
Chapter 14

Network DEA II

Rolf Färe, Shawna Grosskopf, and Gerald Whittaker

Abstract The original DEA model by Charnes et al. (Eur. J. Oper. Res. 2:429–444,

1978) is set to analyze production as a black box, i.e., there is no information about

the processes inside. Network DEA was proposed for analysis of the contents of

the black box. This theory allows the researcher to model processes within the

black box by formulating sub-technology DEA models. The interaction of

sub-technology DEA models preserves the DEA structure, and the network model

can therefore be solved using linear programming. This chapter discusses network

DEA models, both static and dynamic. The discussion also explores various useful

objective functions that can be applied to the models to find the optimal allocation

of resources for processes within the black box that are normally invisible to DEA.
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14.1 Introduction

It is commonly observed that the DEA model proposed by Charnes et al. (1978) is a

“black box” that receives inputs and produces outputs, but the transformation

process by which this occurs is opaque to the analyst. As Tone and Tsutsui (2014)

remark, “One of the drawbacks of these models is the omission of the internal

structure of the DMUs.” Färe et al. (2007a) built on Shephard and Färe (1975)

with a sequence of models where the interior (“black box”) of the CCR model could

be analyzed. The primary device for achieving this was the use of a network. The

insight they had was that whenmultiple DEAmodels are connected in a network, the

network itself is a DEA model, and can be calculated using linear programming.

In this chapter we extend and update our paper (Färe et al. 2007a) with additional

discussion of DEA sub-technologies, objective functions, and static and dynamic

DEA models. We start with a discussion of the CCR model from an axiomatic

perspective. Then we turn to objective functions, which can be either price depen-

dent or not. In the case where objective functions are price independent, we discuss

both distance functions and slack-based functions. The static network model is

introduced next, starting with a generic model and extending it to three common

cases. We end the chapter with dynamic DEA. The models discussed in this chapter

are relatively simple, but provide the tools for construction of models describing

arbitrarily complex processes.

14.2 The Black Box and Sub-technologies

Production models are frequently modeled as a black box, where inputs x ¼
(x1, . . .,xN) ∈ ℝN

þ are transformed into outputs y ¼ (y1, . . .,yM) ∈ ℝM
þ (Fig. 14.1).

In this chapter we go inside the black box and define sub-technologies as its

smallest building blocks. First, we establish an axiomatic structure for the models,

then discuss the connection of sub-technologies through a directed network.

A technology or sub-technology may modeled as

T ¼ x; yð Þ : x can produce yf g

Fig. 14.1 The black box
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or by its output sets,

P xð Þ ¼ y : x; yð Þ∈Tf g x ∈ ℝN
þ

or by its input sets,

L yð Þ ¼ x : x; yð Þ ∈ Tf g,

and it holds that

y ∈ P xð Þ , x; yð Þ ∈ T , x ∈ L yð Þ:

Suppose that we have k ¼ k, . . ., K observations of inputs and good outputs

(xk,yk), then we can formulate the activity analysis or data envelopment analysis

model as

T ¼ x; yð Þ :
XK
k¼1

zkxkn � xn, n ¼ 1, . . . ,N,

(

XK
k¼1

znykn � ym, m ¼ 1, . . . ,M,

zk � 0, k ¼ 1, . . . ,K

)

or equivalently,

P xð Þ ¼ y :
XK
k¼1

znxkn � xn, n ¼ 1, . . . ,N,

(

XK
k¼1

zmykm � ym, m ¼ 1, . . . ,M,

zk � 0, k ¼ 1, . . . ,K

)

i.e.,

L yð Þ ¼ x :
XK
k¼1

zkxkn � xn, n ¼ 1, . . . ,N,

(

XK
k¼1

zkykm � ym, m ¼ 1, . . . ,M,

zk � 0, k ¼ 1, . . . ,K

)
:
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If the data meet the Kemeny et al. (1956) conditions, then the technology

satisfies the following conditions;

ið Þ P 0ð Þ ¼ 0f g; no free lunch,

iið Þ P xð Þ is bounded for each x; scarcity,

iiið Þ T is closed:

Additional properties, from the definitions are;

ivð Þ T is convex ) L yð Þ and P xð Þ are convexð Þ,
vð Þ x0 � x ∈ L yð Þ ) x0 ∈ L yð Þ; free disposability of inputs,

við Þ y0 � y ∈ P xð Þ ) y0 ∈ P xð Þ; free disposability of outputs,

viið Þ T is a cone; constant returns to scale CRSð Þ:

The last condition holds, since the intensity variables zi are only non-negative. If,

in addition to non-negativity,
XK

k¼1
zk ¼ 1, variable returns to scale are modeled.

Conditions (v) and (vi) follow from the inequalities of the inputs and outputs

expressions.

að Þ
XK
k¼1

ykm > 0 m ¼ 1, . . . ,M

bð Þ
XM
m¼1

ykm > 0 k ¼ 1, . . . ,K

cð Þ
XK
k¼1

xkn > 0 n ¼ 1, . . . ,N

dð Þ
XN
n¼1

xkn > 0 k ¼ 1, . . . ,K

Output condition (a) states that each output is produced by some k (DMU), and

(b) requires that each activity produce some output. The input conditions (c) and

(d) say that each input is used by some k and that each k uses at least one input.

If zk � 0, k ¼ 1, . . ., K and
XK

k¼1
zk � 1, the technology exhibits non-increasing

returns to scale.

Before we link technologies (and/or sub-technologies) together to model pro-

cesses within the black box, we study optimization problems on a technology.

These problems include profit and revenue maximization, cost minimization and

distance function measures.
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14.3 Objective Functions

Network models are frequently applied in performance measurement, including

optimal resource allocations. An objective function that specifies the evaluation of

measurement or allocation is required for optimization. Two types of objective

functions are used; (i) those that require prices, and (ii) those that require only

measures of inputs and outputs (quantity functions). These quantity functions can

be either slack based or distance functions.

The distance functions have their duals among the objective functions involving

prices. The most common are; the profit function dual to the directional technology

function, the revenue function dual to Shephard’s output distance function, and the

cost function dual to Shephard’s input distance function. The slack based objective

functions do not have natural duals (Färe et al. 2007b).

Let g ¼ (gx,gy) ∈ ℝNþM
þ be a directional vector for inputs (gx) and outputs (gy).

This vector provides the direction in which a given input/output observation is

projected onto the frontier of T. The optimization problem that defines the direc-

tional technology distance function is

~DT x; y; gð Þ ¼ max β : x� βgx, yþ βgy

� �
∈ T

n o

Inputs are contracted while outputs are expanded.1 Under “g-disposability” this

function characterizes T, i.e.,

~DT x; y; gð Þ � 0 , x; yð Þ ∈ T,

and it can be used as a measure of technical efficiency.

If we choose the directional vector to equal g ¼ (0,gy), then we have a direc-

tional output distance function

~D0 x; y; gy

� �
¼ max β : yþ βgy

� �
∈ P xð Þ

n o
,

which may also be a measure of technical efficiency, now output based.

It is interesting to note how ~D0ðx, y; gyÞ is related to Shephard’s output distance

function. The latter is defined as

Di x; yð Þ ¼ min λ : y=λ ∈ P xð Þf g:

Shephard’s output distance function or its reciprocal is the Farrell output ori-

ented measure of technical efficiency.

1 This distance function was introduced by Luenberger as shortage function (see for example

Luenberger 1995).
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To relate the two output distance function to each other, choose gy ¼ y, then

~D0 x; y; yð Þ ¼ 1� 1=D0 x; yð Þ

Thus, we have shown how the directional output distance function generalizes

Shephard’s (radial) output distance function. Similarly, we may choose g ¼ (gx,0)
to obtain a directional input distance function

~Di x; y; gxð Þ ¼ max β : x� βgxð Þ ∈ L yð Þf g,

and relate it to Shephard’s input distance function defined as

Di y; xð Þ ¼ max λ : x=λ ∈ L yð Þf g:

Choose gx ¼ x and we have

~Di y; x; xð Þ ¼ �1þ 1=Di y; xð Þ:

Our derivations above show that the directional output distance function is the

origin of the other four distance functions. This can be illustrated as (Fig. 14.2).

Finally we have (Färe and Lovell 1978)

D0 x; yð Þ ¼ 1=Di y; xð Þ , CRS:

The above distance functions are associated with measurement of technical

efficiency. Each projects the observation in question onto a corresponding

isoquant.2

2 Note that an isoquant may contain the efficient subset as a proper subset and does not reflect

Pareto/Koopmans efficiency.

Fig. 14.2 Relation of

directional distance

functions
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Turning to the duals, assume input prices w ∈ ℝN
þ and output prices p ∈ ℝM

þ are

known. Then we can define the profit function as

Π p;wð Þ ¼ max py� wx : x; yð Þ ∈ Tf g
¼ max py� wx : ~DT x, y; gð Þ � 0

� �

The last inequality holds, since the directional technology distance function

characterizes T. From this it follows that (Färe and Grosskopf 2004)

Π p;wð Þ � py� wxð Þ
pgy þ wgx

� ~DT x, y; gð Þ

where the LHS is the Nerlovian profit indicator, which is the normalized difference

between maximal profit Π( p,w) and observed profit (py � wx). This indicator is

larger than the corresponding directional distance function (a measure of technical

efficiency). By adding a measure of allocative efficiency, the inequality becomes an

equality, and the Nerlovian indicator is decomposed into technical and allocative

efficiency (Chambers et al. 1998).

In order to derive results similar to the Nerlovian indicator, we first define the

revenue and cost functions

R x; pð Þ ¼ max py : y ∈ P xð Þf g
¼ max py : ~D0 x, y; gy

� �
� 0

n o

and

C y;wð Þ ¼ min wx : x ∈ L yð Þf g
¼ min wx : ~Di x, y; gxð Þ � 0

� �
:

From these expressions we get

R x; pð Þ � py

pgy
� ~D0 x, y; gy

� �

and

wx� C y;wð Þ
wgx

� ~Di x, y; gxð Þ

respectively.

Each of these inequalities can be closed by adding, as above, an allocative

inefficiency component. Hence arriving at a revenue and a cost indicator with

their corresponding decompositions.
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Prior to a discussion of the radial distance function (Shephard 1953, 1970), we

provide activity analysis/DEA models for calculating profit and the directional

technology distance function. Since, under constant returns to scale, profit is zero,

we choose the variable returns to scale formulation allowing for losses and profit.

Maximal profit is then estimated as

Π p;wð Þ ¼ max x;y;zð Þ py� wxð Þ

s:t:
XK
k¼1

zkxkn � xn, n ¼ 1, . . . ,N

XK
k¼1

zkykm � ym, m ¼ 1, . . . ,M

XK
k¼1

zk ¼ 1, zk � 0, k ¼ 1, . . . ,K

One may, of course, allow the price vectors p and w to vary with the observation.

To estimate the technology distance function, the researcher may choose the

directional vectors or endogenize them.3 Here we consider the case of g ¼ (gx, gy)
without any specific choice. Thus, for observation k0, we have

~DT xk
0
; yk

0
; gx; gy

� �
¼ maxβ

s:t:
XK
k¼1

zkxkn � xk0n � βgxn , n ¼ 1, . . . ,N

XK
k¼1

zkykm � yk0m þ βgym , m ¼ 1, . . . ,M

XK
k¼1

zk ¼ 1, zk � 0, k ¼ 1, . . . ,K:

From our two calculations and the data on xk
0
; yk

0� �
, p;wð Þ we may calculate the

Nerlovian profit indicator. Similar problems can be formulated for the revenue and

cost indicators.4

In the discussion above, profit, revenue and cost indicators took an additive

structure. The traditional Farrell (1957) decomposition of cost and revenue effi-

ciency is multiplicative, not additive, and is based on Shephard’s (1953, 1970)

distance function.

3 For endogenous directions, see (Färe et al. 2013)
4 For an example of aggregation of these indicators, see (Färe and Grosskopf 2004).
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To derive the revenue measure, note that

R x; pð Þ ¼ max py : y ∈ P xð Þf g
¼ max py : D0 x; yð Þ � 1f g,

where the last equality holds because

D0 x; yð Þ � 1 , y ∈ P xð Þ:

From this definition of revenue, it follows (Färe and Grosskopf 2004) that

R x; pð Þ
py

� 1=D0 x; yð Þ,

i.e., the ratio of maximal revenue to observed revenue is larger than the reciprocal

of the output distance function.5 By multiplying the RHS with an allocative

efficiency component, the Farrell decomposition of revenue efficiency is obtained.

It is the product, not sum, of technical and allocative efficiencies.6

To set the stage for the slack-based measure of technical efficiency consider the

Leontief production function

y ¼ min x1; x2f g

The isoquant for y ¼ 1, is

x1; x2ð Þ : min x1; x2f g ¼ 1f g

and the Koopmans efficient input set is

x1; x2f g ¼ 1; 1f g

Thus the isoquant and the efficient subset do not coincide. The following figure

illustrates the relation between the isoquant and efficient subset (Fig. 14.3).

The isoquant consists of the points along II while E is the only efficient point.

The input distance functions introduced above have the property that they

project an input vector onto the isoquant, and not necessarily onto the efficient

point(s). Measures that project an input vector onto efficient points are the multi-

plicative Russell measure (Färe and Lovell 1978) and the additive slack-based

measures (Färe and Grosskopf 2010; Tone 2001).

5 This expression is referred to as the Mahler inequality.
6 For the decomposition of Farrell’s cost efficiency measure, see (Färe and Grosskopf 2004).
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The input oriented Russell measure (RM) has the following DEA formulation

RMi x
k0 ; yk

0� � ¼ 1

N
min

XN
n¼1

λn

s:t:
XK
k¼1

zkxkn � λnxk0n, n ¼ 1, . . . ,N

XK
k¼1

zmykm � yk0m, m ¼ 1, . . . ,M

zk � 0, k ¼ 1, . . . ,K :

If an input xk0n is zero, we modify the measure and set λn ¼ 1. This measure is

one if and only if xk
0
belongs to the efficient subset of L yk

0� �
, where

Eff L yð Þ ¼ x : x ∈ L yð Þ, x0 � x ) x0=2 L yð Þf g
The input oriented slack-based measure (SB) by Färe and Grosskopf (2010) is

based on the input oriented directional distance function, and has the following

DEA formulation

SBi x
k0 ; yk

0� � ¼ max
XN
n¼1

βn

XK
k¼1

znykn � xk0n � βn � 1n, n ¼ 1, . . . ,N

XK
k¼1

zmykm � yk0m, m ¼ 1, . . . ,M

zk � 0, k ¼ 1, . . . ,K:

Fig. 14.3 Leontief

isoquant (I,I) and efficient

set (E)
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This measure is zero if and only if xk
0
belongs to the efficient subset of L yk

0� �
.7

Note that βn is independent of the unit of measurement, since the direction gn ¼ 1n
is in the same units as xn, thus βni8i can be added.

14.4 Static Network Models

In this section we go inside the black box and model it as a network of

sub-technologies. This approach has its origin in Shephard and Färe (1975), who

wrote that “many production systems (technologies) may be conceptualized as the

joint interaction of a finite number of production sub-technologies called activi-

ties.” The static model is useful for analyzing the allocation of intermediate

products and also provides the basic structure of dynamic DEA models.

We restrict our presentation to three sub-technologies P1, P2, and P3. These three

sub-technologies are connected by the directed network shown in Fig. 14.4.

To complete a network of these three sub-technologies, we add a distribution

process and a sink, or collection of final outputs.8 Inputs are denoted by

x ¼ x1, . . . , xNð Þ ∈ ℜN
þ , the network exogenous vector, i.e., total availability is

attached to the three sub-technologies, i
0x, i ¼ 1, 2, 3 . . . where 0 denotes source

and i denotes use (Fig. 14.5). For example, 10x is the input vector from source 0 used

7We note that the input oriented Tone (2001) measure requires all inputs to be positive. See Färe

and Grosskopf (2010) for a discussion inputs to this measure.
8 This model is adopted from Färe and Grosskopf (1996a).

Fig. 14.4 Representation

of sub-technologies
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in activity 1. The total amounts used in the three activities cannot exceed the total

amount available, i.e.,

x �
X3
i¼1

i
0x :

In Fig. 14.5 activity P1 uses 1
0x as an exogenous input and produces

3
1y þ 4

1y

as outputs. The 3
1y is an input into activity 3, while 4

1y is the final output from P1.

Activity P3 uses 3
0x as an exogenous input and 3

1y,
3
2y as intermediate inputs. The

final product from activity P3 is output vector 4
3y. The total network output is the

sum of the final output of the three activities,

4
1y þ 4

2y þ 4
3y :

Note that even if an activity does not produce one of the listed outputs, that

output is set at zero and the network structure remains the same. It is also notewor-

thy that some outputs may be both final and intermediate outputs, e.g. spare parts.

Based on the description above, a generic network model takes the form

P xð Þ ¼ 4
1y þ 4

2y þ 4
3y

� ��
:

4
1y þ 3

1y
� �

∈ P1 1
0x
� �

4
2y þ 3

2y
� �

∈ P2 2
0x
� �

4
3y ∈ P3 3

0x ,
3
1y þ 3

2y
� �

1
0x þ 2

0x þ 3
0x � x

�
,

where Pi(•) i ¼ 1, 2, 3 are output sets, i.e., P(x) ¼ {y : x can produce y}. Thus the
network model P(x) is formed by the individual sub-technologies.

Fig. 14.5 A network

technology
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Next we formulate the network technology as a DEA model, i.e.,

P xð Þ ¼ y ¼ 4
1y þ 4

2y þ 4
3y

� ��
:

að Þ 4
3ym �

XK
k¼1

z3k
4
3ykm , m ¼ 1, . . . ,M,

bð Þ
XK
k¼1

z3k
3
0xkn � 3

0xn, n ¼ 1, . . . ,N,

cð Þ
XK
k¼1

z3k
3
1ykm � 3

1ym,m ¼ 1, . . . ,M,

dð Þ
XK
k¼1

z3k
3
2ykm � 3

2ym,m ¼ 1, . . . ,M,

eð Þ z3k � 0, k ¼ 1, . . . ,K,

fð Þ 3
1ym þ 4

1ym
� � �

XK
k¼1

z1k
3
1ykm þ 4

1ykm
� �

,m ¼ 1, . . . ,M,

gð Þ
XK
k¼1

z1k
1
0xkn � 1

0xn, n ¼ 1, . . . ,N,

hð Þ z1k � 0, k ¼ 1, . . . ,K,

ið Þ 3
2ym þ 4

2ym
� � �

XK
k¼1

z2k
3
2ykm þ 4

2ykm
� �

,m ¼ 1, . . . ,M,

jð Þ
XK
k¼1

z2k
2
0xkn � 2

0xn, n ¼ 1, . . . ,N,

kð Þ z2k � 0, k ¼ 1, . . . ,K,
lð Þ 1

0xn þ 2
0xn þ 3

0xn � xn, n ¼ 1, . . . ,Ng:

where i
0ykm and i

0xkn, k ¼ 1, . . ., K, m ¼ 1, . . ., M and n ¼ 1, . . ., N are observed

data. In the network DEA model the first sub-technology is specified by (f)–(h), the

second by (i)–(k) and the third by (a)–(e). Note that each sub-technology has a

vector of intensity variables (e), (h) and (k). Here they all satisfy constant returns

to scale.

Färe and Grosskopf (1996b) have shown that if each sub-technology satisfies

standard axioms such as free disposability of inputs and outputs, compactness of the

output set and other axioms, then the network technology has the same properties as

the sub-technologies from which it is constructed.

If we wish to compute, for example, output efficiency of the network DEA

model, we may use the standard Farrell (1957) output measure using linear

programming;

F0 xk
0
; yk

0� �
¼ max θ : θyh

0
∈ P xk

0� �n o
,
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where P xk
0� �
is the network for observation k0. Note that in this model the ratio of

outputs from P1 and P2 to observed output may vary. If this effect is not appropriate,

we may modify the LHS of (f) and (i) to read

f0ð Þ θ 3
1yk0m þ 4

1yk0m
� � �

and

i0ð Þ μ 3
2yk0m þ 4

2yk0m
� � �

where k0 is the observed data and θ, μ are non-negative scalars. When F0 xk
0
; yk

0� �
is

computed under these more restrictive conditions, the optimal θ and μ are the

sub-vector Farrell efficiency scores.

From standard DEA modeling practice (Cooper et al. 2004), one knows that

the primal envelopment model has a dual multiplier formulation. Hence, when we

use the “fixed” mix formulation, i.e., when ( f0) and (i0) are used, we may write

the network in its dual form, as in Kao (2009). To see how the network model may

be specified as a traditional neoclassic production model, suppose for simplicity

that 4
1y ¼ 4

2y ¼ 0 and that 3
1y,

3
2y, and

4
3y ∈ ℝ+, so that each sub-technology pro-

duces a single output and no final products are produced by P1 and P2. If we define a

production function by

F xð Þ ¼ max y : y ∈ P xð Þf g,

then the network model can be written as follows9;

4
1y ¼ F3 x30,F

1 1
0x
� �

,F2 2
0x
� �� �

¼ F3 x� 1
0x � 2

0x ,F
1 1

0x
� �

,F2 2
0x
� �� �

,

i.e., as function of functions. This example illustrates the creation of “parametric”

neoclassical models of network technologies.

Next, we formulate three commonly used network models; (i) the Johansen

(1972) model, (ii) the two stage model and (iii) the externality model. These

three models are set up here generically, and like the network models above can

be extended to any finite set of sub-technologies. We start with the Johansen model

as formulated by Färe et al. (1992). Here we express it and the other models by

means of diagrams (Fig. 14.6).

We have two technologies P1 and P2 producing two vectors of outputs y1 and y2.

They use fixed inputs (non-allocable) x1f and x
2
f respectively, and variable allocable

9 For this to exist P(x) must be nonempty and compact.
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inputs x1v and x2v . The sum of these input vectors cannot exceed a given vector xv.
Thus the total can be allocated between the two technologies P1 and P2. Such an

allocation can be implemented by choosing one of the objective functions discussed

in Sect. 14.2. For example, if output prices are known, one may maximize total

revenue for the network, viz,

max p1y1 þ p2y2

s:t: y1 ∈ P1, y2 ∈ P2

where p1 and p2 are two output price vectors. The solution to this problem yields the

optimal output vector for each technology and the optimal allocation of the variable

inputs.10 This model may be used in the discussion of merger and coalition

formation (Bogetoft and Wang 2005; Färe et al. 2011).

While the Johansen model organizes the technologies in parallel, our second

model organizes the technologies in a sequence (Chen et al. 2009) (Fig. 14.7).11

Again we have two technologies P1 and P2, now ordered sequentially with the

output from P1 being an intermediate input into P2 to produce the final output y2.
Each technology has its own input x1, x2. It is not hard to adapt the concept of

allocation from the Johansen model to introduce savings and borrowing into the

model (Färe and Grosskopf 1996a).

Suppose the externality model consists of one polluter and one receptor, with the

technologies P1 and P2, respectively. Each technology uses an input, x1 or x2, to
produce desirable outputs y1 and y2, and the polluter also produces an undesirable

output u. The undesirable output u is an input into the receptor technology, as

illustrated below (Fig. 14.8).

Fig. 14.6 The Johansen

model

10 One may, of course, solve this problem using DEA.
11 For a review see (Cook et al. 2010)
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The upstream firm (technology P1) may be, for example, a paper mill, and the

downstream firm P2 a fishery. The upstream firm produces y1 and u jointly and in

the terminology of Shephard and Färe (1974) we say that y1 is nulljoint with u if

y1; u
� �

∈ P1 x1
� �

and u ¼ 0 ) y1 ¼ 0,

i.e., if no undesirable outputs are produced, no desirable outputs can be produced.

The downstream technology takes u as an additional input with negative implica-

tions, i.e.,

u1 � u ) P2 x2; u1
� � � P2 x2; u

� �
:

This means that more desirable input does not increase production, but

may decrease it. This type of network models have also been applied in the

studies of property rights (see Färe and Grosskopf 2004, for a DEA formulation

of such a problem).

Fig. 14.7 A two stage

model of production

Fig. 14.8 The network

model with externalities
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14.5 Dynamic Network Models12

“Late in 1974, Dr Thomas Varley, Office of Naval Research, asked whether I could

formulate a production function for shipbuilding. In thinking about this matter it became

apparent that the usualsteady state (static) production function could at best provide a faint

model of this production technology. Imagine that you visit a shipyard. Day by day a

tremendous amount of production activity of great variety is carried on, yet no ships are

turned out. This goes on for a long time. Eventually a ship emerges. What was being

produced day by day all during this time? It is clear that the daily, weekly, monthly outputs

of the system were intermediate products. The shipbuilding production system, like con-

struction, is a dynamically evolving process.”(Shephard and Färe 1980, page V)

With this description of a production process as a motivation for the dynamics, let

us start by formulating a dynamic model as a network. Assume there are three time

periods t–1, t, t+1, and that each has its production technology Pτ, τ ¼ t�1, t, t+1.
A dynamic model has the property that a decision in one time period impacts on

later time periods. For example, if I save now, then my possible consumption may

increase later. Therefore we introduce intermediate products, i.e., those products

that are held over between time periods, τþ1
τ y ∈ ℜM

þ . If τ ¼ 1, then tþ1
t y is the

intermediate vector of outputs produced at time t and entering the production

process at t+1, i.e., an input at Pt+1. Figure 14.9 illustrates this setup.

Each of the production sub-technologies Pτ uses exogenous inputs xτ to produce

the final output ττ�1y and intermediate inputs i
τ�1y. To complete the network model

(see the figure below) we add initial conditions (distribution process in the static

model) and transversality conditions (sink in the static model).

The initial condition is given by iy and may be thought of as the stocks of

“capital” initially available. The transversality condition could include the number

of periods, say t+1 ¼ T, the state of the system atT, itþ1y, and the final output vector

Fig. 14.9 Dynamic

sub-technologies

12 This section is to a large extent adapted from Färe, Grosskopf and Whittaker (2007) For a recent

survey of nonparametric dynamic efficiency see (Fallah-Fini et al. 2013).
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from the last period,
f
tþ1y. The chosen conditions are specific to the research

problem to be analyzed.

Thus far we have not introduced discounting. However, if outputs are given in

value terms, a discount factor of δτ, 0 � δτ � 1, may be introduced to account for

the lesser of future income compared to present income. For example, δtft y are the
discounted values of the final output in period t (Fig. 14.10).

The dynamic network DEA model consists of the interaction of a finite number

of static models. Therefore let us start by studying the sub-technology Pt from

above. This technology uses inputs xt and intermediate inputs i
t�1y to produce

outputs
f
t y + i

ty, where
f
t y is the final output and i

ty is the intermediate output that

is used as an input in the next period. Thus we may write

Pt xt; t
t�1y

� � ¼ f
t y þ i

ty
� �n

:

f
t ym þ i

tym

� �
�
XKt

k¼1

z tk
f
t ykm þ i

tykm

� �
m ¼ 1, . . . ,M,

XKt

k¼1

z tk
t�1

i ykm � t�1
i yk0m , m ¼ 1, . . . ,M,

XKt

k¼1

z tkx
t
km � x t

k0n, n ¼ 1, . . . ,N,

z tk � 0, k ¼ 1, . . . ,Kt
o

,

where
f
t ykm,

i
tykm,

i
t�1ykm , and xkn are observed inputs and outputs. We allow

the number of observations to differ between periods, hence the notation Kt. The

output vector (
f
t y + i

ty) is specified so that one can includeM
t for all t, i.e.,M ¼ Mt�1

+ Mt + . . . by including appropriate zeroes.

Recall from the static model, that if the sub-technologies have the properties

(i)–(vii), then the whole network model also has those properties. This observation

also applies to the dynamic model below:

Fig. 14.10 A dynamic

network model
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Pt xt�1; xt; xtþ1; iy
� � ¼ f

t�1y
f
t y;

f
tþ1y þ i

tþ1y
� �� �n

:

f
t�1ym þ i

t�1ym

� �
�
XKt�1

k¼1

zt�1
k

f
t�1ykm þ i

t�1ykm

� �
m ¼ 1, . . . ,M,

XKt�1

k¼1

zt�1
k

iykm � iykm, m ¼ 1, . . . ,M,

XKt�1

k¼1

zt�1
k xt�1

kn � xt�1
n , n ¼ 1, . . . ,N,

zt�1
k � 0, k ¼ 1, . . . ,Kt�1,

f
t ym þ i

tym

� �
�
XKt

k¼1

z tk
f
t ykm þ i

tykm

� �
m ¼ 1, . . . ,M,

XKt

k¼1

z tk
i

t�1ykm � i
t�1ym, m ¼ 1, . . . ,M,

XKt

k¼1

z tkx
t
kn � x tn, n ¼ 1, . . . ,N,

z tk � 0, k ¼ 1, . . . ,Kt,

f
tþ1 ym þ i

tþ1ym

� �
�
XKtþ1

k¼1

ztþ1
k

f
tþ1ykm þ i

tþ1ykm

� �
m ¼ 1, . . . ,M,

XKtþ1

k¼1

ztþ1
k

i
tykm � i

tykm, m ¼ 1, . . . ,M,

XKtþ1

k¼1

ztþ1
k xtþ1

kn � xtþ1
n , n ¼ 1, . . . ,N,

ztþ1
k � 0, k ¼ 1, . . . ,Ktþ1

�
,

Note that each sub-technology has its own intensity vector zτ, τ ¼ t � 1,

t, t + 1, and that the interaction between time periods comes through the interme-

diate outputs.

Färe and Grosskopf (1997) use this model to study the inefficiency of APEC

countries due to dynamic misallocation of resources. They used the sum of

Shephard (1970) sub-technology distance functions as their optimization criterion.

Nemota and Goto (2003) applied the dynamic network model to study Japanese

electricity production over time. They used cost minimization for the optimization

criterion. Jaenicke (2000) applied the dynamic model in the analysis of the yield

effects of crop rotation. Nemota and Goto (1999) applied the dual linear program-

ming problem formulation to the cost minimization and derived the fundamental
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equation (Hamilton-Jacobi-Bellman) of dynamic programming. We also refer the

reader to the work of J.K. Sengupta. A search for “J.K. Sengupta dynamic models”

using any one of the major internet search engines produces a large number of

dynamic non-parametric models that he has analyzed.
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Färe, R., & Grosskopf, S. (2004). New directions: Efficiency and productivity. Boston: Kluwer
Academic.
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