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Evaluating Two-Stage Network Structures:

Bargaining Game Approach

Juan Du, Yao Chen, Wade D. Cook, Liang Liang, and Joe Zhu

Abstract This chapter presents a Nash bargaining game model to measure the

performance of two-stage decision making units (DMUs) in data envelopment

analysis (DEA). The two stages are viewed as players to bargain for a better payoff,

which is represented by DEA ratio efficiency score. The efficiency model is

developed as a cooperative game model. It is shown that when only one interme-

diate measure exists between the two stages, the newly-developed bargaining

approach yields the same results as applying the standard DEA approach to each

stage separately.
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8.1 Introduction

In order to address the potential conflict caused by the dual role of intermediate

measures, quite a number of scholars propose their own versions of solutions. For

example, Kao and Hwang (2008) combine the efficiency scores of the two stages in

a multiplicative (geometric) manner, while Chen et al. (2009) use a weighted

additive model. Liang et al. (2008) develop a number of DEA models using game

theory concept. Specifically, they develop a leader-follower model borrowed from

the notion of Stackelberg games, and a centralized or cooperative game model

where the combined stage is of interest.

This chapter presents the study of Du et al. (2011) which applies directly the

Nash bargaining game theory to the efficiency of DMUs that have the afore-

mentioned two-stage processes. The two stages are regarded as two individuals

bargaining with each other for a better payoff, which is characterized by the DEA

ratio efficiency of each individual stage. In general, the resulting bargaining game

model is highly non-linear, given the nature of ratio forms of DEA efficiency. This

chapter shows that this non-linear bargaining model can be converted equivalently

into a parametric linear programming problem with one parameter, whose lower

and upper bounds can be determined. As a result, a global optimal solution can be

found using a heuristic search on the single parameter.

In the bargaining model, the breakdown or status quo point is determined via the

standard DEA model. The bargaining efficiency scores of the two stages may depend

on the selection of the breakdown point. Thus in applications, a sensitivity analysis is

carried out to study the stability of the bargaining DEA efficiency scores with respect

to different status quo points. Also, it is shown that when only one intermediate

measure exists between the two stages, the Nash bargaining game model in this study

yields the same results as applying the standard DEA model to each stage separately.

8.2 Background

Consider a two-stage process shown in Fig. 8.1. Suppose there are n DMUs

and each DMUj ( j ¼ 1, 2, . . ., n) has m inputs to the first stage, denoted by

xij (i¼ 1, 2, .... , m), andD outputs from this stage, denoted by zdj ( d ¼ 1, 2,...., D).
TheseD outputs then become the inputs to the second stage, which are referred to as

intermediate measures. The s outputs from the second stage are denoted by

yrj ( r ¼ 1, 2, ...., s).
Based upon the constant returns to scale (CRS) model (Charnes et al. 1978), the

(CRS) efficiency scores for each DMUj ( j ¼ 1, 2, . . ., n) in the first and second

stages can be defined by e1j and e2j , respectively,
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e1j ¼

XD
d¼1

w1
d zdj

Xm
i¼1

vi xij

� 1 and e2j ¼

Xs
r¼1

ur yrj

XD
d¼1

w2
d zdj

� 1 ð8:1Þ

where vi, w
1
d, w

2
d and ur are unknown non-negative weights. These ratios are then

optimized in a linear fractional programming problem which can be converted into

a linear CRS DEA model (Charnes et al. 1978).

As noted both in Kao andHwang (2008) and in Liang et al. (2008), it is reasonable

to set w1
d equal to w2

d, since the “worth” or value assigned to the intermediate

measures should be the same regardless of whether they are viewed as outputs

from the first stage or inputs to the second stage. Then in this case, given the

individual efficiency scores e1j and e
2
j , it is reasonable to define the overall efficiency

of the entire two-stage process for DMUj ( j ¼ 1, . . ., n) as ej ¼ e1j � e2j since

ej ¼

Xs
r¼1

ur yrj

Xm
i¼1

vi xij

¼

XD
d¼1

wd zdj

Xm
i¼1

vi xij

�

Xs
r¼1

ur yrj

XD
d¼1

wd zdj

¼ e1j � e2j ð8:2Þ

The above overall efficiency definition ensures that ej � 1 from e1j � 1 and

e2j � 1, and the overall process is efficient if and only if e1j ¼ e2j ¼ 1.

Clearly, separate DEA analysis can be applied to each individual stage as in

Seiford and Zhu (1999). However, as pointed out by Liang et al. (2008), such an

approach could cause inherent conflict between these two separate analyses.

The efficiency-evaluation problem can be approached from two game theory

perspectives. One is to view the two-stage process as a non-cooperative game

model, in which one stage is assumed to be a leader and solved for its CRS

efficiency first, and the other stage a follower, whose efficiency is computed

without changing the leader’s efficiency score. The other approach is to regard

the process as a centralized model, where the overall efficiency given in (8.2) is

maximized, and a decomposition of the overall efficiency is obtained by finding a

set of multipliers producing the largest first (or second) stage efficiency score while

maintaining the overall efficiency score.

xij,i = 1,...,m zdj,d = 1,...,D yrj r = 1,...,s

Stage1 Stage2

DMU j, j = 1,...,nFig. 8.1 A two-stage

process
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Note that in fact, the two stages can be regarded as two players in Nash

bargaining game. Therefore, the efficiency evaluation of two-stage processes can

be approached by using Nash bargaining game theory directly. But before that, we

first briefly introduce the Nash bargaining game approach.

Denote the set of two individuals participating in the bargaining by N ¼ {1, 2}, and

a payoff vector is an element of the payoff space R2, which is the 2-dimensional

Euclidean space. A feasible set S is a subset of the payoff space, and a breakdown or

status quo point b
!

is an element of the payoff space. A bargaining problem can then be

specified as the triple N, S, b
!� �

consisting of participating individuals, feasible set,

andbreakdownpoint.Nash (1950) requires that the feasible set be compact, convex, and

contain some payoff vector such that each individual’s payoff is at least as large as the

individual’s breakdown payoff. The solution is a functionF that is associatedwith each

bargaining problem N, S, b
!� �

, expressed as F N, S, b
!� �

. Nash (1950, 1953)

argue that a reasonable solution should satisfy the four properties: (i) Pareto efficiency

(PE), (ii) invariance with respect to affine transformation (IAT), (iii) independence of
irrelevant alternatives (IIA), and (iv) symmetry (SYM). Due to extensive discussion

about these properties in the literature, no detailed explanation will be provided here.

For the traditional bargaining problem, Nash (1950, 1953) has shown that there exists a

unique solution, called the Nash solution, which satisfies the above-mentioned four

properties, and can be obtained by solving the following maximization problem

Max
u
!∈S, u!�b

!

Y2
i¼1

ui � bið Þ ð8:3Þ

where u
!

is the payment vector for the individuals, and ui, bi is the ith element of

vector u
!
, b
!
, respectively.

8.3 Nash Bargaining Game Model for Two-Stage

Structures

In the current case, we view the two individual stages as two players in the

bargaining procedure, the efficiency ratios as the payoffs, and weights chosen for

efficiency scores as strategies. To proceed, one needs to find a breakdown point for

stages 1 and 2 which is the starting point for bargaining. Note that the breakdown

point or status quo represents possible payoff pairs obtained if one decides not to

bargain with the other player. As mentioned in Binmore et al. (1986), the choice of

the breakdown point is a matter of modeling judgment. A number of elements in the

underlying situation can be natural candidates for this role. For example, Lundberg

and Pollak (1993) use a non-cooperative equilibrium as the breakdown point in

their bargaining model. In application section, we will use different breakdown
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points, including the ones based upon the leader-follower (non-cooperative) model

of Liang et al. (2008), to perform sensitivity analysis to study the stability of our

bargaining DEA efficiency scores with respect to different breakdown points.

We here first construct the least ideal DMUand use its DEA efficiency scores as the

breakdown point. By doing that, we assume that if the two stages do not negotiate,

their efficiency scores will be the worst. Note that such a DMU may not

exist, however, its inputs and outputs are observed. Let xmax
i ¼ maxj xij

� �
,

ymin
r ¼ minj yrj

n o
, zmin

d ¼ minj zdj
� �

and zmax
d ¼ maxj zdj

� �
. Then (xmax

i , zmin
d )

(i ¼ 1,. . ., m, d ¼ 1, . . ., D) represents the least ideal DMU in the first stage,

which consumes the maximum amount of input values, while producing the least

amount of intermediate measures. Similarly, we denote ( zmax
d , ymin

r ) ( d ¼ 1, . . ., D,
r ¼ 1,. . ., s) the least ideal DMU in the second stage, which consumes the maximum

amount of intermediate measures while producing the least amount of output values.

The CRS efficiency for the above two least ideal DMUs is the worst among the

existing DMUs. We denote the (CRS) efficiency scores of the two least ideal DMUs

in the first and second stage as θ1min and θ2min, respectively, and use θ1min and θ2min as

the breakdown point. The (input-oriented) DEA bargaining model for a specific

DMUo with respect to (8.3) can be expressed as

Max

XD
d¼1

wd zdo

Xm
i¼1

vi xio

� θ1min

0
BBBB@

1
CCCCA �

Xs
r¼1

ur yro

XD
d¼1

wd zdo

� θ2min

0
BBBB@

1
CCCCA

s:t:

XD
d¼1

wd zdo

Xm
i¼1

vi xio

� θ1min

Xs
r¼1

ur yro

XD
d¼1

wd zdo

� θ2min

XD
d¼1

wd zdj

Xm
i¼1

vi xij

� 1, j ¼ 1, . . . , n

Xs
r¼1

ur yrj

XD
d¼1

wd zdj

� 1, j ¼ 1, . . . , n

vi, ur, wd > 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:4Þ
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Denote all the constraints in model (8.4) by S, which represents the feasible set

for this bargaining problem. Then the bargaining problem here can be specified as

the triple ({1, 2} , S, {θ1min, θ
2
min}). Next we will prove that the feasible set S is both

compact and convex.

Lemma 1 The feasible set S is compact and convex.

Proof Since the feasible set S is bounded and closed in Euclidean space, then S is

compact. Next we will prove that S is also convex.

Suppose (v01, . . ., v
0
m, u

0
1, . . ., u

0
s, w

0
1, . . ., w

0
D) ∈ S and ( v001, . . ., v

00
m, u

00
1, . . ., u

00
s ,

w00
1, . . ., w

00
D) ∈ S. For any λ ∈ [0, 1] we have λ v0i + (1 � λ) v00i > 0, i¼ 1,. . ., m,

λ u0r + (1 � λ) u00r > 0, r ¼ 1, . . ., s and λ w0
d + (1 � λ) w00

d > 0, d ¼ 1, . . ., D.

Since
Xm
i¼1

vi xij > 0 and
XD
d¼1

wd zdj > 0 for all j ¼ 1, . . ., n, the constraints in S,

XD
d¼1

wd zdj

Xm
i¼1

vi xij

� 1 and

Xs
r¼1

ur yrj

XD
d¼1

wd zdj

� 1 are equivalent to
XD
d¼1

wd zdj �
Xm
i¼1

vi xij and

Xs
r¼1

ur yrj �
XD
d¼1

wd zdj, respectively, for all j ¼ 1, . . ., n, and the constraints

XD
d¼1

wd zdo

Xm
i¼1

vi xio

� θ1min and

Xs
r¼1

ur yro

XD
d¼1

wd zdo

� θ2min are equivalent to

XD
d¼1

wd zdo � θ1min

Xm
i¼1

vi xij and
Xs
r¼1

ur yrj � θ2min

XD
d¼1

wd zdo, respectively. Then we

have

XD
d¼1

λw0
d þ 1� λð Þ w00

d

� �
zdj ¼ λ

XD
d¼1

w0
d zdj þ 1� λð Þ

XD
d¼1

w00
d zdj

� λ
Xm
i¼1

v0i xij þ 1� λð Þ
Xm
i¼1

v00i xij

¼
Xm
i¼1

λ v0i þ 1� λð Þ v00i
� �

xij

and
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Xs
r¼1

λ u0r þ 1� λð Þ u00r
� �

yrj ¼ λ
Xs
r¼1

u0r yrj þ 1� λð Þ
Xs
r¼1

u00r yrj

� λ
XD
d¼1

w0
d zdj þ 1� λð Þ

XD
d¼1

w00
d zdj

¼
XD
d¼1

λ w0
d þ 1� λð Þ w00

d

� �
zdj

Similarly, we have
XD
d¼1

λw0
d þ 1� λð Þ w00

d

� �
zdo � θ1min

Xm
i¼1

λ v0i þ 1� λð Þ v00i
� �

xij and
Xs
r¼1

λ u0r þ 1� λð Þ u00r
� �

yrj � θ2min

XD
d¼1

λ w0
d þ 1� λð Þ w00

d

� �
zdo.

Therefore (λ v0i + (1 � λ) v00i , λ u0r + (1 � λ) u00r , λw
0
d + (1 � λ)w00

d) ∈ S, where
i ¼ 1, . . ., m, r ¼ 1, . . ., s, d ¼ 1, . . ., D, or equivalently, λ (v01, . . ., v

0
m, u

0
1, . . .,

u0s, w
0
1, . . ., w

0
D) + (1 � λ)(v001, . . ., v

00
m, u

00
1, . . ., u

00
s , . . ., w

00
1, . . ., w

00
D) ∈ S. Conse-

quently S is a convex set.

Q.E.D.

Let t1 ¼
Xm
i¼1

vi xio

 !�1

, t2 ¼
XD
d¼1

wd zdo

 !�1

, γi ¼ t1 vi, ωd ¼ t1 wd, μr1 ¼

t1 ur, μr2 ¼ t2 ur. Note that μr1 ¼ t1 ur and μr2 ¼ t2 ur imply a linear relationship of

μ r1 ¼ t1
t2
μ r2 between μr1 and μr2. Therefore, we denote t1

t2
by α ( > 0) and have

μr1 ¼ αμr2 for all r ¼ 1, . . ., s. Then model (8.4) is converted into model (8.5).

Max
Xs
r¼1

μ r1 yro � θ1min

Xs
r¼1

μ r2 yro � θ2min

XD
d¼1

ωd zdo þ θ1min � θ2min

s:t:
XD
d¼1

ωd zdo � θ1min

Xs
r¼1

μ r2 yro � θ2min

Xm
i¼1

γi xio ¼ 1

XD
d¼1

ωd zdo ¼ α

XD
d¼1

ωd zdj �
Xm
i¼1

γi xij � 0, j ¼ 1, . . . , n

Xs
r¼1

μ r1 yrj �
XD
d¼1

ωd zdj � 0, j ¼ 1, . . . , n

μ r1 ¼ αμ r2, r ¼ 1, . . . s

α > 0, γi, ωd, μ r1, μ r2 > 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:5Þ
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Model (8.5) is equivalent to the following nonlinear model (8.6).

Max α�
Xs
r¼1

μ r2 yro � θ1min

Xs
r¼1

μ r2 yro � θ2min

XD
d¼1

ωd zdo þ θ1min � θ2min

s:t:
XD
d¼1

ωd zdo � θ1min

Xs
r¼1

μ r2 yro � θ2min

Xm
i¼1

γi xio ¼ 1

XD
d¼1

ωd zdo ¼ α

XD
d¼1

ωd zdj �
Xm
i¼1

γi xij � 0, j ¼ 1, . . . , n

α�
Xs
r¼1

μ r2 yrj �
XD
d¼1

ωd zdj � 0, j ¼ 1, . . . , n

α > 0, γi, ωd, μ r2 > 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:6Þ

Note the constraints in model (8.6) that
Xm
i¼1

γi xio ¼ 1,
XD
d¼1

ωd zdo � θ1min,

XD
d¼1

ωd zdo ¼ α, and for any j ¼ 1, . . ., n,
XD
d¼1

ωd zdj �
Xm
i¼1

γi xij � 0. Then we

have θ1min � α ¼
XD
d¼1

ωd zdo �
Xm
i¼1

γi xio ¼ 1, which provides both upper and

lower bounds on α, and indicates that the optimal value of α represents the first-

stage efficiency score for each DMU.

Thus α can be treated as a parameter within [θ1min, 1]. As a result, model (8.6) can

be solved as a parametric linear program via searching over the possible α values

within [θ1min, 1]. In computation, we set the initial value for α as the upper bound

one, and solve the corresponding linear program. Then we begin to decrease α by a

very small positive number ε (¼0.0001 for example) for each step t, namely,

αt ¼ 1 � ε � t, t ¼ 1, 2, . . ., until the lower bound θ1min is reached, and solve

each linear program of model (8.6) corresponding to αt and denote the

corresponding optimal objective value by Ωt. Note that not all values taken by α
within [θ1min, 1] lead to feasible solutions to program (8.6). Let Ω* ¼ maxt Ωt and

denote the specific αt associated with Ω* as α*. Note that it is likely that Ω* is

associated with several α* values.
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Then Ω* associated with α* is solution to model (8.6). Denote e1�o ¼

α� ¼
XD
d¼1

ω�
d zdo

 !
, e2�o ¼

Xs
r¼1

μ�r2 yro and e�o ¼ e1�o � e2�o as DMUo’s bargaining

efficiency scores for the first and second stages and the overall process,

respectively.

With respect to the four properties associated with a bargaining solution, we

have (i) Pareto efficiency (PE) indicates that for the bargaining efficiency scores,

there is no possibility to improve one stage’s individual efficiency score without

decreasing the other individual efficiency score; (ii) invariance with respect to

affine transformation (IAT) reveals that if both the feasible region of bargaining

model (8.6) and the breakdown point are subjected to an affine transformation on

the payoff space R2, then the bargaining efficiency scores satisfy the same affine

transformation; (iii) independence of irrelevant alternatives (IIA) shows that the

bargaining efficiency scores will not change when the feasible region of bargaining

model (8.6) is decreased but still includes the bargaining solution; and

(iv) symmetry (SYM) demonstrates that if S, b
*

� �
is symmetric, where S is the

feasible region of bargaining model (8.6) and b
*

is breakdown point, then the

bargaining efficiency scores of both individual stages are equal to each other.

8.4 Mathematical Relationship

We finally look at the relationship between the bargaining efficiency scores

obtained from model (8.6) and the standard CRS efficiency scores. Let θ1o and θ2o
represent the standard (CRS) efficiency scores for the first and second stages,

respectively. It will be shown that when there is only one intermediate measure

linking the two stages, e1�o ¼ θ1o and e2�o ¼ θ2o.

Theorem 1 For any specificDMUo,Ωo � (θ1o � θ1min) � (θ2o � θ2min), whereΩo is
the (maximum) optimal value to model (8.6) (or model (8.4)).

Proof θ1o and θ
2
o can be obtained by solving the following two regular DEA models

(8.7) and (8.8), respectively.

θ1o ¼ Max

XD
d¼1

ŵ 1
d zdo

Xm
i¼1

v̂ i xio

s:t:

XD
d¼1

ŵ 1
d zdj

Xm
i¼1

v̂ i xij

� 1, j ¼ 1, . . . , n

v̂ i, ŵ
1
d > 0, i ¼ 1, . . . ,m, d ¼ 1, . . . ,D

ð8:7Þ
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θ2o ¼ Max

Xs
r¼1

û r yro

XD
d¼1

ŵ 2
d zdo

s:t:

Xs
r¼1

û r yrj

XD
d¼1

ŵ 2
d zdj

� 1, j ¼ 1, . . . , n

û r, ŵ
2
d > 0, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:8Þ

Let v�i , w
�
d and u�r be an optimal solution to the bargaining model (8.4). By

comparing the constraints in models (8.4), (8.7) and (8.8), we note that the feasible

regions of model (8.7) and (8.8) both contain the feasible region of model (8.4).

Thus, v�i and w�
d are a feasible solution to model (8.7), and w�

d and u�r are a feasible

solution to model (8.8). Therefore, we have

XD
d¼1

w�
d zdo

Xm
i¼1

v�i xio

� θ1o and

Xs
r¼1

u�r yro

XD
d¼1

w�
d zdo

� θ2o,

and furthermore Ωo � (θ1o � θ1min) � (θ2o � θ2min).

Q.E.D.

Based upon Theorem 1, under the special case of one intermediate measure, we

have

Theorem 2 If there is only one intermediate measure, then Ωo ¼
(θ1o � θ1min) � (θ2o � θ2min).

Proof Under the situation of one intermediate measure where D ¼ 1, let v̂ �
i and

ŵ 1�
1 be an optimal solution to model (8.7), and û �

r and ŵ
2�
1 be an optimal solution to

model (8.8), then we have θ1o ¼ ŵ 1�
1
z1oXm

i¼1

v̂ �
i xio

, θ2o ¼

Xs
r¼1

û �
r yro

ŵ 2�
1
z1o

, and
ŵ 1�

1

ŵ 2�
1

� 	
û �
r and ŵ

1�
1

can be another optimal solution to model (8.8). By the definition of θ1min and θ2min,

we know that θ1o � θ1min, and θ
2
o � θ2min. Therefore v̂

�
i , ŵ

1�
1 and

ŵ 1�
1

ŵ 2�
1

� 	
û �
r satisfy all

the constraints in our bargaining game model (8.4), indicating that v̂ �
i , ŵ

1�
1 and

ŵ 1�
1

ŵ 2�
1

� 	
û �
r are a feasible solution to model (8.4). Thus, we have

Ωo � ( θ1o � θ1min) � (θ2o � θ2min).

From Theorem 1, we have Ωo � (θ1o � θ1min) � (θ2o � θ2min). Therefore,

Ωo ¼ (θ1o � θ1min) � (θ2o � θ2min).

Q.E.D.
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Since the regular (CRS) efficiency scores for the first stage θ1o and for the second
stage θ2o are the maximum achievable efficiency scores for individual stages, based

upon Theorems 1 and 2, we have

Theorem 3 If there is only one intermediate measure, then e1�o ¼ θ1o and e2�o ¼ θ2o,
where e1�o and e2�o represent the bargaining efficiency scores to the first and second
stage of any specific DMUo obtained via model (8.6), respectively.

Proof In the case of one intermediate measure whereD ¼ 1, let v�i , w
�
1 and u

�
r be an

optimal solution to the bargaining model (8.4), and then e1�o ¼ w�
1
z1oXm

i¼1

v�i xio

� θ1min

and e2�o ¼

Xs
r¼1

u�r yro

w�
1
z1o

� θ2min. From the proof of Theorem 1, we have e1�o � θ1o and

e2�o � θ2o, and based on Theorem 2, we have (e1�o � θ1min) � (e2�o � θ2min) ¼ Ωo

¼(θ1o � θ1min) � (θ2o � θ2min). Therefore e
1�
o ¼ θ1o and e2�o ¼ θ2o must be true.

Q.E.D.

Theorem 3 also indicates that a unique pair of (bargaining) efficiency scores for

both stages are obtained for each DMU, which is (θ1o, θ2o), regardless the choice of
breakdown point. i.e., with one intermediate measure, model (8.4) is independent of

the breakdown point. However, such independence can no longer hold when

multiple intermediate measures are considered, which will be discussed later.

Liang et al. (2008) prove the same conclusion with respect to their leader-follower

and centralized models. We note, however, that Liang et al. (2008) models are

fundamentally different from this bargaining model. To further explain, we present

the centralized model in Liang et al. (2008) as follows.

ecentralizedo ¼ Max
Xs
r¼1

μryro

s:t:
Xs
r¼1

μryrj �
XD
d¼1

ωdzdj � 0, j ¼ 1, . . . , n

XD
d¼1

ωdzdj �
Xm
i¼1

γixij � 0, j ¼ 1, . . . , n

Xm
i¼1

γixio ¼ 1

μr, γi,ωd � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m, d ¼ 1, . . . ,D

ð8:9Þ

It can be seen that the Nash bargaining game model reduces to the centralized

model of Liang et al. (2008) when the breakdown point is set equal to (0, 0). Or,

when their centralized efficiency scores are used as breakdown points, the Nash

bargaining game model cannot improve the breakdown point, namely, the central-

ized model of Liang et al. (2008) provides a set of “best” overall bargaining

efficiency scores. However, this does not necessary imply that the results from

the centralized model should be used. The centralized model solution may not be
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acceptable to the two stages, or ideal with respect to improving the two stages’

operations. The bargaining model is not about finding the best overall efficiency

score, or the best solution, but rather is about finding the best achievable efficiency

through negotiation. A breakdown point (0, 0) only leads to the best overall effi-

ciency score, but not necessarily the best achievable efficiency for Stage 1 or 2.

A breakdown point of (0, 0) simply implies that the two stages will get an efficiency

score of zero if they do not negotiate. This may further imply that (0, 0) is not a

good candidate for a breakdown point in bargaining model.

8.5 Output-Oriented Bargaining Model

The above DEA bargaining model (8.4) is input-oriented. If an output-orientation is

taken into account, the bargaining model becomes

Max

Xm
i¼1

vi xio

XD
d¼1

wd zdo

� h1min

0
BBBB@

1
CCCCA �

XD
d¼1

wd zdo

Xs
r¼1

ur yro

� h2min

0
BBBB@

1
CCCCA

s:t:

Xm
i¼1

vi xio

XD
d¼1

wd zdo

� h1min

XD
d¼1

wd zdo

Xs
r¼1

ur yro

� h2min

Xm
i¼1

vi xij

XD
d¼1

wd zdj

� 1, j ¼ 1, . . . , n

XD
d¼1

wd zdj

Xs
r¼1

ur yrj

� 1, j ¼ 1, . . . , n

vi, ur, wd > 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:10Þ
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where h1min and h2min represent the output-oriented CRS efficiency scores of the two

least ideal DMUs for the first and second stage, respectively. Since h1min ¼ 1
θ1min

and

h2min ¼ 1
θ2min

, model (8.4) and (8.10) are structurally the same except for the different

objective functions.

Let t1 ¼
XD
d¼1

wd zdo

 !�1

, t2 ¼
Xs
r¼1

ur yro

 !�1

, γi1 ¼ t1 vi, γi2 ¼ t2 vi, ωd ¼

t2 wd, μ r ¼ t2 ur. Note that γi1 ¼ t1 vi and γi2 ¼ t2 vi imply a linear relationship of

γ i2 ¼ t2
t1
γ i1 between γi1 and γi2. Therefore, we denote t2

t1
by β (> 0) and have

γ i2 ¼ β γ i1 for all i ¼ 1, . . ., m. Then model (8.10) can be equivalently converted

into model (8.11) with parameter β.

Max β
Xm
i¼1

γ i1 xio � h2min

Xm
i¼1

γi1 xio � h1min

XD
d¼1

ωd zdo þ h1min � h2min

s:t:
XD
d¼1

ωd zdo � h2min

Xm
i¼1

γi1 xio � h1min

Xs
r¼1

μr yro ¼ 1

XD
d¼1

ωd zdo ¼ β

XD
d¼1

ωd zdj �
Xs
r¼1

μr yrj � 0, j ¼ 1, . . . , n

β
Xm
i¼1

γi1 xij �
XD
d¼1

ωd zdj � 0, j ¼ 1, . . . , n

β > 0, γi1, γi2, ω d, μ r > 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:11Þ

We haveh2min � β ¼
XD
d¼1

ωd zdo �
Xs
r¼1

μr yro ¼ 1, which provides both upper and

lower bounds on β, and indicates that the optimal value of β represents the second-

stage efficiency score for each DMU. Therefore model (8.11) can be solved as a

parametric linear program via searching over the possible β values within [1, h2min].

We should point out that the DEA bargaining model presented in this chapter is

not suitable for situations when one stage is input-oriented and the other is output-

oriented. It is because the resulting bargaining model cannot be transformed into a

parametric linear program like model (8.6) or (8.11).
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8.6 Applications

The Nash bargaining game approach is applied to two real world data sets. The first

one consists of 30 top US commercial banks with two intermediate measures, which

was used in Seiford and Zhu (1999) first, and then in Liang et al. (2008). The second

data set, which was previously studied both in Kao and Hwang (2008) and in Chen

et al. (2009), also has two intermediate measures and consists of 24 Taiwanese

non-life insurance companies.

8.6.1 Top US Commercial Banks

The data set consisting of 30 top US commercial banks is presented in Table 8.1.

The inputs to the first stage are number of employees, assets ($ million) and equity

($ million). The intermediate measures connecting two stages are revenue ($ mil-

lion) and profit ($ million). The outputs from the second stage are market value

($ million), earning per share ($) and returns to the investors (%). See Seiford and

Zhu (1999) for discussion on the above measures.

The CRS efficiency scores for the least ideal DMUs in the first and second stages

are calculated as θ1min ¼ 0.0775 and θ2min ¼ 0.0515, respectively. We next begin

with the initial value for α in model (8.6) as one, then decrease α by a small

positive number ε ¼ 0.0001 for each step t, namely, αt ¼ 1 � 0.0001 � t, t ¼ 1,2,

. . ., until the lower bound θ1min ¼ 0.0775 is reached. Solving the linear program of

model (8.6) for each step t corresponding to αt, we obtain a best heuristic search

solution to the bargaining efficiency scores of both individual stages and the overall

process, which are reported in columns 2 through 4 in Table 8.2. Column 5 shows

the corresponding value of the parameter α when the best heuristic search solution

is obtained. In this case, the value for α associated with the optimal solution is

unique for each DMU, indicating we have a unique pair of efficiency scores for both

individual stages.

For comparison, columns 6 through 8 display the corresponding results from

Liang et al. (2008) via the centralized model, which, as indicated above, could be

viewed as a special case of Nash bargaining model with breakdown point (0, 0).

Note that the efficiency scores of both individual stages and the overall process,

obtained through the bargaining game approach, are almost the same with those

obtained from Liang et al. (2008)’s centralized model, except for DMU 10. This

indicates that bargaining results are very similar to those obtained from the cen-

tralized model for this particular data set.

The centralized scores obtained from Liang et al. (2008) represent efficiency

pairs under the cooperative game structure that lead to the best overall efficiency

scores. Thus, if the centralized efficiency scores are used as breakdown point,

model (8.6) cannot further improve the bargaining efficiency scores for the two

stages and model (8.6) must yield scores identical to the centralized scores.
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In this case, we assume that such a payoff pair or breakdown point is acceptable to

the two stages if they do not bargain. Also, any breakdown point other than the

centralized efficiency scores will yield a smaller efficiency score for the overall

process.

The choice of the breakdown point cannot be arbitrary. For example, it is likely

that model (8.4) is infeasible if we use the minimum CRS efficiency score for each

stage as the breakdown point. Also, if both breakdown points are greater than the

corresponding centralized efficiency scores, model (8.4) will become infeasible.

This infeasibility is mainly caused by the fact that some breakdown points will

violate the constraints for individual efficiency scores in model (8.4).

Table 8.2 Results for US commercial banks with breakdown point {θ1min, θ2min}

Bank

Bargaining efficiency scores

α

Centralized

e1�o e2�o e1�o � e2�o e1;Centralizedo e2;Centralizedo eCentralizedo

1 1.0000 0.4487 0.4487 1.0000 1.0000 0.4487 0.4487

2 0.6821 0.5327 0.3634 0.6821 0.6821 0.5327 0.3634

3 0.7946 0.5305 0.4215 0.7946 0.7946 0.5305 0.4216

4 0.8463 0.5050 0.4274 0.8463 0.8463 0.5050 0.4274

5 1.0000 0.6061 0.6061 1.0000 1.0000 0.6061 0.6061

6 0.8179 0.5111 0.4180 0.8179 0.8180 0.5110 0.4180

7 0.7816 0.5042 0.3941 0.7816 0.7816 0.5042 0.3940

8 0.7451 0.6371 0.4747 0.7451 0.7451 0.6371 0.4747

9 0.7021 0.6389 0.4486 0.7021 0.7021 0.6389 0.4486

10 0.5868 0.5735 0.3365 0.5868 0.4884 0.6946 0.3393

11 0.6619 0.6281 0.4157 0.6619 0.6619 0.6282 0.4158

12 0.6906 0.6576 0.4541 0.6906 0.6906 0.6576 0.4541

13 0.5843 0.7640 0.4464 0.5843 0.5843 0.7641 0.4464

14 0.7131 0.5852 0.4173 0.7131 0.7131 0.5852 0.4173

15 0.8469 0.7582 0.6421 0.8469 0.8469 0.7582 0.6421

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 1.0000 0.7144 0.7144 1.0000 1.0000 0.7144 0.7144

18 0.7974 1.0000 0.7974 0.7974 0.7974 1.0000 0.7974

19 0.7477 0.7811 0.5840 0.7477 0.7478 0.7811 0.5841

20 0.7541 0.7844 0.5915 0.7541 0.7542 0.7844 0.5916

21 0.6550 0.8660 0.5672 0.6550 0.6550 0.8661 0.5673

22 0.6491 0.8005 0.5196 0.6491 0.6491 0.8005 0.5196

23 0.6280 0.6330 0.3975 0.6280 0.6280 0.6330 0.3975

24 0.8711 0.9478 0.8256 0.8711 0.8711 0.9478 0.8257

25 0.7403 1.0000 0.7403 0.7403 0.7403 1.0000 0.7403

26 0.6344 0.8363 0.5305 0.6344 0.6345 0.8363 0.5306

27 0.6549 1.0000 0.6549 0.6549 0.6549 1.0000 0.6549

28 0.7735 0.8012 0.6197 0.7735 0.7736 0.8011 0.6198

29 0.8092 1.0000 0.8092 0.8092 0.8093 1.0000 0.8093

30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: The optimal value of parameter α represents the first-stage bargaining efficiency score for

the corresponding DMU
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Recall that Liang et al. (2008) also develop a non-cooperative leader-follower

model where one of the two stages is treated as the leader and is given pre-emptive

priority to maximize its efficiency. That is, for example, when the first stage is

treated as the leader, the efficiency score for the first stage is calculated CRS score,

θ1o, because this θ1o is the best efficiency score DMUo can achieve. Then the

efficiency score for the second stage, e2o, is maximized given that the first stage’s

efficiency is fixed at θ1o.

Then the breakdown point of (min
j

θ1j

n o
¼ 0:6345, min

j
e2j

n o
¼ 0:3094) based

upon the leader-follower model of Liang et al. (2008) will ensure that model (8.4) is

feasible. Here, 0.6345 is the smallest (CRS) efficiency score for the first stage, and

0.3094 is the smallest leader-follower score for the second stage.

Similarly, based upon the case when the second stage is treated as the leader,

another breakdown point of (min
j

e1j

n o
¼ 0:3056, min

j
θ2j

n o
¼ 0:4859 ) can be

obtained.

Table 8.3 reports in columns 2 through 4 the bargaining efficiency scores

for both individual stages and the overall process corresponding to breakdown

point (min
j

θ1j

n o
¼ 0:6345, min

j
e2j

n o
¼ 0:3094); columns 5 through 7 report the

results corresponding to (min
j

e1j

n o
¼ 0:3056, min

j
θ2j

n o
¼ 0:4859).

We note that for DMUs 5, 8, 9, 16, 17, 18, 20, 21, 24, 25, 26, 29, 30, their

bargaining efficiency scores remain the same under the three different breakdown

points, which also are the centralized efficiency scores. Also bargaining efficiency

scores for DMU 26 under the breakdown point (min
j

θ1j

n o
¼ 0:6345, min

j
e2j

n o
¼ 0:3094), and scores for DMU 1 under the breakdown point (min

j
e1j

n o
¼ 0:3056,

min
j

θ2j

n o
¼ 0:4859) are equal to their respective leader-follower (noncooperative)

efficiency results. This indicates that under the bargaining model, DMU26 achieves

its CRS efficiency score for the first stage, and DMU1 achieves its CRS efficiency

score for the second stage.

Model (8.11) is also applied to the banking industry in Table 8.1. h1min and h2min

are calculated as h1min ¼ 1
θ1min

¼ 12:9032 and h2min ¼ 1
θ2min

¼ 19:4175. Table 8.4 reports

the results from (8.11). To make it comparable with the input-oriented bargaining

results, we list the reciprocal of each output-oriented efficiency score, and the input-

oriented results are listed in columns 2–4.

Seven DMUs, namely, DMUs 4, 10, 12, 13, 14, 22, and 23, have different

efficiency decompositions under input- and output-orientations. This indicates

that output-orientation can lead to different bargaining efficiency results from the

input-oriented ones.
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8.6.2 Taiwanese Non-life Insurance Companies

Kao and Hwang (2008) describe a two-stage process where 24 non-life insurance

companies use operational and insurance expenses to generate premiums in the first

stage, and then underwriting and investment profits in the second stage. The inputs

to the first stage are operational expenses and insurance expenses, and the outputs

Table 8.3 Bargaining efficiency scores with breakdown points based upon the leader-follower

model of Liang et al. (2008)

Bank

Breakdown point {0.6345, 0.3094} Breakdown point {0.3056, 0.4859}

e1�o e2�o e1�o � e2�o e1�o e2�o e1�o � e2�o
1 1.0000 0.4487 0.4487 0.8381 0.4859 0.4072

2 0.6823 0.5324 0.3633 0.6793 0.5331 0.3621

3 0.7946 0.5305 0.4215 0.6858 0.5669 0.3888

4 0.8721 0.4882 0.4258 0.8171 0.5221 0.4266

5 1.0000 0.6061 0.6061 1.0000 0.6061 0.6061

6 0.8180 0.5110 0.4180 0.6898 0.5881 0.4057

7 0.7842 0.5021 0.3937 0.6624 0.5546 0.3674

8 0.7451 0.6371 0.4747 0.7451 0.6371 0.4747

9 0.7022 0.6388 0.4486 0.7021 0.6389 0.4486

10 0.8110 0.4058 0.3291 0.4884 0.6946 0.3392

11 0.7413 0.5164 0.3828 0.5659 0.6955 0.3936

12 0.7089 0.6344 0.4497 0.6684 0.6756 0.4516

13 0.6809 0.6098 0.4152 0.5702 0.7807 0.4452

14 0.7139 0.5843 0.4171 0.6831 0.5938 0.4056

15 0.8478 0.7565 0.6414 0.8469 0.7582 0.6421

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 1.0000 0.7144 0.7144 1.0000 0.7144 0.7144

18 0.7974 1.0000 0.7974 0.7974 1.0000 0.7974

19 0.7484 0.7795 0.5834 0.7477 0.7811 0.5840

20 0.7541 0.7844 0.5915 0.7541 0.7844 0.5915

21 0.6550 0.8661 0.5673 0.6550 0.8661 0.5673

22 0.6732 0.7673 0.5165 0.6489 0.8007 0.5196

23 0.6429 0.6130 0.3941 0.6115 0.6479 0.3962

24 0.8711 0.9478 0.8256 0.8711 0.9478 0.8256

25 0.7403 1.0000 0.7403 0.7403 1.0000 0.7403

26 0.6345 0.8363 0.5306 0.6344 0.8363 0.5305

27 0.6573 0.9787 0.6433 0.6549 1.0000 0.6549

28 0.7736 0.8010 0.6197 0.7735 0.8012 0.6197

29 0.8092 1.0000 0.8092 0.8092 1.0000 0.8092

30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: The optimal value of parameter α represents the first-stage bargaining efficiency score (e1�o )

for the corresponding DMU, and therefore we do not report α values in this table
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from the second stage are underwriting profit and investment profit. Direct written

premiums and reinsurance premiums act as the intermediate measures connecting

the two stages.

Table 8.5 shows the original data, and Table 8.6 reports the efficiency results

obtained from both noncooperative (leader-follower) model and centralized model

developed by Liang et al. (2008).

The same three breakdown points are considered in the bargaining game

approach as in the previous bank application. First of all, from models (8.7) and

(8.8), we get the CRS efficiency scores for stage 1’s and stage 2’s least ideal DMU

as θ1min ¼ 0.001725 and θ1min ¼ 0.001058, respectively. Also the smallest leader-

follower efficiency scores when either stage acts as the leader are calculated

Table 8.4 Output-oriented bargaining results for US commercial banks

Bank

Input-oriented Output-oriented

e1�o e2�o e1�o � e2�o e1�o e2�o e1�o � e2�o
1 1.0000 0.4487 0.4487 1.0000 0.4487 0.4487

2 0.6821 0.5327 0.3634 0.6821 0.5327 0.3634

3 0.7946 0.5305 0.4215 0.7946 0.5305 0.4216

4 0.8463 0.5050 0.4274 0.8172 0.5216 0.4262

5 1.0000 0.6061 0.6061 1.0000 0.6061 0.6061

6 0.8179 0.5111 0.4180 0.8180 0.5110 0.4180

7 0.7816 0.5042 0.3941 0.7816 0.5042 0.3940

8 0.7451 0.6371 0.4747 0.7451 0.6371 0.4747

9 0.7021 0.6389 0.4486 0.7022 0.6387 0.4485

10 0.5868 0.5735 0.3365 0.6909 0.4828 0.3336

11 0.6619 0.6281 0.4157 0.6619 0.6282 0.4158

12 0.6906 0.6576 0.4541 0.6996 0.6482 0.4535

13 0.5843 0.7640 0.4464 0.6617 0.6369 0.4214

14 0.7131 0.5852 0.4173 0.7139 0.5843 0.4172

15 0.8469 0.7582 0.6421 0.8469 0.7582 0.6421

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 1.0000 0.7144 0.7144 1.0000 0.7144 0.7144

18 0.7974 1.0000 0.7974 0.7974 1.0000 0.7974

19 0.7477 0.7811 0.5840 0.7477 0.7810 0.5840

20 0.7541 0.7844 0.5915 0.7542 0.7844 0.5916

21 0.6550 0.8660 0.5672 0.6550 0.8661 0.5673

22 0.6491 0.8005 0.5196 0.6732 0.7673 0.5166

23 0.6280 0.6330 0.3975 0.6430 0.6130 0.3941

24 0.8711 0.9478 0.8256 0.8711 0.9478 0.8257

25 0.7403 1.0000 0.7403 0.7403 1.0000 0.7403

26 0.6344 0.8363 0.5305 0.6345 0.8363 0.5306

27 0.6549 1.0000 0.6549 0.6549 1.0000 0.6549

28 0.7735 0.8012 0.6197 0.7736 0.8011 0.6198

29 0.8092 1.0000 0.8092 0.8093 1.0000 0.8093

30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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according to the results from Table 8.6, which are (min
j

θ1j

n o
¼ 0:5895, min

j
e2j

n o
¼ 0:0870) and (min

j
e1j

n o
¼ 0:2507, min

j
θ2j

n o
¼ 0:2795).

Table 8.7 reports the bargaining results for both individual stages and the overall

process associated with breakdown point {θ1min, θ2min}, (min
j

θ1j

n o
¼ 0:5895, min

j

e2j

n o
¼ 0:0870 ) and ðmin

j
e1j

n o
¼ 0:2507, min

j
θ2j

n o
¼ 0:2795Þ in columns

2 through 4, columns 5 through 7, and columns 8 through 10, respectively.

Table 8.5 Taiwanese non-life insurance company data

Company

Operation

expenses

Insurance

expenses

Direct

written

premiums

Reinsurance

premiums

Underwriting

profit

Investment

profit

1. Taiwan Fire 1,178,744 673,512 7,451,757 856,735 984,143 681,687

2. Chung Kuo 1,381,822 1,352,755 10,020,274 1,812,894 1,228,502 834,754

3. Tai Ping 1,177,494 592,790 4,776,548 560,244 293,613 658,428

4. China

Mariners

601,320 594,259 3,174,851 371,863 248,709 177,331

5. Fubon 6,699,063 3,531,614 37,392,862 1,753,794 7,851,229 3,925,272

6. Zurich 2,627,707 668,363 9,747,908 952,326 1,713,598 415,058

7. Taian 1,942,833 1,443,100 10,685,457 643,412 2,239,593 439,039

8. Ming Tai 3,789,001 1,873,530 17,267,266 1,134,600 3,899,530 622,868

9. Central 1,567,746 950,432 11,473,162 546,337 1,043,778 264,098

10. The First 1,303,249 1,298,470 8,210,389 504,528 1,697,941 554,806

11. Kuo Hua 1,962,448 672,414 7,222,378 643,178 1,486,014 18,259

12. Union 2,592,790 650,952 9,434,406 1,118,489 1,574,191 909,295

13. Shingkong 2,609,941 1,368,802 13,921,464 811,343 3,609,236 223,047

14. South China 1,396,002 988,888 7,396,396 465,509 1,401,200 332,283

15. Cathay

Century

2,184,944 651,063 10,422,297 749,893 3,355,197 555,482

16. Allianz

President

1,211,716 415,071 5,606,013 402,881 854,054 197,947

17. Newa 1,453,797 1,085,019 7,695,461 342,489 3,144,484 371,984

18. AIU 757,515 547,997 3,631,484 995,620 692,731 163,927

19. North

America

159,422 182,338 1,141,950 483,291 519,121 46,857

20. Federal 145,442 53,518 316,829 131,920 355,624 26,537

21. Royal &

Sunalliance

84,171 26,224 225,888 40,542 51,950 6,491

22. Asia 15,993 10,502 52,063 14,574 82,141 4,181

23. AXA 54,693 28,408 245,910 49,864 0.1 18,980

24. Mitsui

Sumitomo

163,297 235,094 476,419 644,816 142,370 16,976
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Note that as with the previous bank data, in this application, the value for

parameter α associated with the optimal solution is unique for each DMU through-

out the entire searching range, which also leads to a unique pair of efficiency scores

for both individual stages.

It can be seen from Table 8.7 that with breakdown point {θ1min, θ2min}, the

bargaining efficiency results are exactly the same as those obtained from Liang

et al. (2008)’s centralized model. Also from Table 8.7, note that for some DMUs,

such as DMUs 1, 2, 3, 4, 5, 6, 10, 12, 15, 22, 23, their respective bargaining

efficiency results remain unchanged under all three breakdown points, while for

the rest DMUs, such as DMUs 7, 8, 9, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, their

respective bargaining efficiency scores are varied according to different break-

down points.

Table 8.6 Efficiency results for Taiwanese non-life insurance companies

DMU

Stage 1 as the leader Stage 2 as the leader Centralized

θ1j e2j θ1j � e2j e1j θ2j e1j � θ2j e1;Centralizedj e2;Centralizedj eCentralizedj

1 0.9926 0.7045 0.6993 0.9260 0.7134 0.6606 0.9926 0.7045 0.6993

2 0.9985 0.6257 0.6248 0.9908 0.6275 0.6217 0.9985 0.6257 0.6248

3 0.6900 1.0000 0.6900 0.6900 1.0000 0.6900 0.6900 1.0000 0.6900

4 0.7243 0.4200 0.3042 0.4981 0.4323 0.2153 0.7243 0.4200 0.3042

5 0.8375 0.8060 0.6750 0.7376 1.0000 0.7376 0.8306 0.9234 0.7670

6 0.9637 0.4010 0.3864 0.9606 0.4057 0.3897 0.9606 0.4057 0.3897

7 0.7521 0.3522 0.2649 0.3000 0.5378 0.1613 0.6706 0.4124 0.2766

8 0.7256 0.3780 0.2743 0.3898 0.5114 0.1993 0.6631 0.4150 0.2752

9 1.0000 0.2233 0.2233 0.4388 0.2920 0.1281 1.0000 0.2233 0.2233

10 0.8615 0.5409 0.4660 0.2587 0.6736 0.1743 0.8615 0.5409 0.4660

11 0.7405 0.1677 0.1242 0.4718 0.3267 0.1541 0.6468 0.2534 0.1639

12 1.0000 0.7596 0.7596 1.0000 0.7596 0.7596 1.0000 0.7596 0.7596

13 0.8107 0.2431 0.1970 0.3384 0.5435 0.1839 0.6719 0.3093 0.2078

14 0.7246 0.3740 0.2710 0.3097 0.5178 0.1604 0.6699 0.4309 0.2887

15 1.0000 0.6138 0.6138 0.7102 0.7047 0.5005 1.0000 0.6138 0.6138

16 0.9072 0.3356 0.3045 0.5980 0.3848 0.2301 0.8856 0.3615 0.3201

17 0.7233 0.4557 0.3296 0.2507 1.0000 0.2507 0.6276 0.5736 0.3600

18 0.7935 0.3262 0.2588 0.6549 0.3737 0.2447 0.7935 0.3262 0.2588

19 1.0000 0.4112 0.4112 0.9787 0.4158 0.4069 1.0000 0.4112 0.4112

20 0.9332 0.5857 0.5466 0.4073 0.9014 0.3671 0.9332 0.5857 0.5466

21 0.7505 0.2623 0.1969 0.6918 0.2795 0.1934 0.7321 0.2743 0.2008

22 0.5895 1.0000 0.5895 0.5895 1.0000 0.5895 0.5895 1.0000 0.5895

23 0.8501 0.4509 0.3833 0.6812 0.5599 0.3814 0.8425 0.4989 0.4203

24 1.0000 0.0870 0.0870 0.3987 0.3351 0.1336 0.4287 0.3145 0.1348
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8.7 Conclusions

This chapter introduces the Nash bargaining game model as a way of addressing the

conflict arising from intermediate measures, and presents an alternative approach to

evaluate the efficiency scores for both stages and the overall process. Furthermore,

it is proved that in the case of only one intermediate measure, the bargaining game

approach yields the same efficiency results as obtained from the separately-applied

standard DEA approach, and also with the non-cooperative and centralized

approaches in Liang et al. (2008).

Different breakdown points can be used to calculate the bargaining efficiency

scores. As a matter of fact, each DMU can use a specific breakdown point.

For example, based upon the leader-follower model of Liang et al. (2008), both�
min
j

θ1j

n o
, min

j
e2j

n o�
and

�
min
j

e1j

n o
, min

j
θ2j

n o�
can be used as breakdown

Table 8.7 Bargaining efficiency scores with three breakdown points

DMU

{θ1min, θ2min} {0.5895, 0.0870} {0.2507, 0.2795}

e1�o e2�o e1�o � e2�o e1�o e2�o e1�o � e2�o e1�o e2�o e1�o � e2�o
1 0.9926 0.7045 0.6993 0.9926 0.7045 0.6993 0.9926 0.7045 0.6993

2 0.9985 0.6257 0.6248 0.9985 0.6257 0.6248 0.9985 0.6257 0.6248

3 0.6900 1.0000 0.6900 0.6900 1.0000 0.6900 0.6900 1.0000 0.6900

4 0.7243 0.4200 0.3042 0.7243 0.4200 0.3042 0.7243 0.4200 0.3042

5 0.8306 0.9234 0.7670 0.8306 0.9234 0.7670 0.8306 0.9234 0.7670

6 0.9606 0.4057 0.3897 0.9606 0.4057 0.3897 0.9606 0.4057 0.3897

7 0.6706 0.4124 0.2766 0.7521 0.3522 0.2649 0.6200 0.4317 0.2677

8 0.6631 0.4150 0.2752 0.7256 0.3780 0.2743 0.6630 0.4150 0.2751

9 1.0000 0.2233 0.2233 1.0000 0.2233 0.2233 0.4390 0.2920 0.1282

10 0.8615 0.5409 0.4660 0.8615 0.5409 0.4660 0.8615 0.5409 0.4660

11 0.6468 0.2534 0.1639 0.7292 0.2066 0.1507 0.4718 0.3267 0.1541

12 1.0000 0.7596 0.7596 1.0000 0.7596 0.7596 1.0000 0.7596 0.7596

13 0.6719 0.3093 0.2078 0.8107 0.2431 0.1971 0.4600 0.4344 0.1998

14 0.6699 0.4309 0.2887 0.7246 0.3740 0.2710 0.6699 0.4309 0.2887

15 1.0000 0.6138 0.6138 1.0000 0.6138 0.6138 1.0000 0.6138 0.6138

16 0.8856 0.3615 0.3201 0.8856 0.3615 0.3201 0.8687 0.3651 0.3172

17 0.6276 0.5736 0.3600 0.7231 0.4598 0.3325 0.6276 0.5736 0.3600

18 0.7935 0.3262 0.2588 0.7935 0.3262 0.2589 0.6551 0.3737 0.2448

19 1.0000 0.4112 0.4112 1.0000 0.4112 0.4112 0.9788 0.4158 0.4070

20 0.9332 0.5857 0.5466 0.9332 0.5857 0.5466 0.8159 0.6561 0.5353

21 0.7321 0.2743 0.2008 0.7505 0.2623 0.1969 0.6918 0.2795 0.1934

22 0.5895 1.0000 0.5895 0.5895 1.0000 0.5895 0.5895 1.0000 0.5895

23 0.8425 0.4989 0.4203 0.8425 0.4989 0.4203 0.8425 0.4989 0.4203

24 0.4287 0.3145 0.1348 0.7752 0.1390 0.1078 0.3987 0.3351 0.1336

Note: The optimal value of parameter α represents the first-stage bargaining efficiency score (e1�o )

for the corresponding DMU, and therefore we do not report α values in this table
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points, where θ1j and e
2
j respectively represent the efficiency scores for stages 1 and

2 of DMUj when Stage 1 is treated as the leader, whereas e1j and θ2j respectively

represent the efficiency scores for stage 1 and 2 when Stage 2 takes the leader’s role.
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