have

k	.t; 1/ D 1

.t C 1/	
� 1 D 1

tı1
.t 2 .0;1//:

Then by Corollary 6.1, we have

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

B.	1; 	2/:

(3) We set k	.x; y/ D ln.x=y/=.x	 � y	/ .	 > 0; 0 < 	1 < i0; 0 < 	2 < j0/,
which is a positive decreasing function with respect to x .y/ 2 RC (cf. [25]).
For ı0 D 1

2
minf	1; 	2; i0 � 	1; j0 � 	2g > 0; and Q	1 2 .	1 � ı0; 	1 C ı0/; it

follows

k. Q	1/ D
Z 1

0

ln t

t	 � 1 t
Q	1�1dt

�

v D t	D 1

	2

Z 1

0

ln v

v � 1v
Q	1
	 �1dt

�

D


�

	 sin�. Q	1=	/
�2

2 RC:

Setting 0 < ı1 D 	1�ı0
2

< 	1 � ı0; since

lim
t!0C

t ı1 ln t

t	 � 1 D lim
t!1

t ı1 ln t

t	 � 1 D 0;

there exists a constant L > 0; such that t ı1 ln t=.t	 � 1/ � L; and then

k	.t; 1/ D ln t

t	 � 1
� L

tı1
.t 2 .0;1//:

Then by Corollary 6.1, we have

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q
"

�

	 sin.�	1
	
/

#2

:

Lemma 6.1. If C is the set of complex numbers and C1 D C [ f1g, zk 2
C n ˚z j Re z � 0; Im z D 0



, k D 1; 2; : : : ; n, are different points, the function f .z/

is analytic in C1 except for zi .i D 1; 2; : : : ; n/, and z D 1 is a zero point of f .z/
whose order is not less than 1, then for ˛ 2 R; we have

Z 1

0

f .x/x˛�1dx D 2�i

1 � e2�˛i

nX

kD1
ResŒf .z/z˛�1; zk; (39)
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where 0 < Im.ln z/ D arg z < 2� . In particular, if zk .k D 1; : : : ; n/ are all poles
of order 1, setting 'k.z/ D .z � zk/f .z/ .'k.zk/ ¤ 0/; then

Z 1

0

f .x/x˛�1dx D �

sin�˛

nX

kD1
.�zk/

˛�1'k.zk/: (40)

Proof. By [21, p. 118], we have (39). We find

1 � e2�˛i D 1 � cos 2�˛ � i sin 2�˛

D �2i sin�˛.cos�˛ C i sin�˛/

D �2iei�˛ sin�˛:

In particular, since f .z/z˛�1 D 1
z�zk

.'k.z/z˛�1/; it is obvious that

ResŒf .z/z˛�1;�ak D zk
˛�1'k.zk/ D �ei�˛.�zk/

˛�1'k.zk/:

Then by (39), we obtain (40). The lemma is proved. ut
Example 6.2. For s 2 N; we set

k	.x; y/ D
sY

kD1

1

x	=s C aky	=s
.0 < a1 < � � � < as; 	 > 0; 0 < 	1 < i0; 0 < 	2 < j0/;

which is a positive decreasing function with respect to x .y/ 2 RC. For ı0 D
1
2

minf	1; 	2; i0 � 	1; j0 � 	2g > 0; and Q	1 2 .	1 � ı0; 	1 C ı0/; by (40), we
find

k. Q	1/ D
Z 1

0

sY

kD1

1

t	=s C ak
t
Q	1�1dt D s

	

Z 1

0

sY

kD1

1

u C ak
u
sQ	1
	 �1du

D �s

	 sin.�s
Q	1
	
/

sX

kD1
a
sQ	1
	 �1
k

sY

jD1
j¤k

1

aj � ak 2 RC:

Setting ı1 D 0.< 	1 � ı0/; L D Qs
kD1 1

ak
; we obtain

k	.t; 1/ D
sY

kD1

1

t	=s C ak
6

sY

kD1

1

ak
D L � 1

tı1
.t 2 .0;1//:

Then by Corollary 6.1, we have
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jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

�s

	 sin.�s	1
	
/

sX

kD1
a
s	1
	 �1
k

sY

jD1
j¤k

1

aj � ak
:

In particular,

(1) For s D 1; k	.x; y/ D 1

x	Ca1y	 .a1 > 0/; we have

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q
�a

	1
	 �1
1

	 sin.�	1
	
/
:

(2) For s D 2;

k	.x; y/ D 1

.x	
02 C a1y	=2/.x	

02 C a2y	=2/
.0 < a1 < a2/;

we have

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

2�

	 sin. 2�	1
	
/

a
2	1
	 �1
1 � a

2	1
	 �1
2

a2 � a1 :

Since we find

lim
	1! 	

2

a
2	1
	 �1
1 � a

2	1
	 �1
2

sin. 2�	1
	
/

D lim
	1! 	

2

2
	

�
a
2	1
	 �1
1 ln a1 � a

2	1
	 �1
2 ln a2

�

2�
	

cos. 2�	1
	
/

D ln.a2=a1/

�
;

then for 	1 D 	2 D 	=2; we obtain

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q
2 ln.a2=a1/

	.a2 � a1/
:

(3) For s D 3;

k	.x; y/ D 1

.x	
03 C a1y	=3/.x	

03 C a2y	=3/.x	
03 C a3y	=3/

.0 < a1 < a2 < a3/;

we have

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

3�

	 sin. 3�	1
	
/

3X

kD1
a
3	1
	 �1
k

3Y

jD1
j¤k

1

aj � ak
:
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Then for 	1 D 	2 D 	=2; we may find that

jjT jjD
2

4
� j0. 1

ˇ
/

ˇj0�1� . j0
ˇ
/

3

5

1
p "

� i0. 1˛ /

˛i0�1� . i0˛ /

# 1
q

3�

	.
p
a1Cp

a2/.
p
a1Cp

a3/.
p
a2Cp

a3/
:

Example 6.3. (1) We set

k	.x; y/D 1

x	C2.xy/	=2 cos �Cy	
�
	 > 0; 0 < � � �

2
; 0 < 	1 < i0; 0 < 	2 < j0

�
;

which is a positive decreasing function with respect to x .y/ 2 RC: For ı0 D
1
2

minf	1; 	2; i0 � 	1; j0 � 	2g > 0; and Q	1 2 .	1 � ı0; 	1 C ı0/; setting z1 D
�ei� ; z2 D �e�i� ; by (40), it follows

k. Q	1/ D
Z 1

0

1

t	 C 2t	=2 cos � C 1
t
Q	1�1dt D 2

	

Z 1

0

1

u2 C 2u cos � C 1
u
2Q	1
	 �1du

D 2�

	 sin. 2�
Q	1
	
/



.ei� /
2Q	1
	 �1 1

e�i� � ei�
C .e�i� /

2Q	1
	 �1 1

ei� � e�i�
�

D 2� sin �.1� 2Q	1
	
/

	 sin � sin. 2�
Q	1
	
/

2 RC:

Setting ı1 D 0 .< 	1 � ı0/; we have

k	.t; 1/ D 1

t	 C 2t	=2 cos � C 1
6 1 D 1

tı1
.t 2 .0;1//:

Then by Corollary 6.1, we have

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q
2� sin �.1� 2Q	1

	
/

	 sin � sin. 2�
Q	1
	
/
:

(2) We set

k	.x; y/ D 1

x	 C b.xy/	=2 C cy	

 
c > 0; 0 � b � 2

p
c;

	 > 0; 0 < 	1 D 	2 D 	
2
< minfi0; j0g

!

;

which is a positive decreasing function with respect to x .y/ 2 RC: For ı0 D
1
2

minf 	
2
; i0 � 	

2
; j0 � 	

2
g > 0; and Q	1 2 . 	

2
� ı0;

	
2

C ı0/; it follows

k
�	

2

�
D
Z 1

0

1

t	 C bt	=2 C c
t
	
2�1dt D 2

	

Z 1

0

1

u2 C bu C c
du
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D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

2�

	
p
c
; b D 0;

8

	
p
4c � b2

arctan

p
4c � b2
b

; 0 < b < 2
p
c;

4

	
p
c
; b D 2

p
c;

and

0 < k. Q	1/ D
Z 1

0

1

t	 C bt	=2 C c
t
Q	1�1dt 6

Z 1

0

1

c
t
	
2�ı0�1dt C

Z 1

1

1

t	
t
	
2Cı0�1dt

D
�1

c
C 1

� 1

	
2 � ı0

< 1:

Setting ı1 D 0 .< 	1 � ı0/; we have

k	.t; 1/ D 1

t	 C bt	=2 C c
� 1

c
D 1

ctı1
.t 2 .0;1//:

Then by Corollary 6.1, we have

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

k
�	

2

�
:

Example 6.4. We set

k	.x; y/ D .minfx; yg/�
.maxfx; yg/	C� .�� < 	1 < i0 � �; �� < 	2 < j0 � �/:

Then we find

k	.x; y/y
	2�j0 D .minfx; yg/�

.maxfx; yg/	C� y
	2�j0 D

8
ˆ̂
<̂

ˆ̂
:̂

y�C	2�j0
x	C�

; 0 < y < x;

x�

y	1C�Cj0
; y � x;

is a strict decreasing function with respect to y 2 RC: There exists a constant

ı0 D 1

2
minfi0 � � � 	1; � C 	2; � C 	1g > 0;

such that for any Q	1 2 .	1 � ı0; 	1 C ı0/;
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k	.x; y/x
Q	1�i0 D .minfx; yg/�

.maxfx; yg/	C� x
Q	1�i0 D

8
ˆ̂
<̂

ˆ̂
:̂

x�CQ	1�i0
y	C�

; 0 < x < y;

y�

x	�Q	1Ci0C�
; x � y;

is strict decreasing with respect to x 2 RC,

k. Q	1/ D
Z 1

0

.minft; 1g/�
.maxft; 1g/	C� t

Q	1�1dt D
Z 1

0

t
Q	1C��1dt C

Z 1

1

1

t	C�
t
Q	1�1dt

D 	C 2�

. Q	1 C �/.	 � Q	1 C �/
2 R:

Since ı0 � 1
2
.� C 	1/ < � C 	1 and

k	.t; 1/ D .minft; 1g/�
.maxft; 1g/	C� D

8
<

:

t� ; 0 < t < 1;

1

t	C�
; t � 1;

then there exists a constant ı1 D �� < 	1 � ı0; satisfying

k	.t; 1/ � 1

tı1
.t 2 .0;1//:

Therefore, the assumptions of Theorem 3.4 are satisfied and by Corollary 6.1, it
follows

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

	C 2�

.	1 C �/.	2 C �/
:

In particular,

(i) For � D 0; we have

k	.x; y/ D 1

.maxfx; yg/	 .0 < 	1 < i0; 0 < 	2 < j0/

and

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

	

	1	2
:

(ii) For � D �	; we have
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k	.x; y/ D 1

.minfx; yg/	 .�j0 < 	1 < 0; �i0 < 	2 < 0/

and

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q
.�	/
	1	2

:

(iii) For 	 D 0; we have

k0.x; y/ D
�

minfx; yg
maxfx; yg

��
.maxf��; ��j0g < 	1 D �	2 < minf�; i0��g/

and

jjT jj D
"

� j0. 1
ˇ
/

ˇj0�1� . j0
ˇ
/

# 1
p
"

� i0. 1
˛
/

˛i0�1� . i0
˛
/

# 1
q

2�

�2 � 	21
:

7 Compositions of Two Discrete Hilbert-Type Operators

For p > 1; still setting

'.x/ D xp.1�	1/�1;  .y/ D yq.1�	2/�1 .x; y 2 RC/;

as in the front section, for i0 D j0 D 1; we define two normal spaces as follows:

`p;' WD
8
<

:
a D famg1mD1I jjajjp;' D

( 1X

mD1
'.m/jamjp

) 1
p

< 1
9
=

;
;

`q; WD
8
<

:
b D fbng1nD1I jjbjjq; D

( 1X

nD1
 .n/jbnjq

) 1
q

< 1
9
=

;
:

Corollary 7.1. With the same assumptions of Theorem 3.4 .or Corollary 3.2/ for
i0 D j0 D 1, T is defined by Definition 4.1 .for i0 D j0 D 1/, such as

.Ta/.m/ D
1X

mD1
k	.m; n/am .m 2 N/;

we have
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jjT jj D k.	1/ D
Z 1

0

k	.t; 1/t
	1�1dt 2 RC:

In the following, we agree that p > 1; 1
p

C 1
q

D 1; 	; 	1; 	2 2 R; 	1 C	2 D 	,

k
.i/

	 .x; y/ .i D 1; 2; 3/ are non-negative finite homogeneous functions of degree �	
in R2C; with

k.i/.	1/ WD
Z 1

0

k
.i/

	 .u; 1/u
	1�1du 2 RC;

and k.1/	 .x; y/ is symmetric.

Definition 7.1. If k 2 N; we define two functions QFk.y/ and QGk.x/ as follows:

QFk.y/ W D y	�1
Z 1

1

k
.2/

	 .x; y/x
	1� 1

pk�1dx; y 2 RC;

QGk.x/ W D x	�1
Z 1

1

k
.3/

	 .x; y/y
	2� 1

qk�1dy; x 2 RC:

Lemma 7.1. If there exists a constant ı0 > 0; such that k.i/.	1 ˙ ı0/ 2 RC .i D
1; 2; 3/; and there exist constants ı1 2 .0; ı0/ and L > 0; satisfying for any u 2
Œ1;1/;

k
.2/

	 .1; u/u
	2Cı1 � L; k

.3/

	 .u; 1/u
	1Cı1 � L; (41)

then for k 2 N; k > 1
ı1

maxf 1
p
; 1
q
g; setting functions Fk.y/ and Gk.x/ as follows:

Fk.y/ W D y
	1� 1

pk�1k.2/
�
	1 � 1

pk

�
� QFk.y/; y 2 RC;

Gk.x/ W D x
	2� 1

qk�1k.3/
�
	1 C 1

qk

�
� QGk.x/; x 2 RC;

we have

0 � Fk.y/ D O.y	1�ı1�1/ .y 2 Œ1;1//; 0 � Gk.x/ D O.x	2�ı1�1/.x 2 Œ1;1//:

Proof. Setting u D x=y; we obtain

QFk.y/ D y
	1� 1

pk�1
Z 1

1=y

k
.2/

	
.u; 1/u	1�

1
pk�1du
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D y
	1� 1

pk�1
Z 1

0
k
.2/

	
.u; 1/u	1�

1
pk�1du � y	1� 1

pk�1
Z 1=y

0
k
.2/

	
.u; 1/u	1�

1
pk�1du

D y
	1� 1

pk�1k.2/
�
	1 � 1

pk

�
� y

	1� 1
pk�1

Z 1=y

0
k
.2/

	
.u; 1/u	1�

1
pk�1du:

Hence, it follows

Fk.y/ D y
	1�

1
pk �1

k.2/
�
	1 � 1

pk

�
� QFk.y/ D y

	1�
1
pk �1

Z 1=y

0

k
.2/

	
.u; 1/u	1�

1
pk �1

du

D y
	1�

1
pk �1

Z
1

y

k
.2/

	 .1; v/v
	2C

1
pk �1

dv � 0 .y 2 Œ1;1//:

In view of (41), we have

0 � Fk.y/ � y
	1� 1

pk�1L
Z 1

y

v�	2�ı1v	2C
1
pk�1dv

D y
	1� 1

pk�1L
Z 1

y

v
�ı1C 1

pk�1dv D Ly	1�ı1�1

ı1 � 1
pk

;

and then

Fk.y/ D O.y	1�ı1�1/ .y 2 Œ1;1//:

Still setting u D x=y; we have

QGk.x/ D x
	2� 1

qk�1
Z x

0

k
.3/

	 .u; 1/u
	1C 1

qk�1du

D x
	2� 1

qk�1k.3/
�
	1 C 1

qk

�
� x

	2� 1
qk�1

Z 1

x

k
.3/

	 .u; 1/u
	1C 1

qk�1du:

Hence it follows

Gk.x/ D x
	2� 1

qk�1k.3/
�
	1 C 1

qk

�
� QGk.x/

D x
	2� 1

qk�1
Z 1

x

k
.3/

	 .u; 1/u
	1C 1

qk�1du > 0:

By (41), we have

0 � Gk.x/ � x
	2� 1

qk�1L
Z 1

x

u�ı1C
1
qk�1du D Lx	2�ı1�1

ı1 � 1
qk

;
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and then Gk.x/ D O.x	2�ı1�1/ .x 2 Œ1;1//: The lemma is proved. ut
Lemma 7.2. With the same assumptions of Lemma 7.1, we have

Lk WD 1

k

Z 1

1

�Z 1

1

k
.1/

	 .x; y/x
	2� 1

qk�1y	1�
1
pk�1dx

�

dy D k.1/.	1/Co.1/; (42)

when k ! 1.

Proof. Setting u D y=x; since k.1/	 .x; y/ is symmetric, by Lemma 3.1, it follows

Lk D 1

k

Z 1

1

y�
1
k�1

�Z y

0

k
.1/

	 .1; u/u
	1C 1

qk�1du

�

dy

D 1

k

Z 1

1

y� 1
k�1

�Z 1

0

k
.1/

	 .u; 1/u
	1C 1

qk�1du

�

dy

C
Z 1

1

y� 1
k�1

�Z y

1

k
.1/

	 .u; 1/u
	1C 1

qk�1du

�

dy

�

D
Z 1

0

k
.1/

	 .u; 1/u
	1C 1

qk�1du C 1

k

Z 1

1

�Z 1

u
y�

1
k�1dy

�

k
.1/

	 .u; 1/u
	1C 1

qk�1du

D
Z 1

0

k
.1/

	 .u; 1/u
	1C 1

qk�1du C
Z 1

1

k
.1/

	 .u; 1/u
	1� 1

pk�1du

D
Z 1

0

k
.1/

	 .u; 1/u
	1�1du C o.1/:

Hence, (42) is valid. The lemma is proved. ut
Lemma 7.3. With the same assumptions of Lemma 7.1, if 	; 	1; 	2 � 1, k.i/	 .x; y/
.i D 1; 2; 3/ are decreasing with respect to x .y/ 2 RC; setting

QAk.n/ W D n	�1
1X

m1D1
k
.2/

	 .m1; n/m
	1� 1

pk�1
1 ;

QBk.m/ W D m	�1
1X

n1D1
k
.3/

	 .m; n1/n
	2� 1

qk�1
1 ;
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then we have

QIk WD 1

k

1X

mD1

1X

nD1
k
.1/

	 .m; n/
QAk.n/ QBk.m/ �

3Y

iD1
k.i/.	1/C o.1/ .k ! 1/: (43)

Proof. By the decreasing property, Definition 7.1 and Lemma 7.1, it follows

QIk � 1

k

Z 1

1

Z 1

1

k
.1/

	 .x; y/
QFk.y/ QGk.x/dxdy

D 1

k

Z 1

1

Z 1

1

k
.1/

	 .x; y/



y
	1� 1

pk�1k.2/
�
	1 � 1

pk

�
� Fk.y/

�

�


x
	2� 1

qk�1k.3/
�
	1 C 1

qk

�
�Gk.x/

�

dxdy

� I1 � I2 � I3;

where I1, I2, I3 are defined by

I1 W D k.2/
�
	1 � 1

pk

�
k.3/

�
	1 C 1

qk

� 1

k

Z 1

1

Z 1

1
k
.1/

	
.x; y/x

	2� 1
qk�1y	1�

1
pk�1dxdy;

I2 W D k.3/
�
	1 C 1

qk

� 1

k

Z 1

1

�Z 1

1
k
.1/

	
.x; y/x

	2� 1
qk�1dx

�

Fk.y/dy;

I3 W D k.2/
�
	1 � 1

pk

� 1

k

Z 1

1

�Z 1

1
k
.1/

	
.x; y/y

	1� 1
pk�1dy

�

Gk.x/dx;

respectively. By Lemma 7.2, we have

I1 D �
k.1/.	1/C o.1/

�
k.2/

�
	1 � 1

pk

�
k.3/

�
	1 C 1

qk

�
:

Since 0 � Fk.y/ D O.y	1�ı1�1/; there exists a constant L2 > 0; such that

Fk.y/ � L2y
	1�ı1�1 .y 2 Œ1;1//;

0 � I2 � k.3/
�
	1 C 1

qk

�L2
k

Z 1

1

�Z 1

0

k
.1/

	 .x; y/x
	2� 1

qk�1dx
�

y	1�ı1�1dy

D k.3/
�
	1 C 1

qk

�L2
k

Z 1

1

�Z 1

0

k
.1/

	 .u; 1/u
	1C 1

qk�1du

�

y
�ı1� 1

qk�1dy

D 1

k
k.3/

�
	1 C 1

qk

�
k.1/

�
	1 C 1

qk

� L2

ı1 C 1
qk

:

Hence, I2 ! 0 .k ! 1/.
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Since 0 � Gk.x/ D O.x	2�ı1�1/; there exists a constant L3 > 0; such that

Gk.x/ � L3x
	2�ı1�1 .x 2 Œ1;1//;

and then

0 � I3 � k.2/
�
	1 � 1

pk

�L3
k

Z 1

1

�Z 1

0

k
.1/

	 .x; y/y
	1� 1

pk�1dy
�

x	2�ı1�1dx

D k.2/
�
	1 � 1

pk

�L3
k

Z 1

1

�Z 1

0

k
.1/

	 .u; 1/u
	1� 1

pk�1du

�

x
�ı1� 1

pk�1dx

D 1

k
k.2/

�
	1 � 1

pk

�
k.1/

�
	1 � 1

pk

� L3

ı1 C 1
pk

:

Hence, I3 ! 0 .k ! 1/. Therefore,

QIk � I1 � I2 � I3 !
3Y

iD1
k.i/.	1/ .k ! 1/;

and then (43) follows. The lemma is proved. ut
Theorem 7.1. Suppose that for 	1; 	2 < 1, 	 � 1, k.i/	 .x; y/ .i D 1; 2; 3/ are
decreasing with respect to x .y/ 2 RC; there exists a constant ı0 > 0; such that

k.i/.	1 ˙ ı0/ 2 RC .i D 1; 2; 3/;

and there exist constants ı1 2 .0; ı0/ and L > 0; satisfying for any u 2 Œ1;1/;

k
.2/

	 .1; u/u
	2Cı1 � L; k

.3/

	 .u; 1/u
	1Cı1 � L:

If am1 , Bn � 0, a D fam1g1m1D1 2 `p;' , B D fBmg1mD1 2 `q; , jjajjp;' , jjBjjq; > 0,
setting

A	.n/ WD n	�1
1X

m1D1
k
.2/

	 .m1; n/am1 .n 2 N/;

then we have the following equivalent inequalities:

I WD
1X

mD1

1X

nD1
k
.1/

	 .m; n/A	.n/Bm < k
.1/.	1/k

.2/.	1/jjajjp;' jjBjjq; ; (44)

J WD
" 1X

mD1
mp	2�1

 1X

nD1
k
.1/

	 .m; n/A	.n/

!p# 1
p

< k.1/.	1/k
.2/.	1/jjajjp;'; (45)

where the constant factor k.1/.	1/k.2/.	1/ is the best possible.
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In particular, if bn1 � 0, b D fbn1g1n1D1 2 `q; , jjbjjq; > 0, setting

Bm D B	.m/ WD m	�1
1X

n1D1
k
.3/

	 .m; n1/bn1 .m 2 N/;

then we still have

1X

mD1

1X

nD1
k
.1/

	 .m; n/A	.n/B	.m/ <

3Y

iD1
k.i/.	1/jjajjp;' jjbjjq; ; (46)

where the constant factor
3Q

iD1
k.i/.	1/ is still the best possible.

Proof. By (11) (for i0 D j0 D 1/; we have

J � k.1/.	1/jjA	jjp;'; (47)

and the following inequality:

jjA	jjp;' D
( 1X

nD1
np.1�	1/�1Ap	.n/

) 1
p

D
8
<

:

1X

nD1
np	2�1

0

@
1X

m1D1
k
.2/

	 .m1; n/am1

1

A

p9
=

;

1
p

< k.2/.	1/jjajjp;'; (48)

then we have (45).
By Hölder’s inequality, we find

I D
1X

mD1

 

m
	2� 1

p

1X

nD1
k
.1/

	 .m; n/A	.n/

!
�
m

1
p�	2Bm

�
� J jjBjjq; : (49)

Then by (45), we have (44). On the other hand, assuming that (44) is valid, we set

Bm WD mp	2�1
 1X

nD1
k
.1/

	 .m; n/A	.n/

!p�1
.m 2 N/:

Then we find jjBjjqq; D J p: If J D 0; then (45) is trivially valid; if J D 1; then
by (47), it follows jjA	jjp;' D 1; which contradicts (48). For 0 < J < 1; by (44),
it follows

jjBjjqq; D J p D I < k.1/.	1/k
.2/.	1/jjajjp;' jjBjjq; :
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Dividing out jjBjjq; in the above inequality, we find

jjBjjq�1q; D J < k.1/.	1/k
.2/.	1/jjajjp;' ;

and then we have (45).
Hence, inequalities (45) and (44) are equivalent.
In particular, setting Bm D B	.m/ in (44), since by (11) (for i0 D j0 D 1/, we

find

jjBjjq; < k.3/.	1/jjbjjq; ;

then we have (46).
In the following, we prove that the constant factor in (46) is the best possible. For

k 2 N; k > 1
ı1

maxf 1
p
; 1
q
g; we set

Qam1 WD m
	1� 1

pk�1
1 ; Qbn1 WD n

	2� 1
qk�1

1 .m1; n1 2 N/:

Then it follows

QAk.n/ D n	�1
1X

m1D1
k
.2/

	 .m1; n/ Qam1; QBk.m/ D m	�1
1X

n1D1
k
.3/

	 .m; n1/
Qbn1:

If there exists a positive constant K �
3Q

iD1
k.i/.	1/ such that (46) is valid when

replacing
3Q

iD1
k.i/.	1/ by K; then in particular, it follows that

QIk D 1

k

1X

mD1

1X

nD1
k
.1/

	
.m; n/ QA	.n/ QB	.m/ < 1

k
Kjj Qajjp;' jj Qbjjq; D 1

k
K

�

1C
1X

nD2
n� 1

k�1
�

;

i.e.,

QIk < 1

k
K

�

1C
Z 1

1

y� 1
k�1dy

�

D K
�
1C 1

k

�
:

By (43), we find

3Y

iD1
k.i/.	1/C o.1/ � QIk D K

�
1C 1

k

�
;

and then
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3Y

iD1
k.i/.	1/ � K .k ! 1/:

Hence K D
3Q

iD1
k.i/.	1/ is the best value of (46).

By the equivalency, the constant factor in (44) is the best possible. Otherwise, for
Bm D B	.m/; we would reach a contradiction that the constant factor in (46) is not
the best possible. In the same way, the constant factor in (45) is the best possible.
Otherwise, we would reach a contradiction by (49) that the constant factor in (44) is
not the best possible. The theorem is proved. ut
Definition 7.2. With the same assumptions of Theorem 5.1, we define a Hilbert-
type operator T .1/ W `p;' ! `p;' as follows: For A	 D fA	.n/g1nD1 2 `p;' ; there
exists a unique representation T .1/A	 2 `p;' ; satisfying

.T .1/A	/.m/ D m	�1
1X

nD1
k
.1/

	 .m; n/A	.n/ .m 2 N/:

We can find

jjT .1/A	jjp;' � k.1/.	1/jjA	jjp;';
where the constant factor k.1/.	1/ is the best possible. Hence, it follows

jjT .1/jj D k.1/.	1/ D
Z 1

0

k
.1/

	 .t; 1/t
	1�1dt 2 RC:

Definition 7.3. With the same assumptions of Theorem 5.1, we define a Hilbert-
type operator T .2/ W `p;' ! `p;' as follows: for a D famg1mD1 2 `p;' ; there exists a
unique representation T .2/a 2 `p;' ; satisfying

.T .2/a/.n/ D A	.n/ D n	�1
1X

mD1
k
.2/

	 .m; n/am .n 2 N/:

We can find

jjT .2/ajjp;' � k.2/.	1/jjajjp;';
where the constant factor k.2/.	1/ is the best possible. Hence, it follows

jjT .2/jj D k.2/.	1/ D
Z 1

0

k
.2/

	 .t; 1/t
	1�1dt 2 RC:



480 B. Yang

Remark 7.1. In Definition 7.2,

(i) If for x > y, k.1/	 .x; y/ D 0; we define the first kind Hardy-type operator as
follows:

.T
.1/
1 A	/.m/ WD m	�1

mX

nD1
k
.1/

	 .m; n/A	.n/ .m 2 N/;

then we have

jjT .1/1 jj D k
.1/
1 .	1/ D

Z 1

0

k
.1/

	 .t; 1/t
	1�1dt 2 RC:

(ii) If for 0 < x < y, k.1/	 .x; y/ D 0; we define the second kind Hardy-type
operator as follows:

.T
.1/
2 A	/.m/ WD m	�1

1X

nDm
k
.1/

	 .m; n/A	.n/ .m 2 N/;

then we have

jjT .1/2 jj D k
.1/
2 .	1/ D

Z 1

1

k
.1/

	 .t; 1/t
	1�1dt 2 RC:

In Definition 7.3,

(i) If for x > y, k.2/	 .x; y/ D 0; we define the first kind Hardy-type operator as
follows:

.T
.2/
1 a/.n/ D n	�1

nX

mD1
k
.2/

	 .m; n/am .n 2 N/;

then we have

jjT .2/1 jj D k
.2/
1 .	1/ D

Z 1

0

k
.2/

	 .t; 1/t
	1�1dt 2 RC:

(ii) If for 0 < x < y, k.2/	 .x; y/ D 0; we define the second kind Hardy-type
operator as follows:

.T
.2/
2 a/.n/ D n	�1

1X

mDn
k
.2/

	 .m; n/am .n 2 N/;

then we have

jjT .2/2 jj D k
.2/
2 .	1/ D

Z 1

1

k
.2/

	 .t; 1/t
	1�1dt 2 RC:
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Definition 7.4. With the same assumptions of Theorem 5.1, we define a
Hilbert-type operator T W `p;' ! `p;' as follows: For a D famg1mD1 2 `p;' ;

there exists a unique representation Ta 2 `p;' ; satisfying

.Ta/.m/ D T .1/A	.m/ D m	�1
1X

nD1
k
.1/

	 .m; n/A	.n/

D m	�1
1X

nD1
k
.1/

	 .m; n/n
	�1

0

@
1X

m1D1
k
.2/

	 .m1; n/am1

1

A .m 2 N/:

Since for any a D famg1mD1 2 `p;' ; we have

Ta D T .1/A	 D T .1/.T .2/a/ D .T .1/T .2//a;

then it follows that T D T .1/T .2/; i.e., T is a composition of T .1/ and T .2/: It is
obvious that

jjT jj D jjT .1/T .2/jj � jjT .1/jj � jjT .2/jj D k.1/.	1/k
.2/.	1/:

By (45), we have

jjTajjp;' D jjT .1/A	jjp;' D J < k.1/.	1/k
.2/.	1/jjajjp;';

where the constant factor k.1/.	1/k.2/.	1/ is the best possible. It follows that jjT jj D
k.1/.	1/k

.2/.	1/; and then we have the following theorem:

Theorem 7.2. With the same assumptions of Theorem 7.1, the operators T .1/ and
T .2/ are respectively defined by Definitions 7.2 and 7.3, then we have

jjT .1/T .2/jj D jjT .1/jj � jjT .2/jj D k.1/.	1/k
.2/.	1/:

In particular,

(i) If k.2/	 .x; y/ D k
.1/

	 .x; y/; then T .2/ D T .1/ and

jj.T .1//2jj D jjT .1/jj2 D .k.1/.	1//
2I

(ii) If T .2/ D T
.2/
j .j D 1; 2/ is a Hardy-type operator defined by Remark 7.1,

then we have

jjT .1/T .2/j jj D jjT .1/jj � jjT .2/j jj D k.1/.	1/k
.2/
j .	1/ .j D 1; 2/:
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(iii) If T .1/ D T
.1/
i .i D 1; 2/ is a Hardy-type operator defined by Remark 7.1, then

we have

jjT .1/i T .2/jj D jjT .1/i jj � jjT .2/jj D k
.1/
i .	1/k

.2/.	1/ .i D 1; 2/:

(iv) If T .1/ D T
.1/
i .i D 1; 2/, T .2/ D T

.2/
j .j D 1; 2/, then we have

jjT .1/i T
.2/
j jj D jjT .1/i jj � jjT .2/j jj D k

.1/
i .	1/k

.2/
j .	1/ .j; i D 1; 2/:

Example 7.1. (i) For 0 < 	 � 1; 0 < 	1; 	2 < 1;

k
.i/

	 .x; y/ D 1

x	 C y	
;

1

.x C y/	
;

ln.x=y/

x	 � y	 ;
1

.maxfx; yg/	

and

sY

kD1

1

x	=s C aky	=s
.i D 1; 2; 3/

are satisfied using Theorem 7.1.

(ii) For

k
.1/

	 .x; y/ D 1

x	 C y	
; k

.2/

	 .x; y/ D 1

.maxfx; yg/	

in Definitions 7.2 and 7.3 and Remark 7.1, it follows

.T .1/A	/.m/ D m	�1
1X

nD1

1

m	 C n	
A	.n/ .m 2 N/;

.T .2/a/.n/ D n	�1
1X

mD1

1

.maxfm; ng/	 am .n 2 N/;

.T
.2/
1 a/.n/ D 1

n

nX

mD1
am .n 2 N/;

.T
.2/
2 a/.n/ D n	�1

1X

mDn

1

m	
am .n 2 N/;

then by Theorem 7.1, we have
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jjT .1/T .2/jj D jjT .1/jj � jjT .2/jj D �

	 sin�.	1
	
/

	

	1	2
D �

	1	2 sin�.	1
	
/
;

jjT .1/T .2/1 jj D jjT .1/jj � jjT .2/1 jj D �

	 sin�.	1
	
/

1

	1
D �

		1 sin�.	1
	
/
;

jjT .1/T .2/2 jj D jjT .1/jj � jjT .2/2 jj D �

	 sin�.	1
	
/

1

	2
D �

		2 sin�.	1
	
/
:
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37. Yang, B.C., Brnetić, I., Krnić, M., Pečarić, J.E.: Generalization of Hilbert and Hardy-Hilbert
integral inequalities. Math. Inequal. Appl. 8(2), 259–272 (2005)

38. Zhao, D.J.: On a refinement of Hilbert double series theorem. Math. Practices Theory, 23(1),
85–90 (1993)

39. Zhong, W.Y.: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-
degree. J. Inequal. Appl. 2008, Article ID 917392, 13 (2008)

40. Zhong, W.Y.: A mixed Hilbert-type inequality and its equivalent forms. J. Guangdong Univ.
Educ. 31(5), 18–22 (2011)

41. Zhong, W.Y.: A half discrete Hilbert-type inequality and its equivalent forms. J. Guangdong
Univ. Educ. 32(5), 8–12 (2012)

42. Zhong, J.H.: Two classes of half-discrete reverse Hilbert-type inequalities with a non-
homogeneous kernel. J. Guangdong Univ. Educ. 32(5), 11–20 (2012)

43. Zhong, W.Y., Yang, B.C.: A best extension of Hilbert inequality involving several parameters.
J. Jinan Univ. (Nat. Sci.) 28(1), 20–23 (2007)

44. Zhong, W.Y., Yang, B.C.: On multiple Hardy-Hilbert’s integral inequality with kernel.
J. Inequal. Appl. 2007, Article ID 27962, 17 (2007). doi:10.1155/ 2007/27

45. Zhong, W.Y., Yang, B.C.: A reverse Hilbert’s type integral inequality with some parameters
and the equivalent forms. Pure Appl. Math. 24(2), 401–407 (2008)

46. Zhong, J.H., Yang, B.C.: On an extension of a more accurate Hilbert-type inequality.
J. Zhejiang Univ. (Sci. Ed.) 35(2), 121–124 (2008)



The Function .bx � ax/=x.bx � ax/=x.bx � ax/=x: Ratio’s Properties

Feng Qi, Qiu-Ming Luo, and Bai-Ni Guo

Dedicated to Professor Hari M. Srivastava

Abstract In the present paper, after reviewing the history, background, origin,
and applications of the functions bt�at

t
and e�˛t�e�ˇt

1�e�t , we establish sufficient and

necessary conditions such that the special function e˛t�eˇt
e	t�e
t is monotonic, logarithmic

convex, logarithmic concave, 3-log-convex, and 3-log-concave on R, where ˛; ˇ; 	,
and 
 are real numbers satisfying .˛; ˇ/ ¤ .	; 
/, .˛; ˇ/ ¤ .
; 	/, ˛ ¤ ˇ,
and 	 ¤ 
.

1 Introduction

Recall from [43] that a k-times differentiable function f .t/ > 0 is said to be
k-log-convex on an interval I if

0 6 Œln f .t/.k/ < 1; k 2 N (1)

on I ; if the inequality (1) reverses, then f is said to be k-log-concave on I .
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For b > a > 0, let

Ga;b.t/ D

8
<̂

:̂

bt � at

t
; t ¤ 0I

ln b � ln a; t D 0:

In [37, 38], the complete monotonicity and inequality properties of Ga;b.t/ were
first investigated. In [1, 9, 13, 28, 33, 34], the 3-log-convex and 3-log-concave
properties of Ga;b.t/ were shown. The function Ga;b.t/ has close relationships
with the incomplete gamma function [21, 25]. It was ever used to prove the Schur-
convex properties [13,25,34], the logarithmic convexities [4,13,20,28,34], and the
monotonicity [36, 39] of the extended mean values (for more information, please
refer to [2,21] and closely related references therein). It was applied in [7,29,30,40]
to construct Steffensen pairs. It was also employed in [41] to verify Elezović-
Giordano-Pečarić’s theorem [6, Theorem 1] which is related to the monotonicity
of a function involving the ratio of two gamma functions. Some more applications
were further established in [31, 32] recently.

For b > a > 0, let

Fa;b.t/ D

8
<̂

:̂

t

ebt � eat
; t ¤ 0I

1

b � a ; t D 0:

In [3,15,18,22,44–46], [5, p. 217], and [16, p. 295], the inequalities, monotonicity,
and logarithmic convexities of the function Fa;b.t/ for a D b�1 and its logarithmic
derivatives of the first and second orders are established. In [18], the history,
background, and origin of Fa;b.t/ for a D b � 1 and its first two logarithmic
derivatives were cultivated. In [11, 42], the logarithmic derivative of Fa;b.t/ for
a D b�1 was applied to study the complete monotonicity of remainders of the first
Binet formula and the psi function. In [8,17,19], the functionFln a;ln b.t/was utilized
to generalize Bernoulli numbers and polynomials. In [9, 33], the 3-log-convex and
3-log-concave properties of Fa;b.t/ were shown, among other things.

For real numbers ˛ and ˇ satisfying ˛ ¤ ˇ, .˛; ˇ/ ¤ .0; 1/, and .˛; ˇ/ ¤ .1; 0/,
let

Q˛;ˇ.t/ D

8
<̂

:̂

e�˛t � e�ˇt
1� e�t

; t ¤ 0I
ˇ � ˛; t D 0:

In [12, 23, 41], the monotonicity and logarithmic convexities of Q˛;ˇ.t/ were
discussed and the following conclusions were procured:

1. The functionQ˛;ˇ.t/ is increasing on .0;1/ if and only if .ˇ�˛/.1�˛�ˇ/ > 0

and .ˇ � ˛/.j˛ � ˇj � ˛ � ˇ/ > 0.
2. The functionQ˛;ˇ.t/ is decreasing on .0;1/ if and only if .ˇ�˛/.1�˛�ˇ/ 6 0

and .ˇ � ˛/.j˛ � ˇj � ˛ � ˇ/ 6 0.
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3. The functionQ˛;ˇ.t/ is increasing on .�1; 0/ if and only if .ˇ�˛/.1�˛�ˇ/ >
0 and .ˇ � ˛/.2 � j˛ � ˇj � ˛ � ˇ/ > 0.

4. The functionQ˛;ˇ.t/ is decreasing on .�1; 0/ if and only if .ˇ�˛/.1�˛�ˇ/ 6
0 and .ˇ � ˛/.2 � j˛ � ˇj � ˛ � ˇ/ 6 0.

5. The functionQ˛;ˇ.t/ is increasing on .�1;1/ if and only if .ˇ� ˛/.j˛ �ˇj �
˛ � ˇ/ > 0 and .ˇ � ˛/.2 � j˛ � ˇj � ˛ � ˇ/ > 0.

6. The functionQ˛;ˇ.t/ is decreasing on .�1;1/ if and only if .ˇ�˛/.j˛�ˇj �
˛ � ˇ/ 6 0 and .ˇ � ˛/.2 � j˛ � ˇj � ˛ � ˇ/ 6 0.

7. The function Q˛;ˇ.t/ on .�1;1/ is logarithmically convex if ˇ � ˛ > 1 and
logarithmically concave if 0 < ˇ � ˛ < 1.

8. If 1 > ˇ � ˛ > 0, then Q˛;ˇ.t/ is 3-log-convex on .0;1/ and 3-log-concave on
.�1; 0/; if ˇ�˛ > 1, thenQ˛;ˇ.t/ is 3-log-concave on .0;1/ and 3-log-convex
on .�1; 0/.

The monotonicity of Q˛;ˇ.t/ on .0;1/ was applied in [12, 24, 35] to present
necessary and sufficient conditions such that some functions involving ratios of the
gamma and q-gamma functions are logarithmically completely monotonic. The log-
arithmic convexities ofQ˛;ˇ.t/ on .0;1/ were used in [10,41] to supply alternative
proofs for Elezović-Giordano-Pečarić’s theorem. For detailed information, please
refer to [26, 27] and related references therein.

The functionsGa;b.t/, Fa;b.t/, and Q˛;ˇ.t/ have the following relations:

Ga;b.t/ D 1

Fln a;ln b.t/
; Fa;b.t/ D 1

Geb;ea .t/
;

Q˛;ˇ.t/ D Ge�˛ ;e�ˇ .t/

G1;e�1 .t/
; Q˛;ˇ.t/ D F0;�1.t/

F�˛;�ˇ.t/
:

For real numbers ˛; ˇ; 	, and 
 satisfying .˛; ˇ/ ¤ .	; 
/, .˛; ˇ/ ¤ .
; 	/,
˛ ¤ ˇ, and 	 ¤ 
, let

H˛;ˇI	;
.t/ D

8
ˆ̂
<̂

ˆ̂
:̂

e˛t � eˇt

e	t � e
t
; t ¤ 0;

ˇ � ˛
	 � 


; t D 0:

For positive numbers r; s; u, and v satisfying .r; s/ ¤ .u; v/, .r; s/ ¤ .v; u/, r ¤ s,
and u ¤ v, let

Pr;sIu;v.t/ D

8
ˆ̂
<

ˆ̂
:

rt � st

ut � vt ; t ¤ 0;

ln r � ln s

ln u � ln v
; t D 0:
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It is clear that

H˛;ˇI	;
.t/ D Pe˛ ;eˇ Ie	;e
 .t/ (2)

and

Pr;sIu;v.t/ D Hln r;ln sIln u;ln v.t/:

In addition, the functionsH˛;ˇI	;
.t/ and Pr;sIu;v.t/ can be represented as

H˛;ˇI	;
.t/ D F	;
.t/

F˛;ˇ.t/
D Q�˛;�ˇ
Q�	;�


and Pr;sIu;v.t/ D Gr;s.t/

Gu;v.t/
;

the ratios of Ga;b.t/, Fa;b.t/, andQ˛;ˇ.t/.
Since the functions Ga;b.t/, Fa;b.t/, and Q˛;ˇ.t/ have a long history, a deep

background, and many applications to several areas, we continue to study the
monotonicity and logarithmic convexities of their ratios, H˛;ˇI	;
.t/ and Pr;sIu;v.t/.

Our main results may be stated as the following theorems.

Theorem 1.1. For real numbers ˛; ˇ; 	, and 
 with .˛; ˇ/ ¤ .	; 
/, .˛; ˇ/ ¤
.
; 	/, ˛ ¤ ˇ, and 	 ¤ 
, let

A D .˛ � ˇ/.˛ C ˇ � 	 � 
/; B D .˛ � ˇ/.˛ C ˇ � j˛ � ˇj � 2	/;

C D .˛ � ˇ/.˛ C ˇ C j˛ � ˇj � 2	/; D D .˛ � ˇ/.˛ C ˇ C j˛ � ˇj � 2
/;

E D .˛ � ˇ/.˛ C ˇ � j˛ � ˇj � 2
/:

Then the functionH˛;ˇI	;
.t/ has the following properties:

1. The function H˛;ˇI	;
.t/ is increasing on .0;1/ if and only if either 	 > 
,
A > 0, and C > 0 or 	 < 
, A 6 0, and B 6 0.

2. The function H˛;ˇI	;
.t/ is decreasing on .0;1/ if and only if either 	 < 
,
A > 0, and B > 0 or 	 > 
, A 6 0, and C 6 0.

3. The function H˛;ˇI	;
.t/ is increasing on .�1; 0/ if and only if either 	 > 
,
A > 0, and E > 0 or 	 < 
, A 6 0, and D 6 0.

4. The function H˛;ˇI	;
.t/ is decreasing on .�1; 0/ if and only if either 	 > 
,
A 6 0, and E 6 0 or 	 < 
, A > 0, and D > 0.

5. The function H˛;ˇI	;
.t/ is increasing on .�1;1/ if and only if either 	 > 
,
C > 0, and E > 0 or 	 < 
, B 6 0, and D 6 0.

6. The function H˛;ˇI	;
.t/ is decreasing on .�1;1/ if and only if either 	 > 
,
C 6 0, and E 6 0 or 	 < 
, B > 0, and D > 0.

7. The function H˛;ˇI	;
.t/ on .�1;1/ is logarithmically convex if ˛�ˇ
	�
 > 1 or

logarithmically concave if 0 < ˛�ˇ
	�
 < 1.
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8. The function H˛;ˇI	;
.t/ is 3-log-convex on .0;1/ and 3-log-concave on
.�1; 0/ if either 	 � 
 > ˛ � ˇ > 0 or ˛ � ˇ < 	 � 
 < 0; the function
H˛;ˇI	;
.t/ is 3-log-concave on .0;1/ and 3-log-convex on .�1; 0/ if either
˛ � ˇ > 	 � 
 > 0 or 	 � 
 < ˛ � ˇ < 0.

Theorem 1.2. For positive numbers r; s; u, and v with .r; s/ ¤ .u; v/, .r; s/ ¤
.v; u/, r ¤ s, and u ¤ v, let

A D ln
rs

uv
ln
r

s
; B D

�

ln
rs

u2
�
ˇ
ˇ
ˇ
ˇln
r

s

ˇ
ˇ
ˇ
ˇ

�

ln
r

s
; C D

�

ln
rs

u2
C
ˇ
ˇ
ˇ
ˇln
r

s

ˇ
ˇ
ˇ
ˇ

�

ln
r

s
;

D D
�

ln
rs

v2
C
ˇ
ˇ
ˇ
ˇln
r

s

ˇ
ˇ
ˇ
ˇ

�

ln
r

s
; E D

�

ln
rs

v2
�
ˇ
ˇ
ˇ
ˇln
r

s

ˇ
ˇ
ˇ
ˇ

�

ln
r

s
:

Then the function Pr;sIu;v.t/ has the following properties:

1. The function Pr;sIu;v.t/ is increasing on .0;1/ if and only if either u > v, A > 0,
and C > 0 or u < v, A 6 0, and B 6 0.

2. The functionPr;sIu;v.t/ is decreasing on .0;1/ if and only if either u < v, A > 0,
and B > 0 or u > v, A 6 0, and C 6 0.

3. The function Pr;sIu;v.t/ is increasing on .�1; 0/ if and only if u > v, A > 0, and
E > 0, or u < v, A 6 0, and D 6 0.

4. The function Pr;sIu;v.t/ is decreasing on .�1; 0/ if and only if either u > v,
A 6 0, and E 6 0 or u < v, A > 0, and D > 0.

5. The function Pr;sIu;v.t/ is increasing on .�1;1/ if and only if either u > v,
C > 0, and E > 0 or u < v, B 6 0, and D 6 0.

6. The function Pr;sIu;v.t/ is decreasing on .�1;1/ if and only if either u > v,
C 6 0, and E 6 0 or u < v, B > 0, and D > 0.

7. The function Pr;sIu;v.t/ on .�1;1/ is logarithmically convex if ln.r=s/
ln.u=v/ > 1 or

logarithmically concave if 0 < ln.r=s/
ln.u=v/ < 1.

8. The function Pr;sIu;v.t/ is 3-log-convex on .0;1/ and 3-log-concave on .�1; 0/

if u
v
> r

s
> 1 or r

s
< u

v
< 1; the function Pr;sIu;v.t/ is 3-log-concave on .0;1/

and 3-log-convex on .�1; 0/ if r
s
> u

v
> 1 or u

v
< r

s
< 1.

Remark 1.1. The monotonicity of the functions H˛;ˇI	;
.t/ and Pr;sIu;v.t/ can be
described by Table 1 below.

Remark 1.2. In [23, Remark 2.1] it was remarked that the function Q˛;ˇ.t/ cannot
be either 4-log-convex or 4-log-concave in either .�1; 0/ or .0;1/, saying nothing
of .�1;1/. Therefore, neither H˛;ˇI	;
.t/ nor Pr;sIu;v.t/ is either 4-log-convex or
4-log-concave on either .�1; 0/ or .0;1/, saying nothing of .�1;1/.



490 F. Qi et al.

Table 1 Monotonicity of the functions H˛;ˇI	;
.t/ and Pr;sIu;v.t /

Intervals Monotonicity A or A B or B C or C D or D E or E 	 and 
 or u and v

.0;1/ Increasing > 0 > 0 	 > 
 or u > v

.0;1/ Increasing 6 0 6 0 	 < 
 or u < v

.0;1/ Decreasing > 0 > 0 	 < 
 or u < v

.0;1/ Decreasing 6 0 6 0 	 > 
 or u > v

.�1; 0/ Increasing > 0 > 0 	 > 
 or u > v

.�1; 0/ Increasing 6 0 6 0 	 < 
 or u < v

.�1; 0/ Decreasing 6 0 6 0 	 > 
 or u > v

.�1; 0/ Decreasing > 0 > 0 	 < 
 or u < v

.�1;1/ Increasing > 0 > 0 	 > 
 or u > v

.�1;1/ Increasing 6 0 6 0 	 < 
 or u < v

.�1;1/ Decreasing 6 0 6 0 	 > 
 or u > v

.�1;1/ Decreasing > 0 > 0 	 < 
 or u < v

2 Proofs of Theorems

Proof of Theorem 1.1. For t ¤ 0, the functionH˛;ˇI	;
.t/ can rewritten as

H˛;ˇI	;
.t/ D e.˛�	/t � e.ˇ�	/t

1 � e.
�	/t
D e

� ˛�	

�	w � e

� ˇ�	

�	w

1 � e�w
D e�Aw � e�Bw

1 � e�w
;

where

A D ˛ � 	


 � 	; B D ˇ � 	

 � 	; w D .	 � 
/t:

Differentiating with respect to t yields

H 0̨ ;ˇI	;
.t/ D .	 � 
/Q0A;B.w/; (3)

ŒlnH˛;ˇI	;
.t/00 D

H 0̨ ;ˇI	;
.t/
H˛;ˇI	;
.t/

�0
D .	 � 
/

d

d t


Q0A;B.w/
QA;B.w/

�

D .	 � 
/2

Q0A;B.w/
QA;B.w/

�0
D .	 � 
/2ŒlnQA;B.w/

00;
(4)

and

ŒlnH˛;ˇI	;
.t/000 D .	 � 
/3

Q0A;B.w/
QA;B.w/

�00
D .	 � 
/3ŒlnQA;B.w/

000: (5)
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By virtue of [12, Theorem 3.1] or [41, Lemma 1] and the second-order
derivative (4), it is easy to deduce that the function H˛;ˇI	;
.t/ is logarithmically
convex if ˇ�˛


�	 > 1 and logarithmically concave if 0 < ˇ�˛

�	 < 1 on .�1;1/.

By virtue of [23, Theorem 1.1] and the third-order derivative (5), it is not difficult
to obtain the following:

1. If 	 > 
 and 1 > ˇ�˛

�	 > 0, then H˛;ˇI	;
.t/ is 3-log-convex on .0;1/ and

3-log-concave on .�1; 0/.
2. If 	 > 
 and ˇ�˛


�	 > 1, then H˛;ˇI	;
.t/ is 3-log-concave on .0;1/ and 3-log-
convex on .�1; 0/.

3. If 	 < 
 and 1 > ˇ�˛

�	 > 0, then H˛;ˇI	;
.t/ is 3-log-concave on .0;1/ and

3-log-convex on .�1; 0/.
4. If 	 < 
 and ˇ�˛


�	 > 1, then H˛;ˇI	;
.t/ is 3-log-convex on .0;1/ and 3-log-
concave on .�1; 0/.

Direct computation gives

.B�A/.1�A�B/ D A

.	 � 
/2
I .B�A/.jA�Bj�A�B/D

8
ˆ̂
<

ˆ̂
:

B

.	 � 
/2
; 	 < 
;

C

.	 � 
/2
; 	 > 
I

.B � A/.2 � jA� Bj � A� B/ D

8
ˆ̂
<

ˆ̂
:

D

.	 � 
/2 ; 	 < 
;

E

.	 � 
/2 ; 	 > 
:

Consequently, utilization of [12, Theorem 2.3] and the first-order derivative (3)
yields the following conclusions:

1. The function H˛;ˇI	;
.t/ is increasing on .0;1/ if and only if 	 > 
, A > 0,
and C > 0; the functionH˛;ˇI	;
.t/ is decreasing on .0;1/ if and only if 	 < 
,
A > 0, and B > 0.

2. The function H˛;ˇI	;
.t/ is decreasing on .0;1/ if and only if 	 > 
, A 6 0,
and C 6 0; the functionH˛;ˇI	;
.t/ is increasing on .0;1/ if and only if 	 < 
,
A 6 0, and B 6 0.

3. The function H˛;ˇI	;
.t/ is increasing on .�1; 0/ if and only if 	 > 
, A > 0,
and E > 0; the function H˛;ˇI	;
.t/ is decreasing on .�1; 0/ if and only if
	 < 
, A > 0, and D > 0.

4. The function H˛;ˇI	;
.t/ is decreasing on .�1; 0/ if and only if 	 > 
, A 6 0,
and E 6 0; the function H˛;ˇI	;
.t/ is increasing on .�1; 0/ if and only if
	 < 
, A 6 0, and D 6 0.
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5. The functionH˛;ˇI	;
.t/ is increasing on .�1;1/ if and only if 	 > 
, C > 0,
and E > 0; the function H˛;ˇI	;
.t/ is decreasing on .�1;1/ if and only if
	 < 
, B > 0, and D > 0.

6. The functionH˛;ˇI	;
.t/ is decreasing on .�1;1/ if and only if 	 > 
, C 6 0,
and E 6 0; the function H˛;ˇI	;
.t/ is increasing on .�1;1/ if and only if
	 < 
, B 6 0, and D 6 0.

The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. This follows directly from the combination of Theorem 1.1
with equations in (2). Theorem 1.2 is proved. ut
Remark 2.1. This article is a slightly revised version of the preprint [14].
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6. Elezović, N., Giordano, C., Pečarić, J.: The best bounds in Gautschi’s inequality. Math. Inequal.
Appl. 3, 239–252 (2000) http://dx.doi.org/10.7153/mia-03-26

7. Gauchman, H.: Steffensen pairs and associated inequalities. J. Inequal. Appl. 5(1), 53–61
(2000) http://dx.doi.org/10.1155/S1025583400000047

8. Guo, B.-N., Qi, F.: Generalization of bernoulli polynomials. Internat. J. Math. Ed. Sci. Tech.
33(3), 428–431 (2002). http://dx.doi.org/10.1080/002073902760047913.

9. Guo, B.-N., Qi, F.: A simple proof of logarithmic convexity of extended mean values. Numer.
Algorithms 52(1), 89–92 (2009). http://dx.doi.org/10.1007/s11075-008-9259-7.

10. Guo, B.-N., Qi, F.: An alternative proof of Elezović-Giordano-Pečarić’s theorem. Math.
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On the Approximation and Bounds
of the Gini Mean Difference

Pietro Cerone

Dedicated to Professor Hari M. Srivastava

Abstract A variety of mathematical inequalities are utilised to obtain approxima-
tion and bounds of the Gini mean difference. The Gini mean difference or the related
index is a widely used measure of inequality in numerous areas such as health,
finance and population attributes arenas. The paper provides a review of recent
developments in the area with an emphasis on work with which the author has been
involved.

1 Introduction

Let f W R !Œ0;1/ be a probability density function (pdf), meaning that f is
integrable on R and

R1
�1 f .t/ dt D 1, and define

F .x/ WD
Z x

�1
f .t/ dt; x 2 R and E .f / WD

Z 1

�1
xf .x/ dx; (1)

to be its cumulative function or distribution and the expectation provided that the
integrals exist and are finite.

The mean difference

RG .f / WD 1

2

Z 1

�1

Z 1

�1
jx � yj dF .x/ dF .y/ (2)

was proposed by Gini in 1912 [14], after whom it is usually named, but it was
discussed by Helmert and other German writers in the 1870s (cf. David [12], see
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also [21, p. 48]). The mean difference has a certain theoretical attraction, being
dependent on the spread of the variate values among themselves rather than on the
deviations from some central value ([21, p. 48]). Further, its defining integral (2)
may converge when the variance �2 .f /,

�2 .f / WD
Z 1

�1
.x �E .f //2 dF .x/ ; (3)

does not. It can, however, be more difficult to compute than (3).
Another useful concept is the mean deviationMD .f /, defined by [21, p. 48]:

MD .f / WD
Z 1

�1
jx �E .f /jdF .x/ D 2

Z 1




.x � 
/ dF .x/ : (4)

As G.M. Giorgi noted in [16], some of the many reasons for the success and the
relevance of the Gini mean difference or Gini index IG .f /,

IG .f / D RG .f /

E .f /
; (5)

are their simplicity, certain interesting properties and useful decomposition possi-
bilities, and these attributes have been analysed in an earlier work by Giorgi [15].
For a bibliographic portrait of the Gini index, see [16] where numerous references
are given.

The Gini index given by (5) is a measure of relative inequality since it is a ratio of
the Gini mean difference, a measure of dispersion, to the average value 
 D E .f /.
Other measures are the coefficient of variation V D �=
 and half the relative mean
deviationMD .f /=.2
/, whereMD .f / is as defined in (4).

From (1), F .x/ is assumed to increase on its support and its mean 
 D E .f /

exist. These assumptions imply that F�1 .p/ is well defined and is the population’s
pth quantile. The theoretical Lorenz curve (Gastwirth [13]) corresponding to a given
F .x/ is defined by

L.p/ D 1




Z p

0

F�1 .x/ dx; 0 � p � 1: (6)

Now F�1 .x/ is nondecreasing and so from (6) L.p/ is convex and L0 .p/ D 1 at
p D F .
/.

The area between the Lorenz curve and the line p is known as the area of
concentration.

The most common measure of inequality is the Gini index defined by (5) which
may be shown to be equivalent to twice the area of concentration ([13])

C D
Z 1

0

c .p/ dp; c .p/ D p �L.p/ : (7)
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c .p/ vanishes at p D 0 or 1 and is concave since L.p/ is convex. Further, there is a
point of maximum discrepancyp� between the Lorenz curve and the line of equality
which satisfies

c
�
p�
� � c .p/ for all p 2 Œ0; 1 : (8)

The point p� D F .
/ and c .p�/ D MD.f /

=
.2
/, where MD .f / is given by (4).

The study of income inequality has gained considerable importance and the
Lorenz curve and the associated Gini mean or Gini index are certainly the most
popular measures of income inequality. These have also however found application
in many other problems within the health, finance and population arenas.

In a sequence of four papers, Cerone and Dragomir ([6–10]) developed approx-
imation and bounds from identities involving the Gini mean difference RG .f /.
Some of these results involved using the well-known Sonin and Korkine identities.
Cerone [4] procured some approximations and bounds utilising the Steffensen and
Karamata inequalities and some of the results are presented in Sects. 4 and 5.

The characteristics of the Lorenz curve, L.p/, and its connection to the Gini
index via (7) to obtain upper and lower bounds for both L.p/ and IG .f / were
analysed by the author in [5]. This is accomplished by utilising the well-known
Young’s integral inequality and some less well-known reverse inequalities. These
are discussed in Sect. 6 and applied in Sect. 7.

In the final section, generalisations and extensions of the Iyengar inequality to
allow the approximation and bounds of Riemann-Stieltjes integrals and weighted
integrals in a less restrictive framework developed in [3] are presented. These
developments enabled the procurement of novel results for the approximation and
bounds of the Gini mean difference which are summarised here with a brief sketch
of proofs.

2 Some Identities and Inequalities for the Gini Mean
Difference

Some identities for the Gini mean difference RG .f / through which results for the
Gini index IG .f / may be procured via the relationship (5) will be stated here.
These have been used in [6–10] to obtain approximations and bounds. The reader is
referred to the book [21], Exercise 2.9, p. 94, or [10].

The following result holds (see for instance [21, p. 54] or [10]).

Theorem 2.1. With the above notation, the identities

RG .f / D
Z 1

�1
.1 � F .y//F .y/ dy D 2

Z 1

�1
xf .x/ F .x/ dx � E .f / (9)

hold.
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The following result was obtained in [6] using the well-known Sonin identity
(see [23, p. 246]) for the case of univariate real functions.

Theorem 2.2. With the above assumptions for f and F , we have the identity

RG .f / D 2

Z 1

�1
.x � E .f // .F .x/ � �/ f .x/ dx

D 2

Z 1

�1
.x � ı/

�
F .x/ � 1

2

�
f .x/ dx (10)

for any �; ı 2 R.

The following result was studied in [7] using the Korkine identity (see [23,
p. 242]) for the case of univariate real functions.

Theorem 2.3. With the above assumptions for f and F , we have the following
representation for the Gini mean difference:

RG .f / D
Z 1

�1

Z 1

�1
.x � y/ .F .x/ � F .y// f .x/ f .y/ dxdy: (11)

The following lemma will be proven here since it is crucial for the current work
in bounding the Gini index via the Lorenz curve and the area of concentration C .
The identity is also proven in [21, p. 49] in a different way.

Lemma 2.1. The following identity holds

RG .f / D 
IG .f / D 2
C; (12)

where the quantities are defined by (2), (5), (6)–(7).

Proof. From (6) and (7) we have

2
C D 2

Z 1

0



p
 �
Z p

0

F�1 .x/ dx
�

dp D 2

Z 1

0

Z p

0

�
E .f /� F�1 .x/

�
dxdp:

An interchange of the order of integration and a substitution x D F .t/ produces

2
C D 2

Z 1

�1
.t � E .f // F .t/ dF: (13)

Now (13) is equivalent to identity (10) with � D 0 and so 2
C D RG .f / and
hence the identity (12) is proved.
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3 Bounds for the Lorenz Curve and Gini index

3.1 Inequalities for RG .f /

The following result compares the Gini mean difference with the mean deviation
defined by (4) which was obtained in [6] using (10).

Theorem 3.1. With the above assumptions, we have the bounds

1

2
MD .f / � RG .f / � 2 sup

x2R
jF .x/ � � jMD .f / � MD .f / ;

for any � 2 Œ0; 1, where F .�/ is the cumulative distribution of f and MD .f / is
the mean deviation defined by (4).

It was pointed out by J.L. Gastwirth in [13], using inequality 105 from the book
[17] by Hardy, Littlewood, and Polya and the fact that F is increasing, that one can
state the following results.

Theorem 3.2. Assume that F is supported on a finite interval .a; b/. Then

0 � RG .f / � 1

b � a
.b �E .f // .E .f / � a/ : (14)

3.2 Inequalities via Grüss and Sonin Type Results

The following representation for the Gini mean difference

RG .f / D
Z b

a

F .x/ .1 � F .x// dx; (15)

holds provided that F is supported on Œa; b, a finite interval.
Bounds for the quantity R�G .f /, involving RG .f / and defined here for

simplicity

R�G .f / WD 1

b � a
Œb � E .f / ŒE .f / � a �RG .f / ; (16)

will be obtained below.
Utilising the well-known Grüss inequality the following simple bound for the

Gini mean difference was obtained in [9].

Theorem 3.3. If f is defined on the finite interval Œa; b and R�G .f / is given by
(16), then
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0 � R�G .f / � 1

4
.b � a/ : (17)

The following improvement of Theorem 3.3 was obtained in [9] using an
improvement (see [7] and [11]) of the Grüss inequality.

Theorem 3.4. If f is defined on the finite interval Œa; b and R�G .f / is given by
(16), then

0 � R�G .f / � 1

2
�
Z b

a

ˇ
ˇ
ˇ
ˇF .x/ � b �E .f /

b � a

ˇ
ˇ
ˇ
ˇdx

� 1

2

"Z b

a

�

F .x/ � b � E .f /

b � a
�2
dx

# 1
2

� 1

4
.b � a/ : (18)

The Sonin identity [23, p. 246] on (15) producing the result

R�G .f / D
Z b

a

�

F .t/ � b � E .f /

b � a

�

.F .t/ � 	/ dt (19)

was used in [8] to obtain the following theorem.

Theorem 3.5. Assume that f is defined on the finite interval Œa; b and R�G .f / is
given by (16), then

.0 �/R�G .f / � inf
	2R kF � 	k1

Z b

a

ˇ
ˇ
ˇ
ˇF .t/ � b �E .f /

b � a

ˇ
ˇ
ˇ
ˇdt (20)

� 1

2

Z b

a

ˇ
ˇ
ˇ
ˇF .t/ � b �E .f /

b � a

ˇ
ˇ
ˇ
ˇ dt:

Taking 	 D b�E.f /
b�a in (19), the following simple bound was also obtained in [8]:

R�G .f / � 1

b � a


b � a

2
C
ˇ
ˇ
ˇ
ˇE .f /C aC b

2

ˇ
ˇ
ˇ
ˇ

�2
: (21)

The following identity was obtained in [8] from using the Korkine identity [23,
p. 242] on (15):

R�G .f / D 1

2 .b � a/
Z b

a

Z b

a

.F .y/� F .x//2 dxdy; (22)

where R�G .f / is as given by (16).
If upper and lower bounds for the density function f are known, then we have

the following result which was obtained from (2.17) in [8].
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Theorem 3.6. If f is supported on Œa; b and there exist the constants 0 < m;M <

1 such that

m � f .x/ � M for a:e: x 2 Œa; b ; (23)

then

1

12
m2 .b � a/3 � 1

b � a Œb �E .f / ŒE .f / � a � RG .f / � 1

12
M2 .b � a/3 :

(24)

4 Results from Steffensen’s Inequality

The following theorem is due to Steffensen [24] (see also [2] and [1]).

Theorem 4.1. Let h W Œa; b ! R be a nondecreasing mapping on Œa; b and g W
Œa; b ! R be an integrable mapping on Œa; b with

�1 < � � g .x/ � ˚ < 1 for all x 2 Œa; b ;

then

1

	

Z aC	

a

h .x/ dx �
R b
a G .x/ h .x/ dxR b

a
G .x/ dx

� 1

	

Z b

b�	
h .x/ dx: (25)

where

	 D
Z b

a

G .x/ dx; 0 � G .x/ D g .x/ � �
˚ � � � 1; ˚ ¤ �: (26)

Remark 4.1. Equation (25) has a very pleasant interpretation, as observed by
Steffensen, that the weighted integral mean of h .x/ is bounded by the integral
means over the end intervals of length 	, the total weight.

The following results have been obtained in [4].

Theorem 4.2. Let f be supported on the interval Œa; b and E .f / exist. Then the
Gini mean difference RG .f / satisfies

Z aC	

a

.a C 	 � x/ f .x/ dx � RG .f / � 	 �
Z b

b�	
Œx � .b � 	/ f .x/ dx; (27)

where 	 D E .f / � a.
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Remark 4.2. We note that the result (27) may be compared with that of Gastwirth,
namely ; 	

2
� RG .f / � 	 with 	 D E .f / � a , which was derived under the

assumption that F is defined on .a;1/ and satisfies a DHR property.
We notice that the upper bound in (27) is always less than 	. It is uncertain

however as to whether the lower bound is greater or less than 	
2
.

The following theorems assume that the pdfs are defined over the finite interval
Œa; b and so from (9) we have the identity:

RG .f /C E .f /

2
D
Z b

a

xf .x/ F .x/ dx: (28)

Theorem 4.3. Let f .x/ be a pdf on Œa; b, 0 < ˛ � xf .x/ � ˇ and 	 D
E.f /�˛.b�a/

ˇ�˛ , then the Gini mean difference RG .f / satisfies

.ˇ � ˛/
Z aC	

a

.aC 	 � x/ f .x/ dx � RG .f /C E .f /

2
� ˛ .b �E .f // (29)

� .ˇ�˛/
"

	�
Z b

b�	
.x� .b�	// f .x/ dx

#

:

Theorem 4.4. Let f be supported on the positive interval Œa; b with 0 � a < b

and � � f .x/ � ˚ , x 2 Œa; b and E .f / exist. With 	 D 1�.b�a/�
˚�� , then the Gini

mean difference RG .f / satisfies

.˚ � �/
Z aC	

a

h
.aC 	/2 � x2

i
f .x/ dx

� RG .f /C E .f / � �
Z b

a

�
b2 � x2

�
f .x/ dx

� .˚ � �/

(

	 .2b � 	/�
Z b

b�	

h
x2 � .b � 	/2

i
f .x/ dx

)

: (30)

5 Results with Karamata’s Inequality

In an interesting but not well-known paper [22], Alexandru Lupaş generalised some
results due to Karamata. These are presented and applications to bounding the Gini
mean difference are demonstrated in the current section.

First some notation.
Let �1 < a < b < C1 and e0 .x/ D 1, x 2 Œa; b. Further, let X be a real

linear space with elements being real functions defined on Œa; b. By F W X ! R we
denote a positive linear functional normalised by F .e0/ D 1. The following three
results were obtained by Lupaş in [22].
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Theorem 5.1. Let h; g 2 X with

m1 � h .x/ � M1 .M1 ¤ m1/ ; 0 < m2 � g .x/ � M2 x 2 Œa; b : (31)

If D .h/ D M1 � F .h/, d .h/ D F .h/ �m1, then

m1M2D .h/CM1m2d .h/

M2D .h/Cm2d .h/
� F .hg/

F .g/
� M1M2d .h/Cm1m2D .h/

M2d .h/Cm2D .h/
: (32)

The bounds in (32) are best possible.

Theorem 5.2. Let h; g be elements from X which satisfy (31). If �.x/ D M1 �
h .x/, ı .x/ D h .x/�m1, then

v jF .h/F .g/ � F .hg/j

� M2 �m2

.M1 �m1/ .M2 Cm2/
ŒF .�/F .ıg/C F .ı/F .�g/ : (33)

Theorem 5.3. Let h; g 2 X with

0 < m1 � h .x/ � M1; 0 < m2 � g .x/ � M2 x 2 Œa; b : (34)

If

K D
p
m1m2 C p

M1M2p
m1M2 C p

M1m2

;

then

1

K2
� F .hg/

F .h/F .g/
� K2: (35)

We note that Karamata established (32) and (35) in [19] and [20] for F .h/ DR 1
0 h .t/ dt .

Further, h and g in Theorem 5.3 are assumed to be strictly positive and
bounded, whereas in Theorems 5.1 and 5.2, h is not allowed to be constant and
the requirement for positivity is removed.

The following three theorems assume that the normalised positive linear
functional F .�/ is given by

F .h/ D 1

b � a

Z b

a

h .x/ dx (36)

and the identity (28) is used.
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Theorem 5.4. Let f .x/ be a pdf on Œa; b and 0 < ˛ � xf .x/ � ˇ, then the Gini
mean difference RG .f / satisfies

�
1 � pz

1C pz

�

E .f / � RG .f / �
�
p � z

p C z

�

E .f / ; (37)

where p D ˇ

˛
and z D E.f /�a

b�E.f / .

Theorem 5.5. Let f .x/ be a pdf on Œa; b and 0 < m � f .x/ � M , then the Gini
mean difference RG .f / satisfies

2b�

b� � .� � 1/ �
� E .f / � RG .f / � 2b��

b C .� � 1/ �
� E .f / ; (38)

where

� D M

m
; � D b2 � M2

2 .b � a/ and M2 D
Z b

a

x2f .x/ dx: (39)

Theorem 5.6. Let f .x/ be a pdf on Œa; b and 0 < m � f .x/ � M , then the Gini
mean difference RG .f / satisfies

E .f /C 2M
�
a
�
aCb
2

� � bE .f /�

2bM � 1 � RG .f / (40)

� E .f /C 2M
�
b
�
aCb
2

� � aE .f /�

2aM � 1
:

Theorem 5.7. Let f .x/ be a pdf on Œa; b with a > 0 and 0 < m � f .x/ � M ,
x 2 Œa; b, then the Gini mean difference RG .f / satisfies

�
1 � ��

1C ��

�

E .f / � RG .f / �
�
� � �

� C �

�

E .f / ; (41)

where � D M
m

, � D M2�a2
b2�M2

and M2 D R b
a
x2f .x/ dx, the second moment about

zero.

Remark 5.1. The lower bounds in (37) and (41) are only useful when they are
greater than 0 since RG .f / is known to be non-negative. This occurs for E .f / <
aˇCb˛
˛Cˇ and M2 <

Ma2Cmb2
MCm .

Further Theorem 5.7 uses the normalised linear functional F .h/ D
R b
a !.x/h.x/dxR b
a !.x/dx

in Theorem 5.1 with !.x/ D x; h.x/ D F.x/ and g.x/ D f .x/.
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6 Young’s Integral Inequality and Reverses

The famous Young’s integral inequality states that

Theorem 6.1. If h W Œ0; A ! R is continuous and a strictly increasing function
satisfying h .0/ D 0, then for every positive 0 < a � A and 0 < b � h .A/

Y .hI a; b/ WD
Z a

0

h .t/ dt C
Z b

0

h�1 .t/ dt � ab (42)

holds with equality if and only if b D h .a/.

In the 1912 paper in fact Young [26] proved (42), assuming differentiability of the
functions. The inequality (42) has a geometric interpretation involving the areas of
the two functions and the rectangular area. There has been much work on different
proofs and generalisations of (42).

We notice that in (42), ab is a lower bound for the Young functional Y .hI a; b/.
In 2007, Witkowski [25] gave two simple proofs for Theorem 6.1. The first utilises
the fact that since h is strictly increasing, then its anti-derivative is strictly convex.
The second uses the mean value theorem. The second proof will be replicated here
to highlight the fact that this approach does not just provide a proof for Young’s
inequality (42) but it also gives its reverse.

Theorem 6.2. Let the conditions of Theorem 6.1 hold. Then

ab � Y .hI a; b/ � ah .a/C h�1 .b/ .b � h .a// (43)

with equality if and only if b D h .a/.

Remark 6.1. We note that the upper bound in (43) provides a reverse of Young’s
integral inequality (42). Equation (43) can be written in the appealing form

ab � Y .hI a; b/ � ab C .b � h .a// �h�1 .b/� a� (44)

or

0 � Y .hI a; b/� ab � .b � h .a// �h�1 .b/� a� (45)

We notice that .b � h .a// �h�1 .b/ � a
� � 0 with equality holding only for b D

h .a/ (equivalently, a D h�1 .b/).

Theorem 6.3. Let the conditions of Theorem 6.1 persist. Then the inequality

˛ .a; b/

Z a

0

h .t/ dt C ˇ .a; b/

Z b

0

h�1 .t/ dt � ab (46)
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holds, where

˛ .a; b/ D min

�

1;
b

h .a/

	

and ˇ .a; b/ D min

�

1;
a

h�1 .b/

	

; (47)

with equality holding if and only if b D h .a/.

It is instructive to compare the upper bounds for
R b
0
h�1 .t/ dt provided from

the results of Witkowski from (43) and (46) and (47). The following Lemma was
obtained in [5].

Lemma 6.1. From Theorems 6.2 and 6.3, the following upper bounds are tighter.
Namely,

Z b

0

h�1 .t/ dt

<

(
b
h.a/

�
ah .a/� R a

0 h .t/ dt
�

for� > 0; b < h .a/ I
ab C �

h�1 .b/ � a
�
.b � h .a//� R a

0
h .t/ dt for� < 0 or b > h .a/ ;

(48)

where � WD ah .a/ � R a
0
h .t/ dt � h .a/ h�1 .b/.

7 Bounds for the Lorenz Curve and Gini via Young
Type Inequalities

We are now in a position to investigate bounds for both the Lorenz curve and through
the relationship (12) for the Gini index using the results of Sect. 6 based on Young
type inequalities. Firstly, however, we state a result of Gastwirth [13] for bounding
the Lorenz curve.

Theorem 7.1. Let F .x/ be a distribution function with mean 
 and support .a; b/.
Then its Lorenz curve, L.p/, satisfies

B .p/ � L.p/ � p (49)

where

B .p/ D
( ap



; p < r I

ar



C b


.p � r/ ; p > r

(50)

and r is determined by the relation raC .1 � r/ b D 
. Here the random variable
X generating the Lorenz curve B .p/ takes on the value a with probability r and b
with probability .1 � r/.
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The following technical lemma will prove useful subsequently.

Lemma 7.1. Let F .�/ be a distribution function defined on .0; A and its inverse
F�1 .�/ exists, then for a 2 .0; A
Z 1

0

.p � F .a//
�
F �1 .p/� a

�
dp D 1

2



A� a �
Z A

0

F 2 .t/ dt

�

C.a � 
/F .a/ :

(51)

Proof. Firstly, we note that for h .0/ D 0,

Z A

0

h .t/ dt D Ah .A/ �
Z A

0

th0 .t/ dt D Ah .A/ �
Z h.A/

0

h�1 .t/ dt: (52)

If we then associate h .�/ with F .�/, noting that F .A/ D 1, then from (52)


L .1/ D
Z 1

0

F�1 .p/ dp D A �
Z A

0

F .t/ dt D 
 (53)

since L.1/ D 1.
Further, a substitution of p D F .t/ and integration by parts gives

Z 1

0

pF �1 .p/ dp D
Z A

0

tF .t/ F 0 .t/ dt D A

2
� 1

2

Z A

0

F 2 .t/ dt: (54)

Now,

Z 1

0

.p � F .a// �F�1 .p/ � a
�
dp

D
Z 1

0

pF�1 .p/ dp C aF .a/ � F .a/

Z 1

0

F�1 .p/ dp � a

2
: (55)

Substitution of (53) and (54) into (55) gives the stated result (51).

The following theorem uses the results of Witkowski [25] as given by (43) to
procure bounds for the Lorenz curve.

Theorem 7.2. Let L.p/ be the Lorenz curve defined by (6) corresponding to a
given distribution (cumulative) function F .a/ with F .0/ D 0, 0 < a � A and
0 < p � F .A/ D 1. Then

1






ap �
Z a

0

F .t/ dt

�

� L.p/ (56)

� 1






ap �
Z a

0

F .t/ dt

�

C 1



.p � F .a//

�
F �1 .p/� a

�

with equality if and only if p D F .a/.
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Remark 7.1. The lower bound is only useful for p > 1
a

R a
0 F .t/ dt since zero is a

lower bound for L.p/. The upper bound is useful if it is less than p. The following
Corollary results based on these observations:

Corollary 7.1. Let the condition of Theorem 7.2 hold. Then

l .p/ � L.p/ � u .p/ ; (57)

where

l .p/ D
8
<

:

0; p < 1 � 


A
I

A



�
p � �

1 � 


A

��
; p > 1 � 


A

(58)

and

u .p/ D
(
p; 0 < p < p�I
1C F�1.p/



.p � 1/ ; p� < p < 1;

(59)

where p� D F .
/ is the point of maximum discrepancy satisfying (8).

Remark 7.2. It may be noticed that by taking a D 0 and b D A in Theorem 7.1
we have r D 1 � 
=A and so Corollary 7.1 recaptures the lower bound obtained
by Gastwirth [13]. The upper bound given by (59) provides a refinement of that
obtained by Gastwirth [13] and shown here as (49).

Theorem 7.3. Let the conditions of Theorem 7.2 hold. Then the Gini index defined
by (5) or, equivalently, (7) satisfies

�

1 � a




�

C 2




Z a

0

F .t/ dt C 2

�

1 � a




�

F .a/ � 1






A� a �
Z A

0

F 2 .t/ dt

�

� IG .f / �
�

1 � a




�

C 2




Z a

0

F .t/ dt: (60)

Proof. From (56) we have, since, as shown in Lemma 2.1, the Gini index IG .f / of
(5) is equivalent to twice the area of concentration, namely, 2C . Now, (56) gives

�

1 � a




�

p C 1




Z a

0

F .t/ dt � 1



.p � F .a// �F�1 .p/ � a

�

� p �L.p/ �
�

1 � a




�

p C 1




Z a

0

F .t/ dt
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so that from (12) and (7)

�

1 � a




�

C 2




Z a

0

F .t/ dt � 2




Z 1

0

.p � F .a// �F�1 .p/ � a� dp

� IG .f / �
�

1 � a




�

C 2




Z a

0

F .t/ dt:

Using (51) from Lemma 7.1 produces the inequality as stated in (60).

Corollary 7.2. Let the conditions of Theorems 7.2 and 7.3 hold. Then the Gini
index bounds from (60) are the tightest bounds on .0; A at a D 
 and a D m for
the lower and upper bounds, respectively. These are given by

1




Z 


0

F .t/ dt < IG .f / <

�

1 � m




�

C 2




Z m

0

F .t/ dt; (61)

where m D F �1
�
1
2

�
is the median and 
 is the mean.

Proof. Since F .t/ is defined for t 2 Œ0; A and F .0/ D 0, we have from (9) that

IG .f / D 1




Z A

0

F .t/ .1 � F .t// dt: (62)

We notice that the lower bound in (60) approaches IG .f / as a ! 0C and the upper
bound tends to 1. Further, if we denote the lower bound in (60) by � .a/, then

�0 .a/ D 2

�

1 � a




�

f .a/

(
> 0; 0 < a < 


< 0; 
 < a < A:

The maximum occurs at a D 
 so that

sup
a2.0;A/

� .a/ D � .
/ D 2




Z 


0

F .t/ dt � 1






A � 
 �
Z a

0

F 2 .t/ dt

�

(63)

D 2




Z 


0

F .t/ dt � 1




Z A

0

F .t/ .1� F .t// dt

since from (53), A � 
 D R A
0 F .t/ dt . We now have from (63) and using (62) that

sup
a2.0;A/

� .a/ D � .
/ D 2




Z 


0

F .t/ dt � IG .f / ; (64)

as the best choice for the lower bounds in (60) from which the lower bound in (61)
results.
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Further, the minimum upper bound in (60) occurs when 2F .a/�1 D 0, namely,
at a D m D F �1

�
1
2

�
, producing the upper bound in (61) from (60).

Remark 7.3. In Cerone [4, Theorem 13] the Steffensen inequality was utilised
together with the property that F .x/ is nondecreasing to obtain

1




Z aC	

a

F .x/ dx � IG .f / � 1




Z b

b�	
F .x/ dx;

where 	 D 
 � a and f is supported on Œa; b. That is, taking a D 0 and b D A,
we have

1




Z 


0

F .x/ dx � IG .f / � 1




Z A

A�

F .x/ dx: (65)

We notice that the lower bound here is recaptured by (61); however, the upper
bounds differ.

Corollary 7.3. Let the conditions of Theorem 7.2 hold. The Gini index, IG .f /
satisfies

1

2


Z 


0

F .x/ .2� F .x// dx � IG .f / � 1 � 


A
: (66)

Sketch. Use Corollary 7.2 and Lemma 2.1.

Remark 7.4. The upper bound given in (66) was also obtained in Gastwirth [13]
using a result from Hardy et al. [17]. The lower bound obtained in [13] was zero
which is smaller than that given in (66).

8 Iyengar Inequality for Riemann-Stieltjes Integrals
and Application to Gini

In 1938 Iyengar using geometric arguments developed the following result in the
paper [18].

Theorem 8.1. Let h W Œa; b! R be a differentiable function such that for all x 2
Œa; b and forM > 0 we have jh0.x/j � M , then

ˇ
ˇ
ˇ
ˇ
ˇ

Z b

a

h .x/ dx � h.a/C h.b/

2
.b � a/

ˇ
ˇ
ˇ
ˇ
ˇ

� M

4
.b � a/2 � .h.b/� h.a//2

4M
: (67)
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Remark 8.1. It should be noted that for m � h
0

.x/ � M then
ˇ
ˇ
ˇh

0

.x/ � mCM
2

ˇ
ˇ
ˇ �

M�m
2

and then Iyengar’s result may be extended by applying it to k.x/ D h .x/ �
mCM
2
x with boundMk D M�m

2
.

The following three results developed in [3] extend the Iyengar inequality
to involve Riemann-Stieltjes integrals while also relaxing the differentiability
condition.

Theorem 8.2. Let h; g W Œa; b! R be such that g is a nondecreasing function, and
for all x 2 Œa; b and M > 0, the following conditions hold:

jh.x/ � h.a/j � M.x � a/ and jh.x/ � h.b/j � M.b � x/: (68)

Then for any t 2 Œa; b
ˇ
ˇ
ˇ
ˇ
ˇ

Z b

a

h .x/ dg.x/ � fŒg.t/ � g.a/ h.a/C Œg.b/� g.t/ h.b/g
ˇ
ˇ
ˇ
ˇ
ˇ

� M

"Z t

a

.x � a/dg.x/ C
Z b

t

.b � x/dg.x/

#

: (69)

Using integration by parts of the Riemann-Stieltjes integrals from an intermediate
result within the proof of Theorem 8.2, the following theorem was obtained in [3].

Theorem 8.3. Let h; g W Œa; b! R be such that g is nondecreasing and differen-
tiable for all x 2 Œa; b and for M > 0 the following conditions hold:

jh.x/ � h.a/j � M.x � a/ and jh.x/ � h.b/j � M.b � x/: (70)

Then for t 2 Œa; b the tightest bound is given by

�MD.t�/ �
Z b

a

h .x/ dg.x/ � Œh.b/g.b/� h.a/g.a/ � MD.t�/; (71)

or

� 2Mı.tm/g.tm/ �
Z b

a

h .x/ dg.x/ � Œh.b/g.b/ � h.a/g.a/ � 2M�.tm/g.tm/;

(72)
where for

˛ D a C b

2
; ˇ D f .b/� f .a/

2
I t� D ˛ � ˇ

M
; t� D ˛ C ˇ

M
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orD.tm/ D 0, with

D.t/ D
Z b

t

g.x/dx �
Z t

a

g.x/dx

and

ı.t/Dh.b/�h.a/
2M

�
�

t�aCb
2

�

; �.t/ D �

h.b/ � h.a/

2M
C
�

t � aC b

2

��

:

Here, t� 2 Œa; aCb
2
 and t� 2 Œ aCb

2
; b.

The following extension producing a weighted Iyengar inequality was obtained
in [3].

Theorem 8.4. Let h;w W Œa; b! R be such that w.x/ > 0 for x 2 .a; b/ and for
M > 0 the following conditions hold:

jh.x/ � h.a/j � M.x � a/ and jh.x/ � h.b/j � M.b � x/: (73)

Then for t 2 .a; b/ the tightest bound is given by

ˇ
ˇ
ˇ
ˇ
ˇ

Z b

a

w.x/h .x/ dx � ˚
h.b/W.b/CM

�
I.t�/� I.t�/

�

ˇ
ˇ
ˇ
ˇ
ˇ

� M

( Z b

a

.b � x/w.x/dx � �
I.t�/C I.t�/

�
)

; (74)

where for

˛ D a C b

2
; ˇ D f .b/ � f .a/

2
I t� D ˛ � ˇ

M
; t� D ˛ C ˇ

M
;

with

I.t/ D
Z t

a

.t � x/w.x/dx : (75)

If w.a/ D 0, then the bounds at t D a need to be compared with L.t�/ and R.t�/
and similarly for w.b/ D 0.

Remark 8.2. It should be noted that taking w.x/ D 1 in Theorem 8.4 recaptures
the Iyengar result of Theorem 8.1 under less restrictive conditions (73) rather than
jh0.x/j < M . It should be further emphasised that form � h.x/�h.a/

x�a � M andm �
h.b/�h.x/
b�x � M the above results may be extended by taking k.x/ D h.x/ � MCm

2
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to produce the conditions of the above results for jk.x/ � k.a/j � M�m
2
.x � a/ and

jk.x/ � k.b/j � M�m
2
.b � x/.

With the above results, we are now in a position to obtain bounds utilising the
Iyengar type inequalities developed above to obtain approximation and bounds for
the Gini mean difference. The details may be seen in [3] but we will only provide a
sketch of the proofs. We shall make use of the following identities, where f is the
pdf and F its corresponding distribution:

RG .f / D
Z b

a

.1 � F .x// F .x/ dx D 2

Z b

a

xf .x/ F .x/ dx �E .f / : (76)

Theorem 8.5. Let f .x/ be a pdf on Œa; b ; f .x/ � M and F.x/ D R x
a
f .u/du,

then the Gini mean difference RG .f / satisfies

ˇ
ˇRG .f / C E.f / � 2 ˚bf .b/E.f /CM

�
I.t�/ � I.t�/

�
ˇˇ

� 2M

(Z b

a

.b � x/xf .x/dx � �
I.t�/C I.t�/

�
)

; (77)

where

t� D aC b

2
� bf .b/� af .a/

2M
; t� D a C b

2
C bf .b/� af .a/

2M
;

and

I.t/ D
Z t

a

.t � x/xf .x/dx:

For f .a/ D 0 we have

jRG .f / � Œ2bf .b/ � 1E.f /j � 2M

Z b

a

.b � x/xf .x/dx: (78)

For f .b/ D 0 we have

jRG .f / � Œ2af .a/ � 1E.f /j � 2M

Z b

a

.x � a/xf .x/dx: (79)

Finally, for f .a/ D f .b/ D 0 we have

jRG .f /C E.f /j � 2M

�
b � a

2
E.f /�

ˇ
ˇ
ˇ
ˇM2 � b C a

2
E.f /

ˇ
ˇ
ˇ
ˇ

	

; (80)

where M2 D R b
a x

2f .x/dx, the second moment of f .x/.
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Sketch. In Theorem 8.4 let w.x/ D xf .x/ and h.x/ D F.x/ so that jh0.x/j D
f .x/ � M .

Now from (76) we have

RG .f /C E .f /

2
D
Z b

a

xf .x/ F .x/ dx; (81)

and so there are two cases to consider. Namely, w.x/ D xf .x/ > 0 or w.x/ D
xf .x/ D 0 for x 2 Œa; b with the first producing (77) and the other results covering
the three possibilities shown in the results.

Theorem 8.6. Let f .x/ be a pdf on Œa; b ; f .x/ � M and F.x/ D R x
a
f .u/du,

then the Gini mean difference RG .f / satisfies

ˇ
ˇRG .f /� ˚E.f /CM �

J.t�/�J.t�/
�
ˇˇ � M

�
1

2

�
.b�a/2�.t��a/2�.t��a/2

�

�J.b/C �
J.t�/CJ.t�/

�
	

; (82)

where

t� D a C b

2
� 1

2M
; t� D aC b

2
C 1

2M
; J.t/ D

Z t

a

.t � x/F.x/dx:

Further, for F.b/ D 1 we have

jRG .f /j � M

2

Z b

a

.x � a/2f .x/dx D M

2
fM2 � a Œ2E.f / � ag : (83)

where M2 D R b
a
x2f .x/dx.

Sketch. In Theorem 8.4 let w.x/ D 1 � F.x/ and h.x/ D F.x/ so that jh0.x/j D
f .x/ � M . Now from (76) we have

RG .f / D
Z b

a

.1 � F .x// F .x/ dx; (84)

and so considering the two possibilities, namely, w.x/ D 1 � F.x/ > 0 for x 2
Œa; b/ and w.b/ D 0, developed in [3].

An investigation of bounds for the Gini mean difference from the Iyengar
inequality (67) and the identity depicted in Lemma 2.1 reproduces the results (14)
obtained in Theorem 3.2, by Gastwirth [13, p. 48] by a different approach and will
thus not be elaborated further.
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On Parametric Nonconvex Variational
Inequalities

Muhammad Aslam Noor

Dedicated to Professor Hari M. Srivastava

Abstract In this paper, we consider the parametric nonconvex variational inequal-
ities and parametric nonconvex Wiener–Hopf equations. Using the projection
technique, we establish the equivalence between the parametric nonconvex vari-
ational inequalities and parametric nonconvex Wiener–Hopf equations. We use
this alternative equivalence formulation to study the sensitivity analysis for the
parametric nonconvex variational inequalities. Our results can be considered as a
significant extension of previously known results. The ideas and techniques may be
used to stimulate further research for multivalued nonconvex variational inequalities
and their variant forms.

1 Introduction

Variational inequalities theory, which was introduced by Stampacchia [37], provides
us with a simple, natural, general, and unified framework to study a wide class of
problems arising in pure and applied sciences; see [1–42]. Variational inequalities
have been generalized and extended in several directions using novel and innovative
techniques. It is worth mentioning that almost all the results regarding the existence
and iterative schemes for variational inequalities have been investigated and consid-
ered in the setting of convexity. This is because all the techniques are based on the
properties of the projection operator over convex sets. These results may not hold
for nonconvex sets. These facts and observations have motivated to consider the
variational inequalities and related optimization problems on the nonconvex sets.
Noor [29] has introduced and considered a new class of variational inequalities
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on the uniformly prox-regular sets, which is called the nonconvex variational
inequalities. We remark that the uniformly prox-regular sets are nonconvex and
include the convex sets as a special case; see [4, 36]. It is well known that the
behavior of such problem solutions as a result of changes in the problem data is
always of concern. In recent years, much attention has been given to study the
sensitivity analysis of variational inequalities. We remark that sensitivity analysis is
important for several reasons. First, since estimating problem data often introduces
measurement errors, sensitivity analysis helps in identifying sensitive parameters
that should be obtained with relatively high accuracy. Second, sensitivity analysis
may help to predict the future changes of the equilibrium as a result of changes
in the governing systems. Third, sensitivity analysis provides useful information
for designing or planning various equilibrium systems. Furthermore, from math-
ematical and engineering points of view, sensitivity analysis can provide new
insight regarding problems being studied and can stimulate new ideas for problem
solving. Over the last decade, there has been increasing interest in studying the
sensitivity analysis of variational inequalities and variational inclusions. Sensitivity
analysis for variational inclusions and inequalities has been studied extensively; see
[1, 5, 8–11, 17, 21, 31–33, 37, 40–42]. The techniques suggested so far vary with the
problem being studied. Dafermos [5] used the fixed-point formulation to consider
the sensitivity analysis of the classical variational inequalities. This technique has
been modified and extended by many authors for studying the sensitivity analysis of
other classes of variational inequalities and variational inclusions. In this paper, we
develop the general framework of sensitivity analysis for the nonconvex variational
inequalities. For this purpose, we first establish the equivalence between nonconvex
variational inequalities and the Wiener–Hopf equations by using the projection
technique. This fixed-point formulation is obtained by a suitable and appropriate
rearrangement of the Wiener–Hopf equations. We would like to point out that the
Wiener–Hopf equations technique is quite general, unified, and flexible and provides
us with a new approach to study the sensitivity analysis of nonconvex variational
inequalities and related optimization problems. We use this equivalence to develop
sensitivity analysis for the nonconvex variational inequalities without assuming
the differentiability of the given data. Our results can be considered as significant
extensions of the results of Dafermos [5], Moudafi and Noor [11], Noor and Noor
[31, 33], and others in this area.

2 Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by h�; �i
and k � k, respectively. Let K be a nonempty and convex set in H .

We, first of all, recall the following well-known concepts from nonlinear convex
analysis and nonsmooth analysis [4, 36].
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Definition 2.1. The proximal normal cone of K at u 2 H is given by

NP
K .u/ WD f� 2 H W u 2 PKŒu C ˛�g;

where ˛ > 0 is a constant and

PKŒu D fu� 2 K W dK.u/ D ku � u�kg:

Here dK.�/ is the usual distance function to the subset K , that is,

dK.u/ D inf
v2K kv � uk:

The proximal normal coneNP
K .u/ has the following characterization.

Lemma 2.1. Let K be a nonempty, closed, and convex subset in H . Then � 2
NP
K .u/ if and only if there exists a constant ˛ > 0 such that

h�; v � ui � ˛kv � uk2; 8v 2 K:

Definition 2.2. The Clarke normal cone, denoted by NC
K .u/, is defined as

NC
K .u/ D coŒNP

K .u/;

where co means the closure of the convex hull.

ClearlyNP
K .u/  NC

K .u/, but the converse is not true. Note thatNP
K .u/ is always

closed and convex, whereas NC
K .u/ is convex, but may not be closed [4, 36].

Poliquin et al. [36] and Clarke et al. [4] have introduced and studied a new
class of nonconvex sets, which are called uniformly prox-regular sets. This class
of uniformly prox-regular sets has played an important part in many nonconvex
applications such as optimization, dynamic systems, and differential inclusions.

Definition 2.3. For a given r 2 .0;1, a subset Kr is said to be normalized
uniformly r-prox-regular if and only if every nonzero proximal normal toKr can be
realized by an r-ball, that is, 8u 2 Kr and 0 ¤ � 2 NP

Kr
.u/ and k�k D 1, one has

h�; v � ui � .1=2r/kv � uk2; 8v 2 Kr:

It is clear that the class of normalized uniformly prox-regular sets is sufficiently
large to include the class of convex sets, p-convex sets, C1;1submanifolds (possibly
with boundary) of H , the images under a C1;1 diffeomorphism of convex sets, and
many other nonconvex sets; see [4, 35]. It is clear that if r D 1, then uniformly
prox-regularity of Kr is equivalent to the convexity of K . It is known that if Kr is
a uniformly prox-regular set, then the proximal normal cone NP

Kr
.u/ is closed as a

set-valued mapping.
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For a given nonlinear operator T , we consider the problem of finding u 2 Kr

such that

hT u; v � ui C �kv � uk2 � 0; 8v 2 Kr; (1)

which is called the nonconvex variational inequality, introduced and studied by
Noor [29]. See also [3, 22–30, 32] for the variant forms of nonconvex variational
inequalities.

We note that, if Kr � K , the convex set in H , then problem (1) is equivalent to
finding u 2 K such that

hT u; v � ui � 0; 8v 2 K: (2)

Inequality of type (2) is called the variational inequality, which was introduced
and studied by Stampacchia [39] in 1964. It turned out that a number of unrelated
obstacle, free, moving, unilateral, and equilibrium problems arising in various
branches of pure and applied sciences can be studied via variational inequalities;
see [1–42] and the references therein.

It is well known that problem (2) is equivalent to finding u 2 K such that

0 2 T u CNK.u/; (3)

where NK.u/ denotes the normal cone of K at u in the sense of convex analysis.
Problem (3) is called the variational inclusion associated with variational inequal-
ity (2).

If Kr is a nonconvex (uniformly prox-regular) set, then problem (2.1) is
equivalent to finding u 2 Kr such that

0 2 T u CNP
Kr
.u/; (4)

whereNP
Kr
.u/ denotes the normal cone ofKr at u in the sense of nonconvex analysis.

Problem (4) is called the nonconvex variational inclusions problem associated with
nonconvex variational inequality (1). This implies that the variational inequality (1)
is equivalent to finding a zero of the sum of two monotone operators (4). This
equivalent formulation plays a crucial and basic part in this paper. We would like
to point out this equivalent formulation allows us to use the projection operator
technique for solving the nonconvex variational inequality (1).

We now recall the well-known proposition which summarizes some important
properties of the uniform prox-regular sets.

Lemma 2.2. LetK be a nonempty closed subset ofH; r 2 .0;1, and set Kr D
fu 2 H W d.u; K/ < rg. If Kr is uniformly prox-regular, then

(i) 8u 2 Kr; PKr .u/ ¤ ;.
(ii) 8r 0 2 .0; r/; PKr is Lipschitz continuous with constant ı D r=.r � r 0/ onKr 0 .

(iii) The proximal normal cone is closed as a set-valued mapping.
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Noor [29] has established the equivalence between nonconvex variational
inequality (1) and the fixed-point problem using the projection operator technique.
This alternative formulation is used to discuss the existence of a solution of
the problem (1) and to suggest and analyze an iterative method for solving the
nonconvex variational inequality (1).

Lemma 2.3 ([29]). u 2 Kr is a solution of the nonconvex variational inequal-
ity (1), if and only if u 2 Kr satisfies the relation

u D PKr Œu � �T u; (5)

where PKr is the projection of H onto the uniformly prox-regular set Kr .

Lemma 2.3 implies that the nonconvex variational inequality (1) is equivalent to
the fixed-point problem (5). This alternative equivalent formulation is very useful
from the numerical and theoretical point of view.

Related to the nonconvex variational inequality (1), we consider the problem of
finding z 2 H such that

TPKr z C ��1QKr z D 0; (6)

where � > 0 is a constant and QKr D I � PKr . Here I is the identity operator
and PKr is the projection operator. The equations of the type (6) are called the
nonconvex Wiener–Hopf equations. Note that for Kr � K , the convex set, we
obtain the original Wiener–Hopf equations, considered and studied by Shi [38]. For
the formulation and applications of the Wiener–Hopf equations , see [11, 16–33].

We now consider the parametric versions of the problem (1) and (6). To formulate
the problem, let M be an open subset of H in which the parameter 	 takes values.
Let T .u; 	/ be a given operator defined on H �H �M and take value in H �H .

From now onward, we denote T	.�/ � T .�; 	/ unless otherwise specified.
The parametric convex variational inequality problem is to find .u; 	/ 2 H �M

such that

h�T	u; v � ui C �kv � uk2 � 0;8v 2 Kr: (7)

We also assume that for some 	 2 M , problem (4) has a unique solution u.
Related to the parametric nonconvex variational inequality (7), we consider the

parametric nonconvex Wiener–Hopf equations. We consider the problem of finding
.z; 	/ 2 H �M , such that

T	PKr z C ��1QKr z D 0; (8)

where � > 0 is a constant and QKr z is defined on the set of .z; 	/ with 	 2 M and
takes values in H . The equations of the type (8) are called the parametric Wiener–
Hopf equations.
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One can establish the equivalence between the problems (7) and (8) by using the
projection operator technique; see Noor [16, 17, 21].

Lemma 2.4. The parametric nonconvex variational inequality (7) has a solution
.u; 	/ 2 H � M if and only if the parametric Wiener–Hopf equations (8) have a
solution .z; 	/ 2 H �M , where

u D PKr z (9)

z D u � �T	.u/: (10)

From Lemma 2.4, we see that the parametric nonconvex variational inequal-
ities (7) and the parametric Wiener–Hopf equations (8) are equivalent. We use
this equivalence to study the sensitivity analysis of the nonconvex variational
inequalities. We assume that for some 	 2 M , problem (8) has a solution z and
X is a closure of a ball in H centered at z. We want to investigate those conditions
under which, for each 	 in a neighborhood of 	, problem (8) has a unique solution
z.	/ near z and the function z.	/ is (Lipschitz) continuous and differentiable.

Definition 2.4. Let T	.�/ be an operator onX �M . Then, the operator T	.�/ is said
to be:

(a) Locally strongly monotone if there exists a constant ˛ > 0 such that

hT	.u/� T	.v/; u � vi � ˛ku � vk2; 8	 2 M; u; v 2 X

(b) Locally Lipschitz continuous if there exists a constant ˇ > 0 such that

kT	.u/� T	.v/k � ˇku � vk; 8	 2 M; u; v 2 X

3 Main Results

We consider the case, when the solutions of the parametric Wiener–Hopf equa-
tions (5) lie in the interior of X . Following the ideas of Dafermos [3] and Noor
[13, 14], we consider the map

F	.z/ D PKr z � �T	.PKr z/; 8.z; 	/ 2 X �M
D u � �T	.u/; (11)

where

u D PKr z: (12)
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We have to show that the map F	.z/ has a fixed point, which is a solution of the
parametric Wiener–Hopf equations (8). First of all, we prove that the map F	.z/,
defined by (11), is a contraction map with respect to z uniformly in 	 2 M .

Lemma 3.1. Let T	.�/ be a locally strongly monotone with constant ˛ > 0 and
locally Lipschitz continuous with constant ˇ > 0. Then, for all z1; z2 2 X and
	 2 M , we have

kF	.z1/� F	.z2/k � �kz1 � z2k;
where

� D ı
p
1 � 2˛�C ˇ2�2 (13)

for

ˇ
ˇ
ˇ
ˇ� � ˛

ˇ2

ˇ
ˇ
ˇ
ˇ <

p
ı2˛2 � ˇ2.ı2 � 1/

ıˇ2
; ı˛ > ˇ

p
ı2 � 1: (14)

Proof. For all z1; z2 2 X , 	 2 M , we have, from (11),

kF	.z1/� F	.z2/k D ku1 � u2 � �.T	.u1/� T	.u2//k: (15)

Using the strongly monotonicity and Lipschitz continuity of the operator T	, we
have

jju1 � u2 � �.T	.u1/� T	.u2//jj2 � jju1 � u2jj2 � 2�hT	.u1/ � T	.u2/; u1 � u2i
C �2jjT	.u1/ � T	.u2/jj2

� .1 � 2�˛ C �2ˇ2/jju1 � u2jj2; (16)

where ˛ > 0 is the strongly monotonicity constant and ˇ > 0 is the Lipschitz
continuity constant of the operator T	, respectively.

From (15) and (16), we have

kF	.z1/� F	.z2/k �
p
1 � 2˛�C ˇ2�2ku1 � u2k: (17)

From (12) and using the Lipschitz continuity of the operator PKr ; we have

ku1 � u2k � kPKr z1 � PKr z2k � ıkz1 � z2k: (18)

Combining (17), (18), and using (13), we have

kF	.z1/ � F	.z2/k � ı
p
1 � 2�˛ C �2ˇ2kz1 � z2k

D �kz1 � z2k:
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From (14), it follows that � < 1 and consequently the map F	.z/ defined by (11) is
a contraction map and has a fixed point z.	/, which is the solution of the Wiener–
Hopf equation (5). ut
Remark 3.1. From Lemma 3.1, we see that the map F	.z/ defined by (11) has a
unique fixed point z.	/, that is, z.	/ D F	.z/. Also, by assumption, the function z,
for 	 D 	 is a solution of the parametric Wiener–Hopf equations (8). Again using
Lemma 3.1, we see that z, for 	 D 	, is a fixed point of F	.z/ and it is also a fixed
point of F	.z/. Consequently, we conclude that

z.	/ D z D F	.z.	//:

Using Lemma 3.1 and technique of Noor [17, 21], we can prove the continuity
of the solution z.	/ of the parametric Wiener–Hopf equations (8). However, for the
sake of completeness and to convey an idea of the techniques involved, we give its
proof.

Lemma 3.2. Assume that the operator T	.�/ is locally Lipschitz continuous with
respect to the parameter 	. If the operator T	.�/ is locally Lipschitz continuous and
the map 	 ! PKr	z is continuous .or Lipschitz continuous/, then the function z.	/

satisfying (8) is .Lipschitz/ continuous at 	 D 	.

Proof. For all 	 2 M , invoking Lemma 3.1 and the triangle inequality, we have

kz.	/ � z. N	/k � kF	.z.	// � FN	.z. N	/k C kF	.z. N	//� FN	.z. N	//k
� �kz.	/ � z. N	/k C kF	.z. N	//� FN	.z. N	//k: (19)

From (11) and the fact that the operator T	 is a Lipschitz continuous with respect to
the parameter 	, we have

kF	.z. N	//� FN	.z. N	//k D ku. N	/ � u. N	/C �.T	.u. N	/; u. N	//� TN	.u. N	/; u. N	///k
� �
k	 � N	k: (20)

Combining (19) and (20), we obtain

kz.	/� z. N	/k � �


1 � �
k	 � N	k; for all 	; N	 2 M ,

from which the required result follows. ut
We now prove the main result of this paper and is the motivation of our next

result.

Theorem 3.1. Let u be the solution of the parametric general variational inequality
(7) and z be the solution of the parametric Wiener–Hopf equations (8) for 	 D 	.
Let T	.u/ be the locally strongly monotone Lipschitz continuous operator for all
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u; v 2 X . If the map 	 ! PKr is .Lipschitz/ continuous at 	 = 	, then there exists
a neighborhood N  M of 	 such that for 	 2 N , the parametric Wiener–Hopf
equations (8) have a unique solution z.	/ in the interior of X; z.	/ D z and z.	/ is
.Lipschitz/ continuous at 	 D 	.

Proof. Its proof follows from Lemmas 3.1, 3.2 and Remark 3.1. ut

4 Conclusion

In this paper, we have introduced and studied a new class of variational inequalities,
which is called the nonconvex variational inequality. We have shown that the para-
metric nonconvex variational inequalities are equivalent to parametric nonconvex
Wiener–Hopf equations. This alternative equivalence formulation has been used
to develop the general framework of the sensitivity analysis of the parametric
nonconvex variational inequalities. Results proved in this paper can be extended
for the nonconvex multivalued variational inequalities. This is another direction for
future direction. We expect that the ideas and techniques of this paper will motivate
and inspire the interested readers to explore its novel and other applications in
various fields.
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Simultaneous Approximation for Stancu-Type
Generalization of Certain
Summation–Integral-Type Operators

N.K. Govil and Vijay Gupta

Dedicated to Professor Hari M. Srivastava

Abstract Srivastava and Gupta (Math. and Comput. Model. 37:1307–1315, 2003)
introduced a general sequence of summation–integral-type operators, which in the
literature have sometimes been termed as Srivastava–Gupta operators. In this paper
we consider Stancu-type generalization of these operators and obtain moments of
these operators by method of hypergeometric series. Also, for these operators we
derive the asymptotic formula and error estimation in simultaneous approximation.

1 Introduction

In Approximation Theory after the well-known Bernstein polynomials, from time
to time, several new operators have been introduced and their approximation
properties studied, for example, there are exponential-type operators, which include
some operators of discrete type such as Bernstein, Baskakov, and Szász operators.
In 1976, May [10] studied exponential-type operators and established direct,
inverse, and saturation results for the linear combinations of these operators. It is
known that the discrete-type operators are not able to approximate integrable func-
tions, and in this context, Kantorovich [9] first proposed the integral modification
of well-known Bernstein polynomials. Later in 1967, Durrmeyer [3] considered a
more general integral modification of the Bernstein polynomials. In 1985, Sahai
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and Prasad [13] introduced Baskakov–Durrmeyer operators and estimated direct
results in simultaneous approximation (approximation of derivatives of functions
by corresponding order derivatives of operators), which were later improved by
Sinha et al. [14]. Also in the same year Mazhar and Totik [11] introduced Szász–
Mirakyan–Durrmeyer operators and estimated some approximation properties,
including some direct results. In 1989, Heilmann [6] proposed a general sequence of
operators, from which as special cases one can obtain Bernstein–Durrmeyer opera-
tors, Baskakov–Durrmeyer operators, and Szász–Mirakyan–Durrmeyer operators.

In Approximation Theory the genuine operators are also very important, as they
are defined implicitly with values of functions at end points of the interval in which
the operators are defined. Phillips [12] in 1954 introduced such operators, and later
Mazhar and Totik [11] discussed these operators in different forms. In the year 2003,
Srivastava and Gupta [15] introduced a general sequence of linear positive operators
Gn;c.f; x/ which when applied to f are defined as

Gn;c .f; x/ D n

1X

kD1

pn;k .xI c/
Z

1

0

pnCc;k�1 .t I c/ f .t/ dt C pn;0 .xI c/ f .0/ ; (1)

where

pn;k .xI c/ D .�x/k
kŠ

�.k/n;c .x/ (2)

and

�n;c .x/ D

8
ˆ̂
<

ˆ̂
:

e�nx; c D 0;

.1C cx/�n=c ; c 2 N WD f1; 2; 3; : : :g ;

.1 � x/n; c D �1:

Here f�n;c .x/g1nD1 is a sequence of functions, defined on the closed interval Œ0; b
.b > 0/ and satisfying the following properties for every n 2 N and k 2 N0 WD
N[ f0g:

1. �n;c 2 C1 .Œa; b/ .b > a � 0/.
2. �n;c .0/ D 1.
3. �n;c .x/ is completely monotone, that is, .�1/k �.k/n;c .x/ � 0 .0 � x � b/.
4. There exists an integer c such that

�.kC1/n;c .x/ D �n�.k/nCc;c .x/ .n > max f0;�cg I x 2 Œ0; b/ :

In the literature, these operators have sometimes been termed as Srivastava–Gupta
operators (see [2, 8, 17]). The authors in [8] considered the Bézier variant of these
operators and estimated the rate of convergence for functions of bounded variation.
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The following are some of the special cases of the operators Gn;c .f; x/ defined
in (1), which have the following forms:

1. If c D 0; then by simple computation one has pn;k .xI 0/ D e�nx .nx/
k

kŠ
and

operators become the Phillips operators Gn;0 .f; x/, introduced by Phillips in
[12], which for x 2 Œ0;1/ are defined by

Gn;0 .f; x/ D n

1X

kD1
pn;k .xI 0/

Z 1

0

pn;k�1 .t I 0/ f .t/ dt C pn;0 .xI 0/ f .0/ :

2. If c D 1; then by simple computation one has

pn;k .xI 1/ D
 
nC k � 1

k

!
xk

.1C x/nCk
;

and operators become the Durrmeyer-type Baskakov operators Gn;1 .f; x/,
which were introduced by Gupta et al. in [5] and which for x 2 Œ0;1/ are
defined as

Gn;1 .f; x/Dn
1X

kD1
pn;k .xI 1/

Z 1

0

pnC1;k�1 .t I 1/ f .t/ dt C pn;0 .xI 1/ f .0/ :

3. If c D �1, then by simple computation one gets

pn;k .xI �1/ D
 
n

k

!

xk.1 � x/n�k;

and operators become the Bernstein–Durrmeyer type Gn;�1 .f; x/. In this case
summation runs from 1 to n, integration from 0 to 1, and x 2 Œ0; 1, and
Gn;�1 .f; x/ are defined as

Gn;�1 .f; x/Dn
nX

kD1
pn;k .xI �1/

Z 1

0
pn�1;k�1 .t I �1/ f .t/ dt C pn;0 .xI �1/ f .0/ :

The q-analogue of this case was studied in [4].

Based on two parameters ˛; ˇ satisfying the conditions 0 � ˛ � ˇ, in 2003
the Stancu-type generalization of Bernstein operators was given in [16]. Recently,
Bykyazici and Atakut [1] studied the Stancu-type generalization of the q-analogue
of the classical Baskakov operators. Motivated by this recent work of Bykyazici
and Atakut [1] on Stancu-type operators, here in this paper firstly we consider the
Stancu-type generalization of the Srivastava–Gupta operators for 0 � ˛ � ˇ as

G
˛;ˇ
n;c .f; x/Dn

1X

kD1
pn;k .xI c/

Z 1

0
pnCc;k�1 .t I c/ f

�nt C ˛

nC ˇ

�
dtCpn;0 .xI c/ f

� ˛

nC ˇ

�
;
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where pn;k .xI c/ is given in (2).
Then, in this paper we study the simultaneous approximation for the case

c D 1 of the above defined operators G˛;ˇ
n;c .f; x/ and establish Voronovskaja type

asymptotic formula and an estimation of error. We obtain the moments by using
the concept of hypergeometric series, a technique developed recently by Ismail
and Simeonov [7], who obtained direct and inverse results for Jacobi weights of
Beta operators. The other cases, i.e., c D 0 and c D �1, will be discussed later
in forthcoming papers. It may be mentioned that recently, Deo [2] has studied
a different form of Stancu operators and obtained moments and direct results in
ordinary approximation.

2 Alternate Form and Auxiliary Results

The operatorsG˛;ˇ
n;c .f; x/ for the case c D 1 can be written in the following alternate

form. For simplicity, we will denote G˛;ˇ
n;1 .f; x/ by G˛;ˇ

n .f; x/ and for ˛ D ˇ D 0,

G
0;0
n;1 .f; x/ by Gn .f; x/. Also, we will denote pn;k.xI 1/ simply by pn;k.x/. Thus,

for x 2 Œ0;1/; we have the following form:

G˛;ˇ
n .f; x/ D

Z 1

0

Kn.x; t/f
�nt C ˛

nC ˇ

�
dt (3)

D
1X

kD1
pn;k.x/

Z 1

0

bn;k�1.t/f
�nt C ˛

nC ˇ

�
dt C .1C x/�nf

� ˛

nC ˇ

�
; x 2 Œ0;1/;

(4)

where the kernelKn.x; t/ D P1
kD1 pn;k.x/bn;k�1.t/C .1Cx/�nı.t/, with ı.t/ the

Dirac delta function. As is easy to see, Baskakov and Beta basis functions for these
are given by

pn;k.x/ D
 
nC k � 1

k

!
xk

.1C x/nCk
D .n/k

kŠ

xk

.1C x/nCk

and

bn;k�1.t/ D 1

B.n; k/

tk�1

.1C t/nCk
D .n/k

.k � 1/Š
tk�1

.1C t/nCk
;

where the Pochhammer symbol .n/k is defined as

.n/k D n.nC 1/.nC 2/.nC 3/ � � � .nC k � 1/;
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and B.n; k/ is the usual Beta function.
Note that the operator given in (4) can be written as

G˛;ˇ
n .f; x/ D

1X

kD1

.n/k

kŠ

xk

.1C x/nCk

Z 1

0

.n/k

.k � 1/Š

tk�1

.1C t/nCk
f

�
nt C ˛

nC ˇ

�

dt

C pn;0.x/f

�
˛

nC ˇ

�

D
Z 1

0

f
�
ntC˛
nCˇ

�
x

Œ.1C x/.1C t/nC1
1X

kD1

.n/k.n/k

.k � 1/ŠkŠ

.xt/k�1

Œ.1C x/.1C t/k�1
dt

C pn;0.x/f

�
˛

nC ˇ

�

D n2
Z 1

0

f
�
ntC˛
nCˇ

�
x

Œ.1Cx/.1Ct/nC1
1X

kD0

.nC1/k.nC1/k
.2/kkŠ

.xt/k

Œ.1Cx/.1Ct/k dt

C pn;0.x/f

�
˛

nC ˇ

�

:

Using the hypergeometric series 2F1.a; bI cI x/ D
1X

kD0

.a/k.b/k

.c/kkŠ
xk , we get

G˛;ˇ
n .f; x/ D n2

Z 1

0

f
�
ntC˛
nCˇ

�
x

Œ.1Cx/.1Ct/nC1 2F1

�

nC1; nC1I 2I x t

.1C x/.1C t/

�

dt

C pn;0.x/f

�
˛

nC ˇ

�

;

which on applying Pfaff–Kummer transformation

2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x � 1
�

gives

G˛;ˇ
n .f; x/ D n2

Z 1

0

f
�
ntC˛
nCˇ

�
x

.1C x C t/nC1 2F1

�

nC 1; 1 � nI 2I �xt
1C x C t

�

dt

C pn;0.x/f

�
˛

nC ˇ

�

; (5)
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and the above gives an alternate form of the operators (4) in terms of hypergeometric
functions.

As a special case, if ˛ D ˇ D 0 the operators (5) reduce to the Baskakov–Beta
operators, that is, the case c D 1 of (1).

Now we present the following lemmas, which would be needed for the proofs of
the theorems concerning direct estimates given in Sect. 3.

Lemma 2.1. For n > 0 and r � 1, we have

Gn.t
r ; x/ D � .n � r/� .r C 1/

� .n/
nx.1C x/r�1 2F1

�

1 � n; 1 � r I 2I x

1C x

�

: (6)

Moreover,

Gn.t
r ; x/ D .nC r � 1/Š.n � r � 1/Š

..n� 1/Š/2
xr

C r.r � 1/
.nC r � 2/Š.n� r � 1/Š

..n � 1/Š/2
xr�1 CO.n�2/: (7)

Proof. Taking f .t/ D t r , then making the transformation t D .1C x/u, and using
Pfaff–Kummer transformation, we get

Gn.t
r ; x/ D n2

Z 1

0

x.1Cx/rur
..1Cx/.1Cu//nC1

.1Cx/
1X

kD0

.nC1/k.1�n/k
.2/kkŠ

.�x.1Cx/u/k
..1Cx/.1Cu//k

du

D n2
1X

kD0

.nC 1/k.1� n/k

.2/kkŠ
.�x/kx.1C x/r�n

Z 1

0

urCk

.1C u/nCkC1
du

D n2
1X

kD0

.nC 1/k.1� n/k

.2/kkŠ
.�x/kx.1C x/r�nB.r C k C 1; n � r/

D n2
1X

kD0

.nC 1/k.1� n/k

.2/kkŠ
.�x/kx.1C x/r�n

� .r C k C 1/� .n � r/

� .nC k C 1/
;

which, on using � .nC k C 1/ D � .nC 1/.nC 1/k, gives

Gn.t
r ; x/ D n2

1X

kD0

.nC1/k.1�n/k
.2/kkŠ

.�x/kx.1Cx/r�n � .rC1/.rC1/k� .n � r/

� .nC 1/.nC 1/k

D n2x.1C x/r�n
� .r C 1/� .n � r/

� .nC 1/

1X

kD0

.r C 1/k.1� n/k

.kŠ/2
.�x/k

D n2x.1C x/r�n
� .r C 1/� .n � r/

� .nC 1/
2F1.1 � n; r C 1I 2I �x/:
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Finally, on using 2F1.a; bI cI x/ D .1 � x/�a 2F1
�
a; c � bI cI x

x � 1

�
, we get

Gn.t
r ; x/ D � .n � r/� .r C 1/

� .n/
nx.1C x/r�1 2F1

�

1 � n; 1 � r I 2I x

1C x

�

:

The other consequence (7) follows from the above equation by writing the expansion
of hypergeometric series. ut
Lemma 2.2. For 0 � ˛ � ˇ, we have

G˛;ˇ
n .t r ; x/ D xr

nr

.nC ˇ/r
.nC r � 1/Š.n � r � 1/Š

..n � 1/Š/2

C xr�1
�

r.r � 1/ nr

.nC ˇ/r
.nC r � 2/Š.n� r � 1/Š

..n � 1/Š/2

C r˛
nr�1

.nC ˇ/r
.nC r � 2/Š.n� r/Š

..n� 1/Š/2

	

C xr�2
�

r.r � 1/.r � 2/˛
nr�1

.nC ˇ/r
.nC r � 3/Š.n� r/Š

..n � 1/Š/2

C r.r � 1/˛2

2

nr�2

.nC ˇ/r
.nC r � 3/Š.n � r C 1/Š

..n � 1/Š/2

	

CO.n�2/:

Proof. The relation between operatorsGn.f; x/ and (5) can be defined as

G˛;ˇ
n .t r ; x/ D

rX

jD0

�
r

j

�
nj ˛r�j

.nC ˇ/r
Gn.t

j ; x/

D nr

.nC ˇ/r
Gn.t

r ; x/C r˛
nr�1

.nC ˇ/r
Gn.t

r�1; x/

C r.r � 1/˛2
2

nr�2

.nC ˇ/r
Gn.t

r�2; x/C � � � C ˛r

.nC ˇ/r
Gn.1; x/;

which on using (7) gives the required result. ut
Lemma 2.3. Let m 2 N

Sf0g, and

Un;m.x/ D
1X

kD0
pn;k.x/

�
k

n
� x

�m
:

Then Un;0.x/ D 1; Un;1.x/ D 0; and we have the recurrence relation:

nUn;mC1.x/ D x.1C x/
�
U 0n;m.x/CmUn;m�1.x/

�
:
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Consequently, Un;m.x/ D O
�
n�Œ.mC1/=2

�
; where Œm is integral part of m.

The above result is due to Sinha et al. [14], and we omit the proof as one can find it
in [14, p. 219].

Lemma 2.4. For m 2 N
0, if we define the central moments as


n;m.x/ D G˛;ˇ
n ..t � x/m; x/

D
1X

kD1

pn;k.x/

Z
1

0

bn;k�1.t/

�
nt C ˛

nC ˇ
� x

�m
dt C

�
˛

nC ˇ
� x

�m
pn;0.x/;

then for n > mC 1, we have the following recurrence relation:

.n �m � 1/

�
nC ˇ

n

�


n;mC1.x/

D x.1C x/
�

0n;m.x/Cm
n;m�1.x/

�

C m

�
˛

nC ˇ
� x

��
˛

nC ˇ
� x

��
nC ˇ

n

�

� 1
�


n;m�1.x/

C


.nx � 1/C .n � 2m � 1/nC ˇ

n

�
˛

nC ˇ
� x

�

C .mC 1/

�


n;m.x/:

Further, one can obtain first two moments as


n;0.x/ D 1; 
n;1.x/ D x .nC ˇ.1 � n//C ˛.n � 1/
.nC ˇ/.n � 1/

;

and from the recurrence relation, it can be easily verified that for all x 2 Œ0;1/;

we have


n;m.x/ D O.n�Œ.mC1/=2/:

Proof. Note that from the definition of the operators in (3), we have 
n;0.x/ D 1.
The other moments follow from the recurrence relation. Now we prove the
recurrence relation as follows:

Using the identities

x.1C x/p0n;k.x/ D .k � nx/pn;k.x/

and

t.1C t/b0n;k.t/ D .k � .nC 1/t/ bn;k.t/;
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we have

x.1C x/
0n;m.x/ D
1X

kD1
.k � nx/pn;k.x/

Z 1

0

bn;k.t/

�
nt C ˛

nC ˇ
� x

�m
dt

� mx.1C x/
n;m�1.x/ � nx.1C x/�n
�

˛

nC ˇ
� x

�m
:

Thus,

x.1C x/ �
0

n;m.x/Cm
n;m�1.x/
�

D
1X

kD1

pn;k.x/

Z
1

0

.k � nx/bn;k�1.t /

�
nt C ˛
nC ˇ � x

�m
dt � nx.1C x/�n

�
˛

nC ˇ � x
�m

D
1X

kD1

pn;k.x/

Z
1

0

Œf.k � 1/�.nC 1/tgC.nC 1/tC.1� nx/bn;k�1.t /

�
nt C ˛
nC ˇ � x

�m
dt

�nx.1C x/�n

�
˛

nC ˇ � x
�m

D
1X

kD1

pn;k.x/

Z
1

0

t .1C t /b0

n;k�1.t /

�
nt C ˛
nC ˇ � x

�m
dt

C .nC 1/
1X

kD1

pn;k.x/

Z
1

0

bn;k�1.t /t

�
nt C ˛
nC ˇ � x

�m
dt

C .1� nx/
1X

kD1

pn;k.x/

Z
1

0

bn;k�1.t /

�
nt C ˛
nC ˇ � x

�m
dt

� nx.1C x/�n

�
˛

nC ˇ � x
�m

; (8)

which, on using the identity t D nCˇ
n

h
ntC˛
nCˇ � x �

�
˛

nCˇ � x
�i
; gives

x.1C x/
�

0n;m.x/Cm
n;m�1.x/

�

D nC ˇ

n

1X

kD1
pn;k.x/

Z 1

0
b0n;k�1.t/

�
nt C ˛

nC ˇ
� x

�mC1
dt

� nC ˇ

n

�
˛

nC ˇ
� x

� 1X

kD1
pn;k.x/

Z 1

0
b0n;k�1.t/

�
nt C ˛

nC ˇ
� x

�m
dt

C
�
nC ˇ

n

�2
" 1X

kD1
pn;k.x/

Z 1

0

b0n;k�1.t/
�
nt C ˛

nC ˇ
� x

�mC2
dt

C
�

˛

nC ˇ
� x

�2 1X

kD1
pn;k.x/

Z 1

0
b0n;k�1.t/

�
nt C ˛

nC ˇ
� x

�m
dt
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� 2

�
˛

nC ˇ
� x

� 1X

kD1
pn;k.x/

Z 1

0
b0n;k�1.t/

�
nt C ˛

nC ˇ
� x

�mC1
dt

#

C .nC 1/

�
nC ˇ

n

� 1X

kD1
pn;k.x/

Z 1

0
bn;k�1.t/

�
nt C ˛

nC ˇ
� x

�mC1
dt

� .nC 1/

�
nC ˇ

n

��
˛

nC ˇ
� x

� 1X

kD1
pn;k.x/

Z 1

0
bn;k�1.t/

�
nt C ˛

nC ˇ
� x

�m
dt

C .1�nx/



n;m.x/�
�

˛

nC ˇ
� x

�m
.1C x/�n

�

� nx.1C x/�n
�

˛

nC ˇ
� x

�m
:

If we now integrate by parts the first five terms in the right-hand side of the above
expression and do some simple computations, we get

.n �m � 1/

�
nC ˇ

n

�


n;mC1.x/

D x.1C x/
�

0n;m.x/Cm
n;m�1.x/

�

C m

�
˛

nC ˇ
� x

��
˛

nC ˇ
� x

��
nC ˇ

n

�

� 1

�


n;m�1.x/

C


.nx � 1/C .n � 2m � 1/
nC ˇ

n

�
˛

nC ˇ
� x

�

C .mC 1/

�


n;m.x/;

and the Lemma 2.4 is thus proved. ut
Lemma 2.5 ([14, p. 220]). There exist polynomials qi;j;r .x/ on Œ0;1/, indepen-
dent of n and k such that

xr.1C x/r
dr

dxr
pn;k.x/ D

X

2iCj6r
i;j>0

ni .k � nx/j qi;j;r .x/pn;k.x/:

3 Direct Estimates

In this section, we present some direct results, which include asymptotic formula
and an error estimation in simultaneous approximation. Let C�Œ0;1/ be defined as

C�Œ0;1/ D ff 2 C Œ0;1/ W f .t/ D O.t� /; � > 0g:

Then the operatorsG˛;ˇ
n .f; x/ are well defined for f 2 C�Œ0;1/; and we have

Theorem 3.1. Let f 2 C�Œ0;1/ be bounded on every finite subinterval of Œ0;1/

admitting the derivative of order .r C 2/ at a fixed x 2 .0;1/. If f .t/ D O.t� / as
t ! 1 for some � > 0, then
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lim
n!1n

�
�
G˛;ˇ
n

�.r/
.f; x/�f .r/.x/

�

D r.r�ˇ/f .r/.x/CŒ.2rC˛/Cx.1Cr�ˇ/f .rC1/.x/Cx.1Cx/f .rC2/.x/:

Proof. By Taylor’s expansion of f , we have

f .t/ D
rC2X

iD0

f .i/.x/

i Š
.t � x/i C ".t; x/.t � x/rC2;

where ".t; x/ ! 0 as t ! x and ".t; x/ D o..t � x/ı/ as t ! 1 for some ı > 0.
Using Taylor’s expansion, we can write

n
h�
G˛;ˇ
n

�.r/
.f; x/�f .r/.x/

i
D n

"
rC2X

iD0

f .i/.x/

i Š

�
G˛;ˇ
n

�.r/
..t�x/i ; x/�f .r/.x/

#

C n
�
G˛;ˇ
n

�.r/
.".t; x/.t�x/rC2; x/

DW J1 C J2:

By Lemma 2.2, we have

J1 D n

rC2X

iD0

f .i/.x/

i Š

iX

jDr

 
i

j

!

.�x/i�j
�
G˛;ˇ
n

�.r/
.t j ; x/� nf .r/.x/

D f .r/.x/

rŠ
n
��
G˛;ˇ
n

�.r/
.t r ; x/� rŠ

�

C f .rC1/.x/

.r C 1/Š
n

�

.r C 1/.�x/ �G˛;ˇ
n

�.r/
.t r ; x/C �

G˛;ˇ
n

�.r/
.t rC1; x/

	

C f .rC2/.x/

.r C 2/Š
n

�
.r C 2/.r C 1/

2
x2
�
G˛;ˇ
n

�.r/
.t r ; x/

C .r C 2/.�x/ �G˛;ˇ
n

�.r/
.t rC1; x/C �

G˛;ˇ
n

�.r/
.t rC2; x/

	

D n


nr.nC r � 1/Š.n� r � 1/Š
.nC ˇ/r ..n � 1/Š/2 � 1

�

f .r/.x/

C n
f .rC1/.x/

.r C 1/Š

�

.r C 1/.�x/n
r.nC r � 1/Š.n� r � 1/Š
.nC ˇ/r ..n � 1/Š/2 rŠ

C nrC1.nCr/Š.n�r � 2/Š
.nC ˇ/rC1 ..n � 1/Š/2 .r C 1/Šx C r.r C 1/nrC1.nC r � 1/Š.n � r � 2/Š

.nC ˇ/rC1 ..n � 1/Š/2 rŠ

C .rC1/˛ n
r.nCr�1/Š.n�r�1/Š
.nCˇ/rC1 ..n�1/Š/2 rŠ

	



542 N.K. Govil and V. Gupta

C n
f .rC2/.x/

.rC2/Š
�
.rC2/.rC1/

2
x2
nr.nCr�1/Š.n�r�1/Š
.nCˇ/r ..n � 1/Š/2 rŠ

� .r C 2/x

�
nrC1.nC r/Š.n � r � 2/Š
.nC ˇ/rC1 ..n � 1/Š/2 .r C 1/Šx

C r.r C 1/nrC1.nC r � 1/Š.n � r � 2/Š
.nC ˇ/rC1 ..n � 1/Š/2 rŠ

C .r C 1/˛
nr.nC r � 1/Š.n � r � 1/Š
.nC ˇ/rC1 ..n � 1/Š/2 rŠ

�

C nrC2.nC r C 1/Š.n � r � 3/Š
.nC ˇ/rC2 ..n � 1/Š/2

.r C 2/Š

2
x2

C .r C 1/.r C 2/nrC2.nC r/Š.n� r � 3/Š
.nC ˇ/rC2 ..n � 1/Š/2 .r C 1/Šx

C .r C 2/˛
nrC1.nC r/Š.n � r � 2/Š
.nC ˇ/rC2 ..n � 1/Š/2 .r C 1/Šx

C r.r C 1/.r C 2/nrC1˛.nC r � 1/Š.n� r � 2/Š
.nC ˇ/rC2 ..n � 1/Š/2 rŠ

C .r C 2/.r C 1/˛2nr.nC r � 1/Š.n � r � 1/Š
2 .nC ˇ/rC2 ..n � 1/Š/2 rŠ

	

CO.n�2/:

The coefficients of f .r/.x/, f .rC1/.x/; and f .rC2/.x/ in the above expression are
respectively r.r �ˇ/; .2r C ˛/C x.1C r � ˇ/; and x.1C x/, which follow easily
by using induction hypothesis on r and then taking the limits as n ! 1: Hence in
order to complete the proof of this theorem it is sufficient to show that J2 ! 0 as
n ! 1; and for this note that by using Lemma 2.5, we have

jJ2j 6 n
X

2iCj6r
i;j>0

ni
jqi;j;r .x/j
xr.1C x/r

1X

kD1

pn;k.x/jk � nxjj
Z

1

0

bn;k�1.t /j".t; x/j
ˇ
ˇ
ˇ
ˇ
nt C ˛
nC ˇ � x

ˇ
ˇ
ˇ
ˇ

rC2

dt

C .�1/r .nC r � 1/Š
nŠ

j".0; x/j
ˇ
ˇ
ˇ
ˇ

˛

nC ˇ � x
ˇ
ˇ
ˇ
ˇ

rC2

DW J3 C J4:

Since ".t; x/ ! 0 as t ! x, hence for a given " > 0 there exists ı > 0 such that
j".t; x/j < " whenever jt �xj < ı: Further if 	 is any integer > maxf�; rC2g, then
we find a constantK > 0 independent of t , such that



Stancu-Type Generalization of Certain Summation–Integral-Type Operators 543

j".t; x/j
ˇ
ˇ
ˇ
ˇ
nt C ˛

nC ˇ
� x

ˇ
ˇ
ˇ
ˇ

rC2
6 K

ˇ
ˇ
ˇ
ˇ
nt C ˛

nC ˇ
� x

ˇ
ˇ
ˇ
ˇ

�

;

for jt � xj > ı. Hence

jJ3j D C1
X

2iCj6r
i;j>0

niC1
1X

kD1
pn;k.x/jk�nxjj

� Z

jt�xj<ı
"bn;k�1.t/

ˇ
ˇ
ˇ
ˇ
nt C˛

nCˇ
�x
ˇ
ˇ
ˇ
ˇ

rC2
dt

C
Z

jt�xj>ı
Kbn;k�1.t/

ˇ
ˇ
ˇ
ˇ
nt C˛

nCˇ
�x
ˇ
ˇ
ˇ
ˇ

	

dt

	

DW J5CJ6;

where

C1 D
X

2iCj6r
i;j>0

jqi;j;r .x/j
xr.1C x/r

:

Now, on applying Schwarz’s inequality for the integration and summation to the
above, we get

jJ5j 6 "C1
X

2iCj6r
i;j>0

niC1
1X

kD1
pn;k.x/jk � nxjj

�
�Z 1

0

bn;k�1.t/ dt

� 1
2

 Z 1

0

bn;k�1.t/
�
nt C ˛

nC ˇ
� x

�2rC4
dt

! 1
2

6 "C1
X

2iCj6r
i;j>0

niC1
 1X

kD1
pn;k.x/.k � nx/2j

! 1
2

�
 1X

kD1
pn;k.x/

Z 1

0

bn;k�1.t/
�
nt C ˛

nC ˇ
� x

�2rC4
dt

! 1
2

;

which on using Lemmas 2.3 and 2.4 gives

jJ5j 6 "C1
X

2iCj6r
i;j>0

niC1 �O.nj=2/ �O.n�.rC2/=2/ 6 "O.1/;

and because " is arbitrary, this obviously implies J5 D o.1/.
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Now again, if we apply Schwarz’s inequality for the integration and summation
and use Lemmas 2.3 and 2.4 to the expression for J6, we get

jJ6j 6 C2
X

2iCj6r
i;j>0

niC1
1X

kD1
pn;k.x/jk � nxjj

Z

jt�xj>ı
bn;k�1.t/

ˇ
ˇ
ˇ
ˇ
nt C ˛

nC ˇ
� x

ˇ
ˇ
ˇ
ˇ

	

dt

6 C2
X

2iCj6r
i;j>0

niC1
 1X

kD1
pn;k.x/.k � nx/2j

! 1
2

�
 1X

kD1
pn;k.x/

Z 1

0

bn;k�1.t/
�
nt C ˛

nC ˇ
� x

�2	
dt

! 1
2

D
X

2iCj6r
i;j>0

niC1 �O.nj=2/ �O.n�	=2/

D O.n.rC2�	/=2/ D o.1/:

Thus, J3 ! 0 as n ! 1, and because it is obvious that J4 ! 0 as n ! 1, we get
J2 D o.1/. Now, finally on combining the estimates of J1 and J2, we get the desired
result, and the proof of Theorem 3.1 is thus complete. ut
Theorem 3.2. Let f 2 C�Œ0;1/ for some � > 0 and r 6 m 6 rC2. If f .m/ exists
and is continuous on .a � �; b C �/  .0;1/; � > 0, then for n sufficiently large

�
�
�
�
G˛;ˇ
n

�.r/
.f; x/ � f .r/.x/

�
�
�
CŒa;b

6 C1n
�1

mX

iDr
kf .i/kCŒa;b C C2n

�1=2!.f .m/; n�1=2/CO.n�2/;

where C1; C2 are constants independent of f and n, !.f; ı/ is the modulus of
continuity of f on .a � �; b C �/, and k � kCŒa;b denotes the sup �norm on Œa; b.

Proof. By Taylor’s expansion of f , we have

f .t/ D
mX

iD0

f .i/.x/

i Š
.t�x/iCf .m/.�/�f .m/.x/

mŠ
.t�x/m�.t/C h.t; x/.1 � �.t//;

where � lies between t and x and �.t/ is the characteristic function on the interval
.a � �; b C �/. Now,
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�
G˛;ˇ
n

�.r/
.f; x/ � f .r/.x/ D

(
mX

iD0

f .i/.x/

i Š

�
G˛;ˇ
n

�.r/
..t � x/i ; x/ � f .r/.x/

)

C �
G˛;ˇ
n

�.r/
�
f .m/.�/ � f .m/.x/

mŠ
.t � x/m�.t/; x

�

C �
G˛;ˇ
n

�.r/
.h.t; x/.1 � �.t//; x/

DW S1 C S2 C S3:

By using Lemma 2.2, we get

S1 D
mX

iD0

f .i/.x/

iŠ

iX

jD0

 
i

j

!

.�x/i�j d
r

dxr

"
nj .nC j � 1/Š.n� j � 1/Š

.nC ˇ/j ..n� 1/Š/2
xj

C
 
j.j � 1/nj .nC j � 2/Š.n� j � 1/Š

.nC ˇ/j ..n � 1/Š/2 C j˛nj�1.nC j � 2/Š.n� j /Š

.nC ˇ/j ..n� 1/Š/2

!

xj�1

C
 
j.j � 1/.j � 2/˛nj�1˛.nC j � 3/Š.n � j /Š

.nC ˇ/j ..n� 1/Š/2

C j.j � 1/˛2nj�2.nC j � 3/Š.n� j C 1/Š

2 .nC ˇ/j ..n � 1/Š/2
!

xj�2 CO.n�2/
#

� f .r/.x/:

Consequently,

kS1kCŒa;b 6 C1n
�1

mX

iDr
kf .i/kCŒa;b CO.n�2/; uniformly on Œa; b:

Next, we estimate S2 as follows:

jS2j 6
Z 1

0

jK.r/
n .x; t/j

� ˇˇ
ˇ
ˇ
f .m/.�/ � f .m/.x/

mŠ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
nt C ˛

nC ˇ
� x

ˇ
ˇ
ˇ
ˇ

m

�.t/

	

dt

6 !.f .m/; ı/

mŠ

Z 1

0

jK.r/
n .x; t/j

0

@1C
ˇ
ˇ
ˇ ntC˛nCˇ � x

ˇ
ˇ
ˇ

ı

1

A
ˇ
ˇ
ˇ
ˇ
nt C ˛

nC ˇ
� x

ˇ
ˇ
ˇ
ˇ

m

dt

6 !.f .m/; ı/

mŠ

 1X

kD1
jp.r/n;k.x/j

Z 1

0

bn;k�1.t/

�
� ˇˇ
ˇ
ˇ
nt C ˛

nC ˇ
� x

ˇ
ˇ
ˇ
ˇ

m

C ı�1
ˇ
ˇ
ˇ
ˇ
nt C ˛

nC ˇ
� x

ˇ
ˇ
ˇ
ˇ

mC1 �
dt

C .nC r � 1/Š

.n� 1/Š
.1C x/�n�r

� ˇˇ
ˇ
ˇ
˛

nC ˇ
� x

ˇ
ˇ
ˇ
ˇ

m

C ı�1
ˇ
ˇ
ˇ
ˇ
˛

nC ˇ
� x

ˇ
ˇ
ˇ
ˇ

mC1 ��
:
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Using Schwarz’s inequality for integration and summation, we get

1X

kD1
pn;k.x/jk � nxjj

Z 1

0
bn;k�1.t/

ˇ
ˇ
ˇ
ˇ
nt C ˛

nC ˇ
� x

ˇ
ˇ
ˇ
ˇ

m

dt

6
1X

kD1
pn;k.x/jk � nxjj

�Z 1

0
bn;k�1.t/ dt

� 1
2

 Z 1

0
bn;k�1.t/

�
nt C ˛

nC ˇ
� x

�2m
dt

! 1
2

6
 1X

kD1
pn;k.x/.k � nx/2j

! 1
2

�
 1X

kD1
pn;k.x/

Z 1

0
bn;k�1.t/

�
nt C ˛

nC ˇ
� x

�2m
dt

! 1
2

D O.nj=2/ �O.n�m=2/
D O.n.j�m/=2/; uniformly on Œa; b: (9)

Therefore, by Lemma 2.5 and (9), we get

1X

kD1

jp.r/n;k.x/j
Z

1

0

bn;k�1.t/

ˇ
ˇ
ˇ
ˇ
nt C ˛
nC ˇ � x

ˇ
ˇ
ˇ
ˇ

m

dt

6
1X

kD1

X

2iCj6r
i;j>0

ni jk � nxjj jqi;j;r .x/j
xr .1C x/r pn;k.x/

Z
1

0

bn;k�1.t/

ˇ
ˇ
ˇ
ˇ
nt C ˛
nC ˇ � x

ˇ
ˇ
ˇ
ˇ

m

dt

6

0

@ sup
2iCj6r
i;j>0

jqi;j;r .x/j
xr .1C x/r

1

A
X

2iCj6r
i;j>0

ni

 
1X

kD1

pn;k.x/jk � nxjj
Z

1

0

bn;k�1.t/

ˇ
ˇ
ˇ
ˇ
nt C ˛
nC ˇ � x

ˇ
ˇ
ˇ
ˇ

m

dt

!

D C
X

2iCj6r
i;j>0

niO.n.j�m/=2/D O.n.r�m/=2/; uniformly on Œa; b; (10)

where

C D sup
2iCj6r
i;j>0

sup
x2Œa;b

jqi;j;r .x/j
xr.1C x/r

:

Now, if we choose ı D n�1=2 and apply (10), we obtain

jjS2jjCŒa;b 6 !.f .m/; n�1=2/
mŠ

�
O.n.r�m/=2/C n1=2O.n.r�m�1/=2/CO.n�m/

6 C2n
�.r�m/=2!.f .m/; n�1=2/:

Since t 2 Œ0;1/ n .a � �; b C �/, we can choose ı such that jt � xj > ı for all
x 2 Œa; b. Thus, by Lemma 2.5, we get
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jS3j 6 C
X

2iCj6r
i;j>0

ni
1X

kD1
pn;k.x/jk � nxjj

Z

jt�xj�ı
bn;k�1.t/jh.t; x/j dt

C .nC r � 1/Š
.n � 1/Š

.1C x/�n�r jh .0; x/j :

For jt � xj > ı, we can find the a constantM such that

jh.t; x/j 6 M

ˇ
ˇ
ˇ
ˇ
nt C ˛

nC ˇ
� x

ˇ
ˇ
ˇ
ˇ

ˇ

;

where ˇ is an integer > f�;mg: Hence, using Schwarz’s inequality for both
integration and summation, Lemmas 2.3 and 2.4, it easily follows that S3 D O.n�s/
for any s > 0; uniformly on Œa; b:

Combining the estimates of S1; S2; S3; the required result is immediate. ut
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Korovkin-Type Approximation Theorem
for Functions of Two Variables Via Statistical
Summability .C; 1; 1/

M. Mursaleen and S.A. Mohiuddine

Dedicated to Professor Hari M. Srivastava

Abstract The concept of statistical summability .C; 1; 1/ has recently been intro-
duced by Moricz (J. Math. Anal. Appl. 286:340–350, 2003). In this paper, we use
this notion of summability to prove the Korovkin-type approximation theorem for
functions of two variables.

1 Introduction and Preliminaries

The concept of statistical convergence for sequences of real numbers was introduced
by Fast [8] and further studied by many others.

Let K � N and Kn D fk � n W k 2 Kg. Then the natural densi ty of K
is defined by ı.K/ D limn n

�1jKnj if the limit exists, where jKnj denotes the
cardinality of Kn.

A sequence x D .xk/ of real numbers is said to be statistically convergent to L
provided that for every � > 0 the set K� WD fk 2 N W jxk � Lj � �g has natural
density zero, i.e., for each � > 0,

lim
n

1

n
jfj � n W jxj �Lj � �gj D 0:
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By the convergence of a double sequence we mean the convergence in
Pringsheim’s sense [20]. A double sequence x D .xjk/ is said to be Pringsheim’s
convergent (or P -convergent) if for given � > 0 there exists an integer N such that
jxjk � `j < � whenever j; k > N . In this case, ` is called the Pringsheim limit of
x D .xjk/ and it is written as P - limx D `.

A double sequence x D .xjk/ is said to be bounded if there exists a positive
numberM such that jxjkj < M for all j; k.

Note that, in contrast to the case for single sequences, a convergent double
sequence need not be bounded.

The idea of statistical convergence for double sequences was introduced by
Mursaleen and Edely [16] and further studied in [11, 17, 18].

Let K � N � N be a two-dimensional set of positive integers and let Km;n D
f.j; k/ W j � m; k � ng. Then the two-dimensional analogue of natural density can
be defined as follows:

In case the sequence .K.m; n/=mn/ has a limit in Pringsheim’s sense, then we
say that K has a double natural density and is defined as

P - lim
m;n

K.m; n/

mn
D ı.2/fKg:

For example, let K D f.i2; j 2/ W i; j 2 Ng. Then

ı.2/fKg D P - lim
m;n

K.m; n/

mn
� P - lim

m;n

p
m

p
n

mn
D 0;

i.e., the set K has double natural density zero, while the set f.i; 2j / W i; j 2 Ng has
double natural density 1=2.

A real double sequence x D .xjk/ is said to be statistically convergent to the
number L if for each � > 0, the set

f.j; k/; j � m and k � n W j xjk � L j� �g

has double natural density zero. In this case we write st.2/- lim
j;k
xjk D L.

Remark 1.1. Note that if x D .xjk/ is P -convergent, then it is statistically
convergent but not conversely. See the following example:

Example 1.1. The double sequence x D .xjk/ defined by

xjk D
(
1 ; if j and k are squaresI
0 ; otherwise:

(1)

Then x is statistically convergent to zero but not P -convergent.
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In [6], some Tauberian theorems have been obtained to get convergence from
statistical convergence for double sequences.

Moricz [14] introduced the idea of statistical summability .C; 1; 1/.
We say that a double sequence x D .xjk/ is statistically summability .C; 1; 1/ to

some number L if st.2/- lim
m;n

�mn D L; where

�mn D 1

mn

mX

jD1

nX

kD1
xjk: (2)

In this case, we write st.C;1;1/- limx D L: It is trivial that st.2/- lim
j;k
xjk D L implies

st.2/- lim
m;n

�mn D L. Moricz [14] obtained the Tauberian conditions for the reverse

implication.
Let C Œa; b be the space of all functions f continuous on Œa; b. We know that

C Œa; b is a Banach space with norm

kf kCŒa;b WD sup
x2Œa;b

jf .x/j; f 2 C Œa; b:

The classical Korovkin approximation theorem states as follows [10]:
Let .Tn/ be a sequence of positive linear operators from C Œa; b into C Œa; b.

Then limn kTn.f; x/ � f .x/kCŒa;b D 0 for all f 2 C Œa; b if and only if

lim
n

kTn.ei ; x/ � ei .x/kCŒa;b D 0 for i D 0; 1; 2;

where e0.x/ D 1; e1.x/ D x, and e2.x/ D x2.
Quite recently, such type of approximation theorems have been established for

functions of one and/or two variables, by using statistical convergence [5,9], gener-
alized statistical convergence [7, 15, 21], A-statistical convergence [4], statistical
A-summability [2, 3], weighted statistical convergence [19], almost convergence
[1, 12], and statistical summability .C; 1/ [13]. In this paper, we extend the result
of [22] by using the notion of statistical summability .C; 1; 1/ and show that our
result is stronger than those proved by Taşdelen and Erençin [22] and Dirik and
Demirci [4].

2 Main Result

Let I D Œ0; A; J D Œ0; B; A;B 2 .0; 1/, andK D I �J . We denote by C.K/ the
space of all continuous real-valued functions on K . This space is a equipped with
norm

kf kC.K/ WD sup
.x;y/2K

jf .x; y/j; f 2 C.K/:
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Let H!.K/ denote the space of all real-valued functions f onK such that

j f .s; t/ � f .x; y/ j� !

�

f I
s�

s

1 � s � x

1 � x
�2

C
�

t

1 � t
� y

1 � y

�2 �

;

where ! is the modulus of continuity, i.e.,

!.f I ı/ D sup
.s;t /;.x;y/2K

�

j f .s; t/ � f .x; y/ jW
p
.s � x/2 C .t � y/2 � ı

	

:

It is to be noted that any function f 2 H!.K/ is continuous and bounded on K .
The following result was given by Taşdelen and Erençin [22].

Theorem A. Let .Tj;k/ be a double sequence of positive linear operators from
H!.K/ into C.K/: Then for all f 2 H!.K/,

P - lim
j;k!1

�
�
�Tj;k.f I x; y/ � f .x; y/

�
�
�
C.K/

D 0: (3)

if and only if

P - lim
j;k!1

�
�
�Tj;k.fi I x; y/ � fi

�
�
�
C.K/

D 0 .i D 0; 1; 2; 3/; (4)

where

f0.x; y/ D 1; f1.x; y/ D x

1 � x
; f2.x; y/ D y

1 � y ; f3.x; y/ D
�

x

1 � x
�2

C
�

y

1 � y

�2
:

Recently, Dirik and Demirci [4] proved the following theorem.

Theorem B. Let .Tj;k/ be a double sequence of positive linear operators from
H!.K/ into C.K/: Then for all f 2 H!.K/,

st.2/- lim
j;k!1

�
�
�Tj;k.f I x; y/ � f .x; y/

�
�
�
C.K/

D 0: (5)

if and only if

st.2/- lim
j;k!1

�
�
�Tj;k.fi I x; y/ � fi

�
�
�
C.K/

D 0 .i D 0; 1; 2; 3/: (6)

We prove the following result:

Theorem 2.1. Let .Tj;k/ be a double sequence of positive linear operators from
H!.K/ into C.K/: Then for all f 2 H!.K/,

st.C;1;1/- lim
�
�
�Tj;k.f I x; y/ � f .x; y/

�
�
�
C.K/

D 0: (7)
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if and only if

st.C;1;1/- lim
�
�
�Tj;k.1I x; y/ � 1

�
�
�
C.K/

D 0; (8)

st.C;1;1/- lim
�
�
�Tj;k

�
s

1 � s
I x; y

�

� x

1 � x
�
�
�
C.K/

D 0; (9)

st.C;1;1/- lim
�
�
�Tj;k.

t

1 � t
I x; y/ � y

1 � y
�
�
�
C.K/

D 0; (10)

st.C;1;1/- lim

�
�
�
�Tj;k

 
� s

1 � s
�2 C

�
t

1 � t

�2
I x; y

!

�
 
� x

1 � x
�2 C

�
y

1 � y

�2!��
�
�
C.K/

D 0: (11)

Proof. Since each

1;
x

1 � x ;
y

1 � y
;
� x

1 � x
�2 C

�
y

1 � y
�2

belongs to H!.K/, conditions (8)–(11) follow immediately from (7). Let f 2
H!.K/ and .x; y/ 2 K be fixed: Then after using the properties of f , a simple
calculation gives that

jTj;k.f Ix; y/ � f .x; y/j

� Tj;k.jf .s; t/� f .x; y/jI x; y/C jf .x; y/j jTj;k.f0Ix; y/ � f0.x; y/j

� "C
�
"CN C 2N

ı2

�
jTj;k.f0Ix; y/ � f0.x; y/j C 4N

ı2
jTj;k.f1I x; y/� f1.x; y/j

C 4N

ı2
jTj;k.f2I x; y/ � f2.x; y/j C 2N

ı2
jTj;k.f3Ix; y/ � f3.x; y/j

� "CM
n
jTj;k.f0Ix; y/ � f0.x; y/j C jTj;k.f1Ix; y/ � f1.x; y/j

C jTj;k.f2I x; y/� f2.x; y/j C jTj;k.f3I x; y/� f3.x; y/j
o
;

where N D kf kC.K/ and

M D max

�

"CN C 2N

ı2

��
A

1 � A

�2
C
�

B

1 �B
�2�

;
4N

ı2

�
A

1 �A
�

;
4N

ı2

�
B

1 � B

�

;
2N

ı2

	

:
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Now, replacing Tj;k.f I x; y/ by
1

mn

mX

jD1

nX

kD1
Tj;k.f I x; y/ and taking sup

.x;y/2K
, we

get

�
�
�
�
1

mn

mX

jD1

nX

kD1
Tj;k.f I x; y/ � f .x; y/

�
�
�
�
C.K/

� M

���
�
�
1

mn

mX

jD1

nX

kD1
Tj;k.f0I x; y/ � f0.x; y/

�
�
�
�
C.K/

C
�
�
�
�
1

mn

mX

jD1

nX

kD1
Tj;k.f1I x; y/ � f1.x; y/

�
�
�
�
C.K/

C
�
�
�
�
1

mn

mX

jD1

nX

kD1
Tj;k.f2I x; y/ � f2.x; y/

�
�
�
�
C.K/

C
�
�
�
�
1

mn

mX

jD1

nX

kD1
Tj;k.f3I x; y/ � f3.x; y/

�
�
�
�
C.K/

�

C": (12)

For a given r > 0 choose " > 0 such that " < r . Define the following sets:

D WD
�

.j; k/; j � m and k � n W
�
�
�
�
1

mn

mX

jD1

nX

kD1
Tj;k.f I x; y/� f .x; y/

�
�
�
�
C.K/

� r

	

;

D1 WD
�

.j; k/; j � m and k � n W
�
�
�
�
1

mn

mX

jD1

nX

kD1
Tj;k.f0I x; y/� f0.x; y/

�
�
�
�
C.K/

� r � "

4K

	

;

D2 WD
�

.j; k/; j � m and k � n W
�
�
�
�
1

mn

mX

jD1

nX

kD1
Tj;k.f1I x; y/� f1.x; y/

�
�
�
�
C.K/

� r � "

4K

	

;

D3 WD
�

.j; k/; j � m and k � n W
�
�
�
�
1

mn

mX

jD1

nX

kD1
Tj;k.f2I x; y/� f2.x; y/

�
�
�
�
C.K/

� r � "

4K

	

;

D4 WD
�

.j; k/; j � m and k � n W
�
�
�
�
1

mn

mX

jD1

nX

kD1
Tj;k.f3I x; y/� f3.x; y/

�
�
�
�
C.K/

� r � "

4K

	

:
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Then from (12), we see that D  D1 [D2 [D3 [D4 and therefore

ı.2/fDg � ı.2/fD1g C ı.2/fD2g C ı.2/fD3g C ı.2/fD4g:

Hence conditions (8)–(11) imply the condition (7).
This completes the proof of the theorem. ut

3 Rate of Statistical Summability .C; 1; 1/

In this section we study the rate of statistical summability .C; 1; 1/ of a sequence of
positive linear operators defined on C.K/.

We now present the following definition.

Definition 3.1. Let .˛mn/ be a positive nonincreasing double sequence. A double
sequence x D .xmn/ is statistically summability .C; 1; 1/ to a function L with the
rate o.amn/ if for every � > 0,

P - lim
m;n!1

G.�/

˛mn
D 0

where

G.�/ D 1

mn

ˇ
ˇ
ˇ
n
p � m; q � n W ˇˇ �pq �L ˇˇ� "

oˇˇ
ˇ;

and �pq is defined by (2). In this case, it is denoted by xmn �L D st.C;1;1/ � o.˛mn/
as m; n ! 1.

It is easy to prove the following basic lemma.

Lemma 3.1. Let x D .xmn/ and x D .ymn/ be double sequences. Assume that

xmn � L1 D st.C;1;1/ � o.˛mn/ and ymn �L2 D st.C;1;1/ � o.ˇmn/

on X . Let �mn D maxf˛mn; ˇmng. Then the following statement holds:

(i) .xmn ˙ ymn/ � .L1 C L2/ D st.C;1;1/ � o.�mn/,
(ii) .xmn �L1/.ymn � L2/ D st.C;1;1/ � o.˛mnˇmn/,

(iii) 
.xmn �L1/ D st.C;1;1/ � o.˛mn/ for any real number 
.

Theorem 3.1. Let .Tm;n/ be a double sequence of positive linear operators from
H!.K/ into C.K/. Assume that the following conditions hold:

(a) kTm;n.f0/ � .f0/kC.K/ D st.C;1;1/ � o.˛mn/ as m; n ! 1I
(b) w.f I ımn/ D st.C;1;1/ � o.ˇmn/ as m; n ! 1, where ımn D pkTmn.�/kC.K/

with
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�.u; v/ D
� u

1 � u
� x

1 � x

�2 C
� v

1 � v
� y

1 � y

�2
:

Then, for all f 2 H!.K/, we have

kTm;n.f / � .f /kC.K/ D st.C;1;1/ � o.�mn/ as m; n ! 1: (13)

Proof. Let f 2 H!.K/ and .x; y/ 2 K . Then

jTm;n.f I x; y/ � f .x; y/j
D jTm;n..f .u; v/ � f .x; y/I x; y/ � f .x; y/.Tm;n.f0I x; y/ � f0.x; y//j

� Tm;n.jf .u; v/� f .x; y/jI x; y/CM j Tm;n.f0I x; y/ � f0.x; y/j;

whereM D kf kC.X/. This yields that

jTm;n.f I x; y/ � f .x; y/j

� w.f I ı/Tmn
�

1C
q
. u
1�u � x

1�x /2 C . v
1�v � y

1�y /2

ı
I x; y

�

CM j Tm;n.f0I x; y/ � f0.x; y/j

� w.f I ı/ j Tm;n.f0I x; y/ � f0.x; y/j C w.f I ı/
ı2

Tm;n.�I x; y/

Cw.f I ı/CM jTm;n.f0I x; y/ � f0.x; y/j

Now, taking sup.x;y/2K; we obtain kTm;n.f / � f kC.K/

kTm;n.f / � f kC.K/ � w.f I ı/kTm;n.f0/� f0kC.K/ C w.f I ı/
ı2

kTm;n.�/kC.K/

Cw.f I ı/CM kTm;n.f0/ � f0kC.K/:

Now, let ı WD ımn WD pkTmn.�/kC.K/. Then

kTm;n.f /� f kC.K/ 6 w.f I ı/kTm;n.f0/� f0kC.K/
C2w.f I ı/CM kTm;n.f0/ � f0kC.K/ (14)

� N
n
w.f I ı/kTm;n.f0/ � f0kC.K/ C w.f I ı/C kTm;n.f0/ � f0kC.K/

o
; (15)
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where N D maxf2;M g. For a given r > 0, define the following sets:

E WD
�

.m; n/ 2 N � N W kTm;n.f / � f kC.K/ � r

	

;

E1 WD
�

.m; n/ 2 N � N W w.f I ı/kTm;n.f0/ � f0kC.K/ � r

3N

	

;

E2 WD
�

.m; n/ 2 N � N W w.f I ı/ � r

3N

	

;

E3 WD
�

.m; n/ 2 N � N W kTm;n.f0/ � f0kC.K/ � r

3N

	

:

Then by (14), we get E  E1 [ E2 [ E3. Further, we define the sets

E4 WD
�

.m; n/ 2 N � N W w.f I ı/ �
r

r

3N

	

and

E5 WD
�

.m; n/ 2 N � N W kTm;n.f0/� f0kC.K/ �
r

r

3N

	

:

Then E1  E4 [ E5 and hence E  E2 [ E3 [ E4 [ E5. Therefore, by using the
conditions (a) and (b), we get (13).

This completes the proof of the theorem. ut

4 Example and the Concluding Remark

We show that the following double sequence of positive linear operators satisfies the
conditions of Theorem 3.1 but does not satisfy the conditions of Theorems A and B.

Example 4.1. Consider the following Meyer-König and Zeller operators:

Bm;n.f I x; y/ W D .1� x/mC1.1 � y/nC1

�
1X

jD0

1X

kD0
f
� j

j CmC 1
;

k

k C nC 1

��mC j

j

��nC k

k

�
xj yk;

where f 2 H!.K/ andK D Œ0; A � Œ0; B, A;B 2 .0; 1/.
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Since, for x 2 Œ0; A, A 2 .0; 1/,

1

.1 � x/mC1
D
1X

jD0

 
mC j

j

!

xj ;

it is easy to see that

Bm;n.f0I x; y/ D f0.x; y/:

Also, we obtain

Bm;n.f1I x; y/ D .1�x/mC1.1�y/nC1
1X

jD0

1X

kD0

j

mC1

 
mC j

j

! 
nCk
k

!

xj yk

D .1� x/mC1.1�y/nC1x
1X

jD0

1X

kD0

1

mC1
.mCj /Š
mŠ.j�1/Š

 
nCk
k

!

xj�1yk

D .1� x/mC1.1�y/nC1x 1

.1�x/mC2
1

.1�y/nC1 D x

1�x ;

and similarly

Bm;n.f2I x; y/ D y

1 � y
:

Finally, we get

Bm;n.f3I x; y/

D .1�x/mC1.1�y/nC1
1X

jD0

1X

kD0

��
j

mC1
�2

C
�

k

nC1
�2	 

mCj
j

! 
nCk
k

!

xj yk

D .1 � x/mC1.1 � y/nC1 x

mC 1

1X

jD0

1X

kD0

j

mC 1

.mC j /Š

mŠ.j � 1/Š

 
nC k

k

!

xj�1yk

C .1 � x/mC1.1 � y/nC1 y

nC 1

1X

jD0

1X

kD0

k

nC 1

 
mC j

j

!
.nC k/Š

nŠ.k � 1/Š
xj yk�1

D .1 � x/mC1.1 � y/nC1 x

mC 1

�

x

1X

jD0

1X

kD0

.mC j C 1/Š

.mC 1/Š.j � 1/Š

 
nC k

k

!

xj�1yk
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C
1X

jD0

1X

kD0

 
mC j C 1

j

! 
nC k

k

!

xj yk
	

C .1 � x/mC1.1 � y/nC1 y

nC 1

�

y

1X

jD0

1X

kD0

.nC k C 1/Š

.nC 1/Š.k � 1/Š

 
mC j

j

!

xj yk�1

C
1X

jD0

1X

kD0

 
nC k C 1

k

! 
mC j

j

!

xj yk
	

D mC 2

mC 1

�
x

1 � x
�2

C 1

mC 1

x

1 � x C nC 2

nC 1

�
y

1 � y

�2
C 1

nC 1

y

1 � y ;

i.e.,

Bm;n.f3I x; y/ !
�

x

1 � x

�2
C
�

y

1 � y
�2
:

Therefore, the conditions of Theorem A are satisfied and we get for all f 2
H!.K/ that

P - lim
j;k!1 kTj;k.f I x; y/ � f .x; y/kC.K/ D 0:

Now, define w D .wmn/ by wmn D .�1/m for all n. Then, this sequence is neither
P -convergent nor statistically convergent, but st.C;1;1/-lim w D 0 (since .C; 1; 1/-
lim w D 0).

Let Lm;n W H!.K/ ! C.K/ be defined by

Lm;n.f I x; y/ D .1C wmn/Bm;n.f I x; y/:

It is easy to see that the sequence .Lm;n/ satisfies the conditions (8)–(11). Hence by
Theorem 2.1, we have

st.2/
C .1;1/

- lim
m;n!1 kLm;n.f I x; y/ � f .x; y/k D 0:

On the other hand, the sequence .Lm;n/ does not satisfy the conditions of
Theorems A and B, since .Lm;n/ is neither P -convergent nor A-statistically
convergent. That is, Theorems A and B do not work for our operators Lm;n. Hence
our Theorem 3.1 is stronger than Theorems A and B.
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Reflections on the Baker–Gammel–Wills (Padé)
Conjecture

Doron S. Lubinsky

Dedicated to Professor Hari M. Srivastava

Abstract In 1961, Baker, Gammel, and Wills formulated their famous conjecture
that if a function f is meromorphic in the unit ball and analytic at 0, then a
subsequence of its diagonal Padé approximants converges uniformly in compact
subsets to f . This conjecture was disproved in 2001, but it generated a number of
related unresolved conjectures. We review their status.

1 Introduction

Let

f .z/ D
1X

jD0
aj zj

be a formal power series, with complex coefficients. Given integers m; n � 0, the
.m; n/ Padé approximant to f is a rational function

Œm=n D P=Q

where P;Q are polynomials of degree at mostm; n, respectively, such thatQ is not
identically 0, and such that

.fQ � P/ .z/ D O
�
zmCnC1

�
: (1)
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By this, we mean that the coefficients of 1; z; z2; : : : ; zmCn in the formal power series
on the left-hand side vanish. In the special case n D 0, Œm=0 is just the mth partial
sum of the power series.

It is easily seen that Œm=n exists: we can reformulate (1) as a system of
m C n C 1 homogeneous linear equations in the .mC 1/ C .nC 1/ coefficients
of the polynomials P and Q. As there are more unknowns than equations, there is
a nontrivial solution, and it follows from (1) that Q cannot be identically 0 in any
nontrivial solution. While P andQ are not separately unique, the ratio Œm=n is.

It was C. Hermite who gave his student Henri Eugene Padé the approximant
to study in the 1890s. Although the approximant was known earlier, by, amongst
others, Jacobi and Frobenius, it was perhaps Padé’s thorough investigation of the
structure of the Padé table, namely, the array

Œ0=0 Œ0=1 Œ0=2 Œ0=3 : : :

Œ1=0 Œ1=1 Œ1=2 Œ1=3 : : :

Œ2=0 Œ2=1 Œ2=2 Œ2=3 : : :

Œ3=0 Œ3=1 Œ3=2 Œ3=3 : : :

:::
:::

:::
:::

: : :

that has ensured the approximant bearing his name.
Padé approximants have been applied in proofs of irrationality and transcendence

in number theory, in practical computation of special functions, and in analysis of
difference schemes for numerical solution of partial differential equations. However,
the application which really brought them to prominence in the 1960s and 1970s was
in location of singularities of functions: in various physical problems, for example,
inverse scattering theory, one would have a means for computing the coefficients of
a power series f . One could use just 2n C 1 of these coefficients to compute the
Œn=n Padé approximants to f and use the poles of the approximants as predictors of
the location of poles or other singularities of f . Moreover, under certain conditions
on f , which were often satisfied in physical examples, this process could be
theoretically justified.

In addition to their wide variety of applications, they are also closely associated
with continued fraction expansions, orthogonal polynomials, moment problems, and
the theory of quadrature, amongst others. See [6] and [5] for a detailed development
of the theory and [10] for their history.

One of the fascinating features of Padé approximants is the complexity of their
convergence theory. The convergence properties vary greatly, depending on how
one traverses the table. When the denominator degree is kept fixed as n and the
underlying function f is analytic in a ball center 0, except for poles of total
multiplicity n, the “column” sequence fŒm=ng1mD1 converges uniformly in compact
subsets omitting these poles. This is de Montessus de Ballore’s theorem [6], which
has been extended and explored in multiple settings.
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In this paper, we focus more on the “diagonal” sequence fŒn=ng1nD1.
Uniform convergence of diagonal sequences of Padé approximants has
been established, for example, for Polya frequency series [3] and series of
Stieltjes/Markov/Hamburger [5]. The former have the form

f .z/ D aoe
�z
1Y

jD1

1C ˛j z

1 � ˇj z
;

where a0 > 0; � � 0, all ˛j ; ˇj � 0, and

X

j

�
˛j C ˇj

�
< 1:

The latter have the form

f .z/ D
Z 1

�1
d
 .t/

1 � tz
D
1X

jD0
zj
Z
t j d
 .t/ ;

and 
 is a positive measure supported on the real line, with all finite power
moments

R
t j d
 .t/. When 
 has non-compact support, the corresponding power

series has zero radius of convergence. Nevertheless, the diagonal Padé approximants
fŒn=ng1nD1 still converge off the real line to f , at least when 
 is a determinate
measure. The latter means that 
 is the only positive measure having momentsR
t j d
 .t/. If 
 is supported on Œ0;1/ (the so-called Stieltjes case) and is

determinate, the diagonal sequence converges uniformly in compact subsets of
Cn.�1; 0. It is Stieltjes series that often arise in physical applications.

Various modifications of Stieltjes series have also been successfully
investigated—for example, when 
0 has a sign change or when a rational
function is added to the Stieltjes function or multiplies it. See, for example,
[1, 15, 16, 28, 41, 43, 50, 53].

Convergence has also been established for classes of special functions such
as hypergeometric functions [5, 6] and q-series, even in the singular case when
jqj D 1 [17]. For functions with “smooth” coefficients, one expects that their
Padé approximants should behave well. For rapidly decaying smooth Taylor series
coefficients, this has been established in [31]: if aj ¤ 0 for j is large enough, and

lim
j!1

aj�1ajC1
a2j

D q;

where jqj < 1, then the full diagonal sequence fŒn=ng1nD1 converges locally
uniformly in compact subsets of the plane.

In stark contrast to the positive results above, there are entire functions f for
which

lim sup
n!1

jŒn=n .z/j D 1
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for all z 2 Cn f0g, as established by Hans Wallin [55]. Wallin’s function is a
somewhat extreme example of the phenomenon of spurious poles: approximants
can have poles which in no way are related to those of the underlying function. This
phenomenon was observed in the early days of Padé approximation, in a simpler
form, by Dumas [21].

Physicists such as George Baker in the 1960s endeavored to surmount the
problem of spurious poles. They noted that these typically affect convergence
only in a small neighborhood and there were usually very few of these “bad”
approximants. Thus, one might compute Œn=n, n D 1; 2; 3; : : : ; 50, and find a
definite convergence trend in 45 of the approximants, with 5 of the 50 approximants
displaying pathological behavior. Moreover, the 5 bad approximants could be dis-
tributed anywhere in the 50 and need not be the first few. Nevertheless, after omitting
the “bad” approximants, one obtained a clear convergence trend. This seemed to be
a characteristic of the Padé method and led to a famous conjecture [4].

Baker–Gammel–Wills Conjecture (1961). Let f be meromorphic in the unit ball
and analytic at 0. There is an infinite subsequence fŒn=ngn2S of the diagonal
sequence fŒn=ng1nD1 that converges uniformly in all compact subsets of the unit
ball omitting poles of f .

Thus, there is an infinite sequence of “good” approximants. In the first form of
the conjecture, f was required to have a nonpolar singularity on the unit circle, but
this was subsequently relaxed (cf. [6, p. 188 ff.]). In other forms of the conjecture, f
is assumed to be analytic in the unit ball. There is also apparently a cruder form of
the conjecture due to Padé himself, dating back to the 1900s; the author must thank
J. Gilewicz for this historical information.

2 Reflections

A decade after the Baker–Gammel–Wills conjecture, John Nuttall realized that
convergence in measure is a perhaps more appropriate mode of convergence than
uniform convergence. In a short 1970 paper [40], he established the celebrated

Nuttall’s Theorem. Let f be meromorphic in C and analytic at 0. Then the
diagonal sequence fŒn=ng1nD1 converges in meas (planar Lebesgue measure) in
compact subsets of the plane. That is, given r; " > 0,

meas
n
z W jzj � r and jf � Œn=nj .z/ � "

o
! 0 as n ! 1:

One consequence is that a subsequence converges a.e. In his 1974 paper [55]
containing his counterexample, Wallin also gave conditions on the size of the power
series coefficients for convergence a.e. of the full diagonal sequence. Nuttall’s
theorem was soon extended by Pommerenke, using the concept of cap (logarithmic
capacity). For a compact set K , we define
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cap .K/ D lim
n!1

�
inf
˚kP kL

1

.K/ W P a monic polynomial of degree n

�1=n

;

and we extend this to arbitrary sets E as inner capacity

cap .E/ D sup fcap .K/ W K  E , K compactg :

The capacity of a ball is its radius, and the capacity of a line segment is a quarter
of its length. It is a “thinner” set function than planar measure. In fact any set
of capacity 0 has Hausdorff dimension 0, and the usual Cantor set has positive
logarithmic capacity. The exact value of this for the Cantor set is a well-known,
and difficult, problem. Those requiring more background can consult [25, 45, 46].

Pommerenke [42] proved:

Pommerenke’s Theorem. Let f be analytic in CnE and analytic at 0, where
cap .E/ D 0. Then, given r; " > 0

cap fz W jzj � r and jf � Œn=nj .z/ � "ng ! 0 as n ! 1:

Since any countable set has capacity 0, Pommerenke’s theorem implies Nuttall’s.
The two are often combined and called the Nuttall–Pommerenke theorem.

While E above may be uncountable, it cannot include branch points. The latter
require far deeper techniques, developed primarily by Herbert Stahl in a rigorous
form, building on earlier ideas from Nuttall. Stahl showed that one can cut the plane
joining the branch points in a certain way, yielding a set of minimal capacity, outside
which the Padé approximants converge in capacity. This celebrated and deep theory
is expounded in [47–50, 52]. Stahl’s work gave some hope that BGW might be true
for algebraic functions, and indeed, he formulated several conjectures [51], one of
which is [51, p. 291]

Stahl’s Conjecture for Algebraic Functions. Let f be an algebraic function, so
that for some m � 1, and polynomials P0; P1; : : : ; Pm, not all 0,

P0 C P1f C P2f
2 C � � � C Pmf

m � 0:

Assume also that f is meromorphic in the unit ball. Then there is a subsequence
of fŒn=ng1nD1 that converges uniformly to f in compact subsets of the unit ball,
omitting poles of f .

Stahl formulated a more general conjecture, where the unit ball is replaced by
the “convergence domain” or “extremal domain” for f . This is the largest domain
inside which fŒn=ng1nD1 converges in capacity. Stahl’s conjecture was established
for a large class of hyperelliptic functions by Suetin [53]. Some very impressive
recent related work due to Aptekarev, Baratchart, and Yattselev appears in [2, 9]
and due to Martinez–Finkelshtein, Rakhmanov, and Suetin appears in [39]. Deep
Riemann–Hilbert techniques play a key role in these papers.
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While the positive and negative results of the 1970s cast doubt on the truth of
the Baker–Gammel–Wills conjecture, a counterexample remained elusive. It is very
difficult to show pathological behavior of a full sequence of Padé approximants.
The author looked for a long time for a counterexample among the explicitly known
Padé approximants to q-series, in the exceptional case where jqj D 1. Of course,
q-series are usually considered for jqj < 1 or jqj > 1.

In [38], E. B. Saff and the author investigated the Padé table and continued
fraction for the partial theta function

P1
jD0 qj.j�1/=2zj when j q jD 1. Subsequently

K.A. Driver and the author [17–20] undertook a detailed study of the Padé table and
continued fraction for the more general Wynn’s series [57]

1X

jD0

"
j�1Y

`D0
.A � q`C˛/

#

zj I
1X

jD0

zj
Qj�1
`D0.C � q`C˛/ I

1X

jD0

"
j�1Y

`D0

A � q`C˛
C � q`C�

#

zj :

HereA;C; ˛, and � are suitably restricted parameters. All of these satisfy the Baker–
Gammel–Wills conjecture.

Finally in 2001 [36], the author found a counterexample in the continued fraction
of Rogers–Ramanujan. For q not a root of unity, let

Gq .z/ WD
1X

jD0

qj
2

.1 � q/ .1 � q2/ � � � .1 � qj /z
j

denote the Rogers–Ramanujan function, and

Hq .z/ D Gq .z/ =Gq .qz/ :

Meromorphic Counterexample. Let q WD exp .2�i�/ where � WD 2

99Cp5 . Then
Hq is meromorphic in the unit ball and analytic at 0. There does not exist any
subsequence of fŒn=ng1nD1 that converges uniformly in all compact subsets of A WD
fz W jzj < 0:46g omitting poles of Hq .

It did not take long for A. P. Buslaev to improve on this, by finding a function
analytic in the unit ball, for which the Baker–Gammel–Wills conjecture and Stahl’s
conjecture for algebraic functions both fail [11,12]. Buslaev was part of the Russian
school of Padé approximation, led by A.A. Goncar. One of their important foci was
inverse theory: given certain properties of a sequence of Padé approximants formed
from a formal power series, what can we deduce about the analytic properties of
the underlying function? For example, if a ball contains none of the poles of the
approximants, does it follow that the underlying function is analytic there? Some
references to their work are [14, 22–24, 43, 54].
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Buslaev’s Analytic Counterexample. Let

f .z/ D �27C 6z2 C 3 .9C j / z3 C
q
81 .3 � .3C j / z3/2 C 4z6

2z .9C 9z C .9C j / z2/
;

where j D � 1
2

C
p
3
2
i . The branch of the p is chosen so that f .0/ D 0. Then for

some R > 1 > r > 0, f is analytic in fz W jzj < Rg, but for large enough n, Œn=n
has a pole in jzj < r , and consequently no subsequence of fŒn=ng1nD1 converges
uniformly in all compact subsets of fz W jzj < 1g.

Buslaev later showed [13] that for q a suitable root of unity, the Rogers–
Ramanujan function above, is also a counterexample to both BGW and Stahl’s
conjecture. Although this resolves the conjecture, it raises further questions. In both
the above counterexamples, uniform convergence fails due to the persistence of
spurious poles in a specific compact subset of the unit ball. Moreover, in both
the above examples, given any point of analyticity of f in the unit ball, some
subsequence converges in some neighborhood of the unit ball. In fact, just two
subsequences are enough to provide uniform convergence throughout the unit ball,
as pointed out by Baker in [7]. It is perhaps with this in mind that in 2005, George
Baker modified his 1961 conjecture [8]:

George Baker’s “Patchwork” Conjecture. Let f be analytic in the unit ball,
except for at most finitely many poles, none at 0. Then there exist a finite number of
subsequences of fŒn=ng1nD1such that for any given point of analyticity z in the ball,
at least one of these subsequences converges pointwise to f .z/.

It seems that if true in this form, the convergence would be uniform in some
neighborhood of z. Baker also includes poles amongst the permissible z, with the
understanding that the corresponding subsequence diverges to 1.

An obvious question is why we restrict ourselves to uniform convergence of
subsequences—perhaps convergence in some other mode is more appropriate.
However, there is no possible analogue of the Nuttall–Pommerenke theorem for
functions with finite radius of meromorphy. Indeed, the author and E.A. Rakhmanov
[29, 44] independently showed that there are functions analytic in the unit ball for
which the diagonal sequence fŒn=ng1nD1 does not converge in measure, let alone in
capacity. But this does not exclude:

Conjecture on Convergence in Capacity of a Subsequence. Let f be analytic
or meromorphic in the unit ball and analytic at 0. There exists a subsequence of
fŒn=ng1nD1 and r > 0 such that the subsequence converges in measure or capacity
to f in fz W jzj < rg.

Notice that we are not even asking for convergence in capacity throughout the
unit ball nor for the r to be independent of f . Weak results in this direction appear
in [33,35,37]. In [51, p. 289], this was formulated in the stronger form where r D 1.
Another obvious point is that all the counterexamples involve a function with finite
radius of meromorphy. What about entire functions or functions meromorphic in the
whole plane?
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Baker–Gammel–Wills Conjecture for Functions Defined in the Plane. Let f
be entire or meromorphic in C and analytic at 0. Then there exists r > 0 and a
subsequence of fŒn=ng1nD1 that converges uniformly to f in compact subsets of
fz W jzj < rg.

This seems like an especially relevant addendum to the 1961 conjecture.
A stronger form would be that some subsequence converges uniformly in compact
subsets of the plane omitting poles of f . Of course if the r above is independent of
f , the stronger form would follow.

Another relevant direction is to restrict the growth of the entire function and try
establish convergence. The best growth condition is due to the author [34] but is
very weak:

Theorem 2.1. Assume that the series coefficients fang of f satisfy

lim sup
n!1

janj1=n2 < 1: (2)

Then there exists a subsequence of fŒn=ng1nD1 that converges uniformly in compact
subsets of the plane to f .

In fact, in that paper, the Maclaurin series coefficients were replaced by errors of
rational approximation on a disk, center 0, of radius � > 0,

Enn .�/ D inf
˚kf � RkL

1

.jzj��/ W R of type .n; n/



and the hypothesis was

lim sup
n!1

Enn .�/
1=n2 < 1;

while f was allowed to be meromorphic rather than entire. It seems appropriate to
suggest:

Growth Conditions for the Truth of BGW. Find the slowest rate of decay of the
coefficients of an entire function that guarantees truth of BGW, or at least find a
more general condition than (1).

In an earlier related paper [30], an even weaker result was used to show that the
Baker–Gammel–Wills conjecture is usually true in the sense of category. That is,
if we place the topology of locally uniform convergence on the space of all entire
functions, the set of entire functions for which the conjecture is false is a countable
union of nowhere dense sets (i.e., is of “first category”).

One can of course go beyond classical Padé approximants in looking for uniform
convergence. For example, one can fix the poles of the approximants, leading to
what are called Padé-type approximants. We shall not attempt to survey or reference
this very extensive topic. While this avoids spurious poles, one sacrifices the degree
of interpolation, and the optimal location of poles becomes an issue.
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Another path is to interpolate at multiple points rather than 0, while still leaving
the poles free. Here there can still be spurious poles, but one hopes that the freedom
in choice of interpolation points ameliorates this. It can also help to ensure better
approximation on noncircular regions [56]. It is a classical result of E. Levin
[26, 27] that the best L2 rational approximant of type .n; n/ (i.e., with numerator,
denominator degree � n) interpolates the approximated function f in at least
2n C 1 points. As a consequence, for functions analytic in the closed unit ball,
there is always a full sequence of diagonal multipoint approximants that converges
uniformly in the closed ball to f .

In the special case where one keeps previous interpolation points as one increases
the numerator and denominator degree, multipoint Padé approximation is called
Newton–Padé approximation. If one allows these interpolation points to depend
on the approximated function, then for functions meromorphic in the plane, one
can find a full diagonal sequence of Newton–Padé approximants that converge
uniformly in compact subsets omitting poles [32].

While Padé approximation may not be such a hot topic as in the period 1970–
2000, it is clear that there are significant and challenging problems that are still
unresolved and worthy of the efforts of young researchers.

Acknowledgements Research supported by NSF grant DMS1001182 and US-Israel BSF grant
2008399.
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1 Introduction

Quadrature formulas and interpolation splines provide basic and important tools
for the numerical solution of integral and differential equations, as well as for
approximation of functions in some spaces.

This survey paper is devoted to construction of optimal quadrature formulas and
interpolation splines in the space K2.P2/, which is the Hilbert space

K2.P2/ WD
n
' W Œ0; 1 ! R

ˇ
ˇ
ˇ ' 0 is absolutely continuous and ' 00 2 L2.0; 1/

o
;

and equipped with the norm

k' jK2.P2/k D
( Z 1

0

�

P2

�
d

dx

�

'.x/

�2
dx

) 1=2

; (1)

where

P2

�
d

dx

�

D d2

dx2
C !2; ! > 0; and

Z 1

0

�

P2

�
d

dx

�

'.x/

�2
dx < 1:

The equality (1) is semi-norm and k'k D 0 if and only if '.x/ D c1 sin!x C
c2 cos!x.

It should be noted that for a linear differential operator of order m, L WD
Pm.d=dx/, Ahlberg, Nilson, and Walsh in the book [1, Chap. 6] investigated the
Hilbert spaces in the context of generalized splines. Namely, with the inner product

h'; i D
Z 1

0

L'.x/ � L .x/dx;

K2.Pm/ is a Hilbert space if we identify functions that differ by a solution of
L' D 0. Also, such type of spaces of periodic functions and optimal quadrature
formulae were discussed in [10].

The paper is organized as follows. In Sect. 2 we investigate optimal quadrature
formulas in the sense of Sard in K2.P2/ space. In Sect. 2.1 we give the problem of
construction of optimal quadrature formulas. In Sect. 2.2 we determine the extremal
function which corresponds to the error functional `.x/ and give a representation
of the norm of the error functional. Section 2.3 is devoted to a minimization of
k`k2 with respect to the coefficients C� . We obtain a system of linear equations for
the coefficients of the optimal quadrature formula in the sense of Sard in the space
K2.P2/. Moreover, the existence and uniqueness of the corresponding solution is
proved. Explicit formulas for coefficients of the optimal quadrature formula of
the form (2) are presented in Sect. 2.4. In Sect. 2.5 we give the norm of the
error functional (3) of the optimal quadrature formula (2). Furthermore, we give
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an asymptotic analysis of this norm. Section 3 is devoted to interpolation splines
minimizing the semi-norm (1) in the space K2.P2/, including an algorithm for
constructing such kind of splines, as well as some numerical examples.

2 Optimal Quadrature Formulas in the Sense of Sard

2.1 The Problem of Construction of Optimal Quadrature
Formulas

We consider the following quadrature formula:

Z 1

0

'.x/dx Š
NX

�D0
C�'.x�/; (2)

with an error functional given by

`.x/ D �Œ0;1.x/ �
NX

�D0
C�ı.x � x�/; (3)

where C� and x� .2 Œ0; 1/ are coefficients and nodes of the formula (2),
respectively; �Œ0;1.x/ is the characteristic function of the interval Œ0; 1; and ı.x/
is Dirac’s delta-function. We suppose that the functions '.x/ belong to the Hilbert
space K2.P2/.

The corresponding error of the quadrature formula (2) can be expressed in the
form

RN .'/ D
Z 1

0

'.x/dx �
NX

�D0
C�'.x�/ D .`; '/ D

Z

R

`.x/'.x/dx (4)

and it is a linear functional in the conjugate space K�2 .P2/ to the space K2.P2/.
By the Cauchy-Schwarz inequality

j.`; '/j � k' jK2.P2/k � k` jK�2 .P2/k

the error (4) can be estimated by the norm of the error functional (3), i.e.,

k` jK�2 .P2/k D sup
k' jK2.P2/kD1

j.`; '/j :
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In this way, the error estimate of the quadrature formula (2) on the space K2.P2/

can be reduced to finding a norm of the error functional `.x/ in the conjugate
space K�2 .P2/.

Obviously, this norm of the error functional `.x/ depends on the coefficients
C� and the nodes x� , � D 0; 1; : : : ; N . The problem of finding the minimal norm
of the error functional `.x/ with respect to coefficients C� and nodes x� is called
as Nikol’skii’s problem, and the obtained formula is called optimal quadrature
formula in the sense of Nikol’skii. This problem is first considered by Nikol’skii
[36] and continued by many authors (see, e.g., [6, 7, 9, 10, 37, 61] and references
therein). A minimization of the norm of the error functional `.x/ with respect only
to coefficients C� , when nodes are fixed, is called as Sard’s problem. The obtained
formula is called the optimal quadrature formula in the sense of Sard. This problem
was first investigated by Sard [39].

There are several methods of construction of optimal quadrature formulas in the
sense of Sard (see, e.g., [6, 53]). In the space L.m/2 .a; b/, based on these methods,
Sard’s problem was investigated by many authors (see, e.g., [4,6,9,11,12,20,30,31,
33,35,41–43,45,46,48,50,52–54,59,60] and references therein). Here,L.m/2 .a; b/ is
the Sobolev space of functions, with a square integrablem-th generalized derivative.

It should be noted that a construction of optimal quadrature formulas in the sense
of Sard, which are exact for solutions of linear differential equations, was given
in [20, 31], using the Peano kernel method, including several examples for some
number of nodes.

Optimal quadrature formulas in the sense of Sard were constructed in [47]
for m D 1; 2 and in [51] for any m 2 N, using Sobolev method in the space
W

.m;m�1/
2 .0; 1/, with the norm defined by

�
�' jW .m;m�1/

2 .0; 1/
�
� D

�Z 1

0

�
'.m/.x/C '.m�1/.x/

�2
dx

	 1=2
:

In this section we give the solution of Sard’s problem in the space K2.P2/, using
Sobolev method for an arbitrary number of nodes N C 1. Namely, we find the

coefficients C� (and the error functional V̀) such that

�
� V̀ jK�2 .P2/

�
� D inf

C�

�
�` jK�2 .P2/

�
�: (5)

Thus, in order to construct an optimal quadrature formula in the sense of Sard in
K2.P2/, we need to solve the following two problems:

Problem 1. Calculate the norm of the error functional `.x/ for the given quadrature
formula (2).

Problem 2. Find such values of the coefficients C� such that the equality (5) be
satisfied with fixed nodes x� .
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2.2 The Extremal Function and Representation of the Norm
of the Error Functional

To solve Problem 1, i.e., to calculate the norm of the error functional (3) in the
space K�2 .P2/, we use a concept of the extremal function for a given functional.
The function  `.x/ is called the extremal for the functional `.x/ (cf. [52]) if the
following equality is fulfilled:

.`;  `/ D k` jK�2 .P2/k � k ` jK2.P2/k :

SinceK2.P2/ is a Hilbert space, the extremal function `.x/ in this space can be
found using the Riesz theorem about general form of a linear continuous functional
on Hilbert spaces. Then, for the functional `.x/ and for any ' 2 K2.P2/, there exists
such a function  ` 2 K2.P2/, for which the following equality

.`; '/ D h `; 'i (6)

holds, where

h `; 'i D
Z 1

0

�
 00̀.x/C !2 `.x/

� �
' 00.x/C !2'.x/

�
dx (7)

is an inner product defined on the space K2.P2/.
Following [25], we investigate the solution of the equation (6).
Let first ' 2 VC .1/.0; 1/, where VC .1/.0; 1/ is a space of infinity-differentiable

and finite functions in the interval .0; 1/. Then from (7), an integration by parts gives

h `; 'i D
Z 1

0

�
 
.4/

` .x/C 2!2 00̀.x/C !4 `.x/
�
'.x/dx: (8)

According to (6) and (8) we conclude that

 
.4/

` .x/C 2!2 00̀.x/C !4 `.x/ D `.x/: (9)

Thus, when ' 2 VC .1/.0; 1/ the extremal function  `.x/ is a solution of the
equation (9). But, we have to find the solution of (6) when ' 2 K2.P2/.

Since the space VC .1/.0; 1/ is dense in K2.P2/, then functions from K2.P2/

can be uniformly approximated as closely as desired by functions from the space
VC .1/.0; 1/. For ' 2 K2.P2/ we consider the inner product h `; 'i. Now, an

integration by parts gives

h `; 'i D �
 00̀.x/C !2 `.x/

�
' 0.x/

ˇ
ˇ
ˇ
1

0
� � 000` .x/C !2 0̀.x/

�
'.x/

ˇ
ˇ
ˇ
1

0

C
Z 1

0

�
 
.4/

` .x/C 2!2 00̀.x/C !4 `.x/
�
'.x/dx:
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Hence, taking into account arbitrariness '.x/ and uniqueness of the function  `.x/
(up to functions sin!x and cos!x), keeping in mind (9), it must fulfill the following
equation:

 
.4/

` .x/C 2!2 00̀.x/C !4 `.x/ D `.x/; (10)

with boundary conditions

 00̀.0/C !2 `.0/ D 0;  00̀.1/C !2 `.1/ D 0; (11)

 000` .0/C !2 0̀.0/ D 0;  000` .1/C !2 0̀.1/ D 0: (12)

Thus, we conclude that the extremal function `.x/ is a solution of the boundary
value problem (10)–(12).

Taking the convolution of two functions f and g, i.e.,

.f � g/.x/ D
Z

R

f .x � y/g.y/dy D
Z

R

f .y/g.x � y/dy; (13)

we can prove the following result:

Theorem 2.1. The solution of the boundary value problem (10)–(12) is the
extremal function  `.x/ of the error functional `.x/ and it has the following
form:

 `.x/ D .G � `/.x/C d1 sin!x C d2 cos!x;

where d1 and d2 are arbitrary real numbers and

G.x/ D sgn .x/

4!3
.sin!x � !x cos!x/ (14)

is the solution of the equation

 
.4/

` .x/C 2!2 00̀.x/C !4 `.x/ D ı.x/:

Proof. The general solution of a nonhomogeneous differential equation can be
represented as a sum of its particular solution and the general solution of the
corresponding homogeneous equation. In our case, the general solution of the
homogeneous equation for (10) is given by

 h` .x/ D d1 sin!x C d2 cos!x C d3x sin!x C d4x cos!x;

where dk , k D 1; 2; 3; 4 are arbitrary constants. It is not difficult to verify that a
particular solution of the equation (10) can be expressed as a convolution of the
functions `.x/ and G.x/ defined by (13). The function G.x/ is the fundamental
solution of the equation (10), and it is determined by (14).
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It should be noted that the following rule for finding a fundamental solution of a
linear differential operator

Pm

�
d

dx

�

WD dm

dxm
C a1

dm�1

dxm�1
C � � � C am;

where aj are real numbers, is given in [57, pp. 88–89]. This rule needs to replace d
dx

by p, and then instead of the operator Pm. d
dx /, we get the polynomial Pm.p/. Then

we expand the expression 1=Pm.p/ into the partial fractions, i.e.,

1

Pm.p/
D
Y

j

.p � 	/�kj D
X

j

�
cj;kj .p � 	j /

�kj C � � � C cj;1.p � 	j /�1
�

and to every partial fraction .p�	/�k , we correspond the expression xk�1sgn x
2.k�1/Š � e	x .

Using this rule, we find the function G.x/ which is the fundamental solution of

the operator
d4

dx4
C 2!2

d2

dx2
C !4 and it has the form (14).

Thus, we have the following general solution of the equation (10):

 `.x/ D .` �G/.x/C d1 sin!x C d2 cos!x C d3x sin!x C d4x cos!x: (15)

In order that the function  `.x/ be unique in the space K2.P2/ (up to the
functions sin!x and cos!x), it has to satisfy the conditions (11) and (12), where
derivatives are taken in a generalized sense. In computations we need first three
derivatives of the functionG.x/:

G0.x/ D sgnx

4!
x sin!x;

G00.x/ D sgnx

4!
.sin!x C !x cos!x/;

G000.x/ D sgnx

4
.2 cos!x � !x sin!x/;

where we used the following formulas from the theory of generalized functions [57]:

.sgnx/0 D 2ı.x/; ı.x/f .x/ D ı.x/f .0/:

Further, using the well-known formula

d

dx
.f � g/.x/ D .f 0 � g/.x/ D .f � g0/.x/;
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we get

 0̀.x/ D .` �G0/.x/C .d3 � d2!/ sin!x C .d4 C d1!/ cos!x

� d4!x sin!x C d3!x cos!x;

 00̀.x/ D .` �G00/.x/ � .2d4! C d1!
2/ sin!x C .2d3! � d2!

2/ cos!x

� d3!
2x sin!x � d4!2x cos!x;

 000` .x/ D .` �G000/.x/ � .3d3!2 � d2!3/ sin!x � .3d4!2 C d1!
3/ cos!x

C d4!
3x sin!x � d3!

3x cos!x:

Now, using these expressions and (15), as well as expressions for G.k/.x/,
k D 0; 1; 2; 3, the boundary conditions (11) and (12) reduce to

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

.`.y/; sin!y/C4d3!2 D 0;

sin! � .`.y/; cos!y/� cos! � .`.y/; sin!y/C4d3!2 cos!�4d4!2 sin! D 0;

.`.y/; cos!y/C4d4!2 D 0;

cos! � .`.y/; cos!y/C sin! � .`.y/; sin!y/ � 4d3!2 sin!�4d4!2 cos! D 0:

Hence, we have d3 D 0, d4 D 0, and therefore

.`.y/; sin!y/ D 0; .`.y/; cos!y/ D 0: (16)

Substituting these values into (15) we get the assertion of this statement. ut
The equalities (16) provide that our quadrature formula is exact for functions

sin!x and cos!x. The case ! D 1 has been recently considered in [25].
Now, using Theorem 2.1, we immediately obtain a representation of the norm of

the error functional

k`jK�2 .P2/k2 D.`;  `/ D
NX

�D0

NX

�D0
C�C� G.x� � x�/

� 2
NX

�D0
C�

Z 1

0

G.x � x�/dx C
Z 1

0

Z 1

0

G.x � y/dxdy: (17)

In the sequel we deal with Problem 2.
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2.3 Existence and Uniqueness of Optimal Coefficients

Let the nodes x� of the quadrature formula (2) be fixed. The error functional (3)
satisfies the conditions (16). Norm of the error functional `.x/ is a multidimensional
function of the coefficientsC� .� D 0; 1; : : : ; N /. For finding its minimum under the
conditions (16), we apply the Lagrange method. Namely, we consider the function

�.C0; C1; : : : ; CN ; d1; d2/ D k`k2 � 2d1 .`.x/; sin!x/ � 2d2 .`.x/; cos!x/

and its partial derivatives equating to zero, so that we obtain the following system
of linear equations:

NX

�D0
C�G.x� � x�/C d1 sin!x� C d2 cos!x� D f .x�/; � D 0; 1; : : : ; N; (18)

NX

�D0
C� sin!x� D 1 � cos!

!
;

NX

�D0
C� cos!x� D sin!

!
; (19)

where G.x/ is determined by (14) and

f .x�/ D
Z 1

0

G.x � x�/dx:

The system (18) and (19) has the unique solution and it gives the minimum to
k`k2 under the conditions (19).

The uniqueness of the solution of the system (18) and (19) is proved following
[54, Chap. I]. For completeness we give it here.

First, we put C D .C0; C1; : : : ; CN / and d D .d1; d2/ for the solution of the
system of equations (18) and (19), which represents a stationary point of the function
� .C;d/.

Setting C� D C� C C1� , � D 0; 1; : : : ; N , (17) and the system (18) and (19)
become

k`k2 D
NX

�D0

NX

�D0
C �C �G.x� � x� /� 2

NX

�D0
.C � C C1�/

Z 1

0

G.x � x�/dx

C
NX

�D0

NX

�D0

�
2C�C1� C C1�C1�

�
G.x� � x�/C

Z 1

0

Z 1

0

G.x � y/dxdy (20)
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and

NX

�D0
C �G.x� � x�/C d1 sin!x� C d2 cos!x� D F.x�/; � D 0; 1; : : : ; N; (21)

NX

�D0
C � sin!x� D 0;

NX

�D0
C � cos!x� D 0; (22)

respectively, where

F.x�/ D f .x�/�
NX

�D0
C1�G.x� � x�/

and C1� , � D 0; 1; : : : ; N are particular solutions of the system (19).
Hence, we directly get that the minimization of (17) under the conditions (16)

by C� is equivalent to the minimization of the expression (20) by C� under the
conditions (22). Therefore, it is sufficient to prove that the system (21) and (22)
has the unique solution with respect to C D .C 0; C 1; : : : ; CN / and d D .d1; d2/,
and this solution gives the conditional minimum for k`k2. From the theory of the
conditional extremum, we need the positivity of the quadratic form

˚.C/ D
NX

�D0

NX

�D0

@2�

@C �@C �

C�C � (23)

on the set of vectors C D .C 0; C 1; : : : ; CN /, under the condition

SC D 0; (24)

where S is the matrix of the system of equations (22),

S D
 

sin!x0 sin!x1 � � � sin!xN

cos!x0 cos!x1 � � � cos!xN

!

:

Now, we show that in this case the condition is satisfied.

Theorem 2.2. For any nonzero vector C 2 R
NC1, lying in the subspace SC D 0,

the function ˚.C/ is strictly positive.

Proof. Using the definition of the function�.C;d/ and the previous equations, (23)
reduces to

˚
�

C
�

D 2

NX

�D0

NX

�D0
G.x� � x�/C �C� : (25)
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Consider now a linear combination of shifted delta functions

ıC.x/ D p
2

NX

�D0
C �ı.x � x�/: (26)

By virtue of the condition (24), this functional belongs to the space K�2 .P2/.
So, it has an extremal function uC.x/ 2 K2.P2/, which is a solution of the equation

�
d4

dx4
C 2!2

d2

dx2
C !4

�

uC.x/ D ıC.x/: (27)

As uC.x/ we can take a linear combination of shifts of the fundamental solution
G.x/:

uC.x/ D p
2

NX

�D0
C �G.x � x�/;

and we can see that

�
�uCjK2.P2/

�
�2 D �

ıC; uC

� D 2

NX

�D0

NX

�D0
C �C �G.x� � x� / D ˚

�
C
�
:

Thus, it is clear that for a nonzero C the function ˚
�

C
�

is strictly positive and

Theorem 2.2 is proved. ut
If the nodes x0, x1, : : :, xN are selected such that the matrix S has the right

inverse, then the system of equations (21) and (22) has the unique solution, as well
as the system of equations (18) and (19).

Theorem 2.3. If the matrix S has the right inverse matrix, then the main matrix Q
of the system of equations (21) and (22) is nonsingular.

Proof. We denote by M the matrix of the quadratic form 1
2
˚
�

C
�

, given in (25).

It is enough to consider the homogeneous system of linear equations

Q

�
C
d

�

D
�
M S�
S 0

��
C
d

�

D 0 (28)

and prove that it has only the trivial solution.
Let C; d be a solution of (28). Consider the function ıC.x/, defined before by

(26). As an extremal function for ıC.x/, we take the following function:

uC.x/ D p
2

NX

�D0
C �G.x � x�/C d1 sin!x C d2 cos!x:
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This is possible because uC belongs to the space K2.P2/ and it is a solution of the
equation (27). The first N C 1 equations of the system (28) mean that uC.x/ takes
the value zero at all nodes x� , � D 0; 1; : : : ; N . Then, for the norm of the functional
ıC.x/ in K�2 .P2/, we have

�
�ıCjK�2 .P2/

�
�2 D �

ıC; uC

� D p
2

NX

�D0
C � uC.x�/ D 0;

which is possible only when C D 0. According to this fact, from the first N C 1

equations of the system (28), we obtain S�d D 0. Since the matrix S is a right
inverse (by the hypotheses of this theorem), we conclude that S� has the left inverse
matrix, and therefore d D 0, i.e., d1 D d2 D 0, which completes the proof. ut

According to (17) and Theorems 2.2 and 2.3, it follows that at fixed values of
the nodes x� , � D 0; 1; : : : ; N , the norm of the error functional `.x/ has the unique

minimum for some concrete values of C� D ı
C� , � D 0; 1; : : : ; N . As we mentioned

in the first section, the quadrature formula with such coefficients
ı
C� is called the

optimal quadrature formula in the sense of Sard, and
ı
C� , � D 0; 1; : : : ; N , are the

optimal coefficients. In the sequel, for convenience, the optimal coefficients
ı
C� will

be denoted only as C� .

2.4 Coefficients of Optimal Quadrature Formula

In this subsection we solve the system (18) and (19) and find an explicit formula
for the coefficients C� . We use a similar method offered by Sobolev [53, 54] for
finding optimal coefficients in the space L.m/2 .0; 1/. Here, we mainly use a concept
of functions of a discrete argument and the corresponding operations (see [52]
and [54]). For completeness we give some of the definitions.

Let nodes x� be equally spaced, i.e., x� D �h, h D 1=N . Assume that '.x/ and
 .x/ are real-valued functions defined on the real line R.

Definition 2.1. The function '.h�/ is a function of discrete argument if it is given
on some set of integer values of �.

Definition 2.2. The inner product of two discrete functions '.h�/ and  .h�/ is
given by

Œ';   D
1X

�D�1
'.h�/ �  .h�/;

if the series on the right- hand side converges absolutely.
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Definition 2.3. The convolution of two functions '.h�/ and  .h�/ is the inner
product

'.h�/ �  .h�/ D Œ'.h�/;  .h� � h�/ D
1X

�D�1
'.h�/ �  .h� � h�/:

Suppose that C� D 0, when � < 0 and � > N . Using these definitions, the
system (18) and (19) can be rewritten in the convolution form

G.h�/ � C� C d1 sin.h!�/C d2 cos.h!�/ D f .h�/; � D 0; 1; : : : ; N; (29)

NX

�D0
C� sin.h!�/ D 1 � cos!

!
;

NX

�D0
C� cos.h!�/ D sin!

!
; (30)

where

f .h�/ D 1

4!4

h
4 � .2C 2 cos! C ! sin!/ cos.h!�/

� .2 sin! � ! cos!/ sin.h!�/C sin!.h!�/ cos.h!�/

� .1C cos!/.h!�/ sin.h!�/
i
: (31)

Now, we consider the following problem:

Problem 3. For a given f .h�/ find a discrete functionC� and unknown coefficients
d1; d2, which satisfy the system (29) and (30).

Further, instead of C� we introduce the functions v.h�/ and u.h�/ by

v.h�/ D G.h�/ � C� and u.h�/ D v.h�/C d1 sin.h!�/C d2 cos.h!�/:

In this statement it is necessary to express C� by the function u.h�/. For this we
have to construct such an operatorD.h�/, which satisfies the equation

D.h�/ �G.h�/ D ı.h�/; (32)

where ı.h�/ is equal to 0 when � ¤ 0 and is equal to 1 when � D 0, i.e., ı.h�/ is a
discrete delta function.

In connection with this, a discrete analogueD.h�/ of the differential operator

d4

dx4
C 2!2

d2

dx2
C !4; (33)

which satisfies (32), was constructed in [24], and some properties were investigated.
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Following [24] we have:

Theorem 2.4. The discrete analogue of the differential operator (33) satisfying the
equation (32) has the form

D.h�/ D p

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

A1 	
j�j�1
1 ; j�j � 2;

1CA1; j�j D 1;

C C A1

	1
; � D 0;

(34)

where p D 2!3=.sinh! � h! cosh!/,

A1 D .2h!/2 sin4.h!/	21
.	21 � 1/.sinh! � h! cosh!/2

; C D 2h! cos.2h!/� sin.2h!/

sin h! � h! cosh!
; (35)

and

	1 D 2h! � sin.2h!/� 2 sin.h!/
p
h2!2 � sin2.h!/

2.h! cos.h!/� sin.h!//
(36)

is a zero of the polynomial

Q2.	/ D 	2 C 2h! � sin.2h!/

sinh! � h! cosh!
	C 1; (37)

and j	1j < 1, h is a small parameter, ! > 0, jh!j < 1.

Theorem 2.5. The discrete analogue D.h�/ of the differential operator (33)
satisfies the following equalities:

1) D.h�/ � sin.h!�/ D 0,
2) D.h�/ � cos.h!�/ D 0,
3) D.h�/ � .h!�/ sin.h!�/ D 0,
4) D.h�/ � .h!�/ cos.h!�/ D 0,
5) D.h�/ �G.h�/ D ı.h�/.

Here G.h�/ is the function of discrete argument, corresponding to the function
G.x/ defined by (14), and ı.h�/ is the discrete delta function.

Then, taking into account (32) and Theorems 2.4 and 2.5, for optimal coeffi-
cients, we have

C� D D.h�/ � u.h�/: (38)

Thus, if we find the function u.h�/, then the optimal coefficients can be obtained
from (38). In order to calculate the convolution (38) we need a representation of the
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function u.h�/ for all integer values of �. According to (29) we get that u.h�/ D
f .h�/ when h� 2 Œ0; 1. Now, we need a representation of the function u.h�/ when
� < 0 and � > N .

Since C� D 0 for h� … Œ0; 1, then C� D D.h�/ � u.h�/ D 0, h� … Œ0; 1. Now,
we calculate the convolution v.h�/ D G.h�/ � C� when h� … Œ0; 1.

Let � < 0, then, taking into account equalities (14) and (30), we have

v.h�/ D G.h�/ � C� D
1X

�D�1
C� G.h� � h�/

D
NX

�D0
C�

sgn .h��h�/
4!3

�
sin.h!��h!�/�.h!��h!�/ cos.h!��h!�/�

D � 1

4!3



.sin.h!�/� h!� cos.h!�//
sin!

!

� .cos.h!�/C h!� sin.h!�//
.1� cos!/

!

C cos.h!�/
NX

�D0
C� h!� cos.h!�/C sin.h!�/

NX

�D0
C� h!� sin.h!�/

�

:

Denoting

b1 D 1

4!3

NX

�D0
C� h!� sin.h!�/ and b2 D 1

4!3

NX

�D0
C� h!� cos.h!�/;

we get for � < 0

v.h�/ D � 1

4!3



.sin.h!�/� h!� cos.h!�//
sin!

!
� .cos.h!�/

Ch!� sin.h!�//
.1 � cos!/

!
C 4!3b1 sin.h!�/C 4!3b2 cos.h!�/

�

;

and for � > N

v.h�/ D 1

4!3



.sin.h!�/� h!� cos.h!�//
sin!

!
� .cos.h!�/

Ch!� sin.h!�//
.1� cos!/

!
C 4!3b1 sin.h!�/C 4!3b2 cos.h!�/

�

:
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Now, setting

d�1 D d1 � b1; d�2 D d2 � b2; dC1 D d1 C b1; dC2 D d2 C b2

we formulate the following problem:

Problem 4. Find the solution of the equation

D.h�/ � u.h�/ D 0; h� … Œ0; 1 (39)

in the form

u.h�/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

� sin!
4!4

�
sin.h!�/� h!� cos.h!�/

�C 1�cos!
4!4

�
cos.h!�/

Ch!� sin.h!�/
�C d�1 sin.h!�/C d�2 cos.h!�/; � < 0;

f .h�/; 0 6 � 6 N;

sin!
4!4

�
sin.h!�/� h!� cos.h!�/

�� 1�cos!
4!4

�
cos.h!�/

Ch!� sin.h!�/
�C dC1 sin.h!�/C dC2 cos.h!�/; � > N;

(40)

where d�1 , d�2 , dC1 , dC2 are unknown coefficients.

It is clear that

d1 D 1

2

�
dC1 Cd�1

�
; b1 D 1

2

�
dC1 �d�1

�
; d2 D 1

2

�
dC2 Cd�2

�
; b2 D 1

2

�
dC2 �d�2

�
:

These unknowns d�1 , d�2 , dC1 , dC2 can be found from the equation (39), using
the function D.h�/. Then, the explicit form of the function u.h�/ and optimal
coefficients C� can be obtained. Thus, in this way Problem 4, as well as Problem 3,
can be solved.

However, instead of this, using D.h�/ and u.h�/ and taking into account (38),
we find here expressions for the optimal coefficients C� , � D 1; : : : ; N � 1. For this
purpose we introduce the following notations:

m D
1X

�D1

A1p

	1
	
�
1



� sin!

4!4
.sin.�h!�/C h!� cos.h!�//� f .�h�/

C 1 � cos!

4!4
.cos.h!�/C h!� sin.h!�//� d�

1 sin.h!�/C d�

2 cos.h!�/

�

;

n D
1X

�D1

A1p

	1
	
�
1


sin!

4!4
.sin..NC�/h!/�.NC�/h! cos..NC�/h!//�f ..NC�/h/
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� 1 � cos!

4!4
.cos..N C �/h!/C .N C �/h! sin..N C �/h!//

C dC

1 sin..N C �/h!/Œ1mmC dC

2 cos..N C �/h!/

�

:

The series in the previous expressions are convergent because j	1j < 1.

Theorem 2.6. The coefficients of optimal quadrature formulas in the sense of Sard
of the form (2) in the space K2.P2/ have the following representation:

C� D 4.1� cosh!/

! � .h! C sin h!/
Cm	�1 C n	N��1 ; � D 1; : : : ; N � 1; (41)

where m and n are defined above and 	1 is given in Theorem 2.4.

Proof. Let � 2 f1; : : : ; N � 1g. Then from (38), using (34) and (40), we have

C� D D.h�/ � u.h�/ D
1X

�D�1
D.h� � h�/u.h�/

D
�1X

�D�1
D.h��h�/u.h�/ C

NX

�D0
D.h��h�/u.h�/ C

1X

�DNC1
D.h��h�/u.h�/

D D.h�/ � f .h�/C
1X

�D1

A1p

	1
	
�C�
1



� sin!

4!4
.sin.�h!�/C h!� cos.h!�//

C 1 � cos!

4!4
.cos.h!�/C h!� sin.h!�//� d�1 sin.h!�/

C d�2 cos.h!�/� f .�h�/
�

C
1X

�D1

A1p

	1
	
NC���
1


sin!

4!4
.sin..NC�/h!/�.NC�/h! cos..N C �/h!//

� 1 � cos!

4!4
.cos..N C �/h!/C .N C �/h! sin..N C �/h!//

C dC1 sin..N C �/h!/C dC2 cos..N C �/h!/� f ..N C �/h/

�

:

Hence, taking into account the previous notations, we get

C� D D.h�/ � f .h�/Cm	�1 C n	N��1 : (42)
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Now, using Theorems 2.4 and 2.5 and equality (31), we calculate the convolution
D.h�/ � f .h�/,

D.h�/ � f .h�/ D D.h�/ � 1

!4
D 1

!4

1X

�D�1
D.h�/

D 1

!4

0

@D.0/C 2D.h/C 2

1X

�D2
D.h�/

1

A

D 4.1� cosh!/

! � .h! C sin h!/
:

Substituting this convolution into (42) we obtain (41). ut
According to Theorem 2.6, it is clear that in order to obtain the exact expressions

of the optimal coefficients C� , we need only m and n. They can be found from an
identity with respect to .h�/, which can be obtained by substituting the equality
(41) into (29). Namely, equating the corresponding coefficients on the left- and the
right-hand sides of the equation (29), we find m and n. The coefficients C0 and CN
follow directly from (30). Now we can formulate and prove the following result:

Theorem 2.7. The coefficients of the optimal quadrature formulas in the sense of
Sard of the form (2) in the spaceK2.P2/ are

C� D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

2 sinh! � .h! C sin h!/ cosh!

.h! C sinh!/! sin h!
C .h! � sin h!/.	1 C 	N�11 /

.h! C sin h!/! sinh!.1C 	N1 /
;

� D 0;N;

4.1� cosh!/

!.h! C sin h!/
C 2h.h! � sin h!/ sinh!

�
	�1 C 	N��1

�

.h! C sin h!/.h! cosh! � sin h!/.1C 	N1 /
;

� D 1; : : : ; N � 1;

where 	1 is given in Theorem 2.4 and j	1j < 1.

Proof. First from equations (30) we have

C0 D sin!

!
� cos!.1 � cos!/

! sin!
�
N�1X

�D1
C� cos.h!�/C cos!

sin!

N�1X

�D1
C� sin.h!�/;

CN D 1 � cos!

! sin!
� 1

sin!

N�1X

�D1
C� sin.h!�/:
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Hence, using (41), after some simplifications we get

C0 D .h! � sinh!/.1 � cos!/C 2 sin! � .1 � cosh!/

! sin! � .h! C sin h!/

�m 	1.sin! cosh! � cos! sin h!/C 	NC11 sinh! � 	21 sin!

.	21 C 1 � 2	1 cosh!/ sin!

�n 	
NC1
1 .sin! cosh! � sin h! cos!/C 	1 sinh! � 	N1 sin!

.	21 C 1� 2	1 cosh!/ sin!
;

CN D .h! � sin h!/.1 � cos!/C 2 sin! � .1 � cosh!/

! sin! � .h! C sin h!/

�m 	NC11 .sin! cosh! � sinh! cos!/C 	1 sin h! � 	N1 sin!

.	21 C 1 � 2	1 cosh!/ sin!

�n 	1.sin! cosh! � cos! sin h!/C 	NC11 sin h! � 	21 sin!

.	21 C 1 � 2	1 cosh!/ sin!
:

Further, we consider the convolutionG.h�/ � C� in equation (29), i.e.,

G.h�/ � C� D
NX

�D0
C�G.h� � h�/

D
NX

�D0
C�

sign.h� � h�/

4!3
Œsin.h!� � h!�/

�.h!� � h!�/ cos.h!� � h!�/

D S1 � S2; (43)

where

S1 D 1

2!3

�X

�D0
C� Œsin.h!� � h!�/� .h!� � h!�/ cos.h!� � h!�/

and

S2 D 1

4!3

NX

�D0
C� Œsin.h!� � h!�/ � .h!� � h!�/ cos.h!� � h!�/ :
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Using (41) we obtain

S1 D 1

2!3
C0Œsin.h!�/� h!� cos.h!�/

C 1

2!3

��1X

�D0
.k Cm	

���
1 C n	

NC���
1 /Œsin.h!�/ � h!� cos.h!�/;

where k D 4.1� cosh!/=.!.h! C sinh!//. After some calculations and simpli-
fications, S1 can be reduced to the following form:

S1 D 1

!4

�
1 � cos.h�/

�C

.h! � sin h!/.1� cos!/

2!4 sin! .h! C sinh!/

C m

2!3

�
.	1 cos! � 	NC1

1 / sin h!

sin! .	21 C 1 � 2	1 cos h!/
C .	1 � 	31/ h! sinh!

.	21 C 1 � 2	1 cos h!/2

�

C n

2!3

�
.	NC1
1 cos! � 	1/ sin h!

sin! .	21 C 1 � 2	1 cos h!/
C .	NC3

1 � 	NC1
1 /h! sinh!

.	21 C 1 � 2	1 cos h!/2

��

sin.h!�/

�


sin h!

!4 .h! C sinh!/
C 	1.mC n	N1 / sin h!

2!3.	21 C 1 � 2	1 cos h!/

�

.h!�/ sin.h!�/

C

.h! � sinh!/.cos! � 1/

! .h! C sinh!/
� 	1Œ.mC n	N1 / cos! � .nCm	N1 / sin h!

	21 C 1 � 2	1 cos h!

�

� h!� cos.h!�/

2!3 sin!
;

where we used the fact that 	1 is a zero of the polynomialQ2.	/ defined by (37).
Now, keeping in mind (30), for S2 we get the following expression:

S2 D 1

4!3


sin!

!
sin.h!�/� 1 � cos!

!
cos.h!�/� sin!

!
.h!�/ cos.h!�/

�1 � cos!

!
.h!�/ sin.h!�/C cos.h!�/

NX

�D1
C�.h!�/ cos.h!�/

C sin.h!�/
NX

�D1
C�.h!�/ sin.h!�/

�

:
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Now, substituting (43) into equation (29), we get the following identity with
respect to .h�/:

S1 � S2 C d1 sin.h!�/C d2 cos.h!�/ D f .h�/; (44)

where f .h�/ is defined by (31).
Unknowns in (44) are m, n, d1, and d2. Equating the corresponding coefficients

of .h!�/ sin.h!�/ and .h!�/ cos.h!�/ of both sides of the identity (44), for
unknownsm and n, we get the following system of linear equations:

8
ˆ̂
<

ˆ̂
:

mC 	N1 n D 2h sinh! .h! � sinh!/

.h! C sinh!/.h! cosh! � sinh!/
;

	N1 mC n D 2h sin h! .h! � sin h!/

.h! C sin h!/.h! cosh! � sin h!/
;

from which

m D n D 2h sinh! .h! � sinh!/

.h! C sinh!/.h! cosh! � sin h!/.1C 	N1 /
: (45)

The coefficients d1 and d2 can be found also from (44) by equating the
corresponding coefficients of sin.h!�/ and cos.h!�/. In this way the assertion of
Theorem 2.7 is proved. ut

Proving Theorem 2.7 we have just solved Problem 3, which is equivalent to
Problem 2. Thus, Problem 2 is solved, i.e., the coefficients of the optimal quadrature
formula (2) in the sense of Sard in the space K2.P2/ for equally spaced nodes are
found.

Remark 2.1. Theorem 2.7 for N D 2, ! D 1 gives the result of the example (h) in
[31] when Œa; b D Œ0; 1.

2.5 The Norm of the Error Functional of the Optimal
Quadrature Formula

In this subsection we calculate the square of the norm of the error functional (3) for
the optimal quadrature formula (2). Furthermore, we give an asymptotic analysis of
this norm.

Theorem 2.8. For the error functional (3) of the optimal quadrature formula (2)
on the space K2.P2/, the following equality
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k ı` k2 D 3! � sin!

2!5
C h sin! � sin h!

!4.h! C sinh!/
C 4.1� cosh!/.h� 1/

!5.h! C sinh!/h

� 4 sin h! � 2.h! C sin h!/ cosh!

!5.h! C sinh!/ sin h!

C m

2!4


.1 � 	21/.1 � 	N1 /.h! cosh! � sin h!/

.	21 C 1 � 2	1 cosh!/ sinh!

� .	1 C 	NC11 /.sin! C !/ sin h! C 4.	21 C 	N1 /

	21 C 1 � 2	1 cosh!
� 4.	1 � 	N1 /

1 � 	1
�

;

holds, where 	1 is given in Theorem 2.4, j	1j < 1, andm is defined by (45).

Proof. In the equal spaced case of the nodes, using (14), we can rewrite the
expression (17) in the following form:

k`k2 D
NX

�D0
C�

 NX

�D0
C�G.h� � h�/ � f .h�/

�

�
NX

�D0
C�f .h�/

C 1

2!4



2C cos! � 3

!
sin!

�

;

where f .h�/ is defined by (31).

Hence, taking into account equality (29), we get

k`k2 D
NX

�D0
C� .�d1 sin.h!�/� d2 cos.h!�//

�
NX

�D0
C�f .h�/C 1

2!4



2C cos! � 3

!
sin!

�

:

Using equalities (30) and (31), after some simplifications, we obtain

k`k2D d1.cos! � 1/� d2 sin!

!
� 1

4!4



4

NX

�D0
C� C sin!

NX

�D0
C�.h!�/ cos.h!�/

� .1C cos!/
NX

�D0
C�.h!�/ sin.h!�/

�

C 1

4!4



5C cos! � 2

!
sin!

�

:

(46)

Now, from (44), equating the corresponding coefficients of sin.h!�/ and cos.h!�/,
for d1 and d2, we find the following expressions:
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d1 D ! cos! � sin!

4!4
C 1

4!3

NX

�D0
C�.h!�/ sin.h!�/

� h.h! � sinh!/.	21 � 1/.	N1 � 1/
2!3.h! C sin h!/.1C 	N1 /.	

2
1 C 1 � 2	1 cosh!/

;

d2 D 1 � cos! � ! sin!

4!4
C 1

4!3

NX

�D0
C�.h!�/ cos.h!�/:

Substituting these expressions in (46) we get

k`k2 D 3! � sin!

2!5
C h.1 � cos!/.h! � sin h!/.	21 � 1/.	N1 � 1/

2!4.h! C sin h!/.1C 	N1 /.	
2
1 C 1 � 2	1 cosh!/

Ccos!

2!4

NX

�D1
C�.h!�/ sin.h!�/� sin!

2!4

NX

�D1
C�.h!�/ cos.h!�/� 1

!4

NX

�D1
C� :

Finally, using the expression for optimal coefficients C� from Theorem 2.7, after
some calculations and simplifications, we get the assertion of Theorem 2.8. ut
Theorem 2.9. The norm of the error functional (3) for the optimal quadrature
formula (2) has the form

k ı` jK�2 .P2/k2 D 1

720
h4 CO.h5/ as N ! 1: (47)

Proof. Since

	1 D 2h! � sin.2h!/� 2 sinh!
p
h2!2 � sin2 h!

2.h! cosh! � sin h!/
D .

p
3 � 2/CO.h2/

and jh!j < 1, ! > 0, then j	1j < 1 and 	N1 ! 0 as N ! 1. Thus, when N ! 1
the expansion of the expression for k ı` k2 (from Theorem 2.8) in a power series in
h gives the assertion of Theorem 2.9. ut

The next theorem gives an asymptotic optimality for our optimal quadrature
formula.

Theorem 2.10. Optimal quadrature formula of the form (2) with the error
functional (3) in the space K2.P2/ is asymptotic optimal in the Sobolev space
L
.2/
2 .0; 1/, i.e.,

lim
N!1

k ı` jK�2 .P2/k2

k ı` jL.2/�2 .0; 1/k2
D 1: (48)
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Proof. Using Corollary 5.2 from [48] (for m D 2 and �0 D 0), for square of
the norm of the error functional (3) for the optimal quadrature formula (2) on the
Sobolev space L.2/2 .0; 1/, we get the following expression:

k ı` jL.2/�2 .0; 1/k2 D 1

720
h4 � h5

12
d

4X

iD1

qNCi C .�1/iq
.1 � q/iC1 �i04 D 1

720
h4 CO.h5/;

(49)
where d is known, q D p

3 � 2, �i�4 is the finite difference of order i of �4, and
�i04 D �i�4j�D0.

Using (47) and (49) we obtain (48) and proof is finished. ut
As we said in Sect. 2.1, the error (4) of the optimal quadrature formula of the

form (2) in the space K2.P2/ can be estimated by the Cauchy-Schwarz inequality

jRN.'/j � k'jK2.P2/k � k ı` jK�2 .P2/k:

Hence, taking into account Theorem 2.9, we get

jRN.'/j � k'jK2.P2/k
 p

5

60
h2 CO.h5=2/

!

;

from which we conclude that the order of the convergence of our optimal quadrature
formula is O.h2/.

3 Interpolation Splines Minimizing the Semi-Norm

3.1 Statement of the Problem

In order to find an approximate representation of a function ' by elements of a
certain finite dimensional space, it is possible to use values of this function at some
points xˇ , ˇ D 0; 1; : : : ; N . The corresponding problem is called the interpolation
problem, and the points xˇ are interpolation nodes.

Polynomial and spline interpolations are very wide subjects in approximation
theory (cf. DeVore and Lorentz [15], Mastroianni and Milovanović [34]). The theory
of splines as a relatively new area has undergone a rapid progress. Many books are
devoted to the theory of splines, for example, Ahlberg et al [1], Arcangeli et al
[2], Attea [3], Berlinet and Thomas-Agnan [5], Bojanov et al [8], de Boor [14],
Eubank [17], Green and Silverman [22], Ignatov and Pevniy [28], Korneichuk et al
[29], Laurent [32], Nürnberger [38], Schumaker [44], Stechkin and Subbotin [55],
Vasilenko [56], and Wahba [58].
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If the exact values '.xˇ/ of an unknown function '.x/ are known, it is usual to
approximate ' by minimizing

Z b

a

.g.m/.x//2dx (50)

on the set of interpolating functions (i.e., g.xˇ/ D '.xˇ/, ˇ D 0; 1; : : : ; N ) of the

Sobolev space L.m/2 .a; b/. It turns out that the solution is the natural polynomial
spline of degree 2m � 1 with knots x0; x1; : : : ; xN . It is called the interpolating
Dm-spline for the points .xˇ; '.xˇ//. In the nonperiodic case this problem was first
investigated by Holladay [27] form D 2, and the result of Holladay was generalized

by de Boor [13] for any m. In the Sobolev space e

L
.m/
2 of periodic functions, the

minimization problem of integrals of type (50) was investigated by Schoenberg [40],
Golomb [21], Freeden [18, 19], and others.

In the Hilbert space K2.P2/, defined in Sect. 1 with the semi-norm (1), we
consider the following interpolation problem:

Problem 5. Find the function S.x/ 2 K2.P2/ which gives minimum to the semi-
norm (1) and satisfies the interpolation condition

S.xˇ/ D '.xˇ/; ˇ D 0; 1; : : : ; N;

for any ' 2 K2.P2/, where xˇ 2 Œ0; 1 are the nodes of interpolation.

From [56, p. 45–47] it follows that the solution S.x/ of Problem 5 exists uniquely
for N � !.

We give a definition of the interpolation spline function in the space K2.P2/

following [32, Chap. 4, pp. 217–219].
Let � W 0 D x0 < x1 < � � � < xN D 1 be a mesh on the interval Œ0; 1. Then

the interpolation spline function with respect to � is a function S.x/ 2 K2.P2/ and
satisfies the following conditions:

(i) S.x/ is a linear combination of functions sin!x, cos!x, x sin!x, and
x cos!x on each open mesh interval .xˇ; xˇC1/, ˇ D 0; 1; : : : ; N � 1;

(ii) S.x/ is a linear combination of functions sin!x and cos!x on intervals
.�1; 0/ and .1;1/;

(iii) S.˛/.x�̌/ D S.˛/.xCˇ /, ˛ D 0; 1; 2, ˇ D 0; 1; : : : ; N ;
(iv) S.xˇ/ D '.xˇ/, ˇ D 0; 1; : : : ; N , for any ' 2 K2.P2/.

We consider the fundamental solution G.x/ defined by (14) of the differential
operator

d4

dx4
C 2!2

d2

dx2
C !4:
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It is clear that the third derivative of the function

G.x � x� / D sgn .x � x� /
4!3

�
sin.!x � !x� /� !.x � x� / cos.!x � !x� /

�

has a discontinuity equal to 1 at the point x� , and the first and the second derivatives
of G.x � x�/ are continuous. Suppose a function p�.x/ coincides with the spline
S.x/ on the interval .x� ; x�C1/, i.e.,

p�.x/ WD p��1.x/C C�G.x � x�/; x 2 .x� ; x�C1/;
where C� is the jump of the function S 000.x/ at x� :

C� D S 000.xC� /� S 000.x�� /;
then the spline S.x/ can be written in the following form:

S.x/ D
NX

�D0
C�G.x � x� /C p�1.x/; (51)

where p�1.x/ D d1 sin!x C d2 cos!x, with real constants d1 and d2.
Furthermore, the function S.x/ satisfies the condition (ii) if the function

1

4!3

NX

�D0
C�
�
sin.!x � !x� / � !.x � x� / cos.!x � !x� /

�

is a linear combination of the functions sin!x and cos!x. Hence, we get the
following conditions for C� :

NX

�D0
C� sin.!x� / D 0;

NX

�D0
C� cos.!x�/ D 0:

Taking into account the last two equations and the interpolation condition (iv) for
the coefficients C� , � D 0; 1; 2; : : : ; N , d1, and d2 in (51), we obtain the following
system of N C 3 linear equations:

NX

�D0
C�G.xˇ � x� /C d1 sin.!xˇ/C d2 cos.!xˇ/ D '.xˇ/;

ˇ D 0; 1; : : : ; N; (52)

NX

�D0
C� sin.!x� / D 0; (53)

NX

�D0
C� cos.!x� / D 0; (54)

where ' 2 K2.P2/.



Optimal Quadrature Formulas and Interpolation Splines 599

Note that the analytic representation (51) of the interpolation spline S.x/ and the
system of equations (52)–(54) for the coefficients can be also obtained from [56, pp.
45–47, Theorem 2.2].

It should be noted that systems for the coefficients of Dm-splines similar to the
system (52)–(54) were investigated, for example, in [2, 16, 28, 32, 56].

In [49], using S.L. Sobolev method, it was constructed the interpolation splines
minimizing the semi-norm in the spaceW .m;m�1/

2 .0; 1/, whereW .m;m�1/
2 .0; 1/ is the

space of functions ', which '.m�1/ is absolutely continuous and '.m/ belongs to
L2.0; 1/ and

Z 1

0

.'.m/.x/C '.m�1/.x//2dx < 1:

Our main aim here is to solve Problem 5, i.e., to solve the system of equa-
tions (52)–(54) for equally spaced nodes xˇ D hˇ, ˇ D 0; 1; : : : ; N , h D 1=N ,
N � ! > 0 and to find analytic formulas for the spline coefficients C� , � D
0; 1; : : : ; N , d1, d2.

3.2 Algorithm for Computing Coefficients of Interpolation
Splines

In this subsection we give an algorithm for solving the system of equations
(52)–(54), when the nodes xˇ are equally spaced. Here we use similar method
proposed by Sobolev [53, 54] for finding the coefficients of optimal quadrature
formulas in the space L.m/2 . Also we use the concept of discrete argument functions
and operations on them (see Sect. 2.4).

Suppose that Cˇ D 0, when ˇ < 0 and ˇ > N . Using Definition 2.3, we write
(52)–(54) as follows:

G.hˇ/ � Cˇ C d1 sin.h!ˇ/C d2 cos.h!ˇ/ D '.hˇ/; ˇ D 0; 1; : : : ; N; (55)

NX

ˇD0
Cˇ sin.h!ˇ/ D 0; (56)

NX

ˇD0
Cˇ cos.h!ˇ/ D 0; (57)

where G.hˇ/ is the function of discrete argument corresponding to the function G
given in (14).

Thus, we have the following problem:

Problem 6. Find the coefficients Cˇ, ˇ D 0; 1; : : : ; N and the constants d1 and d2,
which satisfy the system of equations (55)–(57).
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Further we investigate Problem 6 which is equivalent to Problem 5. Namely,
instead of Cˇ, we introduce the following functions:

v.hˇ/ D G.hˇ/ � Cˇ; (58)

u.hˇ/ D v .hˇ/C d1 sin.h!ˇ/C d2 cos.h!ˇ/: (59)

In such a statement it is necessary to express the coefficients Cˇ by the function
u.hˇ/. For this we use the operatorD.hˇ/ which is given in Theorem 2.4.

Then, taking into account (59) and Theorems 2.4 and 2.5, for the coefficients Cˇ
of the spline S.x/, we have

Cˇ D D.hˇ/ � u.hˇ/: (60)

Thus, if we find the function u.hˇ/, then the coefficientsCˇ can be obtained from
equality (60). In order to calculate the convolution (60), we need a representation
of the function u.hˇ/ for all integer values of ˇ. From equality (55) we get that
u.hˇ/ D '.hˇ/ when hˇ 2 Œ0; 1. Now, we need a representation of the function
u.hˇ/ when ˇ < 0 and ˇ > N .

Since Cˇ D 0 when hˇ … Œ0; 1, then Cˇ D D.hˇ/ � u.hˇ/ D 0, hˇ … Œ0; 1.
Now, we calculate the convolution v.hˇ/ D G.hˇ/ � Cˇ when ˇ � 0 and ˇ � N .

Supposing ˇ � 0 and taking into account equalities (58), (56), (57), we have

v.hˇ/ D
1X

�D�1
C� G.hˇ�h�/

D
NX

�D0
C�

sign.hˇ�h�/
4!3

�
sin.h!ˇ�h!�/�.h!ˇ�h!�/ cos.h!ˇ�h!�/�

D � 1

4!3

NX

�D0
C�

n
sin.h!ˇ/ cos.h!�/� cos.h!ˇ/ sin.h!�/

�.h!ˇ/�cos.h!ˇ/ cos.h!�/C sin.h!ˇ/ sin.h!�/
�

C .h!�/
�
cos.h!ˇ/ cos.h!�/C sin.h!ˇ/ sin.h!�/

�o

D � cos.h!ˇ/

4!3

NX

�D0
C�.h!�/ cos.h!�/ � sin.h!ˇ/

4!3

NX

�D0
C�.h!�/ sin.h!�/:

Denoting

b1 D 1

4!3

NX

�D0
C�.h!�/ sin.h!�/ and b2 D 1

4!3

NX

�D0
C�.h!�/ cos.h!�/;
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we get for ˇ � 0

v.hˇ/ D �b1 sin.h!ˇ/ � b2 cos.h!ˇ/

and for ˇ � N

v.hˇ/ D b1 sin.h!ˇ/C b2 cos.h!ˇ/:

Now, setting

d�1 D d1 � b1; d
�
2 D d2 � b2; d

C
1 D d1 C b1; d

C
2 D d2 C b2

we can formulate the following problem:

Problem 7. Find the solution of the equation

D.hˇ/ � u.hˇ/ D 0; hˇ … Œ0; 1 (61)

in the form

u.hˇ/ D

8
ˆ̂
<

ˆ̂
:

d�1 sin.h!ˇ/C d�2 cos.h!ˇ/; ˇ � 0;

'.hˇ/; 0 � ˇ � N;

dC1 sin.h!ˇ/C dC2 cos.h!ˇ/; ˇ � N;

(62)

with coefficients d�1 , d�2 , dC1 , dC2 .

It is clear that

d1 D 1

2

�
dC1 C d�1

�
; d2 D 1

2

�
dC2 C d�2

�
; (63)

b1 D 1

2

�
dC1 � d�1

�
; b2 D 1

2

�
dC2 � d�2

�
:

These unknowns d�1 , d�2 , dC1 , dC2 can be found from (61), using the function
D.hˇ/. Explicit forms of the function u.hˇ/ and coefficients Cˇ, d1, d2 can be
found. Thus, Problem 7 and respectively Problems 6 and 5 can be solved.

In the next subsection we realize this algorithm for computing the coefficients
Cˇ, ˇ D 0; 1; : : : ; N , d1, and d2 of the interpolation spline (51).



602 A.R. Hayotov et al.

3.3 Computation of Coefficients of the Interpolation Spline

In this subsection using the procedure from the previous subsection, we obtain
explicit formulae for coefficients of the interpolation spline (51) which is the
solution of Problem 5.

It should be noted that the interpolation spline (51), which is the solution of
Problem 5, is exact for the functions sin!x and cos!x.

Theorem 3.1. Coefficients of the interpolation spline (51) which minimizes the
semi-norm (1) with equally spaced nodes in the space K2.P2/ have the following
forms:

C0 D Cp'.0/C pŒ'.h/ � d�1 sin.h!/C d�2 cos.h!/

C A1p

	1

2

4
NX

�D0
	
�
1'.h�/CM1 C 	N1 N1

3

5

Cˇ D Cp'.hˇ/C pŒ'.h.ˇ � 1//C '.h.ˇ C 1//

C A1p

	1

2

4
NX

�D0
	
jˇ�� j
1 '.h�/C 	

ˇ
1M1 C 	

N�ˇ
1 N1

3

5 ; ˇ D 1; 2; : : : ; N � 1;

CN D Cp'.1/C pŒ'.h.N � 1//C dC1 sin.! C h!/C dC2 cos.! C h!/

C A1p

	1

2

4
NX

�D0
	
N��
1 '.h�/C 	N1 M1 CN1

3

5 ;

d1 D 1

2
.dC1 C d�1 /; d2 D 1

2
.dC2 C d�2 /;

where p, A1, C , and 	1 are defined by (35), (36),

M1 D 	1Œd
�
2 .cos.h!/� 	1/� d�1 sin.h!/

	21 C 1 � 2	1 cos.h!/
; (64)

N1 D 	1Œd
C
2 .cos.! C h!/� 	1 cos!/C dC1 .sin.! C h!/ � 	1 sin!/

	21 C 1 � 2	1 cos.h!/
; (65)

and dC1 , d�1 , dC2 , d�2 are defined by (66) and (72).

Proof. First, we find the expressions for d�2 and dC2 . From (62), when ˇ D 0 and
ˇ D N , we get

d�2 D '.0/; dC2 D '.1/

cos!
� dC1 tan!: (66)
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We have now two unknowns d�1 and dC1 and they can be found from (61) when
ˇ D �1 and ˇ D N C 1.

Taking into account (62) and Definition 2.3, from (61), we obtain

�1X

�D�1
D.hˇ � h�/Œd�1 sin.h!�/C d�2 cos.h!�/C

NX

�D0
D.hˇ � h�/'.h�/

C
1X

�DNC1
D.hˇ � h�/ŒdC1 sin.h!�/C dC2 cos.h!�/ D 0;

where ˇ < 0 and ˇ > N .
Hence, for ˇ D �1 and ˇ D N C 1, we get the following system of equations

for d�1 ; d
C
1 ; d

�
2 ; d

C
2 :

�d�

1

1X

�D1

D.h� � h/ sin.h!�/C d�

2

1X

�D1

D.h� � h/ cos.h!�/

CdC

1

1X

�D1

D.h.NC�/Ch/ sin.!Ch!�/CdC

2

1X

�D1

D.h.NC�/Ch/ cos.!Ch!�/

D�
NX

�D0

D.h�Ch/'.h�/; (67)

�d�

1

1X

�D1

D.h.N C �/C h/ sin.h!�/C d�

2

1X

�D1

D.h.N C �/C h/ cos.h!�/

CdC

1

1X

�D1

D.h� � h/ sin.! C h!�/C dC

2

1X

�D1

D.h� � h/ cos.! C h!�/

D �
NX

�D0

D.h.N C 1/� h�/'.h�/: (68)

Since j	1j < 1, the series in the system of equations (67)–(68) are convergent.
Using (66) and taking into account (34), after some calculations and simplifica-

tions, from this system we obtain

B11d
�
1 C B12d

C
1 D T1; B21d

�
1 C B22d

C
1 D T2;

where

B11 D 	1 sin.h!/; B12 D �	
NC1
1 sin.h!/

cos!
;

B21 D 	NC11 sin.h!/; B22 D �	1 sin.h!/

cos!
;

(69)
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T1 D 2h!	1 sin2.h!/

h! cos.h!/ � sin.h!/

NX

�D0
	
�
1'.h�/

CŒ	1 cos.h!/ � 1'.0/C 	NC11 Œcos.h!/ � 	1 � tan! sin.h!/'.1/; (70)

T2 D 2h!	1 sin2.h!/

h! cos.h!/ � sin.h!/

NX

�D0
	
N��
1 '.h�/

C 	NC11 Œcos.h!/� 	1'.0/C Œ	1 cos.h!/ � 1 � 	1 tan! sin.h!/'.1/:
(71)

Hence, we get

d�1 D T1B22 � T2B12
B11B22 � B12B21 ; dC1 D T2B11 � T1B21

B11B22 � B12B21
; (72)

where B11; B12; B21; B22; T1; and T2 are defined by (69)–(71).
Combining (63), (66), and (72), we obtain d1 and d2 which are given in the

statement of Theorem 3.1.
Now, we calculate the coefficientsCˇ, ˇ D 0; 1; : : : ; N . Taking into account (62)

from (60) for Cˇ, we have

Cˇ D D.hˇ/ � u.hˇ/

D
1X

�D�1
D.hˇ � h�/u.h�/

D
1X

�D1
D.hˇ C h�/Œ�d�1 sin.h!�/C d�2 cos.h!�/C

NX

�D0
D.hˇ � h�/'.h�/

C
1X

�D1
D.h.N C �/ � hˇ/ŒdC1 sin.! C h!�/C dC2 cos.! C h!�/;

from which, using (34) and taking into account notations (64), (65), when ˇ D
0; 1; : : : ; N , for Cˇ we get expressions from the statement of Theorem 3.1.

Remark 3.1. The case ! D 1 is considered in [26].
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Fig. 1 Graphs of absolute errors jf1.x/� SN .f1I x/j for N D 5 and N D 10

3.4 Numerical Results

In this subsection, in numerical examples, we compare the interpolation spline (51)
with the natural cubic spline (D2-spline).

It is known that (cf. [2, 13, 16, 27, 28, 32, 56]) the natural cubic spline minimizes
the integral

R 1
0
.' 00.x//2dx in the Sobolev space L.2/2 .0; 1/ of functions with a

square integrable 2nd generalized derivative. For convenience we denote the natural
cubic spline as Scubic.x/. In numerical examples we use the standard function
“spline(X,Y,x,cubic)” of the maple package for the natural cubic spline.

Here first we consider the case ! D 1 and give some numerical results which
have been presented also in [26].

We apply the interpolation spline (51) and the natural cubic spline to approxima-
tion of the functions

f1.x/ D ex; f2.x/ D tanx; f3.x/ D 313x4 � 6900x2 C 15120

13x4 C 660x2 C 15120
:

Using Theorem 3.1 and the standard Maple function “spline(X,Y,x,cubic),”
with N D 5 and N D 10, we get the corresponding interpolation splines denoted
by SN .fk I x/, k D 1; 2; 3 for the interpolation spline (51) and ScubicN .fk I x/,
k D 1; 2; 3, for the natural cubic spline.

The corresponding absolute errors jfk.x/ � SN .fk I x/j and jfk.x/ �
ScubicN .fk I x/j on Œ0; 1, for k D 1; 2, and 3, are displayed in Figs. 1 and 2, 3 and
4, and 5 and 6, respectively.

As we can see the smallest errors in these cases appear in Fig. 5 because f3.x/ is
a rational approximation for the function cosx (cf. [23, p. 66]) and the interpolation
spline (51) is exact for the trigonometric functions sin x and cosx.

In order to test the optimal quadrature formula in the sense of Sard in the space
K2.P2/ (see [25])
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Fig. 2 Graphs of absolute errors jf1.x/� ScubicN .f1I x/j for N D 5 and N D 10

Fig. 3 Graphs of absolute errors jf2.x/� SN .f2I x/j for N D 5 and N D 10

Fig. 4 Graphs of absolute errors jf2.x/� ScubicN .f2I x/j for N D 5 and N D 10
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Fig. 5 Graphs of absolute errors jf3.x/� SN .f3I x/j for N D 5 and N D 10

Fig. 6 Graphs of absolute errors jf3.x/� ScubicN .f3I x/j for N D 5 and N D 10

I.'/ WD
Z 1

0

'.x/dx Š
NX

�D0
C�'.x�/ DW QN.'/; (73)

we use the same functions fk.x/, k D 1; 2; 3.
The weight coefficients in (73) are

C0 D CN D 2 sinh � .hC sin h/ cosh

.hC sin h/ sin h
C h � sin h

.hC sinh/ sin h.1C 	N1 /

�
	1 C 	N�11

�

and

C� D 4.1� cosh/

hC sin h
C 2h.h� sin h/ sinh

.hC sin h/.h cosh � sin h/.1C 	N1 /

�
	�1 C 	N��1

�
;

for � D 1; : : : ; N � 1, where 	1 is given as in (36), with ! D 1 and j	1j < 1.
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Fig. 7 Graphs of absolute errors jS10.f1I x/� Scubic10.f1I x/j for ! D 10 and ! D 1

Fig. 8 Graphs of absolute errors jS10.f1I x/� Scubic10.f1I x/j for ! D 0:1 and ! D 0:01

In [25] we have obtained the approximate numerical values

QN.fk/ D
NX

�D0
C�fk.x�/

for the corresponding integrals I.fk/, k D 1; 2; 3, taking N D 10; 100, and 1000.
These approximate values we can also obtain if we integrate the corresponding
interpolation splines SN .fk I x/ over Œ0; 1, i.e., QN.fk/ D I.SN .fk I x//.

We consider now the values of the difference jSN.f1I x/�ScubicN .f1I x/j (with
N C 1 D 11 nodes) in cases when ! D 10, 1, 0:1, and 0:01.

Graphs in Figs. 7 and 8 show that SN .f1I x/ tends to ScubicN .f1I x/ as ! ! 0.
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Numerical Integration of Highly Oscillating
Functions

Gradimir V. Milovanović and Marija P. Stanić

Dedicated to Professor Hari M. Srivastava

Abstract Some specific nonstandard methods for numerical integration of highly
oscillating functions, mainly based on some contour integration methods and
applications of some kinds of Gaussian quadratures, including complex oscilla-
tory weights, are presented in this survey. In particular, Filon-type quadratures
for weighted Fourier integrals, exponential-fitting quadrature rules, Gaussian-type
quadratures with respect to some complex oscillatory weights, methods for irregular
oscillators, as well as two methods for integrals involving highly oscillating Bessel
functions are considered. Some numerical examples are included.

1 Introduction

By a highly oscillating function, we mean one with a large number of local maxima
and minima over some interval. The computation of integrals of highly oscillating
functions is one of the most important issues in numerical analysis since such
integrals abound in applications in many branches of mathematics as well as in
other sciences, e.g., quantum physics, fluid mechanics, and electromagnetics. The
principal examples of highly oscillating integrands occur in various transforms,
e.g., Fourier transform and Fourier–Bessel transform. The standard methods of
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numerical integration often require too much computation work and cannot be
successfully applied. Because of that, for integrals of highly oscillating functions,
there are a large number of special approaches, which are effective. In this paper
we give a survey of some special quadrature methods for different types of highly
oscillating integrands.

The earliest formulas for numerical integration of highly oscillating functions
were given by Filon [12] in 1928. Filon’s approach for the Fourier integral on the
finite interval,

I Œf I! D
Z b

a

f .x/ei!x dx;

is based on the piecewise approximation of f .x/ by parabolic arcs on the integration
interval. The resulting integrals over subintervals are then integrated exactly. One
can divide interval Œa; b into 2N subintervals of equal length h D .b � a/=.2N /.
Let xk D a C kh, k D 0; 1; : : : ; 2N . Filon’s formula is based on a quadratic fit of
function f .x/ on every subinterval Œx2k�2; x2k, k D 1; : : : ; N , by interpolation at
the mesh points. The error estimate was given by Håvie [19] and Ehrenmark [7].

It can be said that Filon’s idea is one of the most fruitful in topic of integration
of highly oscillating functions, because of a wide range of improvements of
the previous technique. Luke [36] in 1954 approximated the function f .x/ in
a certain interval by a polynomial of at most 10th degree. Flinn [13] used 5th

degree polynomials in order to approximate f .x/ taking values of function and
values of its derivative at the points x2k�2, x2k�1, and x2k . Stetter [60] used the
idea of approximating the transformed function by polynomials in 1=t . Tuck [61]
suggested the so-called Filon–trapezoidal rule, where polygonal arches were used
instead of parabolic arches. The Filon modification in such a rule is nothing more
than a simple multiplicative factor applied to the results of the crude trapezoidal
rule. Einarsson [8] derived the so-called Filon–spline rule by passing cubic splines
through functional values. Shampine [56] proposed method based on a smooth cubic
spline, implemented in a Matlab program. An adaptive implementation of his
method deals with functions f that have peaks. His basic method can be adjusted
to deal effectively with functions f that have a moderate singularity at one or both
ends of Œa; b. Miklosko [38] used an interpolatory quadrature formula with the
Chebyshev nodes. Van de Vooren and van Linde [63] obtained the Fourier integral
quadrature rules which for the real part are exact if f is of at most 7th degree, and
for the imaginary part if f is of at most 8th degree.

Ixary and Paternoster [25,26] derived exponential-fitting approach for the Fourier
integral on Œ�1; 1, designed to be exact when the integrand is some suitably chosen
combination of exponential functions, e.g., with polynomial terms, or products of
polynomials and exponentials.

Recently, Ledoux and Van Daele [29] have made connection between Filon-type
and exponential-fitting methods. By introducing some S�shaped functions, they
constructed Gauss-type rules for the Fourier integral I Œf I! on Œ�1; 1 interpolating
f in frequency-dependent nodes along with Chebyshev nodes. In such a way they
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derived rules with an optimal asymptotic rate of decay of the error with increasing
frequency, which are effective for small or moderate frequencies, too.

Very simple methods can be obtained by integration between the zeros. If the
zeros of the oscillatory part of the integrand are located in the points a 6 x1 < x2 <

� � � < xm 6 b, then the integral on each subinterval Œxk; xkC1 can be calculated
by an appropriate rule. A rule of Gauss–Lobatto type (cf. [37, pp. 330–332]) is
very good for this purpose because of using the end points of the integration
subintervals, where the integrand is zero, so that, more accuracy can be obtained
without additional computation (see [6]).

Several authors (see, e.g., Zamfirescu [68], Gautschi [14], Piesens [49, 50],
Piesens and Haegemans [53], Davis and Rabinowitz [6]) considered usage of
Gaussian formulae for oscillatory weights. Considering the following nonnegative
weight functions on Œ�1; 1,

ck.t/ D 1

2
.1C cos k�t/; sk.t/ D 1

2
.1C sin k�t/;

it is easy to see that

1

�

Z �

��
f .x/ cos kx dx D 2

Z 1

�1
f .�t/ck.t/ dt �

Z 1

�1
f .�t/ dt;

1

�

Z �

��
f .x/ sin kx dx D 2

Z 1

�1
f .�t/sk.t/ dt �

Z 1

�1
f .�t/ dt:

Gauss-type rules can now be constructed for the first integrals on the right-hand
sides of the previous equalities.

Goldberg and Varga [16] (cf. [34,35]) proposed a method for the computation of
Fourier coefficients based on Möbius inversion of Poisson summation formula.

Milovanović [39] proposed complex integration method. Let us for ı > 0 denote

Gı D ˚
z 2 C j �1 6 Re z 6 1; 0 6 Im z 6 ı



; �ı D @Gı:

Consider the Fourier integral on the finite interval

I Œf I! D
Z 1

�1
f .x/ei!x dx;

where f is an analytic real-valued function in the half-strip of the complex plane,
�1 6 Re z 6 1, Im z > 0, with singularities z� , � D 1; : : : ; m, in the region int�ı,
and

2�i
mX

�D1
Res
zDz�

�
f .z/ei!z

�
D P C iQ:
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If there exist the constantsM > 0 and � < ! such that

Z 1

�1
jf .x C iı/j dx 6 M e�ı;

then (see [39, Theorem 2.1])

Z 1

�1
f .x/ cos!x dx D P C 2

!

Z C1

0

Im
h
ei!fe

�
1C i

t

!

�i
e�t dt;

Z 1

�1
f .x/ sin!x dx D Q � 2

!

Z C1

0

Re
h
ei!fo

�
1C i

t

!

�i
e�t dt;

where fo.z/ and fe.z/ are the odd and even part in f .z/, respectively. The obtained
integrals can be calculated efficiently by using Gauss–Laguerre rule.

The Fourier integral on .0;C1/,

F Œf I! D
Z C1

0

f .x/ei!x dx;

can be transformed to

F Œf I! D 1

!

Z C1

0

f .x=!/eix dx D F Œf .�=!/I 1:

Thus, it is enough to consider only the case ! D 1.
In order to calculate F Œf I 1, for a chosen positive number a, one can write

F Œf I 1 D
Z a

0

f .x/eix dx C
Z C1

a

f .x/eix dx D L1Œf C L2Œf ;

where

L1Œf  D a

Z 1

0

f .at/eiat dt and L2Œf  D
Z C1

a

f .x/eix dx:

If the function f .z/ is defined and holomorphic in the regionD D fz 2 C j Re z >
a > 0; Im z > 0g, such that jf .z/j 6 A=jzj when jzj ! C1, for some positive
constant A, then (see [39, Theorem 2.2])

L2Œf  D ieia
Z C1

0

f .a C iy/e�y dy .a > 0/:

In the numerical implementation Gauss–Legendre rule on .0; 1/ and Gauss–
Laguerre rule can be used for calculating L1Œf  and L2Œf , respectively.
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In this paper we consider some specific nonstandard methods for numerical
integration of highly oscillating functions, mainly based on some contour integration
methods and applications of some kinds of Gaussian quadratures, including com-
plex oscillatory weights. The paper is organized as follows. Filon-type quadratures
for weighted Fourier integrals and exponential-fitting quadrature rules are studied
in Sects. 2 and 3, respectively. Gaussian-type quadratures with respect to some
complex oscillatory weights are given in Sect. 4. Section 5 is devoted to more
general highly oscillating integrands known as irregular oscillators. Asymptotic
methods, as well as Filon-type and Levin-type methods, are included. Finally, two
class of methods (Levin-type and Chen’s method) for integrals involving highly
oscillating Bessel functions are considered in Sect. 6.

2 Filon-Type Quadrature Rules for Weighted Fourier
Integral

In this section we describe and analyze Filon-type method for generalized Fourier
integral in the sense that a weight function is allowed (see Iserles [21]). Let P be the
linear space of all algebraic polynomials and Pn be the linear space of all algebraic
polynomials of degree at most n.

For a nonnegative sufficiently smooth nonzero weight function w 2 LŒ0; 1 and
h > 0, we consider the following integral

IhŒf  D
Z h

0

f .x/ei!xw.x=h/ dx D h

Z 1

0

f .hx/eih!xw.x/ dx; (1)

where f 2 LŒ0; h is sufficiently smooth function. Let us choose n distinct points
0 6 �1 < �2 < � � � < �n 6 1, and interpolate function f by a polynomial of degree
n � 1,

f .x/ � Pn.xIf / D
nX

kD1
`k.x=h/f .h�k/;

where `k 2 Pn�1, k D 1; 2 : : : ; n, are fundamental polynomials of Lagrange
interpolation,

`k.x/ D

nQ

�D1
�¤k

.x � ��/

nQ

�D1
�¤k

.�k � ��/
:
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Replacing f by Pn.xIf / in (1) the Filon-type quadrature rule is obtained,

Qh
nŒf  D IhŒPn.xIf / D h

nX

kD1
�k.ih!/f .h�k/;

where the weights are given by

�k.ih!/ D
Z 1

0

`k.x/eih!xw.x/ dx; k D 1; 2; : : : ; n:

Obviously, for the remainder term RhnŒf  D Qh
nŒf  � IhŒf , we have RhnŒf  D 0

for all f 2 Pn�1. Hence, for sufficiently smooth function f , we have RhnŒf  D
O.hnC1/.

Remark 2.1. Let us notice that the same weights can be obtained by solving the
following Vandermonde system

nX

kD1
�k.ih!/�mk D 
m.h!/; m D 0; 1; : : : ; n � 1;

where 
m are the corresponding moments,


m.�/ D
Z 1

0

xmei�xw.x/ dx; m 2 N0 D N [ f0g:

If we set � D h! and

ım.�/ D
nX

kD1
�k.i�/�mk � 
m.�/; m 2 N0;

then ım D 0 form D 0; 1; : : : ; n � 1.
Let p be the order of the corresponding Gauss–Christoffel quadrature rule with

nodes 0 6 �1 < �2 < � � � < �n 6 1. Thus, p 2 fn; n C 1; : : : ; 2ng (see [15]),
which means that quadrature rule is exact for all polynomials of degree less than
or equal to p � 1. The maximal algebraic degree od exactness is 2n � 1, i.e., the
maximal order is 2n, if nodes are zeros of the corresponding orthogonal polynomial
of n�th degree. It is important to point out that here we talk about Gauss–Christoffel
quadrature rule with respect to the weight function w on Œ0; 1. In Sect. 4 we consider
quadrature rules with maximal algebraic degree of exactness with respect to the
complex oscillatory weight function of the form ei�xw.x/.

We present estimates of error term RhnŒf  for sufficiently smooth function f
(see [21]) in three situations: 0 < h! � 1 (non-oscillatory); h! D O.1/ (mildly
oscillatory); h! 
 1 (highly oscillatory).
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Let f be an analytic function in the disc jzj < r for some r > 0, and let its Taylor
series be

f .z/ D
1X

mD0

fm

mŠ
zm:

Since RhnŒx
m D 0, for m D 0; 1; : : : ; n � 1, one can assume without loss of

generality that fm D 0, m D 0; 1; : : : ; n � 1. The function

Qf .z/ D
1X

mDn

fm

mŠ
zm

is the essential part of the function f , and RhnŒf  D RhnŒ
Qf  regardless of the size of

h and !. Due to analyticity of f one can easily obtain that

RhnŒf  D
1X

mDn

fm

mŠ
hmC1ım.�/: (2)

For analytic function f , for fixed ! > 0 and 0 < h � 1, we have (see
[21]) RhnŒf  D O.hpC1/, where p is order of the corresponding Gauss–Christoffel
quadrature rule, while in the case when h! D O.1/ the error term behaves like
O.hnC1/.

Now, we pay our attention to the highly oscillatory situation, when the standard
Gauss–Christoffel quadrature rules became useless. Let

p.t/ D
nY

kD1
.t � �k/ D

nX

kD0
akt

k

be the nodal polynomial. Let h > 0 be small and characteristic frequency � D h!

large. The main idea presented in [21] is to keep h > 0 fixed and consider the
asymptotic expansion of the error term in negative powers of � . It is easy to get the
following asymptotic expansions for the moments:


0.�/ � w.1/ei� � w.0/

i�
C w0.1/ei� � w0.0/

�2
C O.��3/;


1.�/ � w.1/ei�

i�
C .w.1/C w0.1//ei� � w.0/

�2
C O.��3/;


m.�/ � w.1/ei�

i�
C .mw.1/C w0.1//ei�

�2
C O.m2��3/; m > 2:
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By using the fact that p.�k/ D 0, k D 1; 2; : : : ; n, and the obtained asymptotic
expansions for the moments, it was shown (see [21, Proposition 3]) that there exist
two sequences of numbers f˛mgm2N0 and fˇmgm2N0 such that

ım.�/ � ˛mw.0/p.0/� ˇmw.1/p.1/ei�

i�
C O.m��2/; m 2 N0: (3)

Here, ˛m D ˇm D 0 for m D 0; 1; : : : ; n � 1, ˛n D ˇn D 1. If w.0/p.0/ ¤ 0 and
w.1/p.1/ ¤ 0, then ˛m and ˇm satisfy recurrence relations

nX

kD0
ak˛kCm D 0;

nX

kD0
akˇkCm D �1; m > 1:

The general solutions of these equations are

˛m D
nX

kD1
ck�

m
k ; ˇm D

nX

kD1
dk�

m
k � 1

p.1/
; m > 0;

where the constants ck and dk , k D 1; 2; : : : ; n, can be determined from the initial
values by solving a Vanredmonde linear algebraic system. If w.0/p.0/ D 0, then
˛m D 0, while if w.1/p.1/ D 0, then ˇm D 0.

Finally, from (2), (3) and the fact that RhnŒf  D RhnŒ
Qf , the following result can

be proved (see [21, Theorem 2]).

Theorem 2.1. Let function f be analytic and � D h! 
 1. If both �1w.0/ D 0 and
.1 � �n/w.1/ D 0, then RhnŒf  � O.hnC1��2/; otherwise, RhnŒf  � O.hnC1��1/.

According to the previous theorem, we can conclude that for general weight
function the best choice of nodes for the three considered situations is that of Lobatto
points (see [6]).

Disadvantages of Filon-type method will be pointed out in Sect. 5 where Filon-
type method for more general integrals will be presented.

3 Exponential-Fitting Quadrature Rules

The first results on exponentially fitting quadrature rules for oscillating integrands
were given in [25]. Those ideas led to Gauss-type quadrature rules for oscillatory
integrands considered in [26]. Namely, we considered the following quadrature
formula

Z 1

�1
f .x/ dx D

nX

kD1
�kf .xk/CRnŒf ; (4)
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where the nodes xk and the weights �k , k D 1; : : : ; n, are chosen such that this
quadrature formula is exact for all functions from F2n.�/, which is the linear span
of the set fxk cos �x; xk sin �x j k D 0; 1; : : : ; n � 1; � 2 Rg. Let us notice that for
� ¤ 0 we have dimF2n.�/ D 2n. Obviously, it is enough to consider only the case
� > 0, because F2n.��/ D F2n.�/. The case � D 0 is trivial, since F2n.0/ reduces
to a pure polynomial set, i.e., F2n.0/ D Pn�1 (the set of algebraic polynomials of
degree at most n� 1).

Ixary and Paternoster [26] presented numerical method for constructing such
quadrature rules with antisymmetric nodes in .�1; 1/ and symmetric weights, but
they did not prove the existence of such quadrature rules. The existence were proved
partially in [43] in the case when all nodes are positive (or all negative). In the sequel
we briefly explain that proof of existence.

For a given n 2 N and the set of nodes fx1; : : : ; xng, we denote x D .x1; : : : ; xn/

and introduce the nodal polynomial !.x/ D Qn
kD1.x � xk/. For �; 
 D 1; : : : ; n,

we use the following notation:

!�.x/ D !.x/

x � x�
D

nY

kD1
k¤�

.x�xk/; !�;
.x/ D !.x/

.x � x�/.x � x
/
D

nY

kD1
k¤�;


.x�xk/;

and `�.x/ D !�.x/=!�.x�/, as well as

˚�.x/ D
Z 1

�1
!�.x/ sin �.x � x�/ dx; � D 1; : : : ; n:

Suppose we are given mutually different nodes x� , � D 1; : : : ; n, of the
quadrature rule (4). Then the weights can be expressed as follows (see [43, Theorem
2.1]):

�� D
Z 1

�1
`�.x/ cos �.x � x�/ dx; � D 1; : : : ; n: (5)

Therefore, the weights are unique for the given set of nodes, and the weights can be
considered as continuous functions of nodes on any closed subset of Rn which does
not contain points with some pair of the same coordinates. The following result is
very important for the proof of existence of quadrature rules.

Theorem 3.1. The nodes x� , � D 1; : : : ; n, of the quadrature rule (4) satisfy the
following system of equations

Z 1

�1
!�.x/ sin �.x � x�/ dx D 0; � D 1; : : : ; n: (6)



622 G.V. Milovanović and M.P. Stanić

Suppose that x D .x1; : : : ; xn/ is a solution of the system of equations (6), under the
assumption xk ¤ xj , k ¤ j , k; j D 1; : : : ; n, we have that x� , � D 1; : : : ; n, are
the nodes of the quadrature rule (4).

Of course, we are interested only on solutions of (6) which are nodes of
quadrature rule (4). Let x� , � D 1; : : : ; n, be the nodes of the quadrature rule (4).
It was proved in [43] that

j@xk˚�.x/jn�;kD1 D
 

nY

kD1
�k!k.xk/

! ˇ
ˇ
ˇ
ˇ
sin �.xk � x�/

xk � x�

ˇ
ˇ
ˇ
ˇ

n

�;kD1
;

as well as that the function sin �x=x in x is strictly positive definite. Supposing that
�k ¤ 0, k D 1; : : : ; n, it follows that the determinant of the Jacobian at the solution
is not equal to zero.

The case when �
 D 0 for some 
 D 1; : : : ; n, is not important since it produces
a quadrature rule which does not depend on x
 at all.

For a fixed �, let us consider the following two equations:

Z 1

�1

 
nY

�D1
.x � x�/

!

cos �x dx D 0;

Z 1

�1

 
nY

�D1
.x � x�/

!

sin �x dx D 0;

with unknowns x� , � D 1; : : : ; n, and let us denote the sets of their solutions by
Cn and Sn, respectively. For the proof of existence theorem, we need the following
properties of the sets Cn and Sn (see Theorem 2.8 and Theorem 2.9 from [43]).

Lemma 3.1. The set Cn, n > 2, is closed, symmetric with respect to the origin and
if sin 2� > 0, we have Cn \ fx 2 R

n j x� > 0; � D 1; : : : ; ng D ¿.
The set Sn, n > 3, is closed, symmetric with respect to the origin and if sin 2� 6 0

we have Sn \ fx 2 R
n j x� > 0; � D 1; : : : ; ng D ¿.

We are now ready to present the main result from [43] and give the sketch of the
proof.

Theorem 3.2. In the case sin 2� > 0 for 2 6 n < �=� � 1=2, system of equations
(6) has at least 2

�Œ�=��1=2
n

�
solutions which nodes are all positive or all negative.

In the case sin 2� 6 0 for 3 6 n < �=� � 1, system of equations (6) has at least
2
�Œ�=��1

n

�
solutions which nodes are all positive or all negative.

Proof. First, we consider the case sin 2� > 0. For the solutions which satisfy the
condition

R 1
�1 !�.x/ cos �x dx ¤ 0, � D 1; : : : ; n, the system of equations (6) can

be rewritten in the form

x� D  C� .x/ D 1

�

 

arctan

R 1
�1 !�.x/ sin �x dx
R 1
�1 !�.x/ cos �x dx

C k��

!

; � D 1; : : : ; n; (7)
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where k� 2 Z. Defining the functions p� W Rn ! R
n, � D 1; : : : ; n, by

p�.x1; : : : ; x�; : : : ; xn/ D .x1; : : : ; xn; : : : ; x�/;

the set of solutions of
R 1
�1 !�.x/ cos �x dx D 0, � D 1; : : : ; n, can be described

as p�.Cn�1 � R/, � D 1; : : : ; n. Thus, the transformation holds true for all the
solutions which belong to the set Rnn.[n

�D1p�.Cn�1 � R//. Since the set Cn has
empty intersection with the set fx j x� > 0; � D 1; : : : ; ng, it follows that
fx j x� > 0; � D 1; : : : ; ng  R

nn �[n
�D1p�.Cn�1 � R/

�
. This means that any

solution of the system (6) with all positive nodes will be also the solution of the
system (7). Since the setCn�1 is symmetric with respect to the origin, the same holds
for [n

�D1p�.Cn�1 � R/, and in the same way one can consider quadrature rule with
all negative nodes.

Let us choose some fixed vector, with strictly increasing coordinates, of positive
integers k D .k1; : : : ; kn/, with the property kn < �=� � 1=2. The functions
 C� .x/, � D 1; : : : ; n, are continuous in x for x� > 0, � D 1; : : : ; n. The mapping
�C

k W Rn ! R
n defined by �C

k .x/ D . C1 .x/; : : : ;  
C
n .x// is continuous in x, for

x� > 0, � D 1; : : : ; n. The mapping �C
k maps continuously the closed convex

set Ak D n

�
�D1

h�
k� � 1

2

�
�
�
;
�
k� C 1

2

�
�
�

i
into itself. According to the Brouwer fixed

point theorem (see, e.g., [47]), the map �C
k has a fixed point xk 2 Ak. According

to the fact that
R 1
�1 !�.x/ cos �x dx ¤ 0, it follows that we cannot have the solution

with �-th coordinate equal to .k� ˙ 1=2/�=�, which means that all coordinates of
the solution xk are different, according to the fact that the coordinates of the vector
k are different. Thus, xk are the nodes of the quadrature rule (4). At this solution, all
the weights are different from zero.

For the case sin 2� 6 0, one can rewrite the system of equations (6), in the form

x� D  S� .x/ D 1

�

 

arccot

R 1
�1 !�.x/ cos �x dx
R 1
�1 !�.x/ sin �x dx

C k��

!

; � D 1; : : : ; n; (8)

where k� 2 Z, and using the similar arguments as in the previous case prove that
the mapping �S

k W Rn ! R
n, defined by �S

k .x/ D . S1 .x/; : : : ;  
S
n .x//, has a fixed

point in the set Bk D n

�
�D1 Œk��=�; .k� C 1/�=�.

The number of the solutions can be easily obtained. ut
The nodes xk , k D 1; : : : ; n, of the quadrature formula (4) can be obtained by

using Newton–Kantorovich method for the system (6) with appropriately chosen
starting values. Once nodes are constructed, weights �k , k D 1; : : : ; n, can be
computed by using formula (5). In Table 1 we give two different quadrature
rules with all positive nodes for the case n D 10, � D 10000 (numbers in
parenthesis indicate decimal exponents). All computations are performed by using
the Mathematica package OrthogonalPolynomials [5].
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Table 1 Nodes xk and
weights �k , k D 1; : : : ; 10,
� D 10000

k xk �k

1 0:7363923439571446.�1/ �2:804303173754735
2 0:2225507250414224 2:970983118291112.1/

3 0:3673781455056259 1:583146376664096.2/

4 0:4999533548408196 �5:186895526861798.2/
5 0:6234179456200185 �1:207492403800276.3/
6 0:7330595288408521 �2:103809780509887.3/
7 0:8269931488869863 �2:821892746331952.3/
8 0:8998780982412568 2:717303933673183.3/

9 0:9554842880629808 1:718285983811184.3/

10 0:9887851701205169 �5:392769580168855.2/
1 0:1000286064833346 �1:463766698478331.2/
2 0:1499799293036977 �5:661615769092509.2/
3 0:2492542565212690 3:197802441947143.3/

4 0:3010905350216144 6:614998760647455.3/

5 0:3500993801768735 �4:923021376270480.3/
6 0:4500020261498017 1:443577768367478.3/

7 0:5499046722324926 �3:931520115104385.3/
8 0:7500241241587095 �5:332095232080515
9 0:8499267711774567 2:037155323640304.1/

10 0:9507718999014823 2:664975853402439

By using transformed systems (7) and (8) of nonlinear equations, the existence
of quadrature rule (4) which has both the positive and negative nodes was proved
in [44] under two conjectures, one for the case sin 2� < 0 and the second one for
sin 2� > 0. We present those conjectures here, while for the proof of existence of
mentioned quadrature rule we refer readers to [44].

First, we consider the case sin 2� < 0. Let us denote

b� D .N � � C 1/
�

�
; � D 1; : : : ; N; N D Œ�=�;

and

ISn D sgn.sin �/
Z 1

�1
t

nY

�D1
.t2 � b2�/ sin �t dt; n D 0; 1; : : : ; N:

For sin 2� > 0, we denote

a� D
�

N � � C 1

2

�
�

�
; � D 1; : : : ; N; N D Œ�=�;

and
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ICn D sgn.sin �/
Z 1

�1

nY

�D1
.t2 � a2�/ cos �t dt; n D 0; 1; : : : ; N:

It is easy to see that for � > 0 and sin 2� < 0 inequality

I S0 D sgn.sin �/
Z 1

�1
t sin �t dt D 1

j sin �j
�� sin 2� C 2 sin2 �

�2
> 0

holds, while for � > 0 and sin 2� < 0 holds

IC0 D sgn.sin �/
Z 1

�1
cos �t dt D 2j sin �j

�
> 0:

The mentioned conjectures are the following.

Conjecture 1. If � > 0 and sin 2� < 0, then I Sn > 0 for each n D 1; : : : ; N .

Conjecture 2. If � > 0 and sin 2� > 0, then ICn > 0 for each n D 1; : : : ; N .

Under condition that Conjecture 1 is true in [44], it was proved that in the case
when � > 0 and sin 2� < 0 for all

x D .x1; : : : ; x2nC1/ 2 n

�
�D1.Œ�b�; 0 � Œ0; b�/ � Œ�bnC1; bnC1; n < N;

the following inequality

sgn.sin �/
Z 1

�1

2nC1Y

�D1
.t � x�/ sin �t dt > 0

holds. This inequality implies the existence of the quadrature rule (4) in general, for
the case sin 2� < 0.

Analogously as in the case sin 2� < 0, under condition that Conjecture 2 is true,
it can be proved that in the case when � > 0 and sin 2� > 0 for all

x D .x1; : : : ; x2n/ 2 n

�
�D1 .Œ�a�; 0 � Œ0; a� / ; n D 1; : : : ; N;

the following inequality

sgn.sin �/
Z 1

�1

2nY

�D1
.t � x�/ cos �t dt > 0

holds. As the consequence of this inequality we have the existence of the quadrature
rule (4) in general, for the case sin 2� > 0.
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Kim, Cools, and Ixaru in [27] and [28] considered the quadrature rules which
include derivatives. Van Daele, Vanden Berghe, and Vande Vyver [62] took into
account the both polynomial and exponential aspects. Assuming symmetric weights
and antisymmetric nodes they considered quadrature rules suited to integrate
functions that can be expressed in the form f .x/ D f1.x/ C f2.x/ cos �x C
f3.x/ sin �x, where f1, f2, and f3 are assumed smooth enough to be well approxi-
mated by polynomials on the wanted interval. The readers can find more details on
this topic in the recent survey paper [48].

4 Gaussian Rules with Respect to Some Complex Oscillatory
Weights

In this section we consider quadrature rules of Gaussian type

Z 1

�1
f .x/w.x/ei�x dx D

nX

kD1
w.n/k f .x

.n/

k /CRn.f /; � 2 R;

where Rn.f / D 0 for each f 2 P2n�1. Thus, we have to consider the following
complex measure

d
.x/ D w.x/ei�x�Œ�1;1.x/ dx; � 2 R; (9)

supported on the interval Œ�1; 1 (�A is the characteristic function of the set A). The
existence of the corresponding orthogonal polynomials is not guaranteed. In order
to check existence of orthogonal polynomials with respect to complex oscillatory
measure d
.x/, we need the general concept of orthogonal polynomials with
respect to a moment functional (see [3, 37]).

Let a linear functional L be given on the linear space P of all algebraic
polynomials, i.e., let the functional L satisfy following equality

LŒ˛P C ˇQ D ˛LŒP  C ˇLŒQ; ˛; ˇ 2 C; P;Q 2 P:

Because of linearity, the value of the linear functional L at every polynomial is
known if the values of L at the set of all monomials are known. The corresponding
values of the linear functional L at the set of monomials are called the moments,
and we denote them by 
k , k 2 N0. Thus, LŒxk  D 
k , k 2 N0.

A sequence of polynomials fPn.x/gC1nD0 is called the polynomial sequence
orthogonal with respect to a moment functional L, provided for all nonnegative
integersm and n,

• Pn.x/ is polynomial of degree n,
• LŒPn.x/Pm.x/ D 0 form ¤ n,
• LŒP 2

n .x/ ¤ 0.
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If the sequence of orthogonal polynomials exists for a given linear functional
L, then L is called quasi-definite or regular linear functional. Under the condition
LŒP 2

n .x/ > 0, the functional L is called positive definite.
By using only linear algebraic tools the following theorem can be proved (see [3,

p. 11]).

Theorem 4.1. The necessary and sufficient conditions for the existence of a
sequence of orthogonal polynomials with respect to the linear functional L are that
for each n 2 N the Hankel determinants

�n D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ


0 
1 
2 : : : 
n�1

1 
2 
3 : : : 
n


2 
3 
4 : : : 
nC1
:::

:::
:::

:::


n�1 
n 
nC1 : : : 
2n�2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

¤ 0:

We use previous theorem to prove existence of orthogonal polynomials with
respect to some linear functionals defined by complex oscillatory measures (9) as
follows:

LŒf  D
Z

R

f .x/ d
.x/ D
Z 1

�1
f .x/w.x/ei�x dx; f 2 P; � 2 R: (10)

1ı The case w.x/ D x, � D m� ¤ 0, for an integer m, was considered by
Milovanović and Cvetković in [40]. Here, the measure is

d
m.x/ D xeim�x�Œ�1;1 dx; m 2 Z n f0g;
thus, orthogonal polynomials with respect to the moment functional

LŒf  D
Z 1

�1
f .x/xeim�x dx; f 2 P; (11)

i.e., with respect to the following (quasi) inner product

.f; g/ D
Z
f .x/g.x/xeim�x dx; f; g 2 P; (12)

must be considered.
By using an integration by parts it is easy to obtain the following recurrence

relation for the moments


kC1 D .�1/m
i�

.1 � .�1/kC2/� k C 2

i�

k; 
0 D 2

.�1/m
i�

:
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The moments can be expressed explicitly as follows:


k D .�1/mCk.k C 1/Š

.i�/kC1
kX

�D0

.1C .�1/�/.�i�/�

.� C 1/Š
:

In [40] the following theorem was proved.

Theorem 4.2. For every nonzero integer m, the sequence of orthogonal
polynomials with respect to the linear functional (11), i.e., the sequence of
orthogonal polynomials with respect to the weight function xeim�x , supported
on the interval Œ�1; 1, exists uniquely.

Let us notice that in general, if m 62 Z, the existence of orthogonal polynomials
is not assured (e.g., the smallest positive solution of equation �3 D 0 is � �
7:134143996368961 : : :).

As a consequence of the following property .xf; g/ D .f; xg/ of the inner
product (12), we have that the monic orthogonal polynomials with respect to
the weight function xeim�x on Œ�1; 1 satisfy the following three-term recurrence
relation

pnC1.x/ D .x � i˛n/pn.x/ � ˇnpn�1.x/; n D 0; 1; : : : ;

with p0.x/ D 1 and p�1.x/ D 0. The recursion coefficients ˛n and ˇn can be
expressed in terms of Hankel determinants,

i˛n D �0nC1
�nC1

� �0n
�n

; n 2 N0I ˇn D �nC1�n�1
�2
n

; n 2 N;

where�0n is the Hankel determinant�nC1 with the penultimate column and the last
row removed.

In [40] the first four recursion coefficients were given explicitly. Also, the
numerical calculation of recursion coefficients was analyzed. Based on extensive
numerical computations, which were done by using a combination of the Chebyshev
algorithm and the Stieltjes–Gautschi procedure, applying package of routines
written in Mathematica (see [5]), the following conjecture was stated.

Conjecture 3. For recursion coefficients the following asymptotic relations are true

˛k ! 0; ˇk ! 1

4
; k ! C1:

Numerical calculations indicate that all of the nodes of orthogonal polynomials
with respect to the weight function xeim�x on Œ�1; 1 are simple, but it was not
proved. In the case of multiple zeros of orthogonal polynomials, the Gaussian
quadrature rule has the following form:
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GnŒf  D
nX

�D1

m��1X

kD0
w.n/�;kf

.k/.x.n/� /:

As a matter of fact, it was proved that at most two nodes in the previous rule may
have multiplicity greater than one. As it was said, in all numerical experiments, the
nodes were simple, so, the Gaussian quadrature rule has standard form

GnŒf  D
nX

�D1
w.n/� f .x

.n/
� /: (13)

Methods for numerical calculation of nodes and weights of Gaussian rule were also
described in [40].

We present here an application of these quadrature rules for the calculation of
Fourier coefficients. Namely,

FmŒf  D CmŒf C iSmŒf  D
Z 1

�1
f .x/eim�x dx D

Z 1

�1
f .x/ � f .0/

x
xeim�x dx;

so, we can compute it by using Gaussian quadrature rules (13) for the function g
given by

g.x/ D f .x/ � f .0/
x

; g.0/ D f 0.0/:

If function f is analytic in some domain D � Œ�1; 1, then g is also analytic in D.
Therefore, for some analytic function f , the Fourier coefficients can be calculated
as follows:

FmŒf  D
Z 1

�1
f .x/eim�x dx �

nX

�D1

w.n/�

x
.n/
�

.f .x.n/� / � f .0//:

2ı The case w.x/ D x.1 � x2/�1=2, � 2 R n f0g, was considered in [41]. In this
case the linear functional L is given by

LŒf  D
Z 1

�1
f .x/x.1 � x2/�1=2ei�x dx; � 2 R n f0g; f 2 P: (14)

Let 
k.�/, k 2 N0, be the corresponding sequence of moments. It is easy to see that
for each k 2 N0 the following equality


k.�/ D
Z 1

�1
xkC1.1� x2/�1=2ei�x dx D

Z 1

�1
xkC1.1 � x2/�1=2e�i�x dx D 
k.��/
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holds, which means that it is enough to consider only the case � > 0, since the
corresponding results for � < 0 can be obtained by a simple conjugation. The case
� D 0 is excluded, because for that value the linear functional L, given by (14), is
not regular (
0 D �0 D 0).

Let J� be the Bessel function of the order �, defined by (cf. [64, p. 40])

J�.z/ D
C1X

mD0

.�1/m.z=2/�C2m
mŠ� .� CmC 1/

: (15)

The sequence of moments 
k.�/, k 2 N0, satisfy the following recurrence
relation (see [41, Theorem 2]):


kC2.�/ D �k C 2

i�

kC1.�/C 
k.�/C k C 1

i�

k�1.�/; k 2 N;

with the initial conditions


0.�/ D i�J1.�/;


1.�/ D �

�

�
�J0.�/� J1.�/

�
;


2.�/ D i�

�2

�
�J0.�/C .�2 � 2/J1.�/

�
:

Unfortunately, the sequence of orthogonal polynomials does not exist for all
positive �. It is not hard to check that Hankel determinant�3 in this case is given by

�3 D i�3J 31
�6

�

7�3
J 30
J 31

C .2�2 � 21/�2
J 20
J 21

C �.5�2 C 12/
J0

J1
C 2�4 � 15�2 C 4

�

:

The smallest positive solution of the equation�3 D 0 is given by

� D 6:459008151994783455531721397032502543805710669120882 : : : ;

and for this � the sequence of orthogonal polynomials does not exist. So, the task
is to find � for which the existence of orthogonal polynomials with respect to the
linear functional (14) is ensured. For that purpose we notice that for the moment
sequence we have the following representation:


k.�/ D i�

.i�/k
.PkJ1.�/C �QkJ0.�//; k 2 N0;

where Pk and Qk are polynomials in �2 with integer coefficients of degrees 2Œk=2
and 2Œ.k � 1/=2, respectively (see [41, Theorem 3]). This expression can be easily
obtained from the recurrence relation for the moments. Let � be any positive zero
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of the Bessel function J0.�/. Then J1.�/ ¤ 0, due to the interlacing property of the
positive zeros of the Bessel functions (see [64, p. 479]), and sequence of moments
becomes


k.�/ D i�

.i�/k
PkJ1.�/:

The following theorem was proved in [41].

Theorem 4.3. If � is a positive zero of the Bessel function J0, then the sequence of
polynomials orthogonal with respect to the functional L, given by (14), exists.

Remark 4.1. With a matrix Riemann–Hilbert problem formulation of the orthog-
onality relations, Aptekarev and Van Assche [1] considered the linear functional
of the form LŒf  D R 1

�1 f .x/�.x/.1 � x2/�1=2 dx, where � is a complex valued,
nonvanishing on Œ�1; 1, which is holomorphic in some domain containing the
interval Œ�1; 1. In the special case �.x/ D ei�x , the linear functional (10) with
w.x/ D .1 � x2/�1=2 is obtained.

3ı The case w.x/ D .1�x2/	�1=2, for 	 > �1=2, and � 2 Rnf0g was considered
in [45]. In this case the linear functional (10) becomes

LŒf  D
Z 1

�1
f .x/.1 � x2/	�1=2ei�x dx; f 2 P: (16)

As in the case of the previous weight, it is enough to consider only the case � > 0,
since the case � < 0 can be obtain under substitution x WD �x.

The corresponding moments 
	k.�/ can be expressed in the form


	k.�/ D A

.i�/k
�
P	
k .�/J	.�/CQ	

k.�/J	�1.�/
�
; k 2 N0;

where A D .2=�/	
p
� � .	C 1=2/, J� is the Bessel function of the order �, given

by (15), and P	
k andQ	

k are polynomials in �, which satisfy the following four-term
recurrence relation:

ykC2 D �.k C 2	C 1/ykC1 � �2yk � k�2yk�1;

with the initial conditionsP	
0 .�/ D 1, P	

1 .�/ D �2	, P	
2 .�/ D 2	.2	C1/��2 and

Q	
0.�/ D 0,Q	

1 .�/ D �,Q	
2 .�/ D �.2	C1/�, respectively (see [45, Theorem 2.1]).

It is obvious that for each 	 > �1=2, if � > 0 is an arbitrary zero of the Bessel
function J	, the polynomials�n orthogonal with respect to (16) do not exist, because
�0 D 
0 D AJ	.�/ D 0. In [45] the following result was proved.

Theorem 4.4. If 	 is a positive rational number and � is a positive zero of the
Bessel function J	�1, then the polynomials �n orthogonal with respect to (16) exist.



632 G.V. Milovanović and M.P. Stanić

Suppose that parameters	 and � are such that provide the existence of orthogonal
polynomials with respect to linear functional (16). Due to the property .zp; q/ D
.p; zq/ of the (quasi) inner product .p; q/ WD L.pq/, for L given by (16), the
corresponding (monic) orthogonal polynomials f�ngn2N0 satisfy the fundamental
three-term recurrence relation

�nC1.x/ D .x � i˛n/�n.x/ � ˇn�n�1.x/; n 2 N;

with �0.x/ D 1, ��1.x/ D 0. The recursion coefficients ˛n and ˇn can be expressed
in terms of Hankel determinants as

i˛n D �0nC1
�nC1

��
0
n

�n

D 1

i�

�
H 0nC1
HnC1

� H 0n
Hn

�

; ˇn D �nC1�n�1
�2
n

D 1

.i�/2
HnC1Hn�1

H2
n

;

where

Hn D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

P	
0 .�/ : : : P

	
n�1.�/

P 	
1 .�/ : : : P 	

n .�/
:::

:::
:::

P 	
n�1.�/ : : : P 	

2n�2.�/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

; H 0n D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

P	
0 .�/ P

	
1 .�/ : : : P

	
n�2.�/ P 	

n .�/

P 	
1 .�/ P

	
2 .�/ : : : P

	
n�1.�/ P 	

nC1.�/
:::

:::
:::

:::

P 	
n�1.�/ P 	

n .�/ : : : P
	
2n�3.�/ P 	

2n�1.�/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:

The coefficientˇ0 can be chosen arbitrary, but it is convenient to take ˇ0 D 
	0.�/ D
AJ	.�/.

Recursion coefficients can be calculated by using the Chebyshev algorithm,
implemented in the software package OrthogonalPolynomials [5], similarly
as in the case w.x/ D x. According to very extensive numerical calculations, the
conjecture that the recursion coefficients satisfy the following asymptotic relations

˛n ! 0; ˇn ! 1

4
; n ! C1;

was stated in [45]. Let us notice that for 	 D 0, from the result given in [1], it
follows that ˛n ! 0 and ˇn ! 1=4, n ! C1.

It is easy to see that 
	k.�/ D .�1/k
	k.�/, k 2 N0. Using that fact, it can be
proved that if the sequence of monic orthogonal polynomials f�ngn2N0 exists, then

�n.z/ D .�1/n�n.�z/ and the coefficients ˛n and ˇn are real. This implies that
the zeros x.n/k , k D 1; : : : ; n, of �n are distributed symmetrically with respect to
the imaginary axis. Some properties of the corresponding orthogonal polynomials
were given in [42].

By using functions implemented in package OrthogonalPolynomials [5]
in extended arithmetics we are able to construct Gaussian rules

Z 1

�1
f .x/.1 � x2/	�1=2ei�x dx D

nX

kD1
w.n/k f .x

.n/

k /CRnŒf ; (17)
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where RnŒf  D 0 for each f 2 P2n�1, which can be successfully applied for
numerical calculation of certain type of highly oscillating integrals. We illustrate
this applying Gaussian rule to the integral

I.�/ D Im

�Z 1

�1
1

x � i
.1 � x2/1=4ei�x dx

	

� Gn.�/ D Im

(
nX

kD1

w.n/k
x
.n/

k � i

)

;

for � 2 f�1; �2g, where �1 D 99:35381121792450 and � D 1000:990052907274

(here, 	 D 3=4 and �1; �2 are zeros of J�1=4.z/). The imaginary parts of the
corresponding integrands are displayed in Fig. 1.

The exact values of I.�/ are

I.�1/ D 0:003444676594400911807822428206598645263589679 : : : ;

I.�2/ D 0:000191491475444598012602579210977050425257037 : : : :

In Table 2, for some selected number of nodes n, the relative errors in Gaussian
approximations, rn D j.Gn.��/ � I.��//=I.��/j, � D 1; 2, are given, as well as the
relative errors rGn in Gauss–Gegenbauer approximations with respect to the weight
function x 7! .1� x2/1=4 (numbers in parenthesis indicate decimal exponents).

Numerical experiments indicate that our Gaussian quadrature rule (17) becomes
more efficient when � increases, while Gauss–Gegenbauer rule becomes unusable.
4ı The case w.x/ D .1 � x/˛�1=2.1 C x/ˇ�1=2, where ˛; ˇ > �1=2 are real

numbers such that ` D jˇ � ˛j is a positive integer, and � 2 R n f0g was considered
in [58]. Thus, we are concerned with the following measure:

d
.x/ D .1� x/˛�1=2.1C x/ˇ�1=2ei�x�Œ�1;1.x/ dx

supported on the interval Œ�1; 1. This measure can be written in the following form:

d
.x/ D
(
.1C x/`.1 � x2/˛�1=2ei�x�Œ�1;1.x/ dx; ˇ > ˛;

.1 � x/`.1 � x2/ˇ�1=2ei�x�Œ�1;1.x/ dx; ˛ > ˇ:

Therefore, we consider the measures

d
˙.x/ D .1˙ x/`.1� x2/˛�1=2ei�x�Œ�1;1.x/ dx;

where ˛ > �1=2 and ` is a positive integer, i.e., we consider orthogonality with
respect to the linear functional

L˙Œf  D
Z 1

�1
f .x/.1˙ x/`.1 � x2/˛�1=2ei�x dx; f 2 P: (18)
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Fig. 1 The graphs of the function Im
�
.1� x2/1=4ei�x=.x� i/

�
for � D �1 (up) and � D �2 (down)

Table 2 Relative errors rn
and rGn , for n D 5.5/25,
when � D �� , � 2 f1; 2g

� �1 �2
n rn rGn rn rGn

5 7:59.�8/ 3:80.2/ 5:75.�12/ 2:13.2/

10 5:82.�16/ 2:24.2/ 2:63.�26/ 6:65.2/

15 1:16.�19/ 2:72.2/ 5:58.�35/ 6:23.2/

20 4:11.�26/ 6:32.1/ 3:50.�47/ 1:08.3/

25 1:79.�29/ 8:46.1/ 7:99.�55/ 5:14.2/
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Again, we restrict our attention to the case � > 0, since the corresponding results
for � < 0 can be obtained by a simple conjugation.

The moments 
k̇ D L˙Œxk, k 2 N0, can be expressed in the form


k̇ D A

.i�/kC`
X̀

jD0

 
`

j

!

.˙1/j .i�/`�j
�
P˛
kCj .�/J˛.�/CQ˛

kCj .�/J˛�1.�/
�
;

whereA D .2=�/˛
p
� � .˛C1=2/, J� is Bessel function of the order �, andP˛

k and
Q˛
k are polynomials in �, which satisfy the following four-term recurrence relation

ykC2 D �.k C 2˛ C 1/ykC1 � �2yk � k�2yk�1;
with the initial conditionsP˛

0 .�/ D 1,P˛
1 .�/ D �2˛, P˛

2 .�/ D 2˛.2˛C1/��2 and
Q˛
0 .�/ D 0,Q˛

1 .�/ D �,Q˛
2 .�/ D �.2˛C1/�, respectively (see [58, Theorem 2.1]).

When the existence of orthogonal polynomials with respect to the linear functional
(18) is in question, the following result was proved in [58].

Theorem 4.5. If ˛ > �1=2 is a rational number, ` is a positive integer, and � is a
positive zero of the Bessel function J˛�1, then the polynomials �ṅ orthogonal with
respect to the linear functionals L˙, given by (18), exist.

The (quasi) inner product .p; q/ D L˙Œpq has the property .zp; q/ D .p; zq/,
which implies that the corresponding (monic) orthogonal polynomials f�ngn2N0
satisfy the fundamental three-term recurrence relation

�nC1.x/ D .x � ˛n/�n.x/ � ˇn�n�1.x/; n 2 N;

with �0.x/ D 1, ��1.x/ D 0. Knowing three-term recurrence coefficients, by using
functions implemented in the software package OrthogonalPolynomials [5]
in extended arithmetics we are able to construct the corresponding quadrature rules
of Gaussian type

Z 1

�1
f .x/.1 � x/˛�1=2.1C x/ˇ�1=2ei�x dx D

nX

kD1
w.n/k f .x

.n/

k /CRnŒf ; (19)

where RnŒf  D 0 for each polynomial of degree at most 2n � 1. Such rules
can be efficiently applied for numerical integration of highly oscillating functions.
Analogously as in the case of oscillatory modification of Gegenbauer measure,
numerical experiments indicate that Gaussian quadrature rule (19) becomes more
efficient when � increases, while Gauss–Jacobi rule with respect to weight x 7!
.1 � x/˛�1=2.1C x/ˇ�1=2 becomes unusable (see [58] for some examples).
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5 Irregular Oscillators

In this section we consider the more general highly oscillating integrand,

I Œf Ig D
Z b

a

f .x/ei!g.x/ dx; (20)

where �1 < a < b < C1, j!j is large, and both f and g are sufficiently smooth
functions. The integrand of (20) is often called an irregular oscillator. Such integrals
occur in a wide range of practical problems. There are a large number of articles
where problems of numerical calculation of such integrals are treated (see [9–11,
18,20,22–24,33,46,55,57], etc.). In the case g.x/ D x, we get the so-called regular
oscillators, which have been already considered through the paper. In this section we
briefly describe asymptotic method, Filon-type methods, and Levin-type methods
for numerical integration of (20). We consider only the case when g0.x/ ¤ 0 for
a 6 x 6 b, i.e., the case when g has no stationary points. Notice that from the van
der Corput lemma it follows that I Œf Ig D O.!�1/, j!j ! 1 (see [59]).

5.1 Asymptotic Methods

Asymptotic method was presented by Iserles and Nørsett [24]. Starting by the
following simple transformation

I Œf Ig D
Z b

a

f .x/ei!g.x/ dx D 1

i!

Z b

a

f .x/

g0.x/
d

dx
ei!g.x/ dx;

and applying an integration by parts, we obtain

I Œf Ig D 1

i!

�
f .x/

g0.x/
ei!g.x/

�ˇˇ
ˇ
ˇ
ˇ

b

a

� 1

i!

Z b

a

d

dx

�
f .x/

g0.x/

�

ei!g.x/ dx:

Denoting

QAŒf Ig D 1

i!

�
f .x/

g0.x/
ei!g.x/

�ˇˇ
ˇ
ˇ
ˇ

b

a

;

we have

I Œf Ig D QAŒf Ig � 1

i!
I


d

dx

�
f .x/

g0.x/

�

Ig
�

:



Numerical Integration of Highly Oscillating Functions 637

According to the van der Corput lemma, I Œf Ig �QAŒf Ig D O.!�2/. Now, we
can approximate the error term by the same rule, so, we approximate I Œf Ig by

QAŒf Ig � 1

i!
QA


d

dx

�
f

g0

�

Ig
�

:

In this approximation of I Œf Ig the error is O.!�3/. Continuing in this manner,
after s steps, we obtain approximation of I Œf Ig with error O.!�s�1/. Thus, we
have derived the following asymptotic expansion.

Theorem 5.1. Let f 2 C1 and g0.x/ ¤ 0 for a 6 x 6 b. Let

�1Œf .x/ D f .x/

g0.x/
; �kC1Œf .x/ D 1

g0.x/
d�kŒf .x/

dx
; k D 0; 1; : : : :

Then, for ! ! 1,

I Œf Ig � �
1X

kD1

1

.�i!/k
�
�kŒf .b/ei!g.b/ � �kŒf .a/ei!g.a/

�
:

Taking the s�th partial sum of the asymptotic expansion we obtain the asymp-
totic method

QA
s Œf Ig D �

sX

kD1

1

.�i!/k
�
�kŒf .b/ei!g.b/ � �kŒf .a/ei!g.a/

�
:

It is easy to see that

I Œf Ig �QA
s Œf Ig D 1

.�i!/s

Z b

a

g0.x/�sC1Œf .x/ei!g.x/ dx � O.!�s�1/:

The following result follows from Theorem 5.1 (see [46]).

Lemma 5.1. Suppose 0 D f .k/.a/ D f .k/.b/, for all k D 0; 1; : : : ; s � 1 for some
positive integer s, and that f depend on ! as well as that the every function in the
set ff; f 0; : : : ; f .sC1/g is of asymptotic order O.!�n/, ! ! 1, for some fixed n.
Then, I Œf Ig � O.!�n�s�1/, ! ! 1.

The drawback of the asymptotic method is that for fixed !, in general QA
s Œf Ig

diverges as s ! 1. Also, numerical examples show that asymptotic method may
produce very inaccurate approximation for small values of ! in general.
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5.2 Filon-Type Methods

Here we describe Filon-type method for numerical computation of (20), presented
in [24]. The main idea is to interpolate function f for fixed set of prescribed nodes
by using Hermite interpolation and then integrate interpolating polynomial.

Let fxkg�kD0 be a set of prescribed nodes, such that

a D x0 < x1 < � � � < x� D b:

Having chosen multiplicities n0; n1; : : : ; n� 2 N, by Hn.x/ D Pn
kD0 akxk , we

denote polynomial of degree n, where n D P�
kD0 nk � 1, such that

H.j /
n .xk/ D f .j /.xk/; j D 0; 1; : : : ; nk � 1; k D 0; 1; : : : ; �: (21)

For s D minfn0; n�g we define

QF
s Œf Ig D I ŒHnIg D

nX

kD0
akI Œx

k Ig:

The function f �Hn satisfies the conditions given in Lemma 5.1 due to (21). Thus,
we have

I Œf Ig�QF
s Œf Ig D I Œf Ig�I ŒHnIg D I Œf �HnIg � O.!�s�1/; ! ! 1:

Therefore, the asymptotic and the Filon-type methods have the same asymptotic
order. In many situations (but it is not always) the accuracy of Filon-type method
is significantly higher than that of the asymptotic method (see some examples in
[24, 46]).

Unfortunately, there are two problems with Filon-type methods. The first one
is obvious from the definition of method. By definition, the Filon-type methods
given above require the computation of the moments I Œxk Ig analytically, which
is not possible in general. The second problem is connected with the fact that the
Filon-type method is based on interpolation and the accuracy ofQF

s Œf Ig is directly
related to accuracy of interpolation. The good example for that is Runge’s example
from 1901 (see [37, p. 60]). For non-oscillatory functions fa.x/ D 1=.1C .x=a/2/,
x 2 Œ�1; 1, for sufficiently small a, interpolation polynomials with equally spaced
nodes are oscillating (see Fig. 2). For such functions the Filon-type methods
(especially, when only function values are used) produce less accurate results.

The magnitude of Runge’s phenomenon could be reduced by using Chebyshev
interpolating points. Another idea is to use cubic spline, but in that case the order is
at most O.!�3/.

Hascelik [18] modified the Filon-type methods such that they can be applied in
the cases when f and g have algebraic singularity.
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Fig. 2 The Runge’s example for n D 11 equally spaced nodes, for a D 1 (left) and a D 1=4

(right)

5.3 Levin-Type Methods

Now, we explain method which does not require the computation of moments,
introduced by Levin (see [30–32]). Levin method can be applied to more general
problems, which will be presented in Sect. 6.

Suppose that F.x/ is a function such that

d

dx

�
F.x/ei!g.x/

� D f .x/ei!g.x/: (22)

It is obvious that I Œf Ig D �
F.x/ei!g.x/

�ˇˇ
ˇ
b

a
. The idea is to approximate F by some

function V , which gives method

QLŒf Ig D �
V.x/ei!g.x/

�ˇˇ
ˇ
b

a
D V.b/ei!g.b/ � V.a/ei!g.a/:

From (22), we obtain equation LŒF .x/ D f .x/, where L is the operator defined
by LŒF  D F 0 C i!g0F . If V.x/ D Pn

kD0 akxk is the collocation polynomial,
satisfying system of equations LŒV .xk/ D f .xk/ at points a D x0 < x1 < � � � <
x� D b, then I Œf Ig �QLŒf Ig � O.!�2/.

There are two natural generalizations of Levin method (see [18, 46]). The first
one is to use a polynomial V such that not only the values of f and LŒV  are the
same at nodes but also the values of their derivatives up to the given multiplicity.
The second generalization is obtained allowing V to be a linear combination of a
set of suitable basis functions, not only polynomial.

The following result was proved in [46].
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Theorem 5.2. Suppose that g0.x/ ¤ 0 for x 2 Œa; b. Let  D f kgnkD0 be a basis
of functions independent of !, let fxkg�kD0 be a set of nodes such that a D x0 <

x1 < � � � < x� D b, let fnkg�kD0 be a set of multiplicities associated with nodes, and
s D minfn0; n�g. Further, suppose that V D Pn

kD0 ak k , where n D P�
kD0 nk �1,

is the solution of the system of collocation equations

djLŒV 

dxj
.xk/ D f .j /.xk/; j D 0; 1; : : : ; nk � 1I k D 0; 1; : : : ; �;

where LŒV  D V 0 C i!g0V . Define

gk D Œ.g0 k/.x0/ � � � .g0 k/.n0�1/.x0/ � � � .g0 k/.x�/ � � � .g0 k/.n��1/.x�/T :
(23)

If the vectors fg0; : : : ; gng are linearly independent, then the system has a unique
solution, and for

QL
 Œf Ig D �

V.x/ei!g.x/
�ˇˇ
ˇ
b

a
D V.b/ei!g.b/ � V.a/ei!g.a/;

we have I Œf Ig �QL
 Œf Ig � O.!�s�1/, ! ! 1.

Olver [46] proved that if f kgnkD0 is a Chebyshev set, then the conditions on
fgkgnkD0 of the previous theorem are satisfied for all choices of fxkg�kD0 and fnkg�kD0.
He showed that it is possible to obtain higher asymptotic order of Levin-type method
by choosing the basis in the following way:

 0 D 1;  1 D f

g0
;  kC1 D  0k

g0
; k D 1; 2; : : : : (24)

Suppose that fxkg�kD0, fnkg�kD0, and f kgnkD0, where n D P�
kD0 nk � 1, satisfy

the conditions of Theorem 5.2. Then, for s D minfn0; n�g, we have (see [46,
Theorem 5.1])

I Œf Ig �QL
 Œf Ig � O.!�n�s�1/:

Levin-type method QL
 Œf Ig with basis f kg given by (24), is significant

improvement overQF Œf Ig andQLŒf Ig (with standard polynomials basis), when
the same nodes and multiplicities are used, and ! is sufficiently large. Also, since
QL
 Œf Ig does not require polynomial interpolation, the Runge’s phenomenon does

not occur.
In general, accuracy of asymptotic, Filon-type, and Levin-type methods depends

on f and g. Olver [46] presented several examples for comparisons of these three
types of methods, including Levin-type method with polynomial basis, and Levin-
type method with basis (24).
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6 Integrals Involving Highly Oscillating Bessel Function

In this section we consider integrals of the form

I Œf  D
Z b

a

f .x/J�.rx/ dx; (25)

where J�.rx/ is Bessel function of the first kind of order � for some positive real
number �, r 2 R is large, and 0 < a < b 6 C1. Such integrals appear in many
areas of science and technology and several efficient methods for their numerical
calculations are derived (see, e.g., [4,39,51,52,54,65–67]). Here we present Levin-
type methods [31, 32] for finite b, and Chen’s method [2] for both the finite and
infinite b.

6.1 Levin-Type Methods

In Sect. 5 it was explained how Levin-type method [31, 32] can be applied to
irregular oscillators, as well as Olver’s generalization [46]. Levin’s collocation
method is applicable to a wide class of oscillating integrals with weight functions
satisfying certain differential conditions. It can be efficiently used for computing
integral (25) with finite b.

Let F.x/ D Œf1.x/ f2.x/ � � � fm.x/
T be an m�vector of non-oscillating

functions,W.r; x/ D Œw1.r; x/ w2.r; x/ � � � wm.r; x/T be anm�vector of linearly
independent highly oscillating function, depending on r , and let “�” denotes the inner
product. Let us consider general class of highly oscillatory integrals of the form

I ŒF  D
Z b

a

mX

kD1
fk.x/wk.r; x/ dx �

Z b

a

F.x/Ą �W.r; x/ dx: (26)

Assume that W 0.r; x/ D A.r; x/W.r; x/, where derivative is with respect to x, and
A.r; x/ is m �m matrix of non-oscillating functions. If F were of the form

F.x/ D Q0.x/C AT .r; x/Q.x/;

then the integral (26) could be evaluated as

I ŒF  D
Z b

a

�
Q0.x/C AT .r; x/Q.x/

� �W.r; x/ dx

D
Z b

a

.Q.x/ �W.r; x//0 dx D Q.b/ �W.r; b/�Q.a/ �W.r; a/:
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The main idea of Levin method is to select linearly independent basis function
f kgnkD1 and determine

P.x/ D
"

nX

kD1
a
.1/

k  k.x/ � � �
nX

kD1
a
.m/

k  k.x/

#T

such that the following system of equations is satisfied

P 0.xj /C AT .r; xj /P.xj / D F.xj /; j D 1; 2; : : : ; n;

at nodes x1; x2; : : : ; xn. The Levin’s approximation of I ŒF  is

QL
n ŒF  D

Z b

a

�
P 0.x/C AT .r; x/P.x/

� �W.r; x/ dx

D P.b/ �W.r; b/� P.a/ �W.r; a/:
Levin [32] presented an error analysis for the composite collocation method QL

n;h

with n selected nodes in each subinterval of length h including the endpoints of
each subinterval. His error estimate is given in the following theorem (see also [65,
Theorem 1.1]).

Theorem 6.1. Let F 2 C2nC1Œa; b, B.r; x/ D .A.x; r/=C.r//�1 exists, B 2
C2nC1Œa; b, and its 2nC 1 derivatives are bounded uniformly in r for C.r/ > ˛0.
Then

ˇ
ˇI ŒF  �QL

n;hŒF 
ˇ
ˇ <

M.b � a/hn�2

C.r/2
;

for C.r/ > ˇ > 0, where h is the length of each subinterval and M is a constant
independent of r and h.

For integral (25),

m D 2; W.r; x/ D ŒJ��1.rx/ J�.rx/T ; and F.x/ D Œ0 f .x/T : (27)

Then,

A.r; x/ D

2

6
4

� � 1

x
�r

r ��
x

3

7
5 : (28)

Define C.r/ D r , then by Theorem 6.1 for h ! 0 and r ! 1 we obtain

I Œf  �QL
n;hŒf  D O

�
hn�2

r2

�

:
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Xiang, Gui, and Moa [67] extended Levin’s method by using multiple nodes.
Let fmkgnkD1 be multiplicities associated with the nodes a D x1 < x2 < � � � <
xn D b, s D minfm1;mng and f kgNkD0, where N D Pn

kD1 mk � 1, be a set of
linearly independent basis functions such that the matrix Œa0 � � � aN  is nonsingular,
with ak D Œ k.x1/  

0
k.x1/ � � �  .m1�1/k .x1/ � � �  k.xn/  0k.xn/ � � �  .mn�1/k .xn/

T ,

k D 0; 1; : : : ; N . Let P.x/ D
hPN

kD0 a
.1/

k  k.x/ � � � PN
kD0 a

.m/

k  k.x/
iT

satisfies

the following equations:

P 0.xj /C AT .r; xj /P.xj / D F.xj /; j D 1; 2; : : : ; n;

�
P 0.x/CAT .r; x/P.x/�.k/

xDxj D F .k/.xj /; k D 1; 2; : : : ; mj�1I j D 1; 2; : : : ; n:

Levin’s approximation of integral I ŒF , given by (26), is the following

QL
s D

Z b

a

�
P 0.x/C AT .r; x/P.x/

� �W.r; x/ dx D P.b/ �W.r; b/�P.a/ �W.r; a/:

Let W 0.r; x/ D A.r; x/W.r; x/, where A.r; x/ is a nonsingular m � m matrix,
and B.r; x/ D .A.r; x/=C.r//�1 for r 
 1. If

• W.r; x/; B.r; x/ 2 C1Œa; b,
• A.r; x/=C.r/ andA.k/.r; x/, k D 1; 2; : : : ; max

16j6n
mj �1, are uniformly bounded

for r 
 1 and all x 2 Œa; b,
• B.r; x/ and its s C 1 derivatives are uniformly bounded for r 
 1 and all x 2
Œa; b,

then (see [67, Theorem 4.1])

I ŒF  �QL
s ŒF  D O

�kW.r; x/k1
C.r/sC1

�

:

Let us now go back to our integral I Œf , given by (25), and denote the
corresponding Levin’s approximation by QL

s Œf . For the basis f k.x/g, we choose
the standard polynomial basis. Here C.r/ D r , and it is easy to see from (27)
and (28) that 1

r
A.x; r/, B.r; x/, A.k/.r; x/, and B.k/.r; x/, k D 1; 2; : : : ; s C 1, are

uniformly bounded for r 
 1 and all x 2 Œa; b. Therefore, according to previous
general estimate and the fact that kW.r; x/k1 D O.r�1=2/ for f 2 C1Œa; b and
r 
 1 (see [67, Theorem 2.1]), the following error estimate

I Œf  �QL
s Œf  D O.r�s�3=2/

holds. Notice that I Œf  D O.r�3=2/ for f 2 C1Œa; b and r 
 1.
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6.2 Chen’s Method

Chen’s [2] presented method for numerical computing of integral I Œf  given by (25)
following ideas of Milovanović [39] and Huybrechs and Vandewalle [20]. By using
integral form of Bessel function and its analytic continuation, Chen transformed
highly oscillating integral (25) into non-oscillating integral on Œ0;C1/, which
could be computed efficiently applying Gauss–Laguerre quadrature rule.

Substituting integral representation of Bessel function (see [64])

J�.x/ D .x=2/�p
�� .� C 1=2/

Z 1

�1
.1 � t2/��1=2eixt dt

in (25), we obtain

I Œf  D
Z b

a

f .x/
.rx=2/�p

�� .� C 1=2/

Z 1

�1
.1 � t2/��1=2eirxt dt dx: (29)

The function .1 � t2/��1=2eirxt is analytic in the half-strip of the complex plane,
�1 6 Re z 6 1, Im z > 0. By using complex integration method (see [2]), it can be
proved that

Z 1

�1
.1� t2/��1=2eirxt dt D ie�irx

.rx/2�

Z C1

0

�
u2 C 2irxu

���1=2
e�u du

� ieirx

.rx/2�

Z C1

0

�
u2 � 2irxu

���1=2
e�u du;

which together with (29) gives

I Œf  D i

2�r�
p
�� .� C 1=2/

�X

jD0
.2ir/j

 
�

j

! Z b

a

f .x/e�irx

x��j
Z C1

0

u2��j e�u

p
u2 C 2irxu

du dx

� .�1/j
Z b

a

f .x/eirx

x��j
Z C1

0

u2��j e�u
p

u2 � 2irxu
du dx

!

:

Integrals

I1.�; j; rx/ D 1p
�

Z C1

0

u2��j e�u

p
u2 C 2irxu

du; I2.�; j; rx/ D 1p
�

Z C1

0

u2��j e�u

p
u2 � 2irxu

du

can be represented by Whittaker W function (see [17]) as follows:
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I1.�; j; rx/ D
2��j�1Y

`D0
.2`C 1/

.rxi/.2��j�1/=2erxi

2.��jC1/=2
W�.��j=2/;��j=2.2rxi/;

I2.�; j; rx/ D
2��j�1Y

`D0
.2`C 1/

.�rxi/.2��j�1/=2e�rxi

2.��jC1/=2
W�.��j=2/;��j=2.�2rxi/:

It is known that Wittaker W function W˛;ˇ.z/ for j arg zj < � has the following
asymptotic expansion (see [17, p. 1016]):

W˛;ˇ.z/ � z˛e�z=2

 

1C
C1X

kD1

Qk
`D1

�
ˇ2 � .˛ � `C 1=2/2

�

kŠzk

!

; jzj ! 1:

Taking a few terms in the corresponding expansions, integrals I1.�; j; rx/ and
I2.�; j; rx/ can be approximated efficiently for large r . Therefore, our integral I Œf 
is now reduced to the following:

I Œf  D i

2�r�� .� C 1=2/

�X

jD0
.2ir/j

 
�

j

! Z b

a

f .x/e�irx

x��j
I1.�; j; rx/ dx

� .�1/j
Z b

a

f .x/eirx

x��j
I2.�; j; rx/ dx

!

: (30)

In the case when b < C1, by using complex integration method (see [2]), the
integrals in (30) can be transformed as follows:

Z b

a

f .x/e�irx

x��j
I1.�; j; rx/ dx

D
�

ie�irq

r

Z C1

0

f .q � iy=r/I1.�; j; r.q � iy=r//

.q � iy=r/��j
e�y dy

� ˇˇ
ˇ
ˇ
ˇ

qDb

qDa
;

Z b

a

f .x/eirx

x��j
I2.�; j; rx/ dx

D
�

ieirq

r

Z C1

0

f .q C iy=r/I2.�; j; r.q C iy=r//

.q C iy=r/��j
e�y dy

� ˇˇ
ˇ
ˇ
ˇ

qDa

qDb
:

Finally, applying a n-point Gauss–Leguerre quadrature rule to the previous
integrals, we get the approximation of I Œf , which we denote by QG

n . If f is an
analytic function in the strip of the complex plane a 6 Re z 6 b, then the following
error estimate



646 G.V. Milovanović and M.P. Stanić

I Œf  �QG
n Œf  D O

�
.nŠ/2

.2n/Šr2nC3=2

�

; r 
 1;

holds (see [2, Theorem 2.1]).
Suppose now that b D C1 and that exists constant C such that f satisfies the

condition jf .x/j 6 C for x 2 Œa;C1/. Transforming the integrals on the right-
hand side on (30) (see [2]), I Œf  can be written in the form

I Œf  D 1

2�r�� .� C 1=2/

�X

jD0
.2ir/j

 
�

j

!

�
�

e�ira

r

Z C1

0

f .a � iy=r/I1.�; j; r.a � iy=r//

.a � iy=r/��j
e�y dy

C.�1/j eira

r

Z C1

0

f .a C iy=r/I2.�; j; r.a C iy=r//

.aC iy=r/��j
e�y dy

�

:

Applying again a n-point Gauss–Leguerre quadrature rule to the integrals on the
right-hand side of the previous equation, we get approximationQG

n of I Œf . For and
analytic function f in f0 6 j arg zj 6 �=2g, the following error estimate

I Œf  �QG
n Œf  D O

�
.nŠ/2

.2n/Šr2nC3=2

�

; r 
 1;

holds in this case, too (see [2, Theorem 2.2]).
Numerical examples given in [2] show that for a < b < C1 Chen’s method

gives better approximation for integral I Œf  in comparison with Levin-type method.
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1 Introduction

The Askey tableau contains a classification and provides a graphical hierarchy of the
hypergeometric orthogonal polynomials. This scheme places these polynomials in
different levels depending on the number of parameters of each polynomial, in such
a way that polynomials in a certain level contain the same number of parameters
and, at the same time, one more parameter than the polynomials located in an
immediately lower level (see Fig. 1).

In 1998, Roelof Koekoek and René F. Swarttouw published the review The
Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue [7]
that contains a description of all families of hypergeometric orthogonal polynomials
appearing in the Askey scheme. Among others, it includes the definition of these
polynomials in terms of hypergeometric functions, the orthogonality relation,
some generating functions, the three-term recurrence relation, and Rodrigues-type
formula. It also includes some limit relations between the families of orthogonal
polynomials contained in different levels.

RacahWilson

Continuous
Dual Hahn

Continuous
Hahn Hahn Dual Hahn

Meixner -
Pollaczek Jacobi Meixner Krawtchouk

Laguerre Charlier

Hermite

4F3

1F1

2F1

3F2

2F0

2F0

n, x, a, b, c, d n, x, α, β, γ, δ

n, x, a, b, c n, x, α, β, α, β n, x,a,b,N

n, x, φ, λ n, x, α, β n, x, β, c n, x, p, N

n, x, α n, x, a

n, x

n, x,a,b,N

Fig. 1 The Askey scheme for hypergeometric orthogonal polynomials included in [7] with
indicated limit relations between the polynomials
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In 1999, José L. López and Nico M. Temme proposed a study of the Askey
scheme from an asymptotic point of view. In several papers [9–11], they proposed
a method to obtain asymptotic and, at the same time, finite exact representations
of orthogonal polynomials of the Askey tableau in terms of Hermite and Laguerre
polynomials. More precisely, the method to approximate orthogonal polynomials
in terms of Hermite polynomials is described in [9], whereas [11] introduces the
approximation in terms of Laguerre polynomials. All these representations have an
asymptotic character for large values of certain parameters and provide information
on the zero distribution of the polynomials. From these expansions, some known
and unknown limits were derived.

The main idea of the asymptotic method developed by José L. López and Nico
M. Temme is based on the availability of a generating function for the polynomials
and is different from the techniques described in [5,6]. The techniques used in [5,6]
are based on a connection problem and give deeper information on the limit relations
between classical discrete and classical continuous orthogonal polynomials. On
the other hand, the method developed in [9–11] gives asymptotic expansions of
polynomials situated at any level of the tableau in terms of polynomials located at
lower levels. This method is also different from the sophisticated uniform methods
considered, for example, in [4] or [12], where asymptotic expansions of the Meixner
Mn.nxI b; c/ or Charlier Cn.nxI a/ polynomials, respectively, are given for large
values of n and fixed a, b, c, x. In the method presented in [9–11], the degree n
keeps fixed and some parameter(s) of the polynomial are allowed to go to infinity.
The asymptotic method introduced in [9–11] is also different from the technique
introduced in [8]. In this paper Tom H. Koornwinder presents, for Wilson and
Racah polynomials, a complete study of the limit relations existing between these
polynomials and the ones placed in lower levels using the three-term recurrence
relations satisfied by the polynomials.

The asymptotic study of the Askey scheme initiated in [9–11] has been continued
in the papers [1–3]. In [1], the method to approximate orthogonal polynomials in
terms of Charlier polynomials is described. In this reference, asymptotic expansions
of Meixner–Pollaczek, Jacobi, Meixner and Krawtchouk polynomials in terms of
Laguerre, Charlier and Hermite polynomials are given and four new limit relations
obtained (see Fig. 2). In [2], twelve asymptotic expansions of the Hahn-type polyno-
mials in terms of Hermite, Laguerre and Charlier polynomials are obtained and five
new limits found (see Fig. 3). Finally, the study of the Hahn-type polynomials was
completed in [3]. In this paper, the method to approximate orthogonal polynomials
in terms of Meixner–Pollaczek, Jacobi, Meixner and Krawtchouk polynomials is
described and sixteen asymptotic relations and three new limits are obtained (see
Fig. 4).

In this paper, we give one more step towards the completion of the asymptotic
study of the Askey scheme obtaining asymptotic relations between the Wilson
polynomials (first level) and the polynomials located in lower levels. In Sect. 2,
we summarize the asymptotic expansions and limit relations obtained in this study.
In Sect. 3, we briefly resume the principles of the asymptotic approximations in
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Laguerre Charlier

Hermite

n, x, α n, x, a

n, x

2F0

2F0

1F1

2F1
Meixner -
Pollaczek Jacobi Meixner Krawtchouk

n, x, φ, λ n, x, α, β n, x, β , c n, x, p, N

Fig. 2 Thick arrows indicate known limits and thick dashed arrows new limits obtained in [1]

Laguerre Charlier

Hermite2F0

2F0
n, x, α n, x, a

n, x

Continuous
Dual Hahn

Continuous
Hahn Hahn Dual Hahn

n, x, a, b, c
3F2

1F1

n, x, α, β, α, β n, x,a,b,Nn, x,a,b,N

Fig. 3 Thick dashed arrows indicate new limits obtained in [2]

terms of the three lower levels introduced in [1, 9, 10]. The expansions in terms of
Hahn-type polynomials are new. We give details for the case in which the basic
approximants are the Continuous Dual Hahn polynomials and resume the main
formulas for the remaining cases. Sect. 4 contains the proof of the formulas given in
Sect. 2. Some numerical experiments illustrating the accuracy of the approximations
are given in Sect. 5.
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3F2
Continuous
Dual Hahn

2F1

Meixner -
Pollazcek

n, x, a, b, c

Continuous
Hahn

Hahn Dual Hahn

n, x, φ, λ

Jacobi
n, x, α, β

Meixner
n, x, β , c

Krawtchouk
n, x, p, N

n, x,a,b,N n, x,a,b,Nn, x, α, β, α, β

Fig. 4 Thick arrows indicate known limits and thick dashed arrows new limits obtained in [3]

2 Descending Asymptotic Expansions and Limits

Throughout this paper, we will use the notation and the definitions of the hypergeo-
metric orthogonal polynomials of the Askey scheme introduced in [7]:

Wilson: Wn.x
2I a; b; c; d /

Wn.x
2I a; b; c; d /

.aC b/n.a C c/n.a C d/n

D 4F3

� �n; nC aC b C c C d � 1; a C ix; a � ix

a C b; aC c; a C d

ˇ
ˇ
ˇ
ˇ 1

�

:

Continuous Dual Hahn: Sn.x2I a; b; c/

Sn.x
2I a; b; c/

.a C b/n.aC c/n
D 3F2

� �n; a C ix; a � ix

a C b; aC c

ˇ
ˇ
ˇ
ˇ 1

�

:

Continuous Hahn: Pn.xI˛; ˇ; ˛; ˇ/, ˛, ˇ 2 C (˛ D a C ic, ˇ D b C id ,
a; b; c; d 2 R)

Pn.xI˛; ˇ; ˛; ˇ/ D in
.˛ C ˛/n.˛ C ˇ/n

nŠ

� 3F2

� �n; nC ˛ C ˇ C ˛ C ˇ � 1; ˛ C ix

˛ C ˛; ˛ C ˇ

ˇ
ˇ
ˇ
ˇ 1

�

:

Hahn:Qn.xI a; b;N /

Qn.xI a; b;N / D 3F2

� �n; nC aC b C 1;�x
a C 1;�N

ˇ
ˇ
ˇ
ˇ 1

�

; n D 0; 1; 2; : : : ; N:
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Dual Hahn: Rn.	.x/I a; b;N /, with 	.x/ D x.x C a C b C 1/

Rn.	.x/I a; b;N / D 3F2

� �n;�x; x C a C b C 1

a C 1;�N
ˇ
ˇ
ˇ
ˇ 1

�

; n D 0; 1; 2; : : : ; N:

Meixner–Pollaczek: P .	/
n .xI�/

P .	/
n .xI�/ D .2	/n

nŠ
ein� 2F1

� �n; 	C ix

2	

ˇ
ˇ
ˇ
ˇ 1 � e�2i�

�

:

Jacobi: P .˛;ˇ/
n .x/

P .˛;ˇ/
n .x/ D .˛ C 1/n

nŠ
2F1

� �n; nC ˛ C ˇ C 1

˛ C 1

ˇ
ˇ
ˇ
ˇ
1 � x

2

�

:

Meixner: Mn.xIˇ; c/

Mn.xIˇ; c/ D 2F1

� �n;�x
ˇ

ˇ
ˇ
ˇ
ˇ 1 � 1

c

�

:

Krawtchouk:Kn.xIp;N /

Kn.xIp;N / D 2F1

� �n;�x
�N

ˇ
ˇ
ˇ
ˇ
1

p

�

; n D 0; 1; 2; : : : ; N:

Laguerre: L.˛/n .x/

L.˛/n .x/ D .˛ C 1/n

nŠ
1F1

� �n
˛ C 1

ˇ
ˇ
ˇ
ˇ x

�

:

Charlier: Cn.xI a/

Cn.xI a/ D 2F0

� �n;�x
�

ˇ
ˇ
ˇ
ˇ � 1

a

�

:

Hermite: Hn.x/

Hn.x/ D .2x/n2F0

� �n=2;�.n � 1/=2

�
ˇ
ˇ
ˇ
ˇ � 1

x2

�

:

The orthogonality property of the polynomials of the Askey tableau only holds
when the variable x and other parameters which appear in the polynomials are
restricted to certain real intervals [7]. The expansions that we resume below are
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valid for larger domains of the variable and the parameters and for any n 2 N.
Nevertheless, for the sake of clearness, we will consider that the variable and
the parameters are restricted to the orthogonality intervals given in [7]. All the
square roots that appear in what follows assume real positive values for real
positive argument. The coefficients ck given below are the coefficients of the Taylor
expansion at w D 0 of the given functions f .x;w/:

ck D 1

kŠ

@kf .x;w/

@wk

ˇ
ˇ
ˇ
ˇ
wD0

: (1)

The first three coefficients ck are c0 D 1, c1 D c2 D 0. Higher coefficients
ck; k � 3 can be obtained recurrently from a differential equation satisfied by
f .x;w/ or directly from their definition (1) (using computer algebra programs like
Mathematica or Maple). In our previous works about polynomials located in the
first levels of the Askey tableau [1, 2], we have given recurrent formulas for ck
using a differential equation satisfied by f .x;w/. However, the functions f .x;w/
involved in this paper are more complicated, and analytic formulas for ck are too
cumbersome to be written down here.

2.1 Wilson to Hermite

2.1.1 Asymptotic Expansion for Large a; b; c and d

Wn.x
2I a; b; c; d /

.aC b/n.c C d/nnŠ
D

nX

kD0

ck

Bk�n.n � k/ŠHn�k.X/; (2)

B D
r
1

2
p21.x/� p2.x/; X D p1.x/

2B
; (3)

where

p1.x/ D .a C ix/.b C ix/

aC b
C .c � ix/.d � ix/

c C d
;

p2.x/ D .a C ix/.b C ix/.1C a C ix/.1C b C ix/

2.aC b/.1C a C b/

C .a C ix/.b C ix/.c � ix/.d � ix/
.aC b/.c C d/

C .c � ix/.d � ix/.1C c � ix/.1C d � ix/

2.c C d/.1C c C d/

(4)
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and ck are the coefficients of the Maclaurin expansion of

f .x; !/ D e�2BX!CB2!22F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

:

2.1.2 Asymptotic Property

ck

Bk�n.n � k/Š
Hn�k.X/ D O.anCbk=3c�k/; (5)

when a ! 1 and a � b � c � d .

2.1.3 New Limit

lim
a;b;c;d!1

Wn. Qx2I a; b; c; d /
.a C b/n.c C d/nB. Qx/n D Hn.�x/ D .�1/nHn.x/; (6)

where

Qx D �
s
abc C abd C acd C bcd

a C b C c C d
C x

A

.aC b C c C d/2

and

A D
p
2.a C c/.b C c/.a C d/.b C d/.1 C aC b/.1C c C d/.2 C aC b C c C d/:

2.2 Wilson to Laguerre

2.2.1 Asymptotic Expansion for Large a; b; c and d

Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ
D

nX

kD0
ckL

.X/

n�k.A/; (7)

A D p1.x/
2 C p1.x/ � 2p2.x/; X D AC p1.x/ � 1;

where p1.x/ and p2.x/ are given in (4) and ck are the coefficients of the Maclaurin
expansion of
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f .x; !/ D e
A!
1�! .1 � !/XC12F1

 
a C ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

:

2.2.2 Asymptotic Property

ckL
.X/

n�k.A/ D O.anCbk=3c�k/ as a ! 1; a � b � c � d: (8)

2.3 Wilson to Charlier

2.3.1 Asymptotic Expansion for Large a; b; c and d

Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ
D

nX

kD0

ck

Ak�n
Cn�k.X IA/
.n � k/Š ; (9)

A D p1.x/
2 C p1.x/ � 2p2.x/; X D A� p1.x/;

where p1.x/ and p2.x/ are given in (4) and ck are the coefficients of the Maclaurin
expansion of

f .x; !/ D e�A!.1 � !/�X 2F1
 
a C ix; b C ix

aC b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

:

2.3.2 Asymptotic Property

ck

Ak�n
Cn�k.X IA/
.n � k/Š D O.anCbk=3c�k/ as a ! 1; a � b � c � d: (10)

2.4 Wilson to Meixner–Pollaczek

2.4.1 Asymptotic Expansion for Large a; b; c and d

Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ
D

nX

kD0
ckP

.C/

n�k.X IA/; (11)
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where A ¤ m� , m 2 Z is an arbitrary constant,

C D p1.x/ cosAC 1

2
p1.x/

2 � p2.x/;

X D �1
2 sinA

�
p1.x/ cos 2AC .p1.x/

2 � 2p2.x// cosA
�
;

p1.x/ and p2.x/ are given in (4) and ck are the coefficients of the Maclaurin
expansion of

f .x; !/ D �
1 � eiA!�C�iX �1 � e�iA!�CCiX

�2F1

 
a C ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

:

2.4.2 Asymptotic Property

ckP
.C/

n�k.X IA/ D O.anCbk=3c�k/ as a ! 1; a � b � c � d: (12)

2.5 Wilson to Jacobi

2.5.1 Asymptotic Expansion for Large a; b; c and d

Wn.x
2I a; b; c; d /

.aC b/n.c C d/nnŠ
D

nX

kD0
ckP

.A;C /

n�k .X/; (13)

where X ¤ ˙1 is an arbitrary constant,

A D 1

X C 1

�
2p1.x/

2 C p1.x/C 3p1.x/X � 4p2.x/CX2 �X � 2� ;

C D 1

X � 1
�
2p1.x/

2 � p1.x/C 3p1.x/X � 4p2.x/CX2 CX � 2
�
;

p1.x/ and p2.x/ are given in (4) and ck are the coefficients of the Maclaurin
expansion of
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f .x; !/ D R.1CR � !/A.1CRC !/C

2ACC

�2F1

 
aC ix; b C ix

aC b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

;

with R D p
1� 2X! C !2.

2.5.2 Asymptotic Property

ckP
.A;C /

n�k .X/ D O.anCbk=3c�k/ as a ! 1; a � b � c � d: (14)

2.6 Wilson to Meixner

2.6.1 Asymptotic Expansion for Large a; b; c and d

Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ
D

nX

kD0

ck.A/n�k
.n � k/Š Mn�k.X IA;C /; (15)

where C ¤ 0; 1 is an arbitrary constant,

A D .1CC/p1.x/CCp1.x/2�2Cp2.x/; X D C2

1 � C Œp1.x/
2Cp1.x/�2p2.x/;

p1.x/ and p2.x/ are given in (4), and ck are the coefficients of the Maclaurin
expansion of

f .x; !/ D
�
1 � !

C

��X
.1�!/XCA2F1

 
a C ix; b C ix

aC b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

:

2.6.2 Asymptotic Property

ck.A/n�k
.n � k/Š

Mn�k.X IA;C / D O.anCbk=3c�k/ as a ! 1; a � b � c � d:

(16)
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2.7 Wilson to Krawtchouk

2.7.1 Asymptotic Expansion for Large a; b; c and d

Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ
D

nX

kD0
ck

�
C

n � k
�

Kn�k.X IA;C /; (17)

where A ¤ 0; 1 is an arbitrary constant,

X D A2

1 �A
�
p1.x/

2 � p1.x/ � 2p2.x/
�
; C D p1.x/C X

A
;

p1.x/ and p2.x/ are given in (4), and ck are the coefficients of the Maclaurin
expansion of

f .x; !/ D .1C !/X�C
�

1 � 1 �A
A

!

��X

�2F1

 
a C ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

:

2.7.2 Asymptotic Property

ck

�
C

n � k

�

Kn�k.X IA;C / D O.anCbk=3c�k/ as a ! 1; a � b � c � d:

(18)

2.8 Wilson to Continuous Dual Hahn

2.8.1 Asymptotic Expansion for Large a; b; c and d

Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ
D

nX

kD0
ck
Sn�k.X2IA;B;C /
.AC B/n�k.n � k/Š

; (19)

where A D QAa, B D QBa with QA and QB arbitrary constants,

C D p1.x/� AC B

2
C 1

2

q
.A �B/2 C 4.1C AC B/.p21.x/C p1.x/� 2p2.x//;
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XD 1p
2

r

�A2�B2C.ACB/
q
.A�B/2C4.1CACB/.p21.x/Cp1.x/�2p2.x//;

p1.x/ and p2.x/ are given in (4), and ck are the coefficients of the Maclaurin
expansion of

f .x; !/ D .1 � !/C�iX 2F1

 
aC ix; b C ix

aC b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

�
"

2F1

 
AC iX;B C iX

AC B

ˇ
ˇ
ˇ
ˇ
ˇ
!

!#�1
:

2.8.2 Asymptotic Property

ck
Sn�k.X2IA;B;C /
.AC B/n�k.n� k/Š

D O.anCbk=3c�k/ as a ! 1; a � b � c � d: (20)

2.9 Wilson to Continuous Hahn

2.9.1 Asymptotic Expansion for Large a; b; c and d

Wn.x
2I a; b; c; d /

.aC b/n.c C d/nnŠ
D

nX

kD0
ck

Pn�k.X I˛; ˇ; ˛; ˇ/
.˛ C ˛/n�k.ˇ C ˇ/n�k

; (21)

where ˛ D AC iC , ˇ D QBaC iD, X D QXa2 with D, QB , QX arbitrary constants,

A D �
B3.1C 8p2.x//C .D CX/2 C B.D CX/.D � 2p1.x/CX/

C B2.1 � 4.Dp1.x/C p2.x/C p1.x/X/
�

=
�
B2.�1C 4p21.x/ � 8p2.x//C 8B3.p21.x/ � 2p2.x// � .D CX/2/

�
;

C D � �B.D � 4p1.x//.D CX/2 C .D CX/3 � B2.D CX/

� .�1C 6Dp1.x/ � 4p21.x/ � 4p2.x/C 6p1.x/X/

C 2B4.�p1.x/.1C 8p2.x//C 4p21.x/X � 8p2.x/X/
C B3.D.1C 8p21.x/C 8p2.x//C 2p1.x/.�1 � 4p2.x/C 6p1.x/X//

�

=
�
B.B2.�1C 4p21.x/ � 8p2.x//C 8B3.p21.x/ � 2p2.x// � .D CX/2//

�
;
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p1.x/ and p2.x/ are given in (4), and ck are the coefficients of the Maclaurin
expansion of

f .x; !/ D 2F1

 
a C ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

�


1F1

�
˛ C iX

˛ C ˛

ˇ
ˇ
ˇ
ˇ � i!

�

1F1

�
ˇ � iX

ˇ C ˇ

ˇ
ˇ
ˇ
ˇ i!

���1
:

2.9.2 Asymptotic Property

ck
Pn�k.X I˛; ˇ; ˛; ˇ/

.˛ C ˛/n�k.ˇ C ˇ/n�k
D O.anCbk=3c�k/ as a ! 1; a � b � c � d:

(22)

2.10 Wilson to Hahn

2.10.1 Asymptotic Expansion for Large a; b; c and d

Wn.x
2I a; b; c; d /

.aC b/n.c C d/nnŠ
D

nX

kD0
ck

.�N/n�k
.B C 1/n�k.n � k/ŠQn�k.X IA;B;N /; (23)

where A D QAa, B D QBa with QA and QB arbitrary constants,

N D � .AC B C 3/2 � 1C 2p1.x/ŒB.B C 3/� A.AC 3/C .AC B C 2/
p
D

2.AC B C 4/
;

X D �.AC 1/
AC B C 4 � 2p1.x/.AC 2/C p

D

2.AC B C 4/
;

with

D D 2AŒ4C 20p21.x/C B.1C 14p21.x/ � 32p2.x//
C2B2.p21.x/ � 2p2.x// � 48p2.x/C B2Œ1C 8p21.x/ � 16p2.x/
C8BŒ1C 5p21.x/ � 12p2.x/C 16Œ1C 3p21.x/ � 8p2.x/

CA2Œ1C 4.2C B/p21.x/ � 8.2C B/p2.x/;
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p1.x/ and p2.x/ are given in (4), and ck are the coefficients of the Maclaurin
expansion of

f .x; !/ D 2F1

 
aC ix; b C ix

aC b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

�
"

1F1

 
�X
AC 1

ˇ
ˇ
ˇ
ˇ
ˇ
� !

!

1F1

 
X �N

B C 1

ˇ
ˇ
ˇ
ˇ
ˇ
!

!#�1
:

2.10.2 Asymptotic Property

ck
.�N/n�k

.BC1/n�k .n�k/Š
Qn�k.X IA;B;N / D O.anCbk=3c�k/ as a ! 1; a � b � c � d:

(24)

2.11 Wilson to Dual Hahn

2.11.1 Asymptotic Expansion for Large a; b; c and d

Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ
D

nX

kD0
ck
.�N/n�k
.n � k/Š

Rn�k.	.X/IA;B;N /; (25)

where 	.X/ D X.X C A C B C 1/, A D QAa, B D QBa with QA and QB arbitrary
constants,

N D �
B C 2p1.x/C

q
B2 C 4.2C A/.p21.x/C p1.x/ � 2p2.x//

2
;

X D �ACBC1
2

�

r

.AC1/2CB2�2.AC1/
q
B2C4.2CA/.p21.x/Cp1.x/�2p2.x//

2
;
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p1.x/ and p2.x/ are given in (4), and ck are the coefficients of the Maclaurin
expansion of

f .x; !/ D .1 � !/X�N 2F1
 
a C ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

�
"

2F1

 
�X;�X � B

AC 1

ˇ
ˇ
ˇ
ˇ
ˇ
!

!#�1
:

2.11.2 Asymptotic Property

ck
.�N/n�k

.n�k/Š
Rn�k.	.X/IA;B;N / DO.anCbk=3c�k/ as a ! 1; a � b � c � d:

(26)

3 Principles of the Asymptotic Approximations

The asymptotic expansions of polynomials in terms of polynomials listed above
follow from an asymptotic principle based on the “matching” of their generating
functions [9]. Some of these formulas have already been proved in previous works.
The expansions in terms of the Hahn-type polynomials are new. We give below
details for the case in which the basic approximants are the Continuous Dual Hahn
polynomials and resume the main formulas for the remaining cases.

3.1 Expansions in Terms of Hermite Polynomials

To prove the results of Sect. 2.1, we need the following formulas derived in [9]. If
F.x;w/ is the generating function of the polynomials pn.x/, then

pn.x/ D Bn

nX

kD0

ck

Bk

Hn�k.X/
.n � k/Š

; (27)

where the coefficients ck follow from

f .x; !/ D
1X

kD0
ck!

k; f .x; !/ D e�2BX!CB2!2F.x; !/:
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The choice of X and B is based on our requirement that c1 D c2 D 0. This happens
if we take

B D
r
1

2
p21.x/ � p2.x/; X D p1.x/

2B

and we assume that F.x; 0/ D p0.x/ D 1 (which implies c0 D 1).
The quantities X and B may depend on x, and if B turns out to be zero for a

special x�value x0, we write pn.x0/ D Pn
kD0

ck
.n�k/Š p

n�k
1 .x0/.

3.2 Expansions in Terms of Laguerre Polynomials

The results of Sect. 2.2 can be obtained from the formulas derived in [11]. If F.x;w/
is the generating function of the polynomials pn.x/, then

pn.x/ D
nX

kD0
ckL

.X/

n�k .A/ ; (28)

where the coefficients ck follow from

f .x; !/ D
1X

kD0
ck!

k; f .x; !/ D .1 � !/XC1 eA!=.1�!/F.x; !/:

The choice of A and X is based on our requirement that c1 D c2 D 0. This happens
if we take

A D p1.x/C p21.x/ � 2p2.x/; X D AC p1.x/ � 1 (29)

and we assume that F.x; 0/ D p0.x/ D 1 (which implies c0 D 1).

3.3 Expansions in Terms of Charlier Polynomials

The following formulas derived in [11] provide a proof of the results of Sect. 2.3. If
F.x;w/ is the generating function of the polynomials pn.x/, then

pn.x/ D An
nX

kD0

ck

Ak
Cn�k.X IA/
.n � k/Š

; (30)
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where the coefficients ck follow from

f .x; !/ D
1X

kD0
ck!

k; f .x; !/ D .1 � !/�X e�A!F.x; !/:

The choice of A and X is based on our requirement that c1 D c2 D 0. This
happens if we take

A D p1.x/C p21.x/� 2p2.x/; X D p21.x/ � 2p2.x/ (31)

and we assume that F.x; 0/ D p0.x/ D 1 (which implies c0 D 1). If A turns out to
be zero for a special x�value x0, then we write

pn.x0/ D
nX

kD0
ck.�1/n�k

�
X

n � k

�

:

3.4 Expansions in Terms of Meixner–Pollaczek Polynomials

To prove the results of Sect. 2.4, we need the following formulas derived in [3]. If
F.x;w/ is the generating function of the polynomials pn.x/, then

pn.x/ D
nX

kD0
ckP

.C/

n�k .X IA/ ; (32)

where PC
n .X IA/ are the Meixner–Pollaczek polynomials, A ¤ m� , m 2 Z is an

arbitrary constant, and the coefficients ck follow from

f .x; !/ D
1X

kD0
ck!

k

with

f .x; !/ D .1 � eiA!/C�iX .1 � e�iA!/CCiXF.x; !/;

c1 D c2 D 0; C D p1.x/ cosAC 1

2
p1.x/

2 � p2.x/;

X D �1
2 sinA

�
p1.x/ cos 2AC .p1.x/

2 � 2p2.x// cosA
�
;

and we assume that F.x; 0/ D p0.x/ D 1 (which implies c0 D 1).
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3.5 Expansions in Terms of Jacobi Polynomials

To prove the results of Sect. 2.5, we need the following formulas derived in [3]. If
F.x;w/ is the generating function of the polynomials pn.x/, then

pn.x/ D
nX

kD0
ckP

.A;C /

n�k .X/; (33)

where PA;C
n .X/ are the Jacobi polynomials, X ¤ ˙1 is an arbitrary constant, and

the coefficients ck follow from

f .x; !/D
1X

kD0
ck!

k; with f .x; !/DR.1CR�!/A.1CRC!/C
2ACC

F.x; !/;

R D
p
1 � 2X! C !2; c1 D c2 D 0;

A D 1

X C 1

�
2p1.x/

2 C p1.x/C 3p1.x/X � 4p2.x/CX2 � X � 2
�
;

C D 1

X � 1
�
2p1.x/

2 � p1.x/C 3p1.x/X � 4p2.x/CX2 CX � 2� ;

and we assume that F.x; 0/ D p0.x/ D 1 (which implies c0 D 1).

3.6 Expansions in Terms of Meixner Polynomials

To prove the results of Sect. 2.6, we need the following formulas derived in [3]. If
F.x;w/ is the generating function of the polynomials pn.x/, then

pn.x/ D
nX

kD0

ck.A/n�k
.n � k/Š Mn�k.X IA;C /; (34)

where Mn.xIA;C / are the Meixner polynomials, n 2 N, C ¤ 0; 1, and the
coefficients ck follow from

f .x; !/ D
1X

kD0
ck!

k with f .x; !/ D
�
1 � !

C

��X
.1 � !/XCAF.x; !/;
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where C ¤ 0; 1 is an arbitrary constant. The choice of A and X is based on our
requirement that c1 D c2 D 0. This happens if we take

A D .1CC/p1.x/CCp1.x/2�2Cp2.x/; X D C2

1 � C
�
p1.x/

2 C p1.x/ � 2p2.x/
�

and we assume that F.x; 0/ D p0.x/ D 1 (which implies c0 D 1).

3.7 Expansions in Terms of Krawtchouk Polynomials

To prove the results of Sect. 2.7, we need the following formulas derived in [3]. If
F.x;w/ is the generating function of the polynomials pn.x/, then

pn.x/ D
nX

kD0

 
C

n � k

!

ckKn�k .X IA;C / ; (35)

where Kn .X IA;C / are the Krawtchouk polynomials, A ¤ 0; 1 is an arbitrary
constant, and the coefficients ck follow from

f .x; !/ D
1X

kD0
ck!

k; with f .x; !/ D
�

1 � 1 � A

A
!

��X
.1C !/X�CF.x; !/;

X D A2

1 �A
�
p1.x/

2 � p1.x/ � 2p2.x/
�
;

C D p1.x/C A

1� A

�
p1.x/

2 � p1.x/ � 2p2.x/
�
;

c1 D c2 D 0, and we assume that F.x; 0/ D p0.x/ D 1 (which implies c0 D 1).

3.8 Expansions in Terms of Continuous Dual Hahn
Polynomials

The Continuous Dual Hahn polynomials Sn.x2I a; b; c/ for n 2 N follow from the
generating function [7, (1.3.12)]

.1 � !/�cCix 2F1
�
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ!

�

D
1X

nD0

Sn.x
2I a; b; c/

.a C b/nnŠ
!n: (36)
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This formula gives the following Cauchy-type integral for the Continuous Dual
Hahn polynomials

Sn.x
2I a; b; c/

.a C b/nnŠ
D 1

2�i

Z

C

.1 � !/�cCix 2F1
�
a C ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ!

�
d!

!nC1
; (37)

where C is a circle around the origin and the integration is in the positive direction.
All of the polynomials pn.x/ of the Askey tableau have a generating function of

the form

F.x; !/ D
1X

nD0
pn.x/!

n; (38)

where F.x; !/ is analytic with respect to ! in a domain that contains the origin
! D 0 and pn.x/ is independent of !.

The relation (38) gives for pn.x/ the Cauchy-type integral

pn.x/ D 1

2�i

Z

C

F.x; !/
d!

!nC1
;

where C is a circle around the origin inside the domain where F.x; !/ is analytic as
a function of !. We define f .x; !/ by means of the formula

F.x; !/ D .1 � !/�CCiX 2F1
�
AC iX;B C iX

ACB

ˇ
ˇ
ˇ
ˇ!

�

f .x; !/; (39)

where C and X are arbitrary constants and A and B are free parameters that do not
depend on !. This gives

pn.x/ D 1

2�i

Z

C

.1 � !/�CCiX 2F1
�
AC iX;B C iX

AC B

ˇ
ˇ
ˇ
ˇ!

�
d!

!nC1
: (40)

Since f .x; !/ is also analytic as a function of ! at ! D 0, we can expand
f .x; !/ D P1

kD0 ck!k . Substituting this expansion in (40) and taking into
account (37), we obtain

pn.x/ D
nX

kD0
ck

Sn.X
2IA;B;C /

.AC B/n�k.n� k/Š
: (41)
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The choice of C andX is based on our requirement that c1 D c2 D 0. This happens
if we take

C D p1.x/� AC B

2
C 1

2

q
.A �B/2 C 4.1C AC B/.p21.x/C p1.x/� 2p2.x//;

X D 1p
2

r

�A2 � B2 C .AC B/

q
.A �B/2 C 4.1C AC B/.p21.x/C p1.x/� 2p2.x//;

and we assume that F.x; 0/ D p0.x/ D 1 (which implies c0 D 1). The special
choice of C and X is crucial for obtaining asymptotic properties.

The expansions in terms of the other three polynomials of the Hahn level can be
deduced in a similar way. We only give the main formulas in the following three
sections.

3.9 Expansions in Terms of Continuous Hahn Polynomials

To prove the results of Sect. 2.9, we need the following formulas. If F.x; !/ is the
generating function of the polynomials pn.x/, then

pn.x/ D
nX

kD0
ck

Pn�k.X I˛; ˇ; ˛; ˇ/
.˛ C ˛/n�k.ˇ C ˇ/n�k

; (42)

where Pn.X I˛; ˇ; ˛; ˇ/ are the Continuous Hahn polynomials; ˛ D A C iC ,
ˇ D B C iD with A;B;C;D 2 R, B , D and X are arbitrary constants; and
the coefficients ck follow from

f .x; !/ D
1X

kD0
ck!

k;

with

F.x; !/ D 1F1

�
˛ C iX

˛ C ˛

ˇ
ˇ
ˇ
ˇ � i!

�

1F1

�
ˇ � iX

ˇ C ˇ

ˇ
ˇ
ˇ
ˇ i!

�

f .x; !/;

A D �
B3.1C 8p2.x//C .D CX/2 CB.D CX/.D � 2p1.x/CX/

C B2.1 � 4.Dp1.x/C p2.x/C p1.x/X/
�

=
�
B2.�1C 4p21.x/ � 8p2.x//C 8B3.p21.x/ � 2p2.x// � .D CX/2/

�
;



Asymptotic Reductions Between Wilson Polynomials in the Askey Scheme 675

C D � �B.D � 4p1.x//.D CX/2 C .D CX/3 � B2.D CX/

� .�1C 6Dp1.x/ � 4p21.x/ � 4p2.x/C 6p1.x/X/

C 2B4.�p1.x/.1C 8p2.x//C 4p21.x/X � 8p2.x/X/
C B3.D.1C 8p21.x/C 8p2.x//C 2p1.x/.�1 � 4p2.x/C 6p1.x/X//

�

=
�
B.B2.�1C 4p21.x/ � 8p2.x//C 8B3.p21.x/ � 2p2.x// � .D CX/2//

�
;

c1 D c2 D 0 and we assume that F.x; 0/ D p0.x/ D 1 (which implies c0 D 1).

3.10 Expansions in Terms of Hahn Polynomials

To prove the results of Sect. 2.10, we need the following formulas. If F.x; !/ is the
generating function of the polynomials pn.x/, then

pn.x/ D
nX

kD0
ck

.�N/n�k
.B C 1/n�k.n � k/ŠQn�k.X IA;B;N /; (43)

where Qn.X IA;B;N / are the Hahn polynomials, A and B are arbitrary constants,
and the coefficients ck follow from

f .x; !/ D
1X

kD0
ck!

k;

with

F.x; !/ D 1F1

� �X
AC 1

ˇ
ˇ
ˇ
ˇ� !

�

1F1

�
X �N

B C 1

ˇ
ˇ
ˇ
ˇ!

�

f .x; !/;

N D � .ACB C 3/2 � 1C 2p1.x/.B.B C 3/� A.AC 3//C .AC B C 2/
p
D

2.ACB C 4/

X D �.AC 1/
AC B C 4 � 2p1.x/.AC 2/C p

D

2.ACB C 4/
;

with

D D 2AŒ4C 20p21.x/C B.1C 14p21.x/ � 32p2.x//
C2B2.p21.x/ � 2p2.x// � 48p2.x/C B2Œ1C 8p21.x/ � 16p2.x/
C8BŒ1C 5p21.x/ � 12p2.x/C 16Œ1C 3p21.x/ � 8p2.x/

CA2Œ1C 4.2C B/p21.x/ � 8.2C B/p2.x/;

c1 D c2 D 0 and we assume that F.x; 0/ D p0.x/ D 1 (which implies c0 D 1).
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3.11 Expansions in Terms of Dual Hahn Polynomials

To prove the results of Sect. 2.11, we need the following formulas. If F.x; !/ is the
generating function of the polynomials pn.x/, then

pn.x/ D
nX

kD0
ck
.�N/n�k
.n � k/Š Rn�k.	.X/IA;B;N / (44)

where 	.X/ D X.X C A C B C 1/ and Rn.	.X/IA;B;N / are the Dual Hahn
polynomials, A and B are arbitrary constants, and the coefficients ck follow from

f .x; !/D
1X

kD0
ck!

k; with F.x; !/D.1�!/N�X2F1
��X;�X � B

AC1
ˇ
ˇ
ˇ
ˇ!

�

f .x; !/;

N D �
B C 2p1.x/C

q
B2 C 4.2C A/.p21.x/C p1.x/ � 2p2.x//

2
;

X D �AC B C 1

2

�

r

.AC1/2CB2�2.AC1/
q
B2C4.2CA/.p21.x/Cp1.x/�2p2.x//

2
;

c1 D c2 D 0 and we assume that F.x; 0/ D p0.x/ D 1 (which implies c0 D 1).

3.12 Asymptotic Properties of the Coefficients ck

The asymptotic nature of the expansions (2), (7), (9), (11), (13), (15), (17), (19), (21),
(23), and (25) for large values of some of the parameters of the polynomial pn.x/
depends on the asymptotic behaviour of the coefficients ck . To prove the asymptotic
character of the expansions given in Sect. 2, we will need the following lemma
proved in [11]:

Lemma 3.1. Let �.!/ be an analytic function at ! D 0, with Maclaurin expansion
of the form

�.!/ D 
s!m.a0 C a1! C a2!
2 C a3!

3 C : : :/;

where m is a positive integer, s is an integer number, and ak are complex numbers
that satisfy ak D O.1/ when 
 ! 1, a0 ¤ 0. Let ck denote the coefficients of the
power series of f .!/ D e�.!/, that is,

f .!/ D e�.!/ D
1X

kD0
ck!

k:
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Then c0 D 1, ck D 0, k D 1; 2; : : : ; m � 1 and ck D O
�

bsk=mc

�
if s > 0,

ck D O .
s/ if s � 0 when 
 ! 1.

To obtain the asymptotic character of the function �.!/ in the different cases, it
will be useful to consider the following results.

Lemma 3.2. The function y.!/ D log 2F1

�
a; b

c

ˇ
ˇ
ˇ
ˇ!

�

satisfies the following

differential equation:

!.1 � !/Œy00.!/C y02.!/C Œc � .a C b C 1/! y0.!/ � ab D 0: (45)

The coefficients of the Maclaurin series of the function y.!/ D P1
kD1 yk!k verify

y1 D ab

c
; y2 D ab

c.a C b C 1/� ab
2c2.c C 1/

and for k � 2

ykC1 D 1

.k C 1/.k C c/

�

k.a C b C k/yk � kyky1

C
k�2X

jD0
.j C 1/yjC1Œ.k � j � 1/yk�j�1 � .k � j /yk�j 

	

:

Proof. Equation (45) follows from the differential equation satisfied by the hyper-

geometric function z.!/ D 2F1

�
a; b

c

ˇ
ˇ
ˇ
ˇ!

�

:

!.1 � !/z00.!/C Œc � .a C b C 1/! z0.!/ � ab z.!/ D 0:

The coefficients yk of the Maclaurin expansion are obtained by substituting the
expansion y.!/ D P1

kD1 yk!k into (45) and identifying the coefficients of !k for
k � 1. ut

Lemma 3.3. The function y.!/ D log 1F1

�
a

b

ˇ
ˇ
ˇ
ˇ!

�

satisfies the following differ-

ential equation:

!Œy00.!/C y02.!/C .b � !/y0.!/ � a D 0: (46)

The coefficients of the Maclaurin series of the function y.!/ D P1
kD1 yk!k verify

y1 D a

b
; y2 D ab � a2

2b2.1C b/
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and for k � 2

ykC1 D 1

.k C 1/.k C b/

8
<

:
kyk � kyky1 �

k�2X

jD0
.j C 1/.k � j /yjC1yk�j

9
=

;
: (47)

Proof. Equation (46) follows from the differential equation satisfied by the hyper-

geometric function z.!/ D 1F1

�
a

b

ˇ
ˇ
ˇ
ˇ!

�

:

!z00.!/C .b � !/z0.!/� a z.!/ D 0:

The coefficients yk of the Maclaurin expansion are obtained by substituting the
expansion y.!/ D P1

kD1 yk!k into (46) and identifying the coefficients of !k for
k � 1. ut

4 Proofs of Formulas Given in Sect. 2

4.1 Proofs of Formulas in Sect. 2.1

Substitute

F.x; !/ D 2F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

and

pn.x/ D Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ

in the formulas of Sect. 3.1 to obtain (2).

Applying Lemma 3.2 to the function y.!/ D log 2F1

�
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ!

�

;we

deduce that y.!/ has the following Maclaurin series y.!/ D P1
kD1 yk!k where

y1 D .a C ix/.b C ix/

a C b
;

y2 D .a C ix/.b C ix/
.a C b/.aC b C 2ix C 1/� .a C ix/.b C ix/

2.aC b/2.aC b C 1/
;
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and

ykC1 D 1

.k C 1/.k C a C b/

8
<

:
k.k C aC b C 2ix/yk � kyky1

C
k�2X

jD0
.j C 1/yjC1

�
.k � j � 1/yk�j�1 � .k � j /yk�j

�
9
=

;
:

Then, y1 D O.a/, y2 D O.a/ and using the above Recurrence we can show by
induction over k that yk D O.a/ for k > 2. The same lemma can be applied to the

function z.!/ D log 2F1

�
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ!

�

. For this function, we deduce that

z.!/ D P1
kD1 zk!k with z1 D O.c/, z2 D O.c/, and zk D O.c/ for k > 2. On

the other hand, we have B D O.
p
a/ and X D O.

p
a/. Therefore, the function

�.!/ D logf .x; !/ verifies Lemma 3.1 with 
 D a, s D 1 and m D 3, and
we have ck D O.abk=3c/ for a ! 1, a � b � c � d . On the other hand,
Hn�k.X/ D O.a

n�k
2 /, and we obtain (5) in Sect. 2.1.2. The limit (6) follows from

the first term of the expansion (2) after solving (3) for x.X/.

4.2 Proofs of Formulas in Sect. 2.2

Substitute

F.x; !/ D 2F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

and

pn.x/ D Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ

in the formulas of Sect. 3.2 to obtain (7).
Using the result obtained in Sect. 4.1 for logF.x; !/ and taking into account that

X D O.a/ and A D O.a/, it is easy to check that the function �.!/ D logf .x; !/
verifies Lemma 3.1 with 
 D a, s D 1 and m D 3. Thus, we have ck D O.abk=3c/
for a ! 1, a � b � c � d . On the other hand, taking into account that
lima!1A=X ¤ 1, we have L.X/n�k.A/ D O.an�k/ and we obtain the asymptotic
behaviour (8) in Sect. 2.2.2.
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4.3 Proofs of Formulas in Sect. 2.3

Substitute

F.x; !/ D 2F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

and

pn.x/ D Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ

in the formulas of Sect. 3.3 to obtain (9).
Using the result obtained in Sect. 4.1 for logF.x; !/ and taking into account that

X D O.a/ and A D O.a/, it is easy to check that the function �.!/ D logf .x; !/
verifies Lemma 3.1 with 
 D a, s D 1 and m D 3. Thus, we have ck D O.abk=3c/
for a ! 1, a � b � c � d . On the other hand,

C0.X IA/ D O.a0/; C1.X IA/ D A� X

A
D p1.x/

A
D O.a0/;

and by induction over the recurrence relation [7]

ACnC1.X IA/C .X �A � n/Cn.X IA/C nCn�1.X IA/ D 0;

we have Cn�k.X IA/ D O.a0/ and we obtain the asymptotic behaviour (10) in
Sect. 2.3.2.

4.4 Proofs of Formulas in Sect. 2.4

Substitute

F.x; !/ D 2F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

and

pn.x/ D Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ

in the formulas of Sect. 3.4 to obtain (11).
Using the result obtained in Sect. 4.1 for logF.x; !/ and taking into account that

C D O.a/ and X D O.a/, it is easy to check that the function �.!/ D logf .x; !/
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verifies Lemma 3.1 with 
 D a, s D 1 and m D 3. Thus, we have ck D O.abk=3c/
for a ! 1, a � b � c � d . On the other hand,

P
.C/
0 .X IA/ D O.a0/; P

.C/
1 .X IA/ D 2C cosAC 2X sinA D O.a/;

and by induction over the recurrence relation [7]

.nC1/P .C/nC1.X IA/�2ŒX sinAC.nCC/ cosAP .C/n .X IA/C.nC2C�1/P .C/n�1.X IA/ D 0;

we have P .C/

n�k.X IA/ D O.an�k/ and we obtain the asymptotic behaviour (12) in
Sect. 2.4.2.

4.5 Proofs of Formulas in Sect. 2.5

Substitute

F.x; !/ D 2F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

and

pn.x/ D Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ

in the formulas of Sect. 3.5 to obtain (13).
Using the result obtained in Sect. 4.1 for logF.x; !/ and taking into account that

A D O.a/ and C D O.a/, it is easy to check that the function �.!/ D logf .x; !/
verifies Lemma 3.1 with 
 D a, s D 1 and m D 3. Thus, we have ck D O.abk=3c/
for a ! 1, a � b � c � d . On the other hand,

P
.A;C /
0 .X/ D O.a0/; P

.A;C /
1 .X/ D 1

2
..2C AC C/X C .C �A// D O.a/;

and by induction over the recurrence relation [7]

XP .A;C/
n .X/ D 2.nC 1/.nC AC C C 1/

.2nC AC C C 1/.2nC AC C C 2/
P
.A;C /
nC1 .X/

C C2 �A2
.2nC AC C/.2nC AC C C 2/

P .A;C /
n .X/

C 2.nC A/.nC C/

.2nC AC C/.2nC AC C C 1/
P
.A;C /
n�1 .X/;
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we have P .A;C /

n�k .X/ D O.an�k/ and we obtain the asymptotic behaviour (14) in
Sect. 2.5.2.

4.6 Proofs of Formulas in Sect. 2.6

Substitute

F.x; !/ D 2F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

and

pn.x/ D Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ

in the formulas of Sect. 3.6 to obtain (15).
Using the result obtained in Sect. 4.1 for logF.x; !/ and taking into account that

A D O.a/ and X D O.a/, it is easy to check that the function �.!/ D logf .x; !/
verifies Lemma 3.1 with 
 D a, s D 1 and m D 3. Thus, we have ck D O.abk=3c/
for a ! 1, a � b � c � d . On the other hand,

M0.X IA;C / D O.a0/; M1.X IA;C / D AC C .C � 1/X
AC

D O.a0/;

and by induction over the recurrence relation [7]

C.nCA/MnC1.X IA;C /
D Œ.C � 1/X C .nC .nC A/C /Mn.X IA;C /� nMn�1.X IA;C /;

we have Mn�k.X IA;C / D O.a0/ and we obtain the asymptotic behaviour (16) in
Sect. 2.6.2.

4.7 Proofs of Formulas in Sect. 2.7

Substitute

F.x; !/ D 2F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!
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and

pn.x/ D Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ

in the formulas of Sect. 3.7 to obtain (17).
Using the result obtained in Sect. 4.1 for logF.x; !/ and taking into account that

C D O.a/ and X D O.a/, it is easy to check that the function �.!/ D logf .x; !/
verifies Lemma 3.1 with 
 D a, s D 1 and m D 3. Thus, we have ck D O.abk=3c/
for a ! 1, a � b � c � d . On the other hand,

K0.X IA;C / D O.a0/; K1.X IA;C / D AC � X

AC
D O.a0/;

and by induction over the recurrence relation [7]

A.C � n/KnC1.X IA;C / D ŒA.C � n/C n.1 � A/� XKn.X IA;C /
�n.1 �A/Kn�1.X IA;C /;

we have Kn�k.X IA;C / D O.a0/ and we obtain the asymptotic behaviour (18) in
Sect. 2.7.2.

4.8 Proofs of Formulas in Sect. 2.8

Substitute

F.x; !/ D 2F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

and

pn.x/ D Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ

in the formulas of Sect. 3.8 to obtain (19).
In this case, A D O.a/, B D O.a/, C D O.a/ and X D O.a/. Lemma 3.2 can

be applied to the function

y.!/ D log 2F1

�
AC iX;B C iX

AC B

ˇ
ˇ
ˇ
ˇ!

�
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to deduce that y.!/ D P1
kD1 yk!k with yk D O.a/ for k � 1. Using this result

and the behaviour obtained in Sect. 4.1 for logF.x; !/, it is easy to check that the
function �.!/ D logf .x; !/ verifies Lemma 3.1 with 
 D a, s D 1 and m D 3.
Thus, we have ck D O.abk=3c/ for a ! 1, a � b � c � d . On the other hand,

QS0.X2IA;B;C / D O.a0/; QS1.X2IA;B;C / D BC C A.B C C/ �X2

.AC B/.AC C/
D O.a0/;

and by induction over the recurrence relation [7]

An QSnC1.X2IA;B;C / D �
.An C Cn/� .A2 CX2/

� QSn.X2IA;B;C /
�Cn QSn�1.X2IA;B;C /;

with

QSn.X2IA;B;C / D Sn.X
2IA;B;C /

.AC B/n.AC C/n
;

An D .nC AC B/.nC AC C/; Cn D n.nC B C C � 1/;

we have QSn.X2IA;B;C / D O.a0/ and Sn�k.X2IA;B;C / D O.a2n�2k/, and we
finally obtain the asymptotic behaviour (20) in Sect. 2.8.2.

4.9 Proofs of Formulas in Sect. 2.9

Substitute

F.x; !/ D 2F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

and

pn.x/ D Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ

in the formulas of Sect. 3.9 to obtain (21).
In this case, A D O.a/, B D O.a/, C D O.a2/, and X D O.a2/.

Lemma 3.3 can be applied to the functions y.!/ D log 1F1

�
˛ C iX

˛ C ˛

ˇ
ˇ
ˇ
ˇ � i!

�

and z.!/ D log 1F1

�
ˇ � iX

ˇ C ˇ

ˇ
ˇ
ˇ
ˇ i!

�

to deduce that y.!/ D P1
kD1 yk!k and

z.!/ D P1
kD1 zk!k with yk D O.a/ for k � 1 and zk D O.a/ for k � 1. Using
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this result and the behaviour obtained in Sect. 4.1 for logF.x; !/, it is easy to check
that the function �.!/ D logf .x; !/ verifies Lemma 3.1 with 
 D a, s D 1 and
m D 3. Thus, we have ck D O.abk=3c/ for a ! 1, a � b � c � d . On the other
hand,

QP0.X I˛; ˇ; ˛; ˇ/ D O.a0/;

QP1.X I˛; ˇ; ˛; ˇ/ D 1 � .˛ C ˛ C ˇ C ˇ/.˛ C iX/

.˛ C ˛/.˛ C ˇ/
D O.a0/;

and by induction over the recurrence relation [7]

An QPnC1.X I˛; ˇ; ˛; ˇ/ D .An C Cn � ˛ � iX/ QPn.X I˛; ˇ; ˛; ˇ/

�Cn QPn�1.X I˛; ˇ; ˛; ˇ/;

with

QPn.X I˛; ˇ; ˛; ˇ/ D nŠ

in.˛ C ˛/n.˛ C ˇ/n
Pn.X I˛; ˇ; ˛; ˇ/;

An D � .nC ˛ C ˛ C ˇ C ˇ � 1/.nC ˛ C ˛/.nC ˛ C ˇ/

.2nC ˛ C ˛ C ˇ C ˇ � 1/.2nC ˛ C ˛ C ˇ C ˇ/
;

Cn D n.nC ˛ C ˇ � 1/.nC ˇ C ˇ � 1/
.2nC ˛ C ˛ C ˇ C ˇ � 2/.2nC ˛ C ˛ C ˇ C ˇ � 1/ ;

we have QPn.X I˛; ˇ; ˛; ˇ/ D O.a0/ and Pn�k.X I˛; ˇ; ˛; ˇ/ D O.a3n�3k/, and we
obtain the asymptotic behaviour (22) in Sect. 2.9.2.

4.10 Proofs of Formulas in Sect. 2.10

Substitute

F.x; !/ D 2F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

and

pn.x/ D Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ

in the formulas of Sect. 3.10 to obtain (23).
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In this case, A D O.a/, B D O.a/, X D O.a2/, and N D O.a2/. Lemma 3.3

can be applied to the functions y.!/ D log 1F1

� �X
AC 1

ˇ
ˇ
ˇ
ˇ � !

�

and z.!/ D

log 1F1

�
X �N

B C 1

ˇ
ˇ
ˇ
ˇ!

�

to deduce that y.!/ D P1
kD1 yk!k and z.!/ D P1

kD1 zk!k

with yk D O.a/ for k � 1 and zk D O.a/ for k � 1. Using this result and
the behaviour obtained in 4.1 for logF.x; !/, it is easy to check that the function
�.!/ D logf .x; !/ verifies Lemma 3.1 with 
 D a, s D 1 and m D 3. Thus, we
have ck D O.abk=3c/ for a ! 1, a � b � c � d . On the other hand,

Q0.X IA;B;N / D O.a0/; Q1.X IA;B;N / D 1 � .2C AC B/X

.1C A/N
D O.a0/;

and by induction over the recurrence relation [7]

AnQnC1.X IA;B;N / D .An C Cn � X/Qn.X IA;B;N / � CnQn�1.X IA;B;N /;

with

An D .nC AC B C 1/.nCAC 1/.N � n/
.2nC AC B C 1/.2nC AC B C 2/

;

Cn D n.nC AC B CN C 1/.nC B/

.2nCAC B/.2nC AC B C 1/
;

we have Qn�k.X IA;B;N / D O.a0/ and we obtain the asymptotic behaviour (24)
in Sect. 2.10.2.

4.11 Proofs of Formulas in Sect. 2.11

Substitute

F.x; !/ D 2F1

 
aC ix; b C ix

a C b

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

2F1

 
c � ix; d � ix

c C d

ˇ
ˇ
ˇ
ˇ
ˇ
!

!

and

pn.x/ D Wn.x
2I a; b; c; d /

.a C b/n.c C d/nnŠ

in the formulas of Sect. 3.11 to obtain (25).
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In this case, A D O.a/, B D O.a/, X D O.a/ and N D O.a/. Lemma 3.2

can be applied to the function y.!/ D log 2F1

� �X;�X � B
AC 1

ˇ
ˇ
ˇ
ˇ!

�

to deduce that

y.!/ D P1
kD1 yk!k with yk D O.a/ for k � 1. Using this result and the behaviour

obtained in Sect. 4.1 for logF.x; !/, it is easy to check that the function �.!/ D
logf .x; !/ verifies Lemma 3.1 with 
 D a, s D 1 and m D 3. Thus, we have
ck D O.abk=3c/ for a ! 1, a � b � c � d . On the other hand,

R0.	.X/IA;B;N / D O.a0/;

R1.	.X/IA;B;N / D N C AN � X � AX � BX � X2

.1CA/N
D O.a0/;

and by induction over the recurrence relation [7]

AnRnC1.	.X/IA;B;N / D Œ	.X/� An � CnRn.	.X/IA;B;N /

�CnRn�1.	.X/IA;B;N /;

with

An D .nC AC 1/.n �N/; Cn D n.n � B �N � 1/;

we have Rn�k.	.X/IA;B;N / D O.a0/ and we obtain the asymptotic
behaviour (26) in Sect. 2.11.2.

5 Numerical Experiments

The following graphics illustrate the approximation supplied by some of the
expansions given in Sect. 2. It is worthwhile to note the accuracy obtained in the
approximation of the zeros of the polynomials. In all the graphics, the degree of the
polynomials is n D 5, continuous lines represent the exact polynomial and dashed
lines represent the first order approximation given by the corresponding expansion
(Figs. 5, 6, 7, and 8).
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Fig. 5 Expansion (2): W5.x
2I a; b; c; d/=Œ.aC b/5.c C d/5 versus B5H5.X/

45 50 55 60 65

-60000
-50000
-40000
-30000
-20000
-10000

10000
20000

a b c d 50

90 95 100 105 110 115 120

-300000

-200000

-100000

100000 a b c d 100

500 520 540

-2�107

-1�107

1�107

2�107
a b c d 500

Fig. 6 Expansion (7): W5.x
2I a; b; c; d/=Œ.aC b/5.c C d/55Š versus L.X/5 .A/
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Fig. 7 Expansion (11): W5.x
2I a; b; c; d/=Œ.aC b/5.c C d/55Š versus P .C/
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Fig. 8 Expansion (19): W5.x
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On a Direct Uvarov-Chihara Problem and Some
Extensions

K. Castillo, L. Garza, and F. Marcellán

Dedicated to Professor Hari M. Srivastava

Abstract In this paper, we analyze a perturbation of a nontrivial probability
measure d
 supported on an infinite subset on the real line, which consists on
the addition of a time-dependent mass point. For the associated sequence of monic
orthogonal polynomials, we study its dynamics with respect to the time parameter.
In particular, we determine the time evolution of their zeros in the special case
when the measure is semiclassical. We also study the dynamics of the Verblunsky
coefficients, i.e., the recurrence relation coefficients of a polynomial sequence,
orthogonal with respect to a nontrivial probability measure supported on the unit
circle, induced from d
 through the Szegő transformation.

1 Introduction

Let us consider the classical mechanical problem of a 1-dimensional chain of
particles with neighbor interactions. Assume that the system is homogeneous
(contains no impurities) and that the mass of each particle is m. We denote by yn,
the displacement of the n-th particle, and by '.ynC1 � yn/; the interaction potential
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between neighboring particles. We can consider this system as a chain of infinitely
many particles joined together with nonlinear springs. Therefore, if

F.r/ D �' 0.r/
is the force of the spring when it is stretched by the amount r and rn D ynC1 � yn
is the mutual displacement, then, according to the Newton’s law, the equation that
governs the evolution is

m Ryn D ' 0.ynC1 � yn/ � ' 0.yn � yn�1/;
where, as usual, Py denotes the derivative with respect to the time. If F.r/ is
proportional to r , that is, when F.r/ obeys the Hooke’s law, the spring is linear
and the potential can be written as '.r/ D .�=2/r2: Thus, the equation of motion is

m Ryn D �.yn�1 � 2yn C ynC1/;

and the solutions y.`/n , ` 2 N, are given by a linear superposition of the normal
modes. In particular, when the particles located at y0 and yNC1 are fixed,

y.`/n D Cn sin

�
�`

N C 1

�

cos .!`t C ı`/ ; ` D 1; 2; : : : ; N;

where !` D 2
p
�=m sin.�`=.2N C 2//, the amplitude Cn of each mode is a

constant determined by the initial conditions. In this case there is no transfer of
energy between the modes. Therefore, the linear lattice is non-ergodic and cannot
be an object of statistical mechanics unless some modification is made. In the early
1950s, the general belief was that if a nonlinearity is introduced in the model, then
the energy flows between the different modes, eventually leading to a stable state
of statistical equilibrium [5]. This phenomenon was explained by the connection to
solitons1.

There are nonlinear lattices which admit periodic behavior at least when the
energy is not too high. Lattices with exponential interaction have the desired
properties. The Toda lattice [18] is given by setting

'.r/ D e�r C r � 1:

Flaschka [6] (see also [14,15]) proved the complete integrability for the Toda lattice
by recasting it as a Lax equation for Jacobi matrices. Later, Van Moerbeke [19],
following a similar work [13] on Hill’s equation [10], used the Jacobi matrices to
define the Toda hierarchy for the periodic Toda lattices and to find the corresponding
Lax pairs.

1In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet or pulse)
that maintains its shape while it travels at constant speed. Solitons are caused by a cancellation of
nonlinear and dispersive effects in the medium.



On a Direct Uvarov-Chihara Problem and Some Extensions 693

Flaschka’s change of variable is given by

an D 1

2
e�.ynC1�yn/=2; bn D 1

2
Pyn:

Hence the new variables obey the evolution equations

Pan D an.bnC1 � bn/; (1)

Pbn D 2.a2n � a2n�1/; a�1 D 0; n > 0; (2)

with initial data b0n D bn.0/ D bn.0/, a0n D an.0/ > 0, which we suppose uniformly
bounded.

Let Jt be the semi-infinite Jacobi matrix associated with the system (1) and (2),
that is,

Jt D

2

6
6
6
6
6
6
6
6
6
4

b0.t/ a0.t/ 0 0 � � �
a0.t/ b1.t/ a1.t/ 0

0 a1.t/ b2.t/ a2.t/

0 0 a2.t/ b3.t/
: : :

:::
: : :

: : :

3

7
7
7
7
7
7
7
7
7
5

:

If 
 is a nontrivial probability measure supported on some interval E  R, then
it is very well known that there exists a unique sequence of polynomials fpngn>0,
assuming the leading coefficient of pn is positive, satisfying

Z

E

pn.x/pm.x/d
.x/ D ın;m; n;m > 0:

fpngn>0 is then said to be the sequence of orthonormal polynomials with respect
to 
. fpngn>0 satisfies the three-term recurrence relation

xpn.x/ D anpnC1.x/C bnpn.x/C an�1pn�1.x/; n > 0;

with the initial condition p�1.x/ D 0, p0.x/ D 1. Notice that the matrix
representation of the recurrence relation is the Jacobi matrix defined above. We
use the notation J
 D J0, i.e., with entries an.0/ D a0n and bn.0/ D b0n. Favard’s
theorem says that, given any Jacobi matrix QJ, there exists a measure 
 on the real
line for which QJ D J
. In general, 
 is not unique.

Flaschka’s main observation is that the equations (1)–(2) can be reformulated in
terms of the Jacobi matrix Jt as the Lax pair

PJt D ŒA; Jt  D AJt � JtA;
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with

A D

2

6
6
6
6
6
6
6
6
6
4

0 a0.t/ 0 0 � � �
�a0.t/ 0 a1.t/ 0

0 �a1.t/ 0 a2.t/

0 0 �a2.t/ 0
: : :

:::
: : :

: : :

3

7
7
7
7
7
7
7
7
7
5

D .Jt /C � .Jt /�;

where we use the standard notation .Jt /C (resp. .Jt /�) for the upper-triangular (resp.
lower triangular) projection of the matrix Jt , and Œ�; � denotes the commutator. At the
same time, the corresponding orthogonality measure d
.�; t/ goes through a simple
spectral transformation,

d
.x; t/ D e�txd
.x; 0/; t > 0: (3)

Notice that spectral transformations of orthogonal polynomials on the real line play
a central role in the solution of the problem. Indeed, the solution of Toda lattice
is a combination of the inverse spectral problem from fa0ngn>0, fb0ngn>0 associated
with the measure d
 D d
.�; 0/, the spectral transformation (3), and the direct
spectral problem from fan.t/gn>0, fbn.t/gn>0 associated with the measure d
.�; t/.
A generalization of the perturbation (3) has been analyzed in [9], where the authors
also describe the time evolution of the zeros of such polynomials.

In this contribution, we are interested in the analysis of the dynamical properties
of the family of orthogonal polynomials Pn.x; t/ with respect to the measure

d Q
.x/ D .1 � J.t//d
.x/C J.t/ı.x/; (4)

where 
 is a symmetric (i.e., d
.x/ D !.x/dx with !.x/ D !.�x/ and
supp.d
.x// symmetric) nontrivial probability measure supported on the real line
and J W RC ! Œ0; 1 is a positive C1 function. In other words, a time-dependent
mass J.t/ is added to 
, in such a way that the new measure Q
 is also normalized.
This problem has been analyzed in [21], where the authors describe the dynamics of
the corresponding orthogonal polynomials and the recurrence relation coefficients
and the connection of this problem with the Darboux transformation. These kinds
of perturbations are particular examples of the so-called Uvarov perturbations. They
have been extensively studied in [4], where end mass points are considered and in
[1, 11] in a more general framework. In [8], the author deals with an electrostatic
interpretation of the zeros of the orthogonal polynomials associated to the perturbed
measure, when it is assumed that 
 is a measure satisfying some extra conditions.

The manuscript is organized as follows. In Sect. 2, we extend the results in [21]
for nonsymmetric measures, using a symmetrization process. In Sect. 3, we analyze
the dynamical behavior of the zeros of Pn.x; t/, when the orthogonality measure is
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semiclassical. Some representative examples of such dynamics are shown, when

 is a symmetric classical measure. Finally, in Sect. 4 we deal with a similar
transformation for orthogonal polynomials with respect to measures supported on
the unit circle.

2 Time Dependence of Orthogonal Polynomials
and Symmetrization Problems

Let fPngn>0 be the sequence of monic orthogonal polynomials with respect to a
symmetric measure
 supported on a symmetric infinite subset of the real line. If we
denote by fPn.x; t/gn>0, the sequence of monic orthogonal polynomials associated
with Q
 defined in (4), then (see [1, 11]):

Pn.x; t/ D Pn.x/ � J.t/Pn.0/

1 � J.t/C J.t/Kn�1.0; 0/
Kn�1.x; 0/; (5)

whereKn.x; y/ is the n-th reproducing kernel defined by

Kn.x; y/ D
nX

kD0

Pk.x/Pk.y/

kPkk2 D PnC1.x/Pn.y/ � Pn.x/PnC1/.y/
kPnk2.x � y/

;

where the expression in the right-hand side is known as the Christoffel-Darboux
formula and it is valid if x ¤ y. Notice that Pn.x/ D Pn.x; 0/, i.e., the perturbed
polynomials at zero time. Since 
 is symmetric, we have P2nC1.0/ D 0, so that

P2nC1.x; t/ D P2nC1.x/; n > 0;

P2n.x; t/ D P2n.x/ � J.t/P2n.0/

1 � J.t/C J.t/K2n�2.0; 0/
K2n�2.x; 0/; n > 0; t > 0:

In other words, the odd degree polynomials are invariant under time. Our interest
is to find the differential equation satisfied by Pn.x; t/ with respect to the time
parameter. Obviously, PP2nC1.x; t/ D 0. Differentiating P2n.x; t/ with respect to
the time we have

PP2n.x; t/ D �
PJ .t/P2n.0/

Œ1 � J.t/C J.t/K2n�2.0; 0/2
K2n�2.x; 0/;

and using the Christoffel-Darboux formula, we get

PP2n.x; t/ D rn
P2n�1.x/

x
; (6)
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with

rn D �
PJ .t/P2n.0/P2n�2.0/

kP2n�2k2Œ1 � J.t/C J.t/K2n�2.0; 0/2
: (7)

Furthermore, since

K2n�2.x; 0/ D P2n�1.x/P2n�2.0/
kP2n�2k2x ;

we have

K2n�2.0; 0/ D P 02n�1.0/P2n�2.0/
kP2n�2k2 ;

so that

rn D �
PJ .t/P2n.0/P2n�2.0/kP2n�2k2

Œ.1 � J.t//kP2n�2k2 C J.t/P 02n�1.0/P2n�2.0/2
: (8)

In [21], the authors show that in this case, the dynamics of the coefficients of the
recurrence relation is given by

Pd2n D rn; Pd2nC1 D �rnC1;

where dn D a2n. This represents a nonlocal integrable chain with continuous time
and discrete space variable. It is related to the so-called Uvarov-Chihara problem in
the theory of orthogonal polynomials (see [20]).

The dynamics of the sequence of polynomials Pn with respect to the time can
be easily obtained for the general (nonsymmetric) case using a symmetrization
process. Given a measure 
, we can define a linear functional u in the linear space
of polynomials with real coefficients P such that

uŒq.x/ D
Z

E

q.x/d
.x/; q 2 P:

If 
 is a probability measure, then u is said to be positive definite. In a more
general framework, it is enough for u to be quasi definite (i.e., the principal leading
submatrices of its Gram matrix with respect to the canonical basis fxngn>0 are
nonsingular) for the existence of a sequence monic polynomials with respect to
u to be guaranteed. Let denote such a sequence by fPngn>0, and define the linear
functional us as

usŒx
2n WD uŒxn; usŒx

2nC1 WD 0; n > 0:
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That is, the linear functional us is symmetric. Thus, it is well known ([3]) that, if we
denote by fQngn>0 the sequence of monic polynomials orthogonal with respect to
us , then

Q2n.x/ D Pn.x
2/; Q2nC1.x/ D x QPn.x2/; n > 0;

where f QPngn>0 is the sequence of monic polynomials orthogonal with respect to the
linear functional Qu D xu (i.e., QuŒq D uŒxq) for any q 2 P. f QPngn>0 is the sequence
of kernel polynomials of parameter 0 (see [3]), and they can be expressed in terms
of fPn.x/gn>0 by

QPn.x/ D 1

x

�

PnC1.x/ � PnC1.0/
Pn.0/

Pn.x/

�

; n > 0:

A necessary and sufficient condition for their existence is that Pn.0/ ¤ 0, n > 0 (in
the positive definite case, that 0 … supp.
/).

Therefore, if u is a (not necessarily symmetric) positive definite linear functional,
then let fPn.x; t/gn>0 be the sequence of monic polynomials orthogonal with
respect to the linear functional ut WD .1 � J.t//u C J.t/ı.x/. Thus,

Pn.x
2; t/ D Q2n.x; t/; n > 0;

where fQn.x; t/gn>0 are symmetric polynomials orthogonal with respect to the
linear functional us obtained from the symmetrization of ut and, therefore,

PPn.x2; t/ D PQ2n.x; t/ D rn
Q2n�1.x; t/

x
D rn

x QPn�1.x2; t/
x

;

where rn is computed using the polynomials Qn and the polynomials QPn.x; t/ are
orthogonal with respect to the linear functional xut , provided Pn.0; t/ ¤ 0, n > 1.
Then,

PPn.x; t/ D rn QPn�1.x; t/; n > 1:

Furthermore, from Q2nC1.x; t/ D x QPn.x2; t/, we get

PQ2nC1.x; t/ D x PQPn.x2; t/ D 0;

and we get PQPn.x; t/ D 0, n > 0. As a consequence

Proposition 2.1. Let fPn.x/gn>0 be the sequence of monic polynomials with
respect to a nontrivial probability measure d
. Let d Q
 be defined as in (4)
and denote by fPn.x; t/gn>0 its corresponding sequence of monic orthogonal
polynomials. Then,

PPn.x; t/ D rn

x

�

Pn.x; t/ � Pn.0; t/

Pn�1.0; t/
Pn�1.x; t/

�

; n > 1:
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3 Time Evolution of Zeros of Semiclassical Orthogonal
Polynomials

Let us consider a symmetric positive definite linear functional u which is semiclas-
sical, i.e.,

D.�.x/u/ D �.x/u;

for some polynomials � and � , which are even and odd functions, respectively, with
deg� > 1, and let us define the linear functional

Qu D .1 � J.t//u C J.t/ı.x/: (9)

Here, as above, J W RC ! Œ0; 1 is a positive C1 function. Then, we have

x2�.x/Qu D .1� J.t//x2�.x/u:

Applying the derivative operator in both sides, we get

DŒx2�.x/Qu D .1 � J.t//DŒx2�.x/u

D .1 � J.t//Œ2x�.x/u C x2D.�u/

D 2x� Qu C .1� J.t//x2�u

D .2x� C x2�/Qu:

Thus, Qu is also semiclassical, and then its corresponding sequence of monic
orthogonal polynomials, fPn.x; t/gn>0, satisfies the structure relation ([11, 12])

x2�.x/
@

@x
Pn.xI t/ D An.xI t/Pn.xI t/C Bn.xI t/Pn�1.xI t/; (10)

where the functionsAn.xI t/; Bn.xI t/ can be calculated explicitly using the measure
associated with u and its corresponding sequence or orthogonal polynomials (see
[2, 9, 12]). Let xn;k.t/ be the k-th zero of Pn.xI t/, i.e.,

Pn.xn;k.t/; t/ D 0:

Following [9], differentiating the last equation with respect t , we obtain

@

@x
Pn.xI t/

ˇ
ˇ
ˇ
ˇ
xDxn;k

Pxn;k C PPn.xn;k ; t/ D 0:
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Thus, evaluating (10) with n D 2m at x D x2m;k.t/ we get

x22m;k.t/�.x2m;k.t//
@

@x
P2m.x2m;k.t/I t/ D Bn.x2m;k.t/I t/P2m�1.x2m;k.t/I t/;

and, as a consequence, from (6) we obtain

Px2m;k.t/ D �rm x2m;k.t/�.x2m;k.t//
B2m.x2m;k.t//

: (11)

Next, we consider two examples of classical families (semiclassical of class
zero) of orthogonal polynomials that are symmetric, namely, the Gegenbauer (with
parameter ˛ D ˇ D 1) and Hermite polynomials. In both cases, since their structure
relations are known, An.x; t/ and Bn.x; t/ can be easily obtained directly from the
structure and recurrence relations.

First, notice that from (5), we have

P 02n.x; t/ D P 02n.x/ � J.t/P2n.0/P2n�2.0/
1 � J.t/C J.t/K2n�2.0; 0/

xP 02n�1.x/ � P2n�1.x/
kP2n�2k2x2 ; (12)

where P 0 denotes the derivative with respect to x. Thus,

x2�.x/P 02n.x; t/ D x2�.x/P 02n.x/�M.t/�.x/ŒxP 02n�1.x/ � P2n�1.x/; (13)

where

M.t/ D J.t/P2n.0/P2n�2.0/
Œ1 � J.t/C J.t/K2n�2.0; 0/kP2n�2k2 :

1. For the Gegenbauer polynomials with ˛ D ˇ D 1, we have �.x/ D 1 � x2 and
(see [12])

�.x/P 0n.x/ D anPnC1 C cnPn�1.x/; (14)

xPn.x/ D PnC1.x/ � �nPn�1.x/; (15)

where an; cn; �n are given by

an D �n;

cn D 4n.nC 1/2.nC 2/.nC 3/

.2nC 1/.2nC 2/2.2nC 3/
;

�n D 4n.nC 1/2.nC 2/

.2nC 1/.2nC 2/2.2nC 3/
:
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As a consequence,

.1 � x2/P 0n.x/ D anxPn.x/ � .an�n � cn/Pn�1.x/: (16)

Thus, from (13) and (16), it is straightforward to show that

x2.1 � x2/P 02n.x; t/ D An.x; t/P2n.x; t/C Bn.x; t/P2n�1.x; t/;

with

An.x; t/ D a2nx
3 �M.t/

a2n�1�2n�1 � c2n�1
�2n�1

x;

Bn.x; t/ D �.a2n�1�2n�1 � c2n�1 CM.t//x2 �M.t/

�

a2n�1x2 � �.x/� An.x; t/

x

�

;

which can be reduced after some calculations to

An.x; t/ D a2nx
3 �M.t/

.4n � 1/.2n� 1/2

n2
x;

Bn.x; t/ D

.4n2 � 1/.4n � 1/2

4nC 1
� a2n � .2C a2n�1/M.t/

�

x2

C .4n � 1/.2n� 1/2
n2

M2.t/CM.t/:

Notice that in this case, An.x; t/ and Bn.x; t/ are polynomials in x. Thus,
from (11), the dynamics of the zeros of Pn.x; t/ can be described as

Px2m;k.t/ D �rm
x2m;k.t/.1 � x22m;k.t//

B2m.x2m;k.t//
:

2. Now, we consider the Hermite polynomialsHn. In this case, we have �.x/ D 1,
H 0n.x/ D nHn�1.x/ and

HnC1.x/ D xHn.x/� 1

2
nHn�1.x/:

Thus, proceeding as above, we get

x2H 02n.x; t/ D An.x; t/H2n.x; t/C Bn.x; t/H2n�1.x; t/;
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with

An.x; t/ D 2.2n� 1/

n
M.t/x;

Bn.x; t/ D 2

�

n � 2n � 1

n
M.t/

�

x2 C
�

1 � 2.2n� 1/

n
M.t/

�

M.t/:

Again, since we have a classical family, An.x; t/ and Bn.x; t/ are polynomi-
als in x. As a consequence, the behavior of the zeros of H2m.x; t/ can be
described as

Px2m;k.t/ D �rm x2m;k.t/

B2m.x2m;k.t//
:

4 Time Dependence of Verblunsky Coefficients for OPUC

Given a nontrivial probability measure � supported on the unit circle T, there
exists a sequence of monic polynomials f˚ngn>0 which is orthogonal with respect
to � , i.e.,

Z

T

˚n.z/˚m.z/d�.z/ D �nın;m; �n > 0; n;m > 0:

They are called orthogonal polynomials on the unit circle (OPUC). These polyno-
mials satisfy the recurrence relation (see [16, 17])

˚nC1.z/ D z˚n.z/C ˚nC1.0/˚�n .z/; n > 1;

where ˚�n .z/ D zn˚n.1=Nz/ is called the reversed polynomial, and the complex
numbers f˚n.0/gn>1 satisfy j˚n.0/j < 1. They are called Verblunsky (reflection,
Schur, Szegő) coefficients.

On the other hand, if 
 is a nontrivial probability measure supported on Œ�1; 1,
then it is very well known ([17]) that it induces a nontrivial positive measure
� supported on the unit circle. This process is called the Szegő transformation.
On the other hand, if � is induced through the Szegő transformation, then their
corresponding orthogonal polynomials˚n have real coefficients, and the Verblunsky
coefficients are also real. In this case, consider the perturbation

d Q�.z/ D .1 � J.t//d�.z/C J.t/ı.z � 1/;

i.e., a time-dependent mass is added at the point z D 1, where J W RC ! Œ0; 1

is a positive C1 function. Notice that this is the same perturbation defined in
the previous sections for orthogonal polynomials on the real line, although the
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symmetry requirement has been removed. As before, if ˚n.zI t/ is the MOPS with
respect to Q� , then

˚n.zI t/ D ˚n.z/� J.t/˚n.1/

1 � J.t/C J.t/Kn�1.1; 1/
Kn�1.z; 1/; (17)

whereKn.z; y/, the reproducing kernel, is now defined as (see [16, 17])

Kn.z; y/ D
nX

kD0

˚k.z/˚k.y/

k˚kk2 D ˚�nC1.z/˚�nC1.y/ � ˚nC1.z/˚nC1/.y/
k˚nC1k2.1 � z Ny/ ;

provided z Ny ¤ 1. Therefore,

˚n.0I t/ D ˚n.0/� J.t/˚n.1/

1 � J.t/C J.t/Kn�1.1; 1/
Kn�1.0; 1/; (18)

and since we have real coefficients and ˚�n .0/ D 1,

˚n.0I t/ D ˚n.0/� J.t/˚2
n .1/.1� ˚n.0//

k˚nk2Œ1 � J.t/C J.t/Kn�1.1; 1/
: (19)

Thus,

P̊
n.0I t/ D �

PJ .t/˚2
n.1/.1 �˚n.0//

k˚nk2Œ1 � J.t/C J.t/Kn�1.1; 1/2
;

which describes the dynamic behavior of the Verblunsky coefficients of the per-
turbed measure with respect to the time. We will show that ˚n.1/ and Kn�1.1; 1/
can be expressed in terms of the previous Verblunsky coefficients. Notice that, from
the recurrence relation, we have

˚n.1/ D ˚n�1.1/C ˚n.0/˚
�
n�1.1/;

but since ˚n�1 has real coefficients, we get

˚n.1/ D Œ1C ˚n.0/˚n�1.1/;

and, recursively,

˚n.1/ D
nY

kD1
.1C ˚k.0//:
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On the other hand,

Kn�1.1; 1/ D
n�1X

kD0

˚2
k .1/

k˚kk2 D
n�1X

kD0

kQ

jD1
.1C ˚j .0//

2

kQ

jD1
.1 �˚2

j .0//

D
n�1X

kD0

kQ

jD1
.1C ˚j .0//

kQ

jD1
.1 � ˚j .0//

:

As a consequence, in order to describe the dynamics of ˚n.0I t/, the values of
f˚k.0/gnkD1 are required. The situation can be simplified if symmetric measures are
considered. As an example, consider the perturbation of the Lebesgue measure on
the real line defined by

d Q
.x; t/ D dx C 1

J.t/
ı.x C 1/C 1

J.t/
ı.x � 1/:

Notice that d Q
.x; t/ is symmetric. Applying the Szegő transformation to d Q
.x/ it
will induce a measure d�.z; t/ on the unit circle which is also symmetric. It was
shown in [7] that in such a case, the Verblunsky coefficients associated with d� are

˚2n.0; t/ D �1
2nC 1

3n2.nC 1/2 C 2n.nC 1/J.t/ � J 2.t/

n2.nC 1/2 C 2n.nC 1/J.t/C J 2.t/
;

˚2nC1.0; t/ D 0:

In other words, the dynamics of ˚n.0/ can be obtained easily only in terms of J.t/.
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On Especial Cases of Boas-Buck-Type
Polynomial Sequences

Ana F. Loureiro and S. Yakubovich

Dedicated to Professor Hari M. Srivastava

Abstract After a slight modification, the Kontorovich-Lebedev transform is an
automorphism in the vector space of polynomials. The action of this transformation
over special cases of Boas-Buck-type polynomial sequences is under analysis.

1 Introduction and Preliminary Results

This work aims to give a humble contribution to polynomial sequences generated by
Boas-Buck-type generating function or Boas-Buck structure. Under analysis will be
the action of the so-called Kontorovich-Lebedev transform over certain Boas-Buck
polynomial sequences [3, 4].

Throughout the text, N will denote the set of all positive integers, N0 D N[ f0g,
whereas R and C the field of the real and complex numbers, respectively. The
notation RC corresponds to the set of all positive real numbers. The present
investigation is primarily targeted at analysis of sequences of polynomials whose
degrees equal its order, which will be shortly called as PS. Whenever the leading
coefficient of each of its polynomials equals 1, the PS is said to be an MPS
(monic polynomial sequence). A PS or an MPS forms a basis of the vector space
of polynomials with coefficients in C, here denoted as P.
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The aforementioned Kontorovich-Lebedev (hereafter, KL) arises as the simplest
case of a very general index integral transform, the Wimp transform, named after
his work in 1964,

F.�/ D
Z 1

0

Gm;nC2
pC2;q

�

xI 1 � 
C i�; 1� 
 � i�; .ap/
.bq/

�

f .x/dx (1)

whose inversion formula was established in 1985 [15] by the second author (see
[16–18])

f .x/ D 1

�2

Z 1

0

� sinh.2��/F.�/ Gq�m;p�nC2pC2;q

 

xI 
C i�; 
 � i�;�.anC1p /;�.an/
�.bmC1q /;�.bm/

!

d�:

(2)

This transformation has the Meijer G-function as a kernel

Gm;n
p;q

�
zI a

b

�
WD Gm;n

p;q

�

zI a1; : : : ; ap
b1; : : : ; bq

�

:

It is a very general function including most of the known special functions as
particular cases (like all the generalized hypergeometric functions pFq and Mathieu
functions), and it can be defined via the Mellin-Barnes integral (the reciprocal
formula of the Mellin transform)

Gm;n
p;q

�
zI a

b

�
W D Gm;n

p;q

�

zI a1; : : : ; ap
b1; : : : ; bq

�

D 1

2�i

Z

L

mQ

lD1
� .bl � s/

nQ

lD1
� .1 � al C s/

q�1Q
lDm

� .1 � blC1 C s/
p�1Q
lDn

� .alC1 � s/

zsds; (3)

as long as 0 6 m 6 q and 0 6 n 6 p, where m; n; p, and q are integer numbers,
ak � bi ¤ 1; 2; 3; : : : for k D 1; 2; : : : ; n and j D 1; 2; : : : ; m, which implies
that no pole of any � .bj � s/; j D 1; 2; : : : ; m, coincides with any pole of any
� .1 � ak C s/, k D 1; 2; : : : ; n, and z ¤ 0.

So, the KL-transform arises upon the choice of parametersm D n D p D q D 0.
The reciprocal pair of transformations (1)–(2) incorporates all the existent index
transforms in the literature such as Mehler-Fock, Olevski-Fourier-Jacobi, Whittaker,
and Lebedev’s transform with a combination of modified Bessel functions, among
others. We notice that all these index transforms can be obtained through the
composition of the KL with the Mellin type convolution transforms [16, 18].

Recently [10], we have shown that the modified KL˛-transform, with ˛ > 0,
defined by



On Especial Cases of Boas-Buck Type Polynomial Sequences 707

KL˛Œf .x/.�/ D 2

ˇ
ˇ
ˇ
ˇ�

�

˛ C 1C i�

2

�ˇˇ
ˇ
ˇ

�2 Z 1

0

f .x/x˛Ki� .2
p
x/dx; (4)

is an automorphism in the vector space of polynomials, and we have as well charac-
terized all the orthogonal polynomial sequences that are mapped into d -orthogonal
polynomial sequences (a broadened concept of orthogonality). This transformation
essentially bridges monomials into central factorials insofar as [10, 11]

KL˛Œxn.�/ D
�

˛ C 1 � i�

2

�

n

�

˛ C 1C i�

2

�

n

D
ˇ
ˇ
ˇ
ˇ

�

˛ C 1C i�

2

�

n

ˇ
ˇ
ˇ
ˇ

2

; n > 0:

The kernel of such transformation is the modified Bessel function (also called
Macdonald function) K2i� .2

p
x/ of purely imaginary index, which is real valued

and can be defined by integrals of Fourier type

Ki�.2
p
x/ D

Z 1

0

e�2
p
x cosh.u/ cos.� u/du; x 2 RC; � 2 RC: (5)

Moreover it is an eigenfunction of the operator

A D x2
d2

dx2
C x

d

dx
� x D x

d

dx
x
d

dx
� x (6)

insofar as

AKi� .2
p
x/ D �

��

2

�2
Ki�.2

p
x/ ; (7)

which is valid for any continuous function f 2 L1
�
RC; K0.2


p
x/dx

�
,

0 < 
 < 1, in a neighborhood of each x 2 RC where f .x/ has bounded variation.
Naturally, the identity

KL˛Œxn.�/ D
�

˛ C 1 � i�

2

�

n

�

˛ C 1C i�

2

�

n

D
ˇ
ˇ
ˇ
ˇ

�

˛ C 1C i�

2

�

n

ˇ
ˇ
ˇ
ˇ

2

(8)

holds, enhancing the fact that KL˛ is an isomorphism in the vector space P,
essentially performing the passage between the canonical basis fxngn>0 and the

central factorial basis
nˇ
ˇ�˛ C 1C i�

2

�
n

ˇ
ˇ2
o

n>0
.

Besides, from the definition (4), we readily observe that

KL˛CˇŒf .x/.�/ D
ˇ
ˇ�
�
˛ C 1C i�

2

�ˇˇ2

ˇ
ˇ�
�
˛ C ˇ C 1C i�

2

�ˇˇ2
KL˛Œx

ˇf .x/.�/; (9)
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and, in particular, when ˇ D n 2 N0, we have

KL˛Œx
nf .x/.�/ D

ˇ
ˇ
ˇ
ˇ

�

˛ C 1C i�

2

�

n

ˇ
ˇ
ˇ
ˇ

2

KL˛CnŒf .x/.�/ D KL˛Œx
n.�/KL˛CnŒf .x/.�/:

(10)

As a matter of fact, the action of the KL˛ operator acting on P can be viewed as
the passage from differential relations into central difference relations, as it can
be perceived from (8). To be more specific, let us represent the central difference
operator by ı! , defined through

.ı!f /.�/ WD f .� C !/ � f .� � !/
2!�

(11)

for some complex number ! ¤ 0.

Lemma 1.1 ([10]). For any f 2 P, the following identities hold

�

.˛ C 1/2 C �2

4

�

ı2i .KL˛Œf .x/.�// D KL˛



x
d2

dx2
f .x/

�

.�/ ; n > 0; (12)

while

KL˛C1=2

d

dx
f .x/

�

.�/ D ıi

�
KL˛Œf .x/.�/

�
; (13)

KL˛

�
1

x
Ax C 2˛

d

dx
x

�m
xnf .x/

�

.�/

D .�1/m
�
�2

4
C ˛2

�m ˇˇ
ˇ
ˇ

�

˛ C 1C i�

2

�

n

ˇ
ˇ
ˇ
ˇ

2

KL˛CnŒf .�/;
(14)

where A represents the operator (6).

This text has no pretension of completeness, neither the reference list. It is
organized as follows. In Sect. 2, after defining the Boas-Buck-type sequences (see
Definition 2.1), we analyze the image of those whose generating function involves
the Meijer G-function as a component. For the particular case of the Brenke-
type sequences, we provide differential relations for the corresponding polynomial
sequences. When further structural properties like orthogonality or d -orthogonality
are known, one might have additional relations that can lead us to the determination
of the sequence. We draw some clues in this direction, but we do not enter in this
kind of details. Making use of the properties of the KL˛-transform, we determine
the generating function of the KL˛-transformed sequence to which we provide
the corresponding properties derived from those of the original sequence. Finally,
in Sect. 3 some examples of some hypergeometric-type sequences along with the
corresponding KL˛-images will be given.
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2 About Boas-Buck-Type Polynomial Sequences

As the central object of this work, we begin with the description of the so-called
Boas-Buck-type sequences, named after the work [4].

Definition 2.1. An MPS fPngn>0 is said to be a Boas-Buck polynomial sequence
or to have a generating function of Boas-Buck type if there exists a sequence of
nonzero numbers f�ngn>0 and a; b 2 R such that for x 2 Œa; b

G.x; t/ D A.t/B.xg.t// D
X

n>0
Pn.x/

tn

�n
; (15)

where

fA.t/; B.t/; g.t/g D
X

n>0
fan; bn; gngtnsatisfying a0 � bn � g1 ¤ 0 (16)

for all n 2 N0, and g0 D 0.

The Brenke-type polynomials arise when g.t/ D t , whereas the choice B.y/ D ey

brings the Sheffer-type polynomials with the Appell polynomials included (upon
the additional condition of g.t/ D t).

The Boas-Buck polynomials, named after the work [4] by the two authors, were
at that stage called as the generalized Appell polynomials. As this nomenclature is
used nowadays with respect to other types of polynomials, we avoid such names.

In order to describe the KL˛-transform of Boas-Buck-type polynomial
sequences, we need to ensure that a corresponding generating function can actually
be described as the KL˛-transform of the original one. Theorem 2.1 provides the
necessary conditions, but first we need the following result.

Lemma 2.1. Let g W Œa; b ! RC with a; b 2 R andB.x/ 2 L1.RCI x��dx/, with
� > �˛. If G.x; t/ D A.t/B.xg.t//, with A;B , and g realizing conditions (16),
then the KL˛-transform ofG.x; t/ with respect to x can be calculated by the formula

KL˛ŒG.x; t/.�/D A.t/

2�i
ˇ
ˇ�
�
˛C 1C i�

2

�ˇˇ2
(17)

�
Z

1��Ci1

1���i1
�

�

1� sC ˛C i�

2

�

�

�

1� sC ˛ � i�
2

�

B?.s/
�
g.t/

�
�s

ds;

where � .z/ is the Euler Gamma function andB�.s/ is the Mellin transform ofB.x/:

B?.s/ D
Z 1

0

B.x/xs�1dx; � D Re.s/ > �˛; (18)

where the latter integral converges absolutely.
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Proof. The condition B.x/ 2 L1.RCI x��dx/ guarantees the existence of the
Mellin transform (18) (see [14]). Bearing in mind the Stirling formula for the
asymptotic at infinity of the Gamma function [9, vol. I] and the following integral
representation of the product of Gamma functions as the Mellin transform of the
modified Bessel functionKi�.2

p
x/ [13]

�

�

˛ C s C i�

2

�

�

�

˛ C s � i�

2

�

D 2

Z 1

0

Ki� .2
p
x/x˛Cs�1dx; Re.s/ > �˛;

then, via Parseval equality for the Mellin transform (see the analog of Theorem 35
in [14]), and according to the definition of the KL˛-transform (4), we have

KL˛ŒG.x; t/.�/ D 2A.t/

ˇ
ˇ
ˇ
ˇ�

�

˛ C 1C i�

2

�ˇˇ
ˇ
ˇ

�2 Z 1

0
x˛Ki� .2

p
x/B.xg.t//dx

D 1

2�i
A.t/

ˇ
ˇ
ˇ
ˇ�

�

˛ C 1C i�

2

�ˇˇ
ˇ
ˇ

�2

�
Z

�Ci1

��i1
�

�

s C ˛ C i�

2

�

�

�

s C ˛ � i�

2

�

B?.1 � s/
�
g.t/

�s�1
ds:

The result now follows after an elementary substitution in the latter integral. ut
Theorem 2.1. Let fPngn>0 be an MPS generated byG.x; t/ D A.t/B.xg.t//, with
A;B; and g realizing conditions (16) and such that for each � 2 RC, the integral of

KL˛

�
@n

@un
B.u/

�ˇˇ
ˇ
ˇ
uDxt

xn
�

.�/

converges uniformly by t 2 Œ0; ı; ı > 0.
Then under assumptions B.x/ 2 L1.RC; x��dx/, � > �˛, and .s/nB

?.s/ 2
L1.1���i1; 1��Ci1/ for any n 2 N, the MPS fQn WD Qn.�I˛/gn>0 defined by

KL˛ŒPn.x/.�/ D Qn.� I˛/

is generated by A.t/KL˛ŒB.xg.t//.�/, which can be calculated via (17).

Proof. We begin by showing that for any integer n > 0 and fixed nonnegative � , the
following identity holds:

KL˛


@n

@tn
B.xt/

�

.�/ D KL˛

�
@n

@un
B.u/

�ˇˇ
ˇ
ˇ
uDxt

xn
�

.�/ D @n

@tn
KL˛ ŒB.xt/ .�/; t > 0:

(19)

Indeed, sinceB.x/ 2 L1.RC; x��dx/ and .s/nB?.s/ 2 L1.1���i1; 1��Ci1/

for any n 2 N, this means that B.x/ is infinite times differentiable and can be
represented via the reciprocal integral of the inverse Mellin transform
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B.x/ D 1

2�i

Z
1��Ci1

1���i1
B?.s/x�sds; x > 0:

Moreover, its nth derivative is given accordingly

@n

@xn
B.x/ D .�1/n

2�i

Z
1��Ci1

1���i1
.s/nB

?.s/x�s�nds;

where the integral is absolutely convergent. Hence, the boundedness of the Gamma
product

�

�

1 � s C ˛ C i�

2

�

�

�

1 � s C ˛ � i�

2

�

under the condition � > �˛ allows us to differentiate n times with respect to t >
t0 > 0 under the integral sign of (17) with g.t/ D t , owing to the absolute and
uniform convergence. Thus, we obtain

@n

@tn
KL˛ ŒB.xt/ .�/

D .�1/n
2�i

ˇ
ˇ�
�
˛C 1C i�

2

�ˇˇ2

Z
1��Ci1

1���i1
�

�

1� sC ˛C i�

2

�

�

�

1� sC ˛ � i�

2

�

B?.s/.s/nt
�s�nds:

On the other hand, applying again the Parseval identity for the Mellin transform
in the right-hand side of the latter equality, we deduce

.�1/n
2�i

ˇ
ˇ�
�
˛C 1C i�

2

�ˇ
ˇ2

Z
1��Ci1

1���i1
�

�

1� sC ˛C i�

2

�

�

�

1� sC ˛ � i�
2

�

B?.s/.s/nt
�s�nds

D t�n
ˇ
ˇ�
�
˛C 1C i�

2

�ˇ
ˇ2

Z 1

0

x˛Ki� .2
p
x/.xt/n

@n

@.xt/n
B.xt/dx

D 1
ˇ
ˇ�
�
˛C 1C i�

2

�ˇ
ˇ2

Z 1

0

x˛Ki� .2
p
x/
@n

@tn
B.xt/dx D KL˛


@n

@tn
B.xt/

�

.�/ ;

which completes the proof of (19). Moreover, passing to the limit under the integral
sign in (19), when t ! 0C due to the uniform convergence on Œ0; ı, we obtain

lim
t!0CKL˛


@n

@tn
B.xt/

�

.�/ D KL˛



lim
t!0C

@n

@tn
B.xt/

�

.�/ D lim
t!0C

@n

@tn
KL˛ ŒB.xt/ .�/

D
�
@n

@tn
KL˛ ŒB.xt/ .�/

�ˇˇ
ˇ
ˇ
tD0

: (20)
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Further, we have

nŠ

�n
Pn.x/ D @n

@tn
G.x; t/

ˇ
ˇ
ˇ
ˇ
tD0

D
nX

�D0

 
n

�

!

An��
@�

@t�
B
�
xg.t/

�
ˇ
ˇ
ˇ
ˇ
tD0

;

where A� D @�

@t�
A.t/

ˇ
ˇ
tD0, for any positive integer � . Now the Faa di Bruno’s

formula permits us to formally write the successive derivatives of the function
B
�
xg.t/

�
at the point t D 0—see [7, pp. 137–140]. Precisely,

@�

@t�
B
�
xg.t/

�
ˇ
ˇ
ˇ
ˇ
tD0

D
�X


D0

@
B.u/

@u


ˇ
ˇ
ˇ
ˇ
uD0

B�;
.g1; : : : ; g��
C1/ x


where B�;
.g1; : : : ; g��
C1/ corresponds to the Bell polynomials evaluated

at the successive derivatives of the function g. Here, g
 D @
g.u/
@u


ˇ
ˇ
ˇ
uD0, for

any positive integer 
, and, for instance, the case where g.t/ D t implies
B�;
.g1; : : : ; g��
C1/ D 1. Thus,

nŠ

�n
Pn.x/ D

nX

�D0

 
n

�

!

An��
�X


D0
B�;
.g1; : : : ; g��
C1/


@
B.u/

@u


ˇ
ˇ
ˇ
ˇ
uD0

�

x


D
nX

�D0

 
n

�

!

An��
�X


D0
B�;
.g1; : : : ; g��
C1/

�
@


@t

B.xt/

�ˇˇ
ˇ
ˇ
tD0

; n > 0:

The action of the operator KL˛ on both sides of the first and last members of the
precedent equalities, along with the linearity of this operator, leads to

nŠ

�n
Qn.�/ D

nX

�D0

 
n

�

!

An��
�X


D0
B�;
.g1; : : : ; g��
C1/ KL˛


@


@t

B.xt/;

ˇ
ˇ
ˇ
ˇ
tD0

�

.�/;

which can be equivalently written like

nŠ

�n
Qn.�/

D
nX

�D0

 
n

�

!

An��
�X


D0


@
B.u/

@u


ˇ
ˇ
ˇ
ˇ
uD0

�

B�;
.g1; : : : ; g��
C1/

ˇ
ˇ
ˇ
ˇ
ˇ

�

˛ C 1C i�

2

�




ˇ
ˇ
ˇ
ˇ
ˇ

2

;

where n > 0.
Now, the identity (19) permits us to write
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nŠ

�n
Qn.x/

D
nX

�D0

 
n

�

!

An��
�X


D0
B�;
.g1; : : : ; g��
C1/

�
@


@t

KL˛ ŒB.xt/ .�/

�ˇˇ
ˇ
ˇ
tD0

; n > 0:

Arguing, once again, with the Faa Di Bruno’s formula followed by the Leibniz rule,
we come out with

nŠ

�n
Qn.x/ D

nX

�D0

 
n

�

!

An��
�
@�

@t�
KL˛ ŒB.xg.t// .�/

�ˇˇ
ˇ
ˇ
tD0

D @n

@tn

�
A.t/ KL˛ ŒB.xg.t// .�/

�ˇˇ
ˇ
ˇ
tD0

; n > 0;

whence the result. ut
Some particular cases of the aforementioned Bell polynomials are worth to be

shown [7]:

– If g.t/ D et , then Bn;k.1; 1; : : : ; 1/ D S.n; k/, 1 6 k 6 n, with S.n; k/
representing the Stirling numbers of second kind.

– If g.t/ D tet , then Bn;k.1; 2; 3; 4; : : :/ D �
n
k

�
kn�k , 1 6 k 6 n, which correspond

to the idempotent numbers.
– If g.t/ D t

1�t , then Bn;k.1Š; 2Š; 3Š; 4Š; : : :/ D �
n�1
k�1
�
nŠ
kŠ

, 1 6 k 6 n, which
correspond to the Lah numbers.

Another necessary condition over a generating function of a given MPS is given
in the following result, which, indeed supplies a generating function of the KL˛-
transformed sequence.

Proposition 2.1. Let G.x; t/ be the generating function given in (15) of the MPS
fPngn>0. If

X

n>0

ˇ
ˇ
ˇ
ˇPn.x/

tn

�n

ˇ
ˇ
ˇ
ˇ 2 L1.RCI x˛K0.2

p
x/dx/; (21)

then the MPS fSn.�/ WD KL˛ŒPn.x/.�/gn>0 is generated by

A.t/KL˛ŒB.xg.t//.�/ D
X

n>0
Sn.�/

tn

�n
:

Proof. The condition (21) ensures the integrability of G.x; t/ with respect to the
measure x˛K0.2

p
x/dx. Therefore, we consider the action of the KL˛-transform

on both members of (15), and we obtain
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KL˛ŒG.x; t/.�/ D KL˛

2

4 lim
n!1

nX

jD0
Pn.x/

tn

�n

3

5 .�/

D 2

ˇ
ˇ
ˇ
ˇ�

�

˛ C 1C i�

2

�ˇˇ
ˇ
ˇ

�2 Z 1

0

0

@ lim
n!1

nX

jD0
Pn.x/

tn

�n

1

A x˛Ki� .2
p
x/dx:

The result now follows in the light of the dominated convergence theorem. ut
Particular choices of the functionB.�/ permit to explicitly express the generating

function of the corresponding KL˛-transformed MPS.

Proposition 2.2. If an MPS fPngn>0 is generated by (15), subject to the condi-
tions (16), with

B.xg.t// D Gm;n
p;q

�
xg.t/I a

b

�
; (22)

then the MPS fSngn>0 is generated by

2A.t/

ˇ
ˇ
ˇ
ˇ�

�

˛ C 1C i�

2

�ˇˇ
ˇ
ˇ

�2
G
mC2;n
pC2;q

�

g.t/I �˛ � i�=2;�˛ C i�=2; a
b

�

D
X

n>0
Sn.�

2=4/
tn

Qn
�D1 ��

:

Proof. Let G.x; t/ be the generating function given in (15). Based on the relation
(11) in [9, p. 215, vol. I], we obtain

KL˛ŒG.�; t/.�/ D 2A.t/

ˇ
ˇ
ˇ
ˇ�
�
˛ C 1C i�

2

�ˇˇ
ˇ
ˇ

�2
G
mC2;n
pC2;q

�

g.t/I�˛ � i�=2;�˛ C i�=2; a
b

�

and now the result follows due to Proposition 2.1. ut
Sometimes, when certain differential and structural properties are known about
a given MPS, we are able to deduce those of the so-called reversed sequence.
We recall the concept.

Definition 2.2. Given an MPS fPn.�/gn>0 such thatPn.0/ D 	n ¤ 0 for all n 2 N0,
it is possible to construct another MPS fRn.�/gn>0 defined by

Rn.x/ D 1

	n
xnPn

�
1

x

�

; n 2 N0; (23)

to which we will refer to as the reversed polynomial sequence or simply as the
reversed polynomials.

For instance, an Appell sequence can be generated by G.x; t/ D A.t/ext

(a Sheffer-type sequence), with A.0/ ¤ 0, and the corresponding reversed sequence
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would then be generated by H.x; t/ D e.t/A.xt/; it is a Brenke-type sequence.
Within the same spirit, we can also deal with more general generating functions.

Theorem 2.2. Suppose fPn.�/ WD Pn
��I a

b

�gn>0 is an MPS possibly depend-
ing on p C q parameters a1; : : : ; ap; b1; : : : ; bq with a1 ¤ �1 and such that
Pn.0/ D 	n ¤ 0. Let fRn

��I a
b

�gn>0 be the corresponding reversed polynomial
sequence defined in (23). The following statements are equivalent:

(a) The MPS fPn.�/ WD Pn
��I a

b

�gn>0 is the Brenke-type generated by G.x; t/,
that is,

A.t/Gm;n
p;q

�
xt I a

b

�
D
X

k>0
Pk

�
xI a

b

� tk

Qk
�D1 ��

;

where �k D k=.a1 C 1/ or �k D k, k 2 N, when there is no dependence on a.
(b) The MPS fPn.�/ WD Pn

��I a
b

�gn>0 fulfills

d

dx
PkC1

�

xI aC1
bC1

�

D kC1
a1C1

�

Pk

�

xI a1�1; a2; : : : ; ap
b1; : : : ; bq

�

Ca1 Pk
�
xI a

b

�	

(24)

for k 2 N0, with P0
��I a

b

� D 1.
(c) The sequence fRn.�/ WD Rn

��I a
b

�gn>0 fulfills

d

dx
x RkC1

�

xI a C 1

b C 1

�

D .k C 2/RkC1
�

xI a C 1

b C 1

�

� k C 1

a1 C 1

	k

	kC1

�

Rk

�

xI a1 � 1; a2; : : : ; ap

b1; : : : ; bq

�

C a1 Rk

�
xI a

b

�	

(25)

with R0
��I a

b

� D 1.
(d) The MPS fRn

��I a
b

�gn>0 is generated by

Gm;n
p;q

�
t I a

b

�
A.xt/ D

X

k>0
	kRk

�
xI a

b

� tk

kQ

�D1
��

:

Proof. The change of variable x ! 1=x and t ! xt permits to readily conclude
the equivalence of statements (a) and (d), along with the equivalence between
statements (b) and (c).

On the grounds of the properties of the Meijer G-function (see [9, vol. I, p. 210]
or [8, Sect. 16.19]), we have

d

d z
Gn;m
p;q

�

zI a C 1

b C 1

�

D Gm;n
p;q

�

zI a1 � 1; a2; : : : ; ap

b1; : : : ; bq

�

C a1 G
m;n
p;q

�

zI a1; : : : ; ap
b1; : : : ; bq

�

;

(26)
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we are able to successively write the identities

X

k>1

�
d

dx
Pk

�

xI a C 1

b C 1

��
tk

�k

D d

dx

�

A.t/Gm;n
p;q

�

xt I a C 1

b C 1

��

D t A.t/

�

Gm;n
p;q

�

xt I a1 � 1; a2; : : : ; ap
b1; : : : ; bq

�

C a1 G
m;n
p;q

�

xt I a1; : : : ; ap
b1; : : : ; bq

�	

D
X

k>0

n
Pk

�

xI a1 � 1; a2; : : : ; ap

b1; : : : ; bq

�

C a1 Pk

�
xI a

b

� o tkC1

�k

ensuring the equivalence between (a) and (b). ut
Let us respectively denote by f OPngn>0 and f ORngn>0 the images by the KL˛-

transform of the two MPSs fPngn>0 and fRngn>0 respectively given in statements
(a)–(b) and (c)–(d) in Theorem 2.2. Here, we mean

OPn.�/ WD OPn
�
xI a

b
I˛
�

D KL˛
h
Pn

�
xI a

b

�i
.�/; n 2 N0;

and

ORn.�/ WD ORn
�
xI a

b
I˛
�

D KL˛
h
Rn

�
xI a

b

�i
.�/; n 2 N0:

Thus, under these notations, from (24) and in the light of the property (13) of the
KL˛-transform, it follows that f OPngn>0 fulfills

ıi

�
OPkC1

�

xI a C 1

b C 1
I˛
��

D kC1
a1C1

�
OPk
�

xI a1�1; a2; : : : ; ap
b1; : : : ; bq

I˛C1

2

�

Ca1 OPk
�

xI a
b

I˛C1

2

�	

; k 2 N0;

where ı! represents the operator given by (11).
Likewise, due to (13) the relation (25) realized by the MPS fRngn>0 induces a

corresponding one fulfilled by f ORngn>0:
�

.˛ C 1/2 C �2

4

�

ıi

�
ORkC1

�

xI a C 1

b C 1
I˛ C 1

2

��

D .k C 1/ ORkC1
�

xI a C 1

b C 1
I˛
�

� k C 1

a1 C 1

	k

	kC1

�
ORk
�

xI a1 � 1; a2; : : : ; ap
b1; : : : ; bq

I˛
�

C a1 ORk
�
xI a

b
I˛
�	

; k 2 N0:

Other relations for the two MPSs f OPngn>0 and f ORngn>0 may be obtained after
straightforward computations on the grounds of the relations (13)–(14).
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3 Some Examples of Generalized Hypergeometric-Type
Polynomials

The generalized hypergeometric functions are particular realizations of the Meijer
G-function, and these include elementary functions and some well-known special
functions. For further reading, we refer to [12, Chap. VI] or [9]. For instance, the
hypergeometric functions can be expressed as

0

B
B
@

pQ

kD1
� .ak/

qQ

kD1
� .bk/

1

C
C
A pFq

�
a1; : : : ; ap

b1; : : : ; bq
I z

�

D G
1;p
p;qC1

�

�zI 1 � a1; : : : ; 1 � ap

0; 1� b1; : : : ; 1 � bq

�

D G
p;1
qC1;p

�

�1
z
I 1; b1; : : : ; bq
a1; : : : ; ap

�

for p 6 q or p D q C 1 and jzj < 1.
The KL˛-transform of an MPS fPngn>0 of hypergeometric type defined by

Pn.x/ D .�1/n
�Qq

�D1.b�/n
�

�Qp
�D1.a�/n

� pC1Fq
� �n; a1; : : : ; ap

b1; : : : ; bq

ˇ
ˇ
ˇ
ˇx

�

(27)

where the coefficients aj ; bk with j D 1; : : : ; p and k D 1; : : : ; q do not depend
on x but possibly depending on n is again a hypergeometric polynomial type MPS,
say, fSngn>0, and is given by

Sn

��2

4

�
D .�1/n

qY

�D1
.b�/n

pY

�D1
.a�/n

pC3Fq

 �n; a1; : : : ; ap; ˛ C 1 � i�
2
; ˛ C 1C i�

2

b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ
ˇ
1

!

:

(28)

We drive the attention toward some examples of polynomial sequences whose
generating function involves hypergeometric functions, which are nothing but a
particular case of the Meijer G-function.

Example 3.1. The polynomial sequences generated by hypergeometric-type
functions next considered can be found in [9, vol. III, pp. 266–267]. Their
KL˛-images can be computed straightforwardly, and they just give rise to other
polynomial sequences. We will adopt the notation fpngn>0 instead of fPngn>0, if
we are referring to a polynomial sequence whose elements are not monic.
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1. Just as noticed by Rainville (1947), the polynomial sequence fpngn>0 with

pn.x/ D pC1Fq
� �n; a1; : : : ; ap

b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ x

�

is generated by

et pFq

�
a1; : : : ; ap
b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ� xt

�

D
X

n>0
pn.x/

tn

nŠ
; (29)

which is mapped by the KL˛-transform into the sequence of polynomials
fqn.�I˛/gn>0 whose explicit expression is

qn.�
2=4I˛/ D pC3Fq

� �n; a1; : : : ; ap; ˛ C 1C i �
2
; ˛ C 1 � i �

2

b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ 1

�

; n > 0

and generated by

et pC2Fq
�
a1; : : : ; ap; ˛ C 1C i �

2
; ˛ C 1 � i �

2

b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ� t

�

D
X

n>0
qn.�

2=4I˛/ t
n

nŠ
:

(30)
The polynomial sequences fpngn>0 and fqn.�I˛/gn>0 are both examples of
d -orthogonal sequences [1,2]. For instance, the orthogonal polynomial sequence
of the Continuous Dual Hahn polynomials is the image of a 2-orthogonal
sequence of Laguerre type [10].

2. In the sequel of the works of Fasenmeyr (1947) and Brafman [5], it turns out that

1

1 � t
pFq

 
a1; : : : ; ap

b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ
ˇ
� 4xt

.1� t/2

!

D
X

n>0
pC2FqC2

 
�n; nC 1; a1; : : : ; ap

1=2; 1; b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ
ˇ
x

!

tn:

The action of KL˛ over both sides of the precedent equality provides

1

1 � t pC2Fq
�
a1; : : : ; ap; ˛ C 1 � i�=2; ˛C 1C i�=2

b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ� 4t

.1� t/2

�

D
X

n>0
pC4FqC2

� �n; nC 1; a1; : : : ; ap; ˛ C 1 � i�=2; ˛C 1C i�=2

1=2; 1; b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ 1

�

tn:

3. Analogously, the sequence of polynomials fpn WD pn.�I	/gn>0 defined by

pn.xI	/ D .	/n pC1Fq
� �n; a1; : : : ; ap

b1; : : : ; bq

ˇ
ˇ
ˇ
ˇx

�

; n > 0

and generated by [6]
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.1 � t/�	 pC1Fq
�
	; a1; : : : ; ap
b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ � xt

1 � t

�

D
X

n>0
pn.xI	/ t

n

nŠ

is mapped, by the KL˛-transform, into the sequence fqn WD pn.�I	; ˛/gn>0
given by

qn

��2

4
I	; ˛

�
D tn

nŠ
pC3Fq

 �n; a1; : : : ; ap; ˛ C 1 � i�=2; ˛ C 1C i�=2

b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ
ˇ
1

!

and generated by

.1 � t/�	 pC3Fq

 
	; a1; : : : ; ap; ˛ C 1 � i�=2; ˛C 1C i�=2

b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ
ˇ
� t

1 � t

!

D
X

n>0
qn.�

2=4I	; ˛/ t
n

nŠ
:

As pointed out in [10], the KL˛-transform maps d -orthogonal polynomial sequence
into other Qd -orthogonal polynomial sequences, with d; Qd D 1; 2; 3; : : : with d C
Qd > 3. Based on the description of all the d -orthogonal polynomial sequences

provided in [2], it would be worth to analyze the “KL˛-connections” between such
sequences.
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Abstract In a number of cases pairs of Goursat’s higher-order hypergeometric
transformations lend themselves to eliminations of the right-hand members; one
just has to make his or her variables equal by solving certain algebraic equations
of degree up to six. This is carried out by the aid of Maple, in most cases
supplemented by suitable one-to-one variable substitutions.

1 Introduction

Goursat obtained [4] quite a few cubic, quartic and sextic transformations of the
Gaussian hypergeometric function, and some of them have an interesting property
which we shall consider in this article. Indeed, it is readily noticed that certain
transformations in [4] may be combined into subsets that have parametrically
identical 2F1’s on the right-hand sides. So, from a pair of such transformations
we may eliminate the said 2F1 by adjusting the variables and arrive at a new
transformation, or several such ones. This ‘adjustment’ means solving algebraic
equations of degree up to six, and such a scheme could not be carried out by hand.
Nowadays, Maple can handle such equations, but a direct approach turns out to
be in most cases inconvenient or even useless. Fortunately, introduction of suitable
auxiliary variables helps Maple finish the job.

Each transformation obtained contains one free parameter, and the variable on the
right-hand side is explicitly given by the one on the left. Some of the transformations
may be discarded because they turn out to be particular cases of well-known
transformations. Still, a number of interesting cases do remain. A few have been
considered previously [5].
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G.V. Milovanović and M.Th. Rassias (eds.), Analytic Number Theory, Approximation
Theory, and Special Functions, DOI 10.1007/978-1-4939-0258-3__27,
© Springer Science+Business Media New York 2014

721



722 P.W. Karlsson

Linear transformations may be applied to all higher-order transformations, and
Goursat does in fact consider such variations to some extent. We shall omit such
listings in the sequel.

Berndt et al. [1] and Garvan [3] have, from a different point of view, considered
transformations of a similar appearance as far as the hypergeometric parameters are
concerned; the variables, however, are in most cases given parametrically rather than
explicitly.

Formula numbers from (75) onwards refer to [4]. Twenty-three transformations
are to be considered as follows: (75), (76), (77) and (118) through (137). Note also
the quadratic transformations listed in [2, Sect. 2.11].

For roots we choose the branch that is positive when the radicand is real and
positive. In other words, .1C z/� D 1F0 Œ�� I I �z.

2 Twelve Goursat Transformations

We first consider the largest subset, namely, the twelve transformations: (118) to
(121), (126) to (129) and (134) to (137). They may be written in the common form

2F1

"
a; bI
cI
x

#

D Q.x/�3˛ 2F1

"
˛; ˛ C 1

3
I

2˛ C 5
6
I
P.x/

Q.x/3

#

; (1)

where P and Q are polynomials given in the table below, and a, b and c depend
upon ˛. Actually, we consider only seven transformations, because the others are
obtained by taking x D ��= .1 � �/ in (1), followed by application of a Euler
transformation (L) to the left-hand side; this is indicated in the rightmost column. A
few errors of sign in [4] have been corrected.

No. a; b; c Q.x/ P.x/ (L)!
(118) 3˛; 3˛ C 1

2
; 4˛C 2

3
1� 3

4
x 27

64
x2 .1� x/ (120)

(119) 3˛; 3˛ C 1
2
; 2˛C 5

6
1C 3x 27x .1� x/2 (121)

(126) 4˛; 4˛C 1
3
; 6˛C 1

2
1� 8

9
x 64

729
x3 .1� x/ (128)

(127) 4˛; 4˛C 1
3
; 2˛C 5

6
1C 8x 64x .1� x/3 (129)

(134) 6˛; 2˛ C 1
3
; 4˛C 2

3
1� xC x2 � 27

4
x2 .1� x/2 itself

(136) 6˛; 4˛ C 1
6
; 2˛C 5

6
1C 14x C x2 108x .1� x/4 (135)

(137) 6˛; 4˛ C 1
6
; 8˛C 1

3
1� xC 1

16
x2 27

1024
x4 .1� x/ itself
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For each pair (m) & (n) of these Goursat transformations, we shall consider
Eq. (1) for (m) together with a similar equation with tilded quantities for (n), yet
Q̨ is the same as ˛. Writing y in place of Qx we then have a new transformation:

2F1


a; bI
cIx

�

D

Q.x/

QQ.y/
��3˛

2F1

 Qa; QbI
QcIy

�

(2)

provided that the condition

P.x/

Q.x/3
D

QP.y/
QQ.y/3 (3)

is satisfied. We rewrite (3) as

M.x; y/ D 0; (4)

where

M.x; y/ D L
�
P.x/ QQ.y/3 � QP .y/Q.x/3� ; (5)

and the constantL is, for convenience, so chosen that the polynomialM has integral
coefficients. We shall consider only transformations that are, like Goursat’s, valid in
a neighbourhood of the origin. Accordingly, the relevant roots of (4) are those for
which we have an asymptotic expression of the form

y ' Kxˇ for x ! 0; (6)

where K and ˇ are constants, easily obtained from (4) by inspection. The actual
regions of validity for the transformations established will not be considered here; a
few examples are found in [5].

So, the first step will consist in solving (4) with respect to y and selecting
the relevant root(s) by comparison with (6). It turns out that a direct approach
by Maple may leave us with inconvenient or even enormous expressions, or just
RootOf-statements. However, introduction of suitable auxiliary variables by one-
to-one substitutions of the form xD'.zaux/ leads to reasonable expressions for the
roots. It is then a simple matter to find the QQ-polynomials and establish the resulting
transformations (2).The adjacent table gives an overview of the results. Nine pairs
of Goursat transformations lead to trivialities: particular cases of quadratic or linear
transformations or the identical transformation. For brevity, these cases are not
considered below. The remaining nineteen pairs lead to the interesting, at least cubic,
transformations C1, C2, . . . and C19. Some of these are accompanied by trivialities
as indicated, and some are in fact two transformations.
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3 The First Case

We first consider the pair (136) and (118), for which we find the polynomial

No. (118) (119) (126) (127) (134) (136) (137)

(118) C3, I
(119) C4 I
(126) C16 C10 C7, I
(127) C17 C11 C6 I
(134) Q Q C14 C15 L, I
(136) C1 Q C12 C13 Q I
(137) C5, Q C2 C18 C19 Q C8 C9, L, I

M D 4x .1 � x/4 .4 � 3y/3 � y2 .1 � y/
�
1C 14x C x2

�3

and the asymptotic expression y2 ' 64x. Maple finds the three roots, but the
relevant ones involve

p
x. To avoid a branch point we substitute simply x D u2.

(Incidentally, one of the quadratic transformations, viz. [2, 2.11(5)], is also written
in this way.) Maple now finds the roots

�
1 � u2

�2
=
�
1C u2

�2
, which are not

relevant, and

y˙ D ˙16u .1˙ u/2
�
1˙ 6u C u2

�2 :

It follows that

4 � 3y˙ D 4
�
1C 14u2 C u4

�

�
1˙ 6u C u2

�2 I

hence,

1C 14x C x2

1 � 3
4
y˙

D �
1˙ 6u C u2

�2
;

and we have the transformations

2F1

"
6˛; 4˛ C 1

6
I

2˛ C 5
6
I
u2
#

D �
1˙ 6u C u2

��6˛
2F1

"
3˛; 3˛ C 1

2
I

4˛ C 2
3
I
y˙

#

:

Similar intermediate steps are carried out in the other cases; for brevity, such details
are omitted in the sequel.
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4 Transformations C 2 to C 5

For these pairs Maple finds the relevant roots as rational functions of x andp
1 � x. Simpler expressions arise if we substitute x D 1 � u2, but we shall prefer

the auxiliary variable w D 1 � u, which is small when x is small. In other words,
we introduce the substitution

x D 2w � w2; w D 1 � p
1 � x; w ' 1

2
x for x ! 0: (7)

After substitution into (4) the resulting equation is solved for y in terms of w.
It is noted that Maple finds all roots. Actually, these four transformations can
also be proved by applying successively two quadratic transformations to the left-
hand member and imposing one condition upon the parameters. This idea is due to
Kummer, who obtained [6] many more instances.

4.1 C2 – (137) & (119)

Polynomial and relevant root:

M D 4x4 .1 � x/ .1C 3y/3 � y .1 � y/2
�
16 � 16x C x2

�3
; y0 D w4

�
8 � 8w C w2

�2 :

Transformation:

2F1

"
6˛; 4˛ C 1

6
I

8˛ C 1
3
I
x

#

D
�

1 � w C 1

8
w2
��6˛

2F1

"
3˛; 3˛ C 1

2
I

2˛ C 5
6
I
y0

#

;

w D 1 � p
1 � x:

Alternative: (31) and (4) in [2, Sect. 2.11].

4.2 C3 – (118) & (118)

Polynomial:

M D x2 .1 � x/ .4 � 3y/3 � y2 .1 � y/ .4 � 3x/3 :

The relevant roots are x, which is trivial, and

y0 D �8w .1 � w/

.2 � 3w/2
;
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which leads to the transformation:

2F1

"
3˛; 3˛ C 1

2
I

4˛ C 2
3
I
x

#

D
�

1 � 3

2
w

��6˛
2F1

"
3˛; 3˛ C 1

2
I

4˛ C 2
3
I
y0

#

;

w D 1 � p
1 � x:

Alternative: (6) and (20) in [2, Sect. 2.11].

4.3 C4 – (118) & (119)

Polynomial and relevant root:

M D x2 .1 � x/ .1C 3y/3 � y .1 � y/2 .4 � 3x/3 ; y0 D
� w

4 � 3w

�2
:

Transformation:

2F1

"
3˛; 3˛ C 1

2
I

4˛ C 2
3
I
x

#

D
�

1 � 3

4
w

��6˛
2F1

"
3˛; 3˛ C 1

2
I

2˛ C 5
6
I
y0

#

;

w D 1 � p
1 � x:

Alternative: (6) and (28) in [2, Sect. 2.11]. Since y0 is a square, one might try the
substitution y D U 2; and indeed (2.31) in [3] is obtained in this way.

4.4 C5 – (137) & (118)

Polynomial and relevant roots:

M D 4x4 .1 � x/ .4 � 3y/3 � y2 .1 � y/
�
16 � 16x C x2

�3
;

y0 D � w2 .1 � w/
�
1 � w � 1

4
w2
�2 ; y1 D x2

.2 � x/2 :

The latter leads to a particular case of (4) in [2, Sect. 2.11]. The former yields the
transformation:
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2F1

"
6˛; 4˛ C 1

6
I

8˛ C 1
3
I
x

#

D
�

1 � w � 1

4
w2
��6˛

2F1

"
3˛; 3˛ C 1

2
I

4˛ C 2
3
I
y0

#

;

w D 1 � p
1 � x:

Alternative: (31) and (20) in [2, Sect. 2.11].

5 Transformations C6 to C9

It turns out that a modified version of the above method works in four cases: we set
x D 1 � uk and u D 1 � w, where k equals 3 or 4. In other words, the substitution
reads:

k D 3 W x D 3w � 3w2 C w3; w D 1 � 3
p
1 � x;

k D 4 W x D 4w � 6w2 C 4w3 � w4; w D 1 � 4
p
1 � x:

5.1 C6 – (126) & (127)

Exponent k D 3. Polynomial and relevant root:

M D x3 .1 � x/ .1C 8y/3 � y .1 � y/3 .9 � 8x/3 ; y0 D
�

w

3 � 2w

�3
:

Transformation:

2F1

"
4˛; 4˛ C 1

3
I

6˛ C 1
2
I
x

#

D
�

1 � 2

3
w

��12˛
2F1

"
4˛; 4˛ C 1

3
I

2˛ C 5
6
I
y0

#

;

w D 1 � 3
p
1 � x:

Since y is a cube, one might try the substitution y D U 3. This would lead to (2.28)
in [3].

5.2 C7 – (126) & (126)

Exponent k D 3. Polynomial:

M D x3 .1 � x/ .9 � 8y/3 � y3 .1 � y/ .9 � 8x/3 :
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The relevant roots are x, which is trivial, and

y˙ D
36w .w � 1/

�
3˙ i

p
3 � 2w

�

�
3˙ i

p
3 � 4w

�3 ;

which leads to the transformations:

2F1

"
4˛; 4˛ C 1

3
I

6˛ C 1
2
I
x

#

D


1 �


1� ip
3

�

w

��12˛
2F1

"
4˛; 4˛ C 1

3
I

6˛ C 1
2
I
y˙

#

;

w D 1 � 3
p
1 � x:

All upper [lower] signs are taken together. Compare [5].

5.3 C8 – (137) & (136)

Exponent k D 4. Polynomial and relevant root:

M D x4 .1�x/ �1C14yCy2�3 �y .1�y/4 �16�16x C x2
�3
; y0 D

� w

2 � w

�4
:

Transformation:

2F1

"
6˛; 4˛ C 1

6
I

8˛ C 1
3
I
x

#

D
�

1 � 1

2
w

��24˛
2F1

"
6˛; 4˛ C 1

6
I

2˛ C 5
6
I
y0

#

;

w D 1 � 4
p
1 � x:

5.4 C9 – (137) & (137)

Exponent k D 4. Polynomial:

M D y4 .1 � y/
�
16 � 16x C x2

�3 � x4 .1 � x/
�
16� 16y C y2

�3
:

The relevant roots are x and �x= .1 � x/, which are trivial, and

y˙ D ˙8iw .1 � w/ .2 � w/

.1� i � w/4
;
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which leads to the transformations:

2F1

"
6˛; 4˛ C 1

6
I

8˛ C 1
3
I
x

#

D
�

1 � 1

2
.1˙ i/w

��24˛
2F1

"
6˛; 4˛ C 1

6
I

8˛ C 1
3
I
y˙

#

;

w D 1 � 4
p
1 � x:

All upper [lower] signs are taken together. Compare [5].

6 Transformations C10 to C13

In each of these four cases we arrive at the result by means of an auxiliary variable:

t D sin2
�
1

3
Arcsin

p
x

�

: (8)

It satisfies

x D t .3 � 4t/2 : (9)

It is noted that the branch point at the origin is an apparent one since the sine is
squared and, moreover, that (8) and (9) apply all along. In all cases Maple gives
us the relevant root(s) and in most cases all roots. The transformations are more
complicated now, and for clarity auxiliary functions are introduced when suitable.

6.1 C10 – (126) & (119)

Polynomial and relevant root:

M D 64x3 .1 � x/ .1C 3y/3�27y .1 � y/2 .9 � 8x/3 ; y0 D 64t3.1 � t/
3.3� 12t C 8t2/2

:

Transformation:

2F1

"
4˛; 4˛ C 1

3
I

6˛ C 1
2
I
x

#

D
�

1 � 4t C 8

3
t2
��6˛

2F1

"
3˛; 3˛ C 1

2
I

2˛ C 5
6
I
y0

#

:
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6.2 C11 – (127) & (119)

Polynomial and relevant root:

M D 64x .1 � x/3 .1C 3y/3 � 27y .1 � y/2 .1C 8x/3 ; y0 D 64t.1� t/3

3.1C 4t � 8t2/2
:

Transformation:

2F1

"
4˛; 4˛ C 1

3
I

2˛ C 5
6
I
x

#

D �
1C 4t � 8t2��6˛ 2F1

"
3˛; 3˛ C 1

2
I

2˛ C 5
6
I
y0

#

:

6.3 C12 – (126) & (136)

Polynomial and auxiliary functions:

M D 16x3 .1 � x/
�
1C 14y C y2

�3 � 27y .1 � y/4 .9 � 8x/3 ;

G D 27� 216t C 576t2 � 608t3 C 224t4;

H D �
3 � 12t C 8t2

�
.3 � 4t/

p
3 .1 � 4t/ .3 � 4t/:

Maple finds only two roots explicitly, but one of these is the relevant root:

y0 D G �H

32t3 .1 � t/
:

However, G2 � H2 D 1024t6 .1 � t/2; hence y0 D 32t3 .1 � t/=.G C H/, and,
moreover,

1C 14y0 C y20 D 3 .9 � 8x/ .G �H/
512t6 .1 � t/2

D 6 .9 � 8x/

G CH
:

A similar step applies in the following cases. The transformation obtained reads:

2F1

"
4˛; 4˛ C 1

3
I

6˛ C 1
2
I
x

#

D
�
G CH

54

��3˛
2F1

"
6˛; 4˛ C 1

6
I

2˛ C 5
6
I
y0

#

:
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6.4 C13 – (127) & (136)

Polynomial and auxiliary functions:

M D 16x .1� x/3
�
1C 14y C y2

�3 � 27y .1 � y/4 .1C 8x/3 ;

G D 3 � 8t C 96t2 � 288t3 C 224t4;

H D �
1C 4t � 8t2�

q
3 .3 � 4t/ .1 � 4t/3:

Maple finds only two roots explicitly, but one of these is the relevant root:

y0 D 32t .1 � t/3

G CH
:

The transformation obtained reads:

2F1

"
4˛; 4˛ C 1

3
I

2˛ C 5
6
I
x

#

D
�
G CH

6

��3˛
2F1

"
6˛; 4˛ C 1

6
I

2˛ C 5
6
I
y0

#

:

A variant with x and y0 expressed as functions of a parameter is given as (2.33)
in [3].

7 Transformations 14 and 15

The substitution (9) would in two cases lead to results involving
p
t . To avoid the

branch point at the origin, we set x D u2 and introduce the auxiliary variable:

v D sin

�
1

3
Arcsin.u/

�

I

hence, u D v
�
3 � 4v2�. Maple finds all roots in these two cases.

7.1 C14 – (126) & (134)

Polynomial, auxiliary functions and relevant roots:

M D 256x3 .1 � x/ �1 � y C y2
�3 � 27y2 .1 � y/2 .9 � 8x/3 ;

G D 27� 216v2 C 576v4 � 512v6 C 128v8;
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H D �
3 � 12v2 C 8v4

�q
3
�
1 � v2�; y˙

16v3
��8v3.1 � v2/˙H

�

�
3 � 4v2

�3 �
1 � 4v2

� :

Transformations:

2F1

"
4˛; 4˛ C 1

3
I

6˛ C 1
2
I
u2
#

D
�
G ˙ 16v3H/

27

��3˛
2F1

"
6˛; 2˛ C 1

3
I

4˛ C 2
3
I
y˙

#

:

All upper [lower] signs are taken together. A variant with x and y0 expressed as
functions of a parameter is given as (2.29) in [3].

7.2 C15 – (127) & (134)

Polynomial, auxiliary functions and relevant roots:

M D 256x .1 � x/3
�
1 � y C y2

�3 � 27y2 .1 � y/2 .1C 8x/3 ;

G D 3C 88v2 � 192v4 � 128v8; H D �
1C 4v2 � 8v4

�q
3
�
1 � v2�;

y˙ D 16v
�
1 � v2

� ��8v �1 � v2
�2 ˙H

�

�
3 � 4v2� �1 � 4v2

�3 :

Transformations:

2F1

"
4˛; 4˛ C 1

3
I

2˛ C 5
6
I
u2
#

D
 
G ˙ 16v

�
1 � v2�H
3

!
�3˛

2F1

"
6˛; 2˛ C 1

3
I

4˛ C 2
3
I
y˙

#

:

All upper [lower] signs are taken together.

8 Transformations C16 to C19

This type is akin to the preceding one. In each case we introduce the auxiliary
variable:

� D 4 sin

�
1

3
� C 1

3
Arcsin

p
x

�

sin

�
1

3
Arcsin

p
x

�

I

it satisfies x D �2 .3 � �/ =4. After substitution, Maple can find roots. But now the
origin is actually a branch point, and the plane has to be cut along the negative real
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axis. The branch point may be avoided by taking x D u2. For brevity, we do not
consider this option. Maple finds all roots in the cases C16 and C17 but not in the
last two cases.

8.1 C16 – (126) & (118)

Polynomial, auxiliary functions and relevant roots:

M D 64x3 .1 � x/ .4� 3y/3 � 27y2 .1 � y/ .9 � 8x/3 ;

G D 45 � 30�2 C 12�3 � �4;

H D .3 � �/
�
3 � �2

�p
3 .1C �/ .3 � �/; S D 9 � 6�2 C 6�3 � 2�4;

y0 D
2
h
.3 � �/3 .1C �/ S � .9 � 8x/H

i

3
�
18� 12�2 C 6�3 � 2�4�2

; y1 D �4�
3 .2 � �/

3
�
3 � �2

�2 :

Transformations:

2F1

"
4˛; 4˛ C 1

3
I

6˛ C 1
2
I
x

#

D �
1 � 1

3
�2
��6˛

2F1

"
3˛; 3˛ C 1

2
I

4˛ C 2
3
I
y1

#

;

2F1

"
4˛; 4˛ C 1

3
I

6˛ C 1
2
Ix
#

D
�
G �H
18

��3˛
2F1

"
3˛; 3˛ C 1

2
I

4˛ C 2
3
Iy0
#

:

8.2 C17 – (127) & (118)

Polynomial, auxiliary functions and relevant roots:

M D 64x .1 � x/3 .4 � 3y/3 � 27y2 .1 � y/ .1C 8x/3 ;

G D 5C 8� C 18�2 � 4�3 � �4;

H D .1C�/ �1�4�C�2�p3 .1C�/ .3��/; S D 1C16� � 18�2 C 10�3 � 2�4;

y0 D
2
h
.3 � �/ .1C �/3 S � .1C 8x/H

i

3
�
2C 8� C 2�3 � �4�2

; y1 D �4� .2 � �/3

3
�
1 � 4� C �2

�2 :
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Transformations:

2F1

"
4˛; 4˛ C 1

3
I

2˛ C 5
6
I
x

#

D �
1 � 4� C �2

��6˛
2F1

"
3˛; 3˛ C 1

2
I

4˛ C 2
3
I
y1

#

;

2F1

"
4˛; 4˛ C 1

3
I

2˛ C 5
6
I
x

#

D
�
G �H
2

��3˛
2F1

"
3˛; 3˛ C 1

2
I

4˛ C 2
3
I
y0

#

:

8.3 C18 – (126) & (137)

Polynomial, asymptotic expression and auxiliary functions:

M D 16x3 .1 � x/
�
16� 16y C y2

�3 � 27y4 .1 � y/ .9 � 8x/3 ;

y ' "
16x

3
4

3
9
4

' "
4
p
2�

3
2

3
p
3
; where " 2 f1; i, � 1;�ig ;

G D 27� 18�2 � 8�3 C 7�4; H D �
3 � �2�

p
3� .2 � �/:

Maple finds only the two roots corresponding to " D ˙i, , viz.

y˙ D 4�
�
2�2 .2 � �/˙ iH

�

.1C �/ .3 � �/3 :

Thus, two of the relevant roots are missed. The transformations obtained read:

2F1

"
4˛; 4˛ C 1

3
I

6˛ C 1
2
I
x

#

D
�
G ˙ 4i�H

27

��3˛
2F1

"
6˛; 4˛ C 1

6
I

8˛ C 1
3
I
y˙

#

:

All upper [lower] signs are taken together. A variant with x and y0 expressed as
functions of a parameter is given as (2.34) in [3].

8.4 C19 – (127) & (137)

Polynomial, asymptotic expression and auxiliary functions:

M D 16x .1 � x/3 �16 � 16y C y2
�3 � 27y4 .1 � y/ .1C 8x/3 ;
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y ' "
16x

1
4

3
3
4

' "
8
p
2
p
�p

3
; where " 2 f1; i, � 1;�ig ;

G D 3 � 56� C 102�2 � 48�3 C 7�4; H D �
1 � 4� C �2

�p
3� .2 � �/:

Again, Maple finds only the two roots corresponding to " D ˙i, viz.

y˙ D
4 .2 � �/

h
2� .2 � �/2 ˙ iH

i

.1C �/3 .3 � �/ ;

and so again two relevant roots are missed. The transformations obtained read:

2F1

"
4˛; 4˛ C 1

3
I

2˛ C 5
6
I
x

#

D
�
G ˙ 4i .2 � �/H

3

��3˛
2F1

"
6˛; 4˛ C 1

6
I

8˛ C 1
3
I
y˙

#

:

All upper [lower] signs are taken together.

9 Concluding Remarks

Of the transformations mentioned in the introduction, eleven have not yet been
investigated: four pairs and one triple.

The pairs are (122) & (123), (124) & (125), (130) & (131) and (132) & (133). It
turns out that in these cases eliminations lead only to linear transformations.

For the triple (75), (76) and (77) we have analogues of (1) and its accompanying
table. The result of the eliminations may be stated as follows:

No. (75) (76) (77)

(75) I
(76) Q I
(77) L Q I

So, further interesting transformations did not emerge.
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Convolution Product and Differential and
Integro: Differential Equations

Adem Kılıçman

Dedicated to Professor Hari M. Srivastava

Abstract In this paper, we consider partial differential equations with convolution
term. Further, by using the convolution we propose a new method to solve the
partial differential equations and compare the several properties before and after
the convolution. In this new method when the operator has some singularities, then
we multiply the partial differential operator with continuously differential functions
by using the convolution to remove the singularity. We also study the existence
and uniqueness of the new equations. In order to show numerical examples, the
following types of problem will be considered:

G.x; y/ � P.D/u D f .x; y/;

where P(D) is a differential operator. For computational purpose the computer
algebra package can be used to solve recurrence relations with associated boundary
conditions.

1 Introduction

The partial differential equations (PDEs) is a very important subject, yet there is no
general method to solve all types of the PDEs. The behavior of the solutions very
much depends essentially on the classification of PDEs.

It is also well known that some of the second-order linear partial differential
equations can be classified as parabolic, hyperbolic, or elliptic; however, if a
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PDE has coefficients which are not constant, it is rather a mixed type. In many
applications of partial differential equations the coefficients need not necessarily be
constant; in fact, they might be a function of two or more independent variables and
possible dependent variables. Therefore the analysis to describe the solution may
not be held globally for equations with variable coefficients that we have for the
equations having constant coefficients.

In the literature, there are some very useful physical problems in which their type
can be changed. One of the best-known examples is the transonic flow, where the
equation is in the form of

�

1 � u2

c2

�

�xx � 2uv

c2
�xy C

�

1 � v2

c2

�

�yy C f .�/ D 0;

where u and v are the velocity components and c is a constant; see [4].
Similarly, partial differential equations with variable coefficients are also used in

finance, for example, the arbitrage-free value C of many derivatives

@C

@�
C s2

�2.s; �/

2

@2C

@s2
C b.s; �/

@C

@s
� r.s; �/C D 0;

with three variable coefficients �.s; �/, b.s; �/, and r.s; �/. In fact this partial
differential equation holds whenever C is twice differentiable with respect to s and
once with respect to � ; see [30].

However, in the literature there was no systematic way to generate a partial
differential equation with variable coefficients by using the equations with constant
coefficients. Recently, Kılıçman and Eltayeb in [20] studied the classifications of
hyperbolic and elliptic equations with nonconstant coefficients and extended in [22]
to the finite product of convolutions and classifications of hyperbolic and elliptic
PDEs where the authors consider the coefficients of polynomials with positive
coefficients. Thus, in [25], the same authors proposed a systematic way to generate
PDEs with variable coefficients by using the convolution product.

2 Convolutions

The convolutions are important in the development of differential equation and
difference equation. The classical definition for the convolution product of two
functions f and g is as follows:

Definition 2.1. Let f and g be functions. Then the convolution product f � g is
defined by the equation

.f � g/.x/ D
Z 1

�1
f .t/g.x � t/ dt
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for all points x for which the integral exists, that is, an integral which expresses the
amount of overlap of one function g as it is shifted over another function f . The
discrete version of the convolution is given by

.f � g/.m/ D
X

n

f .n/g.m � n/:

When multiplying two polynomials, the coefficients of the product are given by the
convolution of the original coefficient sequences. Now if the convolution h D f �g
exists for all x, then h is a continuous function.

The convolution operator differs from the other multiplication operator in that
1 � f ¤ f and f � f ¤ f 2, for example, the square of the any number is positive
for the ordinary function this also true, however, the convolution of a function f
with itself might be negative. Now, let f , g, and h be arbitrary functions and a
a constant, then convolution has many properties of ordinary multiplication. For
example,

f � .g � h/ D .f � g/ � h;
f � .g C h/ D .f � g/C .f � h/;
a.f � g/ D .af / � g D f � .ag/;
f � 0 D 0 � f D 0:

In more general

Z x

a

Z x

a

f .t/ dt dx D
Z x

a

.x � t/f .t/ dt

also gives a convolution. However, it is not true in general that f � 1 is equal to f .
To see this,

.f � 1/ D
Z t

0

f .t � u/ � 1 du D
Z t

0

f .t � u/ du:

In particular, if f .t/ D cos t , then

.cos �1/ D
Z t

0

cos.t � u/ du D sin.t � u/
ˇ
ˇ
ˇ
uDt
uD0 D sin 0 � sin t D � sin t:

Of course now it is obvious that .f � 1/.t/ ¤ f .t/. Similarly, it is not necessary
that f � f is not negative. Thus, it follows easily from the definition that if f � g
exists, then g � f exists and

f � g D g � f:

Similarly, if .f � g/0 and f � g0 (or f 0 � g) exist, then it can be shown that

.f � g/0 D f � g0 .or f 0 � g/:
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That is, the derivative of a convolution satisfies a very important property of
convolutions that derivatives of a convolution may be placed on either factor but
not both. In the one-variable case,

d

dx
.f � g/ D df

dx
� g D f � dg

dx
;

where d= dx is the derivative. More generally, in the case of functions of several
variables, an analogous formula holds with the partial derivative:

@

@xi
.f � g/.x/ D @f

@xi
� g D f � @g

@xi
:

A particular consequence of this is that the convolution can be viewed as a
“smoothing” operation: the convolution of f and g is differentiable as many times
as f and g are together. In fact, we can say that because of this rule, the convolutions
that are important in the solutions to differential equations are often given by
convolutions where one factor is the given function and the other is a special kernel.

The area under a convolution is the product of areas under the factors,

Z 1

�1
.f � g/ dx D

Z 1

�1

Z 1

�1
f .u/g.x � u/ du

�

dx D
Z 1

�1
f .u/

Z 1

�1
g.x � u/ dx

�

du

D
Z 1

�1
f .u/ du

� Z 1

�1
g.x/ dx

�

:

Thus, if T is a linear operator then

T .f � g/ D T .f / � T .g/:

Furthermore there is no algebra of functions that possesses an identity element
for the convolution. The lack of identity is typically not a major inconvenience,
since most collections of functions on which the convolution is performed can be
convolved with a delta distribution or, at the very least, admit approximations to the
identity. The linear space of compactly supported distributions does, however, admit
an identity under the convolution. Specifically,

f � ı D f;

where ı is the delta distribution.
We also note that the convolution is more often taken over an infinite range,

.f � g/ .t/ �
Z 1

�1
f .�/g.t � �/ d� D

Z 1

�1
g.�/f .t � �/ d�:
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Of course we can ask the question whether this integral always exists. The answer
for the question is negative. However, if we now let f; g be locally summable
functions and suppose that supp f � Œa; b then if G is a primitive of g and Œc; d 
is any interval, thus

Z d

c

g.x � t/ dx D G.d � t/ �G.c � t/:

This implies that the function
R d
c g.x � t/ dx is bounded on the interval Œa; b, and

so f .t/
R d
c g.x � t/ dx is a locally summable function. This proves that

.f � g/.x/ D
Z 1

�1
f .t/g.x � t/ dt D

Z b

a

f .t/g.x � t/ dt

exists and further

Z d

c

.f �g/.x/ dx D
Z d

c

(Z b

a

f .t/g.x � t/ dt

)

dx D
Z b

a

f .t/

(Z d

c

g.x � t/ dx

)

dt;

proving that f � g is a locally summable function if f has compact support.
Similarly, f � g is a locally summable function if g has compact support, and in
either case f � g D g � f .

In the discrete form, the Cauchy product of two sequences an and bn is the
discrete convolution of the two sequences, thus the sequence cn whose general term
is given by

cn D
nX

kD0
akbn�k:

Let f and g have the power series representations

f .x/ D
1X

nD0
an.x � x0/n and g.x/ D

1X

nD0
bn.x � x0/n;

then

f .x/g.x/ D
1X

nD0
cn.x � x0/

n; (1)

where

cn D
nX

kD0
akbn�k:

Equation (1) is known as the Cauchy product of the series for f .x/ and g.x/.
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Note that the convolution does not only differ from the ordinary product; further,
it also has many useful applications such as on the solution of the differential and
integro-differential equations.

Example 2.1. The integral equation

f .t/ D 2 cos t �
Z t

0

.t � �/f .�/ d�

and the solution can be found by letting F.s/ D L.f .t//, and on using L.t/ D 1
s2

in the convolution theorem, we can obtain

F.s/ D 2s

s2 C 1
� 1

s2
F.s/:

Now solving for F.s/ yields

F.s/ D 2s3

.s2 C 1/2
D 2s

s2 C 1
� 2s

.s2 C 1/2
;

and the solution is given by f .t/ D 2 cos t � t sin t .

Example 2.2. If 	;
 > �1, then x	C�x
C D B.	C1; 
C1/x	C
C1C . Equivalently,

f 	C � f 

C D f

	C
C1
C . In particular,

x	C �H.x/ D x	C1C
	C 1

D
Z x

�1
x	C dx:

Further, if 	;
 > �1 > 	C 
, then

x	� � x
C D B.	C 1;�	 � 
 � 1/x
	C
C1
C C B.
C 1;�	 � 
 � 1/x	C
C1� ;

whereB is the beta function andH is the Heaviside function, respectively; see [16].

Some of the functions have an inverse element for the convolution, f .�1/, which
is defined by

f .�1/ � f D ı:

The set of invertible functions forms an Abelian group under the convolution.
Further, the derivative of a convolution satisfies a very important property of
convolutions that derivatives of a convolution may be placed on either factor but
not both. This means that the derivatives of a function f can be expressed as
convolutions, using the derivatives of the ı distribution which is strange but useful:

f D ı � f; f 0 D ı0 � f; f 00 D ı00 � f:
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Thus, if the nth-order linear differential equation has constant coefficients, we may
write it as f � x D b by introducing the distribution

f D ı.n/ C an�1ı.n�1/ C � � � C a3ı
.3/ C a2ı

00 C a1ı
0 C a0ı:

Further, if we have a function such that f � g D ı, we will obtain a special solution
of the inhomogeneous equation as g � b.

By using the convolution method several initial value problems (IVPs) can also
be solved. For example, the unique solution to the initial value problem

ay00.t/C by0.t/C cy.t/ D g.t/; with y.0/ D y0 and y0.0/ D y1

is given by

y.t/ D u.t/C .h � g/.t/;

where u.t/ is the solution to the homogeneous part of the equation

au00.t/C bu0.t/C cu.t/ D 0 with u.0/ D y0 and u0.0/ D y1

and h.t/ has the integral transform such as Laplace transform and given by

H.s/ D 1

as2 C bs C c
:

Then the general solution is y.t/ D u.t/C v.t/ D u.t/C .h � g/.t/. In order to
verify that the initial conditions are met, we compute

y.0/ D u.0/C v.0/ D y0 C 0 D y0 and y0.0/ D u0.0/C v0.0/ D y1 C 0 D y1:

Example 2.3. By using the convolution method the following initial value problem

y00.t/C y.t/ D tan t; with y.0/ D 1 and y0.0/ D 2

can be solved u00.t/C u.t/ D 0, with u.0/ D 1 and u0.0/ D 2. Taking the Laplace
transform it yields s2U.s/� s � 2C U.s/ D 0. Then U.s/ D .s C 2/=.s2 C 1/ and
it follows that u.t/ D cos t C 2 sin t .

Second, we observe thatH.s/ D 1

s2 C 1
and h.t/ D sin t so that

v.t/ D .h � g/.t/ D
Z t

0

sin.t � s/ tan.s/ ds D


cos.t/ ln

�
cos s

1C sin s

�

� sin.t � s/

� ˇˇ
ˇ
ˇ

sDt

sD0
D cos.t/ ln

�
cos t

1C sin t

�

C sin.t/:
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Therefore, the solution is

y.t/ D u.t/C v.t/ D cos t C 3 sin t C cos.t/ ln

�
cos t

1C sin t

�

:

In practical applications it is very common to use delta sequences rather than the
delta itself. Thus, we have the following definition in the literature; see [16].

Definition 2.2. A sequence ın W R ! R is called a delta sequence of ordinary func-
tions which converges to the singular distribution ı.x/ and satisfies the following
conditions:

(i) ın.x/ � 0 for all x 2 R.

(ii) ın is continuous and integrable over R with
Z 1

�1
ın.x/ dx D 1.

(iii) given any � > 0,

lim
n!1

Z ��

�1
C
Z 1

�

ın.x/ dx D 0:

Example 2.4. Let ın.xt/ D n

�.n2t2 C 1/
. Then

Z b

a

ın.t/ dt D
Z b

a

n

�.n2t2 C 1/
dt D 1

�
Œarctan.nb/� arctan.an/ :

Now, if we let n ! 1, then it follows that ın is a delta sequence and converges
to the Dirac delta function. Similarly show that all the following sequences are the
delta sequences:

ın.x/ D
8
<

:

0; x < � 1
2n
;

n; � 1
2n
< x < 1

2n
;

0; x > 1
2n

! ı.x/I


n.x/ D np
�

e�n2x2 ! ı.x/I

�n.x/ D n

�
sin c.ax/ � sin.nx/

�x
! ı.x/I

	n.x/ D 1

�x

einx � e�inx

2i
! ı.x/I

ˇn.x/ D 1

2�ix

�
eixt �n

�n ! ı.x/I

hn.x/ D 1

2�

Z n

�n
eixt dt ! ı.x/I
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mn.x/ D 1

2�

sin
��
nC 1

2

�
x
�

sin
�
1
2
x
� ! ı.x/:

The above sequences are also known as approximate identities for convolution oper-
ation which are used in some situations such as numerical analysis to approximate
the piecewise linear functions.

Example 2.5. In general if we let � be continuous and nonnegative, �.x/ D 0 for
all jxj � 1 and

R 1
�1 �.x/ dx D 1, if we set ın.x/ D n�.nx/. Then one can show

that ın is a delta sequence.

Thus, the above examples show that there are several ways to construct a delta
sequence. The convolution operation can be extended to the generalized functions.
If f and g are generalized functions such that at least one of them has compact
support and if � is a test function, then f � g is defined by

hf � g; �i D hf .x/ � g.y/; �.x C y/i

where � is the direct product of f and g, that is, the functional on the space of
test functions of two independent variables given by every infinitely differentiable
function of compact support; for further details and properties, we refer to [3]
and [10]. The idea of the delta sequences can also be extended to the multiple-
dimensional form; for that see [34]. By using the derivatives of the ı distribution,
then we obtain the following strange but very useful statements:

f D ı � f; f 0 D ı0 � f; f 00 D ı00 � f:

Note that one can study in the type of convergence and speed of convergence by
using the delta sequences.

In the case of functions of several variables, an analogous formula holds with the
partial derivative

@

@xi
.f � g/.x/ D @f

@xi
� g D f � @g

@xi
:

A particular consequence of this is that the convolution can be viewed as a
“smoothing” operation: the convolution of f and g is differentiable as many times
as f and g are together. In fact, we can say that because of this rule, the convolutions
that are important in the solutions to differential equations are often given by
convolutions where one factor is the given function and the other is a special kernel.

In the literature, there are several important partial differential equations which
are of the form

P.D/ u D f .x; y/:
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In order to solve these equations, one might consider the following cases:

1. The solution u.x; y/ is a smooth function such that the operation can be
performed as in the classical sense, and the resulting equation is an identity. Then
u.x; y/ is a classical solution.

2. The solution u.x; y/ is not smooth enough so that the operation cannot be
performed but satisfies as a distribution.

3. The solution u.x; y/ is a singular distribution; then, the solution is a distributional
solution; see Kılıçman [22].

In particular, let us try to solve the linear second-order partial differential
equations as follows:

auxx C buxy C cuyy C dux C euy C f u D G.x; y/

under boundary conditions

u.x; 0/ D f1.x/ � f2.x/; u.0; y/ D w1.y/ � w2.y/

ux.x; 0/ D d

dx
.f1.x/�f2.x// ; uy.0; y/ D d

dy
.w1.y/�w2.y// ; and u.0; 0/ D 0;

where the symbol � is the convolution [8] and a; b; c; d; e, and f are constant
coefficients.

Now consider the equation

auxx C 2buxy C cuyy C F.x; y; u; ux; uy/ D 0 (2)

where a; b; c; d; e; f are of class C2.˝/ and˝ � R
2 is the domain and .a; b; c/ ¤

.0; 0; 0/ and the expression auxx C 2buxy C cuyy is called the principal part of
Eq. (2), and since the principal part mainly determines the properties of the solution,
it is well known that

1. If b2 � 4ac > 0, Eq. (2) is called a hyperbolic equation.
2. If b2 � 4ac < 0, Eq. (2) is called a parabolic equation.
3. If b2 � 4ac D 0, Eq. (2) is called an elliptic equation.

If this is true at all points, then the equation is said to be hyperbolic, parabolic,
or elliptic in the domain. Later we generalized the classification of hyperbolic
and elliptic equations by using the convolution method where we assume that the
nonconstant coefficients are polynomials; see [22].

Now if we have the partial differential equations which are in the form of

P.D/u D f .x/

then if we multiply the differential operator with a function by using the convolution,
that is,

.Q.x/ � P.D// u D f .x/:
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In particular if we consider Q.x/ D ın.x/, that is, the delta sequence converges
to Dirac delta ı, that new equation is equivalent to the original equations; see [20].
Question: Now if we multiply the differential operator by a function, what will
happen to the classification? That is a new classification problem of the

.Q.x; t/ � �P.D/ / u D f .x; t/:

However the classification theorem guarantees that every second-order linear
PDE with constant coefficients can be transformed into exactly one of the above
forms.

Further, in the literature there was no systematic way to generate partial
differential equations by using the equations with constant coefficients; most of
the partial differential equations with variable coefficients depend on the nature of
particular problems.

The classification depends upon the signature of the eigenvalues of the coefficient
matrix.

1. Elliptic: The eigenvalues are all positive or all negative.
2. Parabolic: The eigenvalues are all positive or all negative, save one that is

zero.
3. Hyperbolic: There is only one negative eigenvalue and all the rest are positive,

or there is only one positive eigenvalue and all the rest are negative.
4. Ultrahyperbolic: There is more than one positive eigenvalue and more than

one negative eigenvalue, and there are no zero eigenvalues. There is only limited
theory for ultrahyperbolic equations (cf. Courant and Hilbert [5]).

On the other side there are some very useful physical problems where its type
can be changed. One of the best-known examples is the transonic flow, where the
equation is in the form of

�

1 � u2

c2

�

�xx � 2uv

c2
�xy C

�

1 � v2

c2

�

�yy C f .�/ D 0

where u and v are the velocity components and c is a constant (see [4]). Similarly,
partial differential equations with variable coefficients are also used in finance, for
example, the arbitrage-free value C of many derivatives

@C

@�
C s2

�2.s; �/

2

@2C

@s2
C b.s; �/

@C

@s
� r.s; �/C D 0;

with three variable coefficients �.s; �/, b.s; �/, and r.s; �/. In fact this partial
differential equation holds whenever C is twice differentiable with respect to s and
once with respect to � ; see [30].

However, in the literature there was no systematic way to generate partial
differential equations with variable coefficients by using the equations with constant
coefficients; most of the partial differential equations with variable coefficients
depend on the nature of particular problems.
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Question: How do we generate a PDE with variable coefficients from the
PDE with constant coefficients? In order to answer the above questions we extend
the classification of partial differential equations further by using the convolution
products.

For example, in the following diffusion equation,

ut D uxx C ı.x � a/k.u.x; t//;

where 0 � x � l; 0 � a � l , with zero boundary and initial conditions. All
we know is that this is used to model physical scenarios where the energy that is
being put into the system is highly spatially localized. Question: Is the solution
of such PDE possible? In a classical way or in another way (delta function is not
real function)? Or maybe the solution of such PDE exists in a normal sense (delta
function is a limit of the so-called delta sequences, which are sequences of ordinary
functions).

For example, if we consider the wave equation in the following example,

ut t � uxx D G.x; t/; .x; t/ 2 R
2C;

u.x; 0/ D f1.x/; ut .x; 0/ D g1.x/;

u.0; t/ D f2.t/; ux.0; t/ D g2.t/:

Now, if we consider multiplying the left-hand side of the above equation by the
nonconstant coefficient Q.x; t/ by using the double convolution with respect to x
and t , respectively, then the equation becomes

Q.x; t/ � � .ut t � uxx/ D G.x; t/; .t; x/ 2 R
2C;

u.x; 0/ D f1.x/; ut .x; 0/ D g1.x/;

u.0; t/ D f2.t/; ux.0; t/ D g2.t/:

Thus, the relationship between the solutions’ partial differential equations with
constant coefficients and nonconstant coefficients was studied in [22]. Note that in
particular case, if lim

n!1Qn.x; t/ D ı.x; t/, then it will be an approximate identity

which plays a significant role in convolution algebra as the same role as a sequence
of function approximations to the Dirac delta function that is the identity element
for convolution.Further, delta functions often arise as convolution semigroups. This
amounts to the further constraint that the convolution of ın with ım must satisfy

ın � � ım D ınCm

for all n;m > 0. Thus, the convolution semigroups in L1 that form a delta
function are always an approximation to the identity in the above sense; however, the
semigroup condition is quite a strong restriction. In fact semigroups approximating
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the delta function arise as fundamental solutions or Green’s functions to physically
motivated elliptic or parabolic partial differential equations.

Note that there is no general method that can solve all types of the differential
equations; each might require different methods and techniques.

Now let us consider the general linear second-order partial differential equation
with nonconstant coefficients in the form of

a.x; y/uxx C b.x; y/uxy C c.x; y/uyy C d.x; y/ux C e.x; y/uy C f .x; y/u D 0

and almost linear equation in two variables

auxx C buxy C cuyy C F.x; y; u; ux; uy/ D 0; (3)

where a; b; c, are polynomials defined by

a.x; y/ D
nX

ˇD1

mX

˛D1
a˛ˇx

˛yˇ; b.x; y/ D
nX

�D1

mX

�D1
b��x

�y�; c.x; y/ D
nX

lD1

mX

kD1
cklx

kyl

and .a; b; c/ ¤ .0; 0; 0/ and where the expression auxx C2buxyCcuyy is called the
principal part of Eq. (3), since the principal part mainly determines the properties of
the solution. Throughout this paper we also use the following notations:

jamnj D
nX

ˇD1

mX

˛D1

ˇ
ˇa˛ˇ

ˇ
ˇ ; jbmnj D

nX

�D1

mX

�D1

ˇ
ˇb��

ˇ
ˇ ; and jcmnj D

nX

lD1

mX

kD1
jckl j :

Now in order to generate new PDEs, we convolute Eq. (3) by a polynomial with

single convolution as p.x/�x where p.x/ D
mX

iD1
pix

i , then Eq. (3) becomes

p.x/ �x �a.x; y/uxx C b.x; y/uxy C c.x; y/uyy C F.x; y; u; ux; uy/
� D 0; (4)

where the symbol �x indicates single convolution with respect to x, and we shall
classify Eq. (4) instead of Eq. (3) by considering and examining the function

D.x; y/ D .p.x/ �x b.x; y//2 � .p.x/ �x a.x; y// .p.x/ �x c.x; y// : (5)

From Eq. (5), one can see that if D is positive, then Eq. (4) is called hyperbolic; if
D is negative then Eq. (4) is called elliptic; otherwise, it is parabolic.

First of all, we compute and examine the coefficients of the principal part of
Eq. (4) as follows:

A1.x; y/ D p.x/ �x a.x; y/ D
mX

iD1
pix

i �x
nX

ˇD1

mX

˛D1
a˛ˇx

˛yˇ:
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By using the single convolution definition and integration by parts, thus we obtain
the first coefficient of Eq. (4) in the form of

A1.x; y/ D
nX

ˇD1

mX

iD1

mX

˛D1

pia˛ˇi Šx
˛CiC1yˇ

..˛ C 1/..˛ C 2/� � �.˛ C i C 1//
:

Similarly, for the coefficients of the second part in Eq. (4), we have

B1.x; y/ D
nX

jD1

mX

�D1

mX

iD1

pib��i Šx
�CiC1y�

..� C 1/..� C 2/� � �.� C i C 1//
:

Also the last coefficient of Eq. (4) is given by

C1.x; y/ D
nX

lD1

mX

kD1

mX

iD1

pi ckl i Šx
kCiC1yl

..k C 1/..k C 2/� � �.k C i C 1//
;

then one can easily set up

D1.x; y/ D B2
1 .x; y/ � A1.x; y/C1.x; y/: (6)

Then there are several cases, and the classification of partial differential equations
with polynomial coefficients depends very much on the signs of the coefficients;
see [8]. In fact, this analysis can also be carried out for the convolutional product
with respect to the �y as well as the double convolution.

Now we demonstrate how to generate a PDE with variable coefficients by using
the convolutions. For example, in particular we can have

x3 �x x2y3uxx C x3 �x x3y4uxy C x3 �x x4y5uyy D f .x; y/ �x g.x; y/: (7)

The first coefficients of Eq. (7) is given by

A1.x; y/ D x3 �x x2y3 D y5
Z x

0

.x � �/3�2 d� D 1

60
y3x6: (8)

Similarly, the second coefficient is given by

B1.x; y/ D x3 �x x3y4 D 1

140
y4x7: (9)

By the same way we get the last coefficients of Eq. (7)

C1.x; y/ D x3 �x x4y5 D 1

280
y5x8: (10)
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By using Eqs. (6), (8), (9), and (10), we obtain

D1.x; y/ D � 1

117600
y8x14: (11)

We can easily see from Eq. (11) that Eq. (7) is an elliptic equation for all .x0;y/.
In the same way, if we multiply Eq. (5) by polynomial with a single convolution

as h.y/�y where h.y/ D
nX

jD1
yj , then Eq. (5) becomes

h.y/ �y �a.x; y/uxx C b.x; y/uxy C c.x; y/uyy C F.x; y; u; ux; uy/
� D 0; (12)

where the symbol �y indicates single convolution with respect to y, and we shall
classify Eq. (12) as. First of all, let us compute the coefficients of Eq. (12). By using
the definition of single convolution with respect to y and integral by part, we obtain
the first coefficient of Eq. (12) as follows:

A2.x; y/ D h.y/ �y a.x; y/ D
nX

ˇD1

nX

jD1

mX

˛D1

j Šx˛yˇCjC1

..ˇ C 1/..ˇ C 2/: : :.ˇ C j C 1//
;

and the second coefficient of Eq. (12) is given by

B2.x; y/ D h.y/ �y b.x; y/ D
nX

jD1

nX

�D1

mX

iD1

j Šx�y�CjC1

..�C 1/..�C 2/: : :.�C i C 1//
:

Similarly, the last coefficient of Eq. (12) is given by

C2.x; y/ D h.y/ �y c.x; y/ D
nX

jD1

nX

lD1

mX

iD1

j ŠxkylCjC1

..l C 1/..l C 2/� � �.l C i C 1//
:

Similar to the previous case, in particular, let us classify the following example:

y7 �y x2y3uxx C y7 �y x3y4uxy C y7 �y x4y5uyy D f .x; y/ �y g.x; y/: (13)

The symbol �y means single convolution with respect to y. If we follow the same
technique used above, then the first coefficient of Eq. (13) is given by

A2.x; y/ D y7 �y x2y3 D 1

1320
x2y11; (14)

the second coefficient of (13) is given by

B2.x; y/ D y7 �y x3y4 D 1

3860
x3y12 (15)
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and the last coefficient is given by

C2.x; y/ D y7 �y x4y5 D 1

10296
x4y13: (16)

Now on using Eqs. (6), (14), (15), and (16), we have

D2.x; y/ D � 1

101930400
x6y24: (17)

We can easily see from Eq. (17) that Eq. (13) is an elliptic equation for all
.x;y0/. In this study first we consider linear partial differential equations with
constant coefficients; then by applying the convolution, we can generate the partial
differential equations having variable coefficients; and then we solve the new
equation and compare the two solutions; see [9].

In the case of singular boundary problems, we consider the nonhomogeneous
wave equation in the form

ftt � fxx D 1

2
exCt � 1

2
cos.x/et � 1

2
ex cos.t/C 1

2
cos.x C t/;

f .0; t/ D ı.t/; ft .0; t/ D ı0.t/;

f .x; 0/ D ı.x/; fx.x; 0/ D ı0.x/: (18)

Then we note that all the initial conditions have a singularity at x D t D 0,
.t; x/ 2 R

2C. It is easy to see that the nonhomogeneous term of Eq. (18) can be
written in the form of the double convolution as follows:

sin.x C t/ � �exCt D 1

2
exCt � 1

2
cos xet � 1

2
ex cos t C 1

2
cos.x C t/:

Now, by applying the double Sumudu transform for the wave equation, then

Ftt � Fxx D �3e2xCt ; .x; t/ 2 R
2C; (19)

F.x; 0/ D e2x C ex; Ft .x; 0/ D e2x C ex; (20)

F.0; t/ D 2et ; Fx.0; t/ D 3et : (21)

By taking the double Sumudu transform for Eq. (19) and single Sumudu
transform of Eqs. (20) and (21) with u; v as transform variables for x; t , respectively,
on using Eqs. (5) and (6), after some little arrangements, we obtain

F.u; v/ D u2 Œ2�3u .vC1/
.1�u/ .1�2u/ Œu2�v2�

v2 .2C3u/

.1�v/ Œu2�v2�
3u2v2

.1�2u/ .1�v/ Œu2�v2 :

Now, we consider multiplying the left-hand side equation of (19) by a nonconstant
coefficient x3t4 � � where the symbol �� means a double convolution with respect
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to x and t respectively, then Eq. (19) becomes

xt2 � � .Ft t � Fxx/ D �3e2xCt ; .x; t/ 2 R
2C; (22)

F.x; 0/ D e2x C ex; Ft .x; 0/ D e2x C ex; (23)

F.0; t/ D 2et ; Fx.0; t/ D 3et : (24)

Similarly, we apply the double Sumudu transform technique for Eq. (22) and
single Sumudu transform for Eqs. (23) and (24); we obtain

F.u; v/ D u2Œ2 � 3u.v C 1/

.1 � u/.1� 2u/Œu2 � v2
� v2.2C 3u/

.1 � v/Œu2 � v2

� 3

2v.1 � 2u/.1� v/Œu2 � v2
: (25)

Now, by taking double inverse Sumudu transform for both sides of Eq. (25), we
obtain the solution of Eq. (22) as follows:

F1.x; t/ D 17

4
e�2tC2x � 45

4
e2tC2x C etCx C 2etC2x:

3 Integro-Differential Equations

Consider the following example:

Example 3.1. Find the solution of the integro-differential equation

y00 C 2y0 � y D h.t/; y.0/ D A; y0.0/ D B;

for arbitrary constants A and B and arbitrary function h.t/ D .f � g/.t/.
Solution. When we take Laplace transforms

Œs2Y �As � BC 2ŒsY � A � Y D F.s/G.s/

and solve for Y , the result is

Y.s/ D F.s/G.s/

s2 C 2s � 1 C As CB C 2A

s2 C 2s � 1
:

To find the inverse transform of this function, we first note that

L�1
�

1

s2C2s�1
	

DL�1
�

1

.sC1/2�2
	

De�tL�1
�

1

s2�1
	

D 1p
2

e�t sinh
p
2t:
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Using the convolution on the first term of Y.s/ now yields

y.t/ D
Z t

0

.f � g/.u/ 1p
2

e�.t�u/ sin h
p
2.t � u/du C L�1

�
A.s C 1/C .B C A/

.s C 1/2 � 2
	

D 1p
2

Z t

0

.f � g/.u/e�.t�u/ sinh
p
2.t � u/du C e�tL�1

�
As C .B C A/

.s2 � 2/

	

D 1p
2

Z t

0

.f � g/.u/e�.t�u/ sinh
p
2.t � u/du

Ce�t
�

A cosh
p
2t C AC Bp

2
sinh

p
2t

�

:

The particular modified form of the above example is the so-called Hermite”s
equation of order n in the following equation:

y00 � 2xy0 � 2ny D 0:

Then by using the series solution method, we can obtain the solution

y.x/ D 1 � 4x2 C 4

3
x4:

The above example also indicates that the convolution method can also be used
to solve the integro-differential equations in order to generate the equation with
variable coefficients. For example, we consider the problem

p.x/ � �a2y00 C a1y
0 C a0y

� D f .x/C
Z a

b

g.t/y.t/ dt I a � x � b

y.a/ D y0; y.b/ D y1; y0.c/ D 0; y.3/
�
a C b

2

�

D d; (26)

where p.x/ is a polynomial and f and g are known functions. Then we can see that
the right-hand side of Eq. (26) can be shown as the convolution. A particular case
of the above Eq. (26) can be given as the well-known Bratu’s nonlinear boundary
value problem

u00.t/C 	eu.t/ D 0; t 2 .0; 1/;

with the boundary conditions

u.0/ D 0; u.1/ D 0;



Convolutions Product and Differential and Integro: Differential Equations 755

which has an analytical solution given in the following form:

u.t/ D �2 ln

"
cosh..t � 1

2
/ �
2
/

cosh
�
�
4

�

#

;

where � is the solution of � D p
2	 cosh �

4
(see [18]).

It is also well known that the Bratu’s problem has zero, one, or two solutions
when 	 > 	c , 	 D 	c and 	 < 	c , respectively, where the critical value 	c satisfies
the equation 1 D 1

4

p
2	c sinh.�c=4/ and it was obtained in [1, 2] that the critical

value 	c is given by 	c D 3:513830719.

F.x/ � P.D/y D .f � g/.t/ D
Z t

0

f .x/g.x � t/ dxI a � x � b;

y.a/ D y.b/ D c; y.0/ D y0; y0.0/ D y00:

In order to model the real-world application, the fractional differential equations
should be considered by using the fractional derivatives. There are many different
starting points for the discussion of classical fractional calculus; see [14] and
[32]. We also note that the convolution further can be used in the definition of
the fractional integrals. For example, there are many different starting points for
the discussion of classical fractional calculus; see [19]. One can begin with a
generalization of repeated integration. If f .t/ is absolutely integrable on Œ0; b/, it
can be found that [14, 32, 33].

tZ

0

dtn

tnZ

0

dtn�1 � � �
t3Z

0

dt2

t2Z

0

f .t1/ dt1 D 1

.nC 1/Š

tZ

0

.t � t1/n�1f .t1/ dt1

D 1

.nC 1/Š
tn�1 � f .t/;

where n D 1; 2; : : :, and 0 � t � b. On writing � .n/ D .n � 1/Š, an immediate
generalization in the form of the operation I ˛ defined for ˛ > 0 is

.I ˛f /.t/ D 1

� .˛/

tZ

0

.t � t1/˛�1f .t1/ dt1 D 1

� .˛/
t˛�1 � f .t/; 0 � t < b; (27)

where � .˛/ is the gamma function and

t˛�1 � f .t/ D
tZ

0

f .t � t1/
˛�1.t1/ dt1
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is the convolution product of t˛�1 and f .t/. Equation (27) is called the Riemann–
Liouville fractional integral of order ˛ for the function f .t/. Similarly, by using the
convolution we can also generate an ODE with variable coefficients from the ODE
with constant coefficients; see [17].

Now if f .t/ is expanded in block pulse functions, the Riemann–Liouville
fractional integral becomes

.I ˛f /.t/ D 1

� .˛/
t˛�1 � f .t/ ' �T

1

� .˛/

˚
t˛�1 � �m.t/




Thus, if t˛�1 ��m.t/ can be integrated and then expanded in block pulse functions,
the Riemann–Liouville fractional integral is solved via the block pluse functions.
Thus, we note that Kronecker convolution product can be expanded in order to
define the Riemann–Liouville fractional integrals for matrices by using the block
pulse operational matrix as follows:

1

� .˛/

tZ

0

.t � t1/
˛�1�m.t1/ dt1 ' F˛�m.t/;

where

F˛ D
�
b

m

�˛
1

� .˛ C 2/

2

6
6
6
6
6
4

1 �2 �3 : : : �m
0 1 �2 : : : �m�1
0 0 1 : : : �m�2
0 0 0

: : :
:::

0 0 0 0 1

3

7
7
7
7
7
5

(cf. [19]). Further a particular consequence of this is that the convolution can be
viewed as a “smoothing” operation: the convolution of Č and g is differentiable as
many times as Č and g are together. Thus, if we have a differential operator having
singularity, then convolution can be used for regularization.

An important feature of the convolution is known that if f and g both decay
rapidly, then f � g also decays rapidly. Further, the convolution is also a finite
measure, whose total variation satisfies the inequality

jjf � gjj � jjf jj � jjgjj

then we have the following theorem:

Theorem 3.1. Let the differential equation P.D/u D f .x/ have a solution, and if
g is an arbitrary function having bounded support, then

jjg � P.D/jj � jjgjj � jjP.D/jj; (28)

has also a solution.

The proof of the theorem was held in [17]. Further note the above theorem suggests
that if the original equation has a solution, then the new equation also has a solution;
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the relations and the comparisons between the solutions were studied in [17].
However (28) does not indicate how to find the solution. In order to find the solution
explicitly, we have to follow some of the other techniques such as in the following
theorem:

Theorem 3.2. The general differential transformation for nonlinear nth-order
BVPs,

y.n/.x/ D e�	x � .y.x//m (29)

is given by

Y.nC k/ D kŠ

.nC k/Š

2

4
kX

kmD0

kmX

km�1D0
� � �

k2X

k1D0

.�	/k1
k1Š

 "
mY

iD2
Y.ki�ki�1/

#

Y.k�km/
!3

5:

We note that by applying the convolutional derivative to Eq. (29), then we easily
obtain

y.nC2/.x/ D �	me�	x � y0 .y.x//m�1:
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Orthogonally Additive: Additive Functional
Equation
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Abstract Using fixed point method, we prove the Hyers–Ulam stability of the
orthogonally additive–additive functional equation

f
�x

2
C y

�
C f

�x

2
C z

�
D f .x/C f .y/C f .z/

for all x; y; z with x ? y, in orthogonality Banach spaces and in non-Archimedean
orthogonality Banach spaces.

1 Introduction and Preliminaries

In 1897, Hensel [23] introduced a normed space which does not have the
Archimedean property. It turned out that non-Archimedean spaces have many
nice applications (see [12, 31, 32, 39]).

A valuation is a function j � j from a field K into Œ0;1/ such that 0 is the unique
element having the 0 valuation, jrsj D jr j � jsj, and the triangle inequality holds, i.e.,

jr C sj 6 jr j C jsj; 8r; s 2 K:

A fieldK is called a valued field ifK carries a valuation. Throughout this paper, we
assume that the base field is a valued field; hence, call it simply a field. The usual
absolute values of R and C are examples of valuations.
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Let us consider a valuation which satisfies a stronger condition than the triangle
inequality. If the triangle inequality is replaced by

jr C sj 6 maxfjr j; jsjg; 8r; s 2 K;

then the function j � j is called a non-Archimedean valuation, and the field is called a
non-Archimedean field. Clearly j1j D j � 1j D 1 and jnj 6 1 for all n 2 N. A trivial
example of a non-Archimedean valuation is the function j�j taking everything except
for 0 into 1 and j0j D 0.

Definition 1.1 ([38]). Let X be a vector space over a field K with a non-
Archimedean valuation j � j. A function k � k W X ! Œ0;1/ is said to be a
non-Archimedean norm if it satisfies the following conditions:

(i) kxk D 0 if and only if x D 0

(ii) krxk D jr jkxk .r 2 K; x 2 X/
(iii) The strong triangle inequality

kx C yk 6 maxfkxk; kykg; 8x; y 2 X

holds. Then .X; k � k/ is called a non-Archimedean normed space.

Definition 1.2.

(i) Let fxng be a sequence in a non-Archimedean normed space X . Then the
sequence fxng is called Cauchy if for a given " > 0 there is a positive integer
N such that

kxn � xmk 6 "

for all n;m > N .
(ii) Let fxng be a sequence in a non-Archimedean normed space X . Then the

sequence fxng is called convergent if for a given " > 0 there are a positive
integer N and an x 2 X such that

kxn � xk 6 "

for all n > N . Then we call x 2 X a limit of the sequence fxng and denote by
limn!1 xn D x.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space.

Assume that X is a real inner product space and f W X ! R is a solution of
the orthogonal Cauchy functional equation f .x C y/ D f .x/C f .y/; hx; yi D 0.
By the Pythagorean theorem f .x/ D kxk2 is a solution of the conditional equation.
Of course, this function does not satisfy the additivity equation everywhere. Thus
orthogonal Cauchy equation is not equivalent to the classic Cauchy equation on the
whole inner product space.
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G. Pinsker [44] characterized orthogonally additive functionals on an inner
product space when the orthogonality is the ordinary one in such spaces. K.
Sundaresan [54] generalized this result to arbitrary Banach spaces equipped with
the Birkhoff–James orthogonality. The orthogonal Cauchy functional equation,

f .x C y/ D f .x/C f .y/; x ? y;

in which ? is an abstract orthogonality relation, was first investigated by S. Gudder
and D. Strawther [22]. They defined ? by a system consisting of five axioms
and described the general semicontinuous real-valued solution of conditional
Cauchy functional equation. In 1985, J. Rätz [51] introduced a new definition of
orthogonality by using more restrictive axioms than of S. Gudder and D. Strawther.
Moreover, he investigated the structure of orthogonally additive mappings. J. Rätz
and Gy. Szabó [52] investigated the problem in a rather more general framework.

Let us recall the orthogonality in the sense of J. Rätz; cf. [51].
Suppose X is a real vector space with dimX � 2 and ? is a binary relation on

X with the following properties:

.O1/ totality of ? for zero: x ? 0; 0 ? x for all x 2 X ;

.O2/ independence: if x; y 2 X � f0g; x ? y, then x; y are linearly independent;

.O3/ homogeneity: if x; y 2 X; x ? y, then ˛x ? ˇy for all ˛; ˇ 2 R;

.O4/ the Thalesian property: if P is a 2-dimensional subspace of X; x 2 P and
	 2 RC, which is the set of nonnegative real numbers, then there exists
y0 2 P such that x ? y0 and x C y0 ? 	x � y0.

The pair .X;?/ is called an orthogonality space. By an orthogonality normed
space, we mean an orthogonality space having a normed structure.

Some interesting examples are

(i) The trivial orthogonality on a vector spaceX defined by .O1/, and for nonzero
elements x; y 2 X , x ? y if and only if x; y are linearly independent.

(ii) The ordinary orthogonality on an inner product space .X; h�; �i/ given by x ? y

if and only if hx; yi D 0.
(iii) The Birkhoff–James orthogonality on a normed space .X; k � k/ defined by

x ? y if and only if kx C 	yk � kxk for all 	 2 R.

The relation ? is called symmetric if x ? y implies that y ? x for all x; y 2 X .
Clearly examples (i) and (ii) are symmetric but example (iii) is not. It is remarkable
to note, however, that a real normed space of dimension greater than 2 is an inner
product space if and only if the Birkhoff–James orthogonality is symmetric. There
are several orthogonality notions on a real normed space such as Birkhoff–James,
Boussouis, Singer, Carlsson, unitary-Boussouis, Roberts, Phythagorean, isosceles,
and Diminnie (see [1, 3, 7, 14, 28]).

The stability problem of functional equations originated from the following
question of Ulam [56]: Under what condition does there exist an additive mapping
near an approximately additive mapping? In 1941, Hyers [24] gave a partial



762 C. Park

affirmative answer to the question of Ulam in the context of Banach spaces. In 1978,
Th.M. Rassias [46] extended the theorem of Hyers by considering the unbounded
Cauchy difference

kf .x C y/ � f .x/ � f .y/k � ".kxkp C kykp/ ." > 0; p 2 Œ0; 1//:

The first author treating the stability of the quadratic equation was F. Skof [53]
by proving that if f is a mapping from a normed space X into a Banach space Y
satisfying

kf .x C y/C f .x � y/ � 2f .x/� 2f .y/k � "

for some " > 0, then there is a unique quadratic mapping g W X ! Y such that

kf .x/ � g.x/k � "

2
:

P. W. Cholewa [8] extended the Skof’s theorem by replacingX by an abelian group
G. The Skof’s result was later generalized by S. Czerwik [9] in the spirit of Ulam–
Hyers–Rassias. The stability problem of functional equations has been extensively
investigated by some mathematicians (see [10, 11, 16–19, 25, 29, 43, 47–50]).

R. Ger and J. Sikorska [21] investigated the orthogonal stability of the Cauchy
functional equation f .x C y/ D f .x/ C f .y/, namely, they showed that if f is a
mapping from an orthogonality space X into a real Banach space Y and

kf .x C y/� f .x/ � f .y/k � "

for all x; y 2 X with x ? y and some " > 0, then there exists exactly one
orthogonally additive mapping g W X ! Y such that

kf .x/ � g.x/k � 16

3
"

for all x 2 X .
The orthogonally quadratic equation

f .x C y/C f .x � y/ D 2f .x/C 2f .y/; x ? y

was first investigated by F. Vajzović [57] when X is a Hilbert space, Y is the
scalar field, f is continuous and ? means the Hilbert space orthogonality. Later,
H. Drljević [15], M. Fochi [20], M.S. Moslehian [35, 36], and Gy. Szabó [55]
generalized this result. See also [37, 40].

Let X be a set. A function d W X � X ! Œ0;1 is called a generalized metric
on X if d satisfies

(1) d.x; y/ D 0 if and only if x D y;
(2) d.x; y/ D d.y; x/ for all x; y 2 X ;
(3) d.x; z/ 6 d.x; y/C d.y; z/ for all x; y; z 2 X .
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We recall a fundamental result in fixed point theory.

Theorem 1.1 ([4, 13]). Let .X; d/ be a complete generalized metric space and let
J W X ! X be a strictly contractive mapping with Lipschitz constant ˛ < 1. Then
for each given element x 2 X , either

d.J nx; J nC1x/ D 1

for all nonnegative integers n or there exists a positive integer n0 such that

.1/ d.J nx; J nC1x/ < 1; 8n > n0;

.2/ the sequence fJ nxg converges to a fixed point y� of J ;

.3/ y� is the unique fixed point of J in the set

Y D fy 2 X j d.J n0x; y/ < 1gI

.4/ d.y; y�/ 6 1

1 � ˛
d.y; Jy/ for all y 2 Y .

In 1996, G. Isac and Th.M. Rassias [26] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theorems
with applications. By using fixed point methods, the stability problems of several
functional equations have been extensively investigated by a number of authors (see
[5, 6, 30, 34, 41, 42, 45]).

This paper is organized as follows: In Sect. 2, we prove the Hyers–Ulam stability
of the orthogonally additive–additive functional equation (1) in orthogonality
spaces. In Sect. 3, we prove the Hyers–Ulam stability of the orthogonally additive–
additive functional equation (1) in non-Archimedean orthogonality spaces.

2 Hyers–Ulam Stability of the Orthogonally
Additive–Additive Functional Equation

Throughout this section, assume that .X;?/ is an orthogonality space and that
.Y; k:kY / is a real Banach space.

In this section, applying some ideas from [21, 25], we deal with the stability
problem for the orthogonally additive–additive functional equation

Df.x; y; z/ WD f
�x

2
C y

�
C f

�x

2
C z

�
� f .x/ � f .y/ � f .z/ D 0

for all x; y; z 2 X with x ? y in orthogonality spaces.
If f is a mapping with Df.x; y; z/ D 0, then

f
�x

2
C y

�
C f

�x

2

�
D f .x/C f .y/
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and so f .x C y/ D f .x/C f .y/ for all x; y 2 X with x ? y, and

f
�x

2

�
C f

�x

2
C z

�
D f .x/C f .z/

and so

f .x C z/ D f .x/C f .z/

for all x; z 2 X . That is, f is orthogonally additive and additive.

Definition 2.1. A mapping f W X ! Y is called an orthogonally additive–additive
mapping if

f
�x

2
C y

�
C f

�x

2
C z

�
D f .x/C f .y/C f .z/

for all x; y; z 2 X with x ? y.

Theorem 2.1. Let ' W X3 ! Œ0;1/ be a function such that there exists an ˛ < 1

with

'.x; y; z/ 6 2˛'
�x

2
;
y

2
;

z

2

�
(1)

for all x; y; z 2 X with x ? y. Let f W X ! Y be a mapping satisfying

kDf.x; y; z/kY 6 '.x; y; z/ (2)

for all x; y; z 2 X with x ? y. Then there exists a unique orthogonally additive–
additive mapping L W X ! Y such that

kf .x/ �L.x/kY 6 ˛

1 � ˛
' .x; 0; 0/ (3)

for all x 2 X .

Proof. Putting y D z D 0 in (3), we get

�
�
�2f

�x

2

�
� f .x/

�
�
�
Y

6 '.x; 0; 0/ (4)

for all x 2 X , since x ? 0. So

�
�
�
�f .x/ � 1

2
f .2x/

�
�
�
�
Y

6 1

2
'.2x; 0; 0/ 6 ˛'.x; 0; 0/ (5)

for all x 2 X .
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Consider the set

S WD fh W X ! Y g

and introduce the generalized metric on S :

d.g; h/ D inf f
 2 RC W kg.x/ � h.x/kY 6 
' .x; 0; 0/ ; 8x 2 Xg ;

where, as usual, inf� D C1. It is easy to show that .S; d/ is complete (see [33]).
Now we consider the linear mapping J W S ! S such that

Jg.x/ WD 1

2
g .2x/

for all x 2 X .
Let g; h 2 S be given such that d.g; h/ D ". Then

kg.x/ � h.x/kY 6 ' .x; 0; 0/

for all x 2 X . Hence

kJg.x/ � Jh.x/kY D
�
�
�
�
1

2
g .2x/ � 1

2
h .2x/

�
�
�
�
Y

6 ˛' .x; 0; 0/

for all x 2 X . So d.g; h/ D " implies that d.Jg; Jh/ 6 ˛". This means that

d.Jg; Jh/ 6 ˛d.g; h/

for all g; h 2 S .
It follows from (6) that d.f; Jf / 6 ˛.
By Theorem 1.1, there exists a mappingL W X ! Y satisfying the following:

(1) L is a fixed point of J , i.e.,

L.2x/ D 2L.x/ (6)

for all x 2 X . The mapping L is a unique fixed point of J in the set

M D fg 2 S W d.h; g/ < 1g:

This implies that L is a unique mapping satisfying (7) such that there exists a

 2 .0;1/ satisfying

kf .x/ � L.x/kY 6 
' .x; 0; 0/

for all x 2 X ;
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(2) d.J nf;L/ ! 0 as n ! 1. This implies the equality

lim
n!1

1

2n
f .2nx/ D L.x/

for all x 2 X ;

(3) d.f;L/ 6 1

1 � ˛
d.f; Jf /, which implies the inequality

d.f;L/ 6 ˛

1 � ˛
:

This implies that the inequality (4) holds.

It follows from (2) and (3) that

kDL.x; y; z/kY D lim
n!1

1

2n
kDf.2nx; 2ny; 2nz/kY

6 lim
n!1

1

2n
'.2nx; 2ny; 2nz/ 6 lim

n!1
2n˛n

2n
'.x; y; z/ D 0

for all x; y; z 2 X with x ? y. Hence

L
�x

2
C y

�
C L

�x

2
C z

�
D L.x/C L.y/C L.z/

for all x; y; z 2 X with x ? y. So L W X ! Y is an orthogonally additive–additive
mapping.

Thus, L W X ! Y is a unique orthogonally additive–additive mapping
satisfying (4), as desired. ut
Corollary 2.1. Assume that .X;?/ is an orthogonality normed space. Let � be a
positive real number and p a real number with 0 < p < 1. Let f W X ! Y be a
mapping satisfying

kDf.x; y; z/kY � �.kxkp C kykp C kzkp/ (7)

for all x; y; z 2 X with x ? y. Then there exists a unique orthogonally additive–
additive mapping L W X ! Y such that

kf .x/ � L.x/kY 6 2p�

2 � 2p
kxkp

for all x 2 X .

Proof. The proof follows from Theorem 2.1 by taking

'.x; y; z/ D �.kxkp C kykp C kzkp/
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for all x; y; z 2 X with x ? y. Then we can choose ˛ D 2p�1 and we get the
desired result. ut
Theorem 2.2. Let f W X ! Y be a mapping satisfying (3) for which there exists a
function ' W X3 ! Œ0;1/ such that

'.x; y; z/ 6 ˛

2
' .2x; 2y; 2z/

for all x; y; z 2 X with x ? y. Then there exists a unique orthogonally additive–
additive mapping L W X ! Y such that

kf .x/ �L.x/kY 6 1

1 � ˛
' .x; 0; 0/ (8)

for all x 2 X .

Proof. Let .S; d/ be the generalized metric space defined in the proof of Theo-
rem 2.1.

Now we consider the linear mapping J W S ! S such that

Jg.x/ WD 2g
�x

2

�

for all x 2 X .
It follows from (5) that d.f; Jf / 6 1. So

d.f;L/ 6 1

1 � ˛ :

Thus we obtain the inequality (9).
The rest of the proof is similar to the proof of Theorem 2.1. ut

Corollary 2.2. Assume that .X;?/ is an orthogonality normed space. Let � be a
positive real number and p a real number with p > 1. Let f W X ! Y be a
mapping satisfying (8). Then there exists a unique orthogonally additive–additive
mapping L W X ! Y such that

kf .x/ � L.x/kY 6 2p�

2p � 2kxkp

for all x 2 X .

Proof. The proof follows from Theorem 2.2 by taking

'.x; y; z/ D �.kxkp C kykp C kzkp/

for all x; y; z 2 X with x ? y.
Then we can choose ˛ D 21�p and we get the desired result. ut
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3 Hyers–Ulam Stability of the Orthogonally
Additive–Additive Functional Equation in
Non-Archimedean Orthogonality Spaces

Throughout this section, assume that .X;?/ is a non-Archimedean orthogonality
space and that .Y; k � kY / is a real non-Archimedean Banach space. Assume that
j2j ¤ 1.

In this section, applying some ideas from [21,25], we deal with the stability prob-
lem for the orthogonally additive–additive functional equation Df.x; y; z/ D 0,
given in the previous section, in non-Archimedean orthogonality spaces.

Theorem 3.1. Let ' W X3 ! Œ0;1/ be a function such that there exists an ˛ < 1

with

'.x; y; z/ 6 j2j˛'
�x

2
;
y

2
;

z

2

�

for all x; y; z 2 X with x ? y. Let f W X ! Y be a mapping satisfying

kDf.x; y; z/kY 6 '.x; y; z/ (9)

for all x; y; z 2 X with x ? y. Then there exists a unique orthogonally additive–
additive mapping L W X ! Y such that

kf .x/ �L.x/kY 6 ˛

1 � ˛
' .x; 0; 0/ (10)

for all x 2 X .

Proof. Putting y D z D 0 in (10), we get

�
�
�2f

�x

2

�
� f .x/

�
�
�
Y

6 '.x; 0; 0/ (11)

for all x 2 X , since x ? 0. So

�
�
�
�f .x/ � 1

2
f .2x/

�
�
�
�
Y

6 1

j2j'.2x; 0; 0/ 6 ˛'.x; 0; 0/ (12)

for all x 2 X .
Let .S; d/ be the generalized metric space defined in the proof of Theorem 2.1.
Now we consider the linear mapping J W S ! S such that

Jg.x/ WD 1

2
g .2x/

for all x 2 X .
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It follows from (13) that d.f; Jf / 6 ˛. Thus, we obtain the inequality (11).
The rest of the proof is similar to the proof of Theorem 2.1. ut

Corollary 3.1. Assume that .X;?/ is a non-Archimedean orthogonality normed
space. Let � be a positive real number and p a real number with 0 < p < 1. Let
f W X ! Y be a mapping satisfying (8). Then there exists a unique orthogonally
additive–additive mapping L W X ! Y such that

kf .x/ � L.x/kY 6 j2j�
j2jp � j2jkxkp

for all x 2 X .

Proof. The proof follows from Theorem 3.1 by taking

'.x; y; z/ D �.kxkp C kykp C kzkp/
for all

Then we can choose ˛ D j2j1�p and we get the desired result. ut
Theorem 3.2. Let f W X ! Y be a mapping satisfying (10) for which there exists
a function ' W X3 ! Œ0;1/ such that

'.x; y; z/ 6 ˛

j2j' .2x; 2y; 2z/

for all x; y; z 2 X with x ? y. Then there exists a unique orthogonally additive–
additive mapping L W X ! Y such that

kf .x/ �L.x/kY 6 1

1 � ˛
' .x; 0; 0/ (13)

for all x 2 X .

Proof. Let .S; d/ be the generalized metric space defined in the proof of
Theorem 2.1.

Now we consider the linear mapping J W S ! S such that

Jg.x/ WD 2g
�x

2

�

for all x 2 X .
It follows from (12) that d.f; Jf / 6 1. So

d.f;L/ 6 1

1 � ˛ :

Thus we obtain the inequality (13).
The rest of the proof is similar to the proof of Theorem 2.1. ut
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Corollary 3.2. Assume that .X;?/ is a non-Archimedean orthogonality normed
space. Let � be a positive real number and p a real number with p > 1. Let f W
X ! Y be an odd mapping satisfying (8). Then there exists a unique orthogonally
additive–additive mapping L W X ! Y such that

kf .x/ � L.x/kY 6 j2j�
j2j � j2jp kxkp

for all x 2 X .

Proof. The proof follows from Theorem 3.2 by taking

'.x; y; z/ D �.kxkp C kykp C kzkp/

for all x; y; z 2 X with x ? y.
Then we can choose ˛ D j2jp�1 and we get the desired result. ut
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Alternating Mathieu Series, Hilbert–Eisenstein
Series and Their Generalized Omega Functions

Árpád Baricz, Paul L. Butzer, and Tibor K. Pogány

Dedicated to Professor Hari M. Srivastava

Abstract In this paper our aim is to generalize the complete Butzer–Flocke–Hauss
(BFH) ˝-function in a natural way by using two approaches. Firstly, we introduce
the generalized Omega function via alternating generalized Mathieu series by
imposing Bessel function of the first kind of arbitrary order as the kernel function
instead of the original cosine function in the integral definition of the ˝ . We also
study the following set of questions about generalized BFH ˝�-function: (i) two
different sets of bounding inequalities by certain bounds upon the kernel Bessel
function; (ii) linear ordinary differential equation of which particular solution is the
newly introduced ˝�-function, and by virtue of the Čaplygin comparison theorem
another set of bounding inequalities are given.

In the second main part of this paper we introduce another extension of BFH
Omega function as the counterpart of generalized BFH function in terms of the
positive integer order Hilbert–Eisenstein (HE) series. In this study we realize by
exposing basic analytical properties, recurrence identities and integral representa-
tion formulae of Hilbert–Eisenstein series. Series expansion of these generalized
BFH functions is obtained in terms of Gaussian hypergeometric function and some
bridges are derived between Hilbert–Eisenstein series and alternating generalized
Mathieu series. Finally, we expose a Turán-type inequality for the HE series hr .w/.
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1 Invitation to ˝-Function and Alternating Mathieu Series

The complex-index Euler function E˛.z/ is defined by [6, Definition 2.1]

E˛.z/ WD � .˛ C 1/

�i

Z

Cr

ezu

eu C 1
u�˛�1 du ˛ 2 CI z 2 C n R

�
0 ;

where Cr denotes the positively oriented loop around the negative real axis R
�,

which is composed of a circle C.0I r/ centered at the origin and of radius r 2 .0; �/
together with the lower and upper edges C1 and C2 of the complex plane cut along
the negative real axis.

The complex-index Bernoulli function B˛.z/ is given by [4, Definition 2.3(a)]

B˛.z/ WD � .˛ C 1/

2�i

Z

C�

ezv

ev � 1
v�˛ dv; ˛ 2 CI z 2 C n R

�
0 :

Here, C� denotes the same shape integration contour as above with � 2 .0; 2�/.
For the connections between these two functions by way of their Hilbert transforms
E�̨.z/ and B�̨.z/, the interested reader is referred to [4].

Almost twenty years ago, in their investigation of the complex-index Euler
function E˛.z/, Butzer, Flocke and Hauss [6] introduced the following special
function:

˝.w/ D 2

Z 1
2

0C
sinh.wu/ cot.�u/ du; w 2 C;

which they called the complete Omega function [4, Definition 7.1], [6]. On the
other hand, in view of the definition of the Hilbert transform, the complete Omega
function˝.w/ is the Hilbert transform H Œe�wx1.0/ at 0 of the 1-periodic function
.e�wx/1 defined by the periodic continuation of the following exponential function
[4, p. 67]:

e�x w; jxj 6 1
2
I w 2 C ;

that is,

H Œe��w1.0/ WD PV
Z 1

2

� 12
ewu cot.�u/ du D ˝.w/; w 2 C;

where the integral is to be understood in the sense of Cauchy’s principal value (PV)
at zero. The highly important role of the Omega function in deep considerations and
generating-function description of the Euler and Bernoulli functions was pointed
out rather precisely by Butzer and his collaborators in their recent investigations
[4–6]. There is also a basic association of the Omega function ˝.x/ with the
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Eisenstein series for circular functions and Hilbert–Eisenstein series introduced by
Hauss [23]. For this matter as well as for some related open conjectures, see the
work by Butzer [4, Sect. 9]. Further integral representations have been derived for
the complete, real argument Omega function. So we mention the result by Butzer,
Pogány and Srivastava [8, Theorem 2]:

˝.x/ D 2

�
sinh

�
x

2

� Z 1

0

cos

�
xt

2�

�
dt

et C 1
; x 2 R : (1)

Tomovski and Pogány [46, Theorem 3.3] proved that

˝.x/ D 2

r
2

�
sinh

�
x

2

�

PV
Z 1

0

sinh

�
xt

�

�

tan t dt; x 2 R : (2)

Also, for the sake of completeness, we mention the Pogány–Srivastava integral
representation [39, p. 589, Theorem 1]:

˝.x/ D 16�3 sinh

�
x

2

� Z 1

1

sin2
�
�
2
Œ
p

u 
�

� Œ
p

u  cos
�
�Œ

p
u 
�

.4�2 u C x2/2
du; (3)

for all x 2 R. Here Œa stands for the integer part of some real a. Secondly,
bounding inequalities have been established for˝.x/Butzer, Pogány and Srivastava
[8, Theorem 3]:

1

�
sinh

�
x

2

�

log

�
�.3/x2 C 8�2

3x2 C 2�2

�

6 ˝.x/ 6 1

�
sinh

�
x

2

�

log

�
3x2 C 8�2

�.3/x2 C 2�2

�

:

The above inequalities are valid for x > 0, and for x < 0; the opposite inequalities
hold true. Here �.3/ D 1:20205690 : : : stands for the celebrated Apéry’s constant.
Thus, the Omega function behaves asymptotically like

�
1

�
log

�.3/

3

�

� e
x
2 6 ˝.x/ 6

�
1

�
log

3

�.3/

�

� e
x
2 ; x ! 1 :

Applying the Čaplygin comparison theorem [9, 10, 34], Pogány and Srivastava [39]
obtained a bilateral bounding inequality for ˝ function, by means of a linear
ODE given earlier in [8]. Finally, different types of bounding inequalities were
established by Alzer, Brenner and Ruehr; Draščić and Pogány; Mortici; Pogány,
Srivastava and Tomovski; and others for the so-called generalized Mathieu series
(see [41] and the references therein). Employing also the Čaplygin comparison
theorem, Pogány, Tomovski and Leškovski [41] established very recently a set of
bilateral inequalities for the real parameter complete˝ function considering the so-
called alternating generalized Mathieu series’ bounds; see [41] and the exhaustive
companion references list.
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The Omega function possesses an elegant and useful partial fraction representa-
tion [4, Theorem 1.3], [5, Theorem 1.24]:

�˝.2�w/

sinh.�w/
D
1X

nD1

.�1/n�1 2n
n2 C w2

; w 2 C n iZ : (4)

On the other hand, the generalized Mathieu series was introduced by Guo [21] in
the form

S�.r/ D
X

n>1

2n

.n2 C r2/�
; � > 1; r > 0 ;

posing the problem as to whether there is an integral representation for S�.r/. The
problem was solved by Cerone and Lenard [14, Theorem 1], who gave the integral
representation

S�.r/ D
p
�

.2r/�� 32 � .�/

Z 1

0

t�� 12
et � 1 J�� 3

2
.rt/ dt; r > 0; � > 1 :

In [40] Pogány, Srivastava and Tomovski proved that the alternating generalized
Mathieu series

QS�.r/ D
X

n>1

.�1/n�1 2n
.n2 C r2/�

; � > 0; r > 0 ; (5)

posses the integral representation formula

QS�.r/ D
p
�

.2r/�� 32 � .�/

Z 1

0

t��1=2

et C 1
J�� 32 .rt/ dt; r > 0; � > 0; (6)

where Ja stands for the Bessel function of the first kind of order a. Obviously, letting
here � ! 1, which, in view of the following relationship [1, p. 202, Eq. (4.6.4)]:

J� 1
2
.z/ D

r
2

�z
cos z;

leads us easily to the integral representation (1). A number of other fashion integral
representations for S2; QS2 and for S3 have been presented by Choi and Srivastava in
[15, pp. 865–866, Theorem 3, Corollary 2]. The background of the relation (6) is
very interesting. Namely, consider the classical Gegenbauer’s formula [19] (see also
[20, p. 712], [47, p. 386, Eq. 13.(6)]):

Z 1

0

e�˛xx
C1J�
�
ˇx
�
dx D 2˛.2ˇ/
�

�

C 3

2

�

p
� .˛2 C ˇ2/
C3=2

; (7)
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which is valid for all Ref
g > �1;Ref˛g > ˇ
ˇ Imfˇgˇˇ. Setting ˛ D n; 
 D � � 3

2

and ˇ D r in (7), multiplying this relation with .�1/n�1 and then summing up with
respect to n 2 N, we clearly arrive at (6). But, noting (4) and Sect. 4 below,

�˝.2�x/

sinh.�x/
D QS1.x/ D 2

Z 1

0

cos.xt/

et C 1
dt; (8)

the integral representation only being valid for w D x real therefore now follows
(1) when we replace 2�x 7! x.

Let us now introduce a new generalized Omega function, namely,˝�.�/, defined
in terms of

�˝�.2�w/

sinh.�w/
D QS�.w/; w 2 C n iZ ; (9)

an extensive counterpart of (8).
In order to apply the foregoing results of Pogány, Srivastava and Tomovski [40],

we here need to restrict ourselves to w D x 2 R. Thus, (6) gives an analytic
definition in matters of (9) as

˝�.x/ D ���2

� .�/ x�� 32
sinh

�
x

2

� Z 1

0

t��1=2

et C 1
J�� 3

2

�
xt

2�

�

dt; ˝1.x/ � ˝.x/ ;

(10)

where x ¤ 0; � > 0. In what follows, we call ˝� the complete generalized BFH
Omega function of the order �.

2 Bounds for ˝� by Using Results on J�

The main purpose here is to establish a bounding inequality of ˝� in terms of
J
. Rearranging the integral representation (10) of the complete generalized BFH
Omega function of the order �, we deduce

ˇ
ˇ˝�.x/

ˇ
ˇ 6 ���2

� .�/ jxj�� 32
ˇ
ˇ
ˇ
ˇsinh

�
x

2

�ˇˇ
ˇ
ˇ

Z 1

0

t��1=2

et C 1

ˇ
ˇ
ˇ
ˇJ�� 32

�
xt

2�

�ˇˇ
ˇ
ˇ dt

D 2�C 1
2 �2�� 3

2

� .�/ jxj2��1
ˇ
ˇ
ˇ
ˇsinh

�
x

2

�ˇˇ
ˇ
ˇ

Z 1

0

t��1=2

e2� t=x C 1

ˇ
ˇJ�� 32 .t/

ˇ
ˇ dt : (11)

Now, we are confronted with the problem of bounding
ˇ
ˇJ


ˇ
ˇ by certain sharp bound

on the positive real half-axis. Firstly, we will inspect the appropriate bounds’
literature. Fortunately, there are numerous suitable bounds for the modulus of the
Bessel function of the first kind, like Hansen’s, valid for positive integral order
Bessel function [22, pp. 107 et seq.], [47, p. 31]
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jJ0.t/j 6 1; jJr.t/j 6 1p
2
; r 2 N; t 2 R I (12)

von Lommel extended [33, pp. 548–549], [47, p. 406] this results to

jJ
.t/j 6 1; jJ
C1.t/j 6 1p
2
; 
 > 0; t 2 R : (13)

Simple, efficient bounding inequality was proved by Minakshisundaram and Szász
[35, p. 37, Corollary]:

jJ
.x/j 6 1

� .
C 1/

� jx j
2

�

; x 2 R I (14)

obviously, this bound reduces Hansen’s for 
 D 0.
More sophisticated bounds were given by Landau [31], who gave in a sense best

possible bounds for the first kind Bessel function J�.x/ with respect to � and x,
which read as follows:

jJ
.x/j 6 bL 

�1=3; bL D 3

p
2 sup
x2R

C

Ai.x/; (15)

jJ
.x/j 6 cL jxj�1=3; cL D sup
x2R

C

x1=3J0.x/ ; (16)

where Ai.�/ stands for the familiar Airy function

Ai.x/ WD �

3

r
x

3

�
J�1=3

˚
2.x=3/3=2


C J1=3
˚
2.x=3/3=2


 �
:

In fact Krasikov [30] pointed out that these bounds are sharp only in the transition
region, i.e. for x around j
;1, the first positive zero of J
.x/.

In his recent article Olenko [37, Theorem 1] established the following sharp
upper bound:

sup
x>0

p
xjJ
.x/j 6 bL

s


1=3 C ˛1


1=3
C 3˛21
10


WD dO; 
 > 0 ; (17)

where ˛1 is the smallest positive zero of the Airy function Ai.x/ and bL is the
Landau constant in (15). For further reading and detailed discussion, consult [37,
Sect. 3].
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Krasikov also established a uniform bound for jJ
j. Let 
 > �1=2, then

J 2
.t/ 6
4
�
4t2 � .2
C 1/.2
C 5/

�

�
�
.4t2 � 	/3=2 � 	� DW K
.t/; (18)

for all

t > 1
2

p
	C 	2=3; 	 WD .2
C 1/.2
C 3/ :

The estimate is sharp in certain sense, consult [30, Theorem 2]. Moreover, Krasikov
mentioned that (18) provides sharp bound in the whole oscillatory region; however,
in the transition region, this estimate becomes very poor and should be replaced with
another estimate. Having in mind Krasikov’s discussion, we propose to combine
Krasikov’s bound with Olenko’s one. This approach was used by Srivastava and
Pogány in [45]. Let us denote �S.x/ the characteristic (or indicator) function of
a set S , that is, �S.x/ D 1 for all x 2 S and �S.x/ D 0 otherwise. Since the
integration domain coincides with the positive real half-axis, we need an efficient
bound for jJ
.t/j on .0; A; A >

p
	C 	2=3=2. Therefore, we introduce the

bounding function

jJ
.t/j 6 V
.t/ WD dOp
t
�.0;A	.t/C

q
K
.t/

�
1 � �.0;A	.t/

�
; (19)

where, by simplicity reasons, our choice would be

A	 D 1
2

�
	C .	C 1/2=3

�
;

because K�.t/ is positive and monotonous decreasing for t 2 1
2

�
.	 C 	2=3/;1�

,
compare [45, Sect. 3]. Moreover, we point out that for A	, we can take any 1

2

�
	C

.	C �/2=3
�
; � > 0.

Next, Pogány derived a different fashion bound for jJ
j, when the argument of
the considered Bessel function is coming from a closed Cassinian oval from C. To
recall this result, we need the following definitions. Let us denote D� D fzW jzj 6 �g
the closed centered disc having diameter 2�, while the open unit disc D D fzW jzj <
1g and the closed Cassinian oval [38]

C
;	 WD
�

zW ˇˇz2 � j 2
;1
ˇ
ˇ 6 j 2
;1

1 � 	

1C 	

	

; 	 2 Œ0; 1 :

The famous von Lommel theorem “J�.z/ has an infinity of real zeros, for any
given real value of �”, [47, p. 478], ensures the existence of such j�;1. Thus [38,
Theorem 1]

ˇ
ˇJ
.z/

ˇ
ˇ 6 jzj


2
� .
C 1/
exp

�

� 	jzj2
4.
C 1/

	

; 	 2 .0; 1/; 
 > 0; z 2 C
;	:

(20)



782 Á. Baricz et al.

Here we mention the inequality [25, p. 215]

ˇ
ˇJ
.t/

ˇ
ˇ 6 t


2
� .
C 1/
exp

�

� t2

4.
C 1/

	

; t > 0; 
 > 0 : (21)

Note that Watson [47, p. 16] originated back to Cauchy a weaker variant of this
inequality (the exponential term contains �t2=4), for integer order 
, see [11, p.
687], [12, p. 854].

Ifantis–Siafarikas improved (21) for the domain t 2 .0; j
;1/; 
 > �1 in the
following form [25, Eq. (3.15)]:

J
.t/ <
t


2
� .
C 1/
exp

�

� t2

4.
C 1/
� t4

32.
C 1/2.
C 2/

	

: (22)

It is worth to mention Sitnik’s paper [43], in which he reported stronger but more
complicated bounds involving Rayleigh sums of negative powers of Bessel function
zeros; his results concern Bessel function bounds inside the open unit disc D.
Interesting upper bound was established also by Lee and Shah for complex variable,
integer order Bessel function Jr.t/; see [32, p. 148]. Finally, we refer to Cerone’s
book chapter [13, Sect. 2] for an inequality accomplished by bounds on a Čebyšev
functional.

Theorem 2.1. The following bounding inequalities hold true:

a. For all x > 0; � � 3
2

D r 2 N0, we have

j˝rC 3
2
.x/j 6 �r� 12 Œ1C ı0r .

p
2 � 1/ .r C 1/Š �.r C 2/p

2� .r C 3
2
/ xr

sinh

�
x

2

�

; (23)

where ıab stands for the Kronecker delta, while

�.p/ D
X

n>1

.�1/n�1
np

; Refpg > 0;

denotes the Dirichlet Eta function.
b. For all x > 0; � > 1

2
, it is

j˝�.x/j 6 2

�
�.2� � 1/ sinh

�
x

2

�

: (24)

c. Let us denote bL; cL the Landau constants given in (15), (16). Then for all x > 0,
we have

j˝�.x/j 6

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

bL�
��2 �

�
� C 1

2

�
�
�
� C 1

2

�

� .�/
�
� � 3

2

� 1
3 x�� 32

sinh

�
x

2

�

; � > 3
2
;

cL2
1
3 ��� 53 �

�
� C 1

6

�
�
�
� C 1

6

�

� .�/ x�� 76
sinh

�
x

2

�

; � > � 1
6
:

(25)
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d. Let dO be the Olenko coefficient in (17). Then

j˝�.x/j 6 dO
p
2��� 3

2 �.�/

x��1
sinh

�
x

2

�

; x > 0; � > 3
2
: (26)

Proof. a. Consider the integral [20, p. 349, Eq. 3.411.3]

I .˛; ˇ/ WD
Z 1

0

t˛�1

eˇt C 1
dt D ˇ�˛ � .˛/ �.˛/; min

�
Ref˛g;Refˇg� > 0 :

Applying Hansen’s bound (12) to the Bessel function J�� 3
2
.t/ appearing in (11), we

conclude

j˝�.x/j 6
2� �2�� 3

2 Œ1C ı0;�� 32 .
p
2 � 1/

� .�/ x2��1
sinh

�
x

2

�

I

�

� C 1

2
;
2�

x

�

x > 0:

Substituting r D � � 3
2

2 N0 and reducing the previous bound, we arrive at (23).
b. & c. & d. Similarly to the case a, estimating jJ�� 32 j with the aid of the bounds
(14), (15), (16) and (17), we derive appropriate respective specifications. For the
four consequent bounding inequalities (24), (25) and (26). Observe that (25) consists
from TWO upper bounds. ut
Remark 2.1. We point out that von Lommel’s extension (13) of Hansen’s bounds
(12) will give substantially more general but in form equivalent bound upon˝�.x/;
therefore, it is not necessary to consider this case separately.

Obviously, being the integration domain for ˝�.x/ the positive real half-axis,
Krasikov’s bound itself is automatically eliminated as a candidate to be employed
in estimating the Bessel function in the kernel of the integrand of˝�.x/. Therefore,
instead of Krasikov’s, the synthetized Olenko–Krasikov bound V
.t/ (19) shall we
apply. The lower incomplete Gamma function �.s; !/ [20, 8.350 1.] one defines
truncating the integration domain of Eulerian Gamma function to Œ0; ˛, i.e.

�.s; ˛/ WD
Z ˛

0

t s�1e�t dt :

Also, the upper incomplete Gamma function or complementary incomplete Gamma
function [20, 8.350 2.] is given by

� .s; ˛/ WD � .s/ � �.s; ˛/ D
Z 1

˛

t s�1e�t dt:

For both incomplete Gamma functions, Refsg > 0; j arg.˛/j 6 � � �; � 2 .0; �/.
Let us remark that for certain fixed ˛, � .s; ˛/ is an entire function of s, while �.s; ˛/
is a meromorphic function of ˛ with simple poles at s 2 Z

�
0 .
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Theorem 2.2. Let � > 1; 	 D 4�.� � 1/ and let x be positive real. Then we have
the following bounding inequality:

ˇ
ˇ˝�.x/

ˇ
ˇ 6

p
2��� 3

2

� .�/ x��1
sinh

�
x

2

�
8
<̂

:̂

dO � � ��; 2�
x
A	
�

1C expf� 2�
x
A	g

C
2��1

q
x K�� 32 .A	/ � � �� C 1

2
; �
x
A	
�

p
� cosh

�
�
x
A	
�

9
>=

>;
; (27)

where A	 D 1
2

�
	C .	C 1/2=3

�
and

K�� 32 .A	/ D 4

�

˚�
	C .	C 1/2=3

�2 � 4.�2 � 1/


; x > A	 :

Proof. By (11) and (19), it follows that

ˇ
ˇ˝�.x/

ˇ
ˇ 6 2�C 1

2 �2�� 32
� .�/ x2��1

sinh

�
x

2

� Z 1

0

t��1=2

e2�t=x C 1
V�� 32 .t/ dt

D 2�C 1
2 �2�� 3

2

� .�/ x2��1
sinh

�
x

2

� 

dO

Z A	

0

t��1

e2�t=x C 1
dt .DW I1/

C
Z 1

A	

t�� 12
e2�t=x C 1

q
K�� 32 .t/ dt

!

.DW I2/ : (28)

Now, for the integral I1, we calculate in the following manner:

I1 D
Z A	

0

t��1 e�ˇt

1C e�ˇt
dt 6 1

1C e�ˇA	

Z A	

0

t��1 e�ˇt dt D � .�; ˇA	/

ˇ�.1C e�ˇA	/
: (29)

The fact that K
 decreases on ŒA	;1/ has been established already in [45, p. 199];
hence,

K�� 32 .x/ 6 K�� 32 .A	/ D 4

�

��
	C .	C 1/2=3

�2 � 4.�2 � 1/�; x > A	 :

Accordingly,

I2 D 1

2

Z 1

A	

t�� 12 e�
ˇ
2 t

cosh
�
ˇ

2
t
� dt 6 1

2 cosh
�
ˇ

2
A	
�

Z 1

A	

t��
1
2 e�

ˇ
2 t dt

D 2�� 12 �
�
� C 1

2
; 1
2
ˇ A	

�

ˇ�C 1
2 cosh

�ˇ
2
A	
� (30)
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in both integrals ˇ WD 2�x�1. Now, obvious transformations of (28), (29) and (30)
lead to the asserted bound (27). ut

Considering further bounds (20), (21) and (22) upon the Bessel function of
the first kind, we see that only the bound (21) possesses the property of direct
applicability since the integration domain of .0;1/ in defining ˝�.x/. Here, and
in what follows, p�q denotes the Fox–Wright generalization of the hypergeometric
pFq function with p numerator and q denominator parameters defined by (cf. e.g.
[44], [45, p. 197, Eq. (7)])

p�q

"
.a1; ˛p/; : : : ; .ap; ˛p/

.b1; ˇ1/; : : : ; .bq; ˇq/

ˇ
ˇ
ˇ
ˇ
ˇ
x

#

Dp�q
"
.ap; ˛p/

.bq; ˇq/

ˇ
ˇ
ˇ
ˇ
ˇ
x

#

W D
1X

mD0

Qp

`D1 �
�
a`C˛`m

�

Qq

`D1 �
�
b`Cˇ`m

�
xm

mŠ
;

where

˛` 2 RC; ` D 1; pI ˇj 2 RC; j D 1; qI � WD 1C
qX

`D1
ˇ` �

pX

jD1
˛j > 0 ;

and in the case of equality � D 0, the absolute convergence holds for suitably
bounded values of x given by

jxj < r D
qY

jD1
ˇ
ˇj
j

pY

jD1
˛
�˛j
j ;

while in the case jxj D r, the condition

Re

8
<

:

qX

`D1
b` �

pX

jD1
aj

9
=

;
C p � q � 1

2
> 0

suffices for the absolute convergence of the series p�qŒx.
Next, we introduce the Krätzel function, which is defined for u > 0; � 2 R and

� 2 C; being such that Ref�g < 0 for � 6 0; by the integral

Z�
� .u/ D

Z 1

0

t��1e�t��
u
t dt : (31)

For � > 1 the function (31) was introduced by E. Krätzel [29] as a kernel of the
integral transform

�
K�
�f
�
.u/ D

Z 1

0

Z�
� .ut/ f .t/ dt;
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which was applied to the solution of some ordinary differential equations. The study
of the Krätzel function (31) and the above integral transform was continued, for
example, in the paper by Kilbas, Saxena and Trujilló [27], in which the authors
deduced explicit forms of Z�

� in terms of the generalized Wright function, or in the
paper [2] by Baricz, Jankov and Pogány devoted among others to convexity property
research and Laguerre- and Turán-type inequalities for the Krätzel function.

Theorem 2.3. Let � > 1
2
. Then for all x > 0, the following inequality is valid:

ˇ
ˇ˝�.x/

ˇ
ˇ 6

�2�� 32 .4� � 2/�� 12 sinh
�
x
2

�

� .�/� .� � 1
2
/ x2��1 1�0

 �
� � 1

2
; 1
2

�

�
ˇ
ˇ
ˇ
ˇ� �

x

p
4� � 2

�

D 2�2�� 32 .4� � 2/�� 12 sinh
�
x
2

�

� .�/� .� � 1
2
/ x2��1

Z1�2��2
��

x

p
4� � 2

�
:

Proof. By (11) and (21) we conclude the estimate

ˇ
ˇ˝�.x/

ˇ
ˇ 6

4�2�� 32 sinh
�
x
2

�

� .�/� .� � 1
2
/ x2��1

Z 1

0

t2��2

e2�t=x C 1
exp

�

� t2

2.2� � 1/

	

dt:

Denoting

I3.˛; ˇ; �/ D
Z 1

0

t˛�1 e��t2

eˇt C 1
dt;

we estimate the value of this integral:

I3.˛; ˇ; �/ 6 1

2

Z 1

0

t˛�1

cosh
�
ˇ

2
t
� e�

ˇ
2 t��t2 dt

6 1

2

Z 1

0

t˛�1 e�
ˇ
2 t��t2 dt .DW I4/

D 1

4

X

n>0

� � ˇ

2

�n

nŠ

Z 1

0

t
˛Cn
2 �1 e��t dt

D 1

4�
˛
2

X

n>0
�

�
˛

2
C 1

2
n

� � � ˇ

2
p
�

�n

nŠ

D 1

4�
˛
2
1�0

 �
˛
2
; 1
2

�

�
ˇ
ˇ
ˇ
ˇ� ˇ

2
p
�

�

I (32)

the Fox–Wright function converges absolutely since � D 1
2
> 0.



Mathieu Series, Hilbert–Eisenstein Series and Their ˝ Functions 787

On the other hand, considering the integral I4 D I4.˛; ˇ; �/, we can express it
via the Krätzel function:

I4 D 1

�
˛
2

Z�˛�2
�

ˇ

2
p
�

�

: (33)

Indeed, the substitution t�1 7! t results in Z�
� .u/ D R1

0
t���1 e�t���ut dt , and

I4 D 1

�
˛
2

Z 1

0

t˛�1 e
�t 2� ˇ

2
p

�
t
dt D 1

�
˛
2

Z 1

0

t�.�˛/�1 e
�t�.�2/� ˇ

2
p

�
t
dt ;

so the relationship (33) is proved.
Now, it remains to specify in both formulae (32) and (33)

˛ D 2� � 1; ˇ D 2�

x
; � D 1

4� � 2
;

because of

ˇ
ˇ˝�.x/

ˇ
ˇ 6

4�2�� 32 sinh
�
x
2

�

� .�/� .� � 1
2
/ x2��1

I3

�

2� � 1;
2�

x
;

1

4� � 2

�

D 4�2�� 3
2 sinh

�
x
2

�

� .�/� .� � 1
2
/ x2��1

I4

�

2� � 1;
2�

x
;

1

4� � 2
�

D �2�� 3
2 .4� � 2/�� 12 sinh

�
x
2

�

� .�/� .� � 1
2
/ x2��1 1�0

 �
� � 1

2
; 1
2

�

�
ˇ
ˇ
ˇ
ˇ� �

x

p
4� � 2

�

D 2�2�� 32 .4� � 2/�� 12 sinh
�
x
2

�

� .�/� .� � 1
2
/ x2��1

Z1�2��2
��

x

p
4� � 2

�
:

The proof is complete. ut
Remark 2.2. As a by-product of the proof of Theorem 2.3 we get a relationship
between Fox–Wright generalized hypergeometric function 1�0Œ� and the Krätzel
functionZ�

� .�/:

�Z�
� .u/ D 1�0

 � �
�
;� 1

�

�

�
ˇ
ˇ
ˇ
ˇ � u

�

:

To prove this result we can apply the same methods as in the previous proof.
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3 Bilateral Bounds Deduced via the Čaplygin
Comparison Theorem

Two-sided bounding inequalities for the complete Butzer–Flocke–Hauss Omega
function by the Čaplygin comparison theorem have been established for the first
time by Pogány and Srivastava in [39, p. 591, Theorem 3]. Following this approach
Pogány, Tomovski and Leškovski devoted the whole article [41] to this subject,
deriving a few sets of bilateral inequalities for the BFH Omega function via
alternating Mathieu series, which is closely connected in their proper fraction
representation.

In this section we shall obtain some fashion bilateral bounding inequalities for the
generalized BFH Omega function˝� , adapting the Čaplygin differential inequality
procedure developed in [39, 41]. Firstly, we consider a linear nonhomogeneous
ordinary differential equation, of which a particular solution is ˝� , mentioning that
the case � D 1 has been extensively studied by Butzer, Pogány and Srivastava [8,
pp. 1074–1075, Theorem 1].

Theorem 3.1. For all � > 1
2
; x 2 R, the generalized complete BFL˝�.x/ function

is a particular solution of the following ordinary differential equation:

y 0 D 1

2
coth

�
x

2

�

y � �x

2�3
sinh

�
x

2

�

h.x/ ;

where

h.x/ D
8
<

:

QS�C1
�
x

2�

�

; x ¤ 0;

2 �.2� � 1/; x D 0:

Here QS�C1.�/ stands for the generalized alternating Mathieu series of order � C 1,
while �.�/ denotes the Dirichlet Eta function.

Proof. Rewriting (9), we get

˝�.x/ D 1

�
sinh

�
x

2

�
QS�
�
x

2�

�

:

Differentiating this formula we obtain

�˝ 0�.x/ D 1

2
cosh

�
x

2

�
QS�
�
x

2�

�

� �x

2�2

X

n>1

.�1/n�12n
.n2 C �

x
2�

�2
/�C1

D �

2
coth

�
x

2

�
1

�
sinh

�
x

2

�
QS�
�
x

2�

�

� �x

2�2
QS�C1

�
x

2�

�

;
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which is in fact equivalent to the asserted ordinary differential equation, because

lim
�!0

QS� .�/ D 2 �.2� � 1/ :

The proof is complete. ut
Consider the Cauchy problem given by

y 0 D f .x; y/ and y.x0/ D y0 : (34)

For a given interval I � R, let x0 2 I and let the functions '; 2 C1.I/. We say
that ' and  are the lower and the upper functions, respectively, if

' 0.x/ 6 f
�
x; '.x/

�
and  0.x/ > f

�
x; .x/

�
x 2 II

'.x0/ D  .x0/ D y0 :

Suppose also that the function f .x; y/ is continuous on some domain D in the
.x; y/-plane containing the interval I with the lower and upper functions ' and
 , respectively. Then the solution y.x/ of the Cauchy problem (34) satisfies the
following two-sided inequality:

'.x/ 6 y.x/ 6  .x/; x 2 I :

This is actually the so-called Čaplygin-type differential inequality or the Čaplygin
comparison theorem [9, 10, 34] (also see [3, p. 202] and [36, pp. 3–4]).

We divide into four steps the derivation of two-sided bounds: A. obtaining guard
functions couple QL�.x/; QR�.x/ for QS�C1.x/, B. fixing the domain I of solution and
the initial condition '�.x0/ D  �.x0/ D y0, C. solving the boundary ordinary
differential equations for lower and upper guard functions and finally D. considering
the particular solutions '�.x/;  �.x/.

A: Keeping in mind the definition (9) of ˝�.x/, the natural choice of domain is
I D Œ0;1/. On the other hand, since ˝�.x/ behaves near to the origin like

˝�.x/ D 2

�
�.2� � 1/ x .1C o.1//; x ! 0;

we pick up the initial condition of our Cauchy problem

'�.0/ D  �.0/ D 0 :

B: Let L
.x/;R
.x/ denote the guard functions for the generalized Mathieu series
S
.x/, x 2 I. By the arithmetic mean–geometric mean inequality, we have

S
.x/ 6
(
21�
 x�
 �.
� 1/ x > 0

2 �.2
� 1/ x D 0
WD R
.x/ ;



790 Á. Baricz et al.

and

S
.x/ >
Z 1

1

2t

.t2 C x2/

dt D 1

.
� 1/.1C x2/
�1
D L
.x/ :

Rewriting the fractional representation of the alternating generalized Mathieu
series into

QS
.x/ D
X

n>1

.�1/n�1 2n

.n2 C x2/


D
X

n>1

2n

.n2 C x2/

� 4 �

X

n>1

2n

.4n2 C x2/

D S
.x/ � 41�
 S


�
x

2

�

;

we clearly deduce that

QL
.x/ WD L
.x/�41�
R

�x

2

�
6 QS
.x/ 6 R
.x/�41�
L


�x

2

�
DW QR
.x/ :

(35)

Therefore, writing 
 D � C 1 throughout in (35), we get

QL�C1.x/ D 1

�.1C x2/�
� �.�/

22��1 x�C1
; QR�C1.x/ D �.�/

2� x�C1
� 1

�.4C x2/�
:

C: Following the lines of Theorem 3.1, the lower function’s ODE will be

' 0� � 1

2
coth

�x

2

�
'� D � �x

2�3
sinh

�x

2

� QR�C1
� x

2�

�

D ���2 sinh
�x

2

� � 22��1���1 x
.16�2 C x2/�

� � �.�/

x�

	

I

hence

'�.x/ D sinh
�x

2

� �

c' C ���2
�

4��1���1

.1 � �/.x2 C 16�2/��1
C � �.�/

.� � 1/ x��1

�	

:

The upper function’s ODE reads as follows:

 0� � 1

2
coth

�x

2

�
 � D � �x

2�3
sinh

�x

2

� QL�C1
� x

2�

�

D ���2 sinh
�x

2

� � � �.�/

2��2 x�
� 22��1 ���1x
.4�2 C x2/�

	

;
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accordingly,

 �.x/ D sinh
�x

2

� �

c C ���2 � �.�/
2��2 .1 � �/ x��1 C 4��1�2��3

.� � 1/.x2 C 4�2/��1

	

:

Here �.�/; � 2 �
1
2
; 1
�

signifies the analytic continuation of the Riemann �
function by the widely known formula

�.�/ D �.�/

1 � 21�� ; Ref�g > 0 :

D: Bearing in mind the asymptotics of lower and upper functions and that of˝�.x/

near to zero, we immediately get

'�.x/

sinh
�
x
2

� � c' C 4

�.1 � �/
D 2

�
�.2� � 1/ D c � 1

�.1 � �/
�  �.x/

sinh
�
x
2

� ;

which determines the values of integration constants

c' D 2

�
�.2� � 1/� 4

�.1 � �/
;

c D 2

�
�.2� � 1/C 1

�.1 � �/ :

Thus, the proof of the following result is given.

Theorem 3.2. Let � 2 �
1
2
; 1
�
. Then for all x 2 I D RC, we have the following

two-sided inequality:

'�.x/ 6 ˝�.x/ 6  �.x/;

where

'�.x/ D sinh
�x

2

� � 2

�
�.2� � 1/� 4

�.1 � �/

C 4��1�2��3

.1 � �/.x2 C 16�2/��1
� ���2 � �.�/
.1 � �/ x��1

	

;

 �.x/ D sinh
�x

2

� � 2

�
�.2� � 1/C 1

�.1 � �/

C ���2 � �.�/
2��2.1 � �/x��1 � 4��1�2��3

.1� �/.x2 C 4�2/��1

	

:

Here �.�/, stands for the analytic continuation of the Riemann � function to � 2�
1
2
; 1
�
.
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4 Hilbert–Eisenstein Series and Their Basic Properties

4.1 In the sequel we give a brief introduction to certain important properties of
the Hilbert–Eisenstein series. One of their bases is the Eisenstein theory of circular
functions, founded by Gotthold Eisenstein [16] in 1847. They play an important
role in number theory, especially their extension to elliptic functions; see, e.g. Weil
[48, 49] and Iwaniec and Kowalski [26]. The series "r .w/ defined for all w 2 C n Z

and all integer r > 2 by

"r .w/ D
X

k2Z

1

.w C k/r
;

is called the Eisenstein series of order r . The "r.w/ are normally convergent and
represent meromorphic functions in C, are holomorphic in C n Z and posses poles
in k 2 Z (of order r and principal part .w � k/�r ). Recall that a series

P
k fk of

functions fk WX 7! C is normally convergent in X if to each point x 2 X there exists
a neighbourhood U such that

P
k jfkj < 1. If the series is normally convergent

in X , then
P jfkj converges compactly in X . The converse is valid for domains

X D D � C, if all fk are holomorphic in D. If such a series converges compactly
in D, so does the series of its derivatives and, under weak assumptions, also the
series of its primitives; see [42, pp. 92–95, 224].

For r D 1, the definition reads in Eisenstein’s principal value notation

"1.w/ D
X

e
k2Z

1

w C k
WD lim

N!1
X

jkj6N

1

w C k

D 1

w
C
X

k>1

�
1

w C k
C 1

w � k
�

D 1

w
C
X

k>1

2w

w2 � k2 D � cot.�w/; w 2 C n iZ : (36)

This partial fraction expansion of the cotangent function (due to Euler [17]),
which is essentially the “alternating” generating function of the classical Bernoulli
numbers B2k WD B2k.0/ (Bn.x/ being the Bernoulli polynomials, n 2 N0), namely,

w

2
cot

w

2
D
X

k>0

.�1/k
.2k/Š

B2k w2k; jwj < 2� ;

is regarded by Konrad Knopp [28, p. 207] as the “most remarkable expansion in
partial fractions”.
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Differentiating the normally convergent series (36), observing that .cot w/0 D
� sin�2 w, there follows

"2.w/ D �2

sin2.�w/
; "3.w/ D �3 cot.�w/

sin2.�w/
;

giving the surprising result [42, p. 303]

"3.w/ D "1.w/ � "2.w/ :
Eisenstein series’ two essential properties are [48, pp. 6–13] and [42, p. 303]

"0r .w/ D �r"rC1.w/; "r .w/ D .�1/r�1
.r � 1/Š "

.r�1/
1 .w/; r 2 N2 ;

as well as their 1-periodicity in the sense that "r.w C k/ D "r .w/ for all w 2 C;

k 2 Z.
Differentiating the Fourier series expansion of cot�w [18, p. 386 et seq.],

namely of

cot�w D i

8
ˆ̂
<

ˆ̂
:

�1 � 2
X

k>1
e2� iwk; Imfwg > 0

1C 2
X

k6�1
e2� iwk; Imfwg < 0 ;

iteratively, there follows that the "r.w/ posses Fourier expansions in the upper and
lower half-planes with period � .

The basis to the Hilbert–Eisenstein series also includes the background to the so-
called “Basler” problem, an open question since 1690, namely, whether there exists
a counterpart of Euler’s famous result on the closed expression for the Riemann Zeta
function for even arguments, thus

�.2m/ D .�1/mC122m�1�2m B2m

.2m/Š
; m 2 N ;

to the case of odd arguments, namely, �.2mC 1/.

Theorem A (Counterpart of Euler’s formula for �.2mC 1/). For m 2 N, there
holds

�.2mC 1/ D .�1/m4m�2mC1 B
�
2mC1.0/

.2mC 1/Š
:

Thus, the solution consists in replacing the Bernoulli numbers B2m in Euler’s
formula by the conjugate Bernoulli numbers B�2mC1 which are defined in terms of
the Hilbert transform and were introduced by Butzer, Hauss and Leclerc in [7].
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Starting with the 1-periodic Bernoulli polynomials Bn.x/ defined as the periodic
extension of Bn.x/ D Bn.x/; x 2 .0; 1, one can—using Hilbert transforms—
introduce 1-periodic conjugate Bernoulli “polynomials” B�n .x/; x 2 R (x 62 Z if
n D 1) by

B�n .x/ WD H ŒBn.�/1 .x/; n 2 N :

These conjugate periodic functions B�n .x/ can be used to define the non-periodic
functions B�n .x/ in a form such that their properties are similar to those of the
classical Bernoulli polynomials Bn.x/. For details, see Butzer and Hauss [5, p. 22]
and Butzer [4, pp. 37–56]. The conjugate Bernoulli numbers in question, theB�2mC1,
are the B�2mC1.0/.D B�2mC1.1// for which

B�2mC1
�
1

2

�

D �
4�m � 1

� � B�2mC1.1/ :

Some values of the conjugate Bernoulli numbers are

B�2mC1
�
1

2

�

D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

� log 2

�
mD0

log 2

4�
�2

Z 1
2

0C
u2 cot.�u/du mD1

11

8

Z 1
2

0C
u cot�duC5

3

Z 1
2

0C
u3u cot�du�2

Z 1
2

0C
u5 cot�u du mD2

:

Now, the indirect basis of the Hilbert–Eisenstein series is the Omega function˝.�/.
One arrives at it through the counterpart for theB�n .x/ of the exponential generating
function of the classical polynomials Bn.x/, namely,

X

n>0
Bn.x/

wn

nŠ
D w ewx

ew � 1
; w 2 C; jwj < 2�; x 2 R : (37)

Theorem B (Exponential generating function of B�k .
1
2
/). For jwj < 2� , there

holds

X

n>0
B�n

�
1

2

�
wn

nŠ
D w ewx

ew � 1
�˝.w/:

The proofs of Theorems A and B are connected with the Hilbert transform
versions of the Euler–Maclaurin and Poisson summation formulae established
by Hauss [24] (see also [5, p. 21–29] and [4, pp. 37–38, 78–80]). Observe
that Theorem B tells us that the Hilbert transform of (37) essentially results in
multiplying w ewx.ew � 1/�1 by the Omega function˝.w/, taken at x D 1

2
.
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4.2 The direct basis to what follows is the partial fraction expansion of ˝.w/, thus
a Hilbert-type version of the basic partial fraction expansion of cot�w in (36).
It reads,

Theorem C (Partial fraction expansion of ˝.w/). For w 2 C n iZ, one has

˝.2�w/ D 1

�
.e��w � e�w/

X

k>1

.�1/k k
w2 C k2

D sinh.�w/

iw

X

k2Z

.�1/k sgn.k/

w C ik
:

Definition 4.1. The Hilbert–Eisenstein (HE) series hr .w/ are defined for w 2 CniZ
and r 2 N2 by

hr .w/ WD
X

k2Z

.�1/ksgn.k/

.w C ik/r
D
X

k>1
.�1/k

�
1

.w C ik/r
� 1

.w � i
k/r
�

; (38)

and

h1.w/ WD
X

e
k2Z

.�1/ksgn.k/

w C ik
D i� ˝.2�w/

sinh�w
D i

X

k2Z

.�1/k
w C ik

�˝.2�w/ : (39)

For w D 0, h1.0/ can, since sgn.0/ D 0, be taken as

h1.0/ D
X

e
k2Znf0g

.�1/ksgn.k/

ik
D 2i log 2 :

Observe that the partial fraction expansion of �.sinh�w/�1 follows by replacing w
by iw and recalling sinh w D �i sin iw in the well-known expansion

�

sin�w
D
X

k2Z

.�1/k
w C k

; w 2 C n Z ;

and �.sinh�w/�1 also possesses the Dirichlet series expansion for the right half-
plane (see, e.g. [18, p. 405 et seq.])

�

sinh�w
D 2�

X

k>0
e�2�.2kC1/w; Refwg > 0 :

The case r D 1 of Definition 4.1 reveals that to achieve the Hilbert-type version of
�.sinh�w/�1, that is, h1.w/, one multiplies it (or its partial fraction expansion) by
the complete Omega function˝.2�w/ and i. The counterparts of the corresponding
properties of "r .w/ read
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Proposition 4.1. There holds for w 2 C n iZ and r 2 N2; m 2 N

h.m/r .w/ D .�1/m .r/m hrCm.w/ ; (40)

where

.r/m WD � .r Cm/

� .r/
D r.r C 1/ � � � .r Cm � 1/ ; .r/0 � 1 ;

stands for the Pochhammer symbol (or shifted, rising factorial); moreover,

hr .w/ D .�1/r
� .r/

h
.r�2/
2 .w/; r 2 N2 ; (41)

as well as

hr .w/C hr .w C i/ D w�r � .w C i/�r : (42)

Proof. Here the differentiability properties follow readily from Definition 4.1, and
the i-periodicity-type formula we conclude from

X

jkj6N

.�1/k sgn.k/

.wCiCik/r
D

NC1X

kD2

.�1/k�1 sgn.k�1/
.wCik/r

C 1

wr
C

�1X

kD�NC1

.�1/k�1 sgn.k�1/
.wCik/r

D �
N�1X

kD�NC1

.�1/k sgn.k/

.wCik/r
C 1

wr
� 1

.wCi/r
� .�1/NC1
.wCi.N C 1//r

� .�1/N
.wCiN/r

:

Letting N ! 1, we immediately arrive at (42). ut
Theorem 4.1. The HE series hr .w/ possesses for x 2 R and r 2 N the integral
representation

hr .x/ D 2i.�1/r�2
� .r/

Z 1

0

ur�1

eu C 1
sin
� r � 2

2
� C xu

�
du : (43)

Specifically, we have for r D 1 and 2,

h1.x/ D 2i
Z 1

0

cos.xu/

eu C 1
du (44)

and

h2.x/ D 2i
Z 1

0

u
sin.xu/

eu C 1
du : (45)
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Proof. Beginning with the representation

h2.w/ D
X

e
k2Z

.�1/ksgn.k/

.w C ik/2
D 2i

X

k>1

.�1/k�12kw

.w2 C k2/2
; (46)

we try to express the fraction 2kw.w2 C k2/�2 as a Laplace transform, thus via

2sw

.w2 C s2/2
D LuŒu sin.w u/.s/ D

Z 1

0

e�su u sin.wu/ du :

Now, this transform is correct for Refsg > j Imfwgj. But for the needed s D k 2 N,
this inequality requires that j Imfwgj D 0, so that w must be real, i.e. w D x.

Noting

X

k>1
.�1/k�1e�ku D 1

eu C 1
;

one has

h2.x/ D 2i
X

k>1
.�1/k�1

Z 1

0

e�ku u sin.xu/ du D 2i
Z 1

0

u sin.xu/

eu C 1
du ; (47)

where, being j sin.xu/j 6 1, the interchange of sum and the integral is legitimate.
This proves (45).

Repeated r � 2-fold differentiation of h2.x/ with respect to x according to (40),
that is, (41), delivers

hr .x/ D 2i.�1/r
� .r/

dr�2

dxr�2

Z 1

0

u
sin.xu/

eu C 1
du

D 2i.�1/r
� .r/

Z 1

0

ur�1

eu C 1
sin
�r � 2

2
� C xu

�
du;

which is (43), for all r 2 N2.
It remains the case r D 1, which has to be considered separately. In turn,

we have to connect the Hilbert–Eisenstein series h1.z/, which converges in the
sense of Eisenstein summation (but does not converges normally), and the normally
convergent HE series hr .z/; r > 2, which is termwise integrable. Thus,

Z x

0

h2.t/ dt D
X

e
k2Z

.�1/ksgn.k/
Z x

0

dt

.t C ik/2

D
X

e
k2Z

.�1/ksgn.k/

ik
�
X

e
k2Z

.�1/ksgn.k/

x C ik

D 2i
X

k2N

.�1/k
k

� h1.x/ D 2i log 2 � h1.x/ :
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On the other hand, the legitimate integration order exchange in (47) leads to

Z x

0

h2.u/du D 2i
Z 1

0

u

eu C 1

�Z x

0

sin.xu/ dx

	

du

D 2i

�Z 1

0

1

eu C 1
du �

Z 1

0

cos.xu/

eu C 1
du

	

D 2i log 2 � 2i
Z 1

0

cos.xu/

eu C 1
du :

The rest is clear. ut
At this point let us recall integral representations which have been derived for

the complete, real argument Omega function ˝.x/. Among others we mentioned
in Sect. 1 the results by Butzer, Pogány and Srivastava (1); consult [8, Theorem 2],
by Pogány and Tomovski (2), and see [46, Theorem 3.3] and the Pogány–Srivastava
integral representation (3) [39, p. 589, Theorem 1].

However, having in mind Theorem C and the differentiability property (41) in
conjunction with Theorem 4.1, we now obtain a new integral representation formula
for the complete ˝ function and its derivatives via the r th order Hilbert–Eisenstein
series hr .

Theorem 4.2. For x 2 R and r 2 N, there holds true

˝.r/.x/ D 1

2r �

Z 1

0

Re f�r.xI u/g
eu C 1

du; (48)

where

�r.xI u/ D
�

e.1C
iu
� /

x
2 � .�1/r e�.1C

iu
� /

x
2

� �

1C iu

�

�r
:

Proof. Theorem C in conjunction with (44) implies

˝.2�x/ D 2

�
sinh.�x/

Z 1

0

cos.x u/

eu C 1
du I (49)

actually, by replacing (2�x 7! x), we reobtained the integral expression (1).
Differentiating this formula r times with respect to x, we get by virtue of
property (41),

˝.r/.x/ D 2

�

rX

mD0

 
r

m

! �Z 1

0

cos

�
xu

2�

�
du

eu C 1

	 .m/
�
n
sinh

�x

2

�o.r�m/
: (50)
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Differentiating the integralm times with respect to x, we get

Z 1

0

�
d

dx

�m
cos

� xu

2�

� du

eu C 1
D im

2.2�/m

Z 1

0

um

eu C 1

�
ei x u
2� C .�1/me�i x u

2�

�
du:

On the other hand,

n
sinh

�x

2

�o.r�m/ D 1

2r�mC1
�

e
x
2 � .�1/r�me�

x
2

�
:

Replacing both derivatives into (50), after suitable reduction of the material and
summing up all terms inside the integrand, we arrive at the expression

˝.r/.x/ D 1

2rC1�

Z 1

0

��
e.1C

iu
� /

x
2 � .�1/r e�.1C

iu
� /

x
2

� �

1C iu

�

�r

C
�

e.1�
iu
� /

x
2 � .�1/r e�.1�

iu
� /

x
2

� �

1 � iu

�

�r	 du

eu C 1
;

which is equivalent to the statement. ut
We mention that the HE series hr .w/, or better still wr hr .w/, posses a Taylor series
expansion, the coefficients even involving the Dirichlet Eta function values �.2k C
1/, where the Dirichlet Eta function

�.s/ D
X

k>1
.�1/k�1k�s ; Refsg > 0 :

Indeed,

Theorem 4.3 ([4, p. 83, Theorem 9.1]). For w 2 C; jwj < 1 and r 2 N, one has

w h1.w/ D 2i
X

k>0
.�1/k �.2k C 1/w2kC1

and

wr hr .w/ D 2i .�1/r�1
X

k>Œr=2
.�1/k

 
2k

r � 1

!

�.2k C 1/w2kC1 ;

with h1.0/ D 2i log 2.

Thus, hr .w/ is holomorphic in C n iZ.
4.3 Let us briefly consider some connections between the hr .w/ and alternating
Mathieu series QSr.w/.
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Firstly, according to Proposition 4.1 (or evaluating h2.w/ directly from its
definition), having in mind (5) again, we have

h2.w/ D 2iw
X

k>1

.�1/k�12k

.w2 C k2/2
D 2iw QS2.w/ :

As to the next step,

h3.w/ D �i
X

k>1

.�1/k�12k.k2 � 3w2/

.w2 C k2/3
; (51)

QS3.w/ D
X

k>1

.�1/k�12k

.w2 C k2/3
:

Although the two look incomparable, see nevertheless Theorem 5.1 in Sect. 5.
For further systematic connections between QSr.w/ and hr .w/, see Sect. 5.

4.4 We finally turn to a counterpart of the function ˝�.w/ introduced in (9). In
regard to hr .w/ we have seen that

�˝.2�w/

sinh.�w/
D �ih1.w/ :

We define a new function, Q̋
r .�/, say, in terms of the HE series hr .w/ as follows.

This answers a conjecture raised in [4, p. 82].

Definition 4.2. For all w 2 C n iZ and for all r 2 N, the extended Omega function
Q̋
r .�/ of positive integer order r is the function which satisfies equation

� Q̋
r .2�w/

sinh.�w/
D �i hr .w/:

In fact, the new special function

Q̋
r .w/ D � i

�
sinh

�w

2

�
hr
� w

2�

�
; w 2 C n iZ; r 2 N (52)

is the positive integer order counterpart of the function ˝r.�/, defined already in
terms of the alternating generalized Mathieu series QS�.�/:

�˝�.2�w/

sinh.�w/
D
X

k>1

.�1/k�12k

.k2 C w2/�
DW QS�.w/ ;

studied in [8] and here in Sect. 2 and Sect. 3, even for � 2 RC.
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Connecting Definition 4.2 and Theorem 4.1, we clearly arrive at the integral
representation of the real variable alternating extended Omega function, recalling
the integral expression for the Eta function

�.r/ D
Z 1

0

ur�1

eu C 1
du :

Theorem 4.4. For any r 2 N one has for x 2 R

Q̋
r .x/ D 2.�1/r�1

� � .r/
sinh

�x

2

� Z 1

0

ur�1

eu C 1
sin
�r � 2

2
� C xu

2�

�
du :

Moreover, in the same range of parameters we have the estimate

ˇ
ˇ Q̋

r .x/
ˇ
ˇ 6 2

�
�.r/

ˇ
ˇ
ˇsinh

�x

2

�ˇˇ
ˇ : (53)

Remark 4.1. We recognize that the bound in the inequality (53) for Q̋
r .x/ is the

same fashion result as the bound (24) achieved for the generalized BFH ˝r.w/.

5 Some Bridges Between ˝�.w/; Q̋
r.w/; QS�.x/ and hr.w/

5.1 The alternating Mathieu series (5)

QS�.w/ D
X

n>1

.�1/n�1 2n

.n2 C w2/�
; � > 0;w > 0 ;

and the Hilbert–Eisenstein series (38)

hr .w/ D
X

k2Z

.�1/k sgn.k/

.w C ik/r
; w 2 C n iZ; r 2 N

are intimately connected by (39), and relationship (9), e.g. we have seen in the
previous section that

h2.w/ D 2i w QS2.w/ :

However, higher-order alternating Mathieu and HE series do not coincide, but there
is a close connection between them:
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Theorem 5.1. For all w > 0; r 2 N2 there holds true

hr .w/ D i .�1/r�1
wrC1

X

06m6r
r�m�1.mod 2/

rX

jD rCmC1
2

 
r

m

! 
rCmC1

2

r � j

!

.�w2/j QSj .w/ : (54)

Proof. Beginning with Definition 4.1, one transforms

hr .w/ D
X

k>1

.�1/k
.w C ik/r

rX

mD0

 
r

m

!
�
.�1/r�m � 1

�
wm.ik/r�m

D i
X

k>1

2.�1/k�1k
.w2 C k2/r

X

06m6r
r�m odd

 
r

m

!

wm.�1/.r�mC1/=2.k2/.r�m�1/=2

D i
X

06m6r
r�m odd

 
r

m

!
.r�m�1/=2X

jD0

 
r�m�1

2

j

!

.�1/j�1wr�1�2j QSr�j .w/ I

changing the summation order, we get the asserted expression. ut
The next few low-order particular cases, coming after h2.w/, are

h3.w/ D �5w2i QS3.w/C 2i QS2.w/;

h4.w/ D �8w3i QS4.w/C 4wi QS3.w/:

The opposite question also arises, that is, how can we express alternating genera-
lized Mathieu series via a linear combination of Hilbert–Eisenstein series of up to
the same order? Collecting formulae for hj .w/ in terms of QSj .w/; j D 2; 3; 4 and
solving it with respect to Mathieu series QSj .w/, we get

QS2.w/ D � i

2w
h2.w/;

QS3.w/ D � i

5w3
h2.w/C i

5w3
h3.w/;

QS4.w/ D � i

10w5
h2.w/C i

10w3
h3.w/C i

8w3
h4.w/; etc.

As an immediate consequence of Theorem 5.1, we get by means of Definition 4.2 (of
the HE series) the following connection between the generalized complete positive
integer order BFH Omega function˝r.w/ and its counterpart Q̋

r .w/.
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Theorem 5.2. Let the situation be the same as in previous Theorem 5.1. Then we
have the following representation:

Q̋
r .w/ D .�1/r�1

wrC1
X

06m6r
r�m�1.mod 2/

rX

jD rCmC1
2

 
r

m

! 
rCmC1

2

r � j

!

.�w2/j ˝j .w/ :

Proof. Transforming representation (54) by Definition 4.2, (52) from one and
Theorem 5.1 from another side, we derive

Q̋
r .w/ D � i

�
sinh

�w

2

�
hr

� w

2�

�

D
X

06m6r
r�m odd

.r�m�1/=2X

jD0

 
r

m

! 
r�m�1

2

j

!

wr�1�2j .�1/j�1

� 1

�
sinh

�w

2

� QSr�j
� w

2�

�

„ ƒ‚ …
˝r�j .w/

;

which is equivalent to the assertion. ut
Now, for w > 0 it is not hard to compile the formulae:

Q̋
2.w/ D 2w

�
sinh

�w

2

� QS2
� w

2�

�
D 2w˝2.w/;

Q̋
3.w/ D 1

�
sinh

�w

2

� n
2 QS2

� w

2�

�
� 5w2 QS3

� w

2�

�o

D 2˝2.w/ � 5w2 ˝3.w/

Q̋
4.w/ D 4w

�
sinh

�w

2

� n QS3
� w

2�

�
� 2w2 QS4

� w

2�

�o

D 4w
˚
˝3.w/ � 2w2 ˝4.w/



:

We point out that both Theorems 5.1 and 5.2 ensure a good tool for further
bilateral bounding inequalities upon Q̋

r .w/. Namely, we establish in Sects. 2 and 3
numerous two-sided bounding inequalities for the generalized BFH Omega function
˝j .w/; j 2 N.

5.2 In the following, we study a series representation of the Hilbert–Eisenstein
series in terms of the Gaussian hypergeometric function 2F1. For the values w of
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the argument coming from the open unit disc D WD fwW jwj < 1g, we have the
following expansion:

hr .w/ D i�r
X

k>1

.�1/k
kr

n�
1C w

ik

��r � .�1/r
�
1 � w

ik

��ro

D i�r
X

k>1

.�1/k
kr

X

j>0

 
�r
j

!

.1 � .�1/rCj /
� w

ik

�j

D i�r
X

k>1

.�1/k
kr

X

j>0

.�1/j .1 � .�1/rCj /� .r C j /

� .r/j Š

� w

ik

�j
:

If r is either even or odd, we have more specific further results.

Theorem 5.3. For all jwj < 1 and r 2 N, we have

h2r�1.w/ D 2i.�1/r
X

k>1

.�1/k�1
k2r�1 2F1

"
r � 1

2
; r

1
2

ˇ
ˇ
ˇ
ˇ
ˇ
� w2

k2

#

I

moreover,

h2r .w/ D 4wr i.�1/r
X

k>1

.�1/k�1
k2rC1 2F1

"
r C 1

2
; r C 1

3
2

ˇ
ˇ
ˇ
ˇ
ˇ
� w2

k2

#

:

Corollary 5.1. For all jwj < 1 and r 2 N, there hold

h2r�1.w/ D 2i.�1/r
X

k>1

.�1/k�1
.w2 C k2/

r� 12
cos

�
.2r � 1/ arctan

w

k

�
; (55)

and

h2r .w/ D 2i.�1/r
X

k>1

.�1/k�1
.w2 C k2/r

sin
�
2r arctan

w

k

�
: (56)

Proof. By applying formulae

2F1

"
r � 1

2
; r

1
2

ˇ
ˇ
ˇ
ˇ
ˇ
� w2

k2

#

D
cos

�
.2r � 1/ arctan

w

k

�

�

1C w2

k2

�r� 12
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and

2F1

"
r C 1

2
; r C 1

3
2

ˇ
ˇ
ˇ
ˇ
ˇ
� w2

k2

#

D
k sin

�
2r arctan

w

k

�

2rw

�

1C w2

k2

�r ;

we immediately conclude the asserted results (55) and (56), respectively. ut
Setting r D 2 in the formula (56), we achieve the companion series representa-

tions to h3.w/ (51), that is,

h4.w/ D 8iw
X

k>1

.�1/k�1k.k2 � w2/

.w2 C k2/4
:

5.3 We introduce Dirichlet’s Beta function as the series

ˇ.s/ D
X

k>0

.�1/k
.2k C 1/s

; Refsg > 0:

We are now interested in a specific Hilbert–Eisenstein series, precisely in hr .
i
2
/.

Since

h�

�
i

2

�

D
�
2

i

�� (X

k>0

.�1/k
.2k C 1/�

� 1
)

C
�

�2
i

��X

k>1

.�1/k�1
.2.k � 1/C 1/�

D
�
2

i

��
Œ.1C .�1/�/ ˇ.�/ � 1 ;

we have

h�C

�

i
2

�

h�
�

i
2

�
h

�

i
2

� D .1C .�1/�C
/ ˇ.� C 
/ � 1
Œ.1C .�1/�/ ˇ.�/ � 1 Œ.1C .�1/
/ ˇ.
/ � 1 :

Now, choosing � D 2r � 1; 
 D 2s � 1I r; s 2 N, it follows

ˇ.2r C 2s � 2/ D 1

2

(
h2rC2s�2

�
i
2

�

h2r�1
�

i
2

�
h2s�1

�
i
2

� C 1

)

; r; s 2 N :

5.4 Finally, observe that the function


 7! � .2
/h2
.iw/ D 2

Z 1

0

u2
�1

eu C 1
sinh.wu/du
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is logarithmically convex on .0;1/ for w 2 R n Z: This can be verified by using
the classical Hölder-Rogers inequality for integrals or by using the fact that the
integrand is logarithmically convex in 
 and the integral preserves the logarithmical
convexity. Consequently for all 
1; 
2 > 0, we have

� 2.
1 C 
2/h
2

1C
2.iw/ 6 � .2
1/h2
1.iw/� .2
2/h2
2.iw/

and choosing 
1 D m � 1 and 
2 D mC 1, we arrive at the Turán-type inequality

h22m.iw/ � 2m.2mC 1/

.2m � 1/.2m� 2/h2m�2.iw/h2mC2.iw/;

which holds for all m 2 f2; 3; : : : g and w 2 R n Z.
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Properties of the Product of Modified
Bessel Functions

Árpád Baricz and Tibor K. Pogány

Dedicated to Professor Hari M. Srivastava

Abstract Discrete Chebyshev-type inequalities are established for sequences of
modified Bessel functions of the first and second kind, recognizing that the sums
involved are actually Neumann series of modified Bessel functions I� and K� .
Moreover, new closed integral expression formulae are established for the Neumann
series of second type, which occur in the discrete Chebyshev inequalities.

1 Introduction

Modified Bessel functions of the first and second kind I� and K� are frequently
used in physics, applied mathematics, and engineering sciences. Their product I�K�

is also useful in some applications. We refer, for example, to the papers [23, 24]
about the hydrodynamic and hydromagnetic (in)stability of different cylindrical
models, in which the monotonicity of x 7! P�.x/ WD I�.x/K�.x/ for � > 1 is
used. See also the paper of Hasan [12], where the electrogravitational instability
of non-oscillating streaming fluid cylinder under the action of the self-gravitating,
capillary, and electrodynamic forces has been discussed. In these papers the authors
use (without proof) the inequality

P�.x/ <
1
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Department of Economics, Babeş-Bolyai University, Cluj-Napoca 400591, Romania
e-mail: bariczocsi@yahoo.com

T.K. Pogány (�)
Faculty of Maritime Studies, University of Rijeka, Rijeka 51000, Croatia
e-mail: poganj@pfri.hr
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for all � > 1 and x > 0. We note that the above inequality readily follows from the
fact that x 7! P�.x/ is decreasing on .0;1/ for all � > �1. More precisely, for all
x > 0 and � > 1 we have

P�.x/ < lim
x!0 P�.x/ D 1

2�
< 1

2
:

For different proofs on the monotonicity of the function x 7! P�.x/, we refer to
the papers [2, 19, 21]. It is worth to mention that the above monotonicity property
has been used also in a problem in biophysics (see [11]). Moreover, recently
Klimek and McBride [17] used this monotonicity to prove that a Dirac operator
(subject to Atiyah–Patodi–Singer-like boundary conditions on the solid torus) has
a bounded inverse, which is actually a compact operator. In [13, 14] van Heijster
et al. investigated the existence, stability, and interaction of localized structures
in a one-dimensional generalized FitzHugh–Nagumo-type model. Recently, van
Heijster and Sandstede [15] started to analyze the existence and stability of radially
symmetric solutions in the planar variant of this model. The product of modified
Bessel functions P� arises naturally in their stability analysis, and the monotonicity
(see [7, 15]) of � 7! P�.x/ is important to conclude (in)stability of these radially
symmetric solutions.

In this paper, motivated by the above applications, we focus on Chebyshev-
type discrete inequalities for Neumann series of modified Bessel functions I� and
K
 of the first and the second kind, respectively. Moreover, we deduce integral
representations formulae for these Neumann series appearing in newly derived
discrete Chebyshev inequalities in the manner of such results given recently by
Baricz, Jankov, Pogány, and Süli in a set of articles [4–6, 22] for the first-type
Neumann series.

According to the established nomenclatures in the sequel, we will consider first-
type Neumann series introduced in [4] as

M

� .z/ WD

X

n>1

n I�Cn.z/ and J
� .z/ WD

X

n>1

n K�Cn.z/ : (1)

In the next section our aim is to present the Chebyshev-type discrete inequality in
the terminology of Neumann series (1) and its closed form integral representation.
In this goal we introduce a second-type Neumann series

G 

�;�.z/ WD

X

n>1

n I�Cn.z/K�Cn.z/ : (2)

Our main derivation tools include Cahen’s Laplace integral form of a Dirichlet series
[8, p. 97] (see the exact proof in Perron’s article [20]), the condensed form of Euler–
Maclaurin summation formula [22, p. 2365], and certain bounding inequalities for
I� and K� ; see [3].
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Throughout Œa and fag D a � Œa denote the integer and fractional part of a real
number a, respectively.

2 Discrete Chebyshev Inequalities

We begin with the discrete form of the celebrated Chebyshev inequality reported
(in part) by Graham [10, p. 116]. Here, and in what follows, let 
 be a nonnegative
discrete measure, 
.n/ � 
n; n 2 N. Assuming f; g are both nonnegative and
same (opposite) kind monotone, then

X

n>1

nf .n/

X

n>1

ng.n/ 6 .>/ k
k1

X

n>1

nf .n/g.n/ ; (3)

where k
k1 stands for the appropriate `1-norm. Let us signify throughout

kN˛ 
k1 WD
X

n>1
n˛
n ; ˛ 2 R :

Now, let us recall some monotonicity properties of modified Bessel functions. Jones
[16] proved that I�1.x/ < I�2.x/ holds for all x > 0 and �1 > �2 � 0, while
Cochran [9] and Reudink [25] established the inequality @I�.x/=@� < 0 for all
x; � > 0. With other words, the function � 7! I�.x/ is strictly decreasing on .0;1/

for all x > 0 fixed.
Moreover, as it was pointed out by Laforgia [18], the function � 7! K�.x/ is

strictly increasing on .0;1/ for all x > 0 fixed.
Finally, recall that recently in [7, 15] it was proved the function � 7! P�.x/ is

strictly decreasing on .0;1/ for all x > 0 fixed.
Having in mind these properties, we can see that modified Bessel functions of

the first and second kind I�;K� and also their equal order product P� are ideal
candidates to establish discrete Chebyshev inequalities of the type (3).

Our first main result is the following theorem.

Theorem 2.1. Let �; � > 0 and let 
 be a positive discrete measure on N such
that k
k1 < 1, not necessarily the same in different occasions. Then the following
assertions are true:

(a) For all fixed x 2 I0 WD �
2e�1 lim supn!1 n


1=n
n ;1�

, we have

M

� .x/ J



� .x/ > k
k1G 


�;�.x/: (4)

(b) For all fixed x 2 I1 WD �
0; 2e�1= lim supn!1 n�1


1=n
n

�
, it holds

k
k1G
I�
�;� .x/ > M


� .x/G


�;�.x/; (5)

whenever kN.����1/C 
k1 < 1, where .a/C D maxf0; ag.
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(c) Moreover, for all fixed x 2 I0 and kN.����1/C 
k1 < 1, we have

J
� .x/G


�;�.x/ > k
k1G
K�

�;� .x/: (6)

Proof. We apply the Chebyshev inequality (3) by choosing (a) f � I�; g � K�,
(b) f � I�; g � I�K�, and (c) f � K�; g � I�K�. In the cases (a) and (c), the
functions f and g are opposite kind monotone, and thus we immediately conclude
(4) and (6), respectively. Moreover, in the case (b) both f and g decrease, which
imply the derived inequality (5).

It remains only to find the x-domains of the inequalities.
Observe that k
k1 < 1 suffices for the absolute and uniform convergence of

the Neumann series M

� .x/. This has been established by Baricz et al. in the proof

of [4, Theorem 2.1] for all x > 0 and � > �1. Moreover, in the same paper [4]
the authors proved that J
� .x/ converges absolutely and uniformly when � > 0 and
x 2 I0. Now, by using the inequalities [3, p. 583]

I�.x/ <

�
x
2

��

� .� C 1/
e

x2

4.�C1/ ; � > �1; x > 0;

and [4]

K�.x/ 6 2��1

x�
� .�/; � > 0; x > 0 ;

applied to the summands of G 

�;�.x/, we obtain

ˇ
ˇG 


�;�.x/
ˇ
ˇ 6 1

2

�
x

2

����
e

x2

4.�C2/ X

n>1
n����1 
n : (7)

Observe that the convergence of the right-hand-side series, that is, kN����1 
k1 <
1, ensures the convergence of the second kind Neumann series G



�;�.x/ for all

�; �; x > 0. This together with the additional requirement k
k1 < 1 yields

max
˚k
k1; kN����1 
k1


 D kN.����1/C 
k1 < 1:

Finally, let us consider the series G

I�
�;� .x/ which ensures the convergence of both

left-hand-side Neumann series in (5). By virtue of the above listed upper bounds for
I� , I� and K�, we conclude that

G

I�
�;� .x/ D

X

n>1

nI�Cn.x/I�Cn.x/K�Cn.x/

6 1

2
p
2�

�
x

2

��
e
x2

4

�
1

�C2C 1
�C2

�X

n>1


n

nnC�C3=2

�
xe

2

�n
; (8)

where the bounding power series converges for all x 2 I1.
Combining all these estimates, we arrive at the asserted inequality domains. ut
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3 Integral Form of Related Second-Type Neumann Series

Our next goal is to prove integral representations for the second-type Neumann
series

G 

�;�.x/; G


I�
�;� .x/ and G
K�

�;� .x/;

which appeared in Theorem 3.1. This will be realized on the account of procedure
introduced by Pogány and Süli in [22] and further developed and promoted by
Baricz et al. [4–6].

Theorem 3.1. Let 
 2 C1.RC/, 
jN D .
n/n2N such that lim supn!1 j
nj1=n 6
1. Then, for all x > 0 and �; � > �3=2, we have the integral representation

G 

�;�.x/ D �x

���

4

Z 1

1

Z Œt 

0

@

@t

 
�
�
t C � C 1

2

�

�
�
t C �C 1

2

� ItC�.x/KtC�.x/
!

� ds

 

.s/�

�
s C �C 1

2

�

�
�
s C � C 1

2

�

!

dt ds ; (9)

where

dx WD 1C fxg d

dx
:

Proof. First, we recall the following integral representation [26, p. 79]:

I�.x/ D 21��x�p
� � .� C 1=2/

Z 1

0

.1� t2/��
1
2 cosh.xt/dt; x > 0; � > �1=2; (10)

and the integral representation formula referred to Basset [26, p. 173]

K�.x/ D 2��
�
�C 1

2

�

p
�x�

Z 1

0

cos.xt/

.1C t2/�C 1
2

dt; x > 0; � > �1=2 : (11)

Applying (10) and (11) to G


�;�.x/, we conclude

G 

�;�.x/ D x���

2�

Z 1

0

Z 1

0

.1 � t2/�� 12 cosh.xt/ cos.xs/

.1C s2/�C 1
2

�
X

n>1


n�
�
nC �C 1

2

�

�
�
nC � C 1

2

�
�
1 � t2

1C s2

�n
dtds : (12)
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The inner sum we recognize as the Dirichlet series

D0.t; s/ D
X

n>1


n�
�
nC �C 1

2

�

�
�
nC � C 1

2

� exp

�

�n ln
1C s2

1 � t2

�

; (13)

which parameter ln.1C s2/.1 � t2/�1 is obviously positive on .t; s/ 2 .0; 1/ � RC
independently of x. Also, the power series (13) has the radius of convergence

�D0 D 1

lim sup
n!1

j
nj1=n ;

and then D0.t; s/ is convergent for all .t; s/ 2 .0; 1/�RC, being �D0 > 1 according
to the assumption of the theorem.

Thus, by Cahen’s Laplace integral formula for the Dirichlet series [8, p. 97] and
by the condensed Euler–Maclaurin summation formula [22, p. 2365], we get

D0.t; s/ D ln
1C s2

1 � t2

Z 1

0

Z Œw

0

�
1 � t2
1C s2

�w

dz

 

.z/�

�
z C �C 1

2

�

�
�
z C � C 1

2

�

!

dwdz :

(14)
Substituting (14) into (12) we get

G 

�;�.x/ D �x

���

2�

Z 1

0

Z Œw

0

dz

 

.z/�

�
z C �C 1

2

�

�
�
z C � C 1

2

�

!

�
 Z 1

0

Z 1

0

 
1 � t2

1C s2

!wC�� 12
ln
1 � t2
1C s2

� cosh.xt/ cos.xs/

.1C s2/���C1
dtds

!

dwdz :

Denote

I.˛/ WD
Z 1

0

Z 1

0

�
1 � t2
1C s2

�˛
ln
1 � t2
1C s2

� cosh.xt/ cos.xs/

.1C s2/���C1
dtds :

Now, having in mind (10) and (11), we deduce

Z
I.˛/ d˛ D

Z 1

0

Z 1

0

�
1 � t2

1C s2

�˛ cosh.xt/ cos.xs/

.1C s2/���C1
dtds

D
Z 1

0

Z 1

0

.1 � t2/˛ cosh.xt/ cos.xs/

.1C s2/˛C���C1
dtds

D �

2

� .˛ C 1/

� .˛ C �� � C 1/
I˛C 1

2
.x/K˛C���C 1

2
.x/ ;
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that is, choosing ˛ 7! w C � � 1
2

we have

I

�

w C � � 1

2

�

D �

2

@

@w

�
�
w C � C 1

2

�

�
�
w C �C 1

2

� IwC�.x/KwC�.x/ :

Hence

G 

�;�.x/ D �x

���

4

Z 1

0

Z Œt 

0

@

@t

 
�
�
t C � C 1

2

�

�
�
t C �C 1

2

� ItC�.x/KtC�.x/
!

� ds

 

.s/�

�
s C �C 1

2

�

�
�
s C � C 1

2

�

!

dt ds;

which is equivalent to the asserted double integral expression (9). ut
Theorem 3.2. Let 
 2 C1.RC/, 
jN D .
n/n2N. Then, for all x 2 I1; �; � >

�3=2, there holds

G

I�
�;� .x/ D �x

���

4

Z 1

1

Z Œt 

0

@

@t

 
�
�
t C � C 1

2

�

�
�
t C �C 1

2

� ItC�.x/KtC�.x/
!

� ds

 

.s/IsC�.x/�

�
s C �C 1

2

�

�
�
s C � C 1

2

�

!

dt ds : (15)

Moreover, for x 2 I0; � > �1; � > �3=2, we have

G
K�
�;� .x/ D �x

���

4

Z 1

1

Z Œt 

0

@

@t

 
�
�
t C � C 1

2

�

�
�
t C �C 1

2

� ItC�.x/KtC�.x/
!

� ds

 

.s/KsC�.x/�

�
s C �C 1

2

�

�
�
s C � C 1

2

�

!

dt ds : (16)

Proof. We follow the proof of (9) to get the integral representations. It remains only
to remark that the Dirichlet series D1.t; s/ associated with G


I�
�;� .x/ satisfies

jD1.t; s/j 6
X

n>1

j
njjInC�.x/j�
�
nC �C 1

2

�

�
�
nC � C 1

2

�

 
1 � t2

1C s2

!n

6 1p
2�

 
jxj
2

!�

e
x2

2.�C2/

X

n>1


n

nnC�C1=2

 
jxje
2

1 � t2

1C s2

!n

;
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so x has to be from I1. Similarly it can be concluded that for the Dirichlet series
D2.t; s/ associated with G


I�
�;� .x/ holds the estimate

jD2.t; s/j 6
X

n>1

j
njjKnC�.x/j� .nC �/�
�
nC �C 1

2

�

�
�
nC � C 1

2

�

 
1 � t2
1C s2

!n

6
r
�

2

 
2

jxj

!� X

n>1
nnC��1=2 
n

 
2

jxje
1� t2

1C s2

!n

;

of which convergence requirement causes x 2 I0. ut

4 Indefinite Integral Expressions for Second Kind
Neumann Series G �

�;�.x/

In this section our aim is to establish indefinite integral representation formulae
for the one-parameter second kind Neumann series of the product of two modified
Bessel functions of the first kind P� . First of all, observe that P� is a particular
solution of the homogeneous third-order linear differential equation

x2y000.x/C 3xy00.x/ � .4�2 C 4x2 � 1/y0.x/ � 4xy.x/ D 0: (17)

To see this, let us recall that I� andK� both satisfy the differential equation

x2y00.x/C xy0.x/ � .x2 C �2/y.x/ D 0

and consequently

x2I 00� .x/ D .x2 C �2/I�.x/ � xI 0�.x/ (18)

and

x2K 00� .x/ D .x2 C �2/K�.x/ � xK 0�.x/: (19)

Applying these relations we obtain

x2P 00� .x/ D 2.x2 C �2/P�.x/ � xP 0�.x/C 2x2I 0�.x/K 0�.x/:

Now, differentiating both sides of this equation and applying again the above
relations, we arrive at

x2P 000� .x/C 3xP 00� .x/ � .4�2 C 4x2 � 1/P 0�.x/ � 4xP�.x/ D 0:
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Repeating this procedure twice in view of (18) and (19), we can show1 that
actually I 2� and K2

� are also particular solutions of the third-order linear differential
equation (17).

Now, let us show that I 2� , I�K� , and K2
� are independent being the Wronskian

W ŒI 2� ; I�K�;K
2
�  ¤ 0 on R. After some computations we get

W ŒI 2� ; I�K�;K
2
� .x/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

I 2� .x/ I�.x/K�.x/ K2
�.x/�

I 2� .x/
�0
.I�.x/K�.x//

0 �K2
�.x/

�0
�
I 2� .x/

�00
.I�.x/K�.x//

00 �K2
� .x/

�00

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D �1
4

�
I�.x/K��1.x/C I��1.x/K�.x/C I�C1.x/K�.x/C I�.x/K�C1.x/

�3

D 2
�
I�.x/K

0
�.x/ � I 0�.x/K�.x/

�3 D 2W 3ŒI�;K�.x/ D � 2

x3
¤ 0;

where we used the fact that W ŒI�;K�.x/ D �1=x.
Thus, by the variation of constants method, we get the desired particular solution

of the nonhomogeneous variant of (17), that is,

x2y000.x/C 3xy00.x/ � .4�2 C 4x2 � 1/y0.x/ � 4xy.x/ D f .x/ ; (20)

where f is a suitable real function. Hence, bearing in mind (18), the general solution
reads as follows

y.x/ D c1I
2
� .x/C c2I�.x/K�.x/C c3K

2
� .x/

� 4

Z x

1

tf .t/
�
I�.x/K�.t/ � I�.t/K�.x/

�2
dt :

1It is worth to mention here that the above procedure for modified Bessel functions is similar of the
method for Bessel functions applied by Wilkins [27]. See also Andrews et al. [1] for more details.

More precisely, Wilkins proved that the Hankel functions
�
H
.1/
�

�2
and

�
H
.2/
�

�2
, as well as J 2� CY 2� ,

where J� and Y� stand for the Bessel functions of the first and second kind, are particular solutions
of the third-order homogeneous differential equation [1, p. 225]

x2y000.x/C 3xy00.x/C .1C 4x2 � 4�2/y0.x/C 4xy.x/ D 0:

The above result was used to prove the celebrated Nicholson formula [1, p. 224]

J 2� .x/C Y 2� .x/ D 8

�2

Z
1

0

K0.2x sinh t / cosh.2�t/dt;

which generalizes the trigonometric identity sin2 x C cos2 x D 1.
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Choosing the constants c1, c2, and c3 to be zero, the particular solution yp of the
nonhomogeneous ODE (20) becomes

yp.x/ D �4
Z x

1

tf .t/
�
I�.x/K�.t/ � I�.t/K�.x/

�2
dt : (21)

Now, by using (17) we have

x2 P 000nC�.x/C 3x P 00nC�.x/ � .4.nC �/2 C 4x2 � 1/ P 0nC�.x/ � 4x PnC�.x/ D 0

and multiplying with the weight 
n and summing up on the set of positive integers
N, transformations lead to the nonhomogeneous third-order linear differential
equation

x2
�
G 

�;�.x/

�000 C 3x
�
G 

�;�.x/

�00 � .4�2 C 4x2 � 1/ �G 

�;�.x/

�0 � 4xG 

�;�.x/

D 4
X

n>1
n.nC 2�/
nInC�.x/KnC�.x/ WD H 


�;�.x/ ; (22)

where H


�;�.x/ stands for the second kind equal parameter Neumann series of

modified Bessel functions associated with the Neumann series G 

�;�.x/.

Theorem 4.1. Let 
 2 C1.RC/, 
jN D .
n/n2N such that lim supn!1 j
nj1=n 6 1

and kN�1 
k1 < 1. Then for all � > �3=2 and x > 0, we have

G 

�;�.x/ D �4

Z x

1

uH 

�;�.u/

�
I�.x/K�.u/� I�.u/K�.x/

�2
du ; (23)

where H
� .x/ possesses the integral representation

H 

�;�.x/ D �

Z 1

1

Z Œt 

0

@

@t

�
ItC�.x/KtC�.x/

�
ds
�
s.s C 2�/
.s/

�
dt ds : (24)

Proof. The integral representation (24) of the associated second kind Neumann
series of Bessel function H



�;�.x/ can be obtained by using the integral expression

(9) in Theorem 3.1, just putting � � � for the weight function
n 7! 4n.nC2�/
n,
when

lim sup
n!1

j4n.nC 2�/
nj1=n D lim sup
n!1

j
nj1=n 6 1 :

After that by straightforward application of (21) with f .x/ � H


�;�.x/, we deduce

the desired integral expression (23). ut
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Mapping Properties of an Integral Operator
Involving Bessel Functions

Saurabh Porwal and Daniel Breaz

Dedicated to Professor Hari M. Srivastava

Abstract The purpose of the present paper is to study the mapping properties of an
integral operator involving Bessel functions of the first kind on a subclass of analytic
univalent functions.

1 Introduction

Let A denote the class of functions f of the form

f .z/ D z C
1X

kD2
akzk; (1)

which are analytic in the open unit disk U D fz 2 C: jzj < 1g and satisfy the
normalization condition f .0/ D f 0.0/ � 1 D 0. Further, we denote by S the
subclass of A consisting of functions of the form (1) which are also univalent in U .

For 1 < ˇ 6 3=2 and z 2 U , let

N.ˇ/ D
�

f 2 A W Re

�

1C zf 00.z/
f 0.z/

�

< ˇ
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This class was extensively studied by Uralegaddi et al. [9] (see also [4, 6, 7]).
Recently, Breaz [2] studied the mapping properties of an integral operator on the

class N.ˇ/. This result was generalized by Porwal [5].
Several authors such as ([1, 3]) studied the various integral operators involving

Bessel functions. Motivating with their works we have attempted to study the
mapping properties of an integral operator involving Bessel functions of the first
kind.

The Bessel function of the first kind of order � is defined by the infinite series

J�.z/ D
1X

nD0

.�1/n � z
2

�2nC�

nŠ� .nC � C 1/
;

where � stands for the Euler gamma function, z 2 C and � 2 R. Recently, Szasz
and Kupan [8] investigated the univalence of the normalized Bessel function of the
first kind g� W U ! C, defined by

g�.z/ D 2�� .�C1/z1��=2J�.z1=2/ D zC
1X

nD1

.�1/nznC1
4nnŠ.� C 1/.� C 2/ : : : .� C n/

: (2)

Baricz and Frasin [1] have obtained the sufficient conditions for the univalence
of the various integral operators involving Bessel functions of the first kind.

In the present paper, we are mainly interested in the integral operator of the
following type which involves the normalized Bessel function of the first kind:

F�1;:::;�n;˛1;:::;˛n .z/ D
Z z

0

nY

iD1

�
g�i .t/

t

�˛i
dt: (3)

More precisely, we would like to obtain sufficient conditions forF�1;:::;�n;˛1;:::;˛n .z/
to be in class N.ˇ/. In particular, we obtain simple sufficient conditions for some
integral operator which involve the sine and cosine functions.

To prove our main results we shall require the following lemma due to Szász and
Kupan [8].

Lemma 1.1. Let � > .�5C p
5/=4 and consider the normalized Bessel function

of the first kind g� W U ! C, defined by g�.z/ D 2�� .� C 1/z1��=2J�.z1=2/, where
J� stands for the Bessel function of the first kind. Then the following inequality holds
for all z 2 U :

ˇ
ˇ
ˇ
ˇ
zg0�.z/
g�.z/

� 1

ˇ
ˇ
ˇ
ˇ 6 � C 2

4�2 C 10� C 5
: (4)
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2 Main Results

We study the mapping properties for the integral operator defined by (3).

Theorem 2.1. Let n be a positive integer number and let �1; �2; : : : ; �n >��5Cp5
4

�
. Consider the functions g�i W U ! C, defined by

g�i .z/ D 2�i � .�i C 1/z1��i =2J�i .z1=2/: (5)

Let � D minf�1; �2; : : : ; �ng and ˛1; ˛2; : : : ; ˛n be positive real numbers. More over
suppose that these numbers satisfy the following inequality:

1 < 1C 2C �

4�2 C 10� C 5

nX

iD1
˛i 6 3

2
:

Then the function F�1;:::;�n;˛1;:::;˛n .z/ W U ! C defined by (3) is in N.
/, where


 D 1C 2C �

4�2 C 10� C 5

nX

iD1
˛i :

Proof. First, we observe that, since for all i 2 f1; 2; : : : ; ng, we have g�i 2 A, i.e.,
g�i .0/ D g0�i .0/� 1 D 0, clearly F�1;:::;�n;˛1;:::;˛n 2 A, i.e.,

F�1;:::;�n;˛1;:::;˛n .0/ D F0�1 ; : : : ; �n; ˛1; : : : ; ˛n.0/� 1 D 0:

On the other hand, it is easy to see that

F 0�1;:::;�n;˛1;:::;˛n .z/D
nY

iD1

�
g�i .z/

z

�
˛i and z

F 00�1;:::;�n;˛1;:::;˛n .z/
F 0�1;:::;�n;˛1;:::;˛n .z/

D
nX

iD1
˛i

�
zg0�i .z/
g�i .z/

� 1
�

or, equivalently,

1C z
F 00�1;:::;�n;˛1;:::;˛n .z/
F 0�1;:::;�n;˛1;:::;˛n .z/

D
nX

iD1
˛i

�
zg0�i .z/
g�i .z/

�

C 1 �
nX

iD1
˛i : (6)

Taking the real part of both sides of (6), we have

Re

(

1C z
F 00�1;:::;�n;˛1;:::;˛n .z/
F 0�1;:::;�n;˛1;:::;˛n .z/

)

D
nX

iD1
˛iRe

�
zg0�i .z/
g�i .z/

	

C
 

1 �
nX

iD1
˛i

!

: (7)
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Now by using the inequality (4) for each �i , where i 2 f1; 2; : : : ; ng, we obtain

Re

(

1C z
F 00�1;:::;�n;˛1;:::;˛n .z/
F 0�1;:::;�n;˛1;:::;˛n .z/

)

D
nX

iD1
˛iRe

�
zg0�i .z/
g�i .z/

	

C
 

1 �
nX

iD1
˛i

!

6
nX

iD1
˛i

�

1C �i C 2

4�2i C 10�i C 5

�

C
 

1 �
nX

iD1
˛i

!

D 1C
nX

iD1
˛i

�
�i C 2

4�2i C 10�i C 5

�

6 1C 2C �

4�2 C 10� C 5

nX

iD1
˛i

for all z 2 U and �; �1; : : : ; �n > .�5 C p
5/=4. Here we used that the function

� W ..�5C p
5/=4;1/ ! R, defined by

�.x/ D x C 2

4x2 C 10x C 5
;

is decreasing, and consequently for all i 2 f1; 2; : : : ; ng, we have

�i C 2

4�2i C 10�i C 5
6 � C 2

4�2 C 10� C 5
:

Because

1 < 1C 2C �

4�2 C 10� C 5

nX

iD1
˛i 6 3

2
;

we have F�1;:::;�n;˛1;:::;˛n .z/ 2 N.
/, where


 D 1C 2C �

4�2 C 10� C 5

nX

iD1
˛i :

Thus, the proof of Theorem 2.1 is established. ut
Choosing ˛1 D ˛2 D � � � D ˛n D ˛ in Theorem 2.1, we have the following

result:

Corollary 2.1. Let the numbers �; �1; : : : ; �n be as in Theorem 2.1 and let
˛1; ˛2; : : : ; ˛n be positive real numbers. Moreover, suppose that the functions
g�i 2 A defined by (5) and the following inequality:

ı D 1C .2C �/n˛

4�2 C 10� C 5
:
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Observe that g1
2
.z/ D p

z sin
p

z and g�1=2.z/ D z cos
p

z: Thus, taking n D 1

in Theorem 2.1 or in Corollary 2.1, we immediately obtain the following result.

Corollary 2.2. Let � > .�5 C p
5/=4 and ˛ > 0 be a real number. Moreover

suppose that these numbers satisfy the following inequality

1 < 1C .2C �/˛

4�2 C 10� C 5
6 3

2
:

Then the function F�;˛ W U ! C, defined by

F�;˛.z/ D
Z z

0

�
g�.t/

t

�˛
dt;

is in N.�/, where

� D 1C .2C �/˛

4�2 C 10� C 5
:

In particular, if 0 < ˛ 6 11=5, then the function F1=2;˛ W U ! C, defined by

F1=2;˛.z/ D
Z z

0

 
sin

p
tp
t

!˛

dt;

is in N.�/, where � D 1C 5˛=22.
Moreover, if 0 < ˛ 6 1=3, then the function F�1=2;˛ W U ! C, defined by

F�1=2;˛.z/ D R z
0

�
cos

p
t
�˛
dt , is in N.	/, where 	 D 1C 3˛=2.
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Poincaré ˛-Series for Classical Schottky Groups

Vladimir V. Mityushev

Dedicated to Professor Hari M. Srivastava

Abstract The Poincaré ˛-series (˛ 2 R
n) for classical Schottky groups are

introduced and used to solve Riemann–Hilbert problems for n-connected circular
domains. The classical Poincaré �2-series is a partial case of the ˛-series when ˛
vanishes. The real Jacobi inversion problem and its generalizations are investigated
via the Poincaré ˛-series. In particular, it is shown that the Riemann theta function
coincides with the Poincaré ˛-series. Relations to conformal mappings of the
multiply connected circular domains onto slit domains and the Schottky–Klein
prime function are established. A fast algorithm to compute Poincaré series for disks
close to each other is outlined.

1 Introduction

The �2-series of Poincaré associated to the classical Schottky groups is used in
the constructive theory of analytic functions in multiply connected domains. Such
objects of multiply connected domains as the harmonic measures [26, 29, 36], the
Abelian functions [1, 4, 8, 9, 18], the canonical conformal mappings [6, 11, 16, 31],
the Christoffel–Schwarz formula [13–15, 17, 35], and the Bergman kernel [21]
can be constructed by the Poincaré series. These objects can be also considered
on the Schottky double. The Poincaré series have applications to extremal poly-
nomials [5], to the generalized alternating method of Schwarz [25, 27], and to
composites [38]. The above objects are ultimately constructed for arbitrary circular
multiply connected domains [21, 31, 35, 36] via the uniformly convergent Poincaré
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�2-series [28]. The method of construction is based on Riemann–Hilbert problems
and functional equations (without integral terms) [26,29,36]. It is worth noting that
investigations based on the absolute convergence have geometrical restrictions on
the location of the circular holes [39].

It was noted in [26, 29] that a method of functional equations [26, 29] yields
more general series than the classical �2-series of Poincaré. In the present paper,
such series, called the Poincaré ˛-series (shortly, the ˛-series), are systematically
discussed. Here, ˛ is a constant vector from R

n. If ˛ vanishes, we arrive at
the classical Poincaré series. The Schottky–Klein prime function [10] and its
˛-prime counterpart are introduced similar to the Poincaré ˛-series. Riemann–
Hilbert problems are solved in terms of the ˛-series. In order to simplify the
presentation, the special Riemann–Hilbert is considered. Its solution is the theta
function of Riemann. Hence, it can be applied to the Jacobi inversion problem and
its generalizations [41,42]. A fast algorithm to compute Poincaré series is described.
At the end of the paper we discuss some open problems stated by Crowdy [8].

2 Poincaré Series for Classical Schottky Groups

Consider mutually disjointed disks Dk D fz 2 C W jz � ak j < rkg in the complex
plane C and the multiply connected domainD, the complement of the closed disks
jz � ak j � rk to the extended complex plane OC D C [ f1g (see Fig. 1). Consider
the inversion with respect to the circle jz � ak j D rk

z�.k/ D r2k
z � ak C ak:

Introduce the composition of successive inversions with respect to the circles

z�.kpkp�1:::k1/
WD
�

z�.kp�1:::k1/

��
.kp/

: (1)

D

rk

Dk

w
ak

Fig. 1 Multiply connected
domain D with circular
inclusions Dk
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In the sequence k1; k2; : : : ; kp no two neighboring numbers are equal. The number
p is called the level of the mapping. When p is even, these are Möbius transforma-
tions. Ifp is odd, we have anti-Möbius transformations, i.e., Möbius transformations
in z. Thus, these mappings can be written in the form

�j .z/ D �
ej z C bj

�
=
�
cj z C dj

�
; p 2 2Z; (2)

�j .z/ D �
ej z C bj

�
=
�
cj z C dj

�
; p 2 2Z C 1;

where the normalization ej dj � bj cj D 1 is taken. Here, we introduce the identical
mapping with the level p D 0

�0.z/ WD z;

n simple inversions (p D 1)

�1.z/ WD z�.1/ ; : : : ; �n.z/ WD z�.n/;

n2 � n pairs of inversions (p D 2)

�nC1.z/ WD z�.12/; �nC2.z/ WD z�.13/; : : : ; �n2.z/ WD z�.n;n�1/;

triples (p D 3)

�n2C1.z/ WD z�.121/; �n2C2.z/ WD z�.122/; : : :

and so on. The set of the subscripts j of �j is ordered in such a way that the level
p is increasing. The functions (2) generate a Schottky group K. Thus, each element
of K is presented in the form of the composition of inversions (1) or in the form of
linearly ordered functions (2). All elements �j of the even levels generate a subgroup
E of the group K. The set of the elements �j of odd level KnE is denoted by O.

Let H.z/ be a rational function. The following series is called the Poincaré �2-
series:

�2.z/ WD
X

�j2E
HŒ�j .z/.cj z C dj /

�2 (3)

associated with the subgroup E. It was proved in [28] that the series (3) converges
uniformly in every compact subset not containing the limit points of K and poles of
HŒ�j .z/. Moreover, (3) is an automorphic function of the weight .�2/:

�2.z/ D �2Œ�j .z/.cj z C dj /
�2: (4)
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Using the inversions (1) instead of (2), we can write (3) in an extended form. First,
following [28] introduce the series

�
.1/
2 .z/ D H.z/�

nX

kD1
HŒz�.k/.z�.k//

0 C
nX

kD1

X

k1¤k
HŒz�.k1k/.z

�
.k1k/

/0 (5)

�
nX

kD1

X

k1¤k

X

k2¤k1
HŒz�.k2k1k/.z

�
.k2k1k/

/0 C � � �

and

�
.2/
2 .z/ D H.z/C

nX

kD1
HŒz�.k/.z�.k//

0 C
nX

kD1

X

k1¤k
HŒz�.k1k/.z

�
.k1k/

/0 (6)

C
nX

kD1

X

k1¤k

X

k2¤k1
HŒz�.k2k1k/.z

�
.k2k1k/

/0 C � � �

The Poincaré �2-series (3) can be written in the form

�2.z/ D 1

2

�
�
.1/
2 .z/C�

.2/
2 .z/

�
: (7)

Let ˛k (k D 1; 2; : : : ; n/ be real numbers from the segment Œ0; 2�/. Introduce
the multi-index ˛ D .˛1; ˛2; : : : ; ˛n/ and the series

�
.1/
2 .zI˛/ D H.z/�

nX

kD1
e2i˛kHŒz�.k/.z�.k//

0C
nX

kD1

X

k1¤k
e2i.˛k�˛k1 /H Œz�.k1k/.z

�
.k1k/

/0

�
nX

kD1

X

k1¤k

X

k2¤k1
e2i.˛k�˛k1C˛k2 /H Œz�.k2k1k/.z

�
.k2k1k/

/0C � � � ; (8)

�
.2/
2 .zI˛/ D H.z/C

nX

kD1
e2i˛kHŒz�.k/.z�.k//

0C
nX

kD1

X

k1¤k
e2i.˛k�˛k1 /H Œz�.k1k/.z

�
.k1k/

/0

C
nX

kD1

X

k1¤k

X

k2¤k1
e2i.˛k�˛k1C˛k2 /H Œz�.k2k1k/.z

�
.k2k1k/

/0C � � � (9)

and

�2.zI˛/ D 1

2

h
�
.1/
2 .zI˛/C�

.2/
2 .zI˛/

i
: (10)
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We call the series (8)–(10) by the ˛-series. The series (8)–(10) uniformly converge
in every compact subset not containing the limit points of K and poles of HŒ�j .z/
[34]. If ˛ D .0; 0; : : : ; 0/, we arrive at the classic Poincaré series (3).

3 Riemann–Hilbert Problem

To find a function  .z/ analytic in D and continuously differentiable in D [ @D

with the following Riemann–Hilbert boundary condition [36]

Im



e�i˛k
t � ak

rk
 .t/

�

D 0; jt � ak j D rk; k D 1; 2; : : : ; n: (11)

It is assumed that the function  .z/ is normalized at infinity:

 .1/ D 1: (12)

Let a function '.z/ be a primitive of  .z/, i.e., ' 0.z/ D  .z/. Then '.z/ satisfies
the Riemann–Hilbert boundary condition:

Re Œe�i˛k '.t/ D ck; jt � akj D rk; k D 1; 2; : : : ; n; (13)

where ck are undetermined constants. In order to prove it, we consider the
parametrization of the circle jt � ak j D rk with the natural arc parameter s 2
Œ0; 2�rk/

t.s/ D ak C rk exp

�
is

rk

�

: (14)

One can see that the derivative can be written in the form

t 0.s/ D i
t � ak

rk
: (15)

Differentiation (13) on s yields

ReŒe�i˛k .t/t 0.s/ D 0; jt � ak j D rk; k D 1; 2; : : : ; n: (16)

Using (15) we arrive at the boundary value problem (11).
It follows from (12) that '.z/ is analytic in D except at the infinite point where

it satisfies the hydrodynamic normalization at infinity [24]:

'.z/ D z C '0 C '1

z
C '2

z2
C : : : : (17)
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The function '.z/ is multivalued in D. More precisely, it is represented in the
form [36]

'.z/ D z C '0.z/C
nX

kD1
ei˛kAk ln.z � ak/; (18)

where '0.z/ is single-valued analytic in D and Ak are undetermined real constants.
The logarithm ln.z � ak/ is defined in such a way that it is analytic in the complex
plane except a cut connecting the points z D ak and infinity. It is assumed that the
cut does not cross jz � amj � rm for m ¤ k. The term ei˛kAk has such a form
since the increment of the function ReŒe�i˛k'.t/ along jt � ak j D rk must vanish
because of (13). The problem (13) is discussed for multivalued functions as well as
for single-valued functions when all Ak D 0.

Consider the Banach space H
.L/ consisting of functions Hölder continuous on
Lyapunov’s curve L endowed the norm

jj!jj D sup
t2L

j!.t/j C sup
t1;22L

j!.t1/j � !.t2/j
jt1 � t2j
 ; (19)

where 0 < 
 � 1. Analytic functions considered in the present paper can be
continuous or continuously differentiable in the closures of the analyticity domains.
The space H.k;
/.L/ consists of those functions which have Hölder continuous
derivative of the kth order belonging to H
.L/. Let @˝ be the boundary of
a domain ˝ not necessary connected. Introduce a space H



A.˝/ consisting of

functions analytic in ˝ and Hölder continuous in the closure of ˝ endowed the
norm (19). The space H



A.˝/ is Banach, since the maximum principle for analytic

functions implies that the norm in H


A.˝/ coincides with the norm in H
.@˝/.

One can consider H

A.˝/ as a closed subspace of H
.@˝/. The space H

.k;
/
A .˝/

is introduced in the same way as a subspace of H.k;
/.˝/. Therefore, the boundary
value problems (11) and (13) are considered in the spaces H.1;
/

A .D/ and H
.
/
A .D/,

respectively.

Lemma 3.1 ([12]). The problem (13), (17) for single-valued functions has a unique
solution up to an arbitrary additive constant.

Let � D u C iv denotes a complex variable on the complex plane with slits �k
(k D 1; 2; : : : ; n) lying on the lines:

� sin˛k u C cos˛k v D ck; (20)

where ck are the same as in (11). Let D0 denote the complement of all the segments
�k to OC. The conformal mapping Q'.z/ D u.z/C iv.z/ fromD ontoD0 satisfies the
boundary value problem (13), (17). It follows from Lemma 3.1 that the conformal
mapping Q'.z/ coincides with the unique solution '.z/ of the problem (13), (17) up
to an additive constant.
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Lemma 3.2. The problem (13), (17) for multivalued functions represented in the
form (18) has .nC 1/ R-linear independent solutions.

Proof. One independent solution is a constant and other n independent solutions
are produced by the terms ei˛kAk ln.z � ak/ in the representation (18). Another
proof follows from the relation between the problems (13), (17), and (11), (12). The
winding number (index) of the problem (11), (12) is equal to n [19, 31]. Hence, it
has n R-linear independent solutions. The .nC 1/th solution is a constant obtained
by integration of (11).

Remark 3.1. According to [19] the winding number ~ of the problem (11) is equal
to .n C 1/. The number of R-linear independent solutions is equal to ~, and the
inhomogeneous problem corresponding to (11) is always solvable. The condition
(12) reduces the number of R-linear independent solutions to n that is in agreement
with the above conclusion.

The problem (13) for multivalued functions can be reduced to the R-linear
problem [31]:

'.t/ D 'k.t/ � e2i˛k'k.t/C ei˛k ck C ei˛k �k ln t�ak
rk
;

jt � ak j D rk; k D 1; 2; : : : ; n;
(21)

where 'k.z/ is analytic in jz�akj < rk and continuously differentiable in jz�akj �
rk and real constants �k are undetermined.

Lemma 3.3. (i) Let '.z/ and 'k.z/ be solutions of (21) with arbitrarily fixed real
constants �k . Then '.z/ satisfies (13).

(ii) Let '.z/ be a solution of (13) and real constants �k are arbitrarily fixed.
Then there exist such functions 'k.z/ that for each k D 1; : : : ; n the R-linear
conditions (21) are fulfilled.

Proof of the first assertion is evident. It is sufficient to multiply (21) by e�i˛k and
to take the real part.

Conversely, let '.z/ satisfies (13) and a real constant �k is fixed. The function
e�i˛k'k.z/ can be uniquely determined up to an additive real constant from the
simple Schwarz problem for the disk jz � ak j < rk [19, 36]

2 Im
�
e�i˛k'k.t/

� D Im



e�i˛k'.t/ � �k ln
t � ak

rk

�

; jt � akj D rk: (22)

It follows from the latter boundary condition that the function 'k.z/ belongs to the
spaces H.1;˛/

A .D/ except at a point z D ak , where Im ln.t � ak/ D arg.t � ak/ has
a discontinuity.

The lemma is proved. ut
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Differentiate (21) on s along the circles jt � ak j D rk and divide the results by
t 0.s/ calculated with (15)

 .t/ D  k.t/Ce2i˛k
�

rk

t � ak
�2

 k.t/C ei˛k �k

t � ak ; jt�ak j D rk; k D 1; 2; : : : ; n;

(23)

where  .z/ D ' 0.z/ and  k.z/ D ' 0k.z/. Therefore, the Riemann–Hilbert problem
(11) is reduced to the R-linear problem (23).

4 Functional Equations

The R-linear problem (23) can be reduced to functional equations. Following [31,
36] introduce the function

˚.z/ WD

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

 k.z/�
X

m¤k
e2i˛m

�
rm

z � am
�2
 m

�
z�.m/

�
�
X

m¤k

ei˛m�m

z � am
;

jz � akj � rk; k D 1; 2; : : : ; n;

 .z/ �
nX

mD1
e2i˛m

�
rm

z � am

�2
 m

�
z�.m/

�
�

nX

mD1

ei˛m�m

z � am
; z 2 D;

analytic in jz � ak j < rk .k D 1; 2; : : : ; n/ and D. Calculate the jump across the
circle jt � ak j D rk

�k WD ˚C.t/ �˚�.t/; jt � akj D rk;

where ˚C .t/ WD limz!t z2D ˚ .z/ ; ˚� .t/ WD limz!t z2Dk ˚ .z/. Application of
(23) gives �k D 0: It follows from the principle of analytic continuation that ˚.z/
is analytic in the extended complex plane. Moreover, .1/ D 1 yields ˚.1/ D 1.
Then Liouville’s theorem implies that˚.z/ � 1. The definition of˚.z/ in jz�akj �
rk yields the following system of functional equations:

 k.z/ D
X

m¤k
e2i˛m

�
rm

z � am

�2
 m

�
z�.m/

�
C 1C

X

m¤k

ei˛m�m

z � am ;

jz � akj � rk; k D 1; 2; : : : ; n:

(24)

Let  k.z/ (k D 1; 2; : : : ; n) be a solution of (24). Then the function  .z/ can be
found from the definition of ˚.z/ in D
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 .z/ D
nX

mD1
e2i˛m

�
rm

z � am
�2

 m

�
z�.m/

�
C 1C

nX

mD1

ei˛m�m

z � am
; z 2 D [ @D: (25)

Consider inhomogeneous functional equations with a given element f 2
HA.[n

kD1Dk/:

 k.z/ D
X

m¤k
e2i˛m

�
rm

z � am
�2

 m

�
z�.m/

�
C f .z/; jz � ak j � rk; k D 1; 2; : : : ; n:

(26)

Theorem 4.1 ([36]). The system (26) has a unique solution for any circular mul-
tiply connected domain D. This solution can be found by the method of successive
approximations convergent in the space HA.[n

kD1Dk/, i.e., uniformly convergent in
every disk jz � akj � rk.

The system of functional equations (24) can be decomposed onto .nC1/ systems:

 
.1/

k .z/ D
X

m¤k
e2i˛m

�
rm

z � am
�2

 
.1/
m

�
z�.m/

�
C 1; jz � akj � rk;

k D 1; 2; : : : ; n

(27)

and

�
.`/

k .z/ D
X

m¤k
e2i˛m

�
rm

z � am
�2

�
.`/
m

�
z�.m/

�
C ei˛`

z � a` ı
0̀
k; jz � akj � rk;

k D 1; 2; : : : ; n;

(28)

where ı 0̀k D 1 � ı`k and ı`k is the Kronecker symbol. The unique solution of (24)
can be represented in the form

 k.z/ D  
.1/

k .z/C
nX

`D1
�` �

.`/

k .z/: (29)

The functions  k.z/ can be constructed by two methods. First, they can be
obtained by iterations applied to (24); second, by iterations applied separately to
(27) and to (28) and further their linear combination (29). For any fixed  k.z/, these
iterations yield a series (in general conditionally convergent) with two different
orders of summations. It follows from Theorem 4.1 that the result will be the same
since we construct the same unique solution of (24) by two different methods. It
is worth noting that (29) is a C-linear combination of the basic functions because
�` 2 R for ` D 1; 2; : : : ; n.
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We now apply Theorem 4.1 to (27). Let w 2 D be a fixed point not equal to
infinity. Introduce the functions

�m.z/ D
Z z

w�

.m/

 .1/m .t/dt C �m.w
�
.m//; jz � amj � rm; m D 1; 2; : : : ; n; (30)

and

!.z/ D �
nX

mD1
e2i˛m



�m

�
z�.m/

�
� �m

�
w�.m/

��

: (31)

The functions !.z/ and �m.z/ analytic in D and in Dm, respectively, and
continuously differentiable in the closures of the domains considered. One can see
from (30) that the function �m.z/ is determined by  m.z/ up to an additive constant
which vanishes in (31). The function!.z/ vanishes at z D w. Investigate the function
!.z/ on the boundary of D. It follows from (31) and t D t�.k/ (jt � ak j D rk) for
each fixed k that

!.t/ D �e2i˛k


�k .t/ � �k

�
w�.k/

��

� �k.t/; (32)

where

�k.z/ D
X

m¤k
e2i˛m



�m

�
z�.m/

�
� �m

�
w�.m/

��

: (33)

Using the relation [36]

d

d z



�m

�
z�.m/

��

D �
�

rm

z � am

�2
�0m
�

z�.m/
�
; jz � amj > rm; (34)

calculate the derivative

� 0k.z/ D �
nX

mD1
e2i˛m

�
rm

z � am
�2

 
.1/
m

�
z�.m/

�
: (35)

Application of (24) yields

� 0k.z/ D 1 �  
.1/

k .z/: (36)

Then (32) and (30) implies that

e�i˛k!.t/ D �ei˛k


�k .t/ � �k
�

w�.k/
��

C e�i˛k Œ�k.t/� t C dk; jt � akj D rk;

(37)
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where dk is a constant of integration. Calculation of the real part of (37) gives

Re Œe�i˛k .!.t/C t/ D pk; jt � akj D rk; (38)

wherepk is a constant. Comparing (38) with (13) and using Lemma 3.1 we conclude
that the conformal mappingD ontoD0 has the form

Q'.z/ D z C !.z/C constant; (39)

where !.z/ is calculated by (31). Application of the method of successive approxi-
mations to (27) and integration terms by terms of the obtained uniformly convergent
series yield the exact formula:

'k.z/ D qkCz�
X

k1¤k
e2i˛k1 .z�.k1/�w�.k1//C

X

k1¤k

X

k2¤k1
e2i.˛k1�˛k2 /.z�.k2k1/�w�.k2k1//

�
X

k1¤k

X

k2¤k1

X

k3¤k2
e2i.˛k1�˛k2C˛k3 /.z�.k3k2k1/�w�.k3k2k1//C � � � ; jz�ak j�rk:

(40)

Using (31) and (40), we write the function (39) up to an arbitrary additive
constant in the form

Q'.z/ D z �
nX

kD1
e2i˛k .z�.k/ � w�.k//C

nX

kD1

X

k1¤k
e2i.˛k�˛k1 /.z�.k1k/ � w�.k1k// (41)

�
nX

kD1

X

k1¤k

X

k2¤k1
e2i.˛k�˛k1C˛k2 /.z�.k2k1k/ � w�.k2k1k//C � � �

Differentiation of the latter uniformly convergent series term by term yields the
˛-series (8) with H.z/ D 1:

 .1/.z/ D 1 �
nX

kD1
e2i˛k .z�.k//

0 C
nX

kD1

X

k1¤k
e2i.˛k�˛k1 /.z�.k1k//

0 (42)

�
nX

kD1

X

k1¤k

X

k2¤k1
e2i.˛k�˛k1C˛k2 /.z�.k2k1k//

0 C � � �

A similar method can be used to construct�.`/

k .z/ satisfying (28) and to construct

�.`/.z/ D
nX

mD1
e2i˛m

�
rm

z � am
�2

�
.`/
m

�
z�.m/

�
C ei˛`

z � a`
; z 2 D [ @D: (43)
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We have

�.`/.z/ D ei˛`

z � a` � e�i˛`
nX

kD1

e2i˛k

z�.k/ � ak
.z�.k//

0 C ei˛`
nX

kD1

X

k1¤k

e2i.˛k�˛k1 /

z�.k1k/ � ak1
.z�.k1k//

0

�e�i˛`
nX

kD1

X

k1¤k

X

k2¤k1

e2i.˛k�˛k1C˛k2 /

z�.k2k1k/ � ak2
.z�.k2k1k//

0 C � � � (44)

Therefore, the general solution of the Riemann–Hilbert problem (11) has the
form

 .z/ D  .1/.z/C
nX

`D1
�` �

.`/.z/; (45)

where  .1/.z/ is given by (42) and �.`/.z/ by (44).
Integration of (45) from w to z yields

'.z/ D Q'.z/C
nX

`D1
�` Q'.`/.z/C constant; (46)

where Q'.z/ has the form (41). The function Q'.`/.z/ can be written explicitly as
follows:

Q'.`/.z/ D ei˛` ln
z � a`
w � a`

� e�i˛`
nX

kD1
e2i˛k ln

z�.k/ � ak

w�.k/ � ak
(47)

C ei˛`
nX

kD1

X

k1¤k
e2i.˛k�˛k1 / ln

z�.k1k/ � ak1
z�.k1k/ � ak1

� e�i˛`
nX

kD1

X

k1¤k

X

k2¤k1
e2i.˛k�˛k1C˛k2 / ln

z�.k2k1k/ � ak2

w�.k2k1k/ � ak2
C� � �

It is worth noting that separation of the terms with z and w in (47) can fail to
converge [31].

In order to compare (46) and (18), we note that the conformal mapping Q'.z/
coincides with z C '0.z/ up to an additive constant. Hence,

nX

kD1
ei˛kAk ln.z � ak/ D

nX

`D1
�` Q'.`/.z/; z 2 D: (48)

Substitution of (47) into (48) can yield relations between the constants Ak and �`.
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5 Schottky–Klein Prime Function

The Schottky–Klein prime function was described in [1, 6, 8–11]. Following
formulae (5)–(7) from Sect. 2, we represent the Schottky–Klein prime function in
terms of the uniformly convergent products for arbitrary circular multiply connected
domains and introduce the ˛-prime function.

Let � and w be fixed points of .D [ @D/nf1g. The following functions were
introduced in [31, 36] (see formulae (40) and (41) in [31]):

!0.z; �;w/ D ln
1Y

jD1

j .z; �;w/; (49)

where


j .z; �;w/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

� � �j .z/

� � �j .w/ ; if �j 2 E;

� � �j .w/
� � �j .z/

; if �j 2 O:

(50)

The multipliers 
j .z; �;w/ in (49) are arranged in accordance with the increasing
level of �j . The infinite product (49) converges uniformly in the variable z in every
compact subset of .D [ @D/n.f1g; f�g; fwg/. The justification of these assertions
is based on the application of Theorem 4.1 from Sect. 4 to the functional equations
studied in [28, 31, 36]:

'k.z/ D �
X

m¤k



'm

�
z�.m/

�
� 'm

�
w�.m/

��

C ln
z � �

w � � ; jz�akj � rk; k D 1; : : : ; n:

(51)
Instead of (51) we can apply Theorem 4.1 to the following functional equations:

'k.z/ D
X

m¤k



'm

�
z�.m/

�
� 'm

�
w�.m/

��

C ln
z � �

w � � ; jz � ak j � rk; k D 1; : : : ; n:

(52)
This justifies introduction of the function

!1.z; �;w/ D ln
1Y

jD1
�j .z; �;w/; (53)



840 V.V. Mityushev

where

�j .z; �;w/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

� � �j .z/
� � �j .w/

; if �j 2 E;

� � �j .z/
� � �j .w/

; if �j 2 O:

(54)

Similar to (10) we introduce the function

!.z; �;w/ D 1

2
Œ!0.z; �;w/C !1.z; �;w/ D 1

2
ln

Y

�j2Enf�0g

� � �j .z/

� � �j .w/ : (55)

Hence, the following infinite product is correctly defined for z not equal to �, w, and
infinity:

˝.z; �;w/ D
Y

�j2Enf�0g

� � �j .z/
� � �j .w/

: (56)

Therefore, we can introduce the function of two variables:

S.z; �/ D .��z/˝.�; z; z/˝.z; �; �/ D .��z/
Y

�j 2Enf�0g

z � �j .�/
z � �j .z/

� � �j .z/

� � �j .�/
: (57)

This is the famous Schottky–Klein function presented in the form of uniformly
convergent product. More precisely, the uniform convergence is proved for˝.�; z; z/
in the variable � in every compact subset of .D[@D/n.fzg; f1g/ and for˝.z; �; �/
in the variable z in every compact subset of .D [ @D/n.f�g; f1g/. The uniform
convergence in the variable .z; �/ in subsets of C

2 could be proved by refined
investigations of the corresponding functional equations [28, 31, 36].

Similar to (8)–(10) one can introduce ˛-prime functions

S.z; �; ˛/ D .� � z/
Y

�j2Enf�0g
e2isj .˛/

z � �j .�/
z � �j .z/

� � �j .z/

� � �j .�/
: (58)

where p is odd and

sj .˛/ WD ˛k � ˛k1 C � � � C ˛kp�1 � ˛kp : (59)

The correspondence between j and .kp; kp�1; � � � ; k1; k/ in (59) is established via
the numeration of the elements of E, i.e., via the relation �j .z/ D z�.kpkp�1���k1k/.
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6 Schottky Double

The Schottky double S is obtained from two equal multiply connected domains D
and QD � D glued along the circles jt � akj D rk (k D 1; 2; : : : ; n). Analytic
functions in a domain of S are those functions which are analytic on D [ @D in z
and analytic on QD[@ QD in z with the condition˚.t/ D Q̊ .t/ on the joint part of @D.
Hence, the Schottky double S is a compact Riemann surface of genus .n � 1/ [42].
Let tk be a fixed point on the circle jt � akj D rk and a0  D be a simple smooth
curve connecting the points tn and tk (k D 1; 2; : : : ; n�1). Introduce the symmetric
curve Qa0k  QD connecting the points tk and tn and the closed curve ak D a0 [ Qa0k
on S. Let bk denote the clockwise oriented circle jt � ak j D rk. The curves ak
and bk (k D 1; 2; : : : ; n � 1) form a homology basis for S, and any cycle on S is
homologous to a linear combination of ak and bk with integer coefficients.

The harmonic measure !`.z/ of the circle jt � a`j D r` relative to the multiply
connected domain D is a function harmonic in D continuous in D [ @D which
satisfies the Dirichlet problem:

!`.t/ D ı`k; jt � ak j D rk .k D 1; 2; : : : ; n/; (60)

where ı`k stands for the Kronecker symbol. The harmonic measures were con-
structed in [26, 29, 36] in terms of the Poincaré �2-series (3). Let Q!`.z/ be a
multivalued function harmonically conjugated to !`.z/. The functions w`.z/ D
!`.z/C i Q!`.z/ (` D 1; 2; : : : ; n�1) analytic inD are called the normalized Abelian
integrals of first kind in D. The differentials dw`.z/ generate the linear space of the
Abelian differentials of first kind and dw`.z/ (` D 1; 2; : : : ; n � 1) form the basis
of this space. Each differential dw`.z/ takes pure imaginary values on @D. Hence, it
can be analytically continued into QD in the topology of the Schottky double by the
symmetry principle. Moreover, dw`.z/ is single valued on S.

The periods of the Abelian differentials
Z

ak

dwm.t/ D 2

Z

a0

k

dwm.t/; Bkm D
Z

bk

dwm.t/ .k D 1; 2; : : : ; n � 1/

form two matrices. The second one has the form iB , where B D fBkmg is a real
negatively determined matrix. Following [42] we consider the real Jacobi inversion
problem. Let w�k .t/ denote the limit values of the Abelian integral on the curve a0k
when z tends to t 2 a0k from the right side of the curve a0k. The function w�k .t/ is
multivalued. We fix any of its branch in the simply connected domainDn �[n�1

kD1a0k
�

where it is single valued. Given constants ek .k D 1; 2; : : : ; n�1/. To find the points
zm (m D 1; 2; : : : ; n � 1) in D [ @D satisfying the relation

n�1X

mD1
Im wk.zm/ � ek � 1

2
Bkk C

n�1X

m¤k
Im
Z

a0

k

w�k .t/dwm.t/ .k D 1; 2; : : : ; n � 1/:

(61)
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Here, � means equality modulo B-periods. The generalized real Jacobi inversion
problem has the form [42]

n�1X

mD1
Im wk.zm/ � 1

2�i

Z

@D

�.t/dwm.t/ .k D 1; 2; : : : ; n � 1/; (62)

where �.t/ is a given Hölder continuous function except at a finite number of points
where finite step discontinuities are possible.

Let 	.t/ be a given Hölder continuous function on @D satisfying the condition
j	.t/j D 1. The Riemann–Hilbert problem

ImŒ	.t/ .t/ D 0; t 2 @D; (63)

was solved in terms of the ˛-series [26,29,36]. Let the functions 	.t/ from (63) and
�.t/ from (62) be related by formula

	.t/ D expŒi�.t/: (64)

We now consider the particular case (11) of the problem (63) and the corresponding
generalized Jacobi inversion problem (62). We have

	.t/ D ei˛k rk

t � ak
; �.t/ D ˛k � arg

t � ak
rk

; jt �ak j D rk .k D 1; 2; : : : ; n/: (65)

The branch of the argument corresponds to the chosen branch of the logarithm
ln.t � ak/ from Sect. 3. Each nontrivial solution of the problem (11) has exactly
n � 1 zeros zm (m D 1; 2; : : : ; n � 1) in D [ @D which solve the generalized
Jacobi inversion problem (62) with �.t/ given by (65). The ˛-series (42) is a solution
of (11).

The conditions �k D 0 by (48) imply that all Ak D 0 in the representation (18).
Hence, this case corresponds to the problem (13), (17) in a class of single-valued
functions. The unique solution of this problem is given by (41). This function is the
conformal mapping of the domainD onto the slit domainD0 with the normalization
(17). The function .1/.z/ given by (42) is the derivative of this conformal mapping.
Hence, it cannot have zeros interior the domainD. Therefore, all the zeros zm (m D
1; 2; : : : ; n � 1) of  .z/ which solve the generalized Jacobi inversion problem (62)
lie on the boundary @D. This observation can be useful to numerical solution of the
Jacobi inversion problem on the Schottky double.

We now briefly explain where does disappear the Jacobi inversion problem in
solution to the general Riemann–Hilbert problem by the method [26, 34]

ReŒ	.t/'.t/ D f .t/; t 2 @D: (66)
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Let the winding number ~ of the nonvanishing Hölder continuous function 	.t/ be
nonnegative. Application of the factorization method [19] to (66) reduces it to the
partial problem:

ReŒe�i˛k!.t/ D h.t/C
2~X

sD1
psˇs.t/; t 2 @D: (67)

A constructive factorization of the coefficient 	.t/ is performed by the Schwarz
operator constructed in [26,34] by the classical �2-series. Here, the known functions
h.t/, ˇs.t/ are expressed in terms of 	.t/ and f .t/, the constants ˛k in terms of
	.t/, and pk are undetermined real constants. If ~ < 0, the sum

P2~
sD1 in (67)

disappears and additionally the function !.z/ must have zero at infinity of order
j~j. It is worth noting that differentiation of the homogeneous boundary conditions
(67) (h.t/ D ˇs.t/ D 0) yields (11). This is the reason why the special Riemann–
Hilbert (11) is important. Further solution to the problem (67) repeats solution to
the problems (13) and (11) by the use of the ˛-series with careful tracking of the
arbitrary constants pk and single valuedness conditions for the function !.z/. The
method by Zverovich [42] contains an additional step which can be treated as the
factorization of the coefficients e�i˛k in (67) in order to reduce (67) to the Schwarz
problem:

Re Q!.t/ D Qh.t/; t 2 @D; (68)

and further application of the Schwarz operator to (68). This factorization of e�i˛k
can be treated as solution to the boundary value problem (11). It is reduced to the
Jacobi inversion problem solved by the theta function of Riemann. Therefore, the
crucial point of the method [42] is an effective construction of the theta function of
Riemann (not a multidimensional theta series, but its composition with the Abelian
integrals). Such an effective construction of the theta function is described in this
paper by solution to the homogeneous problem (11) in terms of the ˛-series. One
can see that this step is redundant because the problem (67) can be directly solved
in terms of the ˛-series [26, 34].

Remark 6.1. It is assumed in the theory of boundary value problems [19] that
Riemann–Hilbert problems for a simply connected domain ˝ have been solved up
to a conformal mapping of ˝ onto the unit disk. The construction of conformal
mappings is a separate problem frequently pure numerical. The same point of
view can be accepted for multiply connected domains. It is known that any
multiply connected domain can be mapped onto a circular one [23]. For instance,
the Schwarz–Christoffel formula for multiply connected domains bounded by
polygons and its particular cases for slit domains were deduced in [12, 31, 35].
Effective numerical methods for conformal mappings were developed by many
mathematicians (see [17, 24] and works cited therein) that supports the above point
of view. However, the direct scheme [34] to solve Riemann–Hilbert problems for
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special multiply connected domains can be developed in the form of the generalized
alternating method of Schwarz [25, 27, 36]. For instance, a boundary value problem
for multiply connected domains bounded by nonoverlapping ellipses was solved
in [30].

7 Fast Algorithm

Though the complete solution of the Riemann–Hilbert problem for an arbitrary
circular multiply connected domain was written explicitly in terms of the ˛-
series, many mathematicians apply the standard absolutely convergent scheme to
the Poincaré series in partial cases and use direct methods of computation to the
Poincaré series [39]. Perhaps, it is related to the fact that even absolutely convergent
Poincaré series are slowly convergent for closely spaced disks. We suppose that
modifications of the iterative functional equations can increase the convergence. In
the present section, we discuss such a modification proposed in [37] to construct a
basic solution of the problem (11). For brevity, we consider the classical Poincaré
series when ˛k D 0 (k D 1; 2; 3) for three equal disks (rk D r).

Consider an auxiliary problem for two disks. Let the domain G be the comple-
ment of two disjoint disks jz � ak j � r (k D 1; 2) to the extended complex plane.
The quadratic equation z�.1/ D z�.2/ with respect to z has two roots

z12 D a1 C a2

2
� a2 � a1

2

s

1 � 2
r21 C r22

ja2 � a1j2 ; (69)

z21 D a1 C a2

2
C a2 � a1

2

s

1 � 2 r21 C r22
ja2 � a1j2 ;

The complex potential

�12.z/ D 1

z � z12
� 1

z � z21
(70)

describes the flux between the disks when the difference u1� u2 of the potentials on
the boundaries of the disks is equal to

u1 � u2 D ln
1 �

q
1 � 4r2

ja2�a1j2

1C
q
1 � 4r2

ja2�a1j2
: (71)



Poincaré ˛-Series for Classical Schottky Groups 845

The main idea of the fast method is based on the decomposition of the complex
flux  .z/ onto  ı.z/ and  0.z/ where the singular function  ı.z/ has the form

 ı.z/ D �12.z/C �13.z/; (72)

where �13.z/ is introduced similar to (70) (the subscript 2 is replaced by 3).
A solution of the boundary value problem (11) for n D 3 is looked for in the form

 .z/ D  0.z/C  ı.z/; z 2 D; (73)

where  ı.z/ is given by (72). The boundary value problem (11) becomes

Im
t � ak

r
Œ 0.t/C  ı.t/ D 0; jt � ak j D r; k D 1; 2; 3: (74)

Introduce the functions analytic in jz � akj < r

fk.z/ D

8
ˆ̂
<

ˆ̂
:

0 for k D 1

�13.z/ for k D 2;

�12.z/ for k D 3:

(75)

One can see that

Im
t � am

r
�12.t/ D 0; jt � amj D r .m D 1; 2/

and

Im
t � am

r
�13.t/ D 0; jt � amj D r .m D 1; 3/:

Then (74) can be written in the form

Im
t � ak
r

Œ 0.t/C fk.t/ D 0; jt � akj D r; k D 1; 2; 3: (76)

The boundary value problem (76) is reduced to the R-linear problem

 0.t/ D  k.t/C
�

r

t � ak
�2
 k.t/ � fk.t/; jt � ak j D r; k D 1; 2; 3: (77)
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The problem (77) can be reduced to the following system of functional equations
(see Sect. 4):

 k.z/ D
X

m¤k

�
rm

z � am

�2
 m

�
z�.m/

�
C fk.z/: (78)

The iteration method can be applied to solve the system (24)

 
.0/

k .z/ D fk.z/; (79)

 
.p/

k .z/ D
X

m¤k

�
rm

z � am
�2

 
.p�1/
m

�
z�.m/

�
C fk.z/; p D 1; 2; : : : : (80)

The p-th approximation of the complex flux is calculated by formula

 .p/.z/ D
X

mD1;2;3

�
rm

z � am

�2
 
.p/
m

�
z�.m/

�
C  ı.z/; z 2 D; (81)

where  ı.z/ is given by (72).
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Figure 2 describes the flux around three closely placed disks. It follows from
computations that 6 iterations are sufficient to obtain an accessible result (the
respective error on the boundary is 2%).

8 Discussion

In the present paper, we introduce the Poincaré ˛-series. First time, the ˛-series
were used in [26] without their deep discussion to solve Riemann–Hilbert problems
for an arbitrary circular multiply connected domain. The main difference in the
methods [41] and [26, 34] applied to Riemann–Hilbert problems is that [41] is
based on the Jacobi inversion problem and [26, 34] is not. But [26, 34] includes
the ˛-series that coincide with the theta function of Riemann. Hence, the solution
to the Jacobi inversion problem is implicitly included in the ˛-series. It is worth
noting that solution to Riemann–Hilbert problems in [41] and later investigations
by this scheme are not completed. First of all, it was assumed in [41] that the
Abelian integrals of first kind were known. Substitution of the Abelian integrals
into the multidimensional theta series yielded the theta function of Riemann. The
latter function was applied to investigate the Jacobi inversion problem. After this
the Schwarz operator was applied to get the solution of the Riemann–Hilbert prob-
lem. Construction of the Abelian integrals (harmonic measures) and the Schwarz
operator in terms of the classical �2-series of Poincaré [26, 34] could make this
complicated scheme effective. However, the generalized Jacobi inversion problem
cannot be avoided in the scheme [41].

Application of the ˛-series simplifies solution to Riemann–Hilbert problems by
elimination of the Jacobi inversion problem and produces directly the theta function
of Riemann. Moreover, the scheme [26,34] allows to constructively solve the Jacobi
inversion problem as a separately stated problem. Bojarski’s linear algebraic system
(see Bojarski’s addition to [40]) which describes solvability of the Riemann–Hilbert
problem is explicitly written in terms of the ˛-series. The constructive method [26,
34] is valid for the Schottky double. It is interesting to extend it to the general
compact Riemann surfaces.

Crowdy [8] stated open problems of the constructive theory of functions in
multiply connected domains. In particular, Crowdy wrote [8] about Schwarz–
Christoffel-type conformal mappings: “The history of this particular problem also
presents a paradigm for a key message of this paper: that, given modern advances
in computational capability and in light of modern applications, many topics in
classical geometric function theory can (and should!) be revisited and reappraised.”
I think that this phrase should concern the whole constructive theory of functions
in multiply connected domains. In this paper, we answer some questions stated
by Crowdy [8]. It is worth noting that these answers are not always complete and
require further investigations.
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Question 1 of Crowdy addressed to the infinite product representation (57) for
the Schottky–Klein prime function which is always uniformly convergent. Some
properties of the function were described by use of the absolutely convergent prod-
uct (57), in particular, by changing the order of multiplication in this product that
is forbidden for conditionally convergent series. In order to extend investigations to
uniformly convergent products, one can use functional equations following lines of
the paper [28] where the automorphic property (4) was proved without changing the
order of summation.

Question 2 of Crowdy concerned effective computational methods. Such a
fast method is presented in Sect. 7 and Appendix for a triply connected domain.
Actually, it concerns only the Dirichlet problems with constant boundary values.
Further extensions are possible by deriving computationally effective formulae for
boundary value problems in doubly connected domains.

Question 3 of Crowdy concerned the complicated scheme by Zverovich [41]
used by many authors for Riemann–Hilbert problems. It is explained above in this
section that the method [26, 34] based on ˛-series is constructive and simpler than
the method [41].

Crowdy in Question 4 paid attention to an alternative class of canonical multiply
connected domains introduced by Bell [2, 3, 7, 22]. It can be add to this that Bell’s
domains have applications to neutral inclusions [20]. The latter problem is related
to eigenvalue problems, Courant’s nodal domain theorem, the R-linear [33], and
nonlinear Riemann–Hilbert problems discussed in [32]. It is interesting to study the
R-linear eigenvalue problems for Bell’s domains in order to estimate the minimal
size of the coating of invisible inclusions.

Question 5 of Crowdy addressed to the Riemann–Hilbert problem (13) and
eventual use of the classical Schottky–Klein prime function. As it follows from the
result of this paper, the ˛-prime function (58) can be applied to (13) and it is rather
impossible to solve the problem (13) in terms of the classical prime function (57).

Acknowledgements The author is grateful to D. Crowdy and T. DeLillo for helpful discussions,
E.A. Krushevski for discussions concerning the results [41], and A.E. Malevich for the help in
preparation of the code (see Appendix).

Appendix

In this section, the code in Mathematica c is attached for symbolic computations
used in Sect. 7.
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Inclusion Properties for Certain Classes
of Meromorphic Multivalent Functions

Nak Eun Cho

Dedicated to Professor Hari M. Srivastava

Abstract Making use of an operator I	;
, which is defined by using convolution,
the author introduces several new subclasses of meromorphic multivalent functions
and investigates various inclusion properties of these subclasses. Some interest-
ing applications involving these and other classes of integral operators are also
considered.

1 Introduction

Let ˙p denote the class of functions of the form

f .z/ D 1

zp
C
1X

kD1
akzk�p .p 2 N D f1; 2; : : :g/;

which are analytic in the punctured open unit disk D D fz 2 C W 0 < jzj < 1g. If
f and g are analytic in U D D [ f0g, we say that f is subordinate to g, written
f � g or f .z/ � g.z/, if there exists a Schwarz function w in U such that f .z/ D
g.w.z//. For 0 � �; ˇ < 1, we denote by MSp.�/ and MKp.�/ and MCp.�; ˇ/ the
subclasses of ˙p consisting of all meromorphic functions which are, respectively,
p-valent starlike of order � and p-valent convex of order � and p-valent close to
convex of order ˇ and type � in U (for details, see, e.g., [5]).

Let N be the class of univalent functions � in U normalized by �.0/ D 1 for
which �.U/ is convex and Ref�.z/g > 0 .z 2 U/.
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Making use of the principle of subordination between analytic functions, we
introduce the subclasses MSp.�; �/, MKp.�; �/, and MCp.�; ˇI �; / of the class
˙p for 0 � �; ˇ < 1, and �; 2 N, which are defined by

MSp.�I �/ WD
�

f 2 ˙p W 1

p � �
�

� zf 0.z/
f .z/

� �
�

� �.z/in U

	

;

MKp.�I �/ WD
�

f 2 ˙p W 1

p � �
�

�
�

1C zf 00.z/
f 0.z/

	

� �

�

� �.z/in U

	

;

and

MCp.�; ˇI �; / W D
�

f 2 ˙p W 9g 2 MSp.�I �/

such that
1

1 � ˇ

�

� zf 0.z/
g.z/

� ˇ
�

�  .z/in U

	

:

We note that the classes mentioned above are motivated essentially by the familiar
classes which have been used widely on the space of analytic and univalent functions
in U (see, for details, [2, 6, 9]), and for special choices for the functions � and  
involved in these definitions, we can obtain the well-known subclasses of˙1 [1,4,5].

Let

f	.z/ D 1

zp.1 � z/	Cp
.	 > �pI z 2 D/

and let f	;
 be defined such that

f	.z/ � f	;
.z/ D 1

zp.1 � z/

.	 > �pI 
 > 0I z 2 D/; (1)

where the symbol .�/ stands for the Hadamard product (or convolution). Then we
define the operator I	;
 W ˙p ! ˙p as follows:

I	;
f .z/ D �
f	;
 � f � .z/ .f 2 ˙pI 	 > �pI 
 > 0/: (2)

In particular, we note that I0;pC1f .z/ D .zf 0.z/ C 2f .z//=p and I1;pC1f .z/ D
f .z/. In view of (1) and (2), we obtain the useful identities as follows:

z
�
I	C1;
f .z/

�0 D .	C p/I	;
f .z/ � .	C 2p/I	C1;
f .z/ (3)

and

z
�
I	;
f .z/

�0 D 
I	;
C1f .z/ � .
C p/I	;
f .z/: (4)
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For p D 1, the operator I	;
 is closely related to the Choi–Saigo–Srivastava
operator for analytic and univalent functions [2], which extends the Noor integral
operator studied by Liu [7] (also, see [8, 11, 12]).

Next, by using the operator I	;
, we introduce the following classes of meromor-
phic functions for �; 2 N, 	 > �p, 
 > 0, and 0 � �; ˇ < p:

MSp.	; 
I �I �/ WD ff 2 ˙p W I	;
f 2 MSp.�I�/g;

MKp.	; 
I �I �/ WD ff 2 ˙p W I	;
f 2 MKp.�I�/g;

and

MCp.	; 
I �; ˇI �; / WD ff 2 ˙p W I	;
f 2 MCp.�; ˇI�; /g:

We also note that

f .z/ 2 MKp.	; 
I �I �/ ” �zf 0.z/=p 2 MSp.	; 
I �I �/: (5)

In particular, we set

MSp

�

	;
I �I 1C Az

1C Bz

�

D MSp.	; 
I �I A;B/ .�1 � B < A � 1/

and

MKp

�

	;
I �I 1C Az

1C Bz

�

D MKp.	; 
I �I A;B/ .�1 � B < A � 1/:

In this paper, we investigate several inclusion properties of the classes

MSp.	; 
I �I�/; MKp.	; 
I �I�/; and MCp.	; 
I �; ˇI �; /

associated with the operator I	;
. Some applications involving integral operators are
also considered.

2 Inclusion Properties Involving the Operator Il;�

The following results will be needed in our investigation.

Lemma 2.1 ([3]). Let � be convex univalent in U with �.0/ D 1 and

Re
˚
��.z/C �



> 0 .�; � 2 C/:
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If p is analytic in U with p.0/ D 1, then

p.z/C zp0.z/
�p.z/C �

� �.z/ .z 2 U/

implies that

p.z/ � �.z/ .z 2 U/:

Lemma 2.2 ([10]). Let � be convex univalent in U and ! be analytic in U with
Ref!.z/g � 0. If p is analytic in U and p.0/ D �.0/, then

p.z/C !.z/zp0.z/ � �.z/ .z 2 U/

implies that

p.z/ � �.z/ .z 2 U/:

Theorem 2.1. Let � 2 N with

max
z2U Ref�.z/g < min

�

C p � �
p � � ;

	C 2p � �
p � �

	

.	 > �pI 
 > 0I 0 � � < p/:

Then

MSp.	; 
C 1I �I �/  MSp.	; 
I �I �/  MSp.	C 1; 
I �I �/:

Proof. First of all, we will show that

MSp.	; 
C 1I �I �/  MSp.	; 
I �I �/:
Let f 2 MSp.	; 
C 1I �I �/ and set

p.z/ D 1

p � �
�

� z.I	;
f .z//0

I	;
f .z/
� �

�

; (6)

here p.z/ is analytic in U with p.0/ D 1. Applying (4) and (6), we obtain

� 
I	;
C1f .z/
I	;
f .z/

D .p � �/p.z/ � .
C p � �/: (7)

Taking the logarithmic differentiation on both sides of (7) and multiplying by z,
we have

1

p � �
�

� z.I	;
C1f .z//0

I	;
C1f .z/
� �

�

D p.z/C zp0.z/
�.p � �/p.z/C 
C p � �

.z 2 U/:

(8)
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Since

max
z2U Ref�.z/g < 
C p � �

p � � ;

we see that

Ref�.p � �/�.z/C 
C p � �g > 0 .z 2 U/:

Applying Lemma 2.1 to (8), it follows that p.z/ � �.z/ for z 2 U, that is,
f 2 MSp.	; 
I �I �/.

To prove the second part, let f 2 MSp.	; 
I �I �/ and put

s.z/ D 1

p � �

�

� z.I	C1;
f .z//0

I	C1;
f .z/
� �

�

;

where s is an analytic function with s.0/ D 1. Then, by using the arguments similar
to those detailed above with (3), it follows that s.z/ � �.z/ for z 2 U, which implies
that f 2 MSp.	C 1; 
I �I �/.

Therefore, we complete the proof of this statement. ut
Theorem 2.2. Let � 2 N with

max
z2U Ref�.z/g < min

�

C p � �
p � � ;

	C 2p � �
p � �

	

.	 > �pI 
 > 0I 0 � � < p/:

Then

MKp.	; 
C 1I �I �/  MKp.	; 
I �I �/  MKp.	C 1; 
I �I �/:

Proof. Applying (5) and Theorem 2.1, we observe that

f .z/ 2 MKp.	; 
C 1I �I �/ ” �zf 0.z/=p 2 MSp.	; 
C 1I �I �/
H) �zf 0.z/=p 2 MSp.	; 
I �I �/
” I	;
f .z/ 2 MKp.�I �/
” f .z/ 2 MKp.	; 
I �I �/;

and

f .z/ 2 MKp.	; 
I �I �/ ” �zf 0.z/=p 2 MSp.	; 
I �I �/
H) �zf 0.z/=p 2 MSp.	C 1; 
I �I �/
” I	C1;
f .z/ 2 MKp.�I �/
” f .z/ 2 MKp.	C 1; 
I �I �/;

which evidently proves Theorem 2.2. ut
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Taking

�.z/ D 1C Az

1C Bz
.�1 � B < A � 1I z 2 U/

in Theorems 2.1 and 2.2, we have the following result.

Corollary 2.1. Let

1C A

1C B
< min

�

C p � �

p � �
;
	C 2p � �

p � �
	

;

with 	 > �pI 
 > 0I 0 � � < pI �1 < B < A � 1. Then

MSp.	; 
C 1I �I A;B/  MSp.	; 
I �I A;B/  MSp.	C 1; 
I �I A;B/
and

MKp.	; 
C 1I �I A;B/  MKp.	; 
I �I A;B/  MKp.	C 1; 
I �I A;B/:

Next, by using Lemma 2.2, we obtain the following inclusion relation for the
class MCp.	; 
I �; ˇI �; /.
Theorem 2.3. Let �; 2 N with

max
z2U Ref�.z/g < min

�

C p � �
p � � ;

	C 2p � �
p � �

	

.	 > �pI 
 > 0I 0 � � < p/:

Then

MCp.	; 
C1I �; ˇI �; /  MCp.	; 
I �; ˇI �; /  MCp.	C1; 
I �; ˇI �; /:

Proof. We begin by proving that

MCp.	; 
C 1I �; ˇI �; /  MCp.	; 
I �; ˇI �; /:
Let f 2 MCp.	; 
 C 1I �; ˇI �; /. Then, in view of the definition of the class
MCp.	; 
C 1I �; ˇI �; /, there exists a function r 2 MSp.�I �/ such that

1

p � ˇ

�

� z.I	;
C1f .z//
r.z/

� ˇ

�

�  .z/ .z 2 U/:

Choose the function g such that I	;
C1g.z/ D r.z/. Then g 2 MSp.	; 
C 1I �I�/
and
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1

p � ˇ

�

� z.I	;
C1f .z//0

I	;
C1g.z/
� ˇ

�

�  .z/ .z 2 U/: (9)

Now let

p.z/ D 1

p � ˇ

�
z.I	;
f .z//0

I	;
g.z/
� ˇ

�

; (10)

where p.z/ is analytic in U with p.0/ D 1. Using (4), we obtain

1

p � ˇ

�

� z.I	;
C1f .z//0

I	;
C1g.z/
� ˇ

�

D 1

p � ˇ

0

B
B
@

z.I	;
.�zf 0.z///0

I	;
g.z/
C .
C p/

I	;
.�zf 0.z//
I	;
g.z/

z.I	;
g.z//0

I	;
g.z/
C 
C p

� ˇ

1

C
C
A : (11)

Since g 2 MSp.	; 
C 1I �I �/  MSp.	; 
I �I �/, by Theorem 2.1, we set

q.z/ D 1

p � �

�

� z.I	;
g.z//0

I	;
g.z/
� �

�

;

where q.z/ � �.z/ for z 2 U with the assumption for � 2 N. Then, by virtue of
(10) and (11), we observe that

I	;
.�zf 0.z// D .p � ˇ/p.z/I	;
g.z/C ˇI	;
g.z/ (12)

and

1

p � ˇ
�

� z.I	;
C1f .z//0

I	;
C1g.z/
� ˇ

�

D 1

p � ˇ

0

B
B
@

z.I	;
.�zf 0.z///0

I	;
g.z/
C .
C p/.p � ˇ/p.z/C ˇ/

�.p � �/q.z/C 
C p � �
� ˇ

1

C
C
A : (13)

Upon differentiating both sides of (12), we have

z.I	;
.�zf 0.z///0

I	;
g.z/
D .p � ˇ/zp0.z/� ..p � ˇ/p.z/C ˇ/..p � �/q.z/C �/: (14)
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Making use of (9), (13), and (14), we get

1

p � ˇ
�

� z.I	;
C1f .z//0

I	;
C1g.z/
� ˇ

�

D p.z/C zp0.z/
�.p � �/q.z/C 
C p � �

�  .z/ .z 2 U/: (15)

Since 
 > 0 and q.z/ � �.z/ for z 2 U with

max
z2U Ref�.z/g < 
C p � �

p � � ;

Ref�.p � �/q.z/C 
C p � �g > 0 .z 2 U/:

Hence, by taking

!.z/ D 1

�.p � �/q.z/C 
C p � �;

in (15), and applying Lemma 2.2, we can show that p.z/ �  .z/ for z 2 U, so that
f 2 MCp.	; 
I �; ˇI �; /.

For the second part, by using the arguments similar to those detailed above with
(3), we obtain

MCp.	; 
I �; ˇI �; /  MCp.	C 1; 
I �; ˇI �; /:

Therefore, we complete the proof of Theorem 2.3. ut

3 Inclusion Properties Involving the Integral Operator Fc

In this section, we consider the integral operator Fc [1, 4, 5] defined by

Fc.f / WD Fc.f /.z/ D c

zcC1

Z z

0

tcf .t/dt .f 2 ˙pI c > 0/: (16)

Theorem 3.1. Let 	 > �p; 
 > 0 and let � 2 N with

max
z2U Ref�.z/g < c C p � �

p � �
.c > 0I 0 � � < p/:

If f 2 MSp.	; 
I �I �/, then Fc.f / 2 MSp.	; 
I �I �/.
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Proof. Let f 2 MSp.	; 
I �I �/ and set

p.z/ D 1

p � �
�

� z.I	;
Fc.f /.z//0

I	;
Fc.f /.z/
� �

�

; (17)

where p.z/ is analytic in U with p.0/ D 1. From (16), we also have

z.I	;
Fc.f /.z//
0 D cI	;
f .z/ � .c C p/I	;
Fc.f /.z/: (18)

Then, by using (17) and (18), we obtain

� c
I	;
f .z/

I	;
Fc.f /.z/
D .p � �/p.z/ � .c C p � �/: (19)

The remaining part of the proof is similar to that of Theorem 2.1, and so we may
omit the detailed proof involved. ut
Theorem 3.2. Let 	 > �p; 
 > 0 and let � 2 N with

max
z2U Ref�.z/g < c C p � �

p � � .c > 0I 0 � � < p/:

If f 2 MKp.	; 
I �I �/, then Fc.f / 2 MKp.	; 
I �I �/.
Proof. By applying Theorem 3.1, it follows that

f .z/ 2 MKp.	; 
I �I �/ ” �zf 0.z/=p 2 MSp.	; 
I �I �/
H) �z.Fc.f /.z//

0=p 2 MSp.	; 
I �I �/
” Fc.f /.z/ 2 MKp.	; 
I �I �/;

which proves Theorem 3.2. ut
Corollary 3.1. Let 	 > �p; 
 > 0 and

.p � �/.1CA/

1C B
< c C p � � .c > 0I �1 < B < A � 1I 0 � � < p/:

Then if f 2 MSp.	; 
I �I A;B/ .or MKp.	; 
I �I A;B//, we have that
Fc.f / 2 MSp.	; 
I �I A;B/ (or MSp.	; 
I �I A;B/).
Theorem 3.3. Let 	 > �p;
 > 0 and let �; 2 N with

max
z2U Ref�.z/g < c C p � �

p � � .c > 0I 0 � � < p/:

If f 2 MCp.	; 
I �; ˇI �; /, then Fc.f / 2 MCp.	; 
I �; ˇI �; /.
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Proof. Let f 2 MCp.	; 
I �; ˇI �; /.
Then, from the definition of MCp.	; 
I �; ˇI �; /, there exists a function g 2

MSp.	; 
I �I �/ such that

1

p � ˇ
�

� z.I	;
f .z//0

I	;
g.z/
� ˇ

�

�  .z/ .z 2 U/: (20)

Thus, we set

p.z/ D 1

p � ˇ

�

� z.I	;
Fc.f /.z//0

I	;
Fc.g/.z/
� ˇ

�

;

where p.z/ is analytic in U with p.0/ D 1. Applying (18), we get

1

p � ˇ
�

� z.I	;
f .z//0

I	;
g.z/
� ˇ

�

D 1

p � ˇ

0

B
B
@

z.I	;
Fc.�zf 0.z//.z//0

I	;
Fc.g/.z/
C .c C p/

I	;
Fc.�zf 0.z//.z/
I	;
Fc.g/.z/

z.I	;
Fc.g/.z//0

I	;
Fc.g/.z/
C c C p

� ˇ

1

C
C
A : (21)

Since g 2 MSp.	; 
I �I �/, we see from Theorem 3.1 that Fc.g/ 2
MSp.	; 
I �I �/. Let us now put

q.z/ D 1

p � �

�

� z.I	;
Fc.g/.z//0

I	;
Fc.g/.z/
� �

�

;

where q.z/ � �.z/ for z 2 U with the assumption for � 2 N. Then, by using the
same techniques as in the proof of Theorem 2.3, we can prove from (20) and (21)
Fc.f / 2 MCp.	; 
I �; ˇI �; /. ut
Remark. If we take p D 1; 	 D 1, and 
 D 2 in all theorems of this section, then
we extend the results by Goel and Sohi [4], which reduce the results earlier obtained
by Bajpai [1].
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A Journey from Gross-Problem
to Fujimoto-Condition

Indrajit Lahiri and Abhijit Banerjee

Dedicated to Professor Hari M. Srivastava

Abstract In the short survey we discuss the influence of Gross-problem on the set
sharing of entire and meromorphic functions. We also see the impact of Fujimoto-
condition on the study of uniqueness polynomials.

1 Introduction and Unique Range Sets

The value distribution theory is a prominent branch of complex analysis. In this
theory one studies how an entire or a meromorphic function assumes some values
and the influence of assuming certain values, in some specific manner, on a function.
In other words, one studies the frequency with which a meromorphic function
takes up different values in the complex plane. Perhaps the fundamental theorem
of classical algebra is the most well-known value distribution theorem and the next
one is Picard’s theorem.

The uniqueness theory of entire and meromorphic functions has been emerged
as an active subfield of the value distribution theory with distinguishable entity.
This theory mainly studies conditions under which there exists essentially only one
function satisfying the prescribed conditions. It is well known that in a given domain
D only a single analytic function exists that assumes specified values in a sequence
of points fzng convergent to a point of D. This result completely characterises an
analytic function in a domainD just by its behaviour in a small subset ofD and can
be regarded as the gateway to the uniqueness theory.

I. Lahiri (�) • A. Banerjee
Department of Mathematics, University of Kalyani, Kalyani, West Bengal 741235, India
e-mail: ilahiri@hotmail.com; abanerjee_kal@yahoo.co.in; abanerjee_kal@rediffmail.com
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Let f and g be two nonconstant meromorphic functions and let a be a
finite complex number. We say that f and g share the value a CM (counting
multiplicities), if f � a and g � a have the same set of zeros with the same
multiplicities. Also f and g are said to share the value a IM (ignoring multiplicities)
if f � a and g� a have the same set of zeros, where the multiplicities are not taken
into account. In addition we say that f and g share 1 CM (IM) if 1=f and 1=g
share 0 CM (IM).

Let S be a set of distinct elements of C [ f1g and

Ef .S/ D
[

a2S
fz W f .z/ � a D 0g;

where each zero is counted according to its multiplicity. If we ignore the multiplicity,
then this set is denoted by Ef .S/. If Ef .S/ D Eg.S/ (Ef .S/ D Eg.S/), we
say that f and g share the set S CM (IM). Evidently if S is a singleton, then the
definition coincides with the definition of CM (IM) sharing of a value.

In 1926, R. Nevanlinna proved that a nonconstant meromorphic function is
uniquely determined by the inverse image of five distinct values (ignoring multi-
plicities) in the extended complex plane. A few years later, he showed that when
multiplicities are considered, four values are sufficient to determine a function. In
this case two functions either coincide or one is a bilinear transformation of the
other. The above two fundamental results, known as five and four value theorems,
respectively, are the starting points of the modern uniqueness theory for entire and
meromorphic functions.

In 1977 F. Gross [9] initiated the uniqueness theory under more general setup
by considering preimages of sets of distinct elements (counting multiplicities). He
proposed the following problem which has a significant influence on the theory and
popularly known as “Gross-problem”:

Does there exist a finite set S such that for two entire functions f and g, Ef .S/ D Eg.S/

implies f � g?

In 1982 F. Gross and C.C. Yang [10] proved the following result:

Theorem 1.1. Let S D fz 2 C W ez C z D 0g and f, g be two nonconstant entire
functions. If Ef .S/ D Eg.S/, then f � g.

In [10], a set S is termed as a unique range set for entire functions (URSE in
short) if for any two non-constant entire functions f and g, the conditionsEf .S/ D
Eg.S/ imply f � g. In a similar fashion one can define a unique range set for
meromorphic functions (URSM in short).

In 1997 H.X. Yi [20] called any set S  C [ f1g a unique range set for
meromorphic (entire) functions with ignoring multiplicities (URSM-IM/URSE-IM)
or a reduced unique range set for meromorphic (entire) functions (R-URSM/R-
URSE) if Ef .S/ D Eg.S/ implies f � g for any pair of nonconstant
meromorphic functions f and g.
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The study of relationships between two entire or meromorphic functions via the
preimage sets of several distinct values in the range has a long history. We may note
that the URSE as obtained by F. Gross and C.C. Yang (Theorem 1.1) is an infinite
set. Since then with the inspiration of “Gross-problem”, the continuous study of
unique range sets (URS’s) is focused mainly on two aspects : finding a URS with
minimal cardinality and characterising a URS.

In 1994 H. X. Yi [17] settled “Gross-problem” affirmatively and exhibited a
URSE with 15 elements. Just in the next year P. Li and C.C. Yang [13] exhibited a
URSM with 15 elements and a URSE with 7 elements. H.X.Yi [18] also confirmed
the result of H.X. Yi and P. Li–C.C. Yang for URSE. To study a URSE or a URSM,
P. Li and C.C. Yang actually investigated the zero set S of a polynomial of the form
P.z/ D zn C azn�m C b, where gcd .n;m/ D 1, n > m � 1 and a, b are so chosen
that P has only simple zeros. When m � 2, then the set S generates a URSM,
and when m D 1, then the set S generates a URSE. In 1996 H.X. Yi [19] further
improved the result of P. Li and C.C. Yang by reducing the cardinality of URSM
to 13.

Till date the URSM with 11 elements is the smallest available URSM obtained
by Frank and Reinders [6], which is the zero set of the following polynomial:

P.z/ D .n � 1/.n � 2/
2

zn � n.n � 2/zn�1 C n.n � 1/

2
zn�2 � c;

where n � 11 and c 6D 0, 1.
It is observed that a URSE must contain at least 5 elements, whereas a URSM

must contain at least 6 elements (see [16, p. 517 and p. 527]).

2 Anatomy of Polynomials Generating Unique Range Sets

Before 1995 the investigations to determine a finite URSM (or URSE) were solely
confined to that of finding a set with certain number of distinct elements. It took up
to 1995 to realise the underlying importance of the polynomial backbone of a finite
URSM (or URSE). P. Li and C.C. Yang [13] first highlighted the fact that a finite
URSM (or URSE) is, infact, the set of distinct zeros of a polynomial, and equal
emphasis should be given to the mechanism of the polynomial.

The following two terminologies were introduced by P. Li and C. C. Yang [13]:

Definition 2.1. Let S D fa1; a2; : : : ; ang be a subset of C with finite distinct
elements. If S is a URSM (URSE), then any polynomial of degree n, which has
S as the set of its zeros, is called a polynomial of URSM (URSE).

We call it a PURSM (PURSE) in brief.
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Definition 2.2. Let P be a polynomial. If the condition P.f / � P.g/ implies
f � g for any two nonconstant meromorphic (entire) functions f and g, we say
that P is a uniqueness polynomial for meromorphic (entire) functions. In brief we
write P as a UPM (UPE).

It is easy to note that every PURSM (PURSE) is a UPM (UPE). However the
converse situation needs some special attention, which we discuss later on.

Till date, to the knowledge of the authors, three types of PURSM (and so UPM)
have been achieved. The principal mechanism of construction of such a polynomial
is to ensure that it has only simple zeros and most importantly to choose the
coefficients in such a judicious manner which ultimately yields the equality f � g

under P.f / � P.g/. The situation will be better understood if we discuss the
anatomy of these polynomials.

First Type: Let P1.z/ D znCazn�mCb, where n,m are mutually prime positive
integers with m � 2 and n � 2mC 9 and a, b are two nonzero constants satisfying
.n�1/.n�1/ 6D b.�n=a/n. The hypothesis ensures that P1 has no multiple zero. Now
following the method of H.X. Yi [19], one can verify that P1 is a PURSM. Hence
for any two nonconstant meromorphic functions f and g P1.f / � P1.g/ implies
f � g.

Second Type: Let

P2.z/ D .n � 1/.n � 2/
2

zn � n.n � 2/zn�1 C n.n � 1/
2

zn�2 � c;

where n .�11/ is a positive integer and c . 6D 0, 1) is a constant. Now,

P 02.z/ D n.n � 1/.n� 2/
2

.z � 1/2zn�3:

Clearly, P2.1/ D 1 � c and P2.0/ D �c. So, 0 and 1 are the zeros of P2 C c

and P2 � .1 � c/ with respective multiplicities n � 2 and 3. Therefore, we can put
P2.z/ � .1 � c/ D .z � 1/3Qn�3.z/ and P2.z/C c D zn�2Q2.z/, where Qn�3 and
Q2 are polynomials of degree n � 3 and 2, respectively, with Qn�3.1/ 6D 0 and
Q2.0/ 6D 0. Further, we note that all the zeros of Qn�3 and Q2 are simple. For
otherwise P 02 would have zeros other than 1 and 0. So for every d 2 Cnf1� c;�cg,
P2 � d has only simple zeros. Hence P2 has only simple zeros.

In 1998 G. Frank and M. Reinders [6] proved that the above polynomial is a
PURSM and so it is a UPM.

Third Type: Let P3.z/ D azn C n.n � 1/z2 C 2n.n � 2/bz � .n� 1/.n� 2/b2,
where n .� 6/ is an integer and a, b are two nonzero complex numbers satisfying
abn�2 6D 1, 2. Clearly, P 03.z/ D .n=z/Œazn � 2.n� 1/z2 C 2.n� 2/bz.



A Journey from Gross-Problem to Fujimoto-Condition 869

Now at each zero of P 03 we get

P3.z/ D azn � n.n � 1/z2 C 2n.n � 2/bz � .n � 1/.n� 2/b2

D 2.n� 1/z2 � 2.n � 2/bz � n.n � 1/z2 C 2n.n � 2/bz � .n � 1/.n � 2/b2
D �.n � 1/.n � 2/Œz2 � 2bz C b2

D �.n � 1/.n � 2/.z � b/2:

So, at a zero of P 03, P3 will have a zero if P 03.b/ D 0. Since P 03.b/ D nb.abn�2�
2/ 6D 0, we see that P3 and P 03 do not have any common zero. Hence P3 has only
simple zeros. Using the technique of T.C. Alzahary [1] one can verify that P3 is a
PURSM and so a UPM.

3 Uniqueness Polynomials and Fujimoto-Condition

After introducing the idea of uniqueness polynomial in 1995, P. Li and C.C. Yang
[13] studied some basic characterisations of the same. The results of Li and Yang
[13] are worth mentioning as these inspired a lot of workers to investigate the
uniqueness polynomials, thus opened a new avenue for research on uniqueness
theory. The following four theorems (from [13]) may be considered as the initial
characterisations of a uniqueness polynomial:

Theorem 3.1. If P1 is a UPM (UPE) and P2 is a polynomial, then P1 ı P2 is a
UPM (UPE) if and only if P2 is a UPM (UPE).

Theorem 3.2. Let P1 be a PURSM (PURSE) and P2 is a UPM (UPE). If P1 ı P2
has no multiple zero, then P1 ı P2 is a PURSM (PURSE).

Theorem 3.3. Any polynomial of degree 2 or 3 is not a UPE.

Theorem 3.4. Let P.z/ D z4Ca3z3Ca2z2Ca1zCa0. Then P is not a UPM. Also
P is a UPE if and only if

�a3
2

�3 � a2a3

2
C a1 6D 0:

A UPM (UPE) of degree less than five is completely characterised by Theorems
3.4 and 3.5. The polynomials of higher degree require further considerations, which
was first studied by C.C. Yang and H.X. Hua [15]. We now mention the following
two results of Yang and Hua [15]:

Theorem 3.5. Let P.z/ D zn C an�1zn�1 C � � � C a1z C a0 (n � 4/ be a monic
polynomial. If there exists an integer t with 1 � t < n � 2 and gcd .n; t/ D 1 such
that an�1 D � � � D atC1 D 0 but at 6D 0, then P is a UPE.
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Theorem 3.6. Let P.z/ D zn C amzm C a0 be a monic polynomial such that gcd
.n;m/ D 1 and am 6D 0. If n � 5 and 1 � m < n � 1, then P is a UPM.

Consideringm D n � 1 with am D �1, one can see that

P

0

B
B
B
@

n�1P
jD1

hj

n�1P
jD0

hj

1

C
C
C
A

D P

0

B
B
B
@

n�2P
jD0

hj

n�1P
jD0

hj

1

C
C
C
A

for any nonconstant meromorphic functions h (see [15]). So P.z/ D zn � zn�1 C a0
is not a UPM. However, it is easy to see that P.z/ D zn � zn�1 C a0 is a UPE.

While searching a sufficient condition for a polynomial to be a UPM or UPE,
H. Fujimoto [7] introduced a variant of the notion of the uniqueness polynomial,
which is called by T. T. H. An, J. T. Y. Wang and P. Wong [2] as a strong uniqueness
polynomial.

Definition 3.1 ([7]). Let P be a nonconstant polynomial in C. If for any two
nonconstant meromorphic (entire) functions f and g, P.f / � cP.g/ implies
f � g, where c is a suitable nonzero constant, then P is called a strong uniqueness
polynomial for meromorphic (entire) functions. In short, we write SUPM and SUPE,
respectively.

Clearly every UPM (UPE) is a SUPM (SUPE), but, in general, the converse is
not true.

The key discovery of H. Fujimoto [7] is to highlight a special property of a
polynomial, which plays a pivotal role in characterising a SUPM or a SUPE. This
property was called by Fujimoto himself as “property (H)”. Later on T.T.H. An,
J.T.Y. Wang and P. Wang [2] and T.T.H. An [3] referred this property as “separation
condition” and “injective condition”, respectively.

A polynomial P is said to satisfy “Fujimoto-condition (H)” if P.˛/ 6D P.ˇ/ for
any two distinct zeros ˛, ˇ of the derivative P 0. Since the zeros of P 0 are critical
points of P , the same condition is called in [4] as the “critical injective property”
and a polynomial with this property is called a “critically injective polynomial”.

Let P be a nonconstant polynomial without multiple zeros. Suppose that the
derivative P 0 has k distinct zeros d1, d2, : : :, dk with respective multiplicities q1,
q2, : : :, qk . The following results of H. Fujimoto [7] give sufficient conditions for a
higher-degree polynomial to be UPM and SUPM.

Theorem 3.7. Let P be a critically injective polynomial of degree � 5. If k � 4,
then P is a UPM.

If a polynomial is not critically injective, then it may not be a UPM. In fact,
for generically chosen constants a1, a2, : : :, an (n � 1), a polynomial P.z/ D
z2nCa1z2n�2C� � �Can�1z2Can has no multiple zero and P 0.z/ has 2n�1 distinct
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zeros, 0, ˙d1, ˙d2, : : :, ˙dn�1. Clearly P.dl/ D P.�dl / for 1 � l � n� 1 and P
is not a UPM because P.f / D P.�f / for any nonconstant meromorphic function
f (see [7]).

Theorem 3.8. Let P be a critically injective polynomial with k � 4. If P is not a
SUPM, then there is some permutation .t1; t2; : : : ; tk/ of .1; 2; : : : ; k/, such that

P.d
t1
/

P.d1/
D P.d

t2
/

P.d2/
D � � � D P.d

tk
/

P.dk/
6D 1:

As a consequence of Theorem 3.8 we see that a critically injective polynomial
with k � 4 is an SUPM if P.d1/CP.d2/C � � � CP.dk/ 6D 0. Using this result one
can improve a result of B. Shiffman [14, Theorem 3] to SUPM.

For the case of three critical values, H. Fujimoto [7] proved the following
theorems:

Theorem 3.9. Let P be a critically injective polynomial. Assume that k D 3 and
minfq1; q2; q3g � 2. If any one of the three values d1, d2 and d3 is not the arithmetic
mean of two others, then P is a UPM.

Theorem 3.10. Let P be a critically injective polynomial. Assume that k D 3 and
min fq1; q2 ; q3 ; g � 2. If P is not a SUPM, then, after suitable changes of indices of
dj ’s, either

d3 D d1 C d2

2
or

P.d2/

P.d1/
D P.d3/

P.d2/
D P.d1/

P.d3/
:

In 2002 W. Cherry and J. T. Y. Wang [5] established a geometrical characterisa-
tion of UPE and SUPE. The characterisation is important in the sense that it gives a
necessary and sufficient condition for a UPE and SUPE. In order to understand the
results of Cherry and Wang [5], we need some terminologies (cf. [5]).

Let P be a nonconstant polynomial in C and S be its zero set, a zero being
counted according to its multiplicity. A bijection T W S ! S is called an affine
transformation preserving S if T can be written in the form T .z/ D az C b, where
a . 6D 0/ and b are complex constants. If an D 1, then the affine transformation T
is called very special with respect to n. The set S is called affinely rigid if the only
affine transformation preserving S is the identity mapping T .z/ D z.

Let us consider two variables quadratic polynomial

Q.x; y/ D ˛2;0x
2 C ˛1;1xy C ˛0;2y

2 C ˛1;0x C ˛0;1y C ˛0;0 : (1)

Let S D fs1; s2; : : : ; sng be the zero set of the polynomial P . We now define a
transformation TQ on S as follows:

If ˛2;0 6D 0, then for each sj 2 S we define tj;1 and tj;2 to be the two solutions
in t of the equationQ.t; sj / D 0; noting that in the case of repeated root, we might
have tj;1 D tj;2. Then we put TQ.S/ D ft1;1; t1;2; t2;1; t2;2; : : : ; tn;1; tn;2g.
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If ˛2;0 D 0, then Q.t; sj / D 0 has a unique solution tj , say. In this case we put
TQ.S/ D ft1; t2; : : : ; tng.

We call TQ the quadratic transformation associated to Q. One may note that the
cardinality of TQ.S/ is twice that of S if ˛

2;0
6D 0 and is same as S if ˛

2;0
D 0.

We say that S is preserved by a quadratic transformation if one can find a
quadratic polynomial of the form (1) such that TQ.S/ D 2S if ˛

2;0
6D 0 and

TQ.S/ D S if ˛
2;0

D 0, where TQ is the quadratic transformation associated to
Q and 2S is obtained from S by repeating its each element two times.

A quadratic polynomial Q as defined by (1) is called special with respect to a
positive integer n � 2 if ˛

2;0
D 1 and x2 C ˛

1;1
xy C ˛

0;2
y2 divides xn � cyn for

some nonzero constant c. If we can take c D 1, thenQ is called very special.
Now we state the results of W. Cherry and J.T.Y. Wang [5] on characterisation of

UPE and SUPE.

Theorem 3.11. Let P be a monic polynomial of degree at least two in C and S be
its zero set .counted with multiplicities/. Then the following are equivalent:

(i) P is a UPE;
(ii) The plane curve defined by P.x/ � P.y/ has no linear or quadratic factors,

except for the .possibly repeated/ linear factor x � yI
(iii) S is not preserved by any non-trivial affine transformation very special

with respect to the degree of P , and S is not preserved by any quadratic
transformation associated to a non-degenerate quadratic polynomial Q.x; y/
very special with respect to the degree of P .

We, in view of Theorem 3.3, note that Theorem 3.11 is meaningful only when
the degree of P is at least 4.

Theorem 3.12. Let P be a monic polynomial of degree at least two in C and S be
its zero set .counted with multiplicities/. Then the following are equivalent:

(i) P is a SUPE;
(ii) None of the plane curves defined by P.x/ � cP.y/ for all complex numbers

c 6D 0 have linear or quadratic factors, except for the .possibly repeated/
linear factor .x � y/ when c D 1I

(iii) S is affinely rigid and is not preserved by any quadratic transformation
associated to a non-degenerate quadratic polynomial Q.x; y/ special with
respect to the degree of P .

In 2003 H. Fujimoto [8] obtained the following characterisation of UPMs for
critically injective polynomials:

Theorem 3.13. Let P be a critically injective monic polynomial in C. Further sup-
pose that d1; d2; : : : ; dk are the distinct zeros of P 0 with respective multiplicities
q1; q2; : : : ; qk . Then P is a UPM if and only if

X

1�l<m�k
q
l
qm >

kX

lD1
q
l
: (2)
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We note that if k � 4, then (2) is obvious. Also (2) holds when max .q1; q2; q3/ �
2 for the case k D 3 and when min .q1; q2/ � 2 and q1 Cq2 � 5 for the case k D 2.

A precise characterisation of a gap polynomial (a polynomial with some terms
missing) for SUPM was established by T.T.H. An, J.T.Y. Wang and P.M. Wong [2].

Theorem 3.14. LetP.z/ D anznCPm
iD0 ai zi .0 � m < n, ai 2 C and an; am 6D 0/

be a polynomial of degree n. Let I D fi W ai 6D 0g, l D minfi W i 2 I g and
J D fi � l W i 2 I g. Then the following statements are valid:

(i) If n�m � 3, then P is a strong uniqueness polynomial for rational functions if
and only if the greatest common divisor of the indices in I is 1 and the greatest
common divisor of the indices in J is also 1.

(ii) If n � m � 4, then P is a SUPM if and only if the greatest common divisor
of the indices in I is 1 and the greatest common divisor of the indices in J is
also 1.

From the above result we see that the advantage of a gap polynomial over a usual
one is that the gap polynomial enables us to avoid the critical injection hypothesis.
In the future we shall note this fact again.

In the next characterisation we see that the critical injection hypothesis is required
when we do not consider a gap polynomial.

Theorem 3.15. Let P.z/ be a critically injective polynomial of degree n in C and
P 0.z/ D 	.z � ˛1/

m1 : : : .z � ˛l/
ml , where 	 is a nonzero constant and ˛i 6D ˛j for

1 � i 6D j � l . Then

(i) P is a UPM if and only if one of the following conditions is satisfiedI (a) l � 3

except when n D 4, m1 D m2 D m3 D 1I or (b) l D 2 and minfm1;m2g � 2

except when n D 5, m1 D m2 D 2.
(ii) P is a SUPM if and only if the set of zeros of P is affinely rigid and one of the

following conditions is satisfiedI (a) l � 3 except when n D 4, m1 D m2 D
m3 D 1I or (b) l D 2 and minfm1;m2g � 2 except when n D 5,m1 D m2 D 2.

For polynomials of the special type .z � ˛/n C a.z � ˛/m C b, the following
complete characterisation is obtained in [2]:

Theorem 3.16. Let P.z/ D .z � ˛/n C a.z � ˛/m C b be a polynomial of degree n
and 1 � m � n � 1. Then

(i) P is a uniqueness polynomial for rational functions if and only if n � 4,
n �m � 2, gcd.n;m/ D 1 and a 6D 0;

(ii) P is a strong uniqueness polynomial for rational functions if and only if n � 4,
n �m � 2, gcd.n;m/ D 1, a 6D 0 and b 6D 0;

(iii) P is a UPM if and only if n � 5, n �m � 2, gcd.n;m/ D 1, a 6D 0;
(iv) P is a SUPM if and only if n � 5, n � m � 2, gcd.n;m/ D 1, a 6D 0 and

b 6D 0.

Though every PURSM (PURSE) is a UPM (UPE), the converse is not true as we
see in the following examples:
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Example 3.1 ([4]). Let P.z/ D az C b (a 6D 0). Clearly P is a UPM, but for
f D �.b=a/ez and g D �.b=a/e�z, we see that Ef .S/ D Eg.S/, where S D fz W
az C b D 0g. So P is not a PURSM.

Example 3.2 ([15]). Let P.z/ D z4 C 2z3 � 9z2 � 2z C 8 D .z � 1/.z C 1/.z � 2/

.z C 4/. Then the zero set of P is S D f1;�1; 2;�4g. By Theorem 3.4, P is a UPE.
However, for f D 3

2

p
5ez C 7

2
and g D 3

2

p
5e�z C 7

2
, we see that Ef .S/ D Eg.S/.

So P is not a PURSE.

H. Fujimoto [7] investigated the converse situation for a critically injective poly-
nomial. Several extensions and generalisations of Fujimoto’s result are available in
the literature, which we do not mention. In the following result of Fujimoto [7], a
polynomial is called PURSM-IM (PURSE-IM) if it generates a URSM-IM (URSE-
IM).

Theorem 3.17. Let P be a critically injective monic polynomial of degree n
having only simple zeros and its derivative P 0 has distinct zeros d1; d2; : : : ; dk with
multiplicities q1; q2; : : : ; qk , respectively. Suppose further that P is SUPM (SUPE)
and k � 3 or k D 2 and min .q1; q2/ � 2.

If n > 2k C 6 .n > 2k C 2/, then P is a PURSM (PURSE), and if n >

2k C 12 .n > 2k C 5/, then P is a PURSM-IM (PURSE-IM).

In 2011 T.T.H. An [3] also made an attempt to deal the converse situation
with a polynomial which is not necessarily critically injective. As we have already
mentioned, a gap polynomial extended the helping hand in this case also. The
following two are the results of T.T.H. An [3]:

Theorem 3.18. Let P.z/ D anzn C amzm C am�1zm�1 C � � � C a0 .1 � m <

n; am 6D 0/ be a polynomial in C of degree n with only simple zeros and S be its
zero set. Further suppose that P 0.z/ has k distinct zeros and I D fi W ai 6D 0g,
	 D minfi W i 2 I g, J D fi � 	 W i 2 I g. If n � max fmC 4; 2k C 7g, then the
following statements are equivalent:

(i) S is a URSM;
(ii) P is a SUPM;

(iii) S is not preserved by any non-trivial affine transformation of C;
(iv) The greatest common divisors of the indices, respectively, in I and J are

both 1.

Theorem 3.19. Let P.z/ D anzn C amzm C am�1zm�1 C � � � C apzp C a0 with
n > m > p and amapa0 6D 0 be a polynomial of degree n in C having only simple
zeros. Let S be its zero set and n > 2mC8 andp � 4. Then the following statements
are equivalent:

(i) S is a URSM;
(ii) P is an SUPM;

(iii) S is affine rigid;
(iv) The greatest common divisors of the indices in I D fi W ai 6D 0g is 1.
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A recent development in the uniqueness theory of meromorphic functions is the
introduction of the notion of weighted sharing of values and sets (see [11,12]). This
measures a gradual increment from sharing with ignoring multiplicities to sharing
with counting multiplicities.

Let k be a nonnegative integer or infinity. For a 2 C [ f1g we denote by
Ek.aIf / the set of all a-points of f , where an a-point of multiplicitym is counted
m times if m � k and k C 1 times if m > k.

If for two meromorphic functions f and g we have Ek.aIf / D Ek.aIg/, then
we say that f and g share the value a with weight k.

The IM and CM sharing, respectively, correspond to weight 0 and 1.
For S  C [ f1g we define Ef .S; k/ as

Ef .S; k/ D
[

a2S
Ek.aIf /;

where k is a nonnegative integer or infinity. Clearly Ef .S/ D Ef .S;1/.
A set S  C [ f1g is called a unique range set for meromorphic (entire)

functions with weight k if for any two nonconstant meromorphic (entire) functions
f and g, Ef .S; k/ D Eg.S; k/ implies f � g. We write S as URSMk (URSEk)
in short.

Let k be a positive integer or infinity. We denote by Ek/.aIf / the set of
a-points of f whose multiplicities are not greater than k, and each a-point is
counted according to its multiplicity. For S  C [ f1g we put Ek/.S; f / D[

a2S
Ek/.aIf /. The set S is called a URSMk/ (URSEk/) if for any two nonconstant

meromorphic(entire) functions f , g, Ek/.S; f / D Ek/.S; g/ implies f � g.
It may be noted that the proof of Theorem 3.18 contains a gap. However, if we

change the gap polynomial, then an analogous but better result can be obtained
(see [4]).

Theorem 3.20. Let P.z/ D anzn C Pm
jD2 aj zj C a0 be a polynomial of degree

n having only simple zeros, where n � m � 4 and apam 6D 0 for some positive
integer p with 2 � p � m and gcd.p; 3/ D 1. Suppose that S be the zero set
of P . Let k be the number of distinct zeros of the derivative P 0. Also suppose that
I D fj W aj 6D 0g, 	 D minfj W j 2 I g and J D fj � 	 W j 2 I g. If n � 2k C 7

(n � 2k C 3), then the following statements are equivalent:

(i) P is a SUPM (SUPE);
(ii) S is a URSM2 (URSE2);

(iii) S is a URSM3/ (URSE3/);
(iv) S is a URSM (URSE);
(v) P is a UPM (UPE).

(vi) The greatest common divisor of the indices in I is 1 and the greatest common
divisor of the indices in J is also 1.
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The following example shows that the hypothesis of Theorem 3.20 does not
ensure a polynomial to be a SUPM, rather, in addition, the condition stated in (vi) is
essential.

Example 3.3. Let P.z/ D 1
20

z20 � 1
16

z16 C 1 and P 0.z/ D z15.z4 � 1/ and
f0; 1;�1; i;�ig is the set of all distinct zeros of P

0

. Since P.0/ D 1 and
P.˙1/ D P.˙i/ D 79=80, we see that P has only simple zeros and P is not
critically injective. Also n D 20 > 17 D 2k C 7, but gcd.20; 16/ D 4. So, by
Theorem 3.14(ii), P is not a SUPM.

From the above discussion it appears that a gap polynomial has the potential to
become an alternative to a critically injective polynomial. Therefore, the properties
of a gap polynomial should further be explored in the context of uniqueness
polynomials and unique range sets for meromorphic (entire) functions.

As it is a short survey, we cannot include a considerable number of results on the
topic, which an interested reader may find in the literature. However, we expect that
this article will give an idea of the stream of research done on Gross-problem and
Fujimoto-condition.
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