
69

Chapter 4
Role of MicroRNAs in Stem Cell Regulation  
and Tumorigenesis in Drosophila
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Abstract MicroRNAs (miRNAs) are small noncoding RNAs that modulate the 
expression of target mRNA. They are involved in many biological processes such 
as developmental timing, differentiation, cell death, immune response, stem cell 
behavior, and cancer. Growing evidence suggests that miRNAs play vital roles in 
regulating several aspects of stem cell biology in Drosophila including cell divi-
sion, self-renewal, and differentiation. In recent years, miRNAs have emerged as 
collaborating factors that promote the activity of oncogenes in tumor development. 
Here, we present a brief overview on the role of miRNAs in the regulation of stem 
cell behavior and tumorigenesis in Drosophila.
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1 Introduction

MicroRNAs (miRNAs) are small ~ 22-nucleotide (nt)-long noncoding RNAs, 
which bind to the 3′ untranslated region (UTR) of target mRNAs to regulate gene 
expression through translational repression and mRNA degradation [1–4]. miRNA 
biogenesis is a multistep process [5, 6]. miRNAs are initially transcribed in the 
nucleus as a primary miRNA transcript (pri-mRNA) by RNA polymerase II [7], 
which are then processed into precursor miRNAs (pre-mRNAs) by a microproces-
sor  protein complex, the nuclear RNase III Drosha, and a double-stranded RNA-
binding domain (dsRBD) protein Pasha [8–13]. The pre-miRNAs are then exported 
to the cytoplasm by the guanosine triphosphate-bound Ran (RanGTP)-dependent 
transporter protein Exportin 5 [14, 15], where they are further cleaved by RNase 
III enzyme Dicer [16–18] and its dsRBD partner Loquacious (Loqs) [19] to gener-
ate ~ 22-nt-long miRNA : miRNA* duplex. Finally, the one strand of this duplex 
(miRNA) is transferred to the RNA-induced silencing complex (RISC), containing 
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Argonaute-1 (Ago-1) for targeting gene expression, and releases the other strand 
(miRNA*) that undergoes degradation [20, 21].

The first miRNA gene, lin-4, and its target lin-14 were discovered in a screening 
for genes that control developmental timing in Caenorhabditis elegans [22, 23]. 
Since then a large number of miRNAs conserved from worms to mammals have 
been identified [24–33]. Experimental studies in the past two decades have demon-
strated that miRNAs play a regulatory role in various biological processes including 
development, tissue homeostasis, cell proliferation, tissue growth, cell death, neuro-
genesis, metabolism, immunity, cell fate determination, stem cell maintenance, ag-
ing, and several diseases including cancer [4, 24, 34–45]. Dysregulation of miRNA 
pathway results in developmental defects, several human diseases, and cancer. In 
this chapter, we will mainly focus on the role of miRNAs in regulation of stem cell 
self-renewal, differentiation, and tumorigenesis in Drosophila.

2 miRNAs in Stem Cell Regulation

Stem cells play a critical role in tissue development and homeostasis. There are two 
major classes of stem cells reported, embryonic stem (ES) cells and adult stem cells 
(including somatic and germ line). Stem cells are undifferentiated cells and have 
an enormous capacity for self-renewal and differentiation to form specialized cell 
types. Stem cells follow both asymmetric and symmetric division. Asymmetric di-
vision of stem cells results in the formation of two daughter cells, one retaining the 
stem cell characteristics and other one differentiating into specialized cell types [46, 
47]. Stem cell self-renewal divisions are controlled by intrinsic and extrinsic (niche 
cells) factors [46, 47]. Failure of stem cell function of tissue maintenance results in 
degenerative diseases; on the other hand, overproliferation of stem cells results in 
tumor development and cancer [47]. Stem cells offer a great opportunity to study 
the growth and differentiation of individual cells into tissues and recent studies sug-
gest that they can be used in the treatment of degenerative diseases and cancer [47].

Studies in recent years demonstrated that miRNAs play an important role in self-
renewal and differentiation of stem cells in a variety of animal model systems [4, 
41, 48–56]. Here, we focus only on the role of miRNAs in stem cell self-renewal 
and differentiation of germ-line stem cells (GSCs) and somatic stem cells (SSCs) 
in Drosophila.

3  miRNAs in Drosophila GSCs: Self-Renewal  
and Differentiation

GSCs are a self-renewing population of germ cells that generate haploid gametes. 
In Drosophila ovary and testis, GSCs are anchored around the niche cells (hub cells 
in testis and cap cells in ovary). Several signaling pathways regulate both male and 
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female GSC systems. Recent studies demonstrated that the miRNA pathway plays a 
crucial role in the GSCs in Drosophila reproductive organs [48, 57–75] (Table 4.1).

3.1 miRNA and Female GSC

In the adult Drosophila ovary, the anterior tip of each germarium contains two 
to three GSCs, escort stem cells (ESCs), and follicle stem cells (FSCs). Each 
germarium contains five to seven nondividing somatic cap cells that physically 
anchor GSCs. Anterior to the cap cells are eight to ten terminal filament (TF) 
cells and inner germarium sheath (IGS) cells. GSC through asymmetric division 
produces a self-renewing GSC, and a differentiating cystoblast (CB) cell, which 
form an interconnected 16-cell cyst by incomplete cytokinesis. These germ cells 
become an oocyte and the nurse cells. In addition to GSCs, two to three FSCs 

Table 4.1  MicroRNA pathway and its function in Drosophila stem cells and tumorigenesis
MicroRNA pathway Function References
Stem cells
dicer-1 Reduction in germ-line cyst production and delayed 

GSC division in ovary
[57]

Maintenance of GSC and SSC population in ovary [59]
loqs GSC maintenance in ovary [48, 53]
bantam GSC maintenance and repress PGC differentiation [60, 64]

Intestinal stem cell proliferation [91]
Ago-1 GSC fate, oocyte formation, and GSC division in 

ovary
[61, 62, 66]

miR-7, miR-278 GSC division and differentiation in ovary and testis [65, 68]
Mei-P26 Restricts growth and proliferation in the ovarian stem 

cell lineage
[63, 71]

Regulates germ cell differentiation in ovary by geneti-
cally interacting with vasa

[67]

miR-184 GSC development and differentiation [69]
miR-275, miR-306 Control stem cell differentiation by regulating Bam in 

testis
[73]

miR-310/13 Regulation of germ and somatic cell differentiation in 
testis

[74]

miR-124, let-7, miR-8/
miR-200

Neuroblast stem cell division and differentiation [87–90]

Tumorigenesis
bantam Promotes growth by limiting expression of Socs36E [112]

Regulates cell proliferation, cell death, and tissue 
growth

[107, 108,  
115, 116]

miR-278 Misexpression in the developing eye causes massive 
overgrowth because of inhibition of apoptosis

[109]

miR-8/200 Growth inhibition by inducing apoptosis and blocking 
cell proliferation

[110]

miR-7 Enhances Notch pathway-induced eye overgrowth [113]
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reside in the middle of each germarium to proliferate and produce an egg chamber 
and follicle cells [76].

The role of miRNAs in Drosophila stem cells was first demonstrated using ovary 
GSC systems, where they promote cell division and maintenance of GSCs in their 
niche [48, 57–62] (Table 4.1). Hatfield et al. [57], using Drosophila ovarian GSC 
systems demonstrated that loss of dicer-1, the dsRNaseIII required for miRNA bio-
genesis, results in marked depletion of developing egg chambers because of the 
reduction in germ-line cyst production. Further, they found that reduction in cyst 
production in dicer-1 mutant GSCs was not only due to loss of GSCs or a change 
in their identity but due to a delayed G1-S-phase transition that is dependent on 
the cyclin-dependent kinase inhibitor Decapo [57]. It has been shown that normal 
processing of pre-miRNA by Dicer-1 required the dsRBD protein Loqs, which is 
further demonstrated to be involved in GSC maintenance in Drosophila ovary [48]. 
Further, it has been found that Loqs, Dicer-1, and Ago-1 intrinsically control the 
self-renewal of GSCs [53, 59]. In addition, Jin and Xie [59] found that Dicer-1 is 
also required for FSC maintenance in Drosophila ovary. Yang et al. [61, 62] found 
that overexpression of Ago-1 protein leads to GSC overproliferation; however, loss 
of Ago-1 results in loss of GSCs, which suggests that Ago-1 plays an essential and 
intrinsic role in GSC fate, oocyte formation, and GSC division [66]. Further, they 
showed that Ago-1 is not required for bag of marbles (bam) silencing and proposed 
that an Ago-1-dependent miRNA pathway may play a crucial role in repressing 
GSC/CB [61, 62]. In addition to the role of Dicer-1 in adult GSC maintenance, 
Shcherbata et al. [60] found that bantam miRNA is extrinsically required for GSC 
maintenance.

Several studies suggest that the miRNA pathway regulates GSC maintenance by 
repressing bam in Drosophila [53, 59, 61, 62]. However, the miRNA pathway that 
controls the balance between self-renewal and differentiation was not clear until 
Neumuller et al. [63] demonstrated that mei-p26, a trim-NHL protein, together with 
bam and by interacting with Ago-1 through the NHL domain inhibits miRNA ex-
pression and controls germ cell differentiation [63]. Further, they also demonstrated 
that mei-P26 regulates several miRNAs including bantam. Further, Liu et al. [67] 
have demonstrated that vasa promotes germ cell differentiation by genetically inter-
acting with Mei-P26 and activating its translation by binding directly to a (U)-rich 
motif in its 3′ UTR. Furthermore, Li et al. [71] have shown that Mei-P26 regulates 
the fates of both GSCs and their differentiating daughters by promoting bone mor-
phogenetic protein (BMP) signaling.

Yu et al. [65] reported that extrinsic signals from the insulin receptor (InR) 
pathway control Dacapo (Dap) expression through Dicer-1 to regulate GSC divi-
sion. They found that dicer-1 can directly regulate Dap levels through the dap 
3′ UTR in GSCs. Further, in a luciferase assay, they found that dap 3′ UTR is 
targeted by miR-7, miR-278, and miR-309. Among these miRNAs, they showed 
that the GSC cell cycle is regulated through dap 3′ UTR by miR-7 and miR-278. 
Furthermore, they showed that miR-7 and miR-278 and Dap-based cell cycle regu-
lation in GSCs are controlled by InR signaling [65]. Lovino et al. (69) have dem-
onstrated that miR-184 controls GSC differentiation by translational repression of 
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decapentaplegic (DPP) receptor Saxophone (Sax) protein levels. Yang et al. [61, 
62] have shown that fragile X mental retardation protein (FMRP) interacts with 
Ago-1 and bantam and is required for GSC maintenance and repressing differen-
tiation, and also needed for repressing primordial germ cell (PGC) differentiation 
and functions as an extrinsic factor for GSC maintenance in Drosophila ovary 
[64]). Recently, Wang et al. [70] provided the evidence that artificial miRNAs can 
effectively downregulate endogenous target genes (in this case, bam, mad, ote, 
and dpp) in GSCs and somatic cells in Drosophila ovary. More recently, Joly et al. 
[75] identified mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4-
mediated translational repression for Drosophila female GSC self-renewal.

3.2 miRNAs and male GSC

The Drosophila testis tip harbors two types of stem cells, GSCs and SSCs. Each 
testis has six to nine GSCs, which are encysted by two SSCs [77, 78]. Both GSCs 
and SSCs are physically attached to a group of 12 nondividing somatic hub cells 
[79–82]. Each GSC divides asymmetrically to form two daughter cells, one retain-
ing GSC identity and the other one called gonialblast (GB) initiating differentiation 
[83, 84] In a similar way, SSCs self-renew and give rise to daughters that differenti-
ate into somatic cyst cells [85]. The GBs undergo four rounds of mitotic division 
with incomplete cytokinesis to form 16 interconnected spermatogonia; however, 
the SSCs will grow without further division and form a thin layer around the sper-
matogonial cyst [86]. Germ cells form spermatocytes and finally undergo meiosis 
and differentiate into sperm [82].

In addition to their role in GSC self-renewal and differentiation, miRNAs are 
also known to play a crucial role in GSC and somatic cell differentiation and GSC-
niche aging in Drosophila testis [68, 72–74] (Table 4.1). Pek and colleagues [68] 
have shown that Maelstrom (Mael) represses the expression of miR-7 that targets 
bam through its 3′ UTR. They found that overexpression of miR-7 in mael mutant 
testes leads to Bam repression, resulting in a differentiation defect. This suggests 
that Mael ensures proper differentiation of GSC lineage by repressing miR-7 [68]. 
Recently, Eun et al. [73] have shown that in the Drosophila male GSC lineage, 
bam mRNA, but not Bam, is present in spermatocytes. They found that repres-
sion of Bam accumulation is attained by miR-275 and miR-306 through the bam 
3′ UTR. Further, they found that failure to block Bam protein expression in sper-
matocytes results in spermiogenesis defects and male sterility, which suggests that 
miR-275 and miR-306 downregulate Bam expression to ensure proper spermatid 
terminal differentiation [73]. Pancratov et al. [74] in a functional screen identified 
miR-310/13 cluster ( miR-310 to miR-313) as a novel antagonist of the Wingless 
pathway that directly targets the 3′ UTR of armadillo ( arm) and pangolin ( pan). 
Interestingly, they found that the miR-310/13 mutant flies show abnormal germ and 
somatic cell differentiation in the Drosophila testis [74]. In addition to the role of 
miRNAs in male GSC and somatic cell differentiation, Toledano et al. [72] have 
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demonstrated that the IGF-II messenger RNA-binding protein (Imp) counteracts 
with Ago-2 and Dicer-2 to regulate unpaired (upd) levels and GSC maintenance. 
Further, they found that Imp expression decreases in the hub cells of aged males 
because of the targeting of Imp by let-7, which suggests that proper expression of 
Imp is essential to protecting upd mRNA from degradation [72].

4 miRNAs in Drosophila SSCs

In the past few years, miRNAs have emerged as a major player in stem cell regu-
lation in Drosophila GSC systems with only very rare reports have described its 
function in other characterized Drosophila stem cell (neuroblast, intestinal and he-
matopoietic) systems. There are few reports that demonstrated the role of miRNAs 
in regulation of Drosophila neuroblast stem cells; these include miR-124 [87, 88], 
let-7 [89], and miR-8/miR-200 [90]. Recently, Huang et al. [91] showed that bantam 
miRNA, which is highly expressed in Drosophila intestinal precursor cells (intes-
tinal stem cells (ISCs), enteroblast (EB) cells) and enteroendocrine (ee) cells and 
weakly expressed in enterocytes (ECs), is essential for Drosophila ISC proliferation 
in response to the Hippo (hpo) signaling pathway. Tokusumi et al. [92] have shown 
that the germ-line differentiation factor Bam and miR-7 antagonize the differentia-
tion-promoting function of Yan to maintain the stem-like hematopoietic progenitor 
state during hematopoiesis in Drosophila.

5 miRNAs in Tumorigenesis in Drosophila

Emerging evidence suggests that dysfunction of miRNAs is correlated with various 
human diseases including cancer. It is known that cancer is the result of genetic 
alternations in oncogenes and tumor suppressors [93, 94]. Recent studies demon-
strated that miRNAs are also involved in tumor formation and function as tumor 
suppressors or oncogenes by modulating the activity of evolutionarily conserved 
signaling pathways, which are usually dysregulated in human cancers [94–98]. It is 
also suggested that miRNAs may promote tumorigenesis by regulating the expres-
sion of some very important class of genes involved in tumor cell proliferation and 
apoptosis [99]. Kumar et al. [100] demonstrated that repressing the miRNA matura-
tion by blocking the miRNA biogenesis components, particularly in cancer cells, 
can promote cell growth, transformation, and tumorigenesis.

Because more than 68 % of the genes involved in human cancer are conserved 
in Drosophila [101, 102], it has become a useful model organism to study cancer 
research [103–106]. Several key cancer events such as loss of cell polarity, the 
competition between tumor and normal cells, and metastasis have been demon-
strated using Drosophila as a model system in the recent years. In the past few 
years, several miRNA pathways have been identified to regulate the tissue growth, 
cell proliferation, tumorigenesis, and metastasis in the Drosophila tumor model 
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[107–114]. Several studies demonstrated that bantam miRNA interacts with Hippo, 
and epidermal growth factor receptor (EGFR) pathways to control tissue growth, 
cell proliferation, and tumorigenesis [108, 111, 112, 114–116]. Herranz et al. [112] 
identified growth regulatory miRNA bantam and its target, Suppressor of cytokine 
signaling at 36E (Socs36E), a negative regulator of the Janus kinase/signal trans-
ducers and activators of transcription (JAK-STAT) signaling pathway, as cooperat-
ing factors in EGFR-driven tumorigenesis and metastasis in a Drosophila model 
for epithelial-to-mensenchymal transformation (EMT). In a misexpression study, 
it has been found that Drosophila miR-278/mirvana in the developing eye causes 
massive overgrowth, which is partly because of the inhibition of apoptosis [109]. In 
an overexpression screen, Vallejo et al. [110] identified Drosophila miR-8 as a po-
tent inhibitor of Notch-induced overgrowth and tumor metastasis. They found that 
 miR-8 could repress growth by inducing apoptosis and blocking cell proliferation 
via repressing serrate ( Ser), a notch ligand. In a recent study, Da Ros et al. [113] 
identified the conserved miRNA miR-7 that enhances Notch pathway-induced eye 
overgrowth in Drosophila. They found that the interference hedgehog (ihog) gene 
is the functional target of miR-7 in Notch-mediated tumorigenesis. Further, they 
found that miR-7 and Notch pathway cooperatively dampen hedgehog (Hh) signal-
ing through downregulation of its receptors ihog and brother of ihog (boi). Their 
study suggests that the genetic cooperation of miR-7, Notch, and Hh is probably 
participating in the development of certain human tumors [113].

6 Conclusion

miRNAs are the key regulatory molecules in several biological processes. miRNAs 
play crucial roles in the self-renewal and differentiation of stem cells. miRNAs func-
tion as oncogenes or tumor suppressors. Abnormal expression of miRNAs results in 
developmental defects, loss of tissue homeostasis, and tumorigenesis. Drosophila pro-
vides an ideal model system to study stem cell regulation and tumor formation. Since 
miRNAs regulate stem cells, tumor-initiating cells, tumor growth, and metastasis, 
they have an enormous potential to be used as therapeutic targets for human cancers.
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