
Chapter 12
Ecosystem Trajectories: A Statistical Approach
to Analyze Changing Pressure-Response
Relationships Over Time

Jacob Carstensen

Abstract There is increasing empirical evidence that ecosystem responses to chang-
ing pressures follow different pathways during the degradation and recovery phases. I
present a statistical inferential approach based on generalized additive models (GAM)
to substantiate such conclusions. The approach analyzes the time trajectories of de-
partures from a proposed functional relationship between pressure and response.
The trajectory analysis provides a general exploratory tool to uncover changes in
pressure-response relationships that may not be apparent from plotting the data as
well as a model diagnosis tool. Simulations revealed that the approach can separate
the time trajectory from the functional relationship, when the observed pressure vari-
able is well determined. Four coastal ecosystems from Duarte et al. (Estuaries and
Coasts 32:29–36, 2009) were reanalyzed to exemplify the approach, providing sta-
tistical evidence of separate pathways during eutrophication and oligotrophication.
For the many empirical studies on ecological regime shifts and shifting baselines I
recommend that the trajectory analysis, in combination with other analytical proce-
dures, is employed to document the existence of such effects with sufficient statistical
confidence.

Keywords Ecosystem restoration · Eutrophication · Generalized additive model ·
Multi-stressors · Regime shift · Shifting baseline · Statistical identification · Time
series analysis

Introduction

On a geological time scale, our planet has experienced a relatively stable environment
for the last 10,000 years (Petit et al. 1999), known to geologists as the Holocene,
but for the last couple of centuries, also termed the Anthropocene (Crutzen 2002),
human activities have become the main driver of environmental change at the global
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scale and also at the local scale throughout most regions of the earth (Rockström
et al. 2009). These anthropogenic drivers have exerted increased pressure on world’s
ecosystems (Vitousek et al. 1997), and the acknowledgment and scientific docu-
mentation of the associated deleterious effects have prompted political responses
to alleviate these pressures in an attempt to restore ecosystem functioning. Action
plans addressing various sources of emissions were established on the pervasive be-
lief that ecosystem responses to increasing pressures could be reversed and that a
previously observed and desired ecosystem state could be restored. The fundamental
tenet was that ecosystem decline and recovery would follow the same pathway, lin-
ear or nonlinear, and that such relationships between driver and response were time
invariant.

There is growing observational evidence that this tenet is essentially flawed. The
ozone layer has not been restored to past levels after the implementation of the Mon-
treal Protocol in 1987 for reducing emissions of chlorofluorocarbon (CFC) gases and
this lack of recovery is believed to be caused by climate warming and release of new
chemicals with a yet unknown effect to the ozone layer (Weatherhead and Andersen
2006). Commercial fish stocks have not recovered following reduced fishing pres-
sure, and climate change and complex food-web interactions have been suggested
as plausible explanations (Botsford et al. 1997). Nutrient reductions in coastal ar-
eas have not reduced phytoplankton biomass (Duarte et al. 2009) nor the extent of
hypoxia (Conley et al. 2007), and this is mainly attributed to climate change and
altering of the food web. Thus, many of the world’s ecosystems fail to return to
previously observed states after pressure reduction, because changes in other drivers
have shifted the baseline. This evidently leads to nonuniform time trajectories in the
relationship between pressure and response.

The concept that ecosystems respond nonlinearly to changes in the drivers, dis-
playing hysteresis-like behavior with alternative stable states, is not new (Holling
1973; May 1977). Lakes exhibit shifts between a clear state with dominance of sub-
merged aquatic vegetation and a turbid state dominated by phytoplankton (Scheffer
et al. 1997; Carpenter et al. 1999). The shift is typically driven by enhanced nutrient
input (mostly phosphorus) from human activity leading to increased phytoplankton
growth and subsequently shading of the submerged aquatic vegetation (Jeppesen et al.
1999). Tropical reefs alternate between corals states and states where macroalgae
overgrow the corals and prevent the settlement of coral larvae for continued recruit-
ment (Knowlton 1992). The resilience of the coral reefs has been eroded through
nutrient enrichment and overfishing (Scheffer et al. 2001), whereas the shift between
states appears to be triggered by events such as hurricanes and outbreak of diseases
affecting sea urchins (Mumby et al. 2007). The complex interactions in food webs
may similarly lead to regime shifts through cascading effects driven by eutrophica-
tion, overfishing, and invasive species (Daskalov et al. 2007; Casini et al. 2008).
Outbreaks of hypoxia can also lead to a sudden change in the biogeochemical pro-
cesses causing a positive feedback of nutrients to the water column through reduced
nitrification-denitrification, releases of ironbound phosphate, and reduced transfer
of energy to higher trophic levels (Conley et al. 2009b). Loss of benthic macrofauna
with hypoxia and thresholds associated with recolonization suggests a hysteresis-like
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behavior (Diaz and Rosenberg 2008). Thus, there are several examples from the liter-
ature of ecosystems displaying hysteresis behavior and the conceptual understanding
of the positive feedback mechanisms required for the existence of alternative stable
states has largely been established.

However, there is a gap in the literature between apparent regime shifts and the
application of a rigorous mathematical-statistical framework for the actual demon-
stration of such threshold effects and hysteresis responses (Andersen et al. 2009).
Moreover, most quantitative analyses of regime shifts are theoretical studies that
examine the behavior of a simple nonlinear model that is believed to capture the
essential mechanisms of the ecosystem (e.g., Carpenter et al. 1999; Ludwig et al.
2003; Guttal and Jayaprakash 2008). Although such models may mimic ecosystem
observations to a reasonable degree and hence provide support for the existence of
regime shifts, they do not offer statistical confidence in the existence of bistability,
i.e., in terms of quantifying the probability of a hysteresis response relative to a
simpler and uniform relationship.

Statistical tests can, in principle, be employed by comparing the likelihood of
two such competing models, but in practice this is more complicated as it requires
relatively simple mathematical representation of the ecosystem in question (i.e., few
parameters) and sufficient data to estimate these models and calculate their likelihood.
Consequently, scientists have resorted to simpler statistical procedures, typically
identification of change-points in time (e.g., Zeileis et al. 2003; Rodionov 2004), as
an exploratory data analysis indicating if abrupt changes may have occurred. Such
statistical methods have started to populate the ecological literature recently and
are the natural first step towards identifying potential drivers and mechanisms but
do not describe any driver-response relationship as time can never be the underlying
driver (Andersen et al. 2009). Moreover, change-point detection methods can identify
abrupt changes, both with respect to time and potential drivers although the latter is
rarely seen in the literature, but they do not provide inference for alternative stable
states. Therefore, the objective here is to supplement the growing set of statistical
methods used to analyze for potential regime shifts in ecosystems with a method
indicative of alternative stable states. The idea is to examine the time trajectory of an
ecosystem response variable relative to a hypothesized driver and test if this trajectory
is time invariant, i.e., the relationship is uniform across time.

Conceptualizing Ecosystem Responses

The literature is populated with conceptual figures displaying different categories of
driver-response relationships. May (1977) formulated a nonlinear differential equa-
tion and showed graphically that this model would exhibit two alternative stable
states for a specific parameter setting and one unstable state constituting a divide
between the two stable attractors. A perhaps better illustration of this concept was
the marble rolling in a rugged landscape that could have several attractors (Scheffer
1990; Scheffer et al. 1993; Scheffer et al. 2001). The ridge between the two basins
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of attraction constituted the unstable state where the ball would roll either direction.
Carpenter et al. (1999) presented a simple lake model with a sigmoid phosphorus
influx for the sources and a linear efflux for the sinks, and graphically demonstrated
how this could lead to alternative stable states and hysteresis responses. The main
conclusion from these studies was that the bistability figures could actually be derived
mathematically from the simple models exhibiting hysteresis.

On the other hand, the statistical approach to conceptualizing driver-response
relationship has been based on experiences from data exploration. De Young et al.
(2004) proposed three different types of responses: (1) linear, (2) abrupt change and
reversible, and (3) abrupt change and not directly reversible, the latter representing
a hysteresis-type behavior. Andersen et al. (2009) extended these to also consider
the time dimension, showing that abrupt changes in time series can occur even if
the driver-response relationship is strictly linear, because an abrupt change in the
driver is directly mediated to the response. They cautioned about over-interpreting
abrupt changes in biological time series, if the cause of the change was not within
the biological system itself.

A broad range of possible responses to increasing followed by decreasing pres-
sures on the ecosystem, derived from theory and observations, has been proposed
and synthesized into a few generic classes of responses (e.g., Duarte et al. 2009;
Kemp et al. 2009). Here, I will consider the four different response types presented
in Duarte et al. (2009) (Fig. 12.1). The uniform relationship between response and
pressure variable is an idealized situation (Fig. 12.1a), where nothing else changes
over time (termed “Return to Neverland” in Duarte et al. 2009). This is the fun-
damental type of relationship that managerial frameworks are built around, despite
increasing observational evidence that pressure-response relationships are not static.
The hysteresis relationship (Fig. 12.1b) resembles those obtained from theoretical
studies (e.g., May 1977; Scheffer et al. 2001) with alternative stable states within a
range of the pressure variable. It involves a resistance to return to the original state
when the pressure is alleviated. A shift in the ecosystem baseline (Fig. 12.1c) typi-
cally occurs in a multi-pressure system, which essentially includes all ecosystems,
and illustrates that the outcome, after reducing the main pressure on the system, is
different from the starting point, because other pressures have induced a shift (for
most ecosystems a shift to a less desirable state). Finally, ecosystems can display
combinations of hysteresis and shifting baselines (Fig. 12.1d).

One major problem in analyzing observations of pressure versus response and
identifying the most appropriate relationship is that Fig. 12.1 displays a steady-state
relationship, whereas observations do not necessarily represent a steady-state situ-
ation. The steady state can be assessed when all pressures and other perturbations
remain at a constant level for over a sufficiently long time for the ecosystem vari-
ables to stabilize. However, ecosystem dynamics are often associated with lags and
memory effects having a time scale exceeding that of the sampling. Essentially,
this implies that it can be difficult to distinguish hysteresis and shifting baselines
from the dynamic output of a linear system. To exemplify this, responses of four
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Fig. 12.1 Different types of ecosystem responses to increasing and decreasing pressure. (Redrawn
from Duarte et al. 2009)

linear dynamical systems are shown for an increasing followed by decreasing in-
put (Fig. 12.2). If there are no accumulating effects, the dynamical response to an
increasing/decreasing input equals the steady-state solution (Fig. 12.2a), but there
can be a delay (delayed exponential response) if the ecosystem variable linearly de-
pends on the input as well as previous states of the response (Fig. 12.2b). Lagged
responses or simple delays (i.e., the ecosystem variable depends on past and not
present values of the input variable) also give rise to delays, albeit less smooth, in the
response (Fig. 12.2c). Finally, a linear dynamical system combining lag and memory
effects can display almost hysteresis-like behavior (Fig. 12.2d). Thus, the example
illustrates that separating nonlinear dynamics leading to hysteresis and alternative
stable states from linear dynamical systems can indeed be difficult.
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Fig. 12.2 Linear system responses to increasing and decreasing driver. a Direct response or simple
gain, b memory effect (response equals 90 % weight on previous state and 10 % on driver), c lagged
response to the driver, and d combination of memory effect and lagged response

Methods for Identifying Pressure-Response Relationships

The theory for identification of linear dynamical systems is well described and in-
volves estimating the impulse response function from which the structure of the
transfer function can be inferred and subsequently estimated (Box and Jenkins 1976).
These standard-identification procedures are applicable only to input-output relation-
ships (open loop) and should not be employed when there is feedback in the system
(closed loop) (see e.g., Chatfield 1984 for discussion). However, I will refer to the
literature for more details on identification of linear systems.

The framework for nonlinear model selection is less rigorous than for linear mod-
els, and essentially boils down to formulating a number of candidate models that are
subsequently compared by various goodness-of-fit criteria. Two of the most common
are Akaike’s Information Criterion (AIC) (Akaike 1974) and Bayes Information Cri-
terion (BIC) (Schwarz 1978) that combine the maximum likelihood with a penalty
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for the number of parameters in the model. Application of these criteria may lead to
different optimal models and they should be used only as a guideline in the model
selection process. Hence, nonlinear modeling involves a large degree of subjectivity
in the formulation of alternative models, and for ecosystem modeling this implies
careful consideration of the mechanisms underlying the observations. It should also
be stressed that the use of information criteria selects for the best-fitting model, but
it does not provide a formal testing to determine if one model is significantly better
than another.

The above-mentioned methods for identification of linear systems and selection of
the most appropriate nonlinear model underlie the assumption that the observations
can be described by a parametric distribution and that the residuals are indepen-
dent. This also implies that the residuals should be uncorrelated with time. Many
ecosystem studies have suggested that pressure-response relationships are changing
with time (see above), but few have provided statistical inference to support these
conclusions (e.g., Hagy et al. 2004; Conley et al. 2009a; Carstensen and Weyd-
mann 2012). There are many model diagnosis tools available to test the assumptions
of proposed regression models (e.g., cross-validation, autocorrelation, correlation
with time, Portmanteau lack-of-fit), but I will focus on examining the time trajec-
tory of the ecosystem response to the pressure and provide a test for the significance
of departures from a proposed uniform relationship using the statistical framework
of Generalized Additive Models (GAM) (Hastie and Tibshirani 1990).

Let us assume that there is a uniform relationship between the pressure (x) and the
response given by the parametric function denoted f(x). Let us also assume that we
can describe potential departures from this relationship with a smooth nonparametric
function of time, denoted s(t). Consequently, we are interested in testing if the
combination of f(x) and s(t) gives a significantly better description of the response
variable than just f(x) alone. This can be formalized such as: Given there are n pairs
of observations for the pressure and response variables (xi , yi; i = 1. . . n), where yi

belongs to the exponential family of distributions (e.g., Normal, Binomial, Poisson,
Gamma) with location parameter (μ) that is linked (through a link function g(μ)) to
f(x) and s(t), we can test the null hypothesis

H0 : g(μ) = f (x)

versus the alternative

H1 : g(μ) = f (x) + s(t).

Both the parametric (f(x)) and the nonparametric (s(t)) functions are estimated by
means of the backfitting algorithm (see Hastie and Tibshirani 1990) that iteratively
finds an optimal fit for both functions. The significance of the alternative hypothesis
is tested by calculating the log ratio of the two models’ maximum likelihood values
(likelihood ratio test), which is approximately χ2(df)-distributed with df equal to the
approximate degrees of freedom of the smoothing function s(t). The likelihood ratio
test applies only because the model under H0 is a submodel of the full model (H1).
A simple example of the test above is a normal distributed response with f(x) being
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Fig. 12.3 Illustration of the linear model hypothesis (a) versus the time trajectory hypothesis (b).
Observations were simulated from the trajectory model in (b) with a relatively small noise added. To
illustrate the time dependency of the alternative hypothesis observations were connected in time (b)

linear and the identity function used as link function, i.e., g(μ) = μ (Fig. 12.3). The
pressure-response relationship appears linear when the time dependency of the ob-
servations is disregarded (Fig. 12.3a), but if observations are connected to constitute
a time trajectory a slightly more complicated relationship emerges (Fig. 12.3b). Thus,
the test formulated above examines if the likelihood of the alternative hypothesis is
larger than the likelihood of the null hypothesis with sufficient confidence.

The smoothness of s(t) is governed by df with lower degrees of freedom leading
to rather smooth fit, whereas higher degrees of freedom result in wiggly curves.
GAM normally offers to estimate the optimal degrees of freedom by cross-validation,
and this is the recommended setting. However, occasionally GAM does overfit the
data using cross-validation and this is reflected in high degrees of freedom in the
smoothing function. Thus, if the degrees of freedom gets high (> 4 as a rule of
thumb) it is recommended to constrain the degrees of freedom to a maximum of
four.

The trajectory of the pressure-response relationship can be graphically shown by
predicting the response variable as function of f(x) and s(t). This will produce a
smooth trajectory, provided that the pressure is a smooth function of time (contin-
uously increasing/decreasing). If the trend in the pressure variable is noisy, in the
sense that there are temporal fluctuations in addition to the overall trend, the resulting
trajectory based on predictions from a fluctuating input will result in less smooth tra-
jectory. Consequently, for displaying the trajectory it can be recommended to smooth
the pressure-input variable first and subsequently use the smoothed pressure time se-
ries for predicting (scoring) responses. The trajectory analysis will be exemplified
in the following with a simulation example and by means of observations from four
coastal ecosystems.
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Noise Contamination Simulation

The noise added to the trajectory model for illustrating the difference between the
two hypotheses in the previous section was small and the trajectory of the pressure-
response relationship was still apparent from the observations (Fig. 12.3b). In such
cases the observations themselves convincingly demonstrate a departure from the
simple linear model. This is not necessarily the case if more noise is added to the
relationship. To investigate the behavior of the method with more noisy data I have
considered the following alternative situations: (1) the underlying relationship be-
tween pressure and response is linear versus time trajectory, (2) the pressure is
increasing and decreasing linearly without versus with random variation (e.g., in-
terannual variation), and (3) observations of the response variable are noisy versus
observations of both pressure and response variables are noisy. These eight combina-
tions were analyzed for different magnitudes of random variation. For this purpose I
used the normal distribution for simulating random variates and defined a noise ratio
as the standard error of the random variation divided by the range of variation in
the pressure and response variables. Moreover, as many simulations and estimations
were carried out without user intervention the risk of overfitting GAM was tackled
by fixing the degrees of freedom of the GAM to four. However, it is important to
stress that the idea was not to perform a complete power analysis to decipher when
the method successfully identifies an existing trajectory for various combinations of
random variation and number of observations.

One might expect that the GAM would be significant only for the four cases based
on an underlying trajectory model, but two out of the four simulated examples with
an underlying linear model also had a significant trajectory (Fig. 12.4c, g). At first
glance this might seem surprising; however, both examples had observational noise
on the observed values of the pressure variable, whereas the two other examples, with
an underlying linear model and observation noise in the response variable only, did
not result in significant departures from linearity (Fig. 12.4a, e). An explanation is
that ordinary regression methods do not account for uncertainty in the independent
(or explanatory) variable, so observation noise may lead to significant departures
from linearity by sheer coincidence. Secondly, it should be noticed that the linear
model in Fig. 12.4c is not significant (regressions slope not different from zero)
and the linear slope in Fig. 12.4g is significant, albeit with less confidence than
Fig. 12.4a, e. Moreover, the method also failed to identify the linear part of the
trajectory with observation noise on both pressure and response (Fig. 12.4d) and the
estimated linear component in Fig. 12.4h had a slope substantially lower than the
linear part of the simulated trajectory (slope = 1). In fact, all the simulations with
observational noise on the pressure resulted in slope estimates significantly lower
than 1 (P < 0.0001 in Fig. 12.4c, d, g, and h, assessed by t-tests of the parameter
estimates), whereas the simulations without observational noise all had slopes not
significantly different from 1 (P > 0.1 in Fig.4. 4a, c, e, g). These results show that the
nonparametric smooth curve is actually capable of explaining the linear relationship
with the pressure variable as part of the smooth trend, and that the GAM to some
extent render the linear model insignificant, when observation noise is added to
the pressure variable, whereas this does not seem to be the case when there is no
observation noise on the pressure.
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Fig. 12.4 Simulated observations from a linear (left panel) and trajectory (right panel) pressure-
response relationship. a and b have observation noise on the response variable only. c and d have
observation noise on both pressure and response variables. e and f have observation noise on the
response variable and random variation added to the increasing and decreasing pressure trend. g and
h have observation noise on the response variable and both random variation and observation noise
on the pressure variable. The underlying linear model and the linear component of the trajectory
had slopes equal to 1 and no intercept. The smooth component was simulated with a sine function
of time. Noise ratio was set to 10 %
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Fig. 12.4 (continued)

The results exemplified in Fig. 12.4 did not represent a single isolated case but
were confirmed by numerous simulations. For each of the eight different combina-
tions in Fig. 12.4, the probability of finding a significant time trajectory was estimated
as the proportion of 10,000 replications having a significant time component (s(t)) in
the GAM. The linear model with observation noise only (Fig. 12.4a) had about 10–
11 % probability for a significant time trajectory, whereas the linear model that also
included random variation in the pressure (Fig. 12.4e) had about 17–19 % probability
for a significant time trajectory (Table 12.1). These probabilities did not decrease
with increasing noise ratio, as was the case for all the other models. Both the linear
model and the trajectory model with observation noise on both pressure and response
(Fig. 12.4c, d) generally gave higher probabilities for a significant time trajectory
than the other linear and trajectory models (Table 12.1). The probabilities for iden-
tifying a time trajectory decreased the most with the noise ratio for the models that
included the most uncertainty components, i.e., observation noise on both pressure
and response and random variation in pressure (Fig. 12.4g, h). Overall, there was
a high probability for finding a significant time trajectory, when present, for noise
ratios up to 60 %, yielding a power of approximately 80 % (Table 12.1). Even when
the noise approached the range of variation in the data (noise ratio ∼1) there was
still a considerable probability (> 40 %) for identifying a significant time trajectory,
when present (Table 12.1).

Coastal Ecosystem Recovery Example

Duarte et al. (2009) brought the concept of regime shifts and shifting baselines from
theory to practice by showing that these phenomenas actually take place and should be
considered in ecosystem management. Four coastal ecosystems with long-term moni-
toring data, all having experienced increasing nutrient inputs in the 1970s and 1980s
followed by decreasing nutrient inputs during the last two decades, demonstrated
idiosyncratic trajectories of phytoplankton biomass versus nutrient inputs. In
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Fig. 12.5 Reanalysis of trajectories from Duarte et al. (2009) using the GAM method presented
here. For comparison the linear model under the null hypothesis is also given. The sample trajec-
tories represent four intensively studied Northern European coastal ecosystems that experienced
significant eutrophication followed by oligotrophication. The full black symbols show the annual
average values and the red line shows the smooth trajectory developed here. Initial and final years of
the time series are indicated. Inserts show the time series and smooth GAM trend of total nitrogen
inputs to the ecosystems. Note the difference in scaling across ecosystems

all these systems, nutrient inputs approximately doubled from the 1970s to the 1980s
and then returned to the level of the 1970s. It was anticipated that the management
measures to reduce nutrient inputs would return the ecosystems to their original sta-
tus, i.e., phytoplankton biomass levels similar to that observed in the 1970s. However,
in all four systems, recent phytoplankton biomass concentrations were almost double
that of the 1970s despite similar levels of nutrient inputs. The trajectories in Duarte
et al. (2009) were computed as 5-year moving averages on both nutrient inputs and
phytoplankton annual means to reduce the variation in the data. Thus, although the
trajectories in Duarte et al. (2009) graphically displayed departures from an antici-
pated linear relationship (based on the eutrophication concept originally developed
for lakes, see Vollenweider 1968; Dillon and Rigler 1974), there was no statistical
evidence of this. Therefore, I reanalyzed these data to examine if the time trajectories
were significantly different from a linear pressure-response relationship.

All four coastal ecosystems had considerable variation in both pressure and
response variables, without any visually discernible pressure-response relation-
ship from the annual means (Fig. 12.5). None of the four systems actually had a
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Table 12.2 Statistics for the null hypothesis (H0: linear pressure-response model) versus the al-
ternative hypothesis. H1: linear pressure-response model and smooth time departure for the four
coastal ecosystem exemplifying the method. For the linear models (both H0 and H1) the para-
metric regression line (f(x)) and the probability for zero slope are given. For the nonparametric
time smoother (s(t)) the degrees of freedom (d.f.) for the smoother and its significance are given.
Coefficients of determination were calculated from the model deviance

Coastal
ecosystem

No.
of
years

Null hypothesis Alternative hypothesis

f(x) P(f(x)) R2 f(x) P(f(x)) d.f.
s(t)

P(s(t)) R2

(A) Marsdiep 31 7.57 + 0.046x 0.2310 0.0643 11.0 − 0.020x 0.4926 3.36 <0.0001 0.5048
(B) Helgoland 40 14.0 + 0.090x 0.0695 0.0841 21.4 + 0.042x 0.1966 3.89 <0.0001 0.6450
(C) Odense

Fjord
29 3.65 − 0.077x 0.8052 0.0023 3.35 + 0.043x 0.8485 3.88 <0.0001 0.5555

(D) Gulf of
Riga

31 1.72 + 0.016x 0.0512 0.2164 0.91 + 0.024x 0.0007 2.25 0.0004 0.5144

distinctive linear response to changing nutrient inputs (null hypothesis), although
the Helgoland and Gulf of Riga data (Fig. 12.5b, d) were borderline significant
with P values close to the standard significance level of 5 % (Table 12.2). For the
Marsdiep data the chlorophyll yield to increasing nutrient input was still positive
under H0, albeit nonsignificant (Fig. 12.5a), and the Odense Fjord data actually
gave rise to a weak negative linear relationship (Fig. 12.5c). In fact, testing for a
linear model only in these four systems would suggest that there is no relationship
between phytoplankton biomass and nutrient input, a result that is in contrast to
our general conceptual understanding of coastal ecosystem behavior. Such analyses,
based on the assumption of a time-invariant relationship between nutrient input and
phytoplankton biomass, could potentially lead to erroneous conclusions for nutrient
management in the coastal watersheds. The lack of explanatory power under the null
hypothesis was also seen in low R2-values (< 22 %, Table 12.2).

The alternative hypothesis, including both a linear pressure-response model and
a smooth time trend, explained considerably more variation in data (R2∼50–65 %)
but the linear component did not change much from that of the null hypothesis
(Table 12.2). Thus, the smooth time trend accounted for most of the explained varia-
tion, and the P values associated with s(t) indicated a high significance. The smooth
trend was selected by general cross-validation for the Marsdiep and Gulf of Riga
data, whereas the degrees of freedom for the smoother were constrained to be less
than four for Helgoland and Odense Fjord data. The general cross-validation method
resulted in degrees of freedom equal to 9.11 and 6.54 for these two ecosystems, re-
spectively, and therefore, the wiggliness of the smoother had to be constrained. The
estimated time trajectories (Fig. 12.5) generally showed the same behavior as those
found by moving averages in Duarte et al. (2009), although considerably smoother,
and the statistics confirmed that there was indeed a significant departure from the sim-
ple linear pressure-response relationship across time (Table 12.2). Thus, the method
delivered statistical inference to further support the theory of shifting baselines and
regime shifts in coastal-ecosystem responses to nutrient input.



12 Ecosystem Trajectories: A Statistical Approach to Analyze . . . 269

Discussion

Observations from ecosystem monitoring can be quite variable, often spanning sev-
eral orders of magnitude, resulting in a cloud of scattered observations as the basis for
identifying relationships between drivers and responses (e.g., Guildford and Hecky
2000; Ptacnik et al. 2008). The implication of the large data scatter is that many
observations are required to identify potential relationships and that the true nature
of the relationship is not visible. Today, many ecosystem monitoring programs have
been in operation for several decades, thereby alleviating the data requirements for
identifying relationships in the presence of noisy data. Despite the substantial source
of information that large data sets typically offer, most studies analyze for simple and
static relationships only, despite the availability of a large toolbox of statistical meth-
ods to gain further insight into the data (Andersen et al. 2009). The trajectory analysis
in this study presents a specific application of the wide class of GAM, specifically
designed to identify significant time departures from a proposed static relationship
in data. As such, the approach does not present a novel statistical development but
it documents the usefulness of analyzing time series by means of GAM to test the
implicit assumption of time invariance underlying most pressure-response relation-
ship in the literature. Therefore, this study fulfills the intended goal of providing
scientists, that are less experienced with the wide variety of statistical methods, a
standard approach for exploring structures in their data that may potentially lead to
further model development beyond the most common and simple relationships.

The trajectory analysis provides both a general exploratory tool to uncover changes
in pressure-response relationships that may not be visible from plotting the data,
and a model diagnosis tool. If there are significant time departures from a proposed
parametric relationship then clearly the assumption of independence across the resid-
uals is violated and the estimated parametric relationship will be biased. Secondly,
systematic deviations may give hints to refining the parametric relationship or ex-
tending the parametric component by including additional explanatory variables.
For instance, plotting the smooth trend component (s(t)) against various explanatory
factors may identify other pressures potentially affecting the ecosystem, and sub-
sequently include these as part of the functional relationship (f(x)) and reassess if
significant time departures are still present. Hence, the trajectory analysis becomes
part of a model identification framework. Essentially, such an iterative process can
continue until there are no more suggestions for model improvements and/or there
are no more systematic time departures from the relationship. This identification
framework may also include process-based models, although there are limitations to
the number of parameters that can be identified based on statistical principles. For
example, the smooth trend component for the four coastal ecosystems (Fig. 12.5)
could be plotted against temperature or grazing pressure to develop an improved
functional description of phytoplankton biomass responses to multiple pressures. In
fact, Jurgensone et al. (2011) showed that the increasing phytoplankton biomass in
the Gulf of Riga could be attributed to declines in zooplankton biomass.

The potential confounding of combined lag and memory effects with the smooth
trend component was not considered for the four coastal ecosystems above, although
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these effects could mimic, to some extent, the observed trajectories (cf. Figs. 12.3
and 12.5). Here, model intuition should also play an important role, because phy-
toplankton regeneration times and the residence times are substantially shorter than
the time resolution of the observations (annual values) for all systems. Although
internal inputs of nutrient regenerated from sedimenting organic material could have
responses on the interannual scale, the processes involved are more subtle and func-
tional relationships to describe these would go beyond the scope of introducing the
trajectory-analysis approach. However, it will be important to consider lag and mem-
ory effects for other types of ecosystem responses to recovery efforts, particularly
those involving long-lived organisms (Jones and Schmitz 2009).

Another issue of confounding effects was revealed in the simulation study, where
the smooth trend was also capable of explaining the underlying simulated linear rela-
tionship when observational noise was added to the pressure variable (Fig. 12.4c, d,
g, h), whereas both the functional relationship and the smooth time trajectory were
nicely separated when the pressure variable had no observational noise (Fig. 12.4a,
b, e, f). These tendencies were further confirmed from the multiple simulations with
different noise ratios (Table 12.1). Thus, the GAM is sufficiently flexible to overrule
an existing functional relationship when the exact value of the pressure variable is not
known. The simulations indicated that this phenomenon is pronounced only for noise
ratios above 10 % on the pressure variable. Most pressure variables are relatively well
determined compared to the ecosystem response. Emission estimates for various sub-
stances may have noise ratios below 10 % and climate effects, such as temperature
increases, can be measured with high precision and consequently, the noise on pres-
sure variables associated with climate change is likely considerably less than 10 %.
Thus, for most pressure-response relationships the noise on the pressure variable is
such that the underlying relationship can be separated from the smooth trend.

The trajectory analysis assumes separability of the functional relationship and the
smooth time trajectory (additive factors under H1), but it could be argued that time
interacts with the functional relationship such that the functional shape changes with
time. Such models can also be analyzed within the GAM framework using thin plate
splines. However, for the principle of parsimony such an avenue of analysis should
be pursued only, if the separability assumption is first invalidated. The good thing
about separability is that the significance of the functional relationship and smooth
time trend can be tested separately, which is not the case with a thin plate spline.
Furthermore, there can be an increased risk of overfitting data with a thin plate spline,
which requires a less heuristic constraining of the degrees of freedom, compared to
an additive form of the functional relationship and smooth time trend.

In summary, the trajectory analysis is a general exploratory tool that identifies
time departures in a proposed functional relationship. It can be used in an iterative
manner for model diagnosis and development. However, it should be stressed that
there are many other tools that have similar objectives, and that all these tools should
be used for guidance rather than providing a rigorous modeling framework.
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