
Chapter 5
Inference in Two-Step Panel Data Models
with Time-Invariant Regressors: Bootstrap
Versus Analytic Estimators

Scott E. Atkinson and Christopher Cornwell

5.1 Introduction

Panel data are useful because of the opportunity they afford the researcher to
control for unobserved heterogeneity or effects that do not vary over time. Typically,
exploiting this opportunity means employing the fixed-effects (FE) estimator,
because it produces consistent estimates of the coefficients of time-varying variables
under weak assumptions about their relationship with the effects. As is well-
understood, the FE estimator achieves this through a data transformation that
eliminates the effects. The downside to FE estimation, however, is that this data
transformation also eliminates any time-invariant variables. Consequently, the FE
estimator is sometimes abandoned entirely for a random-effects (RE) approach,
whose requirements for consistency frequently are not satisfied, since unobserved
heterogeneity is often correlated with the regressors.

While the partial effects of time-invariant variables can be recovered in a
second-step regression, this fact is generally omitted in most textbook treatments of
panel-data methods (Wooldridge 2010 is an exception). The practical necessity of
recovering the partial effects of time-invariant variables shows up in many different
empirical contexts. In the familiar exercise of estimating wage regressions, human-
capital variables such as experience and tenure are taken to be correlated with the
unobserved effect, which is commonly interpreted as “ability”. While FE estimation
eliminates such time-invariant unobservables, it also eliminates race, gender and
education (when schooling is completed before the sample period), the effects of
which are of great interest. Similarly, when estimating production relationships,
inputs may be correlated with fixed “environmental” factors, which again would
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swept away by the FE estimator. However, policy-relevant firm characteristics, such
as public or private ownership in the case of electric utilities, would be swept away
as well.

Interest in recovering the partial effects of time-invariant variables may be even
more common in panels of state and country-level aggregates, as with empirical
growth and comparative political-economy studies, where policy-relevant fixed
institutional variables are differenced out of a FE regression. The recovery of these
partial effects motivated the work of Plümper and Troeger (2007), who proposed
a three-step method for estimating the effects of time-invariant variables in linear
panel-data models. Plümper’s and Troeger’s so-called “fixed-effects vector decom-
position” (FEVD) became widely utilized through their Stata program (xtfevd) that
computes the estimator and corresponding standard errors. However, as shown in the
critiques of Breusch et al. (2011) and Greene (2011), the main substantive claims
about the FEVD estimator are false. Importantly, from our perspective, the standard
errors produced by the FEVD estimator are incorrect, because their method does
not estimate the correct asymptotic covariance matrix, which should incorporate the
first-step estimated covariance matrix.

In this paper, we focus on the two-step estimation procedure and compare
conventional inference based on the asymptotic formula to bootstrap alternatives.
Bootstrapping has a natural appeal, because of the complications associated with
estimating the asymptotic covariance matrix and the inherent finite-sample bias
of the resulting standard errors. Our paper contributes to the panel data and boot-
strapping literature in four ways. First, we derive the correct asymptotic covariance
matrix for the second-step coefficient estimators, allowing for heteroskedasticity
and autocorrelation of unknown form. Second, we develop the steps required to
perform bootstrap estimation of the covariance matrix of the second-step estimated
coefficients. Third, we prove that the pairs and wild bootstrap coefficient estimators
are unbiased. This stands in contrast to Flachaire (2005) who asserts that the pairs
is a biased estimator. Unbiasedness implies that the error in rejection probability
(ERP) of corresponding t-tests, measured as the difference between their actual and
nominal size, should be small.

Finally, using Monte Carlo methods, we compare the size and power of
the naive asymptotic estimator, which ignores the first-step estimation error, the
correct asymptotic covariance matrix estimator, which does not, and the bootstrap
alternatives. We consider a variety of panel sizes (N ) and lengths (T ) relevant to the
common large-N , small-T setting. We find that the bootstrap methods consistently
provide more accurate inference than the asymptotic formulae. The performance
gain is largest for N less than 250 and shrinks as N grows. Although a small ERP
remains for the correct asymptotic covariance matrix estimator when N D 1;000,
as N grows to 250 and beyond, both bootstrap estimators generally produce the
correct size. Comparing the two bootstrap methods, the pairs tends to moderately
over-reject and the wild to moderately under-reject for smaller values of N , with
the pairs having a slightly smaller ERP. While we find a slight advantage of the
pairs method over the others in terms of power with N D 250 and T D 5, few
differences are observed with larger values of N .



5 Inference in Two-Step Panel Data Models with Time-Invariant Regressors. . . 105

The remainder of this paper is organized as follows. Section 5.2 introduces the
model and two-step estimator. Section 5.3 presents the correct asymptotic covari-
ance matrix for the second-step estimator and outlines the bootstrap alternatives for
second-step standard-error estimation. In Sect. 5.4, we review previous studies of the
wild and pairs procedures and prove that they are both unbiased for the problems we
address. Section 5.5 explains our Monte Carlo experiments and reports our findings
on the size and power of t-tests produced by conventional and bootstrap procedures.
Conclusions follow in Sect. 5.6.

5.2 The Two-Step Model and Parameter Estimation

We consider estimation of linear panel-data models of the form

yit D xi tˇ C zi � C �it i D 1; : : : ; N I t D 1; : : : ; T; (5.1)

where �it D ci C eit , yit is the dependent variable, xi t is a .1 � K/ vector of
time-varying regressors, zi is a .1 � G/ vector of time-invariant regressors, ci is an
unobserved effect that is fixed for the cross-section unit, and eit is an error term.1

The eit may be heteroscedastic and serially correlated. The coefficient vectors, ˇ

and � , are .K � 1/ and .G � 1/, respectively. For most of the discussion that follows
we work with the form of the model that combines all T observations for each
cross-section unit:

yi D Xi ˇ C .jT ˝ zi /� C CjT ci C ei ; (5.2)

where Xi is .T � K/, jT is a T -vector of ones, and yi and ei are .T � 1/ vectors.
Our interest is in estimating � , allowing for the possibility that some or all of the

variables in Xi are correlated with the unobserved effect. Formally, we adopt the
standard FE assumption that

E.eit j Xi ; zi ; ci / D 0; t D 1; : : : ; T: (5.3)

Additionally, we assume

E.ci j zi / D 0; (5.4)

which treats the time-invariant variables as uncorrelated with the unobserved effects.
We invoke (5.4) to focus attention on the transmission of the first-step estimation

1Although the model setup assumes a balanced panel, this is not necessary. The asymptotic
covariance matrix and bootstrap procedures can readily accommodate settings in which the number
of time-series observations varies with the cross-section unit.
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error to the second step, without the confounding influence of endogeneity in zi .
While this is a strong assumption, it is reasonable in some of the empirical contexts
referenced above. For example, in the production relationships category, Agee
et al. (2009, 2012) use directional distance functions to estimate the efficiency of
a household’s production of health and human capital in children. In both cases, all
time-invariant child and household characteristics are treated as exogenous on the
grounds that the characteristics are either fixed by nature (e.g., race and gender) or
by circumstances of the household or the parents. County, state, and country-level
panels provide other examples, many of which come from social science papers
outside of economics (as described in Plümper and Troeger (2007)). A common
practice has been either to include time-invariant variables in a pooled ordinary
least-squares (POLS) or RE regression, or use FE estimation and ignore them.
Knack (1993), which is concerned with the relationship between the prospect
of jury service and voter registration, does both. Over Knack’s two-year panel,
certain state characteristics, like whether there is a senate contest, are time-invariant.
Because the timing of senate contests are fixed by law, this indicator is exogenous.
Knack estimates OLS regressions on each year separately, including the fixed
characteristics, and FE regressions using both years of the panel, dropping these
characteristics.2

In the two-step approach to estimating � , we begin by applying FE to (5.1), which
produces

Ǒ
FE D

�X
i

X0
i QT Xi

��1 X
i

X0
i QT yi ; (5.5)

where QT D IT � jT .j0
T jT /�1j0

T is the idempotent projection that time de-means the
data. The FE estimator is unbiased and consistent under (5.3).

Next, we take Ǒ
FE and compute individual or group-level residuals,

Oıi D Nyi � Nxi
Ǒ
FE; (5.6)

and formulate the second-step regression model

Oıi D zi � C ui ; (5.7)

where

ui D N�i � Nxi . Ǒ
FE � ˇ/; (5.8)

2Atkinson and Cornwell (2013) extend the analysis here to allow some of the elements of zi to be
correlated with the unobserved effect.
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N�i D ci C Nei , the over-bar indicates the sample-period mean for unit i (e.g., Nxi D
1
T

P
t xi t ), and the first element of zi is 1. Equation (5.8) is obtained by combining

(5.7), (5.6), and the sample-period mean for unit i of (5.2). We then estimate � by
applying OLS to (5.7).3 The resulting estimator, which we label O�FE because it is
derived from Ǒ

FE , can be written as

O�FE D
�X

i

z0
izi

��1�X
i

z0
i
Oıi

�
: (5.9)

5.3 Second-Step Standard-Error Estimation

In this section, we first derive the asymptotic covariance matrix of O�FE and explain
how to estimate it consistently. Then we outline the procedures for computing the
wild and pairs bootstrap alternatives.

5.3.1 Asymptotic Covariance Matrix

As Wooldridge (2010) points out, the asymptotic covariance matrix for O�FE can be
obtained by applying standard arguments for two-step estimators (see, for example,
Murphy and Topel 1985). We begin by writing the sampling error of O�FE as

O�FE � � D
�X

i

z0
i zi

��1�X
i

z0
i ui

�
: (5.10)

Then we can show that
p

N . O�FE � �/ is asymptotically normal with a limiting
covariance matrix that can be expressed as

.Bzz/
�1 A .Bzz/

�1; (5.11)

where, Bzz D plim 1
N

P
i z0

i zi . As implied by (5.8)

A D plim
1

N

X
i

N�2
i z0

i zi C plim
1

N

X
i

z0
i Nxi V Ǒ

FE
Nx0

izi ; (5.12)

where V Ǒ
FE

is the limiting covariance matrix of
p

N . Ǒ
FE � ˇ/.

3As discussed in Atkinson and Cornwell (2013), allowing some of the elements of zi to be
correlated with the unobserved effect leads to the two-step “simple, consistent” instrumental
variables estimator of Hausman and Taylor (1981). From this perspective, you can view our two-
step estimator as an instrumental variables estimator using ŒQT Xi ; .jT ˝ zi /� as instruments.
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A consistent estimator of the asymptotic covariance matrix of O�FE hinges on
the consistent estimation of A. The latter is accomplished by utilizing the robust
covariance matrix estimator of V Ǒ

FE
,

OV Ǒ
FE

D
�X

i

X0
i QT Xi

��1 X
i

X0
iQT Oei Oe0

i QT Xi

�X
i

X0
i QT Xi

��1

(5.13)

(see Arellano 1987), and extracting an estimator of �i from the group-level version
of (5.1) evaluated at . Ǒ

FE; O�FE/.

5.3.2 Bootstrap Methods

There are two important reasons to prefer bootstrap estimators of standard errors
to estimators based on asymptotic formulae. First, bootstrapping standard errors is
often easier than estimating the asymptotic covariance matrix. Second, bootstrap-
ping often produces better small-sample performance in terms of ERP.

We consider the wild and pairs bootstrap procedures because they produce esti-
mated standard errors that are robust to heteroskedasticity. Davidson and Flachaire
(2008) have shown that the wild bootstrap yields a heteroskedasticity-consistent
covariance matrix estimator when the residuals are divided by hi , the diagonal
element of the projection matrix corresponding to the right-hand-side variables
of the original equation estimated. T. Lancaster (2003, A note on bootstraps and
robustness, unpublished manuscript. Department of Economics, Brown University)
has proven that the pairs bootstrap yields a similar covariance estimator. Below we
outline how each can be adapted to our two-step estimation problem.

Following Cameron and Trivedi (2005), for fixed-T panels, consistent
(as N ! 1) standard errors can be obtained by using cross-sectional resampling.
Hence, we employ this method for both the pairs and wild bootstrap, assuming no
cross-sectional or temporal dependence.4

5.3.2.1 Wild Bootstrap Estimator

The wild bootstrap procedure can the applied to the estimation of the standard errors
of O�FE by executing the following steps.

4Also, see Kapetanios (2008), who shows that if the data do not exhibit cross-sectional dependence
but exhibit temporal dependence, then cross-sectional resampling is superior to block bootstrap
resampling. Further, he shows that cross-sectional resampling provides asymptotic refinements.
Monte Carlo results using these assumptions indicate the superiority of the cross-sectional method.
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1. Compute Ǒ
FE in (5.5).

2. Using Ǒ
FE , compute Oıi in (5.6).

3. Compute O�FE in (5.9).
4. Since �it D ci C eit in (5.1), compute

O�it D yit � xi t
Ǒ
FE � zi O�FE; (5.14)

Then define f . O�it / as:

f . O�it / D
O�it

.1 � hit /1=2
;

where hit is the diagonal element of the projection matrix corresponding to the
right-hand-side variables of (5.2). Thus, the transformed residual is homoskedas-
tic by definition so long as the error term, �it , is homoskedastic.5

5. We follow Davidson and Flachaire (2008) and MacKinnon (2002) and define �i

as the two-point Rademacher distribution:

�i D
( �1 with probability 1

2

1 with probability 1
2

: (5.15)

This assigns the same value to all T observations for each i . Then, we generate

yw
i t D xi t

Ǒ
FE C zi O�FE C �w

i t ; (5.16)

where

�w
i t D f . O�it /�i : (5.17)

Davidson and Flachaire (2008) provide evidence that this version of the wild
bootstrap is superior to other wild methods. This is due to the fact that E.�i / D
0; E.�2

i / D 1; E.�3
i / D 0; and E.�4

i / D 1. Since O�it and �i are independent,
E.�w

i t / D E. O�it /�i # D 0, its variance is that of O�it # , its third moment is zero
(which implies zero skewness in O�it ), but its fourth moment is again that of O�it # .
Thus, the first, second, and fourth moments of O�it # are reproduced exactly in the
wild bootstrap data using (5.15).

6. Compute the FE estimator of Ǒ using the wild bootstrap data:

Ǒw
FE D

�X
i

X0
i QT Xi

��1 X
i

X0
i QT yw

i : (5.18)

5Further, this transformation is needed to obtain a heteroskedastic-consistent covariance matrix as
explained above.
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7. Compute the group-mean residuals as

ıw
i D Nyw

i � Nxi
Ǒw
FE: (5.19)

Note that in step (5) it was necessary to generate yw
i t rather than time-demeaned

yit , because in the current step one must compute group means to generate the
residuals. Group means cannot be recovered from the time-demeaned data.

8. Formulate the true bootstrap model

ıw
i D zi O�FE C uw

i ; (5.20)

where uw
i is a bootstrap error, and compute the second-step estimator of O�FE

using the bootstrap data:

O�w
FE D

�X
i

z0
i zi

��1 X
i

z0
i ı

w
i : (5.21)

9. Iterate steps 5–8 and compute the sample standard deviation of O�w
FE , s O�;w, as an

estimator of the standard error of O�FE , where w denotes the wild procedure.

5.3.2.2 Pairs Bootstrap Estimator

The pairs bootstrap procedure discussed in T. Lancaster (2003, A note on boot-
straps and robustness, unpublished manuscript. Department of Economics, Brown
University) can be extended to our problem as follows:

1. Compute Ǒ
FE in (5.5).

2. Using Ǒ
FE , compute Oıi in (5.6).

3. Compute O�FE in (5.9).
4. Draw randomly with replacement among i D 1; : : : ; N blocks, using all T

observations in the chosen block, with probability 1=T from fyit ; xi t ; zi t g to
obtain fyp

it ; xp
it ; zp

itg, where the superscript denotes the pairs estimator. Resam-
pling all variables in this manner preserves the correlation of the corresponding
time-invariant and group-mean variables in the second-step regression with the
first-step variables.

5. For the pairs bootstrap, define �
p
i as a .T � 1/ vector made up of f�p

i1; : : : ; �
p
iT g

for observation i . Write the first-step regression model with unknown error term,
�

p
i , as

yp
i D Xp

i
Ǒ
FE C .jT ˝ zp

i / O�FE C �
p
i : (5.22)

Compute the FE estimator of Ǒ using the pairs bootstrap data .yp
i ; Xp

i /
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Ǒp
FE D

�X
i

Xp0

i QT Xp
i

��1 X
i

Xp0

i QT yp
i : (5.23)

6. Using Ǒp
FE compute the residuals

ı
p
i D Nyp

i � Nxp
i

Ǒp
FE: (5.24)

7. Formulate the second-step pairs bootstrap model as

ı
p
i D zp

i O�FE C up
i ; (5.25)

where up
i is the pairs second-step error, then compute the second-step estimator

of O�FE using the bootstrap data:

O�p
FE D

�X
i

zp0

i zp
i

��1 X
i

zp0

i ı
p
i : (5.26)

8. Iterate steps 4–7 and compute the sample standard deviation of O�p
FE; s O�;p , as an

estimator of the standard error of O�FE .

5.4 The Size and Power of Bootstrap Estimators

5.4.1 Previous Studies of the Size and Power of Bootstrap
Estimators

We are unaware of any Monte Carlo study that examines the ERP and size
of estimator t-values for two-step panel-data models of the type we consider.
However, there is a substantial literature on bootstrap performance in cross-section
regressions. Horowitz (2001) compares the actual size of the pairs and wild
bootstrap to the size associated with the asymptotic formula for White’s information
matrix test, the t-test in a heteroskedastic regression model, and the t-test in a Box-
Cox regression model. For relatively small sample sizes, he finds that the wild and
pairs dramatically reduce the ERP of the asymptotic formulas, and in many cases
the wild essentially eliminates this error. The wild method outperforms the pairs
and both outperform the jackknife method. Davidson and Flachaire (2008) obtain
similar results when they compare the wild and pairs estimators to those obtained
using the asymptotic formula. Using an Edgeworth expansion, they trace the wild’s
advantage to the fact that the ERPs of the pairs depend on more higher-order raw
moments of the original errors and the bootstrap residuals, which are greater under
heteroskedasticity. With homoskedastic errors, there is little difference between the



112 S.E. Atkinson and C. Cornwell

wild and pairs estimators and their ERP is very small. The results we present below
are consistent with this finding. Inference based on the asymptotic formula also
improves, but exhibits a substantially larger ERP.

In summary, for single-equation models with heteroskedastic errors, Monte Carlo
results generally show that the wild bootstrap outperforms the pairs and that both
improve on inference based on the estimator of the asymptotic formula. However,
we are not aware of bootstrap performance comparisons that address the empirical
context of a two-step panel data model, where estimation error from the first step is
the primary complicating factor. Next, we analytically examine the wild and pairs
procedures for the two-step estimation problem, identifying the conditions required
for both to be unbiased.

5.4.2 The Unbiasedness of Our Two-Step Bootstrap Estimators

The unbiasedness of the first and second-step wild estimators follows directly from
the fact that the �i are zero-mean random variables generated independently of �it .
See Theorems 1 and 2 in the Appendix. Flachaire (2005) compares the conditional
expectation of the bootstrap error given the explanatory variables for the wild versus
pairs methods in a simple linear model. In terms of our setup, he asserts that the wild
bootstrap satisfies E.uw

i jzi / D 0, and hence is unbiased.
He also asserts that the pairs does not satisfy E.up

i jzp
i / ¤ 0, and therefore is

biased (because up
i depends on zp

i ). Thus, he argues that the wild should produce a
smaller ERP than the pairs estimator. In the Appendix, however, we prove that both
estimators are unbiased given the exogeneity conditions (5.3) and (5.4).

To show that the pairs estimator is unbiased, we need to reformulate it in terms
of the residual of the original model. Since by definition yi equals the fitted model
plus the residual for observation i ,

p
viyi D p

vi Xi
Ǒ
FE C p

vi .jT ˝ zi / O�FE C p
vi

O�i ; (5.27)

where vi specifies number of times (from 0 to N ) that each (yi ; Xi / pair for
observation i is reused in the pairs bootstrap sample. Using .

p
vi yi ;

p
vi Xi / we

obtain an alternative formulation of the pairs first-step estimator as

Ǒp
FE D

�X
i

viX0
i QT Xi

��1 X
i

viX0
i QT yi : (5.28)

Hence, (5.28) becomes a weighted regression version of (5.23), where yp
i is replaced

by
p

vi yi , Xp
i is replaced by

p
vi Xi , and .jT ˝zp

i / is replaced by
p

vi .jT ˝zi /. Again
by definition, reformulate (5.25) as

p
vi ıi D p

vizi O�FE C p
vi Oui : (5.29)
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where Oui is the residual computed from (5.7) and obtain a more useful formulation
of the second-step pairs estimator as

O�p
FE D

�X
i

vi z0
izi

��1 X
i

vi z0
i ıi : (5.30)

Theorem 3 says that the pairs estimator is unbiased in the first step if
E.QT

O�i jvi ; Xi / D 0. This result also applies to any linear, single-equation model
estimated by the pairs estimator. Finally, using (5.30), and assuming that (5.3), (5.4),
and Theorem 3 hold, Theorem 4 shows that in the second step, the pairs estimator
is unbiased for O�FE .

Davidson and MacKinnon (1999) demonstrate that the ERP depends on estimator
bias. Thus, a biased bootstrap estimator should have a larger ERP than an unbiased
estimator assuming that the errors, �i , are i.i.d.6 The size of t-values for both the
second-step wild and pairs estimators should be highly accurate since their biases
are zero, given that the assumptions in (5.3) and (5.4) hold.

5.5 Monte Carlo Estimation

5.5.1 Data Generation

We create the data for the Monte Carlo experiments in the following steps.

1. Generate the xitk and zi tg (k D 1; : : : ; 10I g D 1; : : : ; 3) as multivariate
normal with zero means and unit variances. We set cov.zg; zg0/ D 0:2; g ¤ g0
(implying simple correlations of 0.2), cov.xk; xk0/ D 0:3; k ¤ k0. We also set
cov.xk; zg/ D 0:3 and draw xitk and zi tg: For each g, we then create the group
mean of zi tg and use this for zig (which is time invariant) so that the group means
of xk and zg have correlation of 0.3.

2. Generate ci and eit as i.i.d. normal random variables with mean zero and variance
of 10 and 100, respectively. The large variance for eit guarantees a relatively low
R2 for the first-step regression. This in turn implies a greater difference between
the estimated “naive” and correct asymptotic covariance matrices for the second-
step coefficients.

3. Using the data from steps 1–2, generate yit in Eq. (5.1).

The bootstrap estimators do not require the i.i.d. assumption. As described in
Sect. 5.3.2, they have heteroskedastic-consistent covariance matrices. Using cross-
sectional resampling as defined above, these bootstrap methods will deal with
dependent data by generating correlated errors that exhibit approximately the

6As indicated above, Davidson and Flachaire (2008) find that many other factors in addition to
bias, especially heteroskedasticity, can increase the ERP of bootstrap and asymptotic estimators.
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same pattern of autocorrelation as �it . However, in this paper we focus on the
i.i.d. case (as defined in step two), because our primary interest here is how the
bootstrap estimators handle the transmission of the first-step estimation error to
the second step relative to the analytical alternative in the simplest of contexts. In
Atkinson and Cornwell (2013), we explore the effects, in some cases substantial,
of heteroskedasticity and serial correlation in the �it on the second-step inference
problem.

5.5.2 Monte Carlo Results

We perform a number of Monte Carlo experiments to compare the actual size and
power of the t-statistics derived from four estimators of the covariance matrix of O�–
a “naive” method which is the asymptotic formula without adjusting for the first-step
parameter estimators, the correct asymptotic formula which makes this adjustment,
the pairs bootstrap, and the wild bootstrap. For our size calculations, we assume that
ˇ D � D 1 during data generation and test the null that � D 1 using a two-sided
equal-tailed 95 % confidence interval, so that the total type-I error is ˛ D 0:05.

We set the number of bootstrap draws, B , to 399 following MacKinnon (2002)
who states that while this number may be smaller than should be used in practice,
any randomness due to B of this size averages out across the replications. We
find this to be true for our experiments where larger values of B did not change
our results on ERP up to three significant digits beyond the decimal point. Within
each of M.m D 1; : : : ; M / Monte Carlo trials, for each bootstrap method, we
estimate the unrestricted model and obtain O��

m;b;g , the bootstrap estimator of O�m;g ,
b D 1; : : : ; B . For each m, we calculate the actual size of the test-statistic,

t�
m;g D . O�m;g � �g/=s�

m;g; g D 1; : : : ; G; (5.31)

where s�
m;g is the bootstrap estimator of the standard error of O�m;g , computed as the

standard deviation of O��
m;b;g over all bootstrap replications. Note that the t�

m;g statistic
is not asymptotically pivotal and no asymptotic refinements obtain; however, we
employ it since applied researchers may have difficulty computing the asymptotic
formula. See MacKinnon (2002) for details.

For each Monte Carlo trial, m, we calculate the size for each bootstrap estimator
as the percentage of t�

m;g values greater than the nominal level of t �̨
=2 D 1:96 or less

than the nominal level of t�
1�˛=2 D �1:96, with ˛ D 0:05. We choose M D 1;999,

so that 1
2
˛.M C 1/ is an integer.

For each Monte Carlo trial, we compute the size for the naive and asymptotic
formula methods using

tm;g D . O�m;g � �g/=s O�m;g
; (5.32)
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Table 5.1 Monte Carlo actual size calculations

T D 5 T D 10 T D 20

�1 �2 �3 �1 �2 �3 �1 �2 �3

N D 50

Naive 0.080 0.077 0.088 0.073 0.085 0.085 0.070 0.085 0.084
Asy. 0.069 0.069 0.080 0.070 0.081 0.083 0.070 0.084 0.083
Pairs 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051
Wild 0.046 0.047 0.046 0.046 0.046 0.046 0.047 0.046 0.046
Avg. 0.062 0.061 0.066 0.060 0.066 0.066 0.059 0.066 0.066

N D 100

Naive 0.067 0.073 0.058 0.057 0.070 0.067 0.067 0.073 0.070
Asy. 0.060 0.069 0.055 0.055 0.069 0.065 0.066 0.072 0.069
Pairs 0.050 0.051 0.050 0.050 0.051 0.051 0.050 0.050 0.050
Wild 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048
Avg. 0.056 0.060 0.053 0.052 0.059 0.058 0.058 0.061 0.059

N D 250

Naive 0.055 0.064 0.055 0.051 0.061 0.064 0.061 0.053 0.055
Asy. 0.053 0.062 0.051 0.051 0.060 0.062 0.061 0.052 0.054
Pairs 0.050 0.049 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wild 0.050 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049
Avg. 0.052 0.056 0.051 0.050 0.055 0.056 0.055 0.051 0.052

N D 500

Naive 0.057 0.050 0.065 0.057 0.060 0.051 0.043 0.056 0.055
Asy. 0.052 0.048 0.062 0.057 0.059 0.050 0.042 0.055 0.053
Pairs 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wild 0.050 0.050 0.049 0.050 0.050 0.049 0.049 0.050 0.050
Avg. 0.052 0.049 0.056 0.053 0.054 0.050 0.046 0.053 0.052

N D 1;000

Naive 0.051 0.054 0.053 0.048 0.045 0.048 0.053 0.047 0.052
Asy. 0.049 0.050 0.050 0.048 0.044 0.048 0.053 0.047 0.051
Pairs 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wild 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Avg. 0.050 0.051 0.050 0.049 0.047 0.049 0.051 0.048 0.051

where s O�m;g
for the naive method is the standard error estimator ignoring the

existence of first-step random variables and for the asymptotic method is the square
root of the gth diagonal element of (5.13). Then, we estimate size over all M

observations as the percentage of times that tm;g exceeds the nominal level of
t �̨

=2 D 1:96 or is less than the nominal level of t�
1�˛=2 D �1:96 for ˛ D 0:05.

Because we are interested in performance under large-N asymptotics, we
consider the following cases: N D 50; 100; 250; 500 and 1;000 crossed with
T D 5; 10 and 20. We compute the actual size, also termed type-I error or rejection
probability (RP), and the absolute value of the ERP. Table 5.1 reports actual RPs,
while Table 5.2 reports the sum over all parameters of the absolute ERPs.
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Table 5.2 Total Monte
Carlo ERP T D 5 T D 10 T D 20

N D 50

Naive 0.095 0.093 0.088
Asy. 0.067 0.083 0.086
Pairs 0.004 0.004 0.003
Wild 0.011 0.012 0.011
Avg. 0.044 0.048 0.047

N D 100

Naive 0.047 0.043 0.059
Asy. 0.034 0.039 0.056
Pairs 0.001 0.001 0.001
Wild 0.005 0.005 0.005
Avg. 0.022 0.022 0.030

N D 250

Naive 0.023 0.025 0.018
Asy. 0.015 0.022 0.017
Pairs 0.001 0.000 0.000
Wild 0.002 0.002 0.003
Avg. 0.010 0.012 0.009

N D 500

Naive 0.022 0.017 0.017
Asy. 0.016 0.016 0.016
Pairs 0.000 0.000 0.000
Wild 0.001 0.001 0.001
Avg. 0.010 0.009 0.009

N D 1;000

Naive 0.007 0.009 0.008
Asy. 0.002 0.010 0.007
Pairs 0.001 0.000 0.000
Wild 0.001 0.001 0.001
Avg. 0.002 0.005 0.004

Table 5.1 shows that the naive and asymptotic methods seriously over-reject for
small values of N , the pairs bootstrap slightly over-rejects, and the wild bootstrap
under-rejects. Both bootstrap methods are considerably more accurate than the non-
bootstrap methods, with the advantage going to the pairs. For N D 50, actual sizes
are 0:051 for the pairs and between 0:046 and 0:047 for the wild, but range from
0:069 to 0:088 for the non-bootstrap methods. Thus, the upward bias of the pairs is
extremely small (2 %); the downward bias of the wild is larger (6–8 %), but still far
smaller than the bias of the conventional methods (at least 40 %).

Increasing N generally improves the accuracy of all methods, but the perfor-
mance rankings do not change. By N of 250, the bootstrap methods produces the
correct, or very close to the correct, size in every case, while the conventional
methods still overstate the significance of t-values by at least 10 % in more than
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half of the cases. Increasing N to 500 and then 1,000 brings actual and nominal
size into alignment in every bootstrap case. However, even when N D 1;000, the
conventional approaches get the size right in only two cases and are off by as much
as 12 % in the others.

The sums of absolute ERPs in Table 5.2 concisely summarize the advantage of
the bootstrap methods. For N > 50, the pairs bootstrap absolute ERP sum never
exceeds 0:001. The wild bootstrap is not as impressive for smaller values of N , but
competes with the pairs when N is at least 250. In contrast, the absolute ERP sums
of conventional methods are often an order of magnitude larger, even for N as large
as 500.

To quantify the roles of N and T in reducing size distortions we regress the
ln(actual size) for each estimated coefficient on the logs of N and T by method,
where the observations are the 15 combinations of N and T considered in Table 5.3.
Asymptotic t-values are reported in parentheses. The results show that increasing N

by a given percentage affects size to a considerably greater degree than increasing
T by the same percentage. The cross-section dimension effect is also always highly
significant, whereas the panel length is never significant at even the 10- % level.
This makes sense, because T affects second-step estimation only through its effect
on Ǒ

FE and its estimated covariance matrix.
Finally we examine the power of the conventional and bootstrap tests, computed

using level-adjusted sizes. Since both bootstrap methods always reject less fre-
quently than the conventional methods, the former will appear to have less power.
Therefore, we compute power based on level-adjusted t�

m;g values, so that critical
values are used for which the actual RP is exactly equal to the nominal RP.7 These
levels, t �̨

=2;g and t�
1�˛=2;g , are the ˛=2 and 1 � ˛=2 quantiles of the sorted t�

m;g . For
each Monte Carlo replication, they are found by first sorting the t�

m;g values from
large to small and then taking the .˛=2/.B C 1/ and .1 � ˛=2/.B C 1/ values for
each g. We compute the power curves for �3 for each method as the alternative
value of �3 (denoted as ALT in the figures) is increased from �1 to 1 in increments
of .1 by calculating the percentage of the B bootstrap estimates that fall outside the
critical region. For the conventional methods, we use the same range of alternative
parameter values to compute power as the percentage of M Monte Carlo estimates
that falls outside the interval defined by their level-adjusted t-values, computed
using the same sorting method just described.

Figures 5.1–5.3 present the power curves for N D 250; 500, and 1000, where
T D 5 throughout. With N D 250, the pairs method holds a slight advantage in
terms of power. However, with larger values of N , all methods are highly similar.
With N D 250 the power of all methods is quite low relative to N D 1000, where
power has risen to approximately :7 for alternatives of �1 and 1.

7See Davidson and MacKinnon (2006a,b) for further discussion.
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Table 5.3 Regressions
explaining ln (actual size)
(number of observations
D 15)

Intercept ln.N / ln.T / R2

Naive
�1 2.5426 �0:1277 �0:0369 0.7180

(15.4134)�� (�5:4644)�� (�0:8293)
�2 2.8238 �0:1766 �0:0173 0.8894

(22.2146)�� (�9:8096)�� (�0:5066)
�3 2.6794 �0:1550 �0:0073 0.7569

(14.9573)�� (�6:1099)�� (�0:1514)
Avg. 2.6819 �0:1531 �0:0205 0.7881

Asy.
�1 2.3006 �0:1128 0.0169 0.6857

(14.7321)�� (�5:1009)�� (0.4023)
�2 2.6490 �0:1663 0.0211 0.8702

(20.1923)�� (�8:9502)�� (0.5962)
�3 2.5232 �0:1474 0.0282 0.7411

(14.1429)�� (�5:8312)�� (0.5873)
Avg. 2.4910 �0:1422 0.0221 0.7657

Pairs
�1 1.6651 �0:0088 �0:0008 0.8064

(188.2853)�� (�7:0626)�� (�0:3330)
�2 1.6575 �0:0083 0.0013 0.6901

(146.0756)�� (�5:1508)�� (0.4405)
�3 1.6622 �0:0088 0.0000 0.8025

(187.1058)�� (�6:9817)�� (0.0179)
Avg. 1.6616 �0:0086 0.0002 0.7663

Wild
�1 1.4655 0.0220 �0:0014 0.7810

(61.5810)�� (6.5375)�� (�0:2115)
�2 1.4651 0.0229 �0:0035 0.8314

(69.5469)�� (7.6683)�� (�0:6200)
�3 1.4590 0.0228 �0:0009 0.8420

(72.5098)�� (7.9953)�� (�0:1599)
Avg. 1.4632 0.0226 �0:0019 0.8181

** indicates significance of the t-values at the .05 level using a
two-tailed asymptotic-t test.

5.6 Conclusions

The primary advantage of panel data is the ability they provide to control for
unobserved heterogeneity or effects that are time-invariant. The fixed-effects (FE)
estimator is by far the most popular technique for exploiting this advantage,
because it makes no assumption about the relationship between the explanatory
variables in the model and the effects. However, a well-known problem with the
FE estimator is that any time-invariant regressor in the model is swept away by the
data transformation that eliminates the effects. The partial effects of time-invariant
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variables can be estimated in a second-step regression, but this fact is generally
overlooked in textbook discussions of panel-data methods.

In this paper, we have shown how to conduct inference on the coefficients of time-
invariant variables in linear panel-data models, estimated in a two-step framework.
Our estimation framework is rooted in Hausman and Taylor’s (1981) “consistent,
but inefficient” estimator, albeit under weaker FE assumptions. We derive the
asymptotic covariance matrix of the two-step estimator and compare inference
based on the asymptotic standard errors with bootstrap alternatives. Bootstrapping
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has a natural appeal, because of the complications associated with estimating the
asymptotic covariance matrix and the inherent finite-sample bias of the resulting
standard errors. We adapt the pairs and wild bootstrap to this two-step problem.
Then we prove that both bootstrap coefficient estimators are unbiased, a result that is
important since bootstrap ERPs are a function of bias. Using Monte Carlo methods,
we compare the size and power of the naive asymptotic estimator, which ignores
the first-step estimation error, the correct asymptotic covariance matrix estimator,
which does not, and the bootstrap alternatives.

In terms of size, bootstrap methods are the clear winners. For values of N less
than 250, the pairs somewhat over-rejects and the wild somewhat under-rejects, with
the pairs having a small advantage. The positive ERP of the pairs is 2 %, while
the negative ERP of the wild is 6–8 %. In contrast, both are considerably more
accurate than the methods based on asymptotic formulae, which are typically biased
by more than 40 %. For values of N equal to 250 and larger, the bootstrap methods
converge to the correct size and the advantage of the pairs becomes negligible. The
correct asymptotic covariance matrix estimator remains somewhat biased even for
N D 1;000. The pairs bootstrap method slightly out-performs the other methods in
terms of power with N D 250, although power curves are highly similar with larger
values of N .

The Monte Carlo findings are consistent with the results of our analytical
examination of the pairs and wild bootstrap procedures. The implication of these
results is that both bootstrap ERPs should be very close to zero. The bottom line of
both our Monte Carlo exercise and analytical results is that researchers interested
in estimating the effects of time-invariant variables in a two-step framework should



5 Inference in Two-Step Panel Data Models with Time-Invariant Regressors. . . 121

rely on bootstrapped standard errors. This conclusion holds particularly strongly in
small-N panels like those encountered in cross-state and cross-country studies.

What remains is to consider the advantages to bootstrapping when some of the
second-step regression variables may be correlated with the unobserved effects and
when the true model errors are heteroskedastic and autocorrelated. Atkinson and
Cornwell (2013) extend the work of this paper to that case.

Appendix

Unbiasedness of the Wild First-Step Estimator, Ǒw
FE

Lemma 1: Since �i is drawn independently and E.�i D 0/, E.�w
i jXi / D 0:

Proof of Lemma 1: From (5.17), �w
i D O�i �i # . Thus, E.�w

i jXi / D E. O�i �i #jXi / =
E. O�i jXi /#E.�i jXi / D E. O�i jXi /#E.�i / D 0; since �i is independent of O� i and Xi

and in addition E.�i / D 0 by definition in (5.15). �

Theorem 1: Given the FE conditional-mean assumption in (5.3) and Lemma 1, the
wild bootstrap first-step estimator Ǒw

FE is unbiased for Ǒ
FE .

Proof of Theorem 1: Writing the vector form of (5.16) as yw
i D Xi

Ǒ
FECzi O�FEC�w

i

and substituting into (5.18), the first-step wild estimator can be written as

Ǒw
FE D Ǒ

FE C
�X

i

X0
i QT Xi

��1 X
i

X0
i QT �w

i ; (5.33)

where �w
i is a .T � 1/ vector. Then

E. Ǒw
FE jXi / D Ǒ

FE C
�X

i

X0
i QT Xi

��1 X
i

X0
i QT E.�w

i jXi / D Ǒ
FE; (5.34)

using Lemma 1. Further, EŒE. Ǒw
FE jXi /� D E. Ǒw

FE/ D Ǒ
FE . �

Unbiasedness of the Wild Second-Step Estimator, O�w
FE

To show that the second-step wild estimator is unbiased, we substitute (5.19) into
(5.20) to obtain

uw
i D Nyw

i � Nxi
Ǒw
FE � zi O�FE: (5.35)
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Now average (5.16) over t to obtain

Nyw
i D Nxi

Ǒ
FE C zi O�FE C N�w

i (5.36)

and substitute (5.36) into (5.35) to yield

uw
i D Nxi . Ǒ

FE � Ǒw
FE/ C N�w

i : (5.37)

Lemma 2: Since �i is drawn independently and E.�i D 0/, E. N�w
i t jzi ; Nxi / D 0:

Proof of Lemma 2: Use the definition of �w
i t in (5.17) and condition on zi ; Nxi . Then

use the independence of �i from zi ; Nxi . �

Theorem 2: Given Theorem 1 and Lemma 2, the wild second-step estimator, O�w
FE ,

is unbiased for O�FE .

Proof of Theorem 2:

E. O�w
FE jzi ; Nxi / D O�FE C

�X
i

z
0

izi

��1�X
i

z
0

i E.uw
i jzi ; Nxi /

�

D O�FE C
�X

i

z
0

izi

��1�X
i

z
0

i EfŒNxi . Ǒ
FE � Ǒw

FE/ C N�w
i �jzi ; Nxi g

�

D O�FE; (5.38)

after substituting from (5.37) for uw
i and then applying Theorem 1 and Lemma 2.

Finally, EŒE. O�w
FE jzi ; Nxi /� D E. O�w

FE/ D O�FE . �

Unbiasedness of the Pairs First-Step Estimator, Ǒp

FE

To show the unbiasedness of the pairs first-step estimator, we need (5.3).

Lemma 3: Given (5.3), E.QT
O�i jvi ; Xi / D 0.

Proof of Lemma 3: First,

E.QT
O�i jvi ; Xi / D E.Mi QT � i jvi ; Xi /

D E.QT �i jvi ; Xi /�QT Xi

�X
i

X0
i QT Xi

��1

X0
i QT E.QT �i jvi ; Xi /

D 7EfQT Œ.jT ˝ ci / C ei �jvi ; Xi g

� QT Xi

�X
i

X0
i QT Xi

��1

X0
iQT EfQT Œ.jT ˝ ci /Cei �

� jvi ; Xi g; (5.39)
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using Mi D IT � QT Xi

�P
i X0

iQT Xi

��1

X0
iQT and �i D .jT ˝ ci / C ei . Then,

using (5.3) and the fact that QT eliminates ci completes the proof. �

Theorem 3: Given Lemma 3, the bootstrap pairs first-step estimator, Ǒp
FE; is

unbiased for Ǒ
FE:

Proof of Theorem 3: Substitute QT yi in (5.28) and take expectations. Then

E. Ǒp
FE jvi ; Xi / D Ǒ

FE C
�X

i

vi X0
i QT Xi

��1 X
i

vi X0
iQT E.QT

O�i jvi ; Xi /

D Ǒ
FE; (5.40)

using Lemma 3. �

Unbiasedness of the Pairs Second-Step Estimator, O�p

FE

Theorem 4: Given (5.3), (5.4), and Theorem 3, the pairs second-step estimator,
O�p
FE , is unbiased for O�FE .

Proof of Theorem 4: Substituting (5.29) into (5.30) we obtain

O�p
FE D O�FE C

�X
i

vi z
0

i zi

��1�X
i

vi z
0

i Oui

�
: (5.41)

We can relate Oui to ui as follows:

Oui D ui � zi

�X
i

z0
i zi

��1 X
i

z0
i ui : (5.42)

Then substitute (5.42) into (5.41) to obtain

O�p
FE D O�FE C

�X
i

vi z
0

izi

��1 X
i

viz
0

i ui �
�X

i

z0
i zi

��1 X
i

z0
i ui (5.43)

Conditioning on .zi ; Nxi ; vi /, we use (5.8) and take the expectation of both sides to
obtain

E.ui jzi ; Nxi ; vi / D E. N�i jzi ; vi / C Nxi EŒ. Ǒ
FE � ˇ/jzi ; Nxi ; vi �: (5.44)

The first term on the right-hand-side of (5.44) is zero due to (5.3) and (5.4), while
Ǒ
FE is unbiased for ˇ from Theorem 3. �
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