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    Abstract     While speculation has centered on a role for nuclear lamins in tumor pro-
gression for many years, most of the diseases that have been linked to lamin mutation 
are dystrophic in nature, often limiting the proliferation potential of affected cells in 
vivo and in vitro. Nevertheless, these lamin mutations, particularly in the  LMNA  
gene that encodes A-type lamins, have provided an interesting tool set to understand 
functions of nuclear intermediate fi lament proteins in cell cycle progress and various 
means of exit, including quiescence, senescence, and differentiation down various 
lineages. The picture that has emerged is complex with lamins controlling the activ-
ity of key cell cycle factors such as the retinoblastoma protein (RB) and interacting 
with several important signal transduction pathways. Here we describe the current 
state of knowledge and speculate that lamins may be intimately involved in the 
 regulation of cell proliferation, acting at the interface between cancer and aging.  
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  DCM1A    Dilated cardiomyopathy type 1A   
  ERK    Extracellular signal-regulated kinases   
  HGPS    Hutchinson–Gilford Progeria syndrome   
  LAP2α    Lamina-associated polypeptide 2α   
  MDM2    Mouse double minute 2 homolog   
  ROS    Reactive oxygen species   
  RB    Retinoblastoma protein   
  SASP    Senescence-associated secretory phenotype   
  SIRT1    Silent mating-type information regulation 2 homolog 1   
  VHL    von Hippel–Lindau gene   

          Introduction 

    Since the discovery of A-type and B-type lamins as components of the nuclear 
lamina [ 1 ], they have been the subject of intense scrutiny regarding possible roles in 
a range of nuclear functions. The fi nding that they are targets for mutation in degen-
erative and progeroid diseases has further driven research in the area [ 2 ]. Partially 
overlapping research threads for nearly three decades have implicated lamins in the 
control of cell proliferation and differentiation, leading to speculation that lamins 
may have roles in cancer progression. One obvious connection between lamin func-
tion and cell cycle progression comes from the fact that the nuclear envelope breaks 
down during mitosis in mammalian cells, leading to a dissociation of the lamin 
intermediate fi lament structure that exists between the chromatin and the envelope 
[ 3 ]. Upon reformation of the nucleus after mitosis, the lamina also reassembles, and 
numerous studies have been performed to defi ne a role for A- and B-type lamins in 
this process. 

 A full description of A- and B-type lamins is provided in other reviews. Here we 
provide basic facts relevant to lamin roles in cell cycle regulation and aging. All 
A-type lamins (lamins A and C in most settings) are encoded by the  LMNA  gene, 
which is targeted for mutation in a wide range of pathologies [ 2 ]. Among these, 
forms of dilated cardiomyopathy and muscular dystrophy are generally associated 
with reduced A-type lamin function and can be phenocopied by knockout of the 
 LMNA  locus in the mouse [ 4 ]. In contrast, dominant gain-of-function or neomorphic 
mutations in  LMNA  can lead to progeroid syndromes [ 5 – 7 ]. The most common of 
these is Hutchinson–Gilford Progeria syndrome (HGPS), which is most often asso-
ciated with the  LMNA  G608G mutation, which is silent with respect to coding 
sequence but activates a cryptic splice site leading to the production of progerin, a 
variant of lamin A that lacks 50 amino acids in the C-terminus [ 6 ,  7 ]. Whether pro-
gerias are mechanistically linked to normal aging has been an ongoing debate in the 
aging research fi eld for decades with no consensus yet emerging [ 8 ,  9 ]. Interestingly, 
however, alternative splicing of  LMNA  can occur in normal cells leading to low- 
level production of progerin, and recent studies have demonstrated progerin accu-
mulation with organismal age or with increasing passage in cell culture [ 10 – 13 ]. 
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These fi ndings at least raise the possibility that progerin may in part promote the 
normal aging process. 

 B-type lamins, encoded by  LMNB1  and  LMNB2 , are also linked to disease states 
and have been implicated in cell cycle progression. Interestingly, recent studies 
indicate that lamin B expression may be altered as cells approach senescence [ 14 ], 
a topic discussed in Sects.  3  and  4 . One major difference between A- and B-type 
lamins is their expression patterns. While B-type lamins are expressed in all cell 
types, A-type lamins are regulated during development and differentiation. In a 
mouse, for instance, A-type lamin expression is not evident until mid-gestation, 
when it can be detected in cells committing to different lineages [ 15 ]. This fi nding 
has led to the possibility that A-type lamins are cell commitment factors, being 
expressed when cells adopt certain fates and perhaps ensuring gene expression pro-
grams that defi ne those fates. A-type lamins are also not expressed in stem cells (or 
at least at very low levels), a fact made particularly evident in studies aimed to gen-
erate induced pluripotent stem cells from fi broblasts of HGPS patients [ 16 – 18 ]. 
These fi broblasts have proliferation defects and altered nuclear shape but can be 
induced to become stem cells. Upon this transition, the cells lose A-type lamin 
expression (including that of progerin) and no longer display proliferation or nuclear 
shape abnormalities. When induced to differentiate again, they resume progerin 
expression and regain abnormal behavior. 

 A deeper role for lamins in cell cycle regulation was proposed when the discov-
ery was made that lamin tethering of many cell cycle regulators, including c-Myc 
and retinoblastoma protein (RB), was important for their function [ 19 – 23 ]. This has 
stimulated investigation by many laboratories into the role of lamins in coordinating 
the transit through the G1 phase of the cell cycle. Lamins have also been linked to 
the control of DNA replication (below) and checkpoint pathways, including those 
involved in repair of DNA lesions [ 24 ]. 

 If lamins control cell cycle progression and exit, then their function might be 
impaired during cancer progression, either through direct mutation or through other 
events during cancer expression that affect their activity. This theory is augmented 
by fi ndings in several tumors that nuclear shape and organization are commonly 
altered in cancer cell lines [ 25 ,  26 ]. Many investigators have examined the possibil-
ity of lamin impairment in cancer progression, and, particularly with regard to 
A-type lamins, expression patterns often change in cancer although few mutations 
have been identifi ed. This fi nding has led to the possibility that lamins may be used 
as biomarkers for cancer progression, and in many different tumor types the expres-
sion of A-type lamins or lamin B1 changes during different stages of tumor devel-
opment. However, there are no clear generalizations to be made, with expression 
pattern changes often complex and specifi c to tumor type [ 27 ]. 

 In this review, we focus on the role of A-type lamins in cell cycle progression and 
exit, discussing how these specifi c functions may relate to both cancer and aging. 
The answers to these questions remain unresolved, but a number of tantalizing fi nd-
ings have been reported in the last few years that may fi nally lead to the primary 
functions of lamins in the nucleus, as well as how they relate to disease progression, 
both those of a dystrophic and hyper-proliferative nature.  
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    Cell Proliferation 

 The G1-to-S phase transition of the mammalian cell cycle is tightly regulated in 
normal cells and a primary target for dysregulation in cancer. Many of the regula-
tory factors have been associated with the nuclear matrix. Rather than cover a com-
pendium of these factors, which in many cases interact with nuclear lamins, the 
focus of this section will be to defi ne the phenotypic roles of nuclear lamins in cell 
proliferation and, wherever possible, to connect these roles to regulation of prolif-
erative factors. In general, proliferative effects of  LMNA  mutations will be separated 
into those associated with reduced A-type lamin function and those associated with 
the expression of progeria alleles, which are either hypermorphs or neomorphs. 

  Lmna   −/−   mice develop skeletal muscle dystrophy and dilated cardiomyopathy 
[ 4 ], succumbing between 6 and 8 weeks of age likely due to cardiac conduction 
defects [ 28 ]. To clarify, recent fi ndings suggest that  Lmna   −/−   mice may not be true 
nulls for the  LMNA  locus, as a truncated allele of lamin A appears to be expressed 
in these mice [ 29 ]. The most likely scenario is that this mouse is actually a hypo-
morph, a theory supported by the phenotype of another  Lmna  disruption in a mouse 
that results in lethality before weaning [ 30 ] and the one known case of a homozy-
gous nonsense mutation of  LMNA  identifi ed in human patient who died shortly after 
birth [ 31 ]. For purposes of clarity and consistency, the term  Lmna   − / −   will still be 
applied to the original mouse generated by Sullivan et al. [ 4 ]. 

 While speculation about reduced A-type lamin expression and cancer has a long 
history, none of the mouse models or human patients with  LMNA  mutations linked 
to striated and cardiac muscle have been associated with oncogenesis. However, 
there is strong evidence that A-type lamins regulate key factors involved in control-
ling the G1-to-S transition, and the most evidence exists for lamin A effects on the 
RB [ 32 ]. The connection between A-type lamins and RB has been examined in a 
variety of settings, and, while there may be differences, the general consensus is that 
A-type lamins are required for normal RB function. 

 One of the fi rst tumor suppressors identifi ed, loss of both copies of the  RB  gene 
leads to a range of different cancers including retinoblastomas and osteosarcomas 
[ 33 ]. More broadly, RB activity is deregulated in a wide range of tumors, generally 
through unchecked activity of cyclin-dependent kinases (CDKs) [ 34 ]. RB has myr-
iad binding partners and has been ascribed to a number of functions in the nucleus 
[ 35 ]. Most notably, RB acts as a repressor of the transcriptional factor E2F, which 
controls a range of genes important for entry into S phase of the cell cycle. When 
hypophosphorylated and active, RB binds to E2F complexes and acts as a repressor 
of S-phase genes, retaining cells in G1. CDK-dependent phosphorylation promotes 
release of RB from E2F and cell cycle progression. Along with p53 (discussed 
below) and telomere regulation, the RB pathway is a major determinant of cell 
senescence and also plays a role in cell differentiation in multiple lineages. Finally, 
control of G1-dependent gene expression is but one function ascribed to RB, which 
is also linked to DNA replication, mitosis, and checkpoint pathways, including 
those initiated by DNA damage where its roles are still being fully defi ned [ 34 ]. 
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 Both A-type lamins and their binding partner, lamina-associated polypeptide 2α 
(LAP2α), have been reported to interact with RB [ 21 ,  36 ], repress E2F-dependent 
transcription, and promote cell cycle arrest [ 37 ]. Consistently, loss of LAP2α or 
lamin A/C impairs normal cell cycle regulation leading to inappropriate S-phase 
entry. Mouse cells lacking A-type lamins or LAP2α have altered cell cycle profi les 
with premature S-phase entry and in some contexts enhanced proliferation [ 38 – 40 ]. 
In contrast, one study in human primary fi broblasts indicated that reduced lamin 
A/C or  LAP2 α expression led to cell cycle arrest [ 41 ]. The reason(s) for these dif-
ferent observations remains unknown. 

 In addition to promoting RB-dependent transcriptional repression of E2F target 
genes, A-type lamins regulate RB by at least three other mechanisms by coordina-
tion of RB phosphorylation, localization, and protein stability [ 39 ,  42 ]. Some 
aspects of control of RB protein stability are beginning to be understood. For 
instance, in cells lacking lamin A/C, enhanced levels of RB degradation occur 
through a proteasome-dependent mechanism [ 39 ]. Reduced RB levels make  Lmna  −/−  
fi broblasts insensitive to p16 INK4A -mediated cell cycle arrest [ 38 ]. However, the E3 
ligase responsible for RB degradation remains to be identifi ed and appears to be 
independent of the MDM2 and gankyrin pathways that have been linked to RB 
turnover in other contexts [ 43 ]. A number of other proteins are destabilized by loss 
of RB, including the RB-related protein p107 [ 39 ], emerin [ 44 ], and ATR kinase 
[ 45 ]. These fi ndings raise the possibility that A-type lamins might coordinate 
nuclear proteasome function, and altered activity of ubiquitin ligase components 
has been detected in cells expressing mutant forms of lamin A [ 45 ]. 

 Other A-type lamin functions may promote G1 maintenance. Serum stimulation 
of G1 arrested cells promotes ERK1/2 mitogen-activated protein kinase-dependent 
phosphorylation of c-Fos, leading to its association with c-Jun- and AP-1-dependent 
transcription [ 46 ]. Prior to stimulation, c-Fos and ERK1/2 were found to be in a 
complex with lamin A/C at the nuclear periphery preventing premature activation of 
AP-1, which occurred in  Lmna  −/−  fi broblasts [ 47 ,  48 ]. Independent studies have 
reported enhanced ERK1/2 activity in cells with reduced A-type lamin expression, 
and this has been linked to cardiac pathology in dilated cardiomyopathy type 1A 
(DCM1A) laminopathy patients [ 49 ]. Interestingly, a more recent study indicates 
that ERK1/2–lamin A/C and RB–lamin A/C complexes are mutually exclusive and 
fi nds that ERK1/2-dependent lamin A/C binding upon serum stimulation displaces 
RB, thereby promoting cell cycle progression [ 50 ]. If ERK1/2 levels are elevated in 
cycling cells, this may lead to RB dysregulation and underlie some of the altered 
cell cycle parameters evident in  Lmna  −/−  cells. 

 A number of reports have implicated lamins in regulation of DNA replication. For 
instance, early studies showed that disruption of the lamin structure impaired initia-
tion of DNA synthesis [ 51 – 53 ]. In immortalized cells, lamin B was localized to 
intranuclear sites of late S-phase replication [ 54 ], whereas in primary fi broblasts, 
intranuclear A-type lamins associate with initial sites of DNA synthesis upon S-phase 
entry [ 55 ]. The impact of lamins on S-phase progression in mammalian cells is less 
clear. S phase is elongated in fi broblasts lacking A-type lamins, although this could 
be an indirect effect of premature S-phase entry due to defective RB function [ 39 ]. 
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A recent study has shed light on a different aspect of replication by comparing the 
response of  Lmna  −/−  cells to forms of DNA damage-induced cell cycle arrest, fi nding 
that lamin A/C was required for restart of stalled replication forks and genome main-
tenance after hydroxyurea-induced replication stress [ 56 ]. While the roles of A-type 
and B-type lamins in DNA replication remain to be fully elaborated, this is clearly 
an important area for further studies. 

 Mitotic defects have not been reported for cells with reduced A-type lamin func-
tion. However, a recently identifi ed novel allele of LMNA,  Lmna   DHE  , was identifi ed 
as a spontaneous mouse mutation with a subset of progeroid phenotypes [ 57 ]. 
Fibroblasts heterozygous for this  Lmna  allele exhibit, in addition to reduced levels 
of hypophosphorylated RB, a reduction in a mitosis-specifi c centromere condensing 
subunit that depends on RB activity [ 58 ]. These alterations result in a range of chro-
mosome segregation defects. It will be of interest to determine whether other  Lmna  
disease-associated alleles lead to similar defects.  

     Cell Senescence: A-Type Lamins 

 Both A-type and B-type lamins have been linked to cell senescence, the process by 
which primary cells withdraw from the cell cycle in response to extended passaging, 
irreparable damage, or unbalanced proliferative signals. Cell senescence has typi-
cally been viewed as an impedance to cancer progression and not a driving force in 
aging, but recent fi ndings paint a more complex picture [ 59 ]. Senescent cells do 
accumulate with age, and while they generally never reach a large percentage of the 
population of a tissue, recent fi ndings indicate that they adopt an altered secretory 
profi le, the senescence-associated secretory phenotype (SASP), that leads to para-
crine release of a number of infl ammatory cytokines. These cytokines may promote 
tissue aging and stimulate tumor development in neighboring cells. In this section, 
we cover links between lamins and senescence, discussing the still tenuous connec-
tions between lamins and normal aging process. 

 Several studies have implicated A-type lamins in cell senescence, although the 
phenotype is most clearly associated with the expression of progeria-associated 
 LMNA  alleles such as progerin [ 9 ]. Progerin expression, in addition to delaying cell 
cycle progression, brings about premature senescence in a variety of contexts [ 60 , 
 61 ]. Lamin A is normally farnesylated at its C-terminus but only for a short time 
because the last 18 amino acid residues are removed in two cleavage steps. The 
protease that removes the farnesyl group is Zmpste24 in mice (FACE-1 in humans). 
In HGPS the deleted exon also removes this cleavage site so that the progerin form 
of lamin A is permanently farnesylated.  Zmpste24  −/−  cells with defective lamin A 
processing also exhibit enhanced levels of senescence [ 62 ,  63 ]. The mechanisms 
behind these effects remain unclear. As cells approach senescence the p16INK4A/
RB and p53 pathways both become engaged, leading cells to stop proliferation and 
enter a permanently arrested state [ 59 ]. In addition, telomere attrition during pas-
saging in culture drives senescence, particularly as telomere ends shorten beyond 
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critical thresholds, invoking DNA damage checkpoint response pathways. All three 
of these networks (p16INK4A/RB, p53, and telomeres) are interrelated, and 
progerin has been linked functionally to each. 

 The connection between progerin expression and RB pathway is not entirely 
understood presently. In one study, where  LMNA – progerin  alleles were expressed in 
a lamin A/C-defi cient background, it was found that progerin restored RB stability 
[ 38 ]. Moreover, inactivation of the RB pathway by expression of HPV E7 failed to 
suppress the proliferation defects of human fi broblasts stably expressing progerin 
[ 64 ]. However, an analysis of global gene expression profi les in fi broblasts from 
HGPS patients identifi ed the RB-E2F pathway as dysregulated [ 65 ] due in part to 
RB gene expression. The mechanisms underlying this effect were unknown. 
Interestingly, exposure of cells to farnesyl transferase inhibitors mostly restored the 
normal gene expression profi le. 

 It is generally thought that  LMNA  mutations are not associated with tumors; 
however, two instances have been reported in progeria models. In one case, an 
osteosarcoma was identifi ed in an HGPS patient [ 66 ,  67 ]. This is intriguing since 
osteosarcomas are commonly associated with  RB  mutations [ 68 ]. Interestingly, this 
patient expressed a smaller 35 amino acid C-terminal deletion in the C-terminus of 
 LMNA  and not progerin [ 66 ,  67 ]. It would be interesting to determine the levels of 
RB and activity of the RB pathway in this context. One issue possibly limiting can-
cer progression in progeria patients is the early progression of the disease leading to 
mortality for patients usually in their teens. A recent study has identifi ed a novel 
late-onset progeria syndrome,  LMNA -associated cardiocutaneous progeria, that is 
associated with possible cancer susceptibility [ 69 ]. This syndrome is associated 
with a heterozygous novel mutation in the lamin A/C coiled-coil domain that is 
largely uncharacterized. 

 The RB pathway is not the only cell cycle regulatory network that is infl uenced 
by A-type lamins. Whereas inactivation of RB did not rescue proliferation defects 
and premature senescence in human fi broblasts stably expressing progerin, either 
inactivation of p53 (by HPV E7) or expression of telomerase did [ 64 ]. Several stud-
ies have connected  LMNA  mutation to p53 engagement due to enhanced DNA dam-
age [ 24 ], but a recent study has elaborated this connection further. In this case, 
depletion of lamin A/C in primary human fi broblasts led to dramatic destabilization 
of RB as expected; however, the cells also had proliferation defects and a senescent 
phenotype instead of the expected short G1 phase due to enhanced specifi c activa-
tion of the p53–p21 axis [ 70 ]. p53 did not display enhanced levels or activating 
phosphorylation, and many targets were not upregulated. Instead, a subset of targets 
including p21 were upregulated leading to repression of E2F targets even in the 
absence of normal levels of RB. Cross talk between the RB and p53 pathways is not 
unprecedented. Moreover, these fi ndings suggest that the A-type lamins interact 
with both pathways in a nuanced manner and whether  LMNA  mutations lead to 
altered proliferation with early G1 cell cycle exit or reduced proliferation leading to 
senescence may depend on the specifi c nature of the  LMNA  mutation. 

 Another interesting recent fi nding has connected lamins to the p53 pathway 
in a different manner. In renal carcinoma cells, where genetic inactivation of the 
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von Hippel–Lindau (VHL) gene E3 ligase is a frequent event, progerin expression 
may play a role in controlling the p53 pathway [ 71 ]. p53 is not generally mutated in 
these tumors but is inactivated functionally. Jung et al. found that progerin was a 
target of VHL-mediated proteasomal degradation. Loss of VHL led to stabilization 
of progerin, which was otherwise bound to p14/ARF, sequestering it from MDM2 
and leading in turn to p53 degradation. Thus, progerin was required for p53 inacti-
vation in the absence of VHL. If progerin has this activity in a wide array of cell 
types, this fi nding may provide a potential link between aging and cancer:

  Accumulation of progerin with aging would lead to inactivation of the p53 network, impairing 
its tumor suppressive and checkpoint activities. More research is needed to test this intriguing 
hypothesis. 

   Recent studies have also pointed to a role for lamins in the maintenance of telo-
mere metabolism, another activity that could be closely linked to cell senescence 
[ 72 ]. For instance, HGPS fi broblasts are reported to have faster rates of telomere 
attrition [ 73 ]. This fi nding does not on its own suggest a direct role for A-type lam-
ins at telomeres; however, a number of studies have reported that telomeres associ-
ate with the nuclear matrix and more specifi cally with A-type lamins [ 74 – 77 ]. 
 Lmna  −/−  fi broblasts have shorter telomeres but no differences in telomerase activity 
[ 78 ]. Instead, the answer may be related to altered chromatin structure at telomeres 
and trace back to the reduced function of RB and its related proteins p107 and p130 
[ 72 ]. Cells lacking A-type lamins exhibit a decrease in histone H4K20me3 [ 78 ], a 
known feature of cells lacking RB family members [ 79 ,  80 ]. However, the latter 
cells have increased telomere length, leading the authors of the lamin study to sug-
gest that A-type lamins might be required for telomere elongation in the absence of 
RB family members [ 81 ,  82 ]. A relocalization of telomeres from peripheral to cen-
tral regions of the nucleus has also been reported in  Lmna  −/−  cells, through at present 
unknown mechanisms [ 83 ]. 

 HGPS fi broblasts have altered telomere chromatin as well, although the changes 
are distinct from those in  Lmna  −/−  cells [ 83 ,  84 ]. In this case, decreased H4K20me3 
and increased H4K20me were found. This fi nding suggests that, not unexpectedly, 
progerin infl uences telomere metabolism in a manner distinct from hypomorphic 
mutation of  LMNA . Recently, it was reported that progerin-induced DNA damage is 
localized specifi cally to telomeres [ 85 ]. Expression of telomerase resolves this DNA 
damage, and, once repaired, HGPS fi broblasts regain full potential to proliferate. It 
will be intriguing to see how DNA damage is restricted in the genome by progerin. 

 Finally, the proliferative defects leading to senescence with expression of 
progerin and/or unprocessed lamin A appear to extend to adult stem cell popula-
tions. Studies in mesenchymal stem cells have indicated that progerin expression 
leads to elevated Notch signaling, causing perturbations in stem cell differentiation 
and maintenance of stem cell identity [ 13 ]. In addition, adult bone marrow-derived 
stem cells from  Zmpste24  −/−  mice have decreased  SIRT1  function due to its dissocia-
tion from the nuclear matrix and leading to reduced proliferation and premature 
senescence [ 86 ]. This phenotype may be relevant for aging as restoration of  SIRT1  
function was associated with improved stem cell function and enhanced survival. 
Studies in fi broblasts and other cell culture models have provided important insights 
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into lamin function; however, more emphasis needs to be placed on the role of 
 lamins in adult stem cell populations, which could be central to a subset of the 
pathologies associated with laminopathies.  

     Cell Senescence: B-Type Lamins 

 Lamin B1 has also been tightly associated with cell senescence, with altered expres-
sion in either direction possibly having deleterious consequences [ 87 ]. Initial sug-
gestions of altered lamin B expression came from studies of HGPS cells, where 
lamin B1 was found to be reduced [ 87 ]. Two virtually contemporaneous recent 
reports have shown that loss of lamin B1 expression is a marker for cell senescence 
induced by a variety of causes, including replicative exhaustion. Loss of lamin B1 
expression was not dependent on many molecular inducers of senescence but was 
driven by activation of either the p53 or the RB pathway [ 88 ]. Changes in lamin B1 
could be traced back to reduced mRNA stability, although reduced protein stability 
could be detected as well in mouse liver induced to senescence by irradiation. In the 
second study, Shimi et al. also reported loss of lamin B1 as a much needed bio-
marker of cell senescence [ 14 ]. Shimi et al. also examined the consequences of 
RNAi-mediated knockdown of lamin B1 expression, fi nding that this was suffi cient 
to both slow proliferation and reduce senescence. The proliferative delay was 
dependent on p53, and the senescent phenotype was dependent on both p53 and RB. 
Yet a third very recent study has confi rmed and extended the observed reduction in 
lamin B1 expression to senescent keratinocytes and to chronologically aged human 
skin tissue [ 89 ]. However, in this study enforced reduction in lamin B1 expression 
failed to lead to senescence. The disparities between the two studies are not known 
[ 14 ,  89 ]. Together these fi ndings (1) indicate that loss of lamin B1 may serve as an 
effective biomarker of in vivo senescence and (2) suggest the existence of a complex 
regulatory loop connecting B-type lamins to the RB and p53 pathways. 

 Whereas mutations affecting the  LMNB1  coding sequence have not been reported, 
overexpression is linked to at least two diseases, suggesting that too much lamin B1 
may be as deleterious as too little. Duplication of the  LMNB1  locus results in adult-
onset autosomal dominant leukodystrophy (ADLD) [ 90 ], and lamin B1 overexpres-
sion has been detected in lymphoblasts and fi broblasts from ataxia telangiectasia 
patients [ 91 ]. Interestingly, lamin B1 overexpression also drives cell senescence, a 
phenomenon also observed in ataxia telangiectasia cells, which are rescued by res-
toration of normal lamin B1 expression. Induction of senescence by overexpression 
of lamin B1 has been repeated in a second study [ 89 ]. In this case, the senescent 
phenotype could be rescued by expression of telomerase or inactivation of p53, 
paralleling observations for progerin-induced senescence [ 64 ]. Finally, senescence 
induced by overexpression of lamins is not restricted to B1. Increased levels of 
lamin A also reduce the replicative life-span of primary human fi broblasts [ 92 ]. 

 Several studies indicate a connection between A-type and B-type lamins in the 
formation of intermediate fi lament networks, and there appears to be an interplay 
between the two nuclear intermediate fi lament families with respect to cell 
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senescence. For instance, reduced expression of A-type lamins exacerbates the 
senescent phenotype of cells overexpressing lamin B1 [ 89 ]. In the context of senes-
cence in normal cells, one thing that needs to be resolved is whether increased 
progerin levels and reduced lamin B1 expression are related. Does one family of 
nuclear intermediate fi laments regulate the other during aging and senescence? 

 Whether reactive oxygen species (ROS) drive aspects of the aging process 
remains highly debated [ 93 ]. Both A- and B-type lamins have been linked to reac-
tive oxygen production and sensing in recent years, and while the details remain 
murky, these fi ndings represent another promising set of leads as the relationship 
between lamins and aging is elucidated [ 87 ]. There may be a direct connection as 
conserved cysteines in the C-terminal tail of lamin A have been found to be oxi-
dized in senescent cells [ 94 ]. This led to the formation of intra- and intermolecular 
disulfi de bonds and perturbation of the lamina. These cysteine residues may serve 
as a reservoir or a sensor for oxidation, as mutating the cysteines to alanine led to 
oxidative stress sensitivity and premature senescence. In the case of B-type lamins, 
a number of confl icting results have been reported. In some contexts, increased ROS 
has been reported to lead to elevated and reduced lamin B1 levels [ 14 ,  88 ,  91 ]. 
Similarly, both higher and lower levels of lamin B1 lead to reduced ROS levels [ 14 ]. 
Further studies with ROS and lamins will likely clarify this complex and potentially 
mechanistically rewarding relationship.  

    Conclusions 

 While nuclear lamins have been speculated to control cell cycle progression for 
decades, this area of research has exploded in recent years and many labs have 
investigated the effect of laminopathy-associated mutations in  LMNA  and diseases 
associated with  LMNB1  overexpression. These studies have linked nuclear lamins 
to virtually every major aspect of cell cycle progression and, more recently, cell 
senescence. This latter connection may be particularly interesting given that  LMNA  
mutations are associated with progeria as well as the fi ndings that both progerin and 
lamin B1 have altered expression with normal aging. 

 However, several big questions remain to be resolved: Does altered lamin expres-
sion promote tumor progression? Are lamins important regulators of the aging pro-
cess? With respect to cancer, an increasing number of studies have linked altered 
expression of both A-type and B-type to different tumors, but the relationships are 
complex and causal links are generally lacking. It is critical to resolve these issues 
in more detail to determine for which tumors lamins might be effective biomarkers 
and perhaps more importantly to understand why changes in lamin expression may 
promote tumorigenesis. 

 With respect to aging, the fi ndings are certainly becoming more intriguing. That 
 LMNA  mutations cause HGPS is not suffi cient to ascribe A-type lamins a role in 
normal aging. That progerin is expressed in aging and/or senescent cells is also not 
suffi cient, but together the data certainly justify further analysis of lamin roles in the 
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normal aging process. To provide convincing evidence, it will be necessary to 
manipulate A-type (or B-type) lamins in a manner that leads to enhanced organismal 
longevity. For instance, it would be informative to apply technologies developed to 
reduce progerin expression in HGPS models to wild-type mice to determine whether 
suppression of progerin in this context leads to longer life-span. Experiments such 
as these will begin to answer the critical questions surrounding aging and lamins. 

 Progress in understanding disease-relevant functions of lamins has escalated dra-
matically in recent years, and the next few years will without a doubt provide excit-
ing new fi ndings relevant to cancer and aging. Perhaps the most exciting aspect of 
the fi eld is that researchers are beginning to understand the roles of lamins at the 
mechanistic level. Further progress on this front will likely yield effective therapeu-
tic approaches for treatment of laminopathies and, importantly, an increasingly 
elegant understanding of the organization of the mammalian nucleus.     
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