
Chapter 15

Network, Shared Flow and Multi-level

DEA Models: A Critical Review

Lorenzo Castelli and Raffaele Pesenti

Abstract In the last two decades, complex and detailed DEA models that consider

the internal structure of DMUs have been proposed by several authors. This chapter

describes the mathematical formulations, along with their main variants, extensions

and applications, of three large and popular model families: network (with special

emphasis on multi-stage), shared flow (also known as multi-component or multi-

activity), and multi-level models. Each family is a different generalization of the

same elementary internal structure. This review extends and updates the classifica-

tion presented in Castelli et al. (Ann Oper Res 173(1):207–235, 2010).

Keywords Data envelopment analysis • Network-DEA • Shared-flows • Multi-

level • Multi-stage • Multi-component • Survey

15.1 Introduction

Data Envelopment Analysis (DEA) has been a standard tool for evaluating the

relative efficiencies of Decision Making Units (DMUs) since the paper of Charnes

et al. (1978) based on the seminal work of Farrell (1957). Some underlying assump-

tions are common to standard DEA models. The efficiency of a DMU is defined

as the weighted ratio of the outputs (products or outcomes) yielded by the DMUover

the inputs (resources used or consumed). DMUs are homogeneous, i.e., they all have
the same types of inputs and outputs, and independent, i.e., no constraint binds input
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and output levels of a DMU with the inputs and outputs of other DMUs. Further-

more, DMUs are seen as black boxes, i.e., their internal structures are not considered.
As a consequence, generally, there is no clear evidence of the transformations to

which the inputs are subject to within the DMUs.

In the last two decades, several authors have explored the possibility of

abandoning the black box perspective and of considering the internal structures

of the DMUs (see, e.g., Sect. 3 of the paper by Cook and Seiford (2009) devoted to

the major research thrusts over 30 years since the work of Charnes et al. (1978), or

the dedicated chapter in the book by Cook et al. (2007) or, finally, the specific

subsections in the citation-based DEA literature survey by Liu et al. (2013b)). These

authors justify their approach by observing that, in some particular contexts, the

knowledge of the internal structure of DMUs can give further insights for the DMU

performance evaluation.

The aim of this chapter is to survey the models that consider internal structures

of DMUs. The main rationale of the classification is driven by identifying three

families of models as different generalizations of the same elementary formulation.

In particular, we analyze a specific model by comparing a set of homogeneous

and independent DMUs, each composed of a set of Decision Making SubUnits

(DMSUs). In the literature, subunit, component, activity, division, (sub)structure

and (sub)process are synonyms of DMSU and are reported as such in this review.

Each subunit is allowed to perform a unique function or activity. Only to keep the

notation simple, we also assume that all the DMUs under comparison have the same

internal structure.

All the models that we consider can be derived from an elementary one that

assumes that each DMU internal structure complies with the following

assumptions:

Assumptions

1. No intermediate flows among DMSUs exist. In other words, the output of a

DMSU cannot be the input of another DMSU (and also cannot re-enter the

same DMSU).

2. All the subunits of the DMU do not have shared inputs and shared outputs,

i.e., the DMU does not have the opportunity to decide how to allocate its inputs

or outputs among its subunits in order to maximize its efficiency (Cook

et al. 2000).

3. Any input (output) of the DMU is also an input (output) of one of its subunits.

Here note that Assumption 2 implies that the components of an elementary

DMU do not compete for the same resource and do not synergically yield the same

product. It follows that the combined presence of Assumptions 1 and 2 makes all

the DMSUs of an elementary DMU independent (Fig. 15.1).

By dropping one of the three above assumptions at a time, we obtain different

families of DEA models. Specifically:

• We refer to network DEA models when Assumption 1 is neglected. Here DMUs

have at least one output of a DMSU which is an input of a different DMSU (see

Fig. 15.2). These models are of interest because they also allow to describe
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systems where the DMUs are organized in networks so that the outputs of some

of them become inputs for other ones. This framework may encompass

manufacturing production systems, and in general supply chains, in which

some DMUs yield intermediate products that feed other DMUs. The same

framework may also include the dynamic DEA models in which some outputs

of the DMUs at period t become their inputs in the next period, t + 1 (Färe and

Grosskopf 2000). Finally, this framework may also possibly cover a further line

of research (not discussed in this chapter) that is in fact not specifically devoted

to just assessing the efficiency of DMUs but to considering DMUs as compo-

nents of a greater structure which is interested in maximizing its future efficiency

by either re–allocating resources or fixing targets to DMUs (see, e.g., Sect. 5 of

the previous version of this survey (Castelli et al. 2010)).

• We refer to shared flow (or multi-activity or multi-component) DEA models

when Assumption 2 no longer holds (see Fig. 15.4). As an example, this situation

may occur when DMUs are divided into different components that require
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common resources (e.g., money) or produce goods or services obtained through

the synergy and collaboration among them (e.g., the quality of service provided

to customers). Then, a DMU may maximize its efficiency also by choosing the

most appropriate allocation of the common flows among the subunits and not

only by optimizing the weight associated to each flow as it happens in

standard DEA.

• We refer to multi-level DEA models when Assumption 3 is dropped, i.e., when

DMU inputs (outputs) are not necessarily inputs (outputs) of its subunits (see

Fig. 15.8).

In the following sections, we first describe the formulation to maximize the

relative efficiency of an elementary DMU (Sect. 15.2). Then we introduce the basic

reference models (typically with constant returns to scale) for network (Sect. 15.3),

shared flow (Sect. 15.5), and multi-level (Sect. 15.6) DEA models. Section 15.4 is

specifically devoted to the evaluation of multi-stage processes, a special class

of network DEA models. We provide interpretations and applications proposed

by different authors, and specify the possible variations from the basic model.

In Sect. 15.7 conclusions are drawn. Throughout the paper we assume that the

reader is familiar with at least the seminal works on DEA (see, e.g., Banker

et al. 1984; Charnes et al. 1978), as we will not define or justify basic concepts

such as, e.g., positive non-Archimedean value ε, slack variables, production set,

virtual inputs and outputs, Constant or Variable Returns to Scale (CRS or VRS,

respectively), allocative and technical efficiencies.

15.2 Elementary Model

In this section, we introduce a DEA model for assessing the efficiency of elemen-

tary DMUs (i.e., whose internal structure follows Assumptions 1–3). To this end,

for each elementary DMU k, let us define

• i, j, r: the indexes of the generic input, output, and DMSU, respectively,

• Xr
k ¼ {xrik}: the vector of the inputs of DMSU r,

• Yrk ¼ {yrjk}: the vector of the outputs of DMSU r,

• νr ¼ {νi
r}: the vector of weights of the inputs of DMSU r

• μr ¼ {μj
r}: the vector of weights of the outputs of DMSU r.

For an elementary DMU 0 belonging to a set of N homogeneous and independent

DMUs with the same internal structure, the CRS input-oriented version of the

envelopment-based DEA model can be written as:

θ∗0 ¼ min θ0 � ε
X
r

X
i

sr�i þ
X
j

srþj

 ! !
ð15:1aÞ
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X
k

λrkx
r
ik ¼ θ0xri0 � sr�i 8i, r ð15:1bÞ

X
k

λrky
r
jk ¼ yrj0 þ srþj 8j, r ð15:1cÞ

λrk, s
r�
i , srþj � 0 8i, j, k, r ð15:1dÞ

where λrk is the multiplier of DMSU r belonging to DMU k, and sr�i , srþj are the slack

variables.

The dual formulation of (15.1) is the following multiplier-based DEA model:

e∗0 ¼ max
X
j, r

μrj y
r
j0 ð15:2aÞ

X
i, r

νri x
r
i0 ¼ 1 ð15:2bÞ

X
j

μrj y
r
jk �

X
i

νri x
r
ik 8k, r ð15:2cÞ

νri , μ
r
j � ε 8i, j, r: ð15:2dÞ

In Model (15.2) the maximum relative efficiency e∗0 is assessed by comparing

DMU 0 with all the existing subunits. Then, as shown in Yang et al. (2000), Castelli

et al. (2004), and Kao (2009b), e∗0 is equal to the maximum relative efficiency of its

subunits, and DMU 0 is:

• Weakly efficient if and only if there exists at least one of its subunits which is

weakly efficient relative to the corresponding subunits of other DMUs;

• CRS-efficient if and only if each of its subunits is CRS-efficient relative to the

corresponding subunits of other DMUs.

A multiple input and single output elementary configuration is also proposed by

Färe and Primont (1984). Specifically, the authors, relying on the Farrell (1957)

output-based efficiency measure, construct a reference technology for DMUs using

their subunit data. Next, they compare this efficient technology against the refer-

ence frontier of the subunits, i.e., as if the subunits were independent DMUs and not

part of a larger DMU. Kao (2000) generalizes this model for cases of multiple

outputs and multiple inputs.

15.3 Network DEA Models

In this section, we describe DEA models for DMUs that present intermediate flows

between subunits. In this case, the subunits are neither independent nor homoge-

neous. They are interdependent in the sense that part of the output produced by

some of them may be used as an input by other ones. In addition, their
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interdependency leads to their non-homogeneity as they may present different

inputs and/or different outputs.

The basic network DEA models have been introduced by Färe (1991), Färe and

Whittaker (1995) and Färe and Grosskopf (1996b). These models represent DMUs

composed of two consecutive subunits with one intermediate flow: the output from

the first subunit is used as input in the second one. Then, Färe and Grosskopf (2000)

extend these models to consider DMUs made of more subunits (see also the book

by Färe et al. 2007).

Since the above seminal papers, many different models, both envelopment- and

multiplier-based, have appeared in the literature. Here, as an illustrative example,

we provide a CRS envelopment-based (input oriented) model under the assumption

that all DMUs have exactly the same internal structure in terms of DMSUs.

Specifically, we assess the relative efficiency θ∗0 of the whole DMU 0 using the

following notation: for each DMU k, r indicates a generic DMSU of k, then xrik is the
amount of the i-th external input of the DMU entering subunit r, yrjk is the amount of

the j-th final output of the DMU produced by subunit r, and zrtlk is the l-th interme-

diate flow of DMU produced by subunit r and used by subunit t (Fig. 15.2); pred(r)
represents the set of predecessors of subunit r, i.e., the set of subunits which have at
least one output used as input by subunit r, similarly, succ(r) is the set of successors
of subunit r; finally srk are slack variables.

θ∗0 ¼ minθ0 � ε
X
r

X
i

sr�i ð15:3aÞ
X
k

λrkx
r
ik ¼ θ0xri0 � sr�i 8i, r ð15:3bÞ

X
k

λrk
X

t∈predðrÞ
ztrlk ¼

X
t∈predðrÞ

ztrl0 � sr�l 8l, r ð15:3cÞ

X
k

λrk
X

t∈succðrÞ
zrtlk ¼

X
t∈succðrÞ

zrtl0 þ srþl 8l, r ð15:3dÞ

X
k

λrky
r
jk ¼ yrj0 þ srþj 8j, r ð15:3eÞ

sr�i , sr�l , srþl , srþj , λrk � 0 8k, i, j, l, r: ð15:3fÞ

As for standard envelopment-based DEA formulations, model (15.3) considers a

radial measure of efficiency (as ε is a positive non-Archimedean parameter) and is

based upon the definition of the Production Possibility Set (PPS) of DMU 0. Indeed,

provided that θ0 ¼ 1, constraints (15.3b)–(15.3f) describe the PPS of DMU 0 in the

following terms. For each subunit r, constraints (15.3b) and (15.3c) indicate that the
value of each external input flow i or intermediate input flow l cannot be less than
the conic combination of the values of the corresponding input flows of the
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analogous DMSUs r from all the observed DMUs. Similarly, constraints (15.3d)

and (15.3e) indicate that the value of each final output flow j or intermediate output

flow l cannot exceed a conic combination of the values of the corresponding

output flows of the analogous DMSUs r from all the observed DMUs. Model (15.3)

describes a closed (network) process since each subunit either receives only exter-

nal input flows or only intermediate flows and, analogously, it either produces only

final output flows or only intermediate flows. Model (15.3) trivially generalizes the

model proposed by Färe and Whittaker (1995), where the slack variables are

omitted, and implies that the observed DMUs and their DMSUs exhibit constant

returns to scale (CRS) and strong disposability of inputs and outputs (see Färe and

Grosskopf 1996b).

In the rest of the paper, for both CRS and VRS situations we will introduce

envelopment- and multiplier-based DEA models. Differently from the standard

DEA models, the multiplier- and envelopment-based network DEA models are

not, in general, dual of each others (Chen et al. 2010a, 2013b). They represent two

different approaches that may produce different efficiency results. For this reason,

Chen et al. (2010a, 2013b) suggest that envelopment-based network DEA models

should be used for determining the frontier projection for inefficient DMUs.

Differently, multiplier-based network DEA models should be used for determining

the DMSU (called division by the authors) efficiency. In addition, the authors also

point out that, contrary to what it is sometimes suggested, it is not sufficient to add

convexity constraints to an envelopment-based network DEA model or free vari-

ables to a multiplier-based network DEA model to make these models capable of

describing VRS network processes.

15.3.1 Non-radial Measures of Efficiency

Leaving aside the radial measure of efficiency considered in model (15.3), some

authors propose different non-radial measures of efficiency for network DEA

models.

Tone and Tsutsui (2009) introduce a VRS Slack-Based Measure (SBM) of effi-

ciency. Following Pastor et al. (1999) for standard DEA models, this efficiency

measure is a function of the slack variables and is appropriate when we employ

flows, such as labor, materials and capital, that are substitutional and do not change

proportionally. Specifically, Tone andTsutsui (2009) substitute objective (15.3a)with

θ∗0 ¼ min
λ, s

X
r

wr 1� 1

mr

Xmr

i¼1

sr�i
xri0

 !
, ð15:4Þ

where, for each subunit r, wr is a constant parameter that weighs the relative

importance of the subunit and mr is the number of its inputs. Even though

objective (15.4) is adequate only for an input oriented model, Tone and
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Tsutsui (2009) propose analogous measures of efficiencies for output oriented and

non-oriented models. They also introduce a discretionary formulation that is

applied when the DMU 0 under assessment may decide the values of its interme-

diate flows in the light of other DMUs’ intermediate flow values.

In practice, the discretionary formulation requires the substitution of the two sets

of constraints (15.3c) and (15.3d) with constraints

X
k

λrk
X

t∈predðrÞ
ztrlk ¼

X
k

λrk
X

t∈succðrÞ
zrtlk 8l, r: ð15:5Þ

Tone and Tsutsui (2009) finally claim that their approach has the further advantage

that it can be trivially modified to also model CRS processes.

Fukuyama and Weber (2010) introduce the network directional slack-based
measures. In these measures, the values of the slack variables are normalized on

the basis of user defined coefficients. For example, the coefficients xi0
r in objec-

tive (15.4) would be substituted by generic positive coefficients gi
r, being the vector

gx ¼ {gi
r} the desired direction of input contraction. These efficiency measures are

then extended to account also for possible undesirable (or bad) outputs.
In a paper addressing sensitivity analysis in network DEA models, Avkiran

and McCrystal (2012) introduce a Range Adjusted Measure (RAM) of efficiency.

This measure builds upon the one by Cooper et al. (1999) for standard DEAmodels

and, again, it is a function of the values of the slack variables. Then, the authors

compare the results obtained with the application of sensitivity analysis to

envelopment-based RAM network DEA models and to corresponding SBM net-

work DEA models.

15.3.2 Simultaneous Evaluation of DMU and DMSU
Efficiencies

Some authors specifically focus their work on developing models aiming at

evaluating subunit efficiencies and at studying the influence of such values to the

efficiency of the DMU the subunits belong to.

Their research is justified by the following facts. The knowledge of the internal

structure of the observed DMUs allows to determine whether better performances

could be obtained by a DMU that merged the technologies of the most efficient

substructures of the observed DMUs. In addition, the assessment of the efficiency of

each subunit might prevent that in a DMU the inefficiency of some of its DMSUs

may be compensated by the efficiency of others.

Castelli et al. (2001) introduce a DEA-like model to compare non-homogenous

and interdependent subunits belonging to the same DMU. A given subunit rmay be

evaluated according to three different sets: (a) all the subunits homogeneous to it,

(b) all the subunits of the DMU, and (c) with respect to a given output, all the

subunits yielding that output. In this last case, the rationale is that these subunits,
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although not necessarily homogeneous, have a certain degree of commonality

because they can be considered as potential substitutes for each other, as far as

the production of that output is concerned. Thus the interest in comparing them. As

a possible limitation, Lewis and Sexton (2004) point out that this approach may lead

to small reference sets. Castelli et al. (2001) also link the subunits’ and DMU

efficiencies by defining an efficiency value W obtained by maximizing the product

of the efficiency of the subunit under evaluation and the efficiency of the DMU it

belongs to. In this way, subunits not only maximize their own efficiency, but also

positively contribute to the efficiency of the whole system they are part of. Indeed,

the authors prove that a subunit seeking to optimize itsW efficiency behaves with a

benevolent attitude, i.e., being equal to other conditions, it also maximizes a

combination of the efficiencies of the other subunits. In addition, the authors

show that the whole DMU is efficient if and only if all its subunits are W efficient.

Sexton and Lewis (2003) and Lewis and Sexton (2004) explicitly compute the

efficiencies of the subunits using both input and output oriented formulations. Their

basic models can be seen as an adaptation of model (15.3), where the efficiency of

subunit r belonging to DMU 0 is optimized and constraints (15.3b)–(15.3e) are

adequately rewritten. In a simple case of DMUs composed of two subunits S1 and
S2 in series, the authors show that DMU 0 is efficient when its output values are equal

to the output values produced in the case that S2 is efficient and uses the intermediate

product levels that it would have received, had S1 been efficient. Lewis and

Sexton (2004) describe the internal structure of each DMU as an acyclic direct

graph. This graph has a node for each subunit plus one origin and one destination

node. In this case, the authors show that a necessary (but not sufficient) condition for a

whole DMU to be efficient is the existence of a path from origin to destination along

with every subunit is efficient. As a consequence, it is possible that, when considering

the internal structure, all DMUs under evaluation are inefficient. Lewis et al. (2009)

use the model presented in Lewis and Sexton (2004) to assess simultaneously

organizational capability, efficiency, and effectiveness in Major League Baseball.

Kao (2009a) proposes a relational approach (see also Kao and Hwang 2008,

Sect. 15.4.2.1), whose underlying concept is that some relationship exists between

the measure of the overall DMU efficiency and the measure of its DMSUs’ efficien-

cies, for example, a simplemultiplication, as inKao andHwang (2008), or a weighted

average, as in Chen et al. (2009a). The authors’ assumptions imply that the relational

network DEA models, when formulated with a multiplier-based measure of effi-

ciency, are also characterized by the fact that the same flows have associated the same

weights no matter which subunits these flows belong to. In other words, an interme-

diate flow presents the same weight both when is considered as an output flow of a

DMSU and when is considered as an input flow of a different DMSU. In the same

context, Lozano (2011) introduces an envelopment-based relational network

DEA model to asses the technical, scale, cost and allocative efficiency scores of the

DMUs. To this end, he proposes an axiomatic approach to define the PPS of a

DMU through the composition of the PPS of each of the DMUs’ subunits. Then,

Lozano et al. (2013) generalize the previous model to take into account processes

with undesirable outputs and apply this new model to assess airport performances.
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Relying on work by Chen et al. (2010a), Fukuyama and Mirdehghan (2012)

propose a two-phase slacks-based network model to assess the efficiency of a set of

DMUs and their DMSUs. To this aim, the authors first consider an additive

envelopment-based network DEA model that optimizes the slacks of exogenous

inputs and final outputs. Then, they use a linear programming model to assess the

efficiency status of each DMSU.

Most recently, Kao and Chan (2013) have introduced a multi-objective program-

ming method that computes both the overall efficiencies of the DMUs and the

divisional efficiencies of the DMSUs of network DEA models.

15.3.3 DMSU Ownership

Some authors have considered the consequences of having DMSUs of the same

DMU controlled by different agents that may have different agendas (see also the

game theory approach discussed in Sect. 15.4.2.5).

Chang et al. (2011) discuss the importance of taking into account the ownership

of the different DMSUs composing the DMU under assessment. The authors argue

that an agent interested in assessing the efficiency of a DMU cannot include in her

DEA model the external inputs and final outputs of the DMSUs that she does not

own. In fact, these flows are usually unknown to her. Differently, she can assume

the knowledge of the internal flows if they are regulated by contracts between the

different DMSUs. Accordingly, the authors introduce three ownership-specified

(centralized, distributed and hybrid) network DEA models which take into account

the different possibility of ownership of the DMSUs. Similar problems are also

considered by Chen and Yan (2011). These latter authors are motivated by the

necessity of assessing the efficiency of DMUs representing supply chains. As main

result, they prove that a supply chain is weakly efficient only if there exists a path

from the external inputs to the final outputs along which all DMSUs are weakly

efficient. They also show that it is never appropriate to ignore the internal structure

of the supply chain. In fact, standard DEA models may lead to overrate the

efficiency of a supply chain not only when different agents pursuing their own

agenda own the different DMSUs, but also when all the DMSUs are owned by a

single agent and the DMSUs are then centralized controlled.

15.3.4 Applications

Not surprisingly, many network DEA models have been proposed to evaluate the

performances of different processes, applied in particular to the top-five industries

(transportation, banking, agriculture and farm, healthcare, and education) addressed

by the standard DEA literature (Liu et al. 2013a).
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15.3.4.1 Hospitality and Transportation Industries

Hsieh and Lin (2010) apply a relational network model to the tourist hotels in

Taiwan and present a survey on the efficiency assessment in the hospitality indus-

try. In the same context, Zhang and Ma (2011) apply a network DEA model to

assess the business efficiency of Chinese hotel and tourism firms.

Yu (2008a) compares the results obtained through standard DEA and network

DEA models for assessing the performances of 40 global railways in terms of

technical efficiency, service effectiveness, and technical effectiveness. The author

suggests to include the environmental factors as non-discretionary inputs and

underlines how the network DEA model provides deeper insight regarding the

sources of inefficiency. The importance of environmental factors is discussed also

in Yu (2010) where a network DEA model is proposed to deal with both production

and service efficiency in airports.

Sheth et al. (2007) apply network DEA models to the assessment of bus routes

by expanding the Färe and Grosskopf (2000) approach to account for the different

perspectives of operators and users, and for multiple goals. Hahn et al. (2011)

propose a network DEA model to assess the efficiency of Seoul arterial bus routes.

Zhao et al. (2011) assess the efficiency of a transportation system by considering the

perspectives of the different stakeholders, such as transportation service providers,

users, and the community. The authors propose a model that includes undesirable

outputs and where the different perspectives are inter-related through intermediate

flows. Finally, Li (2012) uses a network DEA model to assess the China’s railway

transport industry.

15.3.4.2 Production of Goods or Services

Färe and Whittaker (1995) apply a model similar to model (15.3) to a diary

production problem and compare the result obtained with the ones obtained with

a standard DEA model. The former model turns out to have greater discrimination

power: only 23 % of the DMUs are on the efficiency frontier compared to 65 %

when intermediate flows are not explicitly taken into account.

Liu et al. (2012) introduce a network DEA model to assess non-profit farmers

associations in Taiwan. Lin and Chiu (2013) and Matthews (2013) propose SBM

network DEA models (see Sect. 15.3.1) to improve Taiwan bank performance

evaluation and assess Chinese bank income efficiency, respectively. Mat-

thews (2013) uses metrics of risk management practice and risk management

organization as intermediate inputs. Vaz et al. (2010) exploit a network DEA

model to assess the performances of retail stores, and Lee and Johnson (2012) use

a relational network model (see Sect. 15.3.2) to decompose the efficiency of

profitability for a general production system.

Löthgren and Tambour (1999) estimate efficiency and productivity for a sample of

Swedish pharmacies taking also into account customer satisfaction. The pharmacy

technology is represented by a production and a consumption node. The production
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node yields (final) outputs (e.g., outpatient prescriptions) and also produces

nonmarketable characteristics and attributes (e.g., the service level) that are consid-

ered as intermediate inputs of the consumption node. Together with external inputs

(e.g., customer-service labor hours) the consumption node provides customer quality

assessments on pharmacy service.

Chilingerian and Sherman (2004) study network DEA applications to health care

systems.

15.3.4.3 Governmental Entities

Prieto and Zofio (2007) employ the network DEA model introduced by Färe and

Grosskopf (2000) to assess the economies of a set of countries belonging to the

Organisation for Economic Co-operation and Development with the aim of identi-

fying best practices. Each national economy is described in terms of a network

where different nodes use primary inputs to produce intermediate input and outputs,

and satisfy final demand. Each node represents a basic economic sector, such as

agriculture, manufacturing, construction, and services.

Guan and Chen (2010, 2012) and Chen and Guan (2012) apply network DEA to

measure the efficiency of China’s regional innovation systems, whereas Amatatsu

et al. (2012) assess efficiency and returns-to-scale of Japanese local governments.

15.4 Multi-stage Network DEA Models

In this section, we introduce a particular type of network DEAmodels that thanks to

their simple structure and wide applicability have been extensively studied in the

past years. Specifically, we consider the two-stage, or in general multi-stage,

network DEA models. Such models assume that each DMU is composed of two,

or in general more, consecutive stages, each one being a single DMSU or a set of

parallel DMSUs (Fig. 15.3). For example, the very first network DEA models by

Inputs

DMSU A

Outputs

Intermediate
flows

DMSU B

DMSU C

DMSU D

DMU

Stage 1 Stage 2

Fig. 15.3 Two-stage DMU
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Färe (1991), Färe and Whittaker (1995) and Färe and Grosskopf (1996b) introduced

in Sect. 15.3 are two-stage models. Multi-stage models are obviously used for the

efficiency evaluation of multi-stage processes but they are also studied because they

can model the evolution of processes over time. In this latter case the multi-stage

models are referred to as dynamic network models and each stage represents the

same DMU at different times (see Sect. 15.4.4).

Seiford and Zhu (1999) are among the first authors to deal with multi-stage

processes. They consider each stage and the whole DMU as independent and

evaluate the efficiencies of these structures using conventional DEA models.

Differently, most of the papers that we analyze in this section take into account

some form of interaction between consecutive stages, as it is usually done in

network DEA models. In this context, Cook et al. (2010a) and Agrell and

Hatami-Marbini (2013) propose two interesting surveys on the multi-stage network

literature, respectively considering a game theoretic and a supply chain manage-

ment perspective. Some alternative DEA models for two-stage process are also

surveyed in Wang and Chin (2010).

As an illustrative example, we provide a general model for a two-stage process

where each stage is made in turn of parallel DMSUs (see Fig. 15.3). To this aim, we

extend the notation used in model (15.3). For each DMU k, x f
ik is the amount of

the i-th input of the DMU entering subunit f in the first stage; ysjk is the amount of the

j-th output of the DMU produced by subunit s in the second stage; zflk is the amount

of the l-th intermediate flow of the DMU output of the subunit f of the first stage;

whereas z flk is the amount of the same flow input of the subunit s of the

second stage; finally, z fslk is the amount of flow l of subunit f that feeds subunit s,

with ∑sz
fs
lk ¼ z fhk.

We define the efficiency of DMU 0 as

e∗0 ¼

X
j

X
s

μjsy
s
j0

X
i

X
f

νif x
f
i0

: ð15:6Þ

Then a possible multiplier-based two-stage (input oriented) DEA model that

assesses the relative efficiency of DMU 0 is

e∗0 ¼ max
X
j

X
s

μjsy
s
j0 ð15:7aÞ

X
i

X
f

νif x
f
i0 ¼ 1 ð15:7bÞ

X
l

υlf z
f
lk �

X
i

νif x
f
ik 8k, f ð15:7cÞ
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X
j

μjsy
s
jk �

X
l

ηhlz
s
lk 8k, s ð15:7dÞ

Gðυlf , z flk, ηls, zslkÞ � 0 8k, l, f , s ð15:7eÞ

μjs, νif , υlf , ηls � ε 8i, j, l, f , s ð15:7fÞ

where conditions (15.7e) represent a set of constraints that link the output flows of

the subunits of the first stage with the input flows of the subunits of the second stage.

Note that the above formulation, as well as formulation (15.3) for general network

structured DMUs, applies to closed processes.

15.4.1 Balancing Intermediate Flows

Castelli et al. (2004) consider two-stage processes where each second stage DMSU

receives as input only intermediate flows and discuss two different kinds of

constraints (15.7e): virtual weights balancing constraints and flow balancing
constraints.

In the former case, the overall perceived values of the intermediate flows are

balanced, i.e., virtual weights of the input flows of the second stage are equal to

virtual weights of the feeding flows:

ηlsz
s
lk ¼

X
f

υlf z
fs
lk 8k, l, s:

Under this assumption, the authors prove that the relative efficiency of the DMU

under evaluation is equal to the product of the maximum relative efficiency of each

single stage calculated according to model (15.2).

In the latter case, not only the perceived values but also the flows themselves are

balanced:

ηls ¼ υlf 8k, l, f , s and zslk ¼
X
f

zfslk 8k, l, s:

Under this second assumption, the authors prove that the relative efficiency of a

DMU is assessed by comparing it with each observed DMUs together with all

DMUs that could be obtained by composing their two stages with any possible

combination of the subunits of the observed DMUs. Castelli et al. (2004) finally

point out that the flow balancing constraints model can also be derived as dual of

model (15.3) when specialized to a two-stage process, and claim that their results

could be generalized to second stage DMSUs with multiple inputs.
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15.4.2 Extensions

15.4.2.1 Relational Models

Kao and Hwang (2008) customize model (15.7) to multi-stage processes such that

each stage includes a single DMSU, and each DMSU may have multiple inputs.

In particular, in Kao and Hwang (2008) the relational approach (see Sect. 15.3.2) is

introduced for the first time in the context of two-stage network DEA. In their

paper, the authors also discuss possible solutions for dealing with multiple optimal

weights. For instance, the authors suggest to choose as optimal the weights that

maximize the efficiency of the first stage while maintaining the overall efficiency

score of the DMU. Subsequently, Kao (2009a) extends the relational model in Kao

and Hwang (2008) to series-parallel networks by utilizing dummy DMSUs such

that a DMU structured as a network of DMSUs can be represented by a multi-stage

structure where each stage can be composed of a set of parallel DMSUs. Here again,

the flow balancing constraints are imposed and the same flow has the same weight

all over the network, no matter if it is used as an input or as an output. Kao and

Hwang (2010) apply the relational network model to assess information technology

on firm performance in a banking industry.

Differently from Kao and Hwang (2008), which assess DMU and DMSU

efficiencies of a two-stage DEA model in two separate and consecutive steps,

Liu (2011) explains, in a short note, how to assess such efficiencies simulta-

neously. Liu and Lu (2012) introduce a network-based method for ranking of

efficient units in two-stage DEA models. Specifically, each DMU is a node in a

network and is linked with its peers. Links are weighted on the basis of the peer

importance. Efficient DMUs are then ranked on the basis of their centrality in such

a network.

Chen and Zhu (2004) propose a DEA framework that considers a two-stage

process as efficient when each stage is efficient. Chen et al. (2009b) prove the

equivalence between the CRS version of the Chen and Zhu (2004) model and

the Kao and Hwang (2008) model. In this context, the interested reader is also

referred to the survey by Agrell and Hatami-Marbini (2013). This paper consider

the different two-stage models presented in the literature and points out which of

them provides the equivalent results.

15.4.2.2 Variable Returns to Scale and Additive Measures of Efficiency

Chen et al. (2009a) observe that the multi-stage model by Kao and Hwang (2008)

is applicable to CRS only. Indeed, it assesses the efficiency of the overall

process as the product of the efficiencies of the different stages (i.e., the

geometric mean of stage efficiencies). As an example, in the specific case of a

two-stage process composed of a single DMSU f in the first stage and a single
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DMSU s in the second stage, holding flow balancing constraints, the DMU

efficiency (15.6) is:

e∗0 ¼

X
j

μjsy
s
j0

X
i

νif x
f
i0

¼

X
j

μjsy
s
j0

X
l

υlszsl0
�

X
l

υlszsl0
X
i

νif x
f
i0

: ð15:8Þ

To extend the two-stage models to VRS, Chen et al. (2009a), within the same

relational model framework, measure the efficiency of the overall process as a

weighted sum of the efficiencies of the two stages:

e∗0 ¼ ws

X
j

μjsy
s
j0þωs

X
l

υlszsl0
þ wf

X
l

υlszsl0þω f

X
i

νif x
f
i0

, ð15:9Þ

where ws and wf are user-specified weights such that ws þ wf ¼ 1 and the terms ω f

and ωs, free variables, express the scale efficiencies of the first and second stage,

respectively. As pointed out by Cook et al. (2010b), Eq. (15.9) evaluates the overall

performance of the network also in terms of the performances of the individual

DMSUs.

Chen et al. (2009a) also show that efficiency measure (15.9) cannot be linearized

in the same way efficiency measure (15.6) is turned into Eqs. (15.7a) and (15.7b),

unless weights ws and wf are chosen to be proportional to the “sizes” of each stage,

in terms of total resources devoted to each stage, that is,

ws ¼

X
l

υlszsl0
X
i

νif x
f
i0 þ

X
l

υlszsl0
, wf ¼

X
i

νif x
f
i0

X
i

νif x
f
i0 þ

X
l

υlszsl0
: ð15:10Þ

In a subsequent study, Chen et al. (2010a) point out that, differently from the

standard DEA models, the multiplier and envelopment-based two-stage DEA

models are not, in general, dual of each others, but represent two different

approaches that provide different information and may produce different efficiency

results (see also Chen et al. (2013b) in Sect. 15.3). Specifically, the authors show

how some two-stage models in the literature may fail to provide the complete

information on how to project inefficient DMUs on to the DEA frontier. Then, they

develop two-stage models capable of determining these DEA frontier projections

for inefficient DMUs at least in the CRS case. Finally, they indicate that further

study is then needed to develop models capable of determining the DEA frontier

projections for VRS inefficient DMUs since even their own previous model
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(Chen et al. 2009a), which assesses correctly both the overall DMU efficiency and

the efficiency of each stage, is not sufficient to yield these projections.

Chiou and Lan (2007) address two-stage VRS models, too. They propose an

additive measure of efficiency equal to the one proposed in (15.9) when

ws ¼ wf ¼ 1. They use this measure to asses both efficiency and effectiveness

of a transportation system. In Chiou et al. (2010), the same authors discuss in

detail the properties of their two-stage VRS model, that they call integrated DEA

model, and generalize their efficiency measure to obtain exactly (15.9), where ws

and wf are arbitrarily fixed. Differently form Chen et al. (2009a), these authors do

not linearize their model but claim the existence and the uniqueness of optimal

weights μjs, υls, νif, ω
f and ωs. Unfortunately, Lim and Zhu (2013) show that such

a conclusion is a false statement. They also show how the two-stage DEA model

proposed in Chiou and Lan (2007) can be transformed into a parametric linear

program.

Finally, Kao and Hwang (2011) propose a multiplier-based relational VRS

two-stage model. By solving both an output-oriented and input-oriented model,

the authors are able to separate the technical and the scale efficiencies of

the DMUs.

15.4.2.3 Open Multi-stage Processes

Cook et al. (2010b) introduce multi-stage DEA models for open serial processes,

i.e., where some outputs from a given stage may leave the system while new inputs

can enter at any stage. As in Chen et al. (2009a), the authors represent the overall

efficiency as an additive weighted average of the efficiencies of the DMSUs. These

results are also applied to general series-parallel network structures. Open multi-

stage processes are considered also by Golany et al. (2006). These latter authors

assume that each stage is governed by a different manager that will not agree to

“vertical integration” initiatives unless higher efficiency (with respect to separately

applying conventional DEA) is achieved. For this reason these authors propose a

measure that identifies a Pareto optimal point for the efficiency values of the

DMSUs that compose their system. As multiple Pareto optimal point may exist,

they discuss the properties of three different possible ways of choosing the Pareto

efficient point of interest.

15.4.2.4 Unoriented Models

Holod and Lewis (2011) present a two-stage DEA unoriented model, i.e., a DEA

model that seeks to simultaneously decrease input levels and increase output

levels (the interested reader is referred to Färe et al. (2002) for standard hyper-

bolic/unoriented DEA models). The authors use this model to assess bank effi-

ciency and address what they call the DEA literature “deposit dilemma”, that is,
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the lack of agreement on whether deposits should be considered as an input or an

output. The authors solve this dilemma by representing deposits as intermediate

flows in a two-stage unoriented DEAmodel. A similar model is also introduced by

Lewis et al. (2013), who show how to solve it through an iterative algorithm that

alternates between an input-oriented push backward step and an output-oriented

push forward step. The same authors are currently working on a general network

DEA unoriented model (Mallikarjun et al., 2014)

Yu and Chen (2011) use also a similar measure of efficiency to assess the air

routes performance of an airline in Taiwan. In their paper, the authors initially

present an interesting discussion on the definition of the performances of airlines

in term of production efficiency, service effectiveness and operational effective-

ness and a critical analysis of their own previous works. Then, they compare the

results obtained through their model with the ones yielded by a corresponding

multi-stage DEA model proposed by Chiou and Chen (2006), even though

Lin (2008) identifies in this last paper some methodological and terminological

inaccuracies.

15.4.2.5 Game Theoretic Perspective

The assessment of two-stage processes has been studied also relying on game

theory. In particular, Liang et al. (2006) compare a leader-follower and a cooper-

ative relationship between DMSUs of a supply chain. Liang et al. (2008) show that

in a cooperative contest, when different intermediate flows between the two stages

are present, then multiple efficiency values for the two stages may emerge. Differ-

ently, in a non-cooperative context a two-stage network DEA model just produces

the same results as applying a standard DEA model to the two stages consecutively.

Li et al. (2012) generalize the result proposed in Liang et al. (2008) by also allowing

external inputs to the second stage. Chen et al. (2006) propose a DEA game model

in a two-stage supply chain and prove the existence of numerous Nash equilibria

efficiency points for the DMSUs.

As already pointed out, recently Cook et al. (2010a) have published an interest-

ing survey that analyzes the DEA models used to assess the efficiency of two-stage

processes from a game theoretic perspective. The authors categorize this literature

using either Stackelberg (leader-follower) or cooperative game concepts. In this

framework, only the multi-stage processes referring to cooperative game or, equiv-

alently, to centralized control concepts have their overall efficiencies assessed

through network models like model (15.7) or its variations. Differently, the pro-

cesses referring to leader-follower concepts have the efficiency of their two stages

assessed through two separated non-network DEA models. In this work, Cook

et al. (2010a) also point out the equivalence of different two-stage DEA models

available in the literature.

Zha et al. (2008) propose a two-stage VRS DEA model where the measure of

the overall efficiency is given by the geometric mean of the efficiencies of the

two-stages. Specifically, the efficiency of the first stage is evaluated with the
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input-oriented VRS model and the second stage with the output-oriented VRS

model. Then, the overall efficiency is evaluated in a cooperative manner. In the

same context, Zha and Liang (2010) introduce a two-stage DEA model with shared

inputs to be allocated among the two stages (see also Sect. 15.5). Again, the

efficiency measure is in the product-form and the process overall efficiency is

assessed assuming that the two stages participate in a cooperative game. Also

Wu (2010) considers a two-stage DEA model where stages share some inputs.

Here the author assumes that there exists a Stackelberg-game relationship between

the two stages and proposes a bilevel programming DEA model, which is solved

using a branch and bound algorithm. Wu (2010) provides as case studies the

application of his model to a banking chain and a manufacturing supply chain.

15.4.2.6 Processes with Feedback

Liang et al. (2011) consider two-stage processes with feedback, that is, processes in

which some of the final outputs of the second stage become inputs of the first stage.

In this context, the authors propose two multiplier-based network DEAmodels. The

first (and simpler) one aims at maximizing the average efficiency of the two

individual stages. The second model instead ranks the two stages in accordance

with their relative importance and is formulated as a bilevel model. In both cases,

the authors assume that the weights applied to the intermediate and feedback flows

are the same for both stages. In addition, they assume that the weights of the

intermediate and feedback flows are fixed when they play the role of outputs of

the associated stage. This latter assumption is important in the second model, which

maximizes the efficiency of the first stage and let the efficiency of the second stage

depend on the first stage’s one. In fact, the efficiency of the first stage depends in

turn on the value of the weights of the feedback flows, which are fixed when the

efficiency of the second stage is assessed. Both models are nonlinear, but their

nonlinearity is only due to one or two variables, respectively. Hence, they can be

practically solved by iteratively and tentatively assigning values to such few

variables.

15.4.3 Applications

Besides some exceptions as in Wei and Chang (2011) who face the problem of

designing an efficient multi-stage process (the authors propose a DEA approach to

support the optimal design of DMU external input, intermediate flow and final

output portfolios), in most cases DEA models are used to assess the efficiency of

existing processes. This section illustrates several applications of two-stage DEA

models.
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15.4.3.1 Banking Sector

Avkiran (2009) employs a two-stages DEA model to assess United Arab Emirates

(UAE) banks using a slacks-based inefficiency measure. Similarly, Paradi

et al. (2011) introduce a SBM two-stage DEA model to study the performance of

banks when bad outputs are present. Bad outputs are also considered by Fukuyama

and Weber (2010) that introduce a two-stage model to study Japanese banks’

performances. This last model accounts for slacks in the input and output con-

straints defining the technology, and allows inefficiency to be measured with

non-radial contractions in inputs and expansions in outputs, even when slack does

not exist. This model is also applied by Fukuyama and Matousek (2011) to assess

the efficiency of Turkish bank system. Akther et al. (2013) introduce bad outputs

while assessing 19 Bangladesh banks and use a slacks-based inefficiency measure

within a two-stages DEA model. Huang et al. (2009) assess the efficiency of

Chinese banks with a relational two-stage model. Yang and Liu (2012) prove, by

integrating a two-stage DEA model and a fuzzy multiobjective model, that in

Taiwan mixed ownership banks are more efficient than the fully state-owned

ones. Grigoroudis et al. (2013) present a three-stage DEA model to assess banks

in terms of satisfaction, employee appraisal, and business performance. Their paper

is also a good introduction to the literature that links operating efficiency and

quality of service in the bank sector. Wu and Birge (2012) introduce what they

call a two-stage serial-chain merger DEA model to evaluate mortgage banking

operations. Premachandra et al. (2012) apply a two-stage model to assess the

performance of mutual funds.

15.4.3.2 Production Processes and Supply Chains

Liu and Wang (2009) use a two-stage relational DEA model to assess the efficiency

of printed circuit board industry in Taiwan. Lee and Johnson (2011) use a multi-

stage DEA model to represent the production processes in the semiconductor

manufacturing industry. Saranga and Moser (2010) apply what they call classical

two-stage Value Chain DEA models to assess the performances of purchasing and

supply management activities. Yang et al. (2011) propose a envelopment-based

multi-stage DEA model for assessing the performances of supply chains. These

authors state the novelty of their model affirming that, even though there is a rich

literature on DEA models for supply chains, the exact definition for supply chain

production possibility set is still unclear. For this reason, the authors propose two

possible types of supply chain production possibility sets that then they prove

equivalent. Mirhedayatian et al. (2013) propose a model for assessing “green”

supply chains. Chen et al. (2012a) use two-stage DEA model for evaluating

sustainable product design performances. They propose both centralized and

decentralized models as in Chen and Yan (2011) to analyze the simultaneous,

proactive, and reactive approaches adopted by firms for sustainable design.
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Bai-Chen et al. (2012) apply a two-stage model to assess both economic benefits

and carbon emissions of China’s power plants. The author call their model

“environmental” network DEAmodel as it takes into account environmental factors

as non-discretionary inputs.

Cao and Yang (2011) measure the performance of Internet companies, whereas

Asai (2011) employs a two-stages DEA model to assess Japanese broadcasters.

15.4.3.3 Transportation

Lu et al. (2012) use a two-stage additive DEA model based on the works of Chen

et al. (2009a) and of Cook et al. (2010b) to assess the production and marketing

efficiency of airline industry. The authors show that low-cost carriers, on average,

are more efficient than the full-services ones from a production perspective, but

they are less efficient marketers.

Chang and Yu (2012) also deal with low-cost carriers. Specifically, the authors

use a SBM two-stage DEA model to assess production and consumption efficien-

cies. Yu (2010) adopt a SBM efficiency measure to model an open process and

assess both production and service efficiency in airports. In this work, the author

points out that environmental factors have an important influence in the perfor-

mances of transportation systems and hence they must be taken into consideration

even if that are beyond managerial control. For these reasons, on one side he models

these factors as quasi-fixed/non-discretionary inputs; on the other side, he associ-

ates no slack variable to them and consequently he does not include them in the

SBM efficiency.

Zhu (2011) applies the centralized model by Liang et al. (2008) to asses the

efficiency of a set of airlines. Wanke (2013a) (respectively Wanke (2013b)) applies

an analogous model to assess the physical infrastructure and flight (respectively

shipment and consolidation) efficiency drivers in Brazilian airports (respectively

ports). Adler et al. (2013) use a two-stage DEA model for benchmarking airports

taking into account of both terminal and airside activities. These last authors point

out how previous benchmarking studies based on standard DEA models may arrive

to opposing conclusions, whereas a network DEA structure provide more mean-

ingful benchmarks with comparable peer units and target values that are achievable

in the medium term. To reach such results, the authors apply a dynamic clustering

approach (Golany and Thore 1997) that, for each DMU0, restricts the set of possible

peers to include only DMUs with similar mixes of flows. The rationale of this

choice is to set a target for an inefficient DMU0 which is accessible in the short to

medium term.

15.4.3.4 Sports

Moreno and Lozano (2012) introduce an interesting survey of DEA models to

analyze sport performances and then compare the results of a standard DEA
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model with a generalized two-stage one to assess the efficiency of NBA teams.

In both models they use SBM efficiency (Tone and Tsutsui 2009). The authors

finally conclude that the two-stage DEA model has more discriminating power and

provides more insight than the standard one.

15.4.4 Dynamic Networks

Dynamic networks DEA models are multi-stage models that describe the evolution

of processes over time. A recent survey of this network DEA literature sub-area can

be found in Fallah-Fini et al. (2013) which review all the literature (including non

DEA works) on non-parametric dynamic efficiency measurement.

In the basic version of these models, each stage represents the same DMU, as a

black box, at different times. Färe and Grosskopf (2000) consider the same pro-

duction process in two successive periods/DMSUs with period-specific inputs and

outputs. Some of the outputs produced in the first period, that is by the first DMSU,

are used as inputs in the second period, that is by the second DMSU (see also Färe

and Grosskopf 1996a). The authors model these time-intermediate products as

intermediate flows of a (dynamic) network DEA model and, hence, they may

evaluate the relative efficiency of the involved process using Model (15.3). An

illustration of this kind of dynamic network DEA models can be found in Bogetoft

et al. (2009). Another basic dynamic network DEA model is introduced by Troutt

et al. (2001) who, strangely enough, do not present appropriate bibliography except

for two seminal papers on standard DEA.

Nemoto and Goto (1999) use a dynamic network DEA model to describe the

intertemporal behavior of a firm. The authors identify the intertemporal efficient

cost frontier using an envelopment-based network DEA model. Their model

includes both discretionary and quasi-fixed inputs. Discretionary inputs are

period-specific, whereas quasi-fixed inputs are the only time-intermediate flows.

Both kinds of inputs are assumed variable (instead of, e.g., being considered

constant and possibly multiplied by variable scaling factors θ, as it is customary

in standard DEA input oriented models) and a linear combination of them is

minimized. In a subsequent work, Nemoto and Goto (2003) apply this model to

Japanese electric utilities to show how to evaluate the efficiencies of quasi-fixed

inputs and describe their adjustment processes. Sueyoshi and Sekitani (2005)

propose the VRS formulation of the this model. Later, also Von Geymueller (2009)

applies a variation of this model to assess the efficiency of electricity transmission

operations.

Tone and Tsutsui (2010) introduce the slacks-based version of the above net-

work dynamic model. In addition, the authors indicate how to deal with both

discretionary and non-discretionary intermediate flows, and point out that these

flows must be dealt with differently depending on their desirability. Earnings

carried forward are a possible example of desirable intermediate flows; on the

contrary, losses carried forward are a possible example of undesirable ones.
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Kao (2012) proposes a relational approach for dynamic multi-stage processes

and underlines that the previous methods described the literature for calculating the

efficiency of these processes may produce over-estimated scores if their dynamic

nature is disregarded.

In more complex dynamic models, each stage represents again the same DMU at

different times, but now this DMU in turn models a multi-stage process.

Chen (2009) introduces such a dynamic network DEA model to represent a

production network. Let DMSUk
r be the generic r-th DMSU of the k-th DMU.

The author defines a (dynamic) network, the nodes of which are the subunits

DMSUr
k at the different times t. Then, he assumes that, at each time t, only a

fraction of the intermediate output flow of DMSUk
r is received immediately as

intermediate input flow by the successive DMSUk
ðrþ1Þ. The complementary fraction

of the intermediate output flow is stored and received by DMSUk
ðrþ1Þ in successive

times, possibly with some losses if this intermediate flow consists of a perishable

material. Tone and Tsutsui (2014) extend these kind of dynamic network DEA

models to situations in which SBM efficiency is taken into consideration and the

DMUs observed over time model general network process.

Finally, other authors (see, e.g., Chen and van Dalen 2010; Emrouznejad and

Thanassoulis 2005; Sengupta 1995) consider dynamic DEA models in order to take

into account input flows received at a time period t, e.g., capital, that may have a

productive effect not only in the same time period t but also over future time

periods. These models, however, usually do not consider time-intermediate flows

between DMSUs. As an example, Chen and van Dalen (2010) propose an

envelopment-based dynamic DEA model assuming that the input received at a

time period tmay have a productive effect not only in the same time period but also

over a given time horizon of, say, length g. On the basis of this observation, for each
time period t, they assess the process performances using an efficiency measure

that considers the input flow xt and a value ~y t function of the output flows, for

r ¼ 0, . . ., g, produced between t and t + g.

15.5 Shared Flow DEA Models

In this section, we deal with DEAmodels for DMUs that include DMSUs that either

share some of their inputs or their outputs. These models assume that the total

amount of each input (or output) flow entering (or exiting) the whole DMU is

known and a-priori fixed, as it is customary in standard DEA models. However,

they also assume that the amount of shared flow allocated to each subunits may be

considered as a decision variable to be used to maximize the DMU efficiencies

(see Fig. 15.4). Even in this case, the subunits of the DMUs cannot be considered

independent since they compete for the allocation of the flows that they share.

Beasley (1995) introduces one of the first examples of a shared flow DEA model,

even if it was not originally referred to as such. The model is applied to departments
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of different universities devoted to the same disciplines. The departments are

homogeneous and independent DMUs. Within each of them, the teaching and

research activities clearly define two different separable functions. One of the

DMU inputs, research income, is specifically dedicated to the research function.

The other DMU inputs, general and equipment expenditure, are shared (joined)
between the two functions. DMU outputs are split, i.e., no shared outputs exist:

the number of undergraduates and of taught postgraduates are outputs of the

teaching function; the number of research postgraduates, research income, and

research rating are outputs of the research function. Kao and Lin (2012) extend

this application to the situation in which some input/output data are fuzzy numbers.

15.5.1 Formulation of Shared Flow DEA Models

Referring to r as the generic component of DMU k, now vectors Xk
r, Yk

r, νr, and μr

introduced in Sect. 15.2 are defined as the vectors of dedicated inputs, dedicated

outputs, weights of the dedicated inputs, and weights of dedicated outputs of

component r, respectively. In addition, we define

• Xk
S ¼ {xSik}: the vector of shared inputs,

• Yk
S ¼ {ySjk}: the vector of shared outputs,

• νS ¼ {νi
S}: the vector of weights of shared inputs,

Shared
input

DMSU A

DMU

Dedicated
inputs

Shared
output

Dedicated
outputs

DMSU B

DMSU C

DMSU D

xS

xB

xC

xD

αBxS

αAxS

αA + αB = 1; αA, αB unknown

βB + βC = 1; βB, βc unknown

yA

yS

yB

yD

βCyS

βByS

Fig. 15.4 A shared flow DMU: DMSUs A and B are not independent because they compete for

the same shared resource. Similarly DMSUs B and C are not independent because of the shared

output. DMSU D is independent of DMSUs A, B and C
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• μS ¼ {μj
S}: the vector of weights of shared outputs,

• αr ¼ {αi
r}: the vector of proportions of the shared inputs allocated to

component r,
• βr ¼ {βj

r}: the vector of proportions of the shared outputs attributed to

component r.

With a little abuse of notation we also define αrXk
S as the column vector whose

generic entry is αi
rxSik. In this context, αi

rxSik is the amount of shared input i allocated
to component r by DMU k to maximize its efficiency.When a shared input cannot be

clearly divided among functions (e.g., general expenditure), then αi
r can be seen as

the proportion of the (virtual) value of the input i allotted to component r. Similarly,

we define βrYSk as the column vector whose generic entry is βj
rySjk where βj

r is always

seen as the proportion of the (virtual) value of output j that can be attributed to

component r because it is assumed that no component can produce a shared output

by itself but needs synergy with other components. As an example, the quality of

service level provided by an organization to its customers depends on the degree of

collaboration and integration among its subdivisions, each of them sharing with

other subunits the responsibility for such output. When outputs common to different

components are produced without the need of synergy among them, the literature

refers to them as overlapping outputs (see Sect. 15.5.2.5 for details).

15.5.1.1 Primal Formulation

Consider, for the sake of simplicity, the case when shared outputs are not present.

The efficiency of DMU k is expressed as

ek ¼

X
r

μrYr
k

X
r

νrXr
k þ

X
r

νSðαrXS
kÞ
,

the partial efficiency of the single component r is defined as

erk ¼
μrYr

k

νrXr
kþνSðαrXS

kÞ
,

and the aggregate efficiency êk ¼
X
r

qrke
r
k as the weighted combination of the

partial efficiencies of its components, where the weight qrk of each component r is

qrk ¼
νrXr

kþνSðαrXS
kÞX

p

νpXp
k þ

X
p

νSðαpXS
kÞ
:
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Hence qrk is the fraction of DMU k total weighted inputs that are consumed by

component r: ∑rqk
r ¼ 1 8k. Also Yang et al. (2000) introduced the concept of

partial efficiency measures but they applied it on an elementary model (see Sect.

15.2). The general model proposed by Beasley (1995) is

e∗0 ¼ maxe0 ð15:11aÞ
erk � 1 8k, r ð15:11bÞX
r

αri ¼ 1 8i ð15:11cÞ

νri , ν
S
i , α

r
i , μ

r
j � ε 8i, j, r: ð15:11dÞ

Condition (15.11b) imposes that the partial efficiency of each DMU component

cannot exceed 1. Beasley (1995) proves that when each DMU is free to allocate the

value of the shared inputs among its different components, the aggregate efficiency

êk and the efficiency ek are coincident when maximized.

As for the standard DEA formulations, model (15.11) can be rewritten as follows

e∗0 ¼ max
X
r

μrYr
0 ð15:12aÞ

X
r

νrXr
0 þ

X
r

νSðαrXS
0Þ ¼ 1 ð15:12bÞ

μrYr
k� νrXr

kþνSðαrXS
kÞ 8k, r ð15:12cÞ

X
r

αri ¼ 1 8i ð15:12dÞ

νri , ν
S
i , α

r
i , μ

r
j � ε 8i, j, r: ð15:12eÞ

Model (15.12) is not linear because of inequalities (15.12b) and (15.12c). When no

shared inputs exist, model (15.12) easily reduces to the elementary model (15.2) as

XS
k ¼ 0 8k. Hence the terms ∑rν

S(αrXS
0) in constraint (15.12b) and νS(αrXS

k) in

constraint (15.12c), and constraint (15.12d) are no longer necessary.

15.5.1.2 Dual Formulation

Mar Molinero (1996) and Mar Molinero and Tsai (1997) propose an approach dual

to model (15.11). In addition, the authors include shared outputs, i.e., outputs
yielded synergically by two or more components. Their output oriented model for

what they call a multi-activity process is

e∗0 ¼ max
X
r

qr0θ
r
0 þ ε

X
i

sS�i þ
X
r

sr�i

 !
þ
X
j

sSþj þ
X
r

srþj

 ! !
ð15:13aÞ
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X
k

λrkx
r
ik ¼ xri0 � sr�i 8i, r ð15:13bÞ

X
k

X
r

λrkðαri xSikÞ ¼ xSi0 � sS�i 8i ð15:13cÞ
X
k

λrky
r
jk ¼ θr0y

r
j0 þ srþj 8j, r ð15:13dÞ

X
k

X
r

λrkðβrj ySjkÞ ¼
X
r

θr0ðβrj ySj0Þ þ sSþj 8j ð15:13eÞ
X
r

αri ¼ 1 8i ð15:13fÞ
X
r

βrj ¼ 1 8j ð15:13gÞ
X
r

qr0 ¼ 1 ð15:13hÞ

λrk, q
r
0, α

r
i , β

r
j , s

r�
i , sS�i , srþj , sSþj � 0 8i, j, r, k: ð15:13iÞ

where qr0 are positive weights representing the relative importance of each

component r for DMU 0, and θr0 are measures of the inefficiencies of the compo-

nents of DMU 0. Actually, θr0 are the reciprocals of the distance functions defined
by Shephard (1970). Note that in the models proposed by Mar Molinero (1996) and

Mar Molinero and Tsai (1997) the slack variables sr�i , sS�i , srþj , sSþj are not present.

Here they are imposed for coherence with the standard DEA dual models (see,

e.g., Cooper et al. 2000).

When the values αi
r, βj

r, and qr0 are not decision variables but are fixed, still

satisfying conditions (15.13f), (15.13g) and (15.13i), the dual of model (15.13) is

e∗0 ¼ min
X
r

νrX
r

0
þ
X
r

νSðαrXS
0Þ ð15:14aÞ

μrYr
0þμSðβrYS

0Þ ¼ qr0 8r ð15:14bÞ

μrYr
kþμSðβrYS

kÞ� νrXr
kþνSðαrXS

kÞ 8k, r ð15:14cÞ

νri , ν
S
i , μ

r
j , μ

S
j � ε 8i, j, r: ð15:14dÞ

The above model parallels the output oriented version of model (15.12) when

shared outputs are considered. Besides model (15.14) being linear, the main

difference between the two models is the presence of the multiple constraints

(15.14b) instead of the single one
P
r
μrYr

0 þ
P
r
μSðβrYS

0Þ ¼ 1. This latter constraint

is a relaxation of the former ones because ∑rq
r
0 ¼ 1. Conditions (15.14b) state a
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precise relationship between the relative importance attributed to a component and

the optimal amount of outputs allocated to it (respectively, the optimal amount of

allocated inputs if an input oriented model is considered). Then, conditions (15.14b)

justify the choice in Beasley (1995) of expressing the weight qrk of the component

r in the aggregated efficiency as equal to the fraction of DMU k total weighted

inputs that are consumed by component r. Without conditions (15.14b), such a

choice might appear arbitrary, although reasonable.

15.5.2 Extensions

Many authors have extended models (15.12) and (15.13). Common features of the

different variants are that the aggregate efficiency of a DMU cannot exceed unity,

and that a DMU is efficient if and only if it is efficient in all its components. In this

section, we describe the peculiarity of each available modeling advance.

15.5.2.1 Weight Restrictions

Beasley (1995) himself does not present model (15.11), but he incorporates the

additional constraints

ðνS,νr,8rÞ∈Ωin ð15:15Þ
ðμr,8rÞ∈Ωout ð15:16Þ

where the sets Ωin and Ωout are assurance regions as defined in Thompson

et al. (1990). Constraints (15.15) and (15.16) involve value judgements concerning

the proportions αr and the weights μr, and νr of the different DMU components.

They are not strictly necessary for the definition of a shared flow DEA model, but

might prevent the model from yielding unreasonable results. In this context,

Beasley (1995) provides an example where, in the absence of constraints (15.15)

and (15.16), one research postgraduate was worth about 880,000 undergraduates for

a given department.

Assurance regions are also introduced by Yu (2012) to measure the performance

of two-division international tourist hotels in Taiwan, which exhibit both shared

inputs and shared outputs.

15.5.2.2 Variable Returns to Scale

Mar Molinero and Tsai (1997) prove that the feasible solutions of model (15.13)

define a convex set and the objective (15.13a) is a convex function. Tsai and

Mar Molinero (2002), considering the problem of assessing the performances of
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individual specialties of National Health Services Trusts in the UK, introduce and

discuss a variable returns to scale version of model (15.13). The efficiency of each

component r of DMU k is then defined as

erk ¼
μrYr

kþμSðβrYS
kÞ

νrXr
kþνSðαrXS

kÞ þ δrk
ð15:17Þ

where the variable δrk is unrestricted and its optimal value defines the component’s

returns to scale status. The aggregate efficiency of DMU k is

er ¼

P
r
μrYr

k þ
X
r

μSðβrYS
kÞ

P
p
νpXp

k þ
P
p
νSðαpXS

kÞ þ
X
p

δpk
: ð15:18Þ

Note that the optimal value of ∑pδ
p
k may be zero even if some or all elements in the

sum are different from zero. In this case, DMU kmay appear to be operating under

constant returns to scale and technically efficient when analyzed as a black box

but, when its individual components are analyzed, it may be found scale ineffi-

cient in each of its activities (Tsai and Mar Molinero 2002). It follows that a

DMU, that is efficient when considered as a black box, may be inefficient when

its different components are taken into account, independently of its returns to

scale status.

Variable returns to scale are also considered by Diez-Ticio andMancebon (2002)

to assess the efficiency of Spanish Police Service.

15.5.2.3 Different Weights on Shared Inputs

Cook et al. (2000) allow a same shared input i to be weighted differently by the

subunits of the same DMU. The rationale behind such a choice is that different

components may disagree on the importance of a same input. Consequently, the

shared flow model as in Cook et al. (2000) includes in constraints (15.12b) and

(15.12c) a set of vectors νSr, one for each component r, instead of a single one. Also,
a change of variables is proposed. In particular, let i ¼ 1, . . ., s be the index of the

shared inputs, then νSri ¼ νSri α
r
i for i ¼ 1, . . . , s� 1 and νSrs ¼ νSrs

�
1�

Xs�1

i¼1

αri

�
.

Because of these new variables, the authors obtain a linear model. The terms

νr
S(αrXk

S) in conditions (15.12b) and (15.12c) become νSrXS
k and νSr � ε in

constraint (15.12e) turns νSri � εαri . Unfortunately, non-linearity may arise again

when additional constraints concerning value judgements as constraints (15.15) and

(15.16) are necessary. If such judgements are expressed also in terms of νSr , the
variable substitution may not lead to a linear model.
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15.5.2.4 Additive Objective Function

Cook and Hababou (2001) and Cook and Zhu (2005, Chap. 6) present variables and

constraints as in Cook et al. (2000) but differ in the objective function. They

formulate an additive objective function representing an aggregate measure of the

efficiencies of all the DMU subunits. In the classical additive DEAmodels (Charnes

et al. 1985), a possible measure of the inefficiency of DMU k is given by the

difference between the weighted sum of the inputs minus the weighted outputs of

DMU k. Here Cook and Hababou (2001) suggest a multiobjective approach where

the partial inefficiencies of all components are considered. For each subunit, the

weighted sum of its inputs minus the weighted sum of its outputs is considered.

In particular, the authors minimize the maximum partial inefficiency in order to

give equal importance to each component, i.e., their objective function is

min maxfνrXr
kþνSrðαrXS

kÞ�μrYr
k : 8r subunit of DMU0g: ð15:19Þ

Finally, the authors linearize their model with the same variable changes proposed

in Cook et al. (2000).

15.5.2.5 Overlapping Outputs

Cook and Green (2004) deal with a manufacturing multi-plant company and point

out that some outputs of different components of the same DMU can partially

overlap, i.e., some outputs may be common to different components. In particular,

each DMSU can yield a given amount of overlapping output j, with no need of

synergy with the other components. Hence there is no possibility of attributing the

considered amount to the other subunits. From this point of view, the overlapping

outputs are different from the shared outputs considered in Mar Molinero and

Tsai (1997) and Mar Molinero (1996). In fact, Cook and Green (2004) cannot

approach what they call the overlap problem by introducing variables βr as in

model (15.13) to determine which proportions of shared outputs are attributed to

each component: the efficiency of a single subunit r remains erk ¼ μrYr
k

νrXr
kþνSrðαrXS

kÞ
and,

consequently, the aggregate efficiency of a whole DMU k is ek ¼
P
r

μrYr
kP

r

νrXr
kþ
P
r

νSrðαrXS
kÞ
.

However, the shared inputs are no longer allocated to the components because such

task could hardly be performed without introducing some ambiguities due to the

component overlapping. Shared inputs are allocated directly to the outputs. In

particular, consider model (15.11) and the extension proposed in Cook

et al. (2000). Cook and Green (2004) introduce a new set of variables αi
j as the

proportions of the shared inputs i allocated for outputs j. In addition, they replaced

condition (15.11c) with ∑jαi
j ¼ 1, for all i. Finally, they defined αi

r as αri ¼
X
i∈Or

αji,

where Or is the set outputs of subunit r. Note that now, in general, ∑rαi
r � 1.

358 L. Castelli and R. Pesenti

http://dx.doi.org/10.1007/978-1-4899-8068-7_6


The allocation of shared inputs directly to outputs was originally introduced in

Färe et al. (1997). Even though the concept of DMSU is not explicitly mentioned, it

can easily be inferred since one input can be allocated among various outputs.

15.5.2.6 Core Business Identification

Cook and Green (2004) and Cook and Zhu (2005, Chap. 11) address the problem

of determining in which areas a DMU would perform better. Such areas form the

core business of a DMU and should be privileged even at the cost of possibly

forcing the DMU to abandon the components with less satisfactory performances.

To this aim, Cook and Green (2004) modify the objective function of model (15.11)

and add assignment constraints (each DMU must have at least one component

assigned and each component must be assigned to at least one DMU).

To overcome the insufficiency associated with the black box approach that

generally makes DMU inner data not to be available, Bi et al. (2012) consider

DMUs with parallel structure and propose to divide the production activities within

a DMU into two subsets or units. The first unit is termed as the core business unit

(CBU), which includes the main production functions of DMU; the second unit is

referred to as the non-core business unit (NCBU). The authors introduce a solution

method that assumes that the information related to inner inputs/outputs is available

for the DMU under evaluation. For the other DMUs, however, these data are

generated by using the Pareto principle: as a rule of thumb, the CBU produces

80 % of total outputs of a DMU, while consumes only 20 % of total inputs. Accord-

ingly, NCBU produces 20 % of the total outputs, while consumes 80 % of all inputs.

15.5.2.7 Resource Allocation

Shared flow models have also been used to allocate input costs among different

subunits or activities. da Cruz et al. (2013) propose a model for estimating not only

the overall efficiency of water utilities, but also the cost efficiency of drinking water

and wastewater services. Using a shared input DEA methodology, the authors are

also able to report estimates for the cost shares that correspond to each service.

Similarly, Rogge and De Jaeger (2012) evaluate the cost efficiency of Flemish

municipalities in the collection and processing of municipal solid waste by consid-

ering only one input (“waste cost”) that is shared among different collection and

treatment activities. In Rogge and De Jaeger (2013) this shared input DEA-model is

further developed to make the partial and aggregate cost efficiency scores robust and

also corrected for the impact of influences related to the operating environment and

long-term policy variables. The same robust shared-input DEA approach has been

applied by Broekel et al. (2013) to evaluate for multiple years the innovation

efficiency of 150Germanmarket labor regions, using as unique input “R&D employ-

ment” figures. Input costs are jointly allocated also by Salerno (2006) to estimate

higher education institutions’ per-student education costs in The Netherlands.
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Barnum et al. (2011) introduce a DEA-based procedure for estimating the

overall efficiency of metropolitan public transportation agencies in the United

States. Specifically, the authors use a six-step shared flow model to allocate

operating expenses among the agencies’ organizational subunits that supply transit

service. In each of the main step the authors use DEA to asses either the efficiency

of the whole system or of each of the transportation modality. Finally, the sixth step,

which involves a non-DEA mathematical program, estimates how inputs should be

allocated among the target agency’s subunits in order to minimize total expenses,

while holding output constant.

15.5.2.8 Non-radial Measures of Efficiency

Chen et al. (2013a) describes an empirical study on Taiwan’s farmers’ cooperatives

to offer policy suggestions as to how fixed resources can be effectively reallocated

among different departments in a team production environment. The authors adopt

Luenberger (1992)’s directional distance function to scale inputs and outputs, but

not necessarily along the rays from the input and output origin (Fukuyama 2003). In

such a way, the optimal input/output adjustment and the optimal allocation of

shared inputs among different activities are taken into consideration simulta-

neously. Furthermore, the use of a directional distance function allows to easily

incorporate an undesirable/bad output as a byproduct of desirable/good production

activities. In fact, when we seek a reduction in the bad output and simultaneous

increases in the good output, then the directional distance function will be a

preferred method because it allows non-proportional adjustments of the good and

bad outputs.

Yu and Lee (2009) use instead a hyperbolic network DEA model to evaluate the

performances of hotels in Taiwan. Specifically, the authors extend the models

introduced in Färe and Grosskopf (2000) and Färe and Whittaker (1995) by

combining both the input and the output orientation in a non-linear fashion.

15.5.2.9 Two-Stage Networks

In the recent years, the integration between network and shared flow models has

been addressed by some authors. Chen et al. (2010b) propose a DEA model to

evaluate either the VRS or the CRS efficiency of a two-stage network process where

some inputs are directly associated with both stages or shared by the two stages

(Fig. 15.5). The DMU efficiency is computed as a convex combination of efficiency

scores of the first and second stage, thus ensuring that a DMU is overall efficient if

and only if each stage is efficient. In the case of an inefficient DMU, however, the

decomposition of the overall DMU efficiency between the two stages may not be

unique. Hence, following Kao and Hwang (2008), the authors propose, under both

VRS and CRS, an approach to find a set of multipliers that maximize either the first

or the second stage efficiency score while maintaining the overall efficiency score.
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Zha and Liang (2010) analyze the two-stage network process with shared inputs

as in Fig. 15.5. Differently from Chen et al. (2010b), the authors propose to

determine the overall DMU efficiency score as the product of the efficiency scores

of the two stages, thus optimizing the overall efficiency through cooperation of the

different stages, as suggested by Castelli et al. (2004).

To assess the efficiency of multimode bus transit systems, Yu and Fan (2006)

introduce a two-stage shared input DEA model that incorporates both desirable and

undesirable outputs, and also environmental (non-discretionary) inputs. Following

Yu and Fan (2006) and Yu (2008b), a two-stage network with shared inputs

between two parallel subunits of the first stage (see Fig. 15.6) has been proposed

by Yu and Fan (2009) to simultaneously estimate the production efficiency, service

effectiveness and operational effectiveness of Taiwan’s bus transit system.

Their network model, also called mixed structure network DEA model, extends

both the network DEA model introduced by Färe and Grosskopf (2000) (series

structure network) and the network DEA model developed by Mar Molinero (1996)

(parallel structure network).

Chen et al. (2010b) show that their approach can be easily extended to open

two-stage network processes where some inputs from the first stage do not become

inputs to the second stage, and the second stage has its own inputs (Fig. 15.7).

Amirteimoori (2013) addresses the same two-stage network process with shared

inputs as in Fig. 15.7 using the approach of Chen et al. (2010b), with the only
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Inputs

Stage 1 OutputsStage 2

DMU

Shared
Inputs

Fig. 15.5 Shared inputs in

a two-stage network process

DMSU A
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DMSU B

DMSU C
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Dedicated
Inputs
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Fig. 15.6 Shared inputs in a open two-stage network process
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difference that the intermediate flows are to be considered as undesirable outputs

for the first stage. In the same two-stage setting, undesirable intermediate flows

were earlier addressed by Yang (2009) who moreover simultaneously considers

both DMU desirable and undesirable outputs to measure productive and environ-

mental efficiency in farrow-to-finish pig production in Taiwan. Similarly, also Chen

et al. (2012b) evaluate the relative performance of incineration plants in Taiwan by

including desirable and undesirable outputs. To allow inputs and outputs to change

non-proportionally the directional slacks-based inefficiency measure developed

by Fukuyama and Weber (2009) is incorporated into their model (see also

Sect. 15.5.2.8).

Two-Stage Network and Non-radial Measures of Efficiency

Sometimes the technology used to measure DMU efficiency has to deal with input

excesses and output shortfalls simultaneously. In this case, the graph-oriented DEA

model can be applied (Färe et al. 1985). In contrast to input-oriented and output-

oriented DEA models, both inputs and outputs are allowed to vary by the same

(or different) proportion, but inputs are proportionately decreased while outputs are

simultaneously increased by the same (or different) proportion. Graph efficiency

measurement has been used by Yu and Lin (2008) who present a multi-activity

network DEA model to simultaneously estimate passenger and freight technical

efficiency, service effectiveness, and technical effectiveness for 20 selected

railways for the year 2002. This model extends the work from Mar Molinero and

Tsai (1997). In particular, it generalizes model (15.13) for multi-stage processes

and uses an objective function that penalizes all the external input and final output

inefficiencies of all the components, with the exception of non-discretionary inputs

Dedicated
Inputs

Stage 1 OutputsStage 2

DMU

Shared
Inputs

Dedicated
Inputs

Outputs

Fig. 15.7 Shared inputs in a two-stage network process with parallel subunits
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(while the θr0 terms in model (15.13) penalize only the final outputs). For standard

DEA models similar measures were proposed in Pastor et al. (1999).

Similarly, a graph-oriented DEA model is proposed by Chao et al. (2010) who

apply the multi-activity DEAmodel to explore the relative efficiency of 12 financial

holding companies in Taiwan.

Two-Stage and Dynamic Networks

Chen (2012) proposes a dynamic shared input DEA model to assess the efficiency

of the swine production in Taiwan. The model is dynamic in the sense that a same

DMU, made of two parallel DMSUs with shared inputs, is observed over time.

Hence, some of the outputs of a period become some of the inputs of the following

period. Efficiency is not measured radially. Instead, as in Chen et al. (2012b, 2013a),

the directional Russell measure of slack-based inefficiency developed by Fukuyama

and Weber (2009) is introduced to allow inputs and outputs with non-proportional

changes.

15.6 Multi-level DEA Models

In this section, we deal with DEA models for DMUs exhibiting autonomous

activities that cannot be associated to any of their subunits. In other words, these

DMU present additional inputs/outputs not considered by their DMSUs. For exam-

ple, in Cook et al. (1998), DMSUs are highway maintenance patrols and DMUs are

the districts in which the maintenance patrols are grouped. The subunits have traffic

and road conditions as possible inputs, while DMUs may include additional inputs

that can be applied only to districts such as the extent of privatization and district

engineers’ experience. The same authors also introduced possible applications of

their model to power plants and hospitals. These models are defined as multi-level
models (Cook et al. 1998) where the top level, referred to as level n DMU, includes

independent and homogeneous subunits, referred to as level n � 1 DMUs. Recur-

sively, the level n � 1 DMUs include smaller independent and homogeneous

subunits, level n � 2 DMUs, and so on. Unlike shared flow models, the amount

of input and output of each subunit is fixed. In this work, we introduce only two–

level structures, and we simply refer to DMU for the level 2 DMU and to DMSU or

subunit for level 1 DMUs (see Fig. 15.8).

By denoting i; j; k as the indexes of the generic input, output, and DMU,

respectively, the following notation is introduced:

• Rk ¼ {rk}: the set of indexes rk of all DMSUs belonging to DMU k,
• Xr

k ¼ {xrik}: the vector of the inputs of DMSU rk,
• Xk ¼ {xik}: the vector of the additional inputs of DMU k,
• Yrk ¼ {yrjk}: the vector of the outputs of DMSU rk,
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• Yk ¼ {yjk}: the vector of the additional outputs of DMU k,

• ν1 ¼ {ν1i }: the vector of weights of the inputs common to both DMSUs and

DMUs,

• ν2 ¼ {ν2i }: the vector of weights of the additional inputs of DMUs,

• μ1 ¼ {μ1i }: the vector of weights of the outputs common to both DMSUs and

DMUs,

• μ2 ¼ {μ2i }: the vector of weights of the additional outputs of DMUs.

Accordingly, the efficiency of a DMSU rk is expressed as

erk ¼
μ1Yr

k

ν1Xr
k

ð15:20Þ

and the efficiency of a DMU k as

ek ¼
μ1
X
rk∈Rk

Yr
kþμ2Yk

ν1
X
rk∈Rk

Xr
kþν2Xk

: ð15:21Þ

Cook et al. (1998) present a unifying model for multi-level structures that assesses

the efficiency of DMUs of different levels. The authors argue that the efficiency of a

DMSU rk should be evaluated only relative to those other subunits operating under

the same conditions, in practice belonging to the same DMU k.
On the other hand, they also assert that the subunits in Rk should be taken into

account when evaluating the efficiency of a DMU k. On the basis of these assump-

tions, Cook et al. (1998) propose that the efficiency of a DMSU 00 in DMU 0 is

evaluated through the following model

e0∗0 ¼ max μ1Y0
0 ð15:22aÞ

Common DMSU
and DMU inputs

DMSU inputs DMSU outputs

DMSU

DMU
Additional
DMU inputs

Additional
DMU output

Common DMSU 
and DMU outputs

DMSU

Fig. 15.8 A multi-level DMU: the DMU includes two homogeneous and independent subunits
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ν1X0
0 ¼ 1 ð15:22bÞ

μ1Y r
0 � ν1Xr

0 8r0∈R0 ð15:22cÞ

ν1i , μ
1
j � ε 8i, j: ð15:22dÞ

This is a standard DEA model that evaluates DMSU 00 relative only to subunits

included in the same DMU 0. The efficiency of a DMU 0 is evaluated through the

following model:

e∗0 ¼ max μ1
X
r∈R0

Yr
0þμ2Y0 ð15:23aÞ

ν1
X
r∈R0

Xr
0þν2X0 ¼ 1 ð15:23bÞ

μ1
X
r∈Rk

Yr
kþμ2Yk � ν1

X
r∈Rk

Xr
kþν2Xk 8k ð15:23cÞ

μ1Yr
k � ν1Xr

k 8k,8r∈Rk ð15:23dÞ

ν2i , ν
1
i , μ

2
j , μ

1
j � ε 8i, j: ð15:23eÞ

This model compares DMU 0 with all other DMUs. It is different from the linear

programming model considering DMUs as black boxes due to the presence of

constraints (15.23d). These constraints take into account the DMU internal struc-

ture by imposing that their efficiency is related to the efficiencies of their subunits.

In particular, constraints (15.23d) force that the optimal values for weights ν1i , μ
1
j

are feasible for the DMSUs, i.e., the efficiency of each subunit should not exceed

unity. Cook et al. (1998) present a unifying model for multi-level structures that

includes both models (15.22) and (15.23). When the DMUs do not have additional

inputs/outputs, model (15.23) reduces to the elementary model (15.2). In such case,

constraints (15.23c) turn out to be redundant since they are implied by constraints

(15.23d). Cook and Green (2005) apply the hierarchical model described in Cook

et al. (1998) to the evaluation of power plants. These works are continued by

Azadeh et al. (2008, 2011) who use hierarchical models for optimal location of

solar plants and wind plants, respectively.

15.6.1 Comparing Subunits Belonging to Different DMUs

In model (15.22) any subunit is compared only against the other subunits belonging

to the same DMU. The rationale is that inputs received and decisions taken by each

DMU influence the efficiency of its subunits, then comparing subunits belonging to
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different DMUs would be questionable. In fact, DEA models assess the efficiency

of a DMU as a function of its distance from the production frontier defined by the

other observed DMUs. In a mathematical programming perspective, DEA models

determine the efficiency of a DMU with respect to the other DMUs. In an econo-

metric perspective, the observed DMUs are a sample of a larger population, and

DEA is a biased estimator of the efficiency of a DMU with respect to the unknown

real production set (Simar and Wilson 2000). In both situations, the larger the

sample is, the more likely the DMU under assessment is inefficient. Also, the

average efficiency of the DMUs of the sample decreases (Zhang and Bartles 1998).

This is why Staat (2001) invites to interpret very carefully possible differences in

the efficiencies of subunits belonging to different DMUs when the cardinalities of

sets Rk vary. Cook et al. (1998) propose a way of correcting the possible biases by

adjusting the efficiency of subunit rk taking into account the size of the DMU k, the
average efficiency of all the subunits in Rk, and the efficiency of DMU k. However,
Staat (2002) points out that such a procedure returns different corrections for

samples of equal size. He suggests to use bootstrap techniques (see, e.g., Simar

and Wilson 2000) to overcome such deficiencies.

In a later paper Cook and Zhu (2007), always dealing with power plants, propose

a different model to rectify the weaknesses in the one of Cook et al. (1998). In the

new model, the efficiency of each DMSU is now assessed against all the other

subunits even if they do not belong to the same DMU. Then, for each DMU, a

common set of multipliers applicable to all its DMSUs is determined. Specifically,

goal programming is used to identify the multipliers that minimize the maximum

discrepancy among the DMSUs’ efficiencies from their ideal levels computed in the

previous step.

15.6.2 Shared and Multi-level Models

Wu et al. (2008) evaluate the efficiency and performance of the healthcare system

in 23 counties and cities in Taiwan for the year 2003. In this paper, the authors

propose that each county or city has a budget to produce all the different outputs

that can be optimally distributed between such outputs. Hence they propose an

input-shared flow model with respect to the available budget. However, Wu

et al. (2008) also consider additional inputs (e.g., healthcare manpower and number

of facilities) that are not explicitly linked to the different outputs, as in Fig. 15.8.

It is then a multi-level model where the amount of input of each subunit is not fixed.

Let us conclude this section underlining that there exists an other DEA literature

sub-area called “multi-level”. The works in this sub-area deal with the presence of

too many input or output flows. Then, they aggregate them in different groups and

subgroups (see, e.g., Meng et al. 2008; Kao 2008; Eilat et al. 2008; Rezai and

Davoodi 2011). We do not survey these works as they do non assume that DMUs

present any internal structure.
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15.7 Conclusions

In this work we provide a classification of the main DEA models assessing the

efficiency of Decision Making Units when their internal structure is no longer

considered as a black box, but insight on their inner processes is available. The

interaction in each DMU among the input and output flows and its subunits

identifies three broad categories of models. In particular, network DEA models

are introduced when intermediate flows among the subunits are taken into account.

Shared flow DEA models apply when it is possible to partition a DMU as a

collection of components that contend their inputs and/or outputs to other compo-

nents of the same DMU. Multi-level DEA models are referred to when some of the

inputs (or outputs) of a DMU are also inputs (or outputs) of its subunits, and some

other inputs (or outputs) are not. We show that these formulations are different

generalizations of the same elementary model.

From a theoretical point of view, the knowledge of the internal structure of

DMUs should spot the sources of organizational inefficiency by, e.g., preventing

compensations among the subunits. In mathematical terms this translates into

linking a DMU and its subunits’ efficiencies. This relationship may vary across

the different models. But, as a general result, a DMU cannot be efficient if none of

its subunits are efficient. Furthermore, several applications show that the discrim-

ination power of a DEA model which considers the internal structure of the DMU

always increases with respect to the black box approach. As an extreme case, in

some situations all DMUs may turn out to be inefficient.

There is large scope of research in the area of this type of DEAmodels both from

a theoretical and application-oriented perspective. In the standard DEA literature,

besides the original DEA formulation (Charnes et al. 1978) representing DMUs

as black boxes in a CRS environment, many authors have proposed more sophis-

ticated or alternative approaches taking into account, e.g., nonradial measures of

efficiency, value judgments, economic measures of efficiency (see Fried et al. 2008,

Chap. 3, for a comprehensive survey of such DEA models).

In the recent years, different works have devoted attention to these extensions

even when DMUs have an internal structure. However, as pointed out by Chen

et al. (2013b), issues still remain and need to be addressed. The presence of an

internal structure in fact prevents from generlaizing some of the more obvious

properties of the standard DEA models, as an example, the duality relationship

between the multiplier-and envelopment-based DEA models. In the authors’ opin-

ion, other difficulties may also arise from the level of detail used to describe the

internal structure of DMUs. In fact, the greater the detail of the internal structure of

a DMU, the greater the discrimination power of a DEA model, but also usually the

more difficult to find a sufficient number of homogeneous DMUs to compare.

Another promising line of research considers the DEA models from a game

theoretic or, in any case, multi-agent perspective. Indeed, from an applicative

point of view, these DEA models may find application in the design of more

efficient complex processes. In this context, the role of asymmetric information
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between DMSUs and their DMU (see, e.g., Bogetoft 2000) can be extended to the

case when such asymmetry exists among DMSUs which make their decisions by

means of a negotiation process.
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