
Chapter 20

Performance Measurement of Major League

Baseball Teams Using Network DEA

Herbert F. Lewis

Abstract Data envelopment analysis (DEA) has been extensively applied to

measure the performance of individual athletes and teams in a variety of sports as

well as to analyze nations competing in the Olympics. Most of the models presented

in the literature are single-stage DEA models which treat the underlying process of

converting inputs into outputs as a “black box.” In many situations, analysts are

interested in investigating the sources of inefficiency within the organization in

order to improve organizational performance. To accomplish this, researchers have

developed two-stage and network DEA methodologies.

In this chapter, we model an MLB team as comprised of a front office operation

which consumes money in the form of player salaries to acquire offensive and

defensive talent and an on-field operation which uses the talent to outscore oppo-

nents and win games. We present a network DEA methodology to measure perfor-

mance of the front office operation, the on-field operation, and the overall team.

Finally, we conduct two industry-wide studies of Major League Baseball which

utilize the network DEA methodology.

Keywords Two-stage DEA • Network DEA • Major League Baseball • Efficiency

measurement in sports

20.1 Introduction

Baseball is a sport in which two teams, each consisting of nine players, compete on

a field referred to as a baseball diamond due to its shape. Each team takes turns on

offense (batting) and defense (pitching and playing the field). Traditionally, the

visiting team begins on offense. The batting team sends its players one at a time to
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try to hit a hard ball (thrown by a defensive player called a pitcher) with a wooden

bat. For a batter to be successful, he must safely arrive at a base, which he can

accomplish in several ways. Once the batter arrives safely at a base, he becomes a

base runner. A base runner scores a run by advancing four bases and touching home

plate. A base runner can advance along the bases by the actions of future batters or

by stealing bases.

The defense tries to prevent offensive players from advancing around the bases,

which it can accomplish in several ways. Each success by the defense records one

out; when three outs are recorded, the teams switch roles (the fielding team becomes

the batting team and the batting team becomes the fielding team). When both teams

have batted, they have completed one inning. A game consists of nine innings. The

winning team is the team that has scored the most runs by the end of the game.

If there is a tie at the end of nine innings, the game continues until one team has

more runs than the other does at the end of an inning. See Lorimer (2002) for a more

extensive discussion on baseball.

Major League Baseball (MLB) is a professional baseball league in the United

States and Canada. MLB is made up of two leagues: the National League (NL) and

the American League (AL). From 1901 until the early 1960s, each league consisted

of eight teams. At this time, each league began to expand. By 1969, each league was

comprised of 12 teams, making it necessary to split each league into two divisions.

Expansion continued and in 1994, each league further split into three divisions.

Currently, MLB is comprised of 30 teams. There are 15 teams in the NL and 15 in

the AL. Each of the three divisions within each league contains five teams.

The leagues play under essentially identical rules with one major exception:

since the early 1970s, the American League allows the use of a designated hitter

who bats in place of the pitcher. This potentially leads to generally greater offensive

production in the AL because pitchers are commonly poor batters and designated

hitters are often very good offensively.

Prior to 1961, each team played 154 regular season intra-league games. Since

then, each team plays 162 regular season games. Until 1997, these games were all

intra-league. Since then, each team plays roughly 144 intra-league games and

18 interleague games.

Major League Baseball has become a multi-billion dollar industry with many

individual player salaries in the tens of millions of dollars. With so much money at

stake, it is important for MLB teams to manage resources efficiently. Thus, in this

chapter, we present a model framework for measuring the performance of MLB

teams and use it to perform industry-wide analyses of Major League Baseball. Our

model framework utilizes recent extensions to the data envelopment analysis
(DEA) methodology: namely, two-stage DEA and network DEA. DEA is a linear

programming-based methodology that is widely used to evaluate relative efficiency

of decision making units (DMUs) in situations in which there are multiple inputs

and multiple outputs. Its mathematical development can be traced to Charnes

et al. (1978), who built on the work of Farrell (1957) and others.

The remainder of this chapter is organized as follows. The next section surveys

the application of DEA in baseball and other sports. In Sect. 20.3, we briefly
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describe two-stage DEA and network DEA and review the related literature. In

Sect. 20.4, we present our network DEA model framework for measuring the

efficiency of MLB teams. Section 20.5 presents two previously published MLB

industry-wide studies that apply the two-stage and network DEA methodology.

Finally, we present concluding remarks in Sect. 20.6.

20.2 DEA in Baseball and Other Sports

DEA has been extensively applied to measure the performance of individual

athletes and teams in baseball and other sports as well as nations in the Olympics.

In this section we summarize the literature.

20.2.1 DEA in Baseball

Howard and Miller (1993) use DEA to identify underpaid, equitably paid, and

overpaid MLB players. For each of the 433 players in the study, stolen bases, games

played, at-bats, runs scored, hits, doubles, triples, home runs, runs batted in, batting

average, put outs, assists, errors, fielding average, and years in the league are used

as the inputs to the DEA model. Player salary is the output of the DEA model. A

separate analysis is performed for each position. A reference set for each player is

provided from which an equitable salary can be determined.

Mazur (1994) measures efficiency of MLB batters, pitchers, and teams during

the 1986, 1987, and 1988 seasons. The author performs separate analyses for each

league in each season. The model for batters uses standardized batting average,

standardized number of home runs, and standardized number of runs batted in for

batters having at least 200 at bats in a given season. These measures define the triple

crown frontier (TCF). The model for pitchers uses standardized earned run average,

standardized hits to innings pitched ratio, and standardized base on balls to strike-

outs ratio for pitchers having at least 100 innings pitched in a given season. These

measures define the pitching dominance frontier (PDF). A TCF efficiency score is

determined for each batter and team and a PDF efficiency score is determined for

each pitcher and team in each season. Regression models for each league and

season suggest that a team’s TCF efficiency score and a team’s PDF efficiency

score are significant indicators of its winning percentage.

Anderson and Sharp (1997) present a radial input-oriented CCR DEA model

(Charnes et al. 1978) for measuring performance of MLB batters called the Com-

posite Batter Index (CBI). Their model uses one input (plate appearances) and

five outputs (dominance transformations of walks, singles, doubles, triples, and

home runs). The authors compute CBI scores for players in both the American

League and theNational League from 1901 to 1993 resulting in 186 analyses. Players

with fewer than 350 at-bats with one team in a given season are omitted from the

analysis. Historical results indicate that batting has matured over the decades.
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Specifically, league-wide CBI scores have increased over time. In addition, the

proportion of players with lowCBI scores has increased and the proportion of players

with high CBI scores has increased over the study period. Finally, the authors develop

and test a method for reducing the effect of noise in DEA. Thus allowing the CBI

score to estimate a player’s skill as opposed to his productivity.

Sueyoshi et al. (1999) present a goal programming model to rank Japanese

baseball players in the Central League during the 1995 season. The goal program

utilizes the offensive earned-run average (OERA) index (Cover and Keilers 1977)

and results from a slack-adjusted DEA. The DEA model uses at-bats and double

plays as input measures and singles, doubles, triples, home runs, runs batted in,

steals, sacrifices, and walks as output measures. The authors compare the player

rankings resulting from the OERA index, the DEA model, and the goal program.

Einolf (2004) applies two BCC DEA models (Banker et al. 1984) to measure

efficiency of teams in MLB from 1985 to 2001 and in the National Football League

(NFL) from 1981 to 2000. The model for MLB team efficiency has two inputs (total

salary paid to position players and total salary paid to pitchers) and three outputs

(team wins, team batting average, and team earned-run average). Similarly, the

model for NFL team efficiency has two inputs (total salary paid to offensive players

and total salary paid to defensive players) and three outputs (team wins, team

offensive yards per attempt, and team defensive yards per attempt). The author

uses the DEA results to compare the leagues and concludes that, on average, MLB

teams are less efficient than NFL teams. MLB teams in large markets tend to spend

more and tend to be less efficient than those in small markets. A second conclusion

is that, on average, NFL teams became more efficient after the salary cap was

introduced.

Hadley and Ruggiero (2006) apply two BCC DEA models (Banker et al. 1984)

to determine the contract zone for arbitration-eligible MLB players. One DEA

model reflects the player’s point of view, measuring worth relative to players

who earn more and have relatively lower performance. The other model reflects

the owner’s point of view, measuring worth relative to players who earn less and

have relatively higher performance. A double frontier is generated based on these

two models. The authors demonstrate the approach on position players eligible for

arbitration between the 2001 and 2002 seasons. They use the contract zone deter-

mined by the DEA models and the player’s final arbitrated salary to calculate each

player’s Relative Contract Position (RCP). The RCP is a measure of whether the

final arbitrated salary is favorable to the player (RCP close to 1) or to the owner

(RCP close to 0). Finally, a tobit regression indicates that player performance is the

only significant independent variable in predicting RCP. Player characteristics (race

and position), team characteristics (winning percentage and market size), and

whether a player is a free agent or arbitration-eligible are unrelated to RCP.

Volz (2009) uses an output oriented BCC DEA model (Banker et al. 1984) and

survival time analysis to analyze the effect of minority status on managerial

survival in MLB over the period from 1985 to 2006. Team position player salaries,

team pitching salaries, and average salary of all other in-division teams are used as

the inputs to the DEA model and regular season winning percentage is used as the
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output of the DEA model. The efficiency scores computed by the DEA are included

as covariates in the survival time analysis. The author concludes that on average,

minorities are 9.6 % more likely to return the following season. In addition,

managerial survival is independent of winning percentage.

20.2.2 DEA in Other Sports

DEA has been used to measure individual and team performance in other sports such

as basketball, soccer, and European football. DEA has also been used to measure

efficiency of athletes in non-team sports such as golf and tennis. In addition, DEA

has been applied to evaluate efficiency of nations competing in the Olympics.

20.2.2.1 Basketball

Fizel and D’Itri (1997, 1999) apply DEA to measure the efficiency of coaches in

NCAA Division I college basketball from 1984 to 1991. The DEA models use

player talent and opposition power as the inputs and winning percentage as the

output. In these studies, the authors examine the importance of team effectiveness

(winning percentage) and managerial efficiency on hiring and firing of coaches.

Results indicate that, although hiring and firing of coaches is often based on team

effectiveness, managerial efficiency may be a better measure when making these

decisions.

Cooper et al. (2009) use the two-step procedure for the selection of weights

proposed in Cooper et al. (2007) to measure effectiveness of basketball players in

the Spanish Premier League. They focus on player outputs such as points scored

and percentage of free throw successes and leave out such things as player salaries

and other inputs.

20.2.2.2 Soccer and European Football

Haas (2003a) investigates the efficiency of 20 English Premier League clubs during

the 2000/2001 season using DEA. The input variables are wage bills for players and

coaches and the output variables are points awarded and total revenues. Population

of each club’s home town is introduced in the model as a site characteristic. The

author finds that efficiency and club effectiveness are unrelated. The sensitivity of

results is analyzed with regard to different model specifications and variable

combinations. In all models at least 25 % of the clubs are on the efficient frontier.

Haas (2003b) applies DEA to measure the technical and scale efficiencies of

teams in Major League Soccer (MLS) during the 2000 season. This study uses the

same inputs and outputs as in Haas (2003a). Absolute number of spectators is also

included as an output. The author finds that efficiency scores are highly correlated
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with league performance and that the largest part of team inefficiency can be

explained by scale inefficiency as opposed to technical inefficiency.

Haas et al. (2004) study the efficiency of football teams in the German Bundeslign

during the 1999/2000 season usingDEA. The input variables and output variables are

the same as those inHaas (2003a). In addition, average stadium utilization is included

as an output variable in the model. Findings indicate that efficiency scores are not

correlatedwith effectiveness in the league.Medium-sized and small-sized teams tend

to outperform large-sized teams. The authors also decompose the sources of ineffi-

ciency into technical inefficiency and scale inefficiency.

Espitia-Escuer and GarcÍa-CebriÁn (2004) use DEA to measure the efficiency of

teams in the Spanish First Division from 1998 to 2001. The number of players used,

attacking moves, the minutes of possession of the ball, and the shots and headers are

the input variables and the number of points achieved is the output variable. The

authors conclude that the efficient teams do not always correspond with those that

finished highest in the league at the end of the season.

Espitia-Escuer and GarcÍa-CebriÁn (2006) use an output oriented DEAmodel to

evaluate the performance of Spanish First-Division soccer teams between the years

1998 and 2005. The authors use the same inputs and output as in Espitia-Escuer and

GarcÍa-CebriÁn (2004). The main finding is that the final league position of a team

depends more on its efficient use of resources than on its potential.

Barros and Leach (2006) apply an input oriented DEA model to panel data on

English Premier League Football Clubs in the years 1998/1999 to 2002/2003. The

authors measure three outputs (points obtained in the season, attendance and

turnovers) and four inputs (number of players, wages, net assets, and stadium

facilities expenditures). The main conclusion is that the clubs display equivalent

managerial skills, but they do not display equivalent scale efficiency.

Garcı́a-Sánchez (2007) present a three-stage DEA model to measure perfor-

mance of teams in the Spanish Professional Football League during the 2004/2005

season. The first stage consumes offensive talent (attacking moves, passes to the

penalty area and shots at goal) and defensive talent (ball recovery and goalkeeper’s

actions) as inputs and produces goals scored by the team and the inverse of goals

scored by the opposing teams as outputs. The outputs from the first stage determine

the inputs to the second stage. The second stage outputs reflect the final ranking of

the team. Finally, the third stage input is determined from the output of the second

stage and the output is the number of spectators who attended the team’s home

games. Site characteristics related to province population and stadium size are

considered in the third stage of the model. Results indicate that technical ineffi-

ciency of the defense is greater than that of the offense. In addition, teams with the

most experience are more effective than those with little experience.

Guzmán and Morrow (2007) use an input oriented DEA to measure the effi-

ciency of clubs in the English Premier League from 1997/1998 to 2002/2003. The

authors consider two inputs (directors’ remuneration and general expenses) and two

outputs (points won in a season and total revenue for the corresponding financial

year). A second study is performed using the Malmquist productivity index

(Malmquist 1953) to measure the change in productivity over the study period.
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Results indicate that clubs which were successful on the field achieved relatively

low efficiency scores, while other clubs that enjoyed less success on the field were

relatively more efficient. In addition, there was little evidence that teams improved

their productivity over time.

Boscá et al. (2009) analyze the performance of Italian and Spanish football clubs

using DEA during the 2000/2001, 2001/2002, and 2002/2003 seasons. The authors

select goals scored as the offensive output, goals conceded as the defensive output,

four offensive inputs (shots-on-goal, attacking plays made by the team, passes into

the opposing team’s centre area, and minutes of possession) and four defensive

inputs (the inverse of shots-on-goal made by the opposing team, the inverse of

attacking plays made by the opposing team, the inverse of passes to the centre area

made by the opposing team, and the inverse of minutes of possession by the

opposing team). Results indicate that the Spanish league is more homogeneous

and competitive than the Italian league. In addition, to improve competitiveness in

the Italian league, it is more important to improve defensive, rather than offensive,

efficiency. On the other hand, to improve the ranking in the Spanish league, the best

strategy is to improve offensive efficiency when playing at home and then to

improve offensive efficiency when playing away from home.

González-Gómez and Picazo-Tadeo (2010) use DEA to measure performance of

Spanish professional football teams at competition level (League, King’s Cup, and

European competitions) from season 2001/2002 to season 2006/2007 and use the

results as a proxy of fan satisfaction. The DEA model has three outputs (the points

obtained in the league at the end of each season, the number of rounds played in the

King’s Cup, and the number of matches played in European competitions) and four

inputs (the number of players in each season, the average number of spectators per

match, the number of seasons played in the First Division, and the trophies in

national and international competitions).

20.2.2.3 The Olympics

Lozano et al. (2002) present a variable returns-to-scale DEA model to measure

performance of nations competing in five summer Olympic games (from 1984 to

2000). The authors use two inputs (GNP and population of the country under

consideration) and three outputs (the numbers of gold, silver, and bronze medals

won by the country under consideration). Weights are used to differentiate between

the value associated with each medal type.

Churilov and Flitman (2006) use DEA to generate a ranking of the nations that

participated in the Sydney 2000 summer games. Their goal is “to design an

objective impartial system of analysis of the Olympics results which the majority

of participating countries would agree upon as a measuring tool without significant

bias.” The inputs to the DEA model are population of the country under consider-

ation, its GDP per capita (in U.S. dollars), its disability adjusted life expectancy,

and its index of equality of child survival. The model consists of four outputs
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determined from utility functions on the numbers of gold, silver, and bronze medals

won by the country under consideration.

Li et al. (2008) use a variable returns-to-scale context-dependent assurance

region DEA model (Cook and Zhu 2008) to “fairly” rank the performance of

78 different nations that participated in six summer Olympics (from 1984 to

2004). Nations are classified into four groups based on wealth. This classification

is used to impose the assurance region restrictions. Inputs to the model include

population of the country under consideration and its GDP per capita (in U.S.

dollars). Outputs are the numbers of gold, silver, and bronze medals won by the

country under consideration.

Wu et al. (2009) use cross efficiency evaluation (Sexton et al. 1986) to measure

performance of nations that competed in six summer Olympic games (from 1984 to

2004). The authors use the same inputs and outputs as in Li et al. (2008) and weight

the outputs as in Lozano et al. (2002).

Wu et al. (2010) use an integer-valued DEA model to evaluate efficiency of

nations involved in the Beijing Olympics. The inputs and outputs are the same as

those in Li et al. (2008). In this analysis, the target outputs (number of gold, silver,

and bronze medals) determined from the DEA must be integer values.

20.2.2.4 Golf and Tennis

Fried et al. (2004) use DEA to measure the efficiency of golfers on the PGA, LPGA,

and SPGA tours during the 1998 season. For each golfer, a performance under

pressure index and an athletic ability performance index are determined.

Ruiz et al. (2013) use DEA to measure efficiency of professional tennis players.

The authors provide an index of the overall performance of players by aggregating

the Association of Tennis Professionals (ATP) statistics and compare the results

to the ATP rankings.

20.3 Two-Stage and Network DEA

With the exception of Garcı́a-Sánchez (2007), who presents a three-stage DEA

model for teams in the Spanish Professional Football League, the DEA models

discussed in the previous section are all variations of the standard single-stage DEA

model. Such models treat the production process in which inputs are converted into

outputs as a “black box” and provide little insight as to the sources of inefficiency.

These single-stage DEA models are appropriate in many situations including when

the objective of the study is to rank DMUs based on performance. However, in

many other situations, analysts and DMU managers seek more detailed information

to assist them in improving managerial performance.
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20.3.1 Two-Stage and Network DEA Methodology

To address this issue, researchers have proposed two-stage and network DEA

models. In network DEA, each DMU is comprised of two or more sub-DMUs.

Each resource consumed by a sub-DMU either enters the DMU from outside (input

to the DMU) or is produced by another sub-DMU (intermediate product). Each

product produced by a sub-DMU either exits the DMU (output of the DMU) or is

consumed by another sub-DMU (intermediate product). Figure 20.1 shows the

internal structure of a DMU in a network DEA model. The DMU is a directed

acyclic graph in which the nodes correspond to sub-DMUs and the arcs correspond

to inputs to the DMU, outputs from the DMU, or intermediate products from one

sub-DMU to another.

In this chapter, we apply the two-stage methodology and network DEA meth-

odology proposed by Sexton and Lewis (2003) and Lewis and Sexton (2004a),

respectively. The methodologies allow the analyst to measure the efficiency of each

sub-DMU as well as the efficiency of the DMU itself. To measure the efficiency of a

given sub-DMU, solve a standard single-stage DEA model for the sub-DMU. To

evaluate the DMU-level efficiency use the directed acyclic structure of the under-

lying graph to identify a partial order of the sub-DMUs. Resolve the DEAmodel for

each sub-DMU in accordance with the partial order, assuming that all sub-DMUs

that precede the sub-DMU under analysis are efficient. Then, for an input (output)

oriented model, the DMU-level efficiency (inverse efficiency) is the largest

(smallest) of the ratios, computed for each input (output) of what could have been

consumed (produced) to what was actually consumed (produced).

Fig. 20.1 Internal structure of a DMU in a network DEA model
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20.3.2 Two-Stage and Network DEA Literature

Over the past two decades, several papers have been published on the theory,

methodology, and application of two-stage and network DEA. Färe and Whittaker

(1995) apply an input oriented two-stage DEA model to study relative efficiency

of dairy production. Seiford and Zhu (1999) evaluate the performance of 55

U.S. commercial banks using a two-stage network DEA model. In another study,

Färe and Grosskopf (2000) present a network DEA model for the Swedish Institute

for Health Economics. Zhu (2000) applies two-stage network DEA to develop a

multi-factor financial performance model to examine Fortune Global 500 compa-

nies. Castelli et al. (2001) describe a DEA-like model that evaluates the efficiencies

of each of a number of interdependent sub-DMUs within a larger DMU. Their

analysis assesses sub-DMU efficiency relative to other sub-DMUs within the same

DMU. Chen and Zhu (2004) develop an efficiency model that identifies the efficient

frontier of a two-stage production process linked by intermediate measures. They

illustrate the approach on a set of firms in the banking industry. Yang (2006) creates

a two-stage DEA model to provide managerial insights for the Canadian life and

health insurance industry. Chen et al. (2006) contend that two-stage DEA with a

single intermediate product can behave as a parametric linear model. They develop

a nonlinear DEA model to evaluate the impact of information technology on

multiple stages of a business operation along with information on how to distribute

IT-related resources so that efficiency is achieved. Färe et al. (2007) survey network

DEAmodels and present three network DEA examples. Liang et al. (2008) examine

and extend the two-stage DEA model using game theory concepts. They also

investigate the relationship among non-cooperative, centralized, and standard

DEA approaches. Kao and Hwang (2008) develop a two-stage DEA model and

apply it to measure efficiency of non-life insurance companies in Taiwan. Chen

et al. (2009a) develop an additive efficiency decomposition approach to generalize

the two-stage DEA model presented by Kao and Hwang (2008). Chen et al. (2009b)

examine the relationship and equivalence between the two-stage DEA approaches

of Chen and Zhu (2004) and Kao and Hwang (2008). Tone and Tsutsui (2009)

present a slacks-based measure approach to network DEA that applies to differing

model orientations. They demonstrate their methodology by measuring the effi-

ciency of electric power companies. Chen et al. (2010) develop an approach for

determining the frontier points for inefficient DMUs within the framework of

two-stage DEA. Tone and Tsutsui (2010) present a dynamic slacks-based measure

model that can evaluate the overall efficiency of the DMUs as well as the efficien-

cies of the individual sub-DMUs in a network DEA. In a survey paper, Cook

et al. (2010) review and classify several two-stage network DEA structures. In

many of these models, the first stage processes the DMU’s inputs into intermediate

products and the second stage converts the intermediate products into outputs.

Lewis and Mazvancheryl (2011) develop a network DEA model to measure the

efficiency of the customer satisfaction process and apply it to the automobile

industry. Holod and Lewis (2011) present a two-stage DEA model to measure
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efficiency of bank holding companies which resolves a long time dilemma by

treating deposits as an intermediate product as opposed to an input or an output to

the process. Mallikarjun et al. (2013) study the relationship between efficiency and

government subsidization of the U.S. commuter rail system using an unoriented

network DEA model.

20.4 Network DEA Model for a Major League

Baseball Team

Sexton and Lewis (2003) present a sequential two-stage DEA model for measuring

the efficiency of MLB teams. Each MLB team consists of a front office operation

and an on-field operation. The methodology provides efficiency scores for the front

office operation and the on-field operation as well as the overall organization. The

two-stage methodology is then extended in Lewis and Sexton (2004a) to a network

DEA model which allows for efficiency measurement of organizations with more

complex internal structures. The network DEA model further divides the front

office operation and on-field operation of an MLB team. The two-stage and network

DEA methodologies allow for constant or variable returns-to-scale processes and

permit input oriented or output oriented models. In addition, Lewis et al. (2013)

present an unoriented two-stage DEA methodology and apply it to measure effi-

ciency of MLB teams during the 2009 season.

Figure 20.2 presents our network representation of an MLB team. The front

office operation consumes money in the form of position player and pitcher salaries

to acquire offensive and defensive talent. The on-field operation uses this talent to

score runs and to prevent the team’s opponents from scoring runs in order to win

games.

Fig. 20.2 Network model of an MLB team consisting of a front office operation and an on-field

operation
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20.4.1 Inputs, Intermediate Products, and Outputs

Total player salary (TPS) of a team in a season consists of position player salaries

(POS) which reflect the offense and pitching salaries (PIT) which reflect the

defense. Offensive talent can be measured by total bases gained (TBG) by the

team in a season. MLB uses a statistic called total bases (TB) to measure offensive

performance. Specifically, MLB’s definition of total bases for a team in a season is

TB ¼ S + 2D + 3T + 4HR where S is the number of singles, D is the number of

doubles, T is the number of triples, and HR is the number of home runs hit by the

team. We extend this definition by adding BB, the number of walks received by the

team and E, the number of fielding errors committed by the opposing team. Thus,

TBG ¼ TB + BB + E. We point out that, with the exception of the relatively rare

hit by pitch and catcher, fielder, or umpire interference, our definition of TBG
includes all the ways in which a batter can reach first base without an out being

recorded. We recognize that not every error results in the batter reaching first base.

However, each error results in at least one runner (and in many cases the batter)

advancing at least one base. We elect to model errors as the approximate equivalent

of singles and walks. Defensive talent can be measured by total bases surrendered

(TBS) to the team’s opponents in a season. We define TBS identically to TBG except

that the summands refer to the number of such hits and walks surrendered by the

team, and the number of fielding errors committed by the team, in the given season.

Runs gained (RG) is the number of runs scored by the team in a season. Runs

surrendered (RS) is the number of runs scored by the team’s opponents in a season.

We note that TBS and RS are “reverse quantities,” in the sense that larger values

correspond to less, rather than more, defensive contribution. We use the method-

ology developed by Lewis and Sexton (2004b) to incorporate reverse quantities in

our models. The output of the process is games won (GW) by the team in a season.

We note that various inputs, intermediate products, and outputs may be aggregated

or disaggregated and sub-DMUs may be split or combined depending on the

analyst’s preferences and the data available.

20.4.2 Model Orientation and Returns-to-Scale

We select an output orientation for each MLB team as well as its front office

operation and its on-field operation because we feel that the appropriate improve-

ment for an inefficient team is to increase the number of games it wins rather than

decrease its total player salary. This orientation is consistent with each team’s long-

term goal of qualifying for post-season play. The input orientation would imply that

all teams seek to hold its games won at current levels, an assumption that, we

believe, contradicts the fundamental competitive nature of baseball teams. We

recognize that individual teams may make economic decisions to spend less

486 H.F. Lewis



(or more) on player salaries. However, we see this as a scale change, not evidence of

an input orientation.

We select a variable returns-to-scale model for the front office operation because

of the “threshold” nature in which player salaries result in offensive and defensive

production. At very low levels of player salary, we expect the marginal return to be

less than the average return. Low budget teams will tend to sign weaker players and

yet must conform to minimum salary levels set by the Major League Baseball

Players Association contract with MLB. Below a certain threshold, therefore, we

expect non-increasing returns-to-scale. Eventually, as player salary increases

beyond this threshold, the team is better able to sign superior players who contribute

significantly on the field. Here we expect non-decreasing returns-to-scale. At very

high salary levels, we again expect the marginal return to be less than the average

return. Superstar players who command the highest salaries are unlikely to provide

offensive and defensive performance commensurate with their salaries. Above a

second threshold, therefore, we expect non-increasing returns-to-scale.

We select a variable returns-to-scale model for the on-field operation because of

the “threshold” nature in which offensive and defensive performance combine to

win games. At very low levels of total bases gained and total bases surrendered, we

would expect the marginal return to be less than the average return. Weak teams are

likely to lose many games by several runs and therefore experience only a small

increase in games won for a given increase in offensive and defensive performance.

Below a certain threshold, therefore, we expect non-increasing returns-to-scale.

Eventually, as performance increases beyond this threshold, the average margin of

loss diminishes and the marginal return increases as the team begins to win some

close games that they would otherwise have lost. Here we expect non-decreasing

returns-to-scale. At very high levels of total bases gained and total bases surren-

dered, we again expect the marginal return to be less than the average return. Strong

teams are likely to win many games by several runs and would therefore experience

only a small increase in games won for a given increase in offensive and defensive

performance. Above a second threshold, therefore, we expect non-increasing

returns-to-scale. In addition, the limit on the number of games that a team can

win – it cannot win more than it plays – must lead eventually to non-increasing

returns-to-scale. Given our selection of variable returns-to-scale in both the front

office operation and the on-field operation, we select a variable returns-to-scale

model for the MLB organization.

20.4.3 Network DEA Model Formulation

Let POSj be the total salary remunerated to position players by team j in a season,
PITj be the total salary remunerated to pitchers by team j in a season, TBGj be the

total bases gained by team j in a season, TBSj be the total bases surrendered by
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team j in a season, RGj be the runs gained by team j in a season, RSj be the runs

surrendered by team j in a season, and GWj be the games won by team j in a

season. Define θ1k to be the inverse efficiency of the front office offense for team

k, ε2k to be the efficiency of the front office defense for team k, θ3k to be the

inverse efficiency of the on-field offense for team k, ε4k to be the efficiency of the

on-field defense for team k, and θ5k to be the inverse efficiency of the on-field

integration for team k. Further, define λ1j to be the weight placed on the front

office offense of team j by team k, λ2j to be the weight placed on the front office

defense of team j by team k, λ3j to be the weight placed on the on-field offense

of team j by team k, λ4j to be the weight placed on the on-field defense of

team j by team k, and λ5j to be the weight placed on the on-field integration

of team j by team k.
The output oriented variable returns-to-scale model for the front office

offense is:

Max θ1k
s:t:Xn

j¼1

λ1jPOSj � POSk

Xn
j¼1

λ1jTBGj � θ1kTBGk

Xn
j¼1

λ1j ¼ 1

λ1j � 0; j ¼ 1, 2, . . . , n
θ1k � 0

The output oriented variable returns-to-scale model for the front office defense is:

Min ε2k
s:t:Xn

j¼1

λ2jPITj � PITk

Xn
j¼1

λ2jTBSj � ε2kTBSk

Xn
j¼1

λ2j ¼ 1

λ2j � 0; j ¼ 1, 2, . . . , n
ε2k � 0

The output oriented variable returns-to-scale model for the on-field offense is:
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Max θ3k
s:t:Xn

j¼1

λ3jTBGj � TBGk

Xn
j¼1

λ3jRGj � θ3kRGk

Xn
j¼1

λ3j ¼ 1

λ3j � 0; j ¼ 1, 2, . . . , n
θ3k � 0

The output oriented variable returns-to-scale model for the on-field defense is:

Min ε4k
s:t:Xn

j¼1

λ4jTBSj � TBSk

Xn
j¼1

λ4jRSj � ε4kRSk

Xn
j¼1

λ4j ¼ 1

λ4j � 0; j ¼ 1, 2, . . . , n
ε4k � 0

The output oriented variable returns-to-scale model for the on-field integration is:

Max θ5k
s:t:Xn

j¼1

λ5jRGj � RGk

Xn
j¼1

λ5jRSj � RSk

Xn
j¼1

λ5jGWj � θ5kGWk

Xn
j¼1

λ5j ¼ 1

λ5j � 0; j ¼ 1, 2, . . . , n
θ5k � 0

To determine the organizational inverse efficiency for team k, we use the network

DEAmethodology presented in Lewis and Sexton (2004a). LetTBG�
k ¼

Xn
j¼1

λ�1jTBGj
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and TBS�k ¼
Xn
j¼1

λ�2jTBSj where λ�1j and λ�2j are the optimal weights obtained when

solving the front office offense model for team k and the front office defense model

for team k, respectively. We next resolve the on-field offense model for team k using
TBG�

k as the RHS of the first constraint and resolve the on-field defense model for

team k using TBS�k as the RHS of the first constraint.

Max θ3k
s:t:Xn

j¼1

λ3jTBGj � TBG�
k

Xn
j¼1

λ3jRGj � θ3kRGk

Xn
j¼1

λ3j ¼ 1

λ3j � 0; j ¼ 1, 2, . . . , n
θ3k � 0

Min ε4k
s:t:Xn

j¼1

λ4jTBSj � TBS�k

Xn
j¼1

λ4jRSj � ε4kRSk

Xn
j¼1

λ4j ¼ 1

λ4j � 0; j ¼ 1, 2, . . . , n
ε4k � 0

Let �RG�
k ¼

Xn
j¼1

�λ3j�3jRGj where *λ�3j are the optimal weights obtained when

solving the on-field offense model for team k, assuming the front office offense is

efficient and �RS�k ¼
Xn
j¼1

*λ�4jRSj where *λ
�
4j are the optimal weights obtained when

solving the on-field defense model for team k, assuming the front office defense is

efficient. We next resolve the on-field integration model for team k using *RG�
k and

*RS�k as the RHS of the first and second constraints, respectively.
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Max θ5k

s:t:

Xn
j¼1

λ5jRGj��RG�
k

Xn
j¼1

λ5jRSj��RS�k

Xn
j¼1

λ5jGWj � θ5kGWk

Xn
j¼1

λ5j ¼ 1

λ5j � 0; j ¼ 1, 2, . . . , n

θ5k � 0

Finally, let �GW�
k ¼

Xn
j¼1

�λ5j�5jGWj where *λ�5j are the optimal weights obtained

when solving the on-field integration model for team k, assuming the front office

offense, the front office defense, the on-field offense, and the on-field defense are all

efficient. The organizational (overall team) inverse efficiency for team k is θk ¼
*GW�

k /GWk.

20.4.4 Extension to Other Team Sports

The model can be applied to measure the performance of teams in other sports. In

football, for example, total player salary (TPS) of a team in a season consists of

offensive team salary (OS), defensive team salary (DS), and special team salary

(SS). Offensive talent can be measured by total yards gained (TYG) by the team in a

season. TYG is the sum of passing and rushing yards gained (while on offense),

kickoff and punt return yards gained (while on special teams), interception and

fumble return yards gained (while on defense) and penalty yards gained (while on

offense or special teams) by the team in a season. Defensive talent can be measured

by total yards surrendered (TYS) to the team’s opponents in a season. TYS is the sum
of passing and rushing yards surrendered (while on defense), kickoff and punt

return yards surrendered (while on special teams), interception and fumble return

yards surrendered (while on offense) and penalty yards surrendered (while on

defense or special teams) to the team’s opponents in a season. Points gained (PG)
is calculated from the number of touchdowns, extra points, two-point conversions,

field goals, and safeties scored by the team in a season. Points surrendered (PS) is
calculated from the number of touchdowns, extra points, two-point conversions,
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field goals, and safeties scored by the team’s opponents in a season. The output of

the process is games won (GW) by the team in a season.

20.5 Two Studies of MLB Using Two-Stage

and Network DEA

In this section, we present two published studies which apply two-stage and

network DEA models to measure MLB team efficiency. The first study (Lewis

et al. 2007) is published in the Journal of Sports Economics. The second study

(Lewis et al. 2009) is published in the European Journal of Operational Research.

20.5.1 Player Salaries, Organizational Efficiency,
and Competitiveness in MLB

In this study published in the Journal of Sports Economics (Lewis et al. 2007), we
use a two-stage DEA model as part of a larger analysis to determine the minimum

total player salary required for a team to be competitive for each season and count

the number of teams that are noncompetitive due to low total player salary in each

season. Next, we determine the salary at which a team is overspending on total

player salary for each season and count the number of teams that overspend on total

player salary in each season. Finally, we examine the relationship between market

size, efficiency, and competitiveness. The study period is the non-strike seasons

from 1985 to 2002.

20.5.1.1 Motivation and Research Questions

MLB, unlike other business enterprises, depends on stiff competition for economic

survival. Baseball is entertainment; tight division races, unpredictable playoff

series, and the periodic emergence of new champions enhance the entertainment

value of the sport, ensuring the league’s future fan base. However, while individual

teams need the league to succeed, winning is the key to their economic success.

Winning increases fan interest, brings more people to the ballpark, improves

television ratings, and bolsters sales of team-related merchandise, all of which

add to the team’s prosperity.

Baseball entered the era of free agency on December 23, 1975, and player

salaries have since grown to extraordinary levels. In 1975, the average player salary

was $44,676; in 2002, it was $2,384,779, an average annual growth rate of nearly

16 % per year (nearly 11 % per year adjusted for inflation) for 27 years. During this

period, MLB grew by 25 %, expanding from 24 to 30 teams. Some teams, notably
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those located in larger markets and those possessing greater financial resources,

found it easier than other teams to sign free agents to high-salary, multi-year

contracts, thereby cornering the market on the most talented players and threatening

the competitive balance on the field.

In July 2000, the Commissioner’s Blue Ribbon Panel on Baseball Economics
(Levin et al. 2000) reported on the revenue disparities in MLB. The Panel found that

these disparities were affecting competition, that the disparities were becoming

worse, and that the limited revenue sharing and payroll taxes approved in the 1996

labor agreement with the players were having little effect. Moreover, the Panel

concluded that the cost of trying to be competitive was raising ticket and concession

prices, jeopardizing MLB’s position as the affordable family spectator sport. The

Panel’s recommendations included greater revenue sharing and a competitive

balance tax, both of which are part of the 2002 labor agreement with the players.

In 2002, the total player salary for the New York Yankees was $125.93 million

while that of the Tampa Bay Devil Rays was $34.38 million. With one team’s total

player salary equal to 3.66 times that of another team, it is reasonable to ask whether

the team with the lower salary can effectively compete with the team with the

higher salary, and the extent to which market size influences competitiveness. More

specifically, we pose the following research questions for the study period:

1. How much does a team need to spend on total player salary to be competitive?

2. What is the maximum total player salary that a team can pay without

overspending?

3. How many teams are noncompetitive due to low total player salary?

4. How many teams are overspending on total player salary?

5. How does noncompetitiveness due to low total player salary relate to market

size?

6. How does overspending on total player salary relate to market size?

20.5.1.2 Study Methodology

We present an overview of the study methodology in Fig. 20.3. In a given season,

we apply two-stage DEA to measure the relative efficiency of each MLB team. We

use a logistic regression model to classify teams as competitive versus

noncompetitive. For each season, we use the Gini index to determine the minimum

total player salary to be competitive and the maximum total player salary without

overspending. Finally, we model the transitions of teams among the competitive

and noncompetitive states according to a Markov process.

On page 5 of the report (Levin et al. 2000), the Commissioner’s Blue Ribbon

Panel defines competitive balance as the state in which “. . . every well-run club has
a regularly recurring reasonable hope of reaching post-season play.” Our analysis

entails parsing this statement into operational definitions of “well-run” and

“reasonable hope of reaching post-season play.”
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Efficiency Measurement

To define “well-run,” we turn to the theory of productive efficiency in the manage-

ment science and economics literature. We apply the two-stage DEA methodology

described in Sexton and Lewis (2003) to compute the efficiency of every MLB team

in the study period relative to the frontier created by all other teams in the same

season. The two-stage production model is presented in Fig. 20.4.

Define λ1j to be the weight placed on the front office operation of team j by the

front office operation of team k, λ2j to be the weight placed on the on-field operation
of team j by the on-field operation of team k, λj to be the weight placed on the team
j by team k when determining the organizational inverse efficiency of team k, ε1k to
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Fig. 20.3 An overview of the methodology used in this study to classify MLB teams
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Fig. 20.4 Sequential two-stage model of an MLB team consisting of a front office operation and

an on-field operation
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be the efficiency of the front office operation of team k, θ1k to be the inverse

efficiency of the front office operation of team k, θ2k to be the inverse efficiency

of the on-field operation of team k, and θk to be the organizational inverse efficiency
of team k.

First, we solve the following DEA model to determine the front office inverse

efficiency of team k:

Max θ1k
s:t:Xn

j¼1

λ1jTPSj � TPSk

Xn
j¼1

λ1jTBGj � θ1kTBGk

Xn
j¼1

λ1jTBSj � ε1kTBSk

θ1kε1k ¼ 1Xn
j¼1

λ1j ¼ 1

λ1j � 0; j ¼ 1, 2, . . . , n
θ1k, ε1k � 0

Next, we solve the following DEA model to determine the on-field inverse

efficiency of team k:

Max θ2k
s:t:Xn

j¼1

λ2jTBGj �TBGk

Xn
j¼1

λ2jTBSj �TBSk

Xn
j¼1

λ2jGWj � θ2kGWk

Xn
j¼1

λ2j ¼ 1

λ2j � 0; j ¼ 1, 2, . . . , n
θ2k � 0

Let TBG�
k ¼

Xn
j¼1

λ�1jTBGj and TBS�k ¼
Xn
j¼1

λ�1jTBSj where λ�1j are the optimal

weights obtained when solving the front office model for team k. Then, we solve the
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following DEA model to determine the organizational inverse efficiency for team

k using TBG�
k and TBS

�
k as the RHS of the first and second constraints, respectively:

Max θk
s:t:Xn

j¼1

λjTBGj �TBG�
k

Xn
j¼1

λjTBSj �TBS�k

Xn
j¼1

λjGWj � θkGWk

Xn
j¼1

λj ¼ 1

λj � 0; j ¼ 1, 2, . . . , n
θk � 0

We compute the number of games each team would have won had it been

efficient, i.e., the team’s efficient games won (EGW), using the formula

EGW ¼ �GW�
k ¼

Xn
j¼1

�λ�j GWj, where *λ�j are the optimal weights obtained when

solving the organizational model for team k, assuming the front office is efficient.

The organizational (overall team) inverse efficiency for team k is θk ¼ *GW�
k /GWk.

Logistic Regression

We interpret the phrase “reasonable hope of reaching post-season play” to mean

that a team must have at least the same probability of reaching post-season play as it

would have if all teams in its league were equally talented. We refer to this

probability as the team’s balanced probability. The balanced probability for a

given team in a given season depends on the playoff qualification condition in

effect. Before 1969, the two leagues had no division structure and only the league

champions qualified for post-season play. Thus, the balanced probability for a team

before 1969 depended on only the number of teams in its league. Between 1969 and

1993, each league consisted of two divisions and each division winner qualified for

post-season play. During this period, the balanced probability for a team depended

on only the number of teams in the team’s division. Since 1994, each league

consists of three divisions. Between 1994 and 2011, each division winner qualified

for post-season play, as does the “wild card” team, which is the non-division winner

with the highest winning percentage in the league. Thus, between 1994 and 2011,

the balanced probability for a team depends on both the number of teams in its

division and the number of teams in its league.
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For each of the playoff qualification conditions, we compute its balanced

probability. We interpret each probability as the minimum probability of qualifying

for post-season play that a team must achieve to be competitive under its playoff

qualification condition.

Next, we construct a logistic regression model for a team’s probability of

qualifying for post-season play. We use data for the seasons 1903 through 2002

(except 1904, when there was no post-season, and the strike seasons 1981, 1994,

and 1995). For each team in each season, we use GW as the independent variable

and a binary indicator variable equal to 1 if the team qualified for post-season play

in that season, or equal to zero if it did not qualify. We also include indicator

variables that identify the playoff qualification condition that applied to the league

and division in which the team played in that season. Therefore, the logistic

regression computes a team’s probability of qualifying for post-season play given

its number of games won and the playoff qualification condition that applied to the

league and division in which the team played in that season.

We use the logistic regression model to computeMGW, the minimum number of

games a team must win to be competitive under each playoff qualification condi-

tion. Thus, a team is competitive if and only if it would have won at leastMGW had

it been efficient. In other words, we say that a team is competitive if and only if

EGW � MGW.

Gini Index

We then determine the minimum total player salary needed to be competitive in

each season, which we call the competitive salary for that season. To do this, within
each season, we sort the teams according to total player salary from low to high and

use the Gini index to identify a total player salary that partitions the teams into two

sets, one of which consists primarily of competitive teams and one of which

consists primarily of noncompetitive teams. The competitive salary in that season

is the total player salary of the lowest paid team in the primarily competitive set.

We now partition the noncompetitive teams into two groups:

• Noncompetitive Due to Low Total Player Salary (NCS): A noncompetitive

team is noncompetitive due to low total player salary if its total player salary is

less than the competitive salary.

• Noncompetitive for Other Reasons (NCO): A noncompetitive team is

noncompetitive for other reasons if its total player salary is greater than the

competitive salary.

Next, we analyze the competitive teams. In order to do this, we need to provide

more definitions. Define GW* to be the number of games that an efficient on-field

operation would have won given the actual performance of the front office. We note

that GW � GW* � EGW. We obtain GW* from the DEA of the on-field operation

of the two-stage model. Let TPS* be the total player salary of the efficient front
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office operation. We note that TPS* � TPS. We obtain TPS* from the DEA of the

front office operation.

We now partition the competitive teams into three groups:

• Conditionally Competitive (CC): A competitive team is conditionally compet-
itive if GW* < MGW. The team is spending enough money on total player

salary but inefficiency in the front office has resulted in insufficient player

performance to win enough games to achieve the balanced probability of

qualifying for post-season play. The front office must become more efficient

for this to happen. We note that a conditionally competitive team may be

overspending on player salaries if TPS* < TPS.
• Economically Competitive (EC): A competitive team is economically compet-

itive if GW* � MGW and TPS* ¼ TPS. The team has sufficient player perfor-

mance on the field to achieve the balanced probability of qualifying for

post-season play. Moreover, there is no evidence that the team is overspending

on total player salary.

• Hypercompetitive (HC): A competitive team is hypercompetitive if GW* �
MGW and TPS* < TPS. The team has sufficient player performance on the field

to achieve the balanced probability of qualifying for post-season play. However,

there is evidence that the team is overspending on total player salary.

We use the Gini index again, this time to determine the value of total player

salary that partitions hypercompetitive teams from other teams. We call this value

of total player salary the hypercompetitive salary for the given season.

Markov Analysis

Finally, we model the transitions of teams among these five states (NCS, NCO, CC,

EC, and HC) according to a Markov process. We test the five row distributions for

statistical independence and compute the steady-state probabilities and the mean

first passage times from each state to each other state.

20.5.1.3 Data for the Study

We obtain market size data from the United States Census Bureau and Statistics
Canada. We extract player salary data from the USA Today Website. We gather

games won, whether the team qualified for post-season play, and the team perfor-

mance data required to compute total bases gained and total bases surrendered from

the Baseball Archive Database and the Major League Baseball Official Website.
We were unable to find data on the number of opposition errors, which is

required in the calculation of total bases gained. We estimated this number for

each team in each season by subtracting the team’s own errors committed from the

total committed in that team’s league and dividing by one less than the number of

teams in the league. This approximation ignores the minor effects of interleague
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play and the somewhat different schedules played by different teams, and assumes

that teams are equally likely to commit errors against each team they play. In

addition, we were unable to find data to support MLB’s definition of total bases in

the calculation of total bases surrendered for seasons prior to 1999. We estimated

this quantity by identifying the relationship between total hits and total bases using

regression analysis.

20.5.1.4 Study Results

We apply the two-stage DEA model to measure the efficiency of the front office

operation, the on-field operation, and the overall organization of each team in each

season of the study period and explore the relationship between efficiency and

competitiveness. Next, we determine the competitive salary and hypercompetitive

salary for each season in the study period and classify teams as competitive and

noncompetitive. Finally, we examine how market size relates to efficiency and

competitiveness.

Efficiency, Wins, and Competitiveness

Figure 20.5 illustrates the relationship between EGW and GW for all teams in the

study period as determined by the DEA. The teams that lie along the line defined by

EGW ¼ GW are organizationally efficient. All organizationally inefficient teams

lie above this line. Different symbols indicate whether the team was

noncompetitive due to low total player salary, noncompetitive due to other reasons,

conditionally competitive, economically competitive, or hypercompetitive.

Table 20.1 shows, for each playoff qualification condition, the probability that a

team would qualify for the playoffs if every team in its league or division were

equally talented. For example, consider a team playing in a four-team division

within a 14-team league with a wild card. This team has a balanced probability of

0.318 of qualifying for post-season play. Figure 20.6 shows the logistic regression

model for this condition. The model indicates that a team playing under this

condition must win at least 86.1 games to have a probability of qualifying for the

playoffs equal to or greater than 0.318. Thus, under this playoff qualification

condition, MGW ¼ 86.1. Similar analyses lead to the MGW values shown in

Table 20.1.

Competitive and Hypercompetitive Salary

Figure 20.7 shows the relationship between TPS and EGW for the 2000 season.

Similar relationships hold in all other seasons in the study period. Three teams were

noncompetitive in 2000, when theMGW was 85.6 in the American League East and

Central, 86.1 in the American League West, 88.2 in the National League East and
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West, and 87.3 in the National League Central. They were the Minnesota Twins, the

Florida Marlins, and the Houston Astros – their efficient games won were 74.3,

79.0, and 81.1, respectively. The Gini index analysis indicates that the two teams

with the lowest total player salaries (the Minnesota Twins and the Florida Marlins)

were noncompetitive due to low total player salary. The lowest total player salary in

the primarily competitive group is $23.13 million, belonging to the Kansas City

Royals. Thus, the competitive salary in 2000 was $23.13 million.

We cannot explain why the Houston Astros were noncompetitive in 2000 other

than to say that it was not due to low total player salary. However, we point out that

2000 was the Astros’ first season in their new ballpark, one with dramatically
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Fig. 20.5 The relationship between efficient games won and games won for all teams in the study

period

Table 20.1 The balanced probability of a team qualifying for the playoffs given its playoff

qualification condition and the minimum number of games a team needs to win to have a

probability of qualifying for the playoffs at least as large as the balanced probability

Number of teams

in league

Number of teams

in division Wild card Balanced probability MGW

10 – No 0.100 92.8

8 – No 0.125 88.9

14 7 No 0.143 89.5

12 6 No 0.167 88.2

16 6 Yes 0.231 87.3

16 5 Yes 0.262 88.2

14 5 Yes 0.272 85.6

14 4 Yes 0.318 86.1
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different playing conditions than those found in the Astrodome. We also note that

the Astros were competitive in both 1999 and 2001.

Table 20.2 and Fig. 20.8 show the competitive and hypercompetitive salary

along with the team minima, mean, and maxima salaries for the non-strike seasons

between 1985 and 2002. We find that the competitive salary ranges from $6.19

million in 1985 to $38.67 million in 2002, an average annual growth rate of 10.7 %
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per year, adjusted for inflation. The hypercompetitive salary ranges from $9.81

million in 1985 to $125.9 million in 2002, an average annual growth rate of 12.6 %

per year, adjusted for inflation. Interestingly, we observe that the team minimum,

mean, and maximum salaries have risen at nearly the same average annual percent-

age rate, namely 11.2 % for the minimum, 10.8 % for the mean, and 12.1 % for the

maximum. This suggests that, over the study period, it has not become relatively

more costly to be competitive in MLB.

Moreover, the competitive salary has remained low relative to the mean total

player salary in each season. As Fig. 20.9 shows, the ratio of the competitive salary

in a given season to the minimum total player salary in the same season has

remained stable around its mean of 1.5. Therefore, a rule of thumb is that a

team’s total player salary must be at least 50 % larger than the lowest total player

salary in a given season to be competitive. The least squares regression line in

Fig. 20.9 has a slope that is very nearly zero (0.0012 per year).

Classifying Teams as Competitive or Noncompetitive

We find that, in each season, there were between zero and four teams that were

noncompetitive due to low total player salary, as shown in Fig. 20.10. We conclude

that, in each season in the study period except for 2001, there existed teams that

were noncompetitive due to low total player salary and that the number of such

teams was relatively small. As Fig. 20.10 also shows, there were between zero and

eight teams that were noncompetitive for reasons other than salary. These are teams
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Fig. 20.8 The minimum, maximum, and mean total player salaries for the non-strike seasons

between 1985 and 2002 along with the minimum total player salary to be competitive and
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whose total player salaries exceeded the minimum required to be competitive but

had EGW < MGW. We cannot say why these teams are noncompetitive. During the

study period, 49 of 442 teams (11.1 %) have been noncompetitive. Of these

49 teams, 27 (55.1 %) were noncompetitive due to low total player salary, while

22 (44.9 %) were noncompetitive for other reasons.
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We find that, in each season, there were between zero and nine teams that were

hypercompetitive, as shown in Fig. 20.11. During the study period, 95 of the

442 teams (21.5 %) overspent on player salaries.

We find that 51 of these 95 teams (54.7 %) were hypercompetitive, 41 (43.2 %)

were conditionally competitive, and 2 (2.1 %) were noncompetitive for other

reasons. We also find that, in each season, there were between 6 and 14 economi-

cally competitive teams, and that there were between 5 and 14 conditionally

competitive teams. None of these categories demonstrate significant trends

over time.

Figure 20.12 displays the competitive status of each team in each season during the

study period. We observe that 16 teams have never been noncompetitive due to low

total player salary during the study period. Note that only the Minnesota Twins have

been noncompetitive due to low total player salary in four of the 18 seasons in the

study period, and no team has been noncompetitive due to low total player salarymore

often. The Cleveland Indians and the Montreal Expos were each noncompetitive due

to low total player salary three times. The Seattle Mariners (1985–1986), the

Cleveland Indians (1992–1993), the Pittsburgh Pirates (1997–1998), the Montreal

Expos (1998–1999), the Minnesota Twins (1986–1987 and 1999–2000), and the

Florida Marlins (1999–2000) were noncompetitive due to low total player salary for

two consecutive seasons. Thus, there is no evidence that being noncompetitive due to

low total player salary is a chronic condition.

We observe that two teams (the Anaheim/California Angels and the Milwaukee

Brewers) were conditionally competitive 12 times during the 16 seasons analyzed.

In addition, three teams (the Chicago Cubs, the Kansas City Royals, and the San

Diego Padres) were conditionally competitive 11 times, while the Philadelphia
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Phillies and the Pittsburgh Pirates were conditionally competitive 10 and 9 times,

respectively. Thus, this competitive status, in which the team has spent sufficient

money on player salary but the front office has failed to produce sufficient talent on

the field to be competitive, has been a persistent problem in these seven franchises.

We find that one team (the Toronto Blue Jays) was economically competitive in

11 seasons, while two teams (the Cincinnati Reds and the San Francisco Giants)

were economically competitive in 10 seasons and two teams (the Atlanta Braves

and the Montreal Expos) were economically competitive in 9 seasons. These

franchises consistently paid sufficient player salaries to be competitive, and their

front offices used the money to place sufficient talent on the field.

Three teams (the Boston Red Sox, the New York Mets, and the New York

Yankees) were hypercompetitive six times, while the Los Angeles Dodgers and the

Kansas City Royals were hypercompetitive five and four times, respectively.

Moreover, nine teams have never been hypercompetitive and another nine teams

have been hypercompetitive only once.

Markov Analysis

We model the transition of teams among the five states according to a Markov

process. Ignoring transitions that spanned the strike seasons, the estimated transi-

tion matrix is

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
ANA/CAL X X
ARZ X X XXXX X X X X X X X
ATL X X
BAL X X
BOS X X
CHC X X
CHW X X
CIN X X
CLE X X
COL X X
DET X X
FLA

X X X X X X

X X

X X

X X X X X X X X
HOU X X
KC X X
LA X X
MIL X X
MIN X X
MON X X
NYM X X
NYY X X
OAK X X
PHI X X
PIT X X
SD X X
SF X X
SEA X X
STL X X
TB X X X X X X X X X X X X X
TEX X X
TOR X X

XxX
NCS NCO CC EC HC N/A

Fig. 20.12 The competitive status of each team in each season during the study period

506 H.F. Lewis



P ¼

0:304 0:044 0:391 0:261 0

0:095 0:191 0:381 0:191 0:143
0:064 0:039 0:564 0:244 0:090
0:021 0:050 0:270 0:539 0:121
0 0:023 0:256 0:442 0:279

0
BBBB@

1
CCCCA

where the order of the states is NCS, NCO, CC, EC, and HC. A chi-square test

shows that the probability distributions in the rows are significantly different

(χ2 ¼ 92.75 with df ¼ 16, P < 0.00005). The steady-state probabilities associated

with this transition matrix are π ¼ 0:055 0:048 0:397 0:378 0:122ð Þ.
The matrix of mean first passage times is

M ¼

18:3 24:1 3:0 3:8 11:5
23:4 20:6 3:1 4:0 9:7
24:3 24:3 2:5 3:8 10:3
25:8 23:9 3:6 2:6 9:8
26:6 24:7 3:7 2:9 8:2

0
BBBB@

1
CCCCA

Market Size, Efficiency, and Competitiveness

Figure 20.13 shows the number of times each team was noncompetitive due to

low total player salary versus the team’s market size, defined as the population

of the team’s metropolitan area according to the 2000 U.S. census and the 2001

Canadian census. We find evidence that the number of times that a team has

been noncompetitive due to low total player salary between 1985 and 2002 is

negatively related to the size of the market in which it plays (P ¼ 0.0464 in a
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Fig. 20.13 The number of times that a team has been noncompetitive due to low total player

salary between 1985 and 2002 is negatively related to the size of the market in which it plays
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Poisson regression). The teams that played in markets below five million people

were NCS in 8.4 % of their seasons while teams that played in markets above

five million people were NCS in 3.1 % of their seasons (P ¼ 0.027). We note

that, while the four teams in the two largest markets – two in New York and two

in Los Angeles/Anaheim – were never noncompetitive due to low total player

salary, the Chicago White Sox, who play in the third largest market, were

noncompetitive due to low total player salary in two seasons (1989 and 1998).

In addition, we see that seven of the 18 teams that play in markets below five

million people have not been noncompetitive due to low total player salary in

the study period.

Figure 20.14 shows the number of times each team was hypercompetitive versus

the team’s market size. We find evidence that the number of times that a team has

been hypercompetitive between 1985 and 2002 is positively related to the size of

the market in which it plays (P < 0.00005 in a Poisson regression). The teams that

played in markets above five million people were hypercompetitive in 17.2 % of

their seasons while teams that played in markets below five million people were

hypercompetitive in 7.6 % of their seasons (P ¼ 0.0027). Of the 18 teams with

market size below five million, eight have never been hypercompetitive and four

have been hypercompetitive once. Of the 12 teams with market size above five

million, 11 have been hypercompetitive at least once, including the Boston Red

Sox, the New York Mets, and the New York Yankees six times each and the Los

Angeles Dodgers five times.

Figure 20.15 shows the relationship between efficient games won and market

size for MLB teams during the study period. The regression line shown in

Fig. 20.15 has a slope of 2.262 games per 10 million people (P-value ¼ 0.0019),

suggesting that an efficient New York team, with market size approximately equal

to 20.13 million, would win roughly four more games in a season than would an

efficient Milwaukee team, with market size equal to 1.65 million.
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Fig. 20.14 The number of times that a team has been hypercompetitive between 1985 and 2002 is

positively related to the size of the market in which it plays
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20.5.1.5 Conclusions of the Study

In this section, we summarize our results by responding to each research question.

How much does a team need to spend on total player salary to be competitive?
The competitive salary ranges from $6.19 million in 1985 to $38.67 million in

2002, an average annual growth rate of 10.7 % per year, adjusted for inflation. The

team minimum, mean, and maximum salaries have risen at nearly the same average

annual percentage rate. This suggests that, over the study period, it has not become

relatively more costly to be competitive in MLB. Moreover, the competitive salary

has remained low relative to the mean total players salary in each season. We find

that the ratio of the competitive salary to the minimum total player salary has

remained stable around its mean of 1.5.

What is the maximum total player salary that a team can pay without
overspending?
The hypercompetitive salary is $125.9 million in 2002, up from $9.81 million in

1985. This is an average annual increase of 12.6 % (adjusted for inflation) per year.

It is increasing over time as a percentage of maximum total player salary.

How many teams are noncompetitive due to low total player salary?
We find that, in each season, there were between zero and four teams that were

noncompetitive due to low total player salary. We conclude that, in each season in

the study period except for 2001, there existed teams that were noncompetitive due

to low total player salary and that the number of such teams was relatively small.

There were between zero and eight teams that were noncompetitive for other

reasons. The Markov analysis suggests that, in any given season, 5.5 % of the

teams (1.65 out of 30 teams) will be noncompetitive due to low total player salary,

while another 4.8 % of the teams will be noncompetitive for other reasons (1.44 out

of 30 teams).
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Fig. 20.15 Efficient games won versus market size for MLB teams between 1985 and 2002

excluding the strike seasons of 1994 and 1995
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How many teams are overspending on total player salary?
We also find that between zero and nine teams are hypercompetitive in a given

season. During the study period, 95 of 442 teams (21.5 %) have been overspend-

ing on total player salary. Of these overspending teams, 52 (54.7 %) were

hypercompetitive, 41 (43.2 %) were conditionally competitive, and two (2.1 %)

were noncompetitive due to other reasons. The Markov analysis suggests

that, in a given season, 12.2 % (3.66 out of 30 teams) of the teams will be

hypercompetitive.

How does noncompetitiveness due to low total player salary relate to market size?
We find evidence that the number of times that a team has been noncompetitive due

to low total player salary between 1985 and 2002 is negatively related to the size of

the market in which it plays. However, we see that seven of the 18 teams that play in

markets below five million people have not been noncompetitive due to low total

player salary in the study period. Six of the 18 teams have been noncompetitive due

to low total player salary more than once in this period. While the four teams in

the two largest markets were never noncompetitive due to low total player salary,

the Chicago White Sox, who play in the third largest market, were noncompetitive

due to low total player salary in two seasons.

The size of the team’s market relates to the number of games it can win if it is

efficient. An efficient New York team, playing in the largest market, can expect to

win roughly four more games per season than an efficient Milwaukee team, playing

in the smallest market.

How does overspending on total player salary relate to market size?
Large market teams are more likely to be hypercompetitive than small market

teams. Of the 18 teams with market size less than five million, eight have never

been hypercompetitive, while four have been hypercompetitive only once. Mean-

while, of the 12 teams with market size greater than five million, 11 have been

hypercompetitive at least once.

20.5.2 Organizational Capability, Efficiency,
and Effectiveness in MLB

In this study published in the European Journal of Operational Research (Lewis

et al. 2009), we use a network DEA model as part of a larger analysis to explore the

relative contributions of team capability and managerial efficiency to team effec-

tiveness in the context of Major League Baseball. We analyze every MLB team

over the past century to capture long-term, persistent relationships. We perform

separate analyses of regular season effectiveness and post-season effectiveness.

The study period for the regular season analysis is from 1901 through 2002
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(excluding the strike-shortened seasons in 1981, 1994, and 1995), during which

there are 1934 observations. The study period for the post-season analysis is from

1903 through 2002 (excluding 1904 when there was no post-season play and the

strike-shortened seasons in 1981, 1994, and 1995), during which there are

282 observations.

20.5.2.1 Motivation and Research Questions

To be effective, organizations need capabilities relevant to their missions and they

must manage those capabilities efficiently. Without adequate talent, even a well-

managed organization will fail to achieve its goals. Similarly, the inefficient

utilization of resources will cause a well-equipped organization to fail. Of course,

a powerfully equipped organization can compensate for managerial inefficiencies

more easily than can a marginally equipped organization.

We anticipate that the relative contributions of capability and managerial

efficiency are significant factors in organizational resource allocation decisions.

Capability will be relatively more important in industries in which labor is highly

paid. Examples of such industries include high-tech manufacturing, universities,

hospitals, and professional sports. Efficiency will be relatively more important

in industries in which labor is inexpensive. Examples of such industries include

low-tech manufacturing, fast-food restaurant chains, janitorial services, and retail

services.

MLB team owners, general managers, scouts, field managers, and coaches

acquire, develop, and manage talent. Knowing the relative impact of talent and

efficient use of that talent on team effectiveness can greatly enhance decisions both

on and off the field. In this context, we pose the following research questions for the

regular season and post-season study periods, respectively:

1. How much does team capability and managerial efficiency contribute to regular

season effectiveness in MLB?

2. How much does team capability and managerial efficiency contribute to post-

season effectiveness in MLB?

20.5.2.2 Study Methodology

We present mathematical models to measure regular season team capability,

regular season team efficiency, regular season team effectiveness, and post-season

team effectiveness. We then use weighted linear regression to evaluate the contri-

butions of regular season team capability and regular season team efficiency to the

variation in regular season and post-season team effectiveness.
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Measuring Regular Season Capability

We measure the organizational capability of an MLB team during the regular

season using offensive and defensive measures based on a variant of MLB’s

definition of total bases. We refer to these measures as O-Capability and

D-Capability.
The capability of a team depends on its ability to get players on base and its

ability to prevent its opponent’s players from reaching base. We measure offensive

capability in any season as (TBOff + BBOff + EOff)/GP where TBOff is the team’s

total bases gained on offense, BBOff is the number of walks received by the team,

EOff is the number of fielding errors committed by the opposing team, and GP is the

number of games played by the team. This approach to measuring offensive

capability assumes constant returns-to-scale, i.e., that the sum in the numerator is

proportional to the number of games played.

Defensive capability is defined identically except that the terms refer to the

number of total bases and walks surrendered by the team, and number of fielding

errors committed by the team, in the given season. Thus, we measure defensive

capability in any season as (TBDef + BBDef + EDef)/GP where TBDef is the team’s

total bases surrendered on defense, BBDef is the number of walks surrendered by

the team, and EDef is the number of fielding errors committed by the team.

Observe that D-Capability has the property that larger numerical values are

representative of less rather than more defensive capability. Thus, D-Capability
is a reverse quantity. Note that we also assume constant returns-to-scale for

defensive capability.

Measuring Regular Season Efficiency

To measure efficiency of an MLB team, we use the network DEA model developed

by Lewis and Sexton (2004a). Figure 20.16 shows our network representation of the

on-field operation of an MLB team.

The on-field operation of an MLB team is comprised of three sub-DMUs.

The offense sub-DMU consumes offensive contributions (TBOff, BBOff, and EOff)

to produce runs gained on offense (ROff), the defense sub-DMU consumes defensive

contributions (TBDef, BBDef, and EDef) to prevent runs surrendered on defense

(RDef), and the integration sub-DMU consumes ROff and RDef to produce games

won (GW). Note that TBDef, BBDef, EDef and RDef are reverse quantities.

We use four efficiency scores to evaluate managerial performance. The first – the

O-Efficiency – measures the efficiency of the offense sub-DMU. A team increases

its O-Efficiency by clustering its hits, walks, and the errors committed by the

opposing team, by stealing more bases and taking extra bases on hits, and by

leaving fewer runners on base. The DEA model for O-Efficiency is
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Max θ1k
s:t:Xn

j¼1

λ1jTBOff j � TBOff k

Xn
j¼1

λ1jBBOff j � BBOff k

Xn
j¼1

λ1jEOff j � EOff k

Xn
j¼1

λ1jROff j � θ1kROff k

Xn
j¼1

λ1j ¼ 1

λ1j � 0; j ¼ 1, 2, . . . , n
θ1k � 0

In this model, λ1j represent the weight that DMU k places on DMU j when
measuring the efficiency of the offense sub-DMU and θ1k is the inverse efficiency
of the offense sub-DMU.

The second efficiency score – the D-Efficiency – measures the efficiency of the

defense sub-DMU. A team increases its D-Efficiency by scattering the hits, walks,

and the errors it commits, by preventing stolen bases and extra bases on hits, and by

leaving more opposition runners on base. The DEA model for D-Efficiency is

TBOff

BBOff

EOff

TBDef

BBDef

GW

ROff

RDef

Offense

Defense

Integration

EDef

Fig. 20.16 Network model

of the on-field operation of

an MLB team
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Min ε2k
s:t:Xn

j¼1

λ2jTBDef j � TBDef k

Xn
j¼1

λ2jBBDef j � BBDef k

Xn
j¼1

λ2jEDef j � EDef k

Xn
j¼1

λ2jRDef j � ε2kRDef k

Xn
j¼1

λ2j ¼ 1

λ2j � 0; j ¼ 1, 2, . . . , n
ε2k � 0

In this model, λ2j represent the weight that DMU k places on DMU j when
measuring the efficiency of the defense sub-DMU and ε2k is the efficiency of the

defense sub-DMU.

The third efficiency score – the W-Efficiency – measures the efficiency of the

integration sub-DMU. A team increases its W-Efficiency by winning more close

games. The DEA model for W-Efficiency is

Max θ3k
s:t:Xn

j¼1

λ3jROff j � ROff k

Xn
j¼1

λ3jRDef j � RDef k

Xn
j¼1

λ3jGWj � θ3kGWk

Xn
j¼1

λ3j ¼ 1

λ3j � 0; j ¼ 1, 2, . . . , n
θ3k � 0

In this model, λ3j represent the weight that DMU k places on DMU j when
measuring the efficiency of the integration sub-DMU and θ3k is the inverse effi-

ciency of the integration sub-DMU.

The fourth efficiency score – the F-Efficiency – measures the efficiency of the

entire DMU. The F-Efficiency is computed as the efficiency of the integration
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sub-DMU using the optimal values R�
Off and R

�
Def produced by the offense sub-DMU

and the defense sub-DMU, respectively. The DEA model for F-Efficiency is

Max θk
s:t:Xn

j¼1

λjROff j � R�
Off k

Xn
j¼1

λjRDef j � R�
Def k

Xn
j¼1

λjGWj � θkGWk

Xn
j¼1

λj ¼ 1

λj � 0; j ¼ 1, 2, . . . , n
θk � 0

In this model, λj represent the weight that DMU k places on DMU j when
measuring the efficiency of the entire DMU and θk is the inverse efficiency of the

entire DMU.

All of the DEA models assume variable returns-to-scale, an output orientation,

and use a common frontier over teams in all seasons in the study period. We justify

the use of a common frontier for all seasons based on the observation that the

process by which MLB teams convert inputs into outputs has remained essentially

unchanged throughout the study period. While it may be true that offensive and

defensive capabilities have evolved during the study period, the variable returns-to-

scale assumption neither rewards nor penalizes a team based on the season in which

it played. During this period, there were 1934 observations. All the models except

for the O-Efficiency model involve reverse quantities, which we incorporate using

the methodology presented in Lewis and Sexton (2004b).

Measuring Regular Season Effectiveness

The number of games an MLB team wins in a given season is a measure of its

effectiveness. However, during the study period, not all teams played the same

number of regular season games. Therefore, we define the regular season organi-

zational effectiveness of an MLB team as the team’s winning percentage during the

season, defined as WPct ¼ GW/GP.
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Analyzing Regular Season Effectiveness

We use WPct as the dependent variable in a weighted linear regression

with O-Capability, D-Capability, O-Efficiency, D-Efficiency, W-Efficiency, and

F-Efficiency as the independent variables and regular season games played as the

weights. We evaluate the contributions of each independent variable to the varia-

tion in regular season effectiveness in three ways. First, we compute the coefficient

of partial determination for each independent variable. Second, we compute the R2

contribution of a given independent variable. Third, we compare (absolute) regres-

sion coefficients between the two capability measures and within the efficiency

measures.

Measuring Post-season Effectiveness

We measure a team’s post-season series effectiveness as the probability that the

team would have performed at least as well as it actually did. For a given team A,

we rank the series outcomes from best to worst. For example, in a best-of-seven

game series, the ranked outcomes for team A are shown in the first column of

Table 20.3. Next, we determine the probability that team A wins a given game

versus an opposing team B. Let α be the regular season winning percentage of team

A and β be the regular season winning percentage of team B. Then, the probability

that team A wins a given game is p ¼ α/(α + β) and the probability that team B

wins a given game is q ¼ 1 � p ¼ β/(α + β). The second column of Table 20.3

shows the probability distribution for team A in a best-of-seven series. We measure

the post-season series effectiveness of team A as the sum of the probabilities from

the worst outcome for team A to the outcome that occurred. The third column of

Table 20.3 shows these values.

Prior to 1969, we measure a team’s post-season effectiveness as its World Series

effectiveness. Since 1969, we measure a team’s post-season effectiveness as a

Table 20.3 The first column shows the possible seven-game post-season series outcomes, ranked

from best to worst for Team A. The second column shows the probabilities of the possible seven-

game post-season series outcomes, where p is the probability that Team A wins any given game,

and q ¼ 1 � p. The third column shows the seven-game post-season series effectiveness of Team

A for each possible series outcome

Team A Probability Post-season series effectiveness

Wins in 4 p4 1

Wins in 5 4p4q q4(1 + 4p + 10p2 + 20p3) + p4(20q3 + 10q2 + 4q)

Wins in 6 10p4q2 q4(1 + 4p + 10p2 + 20p3) + p4(20q3 + 10q2)

Wins in 7 20p4q3 q4(1 + 4p + 10p2 + 20p3) + 20p4q3

Loses in 7 20p3q4 q4(1 + 4p + 10p2 + 20p3)

Loses in 6 10p2q4 q4(1 + 4p + 10p2)

Loses in 5 4pq4 q4(1 + 4p)

Loses in 4 q4 q4
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weighted average of its individual series effectiveness measures, using the maxi-

mum series lengths as the weights.

Analyzing Post-season Effectiveness

We examine how capability and efficiency during the regular season relate to post-

season effectiveness. We use post-season effectiveness as the dependent variable in

a weighted linear regression with (regular season) O-Capability, D-Capability,
O-Efficiency, D-Efficiency, W-Efficiency, and F-Efficiency as the independent vari-
ables and post-season games played as the weights. We evaluate the contributions

of each independent variable to the variation in post-season effectiveness using the

coefficient of partial determination, the R2 contribution, and the (absolute) regres-

sion coefficients.

20.5.2.3 Data for the Study

We obtained games won, post-season records, and team performance data (such as

runs, total bases, walks, and errors) from the Baseball Archive Database and the

Major League Baseball Official Website. We were unable to find data on the

number of opposition errors and the number of opposition total bases for seasons

prior to 1999. We estimated these quantities as described in Sect. 20.5.1.3.

20.5.2.4 Study Results

In this section, we present summary statistics of our capability, efficiency, and

effectiveness measures of all MLB teams and post-season teams. We also perform a

series of hypothesis tests to compare the capability, efficiency, and effectiveness

measures of post-season and non-post-season teams. In addition, we report the

results of our regular season and post-season regression analyses.

Summary Statistics of Capability, Efficiency, and Effectiveness Measures

Table 20.4 presents descriptive statistics of regular season capability for all regular

season teams and post-season teams. Figures 20.17 and 20.18 are histograms of

O-Capability for all regular season teams and post-season teams, respectively,

while Figs. 20.19 and 20.20 are histograms of D-Capability for all regular season

teams and post-season teams, respectively. On average, a regular season team gains

(and surrenders) 17.24 total bases per game. We note that a typical post-season

team gains 18.40 total bases and surrenders 16.42 total bases during a regular
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season game. Thus, teams that achieve the post-season are typically above average

offensively and defensively.

Table 20.5 presents descriptive statistics of regular season efficiency for all

regular season teams and post-season teams. Figures 20.21 and 20.22 are

Fig. 20.17 Histogram of regular season O-Capability for all regular season teams

Fig. 20.18 Histogram of regular season O-Capability for post-season teams
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histograms of O-Efficiency for all regular season teams and post-season teams,

respectively. Figures 20.23 and 20.24 are histograms of D-Efficiency for all regular
season teams and post-season teams, respectively. Figures 20.25 and 20.26 are

histograms of W-Efficiency for all regular season teams and post-season teams,

Fig. 20.19 Histogram of regular season D-Capability for all regular season teams

Fig. 20.20 Histogram of regular season D-Capability for post-season teams
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respectively. Figures 20.27 and 20.28 are histograms of F-Efficiency for all regular
season teams and post-season teams, respectively. On average, a regular season

team should be able to increase its runs gained by 13 % (given its total bases

gained), decrease its runs surrendered by 10 % (given its total bases surrendered),

and win 16 % more games (given its runs gained and runs surrendered). Overall, a

Fig. 20.21 Histogram of regular season O-Efficiency for all regular season teams

Fig. 20.22 Histogram of regular season O-Efficiency for post-season teams

522 H.F. Lewis



typical regular season team should be able to win 36 % more games if it were

efficient in the offense, defense, and integration sub-DMUs. Typical post-season

teams demonstrate above average efficiency. On average, a post-season team

should be able to increase its runs gained by 9 % (given its total bases gained),

Fig. 20.23 Histogram of regular season D-Efficiency for all regular season teams

Fig. 20.24 Histogram of regular season D-Efficiency for post-season teams
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decrease its runs surrendered by 8 % (given its total bases surrendered), and win

9 % more games (given its runs gained and runs surrendered). Overall, a typical

post-season team should be able to win 17 % more games if it were efficient in the

offense, defense, and integration sub-DMUs.

Fig. 20.25 Histogram of regular season W-Efficiency for all regular season teams

Fig. 20.26 Histogram of regular season W-Efficiency for post-season teams
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Table 20.6 presents descriptive statistics of regular season effectiveness for all

regular season teams and post-season teams and post-season effectiveness for all

post-season teams. Figures 20.29 and 20.30 are histograms of regular season

effectiveness for all regular season teams and postseason teams, respectively, and

Fig. 20.27 Histogram of regular season F-Efficiency for all regular season teams

Fig. 20.28 Histogram of regular season F-Efficiency for post-season teams
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Fig. 20.31 is a histogram of post-season effectiveness for post-season teams. We see

that no team has won fewer than 23 % or more than 75 % of its regular season

games. A typical post-season team wins 61 % of its regular season games and each

post-season team has won at least 51 % of its regular season games.

Fig. 20.29 Histogram of regular season effectiveness for all regular season teams

Fig. 20.30 Histogram of regular season effectiveness for post-season teams
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Hypothesis Tests on Capability, Efficiency, and Effectiveness Measures

We perform a series of hypothesis tests to determine differences in capability,

efficiency, and effectiveness between post-season and non-post-season teams.

Table 20.7 presents the results of both a two-sample t-test and a Wilcoxon rank-

sum test for each variable. Table 20.7 also shows the results of the F-tests to

determine whether to assume equal or unequal variances when performing the

t-tests. The results of the F-tests indicate that we should assume unequal variances

Fig. 20.31 Histogram of post-season effectiveness for post-season teams

Table 20.7 Results of hypothesis tests on post-season and non-post-season teams

Variable Two-sample t test Wilcoxon rank-sum test

O-Capability t ¼ 13.23 DF ¼ 1932 P < 0.00005 Z ¼ 12.318 P < 0.00005

F ¼ 1.04 DF ¼ 281,1651 P ¼ 0.3371

D-Capability t ¼ �10.37 DF ¼ 423.4 P < 0.00005 Z ¼ �9.518 P < 0.00005

F ¼ 1.37 DF ¼ 1651,281 P ¼ 0.0005

O-Efficiency t ¼ �13.74 DF ¼ 495.1 P < 0.00005 Z ¼ �11.055 P < 0.00005

F ¼ 1.99 DF ¼ 1651,281 P < 0.00005

D-Efficiency t ¼ 8 DF ¼ 406.2 P < 0.00005 Z ¼ 7.623 P < 0.00005

F ¼ 1.21 DF ¼ 1651,281 P ¼ 0.0212

W-Efficiency t ¼ �26.26 DF ¼ 751.4 P < 0.00005 Z ¼ �17.582 P < 0.00005

F ¼ 4.12 DF ¼ 1651,281 P < 0.00005

F-Efficiency t ¼ �41.07 DF ¼ 1293.6 P < 0.00005 Z ¼ �23.408 P < 0.00005

F ¼ 9.04 DF ¼ 1651,281 P < 0.00005

WPct t ¼ 42.97 DF ¼ 672.7 P < 0.00005 Z ¼ 24.134 P < 0.00005

F ¼ 3.47 DF ¼ 1651,281 P < 0.00005
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for all the t-tests except for the one involving O-Capability. We summarize the

hypothesis tests for each variable below:

• O-Capability: Post-season teams on average gain more total bases than do non-

post-season teams.

• D-Capability: Post-season teams on average surrender fewer total bases than do

non-post-season teams.

• O-Efficiency: Post-season teams have on average lower inverse efficiency scores

at the offense sub-DMU than do non-post-season teams.

• D-Efficiency: Post-season teams have on average higher efficiency scores at the

defense sub-DMU than do non-post-season teams.

• W-Efficiency: Post-season teams have on average lower inverse efficiency scores

at the integration sub-DMU than do non-post-season teams.

• F-Efficiency: Post-season teams have on average lower organizational inverse

efficiency scores than do non-post-season teams.

• WPct: Post-season teams have on average higher regular season winning per-

centages than do non-post-season teams.

Regular Season Regression Analysis

The sample size for the regression model is 1934 regular season teams. We omitted

F-Efficiency from the model because of its high colinearity with the other three

efficiency scores. Table 20.8 shows the resulting regression model.

We observe that all five independent variables are highly statistically significant

and that all five coefficients have the expected sign. Recall that D-Capability
is a reverse quantity and that larger values of O-Efficiency, D-Efficiency, and
W-Efficiency indicate greater potential to increase output and therefore signify

Table 20.8 Regression output for the regular season analysis

Weighted least squares linear regression of winning percentage

Weighting variable: Games played

Predictor variables Coefficient Std error T P

Constant 1.36968 0.01867 73.36 0.0000

O-Capability 0.03537 4.283E-04 82.57 0.0000

D-Capability �0.04247 3.907E-04 �108.71 0.0000

O-Efficiency �0.26566 0.00935 �28.42 0.0000

D-Efficiency �0.13465 0.00957 �14.06 0.0000

W-Efficiency �0.25583 0.00686 �37.28 0.0000

R2 0.9245 Resid. Mean Square (MSE) 0.08455

Adjusted R2 0.9243 Standard deviation 0.29077

Source DF SS MS F P

Regression 5 1,996.91 399.383 4,723.70 0.0000

Residual 1,928 163.01 0.085

Total 1,933 2,159.92
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lower efficiency. The model explains over 92 % of the variation inWPct, indicating
that omitted factors and random variation account for no more than 8 % of the

variation in regular season effectiveness. Table 20.9 shows the coefficients of

partial determination and the R2 contribution of each independent variable.

The results show that capability contributes more to regular season effectiveness

than does efficiency. Specifically, the coefficients of partial determination of

O-Capability and D-Capability are 0.780 and 0.860, respectively, while those of

O-Efficiency, D-Efficiency, and W-Efficiency are 0.295, 0.093, and 0.419, respec-

tively. We observe a similar pattern in the R2 contributions.

Defensive capability appears to be more important than offensive capability, as

indicated by the higher coefficient of partial determination, higher R2 contribution,

and larger (absolute) regression coefficient for D-Capability relative to O-Capabil-
ity (t ¼ 12.25, df ¼ 3866, P < 0.001). However, good management apparently can

enhance offense more than it can enhance defense, as indicated by the higher

coefficient of partial determination, higher R2 contribution, and larger (absolute)

regression coefficient for O-Efficiency relative to D-Efficiency (t ¼ 9.79,

df ¼ 3866, P < 0.001). The coefficients of partial determination and the R2

contributions suggest that W-efficiency contributes somewhat more to regular

season effectiveness than does O-Efficiency, although the (absolute) regression

coefficients of W-Efficiency and O-Efficiency are nearly equal.

Post-season Regression Analysis

The sample size for the regression model is 282 post-season teams. We find

that a team’s post-season performance is virtually unrelated to offensive and

defensive capabilities and that only overall efficiency on the field

(a combination of O-Efficiency, D-Efficiency, and W-Efficiency) has even the

slightest relationship to post-season performance. Overall efficiency on the

field can account for just over 1 % of post-season performance, suggesting

that nearly 99 % of post-season success is attributable to chance and other

unidentified factors.

Table 20.9 Coefficient of partial determination and the R2 contribution of

each capability measure and each efficiency measure in the regular season

analysis

Variable

Coefficient of

partial determination R2 contribution

O-Capability 0.780 0.267

D-Capability 0.860 0.463

O-Efficiency 0.295 0.032

D-Efficiency 0.093 0.008

W-Efficiency 0.419 0.054
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20.5.2.5 Conclusions of the Study

In this section, we summarize our results by responding to each research question.

How much does team capability and managerial efficiency contribute to regular
season effectiveness in MLB?
We conclude that both capability and efficiency are significant contributors to

regular season effectiveness in MLB. However, capability is more important than

efficiency. This supports our speculation that capability is more important than

efficiency in industries where labor is highly paid. Moreover, we conclude that

defensive capability contributes more to regular season effectiveness than does

offensive capability. This supports an organizational strategy that places greater

emphasis on defense (primarily pitching) relative to offense (primarily hitting).

Among the three efficiency measures, we conclude that the team’s ability to win

close games, as indicated by its W-Efficiency, has the greatest contribution to

regular season effectiveness. This suggests that managers who employ effective

strategies late in the game, such as pinch-hitting and relief pitching, can signifi-

cantly influence the team’s overall effectiveness.

We also find that the team’sO-Efficiency has greater influence on its regular season
effectiveness than does its D-Efficiency. We speculate that this may be because the

offense typically has greater control over the tactics that increaseO-Efficiency relative
to the control that the defense has over the tactics that increase D-Efficiency. For
example, the offense decides when to try to steal a base, when to attempt a hit-and-run

play, and when a runner seeks to advance an extra base on a hit. There are few tactics

that the defense can employ, such as pitching out and having the pitcher keep runners

close to their bases, leaving the defense in a generally reactive position. Thus, the

defense tends to rely more on capability – the ability of the pitcher and the catcher to

prevent stolen bases and the throwing abilities of the outfielders – than on efficiency.

How much does team capability and managerial efficiency contribute to
post-season effectiveness in MLB?
We conclude that regular season capabilities and efficiencies are poor predictors of

post-season effectiveness. Thus, post-season success is overwhelmingly deter-

mined by chance in that even talented and well-managed teams have little relative

advantage in post-season play. We believe that this is due primarily to two factors.

First, opposing teams in the post-season are likely also to be talented and well

managed, nullifying any relative advantage. Second, post-season series are short –

either five or seven games in almost all cases – so that an inferior team maintains a

significant chance of winning the series with the help of a few lucky bounces.

20.6 Conclusion

Data envelopment analysis has been extensively applied to measure the perfor-

mance of individual athletes and teams in a variety of sports as well as to analyze

nations competing in the Olympics. Most of the models presented in the literature
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are single-stage DEA models which treat the underlying process of converting

inputs into outputs as a “black box.” This approach is appropriate in many situations

including when the purpose of the analysis is to rank decision making units

(individual athletes, teams, or nations).

In other situations, analysts are interested in investigating the sources of ineffi-

ciency within the organization in order to improve organizational performance. For

example, the owner of a sports team may be interested in evaluating the efficiency

of various organizational sub-processes under the control of different administra-

tors (general managers, talent scouts, on-field managers, or coaches) in order to

make personnel decisions. To accomplish this, researchers have developed

two-stage and network DEA methodologies.

In this chapter, we model an MLB team as comprised of a front office operation

which consumes money in the form of player salaries to acquire offensive and

defensive talent and an on-field operation which uses the talent to outscore oppo-

nents and win games. We present a network DEA methodology to measure perfor-

mance of the front office operation (offense and defense), the on-field operation

(offense, defense, and integration), and the overall team. We utilize the methodol-

ogy in two industry-wide studies of Major League Baseball.

In the first study, we use a two-stage DEA model as part of a larger analysis to

determine the minimum total player salary required for a team to be competitive, to

count the number of teams that are noncompetitive due to low total player salary,

to determine the hypercompetitive salary, to count the number of hypercompetitive

teams, and to examine the relationship between market size, efficiency, and com-

petitiveness. In order to address these issues, we need to classify the MLB teams as

noncompetitive due to low total player salary, noncompetitive for other reasons,

conditionally competitive, economically competitive, and hypercompetitive.

The classification process utilizes the front office, on-field, and overall team

efficiency scores obtained from the two-stage DEA model.

In the second study, we use a network DEA model as part of a larger analysis to

explore the relative contributions of team capability and managerial efficiency

to team effectiveness during the regular season and the post-season. In order to

build the model for team effectiveness, we utilize the O-Efficiency, D-Efficiency,
W-Efficiency, and F-Efficiency scores determined from the network DEA model.

We emphasize that each of these studies requires the results obtained from the

two-stage and network DEAmodels in order to perform the analysis. A single-stage

DEA model does not provide the in-depth information the analyst needs to address

the research questions.
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