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3.1 Introduction

The parametric approach to estimate stochastic production frontiers was introduced
by Aigner et al. (1977), Meeusen and van den Broeck (1977), and Battese and
Corra (1977). These approaches specified a parametric production function and
a two-component error term. One component, reflecting the influence of many
unaccountable factors on production as well as measurement error, is considered
“noise” and is usually assumed to be normally distributed. The other component
describes inefficiency and is assumed to have a one-sided distribution, of which the
conventional candidates include the half normal (Aigner et al. 1977), truncated nor-
mal (Stevenson 1980), exponential (Meeusen and van den Broeck 1977) and gamma
(Greene 1980a,b, 1990; Stevenson 1980). This stochastic frontier production func-
tion has become an iconic modeling paradigm in econometric research, rate making
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decisions in regulated industries across the world, in evaluating outcomes of market
reforms in transition economies, and in establishing performance benchmarks for
local, state, and federal governmental activities.

In this paper we propose a new class of parametric stochastic frontier models
with a more flexible specification of the inefficiency term, which we view as
improvement on the basic iconic stochastic frontier production model. Instead of
allowing unbounded support for the distribution of productive (cost) inefficiency
term in the right (left) tail, we introduce an unobservable upper bound to inef-
ficiencies or a lower bound to the efficiencies, which we call the inefficiency
bound. The introduction of the inefficiency bound makes the parametric stochastic
frontier model more appealing for empirical studies in at least two aspects. First,
it is plausible to allow only bounded support in many applications of stochastic
frontier models wherein the extremely inefficient firms in a competitive industry
of market are eliminated by competition. Bounded inefficiency makes sense in
this setting since the extremely inefficient stores will be forced to close and thus
individual production units constitute a truncated sample.1 This is consistent with
the arguments of Alchian (1950) and Stigler (1958) wherein firms are at any
point in time not in a static long run equilibrium, but rather are tending to that
situation as they are buffeted by demand and cost shocks. As a consequence,
even if we correctly specify a family of distributions for the inefficiency term,
the stochastic frontier model may still be misspecified. This particular setting is
one in which the inefficiency bound is informative as an indicator of competitive
pressures and/or the extent of supervisory oversight by direct management or by
corporate boards. In settings in which firms can successfully differentiate their
product, which is the typical market structure and not the exception, or where there
are market concentrations that may reflect collusive behavior or conditions for a
natural monopoly and regulatory oversight, incentives to fully exploit market power
or to instead make satisficing decision are both possible outcomes. Much more likely
is that it is not one or the other but some middle ground between the two extremes
that would be found empirically.2

1In addition, the frequent use of balanced panels in empirical studies would in effect eliminate
those failing firms from the sample and thus would provide more merit to the bounded inefficiency
model.
2“The quiet life hypothesis” (QLH) by Hicks (1935) argues that, due to management’s subjective
cost of reaching the optimal profits, firms use their market power to allow inefficient allocation
of resources. Increasing competitive pressure is likely to force management to work harder to
reach optimal profits. Another hypothesis that relates market power and efficiency is “the efficient
structure hypothesis” (ESH) by Demsetz (1973). ESH argues that firms with superior efficiencies
or technologies have lower costs and therefore higher profits. These firms are assumed to gain
larger market shares which lead to higher concentration. Recently Kutlu and Sickles (2012) have
constructed a model in which the dynamic game is played out and have tested for the alternative
outcomes, finding support for the QLH in certain airlines city-pair markets and the ESH in others.
Orea and Steinbuks (2012) have also explored the use of such a lower bound in their analysis of
market power in the California wholesale electricity market.
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A second justification for our introduction of the inefficiency bound into the
classical stochastic production frontier model is that our model points to an
explanation for the finding of positive skewness in many applied studies using the
traditional stochastic frontier, and thus to the potential of our bounded inefficiency
model to explain these positive (“wrong”) skewness findings.3 Researchers have
often found positive instead of negative skewness in many samples examined in
applied work, which may point to the stochastic frontier being incorrectly specified.
However, we conjecture that the distribution of the inefficiency term may itself be
negatively skewed, which may happen if there is an additional truncation on the right
tail of the distribution. One such specification in which this is a natural consequence
is when the distribution of the inefficiency term is doubly truncated normal, that
is, a normal distribution truncated at a point on the right tail as well as at zero. As
normal distributions are symmetric, the doubly truncated normal distribution may
exhibit negative skewness if the truncation on the right is closer to the mode than
that on the left. We also consider the truncated half normal distribution, which is a
special case of the former, and the truncated exponential distribution. Although these
two distributions are always positively skewed, the fact that there is a truncation on
the right tail makes the skewness very hard to identify empirically. That is to say,
when the true distribution of the one-sided inefficiency error is bounded (truncated),
the extent to which skewness is present in any finite sample may be substantially
reduced, often to the extent that negative sample skewness for the composite error is
not statistically significant. Thus the finding of positive skewness may speak to the
weak identifiability of skewness properties in a bounded frontier model.

In addition to proposing new parametric forms for the classical stochastic
production frontier model, we also show that our models are identifiable, and in
which cases the identification is local or global. Initial consistent estimates are based
on method of moments estimates, based on explicit analytic expressions which we
derive, and which either can be used in a two-step method of scoring or as starting
values in solving the normal equations for the relevant sample likelihood, based
on the parametric density functions whose expressions we also provide. As the
regulatory conditions for maximum likelihood estimation method are satisfied, we
employ it in order to obtain consistent and asymptotically efficient estimates of the
model parameters, including this of the inefficiency bound. We conduct Monte Carlo
experiments to study the finite sample behavior of our estimators. We also extend
the model to the panel data setting and allow for a time-varying inefficiency bound.
By allowing the inefficiency bound to be time-varying, we contribute another time-
varying technical efficiency model to the efficiency literature. Our model differs
from those most commonly used in the literature, e.g., Cornwell et al. (1990),
Kumbhakar (1990), Battese and Coelli (1992), and Lee and Schmidt (1993) in

3The term wrong is set in quotes to point out that the conventional wisdom that positive skewness
is inconsistent with the standard stochastic frontier production model errors skewness is not
necessarily the correct wisdom.
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that, while previous time-varying efficiency models are time-varying in the mean
or intercept of individual effects, our model is time-varying in the lower support of
the distribution of individual effects.

The outline of this paper is as follows. In Sect. 3.2 we present the new models
and derive analytic formula for density functions and expressions that allow us to
evaluate inefficiencies. Section 3.3 deals with the positive skewness issue inherent
in the traditional stochastic frontier model. Section 3.4 discusses the identification
of the new models and the methods of estimation. Section 3.5 presents Monte Carlo
results on the finite sample performance of the bounded inefficiency model vis-a-
vis classical stochastic frontier estimators. The extension of the new models to panel
data settings and specification of the time-varying bound is presented in Sect. 3.6.
In Sect. 3.7 we give an illustrative study of the efficiency of US banking industry in
1984–2009. Section 3.8 concludes.

3.2 The Model

We consider the following Cobb-Douglas production model,

yi D ˛0 C
KX

kD1
˛kxi;k C "i (3.1)

where

"i D vi � ui : (3.2)

For every production unit i , yi is the log output, xik the k-th log input, vi the noise
component, and ui the (nonnegative) inefficiency component. We maintain the usual
assumption that vi is iid N.0; �2v /, ui is iid, and vi and ui are independent from each
other and from regressors. Clearly we can consider other more flexible functional
forms for production (or cost) that are linear or linear in logarithms, such as the
generalized Leontief or the transcendental logarithmic, or ones that are nonlinear.
The only necessary assumption is that the error process "i is additively separable
from the functional forms we employ in the stochastic production (cost) frontier.

As described in the introduction, our model differs from the traditional stochastic
frontier model in that ui is of bounded support. Additional to the lower bound, which
is zero and which is the frontier, we specify an upper bound to the distribution of
ui (in the case of the cost frontier "i D vi C ui ). In particular, we assume that ui is
distributed as doubly truncated normal, the density of which is given by

f .u/ D
1
�u
�.

u��
�u
/

ˆ.
B��
�u
/ �ˆ.��

�u
/
1Œ0;B�.u/; �u > 0;B > 0 (3.3)

where ˆ.�/ and �.�/ are the cdf and pdf of the standard normal distribution,
respectively, and 1Œ0;B� is an indicator function. It is a distribution obtained by
truncating N.�; �2u / at zero and B > 0. The parameter B is the upper bound of
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the distribution of ui and we may call it the inefficiency bound. The inefficiency
bound may be a useful index of competitiveness of a market or an industry.4 In the
banking industry, which we examine in Sect. 3.7, the inefficiency bound may also
represent factors that influence the financial health of the industry. It may be natural
to extend this specification and treat the bound as a function of individual specific
covariates zi , such as exp.ı0zi /, which would allow identification of bank-specific
measures of financial health.

Using the usual nomenclature of stochastic frontier models, we may call the
model described above the normal-doubly truncated normal model, or simply,
the doubly truncated normal model. The doubly truncated normal model is rather
flexible. It nests the truncated normal (B ! 1), half normal (� D 0 and B ! 1),
and truncated half normal models (� D 0). One desirable feature of our model
is that the doubly truncated normal distribution may be positively or negatively
skewed, depending on the truncation parameter B . This feature provides us with
an alternative explanation for the positive skewness problem prevalent in empirical
stochastic frontier studies. This will be made more clear later in the paper. Another
desirable feature of our model is that, like the truncated normal model, it can
describe the scenario that only a few firms in the sector are efficient, a phenomenon
that is described in the business press as “few stars, most dogs”, while in the
truncated half normal model and the truncated exponential model (in which the
distribution of ui is truncated exponential), most firms are implicitly assumed to be
relatively efficient.5

In Table 3.1 we provide detailed properties of our model. In particular, we
present the density functions for the error term "i , which is necessary for maximum
likelihood estimation, and the analytic form forEŒui j"i �, which is the best predictor
of the inefficiency term ui under our assumptions, and the conditional distribution of
ui given "i , which is useful for making inferences on ui . The results for the truncated
half normal model, a special case of the doubly truncated normal model (� D 0), are
also presented. Finally, we also provide results for the truncated exponential model,
in which the inefficiency term ui is distributed according to the following density
function,

f .u/ D 1

�u.1 � e�B=�u/
e� u

�u 1Œ0;B�.u/; �u > 0;B > 0 (3.4)

The truncated exponential distribution can be further generalized to the truncated
gamma distribution, which shares the nice property with the doubly truncated
normal distribution that it may be positively or negatively skewed.

4The inefficiency bound has a natural role in gauging the tolerance for or ruthlessness against
inefficient firms. It is also worth mentioning that, using this bound as the “inefficient frontier,” we
may define “inverted” efficiency scores in the same spirit of “Inverted DEA” described in Entani
et al. (2002).
5We thank C. A. K. Lovell for providing us this link between our econometric methodology and
the business press.
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For the doubly truncated normal model and the truncated half normal model, the
analytic forms of our results use the so-called � -parametrization, which specifies

� D
q
�2u C �2v ; � D �2u =�

2: (3.5)

By definition � 2 Œ0; 1�, a compact support, which is desirable for the numerical
procedure of maximum likelihood estimation. Another parametrization initially
employed by Aigner et al. (1977) is the �-parametrization

� D
q
�2u C �2v ; � D �u=�v: (3.6)

We may check that when B ! 1, the density function for "i in the doubly
truncated normal model reduces to that of the truncated normal model introduced
by Stevenson (1980). Furthermore, if� D 0, it reduces to the likelihood function for
the half normal model introduced by Aigner et al. (1977). Similarly, the truncated
exponential model reduces to the exponential model introduced by Meeusen and
van den Broeck (1977).

3.3 The Skewness Issue

A common and important methodological problem encountered when dealing with
empirical implementation of the stochastic frontier model is that the residuals
may be skewed in the wrong direction. In particular, the ordinary least squares
(OLS) residuals may show positive skewness even though the composed error term
v � u should display negative skewness, in keeping with u0s positive skewness.
This problem has important consequences for the interpretation of the skewness
of the error term as a measure of technological inefficiency. It may imply that a
nonrepresentative random sample had been drawn from an inefficiency distribution
possessing the correct population skewness (see Carree 2002; Greene 2007; Simar
and Wilson 2010; Almanidis and Sickles 20116; Feng et al. 2012). This is considered
a finite sample “artifact” and the usual suggestion in the literature and by programs

6This paper goes far beyond the topics covered in Almanidis and Sickles (2011). In this paper we
are concerned with the set identification of the bounded inefficiency model as well as in its use
to better understand the behavior of this lower bound as the banking industry moved towards and
through the financial meltdown. Such a pattern of a lower bound for inefficiency during the period
prior to the meltdown speaks to the industry becoming lax in its allowance of banks that are not
efficient in their provision of intermediation services as they appeared to focus instead on other
off-balance sheet activities for which of course we do not have much credible information, as they
are off-balance sheet operations. Our paper also shows the advantages of specifying a lower bound
and estimating it, along with the other parameters of the model. Our paper is based on substantial
efforts in data construction and uses data that has not appeared yet in the literature. Our paper also
carries out a much more detailed set of MC experiments.
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implementing stochastic frontier models is to treat all firms in the sample as fully
efficient and proceed with straightforward OLS based on the results of Olson et al.
(1980) and Waldman (1982). As this would suggest setting the variance of the
inefficiency term to zero, it would have problematic impacts on estimation and on
inference. Simar and Wilson (2010) suggest a bagging method to overcome the
inferential problems when a half-normal distribution for inefficiencies is specified.
However, a finding of positive skewness in a sample may also indicate that
inefficiencies are in fact drawn from a distribution which has positive skewness.7

Carree (2002) considers one-sided distributions of inefficiencies (ui ) that can
have negative or positive skewness. However, Carree (2002) uses the binomial
distribution, which is a discrete distribution wherein continuous inefficiencies fall
into discrete “inefficiency categories” and which implicitly assumes that only a
very small fraction of the firms attain a level of productivity close to the frontier,
especially when ui is negatively skewed.8

Our model addresses the positive skewness problem in the spirit of Carree (2002),
but with a more appealing distributional specification on the efficiency term. For the

doubly truncated normal model, let �1 D ��
�u

, �2 D B��
�u

, and 	k � �k1 �.�1/��k2 �.�2/
ˆ.�2/�ˆ.�1/ ,

k D 0; 1; : : : ; 4. Note that 	0 is the inverse Mill’s ratio and it is equal to
p
2=
 in

the half normal model, and that �1 and �2 are the lower and upper truncation points
of the standard normal density, respectively. The skewness of the doubly truncated
normal distribution is given by

Su D 2	30 � 	0.3	1 C 1/C 	2
�
1 � 	20 C 	1

�3=2 : (3.7)

It can be checked that when B > 2�, Su is positive and when B < 2�, Su is
negative. Since B > 0 by definition, it is obvious that only when � > 0 is it
possible for ui to be negatively skewed. The larger � is, the larger range of values
B may take such that ui is negatively skewed. Consider the limiting case where a
normal distribution with � ! 1 is truncated at zero and B > 0. An infinitely

7Simar and Wilson (2010) consider inferences on efficiency conditional on composite error. They
propose a bagging method and a bootstrap procedure for interval prediction and show that they are
superior over the conventional methods that are based on the estimated conditional distribution.
The relation of theirs to our paper is that they show that their methods work even when “wrong
skewness” appears, while traditional MLE-based procedures do not. When the latter discovers a
“wrong skewness”, either (i) obtain a new sample, or (ii) re-specify the model (but not like what
we do). What is common between our paper and SW is that both address the skewness problem.
But “wrong skewness” in SW is due to finite sample bad luck, while we argue that it may be due to
model specification. Larger samples would correct finite sample bad luck, but not if the underlying
DGP is doubly truncated as we propose. The skewness problem is not the main issue in SW but
their paper does have implications for it. The SW paper focuses on computational matters, while
our paper concerns econometric specification and estimation.
8A negatively skewed doubly truncated normal inefficiency distribution does not necessarily imply
that there are only few units in the population that operate close to the frontier.
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large � means that there is effectively no truncation on the left at all and that any
finite truncation on the right gives rise to a negative skewness. Finally, for both
the truncated half normal model (� D 0) and the truncated exponential model, the
skewness of ui is always positive.

Consequently, the doubly truncated normal model has a residual that has an
ambiguous sign of the skewness, which depends on an unobservable relationship
between the truncation parameter B and �. We argue that this ambiguity theoret-
ically could explain the prevalence of the positive skewness problem in applied
stochastic frontier research. When the underlying data generating process for ui
is based on the doubly truncated normal distribution, increasing sample size does
not solve the positive skewness problem. The skewness of the OLS residual " may
be positively skewed even when sample size goes to infinity. Hence the positive
skewness problem also may be a large sample problem.9

Based on the above discussion, it is clear that the doubly truncated normal
model generalizes the stochastic frontier model in a way that allows for positive
as well as negative skewness for the residual. In addition, although the truncated
half normal and the truncated exponential models have negative (correct) skewness
in large samples, the existence of the inefficiency bound reduces the identifiability
of negative skewness in finite sample, often to the extent that positive skewness
appears. This implies that finding a positive skewness does not necessarily mean
that the stochastic frontier model is inapplicable. It may be due to a finite sample
“artifact” (Simar and Wilson 2010) or it may be that we are studying a market or an
industry in which firms do not fall below some minimal level of efficiency in order
to remain in the market or industry. In the latter case, the traditional unbounded
support for the inefficiency term would be misspecified and should be substituted
with the model of bounded inefficiency.

3.4 Identification and Estimation

3.4.1 Identification

We utilize the set or partial identification concepts that have been revisited (see, for
example, Tamer 2010) and that were enunciated early in the production setting by
Marschak and Andrews (1944) (see also the critique by Nerlove (1965)). That this
has been the relatively recent interest of many econometricians speaks to a cycle
of classical econometric study that has defined the production frontier portion of

9See Almanidis and Sickles (2011) for more discussion and simulation study on positive skewness
issue in parametric stochastic frontier models.
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Peter Schmidt’s research that our paper develops. We can put it into a historical
perspective by looking at the intellectual development of the production function
by Paul Samuelson (see his 1979 review of his professor Paul Douglas), his student
Lawrence Klein whose classic Textbook of Econometrics (1953) sold at the unheard
price of $6.00 and which provides insights today for those interested in production
econometrics, his student Arthur Goldberger (see, for example, “The Interpretation
and Estimation of Cobb-Douglas Functions”, 1968), his student Jan Kmenta (see,
for example, Zellner et al. 1966), and his student Peter Schmidt, whose work on the
stochastic frontier production function with Dennis Aigner and C. A. Knox Lovell
(1977) is regarded as the seminal research contribution to the field of productive
efficiency econometrics. In turn, each of these legacies arguably can be viewed
as the most successful student of their respective professor. Our contribution is
leveraged by these seminal contributions as well as the selective constraints that
economic theory has imposed on their contributions, which we try to address in our
stochastic frontier model with bounded inefficiency.

Identification using first and second order moments is a well-accepted methodol-
ogy. Our models are not identified by such moments alone and require higher order
moments. The use of higher order moments to identify and estimate econometric
models is well-known and has proven quite important in parametric econometric
modeling (see, for example, Cragg 1997; Dagenais and Dagenais 1997). Identi-
fication strategies that utilize the properties of the underlying joint distribution
function for the exponential class, requiring the identification of distributions
defined by third and forth order moments, have been the mainstay of recent work in
nonparametric identification (Newey and Powell 2003; Matzkin 2012). Alternative
approaches have also been introduced to utilize other types of information, such
as heteroskedastic covariance restrictions to obtain point and set identification for
parametric and semiparametric models (Lewbel 2012). We explore the sensitivity of
the use of such higher order moments restrictions in our Monte Carlo experiments.

Identification of our model may be done in two parts. The first part is concerned
with the parameters describing the technology, and the second part identifies the
distributional parameters using the information contained in the distribution of
the residual. For models without an intercept term the identification conditions
for the first part are well known and are satisfied in most of the cases. The
structural parameters can be consistently obtained by applying straightforward
OLS. However, for models containing an intercept term there is a need to bias
correction it using the distributional parameters since EŒ"� D �EŒu� ¤ 0 (see
Afriat 1972; Richmond 1974). Therefore, the identification of the second part, which
is based on method-of-moments requires a closer examination. Table 3.2 lists the
population (central) moments of ."i / for the doubly truncated normal model and
the truncated exponential model. The moments of the truncated half normal model
can be obtained by setting � D 0 in the doubly truncated normal model. These
results are essential for the discussion of identification and the method of moments
estimation.
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Table 3.2 Central moments of "

Moment Doubly-truncated-normal
 1 ��� �u	0

 2 �2u
�
1� 	20 C 	1

�C �2v

 3 ��3u
�
2	30 � 3	1	0 � 	0 C 	2

�

 4 �4u
�
3C 3	1 C 	3 � 2	20 � 4	0	2 C 6	20	1 � 3	40

�C 6�2u �
2
v

�
1� 	20 C 	1

�C 3�4v

 5 �10�2v �3u
�
2	30 � 3	1	0 � 	0 C 	2

�

��5u
�
	4 C 4	2 � 5	0	3 C 10	20	2 � 10	30	1 C 10	30 � 15	0	1 C 4	50 � 7	0

�

See the text for the definitions of 	k , k D 0; : : : ; 4

Truncated-exp.
 1 ��u

�
1� �

e��1

�

 2 �2v C �2u
e2��.�2C2/e�C1

e2��2e�C1

 3 ��3u 2e
3�

�.�3C6/e2�C.6��3/e��2

e3��3e2�C3e��1

 4 �4u
�9e4�C36e3��54e2�C36e��9C6�2e� .e2��2e�C1/C�4e� .e2�Ce�C1/

�e4�C4e3��6e2�C4e��1

C6�2v �2u e
2�

�.�2C2/e�C1

e2��2e�C1
C 3�4v , � D B=�u

To examine the identification of the second part we note that under the assump-
tion of independence of the noise and inefficiency term the following equality holds

E
�
." � E."//4

� � 3 �E �." � E."//2
��2

D  4 � 3 22 D E
�
.u �E.u//4� � 3

�
E
�
.u � E.u//2

��2
(3.8)

This is a measure of excess kurtosis and for the truncated half-normal model is
derived as

 4 � 3 22 D �4u .��3 Q	0 C 3� Q	0 � 4�2 Q	20 � 4 Q	20 � 3�2 Q	20 � 12� Q	30/ (3.9)

where Q	0 D .2
/�1=2���.�/
ˆ.�/� 1

2

. Notice that for normal distribution Q	0 D 0 and thus the

excess kurtosis is also zero.
After multiplying (3.9) by  �4=3

3 we eliminate �u and the resulting function,
which we denote by g has only one argument �

g.�/ D ��3 Q	0 C 3� Q	0 � 4�2 Q	20 � 4 Q	20 � 3�2 Q	20 � 12� Q	30�
2 Q	30 � 3� Q	20 � Q	0 C �2 Q	0

��4=3 (3.10)
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The weak law of large numbers implies that

plim
1

n

X
i

O"ki D mk D  k (3.11)

The first order moment is zero by definition and thus is not useful for identifi-
cation purposes. By employing the Slutsky theorem we can specify the following
functionG

g.�/ D m4 � 3m2
2

m4=3

H)

G.�/ D g.�/ � m4 � 3m2
2

m4=3

Similarly, we can derive the function G for the normal-truncated exponential
model with function g expressed by

g.�/ D 36e2� � 24e� � 24e3� C 6e4� � �4e� � 4�4e2� � �4e3� C 6

.6e2� � 4e� � 4e3� C e4� C 1/.� 2e3��.�3C6/e2�C.6��3/e��2
e3��3e2�C3e��1 /4=3

(3.12)

Both the truncated half normal model and the truncated exponential model are
globally identified. To see this, we can examine the monotonicity of the function
G with respect to the parameter � which will allow us to express this parameter
(implicitly) as a function of sample moments and data. This condition provides the
necessary and sufficient condition for global identification ala Rothenberg (1971).
For the truncated half normal model, G is monotonically decreasing and for the
truncated exponential model, G is monotonically increasing. Hence, in both cases,
G is invertible and � can be identified. The identification of other parameters then
follows from the third order moment of least squares residuals. Note, however, that
for large values of � (e.g., � > 5 for the normal-truncated half-normal model and
� > 20 for the normal-truncated exponential model), the curve g.�/ is nearly flat
and gives poor identification. � can be large for two reasons: either �u goes to zero
or the bound parameter is large. In the first case the distribution of the inefficiency
process approaches the Dirac-delta distribution which makes it very hard for the
distributional parameters to be identified. This limiting case is discussed in Wang
and Schmidt (2008). In the second case the distribution of the inefficiency term
becomes unbounded as in the standard stochastic frontier models for which it is
straightforward to show that the model is globally identified (see Aigner et al. 1977;
Olson et al. 1980).

It is not clear, however, that the doubly truncated normal model is globally iden-
tifiable. However, local identification can be verified. We may examine �4=3

3 . 4 �
3 22 / and �5=3

3 . 5�10 2 3/, both of which are functions of �1 and �2 only and we
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denote them as g1.�1; �2/ and g2.�1; �2/, respectively. Let Og1 and Og2 be the sample
versions of g1 and g2, respectively, we have the following system of identification
equations,

G1.�1; �2/ � g1.�1; �2/ � Og1 D 0

G2.�1; �2/ � g2.�1; �2/ � Og2 D 0:

By the implicit function theorem (or Rothenberg 1971), the identification of �1 and
�2 depends on the rank of the matrix

H D
 
@g1
@�1

@g1
@�2

@g2
@�1

@g2
@�2

!
:

If H is of full rank, then �1 and �2 can be written as functions of Og1 and Og2;
the identification of the model then follows. The analytic form of H is very
complicated, but we may examine the invertibility of H by numerically evaluating
g1 and g2 and inferring the sign of each element in H . It can be verified that the
determinant of H is nonzero in neighborhoods within I1, I2, and I4, the definitions
of which are given as follows,

(i) I1 � f.�;B/j� � 0; B > 0g
(ii) I2 � f.�;B/j� > 0;B 2 .0; 2�/g

(iii) I3 � f.�;B/jB D 2� > 0g
(iv) I4 � f.�;B/j� > 0;B > 2�g.

The line I3 � f.�;B/jB D 2� > 0g corresponds to the case whereB D 2� and
 3 D 0, hence the functions g1 and g2 are not continuous and the implicit function
theorem is not applicable. Nonetheless, simulation results in the next section show
that when the true values of B and � satisfy B D 2�, bothB and � are consistently
estimated. This may indicate that the restricted (B D 2�) model may be nested in
the unrestricted model and the model is locally identifiable on I2

S
I3
S
I4.

We may treat the doubly truncated normal model as a collection of different sub-
models corresponding to the different domains of parameters. Treated separately,
each of the sub-models is globally identified. In maximum likelihood estimation, the
separate treatment is easily achieved by constrained optimization on each parameter
subset. For example, on the line of f.�;B/j� D 0; B > 0g � I1, the doubly
truncated normal model reduces to the truncated half normal model. As another
useful example, the line I2 corresponds to a sub-model that has positive skewness
even asymptotically.

3.4.2 Method of Moment Estimation

The method-of-moments (Olson et al. 1980) may be employed to estimate our
model or to obtain initial values for maximum likelihood estimation. In the first
step of this approach, OLS is used to obtain consistent estimates of the parameters
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describing the technology, apart from the intercept. In the second step, using the
distributional assumptions on the residual, equations of moment conditions are
solved to obtain estimates of the parameters describing the distribution of the
residual.

More specifically, we may rewrite the production frontier model in (3.1) and
(3.2) as

yi D .˛0 � Eui /C
KX

kD1
˛kxi;k C "�

i ;

where "�
i D "i C .Eui / has zero mean and constant variance �2" . Hence OLS yields

consistent estimates for "�
i and ˛k , k D 1; : : : ; K . Equating the sample moments of

estimated residuals .O"�
i / to the population moments, one can solve for the parameters

associated with the distribution of ."�
i /.

3.4.3 Maximum Likelihood Estimation

For more efficient estimation, we may use maximum likelihood estimation (MLE).
Note that with the presence of a noise term vi , the range of residual is unbounded and
does not depend on the parameter. No other standard regularity conditions might be
questioned. In the remainder of this section we provide the log-likelihood functions
for the bounded inefficiency model for the three parametric distributions we have
considered. Note that in practice we may also need the gradients of the log likelihood
function. The gradients are complicated in form but straightforward to derive. These
are provided in the appendix.

In addition to the � -parametrization discussed earlier, we re-parametrize the
bound parameter with another parameter QB D exp.�B/. Unlike the bound, QB
takes values in compact unit interval which facilitates the numerical procedure of
maximum likelihood estimation as well as establishing the asymptotic normality of
this parameter. When QB lies in the interior of parameter space, the MLE estimator
is asymptotically normal (see Rao 1973; Davidson and MacKinnon 1993 among
others).

The log-likelihood function for the doubly truncated normal model with
� -parameterization is given by

lnL D �n ln

"
ˆ.

� ln QB � �

�u.�; �/
/ �ˆ. ��

�u.�; �/
/

#

�n ln � � n

2
ln.2
/ �

nX

iD1

."i C �/2

2�2
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C
nX

iD1
ln

(
ˆ

 
.� ln QB C "i /

p
�=.1� �/ � .ln QB C �/

p
.1 � �/=�

�

!

�ˆ
 
"i
p
�=.1� �/� �

p
.1 � �/=�

�

!)
; (3.13)

where "i D yi � xi˛, xi D .1; xik/, and ˛ D .˛0; ˛k/
0.

�u.�; �/ D �
p
�: (3.14)

This can be expressed in terms of the �-parametrization as in Aigner et al. (1977)
by substituting � in (3.13) with

�.�/ D �2

1C �2
: (3.15)

The log-likelihood function for the truncated half normal model is

lnL D �n ln

 
ˆ

 
� ln QB
�u.�; �/

!
� 1

2

!
� n ln � � n

2
ln.2
/

�
nX

iD1

"2i
2�2

C
nX

iD1
ln

(
ˆ

 
.� ln QB C "i /

p
�=.1� �/� ln QBp.1 � �/=�

�

!

�ˆ
 
"i
p
�=.1� �/
�

!)
; (3.16)

Again, substituting � into (3.16) with �.�/ in (3.15), we get the logL with
�-parametrization.

Finally, the log-likelihood function for the truncated exponential model with
� -parametrization is given by

lnL D �n
2

ln � � n ln � � n ln

�
1 � e

ln QB��1=2

�

�
C n

2

1 � �

�
C ��1=2

�

nX

iD1
"i

C
nX

iD1
ln

"
ˆ

 
.� ln QB C "i /.1 � �/�1=2

�
C
s
1 � �
�

!

�ˆ
 
"i .1 � �/�1=2

�
C
s
1 � �
�

!#
; (3.17)

where "i D y � xi˛.
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After estimating the model, we can estimate the composed error term "i :

O"i D yi � Ǫ0 �
X

xi;k Ǫk; i D 1; � � � ; n: (3.18)

From this we can estimate the inefficiency term ui using the formula forE.ui j"i / in
Table 3.1.

One reasonable question is whether or not one can test for the absence or the
presence of the bound (H0 W QB D 0 vs. H1 W QB > 0), which one may wish to
test since this would suggest that the proper specification would be the standard
SF model which assumes no bound as a special case of our more general bounded
SF model. The test procedure is slightly complicated but still feasible. The first
complication arises from the fact that QB lies on the boundary of the parameter space
under the null. Second, it is obvious from the log-likelihood functions provided
above that the bound is not identified in this case and it can be shown that any
finite order derivative of the log-likelihood function with respect to QB is zero. Thus
the conventional Wald and Lagrange Multiplier (LM) statistics are not defined and
the Likelihood Ratio (LR) statistic has a nonstandard asymptotic distribution that
strictly would dominate the �2.1/ distribution. Lee (1993) derives the asymptotic

distribution of such an estimate as a mixture of �2 distributions under the null that its
value is zero, focusing in particular on the SF model under the assumption of half-
normally distributed inefficiencies. Here � is globally identified, which can also be
seen using the method-of-moments estimator provided in Aigner et al. (1977). Lee
(1993) provides useful one-to-one reparametrization which transform the singular
information matrix into a nonsingular one. However, since the bound in our model
case is not identified in this situation, there is no such re-parametrization and hence
this procedure cannot be used. An alternative is to apply the bootstrap procedure
proposed by Hansen (1996, 1999) to construct asymptotically equivalent p-values
to make an inference. To implement the test we treat the O"i (i D 1; : : : ; n) as a
sample from which the bootstrap samples O".m/i (i D 1; : : : ; nIm D 1; : : : ;M ) are
drawn with replacement. Using the bootstrap sample we estimate the model under
the null and the alternative of bounded inefficiency and construct the corresponding
LR statistic. We repeat this procedure M times and calculate the percentage of
times the bootstrap LR exceeds the actual one. This provides us with the bootstrap
estimate of the asymptotic p-value of LR under the null.

3.5 Panel Data

In the same spirit as Schmidt and Sickles (1984) and Cornwell et al. (1990), we may
specify a panel data model of bounded inefficiencies:

yit D ˛0 C
KX

kD1
˛kxit;k C "it (3.19)



3 Stochastic Frontier Models with Bounded Inefficiency 63

where

"it D vi t � ui t : (3.20)

We assume that the inefficiency components .ui t / are positive, independent from
the regressors, and are independently drawn from a time-varying distribution with
upper bound Bt . We may set Bt to be time-invariant. However, it is certainly more
plausible to assume otherwise, as the market or industry may well become more
or less forgiving as time goes by, especially in settings in which market reforms
are being introduced or firms are adjusting to a phased transition from regulation to
deregulation.

Note that since ui t is time-varying, the above panel data model is in effect a time-
varying technical efficiency model. Our model differs from the existing literature in
that, while previous time-varying efficiency models, notably Cornwell et al. (1990),
Kumbhakar (1990), Battese and Coelli (1992), and Lee and Schmidt (1993), are
time-varying in the mean or intercept of individual effects, our model is time-
varying in the upper support of the distribution of inefficiency term ui .

The assumption that ui t is independent over time simplifies estimation and
analysis considerably. In particular, the covariance matrix of "i � ."i1; : : : ; "iT /

0
is diagonal. This enables us to treat the panel model as a collection of cross-section
models in the chronological order. We may certainly impose more structure on the
sample path of the upper bound of ui t , Bt , without incurring heavy costs in terms of
analytic difficulty. For example, we may impose smoothness conditions on Bt . This
is empirically plausible, indeed, since changes in the market competitive conditions
may come gradually. And it is also technically desirable, since imposing smoothness
conditions gives us more degree of freedom in estimation, hence better estimators
of model parameters. A natural way of doing this is to let Bt be a sum of weighted
polynomials,

Bt D
KX

iD0
bi .t=T /

i ; t D 1; : : : ; T; (3.21)

where .bi / are constants. We may also use trigonometric series, splines, among
others, in the modeling of Bt . For an extensive survey of efforts to generalize such
heterogeneities in efficiencies see Sickles et al. (2013).

3.6 Simulations

To examine the finite sample performance of the MLE estimator of the doubly
truncated normal model,10 we run a series of Monte Carlo experiments in the
standard cross-sectional setting. The data generating process is (3.1) and (3.2) with

10The results for the truncated half-normal and truncated exponential models are available upon
the request.
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one regressor x and no constant term and is based on the data generating process
utilized in study 2 of Aigner, Lovell, and Schmidt. We maintain the assumption
that vi is iid N.0; �2v /, ui is iid, and vi and ui are independent from each other
and from regressors. The number of repetitions is 1;000. Throughout we keep the
coefficient ˛ on the single regressor technology parameter set at 0:6 and examine
performances in terms of bias and mean absolute error as we change in each of the
distributional parameters (� , � , �, and B). As the SF benchmark we use the singly
truncated normal model (Stevenson 1980) on the simulated data. We report average
estimates and mean absolute errors (MAE) in Tables 3.3–3.6. Each of these sets of
experiments selectively change the distributional parameters. We draw the following
conclusions from these experiments.11

First, all parameters in the doubly truncated normal model appear to be well-
estimated, with biases and MAE’s that fall as sample sizes rise. The biases are
generally small, and the MAE’s of almost all estimates decrease at

p
N rate as N

increases, except that of O� in a couple of particular cases. More specifically, when
� is small (i.e., the variation in the composite error is small), O� does not converge
at the optimal rate as N increases (see Table 3.3). The same happens when B is
large (see Table 3.5). This observation is connected with the well-known difficulty
of identifying � in the singly truncated model (B ! 1) from finite sample. As is
well known, the technological parameter ˛ in the singly truncated normal model is
consistently estimated. However, estimates of distributional parameters in the singly
truncated model are not well-defined and thus we do not calculate the corresponding
MAE’s.

Second, Table 3.3 shows that as � becomes smaller, the MAE of Ǫ is monotone
decreasing, while the MAE’s of O� , O� , and O� is monotone increasing. To reconcile the
apparent divergence, note that the composite error " is noise for the technological
parameters, but signal for distributional parameters. The effect of � on the MAE of
OB is ambiguous, which decreases at first and then increases as � becomes smaller.

Third, if we mistakenly estimate a singly truncated model on a DGP with double
truncation, we tend to underestimate the average technical efficiency (ATE). This is
understandable since the singly truncated model may treat some extreme (negative)
measurement errors as inefficiencies. Within the doubly truncated model, it is also
clear that as B becomes larger, the ATE decreases (See Table 3.5). However, our
simulation results show that the efficiency ranking would not be affected if we
estimate a misspecified model.

Finally, as is expected, MLE correctly estimates the doubly truncated normal
model when the composite error has positive population skewness. This is evident
in Table 3.6, where the third case (� D 0:3, B D 0:5) corresponds to negative
(positive) skewness in u ("). In all cases, the double truncation in the DGP of
u makes finite-sample positive skewness more probable, resulting in many zero
O� ’s (super-efficiency) from the misspecified (singly truncated) model. Hence the
average O� ’s in the misspecified model are generally much lower than the true value.

11We have similar limited Monte Carlo results based on two regressors with varying correlations
and our results are qualitatively similar. Results are available on request.
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3.7 An Empirical Illustration to Analyze US Banking
Industry Dynamics

3.7.1 Empirical Model and Data

We now apply the bounded inefficiency (BIE) model to an analysis of the US
banking industry, which underwent a series of deregulatory reforms in the early
1980s and 1990s, and experienced an adverse economic environment in the last
few turbulent years of 2000s.12 Our analysis covers a lengthy period between 1984
and 2009 and our illustration aims to use the panel variant of our BIE model to
capture efficiency trends of the US banking sector during these years as well as how
the lower bound of inefficiency also changed as the market became more or less
competitive vis-a-vis inefficient firms.

Following Adams et al. (1999) and Kneip et al. (2012), we specify a multi-
output/multi-input stochastic output distance frontier model as13

Yit D Y �
i t

0� CX 0
i tˇ C vi t � ui t ; (3.22)

where Yit is the log of real estate loans; Xit is the negative of log of inputs,
which include demand deposit (dd), time and savings deposit (dep), labor (lab),
capital (cap), and purchased funds (purf).14 Y �

i t includes the log of commercial and
industrial loans/real estate loans (ciln) and installment loans/real estate loans (inln).
In order to account for the riskiness and heterogeneity of the banks we include the
log of the ratio of equity to total assets (eqrt) which usually measures the risk of
insolvency of the banks in banking literature.15 The lower the ratio the more riskier
a bank is considered. We assume the vi t are i id across i and t , and for each t ,
ui t has a upper bound Bt . Then we can treat this model as a generic panel data
bounded inefficiency model as discussed in Sect. 3.5. Once the individual effects
ui t are estimated, technical efficiency for a particular firm at time t is calculated as
TE D exp.ui t � max1�j�N ujt /.

The output distance function is known as a Young index (ratio of the geometric
mean of the outputs to the geometric mean of the inputs) described in Balk
(2008), which leads to the Cobb-Douglas specification of the distance function

12These deregulations gradually allowed banks in different states to merge with other banks across
the state borders. The Reigle-Neal Act that was passed by the Congress in 1994 also allowed the
branching by banks across the state lines.
13For more discussion on stochastic distance frontiers see Lovell et al. (1994).
14Purchased funds include federal funds purchased and securities sold under agreements to repur-
chase, time deposits in $100,000 denominations, mortgage debt, bank’s liability on acceptances,
and other liabilities that are not demand deposits and retail time and savings deposits.
15We exclude from the sample banks with eqrt less that 0.02. Typically, these banks are close
to failure and estimation of their efficiency scores require special treatments (see Wheelock and
Wilson 2000; Almanidis 2013 for more discussion).
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introduced by Klein (1953). Although this functional form has been criticized for
its separability and curvature properties it remains a reasonable and parsimonious
first-order local approximation to the true function (Coelli 2000) and we use it
in our limited empirical illustration of the bounded stochastic frontier model. We
use the parsimonious Cobb-Douglas model as well to allow comparisons with
the results from our Monte Carlo simulations, which due to the need to estimate
highly nonlinear models, have been somewhat limited by computational and time
constraints to a relatively simple linear in logs specification.16 Translog distance
function estimates, which one may view as more general, have their own attendant
problems due to multicollinearity in the second order terms of the four-output/five-
input technology. This typically is addressed by utilizing additional restrictions,
such as those imposed by cost minimization or profit maximization, in order to be
empirically identify the translog parameters.17 We do not use these side conditions
to empirically identify the parameters due to our use of a stochastic frontier model
that admits to technical inefficiency but does not attempt to trace this inefficiency to
its logical implication in the first order conditions of cost minimization or profit
maximization (the so-called “Greene problem”, Kutlu 2013). Utilization of side
conditions to address errors in the optimization of allocations is beyond the scope
of this paper. That said, our translog estimates have provided qualitatively similar
results, which are available on request.

We use US commercial banking data from 1984 first quarter through 2009 third
quarter. There are several ways in which data can be merged or deleted depending on
whether or not banks continued as independent entities during the sample period we
consider in our illustration of the insights gained by the bounded inefficiency model.

16The empirical illustration is used in part to link the use of the Cobb–Douglas functional form
in expressing the provision of banking intermediation services to Peter Schmidt’s intellectual
predecessors, whom we have discussed above, and who used the Cobb-Douglas functional form
substantially. It also has been the predominate functional form used by the NBER’s Productivity
Program in their seminal work on productivity and growth. We understand the limitations of the
Cobb–Douglas functional form. Indeed, one of the authors has been writing on the topic for 30
years (Guilkey et al. 1983). Recent work on banking efficiency and returns to scale by Wheelock
and Wilson (2012) have fitted local linear and local quadratic estimator with on the order of one
million parameters to a cost relationship and use duality theory to link the cost estimates to the
returns to scale in the banking industry and utilize multi-step bootstrapping methods to assess
significance. It is unclear what has been estimated in such an exercise as standard regularity
conditions for the function to indeed be a cost function have not been checked, nor it is clear
how such a test would be conducted. Obviously, with such an overparameterized model, they
overwhelmingly reject generalizations of the Cobb–Douglas, such as second-order Taylor series
expansions in logs, such as the translog functional form. Without the regularity conditions met by
at least some of the observations their results are meaningless. Moreover, it is not even clear that
their use of the bootstrap in the multi-step algorithms they use is even valid. We find that regularity
conditions are met by a substantial portion of the data we use and do find little qualitative difference
in terms of the efficiency patterns, which is of course what the paper focuses on, between those
generated by the Cobb–Douglas and the translog.
17For an example of the use of such side conditions and with just such justifications in the multi-
output cost function setting see Hughes and Mester (1993).
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One approach is to express the data for a bank on a pro-forma basis that goes back in
time to account for mergers. For example, if a bank in 2008 is the result of a merger
in 2008 then the pre-2008 data is merged on a pro-forma basis wherein the non-
surviving bank’s data is viewed as part of the surviving bank in earlier time periods.
The Federal Reserve uses this approach in estimating risk measurement models,
such as the Charge-off at Risk Model (Frye and Pelz 2008), which is the basis of
risk dashboards used for centralized bank supervision. This sample design reflects
methodologies used by banks in calibrating credit risk models, such as those used
for Basel III and for Comprehensive Capital Analysis and Review (CCAR).18 An
alternative to the retroactive merging in of legacy banks is to utilize an unbalanced
design wherein banks simply attrit from the sample when their ownership changes.
Although at first blush this would seem to address the problem of selection in cases
when weaker banks get taken over, there are also many cases of mergers-of-equals
as well (e.g., JP Morgan and Bank One merger). Roughly 84 % of banks in our
sample ceased their operation due to reasons other than failure, such as merger
or voluntary liquidation, or remained inactive, or were no longer regulated by the
Federal Reserve. Almanidis and Sickles (2012) have proposed a general model that
combines the mixture hazard model with the canonical stochastic frontier model to
investigate the main determinants of the probability and time to failure of a panel of
US commercial banks during the financial distress that began in August of 2007. In
their analysis they focused on banks failures, not on ownership changes or changes
in regulatory oversight that were not due to liquidation due to financial distress.
Unlike the standard hazard model, which would assume that all banks in the sample
eventually experience the event (failure), the mixture hazard model distinguishes
between healthy (long-term survivors) and at-risk banks. Almanidis and Sickles did
not find that selection on banks per se impacted their estimates in any significant
way. Moreover, their formal mixture hazard framework is far removed from the
basic modeling issues addressed in this paper, namely the introduction of a different
stochastic frontier paradigm that acknowledges a lower bound to inefficient firm
operating practices. In order to maintain comparability between our results and
those from many other studies using stochastic frontier analysis and to find some
middle ground between the pro-forma merging algorithm practiced by the Federal
Reserve and the deletion of firms from the sample that attrit and the potential
misspecification due to the many potential ways (unobserved in our sample) in
which such attrition may have occurred, we utilize a balanced panel and study only
firms that have remained in business during our sample period.

The data is a balanced panel of 4,193 commercial banks and was compiled
from the Consolidated Reports of Condition and Income (Call Report) and the
FDIC Summary of Deposits. The data set includes 431,879 observations for 103
quarterly periods. This is a fairly long panel and thus the assumption of time-
invariant inefficiencies does not seem tenable. For this reason we compare the
estimates from our BIE model to the estimates from other time-varying effects

18For more discussion of this issue and the use of similar data in models of risk aggregation see
Inanoglu and Jacobs (2009).
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Table 3.7 Descriptive statistics for bank-specific variables

Variable name Mean Median
Standard
deviation Min Max

Real estate loans 212,968 17,549 4,341,501 145 4.61EC08
Commercial and industrial loans 103,272 4,908 2,143,974 46 1.82EC08
Installment loans 58,869 4,360 1,417,908 86 1.51EC08
Demand deposits 54,913 7,282 912,761 186 1.03EC08
Time and savings deposits 449,003 46,954 1.00EC07 1,446 9.93EC08
Labor 186 29 2,960 4 215,670
Capital 8,196 913 129,778 9 1.16EC07
Purchased funds 163,785 13,698 3,322,838 286 3.37EC08
Ratio of equity to total assets 0.1007 0.0936 0.0312 0.0210 0.7459

models such as CSSW (the within variant of Cornwell et al. (1990)) and BC (Battese
and Coelli 1992) models, along with the baseline fixed effect estimator (FIX) of
Schmidt and Sickles (1984). Descriptive statistics for the bank-level variables are
given in Table 3.7, where all nominal values are converted to reflect 2000 year
values.

3.7.2 Results

Table 3.8 compares the parameter estimates of the bounded inefficiency (BIE)
model with that of FIX, CSSW, and BC.19 The structural parameters are statistically
significant at the 1% level and have the expected sign for all four models. The
adjusted Bera and Premaratne (2001) skewness test statistic is calculated to be
990:26, leading to rejection of the null hypothesis of symmetry at any conventional
significance level. The asymmetry of the least squares residuals is also verified by
quantile-quantile plot representation in Fig. 3.1. The technology parameters from
BIE model are somewhat different from those obtained from other models. The
negative value of the coefficient of the eqrt implies that riskier firms tend to produce
more loans, and especially real estate loans that are considered of high risk. The
positive sign of the estimate of the time trend shows technological progress on
average. There is a slight difference between the distributional parameters of BIE
and BC model which are also statistically significant at any conventional signifi-
cance level. We also tested ( not reported here) other distributional specifications for
BIE discussed above. The distributional parameters obtained from normal-truncated
half-normal model did not differ very much from that reported in the table, but
those obtained from normal-truncated exponential model did. However, this is not a
specific to bounded inefficiency models. Similar differences have been documented
in unbounded SF models as well.

19We estimate the normal-doubly truncated normal model in order to be able to compare it with
the BC model which specifies the inefficiencies to follow the truncated normal distribution.
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Table 3.8 Comparisons of various estimators. Estimates and standard errors (in parentheses) for
each model parameters from competing models (FIX, CSSW, BC, BIE)

FIX CSSW BC BIE

ciln 0:2407.0:0015/ 0:2971.0:0014/ 0:2284.0:0013/ 0:2838.0:0012/

inln 0:2206.0:0013/ 0:1715.0:0012/ 0:2043.0:0013/ 0:2609.0:0013/

dd �0:0940.0:0024/ �0:0935.0:0020/ �0:1197.0:0024/ �0:0996.0:0020/
dep �0:3999.0:0048/ �0:4037.0:0051/ �0:4368.0:0048/ �0:4053.0:0034/
lab �0:3104.0:0046/ �0:2219.0:0042/ �0:1610.0:0044/ �0:1892.0:0020/
cap �0:0460.0:0016/ �0:0464.0:0014/ �0:0510.0:0015/ �0:0965.0:0015/
purf �0:1507.0:0034/ �0:1658.0:0029/ �0:1627.0:0034/ �0:1665.0:0031/
time 0:0057.0:0001/ � 0:0020.0:0001/ 0:0021.0:0001/

eqrt �0:1369.0:0045/ �0:1189.0:0041/ �0:0975.0:0044/ �0:1088.0:0039/
� 0 0 0:7980.0:0115/ 0:7690.0:0058/

� 0:2210.0:0034/ 0:2070.0:0020/ 0:2733.0:0045/ 0:2712.0:0022/

� � � 0:3240.0:0139/ 0:3518.0:0630/

B � � � 1:5186

ATE 0:5853 0:6470 0:6410 0:6998
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Fig. 3.1 Quantile-quantile plot

We also estimate the time-varying inefficiency bound, B , using two approaches.
First we estimate the bound for the panel data model without imposing any
restriction on its sample path. In the second approach we specify the bound as
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Fig. 3.2 Estimated and smoothed inefficiency bound

a sum of weighted time polynomials. We choose to fit a fifth degree polynomial
the coefficients of which are estimated by MLE along with the rest parameters
of the model.20 Both approaches are illustrated in Fig. 3.2 with their respective
95% confidence intervals. It can be seen that the inefficiency bound has had a
decreasing trend up to year 2005, when the financial crisis (informally) began,
and then it is increasing for the remaining periods through the third quarter of
2009. One interpretation of this trend can be that the deregulations in 1980s and
1990s increased competitive pressures and forced many inefficient banks to exit
the industry, reducing the upper limit of inefficiency that banks could sustain and
still remain in their particular niche market in the larger banking industry. The new
upward trend can be attributed to the adverse economic environment and an increase
in the proportion of banks that are characterized as “too big to fail.”

Of course, for time-varying efficiency models such as CSSW, BC, and BIE, aver-
age efficiencies change over time.21 These are illustrated in Fig. 3.3 along with their

20The choice of degrees of the time polynomial was based on a simple likelihood-ratio (LR) test and
degrees of the polynomial ranging from 1 to 10. The maximum likelihood estimates of coefficients
for this polynomial are given by
b0 D �3:9477e � 007; b1 D 0:0039509�� ; b2 D �15:816��� ; b3 D 31656�� ; b4 D

�3:168e C 007�; b5 D 1:2682e C 010.
21We trimmed the top and bottom 5% of inefficiencies to remove the effects of outliers.
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Fig. 3.3 Averaged efficiencies from each estimator

95% confidence bounds. The BIE averaged efficiencies (panel 4) are significantly
higher than those obtained from the fixed effect time-invariant model. However, the
differences are small compared to BC and CSSW models. These small differences
are not unexpected, however, since the existence of the inefficiency bound implies
that the mean conditional distribution of inefficiencies is also bounded from above,
resulting in higher average efficiencies. Failing to take the bound into account could
possibly yield underestimated mean and individual efficiency scores (see Table 3.1).
We smooth the BIE averaged efficiencies by fitting ninth degree polynomial of time
in order to capture their trend and also to be able to compare them with other two
time-varying averaged efficiency estimates. These are represented by a curve labeled
BIEsmooth. It can be seen that the efficiency trend for the BIE model is in close
agreement with the CSSW model and better reflects the deregulatory reforms and
consolidation of the US commercial banking industry. It is increasing initially and
then falls soon after the saving and loans (S&L) crisis of early 1990s began. It
has the decreasing pace and reaches its minimum in 1993 a year before Congress
passed the Reigle-Neal Act which allowed commercial banks to merge with and
acquire banks across the state lines. This spurred a new era of interstate banking
and branching, which along with the Gramm-Leach-Billey Act that granted broad-
based securities and insurance power to commercial banks, substantially decreased
the number of banks operated in the US from 10,453 in 1994 to 8,315 by the end
of the millennium. After 1994 the banking industry witnessed a rapid increase in



76 P. Almanidis et al.

averaged efficiencies of its institutions due in part to the disappearance of inefficient
banks previously sheltered from competitive pressure and due to the expansion
of large banks that both financially and geographically diversified their products.
The increasing trend continues until the new recessionary period of 2001 and then
steadily falls thereafter until the rapid decline illustrating the effects of the 2007–
2009 crisis. The CSSW model is able to show the weakness of the banking industry
as early as 2005. This weakness is illustrated by the estimated inefficiency bound
from the BIE model. On the other hand, the BC model shows a slight, statistically
non-significant, upward efficiency trend for all these periods (	 D 0:0066).

In sum, Figs. 3.2 and 3.3 display an interesting findings: on one hand, an upward
trend is observed for the average efficiency of the industry, presumably benefiting
from the deregulations in the 1980s and 1990s; on the other hand, the industry
appears to be more “tolerant” of less efficient banks in the last decade. Possibly,
these banks have a characteristic that we have not properly controlled for and we are
currently examining this issue. Given the recent experiences in the credit markets
due in part to the poor oversight lending authorities gave in their mortgage and
other lending activities, our results also may be indicative of a backsliding in the
toleration of inefficiency that could have contributed to the problems the financial
services industry faces today.

3.8 Conclusions

In this paper we have introduced a series of parametric stochastic frontier models
that have upper (lower) bounds on the inefficiency (efficiency). The model param-
eters can be estimated by maximum likelihood, including the inefficiency bound.
The models are easily applicable for both cross-section and panel data settings.
In the panel data setting, we set the inefficiency bound to be varying over time,
hence contributing another time-varying efficiency model to the literature. We have
examined the finite sample performance of the maximum likelihood estimator in the
cross-sectional setting. We also have showed how the positive skewness problem
inherent in traditional stochastic frontier model can be avoided when the bound is
taken into account. An empirical illustration focusing on the US banking industry
using the new model revealed intuitive and revealing trends in efficiency scores.

Acknowledgements The idea of addressing the skewness problem in stochastic frontier models
via the use of our new Bounded Stochastic Frontier was conjectured by C. A. Knox Lovell in
discussions at the presentation of a very preliminary draft of this paper at the Tenth European
Workshop on Efficiency and Productivity, Lille, France, June, 2007. Subsequent versions have
been presented at the Texas Econometrics Camp XV, Montgomery, Texas, February, 2010;
the Efficiency and Productivity Workshop, University of Auckland, New Zealand, February,
2010; the North American Productivity Workshop, Houston, Texas, June 2010; the International
Econometrics Workshop, Guanghua Campus (SWUFE), Chengdu, August 12, 2010; and the 10th
World Congress of the Econometric Society, Shanghai, August 21, 2010. We would like to thank
participants of those conferences and workshops for their helpful comments and insights. We thank
Carlos Martins-Filho for his helpful suggestions and criticism. We would especially like to thank



3 Stochastic Frontier Models with Bounded Inefficiency 77

Robert Adams at the Board of Governors of the Federal Reserve System for his guidance and Rob
Kuvinka for his excellent research assistance that was essential in our development of the banking
data set that we analyze in our empirical illustration. The views expressed by the first author are
independent of those of Ernst&Young LLP. The usual caveat applies.

Appendix

First-Order Derivatives of Log-Likelihood Function

The scores for the normal-doubly-truncated normal model that can either be used
in a generalized method of moments estimation or in standard mle (3.13) under the
� -parametrization and the QB-parametrization are:
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. The scores for the normal-truncated half-normal model
are obtained after substituting � D 0 in the above expressions.

The scores for normal-truncated exponential model are derived from (3.17) as
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