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Abstract A conceptual framework is provided for considering the threshold concept
in natural resource management and conservation. We define three kinds of thresh-
olds relevant to management and conservation. Ecological thresholds are values of
system state variables at which small changes bring about substantial or specified
changes in system dynamics. They are frequently incorporated into ecological models
used to project system responses to management actions. Utility thresholds are com-
ponents of management objectives and are values of state or performance variables
at which small changes yield substantial changes in the value of the management
outcome. Decision thresholds are values of system state variables at which small
changes prompt changes in management actions in order to reach specified manage-
ment objectives. Decision thresholds are derived from the other components of the
decision process. We advocate a structured decision making (SDM) approach within
which the following components are identified: objectives (possibly including util-
ity thresholds), potential actions, models (possibly including ecological thresholds),
monitoring program, and a solution algorithm (which produces decision thresholds).
Adaptive resource management (ARM) is described as a special case of SDM de-
veloped for recurrent decision problems that are characterized by uncertainty. We
believe that SDM, in general, and ARM, in particular, provide good approaches
to conservation and management. Use of SDM and ARM also clarifies the distinct
roles of ecological thresholds, utility thresholds, and decision thresholds in informed
decision processes.

Keywords Adaptive management · Decision threshold · Ecological threshold ·
Structured decision making · Utility threshold

J. D. Nichols (�)
U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA
e-mail: jnichols@usgs.gov

M. J. Eaton
Southeast Climate Science Center, U.S. Geological Survey,
127H David Clark Labs, NCSU, Raleigh, NC27695, USA

J. Martin
Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute,
100 8th Ave SE, St Petersburg, FL, USA

G. R. Guntenspergen (ed.), Application of Threshold Concepts in Natural Resource 9
Decision Making, DOI 10.1007/978-1-4899-8041-0_2,
© Springer Science+Business Media, LLC 2014



10 J. D. Nichols et al.

Introduction

Thresholds and their relevance to conservation are widely discussed by ecologists,
conservation biologists, managers, and policy makers (Burgman 2005; Bestelmeyer
2006). These discussions are certainly useful in many respects, but they can also lead
to confusion about how thresholds should be used in the conduct of conservation. In
this chapter, we provide a conceptual framework for thresholds that we hope will be
useful to those involved in conservation and management. We define three general
classes of thresholds. Our purpose in doing so is not simply to introduce new vo-
cabulary to a subject area already rich in terminology, but rather to draw distinctions
among thresholds that have specific, yet different, uses in conservation programs.
Our focus on the use of thresholds in decision processes requires a description of
such processes, as they provide the framework required for our discussion.

Structured decision making (SDM; Clemen and Reilly 2001) is a logical and
transparent process that requires breaking a decision into its component parts. This
decomposition insures that discussions among stakeholders with different opinions
are properly focused and helps to clarify points of agreement and disagreement. The
components identified in SDM also serve to clarify roles of different participants in
the decision process. Some components focus on values and require substantive input
from all relevant stakeholders, whereas other components focus on system dynamics
and are addressed primarily by managers and scientists. Most relevant to this chapter,
adoption of SDM leads naturally to consideration of definitions and roles of different
kinds of thresholds in the conservation process.

We will structure this chapter by first defining three types of thresholds relevant
to conservation decisions. We then describe the components of the SDM process,
emphasizing the position and role of each type of threshold with respect to these
components. We next describe adaptive resource management (ARM) as a special
case of SDM developed for recurrent decisions characterized by uncertainty. Finally,
we provide a discussion of this threshold framework and advocate its use with SDM
for conservation decision making.

Thresholds

Ecological Thresholds

Three kinds of thresholds are relevant to making decisions in conservation : ecologi-
cal, utility, and decision thresholds (Martin et al. 2009a). Ecological thresholds have
been defined in many ways, but common to most definitions is a point or zone at
which there is a sudden change in the condition or dynamics of a biological system
(e.g., Fahrig 2001; Huggett 2005; Pascual and Guichard 2005; Groffman et al. 2006;
Bennetts et al. 2007). We operationally define an ecological threshold as a value (or
set of values) of a state variable, environmental variable, or rate parameter of a system
at which small changes either (1) produce changes in system dynamics of specified
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Fig. 2.1 Example of an ecological threshold. In this example a small change in the amount of
precipitation (environmental variable) leads to a substantial change in system state from grassland
(ecological state A) to shrubland (ecological state B). The ball and valleys provide an illustration
of the tendency to remain in the same ecological state, or with the possibility to switch to another
ecological state. (Reproduced from Bennetts et al. 2007)

magnitude (typically large or ecologically substantial changes) or (2) cause system
state variables or rate parameters to attain certain specified values. An example of
the first kind of ecological threshold can be found in vegetation communities of the
Chihuahuan Desert (Fig. 2.1). Precipitation is a key environmental variable of this
system, and an ecological threshold is the level(s) of precipitation at which small
changes induce a shift from grass- to shrub-dominated communities and vice versa
(Brown et al. 1997; Groffman et al. 2006). An example of the second kind of ecolog-
ical threshold is Lande’s (1987) concept of extinction threshold for metapopulation
systems. In this case, the proportion of potentially available habitat that is suitable
for the focal species is an important system state variable. The extinction threshold is
the proportion of suitable habitat at which probability of metapopulation extinction
becomes one (Fig. 2.2; see Lande 1987; Fahrig 2001; Benton 2003).

We have no strict views about the functional forms of ecological thresholds, as
illustrated by two examples of thresholds from Martin et al. (2009a). A step function
corresponds closely to most views of the threshold concept. For example, Fig. 2.3a
depicts an ecological threshold as a value of a state variable (1,500 units of water in
a wetland) at which a vital rate (rate of patch colonization) increases from 0 to 0.1.
The threshold concept can also apply to regions of a functional relationship at which
small changes in one variable produce large changes in another. Figure 2.3b depicts
such a case, where changes in water levels within a particular region (600–1,250
units of water) produce large changes in probability of patch extinction. Some
discussions of ecological thresholds focus on shifts of state variables to an absorb-
ing state (e.g., permanent extinction) from which transition is not possible (Lande
1987). Discussions of ecological thresholds frequently include other terms relevant
to system change and dynamics. The concept of “resilience” (Holling 1973; Gunder-
son 2000) concerns the magnitude of perturbation required to induce a substantive
change in system state. “Elasticity” (Bodin and Wiman 2007) refers to aspects (e.g.,
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Fig. 2.2 Probability of
metapopulation extinction as
a function of the amount of
suitable habitat remaining.
The extinction threshold is
the proportion of suitable
habitat at which probability of
metapopulation extinction
becomes one (or very close to
one). (Based on Lande 1987;
Fahrig 2001)
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time elapsed) of transient dynamics following a perturbation as a system returns to
equilibrium.

Our definition of ecological threshold is thus very general, and we acknowledge
that discussions of related concepts can be very wide-ranging. However, the role
of ecological thresholds in management and conservation is very specific: They are
components of models used to predict system responses to management actions. Eco-
logical models need not include thresholds, as threshold concepts may not be relevant
to the dynamics of all ecological systems. However, when ecological thresholds are
relevant to system dynamics and response to management, they are incorporated
in the functional relationships of ecological models (Martin et al. 2009a; see also
Conroy et al. 2003; Bestelmeyer 2006).

Utility Thresholds

We define utility thresholds as values of state or performance variables at which
small changes yield substantial changes in the value of the management outcome.
For example, we might specify that an objective of management for a particular
species in a national park is that the population size should remain above some level,
say N*. Unlike ecological thresholds, which are part of the pattern and process of
nature, utility thresholds are determined by human values. In many cases, utility
thresholds have some ecological basis; for example, they are frequently based on
historical observations of system state variables (e.g., Runge et al. 2006; Martin
et al. 2011). But there is no necessary link between utility thresholds and ecology;
instead, utility thresholds provide explicit statements of what managers value.

Statements of management objectives need not include utility thresholds. For
example, a management objective might be to minimize the probability that an en-
dangered species becomes extinct over a specified time horizon. Utility thresholds
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Fig. 2.3 Illustration of two
types of ecological threshold
based on the example from
Martin et al. (2009a). a The
diagram depicts an ecological
threshold as a value of a state
variable (1,500 units of water
in a wetland) at which a vital
rate (rate of patch
colonization) increases from
0 to 0.1. b The graph depicts a
threshold zone where changes
in water levels within a
particular region (600–1,250
units of water) produce large
changes in probability of
patch extinction

are frequently used in objective functions that include competing objectives. For
example, in Chap. 5 (Eaton et al.) we describe management of potential disturbance
by hikers and tourists to golden eagles in Denali National Park (see also Martin et al.
2009b; Martin et al. 2011). Park managers seek to provide a rewarding experience
to hikers, but also want to maintain a healthy breeding population of golden eagles.
The objective function for this specific decision problem is to minimize the number
of eagle nesting territories at which hiker access is restricted, while maintaining the
occupancy of potential territories above a specified utility threshold (e.g., 0.8).

Decision Thresholds

We define decision thresholds (sometimes referred to as management thresholds, see
Bennetts et al. 2007) as values of system state variables that should prompt specific
management actions. Decision thresholds are thus conditional on, and derived from,
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Fig. 2.4 Policy matrix showing the optimal number of restricted territories as a function of the
number of eagle territories that are occupied. (From Eaton et al., Chap. 5)

ecological and utility thresholds. In the example of Denali golden eagles and hik-
ers, golden eagle occupancy proportion of potential nest sites is potentially affected
by hiker disturbance. The management decision is whether to close hiker access
to potential territories. Because of the desire to minimize restrictions to hikers, if
projected eagle occupancy is sufficiently high relative to the utility threshold, hikers
will not be restricted. However, as current eagle occupancy reaches levels that are
sufficiently low that projections indicate a good possibility of dropping below the
utility threshold, the optimal action will be to restrict hikers. The value of the state
variable(s) (proportion of potential territories that are occupied) at which the recom-
mended action shifts from no hiking restrictions to restrictions can be viewed as a
decision threshold.

An example policy matrix for the Denali golden eagle example presented in
Chap. 5 (see also Martin et al. 2011) is shown in Fig. 2.4. While the detailed analysis
of Martin et al. (2011) focused on 25 out of 93 territories that were believed to have the
potential to be disturbed by hikers, Eaton et al. (Chap. 5) focused their analysis on a
hypothetical 90 nesting sites, all with the potential for closure. Specifically, the man-
agement decision is, “How many of these sites should be closed to hikers in order to
minimize closures while keeping the projected number of occupied eagle territories
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above a utility threshold based on historic data?” A stochastic dynamic programming
algorithm (Bellman 1957) was originally implemented using the software of Lubow
(1995) to derive the optimal policy (Fig. 2.4). The decision policy is based on the
number of these 90 sites that are occupied. The vertical axis in Fig. 2.4 represents the
management decision at any level of system state, specified as number of territories
restricted. Under any of the four proposed dynamic models, the optimal number of
restrictions is 0 sites if the number of occupied sites is between 80 and 90, so there is
no decision threshold for these values of the state variable. However, if the number
of occupied territories drops to 79, then the optimal number of restricted sites (under
one hypothesis of occupancy dynamics) shifts from 0 to 6. This change in number
of occupied territories from 80 to 79 thus represents a decision threshold, because
different actions are recommended for these two different values of the state variable.

Sources of Confusion

Discussions of thresholds and their role in conservation have not always been clear,
especially with respect to the distinctions among the three types of thresholds that
we have identified. For example, it is common for managers to equate utility and
decision thresholds. One approach to management under the declining population
paradigm (Caughley 1994) is to view a finite rate of population increase (λ) of 1
simultaneously as a utility and a decision threshold. A declining population (λ < 1) is
viewed as undesirable, such that λ = 1 is a utility threshold. The manager periodically
tests for a negative trend in abundance (e.g., using monitoring data and statistical
models and inference procedures). If a “significant” negative trend is detected, then
management actions are taken, so λ = 1 is also viewed as a decision threshold.

Management under the SDM approach that we advocate tends to produce decision
thresholds that are more conservative than this trend-detection approach. If λ = 1
is our utility threshold, then under optimal management, actions typically occur
before the population is actually declining, in an effort to keep λ ≥ 1. Indeed, the
trend-detection approach has been criticized as leading to unnecessary delays in
management actions (Maxwell and Jennings 2005; Nichols and Williams 2006).
In addition, the usual approach of placing trend detection in a hypothesis-testing
framework invites discussion about type I and II error rates (e.g., arbitrary α for
hypothesis testing) and the relative risks associated with these errors (see Field et al.
(2004) for a discussion of this topic). Use of SDM and treatment of decision processes
as optimization problems, rather than as problems of hypothesis testing, produce
decision thresholds that frequently differ from utility thresholds.

Synthesis

Ecological thresholds may characterize the dynamics of managed ecological systems.
When this is true, and when they can be identified (this can be difficult), they should
be incorporated into the models used by managers in the decision process. Utility
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Fig. 2.5 Relationships among
ecological, utility, and
decision thresholds.
(Modified from Martin et al.
2009a)

thresholds reflect human values about ecological systems and may be included in
management objectives. Decision thresholds are derived from the ecological and
utility thresholds or, more generally, from management objectives, available actions,
and models of system dynamics and responses to management. These relationships
among the different types of thresholds are depicted in Fig. 2.5.

Structured Decision Making (SDM)

SDM is a formal decision process employed to identify decisions that are optimal
with respect to specified objectives. SDM is rooted in decision theory, which provides
a useful framework for making decisions about the management of virtually any
kind of system (Bellman 1957; Intriligator 1971; Williams et al. 2002; Burgman
2005; Halpern et al. 2006). SDM has been used in a variety of fields, including
engineering, economics, and natural resource management (e.g., Johnson et al. 1997;
Clemen and Reilly 2001; Miranda and Fackler 2002; Halpern et al. 2006). In the
context of conservation, the elements of the decision-making problems often include
the following components: objectives, potential management actions, model(s) of
system behavior (specifically, models that predict how system state is expected to
change with application of each different management option), a monitoring program
to provide estimates of system state variables, other variables related to management
returns, system vital rates, and finally a method to identify the solution (Williams
et al. 2002; Dorazio and Johnson 2003; McCarthy and Possingham 2007). Two of
these components, model(s) and estimates of system state, are typically characterized
by substantial uncertainties that must be accommodated in the optimization process.

Objectives and Management Actions

The specification of objectives is a critical component of any decision-making pro-
cess. Objectives should reflect the values of relevant stakeholders and constitute
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specific statements of what is to be achieved by implementing management actions.
Objectives provide the currency by which alternative decision options are judged
(Clemen and Reilly 2001; Conroy and Moore 2001). Examples of objectives relevant
to conservation include maximizing species diversity in a natural area or minimiz-
ing the probability of quasi-extinction of a threatened species (Kendall 2001). As
noted above, objectives may be stated as utility thresholds, such as maintaining a
population size at or above some specified value.

In cases involving multiple stakeholders with competing interests, utility thresh-
olds are often used as a means of providing constraints on competing objectives.
In the example of Denali golden eagles (Martin et al. 2011; Eaton et al., Chap. 5),
competing objectives were a desire to permit hikers to fully enjoy Denali National
Park and a desire to maintain a healthy breeding population of golden eagles. The
hypothesis that disturbance by hikers may limit occupancy and/or reproductive suc-
cess of golden eagles at potential nesting sites leads to a consideration of trade-offs
between objectives. In this case, the objective was expressed as minimizing the
number of sites at which hiker access was restricted, subject to the constraint that
predicted golden eagle occupancy or successful reproduction exceeded a specified
utility threshold (Martin et al. 2011; Eaton et al., Chap. 5). Thus, utility thresholds
may be used to specify simple objectives or to serve as constraints for problems with
competing objectives.

Objectives (including associated constraints) should generally be determined
through discussions among stakeholders (Kendall 2001). This determination can
be one of the most difficult steps in a decision process, especially in the common
case where different stakeholder groups have competing values and interests. For-
mal techniques are sometimes used to elicit values and select appropriate objectives
(see Clemen and Reilly 2001; Burgman 2005). Once objectives and constraints have
been selected, they can be formalized mathematically into an objective function. The
objective function quantifies the benefit (or return) obtained by implementing spe-
cific decisions at each time step, accumulated over the time horizon of the decision
problem (Lubow 1995; Williams et al. 2002; Fonnesbeck 2005).

The other component of SDM that is driven primarily by human values is the se-
lection of the set of management actions to be considered. Frequently in conservation
settings, the set of available actions is very small. Actions can include regulations
that restrict harvest or various activities that cause human disturbance to a natural
area (boating, hiking, using snowmobiles). Actions can also include various forms
of habitat management, land acquisition, translocation of animals, etc. Sometimes,
actions (e.g., predator control) that may be potentially useful and cost-effective are
viewed as unacceptable based on human values. In summary, objectives and the
set of potential management actions are not established by managers and scientists
alone, but should be based on the values of all relevant stakeholders. Objectives and
available actions are extremely important in SDM as they effectively drive the entire
decision process.
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Model(s) of System Behavior

Informed decisions require some basis for predicting effects of the different actions
under consideration. Absent the ability to predict consequences of management ac-
tions, such actions might be determined by virtually any random process, but terms
such as “management” and “conservation” do not really apply to such uninformed
manipulation of a system. Models can be viewed as structures that provide predictions
based on hypotheses about how the focal system “works” or, more specifically, how it
responds to management actions. Models may reside in the heads of wise managers,
or they may be mathematical, perhaps incorporated into computer code. Models
that project the consequences of management actions should generally be devel-
oped by scientists and managers familiar with both the managed system and general
principles of system dynamics. Although input from knowledgeable stakeholders is
welcome, stakeholders are generally not as important to model development as they
are to determining the value-driven components of SDM (objectives and actions).

Models used in SDM typically incorporate relationships between management
actions and either (1) the vital rates that determine state variable dynamics (e.g.,
Fig. 2.3) or, less frequently, (2) the state variables themselves. These relationships
may include ecological thresholds (Fig. 2.3). In the case study of Denali golden
eagles (Martin et al. 2011; Eaton et al., Chap. 5), the management action (closure of
a nesting site to hikers) is believed to increase the probability of a site making the
transition from any state to the desired state of “occupied.” However, scientists and
managers are uncertain about the importance of disturbance to occupancy by eagles
at a site. For this reason, several competing models are considered in the decisions
for the Denali golden eagles. The example presented by Eaton et al. (Chap. 5)
posits four hypotheses regarding the impact of disturbance and the availability of
a particular prey species on eagle occupancy dynamics. Competing models differ
in the hypothesized effects of management and prey level on parameters governing
occupancy and include one model that incorporates an ecological threshold for prey
abundance and another that assumes no effect of prey level or disturbance (and
therefore of site closure to hikers) on golden eagle occupancy.

In order to incorporate this uncertainty (four models reflecting very different
hypotheses about the effects of management) into the decision process, we must
specify the relative influence of each model on the decision. Relative influence should
be determined by the relative degree of faith we have in the predictive abilities of
the models. We can specify the influence of each model on the decision using model
“weights” or “credibility measures.” These weights lie in the interval [0, 1] and sum
to one for the members of the model set. In our Denali case with four models, for
example, we might begin by assigning a weight of one fourths to each model (e.g.,
if we had no prior information as to which models were better predictors). These
weights would indicate that we have equal faith (or equal uncertainty) in each model in
the set. There are multiple reasonable ways to determine initial model weights if some
prior information exists, including analysis of historical data and expert opinion. In
recurrent decision problems, the ability to monitor effects of management actions
provides an opportunity to learn. For recurrent decisions, a formal approach can be
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used to update model weights over time based on their relative predictive abilities as
revealed through monitoring (see ARM).

Monitoring Program

Monitoring is important for informed decision making and SDM in providing es-
timates of system state for making state-dependent decisions. Many decisions will
be state dependent as actions are likely to be very different depending on whether
the system is judged as being near objectives (e.g., near a utility threshold) or far
from them. In addition to state dependence of decisions, monitoring data are also
used to assess the success of management. In the case of recurrent decisions, mon-
itoring serves two additional roles: (1) providing the ability to learn by comparing
model-based predictions with estimates of system state and related variables and
(2) providing a means of obtaining updated estimates of key model parameters for
periodic model revisions (Yoccoz et al. 2001; Nichols and Williams 2006; Lyons
et al. 2008).

We note that these explicit roles of monitoring data in SDM suggest develop-
ment of a monitoring program tailored as a specific component of SDM. Omnibus
monitoring programs (developed to be generally useful, but not tailored to a specific
purpose) are frequently claimed to be useful for informing management, but in real-
ity they usually are inadequate or at least suboptimal for use in SDM (Nichols and
Williams 2006). Monitoring is usually based on survey methods that yield some sort
of count (of individual animals, of species, of sites occupied by a species, etc.). Good
monitoring programs deal with two important sources of variation in such counts,
geographic variation and detectability (Yoccoz et al. 2001; Williams et al. 2002).
Geographic variation concerns the spatial variation found in most state variables and
the frequent inability to conduct counts over the entire area of interest. Dealing with
geographic variation requires selection of sites at which counts are conducted, in
such a way as to provide inference about sites not selected (e.g., Thompson 2002).
Detectability refers to the fact that even in sites where we do conduct our counts, we
virtually never detect all individual animals (or species or occupied sites) that are
actually present. This source of variation requires that we estimate the probability of
detection in order to use count data for inference about the actual state variable(s) of
interest, and a variety of methods has been developed for this purpose (Seber 1982;
Williams et al. 2002; Borchers et al. 2003).

Solution Algorithm

The components described above, objectives, potential actions, models, and mon-
itoring, provide the information needed to make an informed decision. However,
taking this information and using it to develop an optimal, or even good, decision is
frequently a nontrivial task. Often in natural resource management, a manager will
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examine available information and use common sense, intuition, or some other kind
of thought process to decide on what action to take. However, a variety of optimiza-
tion methods can be used to determine optimal decisions for well-defined problems
in natural resource management (Walters and Hilborn 1978; Williams 1982, 1989,
1996, 2009; Williams et al. 2002; Williams and Nichols Chap. 4). The advantage of
optimization approaches is that they yield the best possible decision recommenda-
tions with respect to the other SDM components. Optimization approaches result in
policy or decision matrices (Fig. 2.4) that specify the optimal action for each possible
system state (for each combination of system state variables). As noted above, deci-
sion thresholds represent locations in state space at which a change in state leads to
a change in the optimal action. Objective solution algorithms (such as optimization
algorithms) usually produce unambiguous policy matrices, reinforcing a previous
point that decision thresholds are derived from the other components of the SDM
process, including utility thresholds that are incorporated into objectives and any
ecological thresholds that may be found in the system models (Fig. 2.5).

Adaptive Resource Management (ARM)

SDM is a general approach that can be used for virtually any kind of decision prob-
lem. Many problems in natural resource management entail recurrent decisions, in
the sense that management decisions for a system are made at various points over
time, as with annual decisions about harvest regulations or habitat management, for
example. Because of the need to deal adequately with system dynamics, solution
(e.g., optimization) algorithms for recurrent problems can be more difficult than
those developed for a single time step. Specifically, the optimization must account
for the fact that a decision this year influences the state of the system at the time
of next year’s decision. So a decision this year will influence the decisions that are
available (and wise) next year. Thus, optimization based on a single time step can
result in suboptimal decision policies, and the optimization algorithm must deal with
the entire sequence of decisions for the time horizon of the process. Stochastic dy-
namic programming (Bellman 1957; Lubow 1995; Williams et al. 2002) is a powerful
approach to optimization when dealing with recurrent decision problems.

Many (most) decision problems in natural resource management are character-
ized by substantial uncertainty. Environmental variation and resulting variation in
system dynamics are well-known sources of uncertainty to all ecologists and wildlife
managers. Partial observability, the inability, to observe nature directly, is also well
known to those who study natural systems as we must almost always rely on inference
methods that include sampling variation or error of estimation. Partial controllability
refers to the indirect and/or imprecise application of management actions, as when
our actions dictate hunting regulations rather than the precise rate of hunting mor-
tality to be imposed on a managed population. Structural uncertainty refers to our
typically inadequate understanding of managed systems and how they respond to
management (i.e., uncertainty about system dynamics). For example, we may wish
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to incorporate in the decision process multiple hypotheses about system response
to management. These forms of uncertainty constrain most problems in natural re-
source management, limiting the effectiveness of management to varying degrees
(Williams 1997).

ARM (Holling 1978; Walters 1986; Williams et al. 2002; Williams et al. 2007)
was developed for use with recurrent decision problems characterized by uncertainty.
In addition to producing difficult optimization problems, recurrent decisions provide
an opportunity to learn and to reduce structural uncertainty. Specifically, uncertainty
is reduced by comparing predictions (from models) against observations (from moni-
toring) of system response. This reduction in uncertainty and corresponding increase
in understanding are then used in adaptive management to increase the effectiveness
of management over time. To summarize, ARM was developed for recurrent deci-
sion problems characterized by uncertainty. Efforts to simultaneously manage in the
present and reduce uncertainty for better management in the future are definitive of
ARM. The adaptive management process includes two phases, a deliberative phase
and an iterative phase.

Deliberative Phase

The deliberative or “setup” phase of adaptive management (Williams et al. 2007)
entails developing and assembling all of the SDM components. The development of
a clear objective statement and the decision about what management alternatives to
consider require input from all relevant stakeholders. One of the most common factors
underlying failure of decision processes is stakeholder groups that do not believe
they have had adequate input to the process. Even reasonable objectives will be
criticized if stakeholder groups perceive that their input has not been solicited or has
been ignored. Stakeholder involvement will frequently require joint meetings, and
facilitation is sometimes useful. It is very useful to have some meeting participants
who are accustomed to developing precise objective statements from general opinions
and value statements. Regardless of the exact approach used to develop objectives
and select potential management actions, these two SDM components essentially
drive the entire decision process, and their importance should not be underestimated.
Utility thresholds are frequently used in the development of objectives, especially as
constraints in objective functions that include competing objectives.

The deliberative phase also requires development of initial models of system
dynamics and response to management actions. Model development is driven by
the selection of objectives and potential management actions, as model output must
minimally include the response variables that are relevant to objectives (and that are
thus used to value different outcomes) and provide predictions about responses of
key system variables to the different management actions. Uncertainty about system
response can be incorporated using multiple discrete models or by including a very
general model with uncertainty characterizing a key parameter. Ecological thresholds
may be included in system models if they are thought to characterize system dynamics
and responses.
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A monitoring program should also be established during the deliberative phase,
and the characteristics of the program should be driven by the other decision process
components, objectives, available actions, and models. The monitoring must provide
estimates of key variables that reflect system state as such estimates are needed for
state-dependent decisions (i.e., for establishment of decision thresholds). The moni-
toring must provide estimates of variables relevant to objectives, so that management
success can be judged. Because adaptive management involves recurrent decisions,
the monitoring program must provide estimates of variables and rate parameters that
can be used to assess model adequacy and, periodically, to update model parameters.

A solution algorithm or approach should be identified as well. There must be
some method of integrating and using the other SDM components to develop a
management recommendation (select the “best” action). We have emphasized opti-
mization approaches (Williams and Nichols, Chap. 4) as these are readily defended,
but other approaches may be used as well. For example, a common approach involves
simulation-based projections of consequences of different sequences of management
actions, an approach that yields the best set of actions among those considered (e.g.,
McGowan et al. 2011). Sometimes, the decision is simply made by individuals
without the benefit of computations of any sort. Although this latter approach is
sometimes difficult to defend, it is commonly used. The adaptive management pro-
cess requires some means of selecting the appropriate action based on the decision
process components, but that approach does not have to involve optimization.

Iterative Phase

The iterative phase of adaptive management uses the SDM components assembled
during the initial deliberative phase to make management decisions. The decisions
involve selection of a management action from those available, and the period-
icity is dictated by the decision process. Some decisions (e.g., establishment of
waterfowl-hunting regulations) are made annually whereas other decisions may in-
volve longer time periods and/or irregular intervals between decisions. The decision
itself is obtained using the selected solution algorithm in conjunction with the spec-
ified objectives, the available actions, and the current state of knowledge about the
system. That knowledge includes the system models and their associated credibility
measures, as well as the current state of the system as estimated via the monitoring
program.

Once the decision has been made, the selected action is applied to the system.
The decision is based on the predicted system response to the different actions, as
indicated by the different models. The action combines with relevant environmental
variables to drive the system state to a new position, which is then identified by the
monitoring program. Each system model also makes a prediction about system state
following application of the management action. This comparison of predicted and
estimated system state leads naturally to the updating of model weights or credibility
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measures, with increased weights for models that predict well and decreased weights
for models that predict poorly.

Specifically, this updating can be accomplished using Bayes’ Theorem (e.g.,
Williams et al. 2002)

pi(t + 1) = pi(t) × Pi(xt+1|xt , dt )
n∑

i=1
pi(t) × Pi(xt+1|xt , dt )

(2.1)

where pi(t) is the credibility measure (weight) for model i at time t, n is the number
of models in the model set, and Pi(xt+1|xt , dt ) is the probability of the observed
system state at t + 1 under model i, given that the system was in state xt at time
t and that decision dt was implemented. Pi(xt+1|xt , dt ) can be computed based on
the monitoring data, for example, using standard likelihood-based models (Nichols
2001; Williams et al. 2002). Updating is thus a function of the model weight or
prior probability at time t, reflecting knowledge accumulated until t, and the new
information about how well the model predicted the most recent state transition
between t and t + 1. These updated probabilities then become the new model weights
(or new priors) for the next decision and set of predictions (Kendall 2001; Nichols
2001; Williams et al. 2002).

At the next decision point, the above process is repeated, with some components
remaining unchanged, specifically the objectives, available actions, models, and so-
lution algorithm. However, knowledge of the system and its dynamics is updated
as the new decision utilizes the current estimate of system state and the updated
model weights, thus emphasizing in the decision process those models that have
performed best over the accumulated history of the decision process. This use of
multiple models with associated weights that evolve through time provides a for-
mal approach to learning and is definitive of adaptive management (Walters 1986;
Williams et al. 2002; Williams et al. 2007). Provided that reasonable models have
been included in the model set, this iterative process should lead to the identification
(high model weights) of models that provide good predictions. Thus, the adaptive
process provides decision thresholds at each decision point that reflect the current
state of knowledge about system response to management actions. The process leads
to improved knowledge of the ecological system and its response to management,
including any ecological thresholds that characterize system behavior.

Integration of Phases and Double-Loop Learning

The usual progression of an adaptive management project is to begin with the oblig-
atory deliberative phase and to then implement the iterative phase. The deliberative
phase produces the needed decision components, and the iterative phase then uses
them to produce informed decisions at each decision point. The term “double-loop
learning” (Lee 1993, p. 148; Williams et al. 2007) has been used to describe the
process of revisiting the components of the initial deliberative (setup) phase, based
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Fig. 2.6 Schematic diagram
of double-loop learning in
adaptive management. Within
the setup phase, utility
thresholds may occur in
objectives, and ecological
thresholds may occur in
models. Within the iterative
phase, decision thresholds
will typically be used in the
decision making step. (From
Williams et al. 2007)

on experience with the process. For example, periodic input from stakeholders may
indicate that objectives themselves should be changed and/or management actions
should be modified or expanded (Runge et al. 2006). If none of the models in the
model set provides consistently good predictions (e.g., as indicated by model weights
that fluctuate, but do not accumulate for one or two models), then the models them-
selves should be revisited. Frequently, examination of the directions of differences
between predictions and estimates of state variables may offer clues to the modifica-
tion of models. When monitoring programs provide imprecise estimates or otherwise
weak inferences about relevant variables or parameters, then these programs should
be revised to correct these deficiencies. Finally, computing research may lead to
improved solution algorithms that merit consideration and possible use.

Any of the above reasons provides a motivation to move out of the iterative
phase and back into the deliberative phase of adaptive management (Fig. 2.6). Such
movement typically occurs at a time scale that is longer than that of the iterative de-
cision process phase. Nevertheless, such double-loop learning provides an important
mechanism for learning and adaptation that extends beyond the evolution of model
weights to every component of the decision process, including stakeholder views
and institutional changes.

Discussion

This chapter has focused on the threshold concept as relevant to management and
conservation. Certainly, much has been written about ecological thresholds, and
we have contributed little to this discussion and literature. Rather we have tried
to draw distinctions among three kinds of thresholds relevant to conservation, to
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clarify their origins (how does each threshold arise), and to describe the specific
role of each in decision processes. The basic distinctions and origins are depicted in
Fig. 2.5. Ecological thresholds, regardless of their detailed definitions, are relevant
to decisions as components of ecological models that are used to predict system
responses to management actions. Ecological thresholds arise from our attempts to
provide simplified descriptions of natural systems and reflect our knowledge of such
systems and their behaviors. Utility thresholds are included in statements of process
objectives and are especially useful when objectives include multiple, competing
objectives (e.g., maximally exploit resource x while maintaining resource y above
some minimum level, the utility threshold). Utility thresholds arise not only from our
understanding of managed systems, but also from our judgments about reasonable
goals of system management. Utility thresholds are thus based on human values, and
their development requires input from all relevant stakeholders. Decision thresholds
are then derived from ecological and utility thresholds, in the sense that they are
determined by management objectives, available actions, system models, and the
decision solution algorithm.

Because these distinctions and definitions are imbedded within a management
context, we described one approach to informed management, structured decision
making (SDM). SDM is perhaps not the only approach to informed management,
but it is logical, conceptually simple, and thus worthy of description and emphasis.
Adaptive resource management (ARM) was then described as a form of SDM ap-
plied to recurrent decisions in the face of uncertainty. In particular, ARM provides
a mechanism for learning and thus reducing uncertainty for the purpose of better
management in the future. Our definitions and distinctions for types of thresholds
are consistent with our descriptions of SDM and ARM decision processes and thus
provide a coherent framework for viewing thresholds in the context of conservation
and management. The management problem described in Eaton et al. (Chap. 5) is
intended to illustrate these concepts of thresholds and informed decision processes.
It is our hope that these chapters will promote use of SDM and ARM processes as
logical ways to approach serious conservation decisions.
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