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Abstract In conventional data envelopment analysis (DEA), decision making

units (DMUs) are generally treated as a black-box in the sense that internal

structures are ignored, and the performance of a DMU is assumed to be a function

of a set of chosen inputs and outputs. A significant body of work has been directed

at problem settings where the DMU is characterized by a multistage process; supply

chains and many manufacturing processes take this form. The current chapter

presents DEA modeling approaches for network DEA where additive efficiency

decompositions are assumed for sub-units/processes/stages. In the additive effi-

ciency decomposition approach, the overall efficiency is expressed as a (weighted)

sum of the efficiencies of the individual stages. This approach can be applied under

both constant returns to scale (CRS) and variable returns to scale (VRS)

assumptions.
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5.1 Introduction

Data envelopment analysis (DEA) is a tool for measuring the relative efficiency of

peer decision making units (DMUs) that have multiple inputs and outputs. In many

cases, DMUs may have internal or network structures; see for example, Färe and

Grosskopf (1996), Castelli et al. (2004) and Tone and Tsutsui (2009). In the latter

case, the authors provide a slacks-based model that captures the overall efficiency

of the DMU, and provides, as well, measures for the components (referred to as

divisions) or stages that make up the DMU. The overall efficiency is expressed as a

weighted average of the component efficiencies, where weights are exogenously

imposed to reflect the perceived importance of the components. (see Chap. 11 for

detailed discussions.)

Based upon the work of Chen et al. (2009) and Cook et al. (2010), the current

chapter focuses on the derivation of a radial measure of efficiency that can be

decomposed into a convex combination of radial measures for the individual

components that make up the DMU. We note that in these two work, the weights

used for individual stage’s efficiency aggregation are variables, and not imposed

exogenously.

Chen et al. (2009) present a methodology for representing overall radial effi-

ciency of a DMU as an additive weighted average of the radial efficiencies of the

individual stages or components that make up the DMU. While the approach of

Chen et al. (2009) can be extended to DMUs that have more than two stages, such

an extension requires that the multi-stage processes share the unique feature that all

outputs from any stage represent the only inputs to the next stage. In other words,

except for the first stage, all other stages do not have their own independent inputs

(and/or outputs), that enter (exit) the process at that point. While these closed
systems do exist, the more prevalent case is that where each stage is open, that is
it has its own inputs (and/or outputs) in addition to the intermediate measures (that

exist in-between two stages).

Such open multistage structures are relatively common, particularly in

processing industries. Consider, for example, the situation in which a coal mining

company wishes to evaluate the efficiency of a set of collieries (mining operations)

in a large coal field. Typically, the process of delivering finished products to

the customer is multistage in nature. In crude terms, Stage 1 would involve the

extraction of the raw or run-of-mine (ROM) coal from underground or open pit coal

reserves. At the mine site, the ROM is generally put through a process where

screens separate the product into different size categories; e.g. a ‘more than one

inch in diameter’ category, and a ‘less than one inch’ category. The resulting ‘size

grades’, representing the outputs from this first stage, are then transported to an

on-site washing facility, which might be deemed Stage 2. The washing process filters
out any material below a certain specific gravity; this portion is unsuitable for sale

and is discarded. A portion of the remaining usable coal (outputs from Stage 2) is sold

to the open market as a finished product, and at management’s discretion (based

on estimates of the demand), the remaining product is sent to Stage 3, the crusher.
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The crushing process also produces waste or discard, with the remaining material,

sometimes referred to as ‘middlings’, being sold or blended with other materials

to make such products as briquettes. This latter process might be thought of as

Stage 4.
Numerous such examples from processing industries exist. In many cases a

portion of the outputs from one stage may be in ‘finished’ form and go to the

consumer market, with the remainder being reprocessed at the next stage to get a

more pure form of the product. The petrochemical industry, perfume manufacturing

and so on, are examples.

It is important to note that the models of Kao and Hwang (2008), Liang

et al. (2008) and Chen et al. (2009) concentrate specifically on pure serial processes.

Cook et al. (2010) develop linear models for DMUs that have multiple stages, with

each stage being open, having its own inputs and outputs. Cook et al. (2010) also

obtain an additive efficiency decomposition of the overall efficiency score. The

advantage of additive efficiency decomposition is that we can also study perfor-

mance under assumptions of both constant returns to scale (CRS) and variable

returns to scale (VRS).

The current chapter starts with the approach of Chen et al. (2009) where a simple

two-stage network process is studies. We then present the work of Cook

et al. (2010) where additive efficiency decomposition approach is applied to general

network structures. For ease of notation, we begin in Sect. 5.5 by examining open

serial systems. We then present a model for measuring the overall radial efficiency

of the general serial multi-stage process, and show that this measure can be

decomposed into radial measures of efficiency for the components or stages making

up the overall process. Section 5.6 then extends this model structure to include more

complex multistage processes. Our approach is illustrated in Sect. 5.7 with the

supply chain data set in Liang et al. (2006). As well, we re-evaluate the data set

provided in Tone and Tsutsui (2009).

5.2 A Two-Stage Network Process: Constant

Returns to Scale

Consider a two-stage process shown in Fig. 5.1. Suppose we have n DMUs, and that

eachDMUj( j ¼ 1, 2, . . ., n) hasm inputs to the first stage, xij(i ¼ 1, 2, . . ., m), and
D outputs from this stage, zdj, (d ¼ 1, 2, . . ., D). These D outputs then become the

inputs to the second stage, and are referred to as intermediate measures. The outputs

from the second stage are denoted yrj, (r ¼ 1, 2, . . ., s). Based upon the CRS model

(Charnes et al. 1978), the (CRS) efficiency scores forDMUjo in the first and second

stages can be calculated in the following two CRS models (5.1) and (5.2),

respectively:
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θ1jo ¼ max

XD
d¼1

ηA
d zdjo

Xm
i¼1

vixijo

s:t:

XD
d¼1

ηA
d zdj

Xm
i¼1

vixij

� 1 j ¼ 1, . . . , n

ηA
d , vi � 0

ð5:1Þ

θ2j ¼ max

Xs
r¼1

uryrjo

XD
d¼1

ηB
d zdjo

s:t:

Xs
r¼1

uryrj

XD
d¼1

ηB
d zdj

< 1, j ¼ 1, . . . , n

ηB
d , ur � 0

ð5:2Þ

The overall CRS efficiency score can be calculated from the following CRS

model (5.3)

xij,i = 1,2,...,m zdj,d = 1,2,...,D yrj,r = 1,2,...,s

Stage 1 Stage 2

DMUj, j = 1,2,...,nFig. 5.1 Two-stage process
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max

Xs
r¼1

uryrjo

Xm
i¼1

vixijo

s:t:

Xs
r¼1

uryrj

Xm
i¼1

vixij

� 1, j ¼ 1, . . . n

vi, ur � 0

ð5:3Þ

In Kao and Hwang’s (2008) and Liang et al. (2008) two-stage network DEA

approach, it is required that the input of the second stage to be the expected output

of the first stage, i.e., given the inputs to the first stage xij, that stage yields the

optimal intermediate measure
XD
d¼1

η�dzdj which is then used as the (aggregated) input

in the second stage. Thus, it is assumed that ηAd ¼ ηBd ¼ ηd, and the overall effi-

ciency of a DMU is given by:

θjo ¼ Max

XD
d¼1

ηdzdjo

Xm
i¼1

vixijo

�

Xs
r¼1

uryrj

XD
d¼1

ηdzdj

¼

Xs
r¼1

uryrj0

Xm
i¼1

vixij0

s:t:

XD
d¼1

ηdzdj

Xm
i¼1

vixij

� 1, j ¼ 1, . . . , n

Xs
r¼1

uryrj

XD
d¼1

ηdzdj

� 1, j ¼ 1, . . . , n

vi, ur, ηd � 0

ð5:4Þ
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It can be seen from the objective function of model (5.4) that the overall

efficiency is the product of the efficiencies of the two stages, i.e.,

θ1j0 � θ2j0 ¼

Xs
r¼1

u�oyrj0

Xm
i¼1

v�oxij0

¼ θjO , where θ1j0 ¼

XD
d¼1

η�dzdjo

Xm
i¼1

v�i xijo

and θ2j0 ¼

Xs
r¼1

u�r yrj

XD
d¼1

η�dzdj

and (*) denotes

optimal value from model (5.4).

Note ηAd ¼ ηBd is a key and rational assumption in that the value accorded the

outputs from the first stage should reasonably be assumed as their value when they

assume the additional role as inputs to the second stage. Without this assumption,

model (5.4) becomes a non-linear program, as the terms ∑ D
d¼1η

A
d zdo and ∑

D
d¼1η

B
d zdo

cannot be cancelled in the objective function. Also, without this assumption,

solving model (5.4) is equivalent to applying the CRS model to stages 1 and

2 independently, and then taking the geometric mean of the two CCR efficiency

scores. Throughout the chapter we therefore maintain the assumption that

∑ D
d¼1ηdzdo is to be the same for the two stages.

In the interest of modeling two-stage processes in a more general way, and

specifically to allow for VRS settings, we propose that rather than combine the

stages in a multiplicative (geometric) manner as in Kao and Hwang (2008)

and Liang et al. (2008), we use a weighted additive (arithmetic mean)

approach.

As will be explained below, the multiplicative and additive models are two

different, but equally valid ways of aggregating the components of a two-stage

process. Thus, we propose to define overall efficiency of the two stage

process as

w1 �
XD

d¼1
ηdzdj0Xm

i¼1
vixij0

þ w2 �
X s

r¼1
uryrj0XD

d¼1
ηdzdj0

, ð5:5Þ

Where w1 and w2 are user-specified weights such that w1 + w2 ¼ 1. These weights

are not optimization variables, but rather are functions of the optimization

variables.

We thus propose deriving the overall efficiency of the process by solving the

following problem:
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Max w1 �
XD

d¼1
ηdzdj0Xm

i¼1
vixij0

þ w2 �
X s

r¼1
uryrj0XD

d¼1
ηdzdj0

2
64

3
75

s:t:

XD

d¼1
ηdzdjXm

i¼1
vixij

� 1

X s

r¼1
uryrjXD

d¼1
ηdzdj

� 1

ηd , ur, vi � 0, j ¼ 1, 2, . . . , n

ð5:6Þ

It is observed that model (5.6) cannot be turned into a linear program using

the usual Charnes and Cooper (1962) transformation. For example, if we let

t1 ¼ 1Xm

i¼1
vixij0

, t2 ¼ 1XD

d¼1
ηdzdj0

, and set π1d ¼ t1 � ηd, ωi ¼ t1 � vi, μr ¼ t2 �

ur, π2d ¼ t2 � ηd, then the transformations π1d ¼ t1 � ηd and π2d ¼ t2 � ηd imply a

linear relationship between π1d and π2d, namely, π1d ¼
X

i
ωixijoX

k
π1kzkjo

� π2d. Then, model

(5.6) becomes

Max w1 �
XD

d¼1
π1dzdj0 þ w2 �

X s

r¼1
μryrj0

h i
s:t:

Xm

i¼1
ωixij �

XD

d¼1
π1dzdj � 0XD

d¼1
π2dzdj �

X s

r¼1
μryrj � 0Xm

i¼1
ωixijo ¼ 1XD

d¼1
π2dzdjo ¼ 1

π1d ¼
X

i
ωi � xi, j0X

k
π1k � zk, j0

� π2d

π1d, π
2
d, μr,ωi � 0, j ¼ 1, 2, . . . , n

ð5:7Þ

which is a non-linear program. We, therefore, seek an alternative way to convert

model (5.6) into a linear form, by appropriate choice of the w1 and w2.

Note that w1 and w2 are intended to represent the relative importance or

contribution of the performances of stages 1 and 2, respectively, to the overall

performance of the DMU. One argument is that the ‘size’ of a stage reflects its

importance, (as measured by its weight). One reasonable representation of size is
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the portion of total resources devoted to each stage. LettingXm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0 represent the total size of (amount of resources con-

sumed by) the two-stage process, and
Xm

i¼1
vixij0 and

XD

d¼1
ηdzdj0 , the sizes of the

stages 1 and 2 respectively, we define

w1 ¼
Xm

i¼1
vixij0Xm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0

and

w2 ¼
XD

d¼1
ηdzdj0Xm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0

ð5:8Þ

Then, the objective function of model (5.6) becomes:

XD

d¼1
ηdzdj0 þ

X s

r¼1
uryrj0Xm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0

ð5:9Þ

Under the CRS case, model (5.6) becomes

Max

XD

d¼1
ηdzdj0 þ

X s

r¼1
uryrj0Xm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0

s:t:

XD

d¼1
ηdzdjXm

i¼1
vixij

� 1

X s

r¼1
uryrjXD

d¼1
ηdzdj

� 1

ηd, ur, vi � 0, j ¼ 1, 2, . . . , n

ð5:10Þ

Using the Charnes-Cooper transformation, model (5.10) is equivalent to

Max
X s

r¼1
μryrjo þ

XD

d¼1
πdzdjo

s:t:
XD

d¼1
πdzdj �

Xm

i¼1
ωixij � 0X s

r¼1
μryrj �

XD

d¼1
πdzdj � 0Xm

i¼1
ωixijo þ

XD

d¼1
πdzdjo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

ð5:11Þ
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Once we obtain an optimal solution to (5.11), we can calculate efficiency scores

for the two individual stages. However, model (5.11) can have alternative optimal

solutions. As a result, the decomposition of the overall efficiency defined in (5.5)

may not be unique. We here follow Kao and Hwang’s (2008) approach to find a set

of multipliers which produces the largest first (or second) stage efficiency score

while maintaining the overall efficiency score.

We therefore propose the following procedure. Given the overall efficiency

obtained from (5.11) (denoted as θo), we calculate either the first stage’s efficiency
(θ1�j ) or the second stage’s efficiency (θ2�j ) first, and then derive from that the

efficiency of the other stage.

In case the first stage is to be given pre-emptive priority, the following model

determines its efficiency (θ1�o ), while maintaining the overall efficiency score at θo
calculated from model (5.11).

θ1�o ¼ Max

XD

d¼1
ηdzdjoXm

i¼1
vixijo

s:t:

XD

d¼1
ηdzdjXm

i¼1
vixij

� 1

X s

r¼1
uryrjXD

d¼1
ηdzdj

� 1

XD

d¼1
ηdzdjo þ

X s

r¼1
uryrjoXm

i¼1
vixijo þ

XD

d¼1
ηdzdjo

¼ θ0

ηd, ur, vi � 0, j ¼ 1, 2, . . . , n

ð5:12Þ

or equivalently,

θ1�o ¼ Max
XD

d¼1
πdzdjo

s:t:
XD

d¼1
πdzdj �

Xm

i¼1
ωixij � 0X s

r¼1
μryrj �

XD

d¼1
πdzdj � 0

1� θoð Þ
XD

d¼1
πdzdjo þ

X s

r¼1
μryrjo ¼ θoXm

i¼1
ωixijo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

ð5:13Þ
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The efficiency for the second stage is then calculated as

θ2o ¼
θo � w�

1 � θ1�o
w�
2

where w�
1 and w�

2 represent optimal weights obtained from model (5.11) by

way of (5.8).

Note that we here use (*) in θ1�o to indicate that the efficiency of the first stage is

given the pre-emptive priority and is optimized first. In this case, the resulting

second stage efficiency score is denoted as θ2o.
In case the second stage is to be given pre-emptive priority, the following model

determines the second stage’s efficiency (θ2�o ) while maintaining the overall effi-

ciency score at θo calculated from model (5.11).

θ2�o ¼ Max

X s

r¼1
uryrjoXD

d¼1
ηdzdjo

s:t:

XD

d¼1
ηdzdjXm

i¼1
vixij

� 1

X s

r¼1
uryrjXD

d¼1
ηdzdj

� 1

XD

d¼1
ηdzdjo þ

X s

r¼1
uryrjoXm

i¼1
vixijo þ

XD

d¼1
ηdzdjo

¼ θ0

ηd, ur, vi � 0, j ¼ 1, 2, . . . , n

ð5:14Þ

Model (5.14) is equivalent to

θ2�o ¼ Max
X s

r¼1
μryrjo

s:t:
XD

d¼1
πdzdj �

Xm

i¼1
ωixij � 0X s

r¼1
μryrj �

XD

d¼1
πdzdj � 0XD

d¼1
πdzdjo þ

X s

r¼1
μryrjo � θo

Xm

i¼1
ωixijo ¼ θoXD

d¼1
πdzdjo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

ð5:15Þ

and the efficiency for the first stage is calculated as
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θ1o ¼
θo � w�

2 � θ2�o
w�
1

:

Note that we here use (*) in θ2�o to indicate that second stage is given pre-emptive

priority in terms of its efficiency being optimized first. In this case, the resulting first

stage efficiency score is denoted as θ1o.
Finally, note that if θ1�o ¼ θ1o or θ

2�
o ¼ θ2o, then this indicates that we have a unique

efficiency decomposition.

5.3 Two-Stage Network DEA: Variable Returns to Scale

While the discussion in the previous section is based upon the assumption of CRS,

the above approach enables us to study the efficiency of two-stage processes under

VRS. The VRS efficiency scores for the two stages can be determined by the

following VRS models (Banker et al. 1984):

max E1
jo
¼

XD
d¼1

ηA
d zdjo þ uA

Xm
i¼1

vixijo

s:t:

XD
d¼1

ηA
d zdj þ uA

Xm
i¼1

vixij

� 1, j ¼ 1, . . . , n

ηA
d , vi � 0 uA free in sign

and

max E2
jo
¼

Xs
r¼1

uryrjo þ uB

XD
d¼1

ηB
d zdjo

s:t:

Xs
r¼1

uryrj þ uB

XD
d¼1

ηB
d zdj

< 1, j ¼ 1, . . . , n

ηB
d , ur � 0 and uB free in sign
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Note that the approach of Kao and Hwang (2008) and Liang et al. (2008) cannot

be extended to the VRS assumption, because E1
jo
� E2

jo
cannot be converted into a

linear form under the condition of ηAd ¼ ηBd , due to the free variable uA in the

numerator of E1
jo
. On the other hand, using our approach, we have the VRS overall

efficiency as using the weights defined under the CRS assumption

Max

XD

d¼1
ηdzdj0 þ uA þ

X s

r¼1
uryrj0 þ uBXm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0

s:t:

XD

d¼1
ηdzdj þ uAXm

i¼1
vixij

� 1

X s

r¼1
uryrj þ uBXD

d¼1
ηdzdj

� 1

ηd, ur, vi � 0, j ¼ 1, 2, . . . , n

uA, uB, free in sign

ð5:16Þ

Note that this is an input-oriented model. If we use output-oriented VRS

models, the weights will be defined as w1 ¼
XD

d¼1
ηdzdj0X s

r¼1
uryrj0þ

XD

d¼1
ηdzdj0

and

w2 ¼
X s

r¼1
uiyrj0X s

r¼1
uiyrj0þ

XD

d¼1
ηdzdj0

.

Model (5.16) is equivalent to the following linear programming program

Max
X s

r¼1
μryrjo þ u1 þ

XD

d¼1
πdzdjo þ u2

s:t:
XD

d¼1
πdzdj �

Xm

i¼1
ωixij þ u1 � 0X s

r¼1
μryrj �

XD

d¼1
πdzdj þ u2 � 0Xm

i¼1
ωixijo þ

XD

d¼1
πdzdjo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

u1, u2 free in sign

ð5:17Þ
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Once we obtain the overall efficiency, models similar to (5.13) and (5.15) can be

developed to determine the efficiency of each stage. Specifically, assuming

pre-emptive priority for stage 1, the following model determines that stage’s

efficiency (E1�
o ), while maintaining the overall efficiency score at Eo calculated

from model (5.17).

E1�
o ¼ Max

XD

d¼1
πdzdjo þ u1

s:t:
XD

d¼1
πdzdj þ u1 �

Xm

i¼1
ωixij � 0X s

r¼1
μryrj þ u2 �

XD

d¼1
πdzdj � 0

1� Eoð Þ
XD

d¼1
πdzdjo þ

X s

r¼1
μryrjo þ u1 þ u2 ¼ EoXm

i¼1
ωixijo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

u1, u2 free in sign

ð5:18Þ

Similarly, if stage 2 is to be given pre-emptive priority, the following model

determines the efficiency (E2�
j ) for that stage, while maintaining the overall effi-

ciency score at Eo calculated from model (5.17).

E2�
o ¼ Max

X s

r¼1
μryrjo þ u2

s:t:
XD

d¼1
πdzdj þ u1 �

Xm

i¼1
ωixij � 0X s

r¼1
μryrj þ u2 �

XD

d¼1
πdzdj � 0XD

d¼1
πdzdjo þ

X s

r¼1
μryrjo � Eo

Xm

i¼1
ωixijo þ u1 þ u2 ¼ EoXD

d¼1
πdzdjo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

u1, u2 free in sign

ð5:19Þ

Once the efficiency score for one of the stages is calculated using (5.18) or

(5.19), the score for the other stage can be derived in the similar manner as in

the CRS case.
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5.4 Two-Stage Network DEA: Application of Additive

Efficiency Decomposition

We here apply the above approach to the 24 Taiwanese non-life insurance compa-

nies studied in Kao and Hwang (2008). The two-stage process consists of premium

acquisition and profit generation. There are two inputs to the first stage which is

characterized by marketing of the insurance and generation of premiums, and two

outputs from the second stage which is characterized by investment and generation

of profit. The two inputs are operational expenses and insurance expenses, and the

outputs are underwriting profit and investment profit. There are also two interme-

diate measures between the two stages, namely direct written premiums and

reinsurance premiums. The data are provided in Table 5.1.

The CRS results from models (5.11), (5.13) and (5.15) are reported in Table 5.2.

The third column reports the overall CRS efficiency obtained from model (5.11).

The optimal weights from model (5.11) for each DMU are reported under columns

4 and 5. The rest of the columns report the efficiency score for each individual stage

based upon models (5.13) and (5.15).

It can be seen from Table 5.2 that we have unique efficiency decompositions for

all DMUs. This arises from the fact that models (5.13) and (5.15) yield identical

efficiency scores for the two stages. (Note that the uniqueness result is only true to

this specific data set.)

Since the overall efficiency definition presented herein is different from that

assumed by Kao and Hwang (2008), the overall efficiency scores from the two

approaches cannot be directly compared. The last three columns of Table 5.3 report

the CRS scores based upon Kao and Hwang’s (2008) approach. We, however, note

that except for 8 DMUs (7, 8, 11, 13, 14, 17, 21, and 24), our first and second stage’s

efficiency scores are identical to those of Kao and Hwang (2008). This indicates

that Kao and Hwang’s approach also yields unique efficiency decompositions for

the remaining 16 DMUs.

Table 5.3 reports the rankings of the CRS scores based upon our new approach

and Kao and Hwang’s (2008). It can be seen they do not yield the same exact

ranking. DMUs 9 and 14 show a big ranking difference. In fact, if we apply the

average to Kao and Hwang’s (2008) first and second stage scores, a different

ranking is obtained. However, the Spearman Rank Correlation coefficient for the

rankings in Table 5.3 is 0.971 which is significant at the 0.01 level, indicating an

approximately equal ranking based upon the two different approaches. It is also

the case that the Pearson Correlation Coefficient for the two sets of raw CRS scores

is 98 %.

We next turn to the case of VRS reported in Table 5.4. Two DMUs (5.5 and 5.22)

are VRS overall efficient. Also, we have unique VRS efficiency decompositions for

all DMUs, as the results obtained from models (5.18) and (5.19) are identical.

Under the standard DEA approach, the scores under the VRS assumption are not

less than the ones under CRS assumption. This is true as well for the overall

efficiency scores in our models. However, we note that this is not the case for
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DMUs 1, 12 and 20 for the first stage scores. This may be attributed to the fact that

the constraint spaces for (5.13) and (5.18) are not the same, and hence the inter-

mediate scores may not obey the conventional principles.

We finally note that w1 and w2 as defined in the current chapter, are variables

related to the inputs and the intermediate measures. By virtue of the optimization

process, it can turn out that either w1 ¼ 1 and w2 ¼ 0 or w1 ¼ 0 and w2 ¼ 1 at

optimality. To overcome this problem, we can require that w1 � α and w2 � α in

model (5.6), where α is a selected constant and 0 % < α � 50 %. Such additional

constraints can also be viewed as user’s preference regarding the relative impor-

tance of the two stages. If such additional constraints are need, we can then

study the sensitivity of the overall efficiency scores relative to changes in this

parameter α.
In the current chapter, however, there is no need to add additional constraints

of w1 � α and w2 � α into models (5.11) and (5.17), because non-zero weights

are obtained for both stages. We point out, however, that it is likely that model

(5.11) (or model (5.17)) can be infeasible with certain α values. For example, when

Table 5.2 CRS results

DMU

CRS overall

efficiency w1 w2 θ1�o θ2o θ1o θ2�o
1 Taiwan Fire 0.849 0.502 0.498 0.993 0.704 0.993 0.704

2 Chung Kuo 0.812 0.500 0.500 0.998 0.626 0.998 0.626

3 Tai Ping 0.817 0.592 0.408 0.690 1 0.690 1

4 China Mariners 0.596 0.580 0.420 0.724 0.420 0.724 0.420

5 Fubon 0.873 0.546 0.454 0.831 0.923 0.831 0.923

6 Zurich 0.689 0.510 0.490 0.961 0.406 0.961 0.406

7 Taian 0.580 0.571 0.429 0.752 0.352 0.752 0.352

8 Ming Tai 0.579 0.580 0.420 0.726 0.378 0.726 0.378

9 Central 0.612 0.500 0.500 1 0.223 1 0.223

10 The First 0.713 0.537 0.463 0.862 0.541 0.862 0.541

11 Kuo Hua 0.509 0.578 0.422 0.729 0.207 0.729 0.207

12 Union 0.880 0.500 0.500 1 0.760 1 0.760

13 Shingkong 0.557 0.552 0.448 0.811 0.243 0.811 0.243

14 South China 0.577 0.580 0.420 0.725 0.374 0.725 0.374

15 Cathay Century 0.807 0.500 0.500 1 0.614 1 0.614

16 Allianz President 0.639 0.530 0.470 0.886 0.362 0.886 0.362

17 Newa 0.613 0.580 0.420 0.723 0.460 0.723 0.460

18 AIU 0.587 0.558 0.442 0.794 0.326 0.794 0.326

19 North America 0.706 0.500 0.500 1 0.411 1 0.411

20 Federal 0.765 0.517 0.483 0.933 0.586 0.933 0.586

21 Royal & Sunalliance 0.541 0.571 0.429 0.751 0.262 0.751 0.262

22 Aisa 0.742 0.629 0.371 0.590 1 0.590 1

23 AXA 0.685 0.543 0.457 0.843 0.499 0.843 0.499

24 Mitsui Sumitomo 0.544 0.500 0.500 1 0.087 1 0.087
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α ¼ 40 %, model (5.11) is infeasible for DMU22 and when α¼ 50 %, model (5.11)

is infeasible for DMUs 1, 2, 5, 6, 10, 16, 20 and 23. This indicates that the input

mixes for these DMUs do not allow such weighting structures.

5.5 General Multi-stage Serial Processes

Consider the P-stage process pictured in Fig. 5.2. We denote the input vector to

stage 1 by zo. The output vectors from stage p (p ¼ 1, . . .,P) take two forms, namely

z1p and z2p. Here, z
1
p represents that output that leaves the process at this stage and is

not passed on as input to the next stage. The vector z2p represents the amount of

output that becomes input to the next (p + 1) stage. These types of intermediate

measures are called links in Tone and Tsutsui (2009). In addition, there is the

provision for new inputs z3p to enter the process at the beginning of stage p + 1.

Specifically, when p ¼ 2,3,. . ., we define

Table 5.3 Ranking of CRS scores

Kao and Hwang’s (2008) results

DMU Our ranking Ranking First stage Second stage Overall efficiency

1 3 3 0.993 0.704 0.699

2 5 5 0.998 0.626 0.625

3 4 4 0.690 1 0.690

4 16 15 0.724 0.420 0.304

5 2 1 0.831 0.923 0.767

6 11 12 0.961 0.406 0.390

7 18 17 0.671 0.412 0.277

8 19 18 0.663 0.415 0.275

9 15 20 1 0.223 0.223

10 9 9 0.862 0.541 0.466

11 24 23 0.647 0.253 0.164

12 1 2 1 0.760 0.760

13 21 21 0.672 0.309 0.208

14 20 16 0.670 0.431 0.289

15 6 6 1 0.614 0.614

16 13 14 0.886 0.362 0.320

17 14 13 0.628 0.574 0.360

18 17 19 0.794 0.326 0.259

19 10 11 1 0.411 0.411

20 7 8 0.933 0.586 0.547

21 23 22 0.732 0.274 0.201

22 8 7 0.590 1 0.590

23 12 10 0.843 0.499 0.420

24 22 24 0.429 0.314 0.135
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(i) zj1pr the rth component (r ¼ 1,.... Rp) of the Rp -dimensional output vector for

DMU j flowing from stage p, that leaves the process at that stage, and is not

passed on as an input to stage p + 1.

(ii) zj2pk the kth component (k ¼ 1, . . . Sp) of the Sp -dimensional output vector for

DMU j flowing from stage p, and is passed on as a portion of the inputs to

stage p + 1.

(iii) zj3pi the ith component (i ¼ 1, . . . Ip) of the Ip -dimensional input vector for

DMU j at the stage p + 1, that enters the process at the beginning of that stage.

Note that in the last stage P, all the outputs are viewed as zj1pr, as they leave the

process.

We denote the multipliers (weights) for the above factors as

(i) upr is the multiplier for the output component zj1pr flowing from stage p.

(ii) ηpk is the multiplier for the output component zj2pk at stage p, and is as well the

multiplier for that same component as it becomes an input to stage p + 1.

Table 5.4 VRS results

DMU

VRS overall

efficiency w1 w2 E1�
o E2

o E1
o E2�

o

1 Taiwan Fire 0.867 0.503 0.497 0.990 0.743 0.990 0.743

2 Chung Kuo 0.856 0.500 0.500 1 0.711 1 0.711

3 Tai Ping 0.818 0.587 0.413 0.690 1 0.690 1

4 China Mariners 0.599 0.581 0.419 0.726 0.424 0.726 0.424

5 Fubon 1 0.483 0.517 1 1 1 1

6 Zurich 0.732 0.511 0.489 0.964 0.490 0.964 0.490

7 Taian 0.684 0.571 0.429 0.752 0.593 0.752 0.593

8 Ming Tai 0.754 0.523 0.477 0.783 0.722 0.783 0.722

9 Central 0.639 0.501 0.499 1 0.276 1 0.276

10 The First 0.780 0.538 0.462 0.862 0.727 0.862 0.727

11 Kuo Hua 0.614 0.576 0.424 0.741 0.443 0.741 0.443

12 Union 0.887 0.511 0.489 0.968 0.803 0.968 0.803

13 Shingkong 0.804 0.494 0.506 0.846 0.763 0.846 0.763

14 South China 0.654 0.581 0.419 0.725 0.555 0.725 0.555

15 Cathay Century 0.940 0.503 0.497 1 0.880 1 0.880

16 Allianz President 0.676 0.526 0.474 0.911 0.417 0.911 0.417

17 Newa 0.840 0.581 0.419 0.724 1 0.724 1

18 AIU 0.618 0.517 0.483 0.850 0.369 0.850 0.369

19 North America 0.833 0.515 0.485 1 0.657 1 0.657

20 Federal 0.946 0.548 0.452 0.902 1 0.902 1

21 Royal & Sunalliance 0.679 0.575 0.425 0.913 0.362 0.913 0.362

22 Aisa 1 0.634 0.366 1 1 1 1

23 AXA 0.815 0.547 0.453 0.976 0.620 0.976 0.620

24 Mitsui Sumitomo 0.564 0.517 0.483 1 0.098 1 0.098

108 Y. Chen et al.



(iii) νpi is the multiplier for the input component z j3pi entering the process at the

beginning of stage p + 1.

Thus, when p ¼ 2, 3, . . ., the efficiency ratio for DMU j (for a given set of

multipliers) would be expressed as:

θp ¼
XRp

r¼1

uprz
j1
pr þ

XSp
k¼1

ηpkz
j2
pk

 !
=
XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !
ð5:20Þ

Note that there are no outputs flowing into stage 1. The efficiency measure for

stage 1 of the process (namely, p ¼ 1), for DMUj becomes

θ1 ¼
XR1

r¼1

u1rz
j1
1r þ

XS1
k¼1

η1kz
j2
1k

 !.XI0
i¼1

ν0iz
j
0i ð5:21Þ

where z j0i are the (only) inputs to the first stage represented by the input vector zo.

We claim that the overall efficiency measure of the multistage process can

reasonably be represented as a convex linear combination of the P (stage-level)

measures, namely

θ ¼
XP
p¼1

wpθp where
XP
p¼1

wp ¼ 1.

As in Sect. 5.3, we use
XI0
i¼1

ν0iz
j
0i þ

XP
p¼2

XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !
to

represent the total size of or total amount of resources consumed by the entire

process, and we define the weight wp to be the proportion of the total input used at

the pth stage. We then have

Stage 1 Stage 2 Stage 3z0

z1
3 z2

3

z2
1z1

1

z1
2 z2

2

......

Fig. 5.2 Serial multi-stage DMU
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w1 ¼
XI0
i¼1

ν0iz
j
0i=

XI0
i¼1

ν0iz
j
0i

(
þ
XP
p¼2

XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !)
,

wp ¼
XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !, XI0
i¼1

ν0iz
j
0i

(

þ
XP
p¼2

XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !)
, p > 1

Thus, we can write the overall efficiency θ in the form

θ ¼
XP
p¼1

XRp

r¼1

uprz
j1
pr þ

XSp
k¼1

ηpkz
j2
pk

 !
=
XI0
i¼1

ν0iz
j
0i

(

þ
XP
p¼2

XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !)
, ð5:22Þ

We then set out to optimize the overall efficiency θ of themultistage process, subject

to the restrictions that the individual measures θpmust not exceed unity, or in the linear

programming format, after making the usual Charnes and Cooper transformation,

max
XP
p¼1

XRp

r¼1

uprz
o1
pr þ

XSp
k¼1

ηpkz
o2
pk

 !

subject to

XI0
i¼1

ν0iz
o
0i

(
þ
XP
p¼2

XSp�1

k¼1

ηp�1kz
o2
p�1k þ

XIp
i¼1

νp�1iz
o3
p�1i

 !)
¼ 1

XR1

r¼1

u1rz
j1
1r þ

XS1
k¼1

η1kz
j2
1k

 !
�
XI0
i¼1

ν0iz
j
0i

XRp

r¼1

uprz
j1
pr þ

XSp
k¼1

ηpkz
j2
pk

 !
�

XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !
8j

upr, ηpk, νpi, ν0i � 0

ð5:23Þ

Note that we should impose the restriction that the overall efficiency scores for

each j should not exceed unity, but since these are redundant, this is unnecessary.

Note again that the wp, as defined above, are variables related to the inputs and

the intermediate measures. By virtue of the optimization process, it can turn out that

some wp ¼ 0 at optimality. To overcome this problem, one can impose bounding

restrictions wp � β, where β is a selected constant.
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5.6 General Multi-stage Processes

In the process discussed in the previous section it is assumed that the components of

a DMU are arranged in series as depicted in Fig. 5.2. There, at each stage p, the
inputs took one of two forms, namely (1) those that are outputs from the previous

stage p-1, and (2) new inputs that enter the process at the start of stage p. On the

output side, those (outputs) emanating from stage p take two forms as well, namely

(1) those that leave the system as finished ‘products’, and (2) those that are passed

on as inputs to the immediate next stage p + 1.
The model presented to handle such strict serial processes is easily adapted to

more general network structures. Specifically, the efficiency ratio for an overall

process can be expressed as the weighted average of the efficiencies of the indi-

vidual components. The efficiency of any given component is the ratio of the total

output to the total input corresponding to that component. Again, the weight wp to

be applied to any component p is expressed as

wp ¼ component p inputð Þ= total input across all componentsð Þ:

There is no convenient way to represent a network structure that would lend

itself to a generic mathematical representation analogous to model (5.23) above.

The sequencing of activities and the source of inputs and outputs for any given

component will differ from one type of process to another. However, as a simple

illustration, consider the following two examples of network structures:

5.6.1 Parallel Processes

Consider the process depicted in Fig. 5.3. Here, an initial input vector zo enters

component 1. Three output vectors exit this component, that is z11 leaves the process,

z21 is passed on as an input to component 2, and z31 as an input to component

3. Additional inputs z41 and z51 enter components 2 and 3 respectively, from outside

the process. Components 2 and 3 have z12 and z13, respectively as output vectors

which are passed on as inputs to component 4, where a final output vector z14 is the
result.

Component Efficiencies

Component 1 efficiency ratio: θ1 ¼ (u1z
1
1 + η21z

2
1 + η31z

3
1)/νozo

Component 2 efficiency ratio: θ2 ¼ η12z
1
2/(η

2
1z

2
1 + ν1z41)

Component 3 efficiency ratio: θ3 ¼ η13z
1
3/(η

3
1z

3
1 + ν2z51)

Component 4 efficiency ratio: θ4 ¼ u4z
1
4/(η

1
2z

1
2 + η13z

1
3)

Component Weights
Note that the total (weighted) input across all components is given by the sum of the

denominators of θ1 through θ4, namely
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I ¼ νozo þ η21z
2
1 þ ν1z

4
1 þ η31z

3
1 þ ν2z

5
1 þ η12z

1
2 þ η13z

1
3:

Now express the wp as:

w1 ¼ νozo=I
w2 ¼ η21z

2
1 þ ν1z41

� �
=I

w3 ¼ η31z
3
1 þ ν2z51

� �
=I

w4 ¼ η12z
1
2 þ η13z

1
3

� �
=I

With this, the overall network efficiency ratio is given by

θ ¼
X4
p¼1

wpθp ¼ u1z
1
1 þ η21z

2
1 þ η31z

3
1 þ η12z

1
2 þ η13z

1
3 þ u4z

1
4

� �
=I,

And one then proceeds, as in (5.4) above, to derive the efficiency of each DMU

and its components.

5.6.2 Non-immediate Successor Flows

In the previous example all flows of outputs from a stage or component either leave

the process entirely or enter as an input to an immediate successor stage. In Fig. 5.2,
stage p outputs flow to stage p + 1. In Fig. 5.3, the same is true except that there is

more than one immediate successor of stage 1.

Consider Fig. 5.4. Here, the inputs to stage 3 are of three types, namely outputs

from stage 2, inputs coming from outside the process, and outputs from a previous,

but not immediately previous stage. Again the above rationale for deriving weights

wp can be applied and a model equivalent to (5.23) solved to determine the

decomposition of an overall efficiency score into scores for each of the components

in the process.

3

2 

1 4 Z0

z1
5

z1
3

z1
2

z1
4

z1
1

z3
1

z4
1

z2
1

Fig. 5.3 Multi-stage DMU

with parallel processes
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5.7 General Multi-stage Processes: An Illustrative

Application

We here re-visit the supply chain data set used in Liang et al. (2006). This data set

consists of a two-stage process, or a seller-buyer supply chain. The inputs to the first

stage (seller) are labor (zj01), operating cost (z
j
02) and shipping cost (z

j
03). The outputs

from the first stage are number of product A shipped (zj211), number of product B

shipped (zj212) and number of product C shipped (zj213). This data set assumes that all

outputs from the first stage become inputs to the second stage, i.e., there is no z11.

There is one input to the second stage (buyer), labor (zj311), and two outputs from the

second stage, sales (zj121) and profits (zj122). Table 5.5 provides the data set.

In this case, we have, for DMUo

w1 ¼
X3
i¼1

ν0iz
o
0i=

X3
i¼1

ν0iz
o
0i þ

X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

!
,

 

w2 ¼
X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

 !
=
X3
i¼1

ν0iz
o
0i

 
þ
X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

!

Max
X3
k¼1

η2kz
o2
1k þ

X2
r¼1

u2rz
o1
2r

subject toX3
i¼1

ν0iz
o
0i þ

X3
k¼1

η1kz
o2
1k þ ν11z

o3
11 ¼ 1

X3
k¼1

η1kz
j2
1k �

X3
i¼1

ν0iz
j
0i, j ¼ 1, . . . , 10 for stage 1ð Þ

X2
r¼1

u2rz
j1
2r �

X3
k¼1

η1kz
j2
1k þ ν11z

j3
11, j ¼ 1, . . . , 10 for stage 2ð Þ

ð5:24Þ

1 2 3

Fig. 5.4 Non-immediate successor flows
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where efficiency scores for DMUo in stages 1 and 2 can be expressed as

θ1 ¼
X3
k¼1

η1kz
o2
1k=
X3
i¼1

ν0iz
o
0i

θ2 ¼
X2
r¼1

u2rz
o1
2r=

X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

 !

Table 5.6 reports the results from model (5.24) where the last two columns

display the efficiency scores derived from the cooperative model of Liang

et al. (2006). Note that the differences between the two approaches are not

significant. For example, the two approaches yield identical efficiency scores

for the two stages for DMUs, 2, 5, 6, and 9. The Liang et al. (2006) approach

is based upon a non-linear program and its solution is obtained by using heuristic

search. While the current approach uses a linear program and guarantees a global

optimal solution.

Note that the average of the two stages’ efficiency scores is used as the objective

function in Liang et al. (2006) non-linear model, namely, the weights for the two

individual efficiency scores are equal, w1 ¼ w2. The current approach yields

w1 ¼ w2¼ 0.5 for DMUs 4 and 7. Yet, our results are different from those obtained

from Liang et al. (2006). For example, in DMU 7, the efficiency score for the

second stage is 0.54762 compared to 0.81888 from Liang et al. (2006). This is due

to the fact that our choice of weights actually introduces some sort of value

judgment into the DEA model, and restricts the multiplier values in model (5.24).

This is why Liang et al. (2006) score is larger than ours when w1 ¼ w2 ¼ 0.5 in

optimality.

Table 5.5 Data set

Labor

Operating

cost

Shipping

cost

Product

A

Product

B

Product

C Labor Sales Profits

DMU zj01 zj02 zj03 zj211 zj212 zj213 zj311 zj121 zj122

1 9 50 1 20 10 5 8 100 25

2 10 18 10 10 15 7 10 70 20

3 9 30 3 8 20 2 8 96 30

4 8 25 1 20 20 10 10 80 20

5 10 40 5 15 20 5 15 85 15

6 7 35 2 35 10 5 5 90 35

7 7 30 3 10 25 8 10 100 30

8 12 40 4 20 25 4 8 120 10

9 9 25 2 10 10 5 15 110 15

10 10 50 1 20 15 9 10 80 20

114 Y. Chen et al.



Note that weights wp( p ¼ 1, 2, . . ., P) defined are actually variables related to

the multiplier decision variables. We next, therefore, impose additional restrictions

on w1 and w2 in model (5.24) via

w1 ¼
X3
i¼1

ν0iz
o
0i=

X3
i¼1

ν0iz
o
0i

 
þ
X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

!( )
� β1

w2 ¼
X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

 !
=
X3
i¼1

ν0iz
o
0i

 
þ
X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

!( )
� β2

where β1 and β2 are user-specified parameters. In this way, we can perform

sensitivity analysis on w1 and w2.

We first impose β1 ¼ β2 and change β1 and β2 0.1–0.5 with a 0.1 increment each

time. Note that when β1 ¼ β2 ¼ 0.5, we explicitly require that w1 ¼ w2 ¼ 0.5 as in

Liang et al. (2006). Table 5.7 reports the results when β1 ¼ β2 ¼ 0.5. Both our

approach and Liang et al. (2006) yield identical efficiency scores for DMU9. Except

for DMU1, Liang et al. (2006) score is larger than ours when w1 ¼ w2 ¼ 0.5 in

optimality. For DMU1, the definition of our weights and restrictions on our weights

Table 5.6 Results

Our results (model (5.5)) Liang et al. (2006)

DMU Overall score w1 w2 θ1 θ2 θ1 θ2

1 0.92495 0.30843 0.69157 0.75666 1 1 0.89394

2 0.86486 0.51974 0.48026 0.92403 0.80082 0.92403 0.80082

3 0.85898 0.34817 0.65183 0.59497 1 0.69106 1

4 0.77381 0.5 0.5 1 0.54762 1 0.62786

5 0.62073 0.46194 0.53806 0.67595 0.57332 0.67595 0.57332

6 1 0.27992 0.72008 1 1 1 1

7 0.90405 0.5 0.5 1 0.80811 1 0.81888

8 0.92886 0.21477 0.78523 0.66875 1 0.74667 1

9 0.78091 0.43817 0.56183 0.5 1 0.5 1

10 0.75444 0.54281 0.45719 0.84226 0.65018 1 0.59596

Table 5.7 Results

with β1 ¼ 0.5, β2 ¼ 0.5
DMU Overall score w1 w2 θ1 θ2

1 0.86323 0.5 0.5 0.72645 1

2 0.85303 0.5 0.5 0.9222 0.78386

3 0.83629 0.5 0.5 0.67258 1

4 0.77381 0.5 0.5 1 0.54762

5 0.61749 0.5 0.5 0.67595 0.55903

6 0.99678 0.5 0.5 0.99357 1

7 0.90405 0.5 0.5 1 0.80811

8 0.81756 0.5 0.5 0.72772 0.9074

9 0.75 0.5 0.5 0.5 1

10 0.75435 0.5 0.5 0.85137 0.65732
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turn the efficient stage 1 under Liang et al. (2006) approach into an inefficient stage,

and the inefficient stage 2 under Liang et al. (2006) approach into efficient.

Table 5.8 reports the results for DMUs 2, 4, 5, 6, 7, 9 and 10 whose efficiency

scores along with the optimized weights remain unchanged when β1 ¼ β2 ¼ 0.1,

0.2, 0.3 and 0.4, respectively.

Table 5.9 reports the results for DMUs 1, 3 and 8whose efficiency scores changed

when β1 and β2 are changed (see the last column of Table 5.5). For DMUs 1 and

3, change in the efficiency scores does not occur until β1 ¼ β2 ¼ 0.4. For DMU

8, a change in the efficiency score for the first stage is observed when β1 ¼ β2¼ 0.3

and 0.4.

It can be seen that up to β1 ¼ β2¼ 0.3, most of the DMUs have the same weights

and efficiency scores with respect to different values of β1 and β2. As expected,
when β1 ¼ β2 ¼ 0.4, some of the resulting weights are different from the previous

cases. However, we note that the efficiency scores do not change significantly. We

also note that the efficiency scores for the second stage do not change when β1 and
β2 are increased from 0.1 to 0.4.

We also performed calculations when β1 is fixed at 0.2 and β2 is changed from

0.3 to 0.8 with an increment of 0.1 each time (results are not reported here). In

overall, the efficiency scores do not change significantly.

The above sensitivity analysis indicates that efficiency scores obtained based

upon our approach are robust with respect to our choice of weights.

We finally apply our approach to the numerical example used in Tone and

Tsutsui (2009). Table 5.10 provides the data. We have two intermediate measures

or outputs flow from one stage to the other. Table 5.11 reports the results. In this

case, if we do not impose a lower bound for the wp(p ¼ 1, 2, 3), we have some

Table 5.8 Results with

β1 ¼ β2 ¼ 0.1 (0.2, 0.3, 0.4)
DMU Overall score w1 w2 θ1 θ2

2 0.86486 0.51974 0.48026 0.92403 0.80082

4 0.77381 0.5 0.5 1 0.54762

5 0.62073 0.46194 0.53806 0.67595 0.57332

6 1 0.31591 0.68409 1 1

7 0.90405 0.5 0.5 1 0.80811

9 0.78091 0.43817 0.56183 0.5 1

10 0.75444 0.54281 0.45719 0.84226 0.65018

Table 5.9 Results for DMUs 1, 3, and 8

DMU Overall score w1 w2 θ1 θ2

1 0.92495 0.30843 0.69157 0.75666 1 β1 ¼ β2 ¼ 0.1, 0.2, 0.3

1 0.90182 0.4 0.6 0.75455 1 β1 ¼ β2 ¼ 0.4

3 0.85898 0.34817 0.65183 0.59497 1 β1 ¼ β2 ¼ 0.1, 0.2, 0.3

3 0.85186 0.4 0.6 0.62966 1 β1 ¼ β2 ¼ 0.4

8 0.92886 0.21477 0.78523 0.66875 1 β1 ¼ β2 ¼ 0.1, 0.2

8 0.91627 0.3 0.7 0.72091 1 β1 ¼ β2 ¼ 0.3

8 0.89238 0.4 0.6 0.73095 1 β1 ¼ β2 ¼ 0.4
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wp ¼ 1 at optimality (for DMUs B, D, I and J). Therefore, we impose wp > 0.1

(p ¼ 1, 2, 3) in model (5.23). Because our approach is different from Tone and

Tsutsui’s (2009) and our choice of weights introduces restrictions on the multi-

pliers, our results are different from theirs.

5.8 Conclusions

The current chapter introduces the DEA approaches of Chen et al. (2009) and Cook

et al. (2010) for DMUs that have a general multi-stage or network structure. We first

study the simple two-stage network processes where outputs form the first stage

become the only inputs to the second stage. We then examine pure serial networks

where each stage has its own inputs and two types of outputs. One type of output

from any given stage p is passed on as an input to the next stage, and the other type
exits the process at stage p. Work closely related to the current chapter is the

non-linear approach of Liang et al. (2006) where a two-member supply chain

structure is studied. While Liang et al. (2006) developed a heuristic search

Table 5.10 Data set in Tone and Tsutsui (2009)

Stage 1 Stage 2 Stage 3 Intermediate measure

Input 1 Input 2 Output 2 Input 3 Output 3 Link12 Link23

A 0.838 0.277 0.879 0.962 0.337 0.894 0.362

B 1.233 0.132 0.538 0.443 0.18 0.678 0.188

C 0.321 0.045 0.911 0.482 0.198 0.836 0.207

D 1.483 0.111 0.57 0.467 0.491 0.869 0.516

E 1.592 0.208 1.086 1.073 0.372 0.693 0.407

F 0.79 0.139 0.722 0.545 0.253 0.966 0.269

G 0.451 0.075 0.509 0.366 0.241 0.647 0.257

H 0.408 0.074 0.619 0.229 0.097 0.756 0.103

I 1.864 0.061 1.023 0.691 0.38 1.191 0.402

J 1.222 0.149 0.769 0.337 0.178 0.792 0.187

Table 5.11 Results on

three-stage process
Overall Stage 1 Stage 2 Stage 3 w1 w2 w3

A 0.579 0.410 0.646 0.971 0.46 0.41 0.13

B 0.386 0.211 0.339 0.414 0.10 0.10 0.80

C 1.000 1.000 1.000 0.999 0.42 0.48 0.10

D 0.917 0.225 0.942 1.000 0.10 0.10 0.80

E 0.478 0.167 0.501 0.953 0.36 0.42 0.22

F 0.598 0.470 0.656 0.984 0.51 0.37 0.11

G 0.762 0.551 0.717 0.983 0.24 0.44 0.32

H 0.675 0.711 0.599 0.843 0.46 0.44 0.10

I 0.922 0.245 1.000 0.990 0.10 0.64 0.26

J 0.476 0.249 0.423 0.511 0.10 0.10 0.80
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algorithm after converting the non-linear model into a parametric linear model,

their approach cannot be generalized into cases where supply chains have more than

two members. The approach of Cook et al. (2010) can, however, handle via a linear

model, situations where more than two stages are present.

In general, the intermediate measures are those that exist between two members

of the network. In many cases, the intermediate measures are obvious, as indicated

in our examples mentioned in the Introduction. Tone and Tsutsui (2009) provides

other good examples. Sometimes, the selection of intermediate measures is not so

obvious. The important thing is that intermediate measures are neither “inputs”

(to be reduced) nor “outputs” (to be increased), rather these measures need to be

“coordinated” to determine their efficient levels.

Note that models under Sects. 5.5 and 5.6 are developed under the assumption of

CRS. We should point out that these models can directly be applied to VRS by

adding the free-in-sign variable in our ratio efficiency definition, just as in the

standard VRS DEA model and the two stage network DEA approach discussed in

Sect. 5.3.
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