
Chapter 7
Large-N and Large-T Properties of Panel Data
Estimators and the Hausman Test

Seung Chan Ahn and Hyungsik Roger Moon

7.1 Introduction

Error-components models have been widely used to control for unobservable cross-
sectional heterogeneity in panel data with a large number of cross-section units
(N ) and a small number of time-series observations (T ). These models assume
that stochastic error terms have two components: an unobservable time-invariant
individual effect, which captures the unobservable individual heterogeneity, and the
usual random noise. The most popular estimation methods for error-components
models are the within and the generalized least squares (GLS) estimators. A merit
of the within estimator (least squares on data transformed into deviations from
individual means) is that it is consistent even if regressors are correlated with the
individual effect (fixed effects). A drawback, however, is that it cannot estimate the
coefficients of time-invariant regressors.1 Among various alternative estimators for

1Estimation of the effect of a certain time-invariant variable on a dependent variable could be an
important task in a broad range of empirical research. Examples would be the labor studies about
the effects of schooling or gender on individual workers’ earnings, and the macroeconomic studies
about the effect of a country’s geographic location (e.g., whether the country is located in Europe
or Asia) on its economic growth. The within estimator is inappropriate for such studies.
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the coefficients of time-invariant regressors,2 the GLS estimator has been popularly
used in the literature due to its efficiency. Its consistency, however, requires a
strong assumption that no regressor is correlated with the individual effects (random
effects). Because of its restrictiveness, the empirical validity of the random effects
assumption should be tested to justify the use of the GLS estimator. The Hausman
test statistic (1978) has been popularly used for this purpose (e.g., Hausman and
Taylor 1981; Cornwell and Rupert 1988; Baltagi and Khanti-Akom 1990; Ahn and
Low 1996; or Guggenberger 2010).

This paper studies the asymptotic and finite-sample properties of the within
and GLS estimators and the Hausman statistic for a general panel data error-
components model with both large N and T . The GLS estimator has been known
to be asymptotically equivalent to the within estimator for the cases with infinite N

and T (see, for example, Hsiao 1986, Chap. 3; Mátyás and Sevestre 1992, Chap. 4;
Baltagi 1995, Chap. 2). This asymptotic equivalence result has been obtained using
a sequential limit method (T ! 1 followed by N ! 1) and some strong
assumptions such as fixed regressors. This result naturally raises several questions.
First, does the equivalence result hold for more general cases? Second, does the
equivalence result indicate that the Hausman statistic, which is essentially a distance
measure between the within and GLS estimators, should have a degenerating or
nonstandard asymptotic distribution under the random effects assumption? Third,
does the equivalence result also imply that the Hausman test would have low power
to detect any violation of the random effects assumption when T is large? This paper
is concerned with answering these questions.

Panel data with a large number of time-series observations have been increas-
ingly more available in recent years in many economic fields such as international
finance, finance, industrial organization, and economic growth. Furthermore, popu-
lar panel data, such as the Panel Study of Income Dynamics (PSID) and the National
Longitudinal Surveys (NLS), contain increasingly more time-series observations as
they are updated regularly over the years. Consistent with this trend, some recent
studies have examined the large-N and large-T properties of the within and GLS
estimators for error-component models.3 For example, Phillips and Moon (1999)
and Kao (1999) establish the asymptotic normality of the within estimator for

2For example, if only the time-varying regressors are correlated with the individual effects, all of
the coefficients of time-varying and time-invariant regressors can be consistently estimated by a
two-step estimation procedure. At the first step, the coefficients of time-varying regressors can be
consistently estimated by the within estimator. At the second step, the residuals computed with the
within estimator are regressed on the time-invariant regressors. The resulting coefficient estimators
are consistent as long as the time-invariant regressors are uncorrelated with the individual effects.
We thank an anonymous referee for introducing this estimation procedure to us.
3Some other studies have considered different panel data models with large N and large T . For
example, Levin and Lin (1992, 1993), Quah (1994), Im et al. (2003), and Higgins and Zakrajsek
(1999) develop unit-root tests for data with large N and large T . Alvarez and Arellano (2003) and
Hahn and Kuersteiner (2002) examine the large-N and large-T properties of generalized method
of moments (GMM) and within estimators for stationary dynamic panel data models.
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the cases in which regressors follow unit root processes. Extending these studies,
Choi (1998) considers a general random effects model which contains both unit-
root and covariance-stationary regressors. For this model, he derives the asymptotic
distributions of both the within and GLS estimators.

This paper is different from the previous studies in three respects. First, the model
we consider contains both time-varying and time-invariant regressors. The time-
varying regressors are cross-sectionally heterogeneous or homogeneous. Analyzing
this model, we study how cross-sectional heterogeneity and the covariance structure
between the time-varying and time-invariant regressors, as well as time trends in
regressors, would affect the convergence rates of the panel data estimators. Second,
we examine how the large-N and large-T asymptotic equivalence of the within and
GLS estimators influences the asymptotic and finite-sample performances of the
Hausman test. Ahn and Low (1996) have investigated the size and power properties
of the Hausman test for the cases with large N and small T . In this paper, we
reexamine the asymptotic and finite-sample properties of the test in more detail.
In particular, we study how the power of the Hausman test would depend on the
size of T and the covariance structure among regressors. Third, and perhaps less
importantly, we use the joint limit approach developed by Phillips and Moon (1999).

The main findings of this paper are as follows. First, consistent with the previous
studies, we find that the within and GLS estimators of the coefficients of the time-
varying regressors are asymptotically equivalent under quite general conditions.
However, the convergence rates of the two estimators depend on (i) whether means
of time-varying regressors are cross-sectionally heterogenous or homogenous and
(ii) how the time-varying and time-invariant regressors are correlated. Second, if T

is large, the GLS estimators of the coefficients of the time-varying regressors are
consistent even if the random effect assumption is violated. This finding implies
that the choice between within and GLS is irrelevant for the studies focusing on
the effects of time-varying regressors. The choice matters for the studies focusing
on the effects of time-invariant regressors. Third, despite the equivalence between
the GLS and within estimators, the Hausman statistic has well-defined asymptotic
distributions under the random effects assumption and under its local alternatives.
We also find that the power of the Hausman test crucially depends on the covariance
structure between time-varying and time-invariant regressors, the covariance struc-
ture between regressors and the individual effects, and the size of T . The Hausman
test has good power to detect non-zero correlation between the individual effects
and the permanent (individual-specific and time-invariant) components of time-
varying regressors, even if T is small. In contrast, the power of the test is somewhat
limited when the effects are correlated with the time-invariant regressors and/or they
are only correlated with the transitory (time-varying) components of time-varying
regressors. For such cases, the size of T could rather decrease the power of the
Hausman test.

This paper is organized as follows. Section 7.2 introduces the panel model
of interest, and defines the within, between and GLS estimators as well as the
Hausman test. For several simple illustrative models, we derive the asymptotic
distributions of the panel data estimators and the Hausman test statistic. Section 7.3
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reports the results from our Monte Carlo experiments. In Sect. 7.4, we provide our
general asymptotic results. Concluding remarks follow in Sect. 7.5. All the technical
derivations and proofs are presented in the Appendix and the previous version of this
paper.

7.2 Preliminaries

7.2.1 Estimation and Specification Test

The model under discussion here is given:

yit D ˇ0xit C � 0zi C � C "it D ı0wi t C � C "it I "it D ui C vi t ; (7.1)

where i = 1; : : : ; N denotes cross-sectional (individual) observations, t = 1; : : : ; T

denotes time, wi t D �
x0

i t ; z0
i

�0
, and ı D .ˇ0; � 0/0. In model (7.1), xit is a k � 1

vector of time-varying regressors, zi is a g � 1 vector of time-invariant regressors,
� is an overall intercept term, and the error "it contains a time-invariant individual
effect ui and random noise vi t . We consider the cases with both large numbers of
individual and time series observations, so asymptotic properties of the estimators
and statistics for model (7.1) apply as N; T ! 1. The orders of convergence rates
of some estimators can depend on whether or not the model contains an overall
intercept term. This problem will be addressed later.

We assume that data are distributed independently (but not necessarily identi-
cally) across different i , and that the vi t are independently and identically distributed
(i.i.d.) with var.vi t / D �2

v . We further assume that ui , xi1; : : : ; xiT and zi are strictly
exogenous with respect to vi t ; that is, E.vi t j ui ; xi1; : : : ; xiT / D 0; for any i and t .
This assumption rules out the cases in which the set of regressors includes lagged
dependent variables or predetermined regressors. Detailed assumptions about the
regressors xi1; : : : ; xiT ; zi will be introduced later.

For convenience, we adopt the following notational rule: For any p � 1 vector
ait , we denote ai D 1

T

P
t ait ; Qait D ait � ai ; a D 1

N

P
i ai ; Qai D ai � a.

Thus, for example, for wi t D �
x0

i t ; z0
i

�0
, we have wi D .x0

i ; z0
i /

0; Qwi t D . Qx0
i t ; 01�g/0;

w D .x0; z/I Qwi D ..xi � x/0; .zi � z/0/0.
When the regressors are correlated with the individual effect, the OLS estimator

of ı is biased and inconsistent. This problem has been traditionally addressed by the
use of the within estimator (OLS on data transformed into deviations from individual
means):

Ǒ
w D .

P
i;t Qxit Qx0

i t /
�1
P

i;t Qxit Qy0
i t :

Under our assumptions, the variance-covariance matrix of the within estimator is
given:

Var. Ǒ
w/ D �2

v .
P

i;t Qxit Qx0
i t /

�1: (7.2)
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Although the within method provides a consistent estimate of ˇ, a serious defect
is its inability to identify � , the impact of time-invariant regressors. A popular
treatment of this problem is the random effects (RE) assumption under which the ui

are random and uncorrelated with the regressors:

E.ui j xi1; : : : ; xiT ; zi / D 0: (7.3)

Under this assumption, all of the parameters in model (7.1) can be consistently
estimated. For example, a simple but consistent estimator is the between estimator
(OLS on data transformed into individual means):

Oıb D . Ǒ0
b; O� 0

b/0 D .
P

i Qwi Qw0
i /

�1
P

i Qwi Qyi :

However, as Balestra and Nerlove (1966) suggest, under the RE assumption, an
efficient estimator is the GLS estimator of the following form:

Oıg D Œ
P

i;t Qwi t Qw0
i t C T �2

T

P
i Qwi Qwi

0��1Œ
P

i;t Qwi t Qyi C T �2
T

P
i Qwi Qyi �;

where �T D p
�2

v =.T �2
u C �2

v /. The variance-covariance matrix of this estimator is
given:

Var. Oıg/ D �2
v Œ
P

i;t Qwi t Qw0
i t C T �2

T

P
i Qwi Qwi

0��1: (7.4)

For notational convenience, we assume that �2
u and �2

v are known, while in practice
they must be estimated.4

An important advantage of the GLS estimator over the within estimator is that
it allows researchers to estimate � . In addition, the GLS estimator of ˇ is more
efficient than the within estimator of ˇ because ŒVar. Ǒ

w/ � Var. Ǒ
g/� is positive

definite so long as �T > 0. Despite these desirable properties, it is important
to notice that the consistency of the GLS estimator crucially depends on the RE
assumption (7.3). Accordingly, the legitimacy of the RE assumption should be tested
to justify the use of GLS. In the literature, a Hausman test (1978) has been widely
used for this purpose. The statistic used for this test is a distance measure between
the within and GLS estimators of ˇ:

HMNT � . Ǒ
w � Ǒ

g/0ŒVar. Ǒ
w/ � Var. Ǒ

g/��1. Ǒ
w � Ǒ

g/: (7.5)

4There are many different ways to consistently estimate �2
v and �2

u . One way is to use

O�2
v D P

i;t . Qyit � Qxit
Ǒw/2=ŒN.T � 1/�I O�2

u D P
i;t . Qyi � Qwi

Oıols /
2=NT � O�2

v ;

where Oıols is the OLS estimator of ı.



224 S.C. Ahn and H.R. Moon

For the cases in which T is fixed and N ! 1, the RE assumption warrants that the
Hausman statistic HMNT is asymptotically �2-distributed with degrees of freedom
equal to k. This result is a direct outcome of the fact that for fixed T , the GLS
estimator Ǒ

g is asymptotically more efficient than the within estimator Ǒ
w, and that

the difference between the two estimators is asymptotically normal; specifically, as
N ! 1,

p
NT . Ǒ

w � Ǒ
g/ H) N.0; plimN !1NT ŒVar. Ǒ

w/ � Var. Ǒ
g/�/; (7.6)

where “H)” means “converges in distribution.”
An important condition that guarantees (7.6) is that �T > 0. If �T D 0, then

Ǒ
w and Ǒ

g become identical and the Hausman statistic is not defined. Observing
�T ! 0 as T ! 1, we can thus easily conjecture that Ǒ

w and Ǒ
g should be

asymptotically equivalent as T ! 1. This observation naturally raises two issues
related to the asymptotic properties of the Hausman test as T ! 1. First, since the
Hausman statistic is asymptotically �2�distributed for any fixed T under the RE
assumption, we can conjecture that it should remain asymptotically �2�distributed
even if T ! 1. Thus, we wish to understand the theoretical link between the
asymptotic distribution of the Hausman statistic and the equivalence of the within
and GLS estimators. Second, it is a well-known fact that the GLS estimator Ǒ

g

is a weighted average of the within and between estimators Ǒ
w and Ǒ

b (Maddala
1971). Thus, observing the form of the Hausman statistic, we can conjecture that the
Hausman test should have the power to detect any violation of the RE assumption
that causes biases in Ǒ

b . However, the weight given to Ǒ
b in Ǒ

g decreases with T .
Thus, we wish to understand how the power of the Hausman test would be related
to the size of T . We will address these two issues in the following sections.

What makes it complex to investigate the asymptotic properties of the Hausman
statistic is that its convergence rate crucially depends on data generating processes.
The following subsection considers several simple cases to illustrate this point.

7.2.2 Preliminary Results

This section considers several simple examples demonstrating that the convergence
rate of the Hausman statistic depends on (i) whether or not the time-varying
regressors are cross-sectionally heterogeneous and (ii) how the time-varying and
time-invariant regressors are correlated.

For model (7.1), we can easily show that

Ǒ
w � ˇ D A�1

NT aNT I (7.7)

Ǒ
b � ˇ D .BNT � CNT H �1

N C 0
NT /�1ŒbNT � CNT H �1

N cNT �I (7.8)



7 Large-N and Large-T Properties of Panel Data Estimators and the Hausman Test 225

Ǒ
g � ˇ D ŒANT C T �2

T .BNT � CNT H �1
N C 0

NT /��1

� ŒANT . Ǒ
w � ˇ/ C T �2

T .BNT � CNT H �1
N C 0

NT /. Ǒ
b � ˇ/�I

(7.9)

Ǒ
w � Ǒ

g D ŒANT C T �2
T .BNT � CNT H �1

N CNT /��1

� T �2
T .BNT � CNT H �1

N C 0
NT /Œ. Ǒ

w � ˇ/ � . Ǒ
b � ˇ/�I

(7.10)

Var. Ǒ
w/ � Var. Ǒ

g/ D A�1
NT � ŒANT C T �2

T .BNT � CNT H �1
N C 0

NT /��1; (7.11)

where,

ANT D P
i;t Qxit Qx0

i t I BNT D P
i Qxi Qx0

i I CNT D P
i Qxi Qz0

i I HN D P
i Qzi Qz0

i I
aNT D P

i;t Qxit vi t I bNT D P
i Qxi .ui C vi /I cNT D P

i Qzi .ui C vi /:

Equation (7.10) provides some insight into the convergence rate of the Hausman test
statistic. Note that . Ǒ

w � Ǒ
g/ depends on both . Ǒ

w � ˇ/ and . Ǒ
b � ˇ/. Apparently,

the between estimator Ǒ
b exploits only N between-individual variations, while the

within estimator Ǒ
w is computed based on N.T � 1/ within-individual variations.

Accordingly, . Ǒ
b � ˇ/ converges to a zero vector in probability much slower than

. Ǒ
w � ˇ/ does. Thus, we can conjecture that the convergence rate of . Ǒ

w � Ǒ
g/ will

depend on that of . Ǒ
b � ˇ/, not . Ǒ

w � ˇ/. Indeed, we below justify this conjecture.
In this subsection, we only consider a simple model that has a single time-varying

regressor (xit ) and a single time-invariant regressor (zi ). Accordingly, all of the
terms defined in (7.7)–(7.11) are scalars. The within and GLS estimators and the
Hausman test are well defined even if there is no time-invariant regressor. However,
we consider the cases with both time-varying and time-invariant regressors because
the correlation between the two regressors plays an important role in determining
the convergence rate of the Hausman statistic. Asymptotic results for the cases with
a single time-varying regressor only can be easily obtained by setting CNT D 0.

We consider asymptotics under the RE assumption (7.3). The power property of
the Hausman test will be discussed in the following subsection. To save space, we
only consider the estimators of ˇ and the Hausman test. The asymptotic distributions
of the estimators of � will be discussed in Sect. 7.4. Throughout the examples below,
we assume that the zi are i:i:d: over different i with N.0; �2

z /. In addition, we
introduce a notation eit to denote a white noise component in the time-varying
regressor xit . We assume that the eit are i.i.d. over different i and t with N.0; �2

e /,
and are uncorrelated with the zi .

We consider two different cases separately: the cases in which xit and zi are
uncorrelated (CASE A), and the cases in which the regressors are correlated
(CASE B).

CASE A: We here consider a case in which the time-varying regressor xit is
stationary without trend. Specifically, we assume:

xit D ‚a;i C ‰a;t C eit ; (7.12)
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where ‚a;i and ‰a;t are fixed individual-specific and time-specific effects, respec-
tively. Define ‚a D 1

N

P
i ‚a;i and ‰a D 1

N

P
i ‰i I and let

pa;1 D limN !1‚aI pa;2 D limN !1
1

N

P
i

�
‚a;i � ‚a

�2 I

qa;1 D limN !1‰aI qa;2 D limT !1
1

T

P
t

�
‰a;t � ‰a

�2
:

We can allow them to be random without changing our results, but at the cost of
analytical complexity. We consider two possible cases: one in which the parameters
‚a;i are heterogeneous, and the other in which they are constant over different
individuals. Allowing the ‚a;i to be different across different individuals, we allow
the means of xit to be cross-sectionally heterogeneous. In contrast, if the ‚a;i are
constant over different i , the means of xit become cross-sectionally homogeneous.
As we show below, the convergence rates of the between estimator and Hausman
test statistic are different in the two cases.

To be more specific, consider the three terms BNT , CNT , and bNT defined below
(7.11). Straightforward algebra reveals that

BNT D P
i .‚a;i � ‚a/2 C 2

P
i .‚a;i � ‚a/.ei � e/ CP

i .ei � e/2I
CNT D P

i .‚a;i � ‚a/.zi � z/CPi .ei � e/.zi � z/I
bNT D P

i .‚a;i � ‚a/ui CP
i .ei � e/ui

CP
i .‚a;i � ‚a/vi CP

i .ei � e/vi :

It can be shown that the terms including .‚a;i � ‚a/ will be the dominant factors
determining the asymptotic properties of BNT , CNT , and bNT . However, if the
parameters ‚a;i are constant over different individuals so that ‚a;i � ‚a D 0,
none of BNT , CNT , and bNT depend on .‚a;i � ‚a/. For this case, the asymptotic
properties of the three terms depend on .ei � e/. This result indicates that the
asymptotic distribution of the between estimator Ǒ

b , which is a function of BNT ,
CNT , and bNT , will depend on whether the parameters ‚a;i are cross-sectionally
heterogeneous or homogeneous.5

We now consider the asymptotic distributions of the within, between, GLS
estimators and the Hausman statistic under the two alternative assumptions about
the parameters ‚a;i .

5Somewhat interestingly, however, the distinction between these two cases becomes unimportant
when the model has no intercept term (� D 0) and is estimated with this restriction. For such a
case, BNT , CNT and bNT depend on xi instead of Qxi . With xi , the terms .‚a;i � ‚a/ and .ei � e/

in BNT , CNT , and bNT are replaced by ‚a;i and ei , respectively. Thus, the terms containing the
‚a;i remain as a dominating factor whether or not the ‚a;i are heterogenous.
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CASE A.1: Assume that the ‚a;i vary across different i ; that is, pa;2 ¤ 0. With this
assumption, we can easily show that as .N; T ! 1/6:

p
NT . Ǒ

w � ˇ/ H) N

�
0;

�2
v

.qa;2 C �2
e /

�
I (7.13)

p
N . Ǒ

b � ˇ/ H) N

�
0;

�2
u

pa;2

�
I (7.14)

p
NT . Ǒ

g � ˇ/ D p
NT . Ǒ

w � ˇ/

C 1p
T

�2
v

�2
u

pa;2

.qa;2 C �2
e /

p
N . Ǒ

b � ˇ/ C op

�
1p
T

�
I

(7.15)

plimN;T !1NT 2ŒVar. Ǒ
w/ � Var. Ǒ

g/� D �4
v

�2
u

pa;2

.qa;2 C �2
e /2

: (7.16)

Three remarks follow. First, consistent with previous studies, we find from (7.15)
that the within and GLS estimators, Ǒ

w and Ǒ
g; are

p
NT -equivalent in the sense

that . Ǒ
w � Ǒ

g/ is op.
p

NT /. This is so because the second term in the right-
hand side of (7.15) is Op.1=

p
T /. At the same time, (7.15) also implies that

. Ǒ
w � Ǒ

g/ is Op.
p

NT 2/ and asymptotically normal. These results indicate that
the within and GLS estimators are equivalent to each other by the order of

p
NT ,

but not by the order of
p

NT 2. Second, from (7.15) and (7.16), we can see that the
Hausman statistic is asymptotically �2-distributed with the convergence rate equal
to

p
NT 2.7 In particular, (7.15) indicates that the asymptotic distribution of the

Hausman statistic is closely related to the asymptotic distribution of the between
estimator Ǒ

b .
Finally, the above asymptotic results imply some simplified GLS and Hausman

test procedures. From (7.13) and (7.14), it is clear that

p
N . Ǒ

b � Ǒ
w/ D p

N . Ǒ
b � ˇ/ � 1p

T

p
NT . Ǒ

w � ˇ/ D p
N . Ǒ

b � ˇ/ C op.1/:

With (7.15), this result indicates that the Hausman test based on the differ-
ence between Ǒ

w and Ǒ
g is asymptotically equivalent to the Wald test based on

the between estimator Ǒ
b for the hypothesis that the true ˇ equals the within

6These result are obtained utilizing the fact that limits of 1
NT

ANT ; 1
N

BN ; 1
N

CN ; and 1
N

HN

are finite, while 1p
NT

aNT ; 1p
N

bN ; and 1p
N

cNT are asymptotically normal. More detailed
calculations can be found from an earlier version of this paper.
7As we can see clearly from (7.15) and (7.16), the Hausman statistic does not depend on

p
NT 2

because it cancels out. Nonetheless, we say that the convergence rate of the Hausman test statistic
equals

p
NT 2 because the asymptotic �2 result for the statistic is obtained based on the fact that

. Ǒw � Ǒ
g/ is

p
NT 2�consistent.
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estimator Ǒ
w. We obtain this result because the convergence rate of Ǒ

w is faster
than that of Ǒ

b . In addition, the GLS estimator of O�g can be obtained by the

between regression treating Ǒ
w as the true ˇ, that is, the regression on the model

Qyi � Qxi
Ǒ
w D Qzi � C error . An advantage of these alternative procedures is that

GLS and Hausman tests can be conducted without estimating �T . The alternative
procedures would be particularly useful for the analysis of unbalance panel data. For
such data, �T is different over different cross-sectional units. When T is sufficiently
large for individual i ’s, we do not need to estimate these different �T ’s for GLS. The
alternative procedures work out for all of the other cases analyzed below.

CASE A.2: Now, we consider the case in which the ‚a;i are constant over different
i (‚a); that is, pa;2 D 0. It can be shown that the asymptotic distributions of the
within and GLS estimators are the same under both CASEs A.1 and A.2. However,
the asymptotic distributions of the between estimator Ǒ

b and the Hausman statistic
are different under CASEs A.1 and A.2.8 Specifically, for CASE A.2, we can show
that as .N; T ! 1/;

r
N

T
. Ǒ

b � ˇ/ H) N

�
0;

�2
u

�2
e

�
I (7.17)

p
NT 3. Ǒ

w � Ǒ
g/ D ��2

v

�2
u

�2
e

.qa;2 C �2
e /

r
N

T
. Ǒ

b � ˇ/ C op.1/

H) N

�
0;

�4
v

�2
u

�2
e

.qa;2 C �2
e /2

�
I

(7.18)

plimN;T !1NT 3ŒVar. Ǒ
w/ � Var. Ǒ

g/� D �4
v �2

e

�2
u .qa;2 C �2

e /2
; (7.19)

Several comments follow. First, observe that differently from CASE A.1, the
between estimator Ǒ

b is now
p

N=T -consistent. An interesting result is obtained
when N=T ! c < 1. For this case, the between estimator is inconsistent although
it is still asymptotically unbiased. This implies that the between estimator is an
inconsistent estimator for the analysis of cross-sectionally homogeneous panel data
unless N is substantially larger than T . Second, the convergence rate of . Ǒ

w � Ǒ
g/;

as well as that of the Hausman statistic, is different between CASEs A.1 and A.2.
Notice that the convergence rate of . Ǒ

w � Ǒ
g/ is

p
NT 3 for CASE A.2, while

it is
p

NT 2 for CASE A.1. Thus, . Ǒ
w � Ǒ

g/ converges in probability to zero

8If the model contains no intercept term (� D 0) and it is estimated with this restriction, all of
the results (7.13)–(7.16) are still valid with ‚2

a replacing pa;2. Thus, the convergence rates of the
within, between, GLS estimators and the Hausman statistic are the same under both CASEs A.1
and A.2.
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much faster in CASE A.2 than in CASE A.1. Nonetheless, the Hausman statistic
is asymptotically �2-distributed in both cases, though with different convergence
rates.

Even if the time-varying regressor xit contains a time trend, we can obtain the
similar results as in CASEs A.1 and A.2. For example, consider a case in which the
time-varying regressor xit contains a time trend of order m:

xit D ‚b;i t
m C eit ; (7.20)

where the parameters ‚b;i are fixed.9 Not surprisingly, for this case, we can show
that the within and GLS estimators are superconsistent and T m

p
NT -equivalent.

However, the convergence rates of the between estimator Ǒ
b and the Hausman

test statistic crucially depend on whether the parameters ‚b;i are heterogenous
or homogeneous. When, the parameters ‚b;i are heterogeneous over different i ,
the between estimator Ǒ

b is T m
p

N -consistent, while the convergence rate of the
Hausman statistic equals T m

p
NT 2: In contrast, somewhat surprisingly, when the

parameters ‚b;i are heterogeneous over different i , the estimator Ǒ
b is no longer

superconsistent. Instead, it is
p

N=T -consistent as in CASE A.2. The convergence
rate of the Hausman statistic changes to T 2m

p
NT 3.10 This example demonstrates

that the convergence rates of the between estimator and the Hausman statistic
crucially depend on whether means of time-varying regressors are cross-sectionally
heterogenous or not.

CASE B: So far, we have considered the cases in which the time-varying regressor
xit and the time-invariant regressor zi are uncorrelated. We now examine the cases in
which this assumption is relaxed. The degree of the correlation between the xit and
zi may vary over time. As we demonstrate below, the asymptotic properties of the
panel data estimators and the Hausman test statistic depend on how the correlation
varies over time. The basic model we consider here is given by

xit D …i zi =tm C eit ; (7.21)

where the …i are individual-specific fixed parameters, and m is a non-negative real
number.11 Observe that because of the presence of the …i , the xit are not i.i.d. over

9We can consider a more general case: for example, xit D ai t
m C‚i C‚t Cbi zi Ceit . However,

the same asymptotic results apply to this general model. This is so because the trend term (tm)
dominates asymptotics.
10Detailed asymptotic results can be found from an earlier version of this paper.
11We can consider a more general model:

xit D ‚b;i C ‰b;t C …i zi =tm C eit ;

where the ‚b;i and ‰i are individual- and time-specific fixed parameters, respectively. When the
parameters ‚b;i are cross-sectional heterogeneous, the asymptotic results are essentially the same
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different i .12 The correlation between xit and zi decreases over time if m > 0.
In contrast, m D 0 implies that the correlation remains constant over time. For
CASE B, the within and GLS estimators are always

p
NT -consistent regardless of

the size of m. Thus, we only report the asymptotic results for the between estimator
Ǒ
b and the Hausman statistic.

We examine three possible cases: m 2 .0:5; 1�; m D 0:5, and m 2 Œ0; 0:5/. We
do so because, depending on the size of m, one (or both) of the two terms eit and
…izi =tm in xit becomes a dominating factor in determining the convergence rates
of the between estimator Ǒ

b and the Hausman statistic HMTN .

CASE B.1: Assume that m 2 .0:5; 1�. This is the case where the correlation
between xit and zi fades away quickly over time. Thus, one could expect that
the correlation between xit and zi (through the term …izi =tm) would not play any
important role in asymptotics. Indeed, straightforward algebra, which is not reported
here, justifies this conjecture: The term eit in xit dominates …izi =tm in asymptotics,
and, thus, this is essentially the same case as CASE A.2.13

CASE B.2: We now assume m D 0:5. For this case, define … D 1
N

P
i …i I

pb;1 D limN !1…I pb;2 D limN !1
1

N

P
i

�
…i � …

�2
;

and qb D limT !1 1
T 1�m

R 1

0
r�mdr D 1

1�m
for m � 0:5. With this notation, a little

algebra shows that as .N; T ! 1/,

r
N

T
. Ǒ

b � ˇ/ H) N

 

0;
�2

u

pb;2q2
b�2

z C �2
e

!

:

Observe that the asymptotic variance of the between estimator Ǒ
b depends on both

the terms �2
e and pb;2q2

b�2
z . That is, both the terms eit and …i zi =tm in xit are

important in the asymptotics of the between estimator Ǒ
b . This implies that the

correlation between the xit and zi , when it decreases reasonably slowly over
time, matters for the asymptotic distribution of the between estimator Ǒ

b .

as those we obtain for CASE A.1. This is so because the terms ‚b;i dominate and the terms
…i zi =tm become irrelevant in asymptotics. Thus, we set ‚b;i D 0 for all i . In addition, we set
‰b;t D 0 for all t , because presence of the time effects is irrelevant for convergence rates of panel
data estimators and the Hausman statistic.
12We here assume that the …i are cross-sectionally heterogeneous. For the cases in which the …i

are the same for all i , Ǒ
b does not depend on …i zi =tm; and we obtain exactly the same asymptotic

results as those for CASE A.2. This is due to the fact that the individual mean of the time-varying
regressor xi becomes a linear function of the time invariant regressor zi if the …i are the same for
all i .
13We can obtain this result using the fact that limT !1

1p
T

P
t t�m D 0, if m > 0:5.
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Nonetheless, the convergence rate of Ǒ
b is the same as that of Ǒ

b for CASEs A.2
and B.1. We can also show

p
NT 3. Ǒ

w � Ǒ
g/ D ��2

v

�2
u

pb;2q2
b�2

z C �2
e

�2
e

r
N

T
. Ǒ

b � ˇ/ C op.1/

H) N

 

0;
�4

v

�2
u

pb;2q2
b�2

z C �2
e

�4
e

!

I

plimN;T !1NT 3ŒVar. Ǒ
w/ � Var. Ǒ

g/� D �4
v

�2
u

pb;2q2
b�2

z C �2
e

�4
e

;

both of which imply that the Hausman statistic is asymptotically �2-distributed.

CASE B.3: Finally, we consider the case in which m 2 Œ0; 0:5/, where the
correlation between xit and zi decays over time slowly. Note that the correlation
remains constant over time if m D 0. We can show

r
N

T 2m
. Ǒ

b � ˇ/ H) N

 

0;
�2

u

pb;2q2
b�2

z

!

:

Observe that the asymptotic distribution of Ǒ
b no longer depends on �2

e . This implies
that the term …izi =tm in xit dominates eit in the asymptotics for Ǒ

b . Furthermore,
the convergence rate of Ǒ

b now depends on m. Specifically, so long as m < 0:5,
the convergence rate increases as m decreases. In particular, when the correlation
between xit and zi remains constant over time (m D 0), the between estimator Ǒ

b

is
p

N -consistent as in CASE A.1. Finally, the following results indicate that the
convergence rate of the Hausman statistic HMNT also depends on m:

p
NT 2mC2. Ǒ

w � Ǒ
g/ D ��2
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b � ˇ/ C op .1/

H) N

 

0;
�4

v

�2
u

pb;2q2
b�2

z

�4
e

!

I

plimN;T !1NT 2mC2ŒVar. Ǒ
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7.2.3 Asymptotic Power Properties of the Hausman Test

In this section, we consider the asymptotic power properties of the Hausman test
for the special cases discussed in the previous subsection. To do so, we need to
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Table 7.1 Local alternatives and asymptotic results

Case Local alternatives Convergence rate Noncentral parameter

A.1 E.ui j Qxi ; Qzi / D Qxi
�xp

N
C Qzi

�zp
N

a p
NT 2 pa;2�2

x

�2
u

A.2 E.ui j Qxi ; Qzi / D p
T Qxi

�xp
N

C Qzi
�zp

N

p
NT 3 �2

e �2
x

�2
u

B.1 E.ui j Qxi ; Qzi / D p
T Qxi

�xp
N

C Qzi
�zp

N

p
NT 3 �2

e �2
x

�2
u

B.2 E.ui j Qxi ; Qzi / D p
T Qxi

�xp
N

C Qzi
�zp

N

p
NT 3 .4pb;2�2

z C�2
e /�2

x

�2
u

B.3 E.ui j Qxi ; Qzi / D T m Qxi
�xp

N
C Qzi

�zp
N

p
NT 2mC2

�
. 1

1�m /
2
pb;2�2

z

�
�2

x

�2
u

aThis sequence of local alternatives can be replaced by

E.ui jxi ; zi / D �o C xi

�xp
N

C zi

�zp
N

;

where �o is any constant scalar. The asymptotic results remain the same with this replacement.

specify a sequence of local alternative hypotheses for each case. Among many, we
consider the alternative hypotheses under which the conditional mean of ui is a
linear function of the regressors Qxi and Qzi .

We list in Table 7.1 our local alternatives and asymptotic results for CASEs A.1–
B.3. For all of the cases, we assume that var.ui j Qxi ; Qzi / D �2

u for all i . The
parameters �x and �z are nonzero real numbers. Notice that for CASEs A.2–
B.3, we use

p
T Qxi or T m Qxi instead of Qxi . We do so because, for those cases,

plimT !1 Qxi D 0: The third column indicates the convergence rates of the Hausman
test, which are the same as those obtained under the RE assumption. Under the
local alternatives, the Hausman statistic asymptotically follows a noncentral �2

distribution. The noncentral parameters for individual cases are listed in the fourth
column of Table 7.1.

A couple of comments follow. First, although the noncentral parameter does not
depend on �z for any case reported in Table 7.1, it does not mean that the Hausman
test has no power to detect nonzero correlation between the effect ui and the time-
invariant regressor zi . The Hausman test comparing the GLS and within estimators is
not designed to directly detect the correlations between the time-invariant regressors
and the individual effects. Nonetheless, the test has power as long as the individual
effect ui is correlated with the time-varying regressors conditionally on the time-
invariant regressors. To see this, consider a model in which xit and zi have a
common factor fi I that is, xit D fi Ceit and zi D fi C	i . (This is the case discussed
below in Assumption 5.) Assume E.ui j fi ; 	i ; Nei / D c	i =

p
N : Also assume that

fi ; 	i and eit are normal, mutually independent, and i.i.d. over different i and t

with zero means, and variances �2
f ; �2

	 ; and �2
e , respectively. Note that xit is not

correlated with ui ; while zi is. For this case, however, we can show that

E.ui jxi ; Qzi / D xi

�xp
N

C Qzi

�zp
N

;
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where d D .�2
f C �2

e =T /.�2
f C �2

	 / � �4
f ; �x D �c�2

f �2
	 =d; �z D c.�2

f C
�2

e =T /�2
	 =d . Observe that �x is functionally related to �z: �x D 0 if and only if

�z D 0. For this case, it can be shown that the Hausman test has the power to detect
non-zero correlation between ui and Qzi .

Second and more importantly, the results for CASE A show that the large-
T and large-N power properties of the Hausman test may depend on (i) what
components of xit are correlated with the effect ui and (ii) whether the mean of xit is
cross-sectionally heterogeneous. For CASE A, the time-invariant and time-varying
parts of xit ; ‚a;i and eit , can be viewed as permanent and transitory components,
respectively. For fixed T , it does not matter to the Hausman test which of these two
components of xit is correlated with the individual effect ui . The Hausman test has
power to detect any kind of correlations between xit and ui . In contrast, for the cases
with large T , the same test can have power for specific correlations only. To see
why, observe that for CASE A.1, the noncentral parameter of the Hausman statistic
depends only on the variations of the permanent components ‚i , not on those of the
transitory components eit . This implies that for CASE A.1 (where the permanent
components ‚a;i are cross-sectionally heterogeneous), the Hausman test has power
for nonzero correlation between the effect ui and the permanent component ‚a;i ; but
no power for nonzero-correlation between the effect and the temporal component
eit . In contrast, for CASE A.2 (where the permanent components ‚a;i are the
same for all i ), the noncentral parameter depends on the variations in eit . That is,
for CASE A.2, the Hausman test does have power to detect nonzero-correlation
between the effect and the temporal component of xit .14

Similar results are obtained from the analysis of CASE B. The results reported
in the fourth column of Table 7.1 show that when the correlation between xit

and zi decays slowly over time (m � 0:5/, the Hausman test has power to detect
nonzero-correlation between the individual effect and the transitory component of
time-varying regressors, even if T is large. In contrast, when m > 0:5, the same
test has no power to detect such nonzero correlations if T is large. These results
indicate that the asymptotic power of the Hausman test can depend on the size of T:

That is, the Hausman test results based on the entire data set with large T could be
different from those based on subsamples with small T . These findings will be more
elaborated in Sect. 7.3.

14This point can be better presented if we choose the following sequence of local alternative
hypotheses for CASE A:

E .ui j Qxi ; Qzi / D E.Qxi/
�x;1p

N
C .Qxi � E .Qxi //

�x;2p
N

C Qzi

�zp
N

:

Observe that for CASE A, E.Qxi/ D ‚i , and .Qxi � E .Qxi // D Qei . Under the local alternative
hypotheses, it can be shown that the noncentral parameter of the Hausman test depends on either
�x;1 or �x;2, but not both. When E.Qxi/ ¤ 0 (CASE A.1), the noncentral parameter of the test
depends only on �x;1. In contrast, when E.Qxi / D 0, the noncentral parameter depends only on
�x;2:
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7.3 Monte Carlo Experiments

In this section, we investigate the finite-sample properties of the within and GLS
estimators, as well as those of the Hausman test. Consistent with the previous
section, we consider a model with one time-varying regressor xit and one time-
invariant regressor zi . The foundations of our experiments are CASEs A and B
discussed above. For all of our simulations, both the individual effects ui and
random errors vi t are drawn from N.0; 1/.

For the cases in which the two regressors are uncorrelated (CASE A), we
generate xit and zi as follows:

xit D ‚i C 
i �t C eit ; (7.22)

zi D �zuui C
q

1 � �2
zufi ; (7.23)

where ‚i D �xu;1ui C
q

1 � �2
xu;1‚

c
i , 
i D �xu;2ui C

q
1 � �2

xu;2
c
i , the ‚c

i and 
c
i are

random variables from N.0; 1/, the eit and fi are drawn from a uniform distribution
in the range .�2; 2/. The term 
i �t C eit is the transitory component of xit . The
term 
i �t is introduced to investigate the cases with non-zero correlations between
the individual effect and the transitory component of xit . The degrees of correlations
between the individual effects and regressors are controlled by �xu;1, �xu;2 and �zu.
For each of the simulation results reported below, 5,000 random samples are used.

Table 7.2 reports the simulation results from CASE A.1. When regressors are
uncorrelated with the effect ui , both the GLS and within estimators have only small
biases. The Hausman test is reasonably well sized although it is somewhat oversized
when both N and T are small. When the permanent component of xit is correlated
with the effect (Panel I), the GLS estimator of ˇ is biased. However, the size of bias
decreases with T , as we expected. The bias in the within estimator of ˇ is always
small regardless of the sizes of N and T . The Hausman test has great power to detect
non-zero correlation between the permanent component of xit and ui regardless of
sample size. The power increases with T while the bias in the GLS estimator of ˇ

decreases.
Panel II of Table 7.2 shows the results from the cases in which the effect ui t

and the transitory component of xit are correlated. Our asymptotic results predict
that this type of correlation does not bias the GLS estimates when T is large and
is not detected by the Hausman test. The results reported in Panel II are consistent
with this prediction. Even if T is small, we do not see substantial biases in the GLS
estimates. When T is small, the Hausman test has some limited power to detect the
non-zero correlation between the effect and the transitory component of the time-
varying regressor. However, the power decreases with T .

Table 7.3 reports the results from the cases in which the time-varying regressor
does not have a permanent component (CASE A.2). Similar to those that are
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Table 7.2 Monte Carlo simulation results for CASE A.1

Panel I: �xu;2 D 0 Panel II: �xu;1 D 0

Bias Bias

GLS Within GLS Within

N T �xu;1 ˇ � ˇ

Hausman
rejection
rate �xu;2 ˇ � ˇ

Hausman
rejection
rate

50 5 0.0 0.001 0.000 0.001 0.063 0.0 0.001 0.000 0.001 0.063
50 0.0 0.000 0.001 0.000 0.054 0.0 0.000 0.001 0.000 0.054

100 0.0 0.000 �0.001 0.000 0.055 0.0 0.000 �0.001 0.000 0.055
100 5 0.0 0.000 0.000 �0.001 0.049 0.0 0.000 0.000 �0.001 0.049

50 0.0 0.000 �0.002 0.000 0.053 0.0 0.000 �0.002 0.000 0.053
100 0.0 0.000 �0.002 0.000 0.053 0.0 0.000 �0.002 0.000 0.053

50 5 0.5 0.046 0.000 0.001 0.753 0.5 0.001 0.000 0.000 0.181
50 0.5 0.005 0.001 0.000 0.960 0.5 0.000 0.001 0.000 0.081

100 0.5 0.003 �0.001 0.000 0.967 0.5 0.000 �0.001 0.000 0.069
100 5 0.5 0.045 0.000 �0.001 0.956 0.5 0.000 0.000 �0.001 0.286

50 0.5 0.005 �0.002 0.000 1.000 0.5 0.000 �0.002 0.000 0.111
100 0.5 0.003 �0.002 0.000 1.000 0.5 0.000 �0.002 0.000 0.080

50 5 1.0 0.110 0.000 0.001 0.999 1.0 0.000 0.000 0.000 0.433
50 1.0 0.013 0.001 0.000 1.000 1.0 0.000 0.001 0.000 0.163

100 1.0 0.006 �0.001 0.000 1.000 1.0 0.000 �0.001 0.000 0.112
100 5 1.0 0.109 0.000 �0.001 1.000 1.0 0.000 0.000 �0.001 0.577

50 1.0 0.012 �0.002 0.000 1.000 1.0 0.000 �0.002 0.000 0.249
100 1.0 0.006 �0.002 0.000 1.000 1.0 0.000 �0.002 0.000 0.164

reported in Panel II of Table 7.2, there is no sign that non-zero correlation between
the effect and the transitory component of xit causes a substantial bias in the GLS
estimator. However, differently from the results reported in Panel II of Table 7.2,
the Hausman test now has better power to detect non-zero correlation between the
effect and the transitory component of xit . The power increases as either N or T

increases.
We now consider the cases in which xit and zi are correlated (CASE B). For

these cases, the xit are generated by

xit D i fi =tm C 
i �t C eit ; (7.24)

where the i are drawn from a uniform distribution in the range .0; 1/. As in (7.22),
the term 
i �t is introduced to investigate the cases with non-zero correlations
between the individual effect and the transitory component of xit . Observe that in
(7.24), we use fi , not zi . As we have discussed in the previous section, the Hausman
test would not have any power to detect non-zero correlation between zi and ui

for the cases with large T if zi instead of fi were used for (7.24). We use fi to
investigate the power properties of the Hausman test under more general cases than
the cases we have considered in the previous sections. Under (7.24), the Hausman
test can have power to detect non-zero correlation between zi and ui .
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Table 7.3 Monte Carlo simulation results for CASE A.2

Bias

GLS Within

N T �xu;2 ˇ � ˇ

Hausman
rejection
rate

50 5 0.0 0.000 0.001 �0.001 0.052
50 0.0 0.000 0.001 0.000 0.051

100 0.0 0.000 0.001 0.000 0.052

100 5 0.0 0.000 0.002 0.000 0.050
50 0.0 0.000 �0.001 0.000 0.049

100 0.0 0.000 �0.002 0.000 0.055

50 5 0.5 �0.001 0.001 �0.001 0.396
50 0.5 0.000 0.001 0.000 0.448

100 0.5 0.000 0.001 0.000 0.461

100 5 0.5 0.000 0.002 0.000 0.569
50 0.5 0.000 �0.001 0.000 0.626

100 0.5 0.000 �0.002 0.000 0.620

50 5 1.0 �0.002 0.001 �0.002 0.999
50 1.0 0.000 0.001 0.000 1.000

100 1.0 0.000 0.001 0.000 1.000

100 5 1.0 0.000 0.002 0.000 1.000
50 1.0 0.000 �0.001 0.000 1.000

100 1.0 0.000 �0.002 0.000 1.000

Table 7.4 shows our simulation results from the cases in which the time-varying
regressor is correlated with the time-invariant regressor. Panel I reports the results
when the time-invariant regressor zi is correlated with the effect ui . Regardless of
how fast the correlation between xit and zi decays over time, the GLS estimator
of � shows some signs of biases. While the biases reported in Panel I appear only
mild, the biases become substantial if we increase the size of �zu further. When
the correlation between xit and zi remains constant over time (m D 0), the GLS
estimator of ˇ is mildly biased. However, the bias becomes smaller as the size of
T increases. When the correlation between xit and zi decays over time (m � 0:5),
no substantial bias is detected in the GLS estimator of ˇ even if T is small. The
Hausman test has some power to detect non-zero correlation between the time-
invariant regressor zi and the effect ui . However, the power appears to be limited
in our simulation exercises: Its power never exceeds 61 %. The power increases
with T when m � 0:5, but the power decreases with T if m > 0:5.

Panel II of Table 7.4 reports the results for the cases in which the transitory
component of xit is correlated with the effect ui . Similarly to those reported in
Table 7.3, both the GLS estimators of ˇ and � show no signs of significant biases.
For the cases in which the correlation between xit and zi decays only mildly over
time (m < 0:5), the power of the Hausman test to detect nonzero-correlation
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Table 7.4 Monte Carlo simulation results for CASE B

Panel I: �xu;2 D 0 Panel II: �zu D 0

Bias Bias

GLS Within GLS Within

m N T �zu ˇ � ˇ

Hausman
rejection
rate �xu;2 ˇ � ˇ

Hausman
rejection
rate

0.0 50 5 0.0 0.001 �0.001 0.001 0.059 0.0 0.001 �0.001 0.001 0.059
50 50 0.0 0.000 �0.001 0.000 0.056 0.0 0.000 �0.001 0.000 0.056
50 100 0.0 0.000 �0.001 0.000 0.057 0.0 0.000 �0.001 0.000 0.057

100 5 0.0 �0.001 0.000 �0.001 0.048 0.0 �0.001 0.000 �0.001 0.048
100 50 0.0 0.000 0.000 0.000 0.051 0.0 0.000 0.000 0.000 0.051
100 100 0.0 0.000 0.000 0.000 0.052 0.0 0.000 0.000 0.000 0.052
50 5 0.5 �0.023 0.046 0.001 0.226 0.5 0.001 �0.001 0.000 0.136
50 50 0.5 �0.002 0.034 0.000 0.344 0.5 0.000 �0.001 0.000 0.067
50 100 0.5 �0.001 0.033 0.000 0.363 0.5 0.000 �0.001 0.000 0.067

100 5 0.5 �0.024 0.046 �0.001 0.385 0.5 �0.001 0.000 �0.001 0.226
100 50 0.5 �0.003 0.034 0.000 0.578 0.5 0.000 0.000 0.000 0.085
100 100 0.5 �0.001 0.033 0.000 0.596 0.5 0.000 0.000 0.000 0.070

0.5 50 5 0.0 0.000 �0.001 0.000 0.054 0.0 0.000 �0.001 0.000 0.054
50 50 0.0 0.000 �0.001 0.000 0.047 0.0 0.000 �0.001 0.000 0.047
50 100 0.0 0.000 �0.001 0.000 0.053 0.0 0.000 �0.001 0.000 0.053

100 5 0.0 �0.001 0.000 0.000 0.050 0.0 �0.001 0.000 0.000 0.050
100 50 0.0 0.000 0.000 0.000 0.049 0.0 0.000 0.000 0.000 0.049
100 100 0.0 0.000 0.000 0.000 0.049 0.0 0.000 0.000 0.000 0.049
50 5 0.5 �0.014 0.038 0.000 0.199 0.5 0.000 0.000 0.000 0.211
50 50 0.5 0.000 0.032 0.000 0.258 0.5 0.000 �0.001 0.000 0.214
50 100 0.5 0.000 0.032 0.000 0.267 0.5 0.000 �0.001 0.000 0.214

100 5 0.5 �0.015 0.038 0.000 0.348 0.5 �0.001 0.000 0.000 0.350
100 50 0.5 �0.001 0.033 0.000 0.451 0.5 0.000 0.000 0.000 0.335
100 100 0.5 0.000 0.033 0.000 0.466 0.5 0.000 0.000 0.000 0.331

2.0 50 5 0.0 0.000 0.000 0.000 0.056 0.0 0.000 0.000 0.000 0.056
50 50 0.0 0.000 �0.001 0.000 0.054 0.0 0.000 �0.001 0.000 0.054
50 100 0.0 0.000 �0.001 0.000 0.050 0.0 0.000 �0.001 0.000 0.050

100 5 0.0 0.000 0.000 0.000 0.052 0.0 0.000 0.000 0.000 0.052
100 50 0.0 0.000 0.000 0.000 0.048 0.0 0.000 0.000 0.000 0.048
100 100 0.0 0.000 0.000 0.000 0.051 0.0 0.000 0.000 0.000 0.051
50 5 0.5 �0.005 0.033 0.000 0.113 0.5 0.000 0.000 0.000 0.323
50 50 0.5 0.000 0.032 0.000 0.065 0.5 0.000 �0.001 0.000 0.437
50 100 0.5 0.000 0.032 0.000 0.058 0.5 0.000 �0.001 0.000 0.442

100 5 0.5 �0.005 0.033 0.000 0.183 0.5 0.000 0.000 0.000 0.512
100 50 0.5 0.000 0.033 0.000 0.076 0.5 0.000 0.000 0.000 0.603
100 100 0.5 0.000 0.033 0.000 0.064 0.5 0.000 0.000 0.000 0.604

between the individual effect and the transitory component of the time-varying
regressor is extremely low, especially when T is large. In contrast, when m � 0:5,
the power of the Hausman test increases with T . These results are consistent with
what the asymptotic results derived in the previous section have predicted.
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Our simulation results can be summarized as follows. First, the finite-
sample properties of the GLS estimators and the Hausman test are generally
consistent with their asymptotic properties. Second, even if time-varying or
time-invariant regressors are correlated with the unobservable individual effects,
the GLS estimators of the coefficients of the time-varying regressors do not
suffer from substantial biases if T is large, although the GLS estimators of the
coefficients on time-invariant regressors could be biased regardless of the size
of T . Third, the Hausman test has great power to detect non-zero correlation
between the unobservable individual effects and the permanent components of
time-varying regressors. In contrast, it has only limited power to detect non-zero
correlations between the effects and transitory components of the time-varying
regressors and between the effects and time-invariant regressors. The power of the
Hausman test crucially depends on both the size of T and the covariance structure
among regressors and the effects.

Both our asymptotic and Monte Carlo results provide empirical researchers
with practical guidance. For the studies that focus on the effects of time-varying
regressors on the dependent variable, the choice between the GLS and within
estimators is an irrelevant issue when T is as large as N . Both the GLS and
within estimators are consistent. For the studies that focus on the effects of time-
invariant regressors, some cautions are required for correct interpretations of the
Hausman test results. One important reason to prefer GLS over within is that it
allows estimation of the effects of time-invariant regressors on dependent variables.
For the consistent estimation of the effects of the time-invariant regressors, however,
it is important to test endogeneity of the regressors. Our results indicate that large-T
data do not necessarily improve the power property of the Hausman test. When the
degrees of correlations between time-varying and time-invariant variables decrease
quickly over time, the Hausman test generally lacks the power to detect endogeneity
of time-invariant regressors. The tests based on subsamples with small T could
provide more reliable test results. The different test results from a large-T sample
and its small-T subsamples may provide some information about how the individual
effect might be correlated with time-varying regressors. The rejection by large-T
data but acceptance by small-T data would indicate that the effect is correlated
with the permanent components of the time-varying regressor, but the degrees of
the correlations are low. In contrast, the acceptance by large-T data but rejection by
small-T data may indicate that the effect is correlated with the temporal components
of the time-varying regressors.

So far, we have considered several simple cases to demonstrate how the
convergence rates of the popular panel data estimators and the Hausman test are
sensitive to data generating processes. For these simple cases, all of the relevant
asymptotics can be obtained in a straightforward manner. In the following section,
we will show that the main results obtained from this section apply to more general
cases in which regressors are serially dependent with arbitrary covariance structures.
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7.4 General Case

This section derives for the general model (7.1) the asymptotic distributions of
the within, between, GLS estimators and the Hausman statistic. In Sect. 7.2, we
have considered independently several simple models in which regressors are of
particular characteristics. The general model we consider in this section contains all
of the different types of regressors analyzed in Sect. 7.2. More detailed assumptions
are introduced below.

From now on, the following notation is repeatedly used. The expression “!p”
means “converges in probability,” while “)” means “converges in distribution” as
in Sect. 7.2.2. For any matrix A, the norm kAk signifies

p
t r.AA0/: When B is

a random matrix with E kBkp < 1, then kBkp denotes
�
E kBkp

�1=p
. We use

EF .�/ to denote the conditional expectation operator with respect to a sigma field

F . We also define kBkF ;p D �
EF kBkp

�1=p
: The notation xN � aN indicates

that there exists n and finite constants d1 and d2 such that infN �n
xN

aN
� d1 and

supN �n
xN

aN
� d2: We also use the following notation for relevant sigma-fields:

Fxi D �.xi1; : : : ; xiT /; Fzi D � .zi /; Fz D � .Fz1 ; : : : ;FzN /; Fwi D � .Fxi ;Fzi /;
and Fw D � .Fw1 ; : : : ;FwN / : The xit and zi are now k � 1 and g � 1 vectors,
respectively.

As in Sect. 7.2, we assume that the regressors .x0
i1; : : : ; x0

iT ; z0
i /

0 are indepen-
dently distributed across different i . In addition, we make the following the
assumption about the composite error terms ui and vi t :

Assumption 1 (about ui and vi t ): For some q > 1,

(i) The ui are independent over different i with supiE jui j4q < 1.
(ii) The vi t are i.i.d. with mean zero and variance �2

v across different i and t , and
are independent of xis , zi and ui , for all i , t , and s. Also, kvi tk4q � �v is finite.

Assumption 1(i) is a standard regularity condition for error-components models.
Assumption 1(ii) indicates that all of the regressors and individual effects are strictly
exogenous with respect to the error terms vi t .15

We now make the assumptions about regressors. We here consider three different
types of time-varying regressors: We partition the k �1 vector xit into three subvec-
tors, x1;i t ; x2;i t ; and x3;i t , which are k1�1, k2�1, and k3�1, respectively. The vector
x1;i t consists of the regressors with deterministic trends. We may think of three
different types of trends: (i) cross-sectionally heterogeneous nonstochastic trends
in mean (but not in variance or covariances); (ii) cross-sectionally homogeneous
nonstochastic trends; and (iii) stochastic trends (trends in variance) such as unit-root
time series. In Sect. 7.2, we have considered the first two cases while discussing the
cases related with (7.20). The latter case is materially similar to CASE A.2, except
that the convergence rates of estimators and test statistics are different under these

15As discussed in Sect. 7.2.1, this assumption rules out weakly exogenous or predetermined
regressors.
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two cases. Thus, we here only consider the case (i). We do not cover the cases of
stochastic trends (iii), leaving the analysis of such cases to future study.

The two subvectors x2;i t and x3;i t are random regressors with no trend in mean.
The partition of x2;i t and x3;i t is made based on their correlation with zi . Specifically,
we assume that the x2;i t are not correlated with zi , while the x3;i t are. In addition, in
order to accommodate CASEs A.1 and A.2, we also partition the subvector x2;i t into
x21;i t and x22;i t , which are k21 � 1 and k22 � 1, respectively. Similarly to CASE A.1,
the regressor vector x21;i t is heterogeneous over different i , as well as different t ,
with different means ‚21;i t . In contrast, x22;i t is homogeneous cross-sectionally with
means ‚22;t for all i for given t (Case A.2). We also incorporate CASEs B.1–B.3
into the model by partitioning x3;i t into x31;i t ; x32;i t ; and x33;i t , which are k31 �
1; k32 �1, and k33 �1, respectively, depending on how fast their correlations with zi

decay over time. The more detailed assumptions on the regressors xit and zi follow:

Assumption 2 (about x1;i t ):

(i) For some q > 1, �x1
� supi;t kx1;i t � Ex1;i t k4q < 1.

(ii) Let xh;1;i t be the hth element of x1;i t . Then, Exh;1;i t � tmh;1 for all i and h D
1; : : : ; k1; where mh;1 > 0.

Assumption 3 (about x2;i t ): For some q > 1,

(i) E.x21;i t / D ‚21;i t and E.x22;i t / D ‚22;t , where supi;t k‚21;i tk, supt k‚22;t k <

1, and ‚21;i t ¤ ‚21;jt if i ¤ j .
(ii) �x2 � supi;t kx2;i t � Ex2;i t k4q < 1.

Assumption 4 (about x3;i t ): For some q > 1,

(i) E .x3;i t / D ‚3;it ; where supi;t k‚3;it k < 1:

(ii) E
�

supi;t

��x3;i t � EFzi
x3;i t

��8q

Fzi ;4q

�
< 1:

(iii) Let xh;3k;i t be the hth element of x3k;i t , where k D 1; 2; 3. Then, conditional on
zi ,

(iii.1)
�
EFzi

xh;31;i t � Exh;31;i t

� � t�mh;31 a.s., where 1
2

< mh;31 � 1 for
h D 1; : : : ; k31

(here, mh;31 D 1 implies that EFzi
xh;31;i t � Exh;31;i t D 0 a.s.);

(iii.2)
�
EFzi

xh;32;i t � Exh;32;i t

� � t� 1
2 a.s. for h D 1; : : : ; k

32
;

(iii.3)
�
EFzi

xh;33;i t � Exh;33;i t

� � t�mh;33 a.s., where 0 � mh;33 < 1
2

for h D
1; : : : ; k33 .

Assumption 5 (about zi ): fzigi is i.i.d. over i with E.zi / D ‚z; and kzi k4q < 1
for some q > 1:

Panel data estimators of individual coefficients have different convergence
rates depending on the types of the corresponding regressors. To address these
differences, we define:

Dx;T D diag .D1T ; D2T ; D3T / I
DT D diag

�
Dx;T ; Ig

�
;
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where

D1T D diag .T �m1; : : : ; T �mk1 / I
D2T D diag .D21T ; D22T / D diag

�
Ik21 ;

p
T Ik22

�
I

D3T D diag .D31T ; D32T ; D33T /

D diag
�p

T Ik31 ;
p

T Ik32 ; T m1;33 ; : : : ; T mk33;33

�
:

Observe that D1T , D2T , and D3T are conformable to regressor vectors x1;i t , x2;i t ,
and x3;i t , respectively, while DT and Ig are to xit and zi , respectively. The diagonal
matrix DT is chosen so that plimN !1 1

N

P
i DT Qwi Qw0

i DT is well defined and finite.
For future use, we also define

Gx;T D diag .D1T ; Ik21 ; Ik22 ; Ik3/ I
Jx;T D diag .Ik1 ; Ik21 ; D22T ; D3T / ;

so that

Dx;T D Gx;T Jx;T :

Using this notation, we make the following regularity assumptions on the uncondi-
tional and conditional means of regressors:

Assumption 6 (convergence as T ! 1): Defining t D ŒT r�, we assume that the
following restrictions hold as T ! 1.

(i) Let �1 .r/ D diag .rm1;1 ; : : : ; rmk1;1 /, where mh;1 is defined in Assumption 2.
Then,

D1T E .x1;i t / ! �1 .r/ ‚1;i

uniformly in i and r 2 Œ0; 1�, for some ‚1;i D .‚1;1;i ; : : : ; ‚k1;1;i /
0 with

supi k‚1;i k < 1.
(ii) ‚21;i t ! ‚21;i and ‚3;it ! ‚3;i uniformly in i with supi k‚21;i k < 1 and

supi k‚3;i k < 1.
(iii) Uniformly in i and r 2 Œ0; 1�,

D31T

�
EFzi

x31;i t � Ex31;i t

� ! 0k31�1 a.s.;
D32T

�
EFzi

x32;i t � Ex32;i t

� ! 1p
r
Ik32g32;i .zi / a.s.;

D33T

�
EFzi

x33;i t � Ex33;i t

� ! �33 .r/ g33;i .zi / a.s.,

where

g32;i D .g1;32;i ; : : : ; gk32;32;i /
0 I g33;i D .g1;33;i ; : : : ; gk33;33;i /

0 ;
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and g32;i .zi / and g33;i .zi / are zero-mean functions of zi with

0 < E sup
i

kg3k;i .zi /k4q < 1; forsomeq > 1;

and g3k;i ¤ g3k;j for i ¤ j; and �33 .r/ D diag .r�m1;33 ; : : : r�mk33;33 /.
(iv) There exist Q� .r/ and QGi .zi / such that

kD3T

�
EFzi

x3;i t � Ex3;i t

� k � Q�.r/ QGi .zi /;

where
R Q� .r/4q dr < 1 and E supi

QGi .zi /
4q < 1 for some q > 1.

(v) Uniformly in .i; j / and r 2 Œ0; 1�;

D31T

�
Ex31;i t � Ex31;jt

� ! 0k31�1;

D32T

�
Ex32;i t � Ex32;jt

� ! 1p
r
Ik32

�
�g32i � �g32j

�
,

D33T

�
Ex33;i t � Ex33;jt

� ! �33 .r/
�
�g33i � �g33j

�
;

with supi k�g32i k; supi k�g33i k < 1:

Some remarks would be useful to understand Assumption 6. First, to have an
intuition about what the assumption implies, we consider, as an illustrative example,
the simple model in CASE 3 in Sect. 7.2.2, in which x3;i t D …i zi =tm C eit ; where
eit is independent of zi and i:i:d: across i: For this case,

D3T

�
EFzi

x3;i t � Ex3;i t

� D D3T …i .zi � Ezi / =tmI
D3T

�
Ex3;i t � Ex3;jt

� D D3T

�
…i Ezi � …j Ezj

�
=tm:

Thus,

g3k;i .zi / D …i .zi � Ezi / I
�g3k;i

D …iEzi :

Second, Assumption 6(iii) makes the restriction that E supi kg3k;i .zi /k4q is strictly
positive, for k D 2; 3: This restriction is made to warrant that g3k;i .zi / ¤ 0 a.s. If
g3k;i .zi / D 0 a.s.,16 then

D3kT EFzi
.x3k;i t � Ex3k;i t / � �3k .r/ g32;i .zi / D 0a:s:;

and the correlations between x3;i t and zi no longer play any important role in
asymptotics. Assumption 6(iii) rules out such cases.

16An example is the case in which x3;it D eit …i zi =tm; where eit is independent of zi with mean
zero.
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Assumption 6 is about the asymptotic properties of means of regressors as
T ! 1. We also need additional regularity assumptions on the means of regressors
that apply as N ! 1. Define

H1 D
Z 1

0

�1.r/dr I H32 D
�Z 1

0

1p
r

dr

�
Ik32 I H33 D

Z 1

0

�33.r/dr I

and

E

2

6
4

0

@
H32g32;i .zi /

H33g33;i .zi /

zi � Ezi

1

A

0

@
H32g32;i .zi /

H33g33;i .zi /

zi � Ezi

1

A

03

7
5D

0

B
@

�g32;g32;i �g32;g33;i �g32;z;i

� 0
g32;g33;i

�g33;g33;i �g33;z;i

� 0
g32;z;i � 0

g33;z;i �zz;i

1

C
A :

With this notation, we assume the followings:

Assumption 7 (convergence as N ! 1): Define Q‚1;i D ‚1;i � 1
N

P
i ‚1;i ;

Q‚21;i D ‚21;i � 1
N

P
i ‚21;i ; Q�g32;i D �g32;i � 1

N

P
i �g32;i ; and Q�g33;i D �g33;i �

1
N

P
i �g33;i . As N ! 1,

(i) 1
N

P
i

0

BB
@

H1
Q‚1;i

Q‚21;i

H32 Q�g32;i

H33 Q�g33;i

1

CC
A

0

BB
@

H1
Q‚1;i

Q‚21;i

H32 Q�g32;i

H33 Q�g33;i

1

CC
A

0

!

0

B
BB
@

�‚1;‚1 �‚1;‚21 �‚1;�32 �‚1;�33

� 0
‚1;‚21

�‚21;‚21 �‚21;�32 �‚21;�33

� 0
‚1;�32

� 0
‚21;�32

��32;�32 ��32;�33

� 0
‚1;�33

� 0
‚21;�33

� 0
�32;g33

��33;�33

1

C
CC
A

:

(ii) 1
N

P
i

0

B
@

�g32;g32;i �g32;g33;i �g32;z;i

� 0
g32;g33;i

�g33;g33;i �g33;z;i

� 0
g32;z;i � 0

g33;z;i �zz;i

1

C
A!

0

B
@

�g32;g32 �g32;g33 �g32;z

� 0
g32;g33

�g33;g33 �g33;z

� 0
g32;z � 0

g33;z �z;z

1

C
A.

(iii) The limit of 1
N

P
i ‚1;i ‚

0
1;i exists.

Apparently, by Assumptions 6 and 7, we assume the sequential convergence
of the means of regressors as T ! 1 followed by N ! 1. However, this by
no means implies that our asymptotic analysis is a sequential one. Instead, the
uniformity conditions in Assumption 6 allow us to obtain our asymptotic results
using the joint limit approach that applies as .N; T ! 1/ simultaneously.17 Joint
limit results can be obtained under an alternative set of conditions that assume
uniform limits of the means of regressors sequentially as N ! 1 followed by
T ! 1: Nonetheless, we adopt Assumptions 6 and 7 because they are much more
convenient to handle the trends in regressors x1;i t and x3;i t for asymptotics.

The following notation is for conditional or unconditional covariances among
time-varying regressors. Define

�i .t; s/ D Œ�jl;i .t; s/�jl ;

17For the details on the relationship between the sequential and joint approaches, see Apostol
(1974, Theorems 8.39 and 9.16) for the cases of double indexed real number sequences, and
Phillips and Moon (1999) for the cases of random sequences.
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where �jl;i .t; s/ D E
�
xj;i t � EFzi

xj;i t

� �
xl;is � EFzi

xl;is

�
, for j; l D 2; 3.

Essentially, the �i is the unconditional mean of the conditional variance-covariance
matrix of .x0

2;i t ; x0
3;i t /

0. We also define the unconditional variance-covariance matrix
of .x0

1;i t ; x0
2;i t ; x0

3;i t /
0 by

Q�i .t; s/ D Œ Q�jl;i .t; s/�jl ;

where Q�jl;i .t; s/ D E
�
xj;i t � Exj;i t

�
.xl;is � Exl;is/, for j; l D 1; 2; 3: Observe

that �22;i .t; s/ D Q�22;i .t; s/, since x2;i t and zi are independent. With this notation,
we make the following assumption on the convergence of variances and covariances:

Assumption 8 (convergence of covariances): As .N; T ! 1/,

(i) 1
N

P
i

1
T

P
t

P
s

�
�22;i .t; s/ �23;i .t; s/

� 0
23;i .t; s/ �33;i .t; s/

�
!
�

�22 �23

� 0
23 �33

�
:

(ii) 1
N

P
i

1
T

P
t

Q�i .t; t/ ! ˆ.

Note that the variance matrix Œ�jl �j;lD2;3 is the cross section average of the long-
run variance-covariance matrix of

�
x0

2;i t ; x0
3;i t

�0
. For future use, we partition the

two limits in the assumption conformably to .x0
21;i t ; x0

22;i t ; x0
31;i t ; x0

32;i t ; x0
33;i t /

0 as
follows:

�
�22 �23

� 0
23 �33

�
D

0

BB
B
B
B
@

�21;21 �21;22 �21;31 �21;32 �21;33

� 0
21;22 �22;22 �22;31 �22;32 �22;33

� 0
21;31 � 0

22;31 �31;31 �31;32 �31;33

� 0
21;32 � 0

22;32 � 0
31;32 �32;32 �32;33

� 0
21;33 � 0

22;33 � 0
31;33 � 0

32;33 �33;33

1

CC
C
C
C
A

I

ˆ D
0

@
ˆ11 ˆ12 ˆ13

ˆ0
12 ˆ22 ˆ23

ˆ0
13 ˆ0

23 ˆ33

1

A :

Assumption 9 Let F1
z D � .z1; : : : ; zN ; : : :/ : For a generic constant M that is

independent of N and T; the followings hold:

(i) supi;T

�
� 1

T

P
t .x1;i t � Ex1;i t /

�
�

4
< M;

(ii) supi;T

��
� 1p

T

P
t .x2;i t � Ex2;i t /

��
�

4
< M;

(iii) supi;T

�
�
� 1p

T

P
t

�
x3;i t � EFzi

x3;i t

���
�

4
< M:

Assumption 9 assumes that the fourth moments of the sums of the regressors
x1;i t ; x2;i t ; and x3;i t are uniformly bounded. This assumption is satisfied under mild
restrictions on the moments of xit and on the temporal dependence of x2;i t and x3;i t :

For sufficient conditions for Assumption 9, refer to Ahn and Moon (2001).
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Finally, we make a formal definition of the random effects assumption, which is
a more rigorous version of (7.3).

Assumption 10 (random effects): Conditional on Fw; fui giD1;:::;N is i.i.d. with
mean zero, variance �2

u and finite �u � kuikFw;4.

To investigate the power property of the Hausman test, we also need to define
an alternative hypothesis that states a particular direction of model misspecification.
Among many alternatives, we here consider a simpler one. Specifically, we consider
an alternative hypothesis under which the conditional mean of ui is a linear function
of DT Qwi . Abusing the conventional definition of fixed effects (that indicates
nonzero-correlations between wi D .x0

i t ; z0
i /

0 and ui ), we refer to this alternative
as the fixed effects assumption:

Assumption 11 (fixed effects): Conditional on Fw, the fuigiD1;:::;N is i.i.d. with
mean Qw0

i DT � and variance �2
u , where � is a .k Cg/ � 1 nonrandom nonzero vector.

Here, DT Qwi D Œ.Dx;T Qxi /
0; Qzi � can be viewed as a vector of detrended regressors.

Thus, Assumption 11 indicates non-zero correlations between the effect ui and
detrended regressors. The term Qw0

i DT � can be replaced by �o C w0
i DT �, where

�o is any constant scalar. We use the term Qw0
i DT � instead of �o C w0

i DT � simply
for convenience.

A sequence of local versions of the fixed effects hypothesis is given:

Assumption 12 (local alternatives to random effects): Conditional on Fw, the
sequence fui giD1;:::;N is i.i.d. with mean Qw0

i DT �=
p

N , variance �2
u , and �4

u D
EFw .ui � EFwui /

4 < 1, where � ¤ 0.kCg/�1 is a nonrandom vector in R
kCg .

Under this Assumption, E .DT Qwi ui / = 1p
N

E
�
DT Qwi Qw0

i DT

�
� ! 0.kCg/�1, as

.N; T ! 1/. Observe that these local alternatives are of the forms introduced
in Table 7.1

The following assumption is required for identification of the within and between
estimators of ˇ and � .

Assumption 13 The matrices ‰x and „ are positive definite.

Two remarks on this assumption follow. First, this assumption is also sufficient
for identification of the GLS estimation. Second, while the positive definiteness
of the matrix „ is required for identification of the between estimators, it is not a
necessary condition for the asymptotic distribution of the Hausman statistic obtained
below. We can obtain the same asymptotic results for the Hausman test even if we
alternatively assume that within estimation can identify ˇ (positive definite ‰x) and
between estimation can identify � given ˇ (the part of „ corresponding to Qzi is
positive definite).18 Nonetheless, we assume that „ is invertible for convenience.

18This claim can be checked with the following simple example. Consider a simple model with
one time-varying regressor xit and one time invariant regressor zi . Assume that xit D azi C eit ,
where the eit are i.i.d. over different i and t . For this model, it is straightforward to show that the
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We now consider the asymptotic distributions of the within, between and GLS
estimators of ˇ and � :

Theorem 1 (asymptotic distribution of the within estimator): Under Assump-
tions 1–8 and 13, as .N; T ! 1/,

p
NT G�1

x;T . Ǒ
w � ˇ/ ) N

�
0; �2

v ‰�1
x

�
:

Theorem 2 (asymptotic distribution of the between estimator): Suppose that
Assumptions 1–8 and 13 hold. As .N; T ! 1/,

(a) Under Assumption 10 (random effects),

D�1
T

p
N

 Ǒ
b � ˇ

O�b � �

!

D
 

D�1
x;T

p
N
� Ǒ

b � ˇ
�

p
N . O�b � �/

!

) N
�
0; �2

u „�1
� I

(b) Under Assumption 12 (local alternatives to random effects),

D�1
T

p
N

 Ǒ
b � ˇ

O�b � �

!

D
 

D�1
x;T

p
N
� Ǒ

b � ˇ
�

p
N . O�b � �/

!

) N
�
„�; �2

u „�1
�

:

Theorem 3 (asymptotic distribution of the GLS estimator of ˇ): Suppose that
Assumptions 1–8 and 13 hold.

(a) Under Assumption 12 (local alternatives to random effects),

p
NT G�1

x;T

� Ǒ
g � ˇ

�
D p

NT G�1
x;T

� Ǒ
w � ˇ

�
C op .1/ ;

as .N; T ! 1/ :

(b) Suppose that Assumption 11 (fixed effects) holds. Partition � D .�0
x; �0

z/
0

conformably to the sizes of xit and zi : Assume that �x ¤ 0k�1. If N=T !
c < 1 and the included regressors are only of the x22;i t - and x3;i t -types (no
trends and no cross-sectional heterogeneity in xit ), then

p
NT G�1

x;T

� Ǒ
g � ˇ

�
D p

NT G�1
x;T

� Ǒ
w � ˇ

�
C op .1/ :

Theorem 4 (asymptotic distribution of the GLS estimator of � ): Suppose that

Assumptions 1–8 and 13 hold. Define l 0
z D

�
0g�k

:::Ig

�
: Then, the following

statements hold as .N; T ! 1/ :

matrix „ fails to be invertible. Nonetheless, under the random effects assumption, the Hausman
statistic can be shown to follow a �2 distribution with the degree of freedom equal to one.
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(a) Under Assumption 12 (local alternatives to random effects),

p
N
� O�g � �

� D
 

1

N

X

i

Qzi Qz0
i

!�1  
1p
N

X

i

Qzi Qui

!

C op .1/

) N
��

l 0
z„lz

��1
l 0
z„�; �2

u

�
l 0
z„lz

��1
�

:

(b) Under Assumption 11 (fixed effects),

� O�g � �
� !p

�
l 0
z„lz

��1
l 0
z„�:

Several remarks follow. First, all of the asymptotic results given in Theorems 1–4
except for Theorem 3(b) hold as .N; T ! 1/; without any particular restriction on
the convergence rates of N and T . The relative size of N and T does not matter
for the results, so long as both N and T are large. Second, one can easily check
that the convergence rates of the panel data estimates of individual ˇ coefficients
(on the x2;i t - and x3;i t -type regressors) reported in Theorems 1–4 are consistent
with those from Sect. 7.2.2. Third, Theorem 2 shows that under Assumption 10
(random effects), the between estimator of � , O�b , is

p
N -consistent regardless of

the characteristics of time-varying regressors. Fourth, both the between estimators
of ˇ and � are asymptotically biased under the sequence of local alternatives
(Assumption 12). Fifth, as Theorem 3(a) indicates, the within and GLS estimators
of ˇ are asymptotically equivalent not only under the random effects assumption,
but also under the local alternatives. Furthermore, the GLS estimator of ˇ is
asymptotically unbiased under the local alternatives, while the between estimator
of ˇ is not. The asymptotic equivalence between the within and GLS estimation
under the random effects assumption is nothing new. Previous studies have shown
this equivalence based on a naive sequential limit method (T ! 1 followed by
N ! 1) and some strong assumptions such as fixed regressors. Theorem 3(a) and
(b) confirm the same equivalence result but with more a rigorous joint limit approach
as .N; T ! 1/ simultaneously. It is also intriguing to see that the GLS and within
estimators are equivalent even under the local alternative hypotheses.

Sixth, somewhat surprisingly, as Theorem 3(b) indicates, even under the fixed
effects assumption (Assumption 11), the GLS estimator of ˇ could be asymptot-
ically unbiased (and consistent) and equivalent to the within counterpart, (i) if the
size (N ) of the cross section units does not dominate excessively the size (T ) of time
series in the limit (N=T ! c < 1), and (ii) if the model does not contain trended
or cross-sectionally heterogenous time-varying regressors. This result indicates that
when the two conditions are satisfied, the biases in GLS caused by fixed effects are
generally much smaller than those in the between estimator. If at least one of these
two conditions is violated, that is, if N=T ! 1, or if the other types of regressors
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are included, the limit of . Ǒ
g � Ǒ

w/ is determined by how fast N=T ! 1 and how
fast the trends in the regressors increase or decrease.19

Finally, Theorem 4(a) indicates that under the local alternative hypotheses, the
GLS estimator O�g is

p
N -consistent and asymptotically normal, but asymptotically

biased. The limiting distribution of O�g; in this case, is equivalent to the limiting dis-
tribution of the OLS estimator of � in the panel model with the known coefficients
of the time-varying regressors xit (OLS on Qyit � ˇ0 Qxit D � 0Qzi C .ui C Qvi t /). Clearly,
the GLS estimator O�g is asymptotically more efficient than the between estimator
O�b. On the other hand, under the fixed effect assumption, unlike the GLS estimator
of ˇ; Ǒ

g , the GLS estimator O�g is not consistent as .N; T ! 1/. The asymptotic
bias of O�g is given in Theorem 4(b).

Lastly, the following theorem finds the asymptotic distribution of the Hausman
test statistic under the random effect assumption and the local alternatives:

Theorem 5 Suppose that Assumptions 1–8 and 13 hold. Corresponding to the size
of .x0

i ; z0
i /

0, partition „ and �; respectively, as follows:

„ D
�

„xx „xz

„0
xz „zz

�
I � D

�
�x

�z

�
:

Then, as .N; T ! 1/ ;

(a) Under Assumption 10 (random effects),

HMNT ) �2
k I

(b) Under Assumption 12 (local alternatives to random effects),

HMNT ) �2
k.	/;

where 	 D �0
x.„xx � „xz„

�1
zz „0

xz/�x=�2
u is the noncentral parameter.

The implications of the theorem are discussed in Sect. 7.2.3.

7.5 Conclusion

This paper has considered the large-N and large-T asymptotic properties
of the within, between and random effects GLS estimators, as well as those of
the Hausman test statistic. The convergence rates of the between estimator and the

19In this case, without specific assumptions on the convergence rates of N=T and the trends, it is
hard to generalize the limits of the difference of the within and the GLS estimators.
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Hausman test statistic are closely related, and the rates crucially depend on whether
regressors are cross-sectionally heterogeneous or homogeneous. Nonetheless, the
Hausman test is always asymptotically �2-distributed under the random effects
assumption. Our simulation results indicate that our asymptotic results are generally
consistent with the finite-sample properties of the estimators and the Hausman test
even if N and T are small.

Under certain local alternatives (where the conditional means of unobservable
individual effects are linear in the regressors), we also have investigated the
asymptotic power properties of the Hausman test. Regardless of the size of T ,
the Hausman test has power to detect non-zero correlations between unobservable
individual effects and the permanent components of time-varying regressors. In
contrast, the test has no power to detect non-zero correlations between the effects
and the transitory components of time-varying-regressors if T is large and if the
time-varying regressors do have permanent components. The Hausman test has
some (although limited) power to detect non-zero correlations between the effects
and time-invariant regressors when the correlations between time-varying and time-
invariant regressors remain high over time. However, when the correlations decay
quickly over time, the test loses its power.

In this paper, we have restricted our attention to the asymptotic and finite-sample
properties of the existing estimators and tests when panel data contain both large
numbers of cross section and time series observations. No new estimator or test is
introduced. However, this paper makes several contributions to the literature. First,
we have shown that the GLS and within estimators, as well as the Hausman test,
can be used without any adjustment for the data with large T . Second, for the cases
with both large N and T , we provide a theoretical link between the asymptotic
equivalence of the within and GLS estimator and the asymptotic distribution of the
Hausman test. Third, we have shown that cross-sectional heterogeneity in regressors
can play an important role in asymptotics. Previous studies have often assumed
that data are cross-sectionally i.i.d. Our findings suggest that future studies should
pay attention to cross-sectional heterogeneity. Fourth, we find that the power of the
Hausman test depends on T:

Fifth and finally, our results also provide empirical researchers with some useful
guidance. Different Hausman test results from large-T and small-T data can provide
some information about how the individual effect is correlated with time-varying
regressors. The rejection by large-T data but acceptance by small-T data would
indicate that the effect is correlated with the permanent components of the time-
varying regressor, but the degrees of the correlations are low. In contrast, the
acceptance by large-T data but rejection by small-T data may indicate that the
effect is correlated with the temporal components of the time-varying regressors.
Whether the individual effect is correlated with temporal or permanent components
of time-varying regressors is important to determine what instruments should be
used to estimate the coefficients of time-invariant regressors when the random
effects assumption is rejected. For example, as an anonymous referee pointed out,
a key identification requirement of the instrumental variables proposed by Breusch
et al. (1989) is that only the permanent components of the time-varying regressors
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are correlated with the individual effects. If the Hausman test indicates that the
individual effects are only temporally correlated with the time-varying regressors,
the BMS instruments need not be used.

Needless to say, the model we have considered is a restrictive one. Extensions
of our approach to more general models would be useful future research agendas.
First, we have not considered the cases with more general errors; e.g., hetroskedastic
and/or serially correlated errors. It would be useful to extend our approach to such
general cases. Second, we have focused on the large-N and large-T properties of
the panel data estimators and tests that are designed for the models with large N and
small T . For the models with large N and large T , it may be possible to construct
the estimators and test methods based on large-N and large-T asymptotics that may
have better properties than the estimators and the tests analyzed here. Developing
alternative estimators based on large-T and large-N asymptotics and addressing
the issue of unit roots would be important research agendas. Third, another
possible extension would be the instrumental variables estimation of Hausman and
Taylor (1981), Amemiya and MaCurdy (1986), and Breusch et al. (1989). For an
intermediate model between fixed effects and random effects, these studies propose
several instrumental variables estimators by which both the coefficients on time-
varying and time-invariant regressors can be consistently estimated. It would be
interesting to investigate the large-N and large-T properties of these instrumental
variables estimators as well as those of the Hausman test and other GMM tests based
on these estimators.

Appendix

First, we provide some preliminary lemmas that are useful in proving the main
results in Sect. 7.4. Due to space limitation, we omit the proofs of the lemmas.20

In this section, notation M denotes a generic constant that is finite. Recall that
wi t D �

x0
1;i t ; x0

2;i t ; x0
3;i t ; z0

i

�0
. We also repeatedly use the diagonal matrix DT defined

in Sect. 7.4.

Lemma 6 Under Assumptions 1–8, we obtain the following results as (N; T !
1).

(a) 1
N

P
i

1
T

P
t Gx;T Qxit Qx0

i t Gx;T !p ‰xI
(b) 1p

N

P
i

1p
T

P
t Gx;T Qxit Qvi t ) N

�
0; �2

v ‰x

�
;

where

‰x D

0

B
@

R 1

0

�
�1 � R

�1

� �
limN

1
N

P
i ‚1;i ‚

0
1;i

� �
�1 � R

�1

�0
dr 0 0

0 ˆ22 ˆ23

0 ˆ32 ˆ33

1

C
A :

20Detailed proofs are available from the authors upon request.
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Lemma 7 Suppose that Assumptions 1–8 hold. Define „ D „1 C „2, where

„1 D diag

0

@0k1 ; 0k21;

0

@
�22;22 �22;31 �22;32

� 0
22;31 �31;31 �31;32

� 0
22;32 � 0

31;32 �32;32

1

A ; 0k33; 0kz

1

A I

„2 D

0

B
B
B
B
BB
B
B
B
B
BB
B
B
@

�‚1;‚1 �‚1;‚21 0 0 �‚1;�32 �‚1;�33 0

� 0
‚1;‚21

�‚21;‚21 0 0 �‚21;�32 �‚21;�33 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

� 0
‚1;�32

� 0
‚21;�32

0 0
�g32;g32

C��32;�32

�g32;g33

C��32;�32

�g32;z

� 0
‚1;�33

� 0
‚21;�33

0 0
� 0

g32;g33

C� 0
�32;�32

�g33;g33

C��33;�33

�g33;z

0 0 0 0 � 0
g32;z � 0

g33;z �z;z

1

C
C
C
C
CC
C
C
C
C
CC
C
C
A

:

Then, under Assumption 12, as .N; T ! 1/, the followings hold.

(a) 1
N

P
i DT Qwi Qw0

i DT !p „:

(b) supN;T sup1�i�N E kDT Qwi k4 < M; for some constant M < 1:

(c) 1p
N

P
i DT Qwi Qvi !p 0:

Lemma 8 Under Assumptions 1–8 and 12 (local alternatives to random effects),
as .N; T ! 1/,

1p
N

P
i DT Qwi Qui ) N

�
„�; �2

u „
�

:

Lemma 9 Under Assumptions 1–8 and 11 (fixed effects),

1

N

P
i DT Qwi Qui !p „�;

as .N; T ! 1/ :

Proof of Theorem 1
Theorem 1 follows by Lemma 6(a) and (b). �

Proof of Theorem 2
Theorem 2 holds by Lemmas 7(a), (c) and 8. �
Before we prove the rest of the theorems given in Sect. 7.4, we introduce the

following notation:
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A1 D 1
N

P
i

1
T

P
t .xit � Nxi / .xit � Nxi /

0 I
A2 D 1

N

P
i

1
T

P
t .xit � Nxi / .vi t � Nvi / I

A3 D 1
N

P
i Qxi Qx0

i I A4 D 1
N

P
i Qxi Qui I A5 D 1

N

P
i Qxi Qvi I

B3 D 1
N

P
i Qzi Qz0

i I B4 D 1
N

P
i Qzi Qui I B5 D 1

N

P
i Qzi Qvi I

C D 1
N

P
i Qxi Qz0

i I
F1 D A3 � CB�1

3 C 0I F2 D A4 C A5 � CB�1
3 .B4 C B5/ :

(7.25)

Proof of Theorem 3
Using the notation given in .7.25/ ; we can express the GLS estimator Ǒ

g by

p
NT G�1

x;T

� Ǒ
g � ˇ

�

D 	
Gx;T A1Gx;T C �2

T Gx;T

˚
A3 � CB�1

3 C 0
Gx;T

��1

�p
NT Gx;T

˚
A2 C �2

T

	
.A4 C A5/ � CB�1

3 .B4 C B5/
�


; (7.26)

where �T D p
�2

v =.T �2
u C �2

v /:

Part (a): Using Lemma 7(a), we can show that

�2
T Gx;T

˚
A3 � CB�1

3 C 0
Gx;T D Op

�
�2

T

� D op .1/ : (7.27)

Next, from Lemmas 7(c) and 8, under the local alternatives to random effects
(Assumption 12), it is possible to show that

p
NT Gx;T

˚
�2

T

	
.A4 C A5/�CB�1

3 .B4 C B5/
�
DOp

�
1p
T

�
D op.1/ : (7.28)

Substituting (7.27) and (7.28) into (7.26), we have

p
NT . Ǒ

g � ˇ/ D ŒGx;T A1Gx;T C op.1/��1Œ
p

NT Gx;T A2 C op.1/�

D p
NT . Ǒ

w � ˇ/ C op.1/:

The last equality results from Lemma 6(a), (b) and Theorem 1. �

Part (b): Similarly to Part (a), we can easily show that under the assumptions given
in Part (b), the denominator in .7.26/ is

1

NT

X

i

X

t

Gx;T .xit � Nxi / .xit � Nxi /
0 Gx;T C op .1/ : (7.29)

Consider the second term of the numerator of (7.26):
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�2
p

T Gx;T

8
<

:

1p
N

P
i Qxi .Qui C Qvi /

� � 1
N

P
i Qxi Qz0

i

��
1
N

P
i Qzi Qz0

i

��1
�

1p
N

P
i Qzi .Qui C Qvi /

�

9
=

;
: (7.30)

Notice that by Lemmas 6, 7, and 9, under the fixed effect assumption (Assump-
tion 11), the first term of .7.30/ is

�2
p

NT Gx;T

1

N

X

i

Qxi .Qui C Qvi / D �2
p

NT Gx;T D�1
x;T

1

N

X

i

Dx;T Qxi .Qui C Qvi /

D �2
p

NT Gx;T D�1
x;T

˚
„x� C op .1/



;

where we partition „ D
�

„xx „xz

„zx „zz

�
conformably to the sizes of xit and zi ; and

set „x D .„xx; „xz/ : Similarly, by Lemmas 6, 7, and 9, under the fixed effect
assumption, the second term of (7.30) is

�2
T

p
NT Gx;T D�1

x;T

8
<

:

 
1

N

X

i

Dx;T Qxi Qz0
i

! 
1

N

X

i

Qzi Qz0
i

!�1 
1

N

X

i

Qzi .Qui C Qvi /

!9=

;

D �2
T

p
NT Gx;T D�1

x;T

˚
„xz„

�1
zz „z� C op .1/



:

Therefore, the limit of .7.30/ is

�
�2

T

p
NT Gx;T D�1

x;T

� h�
„xx � „xz„

�1
zz „zx

::: 0

�
� C op .1/

i
:

Recall that it is assumed that N
T

! c < 1: Also, recall that under the restrictions

given in the theorem, Gx;T D diag .Ik22 ; Ik3/ and Dx;T D diag
�p

T Ik22 ; D3T

�
:

Then, letting �max .A/ denote the maximum eigenvalue of matrix A; we can have

�max

�
�2

T

p
NT Gx;T D�1

x;T

�
D O .1/

r
N

T
�max

�
1p
T

Ik22 ; D�1
3T

�
! 0:

Thus, under the assumptions of Part (b), the probability limit of the numerator of
.7.26/ is

1p
NT

X

i

X

t

Gx;T Qxit Qvi t C op .1/ : (7.31)

Combining .7.29/ and .7.31/, we can obtain Part (b). �



254 S.C. Ahn and H.R. Moon

Proof of Theorem 4
Using the notation in .7.25/ ; we can express the GLS estimator O�g by

O�g � � D
"

B3 � C 0
�

1

�2
T

A1 C A3

��1

C

#�1

�
"

.B4 C B5/ � C 0
�

1

�2
T

A1 C A3

��1 �
1

�2
T

A2 C .A4 C A5/

�#

: (7.32)

Part (a): Using Lemmas 6(a) and 7(a), we can show that C 0
�

1

�2
T

A1 C A3

��1

C D
op .1/ ; which implies that, as .N; T ! 1/ ; the denominator of .7.32/ is

B3 C op .1/ : (7.33)

Next, under both the random effects assumption (Assumption 10) and the local
alternatives (Assumption 12), it follows from Lemmas 6–8 that the second term
in the numerator of .7.32/ is

C 0
�

1

�2
A1 C A3

��1 �
1

�2

p
N A2 C p

N .A4 C A5/

�
D op .1/ :

Also, by Lemma 7(c),
p

N B5 D op .1/ : Therefore, the numerator of .7.32/ is

p
N B4 C op .1/ ; (7.34)

as .N; T ! 1/ : In view of (7.32)–(7.34), we have

p
N
� O�g � �

� D
 

1

N

X

i

Qzi Qz0
i

!�1  
1p
N

X

i

Qzi Qui

!

C op .1/ ;

as .N; T ! 1/ : Finally, by Lemmas 7(a) and 8, as .N; T ! 1/ ;

p
N
� O�g � �

� D
 

1

N

X

i

Qzi Qz0
i

!�1  
1p
N

X

i

Qzi Qui

!

) N
��

l 0
z„lz

��1 �
l 0
z„�

�
;
�
l 0
z„lz

��1
�

;

as required. �
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Part (b): Under the assumptions in Part (b), as shown for the denominator of
.7.32/ ;

B3 � C 0
�

1

�2
T

A1 C A3

��1

C D 1

N

X

i

Qzi Qz0
i C op .1/ !p l 0

z„lz; (7.35)

as .N; T ! 1/ : Next, consider the numerator of .7.32/ ;

"

.B4 C B5/ � C 0
�

1

�2
A1 C A3

��1 �
1

�2
A2 C .A4 C A5/

�#

D .B4 C B5/

�T �2
�
C 0Dx;T

� J �1
x;Tp
T

 

Gx;T A1Gx;T C J �1
x;Tp
T

Dx;T A3Dx;T

J �1
x;Tp
T

!�1

�
 

1p
N T �2

p
NT Gx;T A2 C J �1

x;Tp
T

Dx;T .A4 C A5/

!

:

By Lemmas 6 and 7, B5 D op .1/ ;
p

NT Gx;T A2 D Op .1/ ; and Dx;T A5 D
Op .1/ : Under the fixed effect assumption (Assumption 11), Lemma 9 implies that

Dx;T A4 D Op .1/ ; as .N; T ! 1/ : Since 1p
N T �2

T

D o .1/ and
J �1

x;Tp
T

D o .1/ ; and

T �2
�
C 0Dx;T

� J �1
x;Tp
T

 

Gx;T A1Gx;T C J �1
x;Tp
T

Dx;T A3Dx;T

J �1
x;Tp
T

!�1

D op .1/

(as shown in Part (a)), we have

.B4 C B5/ � C 0
�

1

�2
A1 C A3

��1 �
1

�2
A2 C .A4 C A5/

�
D B4 C op .1/ : (7.36)

But, according to Lemma 9,

B4 D 1

N

X

i

Qzi Qui !p l 0
z„�: (7.37)

Therefore, (7.32) and (7.35)–(7.37) imply

O�g !p � C �
l 0
z„lz

��1
l 0
z„�;

as .N; T ! 1/ : �
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Proof of Theorem 5
Using the notation in .7.25/, we can express the Hausman test statistic by

HMNT D
h�

A1 C �2
T F1

��1 p
NT

�
A2 C �2

T F2

� � A�1
1

p
NT A2

i0

�
h
�2

v A�1
1 � �2

v

�
A1 C �2

T F1

��1
i�1

�
h�

A1 C �2
T F1

��1 p
NT

�
A2 C �2

T F2

� � A�1
1

p
NT A2

i
:

Write

�
A1 C �2

T F1

��1 � A�1
1 D ��2

T A�1
1 F1A�1

1 C �4
T R1; (7.38)

where R1 D �
A1 C �2

T F1

��1
F1A

�1
1 F1A

�1
1 : Define Q D �

A1 C �2
T F1

��1 p
NT�

A2 C �2
T F2

� � A�1
1

p
NT A2: Then, we can deduce that

Q D��2
T

p
NT

	
A�1

1 F1A�1
1 A2 � A�1

1 F2

� � �4
T

p
NT R2; (7.39)

where R2 D A�1
1 F1A

�1
1 F2 � R1

˚
A2 C �2

T F2



: Using .7.38/ and .7.39/ ; we now

can rewrite the Hausman statistic HMNT D Q0
h
�2

v A�1
1 � �2

v

�
A1 C �2

T F1

��1
i�1

Q
as

HMNT

D �T

p
NT

"
G1

�
J �1

x;T Dx;T F1Dx;T J �1
x;T

�
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�G1J
�1
x;T Dx;T F2 C �2

T G�1
x;T R2

#0

� 	�2
v G1

�
J �1
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x;T

�
G1 C �2
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�
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���1

��T

p
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"
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�
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�
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�1
x;T Dx;T F2 C �2

T G�1
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#

;

where G1 D G�1
x;T A�1

1 G�1
x;T . Using Lemmas 6(a), 7(a), and Assumption 13, we can

show that

�2
v �2

T

�
G�1

x;T R1G
�1
x;T

� D Op

�
�2

T

� D op .1/ : (7.40)

Also, under the local alternatives (Assumption 12), from Lemmas 6–8 we may
deduce that

�T

p
NT �2

T G�1
x;T R2 D O .1/

	
�2

T Op .1/ C op .1/
� D op .1/ : (7.41)
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From .7.40/ and .7.41/ ; we now can approximate the Hausman statistic as follows:

HMNT

D �T

�v

p
NT

	�
J �1

x;T Dx;T F1Dx;T J �1
x;T

�
.G1Gx;T A2/ � J �1
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p
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p
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Cop .1/ ;

where the last line holds because under the local alternative hypotheses,

J �1
x;T Dx;T F1Dx;T J �1

x;T D Op .1/ ; and �T

�v
G1

�p
NT Gx;T A2

�
D Op .�T / D

op .1/ by Lemma 6(a), (b) and Assumption 13. Finally, by Lemma 7(a),
as .N; T ! 1/ ; Dx;T F1Dx;T D Dx;T A3Dx;T � Dx;T CB�1

3 C 0Dx;T !p

„xx � „xz„
�1
zz „zx > 0: Also, Lemmas 7(c) and 8 imply that under the local

alternative hypotheses, as .N; T ! 1/ ;

p
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:

As .N; T ! 1/ ; �T

�v

p
T ! 1

�u
: Therefore, under the hypothesis of random effects,

HMNT ) �2
k; a �2 distribution with the degrees of freedom equal to k: In contrast,

under the local alternative hypotheses,HMNT ) �2
k .	/ ; where 	 is the noncentral

parameter. �
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