
Chapter 5
Immunobiology of Dendritic Cells in Cancer

Michael R. Shurin, Anton A. Keskinov and Gurkamal S. Chatta

Abstract Dendritic cells (DCs) play a crucial role in initiating immune responses
against both foreign pathogens as well as tumors. DCs also control the type, po-
tency, and extent of T-cell responses, contribute to natural killer (NK) and natural
killer T-cell (NKT cell) antitumoral activity, as well as to B-cell-mediated immunity.
However, antitumor immune responses are often deficient or suboptimal since tumor
cells are able to exploit the functional roles of DCs for tumor progression. Suppres-
sion, dysfunction, and repolarization of DC function in cancer patients all contribute
to the failure of antitumor immune responses and consequent disease progression.
Subversion of tumor immunity by altering the tumor immunoenvironment and DC
subset distribution and function is mediated by various malignant cell-derived and
tumor stroma-derived factors, many of which remain to be identified. Molecular
mechanisms of tumor-mediated dysfunction and repolarization of the DC system are
under investigation, and several signaling pathways responsible for DC malfunction
in cancer have been already described. Here, we summarize findings in the field of
DC biology in cancer and discuss the importance of these data for designing novel
DC-based vaccination strategies, as well as their applicability for combinatorial
therapeutic approaches.
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1 Introduction

Tumor development and progression are associated with suppression and malfunction
of the immune system, of which dendritic cells (DCs) possess many key regulatory
functions, especially those related to cytokine production, antigen presentation to
naive T cells, and polarization and balancing T-helper subsets. DCs are professional
antigen-presenting cells, strategically positioned for bridging innate and adaptive
immunity. DCs can initiate T-cell responses against tumors due to their capacity
to process and present tumor antigens and stimulate naive T cells. However, less is
known about DC differentiation, behavior, and polarization in vivo in tumor-bearing
hosts. Although neglected for many years, the importance of the tumor microen-
vironment in regulating immunology of DC is becoming more defined, as the dual
role of DC in cancer was shown to play an important role in cancer progression [1].

Although alterations in DCs in the setting of cancer were described almost two
decades ago, characterization of tumor-derived factors responsible for DC dysfunc-
tion and the molecular mechanisms of abnormal DC differentiation and activation are
still not well understood. An understanding of how the tumor environment regulates
the DC system and how it impacts the efficacy of DC vaccines and other immunother-
apeutic approaches is far from complete and clinical trials focusing on the protection
of DC from the detrimental effects of the tumor microenvironment are constantly
being tested. In addition to the tumor/stromal cells and their interactions, the other
factors impacting vaccine efficacy in cancer include (a) the psychological stress of
both a potentially fatal disease as well as the stress associated with the treatment of the
disease (Fig. 5.1) and (b) aging immune system, since more than 60 % of cancer arises
in people older than 65 years of age. Thus, in patients with cancer, the DC system
functions under the multidirectorial influences of various local and systemic tumor-
derived and tumor stroma-derived factors, acute and chronic stress hormones, ther-
apeutic agents and factors, as well as multifaceted conditions associated with aging,
infections, autoimmune diseases, and other acute and chronic disorders (Fig. 5.1).

Modulation of DC generation and function by some of the above-mentioned
factors or conditions has been partly described. However, a comprehensive and
systematic analysis of the DC system in the tumor environment has not been re-
ported. For instance, both tumor-derived factors (reviewed in [2], [3]) as well as
nonmalignant cells in the tumor milieu (reviewed in [4]) have been reported to sup-
press DC maturation, function, and longevity. Psychological and physical stressors
may affect the functional activity of DCs through a variety of hormones, neuro-
mediators, and neuropeptides [5]–[7]. Indeed, modulation of DC maturation and
function by glucocorticoids, neuropeptides, and biogenic amines has been described.
Glucocorticoid-treated DCs show higher endocytic activity, lower antigen-presenting
function, and a lower capacity to secrete cytokines [8]. Norepinephrine can impede
interleukin-12 (IL-12) and stimulate IL-10 production in DCs, thus inhibiting their
antigen-presenting capability and hampering their motility and chemotaxis [9], [10].
DCs also express receptors for and respond to calcitonin gene-related peptide, neu-
ropeptide Y, opioid peptides, prolactin, bombesin-like peptides, substance P, and
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Fig. 5.1 Intrinsic and extrinsic mechanisms of dendritic cell regulation in cancer patients. DC
generation, differentiation, polarization, and function are under constant, dynamic, and variable
influences and regulatory pathways operating in patients with cancer. This includes numerous
tumor-derived factors that affect all stages of DC development and may be represented by cytokines,
chemokines, growth factors, prostaglandins, gangliosides, neuropeptides, and many other soluble
and membrane-bound molecules on different cell types in the tumor microenvironment. Additional
modulation of DC function in cancer may result from psychological stressors associated both with
the diagnosis, as well as the effects of the treatment of a potentially fatal illness. Finally, DCs
produce different factors, which may modulate cells in an autocrine and paracrine manner, and may
also change DC responses to other molecules in the local environment. Thus, an understanding
of the complex environmental conditions associated with DC function in cancer is necessary for
harnessing the antitumor potential of these unique immunostimulatory and immunoregulatory cells

other neuropeptides, all of which may be involved in stress-related modulation of
immunity [11]–[16].

As shown in Fig. 5.1, surgery, radiation, chemotherapeutic agents, and hormonal
therapy might alter DC function and survival [17]–[20]. For example, many
chemotherapeutic agents are known to suppress DC activity in therapeutic doses, but
they may indirectly or directly upregulate DC maturation and function when used in
low- or ultralow doses [21]–[25]. Interestingly, certain factors in the common envi-
ronment, e.g., nanoparticles, may directly affect DC function in the lung or alter hom-
ing and function of other immune cells leading to dysfunction of antitumor immunity
and tumor progression. For instance, it has been recently reported that in vivo expo-
sure to single-walled carbon nanotubes (SWCNTs) modifies systemic immunity by
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modulating DC function [26]. Furthermore, nanomaterials internalized by DCs
differently affect their abilities to present antigens to T cells: While C(60)-fullerenes
stimulated the antigen-specific major histocompatibility complex (MHC) class
I-restricted T-cell response, graphene oxide (GO) impaired the stimulatory potential
of DCs [27]. In contrast to C(60)-fullerenes, GO decreased the intracellular levels
of low molecular mass polypeptide 7 (LMP7) immunoproteasome subunits required
for processing of protein antigens. Interestingly, recent studies show that metastatic
establishment and growth of lung carcinoma could be promoted by exposure to
SWCNTs [28].

Furthermore, age-related alterations of DC maturity, function, longevity, and
subpopulation composition also play a significant role in the ability of the DC system
to interact with tumor cells and T cells and induce and maintain an antitumor immune
response in patients with cancer (reviewed in [29]). For instance, increased levels of
IL-6 and IL-10 repeatedly reported in old individuals might have a direct effect on
dendropoiesis (i.e., DC generation) and maturation of DCs and, thus, on their motility
and ability to process and present tumor antigens. Finally, exposure to different
stimuli induces DCs to produce various endogenous mediators, including arachidonic
acid-derived eicosanoids, cytokines, regulatory peptides, and small molecules like
nitric oxide (NO). Many secreted products of DCs can act in an autocrine manner
and modulate cell function; for instance, autocrine IL-10 can prevent maturation
of DCs [30]. Interestingly, aging has been associated with immunological changes
(immunosenescence) that mimic changes observed in the setting of chronic stress as
well as changes seen with cancer [31], [32]. Thus, there may be common mechanisms
of immune alterations in the DC system in cancer, aging, and chronic stress and
numerous factors and agents can be involved in abnormal function of DCs in patients
with cancer. These and many other issues related to differentiation, function, and
clinical application of DCs in cancer have been discussed in the book Dendritic
Cells in Cancer [33].

2 Alterations of DCs in Cancer

Regardless of the pathways and mechanisms responsible for tumor-associated
changes of DCs, functionally three basic subtypes of DC can be seen in tumor-bearing
hosts (Fig. 5.2): normal “unaltered” conventional DCs (cDCs) that can initiate and
maintain immune responses, including antitumor responses; functionally deficient
DCs with suppressed or blocked motility, antigen uptake/processing/presentation,
or cytokine production or expression of costimulatory molecules; and regulatory or
tolerogenic DCs that inhibit T-cell-mediated immune responses by different means.
Because this classification is based strictly on DC function, there are no specific
phenotypic markers to distinguish all functional subsets of DC seen in the tumor
immunoenvironment [34]. In addition, DC function might be dynamically altered
by the local microenvironment and surrounding cells. Functional plasticity of DC is
a well-known phenomenon and different functional subsets of DC were repeatedly
described in patients with cancer.
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Fig. 5.2 Functional subsets of dendritic cells in cancer patients. The presence of numerous cells and
factors affecting differentiation of DC precursors and activity of immature and mature DCs in the
tumor environment results in formation of three basic functional subsets of DCs: normal “unaltered”
immunostimulatory DCs, non-functional or functionally deficient DCs, and protumorigenic regu-
latory DCs. These DCs might belong to different or similar DC subpopulations (e.g., conventional
or plasmacytoid), be on similar or different stages of maturation (e.g., immature, semi-mature, or
mature), and express identical or different phenotypic markers (e.g., high or low MHC, CD80,
CD86, CD40), but they act as inducers or suppressors of antitumor immune responses depending
on the local and systemic environment

From the mechanistic point of view, most of the pathways that are responsible for
altered functionality of DC in cancer can be also grouped in four categories: (1) elim-
ination of functional DCs by blocking their production/differentiation/maturation or
inducing apoptosis in DC or DC precursors; (2) inhibition of critical function of DCs;
(3) polarization of DC subpopulations toward immunosuppressive or tolerogenic
DC subsets; and (4) avoidance of the tumor contact with DCs by downregulating the
expression of DC-attracting chemokines.

In 1988, Stene et al. revealed that melanoma-associated skin DCs (Langerhans
cells) declined in number as melanoma progressed [35]. In 1989, Alcalay et al. de-
scribed a decreased number and altered morphology of Langerhans cells in squamous
cell carcinomas of the skin [36] and showed later (1991) that the antigen-presenting
capacity of lymph node cells might be impaired during tumorigenesis [37]. Halliday
et al. in 1991 demonstrated that tumor may regulate DC attraction and homing at
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the tumor site and suggested that yet-unknown factors may inhibit DC function and
thus induction of antitumor immunity [38], [39]. In 1992, Becker speculated that
outcome of a primary tumor in patients depends on the ability of DCs to enter into
tumors and that tumors might be different in their capacity to destroy or prevent DCs
from entering the tumor site [40]. He also hypothesized that DCs and tumor cells
interacted by releasing cytokines, which abrogate tumor cells or DCs, respectively
[41]. In 1993, Tas et al. showed that DCs are functionally abnormal in patients with
cancer [42]. Colasante et al. in 1995 studied the role of cytokines in the distribution
and differentiation of DC lineage in primary lung carcinomas in humans and con-
cluded on the potential role for granulocyte-macrophage colony-stimulating factor
(GM-CSF), tumor necrosis factor-α (TNF-α), IL-1α, and IL-1β in DC modulation
[43]. In 1996, Gabrilovich et al. reported that DCs isolated from tumor-bearing mice
showed a significantly reduced ability to induce syngeneic tumor-specific cytotoxic T
lymphocyte (CTL) and stimulate allogeneic T cells [44] and Chaux et al. revealed that
tumor-associated DCs express low levels of costimulatory molecules [45]. Enk et al.
in 1997 showed that melanoma-derived factors converted DC antigen-presenting
function to tolerance induction against tumor tissue [46].

Following these initial findings, other teams demonstrated functional suppression
in preparation of human CD34-derived and CD14-derived DCs, as well as murine
bone marrow-derived DCs by both identified and unidentified tumor-derived fac-
tors (Table 5.1). For example, Ninomiya et al. (1999) reported that DCs propagated
from patients with hepatocellular carcinoma expressed significantly lower levels of
human leukocyte antigen-DR (HLA-DR), had significantly lower capacity to stim-
ulate allogeneic T cells, and produced decreased amounts of IL-12 [47]. In vivo,
Lissoni et al. (1999) revealed that the number of circulating DCs in the peripheral
blood of cancer patients was also significantly decreased [48], and these results were
confirmed by others, e.g., in patients with squamous cell carcinoma of the head and
neck (HNSCC) [49], leukemia [50], hepatocellular carcinoma [51], lung cancer [52],
and invasive breast cancer [53]. Metastasis development decreased the number of
circulating DCs even further [18]. Furthermore, blood monocytes isolated from both
patients with glioblastoma and intracranial metastases had significantly reduced ex-
pression of granulocyte macrophage colony-stimulating factor receptor (GM-CSFR)
and showed a reduced capacity to differentiate into mature DCs [54]. Similar data
were reported for other cancers [55]–[58]. Thus, local (at the tumor site) and sys-
temic levels of DC might be markedly lower in cancer patients due to the inhibited
or abnormal dendropoiesis [59], i.e., DC generation and differentiation.

Elimination of functional DCs in cancer may be also associated with the killing
of DCs or acceleration of their turnover. Induction of apoptosis in DCs by tumor-
derived factors was first reported by Esche et al. in 1999 [60] and confirmed by others
[61]–[63]. Furthermore, the results were confirmed by documenting the presence of
a significantly higher proportion of apoptotic blood DCs in patients with early-stage
breast cancer compared to healthy volunteers [64]. Similarly, tumor-mediated cell
death of DC precursors [65] and accelerated early apoptosis of DCs [58], [61], [66]
were also reported.
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The second type of DC abnormalities in cancer includes the functional defi-
ciency of DCs when compared to cells derived from healthy age-matched controls
(Table 5.1). Decreased ability of DCs obtained from cancer patients’ blood or lymph
nodes, or DCs cocultured with malignant cells to stimulate allogeneic T cells, uptake,
process, and present antigen(s), provide costimulatory signals, migrate toward spe-
cific chemokines, and produce IL-12 were repeatedly described for prostate, breast,
renal, liver, lung cancer, HNSCC, melanoma, myeloma, leukemia, glioma, neurob-
lastoma, and other tumor types [65]–[74]. These and other results were also reviewed
in [2], [3], [75]–[79] and therefore are not detailed here.

Polarization of DC subtypes represents the third type of the DC aberration in
cancer (Table 5.1). For instance, there are substantial numbers of tumor-promoting
functional plasmacytoid DCs (pDCs or lymphoid DCs by some classifications, but
not cDCs or myeloid DCs) accumulated in tumor ascites in patients with ovarian
carcinomas [80]. Similarly, estimating conventional and plasmacytoid subpopula-
tions of DCs in the peritoneal fluid of women with ovarian tumors, Wertel et al.
reported that the percentage of pDCs was higher in patients with ovarian cancer than
in women with serous cystadenoma [81]. They also reported that the percentage of
the peritoneal fluid myeloid DCs was significantly lower in patients with ovarian
cancer in comparison to the group of nonmalignant ovarian tumors, while the per-
centage of the peritoneal fluid lymphoid DCs was higher in patients with ovarian
cancer than in the reference group [82]. The presence of pDCs within primary breast
tumors correlated with an unfavorable prognosis for patients [83]. Using fresh human
breast tumor biopsies, the authors observed increased tumor-associated pDC rates in
aggressive breast tumors and showed that these pDCs produced very low amounts
of IFN-α. Interestingly, within breast tumors, pDCs colocalized with regulatory T
cells (Treg cells); the selective suppression of IFN-α production endowed pDCs with
the unique capacity to sustain Foxp3+ Treg expansion [83]. The same team has re-
cently identified transforming growth factor- β (TGF-β) and TNF-α as major soluble
factors involved in pDC functional alteration in cancer [84]. These findings indicate
that IFN-α-deficient tumor-associated pDCs accumulating in aggressive tumors are
involved in the expansion of tumor-associated Treg cells in vivo, contributing to
tumor immune tolerance and poor clinical outcome.

The levels of myeloid or cDC subsets in circulation may also be significantly
lower, while the number of lymphoid or pDC subsets might vary, as was repetitively
reported for patients with different tumor types compared to healthy donors [52],
[85], [86]. Interestingly, these alterations were reverted by surgical resection of the
tumor or by chemoradiotherapy [53], [85], [87], [88] suggesting that tumor-derived
factors are responsible for redirecting DC differentiation (dendropoiesis) in the bone
marrow, i.e., systemically. Indeed, microvesicles isolated from plasma of advanced
melanoma patients, but not from healthy donors, mediated the effect of tumor on
CD14+ monocytes and skewed their differentiation from DCs toward CD14+HLA-
DRlow cells with TGF-β-mediated suppressive activity on T-cell functions [89]. A
subset of these TGF-β-secreting CD14+HLA-DRlow cells was found to be signifi-
cantly expanded in the peripheral blood of melanoma patients compared with healthy
donors.
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Tumor-promoted redirection of dendropoiesis and its repolarization are also asso-
ciated with increased numbers of immature DCs and the appearance of other related
immature cells of myeloid progeny. For example, in addition to having fewer lev-
els of DCs in the peripheral blood, patients with breast and prostate cancer as well
as patients with malignant glioma showed significant accumulation of abnormal
population of HLA-DR+ immature cells (DR+ICs), which in spite of HLA-DR,
CD40, and CD86 expression had reduced capacity to capture antigens and elicited
poor proliferation and IFN-γ secretion by T lymphocytes [86]. Immature DCs fail
to provide an appropriate costimulatory signal to T cells and might induce toler-
ance through abortive proliferation or anergy of antigen-specific CD4+ and CD8+
T cells or through the generation of Treg cells that suppress immune responses by
producing IL-10 and TGF-β [90]. Immature DCs were found at high levels within
tumor-infiltrating leukocytes and increased circulating levels of immature DCs have
also been observed in the peripheral blood of patients with lung, breast, head and
neck, and esophageal cancer [91]. Immature myeloid precursors of DCs may also
suppress T-cell activation as part of a population of myeloid-derived suppressor cells
(MDSCs), a heterogeneous population of myeloid cells that comprises immature
macrophages, granulocytes, DCs, and myeloid cells at early stages of differentiation,
discussed in detail in other chapters of this monograph.

Finally, the last mechanism of decreased number of active DCs associated with
the tumor progression is the loss of expression of DC-attracting chemokines at the
tumor site (Table 5.1). For instance, it has been demonstrated that HNSCC cells do
not express CXCL14 protein and messenger RNA (mRNA), a potent DC-attracting
chemokine [92]. This resulted in low chemoattraction of DCs to the tumor bed, low
numbers of tumor-associated DCs, and deficient induction of antitumor immunity;
however, transduction of CXCL14-negative tumor cells with the CXCL14 gene was
associated with increased DC infiltration, an antitumor immune response, and inhibi-
tion of tumor growth in vivo. Investigation of the mechanisms of loss of CXCL14 in
prostate cancer cells revealed direct evidence for epigenetic regulation of chemokine
expression in tumor cells [93]. Interestingly, melanoma cells might utilize an oppo-
site approach and can effectively chemoattract DCs, modulate their phenotype, and,
eventually, severely damage DC mobility: Melanoma-conditioned DCs exhibited an
increased adhesion capacity to a melanoma cell line in vitro and did not migrate in
response to DC chemokines [94]. The explanation for abnormal DC retention inside
some human malignant lesions may come from another study where it was found that
tumors from patients with hepatocellular carcinoma, colorectal cancer, or pancreatic
cancer were producing IL-8 and that this chemokine attracted DCs that uniformly
express both IL-8 receptors, CXCR1 and CXCR2 [95].

In summary, abnormal dendropoiesis, DC longevity and function, and DC mi-
gration toward or from the tumor site are the key characteristics of the local and
systemic DC dysfunction in tumor-bearing hosts that have a crucial role in immune
nonresponsiveness to tumors and tumor escape [34].
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3 Mechanisms of Dendritic Cell Dysfunction in Cancer

3.1 Factors

Tumors exploit several strategies to evade immune recognition, including the pro-
duction of a variety of immunosuppressive/immunomodulating factors, which might
specifically block or redirect DC maturation, suppress DC survival, and impair
function of DC in the vicinity of tumors [4] (Table 5.2). Historically, the first
tumor-derived factor inhibiting DC differentiation in cancer was identified as vas-
cular endothelial growth factor (VEGF) [96]. For instance, in patients affected by
colorectal cancer, DC numbers inversely correlated with VEGF serum levels, sug-
gesting a possible effect of this cytokine on the DC compartment. In cultures, the
exposure of monocyte-derived DCs to VEGF produced a dramatic alteration of DC
differentiation by induction of apoptosis, alteration of DC phenotypic profile, and
increased CXCR4 expression [97]. VEGF blocks the functional maturation of DCs
from hematopoietic progenitor cells by blocking nuclear factor kappa-B (NF-κB)
transcription. The family of VEGF molecules also plays a key role in recruiting im-
mature myeloid cells and immature DCS from the bone marrow to enrich the tumor
microenvironment [98].

Tumor-derived TGF-β and IL-10 were shown to be responsible for downregu-
lating CD80 expression on blood DCS in myeloma patients [68]. DC maturation,
antigen presentation, and IL-12 production induced by inflammatory cytokines IL-1
and TNF-α or by lipopolysaccharide (LPS) might be inhibited by TGF-β [99]. TGF-
β might also induce apoptosis in DCs [100]. Increased levels of IL-10 in serum
from patients with hepatocellular carcinoma and tumor progression were shown to
correlate with profound numerical deficiencies and immature phenotype of circu-
lating DC subsets [101]. Murine bone marrow-derived DCs that were propagated
in IL-10 and TGF-β (so-called alternatively activated DC) expressed low levels
of Toll-like receptor 4 (TLR4), MHC class II, CD40, CD80, CD86, IL-12p70,
and programmed death-ligand 2 (B7-DC; CD273) and were resistant to maturation
[102]. They secreted much higher levels of IL-10 and efficiently expanded func-
tional CD4+CD25+Foxp3+ Treg cells. We have shown earlier that murine colon
adenocarcinoma cells produce IL-10 and that IL-10 causes downregulation of CD40
expression on DCs and is responsible for inhibited CD40-dependent IL-12 produc-
tion by DCs [103]. These and other studies also revealed the tumor-associated in
vivo effects of IL-10 on DC function in eliciting a type 1 immune response in both
allogeneic and tumor-specific responses [104]. Furthermore, analyzing pancreatic
cancer-derived cytokines responsible for inhibition of DC differentiation, Bellone
et al. (2006) reported that IL-10, TGF-β, and IL-6, but not VEGF, cooperatively
affect DC precursors in a manner consistent with ineffective antitumor immune re-
sponses [105]. However, lung squamous cell carcinoma and adenocarcinoma have
been shown to use different mediators to induce comparable phenotypic and func-
tional changes in DCs: IL-6 versus IL-10+IL-6+ prostanoids, respectively [106].
Renal cell carcinoma (RCC)-derived IL-6 and VEGF were shown to block the ability
of tumor antigen-loaded DCs to induce CTL in the autologous system [107].
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To define the pathways limiting DC function in the tumor microenvironment,
Sharma et al. assessed the impact of tumor cyclooxygenase (COX)-2 expression on
DC activities and reported that inhibition of tumor COX-2 expression or activity
could prevent tumor-induced suppression of DC capacity to process and present
antigens and secrete IL-12 [108]. COX-1- and COX-2-regulated prostanoids and IL-6
were found to be solely responsible for the hampered differentiation of monocyte-
derived and CD34+-precursor-derived DCs by freshly excised solid human tumors
(colon, breast, RCC, and melanoma) [109]. An important role for the EP2 receptor in
prostaglandin E2 (PGE2)-induced inhibition of DC differentiation and function and
the diminished antitumor cellular immune responses in vivo has been also reported
[110]. Finally, PGE2 suppressed differentiation of DCs, it is a potent inducer of IL-10
in bone marrow-derived DCs, and PGE2-induced IL-10 is a key regulator of the DC
pro-inflammatory phenotype [109].

In addition to these “classic” tumor-derived antidendropoietic factors, other
molecules were implicated in tumor-mediated dysfunction of the DC system
(Table 5.2). Melanoma, neuroblastoma, RCC, and lung cancer were shown to pro-
duce and shed various gangliosides, which may suppress dendropoiesis, inhibit DC
function, or induce apoptosis in DCs [63], [69], [111]. Tumor-derived lactic acid is
also an important factor modulating the DC phenotype in the tumor environment,
which may critically contribute to tumor escape mechanisms [112]. Interestingly,
several tumor antigens were recently found to display antidendropoietic properties.
Prostate specific antigen (PSA), which is a serine protease, was able to inhibit gen-
eration and maturation of DCs from CD34+ hematopoietic precursors, assessed by
the levels of expression of CD83, CD80, CD86, and HLA-DR, as well as the ability
of DC to induce T-cell proliferation [113]. When cultured with the MUC1 glyco-
protein, human monocyte-derived DCs displayed decreased expression of CD86,
CD40, CD1d, HLA-DR, and CD83 and were defective in the ability to induce im-
mune responses in both allogeneic and autologous settings. The modified phenotype
of MUC1-treated DCs corresponded to an altered balance in IL-12/IL-10 cytokine
production with a failure to make IL-12 and induce Th1 responses [114], [115].
Finally, human chorionic gonadotropin (hCG), which serves as an important tumor
marker for trophoblastic disease, has been recently shown to upregulate expression
of indoleamine-2,3-dioxygenase (IDO) in DCs [116].

HLA-G molecules, which are normally expressed in cytotrophoblasts and play
a key role in maintaining immune tolerance at the maternal–fetal interface, were
also reported to be expressed on malignant cells and they can be regulated by hy-
poxia [117], [118]. As DCs express immunoglobulin-like transcript 4 (ILT4), an
inhibitory receptor capable of interacting with HLA-G, they may be tolerized by
HLA-G through inhibitory receptor interactions. Indeed, the HLA-G–ILT4 inter-
action leads to development of tolerogenic DCs with the induction of anergic and
immunosuppressive T cells [119].

Finally, human tumors constitutively release endosome-derived microvesicles,
transporting a broad array of biologically active molecules with potential modulatory
effects on different immune cells. The first evidence that tumor-released microvesi-
cles alter myeloid cell function by impairing monocyte differentiation into DCs and
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promoting the generation of a myeloid immunosuppressive cell subset was probably
published byValenti et al. [89], [120] and then confirmed by other teams [121], [122].

3.2 Signaling Pathways

Many immunosuppressive factors produced by tumor cells induce signal transducer
and activator of transcription 3 (STAT3) activation in DCs, blocking their normal
functioning. For instance, treatment of DCs with melanoma-conditioned medium
resulted in reduced expression of IL-12, MHC class II, and CD40 due to the increased
induction of STAT3 [123]. The immunosuppressive effects of tumor-derived factors
on DC differentiation were abrogated in cells from STAT3 knockout mice or by
the treatment of DC precursors with a phosphopeptide that binds the STAT3 Src
homology 2 (SH2) domain and blocks downstream STAT activation. Furthermore,
IL-6-mediated suppression of DC maturation was also abrogated in STAT3-deficient
DC precursors, indicating the significance of STAT3 in IL-6-mediated suppression
of DC maturation and function [123]. Furthermore, constitutive STAT3 activation in
tumor cells was shown to inhibit DC function by the increased induction of STAT3
in immature DCs. Thus, immunosuppression mediated by tumor cells results from
a circuit of STAT3 signaling that begins in tumor cells and eventually activates
inhibitory STAT3 signaling in DCs in part due to the production of cytokines that
increase STAT3 activation in DCs (epidermal growth factor (EGF), VEGF, IL-6, IL-
10, granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating
factor (M-CSF), and GM-CSF) [123]. In addition, STAT3 phosphorylation in DCs
was regulated by IL-6 in vivo, and STAT3 was necessary for the IL-6 suppression
of DC activation/maturation [124]. Interestingly, CD4+CD25+Foxp3+ Treg cells
from tumor-bearing animals may also impede DC function by activating STAT3
and inducing the Smad signaling pathway [125]. The suppression mechanism was
also associated with downregulation of activation of the transcription factor NF-
κB, required TGF-beta and IL-10, and resulted in strong inhibition of expression of
the costimulatory molecules CD80, CD86, and CD40 and the production of TNF-
α, IL-12, and chemokine (C-C motif) ligand 5 (CCL5 or RANTES—regulated on
activation, normal T cell expressed and secreted) by DCs.

Many STAT family members are developmentally regulated and play a role in DC
differentiation and maturation. For instance, the STAT6 signaling pathway is con-
stitutively activated in immature DCs and declines as they differentiate into mature
DCs. Downregulation of the STAT6 pathway is accompanied by dramatic induction
of suppressors of cytokine signaling 1 (SOCS1), SOCS2, SOCS3, and cytokine-
induced SH2-containing protein expression [126]. In contrast, STAT1 signaling is
most robust in mature DCs. Thus, it is likely that cytokine-induced maturation of DCs
is under feedback regulation by SOCS proteins and that the switch from constitutive
activation of the STAT6 pathway in immature DCs to predominant use of STAT1 sig-
nals in mature DCs is mediated in part by STAT1-induced SOCS expression [126].
Recent studies also demonstrate that SOCS1 functions as an antigen-presentation
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attenuator by controlling the tolerogenic state of DCs and the magnitude of antigen
presentation [127]. Since SOCS1 restricts DCs’ ability to break self-tolerance and
induce antitumor immunity by regulating IL-12 production and signaling, it is quite
possible that some products of tumor cells or other cells within the tumor milieu
might induce SOCS1 expression in DCs. Although not proven experimentally, this
pathway may operate in the tumor microenvironment limiting the ability of DCs to
process and present tumor antigens and secrete IL-12.

Another interesting mechanism responsible for tumor-induced downregulation
of MHC class II expression in DCs was reported by Choi et al. They found that
STAT5 bound to the CIITA pI locus during DC differentiation and that the binding
was markedly attenuated by a tumor-conditioned medium or by IL-10 [128]. IL-
10 inhibited the expression of type I CIITA during DC differentiation: GM-CSF-
mediated histone (H3 and H4) acetylation at the type I promoter (pI) locus of the
CIITA gene was markedly increased during DC differentiation and this increase was
blocked by IL-10. This suggests that IL-10-mediated MHC class II downregulation
results from the inhibition of type I CIITA expression. This inhibition is most likely
due to blocking of the STAT5-associated epigenetic modifications of the CIITA
pI locus during the entire period of DC differentiation from bone marrow-derived
precursors, as opposed to a simple inhibition of MHC class II expression at the
immature/mature DC stage.

Wang et al. too speculated that tumor-induced p38 mitogen-activated protein ki-
nase (MAPK) activation and extracellular signal-regulated kinase (ERK) inhibition
in DCs might be a new mechanism of tumor evasion [129]. They showed that tu-
mor supernatant-treated DCs were inferior to normal DCs at priming tumor-specific
immune responses, but inhibiting p38 MAPK restored the phenotype, cytokine se-
cretion, and function of tumor-treated DCs. Tumor-derived factors activated p38
MAPK and Janus kinase (JNK) but inhibited ERK in DCs. Interestingly, Farrent
et al. have recently reported that tumor-mediated myeloid dysregulation may be me-
diated by Stat3-induced protein kinase C isoform βII (PKCβII) downregulation: they
showed that tumors mediate both Stat3 activation and PKCβII downregulation in DC
progenitor cells, a process mimicked by the expression of a constitutive active Stat3
mutant [130].

Since many functions of DCs, such as endocytosis, exocytosis, adhesiveness, and
motility, depend on actin polymerization and membrane rearrangements, Tourkova
et al. analyzed whether small Rho guanosine triphosphatases (GTPases: Cdc42,
RhoA, and Rac1/2), which are primarily involved in regulating these functions in
DCs [111], might be affected by tumor-derived factors. They found that impaired
endocytic activity of DC cocultured with tumor cells was associated with decreased
levels of active Cdc42 and Rac1. Transduction of DCs with the dominant negative
Cdc42 and Rac1 genes also led to reduced phagocytosis and receptor-mediated en-
docytosis, while transduction of DCs with the constitutively active Cdc42 and Rac1
genes restored the endocytic activity of DCs that was inhibited by the tumors [131].

Less is known about signaling pathways that control DC longevity and DC sen-
sitivity to tumor-induced cell death. Early studies showed that Bcl-XL, Bcl-2, and
mitochondrial cytochrome c release mediate resistance of DCs to tumor-induced
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apoptosis [132], [133]. Other data demonstrated that downregulation of phospho-
inositide 3-kinase (PI3K) is the major facet of tumor-induced DC apoptosis [134].
Interestingly, it is known that some cancer cells have increased production of hy-
drogen peroxide (H2O2) [135], [136] and, in DCs, hydrogen peroxide activates two
key MAPKs, p38 and JNK. Activation of JNK, which is associated with inhibi-
tion of tyrosine phosphatases in DCs, is linked to the induction of DC apoptosis
[137]. By targeting different antiapoptotic molecules, including FLICE-like in-
hibitory protein (FLIP), X-linked inhibitor of apoptosis protein or human IAP-like
protein (XIAP/hILP), procaspase-9, and heat shock protein 70 (HSP70), Balkir et al.
demonstrated that antiapoptotic molecules other than the Bcl-2 family of proteins
were involved in tumor-induced apoptosis in DCs [138]. This suggests that tumor-
induced apoptosis of DCs is not limited to the mitochondrial pathway of cell death
and that both extrinsic and intrinsic apoptotic pathways play a role in DC survival in
the tumor microenvironment.

4 Role of DCs in Tumor Escape Mechanisms

A growing body of evidence clearly demonstrates that different subsets of DC are
directly and indirectly involved in controlling tumor growth and progression. How-
ever, with the realization that the DC lineage represents a varied collection of distinct
populations, a question has arisen as to whether certain types of DC are dysregulated
in tumor-bearing hosts, or whether the nature of immunological challenge and state
of DC maturation define particular facets of innate/acquired/tolerogenic responses
in the tumor environment. Numerous studies have revealed that specific DC subsets
might be linked to immunological unresponsiveness and/or tolerance to tumor anti-
gens. For instance, the clinical outcome of children with cancer has been shown to
correlate with circulating pDC count: Children with high pDC counts at diagnosis
showed significantly worse survival than those with low counts and the develop-
ment of cancer was associated with low number of cDCs [139]. Elevated levels of
pDC have been observed as breast cancer disseminates to the bone. The selective
depletion of pDCs in mice led to a total abrogation of bone metastasis as well as
to an increase in the TH1 antitumor response [140]. Thus, tumor-associated pDCs
contribute to the tumor immunosuppressive network. Tumor ascites pDCs induced
IL-10+CCR7+CD45RO+CD8+ Treg cells, which significantly suppress myeloid
DC-mediated tumor-associated antigen-specific T-cell effector functions through
IL-10 [141]. pDCs in tumor-draining lymph nodes might create a local microen-
vironment that is potently suppressive of host antitumor T-cell responses and this
mechanism may be mediated by immunosuppressive IDO.

IDO degrades tryptophan to kynurenine, which is further metabolized to
3-hydroxyanthranilic acid and thus initiates the immunosuppressive pathway of
tryptophan catabolism (see Chap. 6 in this monograph). Emerging evidence suggests
that Treg cells may be generated de novo against specific tumor-derived antigens, and
thus they arise as a direct consequence of antigen presentation in the tumor-draining
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lymph nodes [142]. IDO can also be expressed within the tumor itself, by tumor
cells, or by host stromal cells, where it can inhibit the effector phase of the immune
response [143]. Kynurenine pathway enzymes downstream of IDO can initiate
tolerogenesis by DCs independently of tryptophan deprivation, as tolerogenic DCs
can confer suppressive ability on otherwise immunogenic DCs in an IDO-dependent
fashion [144]. IDO, i.e., tryptophan, kynurenine, or 3-hydroxyanthranilic acid,
could also induce expression of the tolerogenic molecule HLA-G in DCs [145].
Thus, IDO and HLA-G can cooperate in the immune suppression, since HLA-G-
expressing DCs might suppress or alter effector T cells as well. Indeed, activated
CD4+ and CD8+ T cells could efficiently acquire immunosuppressive HLA-G from
antigen-presenting cells through membrane transfers (a process called trogocytosis)
and acquisition of HLA-G immediately reversed T-cell function from effectors to
regulatory cells. These Treg cells were able to inhibit proliferative responses through
HLA-G that they acquired [146]. Targeting IDO in regulatory DCs (regDCs) may
represent a new approach for harnessing DCs in the tumor microenvironment [147].

In support of the concept that certain DC subpopulations play crucial roles in
tumor escape, it was recently reported that tumor expansion could stimulate Treg
cells via a specific DC subset. During tumor progression, a subset of DC exhibit-
ing a myeloid immature phenotype may be recruited to draining lymph nodes and
selectively promote proliferation of Treg cells in a TGF-β-dependent manner [148].
Importantly, tumor cells are necessary and sufficient to convert DCs into regulatory
cells that secrete TGF-β and stimulate Treg cell proliferation. Regulatory DCs in
cancer may directly and indirectly maintain antigen-specific and nonspecific T-cell
unresponsiveness by controlling T-cell polarization, MDSC and Treg differentiation
and activity, and affecting specific microenvironmental conditions in premalignant
niches [149].

Another subset of DCs might contribute to neovascularization at the tumor site.
Recently, Conejo-Garcia et al. reported that within 3 weeks of culture with tumor
cell-conditioned medium, bone marrow-derived DCs could be transdifferentiated
into endothelial-like cells in vitro [150]. They also identified a novel leukocyte
subset within ovarian carcinoma that coexpressed endothelial and DC markers
which may play a role in the formation of blood vessels [151]. Curiel et al. observed
high numbers of pDC in malignant ascites of patients with untreated ovarian
carcinoma and showed that tumor-associated pDC induced angiogenesis in vivo
through production of TNF-α and IL-8 [152]. By contrast, cDCs, which might
suppress angiogenesis in vivo through production of IL-12, were absent from
malignant ascites. Thus, the tumor may attract pDCs to augment neovascularization
while excluding myeloid DC to prevent angiogenesis inhibition.

Thus, one mechanism contributing to immunologic unresponsiveness toward tu-
mors may be presentation of tumor antigens by tolerogenic/regulatory host DCs.
Indeed, using bone marrow chimeras in transgenic mice, Mihalyo et al. have re-
cently reported that DCs, but not CD4+CD25+ Treg cells, play a critical role in
programming CD4 cell responses to tumor antigens during tumorigenesis [153].
Regulatory DCs could be produced from bone marrow precursors in the presence of
GM-CSF, IL-10, TGF-β1, and LPS or TNF-α and they retained their T-cell regulatory
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property in vitro and in vivo even under inflammatory conditions [154]. Another mi-
nor subpopulation of regulatory DCs has been recently described in murine spleen.
These splenic CD19+ DCs that did not express the pDC marker acquired potent
IDO-dependent T-cell suppressive functions [155].

However, proponents of the “maturation” hypothesis suggest that the maturation
state of the DC in the premalignant/inflammatory milieu or in the newly formed
tumor setting predicts the development of an antitumor immune response or tumor
tolerance. An increased proportion of immature DCs with reduced expression of cos-
timulatory molecules was seen or isolated from tumor mass of patients with RCC,
prostate cancer, basal-cell carcinoma, and melanoma or was found in the periph-
eral blood of patients with breast, head and neck, lung, or esophageal cancer [156].
Similar data have been obtained using several mouse tumor models. The maturation
hypothesis was also bolstered by studies showing that in tumor tissues, immature
DCs resided within the tumor, whereas mature DCs were located in peritumoral
areas [157]. Immature DCs cannot induce antitumor immune responses and, most
importantly, immature DCs can induce T-cell tolerance or anergy. Thomachot et al.
showed that breast carcinoma cells produce soluble factors (chemokine (C-C motif)
ligand 20 (CCL20) and TGF-β), which attract DC precursors in vivo and promote
their differentiation into immature DCs with altered functional capacities, and that
these altered DCs may contribute to the impaired immune response against the tu-
mor [158]. Similarly, a medium conditioned by human pancreatic carcinoma cells
induced monocyte-derived immature DCs with inhibited proliferation, expression of
costimulatory molecules (CD80 and CD40) and HLA-DR, and functional activity as
assessed by T-cell activation and IL-12p70 production [105]. Immature DCs gener-
ated from pancreatic carcinoma patients in advanced stages of the disease similarly
showed decreased levels of HLA-DR expression and reduced ability to stimulate
T cells. Direct ex vivo flow cytometric analysis of various DC subpopulations in
peripheral blood from hepatocellular carcinoma patients revealed an immature phe-
notype of circulating DCs that was associated with increased IL-10 concentrations
in serum and with tumor progression [47], [101].

To evaluate whether and to what extent the capacity of tumor-infiltrating DCs
to drive immunization can be turned off by tumor cells, leading to tumor-specific
tolerance rather than immunization, Perrot et al. have characterized the DCs iso-
lated from human non-small cell lung cancer based on the expression of CD11c.
All isolated DCs, including CD11chigh myeloid DC, CD11c− pDC, and a third DC
subset expressing an intermediate level of CD11c, were immature and displayed
poor antigen-presenting function even after TLR stimulation and reduced migratory
response toward CCL21 and SDF-1 [159]. Interestingly, CD11cint myeloid DCs,
which represented approximately 25 % of total DC in tumor and peritumor tissues,
expressed low levels of costimulatory molecules contrasting with high levels of
the immunoinhibitory molecule B7-H1. These data suggest that immature tumor-
associated DCs have an ability to compromise the tumor-specific immune response
in draining lymph nodes in vivo. However, our data demonstrate that immature bone-
marrow-derived DCs cannot suppress proliferation of pre-activated T cells without
pretreatment with tumor-derived factors. Our recent data also reveal that different
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tumor cell lines produce soluble factors that induce polarization of cDCs into regula-
tory DCs, both in vitro and in vivo. These regulatory DCs can suppress proliferation
of pre-activated T cells and are phenotypically and functionally different from their
precursors as well as the classical immature cDC [160]. Understanding the biology
of regDCs and the mechanisms of their formation in the tumor immunoenvironment
will provide a new therapeutic target for repolarizing protumorigenic immunoregu-
latory cells into proimmunogenic effector cells able to induce and support effective
antitumor immunity.

In spite of multiple evidence supporting both “subpopulation”-based and
“maturation”-based explanations of how the DC system is involved in tumor es-
cape (Table 5.3), additional data suggest that the real situation might be significantly
more complex. The first layer of complexity arrives from the results showing that
DC subsets may induce both tolerogenic and immunogenic responses depending on
the environmental stimuli. For example, although the general thought is that pDCs
are usually tolerogenic, it appears that the functional role of pDCs in cancer immu-
nity depends on cytokines that affect the balance between immunity and tolerance in
the tumor and lymphoid organ microenvironment. In an analysis of draining lymph
nodes in breast cancer, pDCs with a relative increase in IL-12 and interferon-γ (IFN-
γ) were associated with a good prognosis, whereas pDCs with a relative increase
in IL-10 and IL-4 were associated with a poor prognosis [161]. In confirmation of
this conclusion, Kim et al. have reported that although pDCs recruited to the tumor
site are implicated in facilitating tumor growth via immune suppression, they can
be released from the tumor as a result of cell death caused by primary systemic
chemotherapy and can then be activated through TLR9 [162]. Thus, synergistically
with cDCs, pDCs may also play a crucial role in mediating cancer immunity. In fact,
new results from a recent clinical trial indicate that vaccination with naturally oc-
curring pDCs is feasible, with minimal toxicity, and that in patients with metastatic
melanoma, it induces favorable immune responses [163]. Thus, we can conclude
that pDCs, as well as myeloid cDCs, have a dual role not only in initiating immune
responses but also in inducing tolerance to tumor antigens.

An additional layer of complexity of the DC subset versus the DC maturation
problem in cancer comes from the data revealing different maturation patterns of
different DC subsets and its differential regulation by other immune cells. For ex-
ample, analysis of the maturation of human blood-derived cDCs and pDCs activated
with TLR ligands in the presence of Treg cells revealed that pre-activated Treg cells
strongly suppressed TLR-triggered cDC maturation, as judged by the blocking of
costimulatory molecule upregulation and the inhibition of pro-inflammatory cytokine
secretion that resulted in poor antigen presentation capacity. Although IL-10 played
a prominent role in inhibiting cytokine secretion, suppression of phenotypic mat-
uration required cell–cell contact and was independent of TGF-β and CTLA-4. In
contrast, the acquisition of maturation markers and production of cytokines by pDCs
triggered by TLR ligands were insensitive to Treg cells[164]. Therefore, human Treg
may enlist conventional DCs, but not pDCs for the initiation and the amplification
of tolerance in vivo by restraining their maturation after TLR stimulation.
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In another study, evidence was provided that maturing cDCs and pDCs express
different sets of molecules that drive distinct types of T-cell responses [165].Although
both maturing cDCs and pDCs upregulate the expression of CD80 and CD86, only
pDCs upregulate the expression of inducible costimulatory ligand (ICOS-L) and
maintain high expression levels upon differentiation into mature DCs. High ICOS-L
expression endows maturing pDCs with the ability to induce the differentiation of
naive CD4 T cells to produce IL-10 but not the Th2 cytokines IL-4, IL-5, and IL-13.
These IL-10-producing T cells are Treg cells, and their generation by ICOS-L is
independent of pDC-driven Th1 and Th2 differentiation. Thus, in contrast to cDCs,
pDCs are poised to express ICOS-L upon maturation, which leads to the generation
of IL-10-producing Treg cells [165].

As such, there is still a confusion in the field as to whether certain DC
subpopulations have evolved to fulfill unique immunological roles in cancer
(Th1/Th2/Th3/Th17 polarization, Treg induction, tolerance, etc.), or whether distinct
DC subsets exist to uniquely respond to tumor-derived stimuli but each participates
in maintaining tolerance or immunity in the immature or mature state. It is also some-
what undecided whether some of the diversity in the DC lineage as determined by
cell surface-molecule expression represents genuine distinct DC subsets or particular
developmental/activation states of the same DC subtype. However, collectively, an
emerging view in the field is that DCs control the course of tumor immunity/tolerance
on at least three levels: (1) the developmental repertoire of DC lineage populations
which can dictate the nature of DC response to a particular stimulus in the tumor
microenvironment, (2) the maturation stage of DCs when cells interact with other
immune cells or respond to immunological signals (i.e., cytokines, chemokines, and
TLR ligands), and (3) the environment within which DCs encounter tumor antigens,
as defined by the tissue type, infiltrating leukocytes, and an inflammatory cytokine
milieu.

Therefore, DCs in the tumor microenvironment serve as a double-edged sword
and, in addition to initiating potent antitumor immune responses, may mediate ge-
nomic damage, support neovascularization, block antitumor immunity, and stimulate
cancerous cell growth and spreading [149]. The importance of these issues and mech-
anisms controlling them is significant, as efforts to harness the power of DCs in
vaccination strategies against tumors would ultimately aim to identify the correct
type of DC for a particular approach and insure that these cells are appropriately
activated or protected from tumor influence to elicit the desired response.

5 Concluding Remarks

Numerous experimental and clinical observations discussed above suggest that
tumor-induced apoptosis or altered differentiation and function of DCs as well
as accumulation of immature DCs or DC precursors with inhibitory and tolero-
genic function could impair antitumor immune responses. For patients with cancer,
the resulting dysfunction of the DC system would result in marked deficiency in
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the induction of antitumor immunity, tumor progression, and probably, low re-
sponse to immunotherapy [34]. This is really important for understanding tumor
immunopathology as well as reevaluating tumor immunotherapeutic strategies since
DCs prepared from patients with cancer are being evaluated as a cellular vaccine
in multiple clinical trials worldwide. However, to date, DC-based immunotherapies
have met with limited success for several reasons, including the restricted longevity
and efficacy of administered DCs in a suppressive tumor environment. Therefore,
alternative approaches, including protection of DC longevity, blockade of tumor-
mediated inhibitory pathways, and prevention of DC dysfunction/polarization ex
vivo, should be evaluated to potentiate the efficacy of DC-based cancer vaccines.
Given that endogenous DCs might be important for fulfilling the potential of various
cellular vaccines, gained knowledge in the area of DC immunobiology in cancer
may help to find new drugs to selectively block suppressive pathways and restore the
original function of DCs.
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